
University of Alberta

Security Issues in Heterogeneous Data Federations

by

Gregory Leighton

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

c©Gregory Leighton
Fall 2011

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential users
of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and,
except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or

otherwise reproduced in any material form whatsoever without the author’s prior written permission.

Abstract

Data federations allow the contents of multiple source databases to be accessed in a con-

sistent manner. Since each source database is typically administered independently, hetero-

geneity often results, both in terms of how data is represented (i.e., the database schema),

and in how controlled access to data is regulated. Typically, each data source exports data

in relational format where it is combined into a semi-structured representation (e.g., XML).

In this thesis, we address two aspects of securing heterogeneous data federations. The

first deals with the accurate translation of access control policies specified over source

databases into a single, unified access control policy applicable to the wider data federa-

tion. Such a translation involves mapping each local identity to one or federated identities,

and ensuring that the semantics of each original source policy are preserved (i.e., that no

federated identity receives access to a larger region of federated data than intended by any

source policy). We outline an efficient algorithm for automating policy translation. We also

underscore the importance of automated translation methods by showing that in many re-

alistic scenarios, verifying that a federated policy satisfies all source policies is intractable.

Finally, we contribute an algorithm for minimizing the size of a translated policy.

The second problem we address is the prevention of information disclosures at the fed-

erated level. A disclosure risk is present when a user is able to combine the result of one or

more allowable queries (i.e., queries which are permitted under the federated access control

policy) with prior background knowledge in order to obtain a sufficiently high certainty of

the answer to a disallowed query. We classify potential disclosure risks based on whether

they can be detected at database design-time, or only when the contents of the database are

known. We also describe a new measure for evaluating the magnitude of instance-based dis-

closure risks at query-time. Finally, we discuss the implementation of a prototype system,

and conduct experiments that demonstrate the effectiveness and scalability of the proposed

solution.

Acknowledgements

Graduate study is a strange business. You occasionally get to be a rock star, performing on

conference stages around the globe. But, more often, you lead a pseudo-solitary existence,

pouring over research papers in an ill-lit office or lab that seems miles away from civiliza-

tion. It certainly helps to have good people around you – those who are willing to offer their

support even if they don’t always perfectly understand or agree with what you are up to.

On the academic side, I’d like to thank my supervisor, Denilson Barbosa, for giving

me the freedom to explore new ideas, for encouraging me to read up on database theory,

and, on a personal level, for being there through the good times and the bad. I’d also like

to thank my MSc advisor, Tomasz Müldner, for continuing to provide advice and support

years after my tenure as his student had officially ended. It’s no exaggeration to say that I

wouldn’t have pursued graduate studies without his early and ongoing encouragement. I’d

also like to thank the members of my doctoral and candidacy committees, Eleni Stroulia,

Osmar Zaiane, Lukasz Kurgan, Gerome Miklau, Davood Rafiei, and Marek Reformat, for

their constructive comments.

One of the peculiarities of my PhD was that I spent roughly equal time at two univer-

sities; this provided me with the opportunity to meet and learn from various faculty at the

University of Calgary: Michael Jacobson was the first to spark my interest in data security

and cryptography; John Watrous made complexity theory understandable to me, and is an

amazing instructor. I’d also like to thank the various graduate students at UofA and UofC

who generously shared their office/lab spaces with me, as well as the other interesting and

sundry characters I met along the way.

Finally, I’d like to thank my family and friends for supporting me throughout my grad-

uate studies.

Table of Contents

1 Introduction 1
1.1 Data Federations . 3
1.2 Data Security . 6
1.3 Thesis Statement . 7
1.4 Summary of Contributions . 8

2 Background 10
2.1 Computational Complexity . 10

2.1.1 Decision Problems and Languages 10
2.1.2 P and NP . 11
2.1.3 Reductions and Completeness . 12
2.1.4 Polynomial Hierarchy . 12

2.2 Relational Model and Query Languages 13
2.2.1 Relational Model . 13
2.2.2 First Order Queries and Codd’s Relational Calculus 14
2.2.3 Conjunctive Queries . 15
2.2.4 Relationship to SQL . 16
2.2.5 Query Containment and Equivalence 17

2.3 Access Control Models . 17
2.3.1 Discretionary Access Control Models 18
2.3.2 Mandatory Access Control Models 19
2.3.3 Role-Based Access Control Models 20
2.3.4 Access Control Models in Modern Database Management Systems 20

2.4 XML Data Model . 22
2.4.1 XML Trees . 23
2.4.2 XML Schema Languages . 24
2.4.3 Query Languages for XML . 29
2.4.4 Access Control Models for XML 32

2.5 Information Theory . 39

3 Access Control Policy Translation in Heterogeneous Data Federations 41
3.1 Introduction . 41
3.2 Preliminaries . 42

3.2.1 Publishing Relational Databases as XML 42
3.2.2 Access Control for Relational Databases 46
3.2.3 Federated Identities . 47

3.3 Translating Relational Policies . 49
3.4 Verifying Policies . 57

3.4.1 Dynamic Verification . 58
3.4.2 Static Verification . 60

3.5 Expressing Policies in XACML . 61
3.6 Minimizing Translated Policies . 65

3.6.1 Complexity of S.P.T. Minimization 74
3.7 Experimental Results . 77
3.8 Related Work . 77
3.9 Conclusions . 79

4 Detecting and Removing Schema-Based Disclosure Risks in Federated Data 81
4.1 Introduction . 81
4.2 Attack Model . 83
4.3 Design-time vs. Run-time Detection . 84
4.4 Related Work . 85

4.4.1 Disclosure Control and Access Control Models for XML Data . . . 86
4.4.2 Disclosure Control for Statistical and Relational Databases 88
4.4.3 Disclosure Control for Exchanged Data 89

4.5 Schema-Based Disclosure Risks . 90
4.6 Overview . 93
4.7 Design-time Detection via Static Analysis 93

4.7.1 Discussion . 102
4.8 Conclusions . 103

5 Detecting and Removing Instance-based Disclosure Risks in Federated Data 104
5.1 Instance-Based Disclosure Risks . 104
5.2 Query-time Measurement of Instance-Based Risks 105

5.2.1 Probabilistic Regular Tree Grammars (PRTGs) 106
5.2.2 Twigs . 112
5.2.3 Cross Entropy . 113
5.2.4 Risk Analysis Procedure . 116
5.2.5 Examples . 121
5.2.6 Optimizing the Disclosure Risk-Data Utility Tradeoff 126
5.2.7 Discussion . 128

5.3 Conclusions . 129

6 Implementation and Experimental Validation of Instance-Based Disclosure Risk
Detection and Removal 132
6.1 Implementation . 132
6.2 Incremental Grammar Maintenance . 134
6.3 Experiments . 136

6.3.1 Grammar Generation . 136
6.3.2 Query-Time Risk Analysis . 139

7 Conclusions 146
7.1 Review of Contributions . 146
7.2 Future Directions . 148

7.2.1 Access Control Policy Translation 148
7.2.2 XML Disclosure Control . 149
7.2.3 Unexplored Topics . 150

Bibliography 151

List of Tables

2.1 Complexity of deciding query containment for various query classes. 18

3.1 Complexity of static and dynamic verification of common classes of secure
publishing transducers. 59

3.2 Example XACML policy rules. 64
3.3 Complexity of minimization procedure for various classes of secure pub-

lishing transducers. 76

4.1 Classification of existing approaches to disclosure control for XML data. . . 85
4.2 Types of schema-based disclosure risks. 90
4.3 DTD rules altered to remove schema-based disclosure risks. 99

6.1 Data Structures Used to Store Database Grammars. 134
6.2 Data Structures Used to Store XML Trees. 134
6.3 XMark documents used in grammar generation experiment. 136
6.4 Sizes of the databases in the large DBLP files set. 139
6.5 Sizes of the databases in the small DBLP files set. 140
6.6 Queries issued against xmark256.xml in the experiment testing the im-

pact of query size on query-time analysis performance. 140

List of Figures

1.1 Thesis application setting. 3

2.1 Tree representation of a hospital database. 23
2.2 A DTD for course enrollment documents. 25
2.3 DTD for the hospital database. 27
2.4 DTD graph representation for DTD of Fig. 2.3. 28
2.5 XML Schema Definition for the course document. 29
2.6 Hasse diagram for hospital database of Fig. 2.1. 38

3.1 Patient relation. 42
3.2 XML representation of the relation of Fig. 3.1. 43
3.3 Transduction rules for the publishing transducer of Ex. 3.2.2. 45
3.4 Transduction rules for the publishing transducer of Ex. 3.2.3. 46
3.5 The policy translation process. 49
3.6 Example access bitstring. 50
3.7 Transduction rules for the example secure publishing transducer. 56
3.8 Rule reachability graph. 64
3.9 Modified transduction rules for the example secure publishing transducer

(bolded rules indicate those modified from the original versions in Fig. 3.7). 66
3.10 Transduction rules for secure publishing transducer Π′1. 68
3.11 Transduction rules for secure publishing transducer Π′2. 68
3.12 Transduction rules for the example secure publishing transducer Π′b. 73
3.13 DFA DFAΠ′

b
formed from S.P.T. of Fig. 3.12. 74

3.14 DFA DFAΠ′
b

after completion of QueryReduction subprocedure. . . . 75
3.15 RRG for minimized S.P.T. Π′b derived from minimized DFA DFAΠ′ 76
3.16 Results of varying (a) the number of federated IDs; (b) the number of rela-

tional access control policy rules; and (c) the number of clauses appearing
in transduction rules on the time required to complete policy translation. . . 80

4.1 The query execution process. 83
4.2 Schematic for (a) Design-time and (b) Query-time risk analysis. 92
4.3 Listing of annotated DTD graph patterns that correspond to various types

of schema-based disclosure risks. The left-hand column lists a specific pat-
tern, while the right-hand column shows the modification made to the DTD
graph to remove the presented risk. 96

4.4 Example DTD graph after (a) annotation and (b) node splitting procedures. 102
4.5 Sanitized DTD DAIns for the hospital database. 103

5.1 Probabilistic regular tree grammar describing the hospital tree of Fig. 2.1. . 109
5.2 Twig representation of the query from Ex. 4.1.1. 112
5.3 Example of a partial disclosure. (a) Twig τ formed from query; (b) Ex-

tended twig τ ′ formed by connected the sensitive twig node with its closest
ancestor in the original twig τ ; (c) Result of bottom-up matching of τ ′ with
the database grammar G; (d) Result of bottom-up matching of τ ′ with the
adversary’s view grammar GAIns. 122

5.4 Set of rules in GAIns and their associated probabilities. 123

5.5 Example of a total disclosure. (a) Twig τ formed from query; (b) Extended
twig τ ′ formed by connected the sensitive twig node with its closest an-
cestor in the original twig τ ; (c) Result of bottom-up matching of τ ′ with
the database grammar G; (d) Result of bottom-up matching of τ ′ with the
adversary’s view grammar GAIns. 124

5.6 Set of rules in GAlice and their associated probabilities. 125
5.7 Example of no disclosure. (a) Twig τ formed from query; (b) Result of

bottom-up matching of τ with the database grammarG; (c) Result of bottom-
up matching of τ with the adversary’s view grammar GAlice. 127

6.1 System architecture of the prototype. 133
6.2 Incremental grammar maintenance in response to (a) Append(x, y), (b)

InsertBefore(x, y), and (c) Delete(x) operations. 135
6.3 Scalability of grammar construction in terms of (a) time and (b) space. . . . 137
6.4 Comparison of original XML document sizes with corresponding PRTG sizes.138
6.5 Worst case grammar maintenance costs for (a) Append(x, y), (b) Insert(x, y),

and (c) Delete(x) operations. 142
6.6 Time requirements for query-time risk analysis as database size is varied

for the large DBLP files. 143
6.7 Time requirements for query-time risk analysis as database size is varied

for the smaller DBLP files. 144
6.8 Time requirements for query-time risk analysis as database and query sizes

are varied for the XMark documents. 145

List of Symbols

Symbol Explanation
A Access control policy (ACP)
A Set of all relational attributes
c ID mapping constraint
C Set of ID mapping constraints
D Source database
D Document Type Definition (DTD)
D Union of all relational attribute domains
DS Data source
δ Set of transduction rules associated with a publishing transducer
δ′ Set of augmented transduction rules associated with a secure publishing transducer
ε Threshold value for instance-based disclosure risks
f Federated identity (role)
F Set of federated identities
F Set of terminal symbols associated with a PRTG
G Probabilistic regular tree grammar (PRTG)
Ii Identity mapping function defined by the i-th data source
I Set of identity mapping functions
N Set of non-terminal symbols associated with a PRTG
PG Probability mass function associated with a PRTG G
φ Relational query
Φ Set of relational queries
Π Publishing function
Π′ Secure publishing function
R A relation or a set of grammar rules associated with a PRTG
R Disclosure risks table
R Relation schema
S Relational schema
s Axiom (start symbol) associated with a PRTG
Σ XML tag alphabet associated with a (secure) publishing transducer
ΣD Alphabet associated with a deterministic finite automaton
T XML database (tree)
τ Query twig
u Local identity (user)
U Set of local identities
U Universe of discourse

Chapter 1

Introduction

With the passage of time, distributed applications have grown increasingly heterogeneous.

This is due to many factors, including the introduction of new frameworks and “best prac-

tices”, as well as the complexity and expense involved with porting legacy data into more

modern architectures. In many cases, it has proved more palatable to focus on technolo-

gies for enabling data exchange between applications that differ in terms of how data is

accessed, organized, and managed, rather than attempt to force each such application to

adopt common policies.

The standard way of exchanging data across independent applications is to use the

W3C’s eXtensible Markup Language (XML) [21] as the common data representation for-

mat. Conceptually, this is done by defining a mapping of the source database into an agreed-

upon XML representation which is then consumed by the target database. The availability

of XML processing tools across several programming environments removes many of the

barriers caused by differences in hardware, operating systems, and programming languages.

The advantages of XML are even more pronounced when the setting above is generalized

into a federation of independent databases, maintained by separate organizations (or de-

partments of a single organization), and in which several pairwise mappings exist. Such

federations are ever more common among government and large organizations. As an ex-

ample, consider a state-wide health care governmental agency integrating several large,

independently maintained healthcare systems of individual cities into a single federation.

Because each city remains administratively independent, the resulting federation forms a

heterogenous system.

1

XML has proven to be a popular data representation format for such settings, and several

frameworks for exposing data as XML have been developed within the research community

and by industry. For the case of relational data, the mappings exposing XML representa-

tions of the data are often referred to as publishing functions. Since XML is universal and

ubiquitous, the users of any of the systems in a federation can access any other database

in the federation using a common set of tools. In particular queries and/or update oper-

ations can be defined in terms of the exposed XML representation of the data using an

XML query language (e.g., XQuery [17]), and then be translated into equivalent statements

over the original databases. Because publishing functions can be defined between pairs of

independent systems, this framework is very generic, capturing various scenarios in data

integration (mediators, P2P, etc.).

While a mature body of research exists in related areas such as schema translation and

publishing relational data as XML, there has been comparatively little attention paid to

security issues in data exchange. This is troublesome, as the growing availability of data

through avenues such as the Web has meant that the traditional application assumption of a

relatively small, stable, and closed set of users local to an organization (i.e. employees of a

company) has increasingly given way to settings in which a much larger set of actors – many

of whom reside outside the organization – engage in dynamic and short-lived interactions.

From a security standpoint, one must consider all possible interactions and the potential

attack vectors they may introduce. In this thesis, we address two security issues relevant to

heterogeneous data exchange: translation of locally-defined access control policies into an

equivalent policy expressed at the federation level, and disclosure control of federated data.

The key difficulty in integrating several locally-defined access control policies into a

unified federation policy is ensuring that the semantics of each original policy are obeyed

(i.e., that each user has access to all federated data needed to fulfill their requirments), while

ensuring that any conflicts are resolved in such a way that no federated user gains access to

more data than they need (i.e., ensuring that the “need-to-know” principle is not violated).

This problem is the focus of Chapter 3.

Even after one ensures that access control policy translation has been successfully car-

ried out, there remains a danger that an adversary can exploit their knowledge of accessible

2

portions of federated data to determine, with a high probability of success, the values of

one or more federated data items which are not accessible to him under the stated access

control policy. Guarding against such risks produces a trade-off between security and data

availability: to make a system completely secure from such disclosures may dramatically

reduce the proportion of federated data each user can access. Conversely, data availability

for each user can be increased by instead allowing certain disclosures, as long as the degree

of risk they present falls below a specific threshold. We study disclosure control and this

trade-off in Chapters 4 and 5.

1.1 Data Federations

D1

Data Source DS1 Data Source DSm

A1 Dm
Am

Data Federation

.....

XML
data

UmU1

F

Figure 1.1: Thesis application setting.

The application setting considered in this thesis is captured in Fig. 1.1. A set of data

sources {DS1, . . . , DSm} agree to export data into a larger data federation, where it can

be queried by a set of users using a common interface. More specifically, each data source

DSi defines a corresponding publishing function Πi that acts as a contract between it and

the other entities (data sources and users) in the federation, detailing exactly what data will

be exported from a source database Di, and how it will be represented to users within the

federation. In this thesis, we assume that each publishing function specifies a transformation

3

of relational data into an XML representation. This is based on XML’s emergence as the

dominant means for exchanging and integrating relational data originating from distinct

sources [49, 61].

In addition, we assume that each data source DSi has an existing access control policy

Ai defining access privileges to Di for a set of local identities Ui. We assume that each

DSi applies an identity mapping function Ii that serves to map each local identity in Ui to

one or more federated identities within the set of all federated IDs, F 1.

Research interest in data federations dates back to the early 1980s. Sheth and Lar-

son [112] identified several factors defining the trade-off between data source autonomy

on the one hand, and the federation’s functionality and transparency from the perspective

of federated users on the other. These include design autonomy, indicating the degree to

which individual data sources are able to define their own methods for storing data, and

which query language is used to access it; communication autonomy, which references the

freedom for individual data sources to choose which other sources they interact with; execu-

tion autonomy, which defines the ability for data sources to perform local operations on data

without interference from the outside federation; and association autonomy, which allows

a data source to decide whether (and how) to share its data with federated users. Jonscher

and Dittrich [70] defined a specific type of association autonomy, called authorization au-

tonomy, referring to the ability of a data source to specify which external accesses on local

data are to be allowed, and which are to be refused. It is this last type of autonomy that is

most relevant to this thesis.

Another important distinction has historically been drawn between tightly- and loosely-

coupled federations [112]. The latter are characterized by greater transparency, as federated

users are able to directly query the schema of a data source. Such systems are more flexible

in the sense that data sources can join and leave the federation with little impact on the

remaining participants, at the expense of making querying more complicated: a federated

user must first determine which source(s) contain relevant data, and then formulate a sepa-
1Our notion of an identity mapping function is not to be confused with the concept of an identity function

in mathematics, i.e., one in which each domain element is mapped to itself. In the present context, identity
mapping refers to the process of converting a local user identity into one or more identities defined at the
federated level.

4

rate query over the exported schema for each such source. Tightly-coupled systems perform

a conversion from local schemas to a single federated schema, allowing federated users to

retrieve data with a single query. The need to define a schema translation for each data

source makes extending the federation to accommodate new sources a complex process.

The initial work on data federations presaged the proliferation of applications in the last

twenty years in which negotiated data exchange takes place between multiple, autonomous

actors. In some cases, such transactions are very ad hoc in nature, while in others the inter-

actions between actors are carefully choreographed. Additionally, the relationships between

actors are in some cases extremely short-lived, while in others partnerships persistent over

several data exchange operations. We now review these application classes.

• Peer-to-peer (P2P) networks [6] feature multiple data sources (peers), connected by

an abstract overlay network. The overlay network provides functionaility allowing

peers to discover and communicate with one another without worrying about details

of the underlying physical networks, such as firewalls and network address transla-

tion (NAT) schemes. P2P networks can be structured or unstructured. In structured

networks, an indexing data structure such as a distributed hash table is used to allow

peers to efficiently locate resources in a uniform way. While such schemes enable ef-

ficient query routing, they require extra overhead in order to ensure that the indexing

structure remains consistent as peers join and leave the network (network churn). Un-

structured networks lack indexing infrastructure, typically resorting to query flooding

(in which each peer issues the query to known neighbours, and relies on them to pass

the query on to their neighbouring peers, and so on) for resource discovery. In this

sense, structured P2P networks resemble tightly-coupled data federations, while un-

structured ones are more similar to loosely-coupled federations.

• Web services applications [19] feature ad hoc data transactions in which a client

discovers a compatible service provider via means of a service registry, then uses

the accompanying service description to formulate a request to the provider. XML

dialects are used to encode service descriptions, invocations, and responses. Each

client and provider has a high degree of association autonomy, since they ultimately

5

choose which provider (or clients, respectively) to contact (or respond to).

• Data integration systems [61] are obvious descendants of the data federation systems

proposed in the 1980s. Clients express their queries over a global schema, and these

queries are then transparently re-written by middleware into equivalent queries over

relevant source databases.

While different in many important respects, these application classes do share some

commonalities. All of them feature independent actors with a desire to share data with one

another, while maintaining a degree of autonomy in terms of which parties they interact

with, and in deciding which portions of their data will be shared. It is precisely this auton-

omy and independence that leads to heterogeneity in terms of how data is organized, and in

how accesses to data are regulated.

1.2 Data Security

Having described the data federation setting, we now turn to the topic of securing data. In

determining the precise issues that need to be addressed, it is beneficial to first review the

requirements for a system to be considered “secure”. A complete data security solution

provides the following properties [16]:

• Confidentiality. This requires that data be protected from unauthorized disclosure and

observation.

• Integrity. Data must be protected from unauthorized modifications.

• Availability. Protections from software and hardware malfunctions, as well as mali-

cious attacks, must be incorporated into data applications in order to ensure that data

remains available to users when it is needed.

Integrity is typically provided by a non-repudiation mechanism, such as requiring that

each data modification be accompanied by a digital signature. This serves to both identify

the party that caused the modification, and as a historical record preventing them from later

denying having made the change. Properly-defined access control policies can also serve

6

to protect integrity by preventing unauthorized users from altering data. Availability is

often achieved by a combination of techniques, including concurrency controls (ensuring

multiple users can access the same data, and ensuring that updates to data are executed

in the proper order) and recovery subsystems, such as those found in modern database

management systems.

The main focus of the thesis is on data confidentiality issues. Confidentiality can be

partially enforced via access controls, yet additional measures are needed to guard data

against disclosures from indirect means such as inferences based on combining accessible

data with prior background knowledge to reason about inaccessible data [16].

1.3 Thesis Statement

This thesis strives to provide a comprehensive study of two security topics relevant to het-

erogeneous data federations, namely access control policy translation and the prevention of

unintended information disclosure. In the case of access control policy translation, we aim

to demonstrate that automated methods for performing policy translation are definable in

many realistic application scenarios, and further, that the same is true for the closely related

problems of policy verification and minimization. Of equal importance, we seek to iden-

tify those scenarios in which the policy translation, verification, and minimization problems

prove intractable.

Our treatment of information disclosure intends to show that federated databases com-

prised of XML data are subject to a variety of disclosure risks. In a departure from earlier

approaches, we aim to demonstrate that certain risk types are detectable at database design

time, and, by moving detection to this earlier phase, one improves system performance by

reducing the number of calculations that must be performed per query to include only those

remaining risks that cannot be measured at design time. Our chosen strategy to validate this

hypothesis is to develop design-time and query-time algorithms for detecting and removing

the respective disclosure risk types, and to illustrate the efficiency and scalability of these

solutions via experiments carried out upon a prototype implementation using a variety of

synthetic and realistic data sets.

7

1.4 Summary of Contributions

This thesis provides the following contributions.

• Expressibility of translated policies: we show that it is always possible to preserve the

semantics of arbitrary relational access control policies, defined over source databases,

within a federated access control policy defined over XML representations of this

data. This is demonstrated by providing a polynomial-time algorithm for automating

the access control policy translation process. (Chapter 3)

• Verification of translated policies: we discuss the complexity of testing whether a

translated access control policy over federated data correctly enforces a set of re-

lational ACPs defined over source databases, and show this problem is intractable

even for many restricted scenarios. Further, we discuss some implications of these

findings. (Chapter 3)

• Representing translated policies in an XML access control policy expression lan-

guage: we provide an algorithm for encoding secure publishing functions in the

eXtensible Access Control Markup Language (XACML) [91], thereby easing porta-

bility and interoperability with other systems. (Chapter 3)

• Minimization of translated policies: we provide an algorithm for minimizing the

number of rules in the translated access control policy, and for simplifying the rela-

tional queries appearing in each rule. (Chapter 3)

• Classification of disclosure risks at the federation level: we provide a characteri-

zation of common types of disclosure risks applicable to XML databases, based on

whether they can be detected at design-time (schema-based risks) or only at query-

time (instance-based risks). (Chapter 4)

• A design-time algorithm for removing schema-based risks: we provide an algorithm

that performs static analysis on an input schema description of an XML database and

an access control policy defined over that database, outputting a customized schema

8

description for each federated user in which all schema-based risks are removed.

(Chapter 4)

• Efficient computation and storage of XML probability models: we introduce a

method for modeling the current contents of an XML database based on the use of

probabilistic tree grammars. (Chapter 5)

• An information-theoretic measure for monitoring instance-based risks: we propose

a measure for calculating the magnitude of instance-based disclosure risks, and illus-

trate a query-time algorithm for removing instance-based disclosure risks based on

this measure. (Chapter 5)

• Experimental validation: We also present experimental results indicating the scala-

bility of the algorithms presented in Chapter 5. (Chapter 6)

9

Chapter 2

Background

In this chapter, we provide a review of concepts and definitions that are relevant to future

chapters of the thesis.

2.1 Computational Complexity

In this section, we briefly review various computational complexity classes that will be

referred to later in the thesis.

2.1.1 Decision Problems and Languages

Complexity analysis most often deals with decision problems: those for which the set of

all possible instances of the problem can be disjointly partitioned into “yes” and “no” in-

stances [101]. Intuitively, “yes” instances are those that satisfy the input parameters of the

decision problem, while all remaining instances are classified as “no” instances. For ex-

ample, the boolean satisfiability decision problem takes as input a boolean formula φ, and

asks whether there exists a satisfying truth assignment for the boolean variables in φ. In this

case, the set of “yes” instances consists of all boolean formulas that are satisfiable, while

“no” instances include all boolean formulas for which there exists no satisfying variable

assignment.

An alternative representation of a decision problem DP is to consider it as a string lan-

guage LDP . Under this interpretation, each problem instance I ∈ DP is encoded into a

specific string LDP(I) within this language using a consistent translation scheme. Return-

ing to the example of boolean satisfiability, one could represent an instance consisting of

10

a boolean formula of n literals x1, . . . , xn as a binary string of length n, where a specific

truth assignment is indicated by setting the i-th bit iff xi is true.

2.1.2 P and NP

To classify the complexity of a decision problem, one often considers the amount of time

required to determine whether an input problem instance is a “yes” or “no” instance. Time

requirements are measured relative to the size of the input problem instance I . Intuitively,

the size of I , denoted as |I|, is precisely that of its string language representation LDP(I).

Two fundamentally important complexity classes connect time requirements for deci-

sion problems with deterministic and non-deterministic models of computing. The class

P contains those decision problems for which all instances can be classified as a “yes” or

“no” instance by a deterministic program in an amount of time that is upper-bounded by a

polynomial function in |I|. The class NP includes those decision problems for which all

“yes” instances can be verified in an amount of time that is upper-bounded by a polynomial

function in |I|. This corresponds to a non-deterministic program that is capable of instan-

taneously “guessing” a solution, and then verifying that it yields a “yes” instance. Clearly,

P ⊆ NP, since any problem that can be decided in polynomial time must also be verifi-

able within polynomial time. It is widely conjectured that P ⊂ NP, although no formal

separation proof yet exists.

The decision problem of evaluating a boolean formula over a specific truth assignment is

in P, since at each literal position, one only needs to determine which variable is referenced,

substitute the corresponding truth assignment for that variable, and finally, evaluate the

formula resulting once all literals have been instantiated in this manner. The overall time

requirement is polynomially-bounded by the number of literals, and further, on conclusion,

each problem instance has been classified as a “yes” or “no” instance. On the other hand,

boolean satisfiability is in NP, since the determination of each “yes” instance requires one

to “guess” a truth assignment for literals in the input boolean formula, and then evaluate this

truth assignment over the formula to ensure that it is in fact a satisfying truth assignment.

Another important complexity class is coNP, composed of all decision problems for

which succinct disqualifications exist. Each decision problem DP ∈ coNP is the comple-

11

ment of a decision problem DP ∈ NP; that is, an instance I is a “yes” instance of DP iff

it is a “no” instance of DP . An example of a coNP decision problem is boolean unsatisfi-

ability, in which “yes” instances correspond to an input boolean formula for which there is

no satisfying truth assignment: while any satisfying truth assignment serves as a succinct

disqualification for “no” instances, determining conclusively that the input formula of n

variables is unsatisfiable requires one to examine all 2n possible truth assignments and test

that each does not satisfy the formula.

2.1.3 Reductions and Completeness

A common method of establishing a lower bound on the difficulty of a decision problem

is to show that it is at least as hard as another decision problem, for which the decision

complexity is known. This is accomplished by demonstrating an efficient reduction from

the language corresponding to the former problem to that of the latter problem.

Definition 2.1.1 (Polytime Reducibility). A language L1 is polytime reducible to another

language L2 if there is a deterministic function R from strings to strings computable in

time upper-bounded by a polynomial in |x| such that, for all inputs x, x ∈ L1 if and only if

R(x) ∈ L2.

It is also beneficial to establish the group of “most difficult” decision problems within

a complexity class. Such problems provide a natural starting point for a reduction.

Definition 2.1.2 (Completeness of Complexity Classes). A language L is said to be com-

plete with respect to complexity class C, or C-complete, if (1) L ∈ C and (2) every lan-

guage in C is polytime reducible to L.

A language is coNP-complete iff its complementary language is NP-complete. Boolean

unsatisfiability and boolean satisfiability, discussed earlier, provide an example of a coNP-

complete and an NP-complete problem, respectively.

2.1.4 Polynomial Hierarchy

While NP-complete problems represent the most difficult ones solvable by a non-deterministic

program within polynomial time, it is possible to consider even more difficult problems by

12

augmenting the computational model to permit a program to consult an oracle for another

decision problem during its execution, and to incorporate the answers received by the or-

acle in its future computation. We denote by MA that a program for a decision problem

residing in complexity class M has access to an oracle for a decision problem residing in

complexity class A. The polynomial hierarchy defines a set of complexity classes beyond

NP, organized according to the complexity of the decision problem for which the calling

program possesses an oracle for, and additionally the computational model (deterministic

or non-deterministic) afforded to the calling program itself.

Definition 2.1.3 (Polynomial Hierarchy of Complexity Classes). The polynomial hierarchy

consists of the following sequence of complexity classes:

∆P
0 = ΣP

0 = ΠP
0 and for all i ≥ 0,

∆P
i+1 = PΣP

i

ΣP
i+1 = NPΣP

i

ΠP
i+1 = coNPΣP

i .

The cumulative polynomial hierarchy is the class PH =
⋃
i≥0 ΣP

i .

2.2 Relational Model and Query Languages

In this section, we summarize the relational data model and several important query classes

within this model.

2.2.1 Relational Model

In the relational model, an n-ary relation R is assigned a set of attributes {A1, . . . , An}.

Each attributeAi is associated with a finite domain dom(Ai). An instance of a relationR is

defined as a set of mappings {t1, . . . , tk} such that, for each tuple t ∈ R, t[Ai] ∈ dom(Ai).

Finally, a relational schema S = {R1, . . . , Rm} is a set of relations, while a database

instance D of S is a set containing exactly one instance of each relation in S.

13

2.2.2 First Order Queries and Codd’s Relational Calculus

The tuple relational calculus was introduced by Codd as a language for expressing declar-

ative queries in the relational model [32]. It is essentially equivalent in expressive power to

first-order logic [115], and hence, we will often refer to relational calculus expressions as

first-order queries throughout the thesis.

Each tuple relational calculus expression has the form {t |ψ(t)}, where t is a tuple

variable denoting a tuple of some fixed length, and ψ is a formula built from atoms and

various operators. The atoms of formulas are of the following three types:

• s ∈ R, where R is a relation and s is a tuple variable. This atom designates that tuple

s is contained in R.

• s[i] θ u[j], where s and u designate tuple variables and θ is an operator from {<,>

,≤,≥,=, 6=}. This atom indicates that the i-th attribute of tuple s is related to the

j-th attribute of tuple u by the operator θ.

• s[i] θ a and a θ s[i], where θ and s[i] are as above, and a denotes a constant.

It is important to distinguish tuple variables that are bound from those that are free. An

occurrence of a tuple variable t in a formula is said to be bound if that variable is associated

with an existential quantifier (∃) or a universal quantifier (∀). Any unbound occurrence of

a tuple variable is said to be free.

Formulas in tuple relational calculus expressions are defined recursively as follows.

1. Every atom is a formula. All occurrences of tuple variables mentioned in the atom

are free in the derived atomic formula.

2. If ψ1 and ψ2 are formulas, then ψ1 ∧ψ2 (conjunction of formulas), ψ1 ∨ψ2 (disjunc-

tion of formulas), and ¬ψ1 (negation of a formula) are all formulas. In each of the

derived formulas, occurrences of tuples variables are free or bound as they were in

ψ1 or ψ2, depending on where they originally occurred.

3. If ψ is a formula, then (∃s)(ψ) is a formula. Each free occurrence of s in ψ is bound

to (∃s) in (∃s)(ψ). All other occurrences of tuple variables in ψ are free or bound in

14

(∃s)(ψ) as they were in ψ.

4. If ψ is a formula, then (∀s)(ψ) is a formula. Each free occurrence of s in ψ is bound

to (∀s) in (∀s)(ψ). All other occurrences of tuple variables in ψ are free or bound in

(∀s)(ψ) as they were in ψ.

5. If ψ is a formula, then (ψ) is a formula, allowing one to override the default ordering

of operations. In evaluating a formula, the default order of precedence places com-

parison operators θ highest, followed by ∃ and ∀, followed by ¬, ∧, and ∨, in that

order.

6. Nothing else constitutes a formula.

In a well-formed tuple relational calculus expression {t |ψ(t)}, t must be the only free

tuple variable in ψ.

2.2.3 Conjunctive Queries

Conjunctive Queries (CQ) comprise a subset of first order queries inductively defined as

follows.

1. Any atomic formula restricting θ operations to equality (=) is a conjunctive query.

2. Any formula formed from the conjunction (∧) of two conjunctive queries is a con-

junctive query.

3. If ψ is a conjunctive query, then (∃s)(ψ) is a conjunctive query. Each free occurrence

of s in ψ is bound to (∃s) in (∃s)(ψ). All other occurrences of tuple variables in ψ

are free or bound in (∃s)(ψ) as they were in ψ.

Conjunctive queries have two desirable properties: they capture a large portion of the

common queries one issues on a relational database, and can be evaluated and optimized

more efficiently than arbitrary first order queries. In particular, Chandra and Merlin [28]

proved that the combined evaluation complexity of conjunctive queries is NP-complete,

while combined evaluation for arbitrary first order queries is undecidable. The same results

hold for the query minimization problem, in which for an input formula ψ one seeks to

15

discover the smallest formula ψmin that is equivalent to ψ (where equivalence holds iff ψ

and ψmin evaluate to an identical answer on the same database instance D, for all such

database instances).

as is the query minimization problem. When one allows θ operations other than =, the

evaluation and optimization problems become more difficult to decide.

For certain subclasses of conjunctive queries, the associated evaluation and optimization

problems become even more tractable.

Acyclic Queries

One common way of visualizing a conjunctive query is as a hypergraph, in which the nodes

correspond to the vatiables and constants defined in the query, and hyperedges to subgoals

within the query. An important subclass of conjunctive queries are those whose hypergraphs

are acyclic. These acyclic queries have a combined polynomial time complexity for the

evaluation and minimization decision problems [29].

Conjunctive Queries with No Self-Joins

Another interesting subclass of conjunctive queries includes those featuring no self-joins;

that is, no relation appears in more than one clause in the query. Since each clause is

independent of the others, in the sense that each operates over a disjoint set of data objects,

they are already minimized.

2.2.4 Relationship to SQL

The Structured Query Language (SQL) has long been the most widely-used query language

for relational database systems. It was inspired by Codd’s relational calculus, yet differs in

some important respects. One is that while the calculus assumes set semantics, SQL uses

bag semantics, allowing duplicate tuples to appear in relations and in query results. Another

is the adoption by SQL of three-valued logic: true, false, and NULL. NULL serves as

a placeholder in cases where an attribute value is unknown. Thirdly, it is not possible to

directly express universal quantification in SQL; one must instead resort to using negated

existential quantification.

16

Each of the query classes described above corresponds to a fragment of SQL. Conjunc-

tive queries (without inequalities) is equivalent to SQL queries using select, project, and

join operations(i.e., SELECT, FROM, and WHERE statements containing only equality com-

parisons and the AND connective). Permitting inequalities in conjunctive queries is equiv-

alent to SELECT-FROM-WHERE SQL queries with 6=, <, ≤, >, ≥ operators permitted in

the WHERE clause. The full power of SQL:99 lies beyond first-order logic (for example,

one cannot express reachability as a first-order query, but recursive functionality added in

SQL:99 does permit reachability to be expressed). In particular, SQL:99 is equivalent in

expressive power to first-order queries extended with aggregation functions [80].

2.2.5 Query Containment and Equivalence

One of the classic problems in database theory is query containment, that is, deciding

whether for all possible database instances for a fixed schema S, the answer for one query

forms a subset of the answer of the second query.

Definition 2.2.1 (Relational Query Containment). Query φ1 is contained within another

query φ2 over a relational schema S if for every instance database D conforming to S,

φ1(D) ⊆ φ2(D). We denote the containment of φ1 by φ2 as φ1 ⊆ φ2.

A close relationship exists between query containment and another common decision

problem, query equivalence.

Definition 2.2.2 (Relational Query Equivalence). If φ1 ⊆ φ2 and φ2 ⊆ φ1, we say that φ1

and φ2 are equivalent, written as φ1 ≡ φ2.

Complexity results for query containment have been established for each of the query

classes we have described earlier in this section. Table 2.1 summarizes these results.

2.3 Access Control Models

An access control model provides mechanisms for specifying and enforcing limitations on

accesses to system resources. Specification is most often done through an access control

policy (ACP), which consists of a set of policy rules. Although the precise syntax and

semantics of policy rules differs according to the access control model under use, they

17

Query Class Complexity of Query Containment
First order queries undecidable
Conjuctive queries with inequalities ΠP

2 -complete
Conjunctive queries without inequalities NP-complete
Acyclic queries PTIME
Queries without self-joins PTIME

Table 2.1: Complexity of deciding query containment for various query classes.

typically contain a set of subjects (or users), which are the local identifiers to which the

current rule applies; a set of objects defining which system resources the current rule is

defining access over; and actions, indicating the operations that designated subjects will be

permitted to perform over the specified objects.

Access control policy enforcement refers to the techniques used to ensure that a desig-

nated policy is correctly applied to regulate access to objects. These can include centralized

components such as reference monitors, or in the case of decentralized enforcement, cryp-

tographic techniques. At the most general level, access control models can be grouped into

three categories, discretionary, mandatory, and role-based, based on how they assign and

delegate access permissions.

2.3.1 Discretionary Access Control Models

In discretionary models, access is regulated based on the identity of the requestor. Policy

rules in which the requestor appears as a subject are used to determine whether the requested

access is granted or denied. The name of the model derives from the ability to assign

users the capability of propagating their permissions over an object to other users, at their

discretion. An administrative policy dictates how permissions are granted and revoked.

Discretionary models are prone to a significant security vulnerability stemming from

the lack of separation between subjects and users. While the latter represent passive entities

who connect to the system, the former can additionally include the processes and programs

that the user invokes after connecting to the system. Each such process will inherit the per-

missions assigned to the user who invoked them, leaving the system vulnerable to attacks

from malicious programs. One example is the trojan horse attack, in which a program

contains extra functionality which is unknown to the initiating user, and leverages the per-

18

missions assigned to the user to carry out an attack (such as installing a virus, or deleting

all files belonging to the user). The delegation model used in discretionary models exacer-

bates the vulnerability to such attacks, since once a permission is acquired by a malicious

process, it can bestow this access to another party without the knowledge of the security

administrator.

2.3.2 Mandatory Access Control Models

In mandatory models, there is a clearer separation between users and subjects. Access

decisions are solely based on regulations developed by a central authority (i.e., there is

no delegation of permissions as in discretionary models). The most common mandatory

systems employ a multilevel security policy, in which a classification level is assigned to

each data object and each user [106]. The set of all classification levels assigned in the

system typically forms a partial order, representable as a lattice structure. One level l1

is then said to dominate another level l2 if l1 resides at the same or higher level in the

lattice than l2. In secrecy-based mandatory policies, the classification level assigned to

an object reflects its sensitivity, or the relative amount of damage that would be caused if

the object were to be accessed by an unauthorized user. The classification level assigned

to a user indicates their clearance, or trustworthiness not to disclose classified objects to

unauthorized parties. Such policies serve to limit indirect flows of information, as well as

enforce the “need-to-know principle” by limiting user access to those data objects needed

to perform their duties, by basing access decisions on a comparison of the levels assigned

to the requested object and the user issuing the request. In Bell-LaPadula [10] policies, a

user is allowed to read only those objects whose classification level is dominated by their

own classification level, and to write only those objects whose classification level dominates

their own. Such policies prevent most overt leaks (such as the Trojan horse attack mentioned

above), as information cannot flow from a higher classification level to a lower one.

Mandatory access control models suffer from certain shortcomings. These include the

inability to prevent covert flows of information based on observable properties of the system

state, such as timing attacks, in which an adversary is able to infer characteristics about a

classified object based on the response time of the access request [106]. Another weakness

19

is that mandatory policies offer less flexibility than alternative models, requiring one to

assign each new user and object to a specific classification level when they join the system.

Great care must be taken to ensure that the set of all classification levels is diverse enough

to enable each user to access those data objects needed to carry out their responsibilities,

and no more.

2.3.3 Role-Based Access Control Models

Discretionary and mandatory models often prove difficult to translate into real-world orga-

nizational structures. Role-based access control (RBAC) models focus not only on iden-

tifying who the user is, but also what their organizational responsibilities are. In a sense,

they strike a balance between the flexibility of explicit authorizations (as in discretionary

models) with the need to enforce organizational constraints on access (as in mandatory

models) [55]. This is done by adding an extra layer of indirection in the form of roles.

Instead of assigning permissions directly to individual users, they are instead assigned to

roles. A user is then assigned to the set of roles relevant to their responsibilities, and inher-

its the union of permissions assigned to each such role. Role hierarchies can be defined to

model complex organizational structures in which one role’s permissions form a superset

of those assigned to other roles. A significant advantage of RBAC models is that they pro-

mote a form of logical independence; when an administrator crafts a policy, they are able

to clearly separate user identities from their responsibilities. In mandatory models, there is

no such separation since a user is directly assigned a single classification level representing

one set of responsibilities and, hence, it is not trivial to express situations where a user may

take on different responsibilities at various phases of an application.

2.3.4 Access Control Models in Modern Database Management Systems

Discretionary Models

Early discretionary access control models for relational databases [47, 59] heavily influ-

enced the access control model eventually adopted as part of the SQL standard [86]. Most

modern relational database management systems employ similar models to specify which

users within a set of local identities U have access to particular database objects (tables and

20

columns). It is up to the owner (typically, the creator) of a database table to determine ap-

propriate access permissions for specific users. In addition, the grantor of a permission can

optionally allow the grantee to bestow the permission (or a more restrictive subset thereof)

to other users. The SQL standard includes GRANT and REVOKE statements which are used

to construct a discretionary access control policy over a given relational database. Each

such statement serves to grant (or revoke) permissions on a set of database objects (cells)

to one or more users (or subjects). A GRANT statement may optionally contain the WITH

GRANT OPTION, which designates that the subject is granted the ability to pass the granted

privilege along to other users.

In Chapter 3, we use the following concise notation to represent the contents of SQL

GRANT statements. 1

Definition 2.3.1 (Relational Access Control Policy). An access control policy rule is a 5-

tuple 〈s, q, p, go, g〉, where s is a set of users (subjects) drawn from U ; q is a relational

query; p is a set of permissions drawn from the set {read, insert, delete, update}; go is

a boolean value taking the value true if the grant option has been granted to s, and false

otherwise; and g ∈ U indicates the permission grantor. An access control policy (ACP)

consists of a set of access control policy rules.

The semantics of an access control policy rule are that each user in s is granted the

permissions in p over the relation r constructed by the query q. If go is true, then each user

in s may arbitrarily grant to any other user(s) a permission set p′ ⊆ p over r. Additionally,

note that our notation allows us to define access control over virtual relations (views) as well

as base relations, by expressing the view definition as a query over the corresponding base

relation(s). We denote by accessible(u, p) (respectively, inaccessible(u, p)) the set of all

accessible (respectively, inaccessible) database objects in D for user u under the context of

permission p.
1We assume that the existing access control policy defined over each relational database is well-defined,

and, in particular, contains no conflicting policy rules.

21

Mandatory and Role-Based Models

Attempts to incorporate mandatory access control models in databases have mainly been

limited to research prototypes, in the form of multilevel databases. A significant barrier to

their acceptance by industry has been the so-called “polyinstantiation problem” [69, 107],

where the requirement to store multiple tuples with the same primary key (each one assigned

to a distinct classification level), can greatly complicate consistent view construction and

index maintenance, and can also dramatically increase the storage requirements for a sin-

gle table. In recent years, the introduction of label-based access controls [65, 96] has led

to a resurgence in interest in mandatory models within commercial database management

systems. The addition of these features has been motivated by the increasing number of

applications which integrate data from different sources within the same relation, causing a

desire for more fine-grained access control specification down to the cell level.

Database vendors have been slow to adopt role-based access control models. While

basic features of RBAC have been added to the most recent versions of SQL, these have

been incorporated to varying degrees by commercial systems. In particular, most DBMSs

do not permit the definition of role hierarchies [16].

Summary

An important point to be made is that, on its own, no access control model is capable of

forming a complete security solution. Access control models can assist in protecting data

confidentiality by restricting direct accesses to data, but additional mechanisms are needed

to prevent information leakage caused when an adversarial user is able to combine prior

knowledge with the results of allowable queries to reduce their uncertainty with respect to

the answers of disallowed queries.

2.4 XML Data Model

The eXtensible Markup Language (XML) is a textual encoding format consisting of ele-

ments that surround text segments, or parseable character data (PCDATA), with descrip-

tive tags serving to indicate application-specific data semantics. XML allows elements to be

nested, creating a hierarchical structure. We say that an XML document is well-formed if it

22

<o1, hospital, □ >

<o2, patient, □ > <o26, patient, □ >

<o3,
name,
 □ >

<o4,
PCDATA,
“Alice”>

<o5,
age,
□ >

<o6,
PCDATA,

“31”>

<o7,
diagnosis,
 □ >

<o8,
PCDATA,

“leukemia”>

<o9,
doctor,

□ >

<o11,
discharge_

date,
>

<o13,
carrier,
 □ >

<o10,
PCDATA,
“House”>

<o12,
PCDATA,

“23/08/05”>
<o14,

PCDATA,
“Black Cross”>

<o15, patient, □ >

<o16,
name,
 □ >

<o17,
PCDATA,
“Bob”>

<o18,
age,
□ >

<o19,
PCDATA,

“57”>

<o20,
diagnosis,
 □ >

<o21,
PCDATA,

“pulmonary
fibrosis”>

<o22,
doctor,
 □ >

<o24,
carrier,
 □ >

<o23,
PCDATA,

“Mancini”>

<o25,
PCDATA,
“Black
Cross”>

<o27,
name,
 □ >

<o28,
PCDATA,
“Carol”>

<o29,
age,
□ >

<o30,
PCDATA,

“31”>

<o31,
diagnosis,
 □ >

<o32,
PCDATA,

“pneumonia”>

<o33,
doctor,
 □ >

<o35,
carrier,
 □ >

<o34,
PCDATA,
“Cox”>

<o36,
PCDATA,

“White
Shield”>

□

Figure 2.1: Tree representation of a hospital database.

conforms to the syntactic requirements of the XML standard [21], including proper nesting

of elements and presence of a unique root element. Additional metadata about elements can

be encoded using attributes.

2.4.1 XML Trees

XML documents are typically modeled as ordered, unranked, labeled trees in which the in-

ternal nodes correspond to elements and attributes, and leaf nodes to data values (PCDATA)

and attribute values. The induced tree hierarchy preserves the nesting relationships between

elements, attributes, and values within the document.

Fig. 2.1 depicts an XML tree containing hospital patient records. Following convention,

we distinguish attribute nodes by prefixing their labels with the @ symbol. We now provide

more formal definitions of XML trees and associated concepts that will be referred to in

Chapters 4 and 5.

Definition 2.4.1 (XML Tree). An XML tree (database) is an ordered, rooted directed tree

T = (V,E, r), where V is the set of nodes, E is the set of edges, and r ∈ V is the root node

of T . For a node v, ordinal(v) denotes the position of v according to a preorder traversal

of T ; type(v) denotes an element/attribute name, or PCDATA if v is a leaf node storing

element content; and value(v), a string representing an attribute value or element content,

or � if v is a non-PCDATA node.

Definition 2.4.2 (Location Path). The location path of node v contains the labels of the

23

nodes in the path from the root of the tree into v. It is defined recursively as follows (below,

+ indicates string concatenation and parent(v) denotes the parent node of v):

• if v is the root node, then path(v) = / + type(v).

• if type(v) = PCDATA, then path(v) = path(parent(v)) + /text().

• otherwise, path(v) = path(parent(v)) + / + type(v).

We distinguish all nodes having the same location path l. We say that the set of such

nodes forms the node class of l:

Definition 2.4.3 (Node Class). The node class of path expression l is defined as

class(l) = {ordinal(v) | v ∈ V ∧ path(v) = l} .

We will refer to the set of PCDATA (or as applicable, attribute) values belonging to

instances of the specific location path l in T as the active domain of l:

Definition 2.4.4 (Active Domain). The active domain of a location path l is defined as

adom(l) = {value(v) | v ∈ V ∧ type(v) = PCDATA ∧ path(parent(v)) = l} .

Example 2.4.5. For the hospital database of Fig. 2.1,

path(o3) = /hospital/patient/name,

path(o36) = /hospital/patient/carrier/text(),

class(/hospital/patient/age) = {o5, o18, o29}, and

adom(/hospital/patient/name) = {“Alice”,“Bob”,“Carol”}.

2.4.2 XML Schema Languages

In addition to well-formedness, a second notion of correctness for XML documents is va-

lidity with respect to a specified schema definition. While it is possible for a document to be

well-formed yet invalid, any document which is valid with respect to any particular schema

definition must additionally be well-formed. A schema definition specifies legal names for

elements and attributes, along with patterns for nesting and ordering of elements. Each

schema definition is an instance of a particular XML schema language. Such languages

vary in terms of their expressiveness and syntax; below, we summarize the two most com-

mon schema languages, DTD and XML Schema.

24

<!ELEMENT course (name,instructor,students)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT instructor (#PCDATA)>
<!ELEMENT students (student)+>
<!ELEMENT student (a1,a2,midterm,(project|finalexam))>
<!ATTLIST student id ID #REQUIRED>
<!ELEMENT a1 (#PCDATA)>
<!ELEMENT a2 (#PCDATA)>
<!ELEMENT midterm (#PCDATA)>
<!ELEMENT project (#PCDATA)>
<!ELEMENT finalexam (#PCDATA)>

Figure 2.2: A DTD for course enrollment documents.

Document Type Definition (DTD)

A Document Type Definition (DTD) allows one to specify an extended context-free gram-

mar containing a separate production rule for each allowable element and attribute. Hence,

an individual document is valid with respect to the DTD only if that document can be de-

rived through application of the DTD’s rules, beginning with the rule defined for the root

element. DTD rules may contain alternative expressions (specified by a | symbol), de-

noting that any one of the indicated possibilities are acceptable. In addition, rudimentary

element occurrence constraints can be specified in rules: a ? symbol indicates the preced-

ing element (or sequence of elements) is optional, a + indicates the preceding element type

occurs one or more times, and a * denotes zero or more occurrences. An example DTD

for course enrollment documents is listed in Figure 2.2. This DTD illustrates several of the

rule types previously described. The rule for student elements contains a conditional

allowing either a project or finalexam element to appear as the fourth child. An oc-

currence constraint is specified for students elements, forcing each to have at least one

child student element.

In addition, it is possible to define several modifiers for XML attributes. Some modifiers

allow one to control the data type of the attribute, which defaults to CDATA, or character

data. The ID modifier serves as a primitive form of key constraint, indicating that each

occurrence of the associated attribute type within a single document must have a unique

value. In the example DTD, the id attribute belonging to student elements has the ID

25

modifier. The IDREFmodifier allows one to specify foreign key relationships; in particular,

each occurrence of an IDREF attribute must take the value of an ID attribute. The IDREFS

modifier generalizes this behaviour to allow the attribute value to be a sequential list of ID

attribute values. Other modifiers allow one to indicate occurrence constraints on a modifier,

within the context of an appearance of its parent element type. By default, attributes are

assigned the #IMPLIED modifier, indicating that the attribute optionally appears. This can

be overriden by specifying the #REQUIRED modifier, as is done for the id attribute type

in the example DTD. Finally, the #FIXED modifier indicates that every occurrence of the

attribute type takes on the specified value.

We now provide a formal definition of DTDs that will be utilized in Chapter 4.

Definition 2.4.6 (Document Type Definition (DTD)). A Document Type Definition (DTD)

is a 4-tuple D = 〈Σe,Σa, lr,R〉, where Σe and Σa are finite label alphabets for elements

and attributes, respectively, lr ∈ Σe is the distinguished root element label, and R is a

function assigning to each label e ∈ Σe a regular expression ρe defined by the following

EBNF grammar:

ρe ::= str | ε | expr | term

expr ::= ‘(’ expr ‘,’ expr ‘)’ | ‘(’ expr ‘∨’ expr ‘)’ | term

term ::= bi ∗ | bi + | bi? | bi

where str denotes a PCDATA segment, ε is the empty string, each bi is a label in Σe ∪ Σa,

‘,’ denotes concatenation, and ‘∨’ indicates disjunction, Cardinality constraints definable

over a label b1 include ‘b1*’,‘b1+’, and ‘b1?’, representing zero or more occurrences, at

least one occurrence, and zero or one occurrence, respectively. Each element label e may

optionally be assigned an ordered attribute set, consisting of entries in Σa. For each label

a ∈ Σa, R assigns a set µ of modifiers drawn from {ID, IDREF, IDREFS, #REQUIRED,

#FIXED 〈value〉}.

An XML database T is valid with respect to a DTD D when the following conditions

are satisfied: (1) type(r) = lr; (2) for each interior edge e, type(e) ∈ {Σe ∪Σa}, while the

label for each terminal edge is drawn from the set of all strings S; and (3) for each interior

26

R1: <!ELEMENT hospital (patient*)>
R2: <!ELEMENT patient (name,age,diagnosis,doctor,

discharge date?,carrier)>
R3: <!ELEMENT name (#PCDATA)>
R4: <!ELEMENT age (#PCDATA)>
R5: <!ELEMENT diagnosis (#PCDATA)>
R6: <!ELEMENT doctor (#PCDATA)>
R7: <!ELEMENT discharge date (#PCDATA)>
R8: <!ELEMENT carrier (#PCDATA)>

Figure 2.3: DTD for the hospital database.

edge e = (v1, v2) whose label is contained in Σe, the ordered list of edge labels exiting

from v2 satisfies the regular expression ρe.

Note that for any database T conforming toD, the location path for each node is formed

by a successive application of the rules in D. Therefore, D defines all valid location paths

that may appear in any conformant database. By paths(D), we denote the set of all location

paths specified by D. For a specific location path p, we indicate by derivation(p,D) the

ordered list of DTD rules r1, . . . , rm in D whose successive application forms p.

Example 2.4.7. Fig. 2.3 depicts the DTD for the hospital

database shown in Fig. 2.1. It is represented under our notation as Σe = {hospital,

patient, name, age, diagnosis, doctor, discharge date, carrier}, Σa = ∅, and root

element r = hospital. The production for the root hospital element is given by

R(hospital) = {patient∗}, while the production for patient elements is

R(patient) = {name, age, diagnosis, doctor, discharge date?, carrier}. Fur-

thermore, derivation(/hospital/patient/age,D) = 〈R1, R2〉.

A DTDD can be modeled as a directed graph [110] in which the nodes correspond to la-

bels in Σe∪Σa∪#PCDATA, and each edge (l1, l2), with derivation(l1,D) = 〈rπ1 , . . . , rπm〉,

indicates that derivation(l2,D) = 〈rπ1 , . . . , rπm , rπm+1〉 for some additional rule rπm+1 ∈

R. Where applicable, edge (l1, l2) is annotated with cardinality constraints and/or attribute

modifiers present in rule rπm+1 .

Example 2.4.8. Fig. 2.4 depicts the DTD graph for the DTD in Fig. 2.3.

While DTDs have proven sufficient for many XML applications, they suffer from some

shortcomings, such as the inability to define a separate content model for each location path

27

hospital

patient

name age diagnosis doctor discharge_date carrier

#PCDATA #PCDATA #PCDATA#PCDATA #PCDATA #PCDATA

*

?

Figure 2.4: DTD graph representation for DTD of Fig. 2.3.

in a conformant XML document. Instead, one is limited to specifying content models based

solely on the name of the element or attribute. This means, for example, that one could not

define separate DTD rules for /hospital/patient/name and

/hospital/doctor/name. In addition, content models in DTDs are coarse-grained

in the sense that all character data sequences are implicitly treated as strings, preventing

constraints based on data types (such as defining legal ranges for numeric data values) from

being formed over element content and attribute values.

XML Schema

To address the above shortcomings of DTDs, the World Wide Web Consortium introduced

the XML Schema Definition (XSD) language. XML Schema allows context-sensitive con-

tent models to be specified, thereby overcoming the first weakness of DTDs mentioned

above. Further, it provides an extensible data type system (allowing one to indicate that, for

example, the content of /hospital/patient/name elements are strings, while each

/hospital/patient/age element contains an integer value). Another feature intro-

duced with XML Schema is namespace awareness, which is of particular use for applica-

tions in which data is integrated from multiple sources; one can avoid naming collisions for

elements and attributes by defining separate namespaces for each source. Another useful

feature of XSD specifications is that they themselves are well-formed XML documents,

allowing the same toolset to be used for processing the schema definition as for instance

documents conforming to the specification. Fig. 2.5 lists an XSD equivalent for the example

course DTD of Fig. 2.2.

28

<xs:schema elementFormDefault="qualified"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="course">
<xs:complexType>

<xs:sequence>
<xs:element name="name" type="xs:string" />
<xs:element name="instructor" type="xs:string" />
<xs:element name="students">
<xs:complexType>

<xs:element name="student" type="StudentType"
minOccurs="1" maxOccurs="unbounded">

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:complexType name="StudentType">
<xs:sequence>

<xs:element name="a1" type="xs:integer" />
<xs:element name="a2" type="xs:integer" />
<xs:element name="midterm" type="xs:integer" />
<xs:choice>

<xs:element name="project" type="xs:integer" />
<xs:element name="finalexam" type="xs:integer" />

</xs:choice>
</xs:sequence>
<xs:attribute name="id" type="xs:integer"

use="required" />
</xs:complexType>

</xs:schema>

Figure 2.5: XML Schema Definition for the course document.

2.4.3 Query Languages for XML

Currently, the two most popular query languages for XML are XPath [12] and XQuery [17].

In XPath, path expressions are used to select arbitrary nodes from an XML tree; such ex-

pressions return a set of nodes that share a particular relationship with a specified context

node. In the unabbreviated syntax, each path expression consists of a sequence of one or

more location steps. Each location step takes the form /axis::nodeTest[predicate],

where axis is one of the thirteen XPath axes (self, child, parent, descendant,

ancestor, descendant-or-self, ancestor-or-self, preceding,

29

following, preceding-sibling, following-sibling, attribute, or

namespace) defining the tree relationship between selected nodes and members of the

node set formed by evaluating the previous location step; nodeTest indicates a test that

be carried out to filter the selected nodes, typically based on the name of the node; and

predicate is an optional component allowing one to specify additional filtering condi-

tions on the selected node set. In the case of the first location step, it is assumed that the

current node set consists of a virtual document node whose only child is the document root

node.

Example 2.4.9. When evaluated on a course database conforming to the DTD of Fig. 2.2,

the path expression

/child :: course/child :: students/child :: student

first selects the document root node, course, based on the node test specified in the first

location step. Evaluation of the second location step begins at the course node, and

begins by selecting all children of course as the initial node set, since the child axis

is specified. The node test for this step is then carried out, which indicates that only nodes

with name students are to be kept. The final step travels down the child axis from the

students node, only keeping those children named student. The two student nodes

form the query result.

The path expression

/child :: course/child :: students/child :: student[attribute :: id = 1001]

contains a predicate indicating that only student nodes with a id attribute value of

1001 should be included. Therefore, the query result only contains the left student

subtree.

The unabbreviated syntax allows queries involving all XPath axes to be expressed in

a consistent way. In many cases, however, queries will only refer to the child and

descendant axes, in which case an abbreviated syntax can be used. In the abbreviated

syntax, all node tests are assumed to be based on the node name, and / is used to indicate

the presence of the child axis within a location step and // the descendant axis.

30

Example 2.4.10. The path expressions /course/students/student and

/course/students/student[@id = 1001] are abbreviated syntax versions of the queries

in Ex. 2.4.9.

In the thesis, we will mostly use the abbreviated syntax, resorting to the unabbreviated

syntax only for more complex queries.

XQuery builds on XPath, and provides additional constructs to allow more complex

selection, filtering, and processing of query results. As the remainder of the thesis focuses

on XPath, we do not describe XQuery further.

Core XPath

The full XPath 2.0 standard includes many sophisticated features, such as functions and data

types. Gottlob et al [58] identified a subset of XPath encapsulating its basic tree navigation

capabilities over node sets, removing the more complex, less frequently used features such

as operations over strings and arithmetic expressions, and termed this fragent Core XPath.

They showed that while full XPath has a worst-case polynomial running time in the com-

bined size of queries and trees, Core XPath admits an implementation with a worst-case

linear running time.

Core XPath is defined by the following EBNF grammar

expr ::=locationpath | ‘/’ locationpath

locationpath ::=locationstep (‘/’ locationstep)∗

locationstep ::=χ‘::’ t |χ‘::’ t ‘[’ pred ‘]’

pred ::=pred ‘and’ pred | pred ‘or’ pred |

‘not’ ‘(’ pred ‘)’ | expr | ‘(’ pred ‘)’

where expr is the start production, χ represents an XPath axis and t is a node test

(either a specific XML tag name, or the wildcard * symbol, meaning that any node label is

considered a match).

31

Core XPath forms the basis of the query language assumed in Chapter 5, defined as

follows.

expr ::=locationpath | ‘/’ locationpath

locationpath ::=locationstep (‘/’ locationstep)∗

locationstep ::=χ‘::’ t |χ‘::’ t ‘[’ pred ‘]’

pred ::=pred ‘and’ pred | pred ‘or’ pred |

‘not’ ‘(’ pred ‘)’ | expr | ‘(’ pred ‘)’ |

expr ‘/’χ ‘::’ ‘text()’ ‘=’ str

Above, χ is an XPath axis (self, parent, child, ancestor, descendant, ancestor-or-self, descendant-

or-self, following, preceding, following-sibling, preceding-sibling, or attribute), t repre-

sents a node test (an XML tag name, the wildcard symbol ‘*’, or text()), and str rep-

resents a string constant. This fragment, which we denote as CXP[=], corresponds to Core

XPath augmented with string comparisons within predicates.

We also consider updates composed of one or more of the following primitive oper-

ations on individual tree nodes, referenced by ordinal values x and y: (1) Append(x, y),

which inserts a node y as the right-most child of node x; (2) InsertBefore(x, y), which

inserts node y as the left sibling of node x; and (3) Delete(x), which results in the deletion

of node x and its descendants. This small set of operations is “sound” and “complete”, in

the sense that any XML tree can be constructed by their combination [9].

2.4.4 Access Control Models for XML

Several XML-specific access control models have been proposed in recent years. At a

high level, they can be divided into interactive, view-based approaches, which employ a

centralized module to control access to XML documents (e.g., [14, 39, 75, 81]), and secure

publishing approaches (e.g., [13, 36, 88]), which use cryptographic techniques to enforce a

designated access control policy over a single, published document.

To serve as a demonstration of the interactive approach, we briefly describe the model

of Damiani et al [39]. In this model, access control policies can be specified at either the

32

element or attribute level; the objects of each rule are specified using XPath. Propagation

is supported, that is, element-level rules can be recursively applied to the subtree rooted at

that element. Permissions can be positive (specifying that the rule subject(s) are allowed

access to the rule object(s)) or negative (denying the rule subject(s) access to the specified

object(s)), and can be specified at either the document or DTD level.

Based upon the specified policy rules, a labelling algorithm assigns security annotations

to each tree node. During a second pass over the tree, those nodes which are not accessible

to the current user are pruned. If pruning results in an invalid document, a “loosening”

operation is performed on the DTD to reestablish validity. The fact that several passes have

to be made over the document to generate several customized views of the original tree

(containing only the nodes that are accessible to each user) makes this approach ill-suited

to online use, and additionally does not scale well to handle very large documents.

An illustrative example of the secure publishing approach is the scheme proposed by

Miklau and Suciu [88], in which access control policy rules are specified in a high-level

language extending XQuery. These rules are then converted to an equivalent tree protection

over the target XML document, in which each tree node may be guarded by a positive

boolean formula defined over a set of cryptographic keys; a user may only access a node

if she possesses a combination of keys satisfying the guarding formula. These boolean

formulas are represented by adding additional metadata nodes to the original document tree.

Recently, Miklau and Suciu’s tree protection scheme was shown to be provably secure, in

the sense that an adversary provided with a partially-encrypted document essentially cannot

do better than a random guess as to the true values of encrypted nodes [1]. A weakness of

this approach is that a complex policy will tend to require several metadata nodes to be

added to the document tree, increasing the document size dramatically.

Discussion. We first note that in all these approaches, the focus is on specifying an access

control policy over an existing XML document, and no attention has been paid to the issue

of propagating a pre-existing access control policy defined over relational data to its XML

representation.

When viewed in comparison with the interactive approach, secure publishing XML ac-

33

cess control methods can claim several advantages. Scalability is obviously improved, as

users are able to obtain and query a local copy of a document in lieu of placing the burden

of answering such queries on a server. A somewhat related advantage is increased docu-

ment availability: in interactive models, all documents cease to be available if the server

becomes unable to serve requests (e.g. due to a hardware or software failure, or because

the server has suffered a denial-of-service attack). Conversely, since users of an application

employing a secure publishing approach are free to redistribute documents to other users,

document availability is likely to increase over time as a given document propagates across

the network.

In reference to the disadvantages of secure publishing, one can quickly notice that this

approach is unfriendly with respect to document changes; if even a single node within the

document tree is inserted, deleted, or updated, several expensive re-encryption operations

may be required. In addition, complicated access control policies containing several defined

user roles will obviously require several key sets to be generated and distributed.

In Chapters 4 and 5, we assume an interactive access control model is in place over

federated XML data, defined formally as follows.

Definition 2.4.11 (XML Access Control Policy). An access control policy (ACP) A =

{pr1, . . . , prp} consists of a set of policy rules. Each policy rule is a 4-tuple pri =

〈Ri, ei, ai, pi〉, where Ri ⊆ F is the set of federated IDs to whom the rule applies (sub-

jects), ei is a CXP[=] query identifying the sub-tree(s) the specified permission is applied

to (objects), ai is an action (e.g., “read” or “write”), and pi ∈ {“allow”,“deny”} is the

associated permission. If ei contains one or more conditions, we often refer to pri as a

conditional policy rule.

This model is consistent with the majority of access control models in the literature,

which similarly allow access permissions to be expressed over subtrees. Note also that this

model is universal in the sense that one can express permissions ranging from individual

nodes (the finest possible granularity) up to document-level permissions (expressed over

the root node’s subtree).

34

Semantics. In our access control model, we assume a “closed world” semantics in which

access to nodes is denied unless there exists a policy rule specifying otherwise. Addition-

ally, we assume that permissions are propagated from a parent node to its children. In case

of rule conflict (where one policy rule grants access to a node while another denies ac-

cess), we assume that the most specific rule (i.e., the rule defined for the closer ancestor,

potentially the node itself) takes precedence, where ties are broken in favour of the least

permissive rule. For those situations in which a user has been allocated multiple federated

IDs assigning conflicting permissions to a node, we assume that the most permissive such

policy takes precedence.

Node Access Levels. A useful way to analyze an ACP is to consider, for each node in

the database, which subset of roles is granted permission to perform a particular action on

that node. We define the access level of node v under action a, denoted L(v, a), to be the

subset of federated IDs who are permitted to perform a on v. By comparing the access levels

of two nodes v1 and v2, we can determine whether v1 is more (or less) highly classified than

v2, or is of equal classification to v2. More formally, for a given action a, the set of node

access levels L(·, a) forms a partial ordering in which for nodes v1 and v2, we say that

L(v2, a) is dominated by L(v1, a), written L(v2, a) ≤ L(v1, a), if L(v1, a) ⊆ L(v2, a).

Note that while a partial order is guaranteed, a total order is not, as the access levels of two

nodes v1 and v2 may be incomparable, i.e., L(v1, a) * L(v2, a) and L(v2, a) * L(v1, a).

Views. The application of an access control policy A to an XML tree T results in

the generation of a set of views V = {V1, . . . , V|F |} in which view Vi contains only the

subset of database nodes which are accessible to federated ID fi ∈ F under A. For a given

location path p, action a, and federated ID fi, the application of the access control policy

can result in fi having full access to p (i.e., all instances of p are contained in Vi), partial

access to p (i.e., only a proper subset of p instances are contained in Vi), or no access to p

(i.e., no instances of p are contained in Vi) within the context of a.

One can also view the application of an access control policy as applying to a DTD D

by materializing the set paths(D) and applying all rules in A which are applicable to each

individual location path. Consistent with this interpretation, we denote by ⊕a(fi, A,D),

	a(fi, A,D), and �a(fi, A,D) the sets of location paths in D which are fully-accessible,

35

partially-accessible, and non-accessible to federated ID fi within the context of action a

under AC. More formally,

�a(fi, A,D) ={t|t ∈ paths(D) ∧ (∀n ∈ class(t)

(fi /∈ L(n, read)))}

	a(fi, A,D) ={t|t ∈ paths(D) ∧ (∃n1, n2 ∈ class(t)

(fi ∈ L(n1, read) ∧ fi /∈ L(n2, read)))}

⊕a(fi, A,D) ={t|t ∈ paths(D) ∧ (∀n ∈ class(t)

(fi ∈ L(n, read)))} .

To improve readability, we frequently omit a, A and D when their values are made clear by

the context. These sets can be efficiently populated during the schema-level analysis phase,

as we describe later in Sec. 4.7.

Example 2.4.12. Consider the following access control policy, applicable to the hospital

database of Fig. 2.1, where the set of federated IDs is F = {AIns,BCross,WShield,

Alice,Bob, Carol}.

PR1: <{AIns, BCross, WShield, Alice, Bob, Carol}, /hospital,

read, allow>

PR2: <AIns, /hospital/patient[carrier neq "ACME Insurance"]/

name, read, deny>

PR3: <BCross, /hospital/patient[carrier neq "Black Cross"]/

name, read, deny>

PR4: <WShield, /hospital/patient[carrier neq "White Shield"]/

name, read, deny>

PR5: <Alice, /hospital/patient[name neq "Alice"], read, deny>

PR6: <Bob, /hospital/patient[name neq "Bob"], read, deny>

PR7: <Carol, /hospital/patient[name neq "Carol"], read, deny>

Policy rule PR1 specifies that all federated IDs have default read access to the entire

database. This is then refined by subsequent rules: rules PR2 through PR4 limit the employ-

36

ees of each insurance company to only have access to the patient names of their respective

clients, while rules PR5 through PR7 have the effect of restricting each patient to accessing

only their individual records. Applying this access control policy to the hospital database in

Fig. 2.1 results in access levelsL(o2, read) = {Alice, AIns, BCross, WShield}

and L(o3, read) = {BCross, Alice} and hence we can say that L(o2, read) ≤

L(o3, read). An employee of ACME Insurance would inherit the permissions granted to

the AIns ID, consisting of

�read(AIns) = ∅

	read(AIns) = {/hospital/patient/name}

⊕read(AIns) = {/hospital, /hospital/patient,

/hospital/patient/age, /hospital/patient/diagnosis,

/hospital/patient/doctor, /hospital/patient/carrier,

/hospital/patient/discharge date}

Visualizing the domination relation as a Hasse diagram [40] is one means of inter-

preting the result of applying an access control policy to an XML tree, within the context

of a specific action a. Each vertex in the diagram represents a distinct access level, with

the vertices ordered in such a manner that vertex n1 is located below n2 iff for the corre-

sponding access levels v1 and v2, L(v1, a) ≤ (v2, a). An upward edge is drawn from n1

to n2 iff L(v1, a) ≤ L(v2, a), and further, there exists no other access level v3 satisfying

L(v1, a) ≤ L(v3, a) ≤ (v2, a). Fig. 2.6 depicts a Hasse diagram for the hospital database

when the access control policy of Ex. 2.4.12 has been applied.

Definition 2.4.13 (Montonicity of XML Access Control Policies). An access control policy

A is monotonic over an XML database T = (V,E, r, L) with respect to action a iff ∀v ∈ V ,

L(parent(v), a) ≤ L(v, a).

By definition, an access control policy is monotonic if and only if there exists no cir-

cumstance in which the access permissions granted to a child node are less restrictive than

those bestowed upon its parent, or equivalently, each derived view in V consists of a single,

connected tree. Whenever a monotonic ACP is applied to an XML tree, the corresponding

37

o1

o2,o5,o6,o7,o8,
o9,o10,o11,o12,

o13,o14

o15,o18,o19,o20,
o21,o22,o23,o24,

o25

o26,o29,o30,o31,
o32,o33,o34,o35,

o36

o3,o4 o16,o17 o27,o28

AI,BC,WS,A,B,C

AI,BC,WS,A AI,BC,WS,C
AI,BC,WS,B

BC,A AI,B WS,C

Figure 2.6: Hasse diagram for hospital database of Fig. 2.1.

Hasse diagram – for each child node c with parent node p – satisfies either of the follow-

ing conditions: (1) c and p are contained within the same vertex (access level); or (2) c is

contained within a vertex for which an edge connects to the vertex containing p.

One can verify that the access control policy of Ex. 2.4.12 applied to the example hos-

pital database is monotonic by observing that Fig. 2.6 satisfies one of the above conditions

for each parent-child relationship. We note that the majority of XML access control mod-

els [15, 13, 20, 31, 36, 39, 50, 81, 82, 88, 93, 117, 119] in the literature require that their

policies be monotonic. In contrast, the Author-X [14] and Kudo-Hada [75] models do sup-

port the specification of non-monotonic access control policies. Henceforth, we assume that

all legal access control policies under our model possess the monotonic property. In later

chapters, we will utilize this assumption to derive more efficient algorithms for detecting

and removing disclosure risks from XML databases.

XML access control expression languages

While XML access control models define the semantics of protections specified over an

XML document tree, such descriptions, in their original form, tend to be somewhat abstract

and lack a uniform syntax. To promote interoperation and integration with other appli-

cations, and also to facilitate easy deployment and processing of policies, many models

also enable their policies to be exported to an XML access control expression language;

such languages allow access control policies over XML documents to be specified in a

standardized syntax that is understood by many software tools. Typically, these expres-

38

sion languages are themselves XML vocabularies (e.g., [46, 91]). For example, the se-

cure publishing approach of Miklau and Suciu takes an input tree protection and generates

a partially-encrypted XML document, where encrypted subtrees are expressed using the

W3C recommendation for XML encryption syntax [46].

The eXtensible Access Control Markup Language (XACML) [91] is an OASIS-endorsed

standard consisting of both an XML-based declarative policy specification language as well

as a processing model that specifies how such policies are interpreted and enforced. Among

other benefits, XACML is well-suited for applications in which multiple access control

policies must be integrated, and conflicts between such policies must be resolved. In partic-

ular, through the specification of rule combining algorithms, an administrator may indicate

conflict resolution protocols stating that rules allowing access take precedence over those

denying access to the same resource, or vice-versa.

2.5 Information Theory

In this section, we provide a review of discrete probability mass functions and various

information theoretic measures referred to in subsequent parts of the thesis.

First, we assume that X denotes a discrete random variable, and P denotes its prob-

ability mass function; i.e., the probability that X takes on value x is given by P[x] and∑
xP[x] = 1 as x runs through the set of all possible values for X .

Information theory provides several measures relating to the amount of information

(or equivalently, the level of unpredictability) relayed by an event expressed as a random

variable. In Chapter 5, we will refer to two such measures, entropy and relative entropy.

These measures are defined as follows.

Definition 2.5.1 (Entropy [111]). The entropy of a discrete random variable X with prob-

ability mass function P is defined by

H(X) = −
∑
x

P[x] · log2 P[x] . (2.1)

It always holds that 0 ≤ H(X) ≤ log2 |dom(X)|, where |dom(X)| indicates the size

of the domain of X (the number of distinct values that X may take). H(X) = 0 if and

39

only if there is only one possible value for X (i.e., there is no uncertainty), while H(X) =

log2 |dom(X)| when the probability mass function forX is the uniform distribution (i.e., all

possible values for X are equally likely).

Entropy is measured in bits, and indicates the average uncertainty in the random variable

X . Another way of interpreting entropy is as the number of bits needed to describe X .

If one views each bit as a “yes/no” question, entropy designates the average number of

answers to such questions one needs to collect in order to identify the true value of the

random variable.

In Chapter 5, we will also have occasion to measure the “distance” between two proba-

bility mass functions P and Q defined over the same random variable. The relative entropy

measure from information theory provides one method for doing so.

Definition 2.5.2 (Relative Entropy [111]). The relative entropy of two probability mass

functions P and Q defined over the same discrete random variable X is defined as

KL(P||Q) =
∑
x

P[x] · log2

P[x]

Q[x]
. (2.2)

KL(P||Q) ≥ 0, with equality when P and Q are the same distribution.

Relative entropy is also measured in bits. Intuitively, smaller values indicate that P

and Q are “closer”, while larger values correspond to greater distances between the two

distributions. Another way of interpreting relative entropy sees it as the average number

of extra bits of error introduced when the “false” distribution Q is assumed to describe the

random variableX instead of the “true” distribution P (or equivalently, as the average extra

number of answers to “yes/no” questions one needs in order to learn the value of X).

A closely related quantity is the cross entropy of a random variableX within the context

of probability mass functions P and Q, computed as the sum of H(X) and KL(P||Q).

It serves as an indication of the overall difficulty of learning X’s value when the “false”

probability mass function Q is used, by considering both the inherent uncertainty of X ,

measured by its entropy, and the extra effort needed to correct errors introduced by assuming

Q is the true probability mass function describing X .

40

Chapter 3

Access Control Policy Translation in
Heterogeneous Data Federations

In this chapter, we bridge the gap between relational and XML ACPs. We develop a frame-

work in which existing ACPs over source relational databases (which are prevalent in crit-

ical database applications) can be automatically and faithfully re-formulated over XML

representations of the corresponding data. Our goal is to support a level of expressive-

ness in publishing functions that ensures compatibility with all of the proposed publishing

frameworks to date.

3.1 Introduction

Two major challenges related to ensuring that all access control rules and privileges are cor-

rectly enforced arise when exchanging data within a federation. First, because individual

databases in the federation are maintained independently of each other, access control poli-

cies (ACPs) are defined in terms of local identities (or local classes of users) which are valid

within the system where the data resides. To overcome this limitation, a centralized user

authentication system is often employed to translate local identities into federated identities

shared across systems, thus allowing the access privileges and restrictions to be expressed

within the federation as a whole. Second, the process of translating the ACPs in relational

systems (which are still prevalent) is poorly supported by current systems and tools, despite

the existence of several proposed access control models and mechanisms for XML. Cur-

rently, security administrators must manually convert existing ACPs into the formulation

language used by a designated XML-specific access control model and verify that such a

41

ssn name age
123456789 Carol 31
197453163 Doug 45

Figure 3.1: Patient relation.

translation is indeed correct.

The manual translation of relational ACPs is complex and error-prone, especially be-

cause (1) real-world relational ACPs, especially those pertaining to large enterprises [103],

may consist of hundreds of rules defined over a similarly large number of database objects

(i.e., tables, columns, and tuples); (2) the hierarchical and semi-structured nature of XML

creates additional complexity, as one has to take into account factors such as the propaga-

tion of access permissions from parent nodes to child nodes; and (3) each source database

may define an individual access control policy pertaining to different sets of users, creating

the potential for inter-policy conflicts. An additional consideration is that the XML pub-

lishing function is typically fixed; that is, the goal is to translate the relational ACP for a

given XML publishing function. This reflects the reality that often the publishing functions

express contracts between sources that are not easy to change. We refer to the resulting aug-

mentation of a publishing function with access control specifications as a secure publishing

function Π′.

3.2 Preliminaries

To illustrate the discussion, we refer to the relation depicted in Fig. 3.1, containing infor-

mation about patients of a medical clinic.

3.2.1 Publishing Relational Databases as XML

Consistent with Def. 2.4.1, we view an XML document as an ordered, labeled tree. Fig. 3.2

depicts one possible manner of representing the database of Fig. 3.1 as an XML tree. A

unique identifier for each tree node is indicated as a superscript of the node’s label (in this

figure, each node is also associated with an access bitstring, depicted within a rectangle;

the purpose of these bitstrings is explained in Sec. 3.3).

A publishing function Π specifies how an XML document is created from the contents

42

visits(1)

patient(2) patient(9)

@ssn(3) @ssn(10)name(5) name(12)age(7) age(14)

“123456789”(4) “Carol”(6) “31”(8) “197453163”(11) “Doug”(13) “45”(15)

111110001000

111110001000

111110001000 111110001000 111110001000

111110001000111110001000111110001000

111110000000

111110000000

111110000000

111110000000

111110000000

111110000000

111110000000

Figure 3.2: XML representation of the relation of Fig. 3.1.

of a relational database D conforming to schema S. In our model, we represent publishing

functions using the formalism of publishing transducers [49]. This model provides a natural

basis for our work, as it has proven to be capable of expressing all major XML publishing

languages that have been introduced both by industry [97, 99, 109] and academia [11, 54, 8].

Definition 3.2.1 (Publishing Transducer). A publishing transducer is given by

Π = (Q,Σ, q0, δ) where Q is a finite set of states, Σ is a finite tag alphabet, q0 ∈ Q

is the designated start state associated with the root tag r ∈ Σ, and δ is a finite set of

transduction rules.

By convention, we distinguish attribute labels in Σ by prepending the label value with

‘@’ (e.g., “@ssn” denotes the label value “ssn” for an attribute node).

Transduction rules have the form

(q, a)→ (q1, a1, φ1(x̄1; ȳ1)), . . . , (qk, ak, φk(x̄k; ȳk))

where a1, . . . , ak are distinct tags in Σ∪ text, (qi, ai) ∈ Q×Σ for i ∈ [1, k], and each

φi is a relational query. We refer to each (qi, ai, φi(x̄i; ȳi)) triple as a clause. Furthermore,

the RHS of a transduction rule consists of an ordered list of clauses.

Publishing transducers are deterministic 1: for each (q, a) ∈ Q × Σ, there is a unique

transduction rule. In the case of the start state q0, only a single rule (q0, r) is defined.

Additionally, transduction rules may not contain q0 or r in their right-hand sides, and the
1More precisely, for an input containing a fixed ordering of relational tuples, a given transducer produces

an identical XML tree on each run. If relational tuple ordering is not consistent, then transducer determinism
holds up to a consistent ordering of sibling XML subtrees.

43

right-hand side for rules of the form (q, text) must be empty, where text is a reserved

symbol in Σ used to indicate a text segment (PCDATA). By a recursive transducer, we

refer to one in which there exists a recursive reference within the RHS of a transduction

rule r2 to a rule r1 that (either directly, or transitively) refers to r2 within its RHS.

Essentially, a publishing transducer Π operates as a finite state machine which, for an

input relational database D, generates an XML document tree in a “top-down” manner,

using element tags drawn from Σ. Each node u with label a ∈ Σ in the tree is associated

with a register Rega(u), which is used to store a relation of fixed arity. The transduction

rule for the current machine state and node label is applied; the query φi(x̄i, ȳi) is executed

on D and/or Rega(u), and the result is used to produce the child nodes of the current

node u. Here, x̄i designates a set of “group-by” attributes, i.e., the result of φi is partitioned

according to these attributes, with each set in the resulting partition contributing a new child

node w of u whose register contains all tuples in that partition set. Conversely, all tuples

with identical values for all ȳi attributes create a single child node w, and are grouped

together within the register associated with w.

The transduction process stops at a leaf node u with label a whenever one of the follow-

ing conditions is met: (1) the right-hand sides of all (q, a) transduction rules applicable to u

are empty; (2) the query φi(x̄i; ȳi) for each i ∈ [1, . . . , k] returns empty when evaluated on

Rega(u) and D; or (3) there is a node v on the path from the root to u such that expanding

u will not add any new information to the tree (i.e., the state q, label a, and the content of

Rega(v) of v are all repeated by u). Condition (3) ensures that the application of recursive

transduction rules will eventually terminate. We call each transduction rule that satisfies

one of these conditions a terminating transduction rule.

We illustrate the operation of a publishing transducer with an example.

Example 3.2.2. A publishing transducer that constructs the XML document structure de-

picted by Fig. 3.2 from an instance of the medical clinic relational schema of Fig. 3.1 is

given by Π = (Q1,Σ1, q0, δ1), where Q1 = {q0, q1}, Σ1 = {@ssn, age, name, patient,

visits}, and δ1 consists of the set of transduction rules given in Fig. 3.3. Note that some

queries, such as φ1, select all tuples from a relation or register, while others carry out a se-

lection and/or projection operation on the contents of a relation or register (for example, φ2

44

r1 : (q0, visits)→ (q1, patient, φ1(s, n, a; ∅)),where

φ1(s, n, a) = Patient(s, n, a)

r2 : (q1, patient)→ (q1,@ssn, φ2(s; ∅)), (q1, name, φ3(n; ∅)),
(q1, age, φ4(a; ∅)),where

φ2(s) = ∃n, aRegpatient(s, n, a)

φ3(n) = ∃s, aRegpatient(s, n, a)

φ4(a) = ∃s, nRegpatient(s, n, a)

r3 : (q1,@ssn)→ (q1, text, φ5(s; ∅)),where

φ5(s) = Reg@ssn(s)

r4 : (q1, name)→ (q1, text, φ6(n; ∅)),where

φ6(n) = Regname(n)

r5 : (q1, age)→ (q1, text, φ7(a; ∅)),where

φ7(a) = Regage(a)

r6 : (q1, text)→ . / ∗ empty string ∗ /

Figure 3.3: Transduction rules for the publishing transducer of Ex. 3.2.2.

projects only the ssn attribute of each tuple within the register associated with a patient

node; this is indicated by binding the remaining two relational attributes – name and age

– within the register to an existential quantifier).

We note that each query appearing in Fig. 3.3 defines ȳ as the empty set (and x̄ is non-

empty), resulting in each node in the generated XML tree being associated with a tuple

register. We now modify Ex. 3.2.2 slightly to illustrate the use of a relation register.

Example 3.2.3. In place of the XML tree of Fig. 3.2, one could choose an alternative repre-

sentation in which the root visits node has a single patients child node, making each

patient node a child of the latter. Fig. 3.4 shows the transduction rule set for a publish-

ing transducer capable of generating such a representation. In particular, the start rule r1

has been updated such that a single child node labelled patients is created in response

to issuing query φ1 against the Patient relation. Since φ1 specifies that x̄ = ∅, and

ȳ contains all attributes in Patient, the result is that the constructed patients node

is associated with a relation register whose contents are a copy of the original Patient

relation. Rule r2 then issues a query on this relation register, and constructs a separate

patient child node of patients for each tuple in the register, as desired. The remain-

45

r1 : (q0, visits)→ (q1, patients, φ1(∅; s, n, a)),where

φ1(s, n, a) = Patient(s, n, a)

r2 : (q1, patients)→ (q1, patient, φ2(s, n, a; ∅)),where

φ2(s, n, a) = Regpatients(s, n, a)

r3 : (q1, patient)→ (q1,@ssn, φ3(s; ∅)), (q1, name, φ4(n; ∅)),
(q1, age, φ5(a; ∅)),where

φ3(s) = ∃n, aRegpatient(s, n, a)

φ4(n) = ∃s, aRegpatient(s, n, a)

φ5(a) = ∃s, nRegpatient(s, n, a)

r4 : (q1,@ssn)→ (q1, text, φ6(s; ∅)),where

φ6(s) = Reg@ssn(s)

r5 : (q1, name)→ (q1, text, φ7(n; ∅)),where

φ7(n) = Regname(n)

r6 : (q1, age)→ (q1, text, φ8(a; ∅)),where

φ8(a) = Regage(a)

r7 : (q1, text)→ . / ∗ empty string ∗ /

Figure 3.4: Transduction rules for the publishing transducer of Ex. 3.2.3.

ing rules correspond to those in Ex. 3.2.2.

3.2.2 Access Control for Relational Databases

We recall the definition of discretionary access control policies for relational databases

given as Def. 2.3.1, and illustrate its usage in the following example.

Example 3.2.4. Consider the following SQL ACP over the schema of Fig. 3.1, with user set

U = {UserA, UserB, UserC, DBA}:

1. GRANT select, update ON Patient TO UserA WITH GRANT OPTION

2. GRANT select ON Patient TO UserB

3. GRANT select ON CarolView TO UserC.

CarolView is a view over the Patient relation defined using the SQL command: CREATE
VIEW CarolView AS SELECT * FROM PATIENT WHERE name=‘Carol’. Un-
der our notation, this ACP would be expressed using the following set of 5-tuples:

1. 〈UserA, φ(s, n, a) = Patient(s, n, a), {select, update}, true,DBA〉

46

2. 〈UserB, φ(s, n, a) = Patient(s, n, a), {select}, false,DBA〉

3. 〈UserC, φ(s, n, a) = Patient(s, n, a) ∧ n = ‘Carol′, {select}, false,DBA〉.

One may classify the expressiveness of an access control language according to the

types of q queries that are allowed to appear within policy rules. For example, each SQL

GRANT statement selects one or more columns within a table, and may therefore be spec-

ified using a conjunctive query (CQ) (recall from Sec. 2.2.3 that such queries are formed

from the fragment of first-order logic consisting of conjunction and existential quantifica-

tion over atomic formulae). View definition queries in SQL can be much more complex, as

they may include features such as negation and union operations. They essentially corre-

spond to the class of first-order (FO) queries (cf. Sec. 2.2.2)2.

3.2.3 Federated Identities

Each source database defines its access control policies in terms of a closed set of local

identities Ui; typically, such identities are individual users or roles. Since such sets often

differ from one source to another, a mapping from local identities to a pool F of federated

identities that are known across the federation is needed. For each data source DSi, we

assume an identity mapping function Ii : Ui → 2F that assigns to each local identity

u ∈ Ui one or more federated identities in F . Furthermore, for each federated identity

f ∈ F , accessible(f, p) = {o | ∃u ∈ Ui : f ∈ Ii(u) ∧ o ∈ accessible(u, p)}, and

inaccessible(f, p) = D\accessible(f, p); that is, a database object (cell) that is accessible

to one local identity that has been mapped to a specific federated identity f should be

accessible to all members of f .

Example 3.2.5. We provide an example of an ID mapping function based on the Patient

relation of Fig. 3.1. We assume that there are four local IDs defined at the data source

hosting the Patient relation, named Alice, Bob, Carol, and Doug. The latter two

represent individual patients, while Alice and Bob are the doctors treating Carol and Doug,

respectively. As such, Alice should maintain access to Carol’s patient record after it has

been published to the federation, and similarly, Bob should keep access to Doug’s record.
2More precisely, full SQL:1999 is equivalent to first-order queries plus aggregation [80].

47

Further, Alice and Bob presumably have access to additional federated data relevant to

their doctor duties, and Carol and Doug must receive access to the federated version of their

respective patient records. One possible ID mapping function satisfying these requirements

would be I(Alice) = {Doctor, PatientCarol}, I(Bob) = {Doctor, PatientDoug},

I(Carol) = {PatientCarol}, I(Doug) = {PatientDoug}.

It is crucial to avoid violating the principle of least privilege when designing the identity

mapping functions. Specifically, while one wants to ensure that such a mapping allows each

local user to keep access to the XML publication of all relational database objects made

accessible to them under the applicable relational access control policy, it is also crucial

that they not be given too many permissions by the mapping. When mapping functions are

defined manually, the onus is on security administrators to provide a sufficiently large pool

of federated identities and to define each Ii properly (in particular, Ii should only assign

local IDs u1 and u2 to the same federated identity in cases where accessible(u1, p) =

accessible(u2, p) for all applicable permissions p).

Another potential source of concern is that each data administrator only defines the

mapping function pertinent to their local data source, with no control over how such map-

pings are defined by other data sources. This presents a challenge to each data source’s

authorization autonomy, as a careless or malicious administrator from another data source

can compromise the intended access privileges defined by the local data source through

their mappings. To illustrate, assume we extend Ex. 3.2.5 to consider a second data source

with an administrator holding the local ID Admin. By defining his mapping function as

I(Admin) = {PatientCarol}, the administrator would be able to access the federated

representation of Carol’s patient record. One solution for handling such situations would

be to allow security administrators at each data source to specify conditions on how map-

pings are constructed, and to correct an existing set of ID mapping functions in order to

satisfy all such conditions. In essence, this mechanism would serve to extend the “pub-

lishing contract” each data source makes with the federation, through the definition of a

secure publishing function with additional constraints that other local data administrators

must obey as a condition for that source’s participation within the federation. We leave this

as future work.

48

Policy Translator

Relational
Schema

S

Relational
ACP
A

Publishing
Function
Π

Secure
Publishing
Function
Π'

Identity
Mapping

I

Figure 3.5: The policy translation process.

3.3 Translating Relational Policies

In this section, we discuss issues and solutions related to translating a pre-existing access

control policy defined over a relational database D to an equivalent policy defined over

an XML representation of D. Our goal is to have a generic access control policy transla-

tion procedure that works with various XML access control enforcement mechanisms. We

achieve this in two steps. We start by annotating each node of a given XML publishing

function Π3 with access bitstrings specifying necessary access control restrictions of the

objects that are consumed by those nodes; we call this a secure publishing function and

denote it by Π′ throughout the paper. In the second step, specific XML access control

mechanisms can be derived from Π′ to correctly enforce the original relational access con-

trol policy over the mapped data. While different mechanisms have been discussed in the

literature, we focus on describing Π′ in terms of the standard eXtensible Access Control

Markup Language (XACML) [91].

Fig. 3.5 illustrates the policy translation process. The inputs consist of a relational

schema S, an SQL access control policy A defined over S, a publishing function Π, and an

identity mapping function I . Provided with such inputs, we wish to derive a secure publish-

ing function Π′ that augments Π by annotating the output XML tree nodes with additional

information, allowing A to be enforced over the XML representation. These annotations

are defined in terms of the federated identities, as captured by the identity mapping function
3Usually, the access control policy is defined over a specific XML representation of the data, and not the

other way around.

49

11 11 10 00 10 00]

ID1
Select

Grant = Y

ID1
Update
Grant = Y

]]

ID2
Select

Grant = N

ID3
Select

Grant = N

]

Figure 3.6: Example access bitstring.

I . We interchangeably refer to the secure publishing function as the translated policy.

Let o denote an individual database object (cell) returned by evaluating a φ query ap-

pearing within a transduction rule of Π. Each such o consists of a pair 〈value, φ〉, where

value indicates the literal value retrieved from the database, and φ refers back to the re-

lational query. Note that under this representation of database objects, multiple database

objects (cells) sharing the same literal value remain distinguishable. This feature is crucial,

since each appearance of the same literal value in the relational database may be assigned

different permissions.

Definition 3.3.1 (Access Bitstring). Let F = 〈f1, . . . , fm〉 be a list of federated identities

and P = {p1, . . . , pn} be a set of grantable permissions. The access bitstring for a database

object o,

Bo = (bf1p1bf1g1 . . . bf1pnbf1gn . . . bfmpnbfmgn)

is a string of of 2mn bits which fully specifies the access control policy for over o: bit

bfipj = 1 iff ID fi holds permission pj over o, and 0 otherwise, and bit bfigj = 1 only iff

(1) bit bfipj = 1 (since a grant option for fi is only applicable to a permission that is held

by fi) and (2) ID fi holds the grant option for permission pj over o.

Example 3.3.2. Fig. 3.6 shows an access bitstring indicating that ID1 has select and up-

date permissions, both with the grant option, while ID2 and ID3 each hold a select per-

mission without grant options.

We now extend the definition of publishing transducer to allow access permissions over

relational database objects to be preserved during the transduction process.

50

Definition 3.3.3 (Secure Publishing Transducer). A secure publishing transducer Π′ =

(Q,Σ, q0, δ
′) is a publishing transducer with Q,Σ, and q0 defined as before, and δ′ is a

set of transduction rules of the form

(q, a,B)→ (q1, a1, B1, φ1(x̄1; ȳ1)), . . . , (qk, ak, Bk, φk(x̄k; ȳk))

where B and each Bi are access bitstrings.

The goal is to ensure that the specified relational ACPA is preserved over the published

XML document Π′(D). It is within the access bitstrings appearing in the transduction rules

of a secure publishing transducer that the semantics of A are embedded. In particular, for a

clause (qi, ai, βi, φi), the access bitstring βi will be assigned to each ai-labelled XML node

produced by executing query φi 4.

Through slight abuse of the notation, we indicate by o ∈ Π(D) that a representation of a

given database object o is contained in the XML document Π(D) produced by a publishing

function Π on the input relational database D. By adom(Π(D)), we refer to the active

domain of Π(D), that is, the union of database objects formed by evaluating all φ queries

appearing in the transduction rules of Π.

Definition 3.3.4 (Conditions for Relational ACP Preservation). Let xview : F × P →

P(Π(D)) be a function returning the subset of Π(D) which is accessible to a federated

ID f ∈ F within the context of an individual permission p ∈ P . A secure publishing

transducer Π′ preserves an ACP A defined over a database D if, for all IDs f ∈ F and for

each permission p ∈ P , the following conditions are met in the published XML document

Π′(D):

1. (Sufficiency) ∀o ∈ accessible(f, p) ∧ o ∈ adom(Π(D)): o ∈ xview(f, p).

2. (Necessity) @o ∈ D : o /∈ accessible(f, p) ∧ o ∈ xview(f, p).

Example 3.3.5. Let I be an identity mapping function defined as follows: I(UserA) =

ID1, I(UserB) = ID2, and I(UserC) = ID3. Further, for convenience let us use the su-

perscripts appearing in Fig. 3.2 to refer to the corresponding nodes in Π(D). For the XML
4We note that while access bitstrings are a convenient means of encoding access control policy semantics

for the purposes of reasoning about the policy translation problem, alternative encoding schemes may be more
space efficient within practical systems.

51

document listed in Fig. 3.2 and access control policy of Ex. 3.2.4, xview(ID3, select) =

{1, 2, 3, 4, 5, 6, 7, 8}, comprising the root node, and the leftmost patient subtree con-

taining Carol’s record. Note that for each of these nodes, the associated access bitstring

(indicated within the rectangles appearing beneath each node label) has the ninth bit (cor-

responding to the select permission of ID3) set, while this bit remains unset in the access

bitstrings of all remaining nodes.

The following result shows that the proposed solution is applicable to any relational

schema, relational access control policy, identity mapping function, and publishing function

provided as inputs. Additionally, it indicates that the translation need only be be performed

once – at the schema level – and the obtained secure publishing function can then be applied

to any instance database conforming to that schema.

Theorem 3.3.6 (Expressibility of relational ACPs). Given an arbitrary relational schema

S, an access control policy A defined over a set of users U , an identity mapping function I ,

and a publishing transducer Π, a secure publishing transducer Π′ exists that preserves A

over S. Further, the derived Π′ is applicable to any instance database D conforming to S.

Proof. Alg. 3.3.1 demonstrates a method for converting a publishing transducer into a se-

cure publishing transducer. We now describe how this algorithm works. A is first parsed

and a hashtable is constructed from its contents (line 2). In this hashtable, each key is

an attribute in S, while each key stores two linked lists containing entries of the form

(I(u), p, g, c) where u is a user in U , p is the applicable permission, g is true if the grant

option has been awarded to u over the keyed attribute (and false otherwise), and c specifies

a condition on the access granted to u over the keyed database attribute, or takes the value

∅ if no condition is present. The first linked list contains all unconditional entries, while the

second contains the conditional entries (i.e. those for which c is not ∅).

Next, the transduction rules of the original publishing transducer are examined one-by-

one, and transformed into augmented rules of the output secure publishing transducer (lines

3-30). Recall that each transduction rule may have multiple (q, a, φ) clauses on its right-

hand side. Lines 5-28 iterate over each such clause; for every attribute appearing in φ, the

hashtable H is consulted to extract all relevant entries that assign access permissions over

52

Input: Relational schema S, access control policy A, publishing transducer
Π = (Q,Σ, q0, δ), identity mapping function I

Output: A secure publishing transducer Π′ = (Q,Σ, q0, δ
′)

1 δ′ ← ∅;
2 H ← parseAndSortACP (A);
3 foreach r ∈ δ do
4 r′ ← newRule();
5 foreach clausei = (qi, ai, φi) ∈ RHS(r) do
6 condEntries← ∅;
7 B ← 0|F |;
8 foreach att ∈ atts(clausei) do
9 foreach entry ∈ H.getNonConditionalEntries(att) do

10 B.setBit(entry);
11 end
12 condEntries← condEntries ∪H.getConditionalEntries(att);
13 end
14 if condEntries = ∅ then
15 clausenew ← (qi, ai, B, φi);
16 r′.append(clausenew);
17 else
18 foreach entry ∈ condEntries do
19 clausedeny ←
20 (qi, ai, B, φi ∧ ¬entry.getConditions());
21 B.setBit(entry);
22 clausegrant ←
23 (qi, ai, B, φi ∧ entry.getConditions());
24 r′.append(clausedeny);
25 r′.append(clausegrant);
26 end
27 end
28 end
29 δ′ ← δ′ ∪ r′;
30 end

Algorithm 3.3.1: Construction of a secure publishing transducer.

that attribute. Lines 8-13 process the unconditional entries for the current attribute; for each

such entry, the appropriate bit is set in the bitstring B (i.e., the values of the mapped ID,

permission, and grant option fields within the entry are used to determine this bit position).

If there are no conditional entries for the current attribute, the augmented clause is con-

structed by inserting B. Otherwise, the conditional entries are then processed one-by-one

(lines 18-26). For each such entry, two clauses are constructed: one to handle the case when

the condition is not satisfied, and the other to allow additional access to each ID I(u) when

53

the condition c is satisfied.

Once all of the clauses within the original transduction rule have been processed in

this way, the augmented rule is added to the transduction rule set of the secure publishing

transducer (line 29).

At this point, each constructed clause (qi, ai, Bi, φi) serves to associate the access bit-

string Bi to each database object (cell) o appearing within the relation formed by an eval-

uation of query φi on the instance database D. To complete the proof, we need to show

that both preservation conditions are guaranteed by Alg. 3.3.1, for any instance database

D conforming to S. For the sufficiency condition, observe that if a database object o ∈

adom(Π(D)) and furthermore, o ∈ accessible(f, p) for some federated ID f and permis-

sion p, then by definition there must be a policy rule in A granting p on o to some u for

which I(u) = f . In such a case, Alg. 3.3.1 will set the appropriate permission bit for f to 1,

ensuring that f holds p over o. For the necessity condition, note that if o /∈ accessible(f, p),

then there is no policy rule in A granting access to any u for which I(u) = f . In such a

case, it is easy to verify that in Alg. 3.3.1 the permission bit for f will remain 0 regardless

of whether o ∈ adom(Π(D)), meaning that f does not have the designated permission over

o, and hence o /∈ xview(f, p).

Let |r| designate the size of transduction rule r ∈ δ, measured as the number of clauses

appearing on the right-hand side of r. Further, let |r|max denote the largest such |r| in δ.

The time requirement of Alg. 3.3.1 isO(|δ|·|r|max ·|S|·|U |), while the storage requirement

for the hashtable generated in the first phase isO(|S| · |U |). The time requirement is derived

by noting that the loop in line 3 requires |δ| iterations, while the loop in line 5 requires at

most |r|max iterations (one for every clause contained in the right-hand side of the current

transduction rule). The number of iterations for the loops in lines 8 and 9 are upper bounded,

respectively, by the number of relational attributes in S, and the number of local identities

in U . The size of the condEntries set being operated upon in lines 14-27 is again upper

bounded by |U |, since for a fixed relational attribute, there can be at most |U | entries in

condEntries: one for each local identity in U .

Example 3.3.7. We describe the secure publishing transducer that is constructed by Alg. 3.3.1,

54

using as inputs the publishing transducer from Ex. 3.2.2, together with the ACP from

Ex. 3.2.4. In the first phase, the ACP is parsed as described above, and the following

hashtable is constructed:

Patient.ssn→ (ID1, select, f, ∅), (ID1, update, f, ∅),

(ID2, select, f, ∅),

(ID3, select, f, Patient.name =

‘Carol′)

Patient.name→ (ID1, select, f, ∅), (ID1, update, f, ∅),

(ID2, select, f, ∅),

(ID3, select, f, Patient.name =

‘Carol′)

Patient.age→ (ID1, select, f, ∅), (ID1, update, f, ∅),

(ID2, select, f, ∅),

(ID3, select, f, Patient.name =

‘Carol′)

The resulting secure publishing transducer is Π′ = (Q,Σ, q0, δ
′), with Q = {q0, q1},

Σ = {@ssn, name, age}, and δ′ consisting of the transduction rules listed in Fig. 3.7. An

example XML tree output by Π′ is depicted in Fig. 3.2.

In this example, there are two distinct bitstring values, 111110000000 and

111110001000; in particular, note that the application of the transduction rules in δ′

assigns each node in <patient> subtrees the 111110000000 bitstring, with the ex-

ception of the nodes in the <patient> subtree containing Carol’s record, which receive

bitstring 111110001000. This preserves the intent of the relational access policy rules,

which grant UserA and UserB, mapped to respective federated IDs ID1 and ID2, select

permissions over all patient records, while ID3, to which UserC is mapped, only pos-

sesses select permission over the record belonging to Carol. Furthermore, UserA, under

the federated ID ID1, receives update permission over all nodes.

55

r0 : (q0, visits,111110001000)→
(q1, patient, 111110000000, φ1(s, n, a; ∅)),
(q1, patient, 111110001000, φ2(s, n, a; ∅)),
where
φ1(s, n, a) = Patient(s, n, a) ∧ n 6= ‘Carol′

φ2(s, n, a) = Patient(s, n, a) ∧ n = ‘Carol′

r1 : (q1, patient,111110000000)→
(q1,@ssn, 111110000000, φ3(s; ∅)),
(q1, name, 111110000000, φ4(n; ∅)),
(q1, age, 111110000000, φ5(a; ∅)),
where
φ3(s) = ∃n, aRegpatient(s, n, a)

φ4(n) = ∃s, aRegpatient(s, n, a)

φ5(a) = ∃s, nRegpatient(s, n, a)

r2 : (q1, patient,111110001000)→ (q1,@ssn, 111110001000, φ3(s; ∅)),
(q1, name, 111110001000, φ4(n; ∅)),
(q1, age, 111110001000, φ5(a; ∅))

r3 : (q1,@ssn,111110000000)→ (q1, text, 111110000000, φ6(s; ∅)),
where φ6(s) = Reg@ssn(s)

r4 : (q1,@ssn,111110001000)→ (q1, text, 111110001000, φ6(s; ∅))
r5 : (q1, name,111110000000)→ (q1, text, 111110000000, φ7(n; ∅)),

where φ7(n) = Regname(n)

r6 : (q1, name,111110001000)→ (q1, text, 111110001000, φ7(n; ∅))
r7 : (q1, age,111110000000)→ (q1, text, 111110000000, φ8(a; ∅)),

where φ8(a) = Regage(a)

r8 : (q1, age,111110001000)→ (q1, text, 111110001000, φ8(a; ∅))
r9 : (q1, text,111110000000)→ . /* empty string */
r10 : (q1, text,111110001000)→ . /* empty string */

Figure 3.7: Transduction rules for the example secure publishing transducer.

As shown in the example, the biggest complication is caused by the final ACP rule ofA,

granting UserC access to a view containing only Carol’s record. This necessitates expand-

ing the original transduction rule for patient in order to output the correct permission

bitstring, according to whether or not the associated patient name equals “Carol”. Also, the

transduction rules for each child element of patient are affected; in particular, we now need

two separate rules for each child element to handle the cases where the parent <patient>

element is – and is not – accessible to ID3.

56

3.4 Verifying Policies

A key concern for security administrators is ensuring that an ACP fulfills the needs of the

corresponding application. When exchanging data in a federation, this also involves veri-

fying that the XML publishing strategy exposes the original relational data in accordance

with the original ACP. In this section we show that this problem is computationally very

hard even for moderately expressive access control models. Given the importance of the

problem, our results emphasize the need for efficient and effective ways of automatically

translating ACPs.

We model the verification problem as follows. Given a relational schema S, the corre-

sponding relational ACP A, an identity mapping function I , a fixed publishing transducer

Π, and secure publishing transducer Π′, the problem consists of determining whether 1) Π′

is equivalent to Π (i.e., on the same instance of S it produces an XML tree equivalent to

that produced by Π), and 2) the relational ACP A and the access bitstring assignments in

Π′ have equivalent semantics.

We address two variants of the verification problem: a static analysis ensures that a

supplied secure publishing transducer preserves the semantics of a relational ACPA defined

over any instance of relational schema S, while a dynamic analysis takes a specific instance

database D as an additional input and only ensures that the specified secure publishing

transducer satisfies A over D only (and not necessarily all databases that conform to S).

These variants can be defined formally as follows.

Definition 3.4.1 (Dynamic Verification). An instance of the dynamic verification decision

problem consists of the following inputs: an instance databaseD conforming to a relational

schema S; a relational ACP defined over S; an identity mapping function I; a publishing

transducer Π; and a secure publishing transducer Π′. A “yes” instance is constituted only

if 1) Π′(D) is equivalent to Π(D) (i.e., on input D, Π′ produces an XML tree equivalent to

that produced by Π), and 2) the relational ACP A and the access bitstring assignments in

Π′ have equivalent semantics. All other instances constitute “no” instances.

Definition 3.4.2 (Static Verification). An instance of the static verification decision problem

consists of the following inputs: a relational schema S; a relational ACP defined over

57

S; an identity mapping function I; a publishing transducer Π; and a secure publishing

transducer Π′. A “yes” instance is constituted only if 1) Π′ is equivalent to Π (i.e., on every

legal instance of S it produces an XML tree equivalent to that produced by Π), and 2) the

relational ACPA and the access bitstring assignments in Π′ have equivalent semantics. All

other instances constitute “no” instances.

We show the complexity of each variant for a variety of classes of secure publishing

transducers (SPT) specified as SPT(L,S,A), where

• L is the language for the φ queries appearing in transduction rules: CQ (conjunctive

queries) or FO (first-order queries);

• S takes the value tp or rl, indicating whether each node register in the produced

XML tree stores a single tuple or a relation; and

• A specifies the complexity of queries appearing in the relational ACP rules: CQ or

FO.

In addition, SPTnr denotes the more restrictive class of secure publishing transducers

that lack recursive transduction rules. Table 3.1 summarizes the complexity of deciding

the dynamic and static verification problems for various classes of secure publishing trans-

ducers with different expressive power. The results follow from the complexity of reason-

ing with the languages used to define the queries within transduction rules and/or within

the queries of the relational ACP. (Recall from Sec. 2.2.4 that practical relational query

languages such as SQL are essentially equivalent to FO, while CQ are the subset of FO

consisting of selections, projections and joins.)

3.4.1 Dynamic Verification

Since it is only relevant to a particular instance database (and says nothing about other

instance databases conforming to the same schema), the usefulness of dynamic verification

is mainly constrained to those cases in which the contents of a database do not change

frequently (e.g., archival data). The following procedure automates the process. We start

by deriving a secure publishing transducer Π′′ as discussed in the previous section, using

58

Fragment
Dynamic Static

Verification Verification

SPT(L, rl,A) 2EXPTIME undecidable

SPT(L, tp,A) EXPTIME undecidable

SPTnr(FO,tp,A) PTIME undecidable

SPTnr(CQ,tp,A) PTIME ΠP
3 -complete

Table 3.1: Complexity of static and dynamic verification of common classes of secure
publishing transducers.

the supplied inputs Π, A, and I . We obtain XML trees X1 = Π′′(D) and X2 = Π′(D) by

supplying the instance database D as an input to both secure publishing transducers, and

simply compare the two resulting annotated trees.

More precisely, we traverse both trees in depth-first order simultaneously; at each step,

we check whether the corresponding nodes in X1 and X2:

1. have the same label;

2. are isomorphic 5; and

3. have the same access bitstrings associated with them.

Two observations are relevant at this stage. First, we can compare the access bitstrings

in the nodes of the two trees because we assume that there is a unique, fixed list of users

in the federation (recall Section 3.3). Second, the complexity of the problem boils down

to the complexity of materializing the XML trees given the transducers. In the presence of

recursion, this ranges from EXPTIME for transducers with tuple registers to 2EXPTIME

for those with relation registers [51]; for non-recursive transducers, the size of the output

tree is bounded by a polynomial in the size of the instance database, allowing dynamic

verification to be carried out in PTIME.
5In practice (assuming that the tuple ordering of the input relation supplied to both transducers is consistent),

we need only check whether they have the same number of child nodes, since the first condition establishes that
they share the same label, and this same condition applied recursively to each child node establishes a pairwise
label agreement for X1 and X2 at each child position.

59

3.4.2 Static Verification

Static verification is, as expected, much harder as it involves reasoning about the queries

in the transducers and the ACPs. We first obtain a secure publishing transducer Π′′ as

discussed in the previous section. The verification of Π′(D) then consists of solving two

sub-problems: (1) checking that for every instance D conforming to schema S, Π′′(D) ≡

Π′(D)6; and (2) ensuring the relational access control policy A and the access bitstrings in

Π′ share the same semantics.

Checking the first condition above requires one to decide equivalence between two

publishing transducers. As shown in [51], this is undecidable for all classes of transduc-

ers except for SPTnr(CQ,tp,A), in which case deciding equivalence is ΠP
3 -complete. For

the second condition, we consider only this restricted class. Now, the problem consists

of checking whether the bitstrings produced by equivalent nodes in Π′′ and Π′ are iden-

tical. We note that all such pairwise node equivalences are found during the process of

establishing overall transducer equivalence in the previous step (this is so since establishing

transducer equivalence requires one to consider all sequential applications of transduction

rules starting from the start rule which are formed by supplying every instance database

conforming to S as an input). Assuming that node equivalence relationships are recorded at

the time of their discovery, we can test the second condition in time polynomial in the num-

ber of transduction rules in δ′ 7, the number of federated IDs, and the number of assignable

permissions, by looking up each stored relationship, and performing a bitwise comparison

between the respective bitstrings assigned to both nodes in the current relationship to ensure

they are in fact equal. Evidently, the cost of testing the first condition dominates the cost of

deciding the second condition. This approach assumes a fixed list of federated IDs, and a

scenario in which a consistent encoding of federated permissions within bitstrings was not

guaranteed would require more sophisticated reasoning on bitstring values.
6Ignoring the bitstrings in Π′(D).
7Recall that this serves as a bound on the length of the longest applicable rule sequence, as we are consid-

ering a non-recursive class of transducers.

60

3.5 Expressing Policies in XACML

In this section, we provide an algorithm for generating an XACML policy from a non-

recursive 8 secure publishing function Π′, conforming to the syntax of the hierarchical re-

source profile of XACML 2.0 [5]. Note that since the conversion is done entirely at the

schema level, this procedure only needs to be carried out once for each Π′: thereafter, the

generated XACML policy will be equally applicable to all generated XML trees Π′(D)

formed by applying Π′ to any relational database instance D.

Definition 3.5.1 (XACML Policy). An XACML policy is a 3-tuple X = 〈td, rca, rs〉,

where td is the target XML document over which the policy applies, rca is a rule combining

algorithm indicating how policy rule conflicts are resolved, and rs is a set of policy rules.

Each rule in rs is a tuple 〈su, re, ac, ef, co〉, where su, re, and ac denote, respectively, the

sets of subjects, resources, and actions for which the rule applies; ef is the effect of the rule

(permit or deny); and co is a set of boolean conditions that serve to restrict the applicabil-

ity of the rule to cases in which the conditions all evaluate to true. Such conditions may be

defined over attributes relating to subjects, resources, actions, and/or environmental vari-

ables (such as the time of the access request, supporting temporal constraints on access),

allowing the applicability of a policy rule to be further refined. Resources are node sets

identified by XPath expressions.

The procedure for translating a secure publishing function into an equivalent XACML

policy is given by Alg. 3.5.1. A rule reachability graph (RRG) is first formed from the set of

transduction rules δ′ for Π′ (line 2), in which the root node corresponds to the transduction

rule defined for the start state and root node label. Furthermore, a directed edge from

the node corresponding to transduction rule δ1 into that of δ2 indicates that δ1 contains

a reference to δ2 within a clause ci in its RHS. Each edge is labeled with the query φi

contained in the clause ci that formed the edge. If Π′ is recursive, then its rule reachability

graph contains at least one cycle. Fig. 3.8 shows the rule reachability graph for the secure

publishing transducer of Ex. 3.3.7.
8This assumption is made to simplify the discussion. Extending the presented algorithm to handle recursive

publishing functions would be straightforward, requiring one to “mark” cycles as they are encountered during
a preorder traversal of a directed graph.

61

Input: Secure publishing transducer Π′

Output: A set of XACML policy rules rs
1 rs← ∅;
2 RRG← constructRuleReachabilityGraph(Π′);
3 foreach n ∈ nodeListInPreOrder(RRG) do
4 currentPath← getLocation(n);
5 bString ← getBitString(n);
6 parentBString ← getBitString(getParentNode(n));
7 if n.hasCondition() then
8 currentPath← resolveCondition(n);
9 end

10 permitsGroups← ∅; denialsGroups← ∅;
11 foreach perm ∈ P ′ do
12 permitperm ←
13 getIDsWithNewlyPermittedAccess(bString, parentBString, perm);
14 denyperm ←
15 getIDsWithNewlyDeniedAccess(bString, parentBString, perm);
16 permitsGroups.add(permitperm);
17 denialsGroups.add(denyperm);
18 end
19 mergedPermitsGroup←
20 mergeGroupsWithSameIDSet(permitsGroup);
21 mergedDenialsGroup←
22 mergeGroupsWithSameIDSet(denialsGroup);
23 foreach pg ∈ mergedPermitsGroup do
24 associatedPerms← getPermissions(pg);
25 associatedIDs← getIDs(pg);
26 rs.addPolicyRule(〈associatedIDs, currentPath,
27 associatedPerms, permit, ∅〉);
28 end
29 foreach dg ∈ mergedDenialsGroup do
30 associatedPerms← getPermissions(dg);
31 associatedIDs← getIDs(dg);
32 rs.addPolicyRule(〈associatedIDs, currentPath,
33 associatedPerms, deny, ∅〉);
34 end
35 end
36 return rs;
Algorithm 3.5.1: Translation of a secure publishing function into an equivalent set of
XACML policy rules.

The constructed RRG is then traversed in preorder (lines 3-35). For each encountered

node n, variables currentPath and bString are updated to refer to, respectively, the XPath

path value indicating the location of n relative to the graph’s root node (line 4) and the

access bitstring for n (line 5). Additionally (line 6), the variable parentBString is used

to store the access bitstring for the parent node of n (in the case of the root node, the zero

bitstring is stored).

62

In the next step (lines 7-9), an attempt is made to translate the condition (if any) speci-

fied within the query φ labelling the edge incident to n into an equivalent XPath predicate.

Such a condition will be of the form a op c, where a is a relational attribute, op a compar-

ison operator, and c a constant value. The descendants of n are traversed in an attempt to

discover the location at which the value of a is output; a stack s is used to keep track of the

current location path, relative to n. If and when such a location is determined, the current

path value is updated to currentPath = currentPath + “[s.top() op c]′′, where s.top()

denotes the value on top of s. We then say that this condition has been resolved. If the

search fails, then the condition remains unresolved. We defer until later the discussion of

how unresolved conditions are handled.

In the next phase, the access bitstrings of n and its parent are compared (lines 11-18). By

P ′, we denote the set formed by augmenting the original permission set P with an additional

element p′ for each p ∈ P , used to indicate the permission p extended to include the grant

option. For each permission perm in P ′, two groups are formed: permitperm contains the

set of federated IDs for whom the corresponding bit positions for perm are set in bString

and unset in parentBString (line 12), while denyperm holds those IDs for whom the

corresponding bit positions are unset in bString yet set in parentBString (line 14). Once

all permissions in P ′ have been processed, sets permitsGroup and denialsGroup serve

to store these sets for all permissions in P ′ (lines 16-17).

Seeking to minimize the number of constructed policy rules, individual sets in

permitsGroup and denialsGroup that contain the same sets of federated IDs are then

merged; each set thus formed is then associated with the union of permissions of each origi-

nal ID set. The resulting sets are designated as mergedPermitsGroup and

mergedDenialsGroup (lines 19-22). In the final step (lines 23-34), a separate XACML

policy rule is constructed and added to the policy rule set rs for each member of

mergedPermitsGroup and mergedDenialsGroup.

Example 3.5.2. We illustrate the discussion using the secure publishing transducer of

Ex. 3.3.7 as an example. The corresponding RRG is depicted in Fig. 3.8, while the generated

policy rule set is shown in Table 3.2. From the root node’s access bitstring 111110001000,

the groups permitselect = {ID2, ID3}, permitupdateGO = {ID1}, and permitselectGO =

63

r0

r1 r2

r3 r5 r7 r4 r6 r8

r9 r10

φ1 φ2

φ3 φ4
φ5

φ6
φ7 φ8

φ3 φ4
φ5

φ6
φ7 φ8

Figure 3.8: Rule reachability graph.

r1 : 〈ID1, “/visits”, {selectWithGrantOption, updateWithGrantOption}, permit, ∅〉
r2 : 〈{ID2, ID3}, “/visits”, select, permit, ∅〉
r3 : 〈ID3, “/visits/patient[name/text() neq ‘Carol’]”,

select, deny, ∅〉

Table 3.2: Example XACML policy rules.

{ID1} are created, corresponding to the set bits in the access bitstring. The latter two

groups share the same ID set (ID1), and are therefore merged into a single rule associ-

ated with both of these permissions. This in turn results in the creation of policy rules

r1 and r2 in Table 3.2. The next node to be visited is (q1, patient, 111110000000), set-

ting currentPath = “/visits/patient′′. The condition n 6= “Carol′′ is resolved by first

recording that the referenced attribute n is the second attribute stored in the Regpatient.

Next, the child edges are traversed in breadth-first order; since the query associated with the

edge leading into (q1,@ssn, 111110000000) does not store n as part of its answer, this edge

is disqualified. The query associated with the edge incident to (q1, name, 111110000000)

does store n within Regname, so the temporary stack s is updated to store name, and the

edge leading to (q1, text, 111110000000) is next followed; since this rule outputs the value

of n, s is updated to name/text(), and the search terminates. The currentPath is updated

to /visits/patient[name/text()neq “Carol′′]. The current bitstring Bc differs with that

of the parent (root) node only in the ninth bit position, which results in the creation of the

set denyselect = {ID3} and yields the policy rule r3. Traversing the remaining nodes in the

RRG does not produce any additional rules.

Handling unresolved conditions. The condition resolution procedure outlined above

64

depends on the values of each referenced relational attribute being output as part of the

published XML document; in practice, this may not always happen (for instance, if the

patient records in the above example are anonymized, the value of each patient name will

not be output by the publishing function). In such cases, a different solution is needed. One

technique is to augment the secure publishing function with additional rules that output the

missing values and assign to each the zero bitstring. This serves to ensure that no federated

IDs will have access to such values (thereby obeying the intentions of the original access

control policy), while allowing all conditions within the RRG to be resolvable.

Example 3.5.3. For the case alluded to above, where patient names are not visible to any

federated IDs, the modified transduction rule set in Fig. 3.9 will allow all conditions to be

resolved (the bolded rules indicate those that have been altered from the original version in

Fig. 3.7).

3.6 Minimizing Translated Policies

Multiple reasons exist for desiring that translated policies are as “small as possible”, both

in terms of the number of generated policy rules as well with respect to the size of the

relational queries appearing within policy rules. An obvious motivator is that a simpler

policy is typically easier for a human security administrator to interpret. Another relates to

application performance: a smaller set of policy rules means that fewer rules are checked

each time an access control decision needs to be made.

Based on the earlier results on static verification, the difficulty of performing transducer

minimization should be evident: indeed, an alternative way of carrying out static verifica-

tion would be to apply the minimization procedure on the supplied S.P.T. Π′ and the S.P.T.

Π′′ derived from the verification inputs S, A, and Π, and check to see whether the result-

ing minimized transducers are equivalent. Hence, minimization must be at least as hard

as static verification. For this reason, we focus on minimizing the one class of S.P.T.s for

which static verification is decidable, SPTnr(CQ,tp,A), and rely on a “weaker” notion of

equivalence to guide the minimization procedure. We also leverage prior results on query

containment [29, 116] to identify particular subclasses of conjunctive queries for which

65

r0 : (q0, visits,111110001000)→
(q1, patient, 111110000000, φ1(s, n, a; ∅)),
(q1, patient, 111110001000, φ2(s, n, a; ∅)),
where
φ1(s, n, a) = Patient(s, n, a) ∧ n 6= ‘Carol′

φ2(s, n, a) = Patient(s, n, a) ∧ n = ‘Carol′

r1 : (q1,patient,111110000000)→
(q1,@ssn,111110000000, φ3(s; ∅)),
(q1,name,000000000000, φ4(n; ∅)),
(q1,age,111110000000, φ5(a; ∅)),
where
φ3(s) = ∃n,aRegpatient(s,n,a)

φ4(n) = ∃s,aRegpatient(s,n,a)

φ5(a) = ∃s,nRegpatient(s,n,a)

r2 : (q1,patient,111110001000)→ (q1,@ssn,111110001000, φ3(s; ∅)),
(q1,name,000000000000, φ4(n; ∅)),
(q1,age,111110001000, φ5(a; ∅))

r3 : (q1,@ssn,111110000000)→ (q1, text, 111110000000, φ6(s; ∅)),
where φ6(s) = Reg@ssn(s)

r4 : (q1,@ssn,111110001000)→ (q1, text, 111110001000, φ6(s; ∅))
r5 : (q1,name,000000000000)→ (q1, text,000000000000, φ7(n; ∅)),

where φ7(n) = Regname(n)

r7 : (q1, age,111110000000)→ (q1, text, 111110000000, φ8(a; ∅)),
where φ8(a) = Regage(a)

r8 : (q1, age,111110001000)→ (q1, text, 111110001000, φ8(a; ∅))
r9 : (q1, text,111110000000)→ . /* empty string */
r10 : (q1, text,111110001000)→ . /* empty string */

r11 : (q1, text,000000000000→ ./* empty string */

Figure 3.9: Modified transduction rules for the example secure publishing transducer
(bolded rules indicate those modified from the original versions in Fig. 3.7).

minimization proves to be especially tractable.

Our minimization algorithm is a generalization of Hopcroft’s O(n log n) algorithm for

minimizing a deterministic finite automaton (DFA) with n states [64]. It operates by de-

termining which transduction rules are equivalent, and combines all equivalent rules into a

single transduction rule in the minimized S.P.T. We first establish the conditions for trans-

duction rule equivalence.

66

Definition 3.6.1 (Conditions for Equivalence of Transducer Rule Clauses). We say that

clauses cip = (qip , aip , βip , φip) and cjp = (qjp , ajp , βjp , φjp) are equivalent, written cip ≡

cjp , iff (1) aip = ajp; (2) βip = βjp; and (3) φip ≡ φjp .

Recall from Def. 2.2.2 that the third condition mandates query equivalence between φip

and φjp .

Definition 3.6.2 (Conditions for Equivalence of Transducer Rules). Two transduction rules

ri = (qi, ai, βi)→ ci1 , . . . , cik and rj = (qj , aj , βj)→ cj1 , . . . , cjk within the transduction

rule set δ′ of a S.P.T. Π′ are said to be equivalent, denoted by ri ≡ rj , iff the number of

clauses on the RHS of ri and rj is equal, and further, there exists a pairwise equivalence

between the clauses at each position; i.e, for 1 ≤ p ≤ k, cip ≡ cjp .

If ri and rj are not equivalent, we say they are distinguishable.

Note that when the above condition is satisfied, rules ri and rj will produce equivalent

subtrees given the same instance database as input. Further, both subtrees will share the

same access control semantics at every corresponding tree position.

A “Weaker” Notion of Transducer Equivalence

Definition 3.6.3 (Conditions for “Weak” Equivalence of Secure Publishing Transducers).

We say that two S.P.T.s Π′1 and Π′2 are weakly equivalent, denoted Π′1 ≡w Π′2, if there exists

a pairwise equivalence between their respective transduction rule sets.

The above definition equates to an equivalence between the respective RRGs of both

S.P.T.s, up to state relabelling. This notion of equivalence does not necessarily capture

all S.P.T.s generating the same XML tree given the same input database, thereby falling

short of the criteria for “strong” transducer equivalence as defined in [49]. The following

example demonstrates an instance where the “weak” notion of transducer equivalence from

Def. 3.6.3 fails to classify two S.P.T.s as equivalent, even though they do output identical

XML trees given the same input database, for all potential input databases.

Example 3.6.4. Consider a schema S consisting of a single relation R(A,B) with domain

{x, y}, and two S.P.T.s Π′1 and Π′2 defined over S. The respective transduction rule sets are

67

r11 : (q0, a,1111)→
(q1, ε, 1111, φ11(A,B; ∅)),
where

φ11(A,B) = R(A,B) ∧A = ‘x′

r12 : (q1, ε,1111)→
(q2, b, 11111, φ12(A,B; ∅)),
where

φ12(A,B) = Regε(A,B) ∧B = ‘x′

Figure 3.10: Transduction rules for secure publishing transducer Π′1.

r21 : (q0, a,1111)→
(q1, ε, 1111, φ21(A,B; ∅)),
where

φ21(A,B) = R(A,B) ∧B = ‘x′

r22 : (q1, ε,1111)→
(q2, b, 11111, φ22(A,B; ∅)),
where

φ22(A,B) = Regε(A,B) ∧A = ‘x′

Figure 3.11: Transduction rules for secure publishing transducer Π′2.

listed in Fig. 3.10 and Fig. 3.11. These transducers are “strongly” equivalent, as they will

produce the same XML tree given the same instance of R as input. More precisely, each

will produce an XML tree featuring an a-labelled node as root with a single b child if the

tuple (x, x) ∈ R, and a tree consisting of a single a node otherwise. However, Π′1 6≡w Π′2,

since their respective RRGs are clearly not equivalent (e.g., the root rules r11 and r21 are

distinguishable since the contained queries φ11 and φ21 lack equivalence).

The minimization procedure is listed as Alg. 3.6.1. In the first step (line 1) the RRG for

the input S.P.T. Π′ is converted into a DFA representation where each transduction rule is

represented as a distinct state, and edges connect those states whose corresponding trans-

duction rules are connected by the RRG. The pseudocode for the GenerateDFAFromRRG

68

subprocedure is listed as Alg. 3.6.2. Note that since Π′ is non-recursive, its RRG – as well as

the resulting DFA – will be acyclic. The constructed DFA DFAΠ′ is then used as an input

to a modified version of Hopcroft’s algorithm. In Step (4) of the GenerateDFAFromRRG

subprocedure, another subprocedure called QueryReduction is invoked in order to min-

imize the size of the relational queries appearing in transduction rules, and to eliminate any

redundant queries. The steps involved in QueryReduction are listed as Alg. 3.6.3.

Input: S.P.T. Π′

Output: a minimized S.P.T. Π′min that is equivalent to Π′

1 DFAΠ′ = (QD,ΣD, δD, s0, FD)← GenerateDFAFromRRG(RRGΠ′);
2 splitList← {FD, QD − FD};
3 currentPartition← {FD, QD − FD};
4 while |splitList| > 0 do
5 splitter ← selectElementFromList(splitList);
6 splitList← splitList− splitter;
7 foreach a ∈ ΣD do
8 previousStatesSet← δ−1

D (splitter, a);
9 refinableSubsets← {s|s ∈ currentPartition

10 ∧s ∩ previousStatesSet 6= ∅ ∧ s 6⊆ previousStatesSet};
11 foreach rs ∈ refinableSubsets do
12 rs1 ← rs ∩ previousStatesSet;
13 rs2 ← rs− rs1;
14 currentPartition← currentPartition− rs;

currentPartition← currentPartition ∪ rs1 ∪ rs2;
15 if rs ∈ splitList then
16 splitList← splitList− rs;
17 splitList← splitList ∪ rs1 ∪ rs2;
18 else
19 if |rs1| ≤ |rs2| then
20 splitList← splitList ∪ rs1;
21 else
22 splitList← splitList ∪ rs2;
23 end
24 end
25 end
26 end
27 end
28 MergeStates(DFAΠ′);
29 return Π′min ← GenerateRRGFromDFA(DFAΠ′);

Algorithm 3.6.1: S.P.T. minimization procedure.

Hopcroft’s algorithm is then applied to the resulting DFA (lines 2-27). The core strategy

of this algorithm involves repeated refinement of a partition of states based on a “splitter”

69

Input: rule reachability graph RRGΠ′ for a S.P.T. Π′

Output: a complete and initially connected deterministic finite automaton
DFAΠ′ = (QD,ΣD, δD, s0, FD)

1. Construct a state s0 in DFAΠ′ corresponding to the starting transduction rule
(q0, r, βr) in RRGΠ′ . Add a final state st to FD for each terminating
transduction rule rt. Add s0 and each final state st to QD.

2. For each remaining transduction rule ri (i = 1, . . . , |δ′|) appearing in RRGΠ′ ,
construct a corresponding state si and add it to QD.

3. For each edge e = (ri, rj) in RRGΠ′ , add an edge ed = (si, sj) to DFAΠ′ .
Assign label 〈oj , aj , βj , φj〉 to ed, where oj indicates the ordinal position of e
relative to other edges originating from ri and aj ∈ Σ, βj , and φj are the tag
symbol, access bitstring, and relational query, respectively, appearing within
the clause on the RHS of ri referring to rj . Assign to ΣD the set of all such
labels. Add corresponding entries (si, 〈oj , aj , βj , φj〉)→ sj to δD.

4. Perform algorithm QueryReduction on the set Φ of queries appearing in
ΣD. For each query φ that has been replaced by an equivalence symbol φmin,
substitute each reference to φ in ΣD with φmin.

5. If necessary, remove any states which are not reachable from s0. Ensure that the
transduction function δD is total by adding a cyclic edge (si, si) labelled
〈oj , aj , βj , φj〉 for each entry (si, aj) missing from δD, where oj is assigned the
next consecutive ordinal value.

6. Return the resulting DFA DFAΠ′ .

Algorithm 3.6.2: Algorithm GenerateDFAFromRRG for converting a rule reachability
graph RRGΠ′ into a deterministic finite automaton DFAΠ′ .

criteria consisting of a state and an alphabet symbol. Once all such “splitters” have been

considered, all member states in any partition set of size greater than one are replaced by

a single state in the minimized DFA; in such a case, the partition set holding the start state

becomes the start state in the reduced DFA, while those sets holding final states are each

replaced by a single final state (line 28). The minimized DFAΠ′ is then converted back

into an RRG representation of the minimized S.P.T. (line 29).

Lemma 3.6.5. Alg. 3.6.1 always produces an equivalent S.P.T. of minimal size.

Proof. (Sketch.) It suffices to show that the algorithm is both sound (i.e., it merges two

transduction rules only if they are in fact equivalent according to the criteria of Def. 3.6.2)

and complete (i.e. all pairs of rules meeting such criteria are in fact merged by the algo-

rithm). To demonstrate soundness, we observe that if two rules ri and rj are equivalent, ac-

70

Input: initial set of relational queries Φ
Output: a reduced set of relational queries Φmin

1. Expand each query φ ∈ Φ to replace any clauses referring to local node registers
with equivalent clauses expressed over the base relation(s). Let φexpand denote
the expanded form of φ.

2. Perform query minimization on each φexpand, using the algorithm appropriate
for the query class containing φexpand.

3. Contract each φexpand by replacing any clauses containing references to base
relation(s) with equivalent clauses expressed over local node registers. Let φmin
denote the contracted version of φ. Add each unique φmin to Φmin.

4. Return Φmin.

Algorithm 3.6.3: Algorithm QueryReduction for combining equivalent relational
queries.

cording to Def. 3.6.2, there must be a pairwise equivalence between their respective clauses

at each position 1, . . . , k. Then Step (3) of Alg. 3.6.2 will assign identical edge labels to

each such pair of outgoing edges leading from si and sj in the constructed DFA, and the

ordered set of states incident to these edges will also be identical. At this stage, we rely

on the established soundness of the Hopcroft algorithm [64] to ensure that states si and sj

cannot be distinguished by any choice of splitter, and hence will be merged into a single

state.

To demonstrate completeness, we assume that the algorithm has “incorrectly” merged

two rules ri and rj . If ri and rj are in fact distinguishable, then again by Def. 3.6.2 there

must be at least one position p for which cip is not equivalent to cjp : they differ in at least

one of the tag, access bitstring, or relational query values. But according to Step (3) of

Alg. 3.6.2, any of these three cases would result in the p-th outgoing edges leading from

si and sj receiving distinct labels, say lip and ljp . Relying on the established completeness

result for the Hopcroft algorithm, this would result in the states incident to these edges

being marked as distinguishable when either lip or ljp is chosen as part of the splitter, and

hence they would not be merged either in the minimized DFA nor in the resulting minimized

RRG.

Example 3.6.6. We provide an example of S.P.T. minimization, using the S.P.T. Π′b whose

71

transduction rules are given in Fig. 3.12. Fig. 3.13 shows the DFA that is initially con-

structed by Steps (1) to (3) of GenerateDFAFromRRG. To improve readability of edge

labels, a single letter is assigned to each distinct label.

Queries φb4, φb5, and φb6 all contain a redundant clause mandating that the value of

the name attribute must not equal Carol. The cause of the redundancy is that this clause

was specified in the ancestor query φb1 defining the contents of Regpatient. We show below

the expansion, minimization, and contraction steps for φb4 as performed by Alg. 3.6.3; the

steps are similar for queries φb5 and φb6.

φb4(s) = ∃n, aRegpatient(s, n, a) ∧ n 6= ‘Carol′

⇒ ∃n, a(Patient(s, n, a) ∧ n 6= ‘Carol′) ∧ n 6= ‘Carol′ (Expansion)

⇒ ∃n, a(Patient(s, n, a) ∧ n 6= ‘Carol′ (Minimization)

⇒ ∃n, aRegpatient(s, n, a) (Contraction)

A similar redundancy is found for queries φb7, φb8, and φb9, with the clause n =

‘‘Carol’’ already present within the defining query for the Regpatient local node regis-

ter. Furthermore, the minimized form of φb4 is equivalent to the minimization of φb7, and

similarly φb5 ≡ φb8 and φb6 ≡ φb9. Lastly, φb3 ≡ φb1. The updated DFA featuring the

reduced label set is depicted in Fig. 3.14. Note that while Φmin has four fewer queries than

the original Φ, the label set has in fact only been reduced in size by one, as the tag name

and access bitstring values continue to distinguish each of the remaining labels.

Hopcroft’s algorithm is then carried out on this label-reduced DFA. Assuming that the

pair 〈QD − FD, “a′′〉 is chosen as the first splitter, {s1, s11} is removed from the original

set consisting of all non-final states and added as a separate set in the partition. This is so

because the inverse transition function for both of these states leads back to s0, while for the

remaining states, there is no defined transduction rule for “a”, so each state maps to itself.

This procedure is repeated for the remaining symbols in ΣD, until the final partition of states

consists of {{s0}, {s1, s11}, {s2}, {s3}, {s4}, {s5}, {s6}, {s7}, {s8}, {s9}, {s10}}. As a

result, the only state minimization that results is that s1 and s11 will be merged into a

single state. Finally, the minimized DFA is converted back into an RRG, leading to the

RRG depicted in Fig. 3.15. One can easily verify that this RRG is isomorphic to the one in

72

r0 : (q0, visits,111110001000)→
(q1, patient, 111110000000, φb1(s, n, a; ∅)),
(q1, patient, 111110001000, φb2(s, n, a; ∅)),
(q2, patient, 111110000000, φb3(s, n, a; ∅)),
where
φb1(s, n, a) = Patient(s, n, a) ∧ n 6= ‘Carol′

φb2(s, n, a) = Patient(s, n, a) ∧ n = ‘Carol′

φb3(s, n, a) = Patient(s, n, a) ∧ n 6= ‘Carol′

r1 : (q1, patient,111110000000)→
(q1,@ssn, 111110000000, φb4(s; ∅)),
(q1, name, 111110000000, φb5(n; ∅)),
(q1, age, 111110000000, φb6(a; ∅)),
where
φb4(s) = ∃n, aRegpatient(s, n, a) ∧ n 6= ‘Carol′

φb5(n) = ∃s, aRegpatient(s, n, a) ∧ n 6= ‘Carol′

φb6(a) = ∃s, nRegpatient(s, n, a) ∧ n 6= ‘Carol′

r2 : (q1, patient,111110001000)→ (q1,@ssn, 111110001000, φb7(s; ∅)),
(q1, name, 111110001000, φb8(n; ∅)),
(q1, age, 111110001000, φb9(a; ∅))
where
φb7(s) = ∃n, aRegpatient(s, n, a) ∧ n = ‘Carol′

φb8(n) = ∃s, aRegpatient(s, n, a) ∧ n = ‘Carol′

φb9(a) = ∃s, nRegpatient(s, n, a) ∧ n = ‘Carol′

r3 : (q1,@ssn,111110000000)→ (q1, text, 111110000000, φb10(s; ∅)),
where φb10(s) = Reg@ssn(s)

r4 : (q1,@ssn,111110001000)→ (q1, text, 111110001000, φb10(s; ∅))
r5 : (q1, name,111110000000)→ (q1, text, 111110000000, φb11(n; ∅)),

where φb11(n) = Regname(n)

r6 : (q1, name,111110001000)→ (q1, text, 111110001000, φb11(n; ∅))
r7 : (q1, age,111110000000)→ (q1, text, 111110000000, φb12(a; ∅)),

where φb12(a) = Regage(a)

r8 : (q1, age,111110001000)→ (q1, text, 111110001000, φb12(a; ∅))
r9 : (q1, text,111110000000)→ . /* empty string */
r10 : (q1, text,111110001000)→ . /* empty string */

r11 : (q2, patient,111110000000)→
(q1,@ssn, 111110000000, φb4(s; ∅)),
(q1, name, 111110000000, φb5(n; ∅)),
(q1, age, 111110000000, φb6(a; ∅))

Figure 3.12: Transduction rules for the example secure publishing transducer Π′b.

73

S0

S1

S5

S3

S7

S9

S11

S2
S6

S4

S8

S10

“a”

“c”

“b”

“d”
“e”

“f”

“d”
“e”

“f”

“j”
“k”
“l”

“g”

“h”

“i”

“m”

“n”

“o”

Legend:
“a” : <1, patient, 111110000000, φb1>
“b” : <2, patient, 111110001000, φb2>
“c” : <3, patient, 111110000000, φb3>
“d” : <1, @ssn, 111110000000, φb4>
“e” : <2, name, 111110000000, φb5>
“f” : <3, age, 111110000000, φb6>
“g” : <1, @ssn, 111110001000, φb4>
“h” : <2, name, 111110001000, φb5>
“i” : <3, age, 111110001000, φb6>
“j” : <1, text, 111110000000, φb10>
“k” : <1, text, 111110000000, φb11>
“l” : <1, text, 111110000000, φb12>
“m” : <1, text, 111110001000, φb10>
“n” : <1, text, 111110001000, φb11>
“o” : <1, text, 111110001000, φb12>

Figure 3.13: DFA DFAΠ′
b

formed from S.P.T. of Fig. 3.12.

Fig. 3.8 up to state relabelling, indicating that in fact the S.P.T.s Π′ and Π′b are (weakly)

equivalent.

3.6.1 Complexity of S.P.T. Minimization

We now examine the computational complexity of the minimization problem for various

classes of secure publishing transducers. Table 3.3 provides a summary of the results. In

interpreting these results, note that a given S.P.T. inherits the query class of the expanded

form of its most sophisticated query. By |Φ| we denote the number of distinct relational

queries appearing within the transduction rule set, while by |φmax| we indicate the num-

ber of clauses (subgoals) appearing in the largest query in Φ. As mentioned previously,

this problem is closely related to static verification of S.P.T.s and in particular, proves un-

74

S0

S1

S5

S3

S7

S9

S11

S2
S6

S4

S8

S10

“a”

“a”

“b”

“c”
“d”

“e”

“c”
“d”

“e”

“i”
“j”
“k”

“f”

“g”

“h”

“l”

“m”

“n”

Legend:
“a” : <1, patient, 111110000000, φb1>
“b” : <2, patient, 111110001000, φb2>
“c” : <1, @ssn, 111110000000, φb4>
“d” : <2, name, 111110000000, φb5>
“e” : <3, age, 111110000000, φb6>
“f” : <1, @ssn, 111110001000, φb4>
“g” : <2, name, 111110001000, φb5>
“h” : <3, age, 111110001000, φb6>
“i” : <1, text, 111110000000, φb10>
“j” : <1, text, 111110000000, φb11>
“k” : <1, text, 111110000000, φb12>
“l” : <1, text, 111110001000, φb10>
“m” : <1, text, 111110001000, φb11>
“n” : <1, text, 111110001000, φb12>

Figure 3.14: DFA DFAΠ′
b

after completion of QueryReduction subprocedure.

decidable for all classes of recursive S.P.T.s. When non-recursive S.P.T.s are considered,

the situation becomes somewhat better: for the full class of conjunctive queries including

inequalities, the cost of determining query equivalence dominates the overall complexity,

leading to ΠP
2 -completeness [116]; when inequalities are excluded, query equivalence once

again constitutes the largest cost leading to NP-completeness [28]. Note that for both cases,

the complexity is one level lower in the polynomial hierarchy than the corresponding static

verification decision problem, due to our substitution of a weaker notion of equivalence.

For various subclasses of conjunctive queries, S.P.T. minimization can be performed in

polynomial time.

For acyclic conjunctive queries (AQ) (cf. Sec. 2.2.3) (i.e., those for which a hypergraph

representation – in which nodes are query variables and hyperedges correspond to subgoals

– is acyclic), the running time can be dominated either by performing Hopcroft’s algorithm

75

r0

r1 r2

r3 r5 r7 r4 r6 r8

r9 r10

φb1 φb2

φb4 φb5
φb6

φb10
φb11 φb12

φb4 φb5
φb6

φb10
φb11 φb12

Figure 3.15: RRG for minimized S.P.T. Π′b derived from minimized DFA DFAΠ′ .

Fragment S.P.T. Minimization

SPT(L,S,A) undecidable

SPTnr(FO,S,A) undecidable

SPTnr(CQ,S,A) ΠP
2 -complete

SPTnr(CQE,S,A) NP-complete

SPTnr(AQ,S,A) O(|Φ| · |δ′|3 log2 |δ′|+ |Φ| · |φmax|3 log2 |φmax|)
SPTnr(NSJ,S,A) O(|Φ| · |δ′|3 log2 |δ′|)

Table 3.3: Complexity of minimization procedure for various classes of secure publishing
transducers.

(represented by the first term), or by carrying out query minimization according to the

algorithm in [29] (the second term), depending on the relative sizes of queries and the

number of rules in the transduction rule set of the instance under consideration. The first

term is obtained by first recalling the established O(|ΣD| · n log n) time complexity result

for Hopcroft’s algorithm – where ΣD denotes the size of the automaton’s alphabet, and n

is the number of automaton states – followed by the observation that by the construction

of our minimization algorithm, ΣD ⊆ Φ × ΣT × 2|F |. A tighter bound on the latter result

is possible by observing that even if each of the |δ′| transduction rules features a distinct

alphabet symbol and a distinct bitstring value at its head, then |ΣD| ≤ |Φ| · |δ′|2. This

leads to a O(|Φ| · |δ′|2 · |δ′| log2 |δ′|) time complexity, which simplifies to the first term.

Under the assumption that the set of minimized queries Φmin is maintained as a hash table

allowing average cost O(1) insertions and lookups, the second term is a straightforward

result of the requirement to perform |Φ| iterations of the QueryReduction procedure,

76

with each iteration being dominated by theO(|φmax| log2 |φmax|) cost of performing query

minimization using the algorithm in [29] during the second step of the procedure.

In the case of conjunctive queries with no self-joins (NSJ) (cf. Sec. 2.2.3), the situation

is better still. Since by definition no two subgoals within the query operate over the same

relation, the query cannot be made smaller. Hence, the running time is always dominated

by the cost of applying Hopcroft’s algorithm to merge equivalent states in the induced DFA.

3.7 Experimental Results

In this section, we present the results of an experiment in which the access control policy

translation algorithm (Alg. 3.3.1) is implemented, and the time requirements for policy

translation are measured as the sizes of the federated ID set, number of relational access

control policy rules, and total number of clauses appearing in publishing transducer rules

are varied.

The experiment was carried out in three phases, using synthetic inputs. In each phase,

one parameter – the size of the set of federated IDs; the number of relational access control

policy rules; or the total number of clauses appearing on the right-hand side of transduction

rules – was varied from a minimum value of 10 up to a maximum value of 10000, while

the remaining two parameters were fixed at the maximum value of 10000. The results of

this experiment are summarized in Fig. 3.16. The displayed results represent an average

of 5 trials conducted for each combination of the three inputs. In each case, the results are

consistent with the expected linear behaviour (cf. Sec. 3.3) as the value of the parameter

being varied is increased.

3.8 Related Work

As discussed in Sec. 2.4.4, several access control models and access control expression

languages have been proposed for XML. While this chapter focused on expressing trans-

lated policies in XACML, it would be possible to define algorithms for transforming the

transduction rule set of a S.P.T. into an alternate expression language, or into policy rules

conforming to the syntax of an XML-specific access control language.

77

Research into access control specification and enforcement in data federations extends

back into the late 1980s. Such work focused on practical protocols and implementations al-

lowing for varying degrees of authorization autonomy. Sheth and Larson [112] distinguish

between tightly- and loosely-coupled federations. The former are characterized by greater

transparency, as federated users are able to directly query the schema of a data source.

Such systems are more flexible in the sense that data sources can join and leave the feder-

ation with little impact on the remaining participants, at the expense of making querying

more complicated: a federated user must first determine which source(s) contain relevant

data, and then formulate a separate query over the exported schema for each such source.

Tightly-coupled systems perform a conversion from local schemas to a single federated

schema, allowing federated users to retrieve data with a single query. The need to define

a schema translation for each data source makes extending the federation to accommodate

new sources a complex process.

Jonscher and Dittrich [70] consider various approaches for implementing access control

within tightly-coupled federations, and weigh the impacts on data source autonomy associ-

ated with each presented approach. In contrast to our approach, they focus on specification

of access control policies at the federated level, and consider how to enforce such policies

using access control enforcement mechanisms at the data sources. Idris et al [66] consider

the problem of data overclassification in loosely-coupled federated systems, which results

in federated users being denied legitimate access to data due to an ACP integration policy

that classifies data based on the most restrictive policy defined locally by a data source.

They suggest a scheme based on secret sharing that allows local administators to grant ac-

cess dynamically for specific time periods. De Capitani di Vimercati and Samarati [44]

propose an access control model for tightly-coupled federations allowing each local admin-

istrator to decide what data objects to export, and to define which federated users can access

each object, while allowing the federation administrator to decide what data offered by data

sources are accepted into the federation. They also investigate different enforcement mech-

anisms, such as performing access checks locally at the data sources versus globally at the

federated level, and weigh the implications of each on data source autonomy. These works

all predate the adoption of XML as a data exchange standard, and consider a narrower def-

78

inition of data federations. Additionally, they do not engage in a formal analysis of access

control policy translation and enforcement within federations.

In recent years, there has been growing attention paid to composing unified access con-

trol policies from several input policies [18, 23, 94]. The emphasis of these works is on

defining algebraic models for policy composition, rather than on examining the intrinsic

difficulty of translating access control policies in a federated setting.

3.9 Conclusions

In this chapter, we studied issues related to integrating existing access control policies de-

fined over source databases within larger data federations. We first investigated issues re-

lated to mapping the local IDs originating at each data source into a set of federated IDs,

pointing out that a careless mapping strategy can easily lead to violations of the principle

of least privilege.

Furthermore, we provided an algorithm that allows the translation of relational access

control policies to be carried out automatically, and also examined the difficulty of verifying

that an existing translation obeys the original access control policy, and of determining

the smallest representation of a translated policy that maintains the original access control

semantics.

While properly defined and implemented access controls provide an effective way of

restricting direct accesses to data, additional methods are required to guard against indirect

accesses caused by data leakage. This forms the topic of the next three chapters.

79

 100

 1000

 10 100 1000 10000

A
C

P
 T

ra
ns

la
tio

n
T

im
e

(m
s)

Federated IDs

(a)

 100

 1000

 10 100 1000 10000

A
C

P
 T

ra
ns

la
tio

n
T

im
e

(m
s)

Relational AC Policy Rules

(b)

 100

 1000

 10 100 1000 10000

A
C

P
 T

ra
ns

la
tio

n
T

im
e

(m
s)

Transduction Rule Clauses

(c)

Figure 3.16: Results of varying (a) the number of federated IDs; (b) the number of relational
access control policy rules; and (c) the number of clauses appearing in transduction rules
on the time required to complete policy translation.

80

Chapter 4

Detecting and Removing
Schema-Based Disclosure Risks in
Federated Data

This chapter initiates our study into the identification and prevention of unintentional in-

formation disclosures resulting from answering queries against a federated database, repre-

sented as an XML database (tree). We begin with a discussion of the application setting and

attack model, considering the various types of potential threats and when they can be most

effectively detected and removed. This leads to a classification of disclosure risks against

XML trees into schema-based and instance-based categories. Next, we focus on related

approaches, and indicate which types of disclosure risks each was designed to address. The

chapter ends by presenting our strategy for detecting and removing schema-based disclo-

sure risks, deferring a similar treatment of instance-based disclosure risks until the next

chapter.

4.1 Introduction

We assume an interactive setting in which users issue queries against a database (tree) T ,

conforming to a DTD D. An access control policy (ACP) defines permissions over T for

a set of federated IDs F ; each user may be assigned to one or more IDs in F , and inherits

the union of permissions associated with each such ID. An XML query q issued by user u

is allowable if its formulation contains only nodes from T which are accessible to at least

one ID held by u, and, similarly, its answer must consist of nodes that are accessible to at

81

least one ID held by u.

An unintentional disclosure occurs when an adversarial user is able to exploit the an-

swers of allowable queries to guess with “sufficiently high” accuracy the content of one or

more inaccessible nodes. Such a disclosure can be total, in which case the adversary be-

comes completely certain as to the values of one or more hidden nodes, or partial, in which

case the adversary’s uncertainty about the unknown content drops below a threshold ε.

Example 4.1.1. The database in Fig. 2.1 contains information about patients discharged

from a hospital. Assume that the access control policy of Ex. 2.4.12 is applied, granting

various insurance companies access to anonymized records (withholding patient names),

for purposes of actuarial computation. Further, suppose that Alice applies for a job with

ACME Insurance but does not wish the company to learn of her medical history. User

Mallory, ACME’s interviewer, knows Alice’s age and finds a post on her blog referring to

her recent hospitalization. Observe that Mallory can now infer Alice’s condition with, 50%

accuracy, by issuing the query:

/hospital/patient[age="31"]/diagnosis

The information disclosure is characterized as follows. From the original anonymized

database, Mallory had full knowledge of the content of every node except for o4, o17

and o28. That is, Mallory’s initial beliefs with respect to the three unknown nodes were:

P (o4 → Alice) = P (o17 → Alice) = P (o28 → Alice) = p, where p is some marginal

probability that Alice had been treated at that hospital. Once Mallory becomes aware of

Alice’s age and her recent hospitalization, she can refine her model as follows: P (o4 →

Alice) = P (o28 → Alice) = 1/2 and P (o17 → Alice) = 0, characterizing the partial

disclosure; if Mallory had further knowledge that Alice was treated by Dr. House, a total

disclosure of node o4 would have occurred.

Our solution. We assume the query execution model depicted in Fig. 4.1. Each query

submitted to the DBMS is validated twice before the user sees any results. First, the query

is intercepted by the access control verification module, which consults the access control

policy defined for D to determine if the query issuer has access permissions for every node

82

Access Control
Verification

Inference
Detection

Data
Query

Execution

Acceptable
Risk?

yes

no

STOP

answer

authorized
query

query

answer

Figure 4.1: The query execution process.

specified in the formulation of the query, and in the answer to the query. If not, then the

query is rejected. Otherwise, the query is executed to obtain a set of query results. Then, the

results of the query are sent to the inference detection module which determines the query’s

unintentional disclosure risk. If such risk is higher than a specified threshold, the answer is

withheld from the user.

Evaluating disclosure risks. We introduce a new measure for precisely evaluating the

magnitude of disclosure risks, based on comparing the average amount of effort required

by an adversary to guess the content of an inaccessible node after witnessing the nodes in

his view of the database, versus the a priori effort of doing so without any knowledge of

the database contents. This addresses an attack model in which the adversary refines their

probabilistic model of the database in response to query answers. This measure is able to

efficiently discover both partial and total disclosures.

4.2 Attack Model

We assume that the adversary models an XML database as a probabilistic tree, and fur-

ther, has prior knowledge of the active domains of each location path in the XML database

(including those location paths which are non-accessible to her). However, she has no incli-

nation as to the probability with which each such value occurs1. By obtaining answers to al-
1Although, as will be shown in Sec. 5.2, calculations in our model can be extended to handle instances in

which the adversary does possess a prior belief as to value probabilities.

83

lowable queries, the adversary successively refines their probabilistic model of the database

by eliminating all database states which were previously possible, but do not agree with one

or more query answers. In addition, the adversary has access to a DTD allowing her to issue

valid queries over the database. We assume this DTD contains the rules relevant to location

paths which are fully- and partially-accessible to the adversary, while rules pertaining to

non-accessible location paths have been “pruned” from the DTD before it is supplied to

the adversary (this pruning operation is performed during the design-time detection phase

described later in Sec. 4.7). Without loss of generality, we assume the adversary is “work-

ing alone”, that is, no collusion is taking place with additional users. However, we note

that our model can be extended to such situations by considering the union of permissions

assigned to each participating federated ID in the suspected collusion, rather than limiting

the analysis to the IDs assigned to an individual adversary.

4.3 Design-time vs. Run-time Detection

Broadly speaking, detection of disclosure risks can take place either at design-time (i.e., when

only the DTD is known) or at run-time (i.e., detection is carried out on a per-query basis

upon the current database contents). Design-time detection offers multiple advantages:

firstly, it is less detrimental to database performance in the sense that more of the com-

putational effort can be done “offline”, instead of requiring this work to be done during

query processing; secondly, it facilitates detection of disclosure threats at the schema level,

allowing these results to be applied to any database that conforms to a specific DTD. In

applications involving collections of structurally similar XML databases, this feature is es-

pecially beneficial.

Unfortunately, it is not always possible to obtain a precise characterization of all disclo-

sure risks posed to an individual database at design-time; instead, the results of design-time

analysis often must be complemented by a run-time analysis. Ex. 4.1.1 provides an illus-

tration of this fact, as the precise degree of the presented disclosure risk is dependent on the

current database contents: if the database in this example contained only one patient record

with an age value of 31, then it is clear that a total disclosure would have taken place;

conversely, if all three patient records in the database possessed this age value, then no dis-

84

Schema-based Instance-based
Disclosure Risks Disclosure Risks

Design-time Analysis
Fan et al [50] N/A

Farkas et al [52]
Yang & Li [119]

Query-time Analysis N/A Hashimoto et al [62]

Table 4.1: Classification of existing approaches to disclosure control for XML data.

closure would have taken place since Mallory would not have been able to exclude any of

the patient records from belonging to Alice based on the query answer. Clearly, in most

circumstances it proves difficult to accurately anticipate the future contents of a database at

design-time.

We distinguish between two types of disclosures in XML databases. The first type,

schema-based disclosures, represent a threat to all databases which conform to a specific

DTD. Such risks can be efficiently detected and removed at design-time. Members of the

second type are referred to as instance-based disclosures, and may only exist when an in-

dividual database occupies particular states. While the potential for such risks to exist is

detectable at design-time, a precise characterization of the degree of risk depends on the cur-

rent database contents and therefore can only be determined at run-time. More specifically,

we note that an instance-based disclosure can only be present when a federated ID f has par-

tial or no access to a sensitive node s (i.e., path(s) ∈ 	read(f,AC,D) ∪ �read(f,AC,D)).

Any nodes belonging to one of f ’s fully-accessible node classes are, by definition, already

known to all holders of f . Such conditions can be detected via a static analysis of the DTD

and the ACP, without requiring knowledge of the actual contents of the database (yet a

precise determination of the risk magnitude does depend on the current database state, and

therefore must be deferred until query-time).

4.4 Related Work

Having elaborated upon the nature of the problem, we are now in a position to compare and

contrast related approaches.

85

4.4.1 Disclosure Control and Access Control Models for XML Data

To date, little attention has been paid to addressing the information disclosure risks for XML

databases. The work most relevant to ours is that of Hashimoto et al [62], which presents

a query-time framework for preventing disclosures in XML databases based closely on the

concept of k-anonymity [105]. In their model, an adversary issues a set of allowable queries,

and uses the results of each such query to refine their belief about the result of a secret query,

which contains one or more inaccessible nodes. Their approach models each query/query

result pair as a tree transducer; the contents of this transducer indicate the possible database

states that match the query and query result. By computing the intersection of each of these

transducers, one obtains a transducer that reflects the candidate database states matching the

full set of issued allowable queries. The third step augments this transducer by incorporating

the secret query, such that the resulting transducer encodes all database states that (1) satisfy

each of the allowable queries, and (2) provide an answer to the secret query. By analyzing

this final transducer, a determination is made as to whether there are at least k candidate

database trees (for a defined threshold parameter value k), and declares that a disclosure

risk is present only if there are fewer than k such trees.

The accompanying experimental results indicate that this approach exhibits poor space

scalability, mainly due to the expense of materializing tree transducers for each query. This

cost is greatest in the beginning, when many database states that ultimately prove to be

irrelevant cannot yet be disqualified. This greatly inflates the sizes of the transducers used

to model the issued allowable queries.

Other approaches [119, 52] restrict their analysis to inferences caused by an adversary’s

prior knowledge of constraints between XML element types. Yang and Li [119] considered

the case of preventing the accidental release of sensitive information in a published XML

document. In their model, the adversary is able to perform data inferences based on prior

knowledge of semantic constraints between elements in the document. They consider three

types of such constraints: parent-child (in which the constraint specifies that each node of a

specified type amust have a child node of type b); ancestor-descendant, which indicates that

each node of a specified type a must have a child node of type b at some position within its

86

subtree; and functional dependencies, which specify that each node of a specified type a that

additionally possesses a child path p1 within its subtree must also possess an additional child

path p2. Their key contribution is an algorithm utilizing a chase procedure for determining

the largest document subset which is free of disclosure risks formed from the above three

types of semantic constraints. Their approach requires the database designer to specify

the semantic associations between elements; since such associations are often difficult to

identify at database design time, and often can be formed independently by an attacker

who applies real-world knowledge “outside” the database, the utility of their approach is

limited. Furthermore, their approach cannot identify instances of disclosure which are not

caused by semantic association, such as Ex. 4.1.1. Farkas et al [52] presented a solution

for preventing inferences in semi-structured databases. They consider a broader class of

semantic constraints, expressible as Horn clauses, and use a chase procedure to remove

undesired inferences caused by these constraints. Similar to the Yang and Li approach, their

solution requires semantic constraints to be supplied to the inference removal algorithm. For

this reason, the approach suffers from the same shortcomings; in particular, both approaches

are unable to detect partial disclosures, and rely heavily on the security administrator’s

ability to accurately model the adversary’s prior knowledge of inter-element dependencies.

Table 4.1 classifies each of these approaches according to whether they perform analysis

at the design- or query-time phases, and whether a given approach is capable of detecting

schema- and/or instance-based disclosures. As the table shows, none of these prior ap-

proaches is able to detect both types of disclosures, and the only prior approach capable of

detecting instance-based disclosures performs all processing at query-time, greatly hamper-

ing its scalability. Our approach is the first to be able to detect both risk types, and the first

to separate disclosure risk detection into design- and query-time phases.

Several XML-specific access control models have been proposed (e.g., [14, 13, 20,

31, 39, 50, 75, 93, 88]), which allow one to limit direct access to portions of an XML

document. However, these approaches do not address the potential security risks posed

by an adversary exploiting covert channels such as inference to indirectly access restricted

data. Fan et al [50] describe an XML access control model in which an access control policy

defined over a DTD is used to generate a set of user-specific security views, each consisting

87

of a sanitized DTD and a query re-writing function allowing user queries to be efficiently

translated into an equivalent query over the user-accessible portions of the original XML

database. This run-time approach avoids the expense of materializing and maintaining user-

specific views. While their DTD sanitization process does remove any DTD rules pertaining

to totally inaccessible node classes, it does not address inference risks caused by partially-

accessible node classes (more specifically, it will not delete a DTD rule describing a node

class c as long as even one instance of c is accessible to the user). Additionally, it does not

guard against collusion attacks.

Wang and Lakshmanan [117] consider secure query evaluation for XML databases in

the “database-as-a-service” scenario, where an untrusted server is used to store data and

service client queries over that data. In their solution, client queries are encrypted before

being sent to the server; the server uses associated metadata along with the contents of

the encrypted database to answer queries, and returns responses to clients, at which point

they are decrypted. The encryption scheme employed, together with the introduction of

spurious records, ensures that the server cannot guess with sufficiently high accuracy the

true contents of the database or queries.

4.4.2 Disclosure Control for Statistical and Relational Databases

Information disclosure risks relating to relational and statistical databases have been well-

studied since the early 1980s. Early works focused on detecting and removing inference

channels from statistical databases maintained by the U.S. Census Bureau. In this setting,

the goal was to prevent a user from discovering statistical data associated with an individual

by issuing aggregation queries returning statistics over a population. Proposed inference

controls for statistical databases can be classified according to whether they restrict queries

and query answers which may leak individual data, or alter query answers before returning

them to the user. Denning and Schlörer [43] provide a survey of these approaches.

A considerable body of work has focused on disclosure prevention in multi-level re-

lational databases [22, 85, 90]. In this scenario, an inference channel consists of a set of

associations between database objects which allows a user to infer the value of classified

data. Such channels are typically formed by an adversary combining their knowledge of

88

integrity constraints of the database (e.g., functional dependencies) with non-sensitive data.

Solutions typically involve increasing the classifications assigned to certain database ob-

jects in order to break the inference channels. A survey of such approaches is provided

in [53].

4.4.3 Disclosure Control for Exchanged Data

In these early approaches, the focus has been on limiting the ability of the adversary to infer

secrets by directly querying the database. Beginning in the late 1990s, growing attention

has been paid to preventing information disclosures in data sets that have been published

outside the database. This shift has largely been driven by the dramatic increase in data

availability from sources such as the World Wide Web, and also by the rising prominence

of applications in which data is exchanged between parties. One branch of this research

is privacy-preserving data mining, which aims to preserve the utility of data mining tech-

niques for extracting patterns from large data sets while preventing the disclosure of sensi-

tive information. Aggarwal and Yu [3] provide a survey of privacy-preserving data mining

techniques.

Another active area of research is secure data publishing [83, 105, 118], where anonymized

database records are released and the goal is to prevent an adversary from being able to

associate records with individuals through the application of additional prior knowledge.

However, it recently has been shown that these approaches, and any others that assume

that the adversary operates based on either a “random worlds” model, an assumption of

an independent and identically-distributed distribution of data values, or probabilistic in-

dependence between tuples, severely underestimate the computational power of a typical

adversary and are open to a range of machine learning-based attacks [71]. A different

branch of anonymization known as differential privacy [45] focuses on interactive settings

in which user information is gathered by issuing queries against a statistical database. It

essentially seeks to guarantee that an adversary is unable to distinguish an instance of the

database containing a target individual’s data from one that does not, with sufficiently high

probability. While this approach has attractive theoretical properties, it tends to require a

large degree of data distortion to enforce its privacy guarantee. To our knowledge, there

89

Table 4.2: Types of schema-based disclosure risks.
(1) Parent-Child

DTD Rule Policy Rule(s)

<!ELEMENT e1 (e2)>
〈fi, anc-or-self(e1), read, allow〉 and
〈fi, anc-or-self(e1)[c]/e2, read, deny〉 or
〈fi, e1/e2[c], read, deny〉

(2) Required Attribute
DTD Rule Policy Rule(s)

<!ATTLIST e1 a1 CDATA #REQUIRED>
〈fi, anc-or-self(e1), read, allow〉 and
〈fi, anc-or-self(e1)[c]/@a1, read, deny〉 or
〈fi, e1/@a1[c], read, deny〉

(3) Unique Attribute
DTD Rule Policy Rule(s)

<!ATTLIST e1 a1 ID>
〈fi, anc-or-self(e1), read, allow〉 and
〈fi, anc-or-self(e1)[c]/@a1, read, deny〉 or
〈fi, e1/@a1[c], read, deny〉

have been no attempts to extend the differential privacy model to tree-based data formats

such as XML.

Miklau and Suciu [89] conducted a theoretical study of the query-view security prob-

lem for relational data exchange scenarios. They proposed a standard for ensuring perfect

security: namely, that a set of views V̄ over a database D does not leak any information

about the results of a secret query Q. This work was subsequently extended to define a re-

laxed security standard, in which arbitrarily small amounts of leakage are permissible [37].

Machanavajjhala and Gehrke [83] provide an alternative characterization of perfect query-

view security in terms of query containment. Furthermore, they use previously established

results on testing containment over various query classes to determine several classes of

queries for which perfect security can be efficiently determined (i.e., using an algorithm

running in polynomial time in the size of the secret query Q and the view definition query

V).

4.5 Schema-Based Disclosure Risks

Certain types of disclosure risks can be detected at database design time, that is, even be-

fore the first node is inserted into the XML database. We refer to these as schema-based

disclosure risks. All such risks share the following three properties: (1) they always cause

90

a total disclosure of the sensitive node s; (2) they are detectable through static analysis of

the schema specification and access control policy, without necessitating knowledge of the

database contents, and hence apply to any database conformant to that schema specification;

and (3) they can be removed during the same static analysis process. As the expressiveness

of various XML schema languages differs, so too does the amount of information they

furnish to the adversary. In the case of DTDs, we identify the following three types of

schema-based disclosure risks that are detectable at design time.

Parent-child disclosure. In this type of disclosure, a user holding federated ID fi is

able to exploit their knowledge of an accessible parent node with label e1 to infer the value

of a hidden child node labeled e2, based on the DTD rule defining the content model for

e1. This scenario is summarized in the top row of Table 4.2. The DTD rule for e1 specifies

that there is a mandatory child node of type e2. One cannot simply delete this parent-child

relationship from the sanitized DTD given to fi if there are other instances of e2 which are

accessible to fi. Yet some solution is evidently needed, as the existing DTD rule allows fi

to associate an e2 child with every occurrence of e1.

Required attribute disclosure. In this situation, the DTD rule containing the defi-

nition of the attribute contains the #REQUIRED modifier, indicating that every node with

label e1 must contain an attribute with label a1. Left unaltered, this DTD rule would al-

low fi to recover hidden instances of the a1 attribute, provided that the parent e1 node is

accessible. This type of risk is described in the second row of Table 4.2.

Attribute uniqueness disclosure. This type of risk takes place when the DTD rule for

a1 attributes contains the ID modifier. Armed with this information, fi knows that each

value in adom(a1) can only appear once in the database, allowing her to eliminate from

consideration those values which she has observed in accessible instances of a1. The third

row of Table 4.2 illustrates this type of risk.

Note that in our model, enumerated attribute definitions (in which the DTD rule for an

attribute specifies a finite list of possible values that attribute may take) and fixed attribute

definitions (in which all occurrences of the attribute type take on the same value) do not pro-

vide the adversary with any additional information under our model’s assumption that the

adversary possesses prior knowledge of the active domains of each attribute in the database.

91

ACP
(A)

DTD
(D)

Design-time
Analyzer

Sanitized
DTDs

Disclosure
Risks
Table(D1,...,Dk) (R)

(a)

Federated
ID
(f)

Disclosure

(R)

Query-time
Analyzer

Query
(Q)

Sanitized
Query
Result

Unmodified
Query
Result

Disclosure
risk

No
disclosure

risk

Risks Table

(b)

Figure 4.2: Schematic for (a) Design-time and (b) Query-time risk analysis.

Hence, neither constitutes a source of disclosure.

Example 4.5.1. We show an example of a parent-child disclosure based on the example

hospital DTD of Fig. 2.3 and ACP of Ex. 2.4.12. The adversary Mallory is an employee

of ACM Insurance and therefore inherits the permissions associated with the AIns fed-

erated ID as specified by the ACP. Rule PR2 results in her only having access to those

/hospital/patient/name instances associated with clients of ACME Insurance, while

rule PR1 grants her access to all instances of /hospital/patient. This partial access

prevents one from simply pruning the DTD rule for name elements, since Mallory requires

it to properly formulate queries over those /hospital/patient/name instances she

does have access to. However, the status quo clearly presents a parent-child disclosure risk,

since Mallory can apply the DTD rule for patient elements to infer that every occurrence

of /hospital/patient must have a child name element, allowing her to infer the ex-

istence of those /hospital/patient/name instances that are not accessible to her.

Note that the first condition stated above is satisfied: the DTD rule essentially specifies

a functional dependency indicating that every appearance of a /hospital/patient

node implies the existence of a child name element, leading to a total disclosure. It will

soon be demonstrated that the remaining two conditions also hold for this example.

92

4.6 Overview

Our approach to disclosure risk analysis is separated into design-time and query-time phases,

as depicted in Fig. 4.2. As shown in Fig. 4.2a, the design-time phase takes as inputs an ac-

cess control policy AC and DTD D. The design-time analyzer processes these inputs and

produces two outputs, a set of sanitized DTDs D1, . . . ,Dk and a disclosure risks table

denoted as R. The former contains a customized DTD for each federated ID in which all

schema-based disclosure risks have been removed, while the latter stores, for each federated

ID, the set of applicable partially- accessible and inaccessible location paths.

Fig. 4.2b summarizes the query-time analysis procedure. For each query q issued by a

user holding federated ID f , the disclosure risk table R is consulted to determine whether

there are any instance-based disclosure risks present within the context of q and f . If a

possible risk is constituted, the query-time analyzer is responsible for altering the result of

q in order to reduce the risk below an acceptable level; otherwise, the unchanged query

result is returned to the user.

4.7 Design-time Detection via Static Analysis

Given an input DTD D and an ACP A, we wish to construct a sanitized DTD Dfi for

each federated ID fi: a modified version of D in which any instances of the three types of

schema-based disclosure risks described in Sec. 4.5 exploitable by f have been removed.

The sanitization process consists of a combination of pruning and DTD rule generalization

operations. The pruning operation deletes nodes from the original DTD corresponding to

location paths which are non-accessible to fi. Each DTD rule generalization alters a rule

appearing in the original DTD to indicate that a required child element or attribute of type

p is instead optional; this is done in cases where p is partially-accessible to fi.

Definition 4.7.1 (Fully-Sanitized DTD). We say that a DTDD has been fully-sanitized with

respect to federated ID fi, denoted as Dfi , iff all schema-based disclosure risks exploitable

by fi have been removed via a combination of pruning and rule generalization operations.

Alg. 4.7.1 lists the procedure for design-time detection and removal of schema-based

93

Input: DTD graph DG; access control policy A defining access over DTD D to
a set of active federated IDs {f1, . . . , fk} ⊆ F

Output: A set of sanitized DTDs {D1, . . . ,Dk}; disclosure risks tableR
1 R ← ∅;
2 foreach active ID fi do
3 DGi ← DG;
4 PRi ← ApplicableRules(A, fi);
5 foreach r ∈ PRi do
6 AnnotateNode(r,DGi);
7 end
8 foreach n ∈ DFS(DGi) do
9 if n.isInaccessibleNode() then

10 DeleteNodeAndDescendents(n,DGi);
11 newRiskEntry ← 〈fi, n, n.getCondition()〉;
12 R.addEntry(newRiskEntry);
13 end
14 else if n.hasCondition() then
15 cond← n.getCondition();
16 SplitNode(n, cond,DGi);
17 end
18 end
19 Di ← GenerateSanitizedDTD(DGi,R);
20 end
21 returnR, {D1, . . . ,Dk};

Algorithm 4.7.1: Design-time analysis procedure.

disclosure risks, together with the identification of potential instance-based disclosure risks.

The procedure takes as inputs a graph representation of the original DTD, DG, as well as

an access control policy A specifying access permissions over DG for a set F of active

federated IDs. Upon conclusion, it produces a set of fully-sanitized DTDs (one for each

active federated ID) and a disclosure risks table R populated with entries describing all

potential instance-based disclosure risks for each federated ID in F .

Each iteration of lines 2-20 produces a sanitized DTD for an individual active ID fi ∈

F . Initially, the DTD graphDGi is a copy of the original DTD graphDG (line 3); the subset

of policy rules relevant to fi are then selected (line 4), and each such rule is then examined

in turn (lines 5-7) and is used to annotate each node of DGi with a label indicating whether

the corresponding location path is fully-, partially-, or non-accessible to fi (line 6). The

annotation is performed by the AnnotateNode subprocedure listed as Alg. 4.7.2. This

subprocedure simply performs annotation of one or more nodes in the DTD graph, based

94

Input: Access control policy rule pr = 〈R, e, a, p〉; DTD graph DG
1 contextNodes← EvaluateQueryOnDTDGraph(e,DG);
2 foreach n ∈ contextNodes do
3 if e.hasPredicate() then
4 n.setScope(PARTIAL);
5 n.setCondition(e.getPredicate());
6 else
7 n.setScope(FULL);
8 n.setCondition(∅);
9 end

10 n.setAction(a);
11 n.setPermission(p);
12 end

Algorithm 4.7.2: AnnotateNode subprocedure.

on the contents of the supplied policy rule pr. The query e belonging to pr is executed on

the DTD graph DGi in order to determine which graph node(s) are covered by e (line 1).

Each such node n is then assigned an annotation based on the values of the action field, a,

and permission field, p, of pr (lines 10-12). For cases where e contains a predicate, this

annotation will also record it as the condition governing the partial access to node n for fi

(lines 4-5); otherwise, the annotation’s scope is set to FULL (lines 7-8).

Once the annotation process has concluded, Alg. 4.7.1 continues execution and the

annotated DGi is traversed in preorder (lines 8-18); if the currently visited node n is not

accessible to fi, then n and its descendant nodes are deleted from DGi, and an entry for n

is added to the disclosure risks tableR (lines 9-13) (our assumption of a monotonic access

control model permits the entire subtree rooted at n to be removed at once, without visiting

each descendant node first). If n is partially-accessible to fi, the governing condition cond

is used to replace n and its subtree with two copies – one of which is annotated to allow

(deny) access when cond is satisfied, and the other to deny (allow) access when cond is not

satisfied (lines 14-17).

In the last step (line 19), the GenerateSanitizedDTD subprocedure is invoked to

produce a sanitized DTD from the annotated DTD graph representation. This subprocedure

is listed as Alg. 4.7.3, and proceeds as follows. Lines 2-22 cause the annotated DGi to be

traversed in preorder; each encountered node n is then tested to see whether it is annotated

with partial (line 3) or full access. In the latter case, no sanitization is required. For nodes

95

Parent-Child
Risk Pattern Solution
e1

e2

<full, read, allow, Ø>

<partial, read, deny, cond>

e1

e2

<full, read, allow, Ø>

<partial, read, deny, cond2>

?

e1

e2

<partial, read, deny, cond1>

<partial, read, deny, cond2>

e1

e2

<partial, read, deny, cond1>

<partial, read, deny, cond2>

?

Required Attribute
Risk Pattern Solution
e1

a1

<full, read, allow, Ø>

<partial, read, deny, cond>

#REQUIRED

e1

a1

<full, read, allow, Ø>

<partial, read, deny, cond>
e1

a1

<partial, read, deny, cond1>

<partial, read, deny, cond2>

#REQUIRED

e1

a1

<partial, read, deny, cond1>

<partial, read, deny, cond2>

Unique Attribute
Risk Pattern Solution
e1

a1

<full, read, allow, Ø>

<partial, read, deny, cond>

ID

e1

a1

<full, read, allow, Ø>

<partial, read, deny, cond>
e1

a1

<partial, read, deny, cond1>

<partial, read, deny, cond2>

ID

e1

a1

<partial, read, deny, cond1>

<partial, read, deny, cond2>

Figure 4.3: Listing of annotated DTD graph patterns that correspond to various types of
schema-based disclosure risks. The left-hand column lists a specific pattern, while the
right-hand column shows the modification made to the DTD graph to remove the presented
risk.

96

Input: Annotated DTD graph DG; federated ID fi; disclosure risks tableR
Output: Set of sanitized DTD rules DTDRules

1 DTDRules← ∅;
2 foreach n ∈ DFS(DG) do
3 if n.getScope() = PARTIAL then
4 p← n.getParentNode();
5 if

p.hasCondition() = false || p.getCondition() 6= n.getCondition()
then

6 if n.isAttributeNode() then
7 if n.hasModifier(ID) then
8 n.deleteModifier(ID);
9 end

10 if n.hasModifier(#REQUIRED) then
11 n.deleteModifier(#REQUIRED);
12 end
13 end
14 else if n.isElementNode() then
15 n.addCardinalityConstraint(?);
16 end
17 end
18 newRiskEntry ← 〈fi, n, n.getCondition()〉;
19 R.addEntry(newRiskEntry);
20 end
21 DTDRules← DTDRules ∪ GenerateDTDRule(n);
22 end
23 return DTDRules;

Algorithm 4.7.3: GenerateSanitizedDTD subprocedure.

annotated with partial access, a reference is obtained to the parent node p of n (line 4). A test

is then conducted to see whether p has no condition regulating its access (or equivalently,

whether it is annotated with full access), in which case the first row corresponding to each

risk type in Fig. 4.3 may be applicable. If this test fails, a second test is carried out to see

whether the conditions regulating access to p and n fail to match, in which case the second

row corresponding to each risk type may apply.

If either of these tests succeeds (line 5), then tests are done to determine whether n is

an attribute node (line 6) or an element node (line 14). In the former case, the potential

exists for either a required attribute risk or a unique attribute risk to be present. In the case

of a unique attribute risk, the edge incident to n will be labelled with an ID modifier, and

will be detected by the test on line 7. As indicated by the right-hand columns in Fig. 4.3,

97

the solution is to delete this modifier, which is done by line 8. Similarly, required attribute

risks can be identified by the presence of a #REQUIRED modifier on the edge incident to

n (tested by line 10), in which case each such modifier will be removed by line 11. Finally,

if n is an element node, a parent-child risk is the only possible consideration. This test

is conducted at line 14, at which point one of the two tests conducted at line 5 must have

succeeded, meaning one of the scenarios presented in the left-hand column of rows one

and two of Fig. 4.3 must hold, and there is indeed a parent-child risk. As indicated by the

corresponding right-hand column cells of Fig. 4.3, in either case the solution is to simply

add a ? cardinality constraint to the edge incident to n. This is done by line 15.

The final consideration is to populate the disclosure risks table with a new entry for

each node that is annotated with partial access. This is carried out by lines 18-19. Finally,

after each node n has been processed and any relevant risks have been removed, a sanitized

DTD rule describing the content model for n is created and added to the collection (line

21). In particular, nodes annotated with full access for fi will produce a rule identical to

the corresponding rule for that node type in the original DTD, while those nodes that have

been linked to a schema-based disclosure risk will produce an altered rule in which the

risk has been removed. Table 4.3 describes the precise format of the sanitized DTD rules

corresponding to each risk type.

After all active federated IDs have been processed by Alg. 4.7.1, the complete set of

sanitized DTDs {D1, . . . ,Dk} is returned, together with the populatedR (line 19).

Complexity analysis. Alg. 4.7.1 has a worst case running time of O(|F | · (|DG|2 + |A| ·

|DG|)), where |F | denotes the number of distinct federated IDs, |A| is the number of rules

in the federated access control policy, and |DG| is the number of nodes in the input DTD

graph. We derive this bound as follows, first examining the time complexities of each sub-

procedure. The AnnotateNode subprocedure is dominated by the time required to de-

termine which graph nodes are relevant to the query expressed within the input policy rule

(line 1). This requires O(|DG|) time as each graph node has to be considered in relation to

the query. All other steps in AnnotateNode requireO(1) time, leading to an overall time

complexity of O|DG|). The GenerateSanitizedDTD subprocedure also features an

98

Type Modified DTD Rule
Parent-Child <!ELEMENT e1 (e2?)>
Required Attribute <!ATTLIST e1 a1 CDATA #IMPLIED>
Unique Attribute <!ATTLIST e1 a1 CDATA #IMPLIED>

Table 4.3: DTD rules altered to remove schema-based disclosure risks.

O(|DG|) running time, since each node within the DTD graph is visited in DFS order, while

the various tests, lookups, and modifications carried out on node properties during each in-

dividual visit each contribute an O(1) time cost. We note that the remaining three subpro-

cedures called by Alg. 4.7.1, ApplicableRules, DeleteNodeAndDescendants,

and SplitNode, have respective time costs of O(|A|) (since each policy rule in A must

be tested to see if federated ID fi appears within its subject list), O(|1|) (under the as-

sumption that the DTD graph implementation considers all descendents of a node n to be

removed from the graph once the reference between n and its parent node has been deleted),

and O(|DG|) (since in the worst case, the node to be split is the DTD graph’s root node,

meaning a deep copy of every other node in the graph must be carried out).

Taking these results into account, the time complexity of Alg. 4.7.1 is obtained as fol-

lows. We note that |F | iterations of the loop formed by lines 2-18 are carried out, and each

such iteration is dominated by the respective costs contributed by the inner two loops (lines

5-7 and lines 8-16). The first loop has a time requirement ofO(|A|·|DG|), while the second

has an O(|DG|2) time cost, based on the need to perform a separate iteration for each node

in the DTD graph and on the dominating O(|DG|) time cost represented by the potential

call to SplitNode within each iteration. As it is possible to have more or fewer policy

rules than nodes in the DTD graph, neither |A| nor |DG| serves as a bound on the other

value, leading to the claimed worst case time complexity.

Lemma 4.7.2. On inputs DG and A, Alg. 4.7.1 produces a set of fully-sanitized DTDs

{D1, . . . ,Dk}.

Proof. This requires one to establish that all schema-based disclosure risks actually present

in the context of the input DTD and access control policy are successfully detected and

removed by the algorithm. We focus on demonstrating that all parent-child disclosure risks

are successfully detected and removed, as similar arguments can be used to verify the same

99

is true for the other two types of schema-based disclosure risks.

Demonstrating successful detection equates to establishing that, when presented with

each of the scenarios listed in the corresponding row of Table 4.2 for parent-child disclosure

risks, the DTD graph will be annotated to satisfy one of the two risk patterns identified in

the left-hand column of Fig. 4.3. Next, we must demonstrate that the result of applying

GenerateSanitizedDTD to either of these risk patterns leads to the corresponding

solution pattern depicted within the right-hand column of Fig. 4.3. Doing so equates to

demonstrating that all detected parent-child risks are in fact removed by Alg. 4.7.1.

We now consider the detection phase of parent-child risks. The characteristic structure

of the DTD rules and access control policy rules constituting such a risk are listed in Ta-

ble 4.2. Based on the existence of the DTD rule specifying that each occurrence of e1 has

a child element of type e2, the constructed DTD graph DG will feature nodes n1 and n2

corresponding to these respective element types, and an edge from n1 to n2 will designate

the parent-child relationship. Now consider the first access control policy rule listed in Ta-

ble 4.2. It indicates that the federated ID fi possesses full read access to e1 or one of its

ancestors. Based on this policy rule, n1 will either be identified as a context node by line

1 of AnnotateNode, or n1 will inherit the annotation of the ancestor node that serves

as the context node. In either case, lines 6-11 of AnnotateNode serve to annotate n1

with full read access for fi. Now we consider the inclusion of the second listed policy rule,

which overrides the first policy rule by specifying that fi only has partial access to e1 (and

its descendents). In this case, AnnotateNode will identify n1 (or one of its ancestors)

as a context node (line 1) and associate node n1 with an annotation indicating partial read

access, along with the accompanying condition cond governing the partial access (lines

3-5 and lines 10-11). This annotation will be propagated to n2. Note that in this case, a

disclosure risk is only present if there is another policy rule mandating conditional access

to n2 based on a different condition than cond (otherwise, the only accessible instances of

n2 will correspond to the only accessible instances of n1, namely those for which cond is

satisfied, leading to no disclosure). Such a case will lead to the second DTD graph risk

pattern depicted in the left-hand column of Fig. 4.3, in which both n1 and n2 are annotated

with partial access, yet with differing conditions.

100

Alternatively, if it is the third policy rule in Table 4.2 that is present, then only the

annotation for n2 is updated to reflect partial access, and the original annotation assigned to

n1 by the first policy rule, designating full access, remains in effect. This situation matches

the first risk pattern depicted in the left-hand column of Fig. 4.3. Hence, all parent-child

risks presented by an arbitrary DTD graph and access control policy will be translated by the

AnnotateNode subprocedure into one of the two risk patterns in Fig. 4.3. Those risks

translated into the first risk pattern will be detected by the GenerateSanitizedDTD

procedure at the time n2 is visited, as the full access for the parent node n1 and the partial

access for n2 will cause the first condition within the test on line 5 to succeed. Similarly,

for those risks conforming to the second risk pattern, the test on line 5 also succeeds since

the conditions governing access to n1 and n2 are different, meaning that all such risks are

in fact detected.

We now consider the removal of detected parent-child risks. As indicated above, the

test on line 5 of GenerateSanitizedDTD succeeds when either risk pattern in Fig. 4.3

is encountered. Since n2 is an element node type, the inner test on line 14 also succeeds,

and the result is that the DTD graph edge incident to n2 is annotated with the ? cardinality

constraint. This translates each risk pattern into the corresponding solution pattern depicted

in the right-hand column of Fig. 4.3, indicating that all parent-child risks are successfully

removed.

Example 4.7.3. We illustrate the design-time analysis procedure using the sanitized DTD

DAIns generated for the adversary from the ongoing examples, Mallory. The initial DTD

graph will be as depicted in Fig. 2.3. There are two rules in the ACP of Ex. 2.4.12 which are

applicable to the ACME Insurance role held by Mallory: rule PR1 (granting default access

to all nodes in the database), and rule PR2 (denying access to the names of patients who

are not clients of ACME Insurance). After both rules are processed in Alg. 4.7.1, the DTD

graph is annotated as depicted in Fig. 4.4a. As rule PR2 prescribes conditional access

to the hospital/patient/name node class, a further alteration is made to replace

(“split”) the corresponding name node in the DTD graph into two cases corresponding to

101

hospital

patient

name age diagnosis doctor discharge_
date

carrier

#PCDATA #PCDATA #PCDATA#PCDATA #PCDATA #PCDATA

*

?

<full,read,allow,Ø>

<partial,
read,
deny,

./carrier
neq

“ACME
Insurance”>

<full,read,allow,Ø>

<full,
read,
allow,

Ø>

<full,
read,
allow,

Ø>

<full,
read,
allow,

Ø>
<full,
read,
allow,

Ø>

<full,
read,
allow,

Ø>

(a)

hospital

patient

name age diagnosis doctor discharge_
date

carrier

#PCDATA #PCDATA #PCDATA#PCDATA #PCDATA #PCDATA

*

?

<full,read,allow,Ø>

<partial,
read,
allow,

./carrier
eq

“ACME
Insurance”>

<full,read,allow,Ø>

<full,
read,
allow,

Ø>

<full,
read,
allow,

Ø>

<full,
read,
allow,

Ø>
<full,
read,
allow,

Ø>

<full,
read,
allow,

Ø>

name

#PCDATA

<partial,
read,
deny,

./carrier
neq

“ACME
Insurance”>

(b)

Figure 4.4: Example DTD graph after (a) annotation and (b) node splitting procedures.

when the condition is and is not satisfied, as shown in Fig. 4.4b.

The sanitized DTD DAIns produced from the annotated DTD graph is listed in Fig. 4.5.

Note that the rule for patient elements has been generalized so that name child elements

are now optional. In addition, an entry 〈RAIns, /hospital/patient/name,

./carrier neq "ACME Insurance"〉 is added toR.

4.7.1 Discussion

In relation to the approaches discussed in Sec. 4.4.1, we note that our definition of parent-

child disclosure incorporates the parent-child constraints of Yang and Li [119], and the two

remaining types of schema-based disclosures are essentially specializations of parent-child

disclosure that pertain to attribute node types. The remaining constraint types of Yang and

Li’s model (ancestor-descendant constraints and functional dependencies), as well as the

constraints expressible in the model of Farkas et al [52], cannot be detected by our design

time algorithm. Our query time algorithm (presented in the following chapter) is capable

102

R1: <!ELEMENT hospital (patient*)>
R2: <!ELEMENT patient (name?,age,diagnosis,doctor,

discharge date?,carrier)>
R3: <!ELEMENT name (#PCDATA)>
R4: <!ELEMENT age (#PCDATA)>
R5: <!ELEMENT diagnosis (#PCDATA)>
R6: <!ELEMENT doctor (#PCDATA)>
R7: <!ELEMENT discharge date (#PCDATA)>
R8: <!ELEMENT carrier (#PCDATA)>

Figure 4.5: Sanitized DTD DAIns for the hospital database.

of detecting these remaining forms of disclosure risk. The important distinction is that

in our solution, parent-child disclosures are detectable at design time, while in the other

approaches, detection and removal of such disclosures must be deferred until the precise

database contents are known.

4.8 Conclusions

This chapter began by distinguishing between schema-based and instance-based disclosure

risks for federated data, and presented a design-time solution for removing the former risk

type. In the next chapter, we shall present a solution for instance-based disclosure risks.

103

Chapter 5

Detecting and Removing
Instance-based Disclosure Risks in
Federated Data

In the previous chapter, we outlined a design-time algorithm for detecting and remov-

ing schema-based disclosure risks. In this chapter, we propose a measure for evaluating

instance-based disclosure risks, together with an algorithm for calculating this measure at

query-time.

5.1 Instance-Based Disclosure Risks

Unfortunately, it is not possible to detect all disclosure risks at database design time. In

particular, the actual threat posed by an identified potential risk can greatly vary as the

database contents change. In other words, such risks may not be present in every database

that conforms to the same DTD, requiring a case-by-case analysis at the time a potentially

risky query is issued. We illustrate this with the following example.

Example 5.1.1. (Total disclosure.) Recall Ex. 4.1.1, where the adversary Mallory was able

to achieve a reduction in uncertainty of Alice’s diagnosis based solely on the knowledge

of the latter’s age. This partial disclosure was due to the fact that only two out of three

patient records in the database matched this age value. Now suppose that the patient

subtree for Carol is deleted from the database. Issuing the same query from Ex. 4.1.1 will

now return only one value, leukemia, allowing Mallory to learn Alice’s diagnosis with

complete certainty, thereby constituting a total disclosure.

104

It becomes clear that an effective measure for evaluating such instance-based disclosure

risks must have access to – and be able to reason over – an accurate probabilistic model of

the current database contents. We will elaborate on this further in Sec. 5.2.

5.2 Query-time Measurement of Instance-Based Risks

Recall that an instance-based disclosure risk is present when an adversary is able to apply

a query answer to refine her probabilistic model of a database to an unacceptably-high

degree of accuracy. Hence, a measure for such risks must take into account the current

database contents (more precisely, the probabilistic relationships between node types that

are defined by the database contents). We introduce such a measure based on concepts from

information theory [111].

At a high level, our measure calculates the magnitudeM of an instance-based disclo-

sure risk as

M = 1− computational effort for adversary to learn s
avg. computational effort required by a random guess of s

. (5.1)

where s designates a sensitive location path that is inaccessible or partially-accessible to the

adversary.

Information theoretic measures can be used to quantify computational effort in terms of

bits. In particular, the cross entropy (cf. Sec. 2.5) of two probability distributions P and Q

measures the average number of bits required to identify an event from P, the true proba-

bility distribution, using Q as an approximation of P. This corresponds to the numerator in

Eq. 5.1. In our setting, P corresponds to the probability distribution defined over the entire

database for instances of s appearing in the context of the query q, while Q is the corre-

sponding probability distribution defined over the adversary’s view of the database. Cross

entropy in turn is the summation of two values, the entropy of P, and the relative entropy

of P and Q. We shall describe the cross entropy calculation in greater detail shortly.

The denominator in Eq. 5.1 represents the worst-case scenario for the adversary in

which the entropy for s is maximized: every value in adom(path(s)) occurs with equal

probability, and therefore the adversary must resort to a random guess as to the value of an

105

s instance 1. After dividing the cross entropy score by this value, we obtain a normalized

value in [0,∞) indicating the relative amount of computational effort actually needed by

the adversary to learn the hidden s value (i.e., 0 implies the adversary knows the value of

hidden s with complete certainty after witnessing the answer to q, while any value greater

than or equal to 1 indicates that no reduction in effort has occurred). By subtracting this

quantity from 1, we obtain a disclosure risk magnitude score in (−∞, 1] in which higher

values indicate greater risks, and any value less than or equal to 0 indicates that no disclo-

sure has taken place.

5.2.1 Probabilistic Regular Tree Grammars (PRTGs)

The information theoretic measures discussed above all operate over probability distribu-

tions. To efficiently model probabilistic information for an XML database, we utilize prob-

abilistic regular tree grammars (PRTGs), an extension of the established notion of deter-

ministic regular tree grammar [34] that assigns a probability to each grammar rule.

Definition 5.2.1 (Probabilistic Regular Tree Grammar (PRTG)). A probabilistic regular

tree grammar (PRTG) G = 〈N, s,F , R,PG〉 is composed of a set N of non-terminal

symbols; an axiom (start symbol) s ∈ N ; a set F of terminal symbols; a set R of rules of

the form A → term(β), where A is a non-terminal, term ∈ F is a terminal symbol, and

β is either the empty tree or a tree containing non-terminal and/or terminal symbols; and

PG : R → [0, 1] is a function assigning a probability to each rule. For each n ∈ N , the

probabilities of all n-rules must sum to 1.

Occasionally, we abuse the notation slightly by stating that a rule r ∈ G as a shorthand

for indicating that r ∈ R, where R is the set of rules associated with PRTG G.

PRTGs are built by traversing the XML database tree bottom-up according to the al-

gorithm listed as Alg. 5.2.1. This procedure invokes the recursive BuildGrammarRule

subprocedure on the root node, and generates the PRTG over the entire XML tree based on

the result.
1This assumes that the adversary has zero prior knowledge as to the true probability mass function for

adom(path(s)). Cases in which an adversary does possess partial prior knowledge of the true function can be
modelled by substituting the entropy of Q, the probability mass function representing this prior knowledge, as
the denominator.

106

Input: Root node root of an XML tree
Output: Generated PRTG G = 〈N, s,F , R,P〉

1 N ← ∅;F ← ∅;R← ∅;
2 return 〈headSymbol, rhsList〉 ← BuildGrammarRule(root,N,F , R);

Algorithm 5.2.1: Procedure BuildGrammar for generating a probabilistic regular tree
grammar (PRTG) from an input XML tree T .

Most of the grammar building functionality is performed by the BuildGrammarRule

subprocedure. Each iteration builds the grammar rule describing a specific subtree of T ,

identified by the input node. Other inputs include the working sets of terminal symbols (F),

non-terminal symbols (N), and grammar rules (R). During execution, the subprocedure

adds additional elements to these sets, corresponding to the newly constructed grammar

rules. Line 3 adds the node type of the subtree root node to the new rule’s RHS. If the

root node is an attribute type, then the RHS will also contain the attribute value (lines 4-5).

Otherwise, the root node must be an element type and its child nodes will be processed by

lines 7-15. The BuildGrammarRule subprocedure is recursively invoked for element

and attribute children (line 9), with the head symbol of the rule constructed by the recursive

call being added to the current rule’s right-hand side (line 10). In the case of PCDATA

children, the node value is simply added to the current rule’s right-hand side (line 12) and

to the set of terminal symbols (line 13). Once all children nodes have been processed, the

right-hand side for the current rule is closed off (line 17), and a lookup is performed in the

set of existing rules to see if a matching rule has previously been constructed (lines 18-26).

If the rule does not appear, then it is added to R with an initial occurrence count of 1 (line

20) its head symbol is added to N , the set of non-terminals (line 21), and the signature of

its right-hand side (formed by replacing the head symbols of child rules in the right-hand

side by a placeholder) is added to the set of terminals, F (line 22). If the rule has previously

been created, the new occurrence is assigned the head symbol of the existing rule (line 24),

and the occurrence count for the existing rule is incremented (line 25). At the conclusion of

the procedure, the head and right-hand side of the constructed rule are returned (line 27).

As a notational convenience, we utilize subscripts to distinguish between different rules

with the same non-terminal in the rule head. Each application of a rule p derives a tree t,

which can be denoted as p ⇒ t. In general, t may consist of a mixture of terminal and

107

non-terminal symbols; by recursively applying the rules corresponding to the non-terminal

symbols appearing in each derived tree t, one eventually ends up with a tree containing only

terminal symbols, referred to as a ground tree.

Property 5.2.2. The ground tree derivable starting from a specific rule p is unique; by

p
∗⇒ t, we denote that t is the unique ground tree derivable (in one or more steps) from p.

Further, each occurrence of a specific ground tree t is produced by the same grammar rule

p.

As will be seen shortly, this one-to-one correspondence between a grammar rule and a

ground tree plays an integral role within our algorithm for detecting instance-based disclo-

sure risks. We now provide an example illustrating the generation of an XML tree from a

PRTG.

Example 5.2.3. The PRTG generating the example hospital database of Fig. 2.1 is given

by G = 〈N, HOSPITAL1,F , R,PG〉, with N , F , R, and PG as shown in Fig. 5.1.

For databases containing a high degree of structural repetition, the corresponding PRTG

will be much smaller than the original database size; as the following result shows, in cases

where there is little redundancy, the PRTG size approaches that of the database.

Property 5.2.4. The overall size of the database grammar, measured as the sum of symbols

(terminal and non-terminal) appearing in all rules, increases linearly with the size of the

database T .

Proof. The number of rules in the grammar is evidently O(|V |), where |V | is the number

of nodes in the database tree, since each node is produced from the application of a single

grammar rule. In the worst case, we have a database tree in which each node has a single

child, and hence, a new grammar rule is applied to produce each of the |V | nodes in the

tree. Further, the size of each rule’s right-hand side is also bounded by |V |, since each node

is produced by a single rule (and therefore, can appear in the right-hand side of only one

rule).

The following result proves beneficial for efficiently calculating the magnitude of instance-

based disclosure risks. It builds upon Property 5.2.2, and indicates that one can reason over

108

Grammar Rule
Rules (R) Prob.

(PG)
HOSPITAL1 → hospital(PATIENT1, PATIENT2, PATIENT3) 1

PATIENT1 → patient(NAME1, AGE1, DIAGNOSIS1, DOCTOR1,
DISCHARGE DATE1, CARRIER1) 1/3

PATIENT2 → patient(NAME2, AGE2, DIAGNOSIS2, DOCTOR2,
CARRIER1) 1/3

PATIENT3 → patient(NAME3, AGE1, DIAGNOSIS3, DOCTOR3,
CARRIER2) 1/3

NAME1 → name(“Alice”) 1/3
NAME2 → name(“Bob”) 1/3
NAME3 → name(“Carol”) 1/3
AGE1 → age(“31”) 2/3
AGE2 → age(“57”) 1/3
DIAGNOSIS1 → diagnosis(“leukemia”) 1/3
DIAGNOSIS2 → diagnosis(“pulmonary fibrosis”) 1/3
DIAGNOSIS3 → diagnosis(“pneumonia”) 1/3
DOCTOR1 → doctor(“House”) 1/3
DOCTOR2 → doctor(“Mancini”) 1/3
DOCTOR3 → doctor(“Cox”) 1/3
DISCHARGE DATE1 → discharge date(“23/08/05”) 1

CARRIER1 → carrier(“Black Cross”) 2/3
CARRIER2 → carrier(“White Shield”) 1/3

N ={HOSPITAL1, PATIENT1, PATIENT2, PATIENT3, NAME1, NAME2, NAME3, AGE1, AGE2,
DIAGNOSIS1, DIAGNOSIS2, DIAGNOSIS3, DOCTOR1, DOCTOR2, DOCTOR3,

DISCHARGE DATE1, CARRIER1, CARRIER2}
F ={hospital(·, ·, ·), patient(·, ·, ·, ·, ·), patient(·, ·, ·, ·, ·, ·), name(·), age(·),

diagnosis(·), doctor(·), discharge date(·), carrier(·), “Alice”, “Bob”,

“Carol”, “31”, “57”, “leukemia”, “pulmonary fibrosis”, “pneumonia”, “House”,

“Mancini”, “Cox”, “23/08/05′′, “Black Cross”, “White Shield”}

Figure 5.1: Probabilistic regular tree grammar describing the hospital tree of Fig. 2.1.

109

the probability distribution formed by p-rules within a PRTG G, in place of reasoning over

the probability distribution formed by p-trees within the XML tree generated by G.

Lemma 5.2.5. For any location path p (cf. 2.4.2), the set of p-rules derives the set of all

p-trees, and no other trees. Further, there exists for each unique p-tree t a single rule rpi

satisfying rpi
∗⇒ t, and the occurrence count assigned to p-rule rpi equals the number of

occurrences of t in T .

Proof. We illustrate using an inductive proof.

Basis: Let p denote the parent node type of a leaf node type c. The latter can be either

a PCDATA node, an attribute node, or an element node type instance corresponding to an

empty element. In the former case, then by line 12 of BuildGrammarRule a rule of the

form p → p(text) will be constructed, where text is the value of the c node. If this rule

does not already appear in the grammar, it will be added to the rule set R with an initial

occurrence count of 1 (line 20); if it is present, its occurrence count will be incremented

(line 25).

If c is non-PCDATA, a c-rule c → c() will be constructed for the instance (line 9), and

a reference to this rule will be added to the RHS of the rule for the parent p instance (line

10). As above, the occurrence count for the newly created c-rule will be either incremented

(if this rule previously exists inR) (line 25), or will be added toR with an occurrence count

of 1 (line 20).

If c is an attribute node type, then a rule of the form c→ @c(val) will be formed, where

val designates the attribute value (line 5). If this rule does not occur in R, it is added with

an occurrence count of 1 (line 20). Otherwise, its current count is incremented (line 25). A

reference to the newly constructed c-rule is added to the RHS of the rule belonging to the

parent p instance (line 10).

Each c instance is therefore associated with exactly one p-rule rpi in G, and the count

associated with rpi equals the number of times the rule has been applied. Additionally, a

p-rule will only be constructed when a p instance is encountered in T .

Inductive step: Assume that height(T) − k + 1 levels of T have been processed by

110

Alg. 5.2.1, and that for each node type n at levels k, k + 1, . . . , height(T), the generated

set of n-rules derives exactly the set of n-trees. Further, assume that the occurrence count

for each n-rule equals the number of times its generated ground tree appears in T . We

first consider the case in which an attribute node type instance appearing at level k − 1 is

next to be processed. By line 5, a rule of the form p → @p(val) is formed, where val

indicates the attribute value. If this rule does not previously appear in R, it is added with an

initial occurrence count of 1 (line 20); otherwise, its existing count is incremented (line 25).

Under this construction, one p-rule is applied per occurrence of a p-tree in T , and further,

the occurrence count of a p-rule will match the number of times its ground p-tree appears

in T .

Now assume that an instance of an element node type p appearing at level k− 1 is next

to be processed, with an ordered set of child node types c1, . . . , cm. Each child ci will be

processed in order (line 7 of BuildGrammarRule), according to the following strategy:

• if ci is a PCDATA node instance, then text will be appended to the RHS of the p-rule

corresponding to the parent p instance (line 12);

• if ci is an instance of an attribute node type, then it will have an existing rule rci →

@ci(val), where val is the attribute value (line 5). A reference to rci is then added to

the RHS of the rule associated with the parent p instance (line 10).

• if ci is an instance of an element node type, then it will have an existing rule rci →

ci(gc1, . . . , gcx), where gc1, . . . , gcx is the ordered list of child nodes for ci (lines

5-17), and a reference to rci will be added to the RHS of the rule associated with the

parent p instance (line 10).

Once all children nodes have been processed, the RHS for the p-rule will be closed off

(line 13). The final form of the rule will be p→ p(rc1 , . . . , rcm), where rci is a reference to

the corresponding ci-rule belonging to child ci (if ci is an instance of an element or attribute

node type), or the value of ci (if it is an instance of the PCDATA node type). This rule will

be added to R with an initial count of 1, if not already present in R (line 16); otherwise,

the count for the existing rule will be incremented (line 21). In either case, there will exist

111

hospital

patient

age diagnosis

“31” ρ

child

child child

Figure 5.2: Twig representation of the query from Ex. 4.1.1.

a separate p-rule for each distinct p-tree in T , and the occurrence count of each p-rule will

equal the number of times its derived p-tree appears in T .

5.2.2 Twigs

Within the context of query analysis, we will frequently need to select only those sub-

trees within an XML database that possess specific structural properties. For this purpose,

we use the notation of twigs [73]. A twig mandates a specific label from Σe ∪ Σa ∪ S∪

‘*’ ∪ρ for each node (where S denotes the set of all strings and ‘*’ is a wildcard char-

acter indicating any string constitutes a match) at each position. Twig nodes labeled with

ρ denote those contained in the query answer. A twig is built from the top down based

on a left-to-right reading of an XPath query, such that the twig root corresponds to the

first location step, its children to the second location step, and so on. An edge connecting

two twig nodes is labelled with the XPath axis (child, attribute, descendant, or

descendant-or-self) 2 connecting the corresponding location steps in the query. The

absence of such a label indicates that the child axis is in use.

Example 5.2.6. The twig representation of the query from Ex. 4.1.1 is given in Fig. 5.2.

Definition 5.2.7 (Twig Satisfiability). A twig τ is satisfied by a ground tree t iff there exists

a mapping M from the nodes of τ to the nodes of t such that (1) for each node n of τ with

type(n) ∈ Σe ∪Σa, label(M(n)) = type(n); (2) for each node n of τ with value(n) ∈ S,

label(M(n)) = value(n); (3) for each child and attribute labelled edge (n1, n2) in

τ , there is a corresponding edge (M(n1),M(n2)) in t; and (4) for each descendant and
2Note that the remaining XPath axes (cf. Sec. 2.4.3) are either captured by the twig structure (preceding,

following, preceding-sibling, and following-sibling axes), or in the case of ancestor
and ancestor-or-self axes, are expressible as descendant or descendant-or-self labeled twig
edges, respectively, in which the node labels connected by the edge are swapped.

112

descendant-or-self labelled edge (n1, n2) in τ , there is a corresponding directed

path from M(n1)) to M(n2) in t.

By forest(τ, T), we denote the set of all ground subtrees in database T that satisfy twig

τ . Twigs can also be applied to a PRTG G describing an XML database T in a straight-

forward manner: we say that a rule r in G satisfies a twig τ if there is a matching between

τ and the right-hand side of r. Then prod(τ,G) denotes the set of rules in G that satisfy

τ , i.e., those rules p ∈ G for which p ∗⇒ t, for some t ∈ forest(τ, T). By P{τ,G} we

indicate the probability distribution function defined over prod(τ,G), i.e., for each rule

ri ∈ prod(τ,G),

P{τ,G}[ri] =
PG[ri]∑

rj∈prod(τ,G) PG[rj]
.

5.2.3 Cross Entropy

From the perspective of the adversary, one can view instance-based disclosure as a learning

problem. For a specific hidden node s of type path(s), the adversary is limited to applying

a partially-learned probabilistic model of path(s), derived from his view of the database,

to attempt to infer the correct value of s. Denoting by G and GA, respectively, the PRTGs

defined over the entire database and that restricted to the adversary’s view of the database,

one intuitively observes that the disclosure risk will be smallest when the following two

conditions are true:

1. The value of the hidden node s is difficult to guess. More precisely, each value within

adom(path(s)) occurs with roughly equal probability in G.

2. The adversary’s view provides a poor approximation of the probability distribution

for adom(path(s)) defined over the entire database. In other words, for each value

d ∈ adom(path(s)), PG(d) and PGA
(d) differ substantially.

Information theoretic measures can be used to model both conditions. In particular,

minimizing the risk according to the above two conditions equates to maximizing the cross

entropy between PG and PGA
. The first condition equates to the entropy of the probability

distribution function for prod(τ,G) where τ is the twig representation of the issued query

113

q, and G is the PRTG defined over the entire database. Adapting the entropy formula [35]

to this setting gives us the following.

Definition 5.2.8 (Twig Entropy). The entropy of a twig τ over a PRTG G, denoted as

H{τ,G} and expressed in bits, is computed as

H{τ,G} = −
∑

ri∈prod(τ,G)

P{τ,G}[ri] · log2 P{τ,G}[ri] . (5.2)

To see why twig entropy satisfies the first condition above, it is helpful to employ the

interpretation of entropy that sees it as the average required number of “yes/no” questions

one needs to ask in order to identify an element from a set of possible alternatives; in the

present case, this corresponds to how many questions the adversary must ask in order to

determine the correct value of s from adom(path(s)), the set of all candidate values. We

observe the following property of twig entropy values.

Property 5.2.9. Twig entropy ranges from 0 ≤ H{τ,G} ≤ log2 |prod(τ,G)|, withH{τ,G} =

0 when prod(τ,G) contains a single rule (i.e., the identity of each rule satisfying τ can be

predicted with complete certainty). When the identity of the satisfying rule is completely

unpredictable (i.e., it is equally likely that the identity of each rule satisfying τ could be any

of the rules in prod(τ,G)), H{τ,G} = log2 |prod(τ,G)|.

The second condition above requires one to determine the “distance” between two prob-

ability distribution functions defined over adom(path(s)): one generated by answering the

query q over the entire database, and another formed by answering q over the adversary’s

view of the database. This type of calculation corresponds to computing the relative entropy

(cf. Sec. 2.5) of the two distributions, as defined below.

Definition 5.2.10 (Relative Entropy of PRTGs). For a fixed twig τ , the relative entropy of

two PRTGsG1 andG2, for which prod(τ,G1) = prod(τ,G2), is denoted byKL(τ,G1||τ,G2)

and expressed in bits. It is computed as

KL(τ,G1||τ,G2) =
∑

ri∈prod(τ,G1)

P{τ,G1}[ri] · log2

(
P{τ,G1}[ri]

P{τ,G2}[ri]

)
(5.3)

114

with conventions 0 log2
0
0 = 0, 0 log2

0
q = 0, and p log2

p
0 =∞.

It always holds thatKL(τ,G1||τ,G2) ≥ 0, with equality if and only if ∀ri ∈ prod(τ,G1),

P{τ,G1}[ri] = P{τ,G2}[ri]. We utilize twig entropy and relative entropy of PRTGs within

our measure for evaluating the magnitude of instance-based disclosure risks, as follows.

Definition 5.2.11 (Measuring Disclosure Risk). The magnitude of the disclosure risk pre-

sented by a particular twig τ to a secret node s, within the context of a database PRTG

G and a second PRTG GA describing the database view accessible to the adversary, is

denoted byM(τ ; s,G,GA) and computed as

M(τ ; s,G,GA) = 1−
(
H{τ,G} +KL(τ,G||τ,GA)

log2 |adom(path(s))|

)
. (5.4)

By convention, M(τ ; s,G,GA) = 1 when the denominator log2 |adom(path(s))| =

0.

In cases of total disclosure,M(τ ; s,G,GA) = 1, while 0 <M(τ ; s,G,GA) < 1

indicates the existence of a partial disclosure risk. IfM(τ ; s,G,GA) ≤ 0, there is no

disclosure risk present.

One can simplify the numerator to obtain a more concise version of the risk magnitude

equation:

M(τ ; s,G,GA) = 1−

−

∑
ri∈prod(τ,G)

P{τ,G}[ri] · log2 P{τ,GA}[ri]

log2 |adom(path(s))|

 . (5.5)

Property 5.2.12. M(τ ; s,G,GA) is computable in O(|V |) time, where |V | denotes the

number of nodes in the database T derived by G.

Proof. (Sketch.) Since each node in T is produced via application of a single rule in G,

there can be at most |V | rules inG, and hence, |prod(τ,G)| ≤ |V |. Computing twig entropy

over the database grammar requires |prod(τ,G)| logarithm calculations, |prod(τ,G)| mul-

tiplications, and |prod(τ,G)| additions, resulting in an overall time cost ofO(|prod(τ,G)|) =

O(|V |). Computing the relative entropy over the database grammar and the adversary’s

115

view grammar requires a similar number of operations, so it also requires O(|V |) time. The

denominator of Eq. 5.4 can be computed in constant time, leading to an overall time cost of

O(|V |).

In the interests of promoting data utility and availability, administrators at the federation

and data source levels may agree to view certain disclosure risks as acceptable, as long

as the magnitude of the risk is “small enough”. In our model, this trade-off is specified

using a parameter ε ∈ [0, 1]. In such cases, we say that a disclosure τ ; s exists only if

M(τ ; s,G,GV) ≥ ε.

One can also make the following observations about theM function: (1) if H{τ,G} =

log2 |adom(path(s))|, then path(s) is already random and therefore the adversary cannot

do better than a random guess, regardless of how accurately GA represents the true prob-

abilistic model of adom(path(s)); (2) if H{τ,G} is near 0, then adom(path(s)) is already

highly predictable and therefore may lead to a demonstrable risk even in cases where GA

provides the adversary with an inaccurate approximation of the true probabilistic model of

adom(path(s)).

5.2.4 Risk Analysis Procedure

We begin our description of the query-time risk analysis procedure by proving a useful

property that allows us to reduce the time requirement for performing the analysis.

Definition 5.2.13 (Twig Generalization). Let τ2 be a twig rooted by node type b. We say

another twig τ1 generalizes τ2 iff (1) τ2 forms a proper subtree of τ1, and (2) τ1 is rooted by

a node type a that is the parent of b.

The generalization relationship models a bottom-up traversal of a twig. Specifically, τ2

in the definition corresponds to the twig formed at node type b, while τ1 reflects the twig

formed one level higher, at the parent node type a.

Property 5.2.14. (Twig generalization does not decrease cross-entropy.) For any twig τ1

that generalizes twig τ2, and for any fixed PRTGs G and GA,

H{τ2,G} +KL(τ2, G || τ2, GA) ≤ H{τ1,G} +KL(τ1, G || τ1, GA) .

116

Proof. We assume that τ2 is rooted by node type b, and τ1 by parent node type a, as in

Def. 5.2.13 above. Let b1, . . . , bm designate the set of b-trees comprising forest(τ2, G),

and let oi ≥ 1 and o
′
i ≥ 0 indicate the occurrence counts of bi ∈ forest(τ2, G) within

the entire database and within the adversary’s view, respectively. For simplicity, we assume

that grammar rule ri identifies the rule that generates bi. Then we arrive at the following

cross entropy calculation for τ2, using the concise form shown in the numerator of Eq. 5.5:

H{τ2,G} +KL(τ2, G || τ2, GA) =
∑

ri∈prod(τ2,G)

PG[ri] · log2

(
1

PGA
[ri]

)

=

m∑
i=1

PG[bi] · log2

(
1

PGA
[bi]

)

=

m∑
i=1

[
oi∑m
j=1 oj

· log2

(∑m
j=1 o

′
j

o
′
i

)]
. (5.6)

Now, let ρ(bi) be the set of parent rules for bi, namely those a-rules containing a refer-

ence to rule ri on their RHS. By the definition of twig generalization, we have prod(τ1, G) =

ρ(b1) ∪ . . . ρ(bm). Additionally, the sum of occurrence counts for each a-rule in ρ(bi)

equates to oi, since each occurrence of bi must have a parent ai instance, and by Lemma 5.2.5

each such parent-child relationship is captured by exactly one rule. Allowing oρ(bi)[j] and

o
′

ρ(bi)[j]
to denote the occurrence count of the j-th rule in ρ(bi) in the entire database and in

the adversary’s view, respectively, we arrive at the following cross entropy calculation for

τ1:

H{τ1,G} +KL(τ1, G || τ1, GA) =
∑

rai∈prod(τ1,G)

PG[rai] · log2

(
1

PGA
[rai]

)

=

m∑
i=1

|ρ(bi)|∑
j=1

[
PG[ρ(bi)[j]] · log2

(
1

PGA
[ρ(bi)[j]]

)]

=

m∑
i=1

|ρ(bi)|∑
j=1

[
oρ(bi)[j]

oi
· log2

(
o
′
i

o
′
ρ(bi)[j]

)]
=

m∑
i=1

|ρ(bi)|∑
j=1

 oρ(bi)[j]∑|ρ(bi)|
k=1 oρ(bi)[k]

· log2

∑|ρ(bi)|
k=1 o

′

ρ(bi)[k]

o
′
ρ(bi)[j]

(5.7)

117

Next, note that the inner sum in Eq. 5.7 computes the cross-entropy over the probability

mass functions induced over the database and the adversary’s view for a fixed ρ(bi). By

the properties of entropy and relative entropy, each inner cross-entropy reaches a minimum

value of 0 only when the following conditions all hold: (1) |ρ(bi)| = 1 and therefore

oρ(bi)[1] = oi (i.e., there is only one parent rule for bi, so there is no uncertainty and therefore

entropy over ρ(bi) is minimized); and (2) oi = o
′
i and oρ(bi)[1] = o

′

ρ(bi)[1] (i.e., the respective

occurrence counts for each b-tree and a-tree match in the database and in the adversary’s

view, leading to a relative entropy of 0). Rewriting Eq. 5.7 using these equalities, we obtain

H{τ1,G} +KL(τ1, G || τ1, GA) =

m∑
i=1

|ρ(bi)|∑
j=1

 oρ(bi)[j]∑|ρ(bi)|
k=1 oρ(bi)[k]

· log2

∑|ρ(bi)|
k=1 o

′

ρ(bi)[k]

o
′
ρ(bi)[j]

=

m∑
i=1

[
oi∑m
j=1 oj

· log2

(∑m
j=1 o

′
j

o
′
i

)]
= H{τ2,G} +KL(τ2, G || τ2, GA) .

For cases in which one or more of the above conditions fail to hold, at least one of the

inner cross-entropy values will be greater than zero, leading to

H{τ2,G} +KL(τ2, G || τ2, GA) < H{τ1,G} +KL(τ1, G || τ1, GA)

and completing the proof.

Note that this result holds for any parent-child relationship within an XML tree. In par-

ticular, any grammar rule describing the subtree rooted at a parent node type p generalizes

any rule describing the subtree rooted at its child node type c. One intuitively sees this

by visualizing walking the XML tree from top-to-bottom: at the time that an instance of

p is visited, one has no knowledge of the structure of that instance’s subtree (only that it

must conform to one of the p-rules defined within the database grammar). It is only after

travelling into the next level of the tree that one knows whether that p instance has an in-

stance of c as its child. More generally, descending into deeper levels of the subtree of the

p instance serves to disqualify a greater number of potential rules that could apply to that

tree level, thereby reducing uncertainty as to the contents of future levels. Hence, the gen-

118

eralization relationship for grammar rules further extends to cover all ancestor-descendant

relationships within an XML tree.

We now move on to describe the query-time risk analysis procedure. Recall from

Sec. 4.7 that during the DTD sanitization procedure (cf. Alg. 4.7.3) all potential instance-

based disclosure risks applicable to the active federated ID f – in the form of partially-

and non-accessible location paths – are recorded in the disclosure risks table R. When a

query q is issued against database T by an adversary holding f , R is consulted to retrieve

all sensitive (i.e., partially- and non-accessible) location paths s for f . For each such s, the

evaluation procedure of Alg. 5.2.3 is carried out.

First, a twig τ is formed from q (line 1). Next, it is determined whether τ represents

a potential risk for the current sensitive location path s (line 2). This entails establishing

if either (1) s is contained in τ , or (2) a path exists between s and a node contained in

τ . If neither condition is met, the algorithm terminates and answers that no risk is present

(line 3). Otherwise, τ is extended if necessary in order to form a path between the closest

ancestor node of s in the original τ and s itself (line 5). We refer to this closest ancestor

node as c and the extended twig as τ ′. In the next step, a bottom-up matching is performed

between τ ′ and the PRTG G corresponding to the entire database T , in which each subtree

of τ ′ appearing in the RHS of a rule r inG is replaced by a single node labeled with the non-

terminal symbol appearing in the LHS of r (in cases where multiple rules match a subtree,

the replacement consists of a list containing the head symbol of each such rule) (line 6).

During the matching process, each twig node in τ ′ is also annotated with the set of nodes of

the corresponding node class which are inaccessible to f . The matching process terminates

once c has been matched, leveraging Property 5.2.14. In particular, this property tells us

that if no risk is constituted at c, no risk can be present when evaluated at any ancestor of

c; similarly, the property also tells us that the amount of information the adversary gains

from the query answer is greatest at c (since entropy will be lower at this node than in

any ancestor node appearing in the query), so it is equally important not to terminate the

matching process any earlier. In the fourth step, the twig entropy (cf. Eq. 5.2) is computed

over the probability distribution formed by the rule(s) matching c (line 7).

The bottom-up matching procedure is then repeated, this time using the PRTG Gf , the

119

PRTG describing the database view of f , in place of G (line 8). Note that it is not neces-

sary to explicitly store Gf in the database as we did with G. Instead, Gf can be computed

“on-the-fly” as the bottom-up matching is conducted between τ ′ and Gf , by simply decre-

menting the existing counts for the grammar rules associated with each inaccessible node

class instance stored in the corresponding twig node. At the next twig level, the parent node

will then store grammar rule(s) capable of matching against the updated set of matching

rules for each child, thereby propagating changes to the original grammar further up the

twig. As before, matching concludes at c. To facilitate the accurate computation of relative

entropy of c-rules in G and Gf , a further step is needed in which any c-rule cf in Gf not

appearing in G is replaced with the shortest c-rule in G containing all of the symbols found

on the RHS of cf (note that by the construction of G and Gf , such a rule in G is guaranteed

to exist). The occurrence count assigned to cf is then allocated to the c-rule in G replacing

it (line 9). This is a manifestation of Occam’s razor: in the absence of a complete match

the adversary chooses the shortest rule (simplest hypothesis) in G whose RHS contains the

RHS of cf . The relative entropy calculation between c-rules inG andGf is then carried out

(cf. Eq. 2.2) (line 10), and the risk magnitude calculation itself is performed (cf. Eq. 5.4)

(line 11). Finally, if the computed risk magnitude meets or exceeds the threshold value

ε, a “yes” answer is returned to indicate that a disclosure risk is indeed present (line 13);

otherwise, “no” is returned (line 15).

Theorem 5.2.15. Alg. 5.2.3 correctly identifies disclosure risks.

Proof. We demonstrate that the algorithm is both sound (i.e., it identifies as a disclosure risk

any instance in which the computed magnitude, according to Eq. 5.4, equals or exceeds the

threshold value ε) and complete (i.e., the algorithm reports that a disclosure risk occurs only

if the same instance results in a computed magnitude equal to or exceeding ε, according to

Eq. 5.4). Comparing Eq. (2.1) with Eq. (5.2), and Eq. (2.2) with Eq. (5.3), one sees that

twig entropy and relative entropy of PRTGs are extensions of their classic counterparts

in information theory: each performs the same fixed calculation over an input probability

mass function as does the corresponding classic measure. Using the established soundness

and completeness results for these classic measures as a starting point, what remains to be

120

shown is that the twig entropy and relative entropy of PRTG measures operate over the

correct probability mass function. This equates to establishing that at each level during the

rule matching process, the set of applicable rules prod(τ,G) is exactly the same as the set

of matching rules reported by Alg. 5.2.3 at that level. Lemma 5.2.5 states that the set of p-

rules in a grammar produces all p-trees, and further, that the occurrence count of each p-rule

equals the occurrence count of its unique ground tree. Since the rule matching procedure

only selects those p-rules that match the structure of the subtwig rooted at node type p, and

only those p-trees within the XML tree T matching the twig structure form part of the query

answer, the matched set of rules at p generates exactly the set of p-trees that match the query.

And, further, the probability mass function defined over the matched p-rules is equivalent

to that defined over p-trees contained in the query result. From this point, an inductive

argument similar to that of Lemma 5.2.5 is used to verify that the correct probability mass

function is utilized at each twig node position during the bottom-up twig matching process.

The justification for stopping the rule matching process at the closest ancestor node to

the sensitive node appearing in the original (unextended) twig comes from Property 5.2.14.

This property says that the computed risk magnitude can only be lower if one moves beyond

the closest ancestor node, and hence, there is no need to do so if the magnitude at the closest

ancestor node already falls below the defined threshold. And further, it says that it is equally

important to continue matching until the closest ancestor node is reached, since it represents

the full extent of the knowledge gained by the adversary from seeing the query answer (any

nodes in the extended twig that do not appear in the original twig are not part of the answer).

Taken together, these two observations establish the correctness of Alg. 5.2.3.

5.2.5 Examples

We provide three examples of computing disclosure risk magnitude, illustrating cases where

there is total, partial, and no disclosure. All three examples are based on Ex. 4.1.1, with

the access control policy of Ex. 2.4.12 applied in each case.

Example 5.2.16 (Partial Disclosure). Ex. 4.1.1 demonstrated that knowledge of Alice’s age

alone was not sufficient for the adversary to uniquely identify Alice’s patient record, but

that, intuitively, a partial disclosure did take place since Bob’s patient record could be dis-

121

hospital

patient

age diagnosis

“31” ρ
(a)

hospital

patient (c)

age diagnosis

“31”

name (s)

ρ
(b)

hospital

{PATIENT1, PATIENT3 } (c)

{AGE1} {DIAGNOSIS1,
DIAGNOSIS2,DIAGNOSIS3 }

{NAME1,
NAME2,NAME3 }

<o3,o16,o27> (s)
(c)

hospital

{PATIENT4, PATIENT6 } (c)

{AGE1 } {DIAGNOSIS1,
DIAGNOSIS2,DIAGNOSIS3 }

{}
<o3,o16,o27> (s)

(d)

Figure 5.3: Example of a partial disclosure. (a) Twig τ formed from query; (b) Extended
twig τ ′ formed by connected the sensitive twig node with its closest ancestor in the original
twig τ ; (c) Result of bottom-up matching of τ ′ with the database grammar G; (d) Result of
bottom-up matching of τ ′ with the adversary’s view grammar GAIns.

qualified based on prior knowledge of Alice’s age. We now reinvestigate this example using

Alg. 5.2.3. In the first step, the query twig τ shown in Fig. 5.3a is formed from the query

/hospital/patient[age="31"]/diagnosis. The closest ancestor of the sensi-

tive location path, /hospital/patient/name, in τ is /hospital/patient, so in

the second step the extended twig τ ′ is formed by adding an edge connecting these two loca-

tion paths, as shown in Fig. 5.3b. The sensitive location path,

/hospital/patient/name, is marked with (s), while /hospital/patient, its

closest ancestor from the original twig, is marked with(c).

In the third step, shown in Fig. 5.3c, a bottom-up matching is conducted between

τ ′ and the PRTG G (depicted in Fig. 5.1) defined over the entire database. In addi-

tion, the name node in τ ′ is annotated with o3,o16,027, the inaccessible instances

of /hospital/patient/name. Once the matching has been concluded at the clos-

est ancestor twig node, the matching rules are PATIENT1 and PATIENT3. The fourth step

122

Grammar Rule
Rules (R) Prob.

(PG)
HOSPITAL2 → hospital(PATIENT4, PATIENT5, PATIENT6) 1
PATIENT4 → patient(AGE1, DIAGNOSIS1, DOCTOR1,

DISCHARGE DATE1, CARRIER1)
1/3

PATIENT5 → patient(AGE2, DIAGNOSIS2, DOCTOR2, CARRIER1) 1/3
PATIENT6 → patient(AGE1, DIAGNOSIS3, DOCTOR3, CARRIER2) 1/3
AGE1 → age(“31”) 2/3
AGE2 → age(“57”) 1/3
DIAGNOSIS1 → diagnosis(“leukemia”) 1/3
DIAGNOSIS2 → diagnosis(“pulmonary fibrosis”) 1/3
DIAGNOSIS3 → diagnosis(“pneumonia”) 1/3
DOCTOR1 → doctor(“House”) 1/3
DOCTOR2 → doctor(“Mancini”) 1/3
DOCTOR3 → doctor(“Cox”) 1/3
DISCHARGE DATE1 → discharge date(“23/08/05”) 1
CARRIER1 → carrier(“Black Cross”) 2/3
CARRIER2 → carrier(“White Shield”) 1/3

Figure 5.4: Set of rules in GAIns and their associated probabilities.

computes the entropy for the probability distribution defined over these rules in G as

H{τ,G} =
1

2
log2 2 +

1

2
log2 2 = 1 .

The fifth step repeats the grammar rule matching of τ ′, this time against GAIns, the

PRTG defining the adversary’s view of the database. The rules and associated probabilities

for GAIns are given in Fig. 5.4. As Fig. 5.3d illustrates, once the matching is completed

for the closest ancestor (i.e., /hospital/patient) the candidate rules are PATIENT4

and PATIENT6. Since neither rule appears in G, each must be mapped to the shortest

rule in G that contains its RHS. This leads to the mappings PATIENT4 ⇒ PATIENT1 and

PATIENT6 ⇒ PATIENT3.

In the sixth step, the relative entropy calculation is carried out between the probability

distributions for PATIENT rules induced by matching τ ′ against G (step 3) and GAIns

(step 5). The result is

KL(τ ′, G||τ ′, GAIns) =
1

2
log2 1 +

1

2
log2 1 = 0 .

Finally, the risk magnitude calculation is performed, resulting in

M(τ ; /hospital/patient/name,G,GAIns) = 1− [(1 + 0)/ log2 3] ≈ 0.369 .

123

hospital

patient

age doctor diagnosis

“31” “House” ρ
(a)

hospital

patient

age doctor diagnosis

“31” “House”

name
(s)

(c)

ρ
(b)

hospital

{PATIENT1 }

{AGE1 } {DOCTOR1 } {DIAGNOSIS1,DIAGNOSIS2,DIAGNOSIS3 }

{NAME1,NAME2,NAME3 }
<o3,o16,o27>(s)

(c)

(c)
hospital

{PATIENT4 }

{AGE1 } {DOCTOR1 } {DIAGNOSIS1,DIAGNOSIS2,DIAGNOSIS3 }

{}
<o3,o16,

o27> (s)

(c)

(d)

Figure 5.5: Example of a total disclosure. (a) Twig τ formed from query; (b) Extended
twig τ ′ formed by connected the sensitive twig node with its closest ancestor in the original
twig τ ; (c) Result of bottom-up matching of τ ′ with the database grammar G; (d) Result of
bottom-up matching of τ ′ with the adversary’s view grammar GAIns.

This indicates that there has indeed been a partial disclosure.

Example 5.2.17 (Total Disclosure). Ex. 4.1.1 pointed out that intuitively, the adversary’s

knowledge of Alice’s age and doctor is enough to uniquely identify her patient record. We

carry out this computation using our measure. The twig τ formed from query

/hospital/patient[age="31" and doctor="House"]/diagnosis is shown

in Fig. 5.5a. Next, it is extended to form a path between the sensitive location path,

/hospital/patient/name, and its closest ancestor within τ , /hospital/patient.

The resulting twig τ ′ is shown in Fig. 5.5b. In the third step, a bottom-up matching be-

tween τ ′ and G, the database PRTG, is carried out, with the results as shown in Fig. 5.5c.

PATIENT1 is the only matching rule at the closest ancestor (patient) node, and the name

124

Grammar Rule
Rules (R) Prob.

(PG)
HOSPITAL3 → hospital(PATIENT1) 1
PATIENT1 → patient(NAME1, AGE1, DIAGNOSIS1, DOCTOR1,

DISCHARGE DATE1, CARRIER1)
1

AGE1 → age(“31”) 1
DIAGNOSIS1 → diagnosis(“leukemia”) 1
DOCTOR1 → doctor(“House”) 1
DISCHARGE DATE1 → discharge date(“23/08/05”) 1
CARRIER1 → carrier(“Black Cross”) 1

Figure 5.6: Set of rules in GAlice and their associated probabilities.

node is annotated with the three instances of /hospital/patient/name, since all are

inaccessible to AIns under the ACP. In the fourth step, twig entropy is carried out for the

matching PATIENT rules; since there is only a single matching rule, PATIENT1, the result

is

H{τ ′,G} = 1 log2 1 = 0 .

Bottom-up matching is then conducted between τ ′ and GAIns, the PRTG defined over

the database view for the AIns role (cf. Fig. 5.4). As shown in Fig. 5.5d, only Patient4

emerges as a matching rule at the closest ancestor node in τ ′. Since this rule does not

exist in the original PRTG G, it is replaced with the shortest rule in G containing its RHS,

which is PATIENT1. The rule matching procedures have yielded the same set of matching

PATIENT rules for G and GAIns, so the relative entropy calculation is

KL(τ ′, G||τ ′, GAIns) = 1 log2 1 = 0 .

In the final step, the disclosure risk magnitude is computed as

M(τ ; /hospital/patient/name,G,GAIns) = 1− [(0 + 0)/ log2 3] = 1 ,

indicating that a total disclosure has taken place.

Example 5.2.18 (No Disclosure). To demonstrate an example where a query presents no

disclosure risk, we consider the query /hospital/patient issued by federated ID

Alice. We recall that under the designated ACP, Alice has access to the entirety of her

125

own patient record, and no parts of other patient records. The PRTG GAlice defining her

view of the database consists of the rules shown in Fig. 5.6.

Notice that under this scenario, /hospital/patient functions as the query an-

swer, the sensitive location path, and as its own closest ancestor in the original query twig

τ , as shown in Fig. 5.7a. For this reason, there is no need to extend τ . Bottom-up matching

of τ with the database PRTG G starts and ends at the patient node, and the result is

shown in Fig. 5.7b. While all three patient rules are included (since this node represents

the query answer over the entire database), the node is also annotated with o15,o26 to

indicate that these two instances of /hospital/patient are inaccessible to Alice.

Computing the twig entropy for PATIENT rules results in

H{τ,G} =
1

3
log2 3 +

1

3
log2 3 +

1

3
log2 3 = log2 3 ≈ 1.585 .

When τ is matched againstGAlice (shown in Fig. 5.7c), the result consists of the only patient

rule in this PRTG, PATIENT1. There is no need to perform rule replacement, since this rule

also appears inG. Computation of the relative entropy of PATIENT rules returned by each

matching operation yields

KL(τ,G||τ,GAlice) =
1

3
log2

1

3
+

1

3
log2

1/3

0
+

1

3
log2

1/3

0
=∞ .

The risk magnitude is

M(τ ; /hospital/patient,G,GAlice) ≈ 1− [(1.585 +∞)/ log2 3] = −∞ ,

indicating that there is no disclosure risk represented by the query. This result makes sense

on an intuitive level, as Alice gains no extra knowledge – not even an indication of the

cardinality of patient records in the database – from the query answer.

5.2.6 Optimizing the Disclosure Risk-Data Utility Tradeoff

A coarse solution for removing instance-based risks is to reject outright any query result

presenting a disclosure risk above the ε threshold. Doing so can greatly hamper the utility

of the database, as it prevents a user from seeing even the “risk-free” portions of the query

result. A more amenable solution might seek to maximize data utility by only pruning the

126

hospital

patient
(c) (s)

ρ
(a)

hospital

{PATIENT1,PATIENT2,PATIENT3 }
<o15,o26> (c) (s)

(b)

hospital

{PATIENT1 }
<o15,o26> (c) (s)

(c)

Figure 5.7: Example of no disclosure. (a) Twig τ formed from query; (b) Result of bottom-
up matching of τ with the database grammarG; (c) Result of bottom-up matching of τ with
the adversary’s view grammar GAlice.

minimal number of nodes from the query result required to reduce the disclosure risk below

ε, starting with those nodes that are deemed to be of least importance to the user.

In formalizing this solution, we assume that there is a total function utilityq : q×U →

Q+ assigning a user-specific importance score to each node in the query q. Additionally,

a function for evaluating the degree of additional disclosure risk posed by including an

individual node n ∈ q in the adversary’s view is given by

risk(n) =M(τ ; s,G,GA)−M(τ ; s,G, {GA − n})

where τ is the twig capturing q, s is the sensitive node, and G and GA represent the PRTGs

defined over the entire database and the adversary’s view, respectively. As a notational

convenience, {GA − n} is used to indicate the PRTG that generates the adversary’s view

excluding the subtree rooted by node n. The goal is then to determine the maximally-useful

secure query result from the space of all trees formed by deleting one or more nodes from

the original query result, namely the twig τ̂ that achieves the highest cumulative utility score

(calculated by summing the utility score for each node contained in τ̂) while falling below

the specified disclosure risk threshold (i.e.,M(τ̂ ; s,G,GA) ≤ ε).

Unfortunately, obtaining such a maximally-useful secure query result proves to be in-

tractable.

Theorem 5.2.19. Computing the maximally-useful secure query result for an arbitrary

query q is NP-hard.

Proof. We state the decision version of the problem as determining whether there exists

any solution twig that falls below the specified disclosure risk threshold, while achieving a

127

cumulative utility score of at least S, where S ∈ Q+ is an additional parameter. Henceforth,

we will abbreviate this problem as MUSQR-DP.

To show that MUSQR-DP is in NP, we observe that a candidate twig τ̂ consisting of m

nodes can be verified inO(m) time by first summing them node utility scores and ensuring

that the result is at least S, and then calculateM(τ̂ ; s,G,GA) (which also takes O(m)

time, cf. Property 5.2.12) and compare the result to ε.

NP-completeness is demonstrated by a polytime reduction from 0-1 KNAPSACK in

which each of the k knapsack items i1, . . . , ik are mapped to nodes n1, . . . , nk in τ̂ ,

risk(nj) = weight(ij) and utilityQ(nj , u) = value(ij), j = 1 . . . , k, ε is set to the

weight threshold value W , and S is set to the value goal G. Under this reduction, the only

MUSQR-DP instances yielding a “yes” answer correspond to instances of 0-1 KNAPSACK

that would yield a “yes” answer from a 0-1 KNAPSACK solver.

Since MUSQR-DP is NP-complete, it follows that the corresponding optimization prob-

lem is NP-hard.

While this result is negative, it is likely that polynomial-time approximation algorithms

for finding a secure query result that comes close to maximizing usefulness exist. One obvi-

ous possibility would be to design such an algorithm based on an approximation algorithm

for 0-1 KNAPSACK. We leave this as future work.

5.2.7 Discussion

We now relate our query time disclosure detection algorithm to the various disclosure risk

types identified within the related works of Sec. 4.4.1. As shown in the previous chapter,

our design time detection algorithm is capable of identifying all disclosures caused by the

parent-child constraints of the Yang and Li model [119]. Our query time detection algorithm

is capable of identifying the ancestor-descendant constraints of Yang and Li: given such a

relationship between node types a and b, an adversary with full access to a and partial

access to b issuing the query a//b would yield a twig matching in which none of the a-rules

within the database grammar have been disqualified, which in turn would cause Alg. 5.2.3

to decide that answering the query would cause a total disclosure.

Disclosures caused by Yang and Li’s notion of functional dependencies between node

128

types would also be identified as a total disclosures by Alg. 5.2.3. Recalling that such a

functional dependency mandates that all nodes of a specific type a that possess a child path

p1 must also possess a second child path p2, we observe that in each such circumstance

the database grammar must possess a grammar rule ai ⇒ a(r1, . . . , r2), where r1 and

r2 designate the grammar rules deriving paths p1 and p2, respectively, and the probability

assigned to this rule would be 1. Issuing a query that includes a/p1 and a/p2 would yield

a twig matching in which only rule ai would constitute a matching for the twig position

associated with a. This in turn would cause the twig entropy to be 0, once again resulting

in the classification of a total disclosure.

Finally, we recall that the disclosure risks in the model of Farkas et al [52] are formed by

constraints between node types, expressed as Horn clauses. Such constraints are essentially

equivalent to the functional dependency constraints of Yang and Li, and would be handled

in the same manner by Alg. 5.2.3. In comparison to the approach of Hashimoto et al, we

note that our approach to query time risk analysis is more fine-grained in the sense that we

move beyond considering the number of candidate answers to a secret query to also incor-

porate the differing probabilities with which each such candidate appears in the database.

Further, we are able to improve scalability by reasoning over a compressed representation

of the database contents (i.e., probabilistic regular tree grammars) in place of using tree

transducers.

5.3 Conclusions

This chapter presented a query-time solution to detection and removal of instance-based

disclosure risks on federated data. In the next chapter, we describe an efficient implemen-

tation of this approach, along with experimental results indicating the scalability of the

implementation.

129

Input: Root node subtreeRootNode of an XML subtree; N , a set of
non-terminal symbols; F , a set of terminal symbols; R, a set of grammar
rules

Output: Generated grammar rule 〈headSymbol, rhsList〉
1 headSymbol← “”;
2 rhsList← ∅;
3 rhsList.add(subtreeRootNode.getType() + “(”);
4 if subtreeRootNode.isAttribute() then
5 rhsList.add(subTreeRootNode.getV alue());
6 else
7 foreach childNode ∈ subtreeRootNode.children() do
8 if childNode.getType() 6= PCDATA then
9 childRule← BuildGrammarRule(childNode);

10 rhsList.add(childRule.getHeadSymbol());
11 else
12 rhsList.add(childNode.getV alue());
13 F .add(childNode.getV alue());
14 end
15 end
16 end
17 rhsList.add(“)”);
18 existingRule← R.get(subtreeRootNode.getType(), rhsList);
19 if existingRule 6∈ R then
20 headSymbol← R.add(subtreeRootNode.getType(), rhsList, 1);
21 N.add(headSymbol);
22 F .add(rhsList.getSignature());
23 else
24 headSymbol← existingRule.getHeadSymbol());
25 R.incrementRuleOccurrenceCount(existingRule);
26 end
27 return 〈headSymbol, rhsList〉;
Algorithm 5.2.2: Subprocedure BuildGrammarRule for generating a PRTG rule
from an input XML subtree T .

130

Input: CXP[=] query q; federated ID f ; threshold value ε; sensitive node s;
database PRTG G; disclosure risks tableR

Output: “no” if the computed risk magnitude is less than ε; “yes” otherwise
1 τ ← FormTwigFromQuery(q);
2 if IsPotentialRisk(τ, s) = false then
3 return “no”
4 else
5 τ ′ ← ExtendTwigToSensitiveNode(s);
6 MPG ← PerformBottomUpRuleMatching(τ ′, G);
7 H ← ComputeTwigEntropy(MPG, G);
8 MPf ← PerformBottomUpRuleMatching(τ ′, Gf);
9 MPf ←MPf/MPG;

10 KL← ComputeRelativeEntropy(MPG,MPf);
11 M← ComputeRiskMagnitude(H,KL, s);
12 ifM≥ ε then
13 return “yes”
14 else
15 return “no”
16 end
17 end

Algorithm 5.2.3: Query-time risk analysis procedure.

131

Chapter 6

Implementation and Experimental
Validation of Instance-Based
Disclosure Risk Detection and
Removal

6.1 Implementation

Our implementation was built using Java 1.6. Persistent storage of XML database trees

and grammars was carried out using Berkeley DB Java Edition 4.0. Fig. 6.1 illustrates the

architecture of the implementation. The end user interacts with the database manager com-

ponent, which is responsible for invoking the access control enforcement module in order

to determine which nodes the user has access to, and for using this information to deter-

mine whether the issued query is allowable according to the ACP. For allowable queries,

the database manager also interacts with the disclosure risks monitor to evaluate the level

of risk posed by the query, and the Core XPath query processor to obtain the query result.

In order to evaluate instance-based disclosure risks, the disclosure risk monitor performs

Alg. 5.2.3. It interacts with the PRTG storage module, which manages persistent grammar

storage in Berkeley DB. Table 6.1 specifies the data structures used to maintain the PRTGs

defined over a database. The Grammar Rules table stores the right-hand side (RHS) of

each grammar rule, keyed by the identifier of that rule. Each RHS expression is stored as

a sequence of tokens, where each token can be a numeric value (referring to the identifier

of another rule) or a sequence of textual characters, representing a node label or PCDATA.

Rule Counts stores the number of times each rule is applied within the current database.

132

Berkeley DB
Java Edition

XML Tree Storage PRTG Storage

Core XPath
Query Processor

Disclosure Risk
Monitor

ACP
Enforcement

Database Manager

User

Figure 6.1: System architecture of the prototype.

The Rule-By-Root-Node index allows for a fast lookup of the grammar rule used to

derive the subtree rooted at the key node. Rule References provides a method for

quickly determining which rules contain a reference to the keyed rule within their respec-

tive right-hand sides. Additionally, a secondary index is maintained on GrammarRules,

allowing a rule to be quickly located based on the contents of its RHS.

The query processor builds an execution plan, then retrieves needed information from

the Berkeley DB structures associated with XML database storage via calls to the XML tree

storage component. Table 6.2 lists the various data structures used to store the structure and

content of an XML database: in particular, First Child stores a reference to the node

identifier of each internal node’s first child; Next Sibling maintains a pointer to the

identifier of the key node’s next sibling; Content stores the textual content belonging to

each node; Node Types indicates the type of each node (i.e., element, attribute, text, or

133

Table 6.1: Data Structures Used to Store Database Grammars.

Name Key Value Access
Method

Grammar Rules rule id RHS BTree
Rule Counts rule id occurrence count BTree
Rule-By-Root-Node node id rule id BTree
Rule References referred rule id referring rule id BTree

Table 6.2: Data Structures Used to Store XML Trees.
Name Key Value Access Method
First Child node id child id BTree
Next Sibling node id sibling id BTree
Content parent id value BTree
Node Types node type node id BTree
Node Names node name node id BTree

document root); and Node Names records the label assigned to each element and attribute

node.

6.2 Incremental Grammar Maintenance

A key challenge in implementing our approach within a dynamic database lies in keeping

the generated grammars up-to-date as database contents are modified. We consider the

complexity of performing the various primitive update operations first discussed in Sec. 2.4

and repeated below.

Append(x, y): This operation inserts a node y as the right-most child of node x.

InsertBefore(x, y): In this operation, node y is inserted as the left sibling of node x.

Delete(x): This operation results in the deletion of the subtree rooted at node x.

We first investigate the worst-case time complexity of updating stored PRTGs in terms

of these primitive operations, using the data structures in Table 6.2 and Table 6.1.

Claim 6.2.1. Assume that the data structures in Table. 6.2 and Fig. 6.1 permit insertions,

deletions, and lookups in amortized O(log r) time, where r is the number of records con-

tained in the corresponding data structure. Let h denote the maximum height of the XML

tree T , and n denote the number of nodes in T . Incremental grammar modification in re-

sponse to each Append(x, y) or InsertBefore(x, y) operation takes O(h log n) time. Mod-

134

P1 ::= p(X1)
X1 ::= x(a)

P1 ::= p(X1)
X1 ::= x(a,y)

p

x

a

p

x

a y
(a)

P1 ::= p(a,x)
p

a x
P1 ::= p(a,y,x)

p

a xy

(b)

P1 ::= p(a,x,y)
p

a y
P1 p(a,y)

p

a yx
::=

(c)

Figure 6.2: Incremental grammar maintenance in response to (a) Append(x, y), (b)
InsertBefore(x, y), and (c) Delete(x) operations.

ifications for each Delete(x) operation require O(n log n) time.

Proof. Fig. 6.2 depicts each operation. In the case of Append(x, y) operations (Fig. 6.2a),

the following steps must be performed: (1) the count for the assigned grammar rule must

be decremented, requiring a lookup in the RulesByRootNode table to find the rule per-

taining to x’s subtree. Then, a lookup and insertion are performed in the RuleCounts

table to decrement the occurrence count for this rule; (2) a lookup is performed on the sec-

ondary index for GrammarRules to see if an existing rule with the modified RHS exists;

if so, a lookup and insertion are performed on the RuleCounts table, and otherwise, a

new record is inserted into GrammarRules describing the new rule, and an associated

entry is added to RuleCounts to initialize the occurrence count for the new rule to 1.

An insertion is then performed on the Rules-By-Root-Node table to add/update the

entry keyed by x to store the rule id pertaining to the modified RHS. The cumulative cost

of these updates is O(log n). Next, the rules for each ancestor of x must be updated so

that their RHS’s contain a reference to the new rule for x in place of the obsolete rule. At

each ancestor, this consists of performing the sequence of steps listed previously, and also

updating the Rule References table to ensure that each reference to an outdated rule

135

File Name Size (B) Scale Factor
xmark512K.xml 570761 0.005
xmark4M.xml 4129094 0.035
xmark32M.xml 33379489 0.285
xmark256M.xml 268422667 2.291

Table 6.3: XMark documents used in grammar generation experiment.

for the child node is replaced with a reference to the new rule. Therefore, processing at each

ancestor also costs O(log n) time. In the worst case, x is a leaf node in T , and therefore h

ancestors must be processed, leading to the worst-case cost ofO(h log n). The rationale for

InsertBefore(x, y) operations is similar.

In the case of a Delete(x) operation, intuitively the worst case is when x is the root node.

This requires deleting all grammar rules and associated entries. From Property 5.2.4, this

necessitates the deletion ofO(n) rules, with each deletion coming at a cost ofO(log n).

6.3 Experiments

In this section, we provide the results of experiments designed to evaluate the efficency and

scalability of the proposed solutions in Chapter 5. All experiments were performed on an

entry-level server with a 2.2 GHz QuadCore AMD Opteron processor. For each experiment,

the BerkeleyDB cache size was set to 1 GB, while the maximum Java heap size was capped

at 4 GB.

6.3.1 Grammar Generation

XMark Documents

In the first experiment, we sought to test the scalability – in terms of both time and space

– of grammar generation. To do so, we performed a series of batch operations of increas-

ing size, each consisting of several node insertion operations which are valid against the

XMark [108] DTD. Each of the batch operations is executed on an initially empty database.

Fig. 6.3a plots the size of each batch operation (x-axis) against the corresponding time re-

quirements (y-axis) for generating the grammar; for each batch operation, the average time

requirement from five trials is reported. As expected, the time costs increase linearly with

respect to the number of nodes inserted. In a similar manner, Fig. 6.3b reports the space re-

136

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300

T
im

e
(s

)

Database Size (MB)

(a)

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

G
ra

m
m

ar
 S

pa
ce

 (
M

B
)

Database Size (MB)

(b)

Figure 6.3: Scalability of grammar construction in terms of (a) time and (b) space.

quirements for storing the grammar induced by each of the batch operations, and indicates

that the grammar storage costs increase linearly with the number of insertions performed.

Other Document Types

Since XMark databases are randomly generated, it is not too surprising that the resulting

lack of regularity in structure and content causes the grammar size to approach that of

the database itself. To get a more complete sense of the typical space requirements for

grammars, we also conducted a second experiment that compared the sizes of generated

grammars against database size for several XML documents obtained from the University

137

 0

 40000

 80000

 120000

dblp.xm
l

enwikinews.xm
l

lineitem
.xm

l

shakespeare.xm
l

SwissProt.xm
l

D
oc

um
en

t/G
ra

m
m

ar
 S

iz
e

(K
B

)

Document Name

Original Document Sizes vs. Sizes of Generated Grammars

Document Size
Grammar Size

Figure 6.4: Comparison of original XML document sizes with corresponding PRTG sizes.

of Washington XML Repository1 and the Wratislavia XML Corpus2. Fig. 6.4 plots the

original size of each document together with the corresponding grammar size. As expected,

the size difference between the original document and the corresponding PRTG is smaller

for “document-centric” XML files such as Shakespeare plays and Wikipedia entries than

it is for the “data-centric” files in the experiment (DBLP entries, the SwissProt genetic

database, and an XML encoding of the lineitem table from the TPC-H benchmark).

Grammar Maintenance

While the previous two experiments measured the cumulative costs of generating a database

grammar from an initially empty database, the next set of experiments measured the time re-

quirements for performing incremental grammar maintenance operations on a pre-existing

grammar. A separate experiment was carried out for Append(x, y), Insert(x, y), and

Delete(x) operations, in which the worst case scenario for each operation – as described

in the proof of Claim 6.2.1 – was modeled. That is, each appended node was attached as a

child of a leaf node in the existing XML tree, each inserted node was similarly added as a

left-child of a leaf node, and each delete operation was carried out on the root node of an

XML tree containing the specified number of nodes. Under these conditions, the height of
1http://www.cs.washington.edu/research/xmldatasets/
2http://www.ii.uni.wroc.pl/˜inikep/research/Wratislavia/

138

Database Size (MB)
dblp2000 144.698
dblp1990 185.652
dblp1980 197.540
dblp1970 201.726

Table 6.4: Sizes of the databases in the large DBLP files set.

each tree, h, is set to equal n, the number of nodes in the XML tree. Fig. 6.5 displays the

results for each experiment. The results are consistent with the expected O(n log n) cost

for each operation.

6.3.2 Query-Time Risk Analysis

DBLP Files – Large Set

The third experiment aimed to capture the impact upon query performance posed by query-

time risk analysis. Throughout this experiment, we used a set of DBLP 3 databases formed

by extracting articles based on publication year (i.e. dblp2000 includes all articles pub-

lished in 2000 or later, dblp1990 all articles since 1990, and so on). The characteristics of

these databases are shown in Table 6.4. In addition, we defined a federated ID Editorwith

a single ACP rule allowing access only to those articles not authored by E. F. Codd, and

employed the fixed query /child::* to retrieve the entire view available to Editor.

The results of this experiment, indicating the total query response times using a “cold”

and “warm” cache, are shown in Fig. 6.6a. Fig. 6.6b provides an alternative analysis of

the results by depicting the contributing time costs of each phase of query-time analysis

using a warm cache (the results prove similar for a cold cache). In each case, rule matching

dominates the overall cost, consuming between 81-83% of the overall query response time

and 94-97% of the time requirement for query-time disclosure analysis. The twig formation

and extension phases had a non-significant cost (less than 0.01 seconds each per trial), and

are excluded from the figure for clarity. Finally, it is interesting to note that the total time

cost of performing query-time risk analysis ranges from 5.59 to 6.74 times the comparative

cost of answering the query without performing any risk analysis.
3http://www.informatik.uni-trier.de/˜ley/db/

139

Database Size (MB)
dblp2010 13.225
dblp2009 31.931
dblp2008 50.560
dblp2007 68.165
dblp2006 84.169
dblp2005 98.463
dblp2004 110.096
dblp2003 120.693
dblp2002 129.707
dblp2001 137.621

Table 6.5: Sizes of the databases in the small DBLP files set.

Q1: /child::site
Q2: /child::site/child::regions
Q3: /child::site/child::regions/child::europe
Q4: /child::site/child::regions/child::europe/child::item
Q5: /child::site/child::regions/child::europe/child::item/

child::mailbox
Q6: /child::site/child::regions/child::europe/child::item/

child::mailbox/child::mail

Table 6.6: Queries issued against xmark256.xml in the experiment testing the impact of
query size on query-time analysis performance.

DBLP Files – Small Set

We also repeated the previous experiment using a smaller set of 11 DBLP files; the smallest

contains articles published since 2010, the second smallest articles published since 2009,

and so on down to the largest file, containing articles published since 2001. The sizes of

these files are shown in Table. 6.5. The results of this experiment complement those of the

first phase of the previous experiment by supplying timing results against a larger set of data

points. The results are depicted in Fig. 6.7a and Fig. 6.7b. These results are consistent with

those of the previous experiment, showing that query response times for both “cold” and

“warm” cache queries scale linearly with increasing database size, and additionally, that the

various phases of query-time risk analysis each scale linearly with increasing database size.

XMark Documents

Finally, we carried out the above experiments on the set of XMark documents described in

Table 6.3. This time, we utilized an access control policy based on a user named Buyer,

140

with access to all parts of the document except for type elements having a content value

of Featured. The results are depicted in Fig. 6.8. As with the previous data sets, in-

creasing database size results in a scalable increase in query response time, as shown in

Fig. 6.8a. To better cope with the wide range in document sizes (and resulting variety in

query response times), we utilize a log-log scale. For a similar reason, we represent the

breakdown of time requirements for query response time without risk analysis, rule match-

ing, and risk magnitude calculation using separate plots within a log-log scale in Fig. 6.8b,

instead of employing a stacked bar chart as was done in the previous experiments. We note

from this figure that the time requirements for performing rule matching and magnitude cal-

culation are outweighed by the query response time without analysis for the three smaller

documents, yet the cost of rule matching does become dominant for the largest XMark

document.

XMark documents are also typically deeper than DBLP documents. Taking advantage

of this, we also conducted an analysis of the impact of query size (measured as the number

of location steps within the query) on the time requirements for risk analysis. Fig. 6.8c

depicts the results for test queries ranging from 1 to 6 location steps; these queries are listed

in Table 6.6.

141

 10

 100

 1000

 10000

 1 10 100 1000

T
im

e
(m

s)

Appended Nodes

(a)

 10

 100

 1000

 10000

 1 10 100 1000

T
im

e
(m

s)

Inserted Nodes

(b)

 10

 100

 1000

 10000

 1 10 100 1000

T
im

e
(m

s)

Deleted Nodes

(c)

Figure 6.5: Worst case grammar maintenance costs for (a) Append(x, y), (b)
Insert(x, y), and (c) Delete(x) operations.

142

 0

 500

 1000

 1500

 2000

 140 150 160 170 180 190 200 210

Q
ue

ry
 E

xe
cu

tio
n

T
im

e
(s

)

Database Size (MB)

Cold Cache
Warm Cache

(a)

 0

 100

 200

 300

 400

 500

dblp2000

dblp1990

dblp1980

dblp1970

T
im

e
(s

)

Document Name

Query time w/o analysis
Rule matching

Risk mag. calculation

(b)

Figure 6.6: Time requirements for query-time risk analysis as database size is varied for the
large DBLP files.

143

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140

Q
ue

ry
 E

xe
cu

tio
n

T
im

e
(s

)

Database Size (MB)

Cold Cache
Warm Cache

(a)

 0

 50

 100

 150

 200

 250

dblp2010

dblp2009

dblp2008

dblp2007

dblp2006

dblp2005

dblp2004

dblp2003

dblp2002

dblp2001

T
im

e
(s

)

Database Name

Query time w/o analysis
Rule matching

Risk mag. calculation

(b)

Figure 6.7: Time requirements for query-time risk analysis as database size is varied for the
smaller DBLP files.

144

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.1 1 10 100 1000

Q
ue

ry
 E

xe
cu

tio
n

T
im

e
(s

)

Database Size (MB)

Cold Cache
Warm Cache

(a)

 1

 10

 100

 1000

 10000

 0.1 1 10 100 1000

T
im

e
(s

)

Database Size (MB)

Query time w/o analysis
Rule matching

Risk mag. calc.

(b)

 0

 100

 200

 300

 400

 500

 1 2 3 4 5 6

Q
ue

ry
 E

xe
cu

tio
n

T
im

e
(s

)

Query Size (# location steps)

Cold Cache
Warm Cache

(c)

Figure 6.8: Time requirements for query-time risk analysis as database and query sizes are
varied for the XMark documents.

145

Chapter 7

Conclusions

This chapter concludes the thesis by first summarizing the most important contributions

made within preceding chapters. This is followed by a discussion of potential directions for

future research.

7.1 Review of Contributions

In Chapter 3, we provided several complexity results related to the enforcement of multiple

access control policies defined over individual source databases at the data federation level.

• We showed that for arbitrary inputs consisting of a defined XML publishing function,

an access control policy, a relational schema, and an identity mapping function, it

is always possible to derive a secure publishing function capable of preserving the

access control policy semantics of the local data source over XML data exported to

the federation. Further, this function can be efficiently derived using a polynomial-

time function we provide.

• We also considered the problem of verifying whether a federated policy satisfies the

semantics of the local access control policies defined at each data source. We consid-

ered two problem variants: static verification examines the secure publishing func-

tion against the original relational schema, access control policy, XML publishing

function, and identity mapping function and produces a result that holds for any in-

stance database conformant to the supplied schema. For all but the simplest cases,

static verification proves to be undecidable, while for the restricted case in which the

146

XML publishing function contains only conjunctive queries, the problem remains

intractable. For dynamic verification, in which the output of the secure publishing

function on a specific database instance is compared against that of the original in-

puts, the operation requires at least exponential time (with respect to the database

size) for recursive secure publishing functions, while in the case of non-recursive

functions, it can be carried out in polynomial time.

• We examined the minimization problem for secure publishing functions: given an in-

put function, return the smallest function with equivalent semantics. After establish-

ing the equivalence of this problem with the static verification problem (and therefore

establishing its hardness), we considered a variant of the problem that used a weaker

notion of equivalence, and showed that the resulting complexities were one level

lower in the polynomial hierarchy than the corresponding static verification com-

plexities.

Finally, we contributed an algorithm for expressing a secure publishing function in the

eXtensible Access Control Markup Language (XACML), allowing our framework to more

easily be incorporated within existing architectures.

Motivated by the realization that even a well-crafted access control policy cannot ad-

equately guard against indirect accesses to data caused by information leakage, Chap-

ters 4- 6 outlined a scalable framework for detecting and removing disclosure risks on XML

databases. In particular, these chapters provided the following contributions:

• We provided a classification of disclosure risks relevant to XML databases based

on whether they can be detected at database design time (schema-based risks) or

are specific to the current database contents and therefore, can only be accurately

measured during the evaluation of a user query (instance-based risks)

• We then presented a two-phase solution for detecting and removing both types of dis-

closure risks. During the first phase, design-time risks are identified and removed via

a DTD analysis procedure that also serves to identify potential instance-based disclo-

sure risks. In the second phase, a query-specific analysis is performed to evaluate the

147

current disclosure risks relevant to the current query, using a novel measure based on

information theory.

• We demonstrated that probabilistic regular tree grammars provide a means for main-

taining an accurate probabilistic model of an XML database’s content. Such a model

is essential for computing the magnitude of instance-based disclosure risks using our

proposed measure.

• We described a prototype implementation of the two-phase approach to disclosure

risk detection and removal, and performed an experimental evaluation that demon-

strated the scalability of this implementation, as database and query sizes are in-

creased.

7.2 Future Directions

We now discuss potential avenues for future research that would extend the results of the

thesis.

7.2.1 Access Control Policy Translation

Although Chapter 3 provided theoretical analysis and algorithmic solutions to several is-

sues related to access control translation in data federations, there remain several areas for

future work. One can examine other formulations of the verification problem, including a

variation covering scenarios in which the existing translated ACP is specified not as a secure

publishing transducer, but rather in a declarative language such as XACML. Another area

for investigation is the use of alternative access control models on the relational side, such

as role-based and mandatory models. The substitution of one of these models could affect

our existing results on translation, verification, and minimization of ACPs. For example,

it is established that role-based models are strictly more powerful than either mandatory or

discretionary models, being capable of simulating any policy originally expressed in either

of these models [98].

A different articulation of the policy verification problem relaxes the assumption that

the list of federated users is fixed (e.g., to account for users being added to and removed

148

from the federation over time). In such cases, the bitstrings of two different secure publish-

ing transducers are incompatible. Thus, both the static and dynamic verification solutions

we provide must be changed: instead of directly comparing bitstrings, we must resort to

reasoning about the ACPs encoded in each transducer. While this assumption is not likely

to change our existing complexity results (as verification is dominated by the cost of materi-

alizing XML trees, not by the expense of access bitstring comparisons), efficient algorithms

for handling such cases for the simplest S.P.T. classes are still needed.

Finally, while Chapter 3 focused on cases where access control enforcement is central-

ized, other possibilities exist, including secure publishing solutions in which access control

is implemented over a single copy of an XML document via encryption. Integrating our

framework into such applications requires an algorithm for producing partially-encrypted

XML documents by applying a secure publishing transducer to an instance database. A

large-scale case study, involving the practical implementation of these ideas in realistic sce-

narios, would constitute an interesting area for future work. Such a study would also prove

valuable in identifying theoretical constructs in our framework which do not necessarily

admit an efficient implementation in practice (such as access bitstrings, which may incur

excessive storage costs in applications where the set of federated IDs is very large), and in

discovering more suitable alternatives.

7.2.2 XML Disclosure Control

The design-time disclosure risks considered in Chapter 4 were limited to those posed by a

specific XML schema language (DTDs). Other schema languages such as XML Schema [48],

Schematron [67], and Relax NG [68] are more expressive than DTDs [92], and hence, often

furnish the adversary with additional prior knowledge about the database such as key and

occurrence constraints. An area of future work involves classifying the additional potential

risks posed by each of these alternative schema languages and proposing efficient measures

for their detection and removal.

One extension of this work would involve using the approach presented in this paper

to suggest methods for “fine-tuning” an existing ACP in order to minimize the degree of

potential leakage. Another would be to investigate whether it would be possible to devise

149

a grammar-based representation of the database that allows an expressive range of queries

to be anwered directly on it, thereby removing the need to store the original database along

with its PRTG. Existing work on grammar-based XML compression suggests that there is

some promise in this direction [24, 25, 56, 79]. We intend to investigate efficient approxi-

mation algorithms for improving the utility of query results without violating the specified

leakage threshold. Finally, the prototype implementation presented in Chapter 6 provides a

starting point for more sophisticated solutions supporting multi-user scenarios.

7.2.3 Unexplored Topics

In Chapters 4 and 5, we presented a technique for preventing information disclosure at the

federated level. While it is true that some risks can only be detected at the federated level

(such as those caused by an adversary performing additional inference based on linking the

federated data exported by multiple data sources, when data from any one of these sources

would not constitute a risk), it is obviously more desirable from the standpoint of data

source autonomy to perform risk analysis at the local level. This would reduce each data

source’s reliance on federation security administrators to accurately detect and report back

all possible risks. Within the context of our framework, this would correspond to determin-

ing whether the locally defined publishing function serves to leak any information about

local data that is not exported to the federation. This problem would be made more interest-

ing by the fact that it is possible to represent a set of relational data in many different ways as

XML; therefore, some publishing functions will likely leak more information than others.

An investigation into what features of publishing functions make them more vulnerable (or

conversely, more secure) would be beneficial to the designers of such functions. Measures

for quantifying the amount of leakage and algorithms for automatically suggesting repairs

to insecure functions form two possible contributions resulting from such a study.

150

Bibliography

[1] Martin Abadi and Bogdan Warinschi. Security analysis of cryptographically con-
trolled access to XML documents. Journal of the ACM, 55(2):108–117, May 2008.

[2] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, Reading, MA, USA, 1995.

[3] Charu C. Aggarwal and Philip S. Yu. Privacy-preserving data mining: A survey. In
Handbook of Database Security, chapter 18, pages 431–460. Springer, New York,
NY, USA, 2007.

[4] A. V. Aho, Y. Sagiv, and J. D. Ullman. Equivalences among relational expressions.
SIAM Journal of Computing, 8(2):218–246, 1979.

[5] Anne Anderson. Hierarchical resource profile of XACML v2.0. OASIS Standard,
February 2005. http://docs.oasis-open.org/xacml/2.0/access_
control-xacml-2.0-hier-profile-spec-os.pdf.

[6] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A survey of peer-to-
peer content distribution technologies. ACM Computing Surveys, 36(4):335–371,
December 2004.

[7] S. Banerjee, V. Krishnamurthy, M. Krishnaprasad, and R. Murthy. Oracle8i - the
XML enabled data management system. In Proceedings of the 16th International
Conference on Data Engineering, pages 561–568, San Diego, CA, 2000. IEEE Com-
puter Society.

[8] Denilson Barbosa, Juliana Freire, and Alberto O. Mendelzon. Designing
information-preserving mapping schemes for XML. In Proceedings of the 31st In-
ternational Conference on Very Large Data Bases, pages 109–120, New York, NY,
USA, 2005. VLDB Endowment.

[9] Denilson Barbosa, Gregory Leighton, and Andrew Smith. Efficient incremental
validation of XML documents after composite updates. In Proceedings of the
Fourth International XML Database Symposium, pages 107–121, Seoul, Korea,
2006. Springer.

[10] D. E. Bell and L. J. LaPadula. Secure computer systems: mathematical foundations.
Technical Report Technical Report ESD-TR-278, vol. 1, The MITRE Corporation,
1973.

[11] Michael Benedikt, Chee Yong Chan, Wenfei Fan, Rajeev Rastogi, Shihui Zheng,
and Aoying Zhou. DTD-directed publishing with attribute translation grammars. In
Proceedings of the 28th International Conference on Very Large Data Bases, pages
838–849, New York, NY, USA, 2002. VLDB Endowment.

[12] Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernández, Michael Kay,
Jonathan Robie, and Jérôme Siméon. XML Path Language (XPath) 2.0. World
Wide Web Consortium, January 23 2007. http://www.w3.org/TR/2007/
REC-xpath20-20070123/.

151

[13] Elisa Bertino, Barbara Carminati, and Elena Ferrari. A temporal key management
scheme for secure broadcasting of XML documents. In Proceedings of the 9th ACM
Conference on Computer and Communications Security, pages 31–40, New York,
NY, USA, 2002. ACM.

[14] Elisa Bertino, Silvana Castano, and Elena Ferreri. Securing XML documents with
Author-X. IEEE Internet Computing, 5(3):21–31, May/June 2001.

[15] Elisa Bertino and Elena Ferrari. Secure and selective dissemination of XML docu-
ments. ACM Transactions on Information and System Security, 5(3):290–331, 2002.

[16] Elisa Bertino and Ravi S. Sandhu. Database security-concepts, approaches, and chal-
lenges. IEEE Transactions on Dependable and Secure Computing, 2(1):2–19, 2005.

[17] Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu, Jonathan Robie,
and Jérôme Siméon. XQuery 1.0: An XML query language. W3C Recommendation,
January 2007. http://www.w3.org/TR/xquery/.

[18] Piero Bonatti, Sabrina De Capitani di Vimercati, and Pierangela Samarati. An alge-
bra for composing access control policies. ACM Transactions on Information and
System Security, 5(1):1–35, 2002.

[19] David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael Champion,
Chris Ferris, and David Orchard. Web services architecture. W3C Recommendation,
February 2004. http://www.w3.org/TR/ws-arch/.

[20] Luc Bouganim, Francois Dang Ngoc, and Philippe Pucheral. Dynamic access-
control policies on XML encrypted data. ACM Transactions on Information and
System Security, 10(4):1–37, 2008.

[21] Tim Bray, Jean Paoli, C.M. Sperberg-McQueen, Eve Maler, and Francois
Yergeau. Extensible Markup Language (XML) 1.0 (Fourth Edition). World
Wide Web Consortium, September 29 2006. http://www.w3.org/TR/2006/
REC-xml-20060816/.

[22] Alexander Brodsky, Csilla Farkas, and Sushil Jajodia. Secure databases: Constraints,
inference channels, and monitoring disclosures. IEEE Transactions on Knowledge
and Data Engineering, 12(6):900–919, 2000.

[23] Glenn Bruns and Michael Huth. Access-control policies via belnap logic: effective
and efficient composition and analysis. In Proceedings of the 21st IEEE Computer
Security Foundations Symposium, pages 163–176, Washington, DC, USA, 2008.
IEEE Computer Society.

[24] Peter Buneman, Martin Grohe, and Christoph Koch. Path queries on compressed
XML. In Proceedings of the 29th International Conference on Very Large Data
Bases, pages 141–152, New York, NY, USA, 2003. VLDB Endowment.

[25] Giorgio Busatto, Markus Lohrey, and Sebastian Maneth. Efficient memory repre-
sentation of XML documents. In Proceedings of the 10th International Symposium
on Database Programming Languages, pages 199–216, New York, NY, USA, 2005.
Springer.

[26] Canadian Department of Justice. Personal Information Protection and Electronic
Documents Act. http://laws.justice.gc.ca/en/P-8.6/text.html,
April 2000.

[27] Alberto Caprara, Matteo Fischetti, and Dario Maio. Exact and approximate algo-
rithms for the index selection problem in physical database design. IEEE Transac-
tions on Knowledge and Data Engineering, 7(6):955–967, 1995.

152

[28] A.K. Chandra and P.M. Merlin. Optimal implementation of conjunctive queries in
relational databases. In Proceedings of the 9th ACM Symposium on the Theory of
Computing, pages 77–90, New York, USA, 1977. ACM.

[29] C. Chekuri and A. Rajaraman. Conjunctive query containment revisited. In Proceed-
ings of the 6th International Conference on Database Theory, pages 56–70, London,
UK, 1997. Springer-Verlag.

[30] Rada Chirkova, Alon Y. Halevy, and Dan Suciu. A formal perspective on the view
selection problem. The VLDB Journal, 11:216–237, November 2002.

[31] SungRan Cho, Sihem Amer-Yahia, Laks V. S. Lakshmanan, and Divesh Srivastava.
Optimizing the secure evaluation of twig queries. In Proceedings of the 28th Interna-
tional Conference on Very Large Data Bases, pages 490–501, New York, NY, USA,
2002. VLDB Endowment.

[32] E. F. Codd. A relational model of data for large shared data banks. Communications
of the ACM, 13(6):377–387, 1970.

[33] Douglas Comer. The difficulty of optimum index selection. ACM Transactions on
Database Systems, 3(4):440–445, 1978.

[34] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree automata techniques and applications. Available at: http:
//www.grappa.univ-lille3.fr/tata, 2007.

[35] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley-
Interscience, Hoboken, NJ, USA, 2nd edition, 2006.

[36] Jason Crampton. Applying hierarchical and role-based access control to XML docu-
ments. In Proceedings of the 2004 Workshop on Secure Web Services, pages 37–46,
New York, NY, USA, 2004. ACM.

[37] Nilesh Dalvi, Gerome Miklau, and Dan Suciu. Asymptotic conditional probabiliities
for conjunctive queries. In Proceedings of the 10th International Conference on
Database Theory, pages 289–305, New York, NY, USA, 2005. Springer.

[38] Ernesto Damiani, Sabrina De Capitani di Vimercati, Stefano Paraboschi, and
Pierangela Samarati. Securing XML documents. In Proceedings of the 7th Inter-
national Conference on Extending Database Technology, pages 121–135, London,
UK, 2000. Springer-Verlag.

[39] Ernesto Damiani, Sabrina De Capitani di Vimercati, Stefano Paraboschi, and
Pierangela Samarati. A fine-grained access control system for XML documents.
ACM Transactions on Information and System Security, 5(2):169–202, May 2002.

[40] B.A. Davey and Hilary A. Priestley. Introduction to Lattices and Order. Cambridge
University Press, Cambridge, UK, 2002.

[41] Steven Dawson, Sabrina De Capitani di Vimercati, and Pierangela Samarati. Speci-
fication and enforcement of classification and inference constraints. In IEEE Sympo-
sium on Security and Privacy, pages 181–195, Los Alamitos, CA, USA, 1999. IEEE
Computer Society.

[42] Sabrina de Capitani di Vimercati and Pierangela Samarati. Access control in feder-
ated systems. In Proceedings of New Security Paradigms Workshop, pages 87–99,
New York, NY, USA, 1996. ACM.

[43] Dorothy E. Denning and Jan Schlörer. Inference controls for statistical databases.
IEEE Computer, 16(7):69–82, July 1983.

153

[44] Sabrina De Capitani di Vimercati and Pierangela Samarati. An authorization model
for federated systems. In 4th European Symposium on Research in Computer Secu-
rity, pages 99–117, New York, NY, USA, 1996. Springer.

[45] Cynthia Dwork. Ask a better question, get a better answer: A new approach to
private data analysis. In 11th International Conference on Database Theory, pages
18–27, New York, NY, USA, 2007. Springer.

[46] Donald Eastlake and Joseph Reagle. XML encryption syntax and process-
ing. W3C Recommendation, December 2002. http://www.w3.org/TR/
xmlenc-core/.

[47] Ronald Fagin. On an authorization mechanism. ACM Transactions on Database
Systems, 3(3):310–319, September 1978.

[48] David C. Fallside and Priscilla Walmsley. XML Schema Part 0: Primer Second
Edition. World Wide Web Consortium, October 28 2004. http://www.w3.org/
TR/xmlschema-0/.

[49] Wenfei Fan. XML publishing: Bridging theory and practice. In Proceedings of the
11th International Conference on Database Programming Languages, pages 1–16,
London, UK, 2007. Springer-Verlag.

[50] Wenfei Fan, Chee-Yong Chan, and Minos Garofalakis. Secure XML querying with
security views. In Proceedings of the SIGMOD International Conference on Man-
agement of Data, pages 587–598, New York, NY, USA, 2004. ACM.

[51] Wenfei Fan, Floris Geerts, and Frank Neven. Expressiveness and complexity of XML
publishing transducers. In Proceedings of the 26th ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, pages 83–92, New York, NY, USA,
2007. ACM.

[52] Csilla Farkas, Alexander Brodsky, and Sushil Jajodia. Unauthorized inferences in
semistructured databases. Information Sciences, 176(22):3269–3299, 2006.

[53] Csilla Farkas and Sushil Jajodia. The inference problem: A survey. SIGKDD Explo-
rations, 4(2):6–10, 2002.

[54] Mary F. Fernandez, Yana Kadiyska, Dan Suciu, Atsuyuki Morishima, and
Wang Chiew Tan. SilkRoute: A framework for publishing relational data in XML.
ACM Transactions on Database Systems, 27(4):438–493, December 2002.

[55] David F. Ferraiolo, D. Richard Kuhn, and Ramaswamy Chandramouli. Role-Based
Access Control. Computer Security Series. Artech House, Norwood, MA, 2003.

[56] Barbara Fila and Siva Anantharaman. Automata for positive Core XPath queries on
compressed documents. In 13th International Conference on Logic for Program-
ming, Artificial Intelligence, and Reasoning, pages 467–481, New York, NY, USA,
2006. Springer.

[57] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman, New York, NY, USA, 1979.

[58] Georg Gottlob, Christoph Koch, and Reinhard Pichler. Efficient algorithms for pro-
cessing XPath queries. ACM Transactions on Database Systems, 30(2):444–491,
June 2005.

[59] Patricia P. Griffiths and Bradford W. Wade. An authorization mechanism for a re-
lational database system. ACM Transactions on Database Systems, 1(3):242–255,
September 1976.

154

[60] John Hale and Sujeet Shenoi. Catalytic inference analysis: Detecting inference
threats due to knowledge discovery. In Proceedings of the IEEE Symposium on Se-
curity and Privacy, pages 188–199, Los Alamitos, CA, USA, 1997. IEEE Computer
Society.

[61] Alon Halevy, Anand Rajaraman, and Joann Ordille. Data integration: the teenage
years. In Proceedings of the 32nd International Conference on Very Large Data
Bases, pages 9–16, New York, NY, USA, 2006. VLDB Endowment.

[62] Kenji Hashimoto, Fumikazu Takasuka, Kimihide Sakano, Yasunori Ishihara, and
Toru Fujiwara. Verification of the security against inference attacks on XML
databases. In Proceedings of the 10th Asia-Pacific Web Conference on Progress in
WWW Research and Development, pages 359–370, Berlin, Germany, 2008. Springer-
Verlag.

[63] Thomas H. Hinke, Harry S. Delugach, and Randall P. Wolf. Protecting databases
from inference attacks. Computers and Security, 16(8):687–708, 1997.

[64] J. E. Hopcroft. An n log n algorithm for minimizing states in a finite automaton. In
Z. Kohavi and A. Paz, editors, Theory of Machines and Computations, pages 189–
196. Academic Press, London, England, 1971.

[65] IBM. Label-based Access Control (LBAC) Overview, 2008. http:
//publib.boulder.ibm.com/infocenter/db2luw/v9/topic/
com.ibm.db2.udb.admin.doc/doc/c0021114.htm.

[66] Norbik Bashah Idris, W. A. Gray, and R. F. Churchhouse. Providing dynamic secu-
rity control in a federated database. In Proceedings of the 20th International Con-
ference on Very Large Data Bases, pages 13–23, New York, NY, USA, 1994. VLDB
Endowment.

[67] International Standards Organization. ISO/IEC 19757-3:2006 Information technol-
ogy – Document Schema Definition Language (DSDL) – Part 3: Rule-based valida-
tion – Schematron, June 1 2006. http://www.schematron.com/.

[68] International Standards Organization. ISO/IEC 19757-2:2008 Document Schema
Definition Language (DSDL) – Part 2: Regular-grammar-based validation – RELAX
NG, December 15 2008. http://www.relaxng.org/.

[69] S. Jajodia, R. Sandhu, and B. Blaustein. Solutions to the polyinstantiation problem.
In M.A. Abrams et al., editor, Information Security: An Integrated Collection of Es-
says, volume 1, pages 493–529. IEEE Computer Society, Los Alamitos, California,
USA, 1994.

[70] Dirk Jonscher and Klaus R. Dittrich. An approach for building secure database fed-
erations. In Proceedings of the 20th International Conference on Very Large Data
Bases, pages 24–35, New York, NY, USA, 1994. VLDB Endowment.

[71] Daniel Kifer. Attacks on privacy and deFinetti’s theorem. In Proceedings of the 35th
SIGMOD International Conference on Management of Data, pages 127–138, New
York, NY, USA, 2009. ACM.

[72] Ralph Kimball and Margy Ross. The Data Warehouse Toolkit: The Complete Guide
to Dimensional Modeling. Wiley, Hoboken, NJ, USA, 2nd edition, 2002.

[73] Benny Kimelfeld and Yehoshua Sagiv. Twig patterns: From XML trees to graphs.
In Proceedings of the 9th International Workshop on the Web and Databases, New
York, NY, USA, 2006. ACM. Online proceedings.

[74] Anthony Klug. On conjunctive queries containing inequalities. Journal of the ACM,
35(1):146–160, January 1988.

155

[75] Michiharu Kudo and Satoshi Hada. XML document security based on provisional
authorization. In Proceedings of the 7th ACM Conference on Computer and Com-
munications Security, pages 87–96, New York, NY, USA, 2000. ACM.

[76] Gregory Leighton. Preserving SQL access control policies over published XML data.
In Proceedings of the 2009 EDBT/ICDT Workshops, pages 185–192, New York, NY,
USA, 2009. ACM.

[77] Gregory Leighton and Denilson Barbosa. Access control policy translation and ver-
ification within heterogeneous data federations. In Proceedings of the 15th ACM
Symposium on Access Control Models and Technologies, pages 173–182, New York,
NY, USA, 2010. ACM.

[78] Gregory Leighton and Denilson Barbosa. Access control policy translation, verifica-
tion, and minimization within heterogeneous data federations. In press, 2012.

[79] Gregory Leighton, Jim Diamond, and Tomasz Müldner. AXECHOP: A grammar-
based compressor for XML. In Proceedings of the IEEE Data Compression Confer-
ence, page 467, Los Alamitos, CA, USA, 2005. IEEE Computer Society.

[80] Leonid Libkin. Expressive power of SQL. Theoretical Computer Science,
296(3):379–404, 2003.

[81] Bo Luo, Dongwon Lee, Wang-Chien Lee, and Peng Liu. QFilter: Fine-grained run-
time XML access control via NFA-based query rewriting. In Proceedings of the 13th
ACM International Conference on Information and Knowledge Management, pages
543–552, New York, NY, USA, 2004. ACM.

[82] Bo Luo, Dongwon Lee, and Peng Liu. Pragmatic XML access control using off-
the-shelf RDBMS. In Proceedings of the 12th European Symposium On Research In
Computer Security, pages 55–71, New York, NY, USA, 2007. Springer.

[83] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthuramakrishnan
Venkitasubramaniam. l-diversity: Privacy beyond k-anonymity. ACM Transactions
on Knowledge Discovery from Data, 1(1):Online publication, 2007.

[84] Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Natural
Language Processing. The MIT Press, Cambridge, MA, USA, 1999.

[85] Donald G. Marks. Inference in MLS database systems. IEEE Transactions on Knowl-
edge and Data Engineering, 8(1):46–55, February 1996.

[86] Jim Melton and Alan R. Simon. Understanding the New SQL: A Complete Guide.
Morgan-Kaufmann, San Francisco, 1993.

[87] Gerome Miklau. Confidentiality and Integrity in Data Exchange. PhD thesis, Uni-
versity of Washington, 2005.

[88] Gerome Miklau and Dan Suciu. Controlling access to published data using cryp-
tography. In Proceedings of the 29th International Conference on Very Large Data
Bases, pages 898–909, New York, NY, USA, 2003. VLDB Endowment.

[89] Gerome Miklau and Dan Suciu. A formal analysis of information disclosure in data
exchange. Journal of Computer and System Sciences, 73(3):507–534, 2007.

[90] Matthew Morgenstern. Controlling logical inference in multilevel database systems.
In Proceedings of the IEEE Symposium on Security and Privacy, pages 245–255,
Los Alamitos, CA, USA, 1988. IEEE Computer Society.

[91] Tim Moses. Extensible access control markup language (XACML) version 2.0. OA-
SIS Standard, February 2005. http://docs.oasis-open.org/xacml/2.
0/access_control-xacml-2.0-core-spec-os.pdf.

156

[92] Makoto Murata, Dongwon Lee, Murali Mani, and Kohsuke Kawaguchi. Taxonomy
of XML schema languages using formal language theory. ACM Transactions on
Internet Technology, 5(4):1–45, 2005.

[93] Makoto Murata, Akihiko Tozawa, Michiharu Kudo, and Satoshi Hada. XML ac-
cess control using static analysis. In Proceedings of the 10th ACM Conference on
Computer and Communications Security, pages 73–84, New York, NY, USA, 2003.
ACM.

[94] Qun Ni, Elisa Bertino, and Jorge Lobo. D-algebra for composing access control
policy decisions. In Proceedings of the 4th International Symposium on Informa-
tion, Computer, and Communications Security, pages 298–309, New York, NY, USA,
2009. ACM.

[95] Matthias Nicola and Bert Van Der Linden. Native XML Support in DB2 Universal
Database. In Proceedings of the 31st International Conference on Very Large Data
Bases, pages 1164–1174, New York, NY, USA, 2005. ACM.

[96] Oracle Corporation. Oracle 10g Release 2 Security, 2005.
http://www.oracle.com/technology/deploy/security/
database-security/pdf/twp_security_db_database_10gr2.
pdf.

[97] Oracle Database 11g XML DB technical overview, 2007. http://www.oracle.
com/technology/tech/xml/xmldb/Current/xmldb_11g_twp.pdf.

[98] Sylvia Osborn, Ravi Sandhu, and Qamar Munawer. Configuring role-based access
control to enforce mandatory and discretionary access control policies. ACM Trans-
actions on Information and System Security, 3(2):85–106, 2000.

[99] Shankar Pal, Mark Fussell, and Irwin Dolobowsky. XML Support in Microsoft
SQL Server 2005. http://msdn2.microsoft.com/en-us/library/
ms345117.aspx, 2005.

[100] Christos H. Papadimitriou. On the complexity of unique solutions. Journal of the
ACM, 31(2):392–400, 1984.

[101] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, Reading,
Massachusetts, 1994.

[102] Arnon Rosenthal and Edward Sciore. Abstracting and refining authorization in SQL.
In Proceedings of the Secure Data Management Workshop, pages 148–162, New
York, NY, USA, 2004. Springer.

[103] Arnon Rosenthal and Marianne Winslett. Security of shared data in large systems:
state of the art and research directions. In Proceedings of the 2004 ACM SIGMOD
International Conference on Management of Data, pages 962–964, New York, NY,
USA, 2004. ACM.

[104] Yehoshua Sagiv and Mihalis Yannakakis. Equivalences among relational expres-
sions with the union and difference operators. Journal of the ACM, 27(4):633–655,
October 1980.

[105] Pierangela Samarati. Protecting respondents’ identities in microdata release. IEEE
Transactions on Knowledge and Data Engineering, 13(6):1010–1027, 2001.

[106] Pierangela Samarati and Sabrina De Capitani di Vimercati. Access control: policies,
models, and mechanisms. In IFIP WG 1.7 International School on Foundations of
Security Analysis and Design: Tutorial Lectures, pages 137–196, London, UK, 2000.
Springer-Verlag.

[107] R. Sandhu and F. Chen. The multilevel relational data model. ACM Transactions on
Information and System Security, 1(1):93–132, 1998.

157

[108] Albrecht Schmidt, Florian Waas, Martin Kersten, Michael J. Carey, Ioana
Manolescu, and Ralph Busse. XMark: a benchmark for XML data management. In
Proceedings of the 28th International Conference on Very Large Data Bases, pages
974–985, New York, NY, USA, 2002. VLDB Endowment.

[109] Jayavel Shanmugasundaram, Eugene J. Shekita, Rimon Barr, Michael J. Carey,
Bruce G. Lindsay, Hamid Pirahesh, and Berthold Reinwald. Efficiently publish-
ing relational data as XML documents. VLDB Journal, 10(2-3):133–154, September
2001.

[110] Jayavel Shanmugasundaram, Kristen Tufte, Gang He, Chun Zhang, David DeWitt,
and Jeffrey Naughton. Relational databases for querying XML documents: limita-
tions and opportunities. In Proceedings of the 25th International Conference on Very
Large Data Bases, pages 302–314, New York, NY, USA, 1999. VLDB Endowment.

[111] Claude E. Shannon. A mathematical theory of communication. Bell System Technical
Journal, 27:379–423 and 623–656, July and October 1948.

[112] A.P. Sheth and J.A. Larson. Federated database systems for managing distributed,
heterogeneous, and autonomous databases. ACM Computing Surveys, 22(3):180–
236, 1990.

[113] Latanya Sweeney. k-anonymity: A model for protecting privacy. International Jour-
nal on Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5):557–570, 2002.

[114] Jeroen Terstegge. Privacy in the law. In Milan Petković and Willem Jonker, editors,
Security, Privacy, and Trust in Modern Data Management, chapter 2, pages 11–20.
Springer, New York, NY, USA, 2007.

[115] Jeffrey D. Ullman. Principles of Database Systems. W. H. Freeman & Co., New
York, NY, USA, 1983.

[116] Ron van der Meyden. The complexity of querying indefinite data about linearly
ordered domains. Journal of Computer and System Sciences, 54(1):113–135, 1997.

[117] Hui Wang and Laks V.S. Lakshmanan. Efficient secure query evaluation over en-
crypted XML databases. In Proceedings of the 32nd International Conference on
Very Large Data Bases, pages 127–138, New York, NY, USA, 2006. VLDB Endow-
ment.

[118] Xiaokui Xiao and Yufei Tao. m-invariance: towards privacy preserving re-
publication of dynamic datasets. In Proceedings of the 33rd ACM SIGMOD Inter-
national Conference on Management of Data, pages 689–700, New York, NY, USA,
2007. ACM.

[119] Xiaochun Yang and Chen Li. Secure XML publishing without information leakage
in the presence of data inference. In Proceedings of the 30th International Confer-
ence on Very Large Data Bases, pages 96–107, New York, NY, USA, 2004. VLDB
Endowment.

[120] Shohei Yokoyama, Manabu Ohta, Kaoru Katayama, and Hiroshi Ishikawa. An ac-
cess control method based on the prefix labeling scheme for XML repositories. In
Proceedings of the 16th Australasian Database Conference, pages 105–113, Dar-
linghurst, Australia, Australia, 2005. Australian Computer Society, Inc.

158

