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Abstract

In present thesis I focus on development of method of market completions and its

applications to various problems in pricing and hedging of contingent claims.

Since theory of mathematical finance is well developed on complete markets, and

corresponding solutions are well understood, method of market completions emerges

as a naturall idea for applying knowledge available for complete markets to the case

of incomplete one.

Key approach of proposed method is to introduce family of possible “completed”

versions of initially incomplete market, parametrized by the set of special auxiliary

assets. This manipulation leads to multiple subproblems, that could be solved by the

means of known complete market techniques. Further, having corresponding family

of solutions, I demonstrate how one could come up with criteria to choose optimal

solution for initial market which would not depend on auxiliary assets.

I start with discussion of reasons for market incompleteness and introduce market

completions for parametrization of completed versions of the market.

Then, I demonstrate how proposed method can be applied for fundamental prob-

lems of utility maximization, including not-necessarily concave utility function and

pricing of contingent claims.

Then, I move to another important group of problems in the field of mathemati-

cal finance – hedging of contingent claims. In the modern risk management industry,

however it is more common to choose partial hedging, since it allows for more flexibil-

ity and money savings. I will start with discussing application of method of market

completions for fundamental problems of quantile and effective hedging and then for
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modern risk-measures approach. I will also provide numerical examples for solutions

on incomplete market.

It is known that the key element of this problem is a risk measure chosen for

assessment of risks. Two of the most widely used risk measures in the industry

nowadays are Value-at-Risk (VaR) and Expected Shortfall (CVaR). However, it has

been demonstrated recently that both of these measures could be incorporated into

one two-parametric risk measure called Range Value-at-Risk (RVaR). I will focus on

demonstration that partial hedging problem with respect to both CVaR and RVaR

in incomplete market could be approached with the help of method of market com-

pletions through the Utility Maximization task embedded into RVaR optimization

problem.

Conclusions and further research directions in exploring the ideas of Method of

market completions are in the last chapter.
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Current thesis is structured in the way that each chapter has its own separate intro-

duction.

Some chapters of this thesis are based on a published and submitted for publication

research articles.
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Chapter 1

Introduction

1.1 Outline

The main goal of present thesis is to introduce Method of Market Compeltions and

investigate its applications to various famous problems of mathematical finance in-

cluding pricing of contingent claims, utility maximization, perfect and partial hedging.

Chapter 1 is intended to set up a context of discussion. Standard multidimensional

market model is introduced. We also elaborate on incompleteness of the model under

consideration and provide necessary details regarding concepts of perfect hedging,

risk measures and hypothesis testing tasks.

In Chapter 2 we introduce method of market completions which is a core method-

ology of the thesis. As it follows from the name, the nature of the method is to

find equivalent completed versions of the market. In Chapter 2 we demonstrate the

steps required to find such completed versions of the initial market with the help of

orthogonal market completions. Each market completion is, essentially, a set of spe-

cific auxiliary market assets of similar structure. We elaborate how each completed

market version an be parametrized by the sets of auxiliary assets. In line with it, we

obtain the particular market completion that corresponds to the important minimal

martingale measure.

Having portfolios and assets price processes introduced, we focus on the problem

of optimal investment. In Chapter 3 we present the utility maximization problem for
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both concave and not necessarily concave utility function, that satisfy mild growth

condition. We elaborate on criteria that can be used in order to pick particular

solution on incomplete market based on completions.

Moving on, we now assume existence of some financial claim in future and present

classical pricing approaches for such claims in Chapter 4. We start with demonstration

that standard results from martingale approach could be obtained by means of method

of market completions. We also present the Utility Based Indifference Pricing method

and show how market completions fit into this framework.

Important question of partial hedging is discussed in following chapters. We start

with Quantile hedging task in Chapter 5 where we obtain results with the help of

famous Neyman-Pearson lemma. And also show how the problem can be solved on

incomplete market with the help of method of market completions. Efficient hedging,

including both linear and convex loss function is discussed in Chapter 6.

In Chapter 7 we discuss modern approach to partial hedging with focus on distribution-

based risk measures. We consider CVaR minimization problem for both complete and

incomplete cases with two different approaches. We then move on to RVaR optimiza-

tion task and demonstrate how solution can be obtained.

Chapter 8 broadens the applications of method of market completions for the

defaultable market model. In this chapter we assume that there is a possibility of

default. So the market information is generated by additional source of uncertainty

which is, by nature, impossible to hedge. In addition, we assume that underlying

financial market is incomplete. In this scenario we demonstrate how method of market

completions might be applied to find optimal partial hedging strategies.

1.2 Standard Multidimensional Market Model

In this sections we introduce the market model that will be in the focus through

the whole thesis. First of all, we introduce a stochastic basis (Ω,FT ,F, P ) where

Ω is a set of elementary outcomes ω, σ-algebra of this outcomes FT , probability
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measure P and filtration F which is an increasing family F = {Ft}0≤t≤T of sub-σ-

algebras Ft ∈ FT that is right continuous and contains all subsets of FT with P -

measure zero. Stochastic process X defined on stochastic basis (Ω,FT ,F, P ) is called

progressively measurable with respect to filtration F if for every t ∈ [0, T ] function

X(s, ω) : [0, t] × Ω → R is B([0, t]) × Ft-measurable function. Process Xt is called

adapted to filtration F, or simply Ft-adapted if Xt ∈ Ft for all t ≥ 0.

On introduced stochastic basis we define Standard Multidimensional Market Model

that consists of one risk-free asset and n risky assets (stocks). This model can be

written as (B, S) = (Bt, S
1
t , ..., S

n
t )t≤T where (Bt)t≤T represents the value process of

a bank account and St = (S1
t , ..., S

n
t )t≤T describes the prices of n risky assets:

dBt = Btrtdt, B0 = 1 (1.1)

dSit = Sit

(︄
µitdt+

k∑︂
j=1

σijt dW
j
t

)︄
(1.2)

Elements of a k-dimensional vector W = (W 1, ...,W k) are independent standard

Brownian motions. All coefficients of the model: rt, µ
i
t and σit are assumed to be

progressively measurable with respect to filtration F for all i. In addition, matrix

Σt = {σijt } has a full rank for all t ∈ [0, T ]. We also assume that
∫︁ T
0
∥µt∥dt <∞ and∫︁ T

0
|rt|dt ≤ L where L is some real positive constant.

In general, one can define multidimensional market model in a way that each risky

asset price is governed by separate Brownian motion and they are correlated among

different assets. It was shown in Dhaene et al. 2013 that market can be equivalently

described by both of mentioned models. We will focus on Standard model with non-

correlated ”underlying” Browninan motions.

(F)t≤T -adapted process π = (βt, π
1
t , ..., π

n
t )t≤T is called a portfolio (strategy) with

value process V π
t defined by

V π
t = βtBt +

n∑︂
i=1

πitS
i
t .
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Each πi element of the vector π represents quantity of asset type i acquired for

portfolio. Let us also introduce class of admissible portfolios with initial capital x as

A(x) = {π : V π
0 = x, ∃K(π) ≥ 0 s.t. V π

t ≥ −K for all t ≤ T}.

Admissible strategy π is called self-financing if the following condition holds

∫︂ T

0

n∑︂
i=1

(︄
|πitµit|+ (πit)

2

k∑︂
j=1

(σijt )
2

)︄
dt <∞ (1.3)

and the associated value process can be written as

V π
t = V π

0 + βtdBt +
n∑︂
i=1

∫︂ t

0

πisdS
i
s.

Further, class of self-financing strategies will be denoted SFa

For a market model to be consistent, it is required that there is no possibility of

arbitrage.

Definition 1.1 Market admits arbitrage if

∃π ∈ A(x), s.t. V π
0 = 0 and P (V π

T (x) > 0) = 1

Absence of arbitrage is closely connected to existence of risk-neutral, or martingale,

measure. In Karatzas and Shreve 2016 authors demonstrated criteria for the standard

multidimensional market model to be arbitrage-free:

Proposition 1.2 1. If there exists a (Ft)t≤T−progressively measurable process θ =

(θ1t , ..., θ
k
t )t≤T that satisfies

k∑︂
j=1

σijt θ
j
t = µit − r, i = 1, ..., n, P − a.s. (1.4)

and

E

[︄
exp

(︄
1

2

∫︂ T

0

k∑︂
j=1

(θjt )
2dt

)︄]︄
<∞, (1.5)

then the (B, S) market is arbitrage free.
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2. Conversely, if the (B, S) market is arbitrage-free, then there exists a (Ft)t≤T−progressively

measurable process θ = (θ1t , ..., θ
k
t )t≤T that satisfies conditions (1.4) and (1.5).

In other words, market is arbitrage-free if and only if system (1.4) has solution.

From the first fundamental theorem of mathematical finance, no-arbitrage condition

is equivalent to existence of a special equivalent measure, called martingale, or risk-

neutral. Such measure is the one, which is equivalent to initial, physical measure

in a sense of mutual absolute continuity and under which all risky assets discounted

price processes are martingales. As a consequence, discounted value process of any

portfolio under the martingale measure is also a martingale. It is well known, that

probability density of such equivalent martingale measure can be constructed by the

means of stochastic exponential in the form introduced by Girsanov:

ZA
T =

dP ∗

dP
= exp

{︄
−

n∑︂
i=1

∫︂ T

0

θitdW
i
t −

1

2

n∑︂
i=1

∫︂ T

0

(θit)
2dt

}︄
(1.6)

where θ is a solution of (1.4). Such solution can also be written in an explicit form:

θt = ΣT
t ·
(︁
ΣtΣ

T
t

)︁
(µt − r1̄k). (1.7)

According to famous Girsanov theorem, process

ˆ︂Wt := Wt +

t∫︂
0

θsds (1.8)

is a Brownian motion under measure P ∗.

1.3 Market Completeness

In a field of mathematical finance it is common to think about market completeness

in terms of attainability of contingent claims. Namely, if any contingent claim payoff

can be replicated as a capital of some admissible portfolio, consisting of assets, present

on the market, then such market will be called complete. Let us consider probability

space (Ω,FW
T , P ). Then mentioned attainability can be summarized in the following

definition.
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Definition 1.3 (Market Completeness) The market is called complete if for each

FW
T −measurable payment function g = gT (ω) ≥ 0, such that E [g] <∞ there exists a

strategy π ∈ SFa such that P− a.s.

V π
T = g

Generally speaking, all possible states of the market through the investment time

interval can be described by filtration F = {FW
t }t≤T . Each sigma-algebra in such fil-

tration is generated by some underlying stochastic processes {W i
t }1≤i≤k which could

be thought of as sources of uncertainty on the market. In case of model (8.1), set

of these underlying processes is represented as a set of independent Brownian mo-

tions. In line with it, there are risky assets, available for trading on the market, with

stochastic price processes. Trading in such assets leads to existence of another sigma

algebras, generated by assets FA
T . Then, market model is incomplete when there

exists B ∈ FW
T such that B ̸∈ FA

T .

Such difference in sigma algebras might stem from various reasons. For example,

market might be incomplete directly due to asymmetric information. In other words,

when market agents have different access to information driving the prices of assets

on the market. This might happen due to different relation to particular company of

some investors (e.g. being employee, contractor and e.t.c.). In Eyraud-Loisel 2019 it

was demonstrated how presence of informed, influential agent might lead to market

incompleteness for non-informed small investors. From this perspective market can

be ”completed” if necessary information is provided to non-informed participant. Or,

rigorously speaking, by enlargement of filtration.

Another reason for differences in filtration might be presence of non-financial risks

which, by their nature, cannot be covered by financial assets. One of such examples is

risk of default, which we will cover in Chapter 8. From this perspective, uncertainty

in asset prices is driven by underlying Brownian motions. However, there is also

a risk of default, represented by Poisson process. In Bielecki and Rutkowski 2002
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authors developed methodology of ”extending” the filtration, generated by financial

assets with filtration from default-related process. Details on such methodology are

provided in Chapter 8.

Nevertheless, the most well-known reason for market incompleteness is the ”struc-

tural” one. In other words, when there is a lack of tradeable assets necessary for

coverage of all possible outcomes. According to the first fundamental theorem of

Mathematical Finance, we know that markets complete if and only if equivalent mar-

tingale measure is unique for such market. Summarizing results from Dhaene et al.

2013 and Karatzas and Shreve 2016 we can formulate conditions for Market complete-

ness of Standard Multidimensional Market model (8.1) as follows:

Theorem 1.4 (Completeness criteria) Standard financial market M is complete

⇐⇒ number of available stocks n = k, where k is a dimension of underlying vector

of Brownian motions.

To switch to mentioned unique martingale measure, one could use special Gir-

sanov exponential, which, in multidimensional case, will be written as in (1.6). It is

straightforward to notice that market completeness is connected with the ”volatility”

matrix Σt = {σijt }i=1..n,j=1..k. In case of complete market one observes n = k, matrix

has full rank and we expect to see non-degenerative matrix n× n.

Despite the amount and variety of claims traded on the market, the set of possible

outcomes is usually greater than the set of claims, which makes its vital to be able to

operate on such markets. In current manuscript we focus on structural incompleteness

and propose a Method of Market Completeness (Chapter 2) as a tool for working with

structurally incomplete market models. The main idea behind proposed approach is to

add necessary information to the market by introducing required amount of financial

assets that would complete the set of tradeable assets in order to cover all possible

outcomes.

The idea of adding auxiliary assets to the market in order to make it complete
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is not limited to the diffusion market model. For example, it is well known that

jump-diffusion model is naturally incomplete and usually considered with two assets

instead of one. There were also some developments towards more general geometric

Levy model in which asset price is governed by jumps

dBt = rBtdt (1.9)

dSt = St− (µdt+ dZt) S0 > 0, (1.10)

Zt = σWt +Xt (1.11)

where Xt is a pure jump process and W and X are independent. That is well known,

that such Levy model is not complete even in one dimensional case as it includes

jumps and Brownian motions as two independent sources of risk and only one asset

to use. So instead of introducing same structure auxiliary assets, authors in Corcuera

et al. 2005 offer to enlarge the Levy market with the so-called ith-power-jump assets

defined as

X
(i)
t =

∑︂
0<s≤t

(∆Xs)
i, i ≥ 2, (1.12)

where ∆Xs = Xs − Xs− and X
(1)
t = Xt. Processes X(i) are again Levy processes.

These power-jump processes jumps at the same time as the original Zt, however, jump

sizes are the i-th power of jumps of the original process. Note, that X
(i)
t = Z

(i)
t , i ≥ 2.

It is convenient to rewrite these assets in compensated form

Y
(i)
t = Z

(i)
t − E

[︂
Z

(i)
t

]︂
= Z

(i)
t −mit, i ≥ 1. (1.13)

Enlargement of the model is then consists of allowing to trade in assets:

H
(i)
t = ertY

(i)
t , i ≥ 2. (1.14)

With these assets available it was demonstrated in Corcuera et al. 2005 that any

square integrable martingale Mt can be represented as follows:

Mt =M0 +

∫︂ t

0

hsdZ̃s +
∞∑︂
i=2

∫︂ t

0

h(i)s dY
(i)
s (1.15)
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where hs and h
(i)
s , i ≥ 2 are predictable processes such that

Z̃ = Zt − (µ− r)t, t ≥ 0 (1.16)

and

E

[︃∫︂ t

0

|hs|2ds
]︃
<∞ (1.17)

E

[︃∫︂ t

0

|h(i)s |2ds
]︃
<∞. (1.18)

In other words, for any square-integrable contingent claim f (non-negative, FT mea-

surable random variable) we can set up a sequence of self-financing portfolios whose

final values converge in L2(P ∗). This portfolio will consist of a finite number of bonds,

stocks and ith-power-jump assets. Which means that f can be replicated and market

is approximately complete.

This interesting result is important to consider within the general idea of market

completion because it offers to search for more specific auxiliary assets beyond just

structure-preserving additional assets discussed before. In case of Levy market model

or other model with jumps it might be more convenient to pick specific types of

completing assets for each kind of risks presented. It is also useful in terms of inter-

pretation of the auxiliary assets as power-jump-assets are by nature an instruments

that give an exposure to moments like variance (2nd-power-jump asset) or skeweness

and kurtosis of distribution (3rd and 4th correspondingly). Assets of such type might

be more convenient to introduce to real markets in order to fix its incompleteness.

1.4 Coherent Risk Measures

One of the central questions in Risk management industry will always be the problem

of quantification of the risk. It is essential to be able to estimate risk in order to con-

struct more complex problems associated with its management. Therefore, it comes

at no surprise that problem of risk quantification lead to considerable theoretical work
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described in literature. It is common to find some specific function that would use

financial position as input and produce risk of this position as a number.

In current manuscript, we focus on the notion of coherent risk measures proposed

by Artzner et al. 1999. According to this approach, risk measure is a mapping from

random payoffs to numbers line. In this section we focus on the properties of such

mappings and their requirements in order to preserve coherence property. We also

introduce risk measures actively used by market participants in their risk management

strategies.

Consider probability space of market outcomes (Ω,FT , P ) and space of all possible

losses L, which are represented as a random variable. If random variable L ∈ L is

negative – it would imply that position generated gain. We assume the set of all such

random variables is a convex cone containing all constants.

Definition 1.5 A risk measure is a mapping ρ : L → R. Number ρ(L) for each

L ∈ L represents how risky the portfolio, which generates L is.

Following Artzner et al. 1999, we focus on coherent measures of risk.

Definition 1.6 (from Artzner et al. 1999) A risk measure ρ is called coherent

if it is:

1. monotone(decreasing): ρ(X) ≤ ρ(Y ) for any X ≤ Y ,

2. cash-additive (additive with respect to cash reserves): ρ(X + c) = ρ(X) + c for

any c ∈ R,

3. positive homogeneous: ρ(λX) = λρ(X) for any λ > 0,

4. sub-additive (diversification): ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

In financial industry it is common to use risk measures that are distribution-based,

i.e. depend only on distribution of losses from position. Therefore, if two losses are

equivalent in distribution, their risk measures will also be equal. Two important
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examples of such risk measures are Value-at-Risk and Conditional Value-at-Risk,

which are popular among market agents and accepted in regulatory documentations.

We now provide rigorous definition of these measures which we will use in following

chapters.

Definition 1.7 (VaR) Value-at-Risk (VaR) measure of a loss X can be defined as

V aRα(X) = inf{a : P (X > a) ≤ α}

Value-at-Risk (VaR) is a very popular and widely-used risk measure and was ac-

cepted as preferred one in industry regulations. However, it becomes unstable and

difficult to work with numerically in case when distribution of losses is different from

normal. In addition to that, VaR measure of risk is not a coherent one (see Artzner

et al. 1999). Another shortcoming of Value-at-Risk is that it fails to provide any

information regarding severity of losses beyond the chosen threshold. In other words,

it has a bias towards optimism as this measure provides lowest bound for losses in

the tail, whereas conservatism is ought to be more appreciated among industry pro-

fessionals. As a response, alternative measure of risk was developed which is coherent

and offers a way to quantify tail risk.

Definition 1.8 (CVaR) Conditional Value-at-Risk (CVaR) measure of a loss X can

be defined as

CV aRα(X) =
1

1− α

∫︂ 1

α

V aRα(x)dx,

In coming chapters (precisely Chapter 7) we will use these measures as a risk

”estimators” for constructing optimal hedging strategies. In the next section we

elaborate on purpose of such strategies and the natural ways of their construction.

1.5 Perfect and Partial Hedging

In the area of mathematical finance it is usually the case that market agent is in-

volved in some deal with derivatives, or, in general, with contingent claims. In other
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words, she participate in a deal, according to which she obtain some financial obli-

gation desribed as a contingent claim payoff function. We treat this payoff as a

FT -measurable random variable gT (ω). In case payoff happens at maturity of the

instrument and depends only on the value at the moment T , such contract is called

to be a European type.

Without loss of generality, let us assume that investor has entered a financial

contract, according to which he will repay amount of gT (ω) in T years from current

moment. Main goal of hedging is to fund a portfolio π, such that its value V π
T will be

no less than obligation at maturity time T .

V π
T ≥ fT , (a.s.)

Initial price of such strategy usually defined as mathematical expectation over

special risk neutral measure

V0 = E∗
[︃
fT
BT

]︃
,

we postpone details of this to the contingent claim pricing chapter of the current

manuscript.

If we are able to fund such strategy, it means that investor is completely hedged.

And strategy that replicates future payoff with probability 1 (almost surely) is called

a perfect hedge. With the help of pricing techniques he might determine what would

be the cost of such strategy and use it as a fair price of the deal he is planning to

participate in. However, there is a chance that perfect- or super-hedging strategies

are not feasible as their initial price might be above investors budget constraint or

the fair price of the contract is above what market participants are ready to propose.

The concept of partial (imperfect) hedging arises precisely when for some reasons,

investor cannot, or does not want to invest into perfect hedging strategy. Most of

the time it happens when initial price of necessary investments is too large. From

the opposite side, having natural desire to spend the least amount of money possible,
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investor may tolerate some risk in exchange for discount on a hedging strategy. So

market agent can focus on partial-hedging strategies, where the goal is to invest

capital in the most optimal way considering anticipated loss from hedging. Such type

of strategies is extremely important as there are always a huge variety of risks on the

market and, clearly, most of the time it is too expensive to eliminate all of them.

Since it is not goal to build a perfect hedge anymore, there emerges a possibility

of a shortfall, or, chance that terminal value of the a portfolio will not be enough

to cover all possible losses from the claim. Consequently, one need to find optimal

strategy. Natural question is – what is optimal?

There are several ways to introduce optimality criteria that should be used to

build a strategy. One natural idea is to maximize probability of a successful hedging

which is called Quantile Hedging (Föllmer and Leukert 1999,Spivak and Cvitanić

1999). Another possible approach is to focus on the size of shortfall in terms of its

impact. It is natural to assume that investor possesses different attitude and tolerance

to small and large shortfall sizes. Basically, her preferences can be well described by

utility functions, which are either convex or concave functions, depending on investors

attitude towards risk. Introducing Utility functions, one can define optimal strategy

as the one which minimizes the expected utility of a shortfall. This idea lies at the

core of Efficient hedging approach (Föllmer and Leukert 2000). On top of that, it was

first demonstrated in Melnikov 2004a and Melnikov 2004b that mentioned methods

of partial hedging could also be useful in applications to problems in the field of

equity-linked life insurance.

More broadly, we can try to assess our attitude towards shortfall with the help of

risk measures described above. Since recently, risk exposure is measured with the

help of special measures, widely used by market participants: Value-at-Risk (VaR)

and Conditional Value-at-Risk (CVaR). The latter one is better known as Expected

Shortfall (ES) and was introduced in 2016 as a risk-measure recommended in The

Market Risk Framework of Basel III – international regulatory accord. Not a surprise
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that these measures spark a special interest in their application in the optimal partial-

hedging problem.

Although solutions to these partial hedging problems are being discussed in the

literature, most of them are for complete market case. Thus, market incompleteness is

still a challenge and makes existing approaches difficult to apply. In this manuscript

we propose a method of market completions as a tool to connect known solutions

on complete market with incomplete version of it. We will focus on all fundamental

types of partial hedging further and demonstrate application of MMC for them.

1.6 Generalized Neyman-Pearson Lemma

Assume there is a measurable space (Ω,F). Suppose on this space we are given with

two measures Q (”null”-hypothesis H0) and P (”alternative” hypothesis Ha). It will

also be convenient for further explanation to think about measure Q as risk-neutral,

or martingale measure, whereas treat P as ”real-world” measure which is obtained

from observed market data.

The main goal of hypothesis testing approach is to discriminate Q against P .

Namely, to assess if one can or cannot reject hypothesisH0 with some level of certainty.

Classical instrument to solve such problem which we are going to focus on is called

randomized test, which is a random variable X : Ω → [0, 1] with an interpretation

that hypothesis Q is rejected with probability X(ω) and not rejected with probability

(1−X(ω)) for each outcome ω ∈ Ω. Such instrument, of course allows some mistakes

in decision regarding rejection of H0. Firstly, ”null” hypothesis might be rejected

when it is actually true. Such case is called Type I error and probability of it can be

calculated as

EQ[X] =

∫︂
X(ω)Q(dω).

Secondly, randomized test X can suggest against rejection H0 when it is not true

and, consequently, should be rejected. This is called Type II error and its probability
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is

EP [1−X] =

∫︂
(1−X(ω))P (dω).

Naturally, one aims at minimization of both Type I and Type II error. However,

considering their definitions, it is impossible to minimize both at the same time.

Therefore, the approach is usually to fix some acceptable probability α for Type I

error when trying to maximize test power EP [X]. Thus, initial discrimination problem

can be stated as: Find randomized test of maximum power with probability of Type

I error less than or equal to α, or{︄
EP [X] =

∫︁
X(ω)P (dω) → max

EQ[X] ≤ α.
(1.19)

1.6.1 Simple Hypothesis

Let us start with the case of Simple Hypothesis – when measures Q = {Q} and

P = {P} are singletons.

Then problem (1.19) can be solved with the help of Neyman-Pearson lemma. Ac-

cording to this classical approach, one should consider auxiliary measure µ, such that

P ≪ µ, Q≪ µ.

Denote

G ≡ dP

dµ
, H ≡ dQ

dµ
.

Then, solution to (1.19), or

sup
X∈Xα

EP [X], where Xα = {X : Ω → [0, 1];EQ[X] ≤ α} (1.20)

is attained for every level α by

X̂ = 1ẑH<G + b · 1ẑH=G (1.21)
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where

ẑ = inf{u ≥ 0;Q(uH < G) ≤ α}

b =
α−Q(ẑH < G)

Q(ẑH = G)
.

1.6.2 Composite Hypothesis

Moving on, assume that now measures Q and P represent families of measures rather

than single elements. By analogy with simple hypothesis case, we make the following

assumptions

Q ∩ P = ∅

and

GP :=
dP

dµ
(P ∈ P), HQ :=

dQ

dµ
(Q ∈ Q)

P ≪ µ, Q≪ µ, ∀P ∈ P, Q ∈ Q.

With the setting presented, the problem (1.20) can be rewritten in the following

form

V (α) := sup
X∈XQ

α

(︃
inf
P∈P

EP [X]

)︃
, (1.22)

where XQ
α := {X : Ω → [0, 1];EQ[X] ≤ α, ∀Q ∈ Q}. In other words, optimization

problem can be interpreted as maximization of the ”worst-case” test power

γ(X) := inf
P∈P

EP [X]

over all randomized tests X of size

s(X) := sup
Q∈Q

EQ[X] ≤ α.

Definition 1.9 If such a randomized test X̂ ∈ XQ
α exists, it will be called max-min-

optimal for testing the (composite) hypothesis Q against the (composite) alternative

P, at the given level of significance a ∈ (0, 1).
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It was demonstrated in Cvitanic and Karatzas 2001 that under certain conditions

on the family P of alternatives, there exist max-min-optimal randomized test that

preserves the form (1.21):

X̂ = 1ẑĤ<Ĝ +B · 1ẑĤ=Ĝ (1.23)

where B is a random variable with values in [0, 1], Ĝ is of the form GP̂ = dP̂
dµ

for some

P̂ ∈ P, the random variable Ĥ is chosen from a suitable family that contains convex

hull of {HQ}Q∈Q

Co(H;Q) := {λHQ1 + (1− λ)HQ2 ; Q1 ∈ Q, Q2 ∈ Q, 0 ≤ λ ≤ 1};

and ẑ is a suitable positive number.

To calculate mentioned quantities methods of non-smooth convex analysis and

duality theory will be used. The key observation is that for arbitrary G ∈ G and

H ∈ H, one has G = dP
dµ

for some P ∈ P, consequently

EP [X] = Eµ[GX] =Eµ[X(G− zH)] + z · Eµ(HX) (1.24)

≤Eµ[G− zH]+ + αz; ∀z > 0, ∀X ∈ XQ
α . (1.25)

Furthermore, equality in (1.25) is achieved for some Ĝ ∈ G, Ĥ ∈ H, ẑ ∈ (0,∞) if

and only if both conditions

Eµ[ĤX̂] = α, (1.26)

X̂ = 1ẑĤ<Ĝ +B · 1ẑĤ=Ĝ, µ− a.e. (1.27)

hold for some random variable B : Ω → [0, 1]. Then, as P̂ :=
∫︁
Ĝdµ ∈ P, one has

EP̂ (X̂) = Eµ(ĜX̂) = Eµ[Ĝ− ẑĤ]+ + α · ẑ. (1.28)

Proposition 1.10 Suppose there exists quadruple (Ĝ, Ĥ, ẑ, X̂) ∈ (G ×H× (0,∞)×

XQ
α ) that satisfies (1.26) – (1.27) and

Eµ[X̂(Ĝ−G)] ≤ 0, ∀G ∈ G. (1.29)
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Then we have

EP̂ [X] ≤ EP̂ [X̂] ≤ EP [X̂], ∀X ∈ XQ
α , ∀P ∈ P. (1.30)

So the pair (X̂, P̂ ) is a saddle-point for the stochastic game with lower value V (α) as

in (1.22) and upper value

V (α) = inf
P∈P

(︄
sup
X∈XQ

α

EP [X]

)︄
(1.31)

namely

V (α) = V (α) = EP̂ [X̂] =

∫︂
ĜX̂dµ (1.32)

Further, introducing value function

Ṽ (z) = Ṽ (z;α) := inf
(G,H)∈(G,H)

Eµ[G− zH]+, z ∈ (0,∞). (1.33)

From (1.25) one can observe that

V (α) ≤ inf
z>0

(︂
Ṽ (z) + z · α

)︂
= V∗(α) (1.34)

Proposition 1.11 1. The pair (Ĝ, Ĥ) attains infimum in (1.33) with z = ẑ

2. The triple (Ĝ, Ĥ, ẑ) attains the first infimum in (1.34)

3. The number ẑ ∈ (0,∞) attains the second infimum in (1.34)

4. There is no duality gap in (1.34), namely

V∗(α) = V (α) = V (α) = EP̂ [X̂]

So in order to find a statistical test, that would satisfy min-max criteria and,

consequently, be optimal for composite hypothesis testing problem, one should solve

a dual problem (1.34) and use obtained values (ẑ, Ĝ, Ĥ) to construct test in a form

of (1.23).
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1.7 Minimal Maringale Measure (Locally Risk Min-

imizing approach)

As there are infinitely many martingale measures on incomplete market, it is reason-

able to think of criteria to choose some specific measure to work with.

One of such possible criteria is based on the concept of local risk minimization. This

concept was introduced in Schweizer 1999 and consists in minimization of the variance

of the increases in the hedging costs process. According to local risk minimization

approach, optimal hedging strategy can be obtained as conditional expectation of the

payoff under special minimal martingale measure, if such measure exists.

Market model introduced in (8.1) admits at least one equivalent martingale mea-

sure and S is continuous semi-martingale which satisfy

St = S0 +Mt + At, (1.35)

where M i
t =

k∑︁
j=1

∫︁ t
0
Sitσ

ij
t dW

j
t is a square integrable local P−martingale and A is a

process of finite variation satisfying structural condition

At =

t∫︂
0

λsd⟨M⟩s,

for Rk-valued predictable process λ.

Definition 1.12 In the (B, S) market, an ELMM P̂ is called minimal if P̂ = P

on F0, and if any square-integrable P -martingale which is orthogonal to M under P

remains a martingale under ˆ︁P
Theorem 1.13 (Adapted Theorem 1 from Schweizer 1999) In the market (8.1),

if measure ˆ︁P , equivalent to P is defined as

d ˆ︁P
dP

= E

⎛⎝ t∫︂
0

λsdMs

⎞⎠ , (1.36)
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then ˆ︁P solves

arg min
P̃∈M

H(P |P̃ ), (1.37)

where

H(Q|P ) =

{︄
EQ
[︁
ln dQ

dP

]︁
, ifQ << P

∞, otherwise.
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Chapter 2

Method of Market Completions

2.1 Introduction

It is known that in practice markets are rarely complete. There might be a lot of

different reasons for market incompleteness including but not limited to incomplete

information (see Eyraud-Loisel 2019), models with stochastic parameters (Otaka and

Yoshida 2003) or structural incompleteness caused by greater amount of sources of

risk than amount of risky assets available for investor or even by adding some new

type of risk source as f.e. jumps – as reader knows, simple jump diffusion model with

one risky asset is already incomplete. In a situation when market incompleteness can

be caused by impressive range of reasons and indeed is closer to a standard rather

than exception – it is important to develop a toolkit to operate within such models.

As theory of mathematical finance is relatively well developed for complete mar-

kets – it is also reasonable to find a way of ”transferring” accumulated knowledge to

the case of incomplete models. According to Karatzas (Karatzas and Shreve 2016)

standard multidimensional diffusion market is proven to be complete if and only if

amount of independent risky assets is equivalent to amount of risk sources driving

assets prices. It creates a base to use an alternative method of working with incom-

plete markets called Method of Market Completions which was shown, for example,

in Karatzas et al. 1991 and was already proven to give same pricing results to clas-

sical methods in Melnikov and MacKay 2017, Guilan 1999 which makes this method
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promising for further applications.

The core approach to pricing and hedging problems is to find equivalent no-

arbitrage martingale measure, so the issue that appears when market is no longer

complete is the fact that equivalent no-arbitrage, or risk-neutral, market measure

is not unique anymore. Fair price of contingent claim, obtained with the help of

martingale method becomes an interval rather than a single value. As a result, on

incomplete market each possible solution can be parametrized by the set of equivalent

local martingale measures.

We demonstrate that instead of using abstract set of equivalent local martingale

measures as a parameter – agent can also work with easier-to-interpret set of com-

pleting assets. For obvious reasons this approach opens a way to a nice flexibility of

auxiliary assets and greater practical application as one can potentially find necessary

assets to complete the market.

Method of market completions can mainly be used in two different ways. First

approach consists in estimation of the intervals. As there is almost always set of

possible orthogonal completions available, one may aim at estimation of the intervals

of optimal strategy price. This approach might be useful for scenario testing or

other estimation problems. Second approach is to pick particular completion. This

is similar to choosing some particular risk measure as Esscher measure or Minimal

Relative Entropy measure (Miyahara 2004 and other ). Using the second approach

allows us to be more specific regarding assets required for the market to be complete

and in some cases it might be even possible to reverse-engineer such auxiliary assets

to the market, for instance, with the help of BSDE technique Kobylanski 2000.

Apart from pricing a contingent claims, another important practical problem in

financial markets and actuary industry is construction of an optimal hedging port-

folio. On incomplete market – perfect-hedging strategy which is self-financing and

replicates payoff, may not exist. At the same time, a super-hedging strategy, which

uses minimal initial budget to completely cover any possible anticipated payoff may
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be too expensive for investor. For both complete and incomplete markets, there is a

chance that perfect- or super-hedging strategies are not feasible as their initial price

is out of investors budget. In this case, market agent can focus on partial-hedging

strategies that minimize risk exposure measured by some chosen risk-measure. Such

type of strategies is extremely important as there are always a huge variety of risks

on the market and, clearly, it might be too expensive to eliminate all of them.

There is a well-developed study in the area of partial-hedging. Föllmer&Leukert

(Föllmer and Leukert 1999) and Spivac&Cvitanic (Spivak and Cvitanić 1999) consid-

ered quantile hedging, or maximization of probability of successful perfect-hedging,

in Föllmer and Leukert 2000 authors also investigated shortfall minimization in line

with its utility-weighted value minimization. These articles lay a foundation of partial

hedging with the help of Neyman-Pearson lemma and Convex optimization methods.

Since recently, risk exposure is measured with the help of special measures, widely

used by market participants: Value-at-Risk (VaR) and Conditional Value-at-Risk

(CVaR). The latter one is better known as Expected Shortfall (ES) and was recom-

mended in 2016 in The Market Risk Framework of Basel III – international regulatory

accord. These measures spark a special interest in their application in the optimal

partial-hedging problem. As shown in Melnikov&Smirnov (Melnikov and Smirnov

2012) it is still possible to apply Neyman-Pearson lemma to CVaR optimization.

Recent papers by Cong et al. (Cong et al. 2014), Li&Xu (Li and Xu 2013), Cap-

inski(Capinski 2014) and Godin (Godin 2015) demonstrate growing interest towards

CVaR optimization.

There are some results obtained for incomplete markets as in Deaconu (Deaconu

et al. 2017), little is done in application of optimal-partial hedging methods to multi-

dimensional incomplete market model – model with several risky assets, which price

dynamics is driven by several sources of uncertainty, represented, for example, by

multi-dimensional Brownian motion. Of course, some steps towards incomplete mar-

ket were done in mentioned papers on partial-hedging. However, they lead to math-
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ematical results that are oftentimes difficult to interpret and calculate.

In the rest of the chapter we provide introduction of the method of Market Com-

pletions in line with its comparison with classical methodologies for risk-neutral price

interval estimation on incomplete market. We demonstrate that introduced method

indeed gives the same results and therefore is a promising tool for further applica-

tions. Method of market completions was developed in Melnikov and Feoktistov 2001

(see also the book by Melnikov 1999, Appendix 3) for discrete markets as well as

for jump-diffusion model in Melnikov and MacKay 2017. In addition, introducing

necessary technical complications, demonstrated approach and results obtained for

diffusion market model can be extended to other models.

2.2 Market Parametrization by Orthogonal Com-

pletions

So how can one obtain ”completed” version of initially incomplete market?

It was demonstrated in Vasilev and Melnikov 2021 that all equivalent risk-neutral

or martingale market measures can be parametrized with the help of sets of special

objects called orthogonal market completions. For convenience of the reader we re-

mind here the main statements regarding market completions approach necessary for

further developments of the paper.

As it was mentioned above, market completeness is closely connected to the shape

of matrix Σ = {σij}i=1..n,j=1..k. In case of incomplete market, one deals with the ma-

trix which rank is not full. Or, roughly speaking, when volatility matrix for tradeable

assets has a rectangular shape with more columns (sources of risks represented by

independent Brownian motions) than rows (risky assets).

Consequently, to obtain complete market which would correspond to existing in-

complete one, it is reasonable to add more ”rows” to volatility matrix under consid-

eration. This idea forms a foundation of the method of market completions.

Obviously, these ”completing” assets should be independent from existing ones
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and among each other to be suitable for solving the issue of non-full rank volatility

matrix. Adding them, we obtain ”proper” volatility matrix which corresponds to

some complete market where known and well-developed methods can be applied.

Now let us formalize this idea.

Denote Sc a (k− n)−dimensional (Ft)t≤T−adapted process Sc = (Sn+1
t , ..., Skt )t≤T

with the same structure as primary assets:

dSit = Sit

(︄
aitdt+

k∑︂
j=1

ρijt dW
j
t

)︄
, i = n+ 1, ..., k.

Note that in definition above we keep indexing for ρ coefficients from n + 1 to k

instead of from 1 to (k − n) just for the ease of merging these auxiliary assets with

existing volatility matrix. With the help of new introduced assets, we can ”complete”

initially rectangular volatility matrix Σ for a set of existing risky assets:

Σ =

⎛⎜⎜⎜⎜⎝

k risks⏟⏞⏞⏟
σ11
t . . . σ1k

t

n assets
...

. . .
...

σn1t . . . σnkt

⎞⎟⎟⎟⎟⎠ = (n× k) matrix. (2.1)

By adding k−n auxiliary assets introduced, one arrives to properly shaped volatility

matrix Σ̃.:

Σ̃ =

⎡⎣Σ
ρ

⎤⎦ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k risks⏟⏞⏞⏟
σ11
t . . . σ1d

t

n assets
...

. . .
...

σn1t . . . σnkt

ρn+1,1
t . . . ρn+1,d

t

k-n assets
...

. . .
...

ρk1t . . . ρkkt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= (k × k) matrix. (2.2)
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Definition 2.1 The (k−n)−dimensional (Ft)t≤T−adapted process Sc = (Sn+1
t , ..., Skt )t≤T

is called a completion for the (B,S) market if the resulting volatility matrix Σ̃t has

full rank for all t ≤ T .

Definition 2.2 A completion S̄
c
= (S̄

n+1
, ..., S̄

k
) is called orthogonal if it satisfies:

⟨Sit , S̄
j
t⟩ = 0, for all i = 1, ..., n; j = n+ 1, ..., k; t ∈ [0, T ]

and

⟨S̄it, S̄
j
t⟩ = 0, for all i, j = n+ 1, ..., k; t ∈ [0, T ]

Further in the paper the set of orthogonal completions will be denoted as Cort.

Proof of the following lemma is important as it includes key manipulation with market

model that will be extensively used in what follows.

Lemma 2.3 For any completion Sc ∈ C of the (B, S) market, there is an orthogonal

completion S̄
c ∈ Cort

Proof. It is enough to show that one can always construct orthogonal Orthogonal

completion from non-orthogonal assets. It can be accomplished, for example, with

the help of a famous Gram-Schmidt method. Our goal is to construct a process

S̄
c
= (S̄

n+1
, ..., S̄

k
) that satisfies the definition above.

To do it we first define the stochastic logarithm H i = (H i
t)t≤T :

dH i
t =

dSit
Sit

= µitdt+
k∑︂
j=1

σijt dW
j
t (2.3)

Considering that i ̸= j, if ⟨H i
t , H

j
t ⟩ = 0 for all t ∈ [0, T ] then ⟨Sit , S

j
t ⟩. On the

other hand, if row-vectors σit and σ
j
t of volatility matrix are orthogonal for i ̸= j for

all t ∈ [0, T ], then
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⟨H i
t , H

j
t ⟩ =

⟨︄
H i

0 +

∫︂ t

0

µisds+
k∑︂
l=1

∫︂ t

0

σildW l
s, H

j
0 +

∫︂ t

0

µjsds+
k∑︂
l=1

∫︂ t

0

σjldW l
s

⟩︄

=

∫︂ t

0

k∑︂
l=1

σils σ
jl
s ds (2.4)

Consequently, to complete the proof it is enough to show how to construct orthog-

onal row-vectors σ̄jt which would imply orthogonality of assets.

To construct such vectors we will use Gram-Schmidt method of orthogonalization

for σit, i = 1, ..., k:

σ̄1
t = σ1

t , (2.5)

σ̄it = σit −
i−1∑︂
j=1

αijt σ̄
j
t , (2.6)

for i = 2, ..., k with αijt =
⟨σi

t,σ̄
j
t ⟩

⟨σ̄j
t ,σ̄

j
t ⟩
for i, j = 2, ..., k; j < i. It is easy to see that obtained

vectors are indeed orthogonal.

Let’s also obtain the assets for completion. Defining H̄
i
= (H̄

i
t)t≤T for i = k+1, ..., n

as

dH̄
i
= µ̄it +

n∑︂
l=1

σ̄ilt dW
j
t , (2.7)

with

µ̄1
t = µ1

t , (2.8)

µ̄it = µit −
i−1∑︂
j=1

αijt µ̄
j
t , (2.9)

for i = 2, ..., n. Final completion assets can be obtained from:

dS̄
j
t = S̄

j
tdH̄

j
t , j ∈ k + 1, n (2.10)

Remark 2.4 Orthogonalization of drift terms for assets in the proof of lemma above

plays rather technical role. In such form, one would get much simpler solution for the

(1.4).
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Now one has everything required in order to show that completed market can be

re-written in terms of corresponding orthogonal completion. Consider an orthogonal

completion S̄
c ∈ Cort. With the help of this set of auxiliary assets, one forms a

complete market (B, S̃) where S̃ =

⎡⎣S
Sc

⎤⎦. This new market is described by the

dynamics of an k-dimensional process

dS̃t = S̃t

(︂
µ̃tdt+ Σ̃t · dWt

)︂
(2.11)

where row vectors σit satisfy ⟨σit, ρ
j
t⟩ = 0.

Next, one can rewrite dynamics of the orthogonal completion assets in the following

way

dSit =S
i
t

(︄
aitdt+

k∑︂
j=1

ρijt dW
j
t

)︄
= (2.12)

=Sit

(︄
aitdt+ ∥ρit∥

k∑︂
j=1

ρijt
∥ρit∥

dW j
t

)︄
= (2.13)

=Sit

(︄
aitdt+ ∥σ̄it∥

k∑︂
j=1

σ̄ijt
∥σ̄it∥

dW j
t

)︄
= (2.14)

=Sit

(︂
aitdt+ ∥σ̄it∥dˆ︂W j

t

)︂
, (2.15)

where σ̄ is from (2.5). Similarly, dynamics of existing market assets can be rewritten

in terms of innovative Wiener process ˆ︂Wt:

dSit =S
i
t

(︄
µitdt+

k∑︂
j=1

σijt dW
j
t

)︄
= (2.16)

=Sit

(︄
µitdt+

k∑︂
j=1

(︄
σ̄ijt +

i−1∑︂
l=1

αilσ̄ljt

)︄
dW j

t

)︄
= (2.17)

=Sit

(︄
µitdt+

i−1∑︂
l=1

αijt ∥σ̄
j
t∥dˆ︂W j

t

)︄
. (2.18)

Which means dynamics of completed market can be expressed as

dS̃t = S̃t

(︂
µ̃dt+ ˆ︁Σt · dˆ︂Wt

)︂
(2.19)
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with

ˆ︁Σt =

⎡⎣ Lt 0n,k−n

0k−n,n Dt

⎤⎦
where Dt = diag(∥ρt∥) and Lt is a n×n lower triangle matrix with values of the form

αijt ∥σ̄
j
t∥.

In Vasilev and Melnikov 2021 we demonstrated that working with the set of or-

thogonal completions would be equivalent to working with the set of equivalent local

martingale measures (ELMM). Important result stemming from this fact can be sum-

marized in the following lemma.

Lemma 2.5 1. Each completion Sc uniquely defines a single ELMM in the incom-

plete market. Moreover, for the equivalent orthogonal complete market (obtained

using method of Lemma 2.3), such local martingale measure will be the same.

2. Each ELMM P̃ in the incomplete market (P̃ ∈ M) will be a unique ELMM in

the associated completed market model.

Therefore, the set M of ELMMs in the incomplete market is equivalent to the

set Mc of unique ELMMs corresponding to each completion of the market.

This beautiful fact allows us to switch analysis tool from abstract class of Equiv-

alent Martingale measures to class of ”completing” assets. The latter is much easier

to interpret and also impose different restrictions such as maximal asset volatility or

no short selling on the market.

As it was demonstrated in previous sections, each martingale measure can be as-

sociated with particular orthogonal market completion. Which implies that, with

the help of appropriate orthogonal completion, it is possible to construct completed

market with risk-neutral measure corresponding to minimal martingale measure. In

other words, there is a way of choosing particular set of orthogonal completions for
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solving problems of pricing and hedging. In the following theorem we summarize

what particular market completion will correspond to such measure.

Theorem 2.6 In the market (8.1), completion S c̄ ∈ Cort solving (1.37) is such that

for all completion assets the drift process ai ≡ r, P -a.s. The unique ELMM admit-

ted by the resulting completed market is the minimal martingale measure ˆ︁P for the

incomplete (B, S) market.

Proof. Consider an arbitrary completion νK(Σ). Using (3.12), one can switch to

equivalent measure which is an ELMM for some completed market. Then

H(Qν |P ) =Eν
[︁
lnZA

T Z
ν
T

]︁
= (2.20)

=Eν

[︃∫︂ t

0

(θTs + νTs ) · dWs +
1

2

∫︂ t

0

(∥θs∥2 + ∥νs∥2)ds
]︃
= (2.21)

=Eν

[︃
1

2

∫︂ t

0

(∥θs∥2 + ∥νs∥2)ds
]︃

(2.22)

since θs depends on the parameters of existing assets on incomplete market, in order

to achieve minimality in (2.22), we should choose completing assets such that each

νis = 0, or, accordingly, ai = r

In the following example we demonstrate how presented method could be applied

in order to parametrize set of possible completed markets.

Example 2.7 Assume the following incomplete market parameters
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Description Parameter Value

Interest rate r 0

Stock 1 σ11 0.2

σ12 0.11

σ13 0.4

µ1 0.02

Stock 2 σ21 0.3

σ22 0.15

σ23 0.2

µ2 0.08

In order to make this model complete, it is enough to add only one auxiliary asset.

Let us demonstrate how this market model would be described on each completed ver-

sion of the market, depending on the completion asset we introduce. We first re-write

market model in a form introduced in (2.19).

σ1 =
[︂
0.2 0.11 0.4

]︂
, ∥σ1∥ = 0.4605

σ2 =
[︂
0.3 0.15 0.2

]︂
, ∥σ2∥ = 0.3905

σ̄1 = σ1 =
[︂
0.2 0.11 0.4

]︂
α21 =

⟨σ2, σ̄1⟩
⟨σ̄1, σ̄1⟩

= 0.7379

σ̄2 = σ2 − α21σ̄1 =
[︂
0.1524 0.0688 −0.0951

]︂

and consequently

∥σ̄1∥ = 0.4605

∥σ̄2∥ = 0.1924

and
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ˆ︁Σ =

⎡⎢⎢⎢⎣
∥σ̄1∥ 0 0

α21∥σ̄1∥ ∥σ̄2∥ 0

0 0 ∥ρ3∥

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0.4605 0 0

0.3398 0.1924 0

0 0 ∥ρ3∥

⎤⎥⎥⎥⎦
where ρ3 comes from some completion asset.

Further, dynamics of the stocks under innovative Brownian Motion will be:

dS1
t = S1

t

(︂
µ1dt+ ∥σ̄1∥dˆ︂W 1

t

)︂
dS2

t = S2
t

(︂
µ2dt+ α21∥σ̄1∥dˆ︂W 1

t + ∥σ2̄∥dˆ︂W 2
t

)︂

Corresponding vector θ then becomes:

ˆ︁θ =
⎡⎢⎢⎢⎣
0.0434

0.2624

µ3−r
∥ρ3∥

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0.0434

0.2624

0

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
0

0

µ3−r
∥ρ3∥

⎤⎥⎥⎥⎦ = θ + ν

The purpose of the last decomposition will be described in following chapters, specif-

ically in Utility maximization section.

Remark 2.8 In Example 2.7, one could notice that completed versions of market are

parametrized by vector ν. Each element of such vector depends on particular set of

completing assets. Namely, on their Sharpe-type ratio µ3−r
∥ρ3∥ .

Alternative way of solving the issue of non-squared (non-full rank) volatility matrix

would be to reduce amount of underlying Brownian motions. This approach was in-

troduced in Zhang 2007 for the case when coefficients of stock prices are deterministic

or functions of stock prices. Reducing dimension of Brownian Motion in the following

way:

dBi
t =

k∑︂
j=1

σijt
∥σit∥

dW j
t (2.23)

dSit = Sit
(︁
bitdt+ ∥σit∥dBi

t

)︁
, i = 1..n. (2.24)
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dBi
tdB

j
t = ρijt (2.25)

We arrive to vector with correlated components Bt = (B1
t , ..., B

n
t ). Denote Ψt =

{ρilt }i,l=1..n, non-singular, symmetric and positive semi-definite matrix, which then

has matrix square-root At, Ψt = At · ATt , At = {aijt }i,j=1..n.

Moreover, ∃W̃ 1

t , ..., W̃
n

t independent, such that:

Bi
t =

n∑︂
j=1

∫︂ t

0

aijs dW̃
j

s. (2.26)

As a result, risky assets can be presented in a form

dSit = Sit

(︄
bitdt+ ∥σit∥

n∑︂
j=1

aijt dW̃
j

t

)︄
, i = 1..n (2.27)

σ̃t = Σt · At (2.28)

Where Σt is a diagonal matrix of {||σi||} and matrix At depends on particular

decomposition of Ψt. According to Zhang 2007, one obtains the following ”completed”

model:

dSit = Sit

(︄
bitdt+

n∑︂
j=1

σ̃ijt dW̃
j

t

)︄
, i = 1..n (2.29)

θt = A−1
t · Σ−1

t · (bt − rt1n)

∥θt∥2 = (bt − rt1n)
T · (σtσTt )−1 · (bt − rt1n)

Though this methodology presents promising approach for practical use, in what

follows we will focus on applications of method of market completions only.
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Chapter 3

Method of Market Completions in
Application to Utility
Maximization Problem

3.1 Introduction

We start demonstration of the applications of method of market completions with the

classical problem of utility maximization. Assume that investor, having some initial

budget v0 wants to invest in the market (8.1) in such a way that his portfolio capital

at termination time T will give him maximal expected utility. In rigorous terms, the

goal is to find a portfolio π∗ with initial price v0 such that

E[U(V π∗

T )] = max
π∈A(v0)

E[U(V π
T )].

This task of optimal allocation of initial capital among a portfolio of assets is a

fundamental problem in mathematical finance and therefore widely covered in liter-

ature. Starting with seminal work Merton 1969, maximal expected utility become

one of the central criteria in making individual investment decision in continuous

time. Classical assumptions in the field of optimizing expected utility are: utility

function U is concave (risk-averse investor) and decision maker is rational. Therefore

we first focus on providing solution in case of concave utility function, where method

of market completions has already proven to be useful (see Karatzas et al. 1991) and

we build a basis for further discussions. We recall in this chapter how method of

34



market completions becomes a powerful tool for solving classical problem of utility

maximization.

Main contribution in this chapter is generalization of a utility function to the case

of not necessarily concave one. Inspired by the Reichlin 2012, Bahchedjioglou and

Shevchenko 2022 we demonstrate how method of market completions can be used to

solve the problem of utility maximization in this case by means of ”concavification”

procedure.

3.2 Concave Utility Function

Let us start with presentation of the fundamental approach to utility maximization

with respect to concave utility function that was demonstrated in Karatzas et al.

1991. This approach will form basis for further development of application of method

of market completions towards more general, not necessarily concave utility function.

Definition 3.1 A function U : (0,∞) → R, such that it is strictly increasing, strictly

concave, of a class C1 and satisfies

U ′(0+) = ∞, U ′(∞) = 0

is called a concave utility function.

Having such function, investor might use it in order to assess how attractive some

arbitrary portfolio π is based on his subjective perception of its expected terminal

capital utility, expressed as E[U(V π
T (v0))]. In rigorous terms, the goal of agent can be

expressed as finding the value function

ζ(x) := max
π∈A(v0)

E[U(V π
T )], (3.1)

where A(v0) is a set of admissible strategies with initial capital v0.
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3.2.1 Complete Market Case

One of the classical approaches to solving such problem involves application of meth-

ods from convex analysis and famous Legendre-Fenchel transformation for utility

function U :

Ũ(y) := max
x>0

{U(x)− xy}. (3.2)

Conjugate function Ũ(y) is strictly decreasing, strictly convex and it is straightfor-

ward to prove that

Ũ
′
(y) = −(U ′(x))−1 0 < y <∞. (3.3)

Consequently, denoting inverse function I(y) = (U ′(x))−1, the following equality

holds:

Ũ(y) = U(I(y))− yI(y), 0 < y <∞ (3.4)

from which follows

U(I(y)) ≥ U(x) + y (I(y)− x) , ∀x > 0, y > 0. (3.5)

Assumption 3.2 For some α ∈ (0, 1), γ ∈ (1,∞) holds

αU ′(x) ≥ U ′(γx), ∀x ∈ (0,∞) (3.6)

Remark 3.3 Condition of Assumption 3.2 is essentially the same that was introduced

by Kramkov and Schachermayer in Kramkov and Schachermayer 1999 on the concept

of Assymptotic Elastisity that

AE0(Ũ(y)) := lim sup
y→0

sup
q∈∂Ũ

|q|y
Ũ(y)

<∞, (3.7)

where ∂Ũ is a subdifferential of convex conjugate Ũ(y).

We would also assume that solution for (3.1) exists and finite. Then such solution

in complete market case can be directly calculated. In order to find it, one needs

special auxiliary function defined as
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X0(y) := E
[︁
βTZ

A
T I(yβTZ

A
T )
]︁
, 0 < y <∞, (3.8)

which is a continuous, strictly decreasing function which has an inverse

Y0(x) = (X0(y))
−1.

Following Karatzas et al. 1991, the optimal terminal capital that maximizes the

expected utility, or the solution to (3.1) is given by

ξ0(x) := I
(︁
Y0(x)βTZ

A
T

)︁
. (3.9)

Example 3.4 Assume that investors attitude is described by logarithmic utility func-

tion U(x) = ln(x). Then

I(yβTZ
A
T ) =

1

yβTZA
T

X0(y) =
1

y
, Y0(x) =

1

x

ξ0(x) =
x

βTZA
T

ζ(x) = E
[︃
ln

(︃
x

βTZA
T

)︃]︃

3.2.2 Incomplete Market Case

We now demonstrate how method of market completions becomes useful for solving

problem (3.1) on incomplete market. Assume now in the market model (8.1) we

have more sources of uncertainty than independent assets. In other words k > n.

In this case market agent does not have one specific vector θ from (1.4) in order to

construct ZA
T and, consequently, a solution ξ0(x). In this situation method of market

completions allows us to parameterize all possible ”completed” markets with the help

of orthogonal completions. The problem of expected utility maximization can be

solved on each of these markets using classical approach described in the previous

section. Natural question is then how to use such solutions, parametrized by the
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set of orthogonal completions in order to get the best expected utility on incomplete

market which we started with? Using results from Karatzas et al. 1991, we can

extract valuable criteria that connects solutions on incomplete market with the set of

solutions on completed versions.

We start with adding necessary amount of auxiliary assets in the form of orthogonal

completion. Namely, for initially incomplete market we form orthogonal completions

consisting of (k − n) assets

dSit = Sit

(︄
aitdt+

k∑︂
j=1

ρijt dW
j
t

)︄
, i = n+ 1, ..., k.

As a result, completed market, corresponding to particular orthogonal completion

will be rewritten as in (2.19)

dS̃t = S̃t

(︂
µ̃dt+ ˆ︁Σt · dˆ︂Wt

)︂
(3.10)

Consequently, for each completed market, we could rewrite dynamics of the Gir-

sanov exponential in terms of innovative Brownian motion for (2.19). Solving (1.4)

on completed market, we arrive to:

ˆ︁Σ · ˆ︁θ =µ̄− 1̄krˆ︁θt = ˆ︁ΣT
t ·
(︂ˆ︁Σt

ˆ︁ΣT
t

)︂−1

(µ̃t − r1̄k) =

=

⎡⎣ LTt ·
(︁
LtL

T
t

)︁−1
(µ̄− 1̄nr)

DT
t ·
(︁
DtD

T
t

)︁−1
(ā− 1̄k−nr)

⎤⎦ =

⎡⎣θˆ︁ν
⎤⎦ .

For orthogonalized market model, the first n elements of vector ˆ︁θ depends only on

existing market assets and stays the same for any completed market. At the same

time, last k − n elements will correspond to particular completion. Consequently

ˆ︁θt =
⎡⎣ θ

0k−n

⎤⎦+

⎡⎣0nˆ︁ν
⎤⎦ = θt + νt = θνt . (3.11)

And, since each completed market is in correspondence with vector ν, the set of all

completed versions of the initial market can be parametrized by this vector. Using θνt ,
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we construct a Girsanov type exponential for corresponding martingale probability

density on completed market

ZC
t =exp

{︃
−
∫︂ t

0

(θTs + νTs ) · dWs −
1

2

∫︂ t

0

(∥θs∥2 + ∥νs∥2)ds
}︃

= (3.12)

=ZA
t × Zν

t . (3.13)

Then, on each completed version of initially incomplete market, we are able to

perform steps (3.8)-(3.9) in order to obtain corresponding optimal solution ξν(x):

Xν(y) := E
[︁
βTZ

A
T Z

ν
T I(yβTZ

A
T Z

ν
T )
]︁
, 0 < y <∞, (3.14)

Yν(x) = (Xν(y))
−1, (3.15)

ξν(x) := I
(︁
Yν(x)βTZA

T Z
ν
T

)︁
. (3.16)

For further progress, it is reasonable to assume, that we will be working only with

completions that lead to market where expected utility maximization problem can be

solved. Therefore, we introduce the following assumption

Assumption 3.5 We restrict ourselves to set of completions

K1(Σt) = {ν ∈ ker(Σt) | Xν(y) <∞, ∀y > 0}

where ker(Σt) is a kernel of a volatility matrix Σt from initial incomplete market.

In order to preserve consistency, we also provide here theorem from Karatzas et al.

1991 (Theorem 8.5) which is an important tool for our further applications. Details

of the proof could be found in reference.

Theorem 3.6 Consider a positive, FT -measurable random variable B, for which

there exists a process λ ∈ kerΣ with

E[βTZA
T Z

ν
TB] ≤ x = E[βTZA

T Z
λ
TB], ∀ν ∈ kerΣ. (3.17)

Then there exists a portfolio π ∈ A(x), such that V π
T (x) = B, almost surely.

39



As this theorem will be used in what follows we provide a brief recoup of the proof

below.

Proof. Define Ft-adapted process Xt as

βtZ
A
t Z

λ
t Xt =Mt := E

[︁
βTZ

A
T Z

λ
TB|Ft

]︁
(3.18)

, with X0 = x and XT = B a.s. and Mt is a positive martingale with M0 = x. From

the martingale representation theorem then, it follows that there exists Ft adapted

process φs with
∫︁ T
0
∥φt∥2dt <∞ a.s. such that

Mt = x+

t∫︂
0

φsdWs, 0 ≤ t ≤ T (3.19)

from continuity and positivity of Mt, process ψt = − φt

Mt
is well-defined and

Mt = x−
t∫︂

0

Msψ
∗
sdWs = x−

t∫︂
0

βsZ
A
s Z

λ
sXsψ

∗
sdWs, 0 ≤ t ≤ T. (3.20)

Further, decompose ψt = ψAt + ψλt with ψAt ∈ ker⊥Σ and ψλt ∈ kerΣ. For some

arbitrary portfolio π, its value process V π
t (x) will satisfy

βtZ
A
t Z

λ
t V

π
t = x+

t∫︂
0

βsZ
A
s Z

λ
s V

π
s (Σ∗

sπs − (θs + λs))
∗ dWs. (3.21)

Therefore, in order to show that there is a portfolio financing ξλ(x, ω), one should

show

−Xt(ψ
A
t + ψλt ) = V π

t (Σ∗
tπt − (θt + λt)) . (3.22)

As we could choose πt in a way that Σ∗
tπt = θt − ψAt , it is enough to prove that

ψλt = λt in order to verify financiability of ξλ(x, ω).

For arbitrary ν introduce the sequence of stopping times {τn}∞n=1 as

τn =

T∧inf
{︃
t ∈ [0, T ];Mt ≥ n, or

t∫︁
0

(∥ψs∥2 + ∥λs∥2)ds ≥ n, or
t∫︁
0

∥νs∥2ds ≥, n or

⃓⃓⃓⃓
t∫︁
0

ν∗sdWs

⃓⃓⃓⃓
≥ n

}︃
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for all n ≥ 1. Notice that lim
n→∞

τn = T a.s. and denote νnt = νt1t≤τn . Then, for

λt + ενnt ∈ kerΣ it holds

Z
λt+ενnt
t = ZA

t · exp

⎧⎨⎩−ε
t∫︂

0

(νns )
∗(dWs + λsds)−

ε2

2

t∫︂
0

∥νns ∥2ds

⎫⎬⎭. (3.23)

for −1 ≤ ε ≤ 1, n ≥ 1. And also

e−3n|ε| ≤ Z
λt+ενnt
t

Zλ
t

≤ e3n|ε| − 1 ≤ ε ≤ 1. (3.24)

Then, from dominated convergence theorem and (3.17) it follows

0 =
∂

∂ε
E
[︂
βTZ

λt+ενnt
T B

]︂⃓⃓⃓⃓
ε=0

= E
[︃
βT · ∂

∂ε
Z
λt+ενnt
T

⃓⃓⃓⃓
ε=0

·B
]︃
= (3.25)

=− E

⎡⎣βTZλ
TB

τn∫︂
0

(νns )
∗(dWs + λsds)

⎤⎦ = (3.26)

=E

⎡⎣Mτn

τn∫︂
0

(νns )
∗(dWs + λsds)

⎤⎦ (3.27)

Applying Ito rule of integration by parts, we get

Mτn

τn∫︂
0

(νns )
∗(dWs + λsds) =

τn∫︂
0

Ms(ν
n
s )

∗(λs − ψλs )ds+

τn∫︂
0

Ms(ν
n
s )

∗dWs− (3.28)

−
τn∫︂
0

Ms

⎛⎝ s∫︂
0

(νnt )
∗(dWt + λtdt)

⎞⎠ (ψAs + ψλs )
∗dWs.

As expected value of the last two integrals equals 0, λt = ψλt a.s. Which proves the

statement.

With all these assumptions the following criteria was developed in Karatzas et al.

1991 in order to find connect parametrized problem on a set of orthogonal completions

to the initial expected utility maximization on incomplete market

Theorem 3.7 Assume U(0) > −∞. Then, for conditions

1. Optimality of π̂: EU(V π
T ) ≤ EU(V π̂

T ) ∀π ∈ A(x)
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2. Financiability of ξλ(x): ∃π̂ ∈ A(x) such that V π̂
T = ξλ(x)

3. Least Favorability of λ: EU(ξλ(x)) ≤ EU(ξν(x)) ∀ν ∈ K1(Σ)

4. Dual optimality of λ: ∀ν ∈ K1(Σ),

E
[︂
Ũ(Yλ(x)βTZA

T Z
λ
T )
]︂
≤ E

[︂
Ũ(Yλ(x)βTZA

T Z
ν
T )
]︂

5. Parsimony of λ: E[βTZ
A
T Z

ν
T ξλ(x)] ≤ x, ∀ν ∈ K1(Σ)

the following holds: (2)-(5) are equivalent. Furthermore, if (2) holds, then portfolio

π̂ in (2) satisfies (1).

In other words, in order to obtain solution for (3.1) on incomplete market, one may

find a particular orthogonal market completion, such that it would satisfy one of the

conditions (2)-(5) and as a consequence will produce a result that will stay optimal

on initial market.

Example 3.8 Consider utility function U(x) = ln(x) for which:

Xν(y) =
1

y
, Yν(x) =

1

x
(3.29)

and optimal terminal capital can be calculated as

ξxν =
x

βTZν
T

. (3.30)

One could check that completion with parameter λ = 0 satisfies 5.

E[βTZ
ν
T ξ

x
0 ] = x · E

[︃
exp

{︃
−
∫︂ T

0

νTs dWs −
1

2

∫︂ T

0

∥νs∥2ds
}︃]︃

≤ x ∀ν ∈ K(Σ) (3.31)

as the process under expectation is a supermartingale. It means that investor would

not use auxiliary stocks (λ = 0) to form an optimal portfolio even for hedging pur-

poses.
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3.3 Non-Concave Utility Function

The idea that utility function might not necessarily be concave, or, in other words,

investors on the market are not necessarily risk-averse, emerges from significant em-

pirical evidences, provided, for instance, in Tversky and Kahneman 1992. It sug-

gests that, depending on the context, agents on the market might switch from being

risk-averse to risk-taking perspective. Such behavior could be described by ”mixed”

utility function, which is not necessarily concave on all intervals of its domain. Gen-

eralization of approaches to solving the utility maximization problem in such case

was generalized and discussed in details in Reichlin 2012.

In this section we demonstrate how classical approach described in previous sections

can be modified in order to accommodate not necessarily concave utility function. The

approach was inspired by Bahchedjioglou and Shevchenko 2022.

ζ̄(x) := max
π∈A(v0)

E[U(V π
T )], (3.32)

where now utility function U(x) of investor is not necessarily concave. Instead, we

are working with some non-decreasing, upper-semicontinuous function that satisfies

mild growth condition

lim
x→0

U(x)

x
= 0.

For such function we define the concave envelope in the following way

Definition 3.9 Uc(x) is called a concave envelope of function U(x) if it is a smallest

non-decreasing, continuous and concave function such that

Uc(x) ≥ U(x), ∀x ∈ R.

We provide important fact from Reichlin 2012 regarding the structure of such

”concavification” of utilility function.

Lemma 3.10 (Reichlin 2012 Lemma 2.8) Concave envelope Uc(x) is finite, con-

tinuous on (0,∞) and satisfy mild growth condition. The set {Uc > U} = {x ∈ R+ :
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Uc(x) > U(x)} is open and its (countable) connected components are bounded (open)

intervals. Moreover, Uc(x) is locally affine on the set {Uc > U}, in the sense that it

is affine on each of the above intervals.

From this lemma it follows that we can treat set on which concave envelope is

strictly greater than source utility function as a countable union of open intervals⋃︁
i(ai, bi).

Lemma 3.11 Concavified objective function Uc(x) has both one-sided derivatives at

any point x > 0, and the right derivative is less or equal than left derivative. Deriva-

tives coincide everywhere except at most countable set. Moreover, for every x, y ∈ R

one has that

Uc(x)− Uc(y) ≤ U ′
c(y+)(x− y)

Uc(x)− Uc(y) ≤ U ′
c(y−)(x− y)

We denote the set of points where function Uc(x) is non-differentiable as {ci, i ≥ 1}.

It is also fair to notice that derivative of a concave envelope Uc(x) is decreasing and

lim
x→∞

U ′
c(x) = 0. At the same time, U ′

c(x) is constant on each interval (ai, bi).

From this lemma it follows that Uc(ai−) ≥ Uc(ai+) = Uc(bi−) ≥ Uc(bi+). Then,

following the idea from Bahchedjioglou and Shevchenko 2022, one could define the

inverse function to concave envelope as

i(y) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(U ′
c(x))

−1 , y ∈ R+\ [{
⋃︁
i[U

′
c(bi+), U ′

c(ai−)]} ∪ {
⋃︁
i[U

′
c(ci+), U ′

c(ci−)]}]
ai , y ∈ [U ′

c(ai+), U ′
c(ai−)]

bi , y ∈ [U ′
c(bi+), U ′

c(bi−)]

ci , y ∈ [U ′
c(ci+), U ′

c(ci−)]

0 , y ≥ U ′
c(0+)

(3.33)

3.3.1 Complete Market Case

Similarly to classical approach introduced in the previous section, in order to solve

expected utility maximization problem we construct, with the help of inverse function
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introduced in (3.33)

C0(y) := E
[︁
βTZ

A
T · i(yβTZA

T )
]︁
, 0 < y <∞, (3.34)

Proposition 3.12 Function C0(y) is continuous and decreasing.

Proof. The statement that the function of interest is decreasing follows directly from

the fact that i(y) is decreasing.

Let us prove the continuity of C0(y). First, notice that the set A of discontinuity

points of the function i(y) is at most countable. Let yn be a decreasing sequence such

that

lim
n→∞

yn = y.

If, for some ω ∈ Ω

lim
n→∞

i
(︁
ynβTZ

A
T (ω)

)︁
̸= i
(︁
yβTZ

A
T (ω)

)︁
,

then yβTZ
A
T (ω) ∈ A.

Since βTZ
A
T has a continuous distribution, it follows that P

(︁
yβTZ

A
T (ω) ∈ A

)︁
= 0

and therefore

P
(︂
lim
n→∞

i
(︁
ynβTZ

A
T (ω)

)︁
̸= i
(︁
yβTZ

A
T (ω)

)︁)︂
= 0.

As i(y) is decreasing and right-continuous, it follows from Monotone Convergence

theorem that

lim
n→∞

E0
[︁
βT i

(︁
ynβTZ

A
T (ω)

)︁]︁
= E0

[︁
βT i

(︁
yβTZ

A
T (ω)

)︁]︁
(3.35)

which proves the statement.

Further, due to its continuity, function C0(y) has continuous and decreasing inverse

J0(x) = (C0(y))−1. Then, we define

ψ0(x) = i
(︁
J0(x)βTZ

A
T

)︁
(3.36)
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Lemma 3.13 Random variable ψ0(x) satisfies

E
[︁
βTZ

A
T ψ0(x)

]︁
= x. (3.37)

For every portfolio π ∈ A(x)

E [U(V π
T (x))] ≤ E [Uc(V

π
T (x))] ≤ E [Uc(ψ0(x))] (3.38)

Proof. Equation (3.37) follows directly from constructions of ψ0(x) and J0(x).

Let us focus the optimality of ψ0(x) in terms of expected utility. Consider some

portgolio π ∈ A(x). Then, applying (3.5) to Uc(ψ0(x)) we get

E [Uc(ψ0(x))] = E
[︁
Uc
(︁
i
(︁
J0(x)βTZ

A
T

)︁)︁]︁
≥ (3.39)

≥ E
[︁
Uc(V

π
T (x)) + J0(x)βTZ

A
T (i
(︁
J0(x)βTZ

A
T

)︁
− V π

T (x))
]︁
= (3.40)

= E
[︁
Uc(V

π
T (x)) + J0(x)βTZ

A
T (ψ0(x)− V π

T (x))
]︁
≥ (3.41)

(Applying (3.37) and the fact that βtZ
A
t V

π
t (x) is a supermartingale)

≥ E [Uc(V
π
T (x))] ≥ E [U(V π

T (x))] (3.42)

From Lemma 3.13 it follows that if there exists portfolio such that its terminal

capital replicates the ψ0(x), it would be optimal for expected utility maximization

problem.

Theorem 3.14 On complete market (8.1), for fixed initial capital v0, the optimal

portfolio that maximizes the expected utility would be the one, which terminal capital

satisfies V π
T (v0) = ψ0(v0) = i

(︁
J0(v0)βTZ

A
T

)︁
Proof. From (3.13) follows that ψ0(x) is a maximizer for the function E[Uc(V π

T )].

For consistency, let us denote this fact as ψ0(x) = arg ζ̄c(x). In Reichlin 2012 if was

demonstrated that ζ̄c(x) is itself a concave envelope for value function ζ(x) of an

original maximization problem (3.32). Since distribution of ZA
T is continuous, from

Lemma 5.7 in Reichlin 2012 follows the statement of theorem.
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3.3.2 Incomplete Market Case

Similarly to Section 3.2.2, in this one we demonstrate how method of market com-

pletions can be applied to solving the problem of maximization of expected not nec-

essarily concave utility on incomplete market.

Following the procedure of the method, we introduce (k−n) auxiliary assets. With

the same steps, we obtain parameterization of completed versions of the initial market

by possible orthogonal completions, each of which corresponds to particular vector

ν as in (3.11). Consequently, with the help of (3.12), we can construct necessary

functions on each of completed markets

Cν(y) := E
[︁
βTZ

A
T Z

ν
T i(yβTZ

A
T Z

ν
T )
]︁
, 0 < y <∞, (3.43)

Jν(x) = (Cν(y))−1, (3.44)

ψν(x) := i
(︁
Jν(x)βTZA

T Z
ν
T

)︁
. (3.45)

In case of availability of completion assets, the maximal expected utility that could

be achieved on market would be, following Theorem 3.14, the one, that replicates

ψν(x). However, these assets are not available for trading, which means the following

inequality holds:

sup
π∈A(x)

E [Uc(V
π
T (x))] ≤ E [Uc(ψν(x))] . (3.46)

And the equality would be achieved in case there exists a portfolio of existing stocks

that replicates ψν(x) at maturity time T . Following the approach from Karatzas et

al. 1991, let us show that the same criteria as in Theorem 3.7 will take place in case

of not necessarily concave utility function. We start with formulating conditions for

the case of concavified function Uc(x):

A. Optimality of π̂: EUc(V
π
T ) ≤ EUc(V

π̂
T ) ∀π ∈ A(x)

B. Financiability of ψλ(x): ∃π̂ ∈ A(x) such that V π̂
T = ψλ(x)

C. Least Favorability of λ: EUc(ψλ(x)) ≤ EUc(ψν(x)) ∀ν ∈ K1(Σ)
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D. Parsimony of λ: E[βTZ
A
T Z

ν
Tψλ(x)] ≤ x, ∀ν ∈ K1(Σ)

Following Karatzas et al. 1991, βTZ
A
T Z

ν
TV

π
T (x) is a local martingale under physical

measure P for every completion ν ∈ K(Σ). Moreover, E
[︁
βTZ

A
T Z

ν
TV

π
T (x)

]︁
≤ x, ∀ν ∈

K(Σ). From this fact it directly follows that if capital ψν(v0) is financeable, then

its initial price is no more than required initial capital v0 on all possible completed

markets under consideration, which is nothing but Parsimony condition [E]. Similar

to Karatzas et al. 1991 we could formulate criteria for choosing market completion

for which optimal solution would be financiable on initial incomplete market.

Theorem 3.15 Conditions [B] and [D] are equivalent and imply [C]. Moreover, port-

folio from [B] satisfy [A].

Proof. Idea and logic of the proof is similar to the one for concave function.

[B.→D.]

For any portfolio π ∈ A(x), βtZ
A
t Z

ν
t V

π
t is a local martingale under P for every

vector ν ∈ ker(Σ). Which follows directly from the following representation

βtZ
A
t Z

ν
t V

π
t = x+

t∫︂
0

βsZ
A
s Z

ν
s V

π
s (Σ∗

s · πs − (θs + νs))
∗ dWs. (3.47)

Since the process βtZ
A
t Z

ν
t V

π
t is a local martingale, one could write

E[βTZA
T Z

ν
TV

π
T ] ≤ x, ∀ν ∈ kerΣ. (3.48)

Consequently, if on some completed market we were able to find a portfolio π∗ of

existing assets that finances ξν(x), or, in other words, that V π∗
T = ξν(x) and condition

[D] holds.

[D.→B.]

Is a direct consequence of application of Theorem 3.6 with B = ξλ(x)

Having solution for concavified utility function, we could use the result from Re-

ichlin 2012 that in case of atomless probability space and continuous distribution of
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densities dP ν

dP
, solution to utility maximization problem with respect to not-necessarily

concave utility coincides with the solution obtained for its concave envelope. There-

fore, completion, that satisfies [D] will simultaneously be a solution for utility maxi-

mization for not necessarily concave function on incomplete market.
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Chapter 4

Pricing of contingent claims by
means of Market Completions

4.1 Introduction

Assume now that instead of trying to maximize his utility at some moment T in

future, market agent has some financial obligation at that time. In other words, there

is some contingent claim which agent agrees to sell and provide payoff according to

agreed FT -measurable function g(ω). Let us here focus on European type claims

only. Namely ones for which payoff happens at maturity time only. One of the core

questions in mathematical finance is how should one price such contingent claim?

Classical approach to pricing contingent claims is based on no-arbitrage principle.

In other words, the price of a contingent claim will be a value that allows no-arbitrage

on the market. Such price would be equivalent to a minimal investment required,

in order to build a minimal hedge for claim under interest (see Karatzas and Shreve

2016, Merton 1973), which can be calculated as an expectation of the claim discounted

value under special equivalent risk-neutral or martingale measure. Which, in case of

complete market will be unique and in line with the fact that any claim is perfectly

replicable on complete markets, presents no difficulties in pricing the claim.

However, on incomplete markets such equivalent measure is not unique anymore.

Which implies that no-arbitrage price is not unique on incomplete market as well. In-

stead investors can estimate an interval of no-arbitrage prices [C∗(gT , P ), C
∗(gT , P )].
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For any price within this interval, there are no arbitrage opportunities, whereas for

any price outside of it there is one (see Karatzas and Kou 1996). Assessment of the

boundaries of such interval is an important task and is covered in literature as in

Karatzas and Kou 1996, or, alternatively, by embedding this question into suitable

stochastic control problem as in El Karoui and Quenez 1995 or Cvitanic and Karatzas

1993.

Such equivalent martingale measure is also closely connected to risk-free bond as

a numeraire (discounting factor used to express relative prices) and, in fact, depends

on it. Therefore, it is natural to believe, that instead of working with infinite set of

equivalent martingale measures, one could focus on ”objective”, or observed measure

P and come up with some ”discounting portfolio” which will play a role of market

numeraire (Bajeux-Besnainou and Portait 1997).

There also an interesting question of how to choose a unique price within interval

of no-arbitrage prices. The answer to this question depends on many factors and

there are several approaches proposed for answering Davis 1997, Foellmer et al. 1985.

In current section we will show how method of market completions can be used to

price contingent claims. We start with application for classical approach for descrip-

tion of no-arbitrage prices by the means of proposed orthogonal completions. To be

consistent, we also provide change of numeraire approach, which was performed in

Guilan 1999 for American claims on incomplete market. We then move on to useful

way of finding a ”fair” price with the helo of utility maximization problem. The latter

was proposed Davis in Davis 1997 and will be used in further applications described

below.

4.2 Equivalent Martingale Measure Approach

In classical martingale approach to pricing contingent claims is to find minimal hedge

for a contingent claim and use its initial value as a price of a claim. Such price

would be calculated as an expectation under special martingale measure, under which
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discounted stock price process and, consequently, discounted portfolio value process

are martingales. Then, the initial price can be calculated as an expected value with

respect to martingale measure.

In case of complete market, no-arbitrage condition (1.4) is enough to find a unique

equivalent martingale measure and obtain single initial price of minimal hedge. How-

ever, when market is incomplete, there are infinitely many equivalent martingale

measures. As a result, one expects to face an interval of ”fair” prices as it was

desribed in Karatzas and Kou 1996. Consequently, pricing contingent claim on in-

complete market based on martingale approach is equivalent to describing interval of

fair prices.

In Vasilev and Melnikov 2021 we demonstrated how such unterval can be found

with the help of market completions. With the help of Lemma 2.5 it is possible to

state the following theorem.

Theorem 4.1 In the incomplete (B, S) market, asssume that r = 0 and let µ̄it and

σ̄it = (σ̄i1t , ..., σ̄
ik
t ) be as defined in the proof of Lemma 2.3 for i = 1, ..., n. Let also W̄

be a standard k-dimensional Brownian motion, with the first n elements given by

W̄
i
t =

1

∥σ̄it∥

k∑︂
j=1

σ̄ijt W
j
t (4.1)

for i = 1, ..., n, t ∈ [0, T ], where ∥σ̄it∥ =
√︂∑︁k

j=1(σ̄
ij
t )

2. Then the upper hedging price

can be expressed as

C∗(fT , P ) = sup
µ̄i

∥σ̄i∥
,i=n+1,k

EP
[︄
exp

{︄
−

k∑︂
i=1

∫︂ T

0

µ̄it
∥σ̄it∥

dW̄ t −
1

2

k∑︂
i=1

∫︂ T

0

(︃
µ̄it

∥σ̄it∥

)︃2

dt

}︄
fT (W̄ )

]︄
.

(4.2)

Moreover, for each orthogonal completion, there is a corresponding ”completed”

market for which volatility matrix Σ̃ has a proper square shape and system (1.4)

produces a unique solution. Which means there should exist unique equivalent lo-

cal martingale measure, parametrized with the help of solution {θt}t≥0. As each
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”completed” volatility matrix corresponds to particular market completion, there is

a one-to-one correspondence between the set of ELMM for initial incomplete model

and set of orthogonal completions.

In other words, for completed matrix (2.2) there is a unique solution for

Σ̃ · θ̃ = µ̄− 1̄kr (4.3)

where µ̄ =

⎡⎣µ
a

⎤⎦ - column vector of shift coefficients for original and completing assets.

This solution can be obtained similarly to (1.7) as

θ̃t =Σ̃
T

t ·
(︂
Σ̃tΣ̃

T

t

)︂−1

(µ̃t − r1̄k) = (4.4)

=θt + νt (4.5)

where

νt = ρTt · (at − 1̄kr)

and θTt · ν = 0 by definition of orthogonal completion. Assuming that

T∫︂
0

∥νt∥2dt <∞, (a.s.)

one may define corresponding martingale measure density as

ZC
t =exp

{︃
−
∫︂ t

0

(θTs + νTs ) · dWs −
1

2

∫︂ t

0

(∥θs∥2 + ∥νs∥2)ds
}︃

= (4.6)

=ZA
t × Zν

t (4.7)

Using decomposition (4.4) implies that

ZC
t = ˆ︁Zˆ︁θ

t × ˆ︁Zˆ︁ν
t (4.8)

Corollary 4.2 If contingent claim depends only on the first n components of innova-

tive Brownian motion, then its price could be uniquely defined on incomplete market.

In other words, if payoff from contingent claim only depends on the existing assets,

then it will be replicable on incomplete market and will have a unique risk-neutral

price.
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Remark 4.3 It is possible to further decompose expression (4.8) with respect to par-

ticular asset. Without loss of generality, assume that investor focuses on the asset

S̃
1

t . Dynamics of the price of this asset is described by the following equation:

dS̃
1

t = S̃
1

t

(︂
µ̃1
tdt+ ∥σ̄1

t∥dˆ︂W 1
t

)︂
, (4.9)

where ˆ︂W i
t =

k∑︁
j=1

σ̄ij
t

∥σ̄i
t∥
dW j

t .

Consequently, in case of constant coefficients µ̃1 and σ̄1 one can obtain the following

solution

S̃
1

t = S̃
1

0 · exp
(︃(︃

µ̃1 − ∥σ̄1∥2

2

)︃
t+ ∥σ̄1∥ˆ︂W 1

t

)︃
(4.10)

Solving (1.4) in this case, it is clear that ˆ︁θ1 = µ̃1−r
∥σ̄1∥ . Then

S̃
1

t = S̃
1

0 · exp
(︃(︃

r − ∥σ̄1∥2

2

)︃
t+ ∥σ̄1∥ˆ︂W 1ˆ︁θ

t

)︃
(4.11)

where ˆ︂W 1ˆ︁θ
t = ˆ︂W 1

t + ˆ︁θ1t is a Brownian motion under the risk-neutral measure with

density ZC
t . Consequently,

(ZC
t )

−1 =
dP

dP ˆ︁θ =(Z
ˆ︁θ
t × Zˆ︁ν

t )
−1 = (Zˆ︁ν

t )
−1 × exp

(︄
n∑︂
j=1

ˆ︁θjˆ︂W jˆ︁θ
t − 1

2

n∑︂
j=1

(ˆ︁θj)2t)︄ = (4.12)

=(Zˆ︁ν
t × Z

ˆ︁θ2+
t )−1 × exp

(︃ˆ︁θ1ˆ︂W 1ˆ︁θ
t − 1

2
(ˆ︁θ1)2t)︃ = (4.13)

=(Zˆ︁ν
t × Z

ˆ︁θ2+
t )−1 × exp

(︄ ˆ︁θ1
∥σ̄1∥

(︃
∥σ̄1∥ˆ︂W 1ˆ︁θ

t − 1

2
µ̃1t+

1

2
rt

)︃)︄
= (4.14)

=(Zˆ︁ν
t × Z

ˆ︁θ2+
t )−1 ×

(︂
S̃
1

t

)︂ ˆ︁θ1
∥σ̄1∥

exp

(︄ ˆ︁θ1
∥σ̄1∥

(︃
− ln S̃

1

0 −
1

2

(︃
µ̃1 + r +

∥σ̄1∥
2

)︃
t

)︃)︄
=

(4.15)

=(Zˆ︁ν
t × Z

ˆ︁θ2+
t )−1 ×Ψ(t)×

(︂
S̃
1

t

)︂ ˆ︁θ1
∥σ̄1∥

(4.16)
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4.3 Change of numeraire approach

In line with Equivalent Martingale Measure approach, it is worth mentioning also so-

called change of numeraire pricing approach. Here we provide review of this approach

for the completeness. Connection between change of numeraire approach and method

of market completions was described in Guilan 1999, we briefly provide main steps

below for informational purposes and to complete overview of the method of Market

Completions.

According to this approach, instead of trying to ”re-weight” probability of events

by choosing some risk-neutral measure, one is searching for special portfolio that

could be used as discounting factor instead of classical bank account. However, the

choice criteria for such discounting portfolio stays the same – discounted strategy

prices should be martingales.

More formally, the main goal is to find portfolio, which value process Xt is a strictly

positive, continuous Ito process such that:

dXt = Xt(rtdt+ π∗
t σt(dWt + utdt)). (4.17)

Remark: Here we will intentionally use notation u instead of θ just to distinguish

approaches. However, they both represents same idea of price of the risk.

We want to use this portfolio as numeraire, such that risk-premiums with respect to

this numeraire are constrained to be equal 0. In other words, price process, discounted

by mentioned portfolio will be local martingale w.r.t. ”objective” probability P .

Theorem 4.4 Let αt =
(︁
σtσ

T
t

)︁−1
(µt − rt1), i.e. ut = σTt · αt. Consider the self-

financing strategy πt = (αit)
n
i=1 in the risky-assets. Denote by Mt the present value of

this admissible strategy. Then Mt satisfies SDE:

dMt =Mt(rtdt+ (ut)
T (dWt + utdt)) =Mt(rtdt+ ∥ut∥2dt+ (ut)

TdWt) (4.18)

In the market with Mt as numeraire, investors are risk-neutral. M-price process

SMt = St

Mt
of any asset St is a local martingale. We refer to it as a market numeraire.
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Proposition 4.5 If m is a strategy that corresponds to Mt, then:

• m maximizes the expected logarithm of terminal wealth

• m is unique even in incomplete market

• m maximizes the expected growth rate

Details about mentioned properties can be found in Bajeux-Besnainou and Portait

1997.

Price of European contingent claim fT on the complete market, according to market

numeraire approach could be found as:

V0 = EP
(︃
fT
MT

)︃
. (4.19)

Working with incomplete market case, it is obvious that there are several risk-

neutral prices as we can find several αt that fit conditions of Theorem 4.4. So let’s

apply market completions approach and show that it can be used for estimation of

option price boundaries on incomplete market.

Let’s consider some market completion Sc. Then coefficients of these fictitious

assets satisfy

det(σ(ρ)) = det

⎛⎝σt
ρt

⎞⎠ ̸= 0 and u(ρ, a, t) =

⎛⎝σt
ρt

⎞⎠−1⎛⎝ bt − rtIn

at − rtIk−n

⎞⎠ (4.20)

with ∫︂ T

0

∥u(ρ, a, t)∥2dt <∞, P − a.s. (4.21)

On completed market one can define market numeraire as in (4.18):

dM(ρ, a, t) =M(ρ, a, t)(rtdt+ ∥u(ρ, a, t)∥2dt+ (u(ρ, a, t))TdWt) (4.22)

In the completed market we have the fair price of CC fT calculated similar to

(4.19):

V0(ρ, a) = EP
(︃

fT
M(ρ, a, T )

)︃
. (4.23)
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Let

V1(ρ) = inf
a∈Dρ

V0(ρ, a), V2(ρ) = sup
a∈Dρ

V0(ρ, a) (4.24)

whereDρ = {a : Rk−n-valued progressively measurable processes such that
∫︁ T
0
∥u(ρ, a, t)∥2dt <

∞ a.s.}. According to Guilan 1999, the following holds

Proposition 4.6 V1(ρ) and V2(ρ) are independent of ρ

Proposition 4.6 serves as another proof that it is enough to work with orthogonal

completions only. Let’s pick the orthogonal completion σρT = 0, ρρT = I. For such

ρ and a ∈ Dρ:

u(ρ, a) =

⎛⎝σ
ρ

⎞⎠−1⎛⎝ µ− rIn

a− rIk−n

⎞⎠ = σT (σσT )−1(µ− rIn)+ ρ
T (a− rIk−n) = u+ψ = uψ.

(4.25)

And this uψ would be used for construction of market numeraire. Also, it follows

that:

σψ = 0, (4.26)

and

a = ρψ + rIk−n (4.27)

Which means that ”non-arbitrage” vector on completed market can be decomposed

into u from incomplete source market and ψ which is completion-dependent. If we

define class K(σ) = {ψ : ψ is Rk-valued progressively measurable, σtψt = 0,∀t ∈

[0, T ], a.s. and
∫︁ T
0
∥ψt∥2dt < ∞, a.s.}, then this class will be a parameter space for

fictitious completions of the incomplete market. For each ψ ∈ K(σ) one can find a

fair price in a completed market. It implies that option price boundaries will be

J(t) = sup
ψ∈K(σ)

E
[︃
Mψ(t)

fT
Mψ(T )

|Ft

]︃
or inf

ψ∈K(σ)
E
[︃
Mψ(t)

fT
Mψ(T )

|Ft

]︃
(4.28)
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Noting results of Guilan 1999, it is possible to show that these price boundaries

coincide with boundaries from classical approach:

V (t) = sup
P̃∈M

EP̃
[︃
Bt
fT
BT

|Ft

]︃
or inf

P̃∈M
EP̃
[︃
Bt
fT
BT

|Ft

]︃
(4.29)

4.4 Utility Based Indifference Pricing

As it was mentioned in previous sections, classical approach for pricing contingent

claims in a field of mathematical finance is to find a portfolio, which terminal capital

replicates (a.s.) such contingent claim and use its initial value as the price for con-

tingent claim. However, in incomplete markets, such replication often troublesome

or might not be possible at all. Holding option in incomplete market is unavoidably

a risky business, which means it makes sense to consider investors attitude towards

risk and consider some pricing methodology which does not require replication of

contingent claim.

One of such pricing methodologies was introduced in Davis 1997 and further devel-

oped in, for example, Karatzas et al. 1991 and Karatzas and Kou 1996. This approach

consists in embedding option pricing problem into Utility Maximization task where

utility function reflects investor attitude towards risk.

Let us assume that investors appetite is described with concave, non-decreasing

utility function U with U ∈ C2 on R+ with U ′ > 0, limx→0 U
′(x) = ∞ and limx→∞ U ′(x) =

0. Having an initial capital x he forms a portfolio π which terminal value is V π
T (x).

His objective is to maximize expected utility of terminal wealth:

ζ(x) = sup
π∈A(x)

E [U(V π
T (x))] (4.30)

In order to get initial price of any financial claim, we construct special function in

the following way: assume capital δ is diverted towards purchase of claim with payoff
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gT and current price p, then maximal expected utility can be defined as:

w(δ, x, p) = sup
π∈A(x)

E
[︃
U

(︃
V π
T (x− δ) +

δ

p
gT

)︃]︃
(4.31)

Definition 4.7 Suppose that for each (x, p) the function δ ↦→ w(δ, x, p) is differen-

tiable at δ = 0 and there is a unique solution p̂(x) of the equation

∂w

∂δ
(0, x, p) = 0 (4.32)

then p̂(x) is a fair option price at time 0.

It was demonstrated in both Davis 1997 and Karatzas and Kou 1996, that fair

price then can be obtained as:

Theorem 4.8 Suppose that ζ(x) is differentiable at each x ∈ R+ and that ζ ′(x) > 0.

Then the fair price p̂(x) from Definition 4.7 is given by

p̂(x) =
E
[︁
U ′ (︁V π∗

T (x)
)︁
gT
]︁

ζ ′(x)
(4.33)

From Section 3.2, we know that V π∗
T (x) = ξ0(x) = I

(︁
Y0(x)βTZ

A
T

)︁
. Therefore,

ζ(x) = E
[︁
U(I

(︁
Y0(x)βTZ

A
T

)︁
)
]︁
and ζ ′(x) = Y0(x). Similarly, on incomplete market

we obtain

ζλ(x) = E
[︁
U
(︁
I
(︁
Yλ(x)βTZA

T Z
λ
T

)︁)︁]︁
, (4.34)

ζ ′λ(x) = Yλ(x). (4.35)

Then, following Karatzas and Kou 1996, initial UBIP price of the claim with payoff

gT can be found with the help of the following theorem.

Theorem 4.9 For all x > 0, the UBIP price p̂(x) can be found as

p̂(x) = E[βTZA
T Z

λ
TgT ] (4.36)
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Proof. We provide sketch of the proof. One should use (4.33).

E
[︁
U ′ (︁V π∗

T (x)
)︁
gT
]︁
= E

[︁
U ′ (︁I (︁Yλ(x)βTZA

T Z
λ
T

)︁)︁
gT
]︁
=

= E
[︁
Yλ(x)βTZA

T Z
λ
TgT
]︁
=

= ζ ′λ(x)E
[︁
βTZ

A
T Z

λ
TgT
]︁
.

The rest follows from (4.33).

It was shown in Karatzas and Kou 1996, that with mild restrictions on concave util-

ity function, if market is structurally incomplete, then, for deterministic coefficients,

optimal completion λ will be found from

λ = arg min
y∈kerΣ

∥θ(t) + y∥2 (4.37)

and will be independent from both initial budget of investor and particular utility

function.

Remark 4.10 It is straightforward to notice that completion λ found from (4.37)

will correspond to λ = 0 and to Equivalent minimal martingale measure.

Proof. Follows directly from definition 2.22.

Moreover, noticing connection with Minimal martingale measure approach, we can

summarize obtained results in the following proposition.

Proposition 4.11 If market model (8.1) is structurally incomplete, then UBIP price

will be determined as an expectation under equivalent minimal martingale measure.

Proof. Follows from Theorem 4.9, (4.37) and Remark 4.10.

To better demonstrate how method of market completions can be used for UBIP

methodology, we provide the following example of implementation in case of logarith-

mic utility function.
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Example 4.12 Consider utility function U(x) = ln(x) for which:

Xν(y) =
1

y
, Yν(x) =

1

x
(4.38)

and optimal terminal capital can be calculated as

ξxν =
x

βTZν
T

. (4.39)

One could check that completion with parameter λ = 0 satisfies [5] in Theorem 3.7.

E[βTZ
ν
T ξ

x
0 ] = x · E

[︃
exp

{︃
−
∫︂ T

0

νTs dWs −
1

2

∫︂ T

0

∥νs∥2ds
}︃]︃

≤ x ∀ν ∈ K(Σ) (4.40)

as the process under expectation is a supermartingale. It means that investor would

not use auxiliary stocks (λ = 0) to form an optimal portfolio even for hedging pur-

poses.

Note also, that λ = 0 corresponds to the version of the market for which equivalent

local martingale measure will be minimal martingale measure.
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Chapter 5

Application of Method of Market
Completions (MMC) to quantile
hedging

5.1 Problem of Quantile Hedging

In previous chapters we demonstrated how method of market completions can be

applied to classical problems of mathematical finance that

Knowing the initial price g0 of a perfect hedging strategy for a contingent claim

with payoff gT = gT (ω) it is often the case that investor is unwilling, or unable to

invest such amount of money. Then, the question is: What will be the best hedging

portfolio the investor can achieve given initial budget constraint v0 < g0?

As long as initial budget is not enough for the perfect hedging strategy, there

emerges a probability of shortfall. We assume that the goal of investor is to maximize

the probability of successful hedging – or, in other words, minimize the probability

of a shortfall. Or in other words, having capital v0, what would be the best portfolio,

such that the hedge is successful with maximal possible probability? In this section

we will demonstrate how to construct strategy which maximizes the probability of

a successful hedge under the observed measure P given some budget restriction in

place. We follow approach from Föllmer and Leukert 1999 for complete market case

and further show how method of market completions is useful for solving this problem
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in case of incomplete market.

We will call the following set

{V π
T (v0) ≥ gT}

a ”successful hedging set” that corresponds to the strategy (v0, π). So the problem

of quantile hedging becomes

⎧⎨⎩ max
π∈A(x)

P (V π
T (x) ≥ gT )

s.t. Π(V π
T (x)) ≤ v0

(5.1)

In Föllmer and Leukert 1999 it was demonstrated that this problem can be solved

Proposition 5.1 Let Ã ∈ FT be a solution of the problem⎧⎨⎩ max
π∈A(x)

P (A)

s.t. Π(gT1A) ≤ v0.
(5.2)

Then perfect hedge π̃ for the knockout option g̃ = g1Ã solves the optimization problem

(5.1) and the corresponding successful hedging set coincides almost surely with Ã.

5.2 Complete Market Case

The problem of construction of the maximum probability successful hedging set in

(5.2) can be solved by the means of famous Neyman-Pearson lemma for hypothesis

testing task.

Assuming that φ = 1A for successful hedging set A in a problem (5.2). Then this

problem can be re-written in the following form

⎧⎨⎩ max
π∈A(x)

E [φ]

s.t. E∗ [φgT ] ≤ v0.
(5.3)

Introducing auxiliary measure Q∗ as dQ∗

dP ∗ = gT
E∗[gT ]

and the problem becomes

⎧⎨⎩ max
π∈A(x)

E [φ]

s.t. EQ∗
[φ] ≤ v0

E∗[gT ]
= α.
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which, according to Neyman-Pearson lemma, has a solution with G = 1 and H =

dQ∗

dP
= gT

E∗[gT ]
× dP ∗

dP
as

φ̂ = 1ẑgT< dP
dP∗

+ b · 1ẑgT= dP
dP∗

(5.4)

where

ẑ = inf

{︃
u ≥ 0;Q∗

(︃
ugT <

dP

dP ∗

)︃
≤ α

}︃
b =

α−Q∗ (︁ẑgT < dP
dP ∗

)︁
Q∗
(︁
ẑgT = dP

dP ∗

)︁ .

Theorem 5.2 (from Föllmer and Leukert 1999) Let π∗ denote the perfect hedge

for the modified contingent claim g̃ = φ̃g where

φ̃ = 1ẑgT< dP
dP∗

+ b · 1ẑgT= dP
dP∗

, (5.5)

as in (5.4). Then

1. π∗ maximizes the expected success ratio E[φ] under all admissible strategies π ∈

A(v0) with v0 < g0

2. The corresponding success ratio is given by φ̃

5.3 Incomplete Market Case

Assume now we are in a situation of incomplete market. Since in this case equivalent

martingale measure is not unique anymore, the problem of quantile hedging (5.3) will

be written in the following form⎧⎨⎩ max
π∈A(x)

E [φ]

s.t. sup
P ∗∈P

E∗ [φgT ] ≤ v0.
(5.6)

In order to find solution to this problem in incomplete market, we would also use

the Method of Market Completions. First of all, we introduce required amount of
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auxiliary assets

dSit = Sit

(︄
aitdt+

k∑︂
j=1

ρijt dW
j
t

)︄
, i = n+ 1, ..., k.

As was demonstrated in Section 2.2, each completed version of the market can be

parametrized by the corresponding vector ν. Therefore, using such parametrization,

one gets the following sub-problem on each of completed markets:

⎧⎨⎩ max
π∈A(x)

E [φ]

s.t. Eν [φgT ] ≤ v0.
(5.7)

Further, on each completed market, we define an equivalent measure Qν

dQν

dP ν
=

g

Eν [g]
. (5.8)

With the help of this auxiliary measure the subproblem becomes⎧⎨⎩ max
π∈A(x)

E [φ]

s.t. Eν [φ] ≤ v0
Eν [g]

= αν .
(5.9)

It is straight forward to see that finding solution to this problem will be the most

powerful randomized test which produces error of first type no more than αν . Such

problem can be solved with the help of Neyman-Pearson lemma.

Proposition 5.3 Solution to the problem (5.9) exists and takes the form

φ̂ν =1ẑ 1
Eν [gT ]

gT<
dP
dPν

+ b · 1ẑ 1
Eν [gT ]

gT= dP
dPnu

= (5.10)

=1ẑνgT< dP
dPν

+ b · 1ẑνgT= dP
dPν

(5.11)

where

ẑν = inf

{︃
u ≥ 0;Q

(︃
ugT <

dP

dP ν

)︃
≤ α

}︃
(5.12)

b =
α−Qν

(︁
ẑνgT <

dP
dP ν

)︁
Qν
(︁
ẑνgT = dP

dP ν

)︁ . (5.13)
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As a result, optimal strategy, that would maximize the probability of successful

hedging on the completed market will be to replicate g̃ν = φ̂νg. Obviously, for any

strategy with terminal capital V π
T , constructed from assets, available on incomplete

market.

Proposition 5.4 Successful hedging ratio will be not greater than for any completed

version of the market:

sup
π∈A(x)

E[φπ] ≤ E[φ̂ν ], ∀ν ∈ ker(Σ), (5.14)

where φπ is a successful hedge ratio of strategy π, defined as

φπ = 1V π
T ≥gT +

V π
T

gT
1V π

T <gT
, π ∈ A(x). (5.15)

Proof. Notice, that each φ represents indicator function for successful hedging set.

Assume that there exists a parameter ν̃ ∈ kerΣ for which sup
π∈A(x)

E[φπ] > E[φ̂ν ]. In

other words, on completed market maximal corresponding probability of successful

hedge will be E[φ̂ν ], however, it contradicts the fact that existing assets are avail-

able on any completed market and therefore investor will always be able to achieve

probability of successful hedging at least sup
π∈A(x)

E[φπ] if he decides not to use any

completing assets at all.

Consequently, if optimal claim from some completed market version φ̂λg will be

financeable on initial incomplete market, then it would also be a solution to quantile

hedging problem (5.6). With the help of method of market completions we can

develop a criteria to choose particular completion λ as in Theorem 3.7

Theorem 5.5 If for a FT -measurable contingent claim gT on incomplete market

there exists a completion λ ∈ ker(Σ) such that for modified contingent claim φ̂λgT

holds

E
[︁
βTZ

A
T Z

ν
T φ̂

λgT
]︁
≤ v0 = E

[︁
βTZ

A
T Z

λ
T φ̂

λgT
]︁
, (5.16)

where φ̂λ is defined in (5.10).
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Then there exists portfolio π ∈ A(v0) which is a perfect hedge for φ̂λgT and solves

quantile hedging problem (5.6) on incomplete market.

Proof. To prove it is enough to use Theorem 3.6 taking B = φ̂λgT together with

Proposition 5.4.

Remark 5.6 It is also possible to pick particular market completion based on some

criteria. For instance, one could choose a completion that corresponds to market

version, for which equivalent local martingale measure will coincide with minimal

martingale measure, that was introduced in Section 1.7.

Let us demonstrate how it can be done. Following results from Theorem 2.6, we

remind that vector νmin ∈ ker(Σ) that corresponds to the completed market on which

equivalent martingale measure will coincide with minimal martingale measure could

be written as

νmin =

⎡⎣ ˆ︁θ
0k−n

⎤⎦ . (5.17)

Consequently, picking this version of completed market based on locally risk min-

imization criteria, one solves the problem (5.7) for ν = ν := νmin. It is clear, that

Zν
T = 1 (5.18)

and, consequently,

ZA
T Z

ν
T = ZA

T . (5.19)

Therefore, corresponding solution will be a perfect hedge for modified claim φmingT ,

where

φmin =1ẑνgT< dP
dPν

+ b · 1ẑνgT= dP
dPν

= (5.20)

1ẑνgT<(ZA
T )−1 + b · 1ẑνgT=(ZA

T )−1 (5.21)
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and

ẑν = inf
{︁
u ≥ 0;Q

(︁
ugT < (ZA

T )
−1
)︁
≤ α

}︁
(5.22)

b =
α−Q

(︁
ẑνgT < (ZA

T )
−1
)︁

Q (ẑνgT = (ZA
T )

−1)
. (5.23)

Summarizing obtained results we conclude that method of market completions

offers convenient tool for solving the problem of Quantile Hedging on incomplete

market. As it was demonstrated in Theorem 5.5, in order to find solution, one should

find a completion parameter λ ∈ kerΣ satisfying parsimony condition. Assembling

together all provided facts, we can conclude this section with the following result.

Theorem 5.7 Solution to quantile hedging problem (5.6) on structurally incomplete

market with deterministic coefficients will be a perfect hedge for modified contingent

claim φmingT , where

φmin = 1ẑνgT<(ZA
T )−1 + b · 1ẑνgT=(ZA

T )−1 (5.24)

ẑν = inf
{︁
u ≥ 0;Q

(︁
ugT < (ZA

T )
−1
)︁
≤ α

}︁
(5.25)

b =
α−Q

(︁
ẑνgT < (ZA

T )
−1
)︁

Q (ẑνgT = (ZA
T )

−1)
. (5.26)

Proof. It is clear from Remark 5.6 and (5.7) that modified claim φmingT maximizes

the probability of successful hedge for completed version of the market corresponding

to parameter λ = 0. Therefore, based on Theorem 5.5, to prove the statement of

the theorem it is enough to show that modified claim φmingT satisfy condition (5.16)

which would imply existence of the hedging portfolio for modified claim. Optimality

of such portfolio is a consequence from Proposition 5.4.

From continuity of ZA
T and (5.25) it follows that E

[︁
βTZ

A
T φ

mingT
]︁
= v0. Then,

for auxiliary market completion with corresponding parameter ν ∈ kerΣ, it is fair to

write that

E
[︁
βTZ

A
T Z

ν
Tφ

mingT
]︁
= v0 · E

⎡⎣exp
⎧⎨⎩−

T∫︂
0

ν∗sdWs −
1

2

T∫︂
0

∥νs∥2ds

⎫⎬⎭
⎤⎦ ≤ v0 (5.27)
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since exp

{︃
−

t∫︁
0

ν∗sdWs − 1
2

t∫︁
0

∥νs∥2ds
}︃

is non-negative local martingale and hence su-

permartingale.

From (5.27) follows (5.16).

5.4 Numerical Example

Example 5.8 Consider the market introduced in Example 2.7. Following steps de-

scribed above, for incomplete market, let us assume several completions on the market,

corresponding to parameters ν. For demonstration purposes we will consider small

amount of possible market completions, parametrized by vector ν following Exam-

ple 2.7. For each of completions we calculate initial price on completed market and

optimal ẑν parameter from (5.12):

Market Completion ν3 Value ẑ Risk-Neutral Price,

Parameter ID Completed Market

Z 0 0.0 0.004773 14.5429

Z 1 0.1 0.004733 14.5353

Z 2 0.2 0.004463 14.5251

Z 3 0.3 0.004096 14.5122

Z 4 0.4 0.003620 14.4963

Z 5 0.5 0.003138 14.4771

Z 6 0.6 0.002657 14.4543

Z 7 0.7 0.002189 14.4276

Z 8 0.8 0.001823 14.3965

Z 9 0.9 0.001460 14.3607

Let us use initial budget 13.7512 which is less than capital required for perfect hedg-

ing on each of completed market versions. Using obtained parameters, we are able

to construct modified claims according to (5.10). According to Theorem 5.2, strat-

egy, solving quantile hedging problem will be to perfectly hedge corresponding modified
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claims. Probabilities of successful hedging for all mentioned completed markets are

presented on the Figure 5.1 below.

Figure 5.1: Quantile Hedging: Probability of successful hedging vs. Initial budget
constraint by Market Completions

It is also worth highlighting, that completion ’Z 0’ corresponds to the minimal mar-

tingale measure. In the presented example, using this measure would also mean con-

sidering the ”worst case scenario” since solution on completed market that corresponds

to ’Z 0’ gives lowest probability of successful hedging across completions. This is an

expected behaviour since ‘Z 0‘ corresponds to minimal martingale measure with least

favorable solution.

Therefore, picking ’Z 0’ as a completed version of market and assuming P (ẑνgT =

ZA
T ) = 0, we arrive at conclusion, that solution to quantile hedging problem on in-
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complete market would be to perfectly hedge modified claim, defines as:

g̃ = gT · 1{0.004773·gT<(ZA
T )−1}
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Chapter 6

Application of MMC to efficient
hedging

6.1 Problem of Efficient Hedging

Another important step in developing optimal partial hedging strategy is to move

on from analyzing the probability of shortfall to working with actual size of possible

expected loss. Having positive probability of future losses from hedging due to insuf-

ficient capital to fund a perfect hedging, or super-hedging strategy investor may now

assess impact of coming shortfall with the help of some loss function l(x). Such loss

function should reflect that investor may be tolerant to some small losses and would

want to avoid large ones. That is why it is reasonable to assume that loss function is

increasing, convex function defined for positive losses from [0,∞) and l(0) = 0.

Then, having some financial obligation g(ω) in future, investor forms hedging port-

folio with capital available. Assuming, naturally, that

E[l(g))] <∞, (6.1)

the shortfall risk of investor can be defined as follows

Definition 6.1 The expectation of shortfall, weighted by loss function l

E
[︁
l
(︁
(g − V π

T (x))
+
)︁]︁

(6.2)

is called a shortfall risk.
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Then, the goal of efficient hedging is to construct hedging strategy π̂(x) such that

will minimize shortfall risk and its initial cost will be within investors budget. In

other words, the problem can be stated as

⎧⎨⎩ min
π∈A(x)

E [l ((g − V π
T (x))

+)]

s.t. Π(V π
T (x)) ≤ v0,

(6.3)

where Π (V π
T (x)) is an initial price of the claim assessed with the help of some

pricing functional Π. It was demonstrated in Föllmer and Leukert 2000 that, similarly

to quantile hedging, this problem can be reduced to the search of the randomized

statistical test with the highest power. Namely, consider the class of randomized

tests

R = {φ : Ω → [0, 1]|φ is FT measurable} .

Then, following Föllmer and Leukert 2000, the following result holds

Proposition 6.2 There exist a solution φ̃ ∈ R for the problem{︄
min
φ∈R

E [l ((1− φ)g))]

s.t. Π(φg) ≤ v0,
(6.4)

and a super-hedging strategy for modified claim g̃ = φ̃g solves the optimization problem

(6.3).

In what follows we discuss separately two cases of the efficient hedging problem.

Firstly, when loss function is linear, which implies that the problem becomes mini-

mization of expected shortfall. Secondly, for general case of convex loss function.

6.2 Minimizing expected shortfall

One important case of loss function is l(x) = x. In other words, when investor

estimate losses ”as is” no matter how large they are. In such case (6.4) is written as

{︄
min
φ∈R

E [((1− φ)g)]

s.t. Π(φg) ≤ v0,
≡

{︄
max
φ∈R

E [φg]

s.t. Π(φg) ≤ v0.
(6.5)
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As it was noted in Föllmer and Leukert 2000, the latter can be solved by the means

of famous Neyman-Pearson lemma.

6.2.1 Complete Market Case

When market is complete then there exists precisely one, unique equivalent martin-

gale, or risk-neutral market measure. It implies that, under martingale approach the

pricing functional in problem (6.3) can be thought of as an expectation under this

martingale measure. So, on complete market the problem becomes

{︄
max
φ∈R

E [φg]

s.t. E∗ (φg) ≤ v0,
(6.6)

where

dP ∗

dP
= exp

⎛⎝ t∫︂
0

θ′sdW (s)− 1

2

t∫︂
0

∥θs∥2ds

⎞⎠ .

Introducing

dQ

dP
=

g

E[g]
,

dQ∗

dP ∗ =
g

E∗[g]

and from Föllmer and Leukert 2000, the solution can be obtained explicitly as

Proposition 6.3 The optimal randomized test for the problem (6.6) φ̃ ∈ R is given

by

φ̃ = 1{ dP
dP∗>ã} + γ1{ dP

dP∗=ã} (6.7)

where

ã = inf
{︂
a : E∗[1{ dP

dP∗>a}g] ≤ v0

}︂
(6.8)

and

γ =
v0 − E∗[1{ dP

dP∗>ã}g]

E∗[1{ dP
dP∗=ã}g]

(6.9)

In other words, when market is complete, optimal hedging strategy can be uniquely

determined as a perfect hedge for modified claim φ̃g

74



6.2.2 Incomplete Market Case

Let us now move on to the case when market is no longer complete. Consequently,

there are infinitely many equivalent martingale measures and no-arbitrage principle is

no longer enough to determine a unique price of contingent claim. So the optimization

problem on incomplete market becomes

⎧⎨⎩max
φ∈R

E [φg]

s.t. sup
P ∗∈P

E∗ [φg] ≤ v0,
(6.10)

where P is a set of all martingale measures equivalent to ”observed” measure P .

The natural way of dealing with such incompleteness is then to use generalized

version of Neyman-Pearson lemma. Namely, on incomplete market one would have a

simple alternative hypothesis, represented by the ”physical” Wiener measure µ and

a family of null hypothesis as a family of special equivalent risk-neutral measures.

In order to re-write the problem (6.10) in a form of hypothesis testing, we introduce

auxiliary equivalent measures

G =
dP

dµ
=

g

E[g]
, Q =

{︃
dQν

dµ
, ν ∈ ker(Σ)

}︃
=

{︃
g

Eν [g]
ZA
T Z

ν
T , ν ∈ ker(Σ)

}︃
(6.11)

Rigorously speaking, one is working with P as a simple alternative hypothesis and

the family of measures {µν , ν ∈ ker(Σ)} given by

dµν
dµ

= ZA
T Z

ν
T = exp

⎛⎝ t∫︂
0

(θνs )
′dW (s)− 1

2

t∫︂
0

(∥θs∥2 + ∥νs∥2)ds

⎞⎠ . (6.12)

Consequently, associated value function (1.33) will be written as

Ṽ (z) = inf
ν∈ker(Σ)

E

[︃
g

E[g]
− z · g

Eν [g]
ZA
T Z

ν
T

]︃
= inf

ν∈ker(Σ)
E

[︃
g

E[g]

(︃
1− z · E[g]

Eν [g]
ZA
T Z

ν
T

)︃]︃
(6.13)

Though proposed optimization problem admits a solution, it is not easy to solve

it in practice. Therefore, we can apply method of market completions for finding

shortfall-minimizing strategy on incomplete market. Similarly to Section 5.3, we
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parametrize set of completed versions of the market by vectors ν ∈ ker(Σ). Then, on

each completed market we define sub-problem{︄
max
φ∈R

E [φg]

s.t. Eν [φg] ≤ v0.
(6.14)

Defining

dQ

dP
=

g

E[g]
,

dQν

dP ν
=

g

Eν [g]
, (6.15)

we get a standard simple hypothesis testing problem⎧⎨⎩max
φ∈R

EQ [φ]

s.t. EQν
[φ] ≤ v0

Eν [g]
= αν .

(6.16)

Using results from Proposition 6.3, one obtains for each completed market

φ̃ν = 1{ dP
dPν >ã

ν} + γν1{ dP
dPν =ãν} (6.17)

where

ãν = inf
{︂
a : Eν [1{ dP

dPν >a}g] ≤ v0

}︂
(6.18)

and

γν =
v0 − Eν [1{ dP

dPν >ã
ν}g]

Eν [1{ dP
dPν =ãν}g]

(6.19)

Similarly to Quantile hedging section, we can summarize obtained results in the

following theorem.

Theorem 6.4 Minimal expected shortfall on incomplete market (8.1) will be achieved

by investing in perfect hedging strategy for modified claim φνgT , where

φ̃ν = 1{ZA
T >ã

ν} + γν1{ZA
T =ãν} (6.20)

ãν = inf
{︂
a : Eν [1{ZA

T >a}g] ≤ v0

}︂
(6.21)

γν =
v0 − Eν [1{ZA

T >ã
ν}g]

Eν [1{ZA
T =ãν}g]

(6.22)
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Proof. On each completed version of the market, optimal strategy could be uniquely

defined by the means of complete market approach. Therefore, for each completed

market corresponding to ν ∈ kerΣ, one obtains optimal randomized test φ̃ν from

(6.17). Noting Proposition 5.4, we can deduce from similar logic that

sup
π∈A(v0)

E[φπgT ] ≤ E[φνgT ], ∀ν ∈ kerΣ,

where φπ is a successful hedge ratio of strategy π, defined as

φπ = 1V π
T ≥gT +

V π
T

gT
1V π

T <gT
, π ∈ A(x).

Moreover, equality is achieved if there exists strategy π∗ ∈ A(v0) such that its suc-

cessful hedge ratio coincide with some φν .

Consider market completion corresponding to parameter ν = 0. Then from conti-

nuity of ZA
T and (6.21) it follows that

E
[︁
βTZ

A
T Z

ν
Tφ

νgT
]︁
= v0 · E

⎡⎣exp
⎧⎨⎩−

T∫︂
0

ν∗sdWs −
1

2

T∫︂
0

∥νs∥2ds

⎫⎬⎭
⎤⎦ ≤ v0, ∀ν ∈ kerΣ,

(6.23)

since −
t∫︁
0

ν∗sdWs − 1
2

t∫︁
0

∥νs∥2ds is non-negative local martingale and, consequently,

supermartingale.

Therefore, from Theorem 5.5 it follows that there exists a strategy π∗ ∈ A(v0) that

replicates φνgT which proves the statement of the theorem.
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6.3 Working with convex loss function

Now assume that investor does apply some convex loss function to assess shortfall

risk. In other words, in this section we will discuss the problem (6.4) in general case

of ”proper” loss function.

Following steps proposed by Föllmer & Leukert in Föllmer and Leukert 2000, we

will apply convex duality methods in order to derive solution. First of all, define

state-dependent utility function as

ul(x, ω) = l(g(ω))− l((g(ω)− x)+). (6.24)

It is straightforward to see, that initial problem of minimization of shortfall risk

(6.3) can be defined as the following utility maximization task

⎧⎨⎩ max
π∈A(x)

E[ul(V π
T , ω)]

Π(V π
T ) ≤ v0

(6.25)

Before we move on and demonstrate how this problem can be solved in both com-

plete and incomplete markets, we should agree on some necessary technical assump-

tions.

Assumption 6.5 Function ul(x, ω) is a non-decreasing, concave in x, strictly con-

cave on [0, g(ω)] and continuously differentiable on [0, g(ω)]. In addition

−∞ < E[ul(0, ω)] and E[ul(g, ω)] <∞.

Following classical approach of convex duality we introduce inverse of marginal

utility function, which also is a state-dependent function:

Il(y, ω) = inf{z ∈ [0, g(ω)]|u′l(z, ω) < y}, (6.26)

in other words, Il(y, ω) = (u′l(x, ω))
−1 and it is continuous, strictly decreasing func-

tion in y. Then, applying famous Legendre transformation to −ul(−x), one gets a

conjugate
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ũl(y, ω) = max
x>0

[ul(x, ω)− xy] = ul(Il(y, ω), ω)− yIl(y, ω). (6.27)

From the latter equation, it follows that the following inequalities hold

ul(Il(y, ω), ω) ≥ ul(x, ω) + y (Il(y, ω)− x) , ∀x > 0, y > 0 (6.28)

ũl(u
′
l(x, ω), ω) ≤ ũl(y, ω)− x (u′l(x, ω)− y) , ∀x > 0, y > 0. (6.29)

Assumption 6.6 For some α ∈ (0, 1), γ ∈ (1,∞), we have

αu′l(x, ω) ≥ u′l(γx, ω)

6.3.1 Complete Market Case

In fact, when market is complete, then one can claim that there exists a unique risk-

neutral market measure. In such case, pricing functional Π in (6.25) becomes nothing

but an expectation under this martingale market measure.

⎧⎨⎩ max
π∈A(x)

E[ul(V π
T , ω)]

E∗ [V π
T ] ≤ v0

(6.30)

This implies that in order to find optimal efficient hedge, one might first solve the

utility maximization problem (6.30). In order to accomplish this, let us use approach,

proposed in Karatzas et al. 1991.

Assume that βt =
1
Bt

is a discounting factor and

E
[︁
βTZ

A
T Il(yβTZ

A
T , ω)

]︁
<∞, ∀y ∈ (0,∞).

Then, define

X0(y) := E
[︁
βTZ

A
T Il(yβTZ

A
T , ω)

]︁
, 0 < y <∞, (6.31)

which is a continuous, strictly decreasing function which has an inverse

Y0(x) = (X0(y))
−1.
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In Karatzas et al. 1991 it was shown that the optimal terminal capital (in this case

state-dependent random variable) that maximizes the expected utility is defined as

ξ0(x) := Il
(︁
Y0(x)βTZ

A
T

)︁
(6.32)

Now, knowing what terminal capital would be desirable for investor in order to

achieve maximal expected utility, one should be able to construct optimal strategy in

a classical way. Namely, as from definition it follows that ξ0(x) is a martingale, we

introduce:

Mt := E
[︁
βtZ

A
T ξ0(x)|Ft

]︁
(6.33)

then, Mt admits stochastic integral representation

Mt = x+

t∫︂
0

ψ∗
sdWs (6.34)

for some Ft-adapted process ψt, satisfying
T∫︁
0

∥ψs∥2ds < ∞. Further, define a wealth

process

V̂ t :=
Mt

βtZA
t

=
1

βt

⎛⎝x+ t∫︂
0

1

ZA
s

(ψs +Msθs)
∗dŴ s

⎞⎠ . (6.35)

Consequently, the optimal replicating strategy can be found as

π̂t =
1

βtZA
t V̂ t

(Σ∗
t )

−1 (ψt +Mtθt) . (6.36)

Proposition 6.7 Strategy π̂t from (6.36) will be optimal for state-dependent utility

maximization problem (6.30) and, consequently, for efficient hedging problem (6.3)

defined on complete market.

6.3.2 Incomplete Market Case

Moving on to the case of incomplete market, we are again facing an issue of infinitely

many equivalent martingale market measures, which presents the problem of applying

martingale approach for finding optimal strategy. However, this problem can be solved

by the means of proposed method of market completions.
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In particular, let us now assume that we are working with incomplete market. It

would imply that volatility matrix contains more columns than rows in it. Applying

MMC, we are able to parametrize each completed market by a special vector ν as it

was described in (4.8).

Obviously, on each completed market, which corresponds to particular parameter

ν, one would be able to apply approach described in the previous section. Namely,

for each completed market, we assume

E
[︁
βTZ

A
T Z

ν
T Il(yβTZ

A
T Z

ν
T , ω)

]︁
<∞, ∀y ∈ (0,∞).

Moving on, we define corresponding

Xν(y) := E
[︁
βTZ

A
T Z

ν
T Il(yβTZ

A
T Z

ν
T , ω)

]︁
, 0 < y <∞, (6.37)

which is a continuous, strictly decreasing function which has an inverse

Yν(x) = (Xν(y))
−1. (6.38)

Finally, on each completed market, we define optimal terminal capital (state-

dependent) that maximizes the utility function as

ξν(x) := Il
(︁
Yν(x)βTZA

T Z
ν
T

)︁
(6.39)

In terms of initial loss function, we could formulate the following criteria in order

to choose a particular optimal strategy which won’t require usage of auxiliary assets

and will be replicable by the means of existing assets only. At the same time, this

strategy should give us the lowest expected shortfall risk. In the spirit of Theorem

(3.7) and approach from Karatzas et al. 1991 we formulate the following conditions

for the problem of efficient hedging.

A. Optimality of π̂: El(g(ω)− V π
T )

+ ≤ El(g(ω)− V π̂
T )

+ ∀π ∈ A(x)

B. Financiability of ξλ(x): ∃π̂ ∈ A(x) such that V π̂
T = ξλ(x)
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C. Worst case loss associated with λ: El(g(ω)−ξλ(x))+ ≥ El(g(ω)−ξν(x))+ ∀ν ∈

K1(Σ)

D. Dual optimality of λ: ∀ν ∈ K1(Σ),

E
[︁
ũl(Yλ(x)βTZA

T Z
λ
T )
]︁
≤ E

[︁
ũl(Yλ(x)βTZA

T Z
ν
T )
]︁

E. Parsimony of λ: E[βTZ
A
T Z

ν
T ξλ(x)] ≤ x, ∀ν ∈ K1(Σ)

Theorem 6.8 Criterias B.-E. are equivalent and portfolio from B. satisfy A.

For the sake of completeness, we provide proof that was originally described in

Karatzas et al. 1991. Here we apply the same idea for state-dependent utility function.

Proof.

[B.→E.]

First of all, we notice that for any portfolio π ∈ A(x), βtZ
A
t Z

ν
t V

π
t is a local martin-

gale under P for every vector ν ∈ ker(Σ). Which follows directly from the following

representation

βtZ
A
t Z

ν
t V

π
t = x+

t∫︂
0

βsZ
A
s Z

ν
s V

π
s (Σ∗

s · πs − (θs + νs))
∗ dWs. (6.40)

Since the process βtZ
A
t Z

ν
t V

π
t is a local martingale, which implies, among other things,

that

E[βTZA
T Z

ν
TV

π
T ] ≤ x, ∀ν ∈ kerΣ. (6.41)

Consequently, if on some completed market we were able to find a portfolio π∗ of

existing assets that finances ξν(x), it would mean that V π∗
T = ξν(x) and (6.41) means

exactly condition E.

[E.→B.]

Is a direct consequence of application of Theorem 3.6 with B = ξλ(x)

[B.→C.]
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In case all completing assets, corresponding to particular vector ν, were available for

trading, optimal expected loss from hedging would have been equal El ((g(ω)− ξλ(x))
+),

however, since they are not, we have the following

E
[︁
l
(︁
(g(ω)− ξλ(x))

+
)︁]︁

≤ inf
π∈A(x)

E
[︁
l
(︁
(g(ω)− V π

T (x))
+
)︁]︁

= v(x), (6.42)

and equality holds if, for some portfolio V π
T = ξλ(x) (a.s). So, if B. holds, then

v(x) = E
[︁
l
(︁
(g(ω)− ξλ(x))

+
)︁]︁

≥ E
[︁
l
(︁
(g(ω)− ξν(x))

+
)︁]︁
, ∀ν ∈ kerΣ. (6.43)

[C.→D.]

Since ul(x, ω) is concave for each ω, its conjugate function ũl(x, ω) is convex for

each outcome, from this fact, in line with the fact that (ũl(y, ·))′y = −(u′l(x, ·))−1, it is

fair to write for y ∈ R+, where ũl(y, ω) = ul(Il(y, ω))− yIl(y, ω), 0 < y <∞ exists

and, since ũ′l(y, ·) = −Il(y, ·), one has

1

|ε|
⃓⃓
ũl
(︁
(y + ε)βTZ

A
T Z

ν
T

)︁
− ũl

(︁
yβTZ

A
T Z

ν
T

)︁⃓⃓
≤ βTZ

A
T Z

ν
T · Il

(︂y
2
βTZ

A
T Z

ν
T

)︂
(6.44)

for ε > 0. Then, by definition, E
[︁
βTZ

A
T Z

ν
T · Il

(︁
y
2
βTZ

A
T Z

ν
T

)︁]︁
= Xν(

y
2
) <∞.

Consequently, applying dominated convergence theorem, we can claim that

d

dy
E
[︁
ũl(yβTZ

A
T Z

ν
T )
]︁
= −Xν(y) (6.45)

Noting that condition [C] of least favourability means E[ul(ξλ(x, ω))] ≤ E[ul(ξν(x, ω))],

∀ν ∈ kerΣ, one obtains

E
[︁
ũl(Yλ(x)βTZA

T Z
λ
T )
]︁
= E

[︁
ũl(Yλ(x)βTZA

T Z
λ
T ) + Yλ(x)βTZA

T Z
λ
T ξλ(x, ω)

]︁
− xYλ(x) =

(6.46)

=E [ul(ξλ(x, ω))]− xYλ(x) ≤ (6.47)

≤E [ul(ξν(x, ω))]− xYλ(x) ≤ (6.48)

≤E
[︁
ũl(Yν(x)βTZA

T Z
ν
T )
]︁
+ xYν(x)− xYλ(x) (6.49)

Since (6.45), minumum of E
[︁
ũl(yβTZ

A
T Z

ν
T )
]︁
+ xy attained at Yν(x)

≤E
[︁
ũl(Yλ(x)βTZA

T Z
ν
T )
]︁
+ xYλ(x)− xYλ(x) = (6.50)

=E
[︁
ũl(Yλ(x)βTZA

T Z
ν
T )
]︁
. (6.51)
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[D.→B.]

Define Ft-adapted process Xt as

βtZ
A
t Z

λ
t Xt =Mt := E

[︁
βTZ

A
T Z

λ
T ξλ(x, ω)|Ft

]︁
(6.52)

, with X0 = x and XT = ξλ(x, ω) a.s. and Mt is a positive martingale with M0 = x.

From the martingale representation theorem then, it follows that there exists Ft

adapted process φs with
∫︁ T
0
∥φt∥2dt <∞ a.s. such that

Mt = x+

t∫︂
0

φsdWs, 0 ≤ t ≤ T (6.53)

from continuity and positivity of Mt, process ψt = − φt

Mt
is well-defined and

Mt = x−
t∫︂

0

Msψ
∗
sdWs = x−

t∫︂
0

βsZ
A
s Z

λ
sXsψ

∗
sdWs, 0 ≤ t ≤ T. (6.54)

Further, decompose ψt = ψAt + ψλt with ψAt ∈ ker⊥Σ and ψλt ∈ kerΣ. For some

arbitrary portfolio π, its value process V π
t (x) will satisfy

βtZ
A
t Z

λ
t V

π
t = x+

t∫︂
0

βsZ
A
s Z

λ
s V

π
s (Σ∗

sπs − (θs + λs))
∗ dWs. (6.55)

Therefore, in order to show that there is a portfolio financing ξλ(x, ω), one should

show

−Xt(ψ
A
t + ψλt ) = V π

t (Σ∗
tπt − (θt + λt)) . (6.56)

As we could choose πt in a way that Σ∗
tπt = θt − ψAt , it is enough to prove that

ψλt = λt in order to verify financiability of ξλ(x, ω).

For arbitrary ν introduce the sequence of stopping times {τn}∞n=1 as

τn =

T∧inf
{︃
t ∈ [0, T ];Mt ≥ n, or

t∫︁
0

(∥ψs∥2 + ∥λs∥2)ds ≥ n, or
t∫︁
0

∥νs∥2ds ≥, n or

⃓⃓⃓⃓
t∫︁
0

ν∗sdWs

⃓⃓⃓⃓
≥ n

}︃
for all n ≥ 1. Notice that lim

n→∞
τn = T a.s. and denote νnt = νt1t≤τn . Then, for

λt + ενnt ∈ kerΣ it holds

Z
λt+ενnt
t = ZA

t Z
λ
T · exp

⎧⎨⎩−ε
t∫︂

0

(νns )
∗(dWs + λsds)−

ε2

2

t∫︂
0

∥νns ∥2ds

⎫⎬⎭. (6.57)
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for −1 ≤ ε ≤ 1, n ≥ 1. And also

e−3n|ε| ≤ Z
λt+ενnt
t

ZA
t Z

λ
t

≤ e3n|ε| − 1 ≤ ε ≤ 1. (6.58)

From dual optimality it follows that

∂

∂ε
E
[︂
ũ(βTZ

λt+ενnt
T ξλ(x, ω))

]︂⃓⃓⃓⃓
ε=0

= 0 (6.59)

From mean value theorem there exists random variable γε ∈ [0, 1] such that

1

ε

(︂
ũ(yβTZ

λ+ενnt
T )− ũ

(︁
yβTZ

A
T Z

λ
T

)︁)︂
=

=
1

ε
yβT (Z

λ+ενnt
T − ZA

T Z
λ
T )
(︂
ũ′
(︂
yβT (Z

A
T Z

λ
T + γε(Z

λ+ενnt
T − ZA

T Z
λ
T ))
)︂)︂

= −1

ε
yβTZ

A
T Z

λ
T

⎛⎝exp

⎧⎨⎩−ε
t∫︂

0

(νns )
∗(dWs + λsds)−

ε2

2

t∫︂
0

∥νns ∥2ds

⎫⎬⎭− 1

⎞⎠ ·

· Il
(︂
yβT (Z

A
T Z

λ
T + γε(Z

λ+ενnt
T − ZA

T Z
λ
T ))
)︂

(6.60)

Also notice that due to convexity of ũ(y):

|ũ(yβTZ
λ+ενnt
T )− ũ

(︁
yβTZ

A
T Z

λ
T

)︁
| ≤ (6.61)

≤ yβT Il

(︂
yβT

(︂
Zλ+ενtn

T ∧ ZA
T Z

λ
T

)︂)︂
|Zλ+ενtn

T − ZA
T Z

λ
T | (6.62)

≤ Kn|ε| · yβTZA
T Z

λ
T Il
(︁
yβT e

−3nZA
T Z

λ
T

)︁
(6.63)

where Kn = sup
0<ε<1

e3nε−1
ε

. Therefore, finding expected value of both sides,

E
[︂
|ũ(yβTZ

λ+ενnt
T )− ũ

(︁
yβTZ

A
T Z

λ
T

)︁
|
]︂
≤ yKn|ε|Xλ

(︁
ye−3n

)︁
<∞. (6.64)

and from dominated convergence theorem and (6.60) it follows that

0 =
∂

∂ε
E
[︂
ũ(βTZ

λt+ενnt
T ξλ(x, ω))

]︂⃓⃓⃓⃓
ε=0

= E
[︃
∂

∂ε
ũ(βTZ

λt+ενnt
T ξλ(x, ω))

]︃⃓⃓⃓⃓
ε=0

=

=E

⎡⎣βTZλ
T ξλ(x, ω)

τn∫︂
0

(νns )
∗(dWs + λsds)

⎤⎦ =

=E

⎡⎣Mτn

τn∫︂
0

(νns )
∗(dWs + λsds)

⎤⎦ (6.65)
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Applying Ito rule of integration by parts, we get

Mτn

τn∫︂
0

(νns )
∗(dWs + λsds) =

τn∫︂
0

Ms(ν
n
s )

∗(λs − ψλs )ds+

τn∫︂
0

Ms(ν
n
s )

∗dWs− (6.66)

−
τn∫︂
0

Ms

⎛⎝ s∫︂
0

(νnt )
∗(dWt + λtdt)

⎞⎠ (ψAs + ψλs )
∗dWs.

As expected value of the last two integrals equals 0 and parameter ν was taken

arbitrary, λt = ψλt a.s. Which proves the statement.

As we mentioned at the beginning of this chapter, the problem of efficient hedging is

equivalent to solving optimization problem (6.4). In what follows, we summarize how

to use method of market completions to obtain final structure of optimal randomized

test that solves (6.4) and, consequently, problem of efficient hedging.

We start with reminding important result demonstrated in Föllmer and Leukert

2000.

Theorem 6.9 (Theorem 5.1 from Föllmer and Leukert 2000) The solution φ̃

to the optimization problem (6.4) on complete market is given by

φ̃ = 1−
(︃
J(cZA

T )

g
∧ 1

)︃
on {g > 0}, (6.67)

where c is determined by the condition

E∗[φ̃g] = v0. (6.68)

In other words, using proposed structure of modified contingent claim g̃ = φ̃g one

could write

min
φ∈R

E [l ((1− φ)g)] = E [l ((1− φ̃)g))] = E
[︁
l
(︁
J(cZA

T ) ∧ g
)︁]︁
. (6.69)

On the other hand, in Section 6.3.1 it was demonstrated that, by representing

efficient hedging problem in a state-dependent utility maximization form, we obtain
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that it would be optimal to construct portfolio in such a way that its terminal capital

would be equal to ξλ(v0). Consequently, it is fair to notice that

ξ0(v0) = φ̃g =
(︁
g(ω)− J(cZA

T Z
ν
T )
)︁+
. (6.70)

We summarize result provided above in the following theorem

Theorem 6.10 The strategy that solves efficient hedging problem (6.3) on complete

market would be to replicate a modified claim g̃ν defined as

g̃0 = ξ0(v0) = Il
(︁
Y0(x)βTZ

A
T

)︁
. (6.71)

Similarly to complete market case, we can apply results obtained in Section 6.3.2

in order to derive optimal claim for efficient hedging problem on incomplete mar-

ket. Introducing market completions to the market we recall that solution on each

completed version on such market will be written as

ξλ(x) := Il
(︁
Yλ(x)βTZA

T Z
λ
T

)︁
,

where particular completion corresponding to parameter λ is chosen in accordance

to criteria in Theorem 6.8. Consequently, optimal randomized test for problem on

incomplete market would be

φλ =
Il
(︁
Yλ(x)βTZA

T Z
λ
T

)︁
g

(6.72)

6.4 Numerical Examples

Example 6.11 (Linear Loss Function (Shortfall Minimization)) Consider the

following incomplete market model
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Description Parameter Value

Interest rate r 0

Stock 1 σ11 0.2

σ12 0.11

σ13 0.4

µ1 0.02

Stock 2 σ21 0.3

σ22 0.15

σ23 0.2

µ2 0.08

Initial Prices S1
0, S

2
0 100, 80

Option Strike Price K 110

Maturity Time T 1

Similar to Example 5.8, we introduce several market completions for demonstration

purposes. And then calculate corresponding parameters ãν required for construction

of maximal successful hedging sets in (6.18):

Market Completion ν3 Value ã Risk-Neutral Price,

Parameter ID from (6.18) Completed Market

Z 0 0.0 0.6778 14.5429

Z 1 0.1 0.6562 14.5353

Z 2 0.2 0.5974 14.5251

Z 3 0.3 0.5237 14.5122

Z 4 0.4 0.4443 14.4963

Z 5 0.5 0.3687 14.4771

Z 6 0.6 0.2998 14.4543

Z 7 0.7 0.2407 14.4276

Z 8 0.8 0.1870 14.3965

Z 9 0.9 0.1434 14.3607
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Constructing modified claims with (6.17), expected shortfall is presented in Figure

6.1 below.

Figure 6.1: Linear Loss: Expected Shortfall vs. Initial budget constraint by Market
Completions

As in Example 5.8, completed market version for which unique risk-neutral market

measure is a Minimal Martingale Measure on initially incomplete market, presents

”worst-case scenario”. Choosing minimal martingale measure, we arrive at optimal

claim:

g̃ = gT · 1{0.6778<(ZA
T )−1}

Example 6.12 (Convex Loss Function) Let us consider loss function l(x) = x2

and problem of efficient hedging for the market from Example 2.7. For this loss
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function, we can write

ul(x, ω) = (gT (ω))
2 −

(︁
(gT (ω)− x)+

)︁2
,

then, derivative for this state-dependent utility will be

u′l(x, ω) = 2(g − x)+

and Il() can be found numerically from (6.26).

Consider set of completed versions of market, parametrized by vector ν = [00ν3].

For different initial budgets, we calculate corresponding Yν(x):

Market Completion ν3 Value Yν(x)

Parameter ID from (6.38)

Z 0 0.0 4.4454

Z 1 0.2 4.1095

Z 2 0.4 3.4874

Z 3 0.6 2.7113

Z 4 0.8 1.9258

Then, for each completed market version, we obtain expected loss, measured with

l(x) = x2. Results are demonstrated in Figure 6.2

In this case, if we assume that this small set of market completions is the only one

available, we should choose ”worst-case” scenario, or least favorable one, which, in

this particular case, will correspond to parameter λ = 0.
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Figure 6.2: Efficient Hedging: Expected Loss vs. Initial budget constraint by Market
Completions
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Chapter 7

MMC for Hedging with respect to
Modern Risk Measures

7.1 Introduction

In this section we describe how one can construct optimal partial hedging strategy

with respect to chosen risk measure. As it was described in introduction, risk measures

are functions used to represent exposure to risk for market agent. In modern risk

management industry, two of such functions are especially important in practice,

since they were presented in The Market Risk Framework of Basel III – international

regulatory accord. In other words, estimation of risk exposure with these measures

is a best practice on current markets and therefore presents an important practical

problem.

In the current section we focus on Conditional value at risk. As shown in Mel-

nikov&Smirnov (Melnikov and Smirnov 2012) it is possible to represent the problem

of CVaR minimization as a two-step optimization task. Each step in this case will

be an independent one-parametric problem that could be solved separately with the

help of Neyman-Pearson lemma.

At the same time, recent papers by Cong et al. (Cong et al. 2014), Li&Xu (Li and

Xu 2013), Capinski(Capinski 2014) and Godin (Godin 2015) demonstrate growing

interest towards CVaR optimization. Namely, in Cong et al. 2014 authors prove that

the best (CVaR optimal) hedging strategy would be to construct static strategy that
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replicates special bull-call-spread option.

Moving on, we focus on more general risk measure called Range Value-at-Risk, or

RVaR which was demonstrated in Embrechts et al. 2018 and Cont et al. 2008. It was

stated in Cont et al. 2008 that risk measure can not be both robust and coherent.

However, RVaR offers a trade-off between the sensitivity of CVaR and the robustness

of VaR.

Figure 7.1: Illustration of Risk Measures

Figure 7.1 illustrates the idea behind the industry accepted risk measures. Assume

that after hedging with portfolio π investor anticipates that its terminal capital will

not be enough to construct perfect hedge for claim payoff X(ω). In other words, he is

expecting loss. Let distribution of such loss be described with some positively skewed

distribution curve (blue curve on Figure 7.1). Value-at-Risk (VaR) measure is a green

line and represents a loss, that is not exceeded with predetermined probability (95%

in current example). Essentially, RVaR measure is a two-parametric risk measure that

includes both VaR and CVaR measures as a limit cases. This fact makes it efficient

to solve the partial hedging problem with respect to this measure in order to obtain
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insights regarding both widely used industry measures at the same time.

In what follows we first demonstrate how method of market completions can be

conveniently used in tandem with approach of Cong et al. 2014 to solve the problem

on incomplete market for both RVaR and CVaR risk measures. We show how local

risk minimization criteria can be used to obtain an exact result on incomplete market.

Then, we focus on method of two-step optimization from Melnikov and Smirnov

2012 and apply method of market completions in order to find a solution on incomplete

market.

7.2 CVaR Hedging Approach

It is known that technique of mathematical finance is well developed for complete

markets. With unique risk-neutral measure it is possible to unambiguously solve

both perfect and partial hedging problems via martingale approach. Partial hedging

strategy means that there is a probability of not having enough capital generated by

strategy to cover all possible losses from future obligation. Then, investor can choose

how to express his attitude towards expected loss. In modern finance industry this is

done with the help of risk measures which we already briefly touched in Introduction.

Keeping in mind Definition 1.8, the problem of CVaR optimal hedging therefore

can be stated in terms of hedging loss function L(x, π) as{︄
CV aRα(L(x, π)) −→ min(x,π)

x ≤ v0
(7.1)

One can approach this problem from the perspective of optimal split into hedged/un-

hedged proportions of the claim H = f(H) + Rf (H) with payoff H, where f(H)

describes the optimal hedged proportion of the claim. This method was offered in

Cong et al. 2014.

Considering European type contingent claim, we expect to have a payoff X(ω) at

maturity time T , so the total risk exposure of the investor is going to be

Tf (X) = Rf (X) + erTΠ(f(X)), (7.2)
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where Π(f(X)) is some pricing functional for hedged part.

Given the initial budget constraint, investor is pursuing the goal of minimizing risk

measure of total exposure (7.31), given the restriction on initial cost of hedging:

{︄
minf∈ΩCV aR(Tf (X))

s.t. Π(f(X)) ≤ v0
(7.3)

According to Cong et al. 2014, under particular assumptions, explicit way of iden-

tifying the optimal hedged loss function is stated in the following theorem

Theorem 7.1 Assume that pricing functional is linear for any time-t contingent

payout X. Then, the optimal hedged loss function g∗f is given by

g∗f (x) = (x− d∗)+ − (x− u∗)+ (7.4)

where (d∗, u∗) satisfies the following equations{︄
e−rT

∫︁ u∗
d∗

Q(X > x)dx = π0

P(X > u∗) = α · Q(X>u∗)
Q(X>d∗)

(7.5)

where Q is a risk-neutral measure.

In Cong et al. 2014 it was also shown that one possible candidate of the optimal

hedged loss function can be found in more simple form by assuming u∗ = ∞:

Corollary 7.2 One of the possible optimal hedging functions is given by

g∗f (x) = (x− d∗)+ (7.6)

where d∗ is the solution to the following equation

EQ
[︁
e−rT (X − d∗)+

]︁
= v0 (7.7)

In other words, for solving Optimal CVaR Hedging problem, one should focus on

finding corresponding fixed probability measure Q in order to obtain optimal value

d∗.
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Example 7.3 Consider the following market

Description Parameter Value

Interest rate r 0

Stock 1 σ11 0.2

σ12 0.11

µ1 0.02

Stock 2 σ21 0.3

σ22 0.15

µ2 0.08

Initial Prices S1
0, S

2
0 100, 80

Option Strike Price K 110

Maturity Time T 1

Investor is working with Call European Option on the Stock 1 with strike price

K = 110. As the market is complete, one can obtain unique risk-neutral price for

such claim, which is equal to 5.4.

Assume that the goal of the investor is to find CVaR-optimal hedging function for

initial budgets 5, 4, 3, 2 and 1. According to Corollary 7.2,

Initial Budget % of Risk-Neutral Price Optimal Hedging Claim

$1 18.5 (S1 − 137.68)+

$2 37 (S1 − 126.78)+

$3 56 (S1 − 120.12)+

$4 74 (S1 − 115.23)+

$5 93 (S1 − 111.29)+

In case of incomplete market, however, investor cannot assess initial price of claim

with certainty anymore. As not all assets might be available for trading, constructions

of replicating portfolio becomes difficult. On the other hand, this lack of tools on the

market becomes the reason for having infinitely many equivalent risk-neutral mea-

sures. Furthermore, by focusing on incomplete market, one should not expect unique
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fair price similar to complete market. Instead, same no-arbitrage considerations lead

to an interval of ”fair” prices (see f.e. Karatzas and Kou 1996).

In rigorous terms, exponential of the form (1.6) can be uniquely defined on com-

plete market as system (1.4) has only one solution θ. However, when switching to

incomplete market, one can not enjoy this uniqueness of solution to (1.4) anymore.

Usually, mentioned system has infinitely many solutions and, as a consequence, in-

finitely many possible equivalent martingale measures.

Having multiple ”completed” versions of initial market, agent can solve CVaR

optimization problem on each of them separately. For this optimization task we will

use UBIP approach introduced in Section 4.4 as a pricing functional of choice.

In order to find a specific market completion and corresponding completed market

on which one can solve optimal hedging problem and optimal strategy will also be a

solution for originally incomplete market. To move on with this idea, lets introduce

k − n fictitious assets in addition to n existing assets on incomplete market, driven

by the same k-dimensional Brownian motion as n real tradeable assets.

As we presented in Section 4.4, unique fair price on incomplete market will be

written as the following expected value, constructed with the help of particular com-

pletions λ:

Π(x) = E[βTZA
T Z

λ
Tx] (7.8)

We summarize these findings in the form of the following theorem.

Theorem 7.4 CVaR minimizing hedging strategy for contingent claim X(ω) on in-

complete market for the problem (7.3) will be to finance a static strategy that replicates

knock-out option with payoff function

X̃ = (X − d∗)+ − (X − u∗)+ (7.9)

where (d∗, u∗) satisfies the following equations{︄
e−rTE

[︁
ZA
T ((X − d∗)+ − (X − u∗)+)

]︁
= v0

P(X > u∗) = α · Q(X>u∗)
Q(X>d∗)

(7.10)
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and Q is a minimal martingale measure.

Proof. From (7.8) and Theorem 7.1 it is clear that (7.9)–(7.7) is a solution on

completed version of the market that corresponds to λ = 0, or, as it follows from

Theorem 2.6, on the market for which ELMM coincides with minimal martingale

measure. Moreover, from Proposition 4.11 it follows that expectation under mini-

mal martingale measure will coincide with UBIP pricing functional for structurally

incomplete model (8.1).

Then, since Zν
T is a supermartingale under actual probability measure, it follows

that

E
[︁
βTZ

A
T

(︁
(X − d∗)+ − (X − u∗)+

)︁]︁
= v0

≥ E
[︁
βTZ

A
T Z

ν
T

(︁
(X − d∗)+ − (X − u∗)+

)︁]︁
, ∀ν ∈ kerΣ.

Which implies, according to Theorem 3.6 with B = (X − d∗)+ − (X − u∗)+ it

follows that claim X̃ will be financeable on initially incomplete market.

7.3 CVaR: Alternative Approach

Inspired by Rockafellar&Urasev, the following approach was developed by Melnikov

and Smirnov in Melnikov and Smirnov 2012. Denote L(x, π) = gT − V π
T (x) the loss

function, defined by initial capital and chosen strategy. General idea consists of usage

of the following representation:

Fα ((x, π), z) = z +
1

1− α
E
[︁
(L(x, π)− z)+

]︁
(7.11)

In case of European contingent claim gT under consideration, loss function L(x, π)

can be written as L(x, π) = gT − V π
T (x). Then

Fα ((x, π), z) = z +
1

1− α
E
[︁
(gT − V π

T (x)− z)+
]︁

(7.12)

= z +
1

1− α
E
[︁
(gT (z)− V π

T (x))
+
]︁

(7.13)
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where gT (z) = (gT − z)+ z-dependent contingent claim.

So, it is easy to see that

CV aRα(V ) = min
z∈R

Fα(V, z) (7.14)

And the optimization problem (7.1) can be rewritten as:

Fα ((x, π), z) −→ min
π∈(A)Ṽ

min
z∈R

(7.15)

Introducing a special function

c(z) = z +
1

1− α
min
(x,π)

E
[︁
(g(z)− V π

T (x))
+
]︁

(7.16)

min
z∈R

c(z) = min
(x,π)

CV aRα(x, π). (7.17)

Solution of (7.1) now can be decomposed into consequent optimization by z after

solving:

{︄
E [(gT (z)− V π

T (x))
+] −→ minπ∈A

x < Ṽ
(7.18)

In Section 6.2 we demonstrated how (7.18) could be solved both on complete and

incomplete markets. In former case, according to Proposition 6.3 the optimal strategy

will be to perfectly hedge modified claim φ̃(z)gT (z, ω) where

φ̃(z) = 1{ dP
dP∗>ã(z)} + γ1{ dP

dP∗=ã(z)}, (7.19)

ã(z) = inf
{︂
a : E∗[1{ dP

dP∗>a}g(z)] ≤ v0

}︂
, (7.20)

γ =
v0 − E∗[1{ dP

dP∗>ã∗(z)}g(z)]

E∗[1{ dP
dP∗=ã(z)}g(z)]

. (7.21)

This result was summarized in Melnikov and Smirnov 2012 in a form of theorem

Theorem 7.5 (Theorem 2.4 in Melnikov and Smirnov 2012) The optimal strat-

egy π∗ for the CVaR minimization problem (7.1) is a perfect hedge for the contingent
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claim g̃(ẑ) = (g− ẑ)+φ̃(ẑ) where φ̃ is defined by (7.19), ẑ is a point of global minimum

of function

c(z) =

{︄
z + 1

1−αE [(g − z)+(1− φ̃(z))] , z < z∗,

z, z ≥ z∗,
(7.22)

on interval z < z∗, and z∗ is a real root of equation

v0 = E∗ [︁(g − z∗)+
]︁
. (7.23)

Besides, one always has

CV aRα(v0, π
∗) = c(ẑ), (7.24)

V aRα(v0, π
∗) = ẑ. (7.25)

For the case of incomplete market, we will apply method of market completions

again. It was demonstrated in Section 6.2.2 that solution to the problem (7.18) can

be obtained on incomplete market. Denote this solution as φ̂λ(z). Therefore, we can

summarize results in a form of the following theorem.

Theorem 7.6 Optimal strategy for CVaR minimization problem (7.1) on incomplete

market will be a perfect hedge for contingent claim g̃λ(ẑ) = (g− ẑ)+φ̂λ(ẑ), where ẑ is

a point of global minimum of a function

c(z) =

{︄
z + 1

1−αE
[︁
(g − z)+(1− φ̃λ(z))

]︁
, z < z∗,

z, z ≥ z∗,
(7.26)

where z∗ is a root of equation v0 = Eλ [(g − z∗)+].

Corollary 7.7 Combining results of Theorem 6.4 and Theorem 7.6, the solution to

problem (7.1) will be a perfect hedge for g̃ν(z) = (g − z)+φ̂ν(z) where z is a point of

global minimum of a function

c(z) =

{︄
z + 1

1−αE [(g − z)+(1− φ̃ν(z))] , z < z∗,

z, z ≥ z∗,
(7.27)

where z∗ is a root of equation v0 = Eν [(g − z∗)+].
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7.4 RVaR hedging Approach

We now formulate the RVaR Optimization Problem (Vasilev and Melnikov 2022).

Define PL for hedging position as a random variable B = gT − V π
T , π ∈ A(v0),

where B > 0 if loss occurred and negative if hedging position generated gain. Recall

definition of two industry-accepted risk measures:

V aRα(B) = inf {v ∈ R : P (B > v) ≤ 1− α} (7.28)

CV aRα(B) =
1

1− α

∫︂ 1

α

V aRs(B)ds (7.29)

It was demonstrated in, f.e. Melnikov and Wan 2022, that both of these measures

are incorporated as a limiting cases in more general, two-parametric risk measure

RVaR, defined as

RV aRα,β(B) =

{︄
1
β

∫︁ α+β
α

V aRs(B)ds , β > 0

V aRα(B) , β = 0
(7.30)

RVaR hedging problem consists in finding a strategy, that satisfies budget con-

straint and at the same time minimizes RVaR of future obligations.

Following the steps by Cong et al. 2014, first we split the future obligation gT

into two natural parts from the perspective of optimal split into hedged/unhedged

proportions of the claim gT = f(gT ) + Rf (gt), where f(gT ) describes the optimal

hedged proportion of the claim.

Considering European type contingent claim, we expect to have a payoff at matu-

rity time T , so the total risk exposure of the investor is going to be

Tf (gT ) = Rf (gT ) + erTΠ(f(gT )), (7.31)

where Π(f(gT )) is some pricing functional for hedged part.

According to Cong et al. 2014, we should search for an optimal hedged-loss function

within the set of functions, satisfying the following assumptions:
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1. Not globally over-hedged: f(x) ≤ x,∀x ≥ 0;

2. Not locally over-hedged: f(x2)− f(x1) ≤ x2 − x1 ∀0 ≤ x1 ≤ x2;

3. Non-negativity of a hedged loss: f(x) ≥ 0,∀x ≥ 0;

Which, in other words means, that we are working with the class

D = {0 ≤ f(x) ≤ x : Rf (x) = xf(x) is a non-decreasing and left continuous function} .

(7.32)

Given the initial budget constraint, investor is pursuing the goal of minimizing risk

measure of total exposure (7.31), given the restriction on initial cost of hedging:

{︄
minf∈D RV aR(Tf (gT ))

s.t. Π(f(gT )) ≤ v0 < Π(gT )
(7.33)

As in the case of CVaR, problem is solved in two steps:

1. Find an optimal function for determining hedged-loss proportion of risk

2. Use function that replicates this proportion of risk as optimal for RVaR hedging

problem.

It was demonstrated in Melnikov and Wan 2022, that solution to this problem

depends on the size of initial capital that investor possess. Namely, if investor has

enough money to pay for hedging of f ∗(x) = x · Ix≤V aRα+β(x) then one should use it

as an optimal hedged loss proportion, otherwise, optimal hedged loss function will

be f ∗(x) = f(x, d∗, u∗) = ((x− d∗)+ + (x− u∗)+) · Ix≤V aRα+β(B) which we, following

Melnikov and Wan 2022 will repeat in a form of theorems here.

Theorem 7.8 If Π(gT · IB≤V aRα+β(gT )) ≤ v0, then the optimal hedged loss function

is:

f ∗(x) = x · Ix≤V aRα+β(x) (7.34)

And
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Theorem 7.9 If Π(gT · IgT≤V aRα+β(gT )) > v0, then the optimal hedged loss function

is:

f ∗(x) = f(x, d∗, u∗) =
(︁
(x− d∗)+ + (x− u∗)+

)︁
· Ix≤V aRα+β(gT ), (7.35)

where (d∗, u∗) is the solution to⎧⎪⎨⎪⎩
min

0≤d≤V aRα(gT ),
d≤u≤V aRα+β(gT )

{︂
d+ 1

β

∫︁ α+β
α

(V aRs(gT )− u)+ds
}︂

s.t. Π(f(gT , d, u)) ≤ v0

(7.36)

As one can see, to choose proper optimal hedged loss function, it is crucial to

assess initial capital with the help of pricing functional. Such pricing functional

should preserve stop-loss ordering and allow no-arbitrage on the market. Applying

the same logic as in case of CVaR optimization part, we use UBIP pricing functional

in order to assess condition in Theorems 7.8-7.9.

Since in case of complete market solution to RVaR optimization task can be ob-

tained directly, we further elaborate on application of method of market completions

for solving the problem on incomplete market. Summarizing results above we can

write solution to RVaR hedging problem with the help of UBIP pricing functional,

which, according to Proposition 4.11 will not depend on either initial capital or par-

ticular concave utility function and will correspond to λ = 0.

Therefore, summarizing results demonstrated above, we formulate the following

theorem.

Theorem 7.10 For contingent claim with payoff gT , if E[gT · IgT≤V aRα+β(gT )] ≤ v0,

then RVaR-minimizing strategy on incomplete market will be to replicate

f ∗(gT ) = gT · IgT≤V aRα+β(gT ).

Otherwise, optimal strategy will be to perfectly hedge bull-call spread

f(x, d∗, u∗) =
(︁
(x− d∗)+ + (x− u∗)+

)︁
· Ix≤V aRα+β(gT ),
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where (d∗, u∗) is a solution to optimization problem⎧⎨⎩ min
{0≤d≤V aRα(gT ),d≤u≤V aRα+β(gT )}

{︂
d+ 1

β

∫︁ α+β
α

(V aRs(gT )− u)+ds
}︂

s.t. E[βTZ
A
T f(gT , d, u)] ≤ v0.

(7.37)

7.5 Numerical Examples

We further demonstrate how method of market completions can be applied to finding

optimal hedging strategies. In all examples that follow, we will use the following

market set-up:

Description Parameter Value

Interest rate r 0

Stock 1 σ11 0.2

σ12 0.11

σ13 0.4

µ1 0.02

Stock 2 σ21 0.3

σ22 0.15

σ23 0.2

µ2 0.08

Initial Prices S1
0, S

2
0 100, 80

Call Option Strike Price K 110

Maturity Time T 1

Example 7.11 (CVaR minimization on incomplete market) Assume that in Ex-

ample 7.3, there is an additional source of risk W 3
t , which makes market incomplete.

104



Initial Budget % of Risk-Neutral Price Optimal Hedging Claim

$2.69 18.5 (S1 − 183.48)+

$5.38 37 (S1 − 153.13)+

$8.14 56 (S1 − 135.19)+

$10.75 74 (S1 − 123.13)+

$13.51 93 (S1 − 113.18)+

Table 7.1: CVaR minimizing hedging claims for initial budgets. Incomplete Market
example

Following the standard procedure described in Example 2.7, dynamics of the stocks

under innovative Brownian Motion will be:

dS1
t = S1

t

(︂
µ1dt+ ∥σ̄1∥dˆ︂W 1

t

)︂
dS2

t = S2
t

(︂
µ2dt+ α21∥σ̄1∥dˆ︂W 1

t + ∥σ2̄∥dˆ︂W 2
t

)︂

Corresponding vector θ then becomes:

θ =

⎡⎢⎢⎢⎣
0.0434

0.2624

µ3−r
∥ρ3∥

⎤⎥⎥⎥⎦
According to Theorem 2.6, for minimal martingale measure, one should use com-

pletion for which µ3−r
∥ρ3∥ ≡ 0. The risk neutral price in this case will be 14.5298 and the

resulting optimal hedging claims are:
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Figure 7.2: Optimal parameter for CVaR hedge vs. Initial budget constraint

Example 7.12 (RVaR minimization on incomplete market) From Section 7.4,

first step in determining the optimal RVaR hedging strategy would be to verify if one

has enough initial capital in order to replicate

gT · IB≤V aRα+β(gT ). (7.38)

Assume the market introduced in Example 2.7. We would also use Utility-based

indifference pricing functional for assessment of initial price of the claim. Since all

coefficients are deterministic, as we mentioned in Section 4.4, optimal completion pa-

rameter λ will not depend neither on initial budget, nor on particular utility function.

Therefore, we perform all calculations with respect to minimal martingale measure

which would be equivalent to using UBIP functional.
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Corresponding completion parameter is then ν = [0 0 0]. Initial price of modified

claim (7.38) is then approximately 12.70. Since with initial capital greater than 12.7

investor can achieve RVaR=0, we assume that agent has only 95% of required capital,

namely 12.07. Solving optimization problem (7.37) we obtain optimal parameters

d∗ = 2.03, u∗ = 159.20. Therefore, RVaR-optimal hedging strategy will be to replicate

bull-call spread (ST − 112.0313)+ + (ST − 269.1985)+.
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Chapter 8

Application of MMC to the
markets with defaults

8.1 Markets with default

In case of defaultable markets we add another source of uncertainty generated by the

possibility of default. Following the logic of Bielecki and Rutkowski 2002, assume

that positive random variable τ such that P (τ = 0) = 0 and P (τ > t) > 0, ∀t ≥ 0

describes time of default.

As in previous chapters, we will be working with standard multidimensional diffu-

sion market model:

dBt = Btrtdt, B0 = 1 (8.1)

dSit = Sit

(︄
µitdt+

k∑︂
j=1

σijt dW
j
t

)︄
(8.2)

where Wt is a standard k-dimensional Brownian Motion on a complete probability

space (Ω,G, P ). Filtration F is generated by the {Wt}t≥0 and augmented by P -null

sets of G. Processes µt ∈ Rn, rt and Σt = {σijt }t≥0 ∈ Rn × Rk are all assumed to

be bounded F-predictable processes. In line with it we assume that matrix Σ∗
tΣt is

non-degenerate and positive semi definite, so that this matrix is invertible (here and

further ∗ denotes transposed matrix).

We will also assume that the model is arbitrage free which means that there exists
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at least one process θt ∈ Rk such that:

θt = Σ∗
t (Σ

∗
tΣt)

−1(µt − 1n · rt), (8.3)

where 1k = (1, ..., 1) ∈ R⋉, µt = (µ1
t , ..., µ

n
t ) ∈ Rn. Alternatively, this can be written

n∑︂
j=1

σijt θ
j
t = µit − rt, ∀i ∈ 1, n. (8.4)

Now, to add default possibility to the model, introduce positive random variable

τ , satisfying P (τ > t) > 0 for all t ≥ 0 and construct special counting process

Nt = 1{τ≤t}, t ≥ 0

This process generates filtration that covers all default information H = {Ht}. Con-

sequently, full market information will be described by filtration G = F ∨ H. With

the help of time of default τ random variable, one can introduce survival process as

Gt = P (τ > t|Ft), 0 ≤ t ≤ T.

Assume that Gt > 0 for all t > 0 and consider hazard process Γt = − lnGt, t ≥ 0.

It is a common assumption that Γt =
∫︁ t
0
γsds, t ≥ 0 for some non-negative and F-

predictable random variable {γt}t≥0, which is called F-intensity of the random time

τ . It was demonstrated in Bielecki and Rutkowski 2002, that the process

Mt = Nt −
∫︂ t

0

γs(1−Ns−)ds = Nt −
∫︂ t∧τ

0

γsds, t ≥ 0, (8.5)

follows a G-martingale. Let us assume that default is independent of the ”financial”

uncertainty generated by Brownian motion Wt. This implies that Wt is not only

(F, P )-standard Brownian motion, but also remains standard Brownian motion under

the ”extended” filtration G.

For markets with defaults, introduce the process

Zκ
t = (1 + κτ1{τ≤t}) exp

(︃
−
∫︂ t∧τ

0

κsγsds

)︃
, 0 ≤ t ≤ T, (8.6)

Zκ
t = 1 +

∫︂ t

0

κsZ
κ
s−dMs (8.7)
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where {κt}0≤t≤T > −1, dt×dP−a.e. is taken from the class of Bounded, G-predictable

processes and Mt was introduced in (8.5).

Let us also remind a risk-neutral measure density for model (8.1) which was given

in (1.6):

ZA
t =

dP ∗

dP
= exp

{︄
−

n∑︂
i=1

∫︂ T

0

θitdW
i
t −

1

2

n∑︂
i=1

∫︂ T

0

(θit)
2dt

}︄
=

= exp

{︃
−
∫︂ T

0

θ∗t dWt −
1

2

∫︂ T

0

∥θt∥2dt
}︃
.

Note that

d(ZA
t Z

κ
t ) = ZA

t Z
κ
t−(−θtdWt + κtdMt) (8.8)

since [ZA
t , Z

κ
t ] = 0. Consequently, process ZA

t Z
κ
t is a positive G-martingale for κt

taken from the corresponding class. Let us analyze dynamics of portfolio wealth

process under new measure P k, defined as dPκ

dP
= ZA

t Z
κ
t .

As before we describe portfolio as a G-predictable process {πt}0≤t≤T ∈ Rn that

satisfy
∫︁ T
0
∥πt∥2dt < ∞, a.s. Where each πit denotes capital invested in ith stock.

Then the wealth process {V π
t (x)}0≤t≤T of self-financing portfolio πt with initial capital

x ≥ 0 can be described as

dV π
t =

n∑︂
i=1

πit
(︁
(µit − rt)dt+ σitdWt

)︁
+ V π

t rtdt, (8.9)

V π
0 = x. (8.10)

Further, define special process

Lκt =
ZA
t Z

κ
t

Bt

. (8.11)
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Applying Ito lemma for process Lκt V
π
T , we obtain

dLκt V
π
t = Lκt−dV

π
t + V π

t−dL
κ
t + d[Lκt , V

π
t ] = (8.12)

= Lκt−

(︄
rtV

π
t dt+

n∑︂
i=1

πit(µ
i
t − rt)dt+

n∑︂
i=1

πit(σ̄
i
t · dW̄ t)

)︄
− (8.13)

− rtL
κ
t V

π
t dt+ Lκt−V

π
t

(︁
κtdMt − θ̄t · W̄ t

)︁
− (8.14)

− Lκt−

n∑︂
i=1

πit

n∑︂
j=1

σ̄ijt θ
j
tdt = (8.15)

= Lκt−

(︄
n∑︂
i=1

πit(µ
i
t − rt)dt+

n∑︂
i=1

πit(σ̄
i
t · dW̄ t)

)︄
+ (8.16)

+ Lκt−V
π
t

(︁
κtdMt − θ̄t · W̄ t

)︁
− (8.17)

− Lκt−

n∑︂
i=1

πit(µ
i
t − rt)dt. (8.18)

Therefore discounted portfolio dynamics can be written as

dLκt V
π
t = Lκt−

(︄
n∑︂
i=1

πitσ
i
tdWt − V π

t (θ
∗
t · dWt) + V π

t κtdMt

)︄
, 0 ≤ t ≤ T. (8.19)

From non-negativity of wealth process V π
t it follows that process {Lκt V π

t } is a super-

martingale for each portfolio πt ∈ A(x), where A(x) is the set of all portfolio processes

with initial capital x and non-negative wealth process for ∀t ∈ [0, T ]. Denote also L

as a set of all random variables Lκt , κ ∈ D.

We will consider contingent claims of the form

H = Y 1{τ>T}. (8.20)

It was shown in Nakano 2011 that the conservative price for such claim would be

a super-hedging price for default-free claim. However, it is reasonable to assume that

price should reflect the risk of default, and, therefore, be lower due to risk premium.

However, in such a case there is a possibility of a shortfall and we can use partial

hedging technique in order to derive optimal hedging strategy for defaultable case.
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8.2 Quantile Hedging

We first consider the situation in which investor is interested in maximizing the prob-

ability of a perfect hedge for the claim. In other words,

max
π∈A(x)

P (V π
T ≥ gT ) (8.21)

This problem, as in the default-free case, could be solved by the means of Neyman-

Pearson lemma. For current scenario, when default event is possible, the Neyman-

Pearson type task becomes⎧⎨⎩max
φ∈R

E[φ],

R = {φ : 0 ≤ φ ≤ 1 a.s., sup
L∈L

E[LgTφ] ≤ v0}.
(8.22)

To solve aforementioned problem, we can again use famous Neyman-Pearson Lemma

in order to obtain solution as it was described in Chapter 5. However, in sake

of demonstrating applications of method of market completions, in this section we

demonstrate alternative path which was described in Nakano 2011. The nature of

proposed approach is to solve specific ”dual” problem which can be stated based on

the following consideration

E[φ] = E[φ(1− yLgT )] + yE[φLgT ] ≤ E
[︁
(1− yLgT )

+
]︁
+ yx. (8.23)

The idea is to focus on minimization problem

inf
y≥0, L∈L

{︁
E
[︁
(1− yLgT )

+
]︁
+ yx

}︁
. (8.24)

To guarantee the existence of the solution for (8.24), instead of using the class L

one should the closed under almost sure convergence and convex set L̄ defined as

L̄ =

{︃
L ∈ L1 : E[β−1

T L] ≤ 1, E[LgT ] ≤ sup
L′∈L

[L′gT ], E[LgTφ] ≤ x

}︃
(8.25)

for some random variable C.

Then, solution (L̂, ŷ) to dual problem (8.24) will always exist in L̄ ×R+ and there

won’t be any duality gap between dual and initial problems. In other words, their
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solutions will coincide. Therefore, optimal randomized test for (8.22) will be written

in the following form

φ̂ := 1ŷL̂gT<1 + C · 1ŷL̂gT=1. (8.26)

However, the class L̄ is abstract enough to make it challenging to find an explicit

solution. That is why, author in Nakano 2011 proposes to consider closed convex hull

of L with respect to L1 norm. Denoting the hull as L̄1, we define

R1 = {φ : 0 ≤ φ ≤ 1 a.s., sup
L∈L̄1

E[LgTφ] ≤ v0} (8.27)

and rewrite quantile hedging problem as

max
φ∈R1

[φ]. (8.28)

Proposition 8.1 Suppose φ̂ solves the modified problem (8.28) and there exists port-

folio π̂ such that V π
T (x) ≥ gT , (a.s.). Then π̂ is optimal for the quantile hedging

problem (8.22).

Assume first that market is complete. Then, defining

L̂ = βTZ
A
T 1{τ>T}e

T∫︁
0

γtdt
, (8.29)

one could notice the following relation

E[1 ∧ yLκTgT ] = E[1 ∧ yβTZA
T Z

κ
TgT1{τ>T}] = (8.30)

= E[1 ∧ yβTZA
T (1 + κτ1{τ≤T})e

−
T∫︁
0

κtγtdt
gT1{τ>T}] ≤ (8.31)

≤ E[1 ∧ yβTZA
T 1{τ>T}e

T∫︁
0

γtdt
gT1{τ>T}] = E[1 ∧ yL̂gT ]. (8.32)

Consequently, as E [(1− yLκTgT )
+] = 1− E[1 ∧ yLκTgT ], L̂ is a candidate to be the

optimal for minimization problem (8.24). The following theorem was formulated in

Nakano 2011 and we provide it for reference
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Theorem 8.2 Suppose H = gT1{τ>T} and E∗[βTgT ] < ∞ then L̂ defined by (8.29)

solves

inf
L∈L̂1

{︁
E
[︁
(1− yLH)+

]︁}︁
. (8.33)

Moreover, there exists ŷ1 > 0 that minimizes

h(y) = E
[︂
(1− yL̂H)+

]︂
+ yx, y ≥ 0. (8.34)

The pair (L̂, ŷ) is optimal for the problem

inf
y≥0, L∈L̄1

{︁
E
[︁
(1− yLH)+

]︁
+ yx

}︁
. (8.35)

By the means of this theorem it is possible to find optimal solution to quantile

hedging problem (8.21).

ξ1 = ŷ1βTZ
A
T e

T∫︁
0

γtdt
gT (8.36)

Following Nakano 2011, the optimal strategy for quantile hedging problem (8.21)

will be a perfect hedging strategy for modified claim gT1{ξ1<1}.

8.2.1 Incomplete Market Case

We now move on to demonstration of application of method of market completions for

quantile hedging on defaultable markets. Of course, defaultable market is incomplete

due to appearance of the risk of default, which we assume independent from financial

market. In current section we consider scenario when underlying financial market

is also incomplete. In this case, we introduce orthogonal market completions that

parametrize completed versions of the initial market. Therefore, we arrive at the set

of processes (8.11) different for each completed version of the market:

Lκ,νt =
ZA
t Z

ν
t Z

κ
t

Bt

. (8.37)

It is straightforward to check that for each ν ∈ ker(Σ), process Lκ,νt V π
t is a su-

permartingale. Therefore, following the same steps from previous section on each
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completed market, solution to quantile hedging problem will be constructed with the

help of the following completion-dependent quantity

ξν1 = ŷ1βTZ
A
T Z

ν
T e

T∫︁
0

γtdt
gT (8.38)

By choosing market completion, corresponding to minimal martingale measure, we

obtain solution to quantile hedging problem on incomplete market.

Assembling together results provided above, we can state the following theorem.

Theorem 8.3 For incomplete market with defaults, solution to quantile hedging prob-

lem (8.21) will be a perfect hedge for modified claim H̃ = gT1{ξλ1<1}.

We illustrate application of the proposed methodology in the following example.

Example 8.4 Consider financial market from Example 2.7. In addition to structural

market incompleteness we add possibility of default which is independent from any

financial information. Let us assume that γ = 0.05, which implies that for T = 1,

probability P (τ > T ) = 0.9512.

With fair price of the claim at approximately 14, in Figure 8.1 we compare the

probabilities of successful hedging for claim on defaultable market with default-free

case.
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Figure 8.1: Probability of Successful hedging vs. Initial budget constraint

8.3 CVaR Hedging

Assume now, that investor with available initial budget v0 is willing to construct

optimal hedging strategy with respect to CVaR risk measure. Since this measure is

constructed on the distribution of losses from hedging, first step would be to define

such loss function for defaultable market scenario. As P&L will be conditional on

default event occurrence, it is straightforward to define loss from hedging as:

Lτ (x, π) = gT1{τ>T} − V π
T (x).

Consequently, we arrive at the following representation of CVaR for hedging posi-

tion on defaultable market:

c(z, τ) = z +
1

1− α
min
(x,π)

E
[︁
(gτ (z)− V π

T (x))
+
]︁

(8.39)
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where gτ (z) = (gT − z)+1{τ>T} = g(z)1{τ>T}.

min
z∈R

c(z, τ) = min
(x,π)

CV aRα(x, π). (8.40)

Therefore, in order to construct CVaR-minimizing hedging portfolio on the de-

faultable market, we could use approach presented in Section 7.3 of two-parametric

optimization. Therefore, we first should solve the following minimization problem:

{︄
E [(gτ (z)− V π

T (x))
+] −→ minπ∈A

x < v0.
(8.41)

Considering L̂ defined in (8.29), from Nakano 2011 it is known that there exists

ŷ2 > 0 that maximizes

E
[︂
gT1{τ>T}

(︂
βT ∧ yL̂

)︂]︂
− yv0 (8.42)

over all y > 0.

On complete market, the following theorem holds.

Theorem 8.5 (Theorem 4.6 from Nakano 2011) Suppose that H = gT1{τ>T}

with E∗[βgT ] <∞ and that for

ξ2 = ŷ2Z
A
T e

T∫︁
0

γtdt
gT , (8.43)

where ŷ2 is from (8.42), holds P (ξ2 = 1) = 0.

Then the prefect hedging portfolio for gT1{ξ2<1} is optimal for

min
π∈A(v0)

E
[︁
(H − V π

T )
+]︁ .

Then, for each value z > 0, it is fair to derive from Theorem 8.5 with H = H(z) =

gT (z)1{τ>T}, that solution to (8.41) will be constructed as a perfect hedging portfolio

for modified claim gT (z)1{ξ2(z)<1}, where

ξ2(z) = ŷ2(z)Z
A
T e

T∫︁
0

γtdt
gT (z), (8.44)

ŷ2(z) = argmax
y>0

(︂
E
[︂
gT (z)1{τ>T}

(︂
βT ∧ yL̂

)︂]︂
− yv0

)︂
. (8.45)
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Consequently, in order to find solution to CVaR hedging problem, it is left to find

ẑ, that minimizes

c(z) =

{︄
z + 1

1−αE
[︁
(gT − z)+(1− 1{ξ2(z)<1})

]︁
, z < z∗,

z, z ≥ z∗,
(8.46)

on interval z < z∗, and z∗ is a real root of equation

v0 = E∗ [︁(gT − z∗)+
]︁
. (8.47)

8.3.1 Incomplete Market Case

In this section we will demonstrate how method of market completions can be applied

in order to solve CVaR hedging problem on defaultable market, which is at the same

time structurally incomplete. As it was mentioned in the previous section, problem

of finding optimal CVaR hedge can be decomposed into two sequential optimization

problems.

In Section 6.2.2 we demonstrated how this problem can be solved with the help

of market completions for the case of incomplete market. As before, we parametrize

completed versions of the market with vector ν. Therefore, for each z, solution to

sub-problem (8.41) on corresponding completed markets will be to perfectly hedge

portfolio for modified claim gT (z)1{ξν2 (z)<1}, where

ξν2 (z) = ŷν2(z)Z
A
T Z

ν
T e

T∫︁
0

γtdt
gT (z), (8.48)

ŷν2(z) = argmax
y>0

(︂
E
[︂
gT (z)1{τ>T}

(︂
βT ∧ yL̂

ν
)︂]︂

− yv0

)︂
. (8.49)

where

L̂
ν
= βTZ

A
T Z

ν
T1{τ>T}e

T∫︁
0

γtdt
, (8.50)

And corresponding solution to CVaR hedging problem on each completed market

would be found with ẑ, that minimizes
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c(z, ν) =

{︄
z + 1

1−αE
[︁
(g − z)+(1− 1{ξν2 (z)<1})

]︁
, z < z∗,

z, z ≥ z∗,
(8.51)

on interval z < z∗, and z∗ is a real root of equation

v0 = Eν
[︁
(g − z∗)+

]︁
. (8.52)

As it was demonstrated earlier, if we decide to use UBIP as a pricing functional for

assessing initial price of the claim, we should pick market completion with ν = 0 that

corresponds to completed version on which unique equivalent martingale measure will

coincide with minimal martingale one. We summarize proposed results in a form of

the following theorem.

Theorem 8.6 Strategy that minimizes CVaR from hedging defaultable claim gT1{τ>T},

will be a perfect hedge for modified claim gT̄ = gT · 1{ξ02(ẑ)<1}, where ẑ is a point of

global minimum of the function

c(z, 0) =

{︄
z + 1

1−αE
[︂
(gT − z)+(1− 1{ξ02(z)<1})

]︂
, z < z∗,

z, z ≥ z∗,
(8.53)

on interval z < z∗, and z∗ is a real root of equation

v0 = E
[︁
ZA
T (gT − z∗)+

]︁
. (8.54)

119



Chapter 9

Conclusions, Recommendations, &
Future Work

In this thesis I have introduced Method of Market Completions as a useful frame-

work for solving various problems in a field of mathematical finance for structurally

incomplete market models with the main focus on standard multidimensional market

model.

Starting with utility maximization task, where I have demonstrated how existing

approach, developed for concave utility functions, can be extended towards the case

of not necessarily concave ones. Then, we moved on to pricing of contingent claims,

where it was shown that method of market completions provides dual approach for

obtaining the same results as a classical martingale and numerarie approaches. More-

over, proposed method becomes extremely useful element for utility-based indifference

pricing approach, which proves itself to be a powerful pricing technique for tasks on in-

complete market. In addition to demonstration of application of the method, we also

show the relationship between UBIP pricing functional and famous Minimal Martin-

gale measure for special cases of market models. It would be an interesting direction

of further research to analyze more complex constraints existing on the market such

as convex sets of admissible strategies, or different interest rates.

Further, I discuss how method of market completions can be applied for problems

of quantile and effective hedging on incomplete market. Since these problems are
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well described in literature, I propose a way of transferring this knowledge to incom-

plete market situation. This is achieved by parametrization of all possible completed

markets with the family of orthogonal completions (special sets of auxiliary assets

introduced to the market). Then, having corresponding set of solutions on each com-

pleted version of the initially incomplete market, I demonstrate how one could choose

particular solution from this set, that will be attainable and optimal for incomplete

market. I present two perspectives on choosing such solution. Firstly, one could work

directly with the set of obtained solutions ”bottom-up”, by analyzing which solution

will be ”the best fit” according to both investors budget constraint and availability

of the assets for trade. Alternatively, it is possible to choose with ”top-down” ap-

proach, by imposing external requirements, such as finding solution from assumption

of locally risk minimizing criteria, or, in other words, choosing completion that leads

to equivalent martingale measure that coincides with minimal martingale measure.

In both cases method of market completions is demonstrated to be a convenient way

of parametrizing markets and working with them. Since method has proven to be

effective in this tasks it is an interesting to look closely at the question of choice of

completing assets, possibly by the means of machine learning algorithms.

Problems of quantile and effective hedging are fundamental for further development

of partial hedging. One of such directions, actively used in modern risk-management

industry is partial hedging with respect to distribution-based risk measures. There-

fore, I discuss the question of CVaR optimal hedging with budget constraint in place.

With two different approaches I demonstrate how working from market completions

perspective helps to solve the problem on structurally incomplete market. Then, I also

presented more general, two-parametric risk-measure, that is gaining its popularity

in recent research – RVaR.

Finally, I briefly described how proposed methodology can be used for market

models where possibility of default is present.

In current manuscript I have set up a framework of parametrization of incomplete
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market model by means of market completions. It would be reasonable to further

develop method of market completions to more general case of models that are based

on Levy processes.

Another interesting question would be to find parameters of completions which

would help investors achieve their specific goals. For example, if some agent aims

at maintaining particular level of risk – what parameters of additional market assets

he should be searching for in order to get it? With the growing interest in machine

learning algorithms, looking at incomplete markets from the perspective of method of

market completions opens opportunity for researching angles of application of some

techniques for the problems of mathematical finance. One of such directions might

be to use Principal Component Analysis in order to arrive at specific volatility matrix

for model.

As in the present work I have only focused on structural incompleteness, it would

be useful to work with other ”types” of incomplete markets and see if method of

market completions could be extended for them.
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