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Abstract

With the advances made in machine learning and data science, data-driven modeling and

optimization techniques have garnered significant attention in recent years. However, despite

the availability of various data-driven methods for addressing optimization problems under

uncertainty, their practical applicability is often constrained by their own limitations such as

high computational costs and reliance on non-trivial assumptions. This thesis aims to inves-

tigate and develop novel data-driven approaches to address various optimization problems

involving uncertainty and overcome the limitations of existing methods.

First, we propose a novel framework to address process optimization under surrogate

model prediction uncertainty. The framework involves approximating an ensemble surrogate

model with a computationally efficient mixture density network (MDN) and embedding the

MDN into a chance-constrained optimization problem with a mean-variance-type objective.

This method reduces the high computational cost seen in other existing methods for opti-

mization considering surrogate model prediction uncertainty. This approach is demonstrated

through a numerical example and two case studies, showcasing its capability to solve various

optimization problems under surrogate model prediction uncertainty.

Second, we develop a new neural network (NN)-based approach for solving the uncertain

optimization problems in joint chance-constrained formulations (joint chance-constrained

optimization problems, JCCPs). The approach involves approximating a joint chance con-
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straint (JCC) with a NN and incorporating the NN into the optimization model. This

method makes NP-hard JCCPs tractable and deterministically solvable. This method is ap-

plied to a process optimization problem to show its performance in solving a nonlinear JCCP.

Furthermore, we extend the above method to handle joint chance-constrained stochastic op-

timal control problems (JCC-SOCPs). We replace the NN with the recurrent neural network

(RNN) for the approximation of the JCC in a JCC-SOCP. This method has a much lower

computational burden than other commonly used stochastic optimal control approaches.

This approach is applied to a numerical SOCP example and a case study to demonstrate its

efficacy.

Third, we propose a novel distributionally robust chance-constrained optimization (DR-

CCP) method to handle JCCPs without knowing true uncertainty distributions. This DR-

CCP method is based on the kernel ambiguity set established by utilizing the maximum mean

discrepancy (MMD). This approach overcomes the restrictions of the popular Wasserstein

DRCCP which necessitates complicated assumptions on uncertain constraints. A numeri-

cal example and a nonlinear process optimization problem are studied to demonstrate the

efficacy of the presented DRCCP method. Subsequently, this DRCCP approach is further

combined with a neural network-like deep kernel to enhance its performance. The effective-

ness of this deep kernel-based DRCCP is demonstrated by applying it to a case study.

Fourth, we develop another novel DRCCP method to further overcome more limitations

of the popular Wasserstein DRCCP. This method is based on the Sinkhorn ambiguity set

constructed by using the Sinkhorn distance. This approach outperforms the Wasserstein

DRCCP by being assumption-free on uncertain constraints and being able to hedge against

more general families of uncertainty distributions. The performance of this method is eval-

uated through a numerical example and a nonlinear process optimization.

Fifth, we develop an innovative iterative algorithm that can remove outliers and extreme

iii



data samples leading to overly conservative DRCCP solutions. The presented algorithm

can significantly improve the DRCCP solution quality, and it can simultaneously ensure the

feasibility of the DRCCP solution. Moreover, the proposed algorithm is compatible with

various DRCCP models such as Wasserstein DRCCP, kernel DRCCP, Sinkhorn DRCCP,

etc.

Overall, we make several contributions through this research. From a methodological per-

spective, we develop several novel data-driven approaches for optimization under uncertainty

and significantly overcome the limitations of existing popular methods. From an applica-

tion perspective, our proposed methods can be applied to various real-world optimization

problems such as process optimization and optimal control.
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Chapter 1

Introduction

1.1 Motivation

Due to the significant development in machine learning and data science, there has been

a notable amount of interest in data-driven modeling and optimization in recent years.

Although data-driven techniques can enhance the problem-solving efficiency of optimization

problems, most of the techniques are not capable of handling uncertainty in an optimization

framework. However, uncertainty generally exists in real-world problems. Although some

data-driven approaches have been proposed to address optimization under uncertainty [1–4],

their practical applicability is frequently restricted by limitations such as high computational

costs and reliance on complicated assumptions. As a result, practical and efficient methods

for solving optimizations involving uncertainty are still in demand.

Since data-driven models have much lower computational costs than full-order models,

they can act as surrogate models to replace the full-order models in optimization problems

to reduce computational expense [5]. However, data-driven models inherently contain pre-

diction uncertainty because of the training data set variations [6]. Although there are several

existing approaches [6–9] for handling model prediction uncertainty, they are difficult to be

incorporated into an optimization formulation to address uncertainty in the optimization

framework. This is because of their sophisticated model structures and high computational

burdens. This research addresses the surrogate model prediction uncertainty in an optimiza-

tion problem by proposing a novel machine learning-based approach with high computational

efficiency and reliability.
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Chance-constrained programming (CCP) [10] is a widely-used approach to address op-

timization problems involving uncertainty in constraint functions. There are two types of

CCP: the individual CCP (ICCP) and the joint CCP (JCCP) [11]. In ICCP, a constraint

satisfaction probability is enforced for each uncertain constraint. The JCCP is more general

than the ICCP in the sense that it ensures multiple constraints are satisfied jointly to a

certain probability [12]. However, a JCCP problem is difficult to solve as it requires dealing

with the multidimensional distribution [13]. Although there are several existing approaches

to deal with JCCP problems [1, 2, 11, 14], these methods have limited practical applica-

tions due to their high computational costs or the utilization of the overly conservative

approximation. Two innovative machine learning-based approaches with high efficiency and

performance are presented in this work to handle JCCP problems.

One major challenge in solving a JCCP problem is that the true distribution of uncer-

tainty should be known in advance. However, obtaining the true uncertainty distribution

is difficult in real-world scenarios. As a solution, distributionally robust chance-constrained

programming (DRCCP) [15] is proposed. It aims to solve a JCCP problem by optimiz-

ing the objective with the worst-case joint constraint satisfaction probability (JCSP) above

an acceptable level, without anticipating the true uncertainty distribution. The existing

popular DRCCP approaches have several drawbacks such as unreliable out-of-sample perfor-

mance, dependence on non-trivial assumptions, failure to hedge against the correct families

of uncertainty distributions, etc [16, 17]. This study overcomes the above challenges by pre-

senting two new DRCCP approaches with better performance, reliability, and applicability.

Furthermore, a novel iterative algorithm is proposed in this work, which can significantly

improve the DRCCP solution quality by removing outliers and extreme data causing overly

conservative solutions.

1.2 Preliminaries

1.2.1 Artificial neural network

The artificial neural network (ANN) has a fully connected feed-forward network structure

shown in the following schematic diagram:
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Figure 1.1: Schematic diagram of the fully connected feed-forward artificial neural network

Regarding the above schematic diagram, the fully connected feed-forward ANN maps input

variables to output predictions through layers of neurons (the nodes in the schematic dia-

gram). Layer 0 and layer K are the input and output layers, respectively. The rest of the

layers are namely hidden layers. Besides the input layer, all the neurons in each layer are

fully connected with all the neurons in the previous layer. The output of one neuron in each

layer (except the input layer) can be calculated using (1.1):

xkj = σ

(︄
n∑︂
i=1

W k
ijx

k−1
i + bkj

)︄
, k = 1, ..., K (1.1)

where i, j, and k symbolize the index of each neuron in the previous layer, the index of

each neuron in the current layer, and the index of each layer, respectively. x, W , b, and n

represent the output of the neuron, the weights between the current and previous layers, the

bias for each neuron in the current layer, and the number of neurons in the previous layer,

respectively. σ represents the transfer function (activation function) of each neuron in the

current layer.

1.2.2 Recurrent neural network

The recurrent neural network (RNN) is a variant of neural networks, which is capable of

learning sequential data. An RNN can model a discrete-time dynamic system through the

feedback of the hidden state from the previous time step to the current time step. A vanilla

RNN is shown in Figure 1.2 which is an unfolded representation of a vanilla RNN for modeling

a dynamic system with 3 time steps.
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Figure 1.2: Schematic diagram of a vanilla recurrent neural network

This vanilla RNN has 1 hidden layer with 3 neurons. The hidden layer at each time step

is also called the cell. Every cell has the same hidden layer structure, set of weights, and

set of biases. uj=0,1,2 and xj=1,2,3 are the input sequence and the output sequence of the

RNN, respectively, which are 1-dimensional sequences with 3 time steps individually. h0 is

the initial hidden state and h1 ∼ h3 are hidden states computed from the hidden layer at

different time steps. h0 ∼ h3 are 3-element vectors because there are 3 neurons in the hidden

layer. h0 is generally set as a zero vector [18]. At the time step j+1 (j = 0, 1, 2, j is also the

time step index), the inputs for a neuron in the hidden layer are the hidden state from the

previous time step hj and the input uj. A vanilla RNN can be interpreted as the equations

shown below:

hj+1 = σh(Whuj + Uhhj + bh) (1.2a)

xj+1 = σx(Wxhj+1 + bx) (1.2b)

where Wh and Uh are the weight matrices for neurons in the hidden layer. Wx is the weight

matrix for neurons in the output layer. bh and bx are the bias vectors for neurons in the

hidden and output layers, respectively. σh and σx are the activation functions for neurons in

the hidden and output layers, respectively. The subscripts h and x are indices for neurons

in the hidden and output layers, respectively.

The vanilla RNN can work well with moderate sequence size, but it fails to retain infor-

mation when the sequence given is long. This is known as the short-term memory problem

of the vanilla RNN [19]. To tackle such a problem, more advanced RNNs have been devel-

oped. The most popular advanced RNNs are the Long Short-Term Memory (LSTM) and the

Gated Recurrent Unit (GRU). The LSTM is more preferable than the GRU when prediction

accuracy is critical since the LSTM has more gates and parameters [20]. Thus, the LSTM is
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used in the study in Section 3.2. A schematic diagram for illustrating an LSTM cell is shown

in Figure 1.3. The difference between an LSTM and a vanilla RNN is that the structure of

an LSTM cell is much more complex than of a vanilla RNN cell. More specifically, there are

several gates composed of several neurons in an LSTM cell to add or remove information in

states. A more detailed explanation of the LSTM is in Appendix A2.1.

Figure 1.3: Schematic diagram for illustrating an LSTM cell
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1.2.3 Chance-constrained programming

When uncertainty occurs in the constraint functions of an optimization problem, it would

be difficult to find the reliable optimal decision due to the unexpected random effects that

would cause the constraint violation. Under this circumstance, one would rather require

the optimal decision to be feasible with a certain probability/chance instead of satisfying

constraints with exact limited values. Based on this idea, chance-constrained programming

(CCP) [10] is proposed.

There are two divisions of CCP: the individual CCP (ICCP) and the joint CCP (JCCP) [21].

They are illustrated as follows:

• Individual chance-constrained programming (ICCP): As to the individual chance-

constrained programming, the term ”individual” relates to the fact that each of the

stochastic constraints is reformulated into a chance constraint individually. The general

formulation of a set of individual chance constraints (ICCs) is given as:

Pr(gi(x, ξ) ≤ 0) ≥ 1− δ (i = 1, ..., w) (1.3)

x and ξ are decision and random vectors, respectively. gi(x, ξ) ≤ 0 refers to a finite set

of inequalities (constraints) and Pr is a probability measure. The value 1 − δ ∈ [0, 1]

is the confidence value or the probability level. ICCs are appealing in that they are

simple to solve [12] and their linear deterministic inequalities as well as analytical

solutions can be obtained easily [22]. The ICCP has been applied for the refinery blend

planning [11], process industry scheduling [23], balancing return and risk [24], etc. As

to the drawbacks of the ICCP, they only guarantee that each equation satisfies the

constraint to a certain confidence level. The model with individual chance constraints

is not feasible while constraints as a whole are required to be satisfied simultaneously.

In that circumstance, the JCCP is adopted.

• Joint chance-constrained programming (JCCP): The JCCP ensures that con-

straints as a whole are satisfied simultaneously to a certain confidence level. The

general formulation of one single joint chance constraint (JCC) is given as:

Pr(gi(x, ξ) ≤ 0 (i = 1, ..., w)) ≥ 1− δ (1.4)
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The difference between (1.3) and (1.4) is given by the position of (i = 1, ..., w). The

JCCP has been exploited for stochastic optimal control [25], design and planning of

chemical supply chains [26], hydro reservoir management [27], etc. Although the JCCP

is more general and natural than the ICCP, it is incredibly difficult to solve as it requires

dealing with multidimensional distributions. [13] Thus, JCCP problems are generally

solved through approximations [28]. More details about the approximation methods

for JCCP problems are explained in Section 1.3.2.

1.2.4 Distributionally robust chance-constrained programming

The requirement of knowing the true uncertainty distribution is a major challenge in solving

JCCP problems in practice (this is also a major difficulty in solving an ICCP problem in

practice). To address this issue, the distributionally robust chance-constrained programming

(DRCCP) [29] method has been introduced, which solves a JCCP problem based on the

worst-case distribution among all possible data-generating candidate distributions, without

estimating the true uncertainty distribution. The DRCCP method optimizes the objective

with the worst-case joint constraint satisfaction probability (JCSP) above an acceptable

confidence level, over a set of candidate distributions. This set is called the ambiguity

set. The ambiguity set may contain certain distributional information about the unknown

true distribution, such as moments, structural properties, and domain knowledge obtained

from gathered data. In order to ensure the solution quality and robustness, a well-designed

ambiguity set should contain the true distribution with high confidence and exclude irrelevant

distributions resulting in overly conservative decisions. Additionally, the ambiguity set must

be designed in a way that enables the DRCCP problem to be a tractable mathematical model

that can be solved using off-the-shelf solvers [30]. More details about the ambiguity set are

elaborated in Section 1.3.3.

The general formulation of a DRCCP problem is given as:

min
x∈X

f(x) (1.5a)

s.t. min
P∈P(Ξ)

Pr (gi(x, ξ) ≤ 0, ∀i = 1, ..., w) ≥ 1− δ (1.5b)

where x is the decision variable vector with the feasible set X . ξ is a random parameter vector

on measurable continuous support Ξ. P(Ξ) is the ambiguity set on the support Ξ, which

contains infinite number of candidate distributions P (P are distributions of ξ). Pr is the
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probability measure. Inequality (1.5b) is the worst-case joint chance constraint (JCC) that

ensures the worst-case JCSP greater than or equal to a user-defined confidence level 1 − δ.
The expression (1.5b) can be rewritten equivalently as the worst-case violation probability

form:

max
P∈P(Ξ)

Pr

(︄
w⋃︂
i=1

gi(x, ξ) > 0

)︄
≤ δ (1.6)

The left-hand side of the above expression represents the worst-case violation probability,

which is the maximum probability of constraint violation (g1(x, ξ) > 0 or g2(x, ξ) > 0, or

..., or gw(x, ξ) > 0) under all possible probability distributions in the ambiguity set. The

expression (1.6) is more useful for deriving tractable DRCCP formulations. More details

about the derivations of tractable DRCCP formulations are explained in Chapter 4.

1.2.5 Wasserstein distance

The Wasserstein distance is a metric that quantifies the dissimilarity between two probability

distributions by computing the minimum cost of transporting one distribution to another

through an optimal transportation plan. This distance measures the amount of cost necessary

to move one distribution to another, taking into account the overall transportation cost

based on the optimal transportation plan. The type-q Wasserstein distance Wq between the

distributions P and P0 is defined by:

Wq(P,P0) := min
π∈Π(P,P0)

(︃∫︂
Ξ×Ξ

c(η, ξ)qdπ(η, ξ)

)︃1/q

(1.7)

where random parameter vectors η ∼ P and ξ ∼ P0. P and P0 are two probability measures

based on continuous support Ξ. c(η, ξ) denotes the ground cost function and is often evalu-

ated based on a norm ∥η − ξ∥ (e.g., ℓ1 norm, ℓ2 norm, etc.). π is called the transportation

plan between P and P0. Π(P,P0) is the set of all joint distributions on Ξ×Ξ, whose marginal

distributions are P and P0. Since the type-1 Wasserstein distance W1 is the most popular

Wasserstein metric [31], all the Wasserstein distances in the rest of this thesis refer to the

type-1 Wasserstein distance W1. W1 can be equivalently reformulated in the expectation
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form:

W1(P,P0) = inf
π∈Π(P,P0)

E(η,ξ)∼π [c(η, ξ)] (1.8)

Moreover, the type-1 Wasserstein distance is a special case of the integral probability metrics

(IPMs) [32]. An IPM is generally defined as:

Γ[F ,P,P0] = max
f∈F

{︃∫︂
Ξ

f(ξ)dP(ξ)−
∫︂
Ξ

f(ξ0)dP0(ξ0)

}︃
(1.9)

F is a space of real-valued bounded measurable functions on Ξ. The IPM Γ[F ,P,P0] is fully

characterized by F . While F = {f : lip(f) ≤ 1}, the IPM reduces to the type-1 Wasserstein

distance. Similarly, the IPM reduces to the max mean discrepancy (MMD) while F =

{f : ∥f∥H ≤ 1}. The details about the MMD are explained in Subsection 4.1.3.

When two discrete empirical distributions P̂ and P̂0 are respectively supported on finite

samples {ηn}Nn=1 and {ξm}Mm=1, W1 between P̂ and P̂0 based on the finite discrete support

can be formulated as the following optimal transport problem [31]:

W1 = min
π≥0

N∑︂
n=1

M∑︂
m=1

∥ηn − ξm∥πnm

s.t.
M∑︂
m=1

πnm =
1

N
, ∀n = 1, ..., N

N∑︂
n=1

πnm =
1

M
, ∀m = 1, ...,M (1.10)

The above optimal transport problem is a linear programming (LP) problem.

1.3 Literature review

1.3.1 Surrogate model prediction uncertainty

To reduce the computational effort of model-based optimization, data-driven surrogate mod-

els are commonly used to approximate the original full-order models in optimization frame-

works [5]. Data-driven surrogate models have the advantage of being relatively low in com-
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plexity and can be constantly updated with new data. For example, the data-driven hinge

hyperplane has been adopted as a surrogate model for real-time optimization of complex

processes under uncertainties [33]. The nonlinear autoregressive exogenous (NARX) neural

network has been utilized as a surrogate model for the optimization of an industrial-scale air

and gas compression system [34]. The neural network has been employed to estimate plant

gradients for a modifier adaptation method to address plant-model mismatch in real-time

optimization of a gas-lifted oil well network [35]. For a comprehensive review of surrogate

model-based optimization in the chemical engineering field, readers can refer to [36].

Among various data-driven surrogate models, the artificial neural network (ANN) stands

out as a popular and efficient option since the ANN has demonstrated strong performance in

approximating non-linear models. For instance, the ANN has been employed for the biodiesel

production process modeling, which significantly reduces the process model complexity with-

out sacrificing representativeness [37]. Additionally, ANN can be directly incorporated into

optimization problems, as seen in studies on distillation energy efficiency optimization and

heat-integrated crude oil distillation system optimization [38, 39]. In both cases, the sig-

moid neural networks were used as the surrogate models to enable the complicated process

optimization problems can be solved efficiently.

Although ANNs are powerful surrogate models, they heavily rely on the data used for

training. This means that the prediction of the ANNmodel is greatly affected by the variation

in the training data. Even with a large data set, the randomness in the collection of data

cannot be fully eliminated. Meanwhile, it is challenging to determine if the collected data

set is large enough to train an accurate ANN. As a result, the prediction uncertainty caused

by the data variation should be considered in ANN surrogate model-based optimization to

improve solution robustness.

Various methods have been proposed to estimate the prediction uncertainty of ANNs,

including the Bayesian method [8], fuzzy method [9], Monte Carlo simulation method [40],

and optimization-based method [41]. However, these approaches are generally difficult to

be incorporated into an optimization framework due to their complex structures. Although

the ensemble-based method [42] can be integrated into an optimization problem, it has

a high computational cost due to the large-scale model involved. For a comprehensive

review on existing techniques for handling ANN prediction uncertainty, readers can refer

to [43]. Apart from the above approaches, the mixture density network (MDN) [44] is a

more efficient and easier alternative to address ANN prediction uncertainty. The MDN can
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be thought of as a traditional ANN, with the only difference being that the outputs of

the MDN are parameters of the prediction distributions (such as the means and standard

deviations of ANN predictions) instead of single-point predictions. Therefore, the ANN

prediction uncertainty can be estimated by the distribution parameters predicted from the

MDN.

The MDN has been applied in multiple practical scenarios, as demonstrated by several

studies. Men et al. [45] used an ensemble of MDNs for wind speed and power forecasting,

testing the methodology with a data set obtained from a wind farm in Taiwan. Zhang et

al. [46] employed the MDN to analyze the uncertainty in wind turbine power output. In

Herzallah and Lowe’s work [47], the MDN was used to model multi-component distributions

for non-linear control problems. Ahangar et al. [48] proposed an innovative voice conversion

algorithm based on the MDN. Sarochar et al. [49] generated energy consumption data using

the MDN integrated with a multi-layered LSTM network for residential and commercial

areas. Lastly, Vakanski et al. [50] evaluated human motions in physical therapy using the

MDN, aiming to improve the therapy.

Although the MDN has a wide range of applications and it is a promising approach

for estimating the model prediction uncertainty, its application in optimization considering

model prediction uncertainty is still rare. Accordingly, the MDN is employed in this research

for the proposed novel data-driven method addressing optimization under surrogate model

prediction uncertainty. More details are elaborated in Chapter 2

1.3.2 Joint chance-constrained programming

Joint chance-constrained programming (JCCP) is more intuitive and useful than individual

chance-constrained programming (ICCP). However, solving a JCCP problem is immensely

challenging due to the need to handle complex multidimensional distributions. Accordingly,

JCCP problems are generally solved by utilizing approximations. Analytical approximation

methods [51] and sampling-based methods [14] are the two main approximation ways for the

JCCP. Analytical approximation methods are employed to approximate a JCCP problem by

using a deterministic optimization formulation [28]. One such approach is the robust opti-

mization (RO) [52] technique which uses uncertainty sets to address uncertainties and does

not require the full information of uncertainty distributions. For a comprehensive explana-

tion of RO, readers can refer to [28]. On the other hand, sampling-based approaches contain
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scenario approximation and sample average approximation (SAA). The scenario approxi-

mation first generates random samples for uncertain parameters, and then it approximates

the JCC by using constraints corresponding to each generated sample [53]. However, the

infeasibility of the approximated JCC may arise due to the randomness of sample genera-

tion [28]. To overcome this issue, the SAA is developed as a generalization of the scenario

approximation. In SAA, the random parameters in the problem studied are first sampled,

and then the constraint satisfaction probability based on the samples is enforced to be above

an acceptable level. SAA is a straightforward and effective approach that can enable chance-

constrained problems to be tractable and solvable [14]. For a comprehensive elaboration of

both scenario approximation and SAA, readers can refer to [53, 54].

While RO and SAA can be exploited to solve JCCP problems, they have certain draw-

backs that limit their practical applications. As to RO, this approach may produce an overly

conservative solution if the uncertainty set is not well-designed, and it is difficult to obtain

a well-designed uncertainty set in practice [55]. Additionally, the SAA method can be com-

putationally costly because the SAA model contains the indicator function including binary

variables, which can lead to increased complexity and longer computation times, especially

when the underlying optimization problem is non-linear [56].

To overcome the above restrictions of the existing methods for JCCP problems, two

machine learning-based techniques are proposed in this research. More details are explained

in Chapter 3.

1.3.3 Distributionally robust chance-constrained optimization

According to the introduction of DRCCP in Section 1.2.4, the ambiguity set is a key element

of DRCCP models. Different types of ambiguity sets lead to different DRCCP approaches.

Moment-based and metric-based ambiguity sets are commonly used in the field of DRCCP,

as discussed in several studies [57–59]. A moment-based ambiguity set includes a collec-

tion of distributions that meet specific moment constraints. In order to establish such a

set, a certain level of moment information needs to be known beforehand. Moreover, since

different distributions may share the same moments, the moment constraints may not be

precise enough to exclude irrelevant distributions, potentially leading to overly conservative

decisions [60]. Furthermore, even with sufficient data, distributionally robust chance con-

straints based on moment-based ambiguity sets may not be able to accurately approximate
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the original chance constraints [61]. Metric-based ambiguity sets are more powerful alterna-

tives to prevent the above limitations. The metric-based ambiguity sets can be thought of as

balls in the space of probability distributions. In a metric-based ambiguity set, all candidate

distributions are centered around a nominal distribution constructed by gathered samples,

within a radius defined by a probability metric. The radius size of the ambiguity set is a

user-defined hyper-parameter that determines the degree of conservatism in the solution.

The general formulation of a metric-based ambiguity set can be defined as:

P(Ξ) = {P : D(P,P0) ≤ ε} (1.11)

where P(Ξ) here represents a metric-based ambiguity set. P and P0 are candidate and

nominal distributions, respectively. D is a probability metric determining the similarity

between P and P0. ε is the radius size of the ambiguity set which is a user-defined hyper-

parameter.

The ϕ-divergence is a widely-used probability metric for metric-based ambiguity sets [62–

64]. Ning and You [65] proposed a well-designed DRCCP approach exploiting a generative

adversarial network (GAN) and the ϕ-divergence to construct an ambiguity set. Their ap-

proach employs an f -GAN to produce a continuous reference distribution (nominal distri-

bution), with all candidate distributions in the ambiguity set required to be close to the

reference distribution based on the ϕ-divergence. This method has been demonstrated to

have excellent performance in power systems applications. However, as highlighted in ex-

isting literature [16, 66], an ambiguity set constructed using the ϕ-divergence only includes

distributions that are absolutely continuous with respect to the nominal distribution. This

means that the ϕ-divergence ambiguity set contains only those distributions with the same

support as the nominal distribution. Thus, if the nominal distribution is continuous, there

are no discrete distributions in the ϕ-divergence ambiguity set, and vice versa. This can be

problematic if the true distribution has a different support than the nominal distribution,

as the true distribution may not be included in the ambiguity set. Additionally, according

to Gao and Kleywegt [66], the ϕ-divergence only considers the relative ratio between two

distributions, and therefore cannot capture the distance between them. This limitation may

cause irrelevant distributions to be included in the ϕ-divergence ambiguity set, leading to an

overly conservative solution.

To address the issues of the ϕ-divergence ambiguity sets, the Wasserstein distance has

become a popular alternative for constructing metric-based ambiguity sets [67–69]. The
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Wasserstein distance is a metric that quantifies the minimum cost of transforming one prob-

ability distribution into another, where the cost is defined as the optimal transport distance

obtained from solving the optimal transport problem between the two distributions. The

Wasserstein ambiguity set can include both continuous and discrete distributions, making

it capable of containing the true distribution with high confidence. Furthermore, because

the Wasserstein distance possesses the capability of measuring the distance between two dis-

tributions, Wasserstein ambiguity sets are more effective in eliminating irrelevant distribu-

tions and preventing excessively conservative decisions compared to ϕ-divergence ambiguity

sets [66]. However, existing studies of Wasserstein DRCCP rely on some non-trivial assump-

tions on uncertain constraints to attain tractable Wasserstein DRCCP models. Most of the

current works on the Wasserstein DRCCP [3, 4, 61, 70–73] assume that constraints involving

uncertainty are affine in uncertain parameters. The Wasserstein DRCCP method presented

in Gu and Wang’s research [74] restricts uncertain constraints to be quadratic-convex in un-

certainty. The Wasserstein DRCCP approach proposed by Hota et al. [75] limits uncertain

constraints to be either concave or convex in uncertainty. Apart from the restrictions on

uncertain constraints, the worst-case distribution of the Wasserstein DRCCP is proven to

be limited to a discrete distribution supported on at most M +1 samples (M is the number

of real gathered samples) [66, 76]. This limitation would cause the Wasserstein DRCCP to

hedge against the wrong families of distributions if the true distribution is continuous [17].

The above restrictions seriously hinder the practical applications of the Wasserstein DRCCP.

To overcome the issues of the existing DRCCP approaches, two novel DRCCP methods

are presented in this research. Moreover, a new, efficient, and widely compatible algorithm is

further proposed to enhance the DRCCP solution quality, which is capable of removing out-

liers and extreme samples causing overly conservative solutions. More details are elucidated

in Chapters 4, 5, and 6.

1.4 Thesis contribution

In this research, several novel data-driven methods have been developed to efficiently address

optimization under uncertainty and to surmount the limitations of existing approaches for

optimization involving uncertainty. The main contributions of this study are shown below:

• Chapter 2 presents an innovative mixture density network (MDN)-based technique

for addressing optimization considering surrogate model prediction uncertainty. This
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approach outperforms other existing methods due to its higher computational efficiency

and better applicability.

• Chapter 3 proposes two machine learning-based techniques to handle steady-state

joint chance-constrained programming (JCCP) problems and dynamic joint chance-

constrained stochastic optimal control problems (SOCPs). These two techniques have

better performance and lower computational costs than other methods in the liter-

ature. The uncertainty distributions should be known in advance while using these

techniques.

• Chapter 4 presents a new distributionally robust chance-constrained optimization (DR-

CCP) approach based on the kernel ambiguity set, which requires fewer assumptions

and has better performance than the popular Wasserstein-based method. The per-

formance of this proposed method can be further enhanced by combining it with a

neural network-like deep kernel. This kernel-based approach can handle JCCP prob-

lems without knowing true uncertainty distributions.

• Chapter 5 proposes a new DRCCP approach based on the Sinkhorn ambiguity set. This

method can hedge against more general families of uncertainty distributions, requires

fewer assumptions, and can achieve a better solution with lower variability than the

widely-used Wasserstein-based approach. This Sinkhorn-based method can address

JCCP problems without obtaining exact uncertainty distributions.

• Chapter 6 presents a novel algorithm that can exclude outliers and extreme data sam-

ples leading to overly conservative DRCCP solutions. This algorithm is able to sig-

nificantly enhance the DRCCP solution quality, which has wider compatibility with

various DRCCP models than other existing similar approaches.

The main contributions of this thesis and the interrelationships between different devel-

oped methods are summarized in the following flowchart.

15



Figure 1.4: Flowchart of this thesis
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Chapter 2

Data-Driven Process Optimization

Considering Surrogate Model

Prediction Uncertainty: A Mixture

Density Network-Based Approach

Abstract

The artificial neural network (ANN) can be effectively used as a data-driven surrogate model

in process optimization. However, there is a problem that the change of training set leads

to prediction uncertainty. A novel framework is proposed in this research to address this

issue. In the proposed approach, an ensemble of ReLU ANNs is first trained with different

training sets to simulate the prediction uncertainty caused by the training set variation.

Then, a mixture density network (MDN) is used to approximate the ReLU ANN ensemble

and it is further embedded into a mixed-integer linear optimization problem. The original

optimization problem is reformulated into a chance-constrained form with the mean-variance

type objective function to address both constraint and objective uncertainties. The proposed

approach is applied to a numerical example and two case studies to show its capability of

solving complex process optimization problems under the neural network model prediction

uncertainty.
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2.1 Introduction

With the advances made in machine learning and data science, data-driven modeling and

optimization have received lots of attention in recent years. Various machine learning tech-

niques have been used as data-driven surrogate modeling methods to improve the efficiency of

solving complex optimization problems. While these techniques have received lots of studies

in the past, uncertainties in generated surrogate models have been widely ignored. There-

fore, how to handle the uncertainty in the surrogate model and address it in an optimization

framework is still an issue worth exploring in depth.

In terms of the data-driven surrogate model, it is utilized to approximate the original

full-order model to reduce the computation effort [5] due to its relatively low complexity and

ability to be updated constantly with the collected data. For instance, the data-driven hinge

hyperplane is adopted as the surrogate model for real-time optimization (RTO) of complex

processes under uncertainties [33]. Lee et al. [34] adopted the Nonlinear Autoregressive

eXogenous (NARX) neural network to optimize the operating conditions of an industrial-

scale air and gas compression system in a commercial terephthalic acid manufacturing plant.

The neural network is utilized to estimate the plant gradient for the modifier adaptation

method to cope with the plant-model mismatch in the studied RTO of a gas-lifted oil well

network [35].

Among numerous types of data-driven surrogate models, the artificial neural network

(ANN) is a widely used and efficient surrogate model which has been adopted in several

studies of process simulation and optimization [77–81]. ANN is evidenced to have a strong

ability for the approximation of the non-linear model. According to Fahmi’s research [37],

the ANN can significantly reduce the complexity of the highly non-linear biodiesel produc-

tion process model without losing its representativeness. Furthermore, the ANN can be

directly formulated in an optimization problem. For instance, in Osuolale’s study [38], the

difficult non-linear optimization of the distillation energy efficiency can be simplified and

solved efficiently with the use of the sigmoid neural network as the surrogate model. Also,

according to Ochoa-Estopier’s work [39], an innovative optimization approach for optimizing

heat-integrated crude oil distillation systems with the sigmoid neural network embedded is

proposed.

On the other hand, since integer decision variables are often involved in the process

optimization, many optimization problems in PSE can be modelled as mixed-integer prob-
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lems. In terms of a mixed-integer optimization problem involving the ANN, it will become a

mixed-integer non-linear programming (MINLP) problem if the non-linear activation func-

tion, such as the sigmoid function or hyperbolic tangent function, is adopted in the ANN. In

order to further simplify the MINLP optimization involving the ANN, the piecewise-linear

rectified linear unit (ReLU) activation function can be used to simplify the studied opti-

mization to be a mixed-integer linear programming (MILP) problem. Also, according to

Grimstad’s study [82], the ReLU ANN can approximate the complex non-linear model ac-

curately. Therefore, based on the mentioned advantages of the ReLU ANN, the ReLU ANN

is adopted as the surrogate model in this work for the purpose of simplicity.

However, although ANNs are powerful approaches to approximate non-linear processes,

they are data-driven methods that are significantly influenced by the training set variation.

The ANN model prediction uncertainty is caused by the training set variation. A large data

set cannot guarantee an uncertainty-free prediction since the randomness in data collection

cannot be completely avoided by increasing the data set size. Also, it is hard to know

whether the collected data set is large and comprehensive enough to train an accurate ANN.

Thus, the model prediction uncertainty should be taken into account for the ANN surrogate

model-based optimization, in order to improve the solution robustness.

To estimate the prediction uncertainty of the ANN, various methods have been pro-

posed, such as the Bayesian method [7, 8, 83–86], fuzzy method [9], Monte Carlo simulation

method [40, 87, 88], and optimization-based method [41]. However, those methods are gen-

erally difficult to be incorporated into an optimization problem. Another potential approach

to handle the prediction uncertainty is the ensemble-based method [6, 42]. This method

can be applied to an optimization problem but its computation cost is very high due to the

large-scale model involved in this method. More details about the ensemble-based method

are elaborated in Section 2.2.3. In addition to the above-mentioned approaches, the ANN

prediction uncertainty can be addressed using a more efficient and easier method called the

mixture density network (MDN) [89]. The concept of the MDN is very easy-to-understand.

The MDN can be thought of as the traditional ANN, and the only difference between the

MDN and traditional ANN is that the outputs of the MDN are parameters of the predic-

tion distributions (e.g., the means and standard deviations of ANN predictions) instead of

exact prediction values. Therefore, the ANN prediction uncertainty can be estimated by

the distribution parameters predicted from the MDN. More details about the MDN will be

illustrated in Section 2.2.4.
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The practical application of the MDN has been presented in many studies. According

to Men’s work [45], an ensemble of MDNs is used for wind speed/power forecasting and the

proposed methodology was tested by the data set obtained from a wind farm in Taiwan.

In Zhang’s study [46], the MDN is adopted for the uncertainty analysis of the power of

a wind turbine. Herzallah and Lowe [47] adopted the MDN to model multi-component

distributions for exploiting uncertainties in non-linear control problems. As can be seen from

Ahangar’s work [48], an innovative voice conversion algorithm based on the MDN is proposed

in this research. In Sarochar’s study [49], the energy consumption data of residential and

commercial areas is generated by using the MDN integrated with a multi-layered Long Short-

Term Memory (LSTM) network. According to Vakanski’s work [50], the MDN is used to

evaluate human motions in physical therapy for further improvement in the studied therapy.

In this study, we proposed an innovative optimization method based on ReLU MDN,

to address the prediction uncertainty sourced from the variation of the training data set of

ReLU ANN. While applying the proposed approach to an optimization problem, an ensemble

of ReLU ANNs are first trained individually with different training sets to approximate non-

linearities in the studied optimization problem as surrogate models, and to simulate the

prediction uncertainty caused by the training set variation. Afterwards, the obtained ReLU

ANN ensemble is then approximated by the MDN. Moreover, the studied problem is further

reformulated to be the MILP chance-constrained optimization with the mean-variance type

objective function and MDN embedded.

Since many challenging PSE optimization problems involve complex process models, the

ReLU ANN provides a good candidate for such applications due to its strong flexibility in

approximating complex functions and its explicit mixed integer linear formulation. Applica-

tions of these MILP surrogate model-based formulations to PSE optimizations are still rare so

far. Additionally, an efficient way to address the ANN model prediction uncertainty through

an explicit deterministic optimization framework is not found. For the above reasons, the

novel MDN-based approach is developed in this work, which has potential applications in

wide areas including PSE. The advantage of the proposed approach are as follows: 1) it pro-

vides a way to capture solution robustness under the prediction uncertainty, especially when

the training data set is limited as demonstrated in Section 2.3.3. 2) The proposed approach

relies on solving a single deterministic MILP problem, which is easy for implementation and

shows computationally advantage as shown in Section 2.3.2.

The proposed approach is presented in Section 2.2. A numerical illustrating example is
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presented in Section 2.3, where the robustness and reliability of the optimal solution are stud-

ied. Also, the proposed approach is compared with the ANN ensemble-based optimization

method in this illustrating example to demonstrate its performance. Moreover, the presented

optimization method is applied to two case studies in Section 2.4 to show that robust opti-

mal solutions of complex processes can be achieved under the ANN prediction uncertainty

derived from the training set variation. The first case study is to minimize the total annual

cost (TAC) of a water-ethanol distillation column with two specification constraints. The

second case study is to solve a more complicated process optimization that is the product

yield maximization of an ethylene glycol production process with two constraints.

2.2 Methods

In this section, we first present the mixed-integer linear constraint formulation of ReLU ANN

and its usage in the deterministic optimization problem. Then, we investigate the prediction

uncertainty of ReLU ANN and present the proposed approach of optimization under such

uncertainty based on the mixture density network.

2.2.1 ReLU ANN

The ANN is a computational model having a fully connected feed-forward network structure.

A detailed explanation of the ANN is in Section 1.2.1. The ANN employing the rectified

linear unit (ReLU) transfer function is called the ReLU ANN. The ReLU transfer function

is shown as (2.1).

σ (y) := max {0, y} (2.1)

For the output layer in the ReLU ANN, the corresponding transfer function of each neuron

is given as (2.2).

σ (y) := y (2.2)

Some important properties of ReLU ANNs that make them attractive as surrogate models in

optimization are highlighted below. First, ReLU ANNs are composed of max-affine operators

and are piecewise-linear as well as continuous functions [90] which means that a ReLU

ANN can be precisely formulated in a MILP problem. In contrast, ANNs composed of

other non-linear activation functions, such as sigmoid or hyperbolic functions, can only be
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expressed approximately in a MILP problem. Thus, ANNs involving non-linear activation

functions are usually embedded in MINLP problems instead of MILP problems. Second, the

approximation ability of the ReLU ANN can be controlled by adjusting its numbers of layers

and neurons in a layer [91]. Finally, many toolboxes are available for designing, modelling,

and training ReLU ANNs (e.g., TensorFlow [92], PyTorch [93]). In this research, MATLAB

Neural Network Toolbox [94] is utilized for modeling and training different neural networks.

2.2.2 Deterministic optimization with ReLU ANN surrogate model

Incorporating the ReLU ANN as the surrogate model to the optimization framework has been

widely studied in the field of machine learning [95–97]. However, such an application is still

rare in the field of PSE. Therefore, it is innovative and promising to apply the ReLU ANN for

the improvement of solving PSE optimization problems. Before illustrating the optimization

involving the ReLU ANN, let’s start with the following optimization formulation first:

min
x

f(x) (2.3a)

s.t. gi(x) ≤ 0 i = 1, ..., w (2.3b)

w is the number of inequality constraints. f(x), gi(x), and x are the objective function, in-

equality constraints, and decision variables in the optimization problem, respectively. Note

that f(x) and gi(x) are assumed to be complex nonlinear functions that will be approxi-

mated by the ReLU ANN. The optimization problem involving a ReLU ANN can be ex-

pressed below. The non-linearities in the original optimization formulation (f(x) and gi(x)

given in (2.3a)-(2.3b)) are approximated using the ReLU ANN and corresponding approxi-

mations are symbolized as f̂ and ĝi, respectively. In the model, symbols with hats represent

predictions or approximations computed from the ReLU ANN.
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min f̂ (2.4a)

s.t. ĝi ≤ 0 i = 1, ..., w (2.4b)

H0
s = xs s = 1, ..., S (2.4c)

akj =
L∑︂
l=1

W k
ljH

k−1
l + bkj j = 1, ..., J, k = 1, ..., K (2.4d)

0 ≤ Hk
j ≤M(1− zkj ) (2.4e)

akj ≤ Hk
j ≤ akj +Mzkj (2.4f)

zkj ∈ {0, 1} (2.4g)

Yr =
L∑︂
l=1

WK
lr H

K−1
l + bKr r = 1, ..., R (2.4h)

Yr = [f̂ , ĝi] (2.4i)

As to the above formulation, equations (2.4c) and (2.4h) represent the input and output

layers of the embedded ReLU ANN, respectively. Hidden layers are expressed as (2.4d)-

(2.4g) where the max-affine operators Hk
j = max{0, akj} in the ReLU ANN are expressed

through binary variables zkj . Equation 2.4i states that outputs of the embedded ReLU ANN

are f̂ and ĝi. H
0
s and xs are outputs of neurons in the input layer and corresponding decision

variables, respectively. s is the index of each neuron in the input layer. S is the number

of neurons in the input layer. j, k, and l are the index of each neuron in the current layer,

the index of the layer, and the index of each neuron in the previous layer, respectively. J ,

K, and L are the number of neurons in the current layer, the number of layers (excluding

the input layer), and the number of neurons in the previous layer, respectively. Note that

both J and L are different at different k. For instance, when k equals to 1 in (2.4d), J

and L are equivalent to a user-defined value and S, respectively. akj , W
k
lj, W

K
lr , H

k−1
l , Hk

l ,

HK−1
l , and Yr are linear combinations of outputs from the previous layer, weights between

the current and previous layers, weights between the last hidden layer and output layer, the

output of each neuron in the previous layer, the output of each neuron in the current layer,

the output of each neuron in the last hidden layer, and the output of each neuron in the

output layer, respectively. bkj and bKr are biases for a certain hidden layer and the output

layer, respectively. R is the number of neurons in the output layer. zkj are binary variables
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for max-affine operators in the ReLU ANN. M is a big number. The above formulation

enables the direct compilation of the ReLU ANN into a MILP optimization problem.

2.2.3 Methods for addressing ANN prediction uncertainty

To further enhance the robustness of the solution to the optimization involving the ReLU

ANN, the ReLU ANN prediction uncertainty caused by the training set variation cannot be

ignored. The necessity of taking into account the prediction uncertainty is demonstrated

in Section 2.3.3. Several approaches are proposed to deal with the ANN prediction uncer-

tainty, such as the Bayesian method [7, 8, 83–86], fuzzy method [9], Monte Carlo simulation

method [40, 87, 88], and optimization-based method [41]. However, these methods are too

complicated to be applied to an optimization problem. Another potential approach named

the ensemble-based method [6] can be compiled into an optimization model to cope with the

prediction uncertainty of the embedded ANN. Thus, the ensemble-based method is selected

to be compared with the proposed optimization approach in Section 2.3.2 of this research.

In order to employ the ensemble-based method, an ANN ensemble should be first pro-

duced. The ANN ensemble is composed of multiple different ANNs trained separately with

different training sets. Such different training sets are sampled from a collected data set

utilizing the bootstrap method with replacement. After giving a certain input to the ANN

ensemble, various predictions are obtained. Then, the ANN prediction uncertainty originat-

ing from the training set variation based on the given input, can be described by the mean

and standard deviation of the obtained predictions. Therefore, the ANN ensemble can be

incorporated into an optimization framework to address the incorporated ANN prediction

uncertainty. The above illustration is the entire conception of the ensemble-based method,

and its practical implementation with more details is demonstrated in Section 2.3.2.

2.2.4 Mixture Density Network

Although adopting the ReLU ANN ensemble to handle the prediction uncertainty in an op-

timization problem is achievable, it may lead to a large-scale optimization model that would

be time-consuming to solve, and it is illustrated in Section 2.3.2. A more efficient way to cope

with the prediction uncertainty in an optimization framework is to use the mixture density

network (MDN) to approximate the ReLU ANN ensemble as well as embedding the MDN

in the studied optimization problem. While utilizing the MDN to evaluate the prediction
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uncertainty in an optimization problem, only one network is embedded in the optimization

formulation that makes the computation burden loadable. Based on the above fact, the

MDN is a promising approach and it is adopted in this work to handle the ReLU ANN

prediction uncertainty originating from the training set variation in studied optimization

problems.

The structure of the MDN is shown in Figure 2.1. The mathematical formulation of the

MDN is the same as the traditional ANN mentioned in Section 2.2.1. The distinction between

the MDN and traditional ANN is that the outputs of the MDN are parameters constructing

the prediction distributions (e.g., means and standard deviations of the predictions) instead

of exact prediction values. One remark here is that although weight factors are often included

in outputs of MDNs [98], they are not considered in this work for the purpose of simplicity.

In addition, the ReLU activation function is used in hidden layers of the MDN in this study.

Figure 2.1: Schematic diagram of the mixture density network

To establish the MDN for the estimation of the prediction uncertainty in this work, a

ReLU ANN ensemble should be generated first to produce training and validation sets for

the MDN. More specifically, after generating the ReLU ANN ensemble, numerous observa-

tions are input into the ensemble to produce numerous predictions, and then corresponding

means and standard deviations of the predictions can be computed. Then, the obtained

means and standard deviations of the predictions paired with corresponding observations

are used as training and validation sets for the MDN. Subsequently, the ReLU ANN pre-

diction uncertainty can be estimated with the distributions constructed by the prediction

means and standard deviations predicted from the MDN. Such distributions are assumed to

be Gaussian distributions in this research and the feasibility of this assumption is elaborated

in Section 2.3 and Section 2.4.
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2.2.5 Optimization under uncertainty using MDN surrogate model

In order to handle the prediction uncertainty of the ReLU ANN embedded in the optimization

framework by using the MDN, the optimization formulation is reformulated from the original

form to the chance-constrained form with the mean-variance type objective function which

is given below:

min µf̂ + λσf̂ (2.5a)

s.t. Pr(ĝi ≤ 0) ≥ 1− ε i = 1, ..., w (2.5b)

µf̂ , σf̂ , λ, and Pr are the mean of f̂ in (2.4a), standard deviation of f̂ , weight factor of σf̂ ,

and probability measure, respectively. The mean-variance type objective function in (2.5a)

is exploited to find a trade-off between solution quality and variability. Since µf̂ and σf̂
could be in different scales, it should be addressed by selecting an appropriate value of λ to

balance the two terms in (2.5a). Hence, the λ value can be chosen properly once scales of

µf̂ and σf̂ are known. If λ is too small, the solution variability will be overlooked and the

solution robustness will be reduced significantly. If λ is too large, it will lead to an overly

conservative solution. Both conditions are demonstrated in Sections 2.3.1 and 2.4.1.1. On the

other hand, equation (2.5b) means that the probability of satisfying inequality constraints

in (2.4b) should be greater than or equal to a certain confidence value 1− ε. For example, if

Pr(ĝi ≤ 0) is greater than or equal to 0.9 with a given x, it is predicted that 90 percent or

more of predictions ĝi computed from the ReLU ANNs in the ensemble satisfy the constraint

in (2.4b) based on the given x. The predicted probability is related to the means and standard

deviations computed from the MDN because the prediction uncertainty is simulated using

ReLU ANN ensemble and this ensemble is further approximated by the MDN.

Moreover, equation (2.5b) can be further reformulated into the deterministic form, and

the corresponding derivation is shown as follows:

1. Using standardization of the random ĝi:

Pr

(︃
ĝi − µĝi
σĝi

≤
0− µĝi
σĝi

)︃
≥ 1− ε (2.6)

µĝi and σĝi are the mean and standard deviation of ĝi based on a given x.

2. Using the cumulative distribution function ϕ(·) of the standard normal distribution,
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equation (2.6) can be rearranged to be:

ϕ

(︃
0− µĝi
σĝi

)︃
≥ 1− ε (2.7)

3. Subsequently, the inverse cumulative distribution function is applied:

0− µĝi
σĝi

≥ ϕ−1(1− ε) =⇒ −µĝi ≥ ϕ−1(1− ε)σĝi (2.8)

Since µf̂ , σf̂ , µĝi , and σĝi are predicted by the MDN, the chance-constrained optimization

given in (2.5a)-(2.5b) should incorporate the MDN as well as being reformulated to be a

MILP chance-constrained optimization which is given as follows:

min µf̂ + λσf̂ (2.9a)

s.t. − µĝi ≥ ϕ−1(1− ε)σĝi i = 1, ..., w (2.9b)

H0
s = xs s = 1, ..., S (2.9c)

akj =
L∑︂
l=1

W k
ljH

k−1
l + bkj j = 1., .., J, k = 1, ..., K (2.9d)

0 ≤ Hk
j ≤M(1− zkj ) (2.9e)

akj ≤ Hk
j ≤ akj +Mzkj (2.9f)

zkj ∈ {0, 1} (2.9g)

Yr =
L∑︂
l=1

WK
lr H

K−1
l + bKr r = 1, ..., R (2.9h)

Yr = [µf̂ , σf̂ , µĝi , σĝi ] (2.9i)

As can be seen from the above formulation, equations (2.9c)-(2.9i) express the embedded

MDN in the MILP chance-constrained optimization. More specifically, equations (2.9c)-

(2.9h) are the same as (2.4c)-(2.4h), and (2.9i) states that µf̂ , σf̂ , µĝi , and σĝi are the

outputs of the MDN.

To briefly summarize the ReLU MDN-based optimization approach mentioned above,

the prediction uncertainty is first simulated by an ensemble of ReLU ANNs. Afterwards,
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such a ReLU ANN ensemble is further approximated by an MDN for the reduction of the

computation load, and then the MDN is incorporated into the studied optimization frame-

work. Finally, the studied optimization formulation is further reformulated to be a MILP

chance-constrained optimization with the mean-variance type objective function and MDN

embedded to enforce the optimal solution robustness under the prediction uncertainty.

2.2.6 Workflow

The procedure for conducting the presented optimization approach is explained below:

1. Collect the data set from the studied system.

2. Generate different training data sets resampled from the collected data set using the

bootstrap method (with the replacement). Train multiple different ReLU ANNs using

those training sets separately. After training ReLU ANNs, a ReLU ANN ensemble is

obtained. The ReLU ANN ensemble is utilized to simulate the prediction uncertainty

caused by the training data set variation. One remark here is that other types of

activation function can also be used for ANNs in the ensemble to simulate the prediction

uncertainty. The ReLU activation function is used for the ANNs in the ensemble

in this study since the prediction uncertainty of the ReLU ANN surrogate model is

investigated in this research.

3. Input observations into the ReLU ANN ensemble to generate predictions. The means

and standard deviations of the generated predictions with respect to corresponding

observations are further calculated. Then, calculated means and standard deviations

paired with corresponding observations are adopted as training and validation data for

the MDN.

4. Train the MDN to approximate the ReLU ANN ensemble with the training data set

obtained from step 3. Note that the ReLU activation function is used in hidden layers

of the MDN.

5. Incorporate the MDN into the studied optimization framework as well as reformu-

lating the original optimization formulation to the chance-constrained form with the

mean-variance type objective function. The chance-constraints and mean-variance type

objective function are utilized to cope with constraint satisfaction uncertainty as well

as finding a trade-off between solution quality and variability, respectively.
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6. Solve the above chance-constrained optimization.

The above procedure is also organized as the flowchart shown in Figure 2.2.

In order to demonstrate that the robustness of the obtained optimal solution from the

above workflow can be adjusted by tuning 1 − ε and λ which are the design parameters in

the proposed optimization approach, the above-mentioned chance-constrained optimization

involving the MDN can be solved several times with different 1 − ε and λ. By this mean,

the variation of the optimal solution with respect to different 1 − ε and λ can be observed.

Moreover, the obtained optimal decision variables from the chance-constrained optimization

can be further plugged into the ReLU ANN ensemble and original optimization formulation

for validating predictions of the MDN embedded in the chance-constrained optimization

based on different 1 − ε and λ. Note that the optimal decision variables and solutions

mentioned in the following part of this work are indicated as the optimal decision variables

and solutions gained from the chance-constrained optimization involving the MDN based on

different 1− ε and λ. More related details are illustrated in the following sections.
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Figure 2.2: Flowchart of the proposed optimization approach
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2.3 Illustrating example

Consider a numerical constrained non-linear non-convex optimization problem given as:

min
x,y

f(x, y) = ex(4x2 + 2y2 + 4xy + 2y − 1) (2.10a)

s.t. g1(x, y) =
xy

2
+ (x+ 2)2 +

(y − 2)2

2
≤ 2 (2.10b)

g2(x, y) = (x+ 5)2 + y2 ≤ 25 (2.10c)

− 5.3 ≤ x ≤ −0.6 (2.10d)

0.6 ≤ y ≤ 5.3 (2.10e)

where f(x, y), g1(x, y), and g2(x, y) are non-linearities in the above optimization problem.

Equations (2.10d) and (2.10e) are bounds for decision variables. The local and global opti-

mums of this problem are already known and are shown in Figure 2.3. The local optimum

is x = −0.8210 and y = 0.6696 with objective value 0.7626. The global optimum is located

at x = −5.2813 and y = 4.6815 with objective value 0.3299.

Figure 2.3: Local and global optimums of the illustrating example

To apply the presented ReLU MDN-based optimization approach to this numerical op-

timization problem, the data for training ReLU ANNs in the ensemble should be first gen-
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erated. 55696 samples containing the value of f(x, y), g1(x, y), and g2(x, y) paired with

corresponding decision variables x and y are gathered from (2.10a)-(2.10c) as the data set.

This data set is collected with the decision variable x in the range of -5.3 to -0.6 with an

interval of 0.02 and decision variable y in the range of 0.6 to 5.3 with an interval of 0.02. Af-

terwards, as shown in Figure 2.4, 100 different ReLU ANNs are trained individually with 100

different training sets and each training set includes 44557 samples. These 100 training sets

are resampled from the mentioned data set using the bootstrap method with replacement.

Subsequently, the ReLU ANN ensemble including 100 ReLU ANNs used to approximate

non-linearities in this optimization problem is obtained. Next, the ReLU ANN ensemble

is adopted to simulate the ReLU ANN prediction uncertainty caused by the training data

set variation. The prediction uncertainty is assumed to follow Gaussian distribution and

this assumption is validated to be feasible as shown in Figure 2.6 and Figures A1a-A1f in

Section A1.1 in Appendix (based on x = −2.18 and y = 2.14). On the other hand, all ReLU

ANNs in the ensemble are composed of 2 hidden layers. The first and second hidden layers

of each ReLU ANN include 50 and 30 neurons, respectively. Meanwhile, there are 2 inputs

(x and y) and 3 outputs (ReLU ANN predictions of f(x, y), g1(x, y), and g2(x, y) which are

f̂ , ĝ1, and ĝ2, respectively) in each ReLU ANN in the ensemble.

Figure 2.4: Schematic diagram for illustrating the production of the ReLU ANN ensemble
in the illustrating example

Since it is not practical to embed the entire ReLU ANN ensemble into an optimization

formulation, the ReLU ANN ensemble should be further approximated by the MDN. To

generate the training and validation sets for the MDN, 55696 inputs (one input includes one

set of x and y) are input into the ReLU ANN ensemble and then 55696×100×3 predictions
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are produced due to the 55696 inputs, 100 ReLU ANNs in the ensemble, and 3 outputs of

each ReLU ANN in the ensemble. Thus, 55696 × 3 sets of prediction means and standard

deviations are generated as well as paired with corresponding input to form the training

and validation sets for the MDN. A schematic diagram for demonstrating the procedure

of producing training and validation sets for the MDN is shown in Figure 2.5. As to the

network structure of the MDN, two hidden layers are included as well as 50 and 30 neurons

in the first and second layers, respectively. Meanwhile, there are 2 inputs (x and y) and 6

outputs (means and standard deviations of 3 ReLU ANN predictions, which are µf̂ , σf̂ , µĝ1 ,

σĝ1 , µĝ2 , and σĝ2) in the MDN. The mean absolute percentage errors (MAPEs) of the trained

MDN based on the validation set are shown in Table A1 (Section A1.1 in Appendix).

Figure 2.5: Procedure of generating training and validation sets for the MDN

After training the MDN, the original numerical optimization problem is transformed

into a chance-constrained optimization with the mean-variance type objective function and

trained MDN embedded. The final MILP formulation is reported in Appendix (equa-

tions (A1a)-(A1k) in Section A1.1).

The MILP chance-constrained optimization problem is solved several times with different

1−ε and λ to study the optimal solution robustness by tuning these design parameters (1−ε
and λ). The problem is solved utilizing CPLEX solver in GAMS. With respect to different

optimal decision variables based on different 1 − ε and λ, corresponding prediction means

and standard deviations predicted from the MDN are listed in Table A2 (Section A1.1 in

Appendix). Afterwards, the optimal decision variables in Table A2 are input into the ReLU

ANN ensemble. The means and standard deviations of predictions from the ReLU ANNs
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in the ensemble with respect to different sets of optimal decision variables, are listed in

Table A3 (Section A1.1 in Appendix).

Finally, based on different sets of optimal decision variables, percentages of predictions

from the ReLU ANN ensemble satisfying both original constraints in (2.10b) and (2.10c)

(constraint satisfaction probability) can be obtained. Moreover, the optimal decision vari-

ables are further plugged into the original problem formulation (formulated in (2.10a)-

(2.10e)) to observe real conditions of constraint satisfaction as well as robustness of the

optimal solutions. These results are listed together in Table A4 (Section A1.1 in Appendix).

Figure 2.6: Empirical probability distribution of output prediction from ANN ensemble

2.3.1 Discussion

Based on the results obtained from the illustrating example, impacts of varying 1− ε and λ
on the optimal solution are discussed and analyzed comprehensively.

The impact of changing λ:

• Impact of changing λ based on the MDN computation: According to the MDN

computation, µf̂ increases with λ since the weight of σf̂ in (A1a) (Section A1.1 in Ap-

pendix) increases and the minimization of equation (A1a) focuses more on minimizing
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σf̂ . Thus, µf̂ increases and σf̂ decreases as λ increases. Moreover, while µf̂ grows with

λ, corresponding µĝ1 and µĝ2 decrease as well as staying away from the upper limits

in (2.10b) and (2.10c), respectively (2 and 25, respectively). The reason is that the

global optimum of the original optimization problem locates on the first constraint (in

other words, the first constraint is active).

• Impact of changing λ on the solution robustness: The optimal solution robust-

ness can be improved by increasing λ due to the above-mentioned reasons. However,

too large λ may cause an overly conservative solution because the solution variability

is overly weighted in the objective function. As can be seen from Figure 2.7, overly

conservative solutions with 100% constraint satisfaction probabilities are gained while

λ = 100. More satisfactory solutions with constraint satisfaction probabilities closer

to the required confidence levels, are obtained while λ = 50. To avoid an overly con-

servative solution, the ideal λ value should be able to make σf̂ have a similar size to

µf̂ .

• Impact of changing λ based on computations of the ReLU ANN ensemble

and original problem formulation: After inputting the optimal decision variables

into the ReLU ANN ensemble, changes of µf̂ , σf̂ , µĝ1 , and µĝ2 based on the ReLU ANN

ensemble computation with increasing λ are similar to the changes based on the MDN

computation. Also, after inputting the optimal decision variables into the original

problem formulation, variations of f(x, y), g1(x, y), and g2(x, y) calculated from the

original problem formulation with growing λ, are similar to the changes of µf̂ , µĝ1 , and

µĝ2 obtained from the MDN and ReLU ANN ensemble. These results are illustrated

in Figures A2a-A2i, Figures A3a-A3b, and Tables A2-A4 (Section A1.1 in Appendix).

In summary, the increase of λ leads to a more robust optimal solution and it is also evidenced

in Figure 2.7. According to Figure 2.7, the higher the λ is, the higher constraint satisfaction

probability can be achieved which means that the more robust solution can be obtained.

Finally, the MDN is a reliable approximation approach that can precisely model the output

variations of the ReLU ANN ensemble and original problem formulation based on different

optimal decision variables with different λ.

The impact of changing ε:

• Impact of varying 1 − ε on µf̂ , µĝ1, µĝ2, f(x, y), g1(x, y), and g2(x, y): 1 − ε
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directly determines the constraint satisfaction probability. It is expected that the

higher the 1−ε is, the more robust optimal solution with higher constraint satisfaction

probability can be achieved. The direct influence of 1 − ε on the optimal solution

robustness and constraint satisfaction can be evidenced according to Figure 2.7 that

constraint satisfaction probability increases obviously with 1 − ε. As can be seen

from Tables A2 and A3 (Section A1.1 in Appendix), µf̂ obtained from both MDN and

ReLU ANN ensemble increase with 1−ε. Also, according to Table A4 (Section A1.1 in

Appendix), f(x, y) computed from the original problem formulation based on a certain

set of optimal decision variables increases as 1 − ε grows. The reason for the above-

mentioned changes of µf̂ and f(x, y) is that the constraint satisfaction probability rises

as 1−ε grows. Then, the optimal solution becomes more robust and it increases as well

as deviating from the real optimal solution. Meanwhile, µĝ1 , µĝ2 , g1(x, y), and g2(x, y)

computed from the MDN, ReLU ANN ensemble and original problem formulation

decrease with incremental 1 − ε to move away from the constrained limits due to the

increase of µf̂ and f(x, y) with 1− ε.

• Impact of varying 1−ε on σf̂ , σĝ1, and σĝ2: σf̂ computed from the MDN decreases

slightly with incremental 1 − ε that matches the changes of σf̂ evaluated from the

ReLU ANN ensemble with increasing 1− ε. On the other hand, according to Table A2

(Section A1.1 in Appendix), σĝ1 and σĝ2 computed from the MDN do not change

significantly while varying 1−ε. Moreover, as can be seen from Table A3 (Section A1.1

in Appendix), while λ equals to 1 or 10, σĝ1 and σĝ2 obtained from the ReLU ANN

ensemble decrease with incremental 1 − ε, but they do not change significantly or

instead increase slightly with growing 1− ε while λ equals to 50 or 100. According to

the above observations, 1− ε has no significant and consistent impact on σĝ1 and σĝ2 .

In summary, more robust optimal solution with higher constraint satisfaction probability

is achieved by increasing 1 − ε. In addition, as can be seen from Figures A2a-A3f and

Tables A3-A4 (Section A1.1 in Appendix), the MDN is a valid method that can generally

reflect the output variations of the ReLU ANN ensemble and original problem formulation

based on different optimal decision variables with different 1 − ε.
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Figure 2.7: Percentages of the predictions from the ReLU ANN ensemble satisfying both
constraints in (2.10b) and (2.10c) under different 1 − ε and λ

2.3.2 Comparison with the ensemble-based optimization method

The ensemble-based method [6] is another potential approach to cope with the prediction

uncertainty in the illustrating example. The obtained ReLU ANN ensemble in Section 2.3 is

directly used for the ensemble-based approach in this section. It is impractical to explicitly

express the whole ReLU ANN ensemble into a single problem since it would lead to a very

large-scale problem. Therefore, the ReLU ANN ensemble is incorporated into a black box

optimization model with the same objective and constraint functions shown in (A1a)-(A1c)

(Section A1.1 in Appendix). The black box optimization is solved utilizing the genetic

algorithm in MATLAB. 1 − ε and λ are set to be 0.99 and 50 in this section, respectively.

The results from both ensemble-based method and proposed MDN-based approach are shown

and compared in Table 2.1.
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Table 2.1: Results from both ensemble-based method and proposed MDN-based approach

Optimal
decision variables

Predicted means
and

standard deviations

Validation result
and

constraint satisfaction probability Solution time (s)

x y µf̂ σf̂ µf̂ +λσf̂ f(x, y) %

Ensemble-based
method

-5.000 4.736 0.395 0.010 0.895 0.395 100 16406

MDN-based
approach

-4.904 4.992 0.424 0.012 1.024 0.424 100 27

* λ and 1− ε are 50 and 0.99, respectively.

The f(x, y) values and constraint satisfaction probabilities in Table 2.1 are obtained by

plugging corresponding optimal decision variables into the original problem formulation and

the ReLU ANN ensemble, respectively. More related details are presented in Section 2.3.

According to Table 2.1, the ensemble-based method can attain a solution with lower objective

value (µf̂ +λσf̂ ) and f(x, y) than the MDN-based approach since the MDN-based approach

employs the approximation of the ReLU ANN ensemble that might engender prediction

errors. However, the ensemble-based method is overwhelmingly more time-consuming than

the MDN-based approach.

Based on the above discussion, the MDN-based approach is more competitive than the

ensemble-based method because the MDN-based approach can be directly modeled as a

MILP problem of moderate size. Furthermore, the solution from the MDN-based approach

is still satisfactory and robust, as can be seen from Table 2.1.

2.3.3 Necessity of considering the prediction uncertainty

Since it is generally hard to know whether the collected data is sufficient enough to train an

accurate ANN surrogate model, the ANN prediction uncertainty engendered by the training

data uncertainty should be considered in an ANN-based optimization, in order to improve the

robustness of the optimal solution. In this section, the illustrating example is solved utilizing

both ReLU ANN-based method mentioned in Section 2.2.2 (the method without considering

the prediction uncertainty) and the proposed MDN-based approach, to demonstrate the

importance of considering the prediction uncertainty.

In order to show the impact of the prediction uncertainty on the solution robustness,

ReLU ANNs are trained based on smaller data sets than those used in Section 2.3. 30
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different 2304-sample data sets are randomly selected from the data set used in Section 2.3,

by using bootstrap sampling. First, 10 ReLU ANNs are trained individually on the first

10 data sets. Then, 10 ReLU ANN-based optimizations individually involving 10 different

ReLU ANNs are gained via the procedure mentioned in Section 2.2.2. These ReLU ANN-

based optimizations are solved utilizing CPLEX in GAMS. Afterwards, 10 MDNs are trained

individually based on another 10 data sets. For each MDN, 100 ReLU ANNs are separately

trained on different 1843-sample training sets resampled from the corresponding 2304-sample

data set utilizing bootstrap sampling. The obtained 100-ReLU ANN ensemble is further

approximated by the MDN. Then, 10 MDN-based optimizations individually incorporating

10 different MDNs can be generated, according to the procedure mentioned in Section 2.3.

These 10 MDN-based optimizations are solved with λ = 50 and 1 − ε = 0.99. Finally,

another 10 MDNs are produced separately based on the remaining data sets according to

the same procedure mentioned above. Meanwhile, 10 MDN-based optimizations involving

these MDNs are solved with λ = 10 and 1− ε = 0.90. The solutions gained from the ReLU

ANN-based optimizations and the MDN-based optimizations are shown in Figure 2.8.
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Figure 2.8: Solutions from the ReLU ANN-based optimizations and the MDN-based
optimizations
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As seen from Figure 2.8, the feasibility of the solutions from the single ReLU-ANN based

methods is not guaranteed because of the prediction uncertainty sourced from the training

set variation. On the other hand, most of the solutions from the MDN-based optimizations

stay in the feasible region with lower variability since the prediction uncertainty is taken into

account in this optimization approach. Moreover, by increasing λ and 1 − ε of the MDN-

based approach, the solution robustness can be improved and the solution variability can be

reduced. Accordingly, the proposed MDN-based optimization approach is more robust to

the prediction uncertainty than the ReLU ANN-based optimization, even if the training data

is limited. Also, the quality and variability of the solution from the MDN-based method can

be adjusted via tuning λ and 1− ε.

2.4 Case studies

The presented ReLU MDN-based optimization approach is applied to two case studies to

examine its performance on process optimization applications. The first case study is to

minimize the total annual cost (TAC) of a water-ethanol distillation column with two spec-

ification constraints. The second one is the product yield maximization of a more complex

ethylene glycol production process.

Impacts of varying 1 − ε and λ on the optimal solution robustness are also analysed in

the first case study to reinforce the previous statement that optimal solution robustness can

be controlled by 1−ε and λ. For the second case study, the proposed optimization approach

is conducted with 1 − ε = 0.99 and different λ to demonstrate its ability to reach highly

robust optimal solution of a complex non-linear process.
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2.4.1 Distillation Process Optimization

Minimizing the TAC of a water-ethanol distillation column is carried out in this case study,

The optimization formulation is given as:

min TAC (2.11a)

s.t. xD ≥ 0.8 (2.11b)

Rec ≥ 0.9 (2.11c)

NT −NF ≥ 1 (2.11d)

1 ≤ RR ≤ 10 (2.11e)

1 ≤ RD ≤ 10 (2.11f)

10 ≤ NT ≤ 150 (2.11g)

2 ≤ NF ≤ 149 (2.11h)

RR, RD, NT , and NF are the reflux ratio, reboiler duty, total number of stages, and

feed stage number of the water-ethanol distillation column, respectively, which are necessary

design variables of a distillation column. TAC, xD, and Rec in the above formulation all

depend on RR, RD, NT , and NF . The unit of TAC in this work is 106$. The unit of

RD is GJ/hr. xD and Rec are ethanol mole fraction and ethanol recovery at the top of

the distillation column, respectively. The stage number 1 and stage number NT are stage

numbers for the condenser and reboiler, respectively. As a result, the feed stage number

NF must be in the range of 2 to NT − 1 and it is constrained by (2.11d) and (2.11h).

Equations (2.11e)-(2.11h) are bounds for decision variables.

The distillation process in this case study is simulated using Aspen Plus and the flowsheet

of this distillation process is shown in Figure 2.9. UNIQ-HOC thermodynamic model [99]

is used for the simulation. In terms of the studied distillation column, the reboiler type,

condenser type, and stage pressure drop are set to be Kettle, total condenser, and 0.01 psi,

respectively. The feed temperature, feed pressure, feed flowrate, and feed composition are

set to be 25°C, 1.5 atm, 100 kmol/hr, and 10 mol% ethanol as well as 90 mol% water,

respectively. The optimal solution of the problem is obtained from the build-in optimizer

in Aspen Plus: TAC = 0.1492 with RR = 2.355, RD = 2.071, NT = 14, NF = 9,

xD = 0.8001, and Rec = 0.9002.
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Figure 2.9: Flowsheet of the studied water-ethanol distillation process

The procedure for applying the proposed ReLU MDN-based optimization approach to

this case study is the same as the procedure demonstrated in the illustrating example. First of

all, the ReLU ANN is used as the surrogate model to approximate the non-linearities (TAC,

xD, and Rec) in the studied optimization formulation. To further enforce the ReLU ANN

prediction robustness with the consideration of the prediction uncertainty originating from

the training set variation, an ensemble of ReLU ANNs should be established to simulate the

prediction uncertainty. First, 120000 samples are gathered from the simulation of the studied

distillation process based on the following know-how: xD and Rec are critical controlled

variables which influence the optimal solution robustness significantly. Since xD and Rec

are more sensitive to RR and RD than to NT and NF , according to the simulation results

from the original process model, the employed 120000-sample data set is gathered based on

the following rules: 1) RR is collected in the range of 1 to 10 with an interval of 0.2; 2) RD

is collected in the range of 1 to 10 with an interval of 0.2; 3) NT is collected in the range of

10 to 150 with an interval of 10; 4) For each selected NT in the data set, 3 or 4 stages are

selected uniformly in the range of 2 to NT −1 (The stage 1 and stage NT are the condenser

and reboiler, respectively) as corresponding NF s. For instance, if NT = 100, stages 2, 25,

75, and 99 are selected as corresponding NF s for the data set.

Afterwards, 100 different ReLU ANNs are trained individually with 100 different training

sets resampled (by using the bootstrap method) from the 120000-sample data set. Then, the

ReLU ANN ensemble including 100 ReLU ANNs for simulating the prediction uncertainty is

obtained. The procedure for producing the ReLU ANN ensemble is illustrated in Figure 2.10.

Note that the feasibility of assuming the prediction uncertainty as Gaussian distribution in

this case study is corroborated in Figures A4a-A4f (Section A1.2 in Appendix).
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Figure 2.10: Schematic diagram for illustrating the production of the ReLU ANN ensemble
in the first case study

Subsequently, after feeding 120000 inputs (one input includes one set of RR, RD, NT ,

and NF ) into the ReLU ANN ensemble, 120000 × 100 × 3 predictions can be obtained

due to 120000 observations, 100 ReLU ANNs, and 3 outputs of each ReLU ANN (ReLU

ANN predictions of TAC, xD, and Rec which are TACˆ , x̂D, and Recˆ , respectively). Then,

120000 × 3 sets of prediction means and standard deviations can be computed and paired

with corresponding observations to produce the training and validation sets for the MDN.

Note that both ReLU ANN and MDN in this case study have 4, 50, and 30 neurons in the

input layer, first hidden layer, and second hidden layer, respectively. There are 3 and 6

neurons in the output layers of the ReLU ANN and MDN, respectively. The MAPEs of the

trained MDN based on the validation set are shown in Table A5 (Section A1.2 in Appendix).

After training the MDN with the training set generated from the ReLU ANN ensemble,

the MDN is incorporated into the studied optimization as well as transforming the origi-

nal optimization into the chance-constrained form. To be more specific, the constraints in

(2.11b) and (2.11c) are transformed into chance constraints as well as the objective func-

tion in (2.11a) being reformulated to the mean-variance type. The reformulated chance-

constrained optimization is given in (A2a)-(A2u) (Section A1.2 in Appendix).

Finally, the chance-constrained optimization is formulated as a MILP problem that can

be solved using CPLEX in GAMS. It is solved several times with different 1 − ε and λ

to corroborate that the optimal solution robustness can be adjusted via changing these

parameters. The obtained optimal RR, RD, NT , NF from the proposed method are in

ranges of 2.255−3.940, 2.145−2.728, 16−28, and 14−21, respectively, based on different λ
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and 1− ε. With respect to different sets of optimal decisions based on different 1− ε and λ,
the corresponding predictions of the embedded MDN are listed in Table A6 (Section A1.2 in

Appendix). Moreover, these optimal decisions are also input into the ReLU ANN ensemble

and the original full-order model of the distillation process simulated using Aspen Plus. The

corresponding results are listed in Table A7 and A8 (Section A1.2 in Appendix).

2.4.1.1 Discussion

Based on the results got from the first case study, the impacts of changing 1 − ε and λ on

the optimal results are analysed in details in this section to reinforce the previous assertion

that the optimal solution robustness is controlled by 1 − ε and λ. The discussion is divided

into several parts listed below and associated detailed computation results are shown in

Tables A6-A8 (Section A1.2 in Appendix).

• Impact of changing λ on µTACˆ , σTACˆ , and TAC: The larger the λ is, the more

robust optimal solution can be achieved. µTACˆ and σTACˆ computed from the MDN

grows and declines with incremental λ, respectively, because the weight of σTACˆ in

(A2a) (Section A1.2 in Appendix) grows and the minimization focuses more on σTACˆ .

Also, after inputting different sets of optimal decision variables to the ReLU ANN

ensemble and the original distillation process model, changes of µTACˆ and σTACˆ gained

from the ReLU ANN ensemble with increasing λ are similar to the results computed

from the MDN. Meanwhile, the variation of TAC calculated from the original process

model with growing λ is similar to the changes of µTACˆ gained from both MDN and

ReLU ANN ensemble. The above-mentioned changes of µTACˆ , σTACˆ , and TAC indicate

that the optimal solution increases and deviates from the real optimum with increasing

λ. In the meantime, the optimal solution variability is reduced with incremental λ to

enhance the solution robustness.

• Impact of changing λ on µx̂D , σx̂D , and xD: µx̂D computed from the MDN has no

significant variation with increasing λ, but µx̂D gained from the ReLU ANN ensemble

as well as xD calculated from the original process model increase slightly with λ.

Although the variations of µx̂D with λ computed from the MDN and ReLU ANN

ensemble mismatch slightly, changes of σx̂D with λ obtained from both MDN and

ReLU ANN ensemble are similar. While λ increasing, σx̂D computed from both MDN

and ReLU ANN ensemble decline to reduce the variability of x̂D.
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• Impact of changing λ on the solution robustness: The optimal solution robust-

ness can be improved by increasing λ due to the above-mentioned reasons. However, as

can be seen from Figure 2.13, overly conservative solutions are gained while λ = 100.

In order to avoid overly conservative solution, the appropriate λ value should be chosen

to make σTACˆ have a similar size to µTACˆ .

• Impact of varying 1− ε on µTACˆ , µx̂D , µRecˆ , TAC, and xD: 1− ε significantly in-

fluences the robustness and constraint satisfaction probability of the optimal solution.

µTACˆ , µx̂D , and µRecˆ computed from the MDN grow with 1 − ε. The reason is that

the higher the 1− ε is, the more robust optimal solution with higher constraint satis-

faction probability can be obtained from the MILP chance-constrained optimization.

Furthermore, growing constraint satisfaction percentage leads to increasing µx̂D and

µRecˆ computed from the MDN to move away from the lower limits (which are 0.8 and

0.9, respectively). Also, note that the TAC of a distillation column increases as the

higher purity and recovery of the product (which are xD and Rec) are attained. There-

fore, µTACˆ increases with both µx̂D and µRecˆ based on the computation of the MDN.

Additionally, variations of µTACˆ and µx̂D acquired from the ReLU ANN ensemble with

incremental 1 − ε are similar to the results gained from the MDN. Also, changes of

TAC and xD calculated from the original process model with increasing 1−ε is similar

to the variations of µTACˆ and µx̂D obtained from both MDN and ReLU ANN ensemble

with growing 1− ε.

• Impact of changing 1 − ε on σTACˆ and σx̂D : σTACˆ and σx̂D computed from the

embedded MDN generally decrease with incremental 1 − ε to reduce variabilities of

TACˆ and x̂D. In the meantime, changes of σTACˆ and σx̂D obtained from the ReLU

ANN ensemble is similar to the computation from the MDN.

• Impact of varying 1− ε on µRecˆ , σRecˆ , and Rec: The computation results of µRecˆ

and σRecˆ from the MDN and ReLU ANN ensemble are mismatched. In particular, vari-

ations of µRecˆ and σRecˆ computed from the MDN with incremental 1 − ε are opposite

to the results obtained from the ReLU ANN ensemble. Nevertheless, as can be seen

from Figure 2.13, the constraint satisfaction probability still increases obviously with

incremental λ and 1− ε regardless of the mismatches of µRecˆ as well as σRecˆ acquired

from the MDN and ReLU ANN ensemble. The reason is that the MDN always under-

estimates µRecˆ based on different λ and 1 − ε. Therefore, µRecˆ and Rec respectively

gained from the ReLU ANN ensemble and the original process model based on different
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1− ε and λ are always higher and stay farther away from the lower limit (which is 0.9)

than the µRecˆ from the MDN.

• Impacts of changing λ and 1−ε on decision variables: The obtained optimal RR,

RD, NT , NF from the proposed method are in ranges of 2.255− 3.940, 2.145− 2.728,

16 − 28, and 14 − 21, respectively, based on different λ and 1 − ε. After plugging

these optimal decisions into the original full-order model, corresponding xD and TAC

computed from the original model are in ranges of 0.8200−0.8430 and 0.1581−0.2031,

respectively. These results are illustrated in Figures 2.11c and 2.11f. While λ is fixed,

RR, RD rise as 1 − ε grows that leads to the increase of xD. Since incremental RR

and RD give rise to the higher concentration of ethanol at the top and higher steam

and cooling water costs, TAC grows accordingly. On the other hand, while 1 − ε is

fixed, RR, RD, NT increase with increasing λ that makes the growing xD. Because

increasing RR, RD, and NT lead to higher xD, utility cost (steam and cooling water

costs), and capital cost, TAC increases correspondingly. The above-mentioned results

are consistent with the previously mentioned fact that higher λ and 1−ε lead to a more

robust and conservative solution (also worse objective value) with the larger constraint

satisfaction probability.

In summary, increasing 1−ε and λ leads to the decrease of σx̂D and reduces the variability of

x̂D. Moreover, increasing 1− ε leads to the increase of µx̂D and the solution move away from

the lower limit. In addition, µRecˆ computed from the MDN are all underestimated based

on different 1 − ε and λ that make µRecˆ and Rec respectively gained from the ReLU ANN

ensemble and the original process model far enough away from the lower limit. Therefore, the

µRecˆ and σRecˆ computed from the MDN are not influential to the optimal solution robustness.

On the other hand, the decision variables RR, RD, and NT grow with increases of λ and

1− ε that leads to a more robust and conservative solution with higher xD and TAC. Based

on the aforementioned, the optimal solution robustness as well as constraint satisfaction

probability in this case study can be enhanced with increasing 1 − ε and λ. However, a too

large value of λ should be avoided to prevent the overly conservative solution.
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(a) µTACˆ computed from the
MDN

(b) µTACˆ computed from the
ReLU ANN ensemble

(c) TAC obtained from the
original process model

(d) µx̂D computed from the
MDN

(e) µx̂D computed from the
ReLU ANN ensemble

(f) xD obtained from the
original process model

(g) µRecˆ computed from the
MDN

(h) µRecˆ computed from the
ReLU ANN ensemble

(i) Rec obtained from the
original process model

Figure 2.11: Prediction means computed from the MDN and ReLU ANN ensemble as well
as results obtained from the original distillation process model with different 1 − ε and λ
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(a) σTACˆ computed from the MDN (b) σTACˆ computed from the ReLU
ANN ensemble

(c) σx̂D computed from the MDN (d) σx̂D computed from the ReLU
ANN ensemble

(e) σRecˆ computed from the MDN (f) σRecˆ computed from the ReLU
ANN ensemble

Figure 2.12: Prediction standard deviations computed from the MDN and ReLU ANN
ensemble with different 1− ε and λ
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Figure 2.13: Percentages of the predictions from the ReLU ANN ensemble satisfying both
constraints in (2.11b) and (2.11c) under different 1 − ε and λ

2.4.2 Optimization of the ethylene glycol production process

In the second case study, the presented optimization approach is applied to a more com-

plicated optimization problem, in order to show its ability to solve complicated process

optimization problems.

The optimization problem in this section is to maximize the product yield of the ethylene

glycol (EG) production process. In terms of the studied EG production process which is

shown in Figure 2.14, ethylene oxide (EO) and water are first fed into the CSTR to produce

EG. The reaction equations of synthesizing EG and associated by-products are given as:

EO +H2O
R1−→ EG (2.12a)

EG+ EO
R2−→ DEG (2.12b)

DEG+ EO
R3−→ TEG (2.12c)

DEG and TEG are diethylene glycol and triethylene glycol, respectively, which are undesir-

able by-products. The kinetic models of the above reaction equations are shown below:
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R1 = k1cEOcH2O (2.13a)

R2 = k2cEOcEG (2.13b)

R3 = k3cEOcDEG (2.13c)

with the kinetic parameters k1 = 1.8302×1010exp(−87987

RgT
), k2 = 2.1k1, and k3 = 2.2k1 [100].

Rg and T are the ideal gas constant and reaction temperature, respectively. cEO, cH2O, cEG,

and cDEG are molar concentrations of EO, water, EG, and DEG, respectively. The output

of the CSTR is connected to the flash separator. The product (EG) is collected from the

bottom of the flash separator. Meanwhile, 97% of the top flash vapour stream is recycled to

mix with the feed flow. The entire EG production process is simulated using Aspen Plus as

well as assuming the vapour-liquid equilibrium as ideal phase behaviour.

Figure 2.14: Flowsheet of the studied ethylene glycol production process

The objective is to maximize the product yield (EG molar flowrate in the bottom of the

flash separator, FEG, with the unit of kmol/hr). The decision variables include the water

feed flowrate (Fw, with the unit of kmol/hr), volume of the CSTR (VCSTR, with the unit of

m3), and temperature of the flash separator (Tf , with the unit of K). The EO feed flowrate,

the operating temperature of the CSTR, and the fraction of recycled flash vapour stream

are fixed at 625 kmol/hr, 295 K, and 0.97, respectively. The corresponding optimization
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formulation is given as:

max FEG (2.14a)

s.t. XEO ≥ 0.6 (2.14b)

xEG ≥ 0.5 (2.14c)

700 ≤ Fw ≤ 5000 (2.14d)

221 ≤ VCSTR ≤ 321 (2.14e)

300 ≤ Tf ≤ 390 (2.14f)

XEO and xEG are the ethylene oxide conversion rate and the EG mole fraction in the bottom

flow of the flash separator, respectively. Equations (2.14d)-(2.14f) are bounds of the decision

variables. Except for the constraints and bounds of the decision variables in the above

optimization formulation, all the settings of the EG production process in this section are

the same as in Kahrs’ work [101].

In order to apply the proposed optimization approach to the studied EG production pro-

cess optimization, an ensemble of ReLU ANNs should be trained to address non-linearities in

the process including reaction kinetic models, vapour-liquid equilibrium, and mass balance

with recycling flow. 82826 samples are collected from the full-order model simulated by using

Aspen Plus. Fw, VCSTR, and Tf are observations in each collected sample. FEG, XEO, and

xEG are targets in each sample. 100 ReLU ANNs are trained individually with 100 different

training sets. Each training set includes 66261 samples resampled from the 82826-sample

data set by using the bootstrap method. Afterwards, 82826 observations are input into the

ReLU ANN ensemble to generate 82826 × 100 × 3 predictions and then 82826 × 3 sets of

prediction means and standard deviations are calculated based on the generated predictions.

The calculated prediction means and standard deviations are paired with corresponding ob-

servations to form the training and validation sets for the MDN. One remark here is that

structures of the MDN and ReLU ANNs in this section are the same as in Section 2.3 and

Section 2.4.1. The MAPEs of the trained MDN based on the validation set are shown in

Table A9 (Section A1.3 in Appendix). After training the MDN, the original optimization

problem including (2.14a)-(2.14f) is reformulated to the MILP chance-constrained form with

the mean-variance type objective function as well as incorporating the MDN. The reformu-

lated optimization problem is given in (A3a)-(A3u) (Section A1.3 in Appendix).

The MILP chanced-constrained optimization is solved with 1 − ε = 0.99 as well as dif-
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ferent λ values, and obtained results are shown in Table 2.2. According to Table 2.2, the

optimal solution with respect to λ = 100 is the most robustness with the highest constraint

satisfaction probability. One remark here is that FEG decreases with both incremental XEO

and xEG according to the simulation results from the full-order model. Therefore, while λ

equals to 100, µF̂EG
is the lowest since µX̂EO

and µx̂EG
are the highest to stay away from lower

limits of constraints (0.6 and 0.5) for the enhancement of the optimal solution robustness.

On the other hand, µF̂EG
, µX̂EO

, and µx̂EG
computed from the embedded MDN are accurate

compared to values gained from the full-order model that are shown in parentheses in Ta-

ble 2.2 based on the same optimal decision variables. The process optimization in this case

study contains more non-linearities (e.g., reaction kinetic models, vapour-liquid equilibrium,

and mass balance with recycling flow) than the illustrating example and the first case study,

the satisfactory optimal solutions of this case study show that the proposed optimization

approach is not only workable for simple optimization problems but also effective for more

complicated process optimizations.

Finally, in order to show that the true optimum of the studied EG production process

can be approached closely by utilizing the presented optimization approach, the optimal

solution gained from the proposed optimization approach is compared to the true optimum

mentioned in Kahrs’ study [101] based on the same condition. Since there is no constraints for

the optimization in Kahrs’ work, the MILP chance-constrained optimization in this section

is solved with the two chance constraints removed. Also, λ is set to be 0 to neglect the

variability of F̂EG. The obtained results are shown and compared with the true optimum

in Table 2.3. According to Table 2.3, the obtained optimal results from the presented

optimization approach is close to the true optimum.
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Table 2.2: EG production process optimization results obtained from the proposed
optimization approach under different λ

λ = 1 λ = 10 λ = 50 λ = 100

µF̂EG
(FEG) 383.293 (388.107) 383.293 (388.107) 383.293 (388.107) 378.092 (379.594)

µX̂EO
(XEO) 0.605 (0.611) 0.605 (0.611) 0.605 (0.611) 0.606 (0.613)

µx̂EG
(xEG) 0.503 (0.502) 0.503 (0.502) 0.503 (0.502) 0.522 (0.517)

constraint
satisfaction %

74% 74% 74% 100%

Fw 923.510 923.510 923.510 880.897

VCSTR 321 321 321 321

Tf 364.682 364.682 364.682 366.596

Values in parentheses are full-order model computations based on the same operating conditions.

Above optimal results are obtained with 1 − ε = 0.99

Table 2.3: Optimal results from the proposed optimization approach and Kahrs’ work

Optimal results

Proposed optimization approach Kahrs’ work [101]

µF̂EG
/ FEG 532.7 (524.1) 527.5

Fw 4753 4864

VCSTR 321 321

Tf 344.3 344.5

Value in the parenthesis is the full-order model computation based on the same operating conditions.

2.5 Conclusion

An innovative optimization method based on ReLU MDN was proposed to address the

uncertainty of neural network surrogate model prediction caused by training set variation.

In order to apply the proposed approach to the process optimization problem, a data set

is first collected from the process studied. Then, an ensemble of ReLU ANNs are trained

with different training sets re-sampled from the data set using the bootstrap method. The

obtained ReLU ANN ensemble is further used to simulate the prediction uncertainty caused
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by training set variation. Numerous observations are then fed into the ReLU ANN ensemble

to produce predictions. The means and standard deviations of predictions are paired with

the corresponding input observations to form the training and validation sets for the MDN

training. Subsequently, MDN is used to approximate the ReLU ANN ensemble and to

address the prediction uncertainty. The MDN is incorporated into the optimization problem

to deal with both constraint and objective uncertainties through a MILP formulation.

According to the results of this work, the proposed approach can effectively model the

uncertainty of ANN model prediction. The outputs from the MDN well match the means

and standard deviations of predictions from the ReLU ANN ensemble. This means that the

MDN is a reliable approach to approximate the ReLU ANN ensemble for addressing the

prediction uncertainty. To address the model prediction uncertainty, we can incorporate the

MDN into the optimization problem through chance constraint and mean-variance objective.

The results exhibited in the illustrating example demonstrate that the presented approach

leads to improved solution robustness, even if the training data is limited. Also, the proposed

approach is much more efficient than the ensemble-based approach from the literature [6].

Moreover, the results of the case study show that the solution robustness and variability

can be effectively adjusted through parameters 1 − ε and λ in the presented optimization

approach. However, the potential applications are not restricted to the proposed chance

constraint and mean-variance modeling.

As to future work, the proposed optimization approach can be improved under an adap-

tive sampling framework. In addition, other modeling techniques for addressing uncertainty

can be also studied. Finally, an interesting direction worth exploration is to extend the

approach to neural networks with different types of activation functions.
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Chapter 3

Machine Learning-Based Approaches

for Joint Chance-Constrained

Optimization

Abstract

This chapter presents two machine learning-based approaches for steady-state joint chance-

constrained process optimization and dynamic joint chance-constrained stochastic optimal

control. The first method is presented in Section 3.1, which involves using a neural net-

work (NN) to approximate the joint chance constraint (JCC) and integrating the NN into

the optimization model. This method enables the NP-hard joint chance-constrained opti-

mization problems to become deterministically solvable and tractable. The effectiveness of

this method is demonstrated in a nonlinear process optimization problem. The second ap-

proach is introduced in Section 3.2, which extends the first one by utilizing a recurrent neural

network (RNN) to handle the JCC in a stochastic optimal control problem (SOCP). This

approach significantly reduces computational burden compared to other common stochastic

optimal control methods. We apply this approach to a numerical SOCP example and a case

study to demonstrate its efficacy.
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3.1 Joint Chance Constrained Process Optimization

through Neural Network Approximation

3.1.1 Introduction

Practical process optimization often faces uncertainties. Chance-constrained optimization is

a popular technique for addressing uncertainty [102]. It enforces that the optimal solution

should satisfy the uncertain constraint with a certain probability level. There are two types

of chance constraint: the individual chance constraint (ICC) and the joint chance constraint

(JCC). The JCC is more general in engineering applications than the ICC since the JCC

ensures all constraints to be satisfied simultaneously to a certain confidence level, which is

more natural in many applications [103]. However, the JCC is generally difficult to solve

as it requires dealing with multidimensional distributions. Thus, joint chance-constrained

optimization problems (JCCPs) are generally solved through approximations. There are

two main approximation methods: analytical approximation methods and sampling-based

methods [28].

In terms of analytical approximation approaches, they are exploited to approximate a

chance-constrained problem with a deterministic optimization formulation. Among all the

analytical approximation methods, the robust optimization (RO) [104] has been extensively

studied recently. The attractiveness of RO approximation is that it does not require the as-

sumption of uncertainty distributions and uncertainties are described employing uncertainty

sets. A comprehensive research on different types of uncertainty set is studied by Li [52].

In Chen’s work [105], different tractable approximations to individual chance-constrained

problems with the use of RO have been proposed, and they are further extended to joint

chance-constrained problems. Hong [106] developed a RO approximation for joint chance-

constrained problems while data is insufficient to infer the underlying uncertainty distribu-

tions. Although the RO approximation is a distribution-free and widely studied method for

addressing joint chance-constrained problems, it may lead to an overly conservative solution

because the worse-case scenario is taken into account in the RO [27, 104]. The overly con-

servative solution might satisfy uncertain constraints with the probability much higher than

the required confidence level, and deviate significantly from the actual optimum.

The overly conservative solution can be avoided by adopting sampling-based methods to

handle chance constraints, if empirical distributions of uncertainties can be obtained from
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historical data. Sampling-based approaches include the scenario approximation and the sam-

ple average approximation. The main concept of the scenario approximation is to generate

samples of the random parameters in the problem studied, and then the chance constraint

in the problem is approximated by a set of constraints corresponding to each generated

sample [53]. However, the randomness of sample generation might cause the infeasibility of

the problem with the approximated chance constraint [28]. In order to overcome such the

drawback, the sample average approximation (SAA) is developed as the generalization of the

scenario approximation. In the SAA method, the random parameters in the studied prob-

lem are first sampled. Then, the constraint satisfaction probability based on the samples is

enforced to be greater or equal to the confidence level in the original chance constraint. The

SAA can approximate chance constraints tightly. Also, the solution may satisfies the chance

constraint strictly with the use of SAA. Furthermore, the SAA is an easy-to-implement ap-

proach that can make intractable chance-constrained problems tractable [14, 107]. More

details related to the SAA are demonstrated in Section 3.1.2.3.

Based on the concept of SAA, a novel and efficient ReLU artificial neural network (ANN)

approximation method is developed in this work to deal with the joint chance constraint. The

developed approach is a two-layer approximation method composed of the empirical quantile

function (QF) approximation and the ReLU ANN approximation. More specifically, the joint

chance constraint is first reformulated to the quantile-based form and then approximated by

the empirical QF, due to the better convexity and less complexity of the QF compared to the

probability function in the chance constraint. Subsequently, the ReLU ANN is introduced to

further approximate the empirical QF because of its strong approximation ability for non-

linear functions [108]. Moreover, the ReLU ANN can approximate the stochastic empirical

QF as a deterministic MILP model [82]. Finally, the optimization incorporating the proposed

ReLU ANN approximation model for addressing the joint chance constraint can be solved

by the off-the-shelf solver, such as CPLEX in GAMS.

The proposed ReLU ANN approximation approach is presented in Section 3.1.2. The

proposed approach is applied to a case study in Section 3.1.3 to show that the satisfactory

optimal solution of a complex process involving uncertainty can be achieved. This case

study is to maximize the product yield of the ethylene glycol production process under

measurement uncertainty.
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3.1.2 Methods

In this section, the joint chance-constrained optimization and its quantile function-based

reformulation are illustrated. Then, an approximation approach for dealing with the joint

chance constraint is investigated, which is a two-layer approach composed of the empirical

quantile function (QF) approximation and the ReLU ANN approximation.

3.1.2.1 Joint chance-constrained optimization

The formulation of a joint chance-constrained optimization is given as:

min
x

f(x) (3.1a)

s.t. Pr(gi(x, ξ) ≤ 0 (i = 1, ..., w)) ≥ 1− ε (3.1b)

where x represents the decision variable with a closed feasible domain X ⊂ Rnx . f : Rnx −→
R is the objective function. ξ symbolizes an uncertain parameter vector with the sample

space Ξ ⊂ Rnξ . The probability measure Pr is well defined on the sigma algebra of Ξ (BΞ).
The probability density of ξ is indicated as pξ(ξ). gi=1,...,w : Rnx × Rnξ → Rw is a finite

set of functions. 1 − ε is the confidence level, and ε denotes the violation probability. The

joint chance constraint in (3.1b) ensures that all constraints gi=1,...,w(x, ξ) ≤ 0 are satisfied

simultaneously to a certain confidence level 1−ε. f and gi=1,...,w are assumed to be continuous

and differentiable with ∀x ∈ X and ∀ξ ∈ Ξ. Thus, the continuous multivariate CDF based

on the random variables gi=1,...,w(x, ξ) exists.

It is NP-hard to solve the above joint chance-constrained optimization due to the following

reasons:

• A joint chance-constrained problem is convex only when the distributions of involved

random variables are log-concave [109].

• Usually, joint chance-constrained problems are computationally intractable, even though

uncertainty distributions are known [110, 111].

Due to the above-mentioned difficulties, joint chance-constrained optimizations are generally

solved through approximations [25, 28].
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3.1.2.2 Quantile reformulation of joint chance constraint

Pr(ω ≤ γ), γ ∈ R with the random variable ω can be expressed equivalently in the cumulative

distribution function (CDF) form ϕω(γ). Furthermore, the 1−ε level quantile of the random
variable ω is defined as:

Q1−ε(ω) = inf {γ ∈ R | Pr(ω ≤ γ) ≥ 1− ε} (3.2)

According to the above discussion, the following relationship holds:

Pr(g(x, ξ) ≤ γ) ≥ 1− ε ↔ ϕg(γ, x) ≥ 1− ε ↔ Q1−ε(g(x, ξ)) ≤ γ (3.3)

Because of the above relationship, Q1−ε(g(x, ξ)) ≤ 0 is equivalent to Pr(g(x, ξ) ≤ 0) ≥ 1− ε
and ϕg(0, x) ≥ 1 − ε. Note that g(x, ξ) should be a scalar random variable. Other-

wise, Q1−ε(g(x, ξ)) ≤ 0 cannot be well defined. For g(x, ξ) being a vector, ḡ(x, ξ) =

maxi=1,...,w gi(x, ξ) is used instead.

Accordingly, the original optimization formulation including (3.1a) and (3.1b) can be

reformulated equivalently as follows:

min
x

f(x) (3.4a)

s.t. Q1−ε(ḡ(x, ξ)) ≤ 0 (3.4b)

The benefit of adopting the above QF-based problem reformulation is explained below: Let’s

first consider two types of joint chance constraint reformulations derived from (3.1b), i.e.,

Q1−ε(ḡ(x, ξ)) ≤ 0 and 1−ε−Pr(ḡ(x, ξ) ≤ 0) ≤ 0. SinceQ1−ε(ḡ(x, ξ)) and 1−ε−Pr(ḡ(x, ξ) ≤
0) are essentially functions of x, they can be approximated by surrogate models depending

on x, for enhancing computation tractability. As can be seen from Figure 3.1, it is much

easier to model Q1−ε(ḡ(x, ξ)) than 1− ε− Pr(ḡ(x, ξ) ≤ 0), due to better convexity and less

complexity of Q1−ε(ḡ(x, ξ)).
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Figure 3.1: Comparisons between 1− ε−Pr(ḡ(x, ξ) ≤ 0) and Q1−ε(ḡ(x, ξ)) with 1− ε = 0.8

3.1.2.3 ReLU ANN-based approximation of QF

Since the analytical solution of Q1−ε(ḡ(x, ξ)) is intractable, Q1−ε(ḡ(x, ξ)) should be fur-

ther approximated and calculated through the empirical method. The sample set ΞN =

{ξ1, ..., ξN} should be gained first by extracting samples independently from Ξ. Then,

Ḡ
N

= {ḡ(x, ξ1), ..., ḡ(x, ξN)} can be obtained based on a given x. Subsequently, the CDF

ϕḡ(γ, x) can be approximated by the empirical CDF shown below:

˜︁ϕḡ(γ, x) = 1

N

N∑︂
j=1

I(ḡ(x, ξj) ≤ γ) (3.5)

where N is the number of samples, and I(ḡ(x, ξj) ≤ γ) denotes the indicator function written

as:

I(ḡ(x, ξj) ≤ γ) =

{︄
0, for ḡ(x, ξj) > γ

1, for ḡ(x, ξj) ≤ γ (3.6)

Note that using the empirical CDF in (3.5) to approximate the probability function in (3.1b)

is essentially the same as the SAA approach mentioned in Section 3.1.1.

According to (3.2), (3.3), and (3.5), the quantile Q1−ε(ḡ(x, ξ)) can be approximated by
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the empirical quantile defined as:

˜︁Q1−ε(ḡ(x, ξ)) = inf

{︄
γ | 1

N

N∑︂
j=1

I(ḡ(x, ξj) ≤ γ) ≥ 1− ε

}︄
= ḡ⌈M⌉(x) (3.7)

where M equals to (1− ε)×N , and ḡ⌈M⌉(x) represents the M -th smallest component of Ḡ
N

with respect to a given x.

In order to compute the stochastic ˜︁Q1−ε(ḡ(x, ξ)) utilizing the deterministic approach,˜︁Q1−ε(ḡ(x, ξ)) can be further approximated by a ReLU ANN. Since ˜︁Q1−ε(ḡ(x, ξ)) is a function

of x, different values of ˜︁Q1−ε(ḡ(x, ξ)) with corresponding x are exploited respectively as

targets and observations in the training and validation sets for the ReLU ANN. The schematic

diagram of the ReLU ANN for approximating the empirical QF is shown in Figure 3.2:

Figure 3.2: Schematic diagram of the ReLU ANN for approximating the empirical quantile

As to Figure 3.2, x1, ..., xs are input decision variables. Ŷ indicates the quantile value

predicted by the ReLU ANN. Layers 1, ..., k, ..., K − 1 denote hidden layers. Layer 0 and

layer K are the input and output layers, respectively.

Subsequently, the problem including (3.4a) and (3.4b) can be transformed to the following
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form with the ReLU ANN embedded to approximate the empirical QF:

min
x

f(x) (3.8a)

s.t. Ŷ ≤ 0 (3.8b)

H0
s = xs s = 1, ..., S (3.8c)

akj =
L∑︂
l=1

W k
ljH

k−1
l + bkj j = 1, ..., J k = 1, ..., K l = 1, ..., L (3.8d)

Hk
j ≥ akj (3.8e)

0 ≤ Hk
j ≤M (3.8f)

Hk
j ≤M(1− dzkj ) (3.8g)

Hk
j ≤ akj +M(1− dlkj ) (3.8h)

dzkj + dlkj = 1 (3.8i)

dzkj , dl
k
j ∈ {0, 1} (3.8j)

Ŷ =
L∑︂
l=1

WK
l H

K−1
l + bK (3.8k)

As to the above formulation, equations (3.8c)-(3.8k) express the incorporated ReLU ANN

in the optimization framework. Equation (3.8c) represents the input layer. Hidden layers

are modelled as (3.8d)-(3.8j). Max-affine operators in the hidden layers are formulated

as (3.8e)-(3.8j). Equation (3.8k) describes the output layer of the embedded ReLU ANN.

H0
s and xs are neuron outputs from the input layer and corresponding decision variables,

respectively. s is the index of each neuron in the input layer. S is the number of neurons

in the input layer. j, k, and l are the index of each neuron in the current layer, the index

of the layer, and the index of each neuron in the previous layer, respectively. J , K, and L

are the number of neurons in the current layer, the number of layers (excluding the input

layer), and the number of neurons in the previous layer, respectively. Note that both J

and L are different at different k. For instance, when k equals to 1 in (3.8d), J and L are

equivalent to a user-defined value and S, respectively. akj , W
k
lj, W

K
l , Hk−1

l , Hk
l , and H

K−1
l

are linear combinations of outputs from the previous layer, weights between the current and

previous layers, weights between the last hidden layer and output layer, neuron outputs from

the previous layer, neuron outputs from the current layer, and neuron outputs from the last

hidden layer, respectively. bkj and bK are biases for a certain hidden layer and the output

layer, respectively. dzkj and dlkj are binary variables for max-affine operators in the ReLU
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ANN. M is a big number. If f(x) is linear or approximated by another ReLU ANN, the

above optimization formulation will be a mixed-integer linear programming (MILP) problem

that can be solved deterministically utilizing off-the-shelf solver such as CPLEX in GAMS.

Notably, since ḡ (x, ξ) = max
i=1,...,w

gi(x, ξ) is used in the quantile-based reformulation, the

proposed approach can be applied to the problem with any number of constraints in the

JCC. In addition, the proposed method is applicable to different problems, including those

with black-box functions. A demonstration of how to implement the proposed approach for

solving a JCCP is presented in the next section.

3.1.3 Case study

The case study is the ethylene glycol (EG) production process optimization considering

measurement uncertainty. As to the studied EG production process which is shown in

Figure 3.3, ethylene oxide (EO) and water are first fed into the CSTR to produce EG. The

reaction equations of synthesizing EG and associated by-products are given as:

EO +H2O
R1−→ EG (3.9a)

EG+ EO
R2−→ DEG (3.9b)

DEG+ EO
R3−→ TEG (3.9c)

DEG and TEG are diethylene glycol and triethylene glycol, respectively, which are unde-

sirable by-products. The kinetic models of the above reaction equations are shown below:

R1 = k1cEOcH2O (3.10a)

R2 = k2cEOcEG (3.10b)

R3 = k3cEOcDEG (3.10c)

with the kinetic parameters k1 = 1.8302×1010exp(−87987

RgT
), k2 = 2.1k1, and k3 = 2.2k1 [100].

Rg and T are the ideal gas constant and reaction temperature, respectively. cEO, cH2O, cEG,

and cDEG are molar concentrations of EO, water, EG, and DEG, respectively. The output

of the CSTR is connected to the flash separator. The product (EG) is collected from the

bottom of the flash separator. Meanwhile, 97% of the top flash vapour stream is recycled
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to mix with the feed flow. The entire EG production process is simulated using Aspen

Plus as well as assuming the vapour-liquid equilibrium as ideal phase behaviour. All the

above-mentioned settings are the same as the design in Kahrs’ work [101].

CSTR Flash separator

Recycled flash vapor stream

SplitterMixer

Water + 

Ethylene Oxide

Ethylene Glycol

Figure 3.3: Flowsheet of the studied ethylene glycol production process

The process optimization in this section is to maximize the EG yield (EG molar flowrate

in the bottom of the flash separator, FEG, unit: kmol/hr). The decision variables include

the water feed flowrate (Fw, unit: kmol/hr), the volume of the CSTR (VCSTR, unit: m
3),

and temperature of the flash separator (Tf , unit: K). The EO feed flowrate, the operating

temperature of the CSTR, and the fraction of recycled flash vapour stream are fixed at 625

kmol/hr, 295 K, and 0.97, respectively. The EO conversion rate (XEO) and the EG mole

fraction in the bottom flow of the flash separator (xEG) are both required to be greater or

equal to 0.5. To consider measurement uncertainty, two Gaussian noises ξXEO
(N (0, 1)×0.03)

and ξxEG
(N (0, 1)× 0.015) are added to XEO and xEG computed from the full-order model

simulated by Aspen Plus, respectively. The corresponding optimization formulation is given
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as:

max
Fw,VCSTR,Tf

FEG (3.11a)

s.t. Pr

⎧⎪⎨⎪⎩
XEO + ξXEO

≥ 0.5

xEG + ξxEG
≥ 0.5

⎫⎪⎬⎪⎭ ≥ 1− ε (3.11b)

700 ≤ Fw ≤ 5000 (3.11c)

221 ≤ VCSTR ≤ 321 (3.11d)

300 ≤ Tf ≤ 390 (3.11e)

Equations (3.11c)-(3.11e) are bounds of decision variables. FEG, XEO, and xEG are depen-

dent variables depending on Fw, VCSTR, and Tf . Equation 3.11b is the joint chance constraint

that can be approximated adopting the ReLU ANN approximation approach.

To exploit the ReLU ANN approximation for the joint chance constraint, the above joint

chance constraint is first transformed equivalently to the following form:

Pr

⎧⎪⎨⎪⎩
−XEO − ξXEO

+ 0.5 ≤ 0

−xEG − ξxEG
+ 0.5 ≤ 0

⎫⎪⎬⎪⎭ ≥ 1− ε (3.12)

−XEO − ξXEO
+ 0.5 and −xEG − ξxEG

+ 0.5 in (3.12) are denoted as g1,C1 and g2,C1, respec-

tively. The subscript C1 is employed for symbols used in this case study. ḡC1 can be attained

via ḡC1 = max {g1,C1, g2,C1}, with respect to a certain set of (Fw, VCSTR, Tf ). Then, equa-

tion (3.12) can be reformulated and approximated by the empirical QF based on (3.7). The

number of samples for the empirical QF in this section is 103. Since such the empirical QF

is a function of (Fw, VCSTR, Tf ), it can be further modelled by a ReLU ANN. For a certain

value of 1− ε, 2000 samples of empirical QF values and corresponding (Fw, VCSTR, Tf ) sets

are collected as training and validation data for the ReLU ANN. For the ReLU ANN struc-

ture, there are 2 hidden layers in the ReLU ANN, as well as 50 and 30 neurons in the first

and second hidden layers, respectively. Afterward, the ReLU ANN is incorporated into the

original optimization framework in this case study to replace the joint chance constraint, and

the original objective function is modeled by another ReLU ANN (with the same structure

as the previous ReLU ANN). As a result, this reformulated optimization model incorporates
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two ReLU ANNs. Such the reformulated optimization problem is given as:

min
x

F̂EG (3.13a)

s.t. Ŷ C1 ≤ 0 (3.13b)

700 ≤ Fw ≤ 5000 (3.13c)

221 ≤ VCSTR ≤ 321 (3.13d)

300 ≤ Tf ≤ 390 (3.13e)

F̂EG and Ŷ C1 represent the values of FEG and QF predicted by the embedded ReLU ANNs,

respectively. The formulations of the incorporated ReLU ANNs are based on (3.8c)-(3.8k),

and they are neglected in the above optimization formulation for simplification. Finally,

multiple ReLU ANN-based optimizations individually according to different training sets for

different 1−ε are solved employing CPLEX in GAMS. The gained optimal results are shown

in Table 3.1.

Table 3.1: Optimal results of the EG production optimization w.r.t. different 1 − ε

1− ε Fw VCSTR Tf F̂EG/FEG Pr

{︄
XEO + ξXEO

≥ 0.5

xEG + ξxEG
≥ 0.5

}︄
0.8 1048.887 321 365.415 427.134/426.261 0.8006

0.99 916.229 321 368.191 396.610/395.247 0.9903

F̂EG/FEG are computations from the ReLU ANN/full-order model based on the same operating conditions

According to Table 3.1, the ReLU ANN approximation of FEG is highly accurate. In

addition, the achieved optimal solutions are able to satisfy the constraints with the prob-

abilities close to the required confidence levels. Therefore, by using the presented method,

the JCCP in this case study can be reliably handled without over-conservatism.

The constraint satisfaction probability based on a certain 1− ε in Table 3.1 is calculated

through the following steps: 1) Plug a certain set of optimal decision variables into the

full-order model to generate corresponding XEO and xEG; 2) Add the Gaussian noises ξXEO

and ξxEG
to the generated XEO and xEG, respectively; 3) Sample −XEO − ξXEO

+ 0.5 and

−xEG − ξxEG
+ 0.5 106 times individually to produce corresponding 106-component vectors,

which are denoted as h1,C1 and h2,C1, respectively; 4) Gain the 106-component vector h̄C1

via h̄C1 = max {h1,C1, h2,C1}; 5) Calculate the percentage of components in h̄C1 less or equal

to 0, and such the percentage is equal to the constraint satisfaction probability based on the
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optimal decision variables with respect to a certain 1 − ε.

3.2 A recurrent neural network-based approach for joint

chance constrained stochastic optimal control

3.2.1 Introduction

In optimal control problems, the aim is to find a control sequence for a dynamic system

over a period of time (possibly infinite) such that an associated reward (or cost) objective

function is maximized (or minimized). Model predictive control (MPC) is an advanced

control methodology that is based on optimal control. At each time step, a shorter finite

horizon problem that approximates the original long horizon optimal control problem is

solved, and only the first input is applied to the system. This process is repeated in a

receding horizon fashion [112].

Deterministic optimal control and MPC approaches rely on deterministic models, without

considering uncertainty in controlled systems. However, uncertainty generally exists in real-

world problems. Due to uncertainty in the system dynamics, stochastic optimal control

is needed. Similarly, stochastic MPC (SMPC) is a strategy to cope with MPC problems

under uncertainty [113]. In those problems, it is common to use the expected value of the

reward (cost) function and to enforce some operating constraints to be satisfied with certain

confidence levels through chance constraints. Under chance constraints, optimal decisions

are required to satisfy the constraints with a certain probability target.

By utilizing different methods to address uncertainty and chance constraints, different

SMPC approaches have been developed. Stochastic tube approaches are commonly used

for linear SMPC systems [114]. Stochastic tube approaches exploit a state feedback con-

trol law with a fixed feedback gain to minimize an infinite-horizon value function subject to

individual chance constraints. Stochastic tube approaches are limited to individual chance

constraints and unable to address hard input constraints [115]. Sample-based SMPC ap-

proaches use sampling methods to realize uncertain parameters for characterizing stochastic

system dynamics [116]. The sample-based SMPC based on the Monte Carlo simulation is

presented in Moen’s work [1]. The main drawback of a sample-based SMPC approach is

the high computational cost due to the large sample size required for the optimization at

67



each sampling instant. The scenario-based SMPC method employs the scenario approach

for the involved stochastic optimization [117]. The sequential approach proposed in Navia’s

work [2] is an iterative method utilized to solve the stochastic optimal control problem. In the

sequential approach, the inverse mapping method [118] is exploited to evaluate the probabil-

ities in chance constraints. Reliable optimal decisions can be attained using the sequential

approach but its long solution time hinders its application to real SMPCs. To overcome

the above drawbacks in the existing SMPC approaches, a more applicable SMPC approach

with higher computation efficiency should be developed for both linear and nonlinear MPC

problems under uncertainty.

Machine learning has received lots of attention in system identification and control re-

cently [119, 120]. Among numerous machine learning techniques, recurrent neural networks

(RNN) have been widely used for modelling nonlinear dynamic systems [121, 122]. Unlike

one-way connections between neurons in feed-forward neural networks, feedback loops exist

in an RNN architecture, that introduces the past information from previous inputs to the

computation of the hidden state in the current time step. Hidden states act as a memory of

an RNN and capture dynamic behavior in a way conceptually similar to nonlinear state-space

differential equation models [123]. An RNN is capable of processing sequential data and gen-

erating a sequence of multi-step ahead predictions. Because of the above-mentioned ”memory

feature” of RNNs, RNNs can outperform the traditional feed-forward neural networks while

addressing sequential data or modeling dynamic systems [124]. To further enhance perfor-

mance on sequential data modeling, more advanced RNNs, such as the Long Short-Term

Memory (LSTM) and the Gated Recurrent Unit (GRU), have been developed. Due to out-

standing performance on sequence prediction, different types of RNNs have been applied to

MPC [125]. Hertneck et al. proposed a neural network-based supervised-learning framework

to approximate the robust MPC for enhancing the computational efficiency [126]. Drgoňa

et al. [127] exploited deep time-delay neural networks and regression trees to approximate

the MPC to reduce the implementation cost. Quan and Chung [128] employed the RNN

to approximate the MPC for reducing the computational burden. Although the machine

learning-based approximation for MPC problems has been extensively studied, its applica-

tion to the joint chance-constrained SMPC is very limited so far. Therefore, a computation-

ally efficient joint chance-constrained SMPC approach based on the RNN approximation is

proposed in this work.

In this study, a new RNN-based approach which is extended from the method in Sec-

tion 3.1, is proposed to deal with the stochastic optimal control problem (SOCP) and the
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SMPC implementation. In this study, the JCC is reformulated as a quantile-based inequality.

The quantile function (QF) in the inequality is further approximated by the empirical QF

based on the SAA method. Then, since the empirical QF is still a stochastic and complex

function, it is further modeled by an RNN-based model to reduce complexity and to make the

SOCP deterministically solvable. At each sampling instant, only one quantile value should

be predicted by the RNN-based model to examine the constraint satisfaction, regardless of

the number of constraints incorporated in the JCC. The proposed approach exploits the

strong temporal prediction ability and high computation efficiency of the RNN to handle

SOCPs and SMPC implementations.

Different from the full approximation of the whole optimization problem, the proposed

method only approximates the joint chance constraint (JCC) through RNN. From this point

of view, the reliability of the solution depends on the accuracy of the JCC approximation

accuracy. While we don’t provide a theoretical guarantee on the solution feasibility, the

proposed approach can efficiently obtain solutions with satisfactory constraint satisfaction

probabilities for both SOCP and SMPC implementation. This approach can determine

the optimal decision efficiently with a shorter solution time, compared to the sample-based

approach from the literature [1]. The comparison is shown in the hydrodesulphurisation

process case study. Moreover, this approach is applicable to both, stochastic linear and

nonlinear dynamic systems, involving any number of stochastic parameters and constraints.

This study is structured as follows. Section 3.2.2 presents the stochastic optimal control

problem through a motivating example. Section 3.2.3 discusses the reformulation of the

chance constraints through quantile function. Section 3.2.4 presents the proposed RNN

approach for stochastic optimal control with the illustrating example studied followed by

a chemical industry case study presented in section 3.2.5. Moreover, the extension of the

proposed approach to the SMPC of the hydrodesulphurisation process is illustrated in Section

3.2.6.
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3.2.2 Stochastic optimal control problem

The stochastic optimal control problem (SOCP) studied in this work is formulated in discrete

time, which is given as:

min
uj∈U

E

[︄
K−1∑︂
j=0

J(xj, uj) + Jf (xK)

]︄
(3.14a)

s.t. xj+1 = fD(xj, uj, ξ) j = 0, .., K − 1 (3.14b)

Pr(gi(xj, uj−1, ξ) ≤ 0, i = 1, · · · , w) ≥ 1− ε, j = 1, .., K (3.14c)

x0 = xt0 (3.14d)

where j is the index for sampling instants. K is the number of sampling instants. In the

above discrete-time SOCP, the prediction horizon covers the sampling instants j = 0, ..., K,

and the control horizon covers the sampling instants j = 0, ..., K − 1. xj ∈ Rnx indicates

the state at a certain sampling instant j (j = 1, ..., K) in the prediction horizon, based on

the initial state x0 = xt0 . uj ∈ Rnu is the system input and U is the set of feasible inputs.

ξ ∈ Rnξ is the uncertainty vector. E[·] denotes the expectation. J is the cost function and

Jf denotes the terminal cost. Equation (3.14b) represents the process dynamic model. fD

is a function describing the discrete-time system dynamics. Inequality (3.14c) denotes a

JCC which enforces the probability of constraint satisfaction at a certain sampling instant

j. Pr(·) represents the probability measure. gi : Rnx × Rnu × Rnξ → R is a constraint

function. w is the number of constraints involved in the JCC. 1− ε is the target probability
of constraint satisfaction (ε ∈ [0, 1]). While there are other options to group JCCs, we apply

this popular JCC setting in this work. The proposed RNN-based approach is based on the

above discrete SOCP.

3.2.2.1 Illustrating example

A numerical SOCP example involving the differential equation model: dx1(t)
dt

= x2(t) +

ξ1,
dx2(t)
dt

= −u(t) + ξ2, is used as an illustrating example. The involved differential equation

model is discretized using the trapezoidal rule from time t = 0 ∼ 3 with 10 time intervals.

The values of x1 and x2 at 10 particular sampling instants (t = 0.3 ∼ 3 with an time interval

of 0.3) are selected for the problem-solving of the discrete-time formulation of the illustrating

example. The discrete-time form of the differential equation model is denoted as fD based on

70



the x1 and x2 at the 10 sampling instants. The discrete-time formulation of the illustrating

example is given as:

min
uj

2×
9∑︂
j=0

∆t

2
(E[x1,j] + E[x1,j+1]) (3.15a)

s.t. xj = [x1,j, x2,j] , j = 0, ..., 10 (3.15b)

xj+1 = fD(xj, uj, ξ1, ξ2), j = 0, ..., 9 (3.15c)

Pr(−x1,j − 3.3 ≤ 0,−x2,j − 3.3 ≤ 0) ≥ 1− ε, j = 1, ..., 10 (3.15d)

|uj| ≤ 2, j = 0, ..., 9 (3.15e)

x1,0 = 2, x2,0 = 0 (3.15f)

ξ1 ∼ N (0, 0.25), ξ2 ∼ U(−0.5, 0.5) (3.15g)

j = 0, ..., 10 correspond to t = 0 ∼ 3 in the differential equation model with the time interval

∆t=0.3. x1,0 and x2,0 in (3.15f) represent the initial states. ξ1 and ξ2 are two random

parameters, following Gaussian and uniform distributions, respectively. 1− ε is set to be 0.8

in this illustrating example.

To show the effect of the random parameters ξ1 and ξ2, the above optimization is solved

deterministically under the nominal scenarios where ξ1 and ξ2 are fixed at mean values of

zero. The JCC in (3.15d) is decomposed into two deterministic constraints. CPLEX is used

as the solver. The obtained optimal sequence of uj is the uD exhibited in Figure 3.4. The

subscript D is employed for the optimal solution of the deterministic optimization under the

nominal scenario. The corresponding optimal results of x1 and x2 are x1,DN and x2,DN shown

in Figure 3.4, respectively. The achieved optimal objective value is −2.6561 which is based

on x1,DN . In Figure 3.4, each solid curve is the x1 or x2 calculated based on the optimal uj

sequence and a set of sampled realizations of ξ1 and ξ2. Thus, the solid curves in Figure 3.4

(x1,DU and x2,DU) are x1 and x2 calculated based on the optimal solution and under different

uncertainty scenarios. Notably, the subscript DU is employed for the x1 and x2 based on the

deterministic optimal solution and under different uncertainty scenarios. Also, the subscript

DN is used for the x1 and x2 based on the deterministic optimal solution and under the

nominal scenario.

As can be seen from Figure 3.4, while x1,DN and x2,DN touch the constraint limit, x1,DU

and x2,DU under many uncertainty scenarios violate the constraints significantly. This is

because the deterministic illustrating example is solved without considering different uncer-
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tainty scenarios. Then, the robustness of the optimal solution is not achieved because of the

neglect of uncertainty. Accordingly, the random effects of ξ1 and ξ2 has to be considered in

the SOCP including (3.15a)-(3.15g).

Figure 3.4: The optimal uj sequence of the deterministic illustrating example (uD), and the
corresponding x1 and x2. The subscripts DU and DN are used for the results under

different uncertainty scenarios and under the nominal scenario, respectively.

3.2.3 Reformulation and empirical approximation

3.2.3.1 Quantile reformulation of chance constraint

The quantile-based reformulation of the JCC is the basis of the RNN-based approach. To

illustrate the quantile-based reformulation, let’s consider a JCC given as:

Pr(gi(x, u, ξ) ≤ 0, i = 1, · · · , w) ≥ 1− ε (3.16)

where x ∈ Rnx denotes the system state, u ∈ Rnu represents the decision variable vector,

ξ ∈ Rnξ is the random parameter vector. For each i, gi : Rnx × Rnu × Rnξ → R is a

function. The JCC in (3.16) ensures that all constraints gi=1,...,w(x, u, ξ) ≤ 0 are satisfied

simultaneously to a certain confidence level 1 − ε.

As mentioned in Section 3.2.1, since joint chance-constrained problems are difficult

to solve [13, 109, 111], they are generally solved through approximations. To improve

the approximation of the JCC, the quantile-based reformulation for the JCC is employed.
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The quantile-based reformulation is given as follows. Consider a single constraint func-

tion g(x, u, ξ) as a random variable g with cumulative distribution function (CDF) ϕg(γ) =

Pr(g(x, u, ξ) ≤ γ), the 1− ε level quantile of g(x, u, ξ) is defined as [129]:

Q1−ε(g(x, u, ξ))

= inf {γ ∈ R | Pr(g(x, u, ξ) ≤ γ) ≥ 1− ε}

= inf {γ ∈ R | ϕg(γ) ≥ 1− ε} (3.17)

According to (3.17), Q1−ε(g(x, u, ξ)) outputs the minimum γ that satisfies Pr(g(x, u, ξ) ≤
γ) ≥ 1− ε, that is, ϕg(γ) ≥ 1− ε. Thus, the following relationship holds:

Pr(g(x, u, ξ) ≤ γ) ≥ 1− ε⇔ ϕg(γ) ≥ 1− ε

⇔ Q1−ε(g(x, u, ξ)) ≤ γ (3.18)

Based on the above fact, the corresponding single chance constraint Pr(g(x, u, ξ) ≤ 0) ≥ 1−ε
has quantile reformulation Q1−ε(g(x, u, ξ)) ≤ 0. To carry out the quantile-based reformula-

tion of JCC in (3.16), we define ḡ(x, u, ξ) = max
i=1,...,w

gi(x, u, ξ). Note that Pr(ḡ(x, u, ξ) ≤ 0)

is equivalent to Pr(gi(x, u, ξ) ≤ 0, i = 1, · · · , w) in (3.16). Accordingly, the inequality (3.16)

can be equivalently reformulated as the follow:

Q1−ε(ḡ(x, u, ξ)) ≤ 0 (3.19)
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Figure 3.5: Comparisons between 1− ε− Pr(ḡ(u, ξ) ≤ 0) and Q1−ε(ḡ(u, ξ)) with
1− ε = 0.8. (a) Single chance constraint with ḡ(u, ξ) = −5u2 + 4 + ξ, ξ ∼ N (0, 1); (b) JCC

with ḡ(u, ξ) = max {g1(u, ξ1), g2(u, ξ2)}, g1(u, ξ1) = 1.5ξ1u
2 − 3, ξ1 ∼ N (0, 1),

g2(u, ξ2) = 2ξ2u
2 − 2, ξ2 ∼ U(−2, 2). ḡ here only depends on u and ξ for simplification and

the demonstration purpose.

To demonstrate the benefit of adopting the above quantile-based reformulation, let’s first

consider a simple form of ḡ which only depends on u and ξ (ḡ(u, ξ)) for the demonstration

purpose. Based on the discussion in the previous paragraph, two equivalent reformulations

of the JCC based on ḡ(u, ξ) can be obtained: Q1−ε(ḡ(u, ξ)) ≤ 0 and 1 − ε − Pr(ḡ(u, ξ) ≤
0) ≤ 0 (it is obtained by moving Pr(ḡ(u, ξ) in the JCC Pr(ḡ(u, ξ) ≥ 1 − ε to the right-

hand side). The left-hand-side values of the two inequalities are represented as y(u) since

Q1−ε(ḡ(u, ξ)) and 1 − ε − Pr(ḡ(u, ξ) ≤ 0) are essentially functions of u. Q1−ε(ḡ(u, ξ)) and

1−ε−Pr(ḡ(u, ξ) ≤ 0) can be approximated by deterministic surrogate models depending on

u, for enhancing computational efficiency and tractability. As can be seen from Figure 3.5,

Q1−ε(ḡ(u, ξ)) are convex or concave functions of u. On the contrary, 1− ε−Pr(ḡ(u, ξ) ≤ 0)

are non-convex or non-concave functions of u. Accordingly, since Q1−ε(ḡ(u, ξ)) possess better

convexity or concavity with less complex shapes than 1− ε− Pr(ḡ(u, ξ) ≤ 0), it is easier to

model Q1−ε(ḡ(u, ξ)) than 1− ε− Pr(ḡ(u, ξ) ≤ 0). The quantile-based reformulation will be

used for addressing a JCC with an arbitrary number of uncertain constraints.

3.2.3.2 Empirical approximation

While it is challenging to evaluate the quantile function in (3.19) for multi-dimensional un-

certainty, Q1−ε(ḡ(x, u, ξ)) can be approximated and calculated through an empirical method.

To carry out the empirical method, a sample set ΞN = {ξ1, ..., ξN} is generated. Then, the
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set of function values {ḡ(x, u, ξ1), ..., ḡ(x, u, ξN)} can be easily evaluated based on fixed x

and u. Subsequently, the CDF ϕḡ(γ) can be approximated by the empirical CDF:

˜︁ϕḡ(γ) = 1

N

N∑︂
l=1

I(ḡ(x, u, ξl) ≤ γ) (3.20)

where N is the number of samples, and I(ḡ(x, u, ξl) ≤ γ) is an indicator function defined as:

I(ḡ(x, u, ξl) ≤ γ) =

{︄
0, for ḡ(x, u, ξl) > γ

1, for ḡ(x, u, ξl) ≤ γ (3.21)

Note that using the empirical CDF in (3.20) to approximate the probability function in

(3.16) is essentially the same as the SAA approach mentioned in Section 3.1.1.

According to (3.17), (3.18), and (3.20), the quantile Q1−ε(ḡ(x, u, ξ)) can be approximated

by the empirical quantile defined as:

˜︁Q1−ε(ḡ(x, u, ξ))

= inf

{︄
γ | 1

N

N∑︂
l=1

I(ḡ(x, u, ξl) ≤ γ) ≥ 1− ε

}︄
= ḡ⌈M⌉(x, u) (3.22)

where M equals to (1− ε)×N , and ḡ⌈M⌉(x, u) represents the ⌈M⌉-th smallest component of

Ḡ
N
with respect to given x and u. Thus, the quantile function in (3.19) can be approximated

by the empirical quantile function in (3.22), and (3.19) can be reformulated as:

˜︁Q1−ε(ḡ(x, u, ξ)) ≤ 0 (3.23)

Note that the above sample-based empirical approximation is also applied to the expectation

objective in this work.

To have an accurate empirical approximation, the collected samples should approximately

cover the entire range of the uncertainty distribution. Additionally, a more complex distri-

bution requires more samples. For instance, if the distribution of uncertainty ξ is a mixture

Gaussian distribution, more samples are required to have an accurate empirical approxima-
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tion than if the distribution of uncertainty ξ is just a simple Gaussian distribution. On the

other hand, unlike the scenario approach [130], there is no concrete rule to determine the

exact number of samples N that must be considered for the above empirical approximation.

3.2.4 RNN-based stochastic optimal control

According to the quantile-based reformulation for the JCC mentioned in the previous section,

the SOCP including (3.14a)-(3.14d) can be reformulated as:

min
uj

E

[︄
K−1∑︂
j=0

J(xj, uj) + Jf (xK)

]︄
(3.24a)

s.t. xj+1 = fD(xj, uj, ξ) j = 0, .., K − 1 (3.24b)˜︁Q1−ε(ḡ(xj, uj−1, ξ)) ≤ 0 j = 1, .., K (3.24c)

x0 = xt0 (3.24d)

where ˜︁Q1−ε(ḡ(xj, uj−1, ξ)) denotes the empirical QF at a certain sampling instant j. ḡ(xj, uj−1, ξ) =

max
i=1,...,w

gi(xj, uj−1, ξ). Since ˜︁Q1−ε(ḡ(xj, uj−1, ξ)) is still a stochastic and complex function of

uj, RNN-based approaches can be exploited to approximate ˜︁Q1−ε(ḡ(xj, uj−1, ξ)) to reduce

the complexity and make the above SOCP deterministically solvable.

In the subsequent subsections, the proposed approach based on the RNN and the quantile-

based reformulation is presented. Then, the illustrating example under uncertainty men-

tioned in Section 3.2.2 is solved in Section 3.2.4.2.

3.2.4.1 RNN-based approach

To reduce the solution complexity of the optimization including (3.24a)-(3.24d), the Long

Short-Term Memory (LSTM) is exploited to generate the surrogate model for handling the

dynamic model in (3.24b). Meanwhile, this surrogate model is also used to predict quantile

values for the inequality (3.24c). Notably, the LSTM is more preferable than the Gated

Recurrent Unit (GRU) when prediction accuracy is critical since the LSTM has more gates

and parameters [20]. Thus, the LSTM is used in this research. The detailed explanation of

RNN and LSTM is in Section 1.2.2 and Appendix A2.1. The illustration of the LSTM for

the quantile value prediction is shown in Figure 3.6.
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Figure 3.6: Schematic diagram of the LSTM for the quantile value prediction

where h0 and C0 are the initial hidden state and the initial cell state, respectively. These

initial states are set to be zero vectors. h1 ∼ hK and C1 ∼ CK are the hidden states and the

cell states computed by the LSTM at corresponding sampling instants. At each sampling

instant j + 1, the predicted quantile value Q̂
1−ε
j+1 is output from the output layer employing

the corresponding hidden state from the LSTM cell as the input.

A similar method can be used to handle the expectation objective: we use the same LSTM

network structure and use the output of each LSTM cell as the approximated expectation

at each sampling instant. The quantile function and the expectation can be approximated

through the same LSTM model or two different LSTM models. For achieving higher sur-

rogate model accuracy, the expectations in (3.24a) were predicted by another LSTM model

(the second LSTM model).

The two LSTM models are further incorporated into the SOCP including (3.24a)-(3.24d).

The SOCP incorporating the two LSTM models is given as:

min
uj

K∑︂
j=0

Êj (3.25a)

s.t. Q̂
1−ε
j ≤ 0 j = 1, ..., K (3.25b)

Q̂
1−ε
j=1,...,K = L1(uj=0,...,K−1) (3.25c)

Êj=1,...,K = L2(uj=0,...,K−1) (3.25d)

where Êj is the expected value predicted from the second LSTM at a certain sampling instant

j. Êj=0 is a constant based on initial conditions. Q̂
1−ε
j is the quantile value predicted from

the first LSTM at a certain sampling instant j. L1 and L2 are the first and second LSTM
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models that individually take the sequence of uj as inputs. The above optimization is an

optimization problem involving two LSTM models to compute Êj and Q̂
1−ε
j . According to

the above optimization formulation, the SOCP can be solved deterministically due to the

deterministic LSTM approximation. The training set for the first LSTM is generated by

computing quantile values based on the randomly selected input sequences. Similarly, the

training set for the second LSTM is produced by calculating expected values based on the

randomly selected input sequences. More details about the generation of training sets are

elucidated in the following sections and Appendix.

3.2.4.2 Illustrating example revisited

The illustrating problem studied in Section 3.2.2 is solved by utilizing the RNN-based ap-

proach and demonstrated in the following subsections.

Problem reformulation

The JCC in (3.15d) can be reformulated equivalently as the discretized quantile-based in-

equality which is given as:

˜︁Q1−ε
I,j (ḡI,j) ≤ 0 j = 1, ..., 10 (3.26)

where ḡI,j = max {g1,I,j, g2,I,j}. g1,I,j and g2,I,j denotes −x1,j − 3.3 and −x2,j − 3.3, respec-

tively.

Calculation of expected values, x1,j, x2,j, ḡI,j, and quantile values ( ˜︁Q1−ε
I,j (ḡI,j)) in (3.15a),

(3.15c), (3.15d), and (3.26) are elaborated in Appendix. Moreover, the calculated expected

values and quantile values are used for the LSTM training mentioned in the following sub-

section.

LSTM model training

Two LSTMs are employed to address (3.15a) and (3.26). The first LSTM is used to predict

the quantile values in (3.26) based on different sequences of uj. In total, 8×104, 104, and 104
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samples are generated for training, validation and testing, respectively. The overall time for

sample generation is around 1200 seconds. Each sample is composed of a sequence of quan-

tile values paired with the corresponding sequence of uj. This LSTM has the same structure

as the one shown in Figure 3.6. Also, this LSTM has 50 units (dimensions of the hidden

state and the cell state are equal to 50 individually) in each cell. Then, another LSTM

(the second LSTM) is exploited to predict the expected values in (3.15a) for approximating

(3.15a). The second LSTM has the same structure as the first one. Same sample number

setting is used for training, validating, and testing the second LSTM. The overall time for

sample generation for the second LSTM is also around 1200 seconds. The architectures of

the above two LSTMs are determined through the 10-fold cross-validations based on the

training sets first, and then the LSTMs are trained on the entire training sets with the use

of the validation sets for the early stopping. The two LSTMs are constructed and trained

utilizing Keras [131]. The training time for each LSTM is around 500 seconds. The mean

absolute percentage errors (MAPEs) of the two LSTMs based on the testing sets are below

2%. More details are shown in Appendix.

Afterwards, the two trained LSTM models are incorporated into the discretized opti-

mization formulation of the illustrating problem. Such optimization involving the two LSTM

models is solved using IPOPT 0.3.0 in the Python environment, with solution time being 1.7

seconds. Meanwhile, the automatic differentiation (AD) for evaluating the gradient of the

objective function and Jacobian of the constraint, is carried out via TensorFlow [92]. The

formulation of the optimization involving the two LSTM models and the related details are

shown in Appendix.

Results

The attained optimal results are shown in Figure 3.7. Note that uR in Figure 3.7 is the

optimal sequence of uj obtained from the proposed RNN-based approach. The subscript

R is used for the optimal solution attained from the proposed RNN-based approach. The

obtained optimal results satisfy the JCC in (3.15d). Based on the attained optimal uj se-

quence, the true objective value and the objective value according to the computation of

the second LSTM model are −0.5866 and −0.5872, respectively. More details about the

above-mentioned results are elaborated in Appendix.

As can be seen from Figure 3.7, the majorities of x1,RU and x2,RU under different uncer-
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tainty scenarios are above the lower bound −3.3 since x1,RN and x2,RN are away from the

lower bound. More specifically, x1,RN and x2,RN are gained under the nominal scenario which

appears with higher probability than other scenarios. Accordingly, x1,RN and x2,RN should

be higher than the lower bound significantly as they are shown in Figure 3.7, to ensure the

outcomes under different uncertainty scenarios being feasible with the required probability

of 0.8.
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Figure 3.7: The optimal sequence of uj obtained from the proposed RNN-based approach
(uR), and the corresponding x1 and x2. The subscripts RU and RN are used for the results

under different uncertainty scenarios and under the nominal scenario, respectively.

3.2.5 Case study: hydrodesulphurisation process

In this case study, the RNN-based approach is applied to the problem of the hydrodesul-

phurisation process (HDS) taken from [2]. Both SOCP and SMPC implementation of the

HDS are handled through the proposed approach, and they are illustrated and discussed

comprehensively in the following sections.

The studied HDS is part of a large refinery process, which is exploited to remove sulphur

from a hydrocarbon flow. Sulphur is removed from the hydrocarbon flow through a two-stage

fixed bed reactor. The hydrocarbon flow is mixed with hydrogen gas in the reactor. Sulphur

in the hydrocarbon flow reacts with hydrogen to be hydrogen sulfide. A schematic diagram

of the HDS is exhibited in Figure 3.8. As can be seen from Figure 3.8, there are 3 hydrogen

feed streams, namely F1, F2, and F3. The 3 streams are mixed and fed to a compressor
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(C-1), to keep the inlet pressure of the reactor constant. The hydrocarbon flow is denoted

as FHC . The reactor for hydrodesulphurisation is a two-stage reactor. R-1 and R-2 are the

first stage reactor and the second stage reactor, respectively. The outlet flow of R-2 (F7) is

fed into a flash tank (T-1) to separate hydrocarbons from hydrogen and sulfide gas. Then,

the separated hydrocarbons are collected from the product flow F8. The flow at the top of

T-1 (F9) is recycled to R-1 and R-2 partially, and the rest leaves the HDS through a purge

stream denoted as F10. The operation of the HDS should satisfy the following constraints:

the hydrogen mole fractions in both R-1 and R-2 (XH2) should be maintained above 0.7 to

avoid catalyst deactivation; the hydrogen mole fraction in stream F5 (X5) should be kept

above 0.9 because of the requirement of C-1.

Figure 3.8: Schematic diagram of the studied hydrodesulphurisation process

3.2.5.1 Model

The HDS is modeled mathematically based on the following assumptions for simplification:

1) Temperatures in R-1 and R-2 are controlled perfectly. 2) Pressures in all the streams

and units in the HDS are controlled perfectly. 3) The hydrodesulphurisation reaction can be

described by the first-order model. 4) The flash tank T-1 can separate hydrocarbons from

hydrogen and sulfide perfectly. 5) R-1 and R-2 can be modelled as 1 reactor. According

to these assumptions, only mass and component balances should be taken into account for

modelling the HDS process.

The optimal control objective is to minimize the cost of hydrogen usage from streams F1
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and F2 under the above-mentioned constraints under uncertainty. The SOCP of this case

study is formulated as:

min
Ḟ 1,Ḟ 2,Ḟ 10

∫︂ tf

t0

CH4X1Ḟ 1 + CH3X2Ḟ 2dt (3.27a)

s.t. τ
dḞ

H2

x

dt
+ Ḟ

H2

x = ḞHCρ (3.27b)

V P

ZRgT

dXH2

dt
= Ḟ 5X5 − Ḟ 10XH2 − Ḟ

H2

x (3.27c)

Ḟ 5 = Ḟ 10 + Ḟ
H2

x (3.27d)

Ḟ 5 = Ḟ 1 + Ḟ 2 + Ḟ 3 (3.27e)

Ḟ 5X5 = Ḟ 1X1 + Ḟ 2X2 + Ḟ 3X3 (3.27f)

Pr(XH2 ≥ 0.7, X5 ≥ 0.9) ≥ 1− ε (3.27g)

0 ≤ Ḟ 1 ≤ 1400 (3.27h)

0 ≤ Ḟ 2 ≤ 790 (3.27i)

0 ≤ Ḟ 10 ≤ 1500 (3.27j)

t is time (unit: h). t0 is the current sampling instant that the current system state is acquired.

tf is the end sampling instant in the above SOCP. Note that the values of t0 and tf are varied

in the SOCP at different sampling instants, and tf − t0 = 2. CH4 and CH3 are unit prices

of hydrogen from streams F1 and F2, respectively. Ḟ 1, Ḟ 2, and Ḟ 10 are the mole flow rates

of the streams F1, F2, and F10, respectively. Also, Ḟ 1, Ḟ 2, and Ḟ 10 are decision variables

of the SOCP. Since the hydrodesulphurisation reaction model is assumed to be first-order,

the hydrogen consumption rate Ḟ
H2

x in the reactor can be described by (3.27b). τ is the

time constant of the reaction. ḞHC is the volume flow rate of hydrocarbons fed into the

reactor. ρ is a random parameter following the Gaussian distribution. Equation (3.27c) is

used to calculate the hydrogen mole fraction in the reactor (XH2). V is the reactor volume.

P denotes the pressure inside the reactor. Z is the compressibility factor. Rg is the ideal

gas constant. T is the temperature inside the reactor. Ḟ 5 is the mole flow rate of the stream

F5. X5 is the hydrogen mole fraction in stream F5. The mass balance over the reactor is

expressed as (3.27d). Equation (3.27e) is exploited to calculate Ḟ 5. The component balance

of hydrogen can be described by (3.27f). X3 is a random parameter following the Gaussian

distribution. 1 − ε is the user-defined confidence level, which is set to be 0.8 in this case

study. (3.27h)-(3.27j) are the bounds for the decision variables of the SOCP. The values of
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parameters in the SOCP are shown in Table 3.2.

The SOCP and SMPC implementation of the HDS are handled by using both proposed

RNN-based approach and the sample-based approach modified from Moen’s work [1]. No-

tably, the original sample-based approach in the literature exploited the individual chance

constraints to approximate the JCC that transforms the original joint chance-constrained

HDS SOCP to be an individual chance-constrained problem. Accordingly, to have fair com-

parisons between the sample-based approach and the proposed approach, the sample-based

method from the literature is modified to be directly applicable to joint chance-constrained

problems. In the modified sample-based approach, the joint constraint satisfaction probabil-

ity (JCSP) at each sampling instant is computed through the following steps: 1) The HDS

model is simulated multiple times based on different realizations of uncertain parameters to

obtain different values of XH2 and X5; 2) The JCSP is computed using SAA based on the

XH2 and X5 gained from the previous step. The multiple simulations of the HDS model are

treated as a black-box model to compute the JCSP, and this black-box model is incorporated

into the HDS SOCP. Thus, the HDS SOCP becomes a black-box joint chance-constrained

optimization problem while using the modified sample-based method. The modified sample-

based approach is essentially based on the idea of the Monte Carlo simulation which is the

same as the main idea of the original sample-based method from the literature. For simpli-

fication, the sample-based method mentioned in the following parts of this research refers to

the modified sample-based method.
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Table 3.2: Values of parameters in the SOCP including (3.27a)-(3.27j)

Parameter Value Unit

CH4 88.1 AC/Mmol

CH3 77 AC/Mmol

τ 0.3 h

ḞHC 102 m3/h

V 100 m3

P 68.901 bar

Z 1 -

Rg 0.08314 (m3bar)/(Kkmol)

T 623.15 K

X1 0.991 -

X2 0.931 -

Ḟ
H2

x at t = 0 682.5 kmol/h

XH2 at t = 0 0.9 -
a ρ ∼ N (12.6, 0.4) (unit: kmol/m3)
b X3 ∼ N (0.85, 0.013)

3.2.5.2 Results and discussion

Deterministic optimal control

To show the impacts of the random parameters ρ and X3 on the SOCP of the HDS, the

optimization including (3.27a)-(3.27j) is solved deterministically under the nominal scenario

that ρ and X3 are fixed at their mean values (12.6 and 0.85, respectively). Meanwhile, the

JCC in (3.27g) is decomposed into two deterministic constraints for X5 and XH2. Such

deterministic optimization is solved numerically through the trapezoidal rule method with

20 time intervals. More specifically, the involved integral objective function and the pro-

cess model are approximated via the trapezoidal rule method with 20 intervals. Meanwhile,

IPOPT is used as the solver. The obtained optimal MVs are Ḟ 1,D, Ḟ 2,D, and Ḟ 10,D shown

in Figure 3.9. The corresponding optimal results of X5 and XH2 are X5,DN and XH2,DN

illustrated in Figure 3.9, respectively. The achieved optimal objective value is 106.8659 AC

which is based on Ḟ 1,D and Ḟ 2,D. In Figure 3.9, each solid curve is the X5 or XH2 calculated

based on the optimal sequence of MVs and a pair of ρ and X3 realizations. Thus, the solid

curves in Figure 3.9 (X5,DU and XH2,DU) are X5 and XH2 calculated based on the optimal

solution and under different uncertainty scenarios. Note that the subscript DU is employed
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for the X5 and XH2 based on the deterministic optimal solution and under different uncer-

tainty scenarios. Additionally, the subscript DN is employed for the X5 and XH2 based on

the deterministic optimal solution and under the nominal scenario.
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Figure 3.9: The optimal results of the deterministic optimal control of the HDS. The
subscripts DU and DN are used for the results under different uncertainty scenarios and

under the nominal scenario, respectively.

According to the results shown in Figure 3.9, X5,DU and XH2,DU violate the constraints

under many uncertainty scenarios. This is because the deterministic optimal control prob-

lem under the nominal scenario is solved without considering different uncertainty scenarios.

Therefore, X5 and XH2 under the nominal scenario (X5,DN and XH2,DN) which appears with

higher probability than other scenarios, are allowed to activate the constraints to minimize

the objective value. Then, the robustness of the optimal solution is reduced because of the

neglect of uncertainty. Based on the above discussion, the random effects of ρ and X3 are

not negligible for addressing the stochastic problem in this case study.

Stochastic optimal control

The SOCP of the HDS is solved using the proposed RNN-based approach. While using

the proposed approach, the SOCP including (3.27a)-(3.27j) should be first discretized. The
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details of the discretization and the discretized SOCP formulation are illustrated in Ap-

pendix. The MAPEs of the LSTM model used for handling the SOCP of the HDS are below

5% (based on the testing set). More details about this LSTM and the optimization involv-

ing this LSTM are elucidated in Appendix. By utilizing the proposed approach to solve

the SOCP of the HDS, the attained optimal results are shown in Figure 3.10. The optimal

objective value is 126.2254 AC and the solution time is 19.7 seconds. The optimal results

satisfy the JCC for all sampling instants. More details about the results are illustrated in

Appendix. Note that Ḟ 1,R, Ḟ 2,R, and Ḟ 10,R in Figure 3.10 are exactly the optimal sequence

of MVs obtained from the proposed RNN-based approach and the subscript R is used for

the optimal solution attained from the RNN-based approach.
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Figure 3.10: The optimal results of the SOCP of the HDS gained from the proposed
approach. The subscripts RU and RN are used for the results under different uncertainty

scenarios and under the nominal scenario, respectively.

As can be seen from Figure 3.10, the majorities of X5,RU and XH2,RU under different

uncertainty scenarios are above corresponding lower bounds which are 0.9 and 0.7, respec-

tively. This is because X5,RN and XH2,RN gained under the nominal scenario which appears

with higher probability than other scenarios, are away from the lower bounds. Therefore,

the obtained outcomes are feasible with the required confidence level of 0.8. Also, since

X5,RN and XH2,RN are higher than the constraints significantly to ensure the solution ro-

bustness, the objective value (126.2254 AC) is higher than the objective value obtained from
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Table 3.3: Comparison between the results of the SOCP of the HDS

Objective
value (AC)

Solution
time (s)

Proposed approach 126.2254 19.7

Sample-based method
with 1000 Monte
Carlo simulations

128.7322 317.5

the deterministic optimal control problem of this case study (106.8659 AC).

For the SOCP of the HDS, the optimal solution obtained from the proposed approach

is compared with the optimal solution attained from the sample-based approach modified

from Moen’s study [1]. The comparison is organized in Table 3.3. According to Table 3.3,

the objective value from the proposed method is only slightly better than from the sample-

based method. However, the proposed approach has a much shorter solution time than the

sample-based method. This is because the sample-based method has to run 1000 Monte

Carlo simulations to compute the JCSP during the optimization. Therefore, a lot of time

is spent on the Monte Carlo simulations that restrict the efficiency of the sample-based

method. As to the proposed approach, the stochastic process model and the JCC in the

original SOCP are handled by the incorporated LSTM. Through this method, the original

stochastic optimization model can be approximated by the LSTM surrogate model to reduce

the complexity and be deterministically solvable.

Since solving a SOCP is the element of SMPC implementation, studying the solution time

of solving a SOCP is a good starting method to examine the efficiency of a control approach.

Therefore, we firstly investigated the solution times of the above two methods for solving the

SOCP to deduce the performance of the two methods for the SMPC implementation. Then,

we confirm the actual control performance of the two methods by conducting the SMPC

experiments elucidated below.

3.2.6 SMPC implementation

To deal with the SMPC problem using the proposed RNN-based approach, the incorporated

LSTM model in the proposed approach should be improved. More specifically, since the

LSTM given by Figure 3.6 only uses the sequence of uj as input, it can only be used to
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solve the SOCP with fixed initial conditions. However, when SMPC is implemented, SOCP

is based on different initial conditions at different sampling instants. To this end, a hybrid

model consisting of two feed-forward neural networks and one LSTM (NN-LSTM) is proposed

to capture the dynamics between quantile values, uj, and different initial conditions. In the

NN-LSTM, the initial conditions are transformed to be the initial hidden and cell states of

the LSTM to contribute initial information of system dynamics. Accordingly, the two neural

networks are employed to learn the non-linear transformations from the initial conditions

to the initial hidden and cell states of the LSTM. The nonlinear transformations through

the neural networks are necessary since the dimensions of the initial conditions may not

match the dimensions of the initial hidden and cell states of the LSTM model. Finally, the

NN-LSTM is incorporated into the SOCP for the SMPC implementation in this study. More

details are elaborated in the following subsection.

3.2.6.1 SMPC implementation of the HDS case study

In this case study, the NN-LSTM used for the SMPC implementation is a stacked NN-LSTM

with the structure shown in Figure 3.11. According to Figure 3.11, the initial conditions are

first fed into two neural networks (NN1 and NN2) to generate the initial hidden state h10

and the initial cell state C1
0 . Each neural network only has 1 input layer and 1 hidden layer.

There are 50 neurons in the hidden layer of each neural network. Thus, the dimensions of

h10 and C1
0 are both equal to 50. Then, h10 and C1

0 are fed to the first LSTM cell in the

first LSTM layer. In the first LSTM layer, h1j+1 and C1
j+1 are computed based on h1j , C

1
j ,

Ḟ 1,j, Ḟ 2,j, and Ḟ 10,j. The dimensions of h1j+1 and C1
j+1 are both equal to 50. In the second

LSTM layer, h20 and C2
0 are set to be zero vectors, and their dimensions are both equal to

30. Meanwhile, h2j+1 and C2
j+1 are computed based on h2j , C

2
j , and h1j+1. The dimensions

of h2j+1 and C2
j+1 are both equal to 30. For each sampling instant j + 1, the quantile value

(Q̂
1−ε
H,j+1) is computed from the output layer by employing h2j+1 as the input.

Quantile values corresponding to different input sequences and different initial conditions

are generated as the training data for the stacked NN-LSTM. Then the stacked NN-LSTM

is trained to learn the dynamics between control input sequences, initial conditions, and

quantile values. This enables the modeling of SOCP in each moving window of the SMPC

implementation. More details about the data generation for the stacked NN-LSTM are

explained in Appendix.
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Figure 3.11: Schematic diagram of the NN-LSTM used for the SMPC implementation of
the HDS case study

Subsequently, the stacked NN-LSTM is incorporated into the discretized SOCP of the

HDS after training. The MAPEs of this NN-LSTM are below 5% (based on the testing

set). More details about this NN-LSTM and the SOCP formulation involving this NN-

LSTM are elucidated in Appendix. For one SMPC implementation of the HDS, the SOCP

involving the NN-LSTM is solved repeatedly at different sampling instants with different

initial conditions. More details are explained in Appendix. The SMPC implementation is

conducted 1000 times repeatedly. Each SMPC implementation is executed with a realization

of ρ and a realization of X3 at each sampling instant. The corresponding results based on

the 1000 SMPC executions are shown in the Supplementary Materials. Also, 100 SMPC

results are randomly selected from the 1000 SMPC executions and illustrated in Figure 3.12.

The reason for only choosing 100 results is to avoid too many overlapping curves shown in

Figure 3.12 because the figure will be difficult to interpret with too many overlapping curves.

Moreover, the distribution of the objective values gained from the 1000 implementations is

shown in Figure 3.13. The mean value of the distribution of the objective values is 118.7938

AC.

The attained SMPC results are feasible with the probabilities higher than the required

level of 0.8 for all sampling instants. Also, as can be seen from Figure 3.13, all the objective

values attained from the SMPC executions are lower than the objective value obtained from

the SOCP. This is because the optimal MVs are updated based on the obtained system

state at each sampling instant during each SMPC implementation. However, the SOCP is

solved only based on a set of initial conditions. Therefore, the SMPC can achieve a better
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objective value under uncertainty because more state information is available during the

SMPC execution.

Figure 3.12: 100 SMPC results of the HDS, which are attained by exploiting the proposed
RNN-based approach
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Figure 3.13: The distribution of the objective values gained from the 1000 SMPC
implementations

The SMPC results attained from the proposed approach are compared with the SMPC

results gained from the sample-based method modified from Moen’s work [1]. The com-
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parison is organized in Table 3.4. One remark here is that the solution time corresponds

to a method in Table 3.4 is the overall time of the SMPC implementation for 20 sampling

instants.

Table 3.4: Comparison between the results of the SMPC of the HDS

Objective
value (AC)

Solution
time (s)

Proposed approach 118.7938 395

Sample-based method
with 1000 Monte
Carlo simulations

126.6641 12193

Sample-based method
with 100 Monte Carlo

simulations
126.6772 2949

According to Table 3.4, the presented approach can obtain a better objective value in a

shorter solution time than the sample-based approach. Although the sample-based approach

can be accelerated significantly by reducing the number of Monte Carlo simulations (a min-

imum of 100 Monte Carlo simulations are required to achieve satisfactory SMPC results),

it still requires a longer solution time. Thus, the proposed approach is a more attractive

method to address SMPC problems.

Finally, based on the above discussion, the proposed RNN-based approach can efficiently

solve a joint chance-constrained SMPC problem with satisfactory constraint satisfaction

probability and solution quality. Moreover, the proposed approach is applicable for both

linear and nonlinear SMPC problems because the employed NN-LSTM surrogate model is

capable of handling both linear and nonlinear models. Although generating data for the

NN-LSTM and training the NN-LSTM require a lot of time, these time-consuming steps do

not hinder the application of the proposed approach to SMPC. This is because these time-

consuming steps are completed offline before executing SMPC. In other words, the proposed

approach is applied to an SMPC after the NN-LSTM is trained.
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3.3 Conclusion

A novel method involving the empirical quantile reformulation of JCC and the ReLU ANN

approximation is proposed in Section 3.1 to address JCCPs. This method relies on the

sampled data of objective and constraint function values, which can be obtained from explicit

process model equations or black-box process simulators. Hence, the method can be used for

different process optimization problems, such as problems with explicit models or black-box

constraint functions. In the meantime, there is no restriction on the number of constraints in

the JCC. The problem is finally converted to the solution of a deterministic MILP problem.

Through a case study, it is shown that the developed method can efficiently solve a nonlinear

joint chance-constrained process optimization problem without over-conservatism.

In Section 3.2, the above proposed approach is extended to become a new RNN-based

method to solve stochastic optimal control and stochastic model predictive control problems

with JCCs. In this extended method, the quantile-based reformulation is applied to the JCC

and the quantile function is further approximated by an LSTM-based surrogate model. To

handle SMPC, NN-LSTM can be embedded into the SOCP, where a hybrid model consisting

of feed-forward neural networks and LSTM takes initial conditions and control sequence as

input. When SMPC is executed with this method, the SOCP is repeatedly solved at different

sampling instants based on the updated initial states.

The results show that this RNN-based approach can obtain the solution satisfying the

confidence level effectively. Compared with the sample-based method modified from the

literature, the RNN-based approach can achieve faster and better solutions for both SOCP

and SMPC implementation. Furthermore, broad flexibility is also an important feature of the

proposed approach. This RNN-based method can be applied to both, linear and nonlinear

SMPCs with any number of JCCs.

This work can be further investigated with the following research directions. First,

uncertainty distributions may be not available, and a data-driven distributionally robust

framework is a possible approach. Second, in the SMPC application, we only studied the

open-loop prediction model. A closed-loop prediction model with control policy instead of

action involved will be one of the future works.
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Chapter 4

Kernel Distributionally Robust

Chance-Constrained Optimization

Abstract

In Section 4.1 of this chapter, a distributionally robust chance-constrained optimization (DR-

CCP) method is proposed based on the kernel ambiguity set. The kernel ambiguity set is

established via the kernel mean embedding (KME) and the maximum mean discrepancy

(MMD) between distributions. The proposed approach can be formulated as two different

models. The first one is a mixed-integer model employing the indicator function for han-

dling the joint chance constraint. The second one is a continuous optimization model using

the Conditional Value-at-Risk (CVaR) approximation to approximate the indicator function.

The proposed method is compared with the popular Wasserstein ambiguity set based ap-

proach. A numerical example and a nonlinear process optimization problem are studied to

demonstrate its efficacy. In Section 4.2 of this chapter, the presented kernel-based approach

is further combined with a neural network-like deep kernel to enhance its performance. The

deep kernel-based method is applied to an alkylation process optimization to demonstrate

its performance.
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4.1 Distributionally Robust Chance-Constrained Op-

timization with Kernel Ambiguity Set

4.1.1 Introduction

Real-world optimization problems often involve uncertainty. It is hard to obtain reliable

optimal decisions for problems under uncertainty since constraint violations may be caused

by unexpected random effects. Chance-constrained programming (CCP) is a widely-used

method for optimization under uncertainty [10]. While using the CCP, the optimal decision

is required to be feasible with a user-defined probability. There are two types of CCP:

the individual chance-constrained programming (ICCP) and the joint chance-constrained

programming (JCCP) [11, 21]. The ICCP only requires each constraint to be satisfied with

its own confidence level. The JCCP which is more natural and general, ensures that all the

constraints are satisfied simultaneously to a certain confidence level. Although the JCC can

limit the probability of violating any constraints in a problem, it is difficult to solve as it

requires dealing with the multidimensional distribution [13]. In addition, a JCCP problem

is convex only when the following requirements are satisfied: 1) the original constraints

in the joint chance constraint are jointly convex in both decision variables and random

parameters. 2) the random parameters follow log-concave distributions [132]. Accordingly,

JCCP problems are generally solved using approximation methods, such as the analytical

approximation methods and the sampling-based methods [28].

In practical applications, exact distributions of uncertainty are often hard to be known.

Thus, to solve a JCCP problem, instead of anticipating the exact distribution of uncer-

tainty, a more practical way is to consider the worst-case distribution from all potential

data-generating distributions to obtain the distributionally robust solution. This is the con-

cept of the distributionally robust chance-constrained programming (DRCCP) [70]. In the

field of DRCCP, the potential data-generating distributions are also called candidate dis-

tributions, and the set of candidate distributions is typically referred to as the ambiguity

set [133]. The candidate distributions are learned from historical data and characterized

through certain known information (e.g., moments, structure properties, domain knowledge,

etc) of the unknown data-generating distribution. The ambiguity set composed of candidate

distributions should contain the true data-generating distribution with high confidence, and

it should also be small enough to exclude distributions that may lead to overly conservative
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decisions [134]. Additionally, the ambiguity set should be easily extracted from data, and it

should enable a tractable reformulation of the DRCCP as a mathematical program that can

be solved using off-the-shelf optimization solver [135].

Among different types of ambiguity sets, the moment-based and metric-based ambiguity

sets have received significant attention and been intensively studied [57–59]. A moment-

based ambiguity set contains all distributions that satisfy certain moment constraints [133,

136, 137]. A certain level of moment information should be known in advance for construct-

ing a moment-based ambiguity set. In addition, since different distributions might share the

same moments, moment constraints in a moment-based ambiguity set might be too loose to

exclude distributions that may cause overly conservative solutions [60]. Moreover, distribu-

tionally robust chance constraints based on moment-based ambiguity sets are not capable

of tightly approximating chance constraints even if sufficient data is available [61]. To avoid

the above-mentioned drawbacks, metric-based ambiguity sets are attractive alternatives that

define the ambiguity set in the space of probability distributions [138]. More specifically, all

candidate distributions in a metric-based ambiguity set are centered around the nominal

distribution within a radius determined by the prescribed probability metric. The nominal

distribution is established based on historical data. The radius size of the ambiguity set

is a user-defined hyper-parameter allowing the user to control the degree of conservatism

of the underlying optimization problem [30]. The Wasserstein metric is extensively used

for metric-based ambiguity sets. However, the existing studies rely on some nontrivial as-

sumptions on uncertain constraints to obtain tractable reformulations. For instance, in most

studies of Wasserstein DRCCPs [3, 4, 61, 70–73], uncertain constraints are assumed to be

affine in uncertainty. Although there are a few works proposing Wasserstein DRCCP meth-

ods for nonlinear uncertain constraints, they still require some assumptions on uncertain

constraints. Gu and Wang [74] proposed a Wasserstein DRCCP approach for nonlinear

uncertain constraints which are restricted to be quadratic convex in uncertainty. Hota et

al. [75] proposed Wasserstein DRCCP methods for uncertain constraints which are limited

to be either concave or convex in uncertainty. Based on the aforementioned, the Wasserstein

DRCCP approaches proposed so far rely on nontrivial assumptions on uncertain constraints,

that hinder their practical applications. The research on the Wasserstein DRCCP approach

for general uncertain constraints has not been found so far.

To overcome the mentioned drawback of the Wasserstein DRCCPs, the DRCCP over the

kernel ambiguity set (kernel DRCCP) proposed in this research would be a promising solution

because it is compatible with general uncertain constraints without any assumption. The
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reformulations of the presented kernel DRCCP are unified for arbitrary constraint functions.

These tractable reformulations of the kernel DRCCP are expressed as two different optimiza-

tion models. The first model is a mixed-integer programming model exploiting the indicator

function to address the joint constraint satisfaction probability (JCSP) involved in the JCC.

To reduce the computational burden of the first model, the second model is a continuous

optimization model employing the Conditional Value-at-Risk (CVaR) approximation [139]

to approximate the indicator function for handling the JCSP.

The kernel ambiguity set employed in this study is established by using kernel mean

embedding (KME) [140] and maximum mean discrepancy (MMD) [141]. Regarding the

existing studies on the kernel ambiguity set, the kernel ambiguity set has only been applied

to distributionally robust optimization (DRO) problems so far. In [16], the MMD based

DRO is studied, and it is connected to the Hilbert norm regularization. In [142], the DROs

based on different types of kernel ambiguity sets are developed, e.g., the RKHS norm-ball

ambiguity set, polytope kernel ambiguity set, etc. In addition, the DRO over the RKHS

norm-ball ambiguity set is applied to the worst-case risk quantification in another Zhu’s

research [143]. Those existing works only exploit kernel ambiguity sets to address DRO

problems which consider distributional ambiguity in objective functions. To the best of

the authors’ knowledge, the study of the DRCCP based on the kernel ambiguity set has

not been found so far. Therefore, the main contribution of this work is the development

of a new DRCCP method based on the kernel ambiguity set which possesses significant

advantages over other existing DRCCP methods. Regarding the limitation of the proposed

DRCCP approach, the presented method is based on the discretized support, and the support

discretization approach used in this study is only applicable to rectangular and unbounded

support sets (more details are mentioned in Sections 4.1.4, 4.1.7, and 4.1.8). More studies on

the more general support discretization method for the presented DRCCP approach should

be done in future work.

This research is structured as follows. DRCCP is introduced in Section 4.1.2. The de-

tails about the kernel ambiguity set are elaborated in Section 4.1.3. The derivation for the

different models of the kernel DRCCP is presented in Sections 4.1.4-4.1.5. The adaption of

the presented approach to the problems involving distributionally robust objective functions

is shown in Section 4.1.6. In Section 4.1.7, the presented DRCCP method is applied to

a numerical example to compare with the popular Wasserstein DRCCP approach. Subse-

quently, the application of the presented approach to a nonlinear process optimization under

uncertainty is demonstrated in Section 4.1.8.
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4.1.2 Distributionally robust chance-constrained optimization

As mentioned in Section 4.1.1, joint chance-constrained programming (JCCP) is more com-

prehensive and intuitive than individual chance-constrained programming (ICCP). Hence,

we only focus on the JCCP in this research. A detailed explanation of JCCP and ICCP is

in Section 1.2.3. However, the exact probability distribution of uncertainty in conventional

chance-constrained programming (CCP) is not always available. Accordingly, to address

distributional ambiguity of uncertainty, the ambiguity set containing candidate distributions

can be introduced to the CCP to result in the DRCCP. The general formulation of the

DRCCP is given as:

min
x∈X

f(x) (4.1a)

s.t. min
P(ξ)∈P

Pr(gi(x, ξ) ≤ 0, ∀i = 1, ..., w) ≥ 1− δ (4.1b)

where P(ξ) is the probability distribution function of ξ. P is the ambiguity set composed

of all candidate distributions. Inequality (4.1b) represents the distributionally robust joint

chance constraint (DRJCC) ensuring the worst-case JCSP higher than or equal to the user-

defined confidence level 1− δ, based on the ambiguity set.

The expression (4.1b) can be rewritten equivalently as the worst-case violation probability

form:

max
P(ξ)∈P

Pr

(︄
w⋃︂
i=1

gi(x, ξ) > 0

)︄
≤ δ (4.2)

Notably, the left-hand side of the above expression represents the worst-case violation proba-

bility, which is the maximum probability of constraint violation (g1(x, ξ) > 0 or g2(x, ξ) > 0,

or ..., or gw(x, ξ) > 0) under all possible probability distributions in the ambiguity set. The

expression (4.2) is more useful for deriving tractable DRCCP formulations.

4.1.3 Kernel ambiguity set

The kernel ambiguity set which is the core of the proposed Kernel DRCCP, is based on the

kernel mean embedding (KME) [140] and the maximum mean discrepancy (MMD) [141]

explained below.
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A symmetric function k : Ξ × Ξ → R can be called as a positive definite kernel if∑︁N
j=1

∑︁N
l=1 ajalk(ξj, ξl) ≥ 0, ∀N ∈ Z+, ∀ {ξ1, ..., ξN} ⊂ Ξ, ∀a1, ..., aN ∈ R [144]. For simplifi-

cation, all the kernels mentioned in the following parts of this study refer to positive definite

kernels. According to Moore-Aronszajn theorem [145], with a kernel k given, a Hilbert space

H of real-valued functions and a map ϕ : Ξ → H exist, such that ⟨f, ϕ(ξ)⟩H = f(ξ) for all

f ∈ H and ξ ∈ Ξ. The Hilbert space H mentioned above is the so-called reproducing kernel

Hilbert space (RKHS) [146] associated with the kernel k, which has the reproducing prop-

erty, i.e., ⟨f, ϕ(ξ)⟩H = f(ξ) for all f ∈ H and ξ ∈ Ξ. Notably, the map ϕ is commonly known

as a feature map, and ⟨·, ·⟩H denotes the inner product on H. Furthermore, the reproducing

property implies that k(ξ, ξ0) = ⟨ϕ(ξ), ϕ(ξ0)⟩H = ⟨k(ξ, ·), k(ξ0, ·)⟩H for any ξ, ξ0 ∈ Ξ [147].

Note that ϕ(ξ) can be interchangeably written as k(ξ, ·).

The KME is to make non-parametric representations of distributions in an RKHS [145].

More specifically, with a probability distribution P and a kernel k given, the KME of P is

given as:

µP(·) =
∫︂
k(ξ, ·)dP(ξ) (4.3)

The above expression of the KME can be intuitively deemed as the expectation of the feature

map under the distribution P. µP exists in H if Eξ∼P[k(ξ, ξ)] <∞ [148]. The quality of the

KME is highly influenced by the properties of the associated kernel k. If k is a characteristic

kernel, the kernel mean map P ↦→ µP is an injective map that µP is unique for any distribution

P [149]. Furthermore, if k is a universal kernel, the corresponding RKHS can be considered

as a rich enough RKHS, and any continuous function can be approximated arbitrarily well

by a function in such the RKHS [142]. One remark here is that all universal kernels are also

characteristic kernels, but not vice versa, as mentioned in Theorem 8 of [141]. The detailed

definitions of characteristic kernels and universal kernels are shown in Definition 3.2 and

Definition 3.3 in [140], respectively. Accordingly, we only consider universal kernels in this

work due to the above reasons.

By exploiting the KME, the distance between two probability distributions in a RKHS

can be determined. More specifically, with a kernel given, ∥µP − µP0∥H defines the distance

between the distributions P and P0 in the associated RKHS H [150]. ∥µP − µP0∥H is known

as the maximum mean discrepancy (MMD) [140]. One remark here is that ∥·∥H is the Hilbert

space norm, and ∥f∥H :=
√︁
⟨f, f⟩H, ∀f ∈ H. As mentioned in Lemma 4 of [141], the MMD

metric is a special case of the integral probability metrics (IPMs). The IPM reduces to the
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MMD while the associated space of real-valued bounded measurable functions on Ξ (which is

F) follows the condition: F = {f : ∥f∥H ≤ 1}. More details about the IPMs are introduced

in Section 1.2.5. The MMD can be expressed in the form with the associated kernel k, which

is given as:

∥µP − µP0∥
2
H = Eξ,ξ′∼P[k(ξ, ξ

′
)]− 2Eξ∼PEξ0∼P0 [k(ξ, ξ0)] +Eξ0,ξ

′
0∼P0

[k(ξ0, ξ
′

0)] (4.4)

Note that ξ
′
and ξ

′
0 are independent copies of ξ and ξ0, respectively. The above expression

can be estimated by using the empirical estimator with the samples collected from P and

P0 [141].

The kernel ambiguity set in this work embeds distributions in a RKHS norm-ball via the

KME. In the kernel ambiguity set, the KME representations of candidate distributions are

centered around the KME representation of the nominal distribution within a RKHS norm

ball radius determined by the MMD. If the universal kernel (eg., the Gaussian kernel, the

Laplacian kernel, the rational quadratic kernel, etc.) is employed, the corresponding RKHS

can be considered as a rich enough RKHS, and the associated kernel ambiguity set may

contain the true distribution with high confidence if the RKHS norm-ball radius is large

enough [16].

Mathematically, the kernel ambiguity set KC in this work is defined as:

KC =

{︃
P ∈ P(Ξ) :

∫︂
ϕdP = µ, µ ∈ C ⊆ H

}︃
P(Ξ) denotes the set of all Borel probability measures on support Ξ. Both sides of the

constraint
∫︁
ϕdP = µ are functions in H, where H is an RKHS whose feature map is ϕ. µ can

be viewed as a generalized moment vector (infinite dimension vector), which is constrained

to lie within the RKHS norm ball C ⊆ H. The RKHS norm ball C is defined as:

C = {µ :
⃦⃦
µ− µP̂0

⃦⃦
H ≤ εH}

P̂0 is the nominal distribution, which is an empirical distribution based on the realizations of

uncertainty. µP̂0
is the embedding of the nominal distribution P̂0. εH is the RKHS norm-ball

radius which is a user-defined hyper-parameter. The solution conservatism of the kernel

DRCCP can be controlled by adjusting εH.
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4.1.4 Kernel distributionally robust chance constraints

In this work, the kernel distributionally robust chance constraint (KDRCC) is the DRJCC

based on the kernel ambiguity set. The proposed kernel DRCCP can be formulated as dif-

ferent models based on different KDRCC formulations. The different KDRCC formulations

are derived from the worst-case violation probability in inequality (4.2). With the kernel

ambiguity set, the worst-case violation probability in inequality (4.2) can be rewritten as:

max Pr

(︄
w⋃︂
i=1

gi(x, ξ) > 0

)︄
s.t.

⃦⃦
µ− µP̂0

⃦⃦
H ≤ εH∫︂

ϕ(ξ)dP(ξ) = µ (4.5)

where µP̂0
is the embedding of the nominal distribution P̂0. εH is the radius of the RKHS

norm ball, which is a user-defined parameter. According to [143], to make problem (4.5)

computationally tractable, µ and µP0 in problem (4.5) can be handled using empirical em-

bedding approaches, i.e., µ =
∑︁M

j=1 αjϕ(ηj) and µP̂0
=
∑︁N

j=1

1

N
ϕ(ξj). {ηj}Mj=1 are expansion

points used to discretize the support of the candidate distributions, and they are composed

of the collected samples {ξj}Nj=1 and sampled support points {ζj}Yj=1. The sampled support

points do not have to be from the original data samples [142]. There are several ways to

produce sampled support points [142], e.g., selecting grid points evenly from a bounded

sample space, generating synthetic points via the convex combinations of collected samples,

producing new points by adding perturbations to collected samples, etc. The number of the

sampled support points can be treated as a user-defined hyper-parameter. As stated in [142]

and [143], the expansion points containing collected samples and sampled support points are

exactly the support of the nominal and worst-case distributions, that allow us to anticipate

potential distributions with limited data and make problem (4.5) to be distributionally ro-

bust. αj is the probability mass on ηj. Based on the above-mentioned empirical embedding
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of µ and µP̂0
, the formulation (4.5) can be reformulated as:

max
α

M∑︂
j=1

αjI

(︄
w⋃︂
i=1

gi(x, ηj) > 0

)︄
(4.6a)

s.t.

⃦⃦⃦⃦
⃦
M∑︂
j=1

αjϕ(ηj)−
N∑︂
j=1

1

N
ϕ(ξj)

⃦⃦⃦⃦
⃦
H

≤ εH (4.6b)

M∑︂
j=1

αj = 1 (4.6c)

αj ≥ 0, ∀j = 1, ...,M (4.6d)

The objective (4.6a) is the empirical expression of the worst-case violation probability. The

indicator function I (
⋃︁w
i=1 gi(x, ηj) > 0) in (4.6a) is defined as:

I
(︁⋃︁w

i=1 gi(x, ηj) > 0
)︁
=

{︄
0, for gi(x, ηj) ≤ 0, ∀i = 1, ..., w

1, for gi(x, ηj) > 0, ∃i = 1, ..., w (4.7)

Inequality (4.6b) can be rewritten as a more tractable form according to (4.4), which is:

αTKηα− 2
1

N
αTKηξ1+

1

N2
1
TKξ1 ≤ ε2H (4.8)

where α := [α1, ..., αM ]T and 1 := [1, ..., 1]T . Kη, Kηξ, and Kξ are the Gram matrices

associated with the kernel k, i.e., Kη := [k(ηj, ηl)]jl, Kηξ := [k(ηj, ξl)]jl, Kξ := [k(ξj, ξl)]jl.

Then, the optimization including (4.6a)-(4.6d) can be reformulated as:

max
α

I(x)Tα

s.t. αTKηα− 2
1

N
αTKηξ1+

1

N2
1
TKξ1 ≤ ε2H

M∑︂
j=1

αj = 1

αj ≥ 0, ∀j = 1, ...,M (4.9)
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where I(x) is a column vector defined as:

I(x) =

[︄
I

(︄
w⋃︂
i=1

gi (x, η1) > 0

)︄
, · · · , I

(︄
w⋃︂
i=1

gi (x, ηM) > 0

)︄]︄⊤

Notably, as mentioned in [143], the problem (4.9) is strictly feasible while expansion

points contain collected sample points, i.e. {ξj}Nj=1 ⊆ {ηj}
M
j=1.

The first inequality constraint in problem (4.9) can be rewritten as a second-order cone

constraint, and then problem (4.9) can be reformulated as a second-order cone programming

(SOCP) problem which is given as:

max
α

I(x)Tα

s.t.

⎡⎢⎢⎢⎣
Rα

1

N
1
TKT

ηξα

1

N
1
TKT

ηξα

⎤⎥⎥⎥⎦−
⎡⎢⎢⎢⎢⎣

⊬
1

2N2
1
TKξ1−

ε2H
2

+
1

2
1

2N2
1
TKξ1−

ε2H
2
− 1

2

⎤⎥⎥⎥⎥⎦ ∈ LM+2

Iα ∈ RM
+

1
Tα = 1 (4.10)

where LM+2 denotes the (M +2)-dimension Lorenz cone. ⊬ is a column zero vector and I is

the identity matrix.

Next, based on the conic duality, the dual formulation of the above SOCP is given as:

min
ψ,ϕ,ρ,ν

− ν −
(︃

1

2N2
1
TKξ1−

ε2H
2

+
1

2

)︃
ϕ1 −

(︃
1

2N2
1
TKξ1−

ε2H
2
− 1

2

)︃
ϕ2

s.t. 1ν +RTψ +
1

N
Kηξ1ϕ1 +

1

N
Kηξ1ϕ2 + ITρ = −I(x)

∥ψ∥22 + ϕ2
1 ≤ ϕ2

2

ρj ≥ 0, ∀j = 1, ...,M (4.11)

where ψ, ϕ1, ϕ2, ρ, and ν are dual variables. Notably, since ρ in the above model is non-

negative and only exists in the equality constraint, ρ can be removed from the above model.
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Therefore, the above model can be rewritten as:

min
ψ,ϕ,ν

− ν −
(︃

1

2N2
1
TKξ1−

ε2H
2

+
1

2

)︃
ϕ1 −

(︃
1

2N2
1
TKξ1−

ε2H
2
− 1

2

)︃
ϕ2

s.t. 1ν +RTψ +
1

N
Kηξ1ϕ1 +

1

N
Kηξ1ϕ2 ≤ −I(x)

∥ψ∥22 + ϕ2
1 ≤ ϕ2

2 (4.12)

Subsequently, by plugging the above dual problem into the DRCCP including (4.1a)-

(4.1b) to replace the DRJCC stated in (4.1b), and dropping the min operator, we get

min
x∈X ,ψ,ϕ,ν

f(x)

s.t. − ν −
(︃

1

2N2
1
TKξ1−

ε2H
2

+
1

2

)︃
ϕ1

−
(︃

1

2N2
1
TKξ1−

ε2H
2
− 1

2

)︃
ϕ2 ≤ δ

1ν +RTψ +
1

N
Kηξ1ϕ1 +

1

N
Kηξ1ϕ2 ≤ −I(x)

∥ψ∥22 + ϕ2
1 ≤ ϕ2

2 (4.13)

The column vector I(x) can be computed via different methods that convert the above

optimization problem into different formulations.

4.1.4.1 Indicator function-based formulation

The column vector I(x) in problem (4.13) can be computed based on the following mixed-

integer model:

I(x) = [ȳ1, ..., ȳM ]T (4.14a)

M(˜︁yij − 1) + ϵ ≤ gi(x, ηj) ≤M˜︁yij, ∀i = 1, ..., w, ∀j = 1, ...,M (4.14b)

ȳj − 1 ≤ (
w∑︂
i=1

˜︁yij)− 1 ≤ wȳj − 1, ∀j = 1, ...,M (4.14c)

ȳj ∈ {0, 1} , ∀j = 1, ...,M (4.14d)˜︁yij ∈ {0, 1} , ∀i = 1, ..., w, ∀j = 1, ...,M (4.14e)
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where w and M are numbers of constraints and expansion points, respectively. M is a big

number thatM≥ gi(x, ηj), ∀i = 1, ..., w, ∀j = 1, ...,M, ∀x ∈ X . ϵ is a small positive number

which is set as 10−8 in this work. ȳj and ˜︁yij are 0-1 integer variables, which are defined as:

˜︁yij = {︄0, for gi(x, ηj) ≤ 0

1, for gi(x, ηj) > 0 (4.15)

ȳj =

{︄
0, for gi(x, ηj) ≤ 0, ∀i = 1, ..., w

1, for gi(x, ηj) > 0, ∃i = 1, ..., w (4.16)

Inequality (4.14b) is used to identify whether the value of gi(x, ηj) is greater than 0, i.e. ˜︁yij =
1⇔ gi(x, ηj) > 0. Inequality (4.14c) is utilized to identify whether gi(x, ηj) > 0, ∃i = 1, ..., w,

i.e. ȳj = 1 ⇔
∑︁w

i=1 ˜︁yij ≥ 1 ⇔ gi(x, ηj) > 0, ∃i = 1, ..., w. Based on the aforementioned, the

problem (4.13) can be rewritten as the following mixed-integer program:

min
x,ψ,ϕ,ν,ȳ,ỹ

f(x)

s.t. − ν −
(︃

1

2N2
1
TKξ1−

ε2H
2

+
1

2

)︃
ϕ1

−
(︃

1

2N2
1
TKξ1−

ε2H
2
− 1

2

)︃
ϕ2 ≤ δ

1ν +RTψ +
1

N
Kηξ1ϕ1 +

1

N
Kηξ1ϕ2 ≤ −[ȳ1, ..., ȳM ]T

∥ψ∥22 + ϕ2
1 ≤ ϕ2

2

ȳj − 1 ≤ (
w∑︂
i=1

˜︁yij)− 1 ≤ wȳj − 1, ∀j = 1, ...,M

M(˜︁yij − 1) + ϵ ≤ gi(x, ηj) ≤M˜︁yij, ∀i = 1, ..., w, ∀j = 1, ...,M

ȳj ∈ {0, 1} , ∀j = 1, ...,M˜︁yij ∈ {0, 1} , ∀i = 1, ..., w, ∀j = 1, ...,M (4.17)

The kernel DRCCP based on the above formulation is named the indicator function-based

kernel DRCCP (IF-KDRCCP) in this work. If f(x) and gi(x) are linear functions, the above

optimization becomes a mixed integer quadratically constrained optimization (MIQCP)

problem which can be solved using off-the-shelf solver such as XPRESS or CPLEX.
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4.1.5 Kernel DRCCP with CVaR approximation

To further reduce the computational burden of the IF-KDRCCP in model (4.17), we use

the worst-case CVaR inequality to approximate the worst-case violation probability in (4.2).

The details about the worst-case CVaR approximation [73, 151].

The worst-case CVaR inequality for approximating inequality (4.2) can be expressed as:

max
P(ξ)∈P

CVaR

(︃
max
i=1,...,w

{gi(x, ξ)} , δ
)︃
≤ 0 (4.18a)

⇒ max
P(ξ)∈P

min
β∈R

{︄
β +

1

δ
EP(ξ)

(︄[︃
max
i=1,...,w

{gi(x, ξ)} − β
]︃+)︄}︄

≤ 0 (4.18b)

According to Theorem 2 of [151], we suppose that P is a compact convex set, and thus

maxP(ξ)∈P as well as minβ∈R in the above inequality can be switched:

min
β∈R

{︄
β +

1

δ
max
P(ξ)∈P

EP(ξ)

(︄[︃
max
i=1,...,w

{gi(x, ξ)} − β
]︃+)︄}︄

≤ 0 (4.19)

By addressing the distributional ambiguity of the above inequalities with the KME and

MMD, maxP(ξ)∈P EP(ξ)
(︁
[maxi=1,...,w {gi(x, ξ)} − β]+

)︁
in inequality (4.19) can be reformulated

as:

max
α

G(x)Tα

s.t. αTKηα− 2
1

N
αTKηξ1+

1

N2
1
TKξ1 ≤ ε2H

M∑︂
j=1

αj = 1

αj ≥ 0, ∀j = 1, ...,M (4.20)

where

G(x) =

[︄[︃
max
i=1,...,w

{gi(x, ξ1)} − β
]︃+

, ...,

[︃
max
i=1,...,w

{gi(x, ξM)} − β
]︃+]︄T

is a column vector. Notably, since G(x) does not dependent on α, it is deemed as a constant

vector in the above formulation.
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Because the only difference between problem (4.20) and problem (4.9) is G(x)T in the

objective function, the dual problem of problem (4.20) can be simply obtained according to

the steps for deriving formulation (4.12), which is given as:

min
ψ,ϕ,ν

− ν −
(︃

1

2N2
1
TKξ1−

ε2H
2

+
1

2

)︃
ϕ1 −

(︃
1

2N2
1
TKξ1−

ε2H
2
− 1

2

)︃
ϕ2

s.t. 1ν +RTψ +
1

N
Kηξ1ϕ1 +

1

N
Kηξ1ϕ2 ≤ −G(x)

∥ψ∥22 + ϕ2
1 ≤ ϕ2

2 (4.21)

Subsequently, after plugging model (4.21) into inequality (4.19), we have:

min
β∈R

{︃
β +

1

δ
min
ϕ,ν

[︃
−ν −

(︃
1

2N2
1
TKξ1−

ε2H
2

+
1

2

)︃
ϕ1 −

(︃
1

2N2
1
TKξ1−

ε2H
2
− 1

2

)︃
ϕ2

]︃}︃
≤ 0

1ν +RTψ +
1

N
Kηξ1ϕ1 +

1

N
Kηξ1ϕ2 ≤ −G(x)

∥ψ∥22 + ϕ2
1 ≤ ϕ2

2 (4.22)

After dropping the min operators in the first constraint and plugging the result into the gen-

eral DRCCP formulation including (4.1a)-(4.1b) to replace the DRJCC, the kernel DRCCP

with CVaR approximation can be written as:

min
x,β,ψ,ϕ,ν

f(x)

s.t. δβ − ν −
(︃

1

2N2
1
TKξ1−

ε2H
2

+
1

2

)︃
ϕ1 −

(︃
1

2N2
1
TKξ1−

ε2H
2
− 1

2

)︃
ϕ2 ≤ 0

1ν +RTψ +
1

N
Kηξ1ϕ1 +

1

N
Kηξ1ϕ2 ≤ −G(x)

∥ψ∥22 + ϕ2
1 ≤ ϕ2

2

G(x) =

[︄[︃
max
i=1,...,w

{gi(x, ξ1)} − β
]︃+

, ...,

[︃
max
i=1,...,w

{gi(x, ξM)} − β
]︃+]︄T

(4.23)
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To handle the expression of G(x), the above formulation can be rewritten as:

min
x,β,ψ,ϕ,ν,G

f(x)

s.t. δβ − ν −
(︃

1

2N2
1
TKξ1−

ε2H
2

+
1

2

)︃
ϕ1 −

(︃
1

2N2
1
TKξ1−

ε2H
2
− 1

2

)︃
ϕ2 ≤ 0

1ν +RTψ +
1

N
Kηξ1ϕ1 +

1

N
Kηξ1ϕ2 ≤ − [G1, ..., GM ]T

∥ψ∥22 + ϕ2
1 ≤ ϕ2

2

Gj ≥ 0, ∀j = 1, ...,M

Gj ≥ gi(x, ξj)− β, ∀i = 1, ..., w, ∀j = 1, ...,M (4.24)

If f(x) and gi(x, ηj) are convex in x, the above model would be convex since the employed

CVaR approximation is convexity-preserving. The kernel-based DRCCP based on model

(4.24) is named as the CVaR-based kernel DRCCP (KCVaR) in this research. If f(x)

and gi(x) are linear functions, the above optimization becomes a quadratically constrained

optimization (QCP) problem.

Note that both models (4.17) and (4.24) are compatible with general uncertain constraints

gi(x, ηj), and gi(x, ηj) can be non-linear, non-convex, etc. in uncertainty and decision vari-

ables. This is a significant superiority of the kernel DRCCP for the practical application,

compared to the existing Wasserstein DRCCP approaches which are limited to specific un-

certain constraint forms, e.g., affine in uncertainty [3], quadratic convex in uncertainty [74],

concave in uncertainty, or convex in uncertainty [75].

4.1.6 Kernel distributionally robust objective

Although this work focuses on distributionally robust chance constraints, the proposed

method can be adapted easily to address the distributionally robust objective function in

the distributionally robust optimization (DRO). The general formulation of a distributionally

robust objective is given as:

min
x∈X

max
P(ξ)∈P

EP(ξ)[f(x, ξ)] (4.25)
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The DRO is a minimization problem involving an inner worst-case expectation problem. The

DRO based on the kernel ambiguity set (kernel DRO) is given as:

min
x

max
α

M∑︂
j=1

αjf(x, ηj) (4.26a)

s.t.

⃦⃦⃦⃦
⃦
M∑︂
j=1

αjϕ(ηj)−
N∑︂
j=1

1

N
ϕ(ξj)

⃦⃦⃦⃦
⃦
H

≤ εH (4.26b)

M∑︂
j=1

αj = 1 (4.26c)

αj ≥ 0, ∀j = 1, ...,M (4.26d)

the above optimization problem can be rewritten as:

min
x

max
α

LTα

s.t. αTKηα− 2
1

N
αTKηξ1+

1

N2
1
TKξ1 ≤ ε2H

M∑︂
j=1

αj = 1

αj ≥ 0, ∀j = 1, ...,M (4.27)

where L is a column vector: L = [f(x, η1), ..., f(x, ηM)]. We use the dual problem of the

inner maximization problem and merge the min operators. Then, we can obtain the tractable

formulation of the kernel distributionally robust optimization problem:

min
x,ψ,ϕ,ν

− ν −
(︃

1

2N2
1
TKξ1−

ε2H
2

+
1

2

)︃
ϕ1 −

(︃
1

2N2
1
TKξ1−

ε2H
2
− 1

2

)︃
ϕ2

s.t. 1ν +RTψ +
1

N
Kηξ1ϕ1 +

1

N
Kηξ1ϕ2 ≤ −[f(x, η1), ..., f(x, ηM)]

∥ψ∥22 + ϕ2
1 ≤ ϕ2

2 (4.28)

If f(x, η) is linear in x, then the resulting model is a SOCP problem which is readily

solvable using off-the-shelf solver.
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4.1.7 Numerical example

The presented IF-KDRCCP (model (4.17)) and KCVaR (model (4.24)) approaches are ap-

plied to a numerical joint chance-constrained example taken from [14], which is given as:

min
x1,x2

x1 + x2 (4.29a)

s.t. Pr

⎧⎨⎩ ξ1x1 + x2 ≥ 7

ξ2x1 + x2 ≥ 4

⎫⎬⎭ ≥ 1− δ (4.29b)

x1, x2 ≥ 0 (4.29c)

The random parameters ξ1 and ξ2 follow uniform distributions in [1,4] and [ 1
3
, 1], respectively.

The analytical solution to this problem is available:⎧⎪⎪⎨⎪⎪⎩
x∗1 =

18

9 + 8(1− δ)
, x∗2 =

2(9 + 28(1− δ))
9 + 8(1− δ)

for δ ∈ [0.5, 1]

x∗1 =
9

11− 9(1− δ)
, x∗2 =

41− 36(1− δ)
11− 9(1− δ)

for δ ∈ [0, 0.5]

Note that δ in this section is set to be 0.1. Thus, the true solution of the problem is

x∗1 = 3.1034 and x∗2 = 2.9655.

As the comparisons to the proposed approaches, the CVaR-based Wasserstein DRCCP

(WCVaR) and the CVaR-based Wasserstein DRCCP under the Bonferroni approximation

(WCVaR-B) are also applied to this example. The WCVaR employed for this example uses

model (A40) in Appendix, and the related details are explained in A3.1. While using the

WCVaR-B, the joint chance constraint in (4.29b) is decomposed into two individual chance

constraints, and the violation tolerance δ is distributed equally to the two individual chance

constraints, i.e., the violation tolerance for each individual chance constraint is 0.05. Both

individual chance constraints are under the Wasserstein ambiguity set. The WCVaR-B

employed in this example uses model (21) presented in [73]. While solving this numerical

example with the DRCCP methods, we assume that we do not have prior knowledge about

the bounds of the uncertainty support. Accordingly, while using the Wasserstein-based

DRCCP methods, we employ the above-mentioned models that do not consider information

of uncertainty support bounds.
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Since the objective and constraint functions in this example are linear, the problem-

solving through IF-KDRCCP, KCVaR,WCVaR, andWCVaR-B can be addressed as MIQCP,

QCP, QCP, and QCP problems, respectively. All the MIQCP and QCP problems in this

research are solved by using XPRESS in GAMS.

The studied example is solved with different sample sizes and different ambiguity set

radius sizes (ASRS, which is εH or εW ). With respect to a certain sample size and ASRS,

the problem-solving based on each approach is conducted 100 times based on 100 different

sample sets with the same sample size.

For the numerical experiment in this section, we assume that we already have a sample set

individually containing 80 samples of ξ1 and ξ2. Subsequently, we can generate the sampled

support points for the IF-KDRCCP and the KCVaR based on the 80-sample set according

to the following steps:

1. Calculate the means (µ1 and µ2) and the standard deviations (σ1 and σ2) of ξ1 and ξ2

in the mentioned 80-sample set.

2. Individually select 10 uniformly distributed grid points from the ranges of [µ1 − 2σ1, µ1 + 2σ1]

and [µ2 − 2σ2, µ2 + 2σ2].

3. Randomly shuffle both sets of the grid points and concatenate them together to be the

set ζ.

We use the same set of sampled support points ζ for all the optimizations based on the kernel-

based methods. With the same set of sampled support points, we examine the performance of

the kernel-based approaches with respect to different real sample sizes and different ASRSs.

In this numerical example, the IF-KDRCCP and the KCVaR approaches are implemented

based on the following universal kernels:

Gaussian kernel: k(ξ, ξ0) = exp
(︁
−γ ∥ξ − ξ0∥22

)︁
, γ > 0

Laplacian kernel: k(ξ, ξ0) = exp (−γ ∥ξ − ξ0∥1) , γ > 0

Rational quadratic kernel: k(ξ, ξ0) =
(︁
∥ξ − ξ0∥22 + c2

)︁−b
, b > 0, c > 0

Based on experiments for this numerical example, changing hyper-parameters in these kernels

(γ, c, b) would not significantly influence the optimal solution. Hence, γ in both Gaussian and
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Laplacian kernels are determined using the median heuristic [152] based on the expansion

points composed of sample support points (grid points) and the real samples. c and b in the

rational quadratic kernel are simply set to be 1 and 1.5, respectively.

4.1.7.1 Effect of sample size and ambiguity set size

According to the above setting, the results obtained from the different DRCCP approaches

are shown in Figures 4.1-4.6, where the ASRSs and the sample sizes in the ranges of 0.005 ∼
0.02 and of 20 ∼ 80, respectively. Note that the JCSPs are calculated through the sample

average approximation (SAA) with 104 samples.

Figure 4.1: Medians of the obtained optimal objectives with respect to the 5th percentiles
of the corresponding JCSPs, based on different ASRSs. The markers in each line

correspond to sample sizes equal to 20, 40, 60, and 80 in order from left to right. The
results from the IF-KDRCCP and the KCVaR are based on the Gaussian kernel. The dash

line denotes the target JCSP value of 0.9.
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Figure 4.2: Medians of the obtained optimal objectives with respect to the 5th percentiles
of the corresponding JCSPs, based on different ambiguity set radius sizes (εH or εW ). The
markers in each line correspond to sample sizes equal to 20, 40, 60, and 80 in order from

left to right. The results from the IF-KDRCCP and the KCVaR are based on the
Laplacian kernel. The dash line denotes the target JCSP value of 0.9.
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Figure 4.3: Medians of the obtained optimal objectives with respect to the 5th percentiles
of the corresponding JCSPs, based on different ambiguity set radius sizes (εH or εW ). The
markers in each line correspond to sample sizes equal to 20, 40, 60, and 80 in order from
left to right. The results from the IF-KDRCCP and the KCVaR are based on the rational

quadratic kernel. The dash line denotes the target JCSP value of 0.9.

We have the following observations from Figures 4.1-4.3

• The IF-KDRCCP is less conservative than the KCVaR approximation under a fixed

ASRS, regardless of the kernel selection.

• Under the same condition, the Laplacian kernel leads to less conservative solution than

the other kernels.

• The WCVaR-B is always the more conservative approach. The Bonferroni approxima-

tion used in the WCVaR-B is not tight for approximating the original JCC. This leads

to overly conservative decisions [3].

• In general, a DRCCP method attains larger objective values as the sample size in-

creases. This attributes to the more extreme scenarios in the larger data set. On the

other hand, a larger sample size leads to a reference distribution that is closer to the

true distribution, hence the ambiguity set is more inclusive of the true distribution.

Therefore, the solution conservativeness of a DRCCP approach might first increase and
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then decrease with the increased sample size, as observed from the green lines and the

red lines in Figures 4.2-4.3.

• Finally, while the radius of kernel ambiguity set and the Wasserstein ambiguity set is

not directly comparable, we can see that the ideal solution is at the bottom right each

figure. Hence, we can check the relative position of the curves to compare the kernel

DRCCP and Wasserstein DRCCP methods. From this point of view, the IF-KDRCCP

dominates other methods.

Figure 4.4: Medians of the obtained optimal objectives with respect to the 5th percentiles
of the corresponding JCSPs, based on different sample sizes. The markers in each line
correspond to ambiguity set radius sizes equal to 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06,
0.07, 0.08, and 0.09 in order from left to right. The results from the IF-KDRCCP and the
KCVaR are based on the Gaussian kernel. The dash line denotes the target JCSP value of

0.9.
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Figure 4.5: Medians of the obtained optimal objectives with respect to the 5th percentiles
of the corresponding JCSPs, based on different sample sizes. The markers in each line
correspond to ambiguity set radius sizes equal to 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07,
0.08, 0.09, and 0.1 in order from left to right. The results from the IF-KDRCCP and the
KCVaR are based on the Laplacian kernel. The dash line denotes the target JCSP value of

0.9.
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Figure 4.6: Medians of the obtained optimal objectives with respect to the 5th percentiles
of the corresponding JCSPs, based on different sample sizes. The markers in each line
correspond to ambiguity set radius sizes equal to 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06,
0.07, 0.08, 0.09, and 0.1 in order from left to right. The results from the IF-KDRCCP and
the KCVaR are based on the rational quadratic kernel. The dash line denotes the target

JCSP value of 0.9.

Figures 4.4-4.6 are used to analyze the performance of the different DRCCP methods

based on the same sample size and the different ASRSs. Note that these figures only show

the results based on the sample sizes of 10, 20, and 30. While the curves are not separated

clearly, in general, the KCVaR and WCVaR demonstrate competitive superior performance.

In the meantime, the results from the WCVaR-B generally correspond to most conservative

solutions.

4.1.7.2 Tuning of ambiguity set size

In practice, we often face a fixed size of sample set. In such situation, we can tune the

ASRSs of the ambiguity set to get least conservative solution that satisfies the JCSP target.

Here, we tune the ambiguity set radius of different DRCCP methods to make their 5th

percentiles of JCSPs of the obtained optimal solutions to be the target value of 0.9. The

corresponding results are shown in Tables 4.1 and 4.2. In these tables, the optimal result

and the corresponding tuned ASRS based on a certain sample size and a certain DRCCP
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approach are obtained through the following steps:

1. Generate 104 realizations of [ξ1, ξ2] as the validation data set.

2. Take an initial guess of the ASRS. In this numerical example, it is selected from the

range of 0.0001 to 0.1.

3. Solve the the numerical example 100 times based on 100 different sample sets with the

same sample size.

4. Calculate the JCSPs of the 100 optimal solutions obtained from the previous step,

through the SAA based on the validation data set.

5. Find the J-th smallest value of the JCSPs calculated from the previous step (Jth

percentile of the JCSPs). This value is denoted as QJ . J is a user-defined value, and

it is set to be 5 in this example.

6. Change the value of the ASRS.

7. Repeat steps 3 ∼ 6 until QJ is close to 1−δ (QJ should be ≥ 1−δ and 1−δ is equal to
0.9 in this example). Then, the corresponding value of the ASRS is the tuned ASRS.

8. Based on the tuned ASRS, solve the numerical example 100 times with respect to 100

different sample sets with the same sample size.

Table 4.1: Medians of optimal objectives from different DRCCP methods with respect to
different sample sizes.

Sample size
Gaussian Laplacian Rational quadratic

WCVaR WCVaR-B
IF-KDRCCP KCVaR IF-KDRCCP KCVaR IF-KDRCCP KCVaR

10 7 7 7 7 7 7 7 7

20 6.9324 6.8239 6.8881 6.6840* 6.8881 6.7420 7 7

30 6.8577 6.7090 6.8326 6.6354* 6.8577 6.6855 6.8053 6.8321

40 6.7858 6.5318 6.8286 6.4999* 6.8116 6.5373 6.6504 6.7190
a Each value is the median obtained from the 100 optimizations based on 100 different sample sets.
b The smallest objective with respect to a fixed sample size is marked by *.
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Table 4.2: Tuned ASRSs corresponding to the results shown in Table 4.1.

Sample size
Gaussian Laplacian Rational quadratic

WCVaR WCVaR-B
IF-KDRCCP KCVaR IF-KDRCCP KCVaR IF-KDRCCP KCVaR

10 samples 0.0630 0.0300 0.1000 0.0690 0.095 0.0610 0.0610 0.0210

20 samples 0.0400 0.0115 0.0744 0.0160 0.0476 0.0120 0.0185 0.0070

30 samples 0.0300 0.0036 0.0600 0.0077 0.0350 0.0048 0.0085 0.0030

40 samples 0.0147 0.0001 0.0483 0.0012 0.0200 0.0009 0.0030 0.0006

According to Table 4.1, with respect to a sample size, the KCVaR based on the Laplacian

kernel generally achieves the smaller objectives than based on the other kernels. Furthermore,

the KCVaR based on the Laplacian kernel always achieves the smallest objective than the

other DRCCP methods with respect to a fixed sample size. In addition, the KCVaR always

attains the least conservative objective among all the DRCCP methods with respect to a

certain sample size, regardless of the kernel selection. Thus, after tuning the ASRSs, the

KCVaR based on any kernel function can outperform the other DRCCP methods. On the

other hand, the kernel selection does not have consistent influence to the IF-KDRCCP.

Finally, for all the employed DRCCP methods, the obtained objective values decrease with

the incremental sample size since more data samples would bring more information to enable

a DRCCP method obtaining the solution closer to the true solution. This statement has

also been evidenced in [153].

The average solution times of different DRCCP methods are shown in Table 4.3. Based

on the different kernels, the KCVaR always has higher computational efficiency than the IF-

KDRCCP because the KCVaR model does not contain integer variables which are involved

in the IF-KDRCCP. Both WCVaR and WCVaR-B have higher computational efficiency than

the kernel-based methods. Moreover, the WCVaR has the highest computational efficiency

among all the DRCCP methods.

Table 4.3: Average solution times of different DRCCP methods.

Gaussian Laplacian Rational quadratic
WCVaR WCVaR-B

IF-KDRCCP KCVaR IF-KDRCCP KCVaR IF-KDRCCP KCVaR

Average

solution time (s)
2.0412 0.7673 1.6595 0.7102 2.0782 0.7624 0.4443 0.5996

a For each DRCCP approach, the average solution time is calculated based on 100 optimizations.
b Each optimization is based on a set of 40 samples.
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Apart from the above discussion, the kernel-based methods have an additional advantage

over the Wasserstein-based DRCCPs, which is not shown in the above discussion. Unlike the

Wasserstein-based DRCCPs, the kernel-based approaches can be applied to general forms

of uncertain constraints. To demonstrate this, the kernel-based methods are applied to a

chemical process optimization involving non-linear and non-convex uncertain constraints in

the following case study.

4.1.8 Case study

In this section, the proposed kernel-based DRCCP approaches are applied to a chemical

process optimization problem under uncertainty. This process optimization problem is taken

from [154], and the chemical process is shown in Figure 4.7.

CA0, F0, T0

V, T1

F1, T2

Fw, Tw1

Tw2

CSTR

Pump

Heat exchanger

CA1

Figure 4.7: Flowsheet of the process studied in the case study

In the process studied, the reaction A −→ B takes place in the CSTR. One of the

outlet streams of the CSTR is pumped to a heat exchanger to be cooled down, and then it

is recycled to the CSTR. This chemical process is modeled by the following mathematical

119



formulation:

XA =
V kRCA0e

− E
RT1

F0 + V kRCA0e
− E

RT1

(4.30a)

Q = AU (T1 − Tw2) + (T2 − Tw1)
2

(4.30b)

T2 =
2(−∆H)F0XA

AU
− 2F0ρcp(T1 − T0)

AU
− (T1 − Tw2) + Tw1 (4.30c)

F1 =
Q

ρcp(T1 − T2)
(4.30d)

Fw =
Q

ρwcpw(Tw2 − Tw1)
(4.30e)

CA0, F0, and T0 are the concentration of A (kmol/m3), flowrate (m3/h), and temperature (K)

in the feed flow, respectively. V , T1, and CA1 are the volume (m3), operating temperature

(K), and concentration of A (kmol/m3) in the CSTR, respectively. Fw, Tw1, and Tw2 are the

flowrate (m3/h), inlet temperature (K), and outlet temperature (K) of the cooling stream,

respectively. F1 and T2 are the flowrate (m3/h) and temperature (K) in the recycled flow,

respectively. Moreover, XA, kR, E, R, Q, A, U , ∆H, ρ, cp, ρw, and cpw are the conversion

rate of A in the CSTR, kinetic coefficient of the reaction equation (m3/(kmol h)), activation

energy of the reaction (J/kmol), ideal gas constant (J/(kmol K)), amount of heat (kJ),

heat transfer area in the heat exchanger (m2), overall heat transfer coefficient (kJ/(m2 h

K)), reaction heat (kJ/kmol), density of the recycled stream (kg/m3), heat capacity of the

recycled stream (kJ/(kg K)), density of water (kg/m3), and heat capacity of water (kJ/(kg

K)), respectively. Constant parameters involved in the process model are listed in Table

4.4.

Table 4.4: Deterministic parameters in the process model

Parameter Value

ρcp, kJ/(m
3K) 167.4

ρwcpw, kJ/(m
3K) 4.190

CA0, kmol/m3 32.04

E/R, K 560

∆H, kJ/kmol -23260

In this case study, F0, T0, Tw1, kR, and U are uncertain parameters, which follow different
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Gaussian distributions with the parameters listed in Table 4.5.

Table 4.5: Means and standard deviations of uncertain parameters

Parameter Mean Standard deviation

F0, m
3/h 45.36 0.1

T0, K 333 0.02

Tw1, K 300 0.03

kR, m
3/(kmol h) 9.81 0.1

U , kJ/(m2 h K) 1635 0.1

The studied process optimization is a joint chance-constrained problem given as:

min
V,A,T1,Tw2

f = 691.2V 0.7 + 873.6A0.6 + 1.76Fw + 7.056F1 (4.31a)

s.t. Equations (4.30a) to (4.30e)

Pr

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.9−XA ≤ 0

T2 − T1 ≤ 0

Tw1 − T2 + 11.1 ≤ 0

Tw1 − Tw2 ≤ 0

T2 − 389 ≤ 0

311− T2 ≤ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
≥ 1− δ (4.31b)

Tw2 − T1 + 11.1 ≤ 0 (4.31c)

311 ≤ T1 ≤ 389 (4.31d)

301 ≤ Tw2 ≤ 355 (4.31e)

The objective function f represents the overall cost of the studied process, including the

capital cost and the operational cost. The unit of the objective function f is $/year [155].

The violation probability level δ is set to be 0.05 in this case study (the required JCSP is

0.95). For simplification, Fw and F1 in the objective function correlating with uncertainty

are computed based on the nominal scenario (all the uncertain parameters are at their

mean values). Notably, the uncertain constraints in 4.31b are nonlinear and non-convex in

uncertainty. According to the literature review in Section 4.1.1, the existing Wasserstein-

based DRCCP approaches can only be applied to the problems with uncertain constraints
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affine, quadratic convex, convex, or concave in uncertainty [4, 74, 75]. Therefore, the exist-

ing Wasserstein-based DRCCP approaches cannot handle the problem studied in this case

study. As a comparison to the presented kernel-based methods, we introduce the SAA-based

optimization model for handling the studied process optimization, which is given as:

min
V,A,T1,Tw2

f = 691.2V 0.7 + 873.6A0.6 + 1.76Fw + 7.056F1 (4.32a)

s.t. Equations (4.30a) to (4.30e)

1

N

N∑︂
j=1

I

(︄
w⋃︂
i=1

gi(V,A, T1, Tw2, ξj) > 0

)︄
≤ δ (4.32b)

Tw2 − T1 + 11.1 ≤ 0 (4.32c)

311 ≤ T1 ≤ 389 (4.32d)

301 ≤ Tw2 ≤ 355 (4.32e)

where N is the number of real samples. w is the number of the uncertain constraints, which is

equal to 6 in this case study. gi(V,A, T1, Tw2, ξj) denotes an uncertain constraint in (4.31b).

ξ is the vector involving uncertain parameters F0, T0, Tw1, kR, and U .

The indicator function can be addressed by using the same idea of the mixed-integer

model introduced in Section 4.1.4.1. Therefore, the above SAA-based optimization model

becomes a mixed-integer nonlinear programming (MINLP) model.

To show the impact of uncertainty on the optimal solution, the studied process op-

timization is solved deterministically based on the nominal scenario. When solving this

deterministic optimization, the joint chance constraint in (4.31b) is decomposed into 6

deterministic constraints. In addition, all variables depending on uncertainty are com-

puted based on the nominal scenario. This deterministic optimization is solved as a non-

linear programming (NLP) problem using KNITRO in GAMS. The obtained solution is:

V = 5.480,A = 7.199, T1 = 389, Tw2 = 355. The JCSP of this optimal solution is 50.19%

which is far away from the required value of 0.95. Therefore, to attain the solution satisfying

the constraints simultaneously with high confidence, the uncertainty involved in this process

optimization can not be ignored. In this case study, the JCSP of a solution is calculated via

the SAA mentioned in Section 4.1.7 based on 104 samples of the uncertain parameters, for

the testing purpose.

To investigate the general performance of the kernel-based methods and the SAA-based
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approach in this case study, the studied process optimization handled by a DRCCP method

is solved 100 times based on 100 different sample sets. Each set in the 100 sample sets

has N samples. The above process based on a DRCCP method is executed with respect

to different sample sizes N (N = 20, 30, 40, 50 in this case study). The studied process

optimization addressed through the IF-KDRCCP, KCVaR, and SAA-based approaches can

be solved as MINLP, NLP, and MINLP problems, respectively. All the MINLP and NLP

problems in this research are solved by using KNITRO in GAMS.

The 100-time problem-solving with respect to a kernel-based method and a sample size N ,

is based on the ASRS tuned through the following steps. Note that only one set of collected

samples is used in the following steps to make the following tuning method practical.

1. Take an initial guess of the ASRS. The ASRS is selected from the set {0.0001, 0.001, 0.01, 0.1, 1}.

2. Split the collected samples into K subsets (K is set to be 5 in this case study).

3. Select the first subset as the validation set.

4. Merge the remaining K − 1 subsets as the training set.

5. Implement the employed kernel-based DRCCP method on the training set.

6. Calculate the JCSP of the gained optimal solution through the SAA. The attained

JCSP is denoted as Q1.

7. Select the second subset as the validation set and repeat steps 4 ∼ 6 to get Q2.

8. Repeat the above procedure until QK is obtained.

9. Average out Q1 ∼ QK to obtain Q̄.

10. Change the value of the ASRS.

11. Repeat the above procedure over all the candidate values of the ASRS.

12. The ASRS corresponding to the Q̄ which is the closest to 1−δ (Q̄ should be ≥ 1−δ), is
selected for the employed kernel-based DRCCPmethod to execute the above-mentioned

100-time problem-solving. The tuning process is completed.
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In this case study, the sampled support points for the kernel-based methods are gener-

ated based on the same idea mentioned in Section 4.1.7. For this case study, 25 sampled

support points are generated through the mentioned method. Subsequently, we examine the

performance of the kernel-based DRCCP methods based on different sample sizes and the

same set of the produced sampled support points. By doing so, we can avoid the impacts

of the randomness of the sampled support points selection on the DRCCP performance, to

make the following result analysis simpler.

According to the above setting, the obtained optimal results based on the different DR-

CCP approaches and the different sample sizes are shown in Tables 4.6-4.8. To attain a

median value in Table 4.6, 100 optimizations should be completed via a DRCCP approach

based on a sample size and the corresponding tuned ASRS shown in Table 4.8. In addition,

the 100 optimizations would correspond to 100 JCSPs (reminder: each JCSP is calculated

via the SAA based on 104 samples for the test purpose in this case study.). The percentage

of the JCSPs ≥ 0.95 (the required value in this case study) among the 100 JCSPs (the

feasibility percentage) and the minimum JCSP among the 100 JCSPs (MJCSP) are impor-

tant bases for investigating the reliability of a DRCCP method. These values are shown in

Table 4.7, corresponding to the optimal results reported in Table 4.6.

According to Tables 4.6-4.7, the SAA-based method is always the least conservative with

the lowest feasibility percentage and MJCSP, with respect to a certain sample size. The SAA-

based method is the least conservative and the least reliable approach because it does not

consider the distributional ambiguity of uncertainty for enhancing the solution robustness.

One remark here is that the median of optimal objectives, the feasibility percentage, and

the MJCSP obtained from the SAA-based method increase with the incremental sample size

since the larger sample size could contain more extreme data leading to more conservative

solutions. As to the kernel-based methods, they can all achieve the feasibility percentages

≥ 95%. Thus, we can believe that the kernel-based DRCCP methods are reliable to obtain

feasible solutions with high confidence. Based on the similar performance on the solution

feasibility and the same sample size, the KCVaR always achieves lower objectives than

the IF-KDRCCP, regardless of the kernel selection. On the other hand, with respect to

different sample sizes, the kernel selection has no consistent impact on both IF-KDRCCP and

KCVaR with the tuned ASRSs. Notably, for both IF-KDRCCP and KCVaR, the objective

values decrease with the incremental sample size since a larger data set would bring more

information to enable a DRCCP method achieving the solution closer to the true solution.
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The average solution times of the different approaches are shown in Table 4.9. The

KCVaR is the most computationally efficient among all the methods because the KCVaR

model does not include the integer variables which are involved in both IF-KDRCCP and

SAA-based method.

Table 4.6: Medians of optimal objectives from different DRCCP methods with respect to
different sample sizes.

Sample size
Gaussian Laplacian Rational quadratic

SAA
IF-KDRCCP KCVaR IF-KDRCCP KCVaR IF-KDRCCP KCVaR

20 9848.93 9847.83 9851.71 9845.97 9848.66 9845.44 9824.62

30 9848.72 9846.25 9850.17 9844.43 9847.71 9844.16 9829.10

40 9847.82 9845.94 9848.03 9843.33 9847.69 9843.51 9831.41

50 9846.57 9842.38 9846.13 9842.34 9846.63 9842.42 9832.90

Table 4.7: Feasibility percentages and the minimum JCSPs corresponding to the optimal
results shown in Table 4.6.

Sample size
Gaussian Laplacian Rational quadratic

SAA
IF-KDRCCP KCVaR IF-KDRCCP KCVaR IF-KDRCCP KCVaR

20 96 / 90.04 95 / 88.04 96 / 90.23 95 / 87.74 96 / 89.56 95 / 87.65 23 / 72.39

30 96 / 90.23 95 / 89.05 96 / 90.41 95 / 87.62 96 / 90.01 95 / 87.49 43 / 78.90

40 96 / 90.11 95 / 89.04 96 / 90.17 95 / 87.02 96 / 90.01 95 / 87.34 43 / 79.55

50 96 / 90.14 95 / 88.82 96 / 90.07 95 / 88.63 96 / 90.19 95 / 88.96 50 / 85.13
a The percentage values in this table are based on %.
b A percentage value in the table is shown as:

feasibility percentage of the 100 optimizations / the minimum JCSP among the 100 JCSPs.

Table 4.8: Tuned ASRSs corresponding to the results shown in Table 4.6.

Sample size
Gaussian Laplacian Rational quadratic

IF-KDRCCP KCVaR IF-KDRCCP KCVaR IF-KDRCCP KCVaR

20 1 0.1 1 0.1 1 0.1

30 1 0.1 1 0.1 1 0.1

40 0.1 0.001 0.1 0.001 0.1 0.001

50 0.001 0.0001 0.001 0.0001 0.001 0.0001
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Table 4.9: Average solution times of different methods.

Gaussian Laplacian Rational quadratic
SAA

IF-KDRCCP KCVaR IF-KDRCCP KCVaR IF-KDRCCP KCVaR

Average

solution time (s)
11.6102 0.8737 10.3715 0.8302 11.6749 0.8859 6.0439

a For each DRCCP approach, the average solution time is calculated based on 100 optimizations.
b Each optimization is based on a set of 50 samples.

4.2 Distributionally Robust Chance-Constrained Op-

timization with Deep Kernel Ambiguity Set

4.2.1 Introduction

The kernel DRCCP method presented in Section 4.1 can be combined with a neural network-

like deep kernel to enhance its performance. The deep kernel is called the multi-layer arc-

cosine kernel (MLACK) [156]. The MLACK possesses a deep architecture, which mimics the

computation in a multi-layer deep neural network with infinite hidden and output units [157].

Compared to the shallow kernels such as the linear, polynomial, and Gaussian kernels, the

MLACK with the deep framework can extract more complex structures and generate more

efficient representations by exploiting raw features [158]. Therefore, the MLACK can outper-

form the shallow kernels for producing representations of distributions in the kernel ambiguity

set, which can further enhance the performance of the kernel-based DRCCP approach.

The research of the kernel DRCCP based on the deep kernel is organized as follows.

Section 4.2.2 provides a comprehensive explanation of MLACK, while Section 4.2.3 demon-

strates the superiority of the deep kernel-based DRCCP over the Gaussian kernel-based

DRCCP, by applying both to optimize a nonlinear alkylation process involving uncertainty.

4.2.2 Multi-layer arc-cosine kernel

The multi-layer arc-cosine kernel (MLACK) is the multi-fold composition of arc-cosine ker-

nels (ACKs) [156]. The n-th order ACK (kn) which is a positive definite kernel, can be
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formulated as:

kn(x, y) =
1

π
∥x∥n ∥y∥n Jn(θ)

Jn(θ) = (−1)n(sinθ)2n+1

(︃
1

sinθ

∂

∂θ

)︃n(︃
π − θ
sinθ

)︃
θ = cos−1

(︃
x · y
∥x∥ ∥y∥

)︃
(4.33)

For simplification, we only consider n = 0, 1 in this study:

J0(θ) = π − θ

J1(θ) = sinθ + (π − θ)cosθ

ACKs have the following properties: 1) while n = 0, the ACK maps inputs to a unit hyper-

sphere in a feature space, with k0(x, x) = 1; 2) while n = 1, the ACK preserves the norm

of inputs, with k1(x, x) = ∥x∥2; 3) while n > 1, ACKs expand the dynamic range of inputs,

with kn(x, x) ∼ ∥x∥2n [156].

Furthermore, ACKs have the recursive property that makes the multi-fold composition

of ACKs a more powerful new kernel [159]. The multi-fold composition of ACKs can be

written as:

kℓ+1
n (x, y) =

1

π

[︁
kℓn(x, x)k

ℓ
n(y, y)

]︁n/2
Jn
(︁
θℓn
)︁

θℓn = cos−1
(︂
kℓn(x, y)

[︁
kℓn(x, x)k

ℓ
n(y, y)

]︁−1/2
)︂

(4.34)

The above expression is the formulation of the MLACK. ℓ is the layer index. The base case

k1n is calculated using (4.33). Notably, n can be different with respect to different ℓ. The

MLACK computes the inner product between the output vectors produced from a multi-layer

neural network. This neural network has infinite neurons in hidden and output layers [160].

A schematic diagram for illustrating the concept of the MLACK is shown in Figure 4.8. Φ(x)

and Φ(y) are respectively nonlinear transforms of inputs x and y through the multi-layer

neural network. In this neural network, there are ℓ + 1 layers including the hidden and

output layers. The ℓ + 1-th layer is the output layer. The order n at each layer determines

the activation function. For n = 0 and n = 1, the associated activation functions are the

step function and the rectified linear unit (ReLU) function, respectively [161]. Notably, the

kernel function used for the kernel ambiguity set is to compute the similarity between two

127



Figure 4.8: Schematic diagram for illustrating the concept of the multi-layer arc-cosine
kernel (MLACK)

data points, and the similarity value is generally defined in [0, 1]. Therefore, the order n at

the output layer of the MLACK is set to be 0 in this work to ensure the MLACK output is in

[0, 1]. On the other hand, based on our previous computational experiments, setting orders

at hidden layers of the MLACK > 1 does not improve or even worsen the performance of

the kernel DRCCP. Accordingly, we only consider n = 0, 1 for all the layers of the MLACK

in this work.

The multi-fold compositions of linear, polynomial, and Gaussian kernels cannot generate

more powerful new kernels since these kernels are shallow kernels without the capability of

bringing deep architectures [158]. On the contrary, the performance of the MLACK could

be improved by increasing the number of layers of the kernel composition [159]. A deep

MLACK could capture more complex structures of uncertainty distributions and produce

more efficient representations of uncertainty distributions in the RKHS, compared to the

shallow kernels. Therefore, the performance of the DRCCP under the kernel ambiguity set

could be further enhanced by employing the MLACK.

According to the investigation on kernel DRCCP presented in Section 4.1, the CVaR-
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based kernel DRCCP (KCVaR) model in (4.24) exhibits significantly better computational

efficiency than the indicator function-based kernel DRCCP (IF-KDRCCP) model in (4.17).

Hence, in this research work, we have integrated the KCVaR model with the MLACK, which

is a simple process. The integration of KCVaR with MLACK involves the computation

of Gram matrices Kη, Kηξ, and Kξ using MLACK, followed by the incorporation of the

calculated Gram matrices into the KCVaR model in (4.24). We can use the same procedure

for combining the IF-KDRCCP model with the MLACK.

4.2.3 Case study

In this section, the KCVaR models based on the MLACK (KCVaR-M) and the Gaussian

kernel (KCVaR-G) are applied to the alkylation process optimization under uncertainty.

This case study is modified from Example 14.3 in [162] by adding random parameters to

the original process model. The simplified flowsheet of the alkylation process is shown in

Figure 4.9. The reactor feeds contain an olefin stream (100% butane), a pure isobutane

recycle stream, a 100% isobutane make-up stream, and an acid catalyst. The spent acid is

removed from the reactor. The product stream from the reactor is separated into isobutane

and alkylate product using a fractionator.

The objective of the studied optimization is to maximize the total profit based on the

alkylate product value ($0.063/octane-barrel), olefin feed cost ($5.04/barrel), isobutane re-

cycle cost ($0.035/barrel), acid addition cost ($10.00/per thousand pounds), and isobutane

makeup cost ($3.36/barrel).
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Figure 4.9: Flowsheet of the studied alkylation process

The studied optimization problem is formulated as (4.35a)-(4.35l). x1 ∼ x10 are decision

variables as explained in Table 4.10. Each of them is associated with some physical bounds.

The volumetric balance for the reactor is defined in (4.35g). The alkylate yield x4 can be

expressed as the combination of the olefin feed x1 and the isobutane makeup x5, minus the

volumetric shrinkage, which is 0.22 of the alkylate yield. Thus, we have x4 = x1+x5−0.22x4,
which can be rearranged to obtain x5 = 1.22x4 − x1. To calculate the acid strength x6, we

use (4.35h), which assumes that the added acid (with an acid addition rate of x3) has an

acid strength of 98%. The external isobutane-to-olefin ratio x8 is determined by dividing the

sum of the isobutane recycle x2 and the isobutane makeup x5 by the olefin feed x1, as given

in (4.35i).
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Table 4.10: Variables of the optimization model

Symbol Variable Unit

x1 Olefin feed barrels/day

x2 Isobutane recycle barrels/day

x3 Acid addition rate thousands of pounds/day

x4 Alkylate yield barrels/day

x5 Isobutane makeup barrels/day

x6 Acid strength weight percent

x7 Motor octane number –

x8 External isobutane-to-olefin ratio –

x9 Acid dilution factor –

x10 F-4 performance number –
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max
x

0.063x4x7 − 5.04x1 − 0.035x2 − 10x3 − 3.36x5 (4.35a)

s.t. Pr

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x1(ξ1 + ξ2x8 − ξ3x28)−
9

10
x4 ≥ 0

−x1(ξ1 + ξ2x8 − ξ3x28) +
10

9
x4 ≥ 0

−ξ4 + ξ5x7 −
9

10
x10 ≥ 0

ξ4 − ξ5x7 +
10

9
x10 ≥ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
≥ 0.9 (4.35b)

86.35 + 1.098x8 − 0.038x28 + 0.325(x6 − 89)− 9

10
x7 ≥ 0 (4.35c)

− 86.35− 1.098x8 + 0.038x28 − 0.325(x6 − 89) +
10

9
x7 ≥ 0 (4.35d)

35.82− 0.222x10 −
9

10
x9 ≥ 0 (4.35e)

− 35.82 + 0.222x10 +
10

9
x9 ≥ 0 (4.35f)

x5 = 1.22x4 − x1 (4.35g)

x6 =
98000x3

x4x9 + 1000x3
(4.35h)

x8 =
x2 + x5
x1

(4.35i)

0 ≤ x1 ≤ 2000, 0 ≤ x2 ≤ 16000, 0 ≤ x3 ≤ 120, 0 ≤ x4 ≤ 5000 (4.35j)

0 ≤ x5 ≤ 2000, 85 ≤ x6 ≤ 93, 90 ≤ x7 ≤ 95, 3 ≤ x8 ≤ 12 (4.35k)

0.01 ≤ x9 ≤ 4, 145 ≤ x10 ≤ 162 (4.35l)

The term x1(ξ1+ξ2x8−ξ3x28) in the first two constraints of the joint chance constraint (4.35b),

is the regression model for computing x4 based on x1 and x8. The term −ξ4 + ξ5x7 in the

last two constraints of the joint chance constraint, is the regression model for computing

x10 based on x7. The inequalities in the joint chance constraint limit the percentage errors

between the regression model outputs and the true values to the range 0.9 ∼ 1.11. ξ1 ∼ ξ5

are uncertain parameters in the regression models. They either follow normal distributions

ξ1 ∼ N(1.12, 0.0282), ξ4 ∼ N(133, 3.3252), or uniform distributions ξ2 ∼ U(0.1277, 0.1356),

ξ3 ∼ U(0.0065, 0.0069), ξ5 ∼ U(2.91, 3.09). Inequalities (4.35c)-(4.35f) involve the regres-

sion model 86.35 + 1.098x8 − 0.038x28 + 0.325(x6 − 89) for x7, and the regression model

35.82 − 0.222x10 for x9. This optimization problem is a nonlinear joint chance-constrained

optimization. All the settings for the studied process optimization problem are adopted
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from [162], except for the percentage error tolerances of the regression models and the un-

certain parameters.

The studied problem is handled by the KCVaR-G and KCVaR-M. The problem addressed

by the KCVaR-G or KCVaR-M is solved 100 times based on 100 different N -sample sets,

with the hyper-parameters tuned through Algorithm 1. The above 100-time problem-solving

procedure is similar to the 100-time problem-solving procedure mentioned in Section 4.1.7.

A sample supported point for [ξ1, ξ2, ξ3, ξ4, ξ5] is denoted as
[︁
ξ
′
1, ξ

′
2, ξ

′
3, ξ

′
4, ξ

′
5

]︁
, respectively. ξ

′
1,

ξ
′
2, ξ

′
3, ξ

′
4, and ξ

′
5 are evenly selected from the ranges of 1.0486 to 1.1914, 0.1277 to 0.1356,

0.0065 to 0.0069, 124.5212 to 141.4787, and 2.91 to 3.09, respectively. This selection method

of sampled support points can approximately cover the uncertainty domain.

Algorithm 1 Tuning the hyper-parameters for DRCCP

1: Input: εH ∈ [0.0001, 0.1] : kernel ambiguity set radius size

Y ∈ [10, 20, 30, 40, 50] : # of sampled support points

L ∈ Z>0 : # of layers in the MLACK

nℓ ∈ {0, 1} : the order in each layer of the MLACK

tol : a positive user-defined tolerance

2: Data: 100 different N -sample sets of [ξ1, ξ2, ξ3, ξ4, ξ5] ,

a 104-sample set of [ξ1, ξ2, ξ3, ξ4, ξ5] as the validation set SV
3: Take an initial guess of the hyper-parameters.
4: while QJ − (1− δ) ≥ tol ∨QJ ≤ (1− δ) do
5: Change the values of hyper-parameters if the iteration # ≥ 2.
6: Solve the optimization problem by using a DRCCP method 100 times based on 100

different N -sample sets.
7: Calculate the JCSPs of the 100 optimal solutions obtained from the previous step,

through the sample average approximation [14] based on SV .
8: Find the J-th largest value of the JCSPs from the previous step. This value is denoted

as QJ .
9: end while
10: Output: The tuned hyper-parameters

The obtained optimal results and the corresponding tuned hyper-parameters are shown

in Tables 4.11-4.12, respectively.
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Table 4.11: Means and standard deviations of optimal objectives from different methods
with respect to different sample sizes

Sample size N KCVaR-G KCVaR-M

mean / standard deviation

20 2324.37 / 95.90 2350.16 / 136.84

30 2325.99 / 117.23 2352.01 / 125.63

40 2326.46 / 129.05 2353.84 / 125.51

50 2331.92 / 118.18 2355.18 / 121.83

Table 4.12: Tuned hyper-parameters

Sample size N KCVaR-G KCVaR-M

εH / Y / [n1, ..., nℓ]

20 0.0001 / 20 / - 0.0009 / 20 / [0 1 1 1 1 0]

30 0.0001 / 20 / - 0.0006 / 20 / [0 1 1 1 1 0]

40 0.0001 / 20 / - 0.0007 / 20 / [0 1 1 1 1 0]

50 0.0001 / 20 / - 0.0002 / 20 / [0 1 1 1 1 0]
a [n1, ..., nℓ] are the orders of 1st ∼ ℓth MLACK layers, respectively.

According to Table 4.11, the KCVaR-M can always achieve better solutions than the

KCVaR-G (this case study is a maximization problem where a larger objective is deemed

more desirable). The results indicate that the performance of the kernel DRCCP approach

is better when using MLACK compared to the traditional Gaussian kernel. This can be

explained by the fact that MLACK with its deep architecture can capture more intricate

structures of uncertainty distributions and create more effective representations of uncer-

tainty distributions in the RKHS, compared to the shallow Gaussian kernel.

4.3 Conclusions

The DRCCP based on the kernel ambiguity set is proposed in Section 4.1. The kernel

ambiguity set is established via the kernel mean embedding and MMD between distributions.
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The presented kernel-based DRCCP can be formulated as two different models. The first

one is a mixed-integer model involving the indicator function for addressing the JCSP in

the JCC, namely the IF-KDRCCP. The second one is more computationally efficient, which

is a continuous model employing the CVaR approximation to approximate the indicator

function, namely the KCVaR.

The advantages of the kernel ambiguity set-based DRCCP have been demonstrated

through examples. After tuning the ASRSs, the KCVaR can outperform the IF-KDRCCP,

in the aspects of both solution quality and computational efficiency. Moreover, for dealing

with larger nonlinear optimization problems, the KCVaR may be more suitable than the

IF-KDRCCP since it would be very time-consuming to solve larger nonlinear problems by

using the mixed-integer IF-KDRCCP. The presented kernel-based DRCCP approaches are

applicable to general forms of uncertain constraints without any assumption on the con-

straints. This is a remarkable advantage over the existing DRCCP methods which require

non-trivial assumptions for different forms of uncertain constraints.

The kernel DRCCP presented above is further integrated with a deep kernel, the MLACK,

to enhance its performance. The MLACK has a deep neural network-like architecture. The

MLACK is able to capture more complex structures and generate more efficient representa-

tions by exploiting raw features, and it can produce better representations of distributions in

the kernel ambiguity set, outperforming shallow kernels such as the linear, polynomial, and

Gaussian kernels. According to the results of the case study, the kernel DRCCP approach

based on the MLACK can achieve better optimal solutions than the kernel DRCCP based

on the traditional Gaussian kernel.

As to future work, the more general support discretization method for the presented

kernel-based DRCCP should be studied. Also, a more detailed study on the specific applica-

tion scenarios of different kernel DRCCP models could be a meaningful research direction.

In addition, it is worth to investigate more efficient tuning steps of the kernel ambiguity set

radius. Moreover, the proposed approach can be extended to multi-stage adaptive optimiza-

tion problems.
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Chapter 5

Distributionally Robust

Chance-Constrained Optimization

with Sinkhorn Ambiguity Set

Abstract

A novel distributionally robust chance-constrained optimization (DRCCP) method is pro-

posed in this work based on the Sinkhorn ambiguity set. The Sinkhorn ambiguity set is

constructed based on the Sinkhorn distance, which is a variant of the Wasserstein distance

with the entropic regularization. The proposed method can hedge against more general fam-

ilies of uncertainty distributions than the Wasserstein ambiguity set-based methods. The

presented approach is formulated as a tractable conic model based on the Conditional value-

at-risk (CVaR) approximation and the discretized kernel distribution relaxation. This model

is compatible with more general uncertain constraints than the Wasserstein-based methods.

Accordingly, the presented Sinkhorn DRCCP is a more practical approach that overcomes

the limitations of the traditional Wasserstein DRCCP approaches. A numerical example and

a nonlinear chemical process optimization case are studied to demonstrate the efficacy of the

Sinkhorn DRCCP and its advantages over the Wasserstein DRCCP.
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5.1 Introduction

Optimization under uncertainty is crucial for process design, control, planning, and schedul-

ing because in the real world, systems are subject to various uncertain factors such as material

availability, market demand, equipment failure, and measurement errors. These uncertainties

can have a significant impact on the system’s performance, making it challenging to design

an optimal solution that meets the desired criteria and constraints. Chance-constrained

programming (CCP) is a widely-used method [10] to tackle uncertainty. The CCP enforces

the optimal decision for an optimization problem to be feasible with a user-defined confi-

dence level. There are two types of CCP: the individual CCP (ICCP) and the joint CCP

(JCCP) [11]. In ICCP, a constraint satisfaction probability is enforced for each uncertain

constraint [163]. The JCCP is more general than the ICCP in the sense that it ensures mul-

tiple constraints are satisfied jointly to a certain probability [12]. However, a JCCP problem

is difficult to solve as it requires dealing with the multidimensional integration [13]. There-

fore, JCCP problems are usually solved through approximation methods including analytical

approximation methods and sampling-based methods, etc [28].

In practical situations, true distributions of uncertainty are usually hard to be obtained.

Thus, solving the JCCP problem based on the worst-case distribution among all potential

data-generating distributions is a more robust and practical way. This is essentially the idea

of the distributionally robust chance-constrained programming (DRCCP) [15]. The DRCCP

aims to optimize the objective with the worst-case joint constraint satisfaction probability

above the acceptable level over a set of candidate distributions. Such a set is called the

ambiguity set [133]. The ambiguity set might involve certain distributional information of the

unknown true distribution (e.g., moments, structure properties, domain knowledge, etc) from

collected data. The ambiguity set should be large enough to contain the true distribution

with high confidence and a well-designed set can also exclude irrelevant distributions which

may cause overly conservative decisions [134]. Moreover, a well-designed ambiguity set should

enable the DRCCP problem to be formulated as a tractable mathematical program, which

can be solved using standard solvers [135].

In the field of the DRCCP, moment-based ambiguity sets and metric-based ambiguity

sets are widely-used [57–59]. A moment-based ambiguity set is composed of all distributions

satisfying certain moment constraints [133, 136, 137]. To establish a moment-based ambi-

guity set, a certain level of moment information should be known beforehand. Additionally,
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because different distributions might share the same moments, a moment-based ambiguity

set might not be adequate to exclude irrelevant distributions that can result in overly conser-

vative solutions [60]. Furthermore, moment-based ambiguity sets are not capable of closely

approximating original chance constraints even if sufficient data is available [61]. Metric-

based ambiguity sets offer a stronger solution to address the drawbacks mentioned above.

In the context of metric-based ambiguity sets, these sets can be conceptualized as balls in

the probability distribution space. In particular, all potential distributions in a metric-based

ambiguity set are centered around the nominal distribution, which is established based on

collected data, and the radius of this set is determined by a probability metric. The size

of the radius is a user-defined hyperparameter that can be adjusted to control the level of

conservatism in the resulting solution. The ϕ-divergence is a widely-used probability metric

for metric-based ambiguity sets [62–65]. Nonetheless, as pointed out by some existing litera-

tures [16, 66], a ϕ-divergence ambiguity set only includes distributions absolutely continuous

with respect to the nominal distribution, and thus the ϕ-divergence ambiguity set only con-

tains distributions with the same support as the nominal distribution. This raises the issue

that the true distribution may not be included in the ambiguity set if the true and nom-

inal distributions have different supports. Moreover, according to Gao and Kleywegt [66],

as the ϕ-divergence only considers the relative ratio between two distributions, it cannot

capture the distance between them. This limitation may result in the inclusion of irrelevant

distributions in the ϕ-divergence ambiguity set, leading to excessively conservative decision-

making. To address the aforementioned issues in constructing metric-based ambiguity sets,

the Wasserstein distance has become a widely used alternative [67–69]. This distance is

defined as the optimal transport distance obtained from the optimal transport problem be-

tween the two distributions. The ambiguity set constructed using the Wasserstein distance

(Wasserstein ambiguity set) contains both continuous and discrete distributions, and thus

it may include the true distribution with high confidence. Moreover, Wasserstein ambiguity

sets are more efficient in excluding irrelevant distributions and avoiding overly conservative

decisions than the ϕ-divergence ambiguity sets [66] since the Wasserstein distance has the

capability of measuring the distance between two distributions. However, the existing studies

rely on some nontrivial assumptions on uncertain constraints to attain tractable Wasserstein

DRCCP models. In most existing works of Wasserstein DRCCP [3, 4, 61, 70–73], constraints

involving uncertainty are assumed to be affine in uncertainty. In Reference [74], uncertain

constraints are restricted to be quadratic convex in uncertainty. In Reference [75], uncertain

constraints are limited to be either concave or convex in uncertainty.
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The Wasserstein ambiguity set’s worst-case distribution is typically constrained to a

discrete distribution supported by no more than M + 1 samples, where M represents the

number of real samples collected [66, 76]. This limitation arises because the Wasserstein

distance is calculated at a vertex of the polyhedral set of transportation plans [164], resulting

in an extreme and sparse transportation plan. As a result, the worst-case distribution of the

Wasserstein ambiguity set is based on this sparse optimal transportation plan, leading to a

sparse and extreme discrete distribution. If the true distribution is continuous, this limitation

could cause the Wasserstein DRCCP to incorrectly hedge against the wrong distribution

family, leading to decisions that deviate significantly from the true optimal decision.

To overcome the above limitations of the Wasserstein DRCCP, a novel DRCCP approach

based on the Sinkhorn distance [164] is proposed in this work. The Sinkhorn distance is a

variant of the Wasserstein distance with the entropic regularization [164]. The entropic reg-

ularization prevents the Sinkhorn distance from reaching an extreme and sparse transporta-

tion plan. In other words, the entropic regularization smooths out the transportation plan.

With the smoother transportation plan, the ambiguity set based on the Sinkhorn distance

(Sinkhorn ambiguity set) results in a smoother worst-case distribution that is not limited to

a discrete distribution. Accordingly, the proposed DRCCP method based on the Sinkhorn

ambiguity set (Sinkhorn DRCCP) is based on a more general worst-case distribution than

the Wasserstein DRCCP. The presented approach is formulated as a tractable conic opti-

mization model based on the Conditional value-at-risk (CVaR) approximation[139] and the

discretized kernel distribution relaxation [17]. This model does not require any assumptions

on uncertain constraints. Based on the above advantages, the Sinkhorn DRCCP presented

in this work is more practical for real-world problems than the traditional Wasserstein DR-

CCP. Regarding the existing studies, the Sinkhorn ambiguity set has only been employed

for distributionally robust optimization (DRO) containing uncertainty only in the objective

function [17]. To the best of the author’s knowledge, the research of the DRCCP containing

uncertainty in constraints based on the Sinkhorn ambiguity set has not been found so far.

This work is structured as follows. The background knowledge of the distributionally

robust optimization (DRO) including DRCCP is introduced in Section 5.2. To demonstrate

one of the advantages of the Sinkhorn DRCCP over the Wasserstein DRCCP, the comparisons

between the worst-case distributions from the Sinkhorn and Wasserstein ambiguity sets are

presented in Section 5.3. The derivation for the tractable model of the Sinkhorn DRCCP is

presented in Section 5.4. In Section 5.5, a numerical example is studied. Subsequently, the

application of the proposed approach to a nonlinear process optimization under uncertainty
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is demonstrated in Section 5.6. Finally, this study is summarized in Section 5.7.

5.2 Distributionally robust optimization

In distributionally robust optimization (DRO), we optimize the worst-case expected value of

the objective function over the ambiguity set. The general formulation of the DRO problem

is given as:

min
x∈X

max
P∈P(Ξ)

EP [f(x, η)] (5.1)

where x is the decision variable with the feasible set X and η is a random parameter vector.

P(Ξ) is the ambiguity set defined with metric D over support Ξ:

P(Ξ) = {P : D(P,P0) ≤ ε} (5.2)

The ambiguity set P(Ξ) contains a family of candidate probability distributions P supported

on Ξ. A candidate distribution P has a certain degree of similarity to the nominal distri-

bution P0. In most practical settings, the nominal distribution P0 is set to be an empirical

distribution P̂0 established by samples {ξm}Mm=1 (M is the number of collected samples). The

(dis)similarity between P and P0 is determined by the distance metric D between P and P0.

This distance is restricted to be less than or equal to a user-defined parameter ε to exclude

irrelevant distributions that may cause overly conservative solutions. Problem (5.1) is to

find the optimal x that minimizes the worst-case (maximum) expectation of the objective

over P in P(Ξ).

The distributionally robust chance-constrained optimization (DRCCP) enforces the worst-

case probability of constraint violation below a user-defined tolerance. The general formu-

lation of a DRCCP is given as:

min
x∈X

f(x) (5.3a)

s.t. max
P∈P(Ξ)

Pr

(︄
w⋃︂
i=1

gi(x, η) > 0

)︄
≤ δ (5.3b)

The inequality in (5.3b) is the distributionally robust joint chance constraint (DRJCC)

enabling the worst-case probability of violating any constraints gi(x, η) ≤ 0 less or equal to
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a user-defined tolerance δ.

5.2.1 Wasserstein ambiguity set

The Wasserstein distance is a popular metric for constructing the ambiguity set (Wasserstein

ambiguity set). The detailed explanation of the Wasserstein distance is in Section 1.2.5. The

Wasserstein ambiguity set based on the type-1 Wasserstein distance W1, is defined as:

Pεw = {P :W1(P,P0) ≤ εw} (5.4)

where εw is a user-defined parameter restricting the size of the Wasserstein ambiguity set

Pεw . While the nominal distribution P0 is based on the collected data samples {ξm}Mm=1, it is

proven that the Wasserstein DRO results in a discrete worst-case distribution supported on

at mostM+1 points, as shown in Section 5 of Reference [76] through the Richter-Rogosinski

theorem. If the true distribution of uncertainty is a continuous distribution, the Wasserstein

DRO cannot hedge against the correct family of distributions. This issue is mainly caused

by the reason that the Wasserstein distance (an optimal transport problem) is always solved

at a vertex of the polyhedral set of transportation plans [164]. An intuitive visualization of

this statement is shown in Figure 5.1. The optimal transportation plan from the Wasserstein

distance π∗
W is at the vertex of Π(P,P0) (the black polytope) that results in an extreme and

sparse transportation plan. On the other hand, the optimal transportation plan from the

Sinkhorn distance π∗
S is not restricted to be at the vertices since the Sinkhorn distance is a

nonlinear programming (NLP) problem due to the entropic regularization, as shown in the

next section.
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Figure 5.1: Illustration of optimal transport plan from Wasserstein distance and Sinkhorn
distance

5.2.2 Sinkhorn ambiguity set

To overcome the above-mentioned limitation of the Wasserstein DRO, the Sinkhorn DRO

based on the Sinkhorn ambiguity set is proposed [17]. The Sinkhorn ambiguity set is con-

structed using the Sinkhorn distance [164], which is a variant of the Wasserstein distance

with the entropic regularization. The Sinkhorn distance between P and P0 supported on Ξ

can be expressed as:

Wγs(P,P0) = inf
π∈Π(P,P0)

E(η,ξ)∼π {[c(η, ξ)] + γsH(π|A⊗ B)} (5.5)

where γs ≥ 0 is the regularization parameter. A and B are two reference measures such that

P and P0 are absolutely continuous with respect to them, respectively. A special case widely

studied in the literature is the choice with A = P and B = P0. H(|A ⊗ B) is the relative

entropy of the transport plan π with respect to the product measure A ⊗ B (characterized

by (A⊗ B)(X × Y ) = A(X)B(Y ) for any pair of Borel sets X, Y ):

H(π|A⊗ B) =

∫︂
log

(︃
dπ(η, ξ)

dA(η)dB(ξ)

)︃
dπ(η, ξ)

Note that all notations log in this chapter represent the natural logarithm. According to

(1.8) and (5.5), the only difference between W1 and Wγs is the entropic regularization term
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γsH(π|π|P ⊗ P0). The entropic regularization smooths out the transportation plan and

prevents the Sinkhorn distance from reaching an extreme and sparse transportation plan as

shown in Figure 5.1. Based on the smooth transportation plan from the Sinkhorn distance,

the Sinkhorn ambiguity set results in a smooth worst-case distribution that is not restricted

to be discrete. Accordingly, the Sinkhorn DRO can hedge against more general families of

uncertainty distributions than the Wasserstein DRO.

Wγs between two discrete empirical distributions P̂ and P̂0 with reference measure A = P̂
and B = P̂0 can be equivalently formulated as the following regularized optimal transport

problem [165]:

Wγs = min
π≥0

N∑︂
n=1

M∑︂
m=1

∥ηn − ξm∥πnm + γsπnm log(πnm)

s.t.
M∑︂
m=1

πnm =
1

N
, ∀n = 1, ..., N

N∑︂
n=1

πnm =
1

M
, ∀m = 1, ...,M (5.6)

The Sinkhorn ambiguity set Pγs,εs(Ξ) is defined as

Pγs,εs = {P :Wγs(P,P0) ≤ εs} (5.7)

where εs is the size of the Sinkhorn ambiguity set and γs is the regularization parameter.

5.3 Worst-case distribution

In this section, we use a toy example to demonstrate the difference between the worst-case

distributions under the Wasserstein ambiguity set and the Sinkhorn ambiguity set. Consider

a simple worst-case expectation problem based on an ambiguity set P(Ξ):

max
P∈P

EP [η]

s.t. P = {P : D(P,P0) ≤ ε} (5.8)
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To make the above problem solvable, we discretize the problem based on finite discrete

supports. The candidate and nominal distributions are discretized based on finite samples

{ηn}Nn=1 and {ξm}
M
m=1, respectively. With Wasserstein ambiguity set defined through (1.10),

the discretized version of problem (5.8) can be written as:

max
π≥0,α≥0

N∑︂
n=1

ηnαn

s.t.
N∑︂
n=1

M∑︂
m=1

∥ηn − ξm∥πnm ≤ εw

M∑︂
m=1

πnm = αn, ∀n = 1, ..., N

N∑︂
n=1

πnm =
1

M
, ∀m = 1, ...,M (5.9)

It is worth noting that (5.9) and (1.10) differ because of the different purposes of the Wasser-

stein distances used. In particular, the Wasserstein distance in (5.9) measures the distance

between a variable worst-case distribution and a fixed nominal distribution, whereas the

Wasserstein distance in (1.10) calculates the distance between two fixed empirical distribu-

tions. As problem (5.9) determines the worst-case distribution, the probability masses αn of

the worst-case distribution are variables. Problem (5.9) can be equivalently rewritten as the

following after eliminating the variable α

max
π≥0

N∑︂
n=1

M∑︂
m=1

ηnπnm

s.t.
N∑︂
n=1

M∑︂
m=1

∥ηn − ξm∥πnm ≤ εw

N∑︂
n=1

πnm =
1

M
, ∀m = 1, ...,M (5.10)
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Similarly, while the Sinkhorn ambiguity set is used, problem (5.8) can be rewritten as:

max
π≥0

N∑︂
n=1

M∑︂
m=1

ηnπnm

s.t.
N∑︂
n=1

M∑︂
m=1

∥ηn − ξm∥πnm + γs

N∑︂
n=1

M∑︂
m=1

πnm log(πnm) ≤ εs

N∑︂
n=1

πnm =
1

M
, ∀m = 1, ...,M (5.11)

Next, we study the worst-case distribution under different settings. First, we consider

the case that the true distribution is the normal distribution N (2.5, 0.8333). {ξm}Mm=1 with

M = 20 are sampled from N (2.5, 0.8333). A nominal distribution is supported on {ξm}Mm=1.

On the other hand, 500 samples are sampled from U(0, 5), and then these 500 samples and

{ξm}20m=1 are merged to be {ηn}Nn=1 with N = 520. Candidate distributions are supported

on {ηn}Nn=1. Based on {ξm}20m=1 and {ηn}520n=1, the LP problem (5.10) and the NLP problem

(5.11) are solved using linprog in Matlab and KNITRO in GAMS, respectively. The results

with respect to different hyper-parameters (εw for (5.10); γs and εs for (5.11)) are shown

in Figure 5.2 and Figure 5.3. Next, we set the true distribution as an uniform distribution

U(0, 5) and repeat the above experiment. The only difference is that the M = 20 samples

{ξm}Mm=1 are from the uniform distribution. The results are shown in Figure 5.4 and Figure

5.5. In those figures, “# points” means the number of points with non-zero probability

masses (i.e., αn =
∑︁M

m=1 π
∗
nm ̸= 0).

As shown in Figures 5.2 and 5.4, the worst-case distributions from the Wasserstein-based

method are discrete. Moreover, these worst-case distributions are supported on at most

M + 1 points (M + 1 = 21 here). The Wasserstein-based method cannot hedge against the

correct family of distributions here since the true distribution is continuous.

According to Figures 5.3 and 5.5, while the regularization parameter is relatively larger

(e.g., γs = 0.1), the worst-case distributions from the Sinkhorn-based approach tend to

be more continuous (smoother). As γs decreases, the worst-case distributions from the

Sinkhorn-based method is more discrete and similar to the worst-case distributions from

the Wasserstein-based method. This is explained by the fact that the Sinkhorn distance

converges to the Wasserstein distance as γs −→ 0.

Furthermore, as εs decreases, the worst-case distributions from the Sinkhorn-based method
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also tends to be more discrete (e.g., when γs = 10−8, the number of support points is re-

duced from 416 to 20). This is due to the fact that as εs decreases (the size of the Sinkhorn

ambiguity set decreases), the worst-case distributions get closer to the nominal distribution

which is the discrete distribution supported on limited points {ξm}Mm=1.

On the other hand, the worst-case distribution from the Wasserstein DRO is restricted to

a discrete distribution supported on at most M +1 points. Hence, Wasserstein DRO cannot

hedge against the right family of distributions if the true distribution is continuous. The

Sinkhorn ambiguity set overcomes the above limitation and it results in a smoother worst-case

distribution. Accordingly, the Sinkhorn-based approaches can hedge against more general

families of uncertainty distributions than the Wasserstein-based methods. By adjusting

hyper-parameters γs and εs, the Sinkhorn-based approach can result in a wider variety of

worst-case distributions than the Wasserstein-based methods.
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Figure 5.2: Worst-case distributions from Wasserstein ambiguity sets (ξ ∼ N (2.5, 0.8333)).
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Figure 5.3: Worst-case distributions from Sinkhorn ambiguity sets (ξ ∼ N (2.5, 0.8333)).
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Figure 5.4: Worst-case distributions from Wasserstein ambiguity sets (ξ ∼ U(0, 5)).
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Figure 5.5: Worst-case distributions from Sinkhorn ambiguity sets (ξ ∼ U(0, 5)).
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5.4 Sinkhorn DRCCP model reformulation

The general formulation of the Sinkhorn DRCCP is given as:

min
x∈X

f(x) (5.12a)

s.t. max
P∈Pγs,εs

Pr

(︄
w⋃︂
i=1

gi(x, η) > 0

)︄
≤ δ (5.12b)

Pγs,εs = {P :Wγs(P,P0) ≤ εs} (5.12c)

where Pγs,εs is the Sinkhorn ambiguity set with the hyper-parameters γs and εs. In this

section, a tractable reformulation of the above Sinkhorn DRCCP is derived. To begin, the

worst-case violation probability in (5.12b) is rewritten as a worst-case expectation problem:

max
P∈Pγs,εs

EP

[︃
I
(︃

max
i=1,...,w

gi(x, η) > 0

)︃]︃
(5.13)

where I is the indicator function expressed as:

I
(︃

max
i=1,...,w

gi(x, η) > 0

)︃
=

⎧⎪⎨⎪⎩
0, for max

i=1,...,w
gi(x, η) ≤ 0

1, for max
i=1,...,w

gi(x, η) > 0 (5.14)

Accordingly, (5.12b) can be rewritten as:

max
P∈Pγs,εs

EP

[︃
I
(︃

max
i=1,...,w

gi(x, η) > 0

)︃]︃
≤ δ (5.15)

To address the nonconvex nature of the indicator function I, the CVaR approximation [139]

can be used. According to Reference [73], (5.15) can be rewritten as the constraint below

using the CVaR approximation:

max
P∈Pγs,εs

min
β∈R

{︄
β +

1

δ
EP

(︄[︃
max
i=1,...,w

gi(x, η)− β
]︃+)︄}︄

≤ 0 (5.16)
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According to Theorem 2 in Reference [151], when Pγs,εs is a compact convex set, max
P∈Pγs,εs

and

min
β∈R

in the above inequality can be switched:

min
β∈R

{︄
β +

1

δ
max

P∈Pγs,εs

EP

(︄[︃
max
i=1,...,w

gi(x, η)− β
]︃+)︄}︄

≤ 0 (5.17)

To make the above formulation tractable, the strong dual of the worst-case expectation in

(5.17) is derived in the following paragraphs.

In many practical settings, the nominal distribution P0 is approximated by an empirical

distribution P̂0 constructed by the collected samples {ξm}Mm=1. Accordingly, the worst-case

expectation in (5.17) becomes:

max
P∈Pγs,εs

EP

(︄[︃
max
i=1,...,w

gi(x, η)− β
]︃+)︄

s.t. Pγs,εs =
{︂
P :Wγs(P, P̂0) ≤ εs

}︂
(5.18)

Note that problem (5.18) is not tractable since its decision variable is the distribution

function. To tackle this issue, the following discretized version of the strong dual of (5.18)

is derived (as shown in the appendix) based on samples ηn,m generated from a kernel distri-

bution:

min
λ,s,a

λε̄s +
1

M

M∑︂
m=1

sm

s.t. λγs ≥
1

N

N∑︂
n=1

an,m, ∀m = 1, ...,M(︄
λγs, an,m,

[︃
max
i=1,...,w

gi(x, ηn,m)− β
]︃+
− sm

)︄
∈ Kexp, ∀n = 1, ..., N, ∀m = 1, ...,M

λ ≥ 0, s ∈ RM , a ∈ RN×M
+ (5.19)

whereKexp in (5.19) denotes the exponential cone [166]: Kexp =
{︂
(t, u, v) ∈ R+ × R+ × R : exp

(︂v
t

)︂
≤ u

t

}︂
and the constant ε̄s is a hyperparameter as defined in the Appendix. Note that ε̄s can be con-

sidered as a hyper-parameter in the Sinkhorn DRCCP. While tuning the hyper-parameters

of the Sinkhorn DRCCP, we can directly adjust ε̄s instead of the original radius εs.
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Based on the above dual formulation, we can replace the worst-case expectation in (5.17)

with (5.19), and then merge the min operators:

min
β,λ,s,a

β +
1

δ

{︄
λε̄s +

1

M

M∑︂
m=1

sm

}︄
≤ 0

λγs ≥
1

N

N∑︂
n=1

an,m, ∀m = 1, ...,M(︄
λγs, an,m,

[︃
max
i=1,...,w

gi(x, ηn,m)− β
]︃+
− sm

)︄
∈ Kexp, ∀n = 1, ..., N, ∀m = 1, ...,M

β ∈ R, λ ≥ 0, s ∈ RM , a ∈ RN×M
+ (5.20)

Afterwards, the above formulation can be used to replace (5.12b) and (5.12c). Furthermore,

the inner min operator in (5.20) can be omitted. Subsequently, to address the expression of[︃
max
i=1,...,w

gi(x, ηn,m)− β
]︃+

, we introduce variables Gn,m for the epi-graph reformulation. Then,

the original DRCCP problem is tackled by solving the following deterministic optimization

problem:

min
x,β,λ,s,a,G

f(x)

s.t. β +
1

δ

{︄
λε̄s +

1

M

M∑︂
m=1

sm

}︄
≤ 0

λγs ≥
1

N

N∑︂
n=1

an,m, ∀m = 1, ...,M

(λγs, an,m, Gn,m − sm) ∈ Kexp, ∀n = 1, ..., N, ∀m = 1, ...,M

Gn,m ≥ gi(x, ηn,m)− β, ∀i = 1, ..., w, ∀n = 1, ..., N, ∀m = 1, ...,M

Gn,m ≥ 0, ∀n = 1, ..., N, ∀m = 1, ...,M

x ∈ X , β ∈ R, λ ≥ 0, s ∈ RM , a ∈ RN×M
+ (5.21)

Note that the conic constraint in the above model can be rewritten as: λγs exp

(︃
Gn,m − sm

λγs

)︃
≤

an,m, ∀n = 1, ..., N, ∀m = 1, ...,M . Also note that model (5.21) does not need any assump-

tions on the uncertain constraints gi(x, η) in the original DRCCP optimization. When f(x)

and g(x, η) are convex in x, problem (5.21) becomes a convex conic optimization with good

scalability. While increasing sample size M and the number of uncertain constraints w, only
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the number of constraints having indices m and i would be increased. Since these constraints

are convex, the optimization model complexity would not be dramatically increased.

5.5 Numerical example

In this section, the presented Sinkhorn DRCCP is applied to the following numerical example:

min
x

0.4x1 + 0.5x2 + 0.6x3 + 1.2x4 + 1.8x5 (5.22a)

s.t. Pr

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ5 − x5 > 0

ξ4 + ξ5 − x4 − x5 > 0

ξ1 + ξ4 + ξ5 − x1 − x4 − x5 > 0

ξ2 + ξ4 + ξ5 − x2 − x4 − x5 > 0

ξ3 + ξ4 + ξ5 − x3 − x4 − x5 > 0

ξ1 + ξ2 + ξ4 + ξ5 − x1 − x2 − x4 − x5 > 0

ξ1 + ξ3 + ξ4 + ξ5 − x1 − x3 − x4 − x5 > 0

ξ2 + ξ3 + ξ4 + ξ5 − x2 − x3 − x4 − x5 > 0

ξ1 + ξ2 + ξ3 + ξ4 + ξ5 − x1 − x2 − x3 − x4 − x5 > 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

≤ δ (5.22b)

0 ≤ xi ≤ 1 i = 1, · · · , 3 (5.22c)

0 ≤ x4 ≤ 2 (5.22d)

0 ≤ x5 ≤ 3 (5.22e)

where the violation tolerance δ is set to be 0.1. In other words, the joint constraint satisfac-

tion probability (JCSP) is required to be ≥ 0.9 (1− δ = 0.9). ξ1 ∼ ξ5 are correlated random

variables which follow a multivariate normal distribution and the marginal distributions are

ξ1 ∼ N(0.8, 0.22), ξ2 ∼ N(1.5, 0.32), ξ3 ∼ N(1.2, 0.62), ξ4 ∼ N(0.5, 0.42), ξ5 ∼ N(0.7, 0.32).
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The correlation matrix is given as:

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.0 −0.5 0.0 0.3 −0.5

−0.5 1.0 −0.8 0.0 0.2

0.0 −0.8 1.0 0.0 0.3

0.3 0.0 0.0 1.0 0.0

−0.5 0.2 0.3 0.0 1.0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.23)

As the comparisons to the proposed Sinkhorn DRCCP, the Wasserstein DRCCP and

the sample average approximation (SAA)-based method [14] are also applied to the same

problem. We use the tractable models in our previous work [167] for the Wasserstein DRCCP

and the SAA-based method in this study. The employed models of the Wasserstein DRCCP

(based on the type-1 Wasserstein distance with ℓ2 norm) and the SAA-based method are

shown in Section A4.2 in Appendix.

In this numerical example, the Sinkhorn, Wasserstein, and SAA methods lead to the

NLP, quadratically constrained programming (QCP), and mixed-integer linear programming

(MILP) problems, respectively. They are modeled in GAMS and solved using KNITRO,

XPRESS, and CPLEX, respectively.

Since the Sinkhorn DRCCP and the Wasserstein DRCCP have hyper-parameters (γs,

ε̄s, and the number of expansion points N in the Sinkhorn DRCCP; εw in the Wasserstein

DRCCP), these hyper-parameters should be tuned to avoid the over conservatism caused by

the inappropriate values of the hyper-parameters. The hyper-parameters are tuned by the

following algorithm:
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Algorithm 2 Tuning the hyper-parameters for DRCCP

1: Input: ε̄s or εw ∈ [0.0001, 0.1]

γs ∈ [0.001, 0.1]

N ∈ {10, 15, 20, 25}
tol : a positive user-defined tolerance

2: Data: 100 different M -sample sets of [ξ1, ξ2, ξ3, ξ4, ξ5] ,

a 104-sample set of [ξ1, ξ2, ξ3, ξ4, ξ5] as the validation set SV
3: Take an initial guess of the hyper-parameters.
4: while QJ − (1− δ) ≥ tol ∨QJ ≤ (1− δ) do
5: Change the values of hyper-parameters if the iteration # ≥ 2.
6: Solve the numerical example by using a DRCCP method 100 times based on 100

different M -sample sets.
7: Calculate the JCSPs of the 100 optimal solutions obtained from the previous step,

through the sample average approximation [14] based on SV .
8: Find the J-th largest value of the JCSPs from the previous step. This value is denoted

as QJ .
9: end while
10: Output: The tuned hyper-parameters

The value M for the M -sample sets in Algorithm 2 is set as 5, 10, 20, 30, or 40 in

this numerical example. Through Algorithm 2, we can assume that an optimal solution

obtained from a DRCCP method with the tuned hyper-parameters would be feasible (the

corresponding JCSP ≥ 1 − δ) with J% probability. J is set to be 95 in this work. The

above algorithm is used to show the best performance of a DRCCP method based on the

appropriate selection of hyper-parameters, for the demonstration purpose. In our experience,

the performance of the Sinkhorn DRCCP is most sensitive to the regularization parameter

γs, followed by the radius size ε̄s, and finally the number of expansion points N . Thus, while

tuning the hyper-parameters for the Sinkhorn DRCCP, we first tune γs. Then, with the fixed

chosen γs, we tune ε̄s. Finally, with the fixed chosen γs and ε̄s, we tune N . By these means,

we can get the best combination of hyper-parameters for the Sinkhorn DRCCP faster.

The numerical problem is solved 100 times based on 100 different M -sample sets and the

tuned hyper-parameters. The mean and the standard deviation of the 100 optimal objectives

from the 100-time problem-solving are used to present the general performance of a DRCCP

approach, with respect to the sample size M . In addition, the 100 JCSPs correspond to the

100-time problem-solving are calculated based on a test set containing 104 samples. Then,

the percentage of JCSPs≥ 0.9 (the required value in this example) and the minimum JCSP
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among the 100 JCSPs are calculated, and they are important bases for investigating the

reliability of a DRCCP method. The above-mentioned results are shown in the following

tables.

Table 5.1: Means and standard deviations of optimal objectives from different methods
with respect to different sample sizes

Sample size M Sinkhorn DRCCP Wasserstein DRCCP SAA

mean / standard deviation

5 6.8483 / 0.6628 7.0735 / 0.6762 5.3014 / 0.7146

10 6.5901 / 0.5646 6.7828 / 0.5898 5.3607 / 0.4076

20 6.4773 / 0.4828 6.5559 / 0.4999 5.5034 / 0.3085

30 6.4473 / 0.3748 6.4848 / 0.3844 5.5162 / 0.2630

40 6.3035 / 0.3201 6.3171 / 0.3211 5.5562 / 0.2313

Table 5.2: Feasibility percentages and the minimum JCSPs corresponding to the optimal
results shown in Table 5.1

Sample size M Sinkhorn DRCCP Wasserstein DRCCP SAA

Feasibility percentages / minimum JCSPs

5 95 / 80.43 95 / 83.03 5 / 31.91

10 95 / 84.46 95 / 86.20 7 / 32.51

20 95 / 85 95 / 82.46 11 / 55.53

30 96 / 88.12 95 / 86.91 11 / 62.16

40 95 / 88.30 95 / 87.88 25 / 67.10

a The percentage values in this table are based on %.

Table 5.3: Tuned hyper-parameters corresponding to the results shown in Table 5.1

Sample size M Sinkhorn DRCCP Wasserstein DRCCP

ε̄s/γs/N εw

5 0.001/0.059/25 0.04

10 0.001/0.02/15 0.022

20 0.0001/0.014/15 0.011

30 0.0001/0.0072/15 0.0065

40 0.0001/0.0012/15 0.004
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Table 5.4: Average solution times of different methods

Sinkhorn DRCCP Wasserstein DRCCP SAA

Average solution time (s) 0.4224 0.2009 0.4946

a For each method, the average solution time is calculated based on 100 optimizations.

b Each optimization is based on a set of 40 samples.

According to Table 5.1, with respect to a fixed sample size, the SAA-based method

always achieves the least conservative mean of optimal objectives among all the approaches.

However, as can be seen from Table 5.2, with respect to a fixed sample size, the SAA-

based method always has the worst feasibility percentage and minimum JCSP among all the

approaches which means that the SAA-based method is the least reliable method. Moreover,

the SAA-based method always has very low feasibility percentages (only 5 ∼ 25%) which

means that the SAA-based method is not reliable for handling this example. This is because

the SAA-based method does not consider the distributional ambiguity of uncertainty for

enhancing the solution robustness. Furthermore, the SAA-based approach lacks tunable

hyper-parameters to enhance the reliability of the solutions, which sets it apart from the

DRCCP methods.

In Table 5.3, with respect to a certain sample size, the tuned radius value for the Sinkhorn

DRCCP is smaller than the tuned radius value for the Wasserstein DRCCP. This is because

the worst-case distribution of the Wasserstein DRCCP is restricted to a discrete distribution,

while the worst-case distribution of the Sinkhorn DRCCP is more general and can be either

continuous or discrete. As a result, the less restricted worst-case distribution of the Sinkhorn

DRCCP has more leeway to result in a more conservative solution. If the same radius value is

used for both the Sinkhorn and Wasserstein DRCCPs, the Sinkhorn DRCCP would achieve a

more conservative solution due to the above reason. This is evidenced based on our previous

experiment.

According to the results from the Sinkhorn DRCCP and the Wasserstein DRCCP, both

methods can always achieve feasibility percentages ≥ 95% which means that they are reliable

to obtain feasible solutions with high confidence if their hyper-parameters are appropriately

selected. Furthermore, with respect to a fixed sample size, the Sinkhorn DRCCP can al-

ways obtain optimal objectives with better means and smaller standard deviations than the

Wasserstein DRCCP. Based on the above discussion, under the same level of reliability, the

Sinkhorn DRCCP has better performance than the Wasserstein DRCCP in this example, in
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the aspect of the solution quality.

As can be seen from Table 5.4, the SAA-based method has the longest average solution

time since it involves binary variables causing higher computational cost. The Wasserstein

DRCCP has the lower computational burden than the presented Sinkhorn method because

the numerical example becomes a QCP problem by using the Wasserstein DRCCP model

in (A66) in Appendix which has the lower computational cost than the nonlinear Sinkhorn

DRCCP model in (5.21). Although the presented Sinkhorn approach has the higher com-

putational cost than the Wasserstein method, the Sinkhorn approach can outperform the

Wasserstein DRCCP by achieving a less conservative solution with lower variability. In ad-

dition, the Sinkhorn method does not need any assumptions on the constraints in the joint

chance constraint. However, the Wasserstein DRCCP requires nontrivial assumptions on the

constraints, e.g., constraints are affine in uncertainty.

5.6 Case study

In this section, the proposed method is applied to the alkylation process optimization under

uncertainty. This optimization problem is modified from Example 14.3 in Reference [162]

by adding random parameters to the original process model. The simplified flowsheet of the

studied process is illustrated in Figure 5.6. The reactor feeds include an olefin stream (100%

butane), a pure isobutane recycle stream, a 100% isobutane make-up stream, and an acid

catalyst. The spent acid is removed from the reactor. The product stream from the reactor

is passed through a fractionator to separate isobutane and the alkylate product.

The objective is to maximize the total profit, which is calculated based on the alkylate

product value ($0.063/octane-barrel), olefin feed cost ($5.04/barrel), isobutane recycle cost

($0.035/barrel), acid addition cost ($10.00/per thousand pounds), and isobutane makeup

cost ($3.36/barrel).
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Figure 5.6: Flowsheet of the studied alkylation process

The studied process optimization problem involving the process model is formulated as

follows. x1 ∼ x10 are variables as explained in Table 5.5. Each of them is associated with

some physical bounds. Equation (5.24g) defines the volumetric balance for the reactor. The

alkylate yield x4 is equal to the sum of the olefin feed x1 and the isobutane makeup x5

minus the volumetric shrinkage, which 0.22 of alkylate yield: x4 = x1 + x5 − 0.22x4 =⇒
x5 = 1.22x4 − x1. The acid strength x6 is calculated through equation (5.24h) based on the

assumption that the added acid (acid addition rate is x3) has acid strength of 98%. The

external isobutane-to-olefin ratio x8 equals to the sum of the isobutane recycle x2 and the

isobutane makeup x5 divided by the olefin feed x1, which is calculated via equation (5.24i).
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Table 5.5: Variables of the optimization model

Symbol Variable Unit

x1 Olefin feed barrels/day

x2 Isobutane recycle barrels/day

x3 Acid addition rate thousands of pounds/day

x4 Alkylate yield barrels/day

x5 Isobutane makeup barrels/day

x6 Acid strength weight percent

x7 Motor octane number –

x8 External isobutane-to-olefin ratio –

x9 Acid dilution factor –

x10 F-4 performance number –

max
x

0.063x4x7 − 5.04x1 − 0.035x2 − 10x3 − 3.36x5 (5.24a)

s.t. Pr

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1(ξ1 + ξ2x8 − ξ3x28)− 0.89x4 ≥ 0

−x1(ξ1 + ξ2x8 − ξ3x28) + 1.12x4 ≥ 0

−ξ4 + ξ5x7 − 0.89x10 ≥ 0

ξ4 − ξ5x7 + 1.12x10 ≥ 0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
≥ 0.9 (5.24b)

86.35 + 1.098x8 − 0.038x28 + 0.325(x6 − 89)− 0.89x7 ≥ 0 (5.24c)

− 86.35− 1.098x8 + 0.038x28 − 0.325(x6 − 89) + 1.12x7 ≥ 0 (5.24d)

35.82− 0.222x10 − 0.89x9 ≥ 0 (5.24e)

− 35.82 + 0.222x10 + 1.12x9 ≥ 0 (5.24f)

x5 = 1.22x4 − x1 (5.24g)

x6 =
98000x3

x4x9 + 1000x3
(5.24h)

x8 =
x2 + x5
x1

(5.24i)

0 ≤ x1 ≤ 2000, 0 ≤ x2 ≤ 16000, 0 ≤ x3 ≤ 120, 0 ≤ x4 ≤ 5000 (5.24j)

0 ≤ x5 ≤ 2000, 85 ≤ x6 ≤ 93, 90 ≤ x7 ≤ 95, 3 ≤ x8 ≤ 12 (5.24k)

0.01 ≤ x9 ≤ 4, 145 ≤ x10 ≤ 162 (5.24l)
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In the first two constraints of the joint chance constraint (5.24b), x1(ξ1 + ξ2x8− ξ3x28) is the
regression model for computing x4 by using x1 and x8. In the last two constraints of the joint

chance constraint, −ξ4 + ξ5x7 is the regression model for computing x10 by using x7. The

inequalities restrict the percentage errors between the regression model outputs and the true

values to the range 0.89 ∼ 1.12. ξ1 ∼ ξ5 are uncertain parameters in the regression models.

They either follow normal distributions ξ1 ∼ N(1.12, 0.0282), ξ4 ∼ N(133, 3.3252), or uniform

distributions ξ2 ∼ U(0.1277, 0.1356), ξ3 ∼ U(0.0065, 0.0069), ξ5 ∼ U(2.91, 3.09). Inequalities

(5.24c)-(5.24f) are based on the regression model 86.35+ 1.098x8− 0.038x28 +0.325(x6− 89)

for x7, and the regression model 35.82 − 0.222x10 for x9. This optimization problem is a

nonlinear joint chance-constrained optimization. Apart from the uncertain parameters and

the percentage error tolerances for the regression models, all the settings for the studied

process optimization problem are taken from Reference [162].

As the comparisons to the presented Sinkhorn DRCCP, the Wasserstein DRCCP and

the SAA-based approach are also applied to this process optimization problem. We use the

models (A66) and (A67) in Appendix for the Wasserstein DRCCP and the SAA approach in

this case study, respectively. Notably, based on our experiments, the Wasserstein DRCCP

would converge to infeasible solutions if the model (A66) is directly applied to this process

optimization problem. This is mainly because the uncertain parameter ξ4 has a much larger

value than other uncertain parameters. Wasserstein DRCCP leads to biased worst-case

distribution. More specifically, according to (1.7), since ξ4 has a much larger value than other

uncertain parameters, ξ4 has more impact on the cost function c(·, ·). Thus, the Wasserstein

distance computation would be dominated by ξ4 and the other uncertain parameters may

be neglected in the distance computation. Meanwhile, as discussed in Section 5.3, the

Wasserstein distance generates the extreme transportation plan leading to the extreme worst-

case distribution. Accordingly, the biased Wasserstein distance computation dominated by

ξ4 causes the biased extreme transportation plan leading to the extremely biased worst-case

distribution. This outcome causes the extremely biased solution which may be infeasible.

To overcome this issue, we divide the sample values of ξ4 by 100 for the Wasserstein DRCCP

model. Also, for the Wasserstein DRCCP model, the terms ξ5x7 − 0.89x10 and −ξ5x7 +
1.12x10 in the third and fourth constraints in (5.24b) are also divided by 100 to balance

the scaling of ξ4. By this scaling process, the Wasserstein DRCCP can converge to feasible

solutions. This scaling process has no significant impact on the Sinkhorn DRCCP and

SAA methods. This is because the Sinkhorn distance involves the entropic regularization

smoothing out the transportation plan that prevents the Sinkhorn distance from getting the
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extreme transportation plan. Thus, the Sinkhorn ambiguity set is more robust to the data

containing extremely different scales. In terms of the SAA method, since the constraint

satisfaction is independent of the relative scales of uncertain parameters, the SAA method

does not encounter the above-mentioned scale issue. Based on the above reasons, the above-

mentioned scaling process is not applied to the Sinkhorn DRCCP and the SAA method in

this case study.

The hyper-parameters in both Sinkhorn DRCCP and Wasserstein DRCCP are tuned

through Algorithm 2 to avoid the over conservatism caused by the inappropriate selection of

the hyper-parameters. After tuning the hyper-parameters, the process optimization problem

in this case study is solved 100 times based on different data set as mentioned in Section 5.5 to

compare the performances of different DRCCP approaches. This problem is solved as NLP,

NLP, and mixed-integer nonlinear programming (MINLP) problems by using the Sinkhorn

DRCCP, Wasserstein DRCCP, and SAA approach, respectively. We use KNITRO in GAMS

to solve all the optimization problems in this case study. The obtained results are shown in

the following tables.

Table 5.6: Means and standard deviations of optimal objectives from different methods
with respect to different sample sizes

Sample size M Sinkhorn DRCCP Wasserstein DRCCP SAA

mean / standard deviation

10 2528.5 / 100.24 2470.0 / 119.01 2635.5 / 26.95

20 2531.9 / 75.51 2471.5 / 117.01 2633.9 / 37.1493

30 2532.5 / 73.38 2484.1 / 91.87 2623.7 / 44.11

40 2543.7 / 61.69 2500.1 / 86.18 2562.9 / 107.01

Table 5.7: Feasibility percentages and the minimum JCSPs corresponding to the optimal
results shown in Table 5.6

Sample size M Sinkhorn DRCCP Wasserstein DRCCP SAA

Feasibility percentages (%)/ minimum JCSPs (%)

10 95 / 86.15 95 / 86.19 13 / 45.24

20 95 / 86.43 95 / 86.27 22 / 66.06

30 95 / 87.13 95 / 86.91 24 / 66.39

40 96 / 88.31 96 / 87.92 40 / 72.32
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Table 5.8: Tuned hyper-parameters corresponding to the results shown in Table 5.6

Sample size M Sinkhorn DRCCP Wasserstein DRCCP

ε̄s/γs/N εw

10 0.1/0.0013/20 0.00027

20 0.01/0.001/15 0.00015

30 0.01/0.0007/10 0.00014

40 0.01/0.00045/10 0.00006

Table 5.9: Average solution times of different methods (sample size M = 40)

Sinkhorn DRCCP Wasserstein DRCCP SAA

Average solution time (s) 0.5726 0.2779 526.81

According to Table 5.6, the SAA-based method always has the worst feasibility percentage

and the JCSP is not reaching the target value. This means that the SAA method is not

reliable because of not considering the distributional ambiguity of uncertainty.

According to the results from the Sinkhorn DRCCP and the Wasserstein DRCCP, the two

methods can always achieve feasibility percentages ≥ 0.95 which means that they are reliable

for getting feasible solutions with high confidence if their hyper-parameters are appropriately

tuned. Moreover, with respect to a fixed sample size, the Sinkhorn DRCCP can always reach

optimal objectives with the less conservative mean and smaller standard deviation than the

Wasserstein DRCCP. Accordingly, with the same level of reliability, the Sinkhorn DRCCP

outperforms the Wasserstein DRCCP in this case study, in the aspect of the solution quality.

As can be seen from Table 5.9, the SAA method has the longest average solution time

because it contains binary variables. The Wasserstein DRCCP has higher computational ef-

ficiency than the proposed Sinkhorn DRCCP since the Wasserstein distance does not has the

nonlinear entropic regularization term in the Sinkhorn distance. Although the Sinkhorn DR-

CCP has slightly lower computational efficiency than the Wasserstein DRCCP, the Sinkhorn

DRCCP can outperform the Wasserstein DRCCP by reaching a less conservative solution

with lower variability. In addition, the experiments for this case study show that the Sinkhorn

DRCCP does not suffer from the scale issue of uncertain parameters.
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5.7 Conclusions

The DRCCP based on the Sinkhorn ambiguity set is proposed in this work. The Sinkhorn

ambiguity set is constructed based on the Sinkhorn distance which is a variant of the Wasser-

stein distance with the entropic regularization, which leads to a smooth transportation plan.

With the smooth transportation plan, the Sinkhorn ambiguity set can generate smooth

worst-case distribution which is not limited to be discrete. Thus, the Sinkhorn DRCCP is

based on the more general worst-case distribution than the Wasserstein DRCCP which is

restricted to the discrete worst-case distribution supported on at most M + 1 sample points

(M is the number of real collected samples). Also, due to the entropic regularization in

the Sinkhorn distance, the Sinkhorn DRCCP is more robust to the data containing features

with extremely different scales than the Wasserstein DRCCP. Furthermore, the presented

Sinkhorn DRCCP is formulated as a tractable conic model based on the CVaR approxima-

tion as well as the discretized kernel distribution relaxation, and this model does not require

some assumptions on uncertain constraints as needed by the Wasserstein method. Based on

the aforementioned, the Sinkhorn DRCCP is a more practical approach for real-world prob-

lems, that overcomes the limitations of the Wasserstein method. As shown by the results

of a numerical example and the case study in this work, the Sinkhorn DRCCP outperforms

the Wasserstein DRCCP by obtaining less conservative solutions with lower variability.

As to future work, it is worth to investigate a more efficient tuning algorithm for the

hyper-parameters in the proposed approach. In addition, the presented method can be

extended to multi-stage adaptive optimization problems.
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Chapter 6

A Novel Efficient Algorithm for

Improving Solution Quality of

Distributionally Robust

Chance-Constrained Optimization

Abstract

Distributionally robust chance-constrained optimization (DRCCP) is a powerful technique

to handle optimization problems involving uncertainty in constraint functions. However, the

DRCCP methods are highly sensitive to outliers and extreme samples in the data sets used.

The outliers and extreme samples may deteriorate the decision quality of DRCCP. Although

there are numerous outlier detection techniques, they are either unable to pinpoint the sam-

ples causing overly conservative solutions, or incompatible with DRCCP models. This work

proposes a novel, efficient, and widely compatible algorithm that generates a representative

subset of the original data set and removes samples causing overly conservative solutions to

exclude data points with relatively negative impacts on the DRCCP solution. By solving

the DRCCP problem based on the generated subset, the DRCCP solution quality can be en-

hanced while simultaneously ensuring the solution feasibility. Two linear numerical examples

and a nonlinear process optimization problem are studied to demonstrate its efficacy.
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6.1 Introduction

Optimization problems in real-world scenarios typically involve uncertainty, making it diffi-

cult to arrive at reliable optimal solutions. The presence of unexpected random factors may

cause constraint violations, further complicating the problem of obtaining reliable optimal

decisions. Chance-constrained programming (CCP) [10] is a widely-used technique for opti-

mization problems involving uncertainty in constraints. In CCP, the optimal decision needs

to be feasible according to a user-defined probability. There are two categories of CCP: indi-

vidual chance-constrained programming (ICCP) and joint chance-constrained programming

(JCCP) [11, 21]. ICCP only requires each constraint to be fulfilled with its own level of con-

fidence. On the other hand, JCCP is more comprehensive and ensures that all constraints

are met concurrently with a specific confidence level. Although the JCCP can restrict the

probability of any constraint violation in a problem, solving it can be challenging as it in-

volves addressing a multidimensional distribution [13]. Moreover, a JCCP problem is convex

only when certain conditions are met, such as the original constraints in the joint chance

constraint being jointly convex in both decision variables as well as random parameters and

the random parameters following log-concave distributions [132]. Consequently, JCCP prob-

lems are usually solved using approximation methods like analytical approximations and

sampling-based methods [28].

In practical scenarios, it can be challenging to know the exact distributions of uncer-

tainty. Therefore, a more practical approach for solving JCCP problems is to exploit the

worst-case distribution from all possible data-generating distributions to obtain the distri-

butionally robust solution, instead of estimating the true uncertainty distribution. This

is the idea behind distributionally robust chance-constrained programming (DRCCP) [70].

Within the realm of DRCCP, the possible data-generating distributions are referred to as

candidate distributions, and the set of candidate distributions is typically called the ambigu-

ity set [133]. Candidate distributions are inferred from historical data and characterized by

prior distributional knowledge, such as moments, structural properties, domain knowledge,

etc., of the unknown data-generating distribution. The ambiguity set composed of candidate

distributions must have a high degree of confidence in capturing the true data-generating

distribution, while also being small enough to exclude distributions that could cause exces-

sively conservative decisions [134]. Moreover, the ambiguity set should be straightforward

to derive from the data, and it should facilitate a feasible reformulation of the DRCCP as a

mathematical problem that can be effectively solved using commonly available optimization
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solvers [135].

The moment-based and metric-based ambiguity sets have been extensively studied and

received significant attention among various types of ambiguity sets [57–59]. A moment-

based ambiguity set consists of all distributions that fulfill specific moment constraints [133,

136, 137]. Prior knowledge of a certain level of moment information is required for construct-

ing a moment-based ambiguity set. However, as various distributions could have the same

moments, moment constraints within a moment-based ambiguity set may not be stringent

enough to eliminate distributions that could cause excessively conservative decisions [60]. In

addition, even when there is sufficient data, distributionally robust chance constraints relying

on moments-based ambiguity sets are unable to provide a closely accurate approximation

of original chance constraints [61]. In order to overcome the above problems, metric-based

ambiguity sets offer an appealing alternative by defining the ambiguity set as a ball in the

probability distribution space [138]. In a metric-based ambiguity set, all candidate distribu-

tions are centered around a nominal distribution, with a radius determined by the prescribed

probability metric. The nominal distribution is established based on historical data, while the

size of the radius of the ambiguity set is a user-defined hyper-parameter that enables the user

to manage the degree of conservatism in the optimization problem [30]. The Wasserstein dis-

tance, Sinkhorn distance, and maximum mean discrepancy are effective probability metrics

for establishing metric-based ambiguity sets [17, 167]. The Wasserstein distance measures

the distance between two probability distributions, by computing the optimal transport plan

to move one distribution into the other while minimizing the transportation cost [168]. The

Sinkhorn distance is a variant of the Wasserstein distance with entropic regularization [164].

The maximum mean discrepancy is a measure quantifying the difference between two prob-

ability distributions by comparing the means of their embeddings in a reproducing kernel

Hilbert space (RKHS) [140]. There are several studies on the DRCCP methods based on

the metric-based ambiguity sets constructed by using the above metrics [17, 30, 70, 73, 167].

In this study, we exclusively concentrate on the metric-based ambiguity sets due to their

advantages over the moment-based ambiguity sets and their availability of diverse options.

Particularly, we focus on the DRCCP method based on the ambiguity set constructed by

the Wasserstein distance (Wasserstein DRCCP) in this work, as the Wasserstein DRCCP is

the most well-known DRCCP method with satisfactory performance.

Although DRCCP is an effective technique for addressing optimization under uncertainty,

it is highly sensitive to outliers and extreme data samples in the used data set. Outliers and

extreme data samples may deteriorate the DRCCP performance and lead to overly conser-
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vative decisions. Outliers are defined as data points significantly differing from most other

data points in a data set. Outliers can come from various sources such as measurement

errors, data entry or processing errors, unrepresentative sampling, etc [169, 170]. Extreme

data samples can be defined as data values that are plausible but extremely high or low.

In other words, data samples with values at the extreme ends of the data distribution are

called extreme samples. Extreme samples may not necessarily be outliers. They are extreme

but they may still follow the general trend of most samples in the data set. Although there

are several outlier detection approaches in the literature [171–173], those approaches cannot

pinpoint extreme sample points leading to poor DRCCP solutions. Some methods have been

proposed to mitigate the negative impacts of outliers on distributionally robust optimization

(DRO). DRO is similar to DRCCP, which optimizes the worst-case expectation of an un-

certain objective over an ambiguity set [174]. Zhai et al. [175] developed the Distributional

and Outlier Robust Optimization (DORO) framework which is an outlier robust refinement

of DRO. This approach is based on a refined risk function preventing DRO from overfit-

ting to potential outliers. Jiang et al. [176] introduced a framework combining DRO with

distributional favorable optimization (DFO). This integration enhances the robustness of

DRO against outliers while maintaining satisfactory out-of-sample performance. Rahimian

et al. [177] proposed a rigorous mathematical approach to identify effective samples which

are influential to the optimal solution of the DRO problem based on total variation distance.

This approach has the potential to identify the samples that could potentially have negative

impacts on the DRO solution. Since the above methods are only designed for DRO which

does not involve uncertain constraints, the above approaches do not take into account the

joint constraint satisfaction probability (JCSP) of the optimal decision. However, for the

DRCCP problems involving joint chance constraints, it is important to ensure the DRCCP

solution satisfies the JCSP threshold. Therefore, the above methods designed for DRO are

not compatible with DRCCP.

This research presents an innovative algorithm for enhancing the decision quality of

DRCCP. This algorithm generates a subset representing the original data set and trims

outliers as well as extreme data points to exclude data samples with negative impacts on the

DRCCP solution quality. Meanwhile, this algorithm can ensure that the optimal DRCCP

decision meets the required JCSP. The algorithm is an iterative approach guided by the

DRCCP. The presented algorithm is compatible with arbitrary DRCCP models such as

Wasserstein DRCCP, Sinkhorn DRCCP, kernel DRCCP, etc. Since the Wasserstein DRCCP

is the most famous DRCCP approach, we use the Wasserstein DRCCP for the proposed
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algorithm in this study.

This research is structured as follows. The background knowledge of DRCCP andWasser-

stein DRCCP is introduced in Section 6.2. The developed algorithm is presented in Sec-

tion 6.3. In Section 6.4, two numerical examples are studied. Subsequently, the application

of the presented algorithm to a nonlinear process optimization under uncertainty is demon-

strated in Section 6.5. Finally, this work is summarized in Section 6.6.

6.2 Problem statement

In this section, distributionally robust chance-constrained programming (DRCCP) andWasser-

stein DRCCP are introduced.

6.2.1 Distributionally robust chance-constrained optimization

As discussed in Section 6.1, joint chance-constrained programming (JCCP) is more compre-

hensive than individual chance-constrained programming (ICCP), and thus we only consider

JCCP in this work. The details of JCCP and ICCP are elaborated in Section 1.2.3. Ac-

cording to the discussion in Sections 1.2.4 and 6.1, the true uncertainty distribution in a

JCCP problem is often unknown. Thus, to handle distributional ambiguity of uncertainty,

the ambiguity set composed of candidate distributions can be combined with the JCCP to

result in the DRCCP. The general formulation of a DRCCP problem is shown below:

min
x∈X

f(x) (6.1a)

s.t. min
P∈P(Ξ)

Pr(gi(x, ξ) ≤ 0, ∀i = 1, ..., w) ≥ 1− δ (6.1b)

where P is the probability distribution of ξ. P(Ξ) is the ambiguity set composed of all can-

didate distributions. Inequality (6.1b) is the distributionally robust joint chance constraint

(DRJCC) requiring the worst-case JCSP greater than or equal to the user-defined probability

level 1− δ, over the ambiguity set P(Ξ).

The inequality (6.1b) can be reformulated equivalently as the worst-case violation prob-
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ability form:

max
P∈P(Ξ)

Pr

(︄
w⋃︂
i=1

gi(x, ξ) > 0

)︄
≤ δ (6.2)

The left-hand side of the above inequality is the worst-case violation probability, which is

the maximum probability of constraint violation (g1(x, ξ) > 0 or g2(x, ξ) > 0, or ..., or

gw(x, ξ) > 0) under all potential probability distributions within the ambiguity set. The

inequality (6.2) is more useful for the derivation of tractable DRCCP models.

6.2.2 Wasserstein DRCCP

The general formulation of the Wasserstein DRCCP based on the type-1 Wasserstein distance

W1, is given as:

min
x∈X

f(x) (6.3a)

s.t. min
P∈Pεw (Ξ)

Pr (gi(x, ξ) ≤ 0, ∀i = 1, ..., w) ≥ 1− δ (6.3b)

Pεw(Ξ) = {P :W1(P,P0) ≤ εw} (6.3c)

Expression (6.3c) defines the Wasserstein ambiguity set Pεw(Ξ) established by using the

type-1 Wasserstein distance W1. The Wasserstein distance is explained in detail in Sec-

tion 1.2.5. In Pεw(Ξ), all the Wasserstein distances between all the candidate distributions P
and the nominal distribution P0 should be within a user-defined radius size εw. To obtain the

tractable model for the above problem, the worst-case joint chance constraint in (6.3b) can

be approximated by using the Conditional Value-at-Risk (CVaR) approximation [73]. Then,

in practical settings, the nominal distribution can be defined as an empirical distribution

constructed by the collected samples {ξm}Mm=1 [17], and each sample has equal probability

mass
1

M
. Afterward, we assume that constraint functions gi=1,...,w(x, ξ) can be expressed as

the form affine in uncertainty (gi(x, ξ) = hi(x)
T ξ + h0i (x)). Based on the above settings, the
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tractable model of the above Wasserstein DRCCP can be formulated as:

min
x,β,κ,z

f(x)

s.t. β +
1

δ

[︄
κεW +

1

M

M∑︂
m=1

zm

]︄
≤ 0

zm ≥ h0i (x)− β + hi(x)
T ξm, ∀i = 1, ..., w, ∀m = 1, ...,M

zm ≥ 0, ∀m = 1, ...,M

∥hi(x)∥∗ ≤ κ, ∀i = 1, ..., w (6.4)

where β is the variable coming from the CVaR approximation. κ and z are dual variables

coming from the derivation of the above model. ∥ · ∥∗ is a dual norm. More details about

the derivation of the above Wasserstein DRCCP model are explained in [167].

6.3 Proposed algorithm

This research introduces an innovative algorithm that enhances DRCCP decision quality by

generating a representative subset of the original data set and eliminating outliers as well

as extreme samples. Through both subset generation and removal of outliers and extreme

samples, this algorithm improves DRCCP solution quality by shielding a DRCCP model

from samples that could potentially reduce its effectiveness. Since not all the outliers and

extreme samples would have negative impacts on DRCCP solution quality, this algorithm

only removes outliers and extreme samples causing over-conservatism. In addition, this

algorithm can simultaneously ensure DRCCP solution feasibility. Moreover, this algorithm is

compatible with arbitrary DRCCP models since it does not rely on any specific mathematical

property of a DRCCP approach. The proposed algorithm is an iterative algorithm guided by

the DRCCP, and it is named the DRCCP Solution Quality Enhancer (DSQE). The DSQE

is exhibited below:
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Algorithm 3 DRCCP Solution Quality Enhancer (DSQE)

1: Input: I: superset (original data set in hand),

N : subset size,

B: number of k-means clustering repetitions,

T : parameter used when trimming samples,

1− δ: JCSP tolerance

2: I ′ ← I ▷ I ′ is a copy of I
3: JCSP ← 1 ▷ Initialize JCSP

4: while JCSP ≥ 1− δ do ▷ JCSP is evaluated based on I
5: C ← ∅B ▷ Initialize C as an empty set
6: for b = 1 : B do
7: Cb ← k-means clustering based on I ′ ▷ Cb is the set of centers of k clusters

▷ Cb is saved as an element in C
8: end for
9: Select Cb having the lowest total sum of distances, as the subset S.
10: Solve the DRCCP based on S to get the optimal solution x∗.
11: Set the worst constraint violation based on x∗ and S, as a threshold V .
12: Select the samples in I ′ causing constraint violations (based on x∗) worse than V ,

as a set R.
13: Select T% samples in R, which cause worst T% constraint violations.
14: Remove the samples selected in the previous step from I ′.
15: end while

16: Output: x∗f : final feasible optimal solution,

f ∗
f : optimal objective corresponding to x∗f ,

S∗
f : subset S corresponding to x∗f ,

Rall: all the samples removed from I ′

The detailed explanation of the above algorithm is shown below: Assuming we have a

large enough data set, referred to as the superset I, and user-defined parameters N , B,

T , and 1 − δ, with N being smaller than the sample size of I. A copy of I, named I ′, is

created for data trimming, while I is used to evaluate the JCSP of the optimal DRCCP

decision, which serves as the stopping criterion for the DSQE. By doing so, since I is used

for computing the JCSP and remains unchanged, we can guarantee that the latest DRCCP

solution is feasible based on the original data set at hand. This is essential because we

cannot be entirely confident that a certain sample is completely irrelevant for assessing
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solution feasibility. To start the algorithm, the stopping criterion JCSP is initially set to a

large value, and then a while loop is used to remove samples that lead to overly conservative

DRCCP decisions. Within the while loop, we begin by initializing an empty set called C.

Next, we perform k-means clustering B times through a for loop. Note that k = N . The

k-means clustering is implemented based on the normalized I ′ (mean-centered and scaled

to unit variance) since data normalization can improve the accuracy and computational

efficiency of the k-means clustering algorithm [178]. The clustering results are reversed back

to the original scales (denormalization). For each iteration of the for loop, we store the set

of centers of k clusters obtained from the k-means clustering as an element Cb in C. Since

the initialization of the k-means clustering involves randomness, the obtained sets of centers

in different for loop iterations are different. After the for loop, we select the set of centers

that correspond to the lowest total sum of distances (i.e., the sum of distances between all

data points and their assigned cluster centers) as the subset S. S containing N samples,

is considered the most representative subset for the set I ′, from the multiple runs of the k-

means clustering. Next, the optimal solution x∗ is obtained by solving the DRCCP problem

based on the selected subset S. We utilize the subset instead of the superset for solving

the DRCCP due to the smaller size and great representativeness of the subset. Accordingly,

the DSQE can ensure satisfactory computational efficiency while preserving most of the

important information in I ′. Also, solving the DRCCP using the subset helps prevent the

solution from being affected by outliers and extreme samples, as the subset typically does

not contain these types of data points. This statement is evidenced in Sections 6.4 and

6.5. After obtaining x∗, we evaluate the worst constraint violation over all data points in S,

by computing the expression max
ξS∈S

max
i
gi(x

∗, ξS). The obtained worst constraint violation is

denoted as V . Next, we calculate the constraint violations based on x∗ and I ′ by calculating

the expression max
i
gi(x

∗, ξI′), ξI′ ∈ I ′, and select the samples in I ′ (ξI′) that correspond

to constraint violations worse than V . The set of these selected samples is denoted as R
(max

i
gi(x

∗, ξR) ≥ V , ξR ∈ R). We then choose T% of the samples in R that cause the

worst T% constraint violations, and remove them from I ′ to obtain updated I ′. Accordingly,

the samples leading to extreme constraint violations are removed, and these samples are

considered potential outliers and extreme samples in the DSQE. These samples contribute

to over-conservatism, as the DRCCP has to produce a highly conservative solution to ensure

constraint satisfaction based on these samples causing extreme constraint violations. These

samples can be also called overly conservative samples. By removing these samples, we can

prevent their negative effects on the generation of the subset. The above process in the while
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loop is repeated until the stopping criterion JCSP evaluated based on I reaches the tolerance

1 − δ. Once the DSQE stops, we obtain the final feasible DRCCP optimal solution and its

corresponding optimal objective and subset. Additionally, we also store all the removed

samples as an output of the DSQE. The critical steps of the DSQE are summarized in the

flowchart illustrated in Figure 6.1.
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Figure 6.1: Flowchart of the DSQE algorithm

175



In this work, the DSQE is applied to two numerical examples and a nonlinear process

optimization problem to exhibit its efficacy. More details are demonstrated in the following

sections.

6.4 Numerical examples

6.4.1 Numerical example 1

The first studied numerical example is taken from [14], and it is shown below:

min
x1≥0,x2≥0

x1 + x2

s.t. Pr

⎧⎨⎩ ξ1x1 + x2 ≥ 7

ξ2x1 + x2 ≥ 4

⎫⎬⎭ ≥ 1− δ (6.5)

The random parameters ξ1 and ξ2 follow uniform distributions in [1,4] and [ 1
3
, 1], respectively.

1− δ is set to be 0.9. The true analytical solution is given as: x∗1 = 3.1034 and x∗2 = 2.9655.

The true optimal objective is 6.0689.

A large data set of random parameters is generated from the true uniform distributions.

This data set contains 10000 samples. In addition, 100 outliers outside the ranges of the

true uniform distributions are added to the data set. The data set including regular samples

and outliers is illustrated below:
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Figure 6.2: Regular samples and outliers (10100 samples in total)

The DSQE is executed for solving the above numerical example based on the data set

composed of 10100 samples (10000 regular samples and 100 outliers). For this numerical

problem, the parameters of the DSQE are set as follows: N = 50, B = 10, and 1 − δ =

0.9. Our experiment reveals that higher B and N decrease optimal solution variability but

lengthen the computation time of DSQE. Based on our experiment, we choose B = 10

and N = 50 as optimal values for balancing DSQE’s performance and computation time. To

investigate the general DSQE performance of solving this example, the DSQE is implemented

100 times with respect to a certain value of T (T is one of the parameters in the DSQE) and

a certain value of εw (εw is the radius size of the Wasserstein ambiguity set in the Wasserstein

DRCCP). Meanwhile, as the comparisons, the Wasserstein DRCCP is implemented without

using the DSQE, based on the entire 10100-sample superset, with respect to different values of

εw. The obtained results are presented in Tables 6.1-6.3. Notably, all the outcomes presented

in the Tables correspond to JCSP values above the required level of 0.9, as validated using

the 10100-sample superset and a large test set consisting of 106 samples obtained from the

true distribution. The large test set is employed purely for testing purposes. Accordingly,

the DSQE is able to maintain the solution feasibility when solving this numerical problem.
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Table 6.1: Means and standard deviations of the optimal objectives from the DSQE, with
respect to different values of T and εw

T
Mean/Standard deviation/Average solution time

εw = 0.0001 εw = 0.001 εw = 0.01

100 6.3769/0.1224/3.6931 6.3669/0.1103/4.0631 6.3461/0.0760/4.6663

50 6.3039/0.0898/6.1075 6.2498/0.0660/7.2766 6.2203/0.0414/8.4829

5 6.2577/0.0665/11.5373 6.2134/0.0479/24.3228 6.1937/0.0205/51.2696

Table 6.2: Average numbers of samples removed by using the DSQE, with respect to
different values of T and εw

T
Average number of removed samples

εw = 0.0001 εw = 0.001 εw = 0.01

100 54.84 144.12 570.14

50 163.99 336.67 742.15

5 189.59 381.72 812.90

Table 6.3: Optimal objectives from the Wasserstein DRCCP based on the entire
10100-sample set, with respect to different values of εw

Optimal objective/Solution time

εw = 0.0001 εw = 0.001 εw = 0.01

6.6404/1.2430 6.6694/0.8791 6.9552/0.9234

According to Table 6.1, with respect to a fixed value of εw, decreasing T results in an

improvement in the mean objective value (since this is a minimization problem, a smaller ob-

jective value is better) and a decrease in the standard deviation. This is because a smaller T

value leads to the removal of fewer samples at each DSQE iteration, allowing the algorithm to

exercise more caution when trimming samples and decreasing the probability of eliminating

too many samples in one iteration. Consequently, premature termination of the algorithm

is prevented, enabling the DSQE to perform more iterations and more accurately remove

samples causing over-conservatism. Accordingly, the total number of samples removed by
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the DSQE is increased while decreasing T , as can be seen from Table 6.2. By eliminating

more samples causing over-conservatism, the impact of these samples on the DSQE’s final

subset generation is reduced, enabling the DRCCP based on the final subset to produce a

less conservative solution. Additionally, since the algorithm becomes more careful in choos-

ing which samples to remove as T decreases, in the final DSQE iteration, more relevant and

significant samples in the data set are preserved, which enables the final subset generation of

the DSQE to be more stable. Therefore, the variability of solutions obtained from the DSQE

is reduced. However, it should be noted that there is a trade-off involved in decreasing T .

Because the DSQE conducts more iterations with reduced T , the average solution time of

the DSQE increases, as can be observed in Table 6.1. On the other hand, with respect to a

fixed value of T , increasing εw results in an improvement in the mean objective value and a

decrease in the standard deviation. The reason for this is that a larger εw allows for a larger

Wasserstein ambiguity set, which in turn may lead the Wasserstein DRCCP to be based

on a worse worst-case distribution, resulting in a more conservative solution. Based on the

above, since a more conservative DRCCP solution is generated in each DSQE iteration, the

DSQE takes more iterations to reach the JCSP tolerance 1 − δ. As more iterations occur,

over-conservative samples are increasingly eliminated, as observed in Table 6.2. As a result,

the influence of overly conservative samples on the DSQE’s final subset production is dimin-

ished. This enables the optimal solution attained from the DSQE to be more stable (lower

variability) and less conservative. Apart from the above discussion, by comparing the results

in Tables 6.1 and 6.3, regardless of the values of T and εw, the average optimal objectives

obtained from the DSQE are all substantially superior to the optimal objectives obtained

from the DRCCP using the entire 10100-sample set. This observation demonstrates that no

matter the values of T and εw, the DSQE can effectively improve the solution quality for

this example.

This paragraph discusses the DSQE’s performance in trimming outliers and extreme

samples for this numerical example. Figure 6.3 illustrates the data trimming results obtained

after a single execution of the DSQE with T = 5 and εw = 0.0001.
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Figure 6.3: Data trimming result of example 1, after implementing the DSQE (only once)
with T = 5 and εw = 0.0001

Figure 6.3 shows that the DSQE removes outliers and regular samples with much smaller

values of ξ1 or ξ2, as they can cause more extreme constraint violations and worse objectives

compared to other points. Specifically, the constraints in the joint chance constraint of

Eq. 6.5 require their left-hand-side terms to be greater than or equal to two positive values,

and since x1 and x2 are non-negative, smaller values of ξ1 and ξ2 result in larger x1 and x2

values needed to satisfy the constraints. As a consequence, minimizing the objective function

x1 + x2 with samples having much smaller values of ξ1 or ξ2 leads to much worse constraint

violations, prompting the removal of these samples to improve solution quality. On the other

hand, some outliers with larger values of ξ1 or ξ2 are not removed as they do not lead to

worse constraint violations than other outliers and samples. This shows that the DSQE only

removes outliers and samples that have negative impacts on the DRCCP solution, rather

than eliminating all outliers.

Finally, the final subset points in Figure 6.3 exclude outliers and extreme samples causing

over-conservatism. Generated by the DSQE, these subset points guide the DRCCP execu-

tion, resulting in a much less conservative optimal solution compared to the one obtained

from the DRCCP based on the entire original dataset (superset).
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6.4.2 Numerical example 2

The second studied numerical example is modified from the example in [179], and it is

presented below:

max
x1≥0,x2≥0

x1 + x2

s.t. Pr

⎧⎪⎨⎪⎩
1

3
x1 + x2 ≤ ξ1

3

2
x1 + x2 ≤ ξ2

⎫⎪⎬⎪⎭ ≥ 1− δ (6.6)

The random parameter vector [ξ1, ξ2] follows a two-dimensional Gaussian mixture distribu-

tion with 6 components. The means of the six components are presented below:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 2.5

4 7

5.5 2.5

1.5 9

4 12.5

6.25 9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
In the above matrix, the six rows correspond to the six components. The first column

corresponds to ξ1 and the second column corresponds to ξ2. The covariances of the six

components are exhibited below:

Cov 1 =

⎛⎝ 0.5 0.0

0.0 1.0

⎞⎠ Cov 2 =

⎛⎝ 0.2 −0.1

−0.1 0.6

⎞⎠ Cov 3 =

⎛⎝ 0.2 0.0

0.0 0.8

⎞⎠
Cov 4 =

⎛⎝ 0.25 0.0

0.0 1.0

⎞⎠ Cov 5 =

⎛⎝ 0.2 0.1

0.1 0.8

⎞⎠ Cov 6 =

⎛⎝ 0.3 −0.1

−0.1 0.6

⎞⎠
Cov 1 ∼ Cov 6 are the covariances of the 6 components.

A large data set of the random parameter vector is produced from the true Gaussian

mixture distribution. This data set includes 10000 samples, and it is illustrated below:
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Figure 6.4: Samples from the Gaussian mixture distribution (10000 samples in total)

The DSQE is utilized to solve the given numerical example using a 10000-sample data

set. For this example, we set the parameters in the DSQE as follows: N = 50, B = 10,

and 1 − δ = 0.9. For this numerical example, our experiment determines that B = 10

and N = 50 are optimal values for balancing the DSQE’s performance and computational

efficiency. To evaluate the general DSQE performance for this example, we run the DSQE 100

times with respect to a certain value of T and a certain value of εw. For comparison, we also

implement the Wasserstein DRCCP without the DSQE, using the complete 10000-sample

superset, with respect to different values of εw. The results can be found in Tables 6.4 to

6.6. Importantly, all outcomes in Tables 6.4 to 6.6 have JCSP values satisfying the required

0.9 level, as verified by the 10000-sample superset and a large test set of 106 samples from

the true distribution. The large test set is used only for testing purposes. Accordingly, the

DSQE effectively maintains solution feasibility when addressing this numerical problem.
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Table 6.4: Means and standard deviations of the optimal objectives from the DSQE, with
respect to different values of T and εw

T
Mean/Standard deviation/Average solution time

εw = 0.0001 εw = 0.001 εw = 0.01

100 1.3033/0.1116/2.7769 1.3107/0.1054/2.9670 1.3268/0.0668/3.4022

50 1.3422/0.0584/3.5421 1.3516/0.0545/4.0610 1.3618/0.514/4.0865

5 1.3926/0.0371/18.7090 1.3943/0.0336/20.0894 1.3944/0.0293/23.1362

Table 6.5: Average numbers of samples removed by using the DSQE, with respect to
different values of T and εw

T
Average number of removed samples

εw = 0.0001 εw = 0.001 εw = 0.01

100 159.73 175.67 229.56

50 177.04 199.75 271.93

5 259.60 282.30 345.74

Table 6.6: Optimal objectives from the Wasserstein DRCCP based on the entire
10000-sample set, with respect to different values of εw

Optimal objective/Solution time

εw = 0.0001 εw = 0.001 εw = 0.01

1.0416/1.4581 1.0089/1.2073 0.9725/1.1862

The obtained results of this numerical example follow a similar trend and share underlying

reasons with the first numerical example. Table 6.4 shows that for a fixed εw, decreasing T

improves the mean objective value (since this is a maximization problem, a larger objective

value is better). This occurs because a smaller T leads to the removal of fewer samples per

DSQE iteration, allowing the algorithm to be more cautious about trimming data and avoid

premature termination. As a result, the DSQE can conduct more iterations to eliminate

more samples causing over-conservatism (can be seen from Table 6.5) to enhance the optimal

solution. However, more iterations lead to increased computation time. On the other hand,
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for a fixed value of T , increasing εw leads to a better mean objective value. A larger εw

permits a bigger Wasserstein ambiguity set, which may cause the Wasserstein DRCCP to

generate a more conservative solution based on a worse worst-case distribution. As a result,

since a more conservative DRCCP solution is generated in each DSQE iteration, the DSQE

requires more iterations to reach the JCSP tolerance 1 − δ. Due to more iterations, more

samples causing over-conservatism are removed (can be seen from Table 6.5), which enables

the DSQE to achieve a less conservative DRCCP solution in the final iteration. According

to the above discussion and the results exhibited in Table 6.5, reducing T and increasing εw

lead to more DSQE iterations and more samples causing over-conservatism to be removed.

Thus, the DRCCP in the final DSQE iteration operates on a more stable subset, leading to

a solution with reduced variability. In addition to the above discussion, a comparison of the

results in Tables 6.4 and 6.6 reveals that, irrespective of the values of T and εw, the average

optimal objectives achieved by the DSQE are all considerably better than those obtained

from the DRCCP using the complete 10000-sample set. This finding illustrates the DSQE’s

effectiveness in enhancing solution quality for this example, regardless of the T and εw values.

This paragraph examines the DSQE’s ability to trim samples for this numerical example.

Figure 6.5 displays the data trimming outcome from a single DSQE execution using T = 5

and εw = 0.0001.

Figure 6.5: Data trimming result of example 2, after implementing the DSQE (only once)
with T = 5 and εw = 0.0001
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As can be seen from Figure 6.5, samples with extremely small values of ξ1 or ξ2 are removed.

This is because those samples would cause more extreme constraint violations and result in

a worse objective compared to other samples. More specifically, regarding the constraints in

the joint chance constraint in Eq. 6.6, since the left-hand-side terms of the constraints are all

positive and they have to be below two random parameters ξ1 and ξ2, smaller values of ξ1 and

ξ2 would lead to smaller x1 and x2 values. Then, smaller values of ξ1 or ξ2 would lead to the

smaller objective value which is equal to x1+x2. Accordingly, samples with extremely small

values of ξ1 or ξ2 would lead to extreme constraint violations when maximizing the objective

x1 + x2, and thus those extreme samples would be removed by the DSQE to improve the

solution quality.

Finally, the final subset illustrated in Figure 6.5 does not include outliers and extreme

samples causing over-conservatism. This subset directs the DRCCP implementation, result-

ing in a significantly less conservative optimal solution compared to the one attained from

the DRCCP based on the entire original superset.

6.5 Case study

This section applies the proposed DSQE to an alkylation process optimization under un-

certainty. This process optimization problem is modified from Example 14.3 in [162] by

introducing random parameters into the original process model. The simplified flowsheet of

the studied alkylation process is shown in Figure 6.6.
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Figure 6.6: Flowsheet of the studied alkylation process

As can be seen from Figure 6.6, the alkylation process is composed of a reactor and a

fractionator. The inputs of the reactor are an olefin stream (100% butane), a pure isobutane

recycle stream, a 100% isobutane make-up stream, and acid catalyst. The spent acid is

removed from the reactor. The product stream of the reactor is passed through a fractionator

separating the isobutane and the alkylate product.

This process optimization aims to maximize the total profit determined by the alkylate

product value ($0.063/octane-barrel), olefin feed cost ($5.04/barrel), isobutane recycle cost

($0.035/barrel), acid addition cost ($10.00/per thousand pounds), and isobutane makeup
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cost ($3.36/barrel). The studied process optimization problem is given as:

max
x

0.063x4x7 − 5.04x1 − 0.035x2 − 10x3 − 3.36x5 (6.7a)

s.t. Pr

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1(ξ1 + ξ2x8 − ξ3x28)− 0.89x4 ≥ 0

−x1(ξ1 + ξ2x8 − ξ3x28) + 1.12x4 ≥ 0

−ξ4 + ξ5x7 − 0.89x10 ≥ 0

ξ4 − ξ5x7 + 1.12x10 ≥ 0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
≥ 0.9 (6.7b)

86.35 + 1.098x8 − 0.038x28 + 0.325(x6 − 89)− 0.89x7 ≥ 0 (6.7c)

− 86.35− 1.098x8 + 0.038x28 − 0.325(x6 − 89) + 1.12x7 ≥ 0 (6.7d)

35.82− 0.222x10 − 0.89x9 ≥ 0 (6.7e)

− 35.82 + 0.222x10 + 1.12x9 ≥ 0 (6.7f)

x5 = 1.22x4 − x1 (6.7g)

x6 =
98000x3

x4x9 + 1000x3
(6.7h)

x8 =
x2 + x5
x1

(6.7i)

0 ≤ x1 ≤ 2000, 0 ≤ x2 ≤ 16000, 0 ≤ x3 ≤ 120, 0 ≤ x4 ≤ 5000 (6.7j)

0 ≤ x5 ≤ 2000, 85 ≤ x6 ≤ 93, 90 ≤ x7 ≤ 95, 3 ≤ x8 ≤ 12 (6.7k)

0.01 ≤ x9 ≤ 4, 145 ≤ x10 ≤ 162 (6.7l)

where x1 ∼ x10 are decision variables as explained in Table 6.7. Each of them is associated

with some physical bounds, as shown in Eqs. 6.7j∼6.7l. Equation 6.7g defines the volumetric

balance for the reactor. In Eq. 6.7g, the alkylate yield x4 is equal to the sum of the olefin feed

x1 and the isobutane makeup x5, with the volumetric shrinkage which is 0.22x4 subtracted

from the sum: x4 = x1+x5−0.22x4 =⇒ x5 = 1.22x4−x1. The acid strength x6 is calculated

through Eq. 6.7h based on the assumption that the added acid (acid addition rate is x3) has

an acid strength of 98%. The external isobutane-to-olefin ratio x8 is the sum of the isobutane

recycle x2 and the isobutane makeup x5 divided by the olefin feed x1, which is calculated

via Eq. 6.7i. As to the first two constraints inside the joint chance constraint in Eq. 6.7b,

the term x1(ξ1 + ξ2x8 − ξ3x28) is the regression model for predicting x4 by utilizing x1 and

x8. In the last two constraints inside the joint chance constraint, the term −ξ4 + ξ5x7 is the

regression model for predicting x10 with the use of x7. The inequalities in the joint chance

constraint restrict the percentage errors between the regression model predictions and the
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true values to the range 0.89 ∼ 1.12. ξ1 ∼ ξ5 denote uncertain parameters in the regression

models. They either follow normal distributions ξ1 ∼ N(1.12, 0.0282), ξ4 ∼ N(133, 3.3252),

or uniform distributions ξ2 ∼ U(0.1277, 0.1356), ξ3 ∼ U(0.0065, 0.0069), ξ5 ∼ U(2.91, 3.09).

Inequalities 6.7c-6.7f are based on the regression model 86.35+1.098x8−0.038x28+0.325(x6−
89) for predicting x7, and the regression model 35.82− 0.222x10 for predicting x9, and these

inequalities also constrain the percentage errors between the predictions and true values

to the range 0.89 ∼ 1.12. The above optimization problem is a nonlinear joint chance-

constrained optimization. All the settings for the above optimization are taken from [162],

with the exception of the uncertain parameters and the percentage error tolerances for the

regression models.

Table 6.7: Variables of the optimization model

Symbol Variable Unit

x1 Olefin feed barrels/day

x2 Isobutane recycle barrels/day

x3 Acid addition rate thousands of pounds/day

x4 Alkylate yield barrels/day

x5 Isobutane makeup barrels/day

x6 Acid strength weight percent

x7 Motor octane number –

x8 External isobutane-to-olefin ratio –

x9 Acid dilution factor –

x10 F-4 performance number –

The presented DSQE is implemented for solving the studied process optimization based

on a 10000-sample data set. This data set is produced from the true distributions of the

uncertain parameters. The hyper-parameters of the DSQE are set as follows, for this case

study: N = 50, B = 10, and 1 − δ = 0.9. In this case study, our experiment finds that

using B = 10 and N = 50 achieves the optimal balance between the DSQE’s performance

and computational efficiency. Again, the DSQE is also executed 100 times with respect to a

certain value of T and a certain value of εw to investigate the general algorithm performance

for this case study. The obtained results are exhibited in Tables 6.8 to 6.10. The JCSPs of

the obtained optimal results are evaluated based on both the 10000-sample set and a large

106−sample test set. The evaluated JCSPs all satisfy the required value of 0.9. Thus, the
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DSQE is able to ensure the solution feasibility for this case study.

Table 6.8: Means and standard deviations of the optimal objectives from the DSQE with
respect to different values of T and εw

T
Mean/Standard deviation/Average solution time

εw = 0.0001 εw = 0.001 εw = 0.01

100 2581.4/20.1473/4.1314 2592.3/18.7523/5.3645 2598.6/11.2349/7.6514

50 2585.2/19.2823/4.4176 2600.0/17.1314/8.4847 2622.8/6.6900/11.1550

5 2611.0/12.1866/9.8458 2620.9/7.6046/14.0047 2626.1/5.8717/27.7169

Table 6.9: Average numbers of samples removed by using the DSQE, with respect to
different values of T and εw

T
Average number of removed samples

εw = 0.0001 εw = 0.001 εw = 0.01

100 30.26 39.37 43.97

50 37.98 50.89 57.41

5 41.02 61.33 70.26

Table 6.10: Optimal objectives from the Wasserstein DRCCP based on the entire
10100-sample set, with respect to different values of εw

Optimal objective/Solution time

εw = 0.0001 εw = 0.001 εw = 0.01

2466.5/11.1651 1926.9/11.9823 1660.3/22.242

The outcomes obtained in this case study exhibit a similar trend and share underlying

reasons with the numerical examples in Section 6.4. Table 6.8 demonstrates that, for a

fixed εw, a decrease in T results in a better mean objective value (since this case study is

a maximization problem, a larger objective value is preferred). This improvement occurs

because a smaller T removes fewer samples per DSQE iteration, allowing the algorithm to

be more cautious in trimming data and avoiding premature termination. Consequently, the
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DSQE can perform more iterations to eliminate samples contributing to over-conservatism

(as seen in Table 6.9), thus enhancing the optimal solution. However, more iterations also

lead to increased computation time. Conversely, for a fixed value of T , an increase in εw leads

to a better mean objective value. A larger εw allows for a richer Wasserstein ambiguity set,

causing the Wasserstein DRCCP to produce a more conservative solution based on a worse

worst-case distribution. As a result, since each DSQE iteration generates a more conservative

DRCCP solution, the DSQE requires more iterations to reach the JCSP tolerance 1−δ. Due
to the increased number of iterations, more samples contributing to over-conservatism are

removed (as seen in Table 6.9), enabling the DSQE to achieve a less conservative DRCCP

solution in the final iteration. Moreover, according to the above discussion and the results

exhibited in Table 6.9, reducing T and increasing εw lead to more DSQE iterations and the

removal of more samples causing over-conservatism. This results in the DRCCP in the final

DSQE iteration operating on a more stable subset and producing a solution with reduced

variability. Furthermore, a comparison of the results in Tables 6.8 and 6.10 indicates that,

regardless of the values of T and εw, the average optimal objectives achieved by the DSQE are

significantly better than those obtained from the DRCCP using the complete 10000-sample

set. This observation highlights the DSQE’s effectiveness in improving solution quality for

this case study, irrespective of the T and εw values.

The results illustrated in Figures 6.7-6.11 reveal that samples with higher ξ4 values and

lower ξ5 values tend to be removed. However, it is more challenging to determine which

samples, based on their ξ1 ∼ ξ3 values, should be removed. This is because of the following

reasons: ξ4 and ξ5 are related to the last two constraints in the joint chance constraint (JCC)

in (6.7b), and these constraints are linear in both decision and random variables. Conversely,

ξ1 ∼ ξ3 are related to the first two constraints in the JCC, and these constraints are non-linear

in the decision variables. Based on the above, ξ4 and ξ5 are involved in simpler constraints

than ξ1 ∼ ξ3. Consequently, the impact of ξ4 and ξ5 on constraint violations and solution

conservatism is easier to discern than the effect of ξ1 ∼ ξ3 on constraint violations and

solution conservatism. Therefore, it is simpler to identify which samples should be removed

based on their ξ4 and ξ5 values, as indicated by the results presented in Figures 6.7-6.11.

Finally, the final subset depicted in Figures 6.7-6.11 excludes outliers and extreme samples

that lead to over-conservatism. This subset guides the DRCCP execution, which in turn

produces a considerably less conservative optimal solution compared to the one gained from

the DRCCP based on the full original superset.
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Figure 6.7: Data trimming result 1 of the case study, after implementing the DSQE (only
once) with T = 5 and εw = 0.0001. Blue points: superset; Red points: final subset; Gray

points: Removed points.
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Figure 6.8: Data trimming result 2 of the case study, after implementing the DSQE (only
once) with T = 5 and εw = 0.0001. Blue points: superset; Red points: final subset; Gray

points: Removed points.
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Figure 6.9: Data trimming result 3 of the case study, after implementing the DSQE (only
once) with T = 5 and εw = 0.0001. Blue points: superset; Red points: final subset; Gray

points: Removed points.
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Figure 6.10: Data trimming result 4 of the case study, after implementing the DSQE (only
once) with T = 5 and εw = 0.0001. Blue points: superset; Red points: final subset; Gray

points: Removed points.
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Figure 6.11: Data trimming result 5 of the case study, after implementing the DSQE (only
once) with T = 5 and εw = 0.0001. Blue points: superset; Red points: final subset; Gray

points: Removed points.

6.6 Conclusions

A novel and effective algorithm named DRCCP Solution Quality Enhancer (DSQE) is pre-

sented in this work, which is designed to enhance the quality of DRCCP solutions. This
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algorithm is compatible with various DRCCP methods since it does not rely on any specific

mathematical property of a DRCCP approach. By generating a representative subset of the

original data set and eliminating the samples contributing to extreme constraint violations,

the DSQE algorithm can significantly improve the decision quality of DRCCP. In addition,

the algorithm can simultaneously ensure the solution feasibility of DRCCP. The efficacy of

the DSQE has been demonstrated through the application of two linear numerical exam-

ples and a nonlinear process optimization case study. The presented algorithm is capable

of removing samples that negatively impact the decision quality, thereby enabling DRCCP

to generate improved solutions for the mentioned applications. The obtained results indi-

cate that while adjusting the hyperparameters of both the DSQE and the DRCCP model

embedded in the DSQE may impact the DSQE’s performance, the DSQE can still attain

a significantly better optimal solution than the DRCCP (based on the original data set)

without using the DSQE, irrespective of the selected hyper-parameter values.

For future research, it would be valuable to develop a more powerful technique to deter-

mine the subset representing the original superset to further enhance the DSQE performance

and computational efficiency.
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Chapter 7

Conclusion and Future work

7.1 Concluding remarks

This study aims to propose novel data-driven methods that can address optimization under

uncertainty and overcome the limitations of existing approaches. To tackle the optimization

problems involving surrogate model prediction uncertainty, we develop a new framework

based on a computationally efficient mixture density network (MDN). By employing the

MDN to address model prediction uncertainty, the presented approach can improve the

solution robustness and achieve higher computational efficiency than the ensemble-based

method from the literature. We also introduce an innovative neural network-based tech-

nique that can enable NP-hard joint chance-constrained problems (JCCPs) to be tractable

and deterministic solvable. Furthermore, we extend this technique by replacing the neural

network with a recurrent neural network (RNN), to solve joint chance-constrained stochastic

optimal control problems (SOCPs). Our RNN-based method has higher computational effi-

ciency and can achieve a better optimal control action compared to existing approaches for

SOCPs. Subsequently, we present two new distributionally robust chance-constrained opti-

mization (DRCCP) methods to solve JCCPs when the true distributions of uncertainty are

not known. The first approach is based on the kernel ambiguity set, which can achieve bet-

ter performance and require fewer assumptions than the popular Wasserstein-based method.

The second method is based on the Sinkhorn ambiguity set, which can achieve better per-

formance, require fewer assumptions, and hedge against more general families of uncertainty

distributions than the widely-used Wasserstein DRCCP. Finally, we develop a novel iterative

algorithm to improve the DRCCP solution quality by trimming outliers and extreme data
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samples in the used data set. This approach can significantly enhance the DRCCP solution

quality while ensuring the solution feasibility. This algorithm is compatible with arbitrary

DRCCP approaches.

7.2 Future work

This study could be further developed by exploring the following directions:

• The optimization approach proposed in Chapter 2 can be integrated with an adap-

tive sampling framework to enhance the solution quality. Also, using other modeling

techniques for handling uncertainty such as the Gaussian process, the Bayesian neural

network, etc., can be studied. Moreover, it would be worthwhile to investigate an

intriguing direction of expanding the approach to neural networks with different types

of activation functions.

• The RNN-based SOCP method presented in Section 3.2 can be combined with the

DRCCP methods proposed in Chapters 4 and 5, to make the presented SOCP method

also applies to the scenario that uncertainty distributions are unknown. In addition, a

future endeavor would be to integrate the proposed SOCP method with a closed-loop

prediction model employing control policy rather than action.

• A more general support discretization method for the kernel DRCCP presented in

Chapter 4 should be studied. Also, conducting a more thorough examination of the

particular application scenarios of different kernel DRCCP models could offer valuable

avenues for future research. Additionally, exploring more efficient tuning steps for the

kernel ambiguity set radius is worth considering. Furthermore, the proposed approach

has the potential for extension to multi-stage adaptive optimization problems.

• It would be worthwhile to explore a more effective tuning algorithm for the hyper-

parameters of the Sinkhorn-based method presented in Chapter 5. Additionally, this

Sinkhorn-based method can be extended to multi-stage adaptive optimization prob-

lems.

• The algorithm presented in Chapter 6 can be enhanced by developing more powerful

methods to determine the subset representing the original superset.
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• When the approaches proposed in Chapters 2-6 are applied to large-scale chemical

processes, the result may be intricate optimization models that could incur substantial

computational expenses. The scalability of these methodologies, hence, poses an area

requiring diligent future exploration.

• Following the above discussion, despite the computational challenges, the integration

of computationally efficient surrogate models into the optimization frameworks offers

a promising solution. These surrogate models approximate large-scale chemical pro-

cesses, substantially reducing computational load. Moreover, future work can focus on

developing tailored algorithms that seamlessly integrate these surrogate models into

optimization frameworks. Techniques could include iterative solutions or decomposi-

tion of the entire large problem into manageable sub-problems, resolved in a multi-stage

manner for improved computational efficiency. Such algorithmic adaptations represent

an exciting future direction for optimizing large-scale chemical processes.
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[27] W. van Ackooij, R. Henrion, A. Möller, and R. Zorgati, “Joint chance constrained

programming for hydro reservoir management,” Optimization and Engineering, vol. 15,

no. 2, pp. 509–531, 2014.

[28] Y. Yuan, Z. Li, and B. Huang, “Robust optimization approximation for joint chance

constrained optimization problem,” Journal of Global Optimization, vol. 67, no. 4, pp.

805–827, 2017.

[29] G. C. Calafiore and L. E. Ghaoui, “On distributionally robust chance-constrained linear

programs,” Journal of Optimization Theory and Applications, vol. 130, pp. 1–22, 2006.

202



[30] P. Mohajerin Esfahani and D. Kuhn, “Data-driven distributionally robust optimization

using the wasserstein metric: Performance guarantees and tractable reformulations,”

Mathematical Programming, vol. 171, no. 1-2, pp. 115–166, 2018.

[31] C. Villani, Optimal transport: old and new. Springer, 2009, vol. 338.

[32] A. Müller, “Integral probability metrics and their generating classes of functions,”

Advances in applied probability, pp. 429–443, 1997.

[33] Y. Yang and J. Kelly, “Efficient real time optimization using a data-driven piecewise

affine model,” Computers & Chemical Engineering, vol. 125, pp. 545–557, 2019.

[34] W. J. Lee, J. Na, K. Kim, C.-J. Lee, Y. Lee, and J. M. Lee, “Narx modeling for real-time

optimization of air and gas compression systems in chemical processes,” Computers &

Chemical Engineering, vol. 115, pp. 262–274, 2018.
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[51] A. Geletu, M. Klöppel, A. Hoffmann, and P. Li, “A tractable approximation of non-

convex chance constrained optimization with non-gaussian uncertainties,” Engineering

Optimization, vol. 47, no. 4, pp. 495–520, 2015.

[52] Z. Li, R. Ding, and C. A. Floudas, “A comparative theoretical and computational study

on robust counterpart optimization: I. robust linear optimization and robust mixed

integer linear optimization,” Industrial & Engineering Chemistry Research, vol. 50,

no. 18, pp. 10 567–10 603, 2011.

[53] A. Nemirovski and A. Shapiro, “Scenario approximations of chance constraints,” Prob-

abilistic and randomized methods for design under uncertainty, pp. 3–47, 2006.

[54] R. Karimi, J. Cheng, and M. A. Lejeune, “A framework for solving chance-constrained

linear matrix inequality programs,” INFORMS Journal on Computing, vol. 33, no. 3,

pp. 1015–1036, 2021.

[55] Y. Li, X. Yang, and F. Liu, “Robust adaptive beamforming for distributed radar

based on covariance matrix reconstruction and steering vector estimation,” in 2019

IEEE International Conference on Signal, Information and Data Processing (ICSIDP).

IEEE, 2019, pp. 1–4.

[56] J. Cheng, C. Gicquel, and A. Lisser, “Partial sample average approximation method

for chance constrained problems,” Optimization Letters, vol. 13, pp. 657–672, 2019.

[57] Y. Zhang, S. Shen, and S. A. Erdogan, “Distributionally robust appointment schedul-

ing with moment-based ambiguity set,” Operations Research Letters, vol. 45, no. 2, pp.

139–144, 2017.

[58] X. Yu and S. Shen, “Multistage distributionally robust mixed-integer programming

with decision-dependent moment-based ambiguity sets,” Mathematical Programming,

vol. 196, no. 1-2, pp. 1025–1064, 2022.

[59] S. Lee, H. Kim, and I. Moon, “A data-driven distributionally robust newsvendor model

with a wasserstein ambiguity set,” Journal of the Operational Research Society, pp. 1–

19, 2020.

205



[60] Z. Lu, X. Xu, and Z. Yan, “Data-driven stochastic programming for energy storage

system planning in high pv-penetrated distribution network,” International Journal of

Electrical Power & Energy Systems, vol. 123, p. 106326, 2020.

[61] Z. Chen, D. Kuhn, and W. Wiesemann, “Data-driven chance constrained programs

over wasserstein balls,” arXiv preprint arXiv:1809.00210, 2018.

[62] J. Le, X. Liao, L. Zhang, and T. Mao, “Distributionally robust chance constrained

planning model for energy storage plants based on kullback–leibler divergence,” Energy

Reports., vol. 7, pp. 5203–5213, 2021.

[63] Y. Chen, Q. Guo, H. Sun, Z. Li, W. Wu, and Z. Li, “A distributionally robust op-

timization model for unit commitment based on kullback–leibler divergence,” IEEE

Transactions on Power Systems, vol. 33, no. 5, pp. 5147–5160, 2018.

[64] Z. Hu and L. J. Hong, “Kullback-leibler divergence constrained distributionally robust

optimization,” Available at Optimization Online., pp. 1695–1724, 2013.

[65] C. Ning and F. You, “Deep learning based distributionally robust joint chance con-

strained economic dispatch under wind power uncertainty,” IEEE Transactions on

Power Systems, vol. 37, no. 1, pp. 191–203, 2021.

[66] R. Gao and A. Kleywegt, “Distributionally robust stochastic optimization with wasser-

stein distance,” Mathematics of Operations Research, 2022.

[67] W. Feng, Y. Feng, and Q. Zhang, “Multistage distributionally robust optimization for

integrated production and maintenance scheduling,” AIChE Journal, vol. 67, no. 9, p.

e17329, 2021.

[68] C. Ge, L. Zhang, and Z. Yuan, “Distributionally robust optimization for the closed-

loop supply chain design under uncertainty,” AIChE Journal, vol. 68, no. 12, p. e17909,

2022.

[69] B. Liu, Q. Zhang, and Z. Yuan, “Two-stage distributionally robust optimization for

maritime inventory routing,” Computers & Chemical Engineering, vol. 149, p. 107307,

2021.

[70] W. Xie, “On distributionally robust chance constrained programs with wasserstein

distance,” Mathematical Programming, vol. 186, no. 1-2, pp. 115–155, 2021.

206



[71] Y. Zhang, S. Shen, and J. L. Mathieu, “Distributionally robust chance-constrained op-

timal power flow with uncertain renewables and uncertain reserves provided by loads,”

IEEE Transactions on Power Systems, vol. 32, no. 2, pp. 1378–1388, 2016.
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Appendix

A1 Chapter 2 supplementary materials

A1.1 Illustrating example in Chapter 2

The MILP optimization model with MDN embedded for the illustrating example is given as:

min µf̂ + λσf̂ (A1a)

s.t. 2− µĝ1 ≥ ϕ−1(1− ε)σĝ1 , 25− µĝ2 ≥ ϕ−1(1− ε)σĝ2 (A1b)

− 5.3 ≤ x ≤ −0.6, 0.6 ≤ y ≤ 5.3 (A1c)

Xi = [x, y] i = 1, 2 (A1d)

a1j =
4∑︂
i=1

W 1
ijXi + b1j , H1

j ≥ a1j , 0 ≤ H1
j ≤M j = 1, ..., 50 (A1e)

H1
j ≤M(1− dz1j ), H1

j ≤ a1j +M(1− dl1j ) (A1f)

dz1j + dl1j = 1, dz1j , dl
1
j ∈ 0, 1 (A1g)

a2m =
50∑︂
j=1

W 2
jmH

1
j + b2m, H2

m ≥ a2m, 0 ≤ H2
m ≤M m = 1, ..., 30 (A1h)

H2
m ≤M(1− dz2m), H2

m ≤ a2m +M(1− dl2m) (A1i)

dz2m + dl2m = 1, dz2m, dl
2
m ∈ 0, 1 (A1j)

Yr =
30∑︂
m=1

W 3
mrH

2
m + b3r, Yr = [µf̂ , σf̂ , µĝ1 , σĝ1 , µĝ2 , σĝ2 ] r = 1, ..., 6 (A1k)

The embedded ReLU MDN is formulated in (A1d)-(A1k). The input layer is described
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by (A1d). Equations (A1e)-(A1g) represent the first hidden layer. Equations (A1h)-(A1j)

express the second hidden layer. The output layer is described by (A1k). µf̂ , σf̂ , µĝ1 , σĝ1 ,

µĝ2 , and σĝ2 are means and standard deviations of the 3 ReLU ANN predictions (f̂ , ĝ1,

and ĝ2) and they are predicted by the embedded MDN. W 1
ij, W

2
jm, W

3
mr, b

1
j , b

2
m, and b3r

are the weights between the input and first hidden layers, weights between the first and

second hidden layers, weights between the second hidden layer and the output layer, bias

for each neuron in the first hidden layer, bias for each neuron in the second hidden layer,

and bias for each neuron in the output layer, respectively. H1
j and H2

m are the output

of each neuron in the first hidden layer and output of each neuron in the second hidden

layer, respectively. dz1j , dl
1
j , dz

2
m, and dl2m are binary variables for max-affine operators in

the embedded ReLU MDN. M is a very big number. ε is a constant for determining the

confidence value. Equations (A1b) and (A1b) are chance constraints utilized to make the

ReLU ANN predictions satisfy constraints given in (2.10b) and (2.10c) (in the main text)

with a certain confidence, respectively, under the prediction uncertainty. The derivation of

the chance constraint is mentioned in Section 2.2.5 (in the main text).

Table A1: Mean absolute percentage errors of the trained MDN

µf̂ σf̂ µĝ1 σĝ1 µĝ2 σĝ2
MAPE (%) 0.54 5.22 1.31 4.14 0.07 4.24
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(a) PDF of f̂ (b) Probability plot of f̂

(c) PDF of ĝ1 (d) Probability plot of ĝ1

(e) PDF of ĝ2 (f) Probability plot of ĝ2

Figure A1: Validation of the prediction uncertainty distribution
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(a) µf̂ computed from the
MDN

(b) µf̂ computed from the
ReLU ANN ensemble

(c) f(x, y) obtained from the
original problem formulation

(d) µĝ1 computed from the
MDN

(e) µĝ1 computed from the
ReLU ANN ensemble

(f) g1(x, y) obtained from the
original problem formulation

(g) µĝ2 computed from the
MDN

(h) µĝ2 computed from the
ReLU ANN ensemble

(i) g2(x, y) obtained from the
original problem formulation

Figure A2: Prediction means computed from the MDN and ReLU ANN ensemble as well
as results obtained from the original problem formulation under different 1 − ε and λ
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(a) σf̂ computed from the MDN (b) σf̂ computed from the ReLU
ANN ensemble

(c) σĝ1 computed from the MDN (d) σĝ1 computed from the ReLU
ANN ensemble

(e) σĝ2 computed from the MDN (f) σĝ2 computed from the ReLU
ANN ensemble

Figure A3: Prediction standard deviations computed from the MDN and ReLU ANN
ensemble under different 1− ε and λ
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Table A2: MDN outputs based on different 1− ε and λ

Confidence
value

Optimal
decision variables

Predicted means and standard deviations from the MDN

λ = 1 1− ε x y µf̂ σf̂ µĝ1 σĝ1 µĝ2 σĝ2
0.99 -5.2557 4.9877 0.3304 0.0141 1.9497 0.0216 24.9427 0.0246
0.95 -5.2594 4.9893 0.3298 0.0141 1.9644 0.0216 24.9595 0.0246
0.9 -5.2614 4.9902 0.3294 0.0142 1.9723 0.0216 24.9684 0.0246
0.8 -5.2638 4.9912 0.3290 0.0142 1.9818 0.0216 24.9793 0.0246
0.7 -5.2655 4.9920 0.3287 0.0142 1.9887 0.0216 24.9871 0.0246
0.6 -5.2670 4.9926 0.3284 0.0142 1.9945 0.0216 24.9938 0.0246
0.5 -5.2684 4.9932 0.3282 0.0142 2 0.0216 25 0.0246
0.4 -5.2698 4.9938 0.3280 0.0142 2.0055 0.0216 25.0062 0.0246
0.3 -5.2713 4.9945 0.3277 0.0142 2.0113 0.0216 25.0129 0.0246
0.2 -5.2730 4.9952 0.3274 0.0142 2.0182 0.0216 25.0207 0.0246

λ = 10 1− ε x y µf̂ σf̂ µĝ1 σĝ1 µĝ2 σĝ2
0.99 -5.2557 4.9877 0.3304 0.0141 1.9497 0.0216 24.9427 0.0246
0.95 -5.2594 4.9893 0.3298 0.0141 1.9644 0.0216 24.9595 0.0246
0.9 -5.2614 4.9902 0.3294 0.0142 1.9723 0.0216 24.9684 0.0246
0.8 -5.2638 4.9912 0.3290 0.0142 1.9818 0.0216 24.9793 0.0246
0.7 -5.2655 4.9920 0.3287 0.0142 1.9887 0.0216 24.9871 0.0246
0.6 -5.2670 4.9926 0.3284 0.0142 1.9945 0.0216 24.9938 0.0246
0.5 -5.2684 4.9932 0.3282 0.0142 2 0.0216 25 0.0246
0.4 -5.2698 4.9938 0.3280 0.0142 2.0055 0.0216 25.0062 0.0246
0.3 -5.2713 4.9945 0.3277 0.0142 2.0113 0.0216 25.0129 0.0246
0.2 -5.2730 4.9952 0.3274 0.0142 2.0182 0.0216 25.0207 0.0246

λ = 50 1− ε x y µf̂ σf̂ µĝ1 σĝ1 µĝ2 σĝ2
0.99 -4.9043 4.9921 0.4240 0.0117 0.6629 0.0219 24.9436 0.0243
0.95 -4.9050 4.9938 0.4237 0.0117 0.6665 0.0219 24.9601 0.0243
0.9 -4.9054 4.9947 0.4236 0.0117 0.6684 0.0219 24.9689 0.0243
0.8 -4.9059 4.9957 0.4235 0.0117 0.6708 0.0219 24.9796 0.0243
0.7 -4.9063 4.9965 0.4234 0.0117 0.6724 0.0219 24.9873 0.0243
0.6 -4.9066 4.9972 0.4233 0.0117 0.6739 0.0219 24.9939 0.0243
0.5 -4.9069 4.9978 0.4232 0.0117 0.6752 0.0219 25 0.0243
0.4 -4.9071 4.9984 0.4231 0.0117 0.6766 0.0219 25.0061 0.0243
0.3 -4.9074 4.9991 0.4230 0.0117 0.6780 0.0219 25.0127 0.0243
0.2 -4.9078 4.9998 0.4229 0.0117 0.6797 0.0219 25.0204 0.0243

λ = 100 1− ε x y µf̂ σf̂ µĝ1 σĝ1 µĝ2 σĝ2
0.99 -4.8837 4.9468 0.4300 0.0116 0.5640 0.0219 24.4910 0.0242
0.95 -4.8837 4.9468 0.4300 0.0116 0.5640 0.0219 24.4910 0.0242
0.9 -4.8837 4.9468 0.4300 0.0116 0.5640 0.0219 24.4910 0.0242
0.8 -4.8837 4.9468 0.4300 0.0116 0.5640 0.0219 24.4910 0.0242
0.7 -4.8837 4.9468 0.4300 0.0116 0.5640 0.0219 24.4910 0.0242
0.6 -4.8837 4.9468 0.4300 0.0116 0.5640 0.0219 24.4910 0.0242
0.5 -4.8837 4.9468 0.4300 0.0116 0.5640 0.0219 24.4910 0.0242
0.4 -4.8837 4.9468 0.4300 0.0116 0.5640 0.0219 24.4910 0.0242
0.3 -4.8837 4.9468 0.4300 0.0116 0.5640 0.0219 24.4910 0.0242
0.2 -4.8837 4.9468 0.4300 0.0116 0.5640 0.0219 24.4910 0.0242
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Table A3: Results from the ReLU ANN ensemble based on different 1 − ε and λ

Confidence
value

Optimal
decision variables

Means and standard deviations
of ReLU ANN ensemble predictions

λ = 1 1− ε x y µf̂ σf̂ µĝ1 σĝ1 µĝ2 σĝ2
0.99 -5.2557 4.9877 0.3341 0.0141 1.9555 0.0258 24.9367 0.0227
0.95 -5.2594 4.9893 0.3333 0.0142 1.9709 0.0259 24.9539 0.0233
0.9 -5.2614 4.9902 0.3328 0.0143 1.9791 0.0259 24.9631 0.0236
0.8 -5.2638 4.9912 0.3322 0.0144 1.9891 0.0261 24.9743 0.0240
0.7 -5.2655 4.9920 0.3317 0.0145 1.9963 0.0262 24.9823 0.0242
0.6 -5.2670 4.9926 0.3314 0.0146 2.0024 0.0262 24.9892 0.0244
0.5 -5.2684 4.9932 0.3310 0.0147 2.0082 0.0263 24.9956 0.0246
0.4 -5.2698 4.9938 0.3307 0.0148 2.0139 0.0264 25.0021 0.0248
0.3 -5.2713 4.9945 0.3303 0.0149 2.0200 0.0266 25.0090 0.0251
0.2 -5.2730 4.9952 0.3298 0.0151 2.0272 0.0267 25.0170 0.0253

λ = 10 1− ε x y µf̂ σf̂ µĝ1 σĝ1 µĝ2 σĝ2
0.99 -5.2557 4.9877 0.3341 0.0141 1.9555 0.0258 24.9367 0.0227
0.95 -5.2594 4.9893 0.3333 0.0142 1.9709 0.0259 24.9539 0.0233
0.9 -5.2614 4.9902 0.3328 0.0143 1.9791 0.0259 24.9631 0.0236
0.8 -5.2638 4.9912 0.3322 0.0144 1.9891 0.0261 24.9743 0.0240
0.7 -5.2655 4.9920 0.3317 0.0145 1.9963 0.0262 24.9823 0.0242
0.6 -5.2670 4.9926 0.3314 0.0146 2.0024 0.0262 24.9892 0.0244
0.5 -5.2684 4.9932 0.3310 0.0147 2.0082 0.0263 24.9956 0.0246
0.4 -5.2698 4.9938 0.3307 0.0148 2.0139 0.0264 25.0021 0.0248
0.3 -5.2713 4.9945 0.3303 0.0149 2.0200 0.0266 25.0090 0.0251
0.2 -5.2730 4.9952 0.3298 0.0151 2.0272 0.0267 25.0170 0.0253

λ = 50 1− ε x y µf̂ σf̂ µĝ1 σĝ1 µĝ2 σĝ2
0.99 -4.9043 4.9921 0.4231 0.0121 0.6719 0.0212 24.9480 0.0211
0.95 -4.9050 4.9938 0.4229 0.0121 0.6754 0.0211 24.9644 0.0210
0.9 -4.9054 4.9947 0.4228 0.0121 0.6772 0.0211 24.9732 0.0210
0.8 -4.9059 4.9957 0.4227 0.0121 0.6795 0.0210 24.9838 0.0209
0.7 -4.9063 4.9965 0.4227 0.0121 0.6811 0.0210 24.9915 0.0209
0.6 -4.9066 4.9972 0.4226 0.0121 0.6825 0.0210 24.9980 0.0209
0.5 -4.9069 4.9978 0.4225 0.0121 0.6838 0.0209 25.0042 0.0209
0.4 -4.9071 4.9984 0.4225 0.0121 0.6851 0.0209 25.0103 0.0208
0.3 -4.9074 4.9991 0.4224 0.0121 0.6865 0.0209 25.0168 0.0208
0.2 -4.9078 4.9998 0.4223 0.0121 0.6881 0.0209 25.0245 0.0208

λ = 100 1− ε x y µf̂ σf̂ µĝ1 σĝ1 µĝ2 σĝ2
0.99 -4.8837 4.9468 0.4279 0.0116 0.5778 0.0219 24.4990 0.0225
0.95 -4.8837 4.9468 0.4279 0.0116 0.5778 0.0219 24.4990 0.0225
0.9 -4.8837 4.9468 0.4279 0.0116 0.5778 0.0219 24.4990 0.0225
0.8 -4.8837 4.9468 0.4279 0.0116 0.5778 0.0219 24.4990 0.0225
0.7 -4.8837 4.9468 0.4279 0.0116 0.5778 0.0219 24.4990 0.0225
0.6 -4.8837 4.9468 0.4279 0.0116 0.5778 0.0219 24.4990 0.0225
0.5 -4.8837 4.9468 0.4279 0.0116 0.5778 0.0219 24.4990 0.0225
0.4 -4.8837 4.9468 0.4279 0.0116 0.5778 0.0219 24.4990 0.0225
0.3 -4.8837 4.9468 0.4279 0.0116 0.5778 0.0219 24.4990 0.0225
0.2 -4.8837 4.9468 0.4279 0.0116 0.5778 0.0219 24.4990 0.0225
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Table A4: Results from the ReLU ANN ensemble and original problem formulation based
on different 1− ε and λ

Confidence
value

Optimal
decision variables

ReLU ANN ensemble
constraint satisfaction

Results from the
original formulation

λ = 1 1− ε x y % f(x, y) g1(x, y) g2(x, y)
0.99 -5.2557 4.9877 96 0.3358 1.9557 24.9423
0.95 -5.2594 4.9893 92 0.3350 1.9713 24.9604
0.9 -5.2614 4.9902 83 0.3346 1.9796 24.9701
0.8 -5.2638 4.9912 67 0.3341 1.9897 24.9818
0.7 -5.2655 4.9920 46 0.3337 1.9970 24.9903
0.6 -5.2670 4.9926 36 0.3334 ∗2.0032 24.9975
0.5 -5.2684 4.9932 23 0.3331 ∗2.0090 ∗25.0043
0.4 -5.2698 4.9938 14 0.3328 ∗2.0148 ∗25.0111
0.3 -5.2713 4.9945 11 0.3324 ∗2.0210 ∗25.0184
0.2 -5.2730 4.9952 6 0.3321 ∗2.0283 ∗25.0269

λ = 10 1− ε x y % f(x, y) g1(x, y) g2(x, y)
0.99 -5.2557 4.9877 96 0.3358 1.9557 24.9423
0.95 -5.2594 4.9893 92 0.3350 1.9713 24.9604
0.9 -5.2614 4.9902 83 0.3346 1.9796 24.9701
0.8 -5.2638 4.9912 67 0.3341 1.9897 24.9818
0.7 -5.2655 4.9920 46 0.3337 1.9970 24.9903
0.6 -5.2670 4.9926 36 0.3334 ∗2.0032 24.9975
0.5 -5.2684 4.9932 23 0.3331 ∗2.0090 ∗25.0043
0.4 -5.2698 4.9938 14 0.3328 ∗2.0148 ∗25.0111
0.3 -5.2713 4.9945 11 0.3324 ∗2.0210 ∗25.0184
0.2 -5.2730 4.9952 6 0.3321 ∗2.0283 ∗25.0269

λ = 50 1− ε x y % f(x, y) g1(x, y) g2(x, y)
0.99 -4.9043 4.9921 99 0.4234 0.6699 24.9305
0.95 -4.9050 4.9938 97 0.4232 0.6733 24.9469
0.9 -4.9054 4.9947 90 0.4231 0.6751 24.9556
0.8 -4.9059 4.9957 75 0.4230 0.6773 24.9662
0.7 -4.9063 4.9965 63 0.4229 0.6788 24.9738
0.6 -4.9066 4.9972 52 0.4229 0.6802 24.9804
0.5 -4.9069 4.9978 44 0.4228 0.6815 24.9865
0.4 -4.9071 4.9984 31 0.4227 0.6827 24.9925
0.3 -4.9074 4.9991 23 0.4226 0.6841 24.9991
0.2 -4.9078 4.9998 10 0.4226 0.6856 ∗25.0067

λ = 100 1− ε x y % f(x, y) g1(x, y) g2(x, y)
0.99 -4.8837 4.9468 100 0.4284 0.5781 24.4846
0.95 -4.8837 4.9468 100 0.4284 0.5781 24.4846
0.9 -4.8837 4.9468 100 0.4284 0.5781 24.4846
0.8 -4.8837 4.9468 100 0.4284 0.5781 24.4846
0.7 -4.8837 4.9468 100 0.4284 0.5781 24.4846
0.6 -4.8837 4.9468 100 0.4284 0.5781 24.4846
0.5 -4.8837 4.9468 100 0.4284 0.5781 24.4846
0.4 -4.8837 4.9468 100 0.4284 0.5781 24.4846
0.3 -4.8837 4.9468 100 0.4284 0.5781 24.4846
0.2 -4.8837 4.9468 100 0.4284 0.5781 24.4846

∗ marks mean that the marked values violate the first or second constraints in the original problem.
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A1.2 Distillation process in Chapter 2

The MILP chance-constrained optimization with the mean-variance type objective function

and the MDN embedded for the first case study is given as:

min µTACˆ + λσTACˆ (A2a)

s.t. 0.8− µx̂D ≤ ϕ−1(ε)σx̂D (A2b)

0.9− µRecˆ ≤ ϕ−1(ε)σRecˆ (A2c)

NT −NF ≥ 1 (A2d)

1 ≤ RR ≤ 10 (A2e)

1 ≤ RD ≤ 10 (A2f)

10 ≤ NT ≤ 150 (A2g)

2 ≤ NF ≤ 149 (A2h)

Xi = [RR,RD,NT,NF ] i = 1, 2, 3, 4 (A2i)

a1j =
4∑︂
i=1

W 1
ijXi + b1j j = 1, ..., 50 (A2j)

H1
j ≥ a1j , 0 ≤ H1

j ≤M (A2k)

H1
j ≤M(1− dz1j ) (A2l)

H1
j ≤ a1j +M(1− dl1j ) (A2m)

dz1j + dl1j = 1, dz1j , dl
1
j ∈ 0, 1 (A2n)

a2m =
50∑︂
j=1

W 2
jmH

1
j + b2m m = 1, ..., 30 (A2o)

H2
m ≥ a2m, 0 ≤ H2

m ≤M (A2p)

H2
m ≤M(1− dz2m) (A2q)

H2
m ≤ a2m +M(1− dl2m) (A2r)

dz2m + dl2m = 1, dz2m, dl
2
m ∈ 0, 1 (A2s)

Yr =
30∑︂
m=1

W 3
mrH

2
m + b3r r = 1, ..., 6 (A2t)

Yr = [µTACˆ , σTACˆ , µx̂D , σx̂D , µRecˆ , σRecˆ ] (A2u)
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Equations (A2d)-(A2h) are the linear inequality equation for making NF in the reasonable

range and the bounds for decision variables. The input layer is described by (A2i). The

output layer is expressed as (A2t) and (A2u). µTACˆ , σTACˆ , µx̂D , σx̂D , µRecˆ , and σRecˆ are means

and standard deviations of the 3 ReLU ANN predictions (TACˆ , x̂D, and Recˆ ) and they are

predicted from the MDN. Equations (A2b) and (A2c) are chance constraints transformed

from (2.11b) and (2.11c) (in the main text), respectively. The derivation of the chance

constraint is mentioned in Section 2.2.5 (in the main text). Equations (A2j)-(A2s) are

the same as (A1e)-(A1j) mentioned in the illustrating example. The inverse cumulative

distribution function ϕ−1(ε) in (A2b) and (A2c) is computed based on the assumption of

Gaussian distribution because the distribution of predictions from the ReLU ANN ensemble

based on a certain observation can be approximated by Gaussian distribution. It is evidenced

in Figures A4a-A4f.

Table A5: Mean absolute percentage errors of the trained MDN

µTACˆ σTACˆ µx̂D σx̂D µRecˆ σRecˆ
MAPE (%) 1.14 5.21 1.23 6.33 4.74 7.86
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(a) PDF of TACˆ (b) Probability plot of TACˆ

(c) PDF of x̂D (d) Probability plot of x̂D

(e) PDF of Recˆ (f) Probability plot of Recˆ

Figure A4: Prediction uncertainty validation based on RR = 3.2, RD = 6.3957 GJ/hr,
NT = 150, and NF = 2
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Table A6: MDN outputs based on different 1− ε and λ

Confidence
value

Optimal
decision variables

Predicted means and standard deviations from the MDN

λ = 1 1− ε RR RD NT NF µTACˆ σTACˆ µx̂D
σx̂D

µRecˆ σRecˆ

0.99 3.689 2.660 16 15 0.1955 0.0013 0.8190 0.0082 0.9212 0.0091
0.95 3.427 2.571 16 15 0.1898 0.0013 0.8143 0.0087 0.9158 0.0096
0.9 3.323 2.526 17 15 0.1868 0.0013 0.8112 0.0087 0.9125 0.0097
0.8 2.865 2.366 18 15 0.1766 0.0014 0.8079 0.0094 0.9089 0.0106
0.7 2.693 2.301 19 15 0.1721 0.0014 0.8049 0.0094 0.9056 0.0108
0.6 2.553 2.253 19 15 0.1688 0.0014 0.8024 0.0095 0.9028 0.0109
0.5 2.419 2.208 19 15 0.1656 0.0014 0.8000 0.0096 0.9000 0.0110
0.4 2.344 2.182 19 15 0.1640 0.0014 0.7976 0.0096 0.8972 0.0110
0.3 2.338 2.175 18 14 0.1625 0.0014 0.7949 0.0098 0.8942 0.0110
0.2 2.310 2.175 17 14 0.1609 0.0015 0.7916 0.0099 0.8906 0.0111

λ = 10 1− ε RR RD NT NF µTACˆ σTACˆ µx̂D
σx̂D

µRecˆ σRecˆ

0.99 3.689 2.660 16 15 0.1955 0.0013 0.8190 0.0082 0.9212 0.0091
0.95 3.427 2.571 16 15 0.1898 0.0013 0.8143 0.0087 0.9158 0.0096
0.9 3.323 2.526 17 15 0.1868 0.0013 0.8112 0.0087 0.9125 0.0097
0.8 2.865 2.366 18 15 0.1766 0.0014 0.8079 0.0094 0.9089 0.0106
0.7 2.693 2.301 19 15 0.1721 0.0014 0.8049 0.0094 0.9056 0.0108
0.6 2.553 2.253 19 15 0.1688 0.0014 0.8024 0.0095 0.9028 0.0109
0.5 2.419 2.208 19 15 0.1656 0.0014 0.8000 0.0096 0.9000 0.0110
0.4 2.344 2.182 19 15 0.1640 0.0014 0.7976 0.0096 0.8972 0.0110
0.3 2.338 2.175 18 14 0.1625 0.0014 0.7949 0.0098 0.8942 0.0110
0.2 2.255 2.145 18 14 0.1611 0.0014 0.7918 0.0098 0.8907 0.0110

λ = 50 1− ε RR RD NT NF µTACˆ σTACˆ µx̂D
σx̂D

µRecˆ σRecˆ

0.99 3.940 2.728 22 14 0.1989 0.0012 0.8155 0.0066 0.9187 0.0080
0.95 3.864 2.678 22 14 0.1953 0.0012 0.8109 0.0066 0.9132 0.0080
0.9 3.824 2.652 22 14 0.1934 0.0012 0.8085 0.0067 0.9102 0.0080
0.8 2.900 2.370 19 15 0.1768 0.0014 0.8077 0.0091 0.9088 0.0105
0.7 2.794 2.326 20 15 0.1739 0.0014 0.8047 0.0090 0.9055 0.0104
0.6 2.771 2.310 20 14 0.1719 0.0013 0.8022 0.0089 0.9026 0.0103
0.5 2.519 2.233 20 15 0.1674 0.0014 0.8000 0.0092 0.9000 0.0107
0.4 2.430 2.204 20 15 0.1655 0.0014 0.7977 0.0092 0.8973 0.0107
0.3 2.403 2.193 19 14 0.1638 0.0014 0.7951 0.0094 0.8943 0.0108
0.2 2.289 2.151 19 14 0.1616 0.0014 0.7920 0.0095 0.8909 0.0108

λ = 100 1− ε RR RD NT NF µTACˆ σTACˆ µx̂D
σx̂D

µRecˆ σRecˆ

0.99 3.940 2.728 22 14 0.1989 0.0012 0.8155 0.0066 0.9187 0.0080
0.95 3.864 2.678 22 14 0.1953 0.0012 0.8109 0.0066 0.9132 0.0080
0.9 3.824 2.652 22 14 0.1934 0.0012 0.8085 0.0067 0.9102 0.0080
0.8 3.750 2.613 22 14 0.1907 0.0012 0.8056 0.0067 0.9068 0.0080
0.7 3.603 2.561 23 15 0.1884 0.0012 0.8035 0.0067 0.9043 0.0082
0.6 2.777 2.311 21 15 0.1728 0.0013 0.8022 0.0086 0.9026 0.0102
0.5 2.610 2.254 22 16 0.1700 0.0013 0.8000 0.0086 0.9000 0.0103
0.4 2.479 2.209 23 17 0.1679 0.0013 0.7979 0.0085 0.8974 0.0103
0.3 2.615 2.239 27 20 0.1725 0.0013 0.7961 0.0074 0.8950 0.0095
0.2 2.446 2.181 28 21 0.1700 0.0013 0.7937 0.0075 0.8919 0.0096
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Table A7: Results from the ReLU ANN ensemble based on different 1 − ε and λ

Confidence
value

Optimal
decision variables

Means and standard deviations
of ReLU ANN ensemble predictions

λ = 1 1− ε RR RD NT NF µTACˆ σTACˆ µx̂D
σx̂D

µRecˆ σRecˆ

0.99 3.689 2.660 16 15 0.1935 0.0012 0.8265 0.0088 0.9374 0.0145
0.95 3.427 2.571 16 15 0.1872 0.0012 0.8216 0.0087 0.9434 0.0133
0.9 3.323 2.526 17 15 0.1847 0.0012 0.8237 0.0082 0.9461 0.0131
0.8 2.865 2.366 18 15 0.1739 0.0012 0.8142 0.0081 0.9573 0.0110
0.7 2.693 2.301 19 15 0.1699 0.0012 0.8121 0.0083 0.9615 0.0102
0.6 2.553 2.253 19 15 0.1665 0.0012 0.8052 0.0084 0.9630 0.0099
0.5 2.419 2.208 19 15 0.1632 0.0012 0.7978 0.0088 0.9631 0.0099
0.4 2.344 2.182 19 15 0.1613 0.0012 0.7932 0.0092 0.9629 0.0101
0.3 2.338 2.175 18 14 0.1601 0.0012 0.7934 0.0092 0.9608 0.0104
0.2 2.310 2.175 17 14 0.1594 0.0013 0.7846 0.0096 0.9573 0.0108

λ = 10 1− ε RR RD NT NF µTACˆ σTACˆ µx̂D
σx̂D

µRecˆ σRecˆ

0.99 3.689 2.660 16 15 0.1935 0.0012 0.8265 0.0088 0.9374 0.0145
0.95 3.427 2.571 16 15 0.1872 0.0012 0.8216 0.0087 0.9434 0.0133
0.9 3.323 2.526 17 15 0.1847 0.0012 0.8237 0.0082 0.9461 0.0131
0.8 2.865 2.366 18 15 0.1739 0.0012 0.8142 0.0081 0.9573 0.0110
0.7 2.693 2.301 19 15 0.1699 0.0012 0.8121 0.0083 0.9615 0.0102
0.6 2.553 2.253 19 15 0.1665 0.0012 0.8052 0.0084 0.9630 0.0099
0.5 2.419 2.208 19 15 0.1632 0.0012 0.7978 0.0088 0.9631 0.0099
0.4 2.344 2.182 19 15 0.1613 0.0012 0.7932 0.0092 0.9629 0.0101
0.3 2.338 2.175 18 14 0.1601 0.0012 0.7934 0.0092 0.9608 0.0104
0.2 2.255 2.145 18 14 0.1580 0.0013 0.7886 0.0097 0.9605 0.0105

λ = 50 1− ε RR RD NT NF µTACˆ σTACˆ µx̂D
σx̂D

µRecˆ σRecˆ

0.99 3.940 2.728 22 14 0.2028 0.0011 0.8380 0.0069 0.9275 0.0120
0.95 3.864 2.678 22 14 0.1993 0.0011 0.8378 0.0070 0.9202 0.0119
0.9 3.824 2.652 22 14 0.1974 0.0011 0.8377 0.0071 0.9163 0.0119
0.8 2.900 2.370 19 15 0.1749 0.0012 0.8200 0.0083 0.9579 0.0112
0.7 2.794 2.326 20 15 0.1725 0.0012 0.8203 0.0082 0.9599 0.0106
0.6 2.771 2.310 20 14 0.1713 0.0012 0.8198 0.0081 0.9565 0.0114
0.5 2.519 2.233 20 15 0.1657 0.0012 0.8089 0.0085 0.9648 0.0093
0.4 2.430 2.204 20 15 0.1635 0.0012 0.8042 0.0089 0.9656 0.0095
0.3 2.403 2.193 19 14 0.1621 0.0012 0.8015 0.0091 0.9637 0.0097
0.2 2.289 2.151 19 14 0.1590 0.0013 0.7961 0.0097 0.9637 0.0102

λ = 100 1− ε RR RD NT NF µTACˆ σTACˆ µx̂D
σx̂D

µRecˆ σRecˆ

0.99 3.940 2.728 22 14 0.2028 0.0011 0.8380 0.0069 0.9275 0.0120
0.95 3.864 2.678 22 14 0.1993 0.0011 0.8378 0.0070 0.9202 0.0119
0.9 3.824 2.652 22 14 0.1974 0.0011 0.8377 0.0071 0.9163 0.0119
0.8 3.750 2.613 22 14 0.1946 0.0011 0.8372 0.0072 0.9128 0.0121
0.7 3.603 2.561 23 15 0.1915 0.0011 0.8391 0.0073 0.9198 0.0127
0.6 2.777 2.311 21 15 0.1720 0.0012 0.8230 0.0080 0.9588 0.0108
0.5 2.610 2.254 22 16 0.1685 0.0012 0.8197 0.0081 0.9653 0.0093
0.4 2.479 2.209 23 17 0.1659 0.0012 0.8153 0.0086 0.9685 0.0084
0.3 2.615 2.239 27 20 0.1706 0.0011 0.8313 0.0082 0.9683 0.0086
0.2 2.446 2.181 28 21 0.1669 0.0012 0.8244 0.0096 0.9713 0.0093
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Table A8: Results from the ReLU ANN ensemble and original distillation process model
based on different 1− ε and λ

Confidence
value

Optimal
decision variables

ReLU ANN ensemble
constraint satisfaction

Results from the
original model

λ = 1 1− ε RR RD NT NF % TAC xD Rec
0.99 3.689 2.660 16 15 98 0.1930 0.8382 0.9395
0.95 3.427 2.571 16 15 100 0.1866 0.8344 0.9470
0.9 3.323 2.526 17 15 100 0.1841 0.8382 0.9515
0.8 2.865 2.366 18 15 98 0.1737 0.8339 0.9693
0.7 2.693 2.301 19 15 91 0.1701 0.8321 0.9742
0.6 2.553 2.253 19 15 71 0.1666 0.8297 0.9806
0.5 2.419 2.208 19 15 41 0.1632 0.8272 0.9871
0.4 2.344 2.182 19 15 27 0.1613 0.8255 0.9905
0.3 2.338 2.175 18 14 28 0.1603 0.8225 0.9847
0.2 2.310 2.175 17 14 8 0.1590 0.8200 0.9888

λ = 10 1− ε RR RD NT NF % TAC xD Rec
0.99 3.689 2.660 16 15 98 0.1930 0.8382 0.9395
0.95 3.427 2.571 16 15 100 0.1866 0.8344 0.9470
0.9 3.323 2.526 17 15 100 0.1841 0.8382 0.9515
0.8 2.865 2.366 18 15 98 0.1737 0.8339 0.9693
0.7 2.693 2.301 19 15 91 0.1701 0.8321 0.9742
0.6 2.553 2.253 19 15 71 0.1666 0.8297 0.9806
0.5 2.419 2.208 19 15 41 0.1632 0.8272 0.9871
0.4 2.344 2.182 19 15 27 0.1613 0.8255 0.9905
0.3 2.338 2.175 18 14 28 0.1603 0.8225 0.9847
0.2 2.255 2.145 18 14 13 0.1581 0.8204 0.9880

λ = 50 1− ε RR RD NT NF % TAC xD Rec
0.99 3.940 2.728 22 14 98 0.2031 0.8425 0.9264
0.95 3.864 2.678 22 14 98 0.1995 0.8419 0.9189
0.9 3.824 2.652 22 14 98 0.1976 0.8416 0.9148
0.8 2.900 2.370 19 15 100 0.1751 0.8352 0.9646
0.7 2.794 2.326 20 15 100 0.1727 0.8338 0.9652
0.6 2.771 2.310 20 14 98 0.1716 0.8303 0.9585
0.5 2.519 2.233 20 15 84 0.1660 0.8295 0.9779
0.4 2.430 2.204 20 15 64 0.1638 0.8279 0.9826
0.3 2.403 2.193 19 14 56 0.1624 0.8242 0.9797
0.2 2.289 2.151 19 14 34 0.1594 0.8219 0.9836

λ = 100 1− ε RR RD NT NF % TAC xD Rec
0.99 3.940 2.728 22 14 98 0.2031 0.8425 0.9264
0.95 3.864 2.678 22 14 98 0.1995 0.8419 0.9189
0.9 3.824 2.652 22 14 98 0.1976 0.8416 0.9148
0.8 3.750 2.613 22 14 90 0.1948 0.8411 0.9114
0.7 3.603 2.561 23 15 96 0.1917 0.8430 0.9176
0.6 2.777 2.311 21 15 100 0.1723 0.8337 0.9613
0.5 2.610 2.254 22 16 100 0.1688 0.8339 0.9715
0.4 2.479 2.209 23 17 96 0.1662 0.8340 0.9795
0.3 2.615 2.239 27 20 100 0.1709 0.8420 0.9707
0.2 2.446 2.181 28 21 100 0.1673 0.8404 0.9792
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A1.3 Ethylene glycol production process in Chapter 2

The MILP chance-constrained optimization with the mean-variance type objective function

and the MDN embedded for the second case study is given as:

max µF̂EG
+ λσF̂EG

(A3a)

s.t. 0.6− µX̂EO
≤ ϕ−1(ε)σX̂EO

(A3b)

0.5− µx̂EG
≤ ϕ−1(ε)σx̂EG

(A3c)

700 ≤ Fw ≤ 5000 (A3d)

221 ≤ VCSTR ≤ 321 (A3e)

300 ≤ Tf ≤ 390 (A3f)

Xi = [Fw, VCSTR, Tf ] i = 1, 2, 3 (A3g)

a1j =
4∑︂
i=1

W 1
ijXi + b1j j = 1, ..., 50 (A3h)

H1
j ≥ a1j (A3i)

0 ≤ H1
j ≤M (A3j)

H1
j ≤M(1− dz1j ) (A3k)

H1
j ≤ a1j +M(1− dl1j ) (A3l)

dz1j + dl1j = 1, dz1j , dl
1
j ∈ 0, 1 (A3m)

a2m =
50∑︂
j=1

W 2
jmH

1
j + b2m m = 1, ..., 30 (A3n)

H2
m ≥ a2m (A3o)

0 ≤ H2
m ≤M (A3p)

H2
m ≤M(1− dz2m) (A3q)

H2
m ≤ a2m +M(1− dl2m) (A3r)

dz2m + dl2m = 1, dz2m, dl
2
m ∈ 0, 1 (A3s)

Yr =
30∑︂
m=1

W 3
mrH

2
m + b3r r = 1, ..., 6 (A3t)

Yr = [µF̂EG
, σF̂EG

, µX̂EO
, σX̂EO

, µx̂EG
, σx̂EG

] (A3u)
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Equations (A3b) and (A3c) are chance constraints transformed from (2.14b) and (2.14c)

(in the main text), respectively. The derivation of the chance constraint is mentioned in

Section 2.2.5 (in the main text). The embedded MDN is formulated as (A3g)-(A3u). The

input layer is expressed as (A3g). The output layer is formulated as (A3t) and (A3u).

µF̂EG
, σF̂EG

, µX̂EO
, σX̂EO

, µx̂EG
, and σx̂EG

are means and standard deviations of the 3 ReLU

ANN predictions (F̂EG, X̂EO, and x̂EG) and they are predicted by the embedded MDN.

Equations (A3h)-(A3s) are the same as (A1e)-(A1j) mentioned in the illustrating example.

The inverse cumulative distribution function ϕ−1(ε) in (A3b) and (A3c) is computed based

on the assumption of Gaussian distribution.

Table A9: Mean absolute percentage errors of the trained MDN

µF̂EG
σF̂EG

µX̂EO
σX̂EO

µx̂EG
σx̂EG

MAPE (%) 2.07 8.43 2.34 9.52 2.11 9.62
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A2 Chapter 3 supplementary materials

A2.1 Detailed explanation of the LSTM

Figure A5: Schematic diagram for illustrating a LSTM cell
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As shown in Figure A5, a LSTM cell is composed of the forget gate, input gates, and output

gate to remove or add information to the cell state from the previous time step, which is

the key to the LSTM. Every LSTM cell has the same structure, weight matrices, and bias

vectors. The first step in the LSTM is to determine what information should be removed

from the cell state. This determination is made through a sigmoid layer, namely the forget

gate layer. The forget gate layer outputs a vector with numbers in the range of 0 and 1,

based on the hidden state from the previous time step hj and the input uj. The output of

the forget gate can be computed by the following equation:

fj+1 = σS(Wf · [hj, uj] + bf ) (A4)

σS represents the element-wise sigmoid activation function (node “S” in the figure). Wf

and bf are the weight matrix and the bias vector for the forget gate layer. hj and uj are

concatenated to be a vector [hj, uj], and to be the input of the forget gate. The next step

in the LSTM is to determine what information should be stored in the cell state. This

determination is made by 2 input gate layers. The first one is to decide which values to be

updated through a sigmoid layer based on [hj, uj]. The second one is to create candidate

values in the vector C̃j+1 via a tanh layer. The two input gates can be represented by the

following equations:

inj+1 = σS(Win · [hj, uj] + bin) (A5a)

C̃j+1 = σT (WC · [hj, uj] + bC) (A5b)

σT represents the element-wise tanh activation function (node “T” in the figure). Win and

WC are weight matrices for the two input gate layers. bin and bC are bias vectors for the

two layers. Subsequently, the element-wise multiplication of Cj (the cell state from the

previous time step) and fj+1 is carried out to forget determined information, and then the

corresponding outcome is added element-wisely by inj+1 ◦ C̃j+1 to be Cj+1. Note that ◦
represents the element-wise multiplication. Finally, to generate the hidden state hj+1 at

the time step j + 1, [hj, uj] is transformed via the output gate layer with the element-wise

sigmoid function, and then be multiplied element-wisely by the transformation of Cj+1 via
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a tanh layer. The above calculation can be expressed as following equations:

Cj+1 = fj+1 ◦ Cj + inj+1 ◦ C̃j+1 (A6a)

oj+1 = σS(Wo · [hj, uj] + bo) (A6b)

hj+1 = oj+1 ◦ σT (Cj+1) (A6c)

where Wo and bo are the weight matrix and the bias vector for the output gate layer, respec-

tively. The LSTM forgets and updates information in the cell and hidden states through the

above procedure for all time steps to be capable of learning long-sequence temporal data.

A2.2 Illustrating example

A2.2.1 Calculation in the discretized formulation

Objective function

The expected values, x1,j, and x2,j in (3.15a) and (3.15d) in the main text, are computed

according to the following steps:

1) ξ1 and ξ2 are randomly sampled 1000 times to gain two sets which are {ξ1,1, ..., ξ1,103}
and {ξ2,1, ..., ξ2,103}, respectively. Then, the random parameters ξ1 and ξ2 are first fixed

at values of ξ1,1 and ξ2,1, respectively.

2) Based on the fixed values of random parameters, x1 and x2 are computed from

the original form of the dynamic model in (3.15c) in the main text ( dx1(t)
dt

= x2(t) +

ξ1,
dx2(t)
dt

= −u(t) + ξ2) from t = 0 to t = 3 with 1000 time intervals, by using the

trapezoidal rule method. The computation of the differential equation model is based

on a sequence of uj which is the discrete form of u(t). A sequence of uj is implemented

to the differential equation model at 10 time points which are t = 0 ∼ 2.7 with an

interval of 0.3. The manipulated variable (MV) u(t) remains constant in the interval

between two consecutive time points. For instance, u(t) = u0, u(t) = u1, and u(t) = u9

are at the intervals of 0 ≤ t < 0.3, 0.3 ≤ t < 0.6, and 2.7 ≤ t ≤ 3.0, respectively.

3) The computed x1 and x2 are extracted individually at 10 time points which are

t = 0.3 ∼ 3.0 with an interval of 0.3. This way, the sequences of x1,j and x2,j can be
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obtained for the computation of −x1,j−3.3 and −x2,j−3.3 in (3.15d) in the main text.

4) 1000 sequences of x1,j and x2,j can be computed by repeating steps 2 ∼ 3, based on

different realizations of ξ1 and ξ2. The 1000 sequences of x1,j and x2,j can be deemed

as two 1000× 10 matrices. 1000 rows in each matrix correspond to 1000 computations

based on different realizations of ξ1 and ξ2, and 10 columns in each matrix correspond

to j = 1, ..., 10.

5) By taking mean values of the 1000×10 matrix of x1,j through the column direction,

the 10-element vector of mean values can be obtained. This 10-element vector is the

same as the sequence of expected values in (3.15a) in the main text.

One remark here is that the above calculation is based on a certain sequence of uj.

Quantile-based inequality

The quantile values in (3.26) in the main text with respect to a certain sequence of uj,

are calculated through the following steps:

1) The 1000 × 10 matrices of x1,j and x2,j are gained via the procedure mentioned in

the previous paragraph.

2) The 1000 × 10 matrices of −x1,j − 3.3 and −x2,j − 3.3 are calculated with respect

to the gained 1000× 10 matrices of x1,j and x2,j.

3) The column vectors of the matrices of −x1,j − 3.3 and −x2,j − 3.3 are 1000-element

vectors correspond to different sampling instants j. The 1000-element vectors of −x1,j−
3.3 and −x2,j − 3.3 are denoted as g1,I,j and g2,I,j, respectively. The subscript I is

employed for the variables related to the calculation of quantile values, expected values,

and probabilities in this illustrating example.

4) Based on a certain sampling instant j, ḡI,j can be obtained via ḡI,j = max {g1,I,j, g2,I,j}.

5) Based on a certain sampling instant j, the quantile value of ḡI,j can be acquired

through ˜︁Q1−ε
I,j (ḡI,j) = ḡI,j,⌈1000×1−ε⌉. 1− ε is equal to 0.8 in the illustrating example.
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A2.2.2 Optimization involving two LSTM models

According to Section 3.2.4.2 in the main text, two LSTM models are utilized to handle

the discretized objective and quantile functions in (3.15a) and (3.26) in the main text,

respectively. The mean absolute percentage errors (MAPEs) of the two LSTMs based on

the testing data sets are shown in the following table.

Table A10: Mean absolute percentage errors (MAPEs) of the 2 LSTMs based on the
testing data sets, with respect to the predictions at different sampling instants

j MAPE of the first LSTM MAPE of the second LSTM

1 0.0831 % 0.0233 %

2 0.2571 % 0.0265 %

3 0.3206 % 0.0553 %

4 0.4461 % 0.1130 %

5 0.5685 % 0.2163 %

6 0.7262 % 0.8572 %

7 0.9277 % 1.2143 %

8 1.1560 % 1.3064 %

9 1.2785 % 1.4935 %

10 1.3363 % 1.5178 %

After training the two LSTMmodels, the two models are incorporated into the illustrating

problem to address the discretized objective function and quantile-based inequality involved.

The optimization involving the two LSTM models is given as:

min
uj

9∑︂
j=0

2× 0.3

2
(ÊI,j + ÊI,j+1) (A7a)

s.t. Q̂
1−ε
I,j ≤ 0 j = 1, ..., 10 (A7b)

Q̂
1−ε
I,j=1,...,10 = LI,1(uj=0,...,9) (A7c)

ÊI,j=1,...,10 = LI,2(uj=0,...,9) (A7d)

|uj| ≤ 2 j = 0, ..., 9 (A7e)

ÊI,0 = 2 (A7f)

where ÊI,j is the expected value predicted from the second LSTM at each sampling instant

j. Note that ÊI,0 is equal to 2 because ÊI,0 is based on x1,0 which is a constant (x1,0 = 2).
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Q̂
1−ε
I,j is the quantile value predicted from the first LSTM at each sampling instant j. LI,1

and LI,2 are the first and second LSTM models that individually take a sequence of uj as

inputs.

A2.2.3 Supplementary results

In the illustrating example, the detailed results obtained from the proposed RNN-based

approach are shown in the following table.

Table A11: Results of the illustrating example from the proposed RNN-based approach

j uj j Pr

{︄
−x1,j − 3.3 ≤ 0

−x2,j − 3.3 ≤ 0

}︄
0 2.0000 1 1.0000

1 2.0000 2 1.0000

2 2.0000 3 1.0000

3 2.0000 4 1.0000

4 0.8590 5 0.9307

5 -2.0000 6 1.0000

6 -2.0000 7 0.9924

7 -2.0000 8 0.9332

8 -2.0000 9 0.8465

9 -2.0000 10 0.8001
a Objective value according to the computation of the second LSTM model: -0.5866
b True objective value: -0.5872
c Solution time: 1.7 seconds

A2.2.4 Calculation of the results

The results shown in Figure 3.7 in the main text are calculated through the following steps:

1) Two 103-element sets of ξ1 and ξ2 are sampled. Such two sets are different from the

two sets mentioned in Section A2.2.1.

2) x1 and x2 are computed through the differential equation model ( dx1(t)
dt

= x2(t) +

ξ1,
dx2(t)
dt

= −u(t) + ξ2) 10
3 times individually, with respect to the optimal sequence of

uj and the two sets gained from the previous step. One computation of the differential

equation model is achieved via the trapezoidal rule method with 1000 time intervals
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(t = 0 ∼ 3 with an interval of 0.003), based on the optimal sequence of uj, a sample of

ξ1, and a sample of ξ2. Note that the implementation of the optimal uj sequence here

is the same as the implementation of the uj sequence mentioned in step 2 in the first

paragraph of Section A2.2.1. Therefore, the computed x1 and x2 are two 1001-element

vectors with respect to a pair of ξ1 and ξ2 realizations (1000 computed values +1 initial

value for each vector). The computed x1 and x2 become 1000 × 1001 matrices with

respect to 1000 pairs of ξ1 and ξ2 realizations. 1000 rows in each matrix correspond to

the 1000 pairs of ξ1 and ξ2 realizations, and 1001 columns in each matrix correspond

to 1001 time points. These matrices are denoted as x1,RU and x2,RU , and 100 rows

of each matrix are randomly selected and illustrated in Figure 3.7 in the main text.

The reason for only choosing 100 rows is to avoid too many overlapping curves, as

shown in Figure 3.7 in the main text, since it will be difficult to interpret with too

many overlapping curves. The subscript RU is employed for the x1 and x2 based on the

optimal solution obtained from the proposed RNN-based approach, and under different

uncertainty scenarios.

3) x1,RN and x2,RN in Figure 3.7 in the main text are computed through the differential

equation model with respect to the optimal sequence of uj and under the nominal

scenario. The subscript RN is employed for the x1 and x2 based on the optimal

solution obtained from the proposed RNN-based approach, and under the nominal

scenario. The nominal scenario is based on the mean values of ξ1 and ξ2 which are

equal to zero. The computation of x1,RN and x2,RN is similar to the computation of

x1,RU and x2,RU mentioned in the previous step.

The joint constraint satisfaction probabilities presented in Table A11 are calculated ac-

cording to the following steps:

1) The column vectors of the matrices of x1,RU and x2,RU are extracted with respect

to 10 time points (t = 0.3 ∼ 3 with an interval of 0.3). These column vectors can be

deem as 1000-element vectors of x1,j and x2,j at j = 1, ..., 10.

2) The vectors of x1,j and x2,j gained from the previous step are plugged into −x1,j−3.3
and −x2,j − 3.3, respectively.

3) For a certain sampling instant j, −x1,j − 3.3 and −x2,j − 3.3 can be deemed as two

103-element vectors, and be denoted as P1,I,j and P2,I,j, respectively.
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4) For each sampling instant j, the 103-element vector P̄ I,j is produced via P̄ I,j =

max {P1,I,j, P2,I,j}.

5) For a certain sampling instant j, the percentage of elements in P̄ I,j less or equal to

zero is calculated, and such the percentage is the joint constraint satisfaction probabil-

ity at a certain sampling instant shown in Table A11. On the other hand, the objective

value first mentioned in the footnote of Table A11 is based on the predictions from

the second LSTM mentioned in Section 3.2.4.2 in the main text, with respect to the

obtained optimal sequence of uj. The real objective value also mentioned in the foot-

note of Table A11 is gained based on the matrix of x1,RU . More specifically, the mean

values of the matrix x1,RU are taken in the column direction to obtain a 1001-element

vector of mean values. Then, the real objective value is calculated according to the

trapezoidal rule approximation of (3.15a) in the main text, based on the 1001-element

vector of mean values.

A2.3 SOCP of the HDS

A2.3.1 Discretization of the SOCP

To exploit the proposed RNN-based approach to solve the SOCP of the HDS, the objective

function and joint chance constraint in (3.27a) and (3.27g) in the main text, respectively,

should be discretized first. The discretized objective function and joint chance constraint

are given as:

19∑︂
j=0

(CH4X1Ḟ 1,j + CH3X2Ḟ 2,j)× 0.1 (A8a)

Pr(XH2,j ≥ 0.7, X5,j ≥ 0.9) ≥ 1− ε j = 1, ..., 20 (A8b)

For the above equation and inequality, j = 0, ..., 19 correspond to t = t0 ∼ tf − 0.1 with

an interval of 0.1, and j = 1, ..., 20 correspond to t = t0 + 0.1 ∼ tf with an interval of 0.1.

Such relationships between j and t hold throughout the HDS case study. Equation (A8a) is

obtained from (3.27a) in the main text through the right rectangular approximation method

(RRAM) with 20 time intervals. 0.1 in (A8a) is the time interval.

The values of XH2,j and X5,j in (A8b) are computed according to the following steps:
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1) t0 and tf are first set to be 0 and 2, respectively. Note that Ḟ
H2

x and XH2 at t = 0

are respectively equal to 682.5 and 0.9 which are the given initial conditions.

2) ρ and X3 are randomly sampled 1000 times to gain two sets which are {ρ1, ..., ρ1000}
and {X3,1, ..., X3,1000}, respectively. Then, the random parameters ρ and X3 are first

fixed at the values of ρ1 and X3,1, respectively.

3) Based on the fixed values of random parameters, XH2 and X5 are computed from the

process model ((3.27b)-(3.27f) in the main text) from t0 = 0 to tf = 2 with 1000 time

intervals, by using the trapezoidal rule method. The computation of the process model

is also based on a certain sequence of Ḟ 1,j, Ḟ 2,j, and Ḟ 10,j which are the manipulated

variables (MVs). A sequence of MVs is implemented to the process model at 20 time

points which are t = t0 ∼ tf − 0.1 with an interval of 0.1. The MVs remain constant

in the interval between two consecutive time points. The implementation of MVs here

is similar to the implementation of the uj sequence mentioned in Section A2.2.1.

4) The computed XH2 and X5 are extracted individually at 20 time points which are

t = t0 +0.1 ∼ tf with an interval of 0.1. Thus, the sequences of XH2,j and X5,j can be

obtained.

5) 1000 sequences of XH2,j and X5,j can be computed by repeating steps 3 ∼ 4, based

on different pairs of ρ and X3 realizations. The 1000 sequences of XH2,j and X5,j can

be deemed as two 1000 × 20 matrices. 1000 rows in each matrix correspond to 1000

computations based on different pairs of ρ and X3 realizations. 20 columns in each

matrix correspond to j = 1, ..., 20. One remark here is that the above calculation is

based on a certain sequence of MVs and a certain set of initial conditions.

A2.3.2 Joint chance constraint reformulation

The discretized joint chance constraint in (A8b) can be further reformulated equivalently as

the discretized quantile-based inequality. Based on a certain sequence of MVs and a certain

set of initial conditions, the quantile values in the discretized quantile-based inequality is

calculated through the following steps:

1) The 1000 × 20 matrices of XH2,j and X5,j are gained via the procedure mentioned

in the previous subsection.
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2) XH2,j ≥ 0.7 and X5,j ≥ 0.9 in (A8b) can be rearranged to be −XH2,j + 0.7 ≤ 0

and −X5,j + 0.9 ≤ 0, respectively. Then, the 1000 × 20 matrices of −XH2,j + 0.7 and

−X5,j + 0.9 are calculated with respect to the gained 1000× 20 matrices of XH2,j and

X5,j.

3) The column vectors of matrices of −XH2,j + 0.7 and −X5,j + 0.9 are 1000-element

vectors correspond to different sampling instants j. The 1000-element vectors of

−XH2,j + 0.7 and −X5,j + 0.9 are denoted as g1,H,j and g2,H,j, respectively. The sub-

script H is employed for the variables related to the calculation of quantile values and

probabilities in the HDS case study.

4) Based on a certain sampling instant j, ḡH,j can be obtained via ḡH,j = max {g1,H,j, g2,H,j}.

5) Based on a certain sampling instant j, the quantile value of ḡH,j can be acquired

through ˜︁Q1−ε
H,j (ḡH,j) = ḡH,j,⌈1000×(1−ε)⌉. 1−ε is equal to 0.8 in the HDS case study. Sub-

sequently, the discretized quantile-based inequality in this case study can be formulated

as:

˜︁Q1−ε
H,j (ḡH,j) ≤ 0 j = 1, ..., 20 (A9)

A2.3.3 LSTM for the SOCP

To reduce the complexity of the SOCP in the HDS case study and make it deterministically

solvable, an LSTM is employed to predict the sequences of quantile values based on different

sequences of MVs. This LSTM is a stacked LSTM, and its structure is illustrated as the

follow:

Figure A6: Schematic diagram of the stacked LSTM used in the HDS case study
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As can be seen from the above figure, the stacked LSTM is composed of 2 LSTM layers.

The initial hidden state h10 and cell state C1
0 are fed to the first LSTM cell in the first LSTM

layer. The initial hidden state h20 and cell state C2
0 are fed to the first LSTM cell in the

second LSTM layer. The h10, C
1
0 , h

2
0, and C

2
0 are set to be zero vectors. In the first LSTM

layer, the hidden state h1j+1 and the cell state C1
j+1 are produced based on h1j , C

1
j , Ḟ 1,j, Ḟ 2,j,

and Ḟ 10,j. Subsequently, in the second LSTM layer, the hidden state h2j+1 and the cell state

C2
j+1 are generated based on h1j+1, h

2
j , and C2

j . Afterwards, for a certain sampling instant

j + 1, h2j+1 is fed to a output layer to predict the quantile value. The dimensions of h1j+1

and C1
j+1 are both equal to 50. The dimensions of h2j+1 and C2

j+1 are both equal to 30. One

remark here is that the superscript m in hmj+1 and Cm
j+1 (m=1,2) is the index for the LSTM

layers, instead of the power.

The training, validation, and testing data sets for this LSTM can be produced via the

calculation of quantile values mentioned in Section A2.3.2 with respect to different sequences

of MVs. The validation and testing data sets are used for the early stopping of the train-

ing procedure and evaluating prediction errors, respectively. Afterwards, 105, 104, and 104

samples are produced for training, validation, and testing, respectively. The overall time for

data generation is around 3600 seconds. Each sample is composed of a sequence of quantile

values paired with the corresponding sequence of MVs. The architecture of the LSTM is

determined through the 10-fold cross-validation based on the training set first, and then the

LSTM is trained on the entire training set with the use of the validation set for the early

stopping. The LSTM is constructed and trained using Keras. The training time for this

LSTM is around 1000 seconds. The mean absolute percentage errors (MAPEs) of the LSTM

based on the testing data set are shown in the following table:

Table A12: Mean absolute percentage errors (MAPEs) of the LSTM based on the testing
data set, with respect to the predictions at different sampling instants

j 1 2 3 4 5

MAPEs 1.07 % 1.27 % 1.52 % 2.48 % 2.66 %

j 6 7 8 9 10

MAPEs 2.78 % 2.91 % 3.15 % 4.28 % 4.53 %

j 11 12 13 14 15

MAPEs 2.88 % 2.97 % 2.85 % 3.78 % 4.23 %

j 16 17 18 19 20

MAPEs 3.76 % 3.91 % 4.12 % 4.78 % 4.62 %
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A2.3.4 Optimization incorporating the LSTM

The discretized objective function and the LSTM for predicting quantile values are incorpo-

rated into the SOCP in Section 3.2.5.1 in the main text. The SOCP involving the discretized

objective function and the LSTM is given as:

min
Ḟ 1,j ,Ḟ 2,j ,Ḟ 10,j

19∑︂
j=0

(CH4X1Ḟ 1,j + CH3X2Ḟ 2,j)× 0.1 (A10a)

s.t. Q̂
1−ε
H,j ≤ 0 j = 1, ..., 20 (A10b)

Q̂
1−ε
H,j=1,...,20 = LH(Ḟ 1,j=0,...19, Ḟ 2,j=0,...19, Ḟ 10,j=0,...19) (A10c)

0 ≤ Ḟ 1,j ≤ 1400 j = 0, ..., 19 (A10d)

0 ≤ Ḟ 2,j ≤ 790 j = 0, ..., 19 (A10e)

0 ≤ Ḟ 10,j ≤ 1500 j = 0, ..., 19 (A10f)

where Q̂
1−ε
H,j is the quantile value predicted from the LSTM at a certain sampling instant j.

LH is the LSTM model that takes the sequence of MVs as inputs.

The above SOCP is an optimization problem involving the LSTM model to predict quan-

tile values. It is solved by using IPOPT 0.3.0 in the Python environment. Also, the automatic

differentiation (AD) for gaining gradient information is conducted by using TensorFlow. It

took 19.7 seconds to solve this SOCP, and the obtained results are shown in Table A13.

A2.3.5 Supplementary results

The detailed results of the SOCP of the HDS attained from the proposed RNN-based ap-

proach are shown in the following table.
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Table A13: Results of the SOCP of the HDS from the proposed RNN-based approach

j F1,j (kmol/h) F2,j (kmol/h) F10,j (kmol/h) j Pr

{︄
XH2,j ≥ 0.7

X5,j ≥ 0.9

}︄
0 396.4 0.0 43.6 1 0.9548

1 449.0 0.0 73.6 2 0.9165

2 471.5 0.0 92.0 3 0.8344

3 637.2 0.0 415.7 4 0.8444

4 732.0 0.0 589.7 5 0.8597

5 755.5 0.0 625.4 6 0.8559

6 763.2 0.0 626.9 7 0.8495

7 771.3 0.0 633.7 8 0.8447

8 777.5 0.0 640.1 9 0.8402

9 782.3 0.0 645.5 10 0.8367

10 785.9 0.0 649.6 11 0.8345

11 788.6 0.0 652.6 12 0.8329

12 790.6 0.0 654.6 13 0.8322

13 792.1 0.0 656.0 14 0.8317

14 793.2 0.0 656.9 15 0.8315

15 794.0 0.0 657.4 16 0.8314

16 794.6 0.0 657.5 17 0.8316

17 794.9 0.0 656.8 18 0.8319

18 795.8 0.0 658.9 19 0.8318

19 792.0 0.0 628.8 20 0.8326

A2.3.6 Calculation of the results

The results shown in Figure 3.10 in the main text are calculated through the following steps:

1) Two 1000-element sets of ρ and X3 are sampled. Such two sets are different from

the two sets sampled previously.

2) XH2 and X5 are computed through the process model 1000 times, with respect to

the optimal sequence of MVs and the two sets gained from the previous step. One

computation of the process model is achieved via the trapezoidal rule method with

1000 time intervals (t = 0 ∼ 2 with an interval of 0.002), based on the optimal

sequence of MVs, a sample of ρ, and a sample of X3. Therefore, the computed XH2

and X5 are two 1001-element vectors with respect to a pair of ρ and X3 realizations
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(1000 computed values + 1 initial value for each vector). The computed XH2 and X5

become 1000× 1001 matrices with respect to 1000 pairs of ρ and X3 realizations. 1000

rows in each matrix correspond to the 1000 pairs of ρ and X3 realizations, and 1001

columns in each matrix correspond to 1001 time points. These matrices are denoted as

XH2,RU and X5,RU , and 100 rows of each matrix are randomly selected and illustrated

in Figure 3.10 in the main text. The reason for only choosing 100 rows is to avoid

too many overlapping curves shown in the figure because the figure will be difficult

to interpret with too many overlapping curves. The subscript RU is employed for the

XH2 and X5 based on the optimal solution attained from the proposed approach, and

under different uncertainty scenarios.

3) XH2,RN and X5,RN in Figure 3.10 in the main text are computed through the process

model with respect to the optimal sequence of MVs and under the nominal scenario

(ρ = 12.6 and X3 = 0.85). The subscript RN is used for XH2 and X5 based on

the optimal solution obtained from the proposed RNN-based approach, and under the

nominal scenario. The computation of XH2,RN and X5,RN is in a similar way to the

computation of XH2,RU and X5,RU mentioned in the previous step.

The joint constraint satisfaction probabilities presented in Table A13 are calculated ac-

cording to the following steps:

1) The column vectors of the matrices of XH2,RU and X5,RU are extracted with respect

to 20 time points (t = 0.1 ∼ 2 with an interval of 0.1). These column vectors can be

deemed as 1000-element vectors of XH2,j and X5,j at j = 1, ..., 20.

2) The vectors of XH2,j and X5,j gained from the previous step are plugged into

−XH2,j + 0.7 and −X5,j + 0.9, respectively.

3) For a certain sampling instant j, −XH2,j + 0.7 and −X5,j + 0.9 can be deemed as

two 1000-element vectors, and be denoted as P1,H,j and P2,H,j, respectively.

4) For each sampling instant j, the 1000-element vector P̄H,j is generated through

P̄H,j = max {P1,H,j, P2,H,j}.

5) For a certain sampling instant j, the percentage of elements in P̄H,j less or equal to

0 is calculated, and such the percentage is the joint constraint satisfaction probability

at a certain sampling instant shown in Table A13.
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On the other hand, the optimal objective value mentioned in Section 3.2.5.2 in the main

text is calculated by plugging the optimal sequence of MVs into (A10a).

A2.4 SMPC implementation of the HDS case study

A2.4.1 NN-LSTM for the SMPC of the HDS

To train, validate, and test the NN-LSTM model for the SMPC of the HDS, 2.4 × 105

data samples are generated with respect to different sequences of MVs and different sets of

initial conditions. The overall time for data generation is around 9600 seconds. Each sample

consists of a sequence of quantile values paired with a corresponding sequence of MVs and a

corresponding set of initial conditions. Out of all the samples, 2× 105, 2× 104, and 2× 104

samples are used for training, validation, and test, respectively. The architecture of the

NN-LSTM is determined through the 10-fold cross-validation based on the training set first,

and then the NN-LSTM is trained on the entire training set with the use of the validation

set for the early stopping. The stacked NN-LSTM is constructed and trained by using the

functional API in Keras. The training time for the NN-LSTM is around 5300 seconds. The

mean absolute percentage errors (MAPEs) of the NN-LSTM based on the testing data set

are shown in the following table.

Table A14: Mean absolute percentage errors (MAPEs) of the NN-LSTM based on the
testing data set, with respect to the predictions at different sampling instants

j 1 2 3 4 5

MAPE 1.39 % 1.46 % 1.72 % 2.68 % 2.69 %

j 6 7 8 9 10

MAPE 2.88 % 3.01 % 3.35 % 4.38 % 4.63 %

j 11 12 13 14 15

MAPE 2.98 % 3.17 % 3.25 % 3.89 % 4.51 %

j 16 17 18 19 20

MAPE 4.06 % 4.01 % 4.32 % 4.88 % 4.72 %

After training the NN-LSTM, the NN-LSTM is incorporated into the discretized SOCP
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of the HDS mentioned in Section A2.3.1, and the corresponding formulation is given as:

min
Ḟ 1,j ,Ḟ 2,j ,Ḟ 10,j

19∑︂
j=0

(CH4X1Ḟ 1,j + CH3X2Ḟ 2,j)× 0.1 (A11a)

s.t. Q̂
1−ε
H,j ≤ 0 j = 1, ..., 20 (A11b)

Q̂
1−ε
H,j=1,...,20 =

NLH(Ḟ 1,j=0,...,19, Ḟ 2,j=0,...,19, Ḟ 10,j=0,...,19, Ḟ
H2

x,0, XH2,0) (A11c)

0 ≤ Ḟ 1,j ≤ 1400 j = 0, ..., 19 (A11d)

0 ≤ Ḟ 2,j ≤ 790 j = 0, ..., 19 (A11e)

0 ≤ Ḟ 10,j ≤ 1500 j = 0, ..., 19 (A11f)

Ḟ
H2

x,0 = Ḟ
H2

x,t0
(A11g)

XH2,0 = XH2,t0 (A11h)

where Q̂
1−ε
H,j is the quantile value predicted from the NN-LSTM at a certain sampling instant

j. NLH is the NN-LSTM model that takes the sequence of MVs and the initial conditions as

inputs. Ḟ
H2

x,0 and XH2,0 are the initial conditions based on the measurements at the current

sampling instant t0. Ḟ
H2

x,t0
and XH2,t0 are the hydrogen consumption rate and hydrogen mole

fraction in the reactor, that are acquired at the current sampling instant t0, respectively.

A2.4.2 Steps for the SMPC implementation of the HDS

The SMPC implementation of the HDS is carried out according to the following steps:

1) The discretized SOCP mentioned in Section A2.3.1 is first solved at t = 0. Since

Ḟ
H2

x and XH2 are respectively equal to 682.5 and 0.9 at t = 0, they are used as the

initial conditions.

2) The first element of the obtained optimal sequence of MVs are applied to the process

model including (3.27b)-(3.27f) in the main text. The computation of the process model

is also based on the initial conditions, a realization of ρ, and a realization of X3. The

computation of the process model is carried out through the trapezoidal rule method

with 50 time intervals, from t = 0 ∼ 0.1. The computational results at the final time

point are used as the initial conditions for the SOCP at the next sampling instant.
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3) The SOCP is solved at t = 0.1 with the initial conditions computed from the previous

step.

4) The process model is computed in the same way mentioned in step 2, from t = 0.1 ∼
0.2. Meanwhile, the computation of the process model is based on the first element of

the optimal sequence of MVs obtained from step 3, the initial conditions gained from

step 2, a realization of ρ, and a realization of X3. Again, the computational results at

the final time point are used as the initial conditions for the next sampling instant.

5) The above procedure is repeated until t = 2. Then, the SMPC implementation of

the HDS is completed once.

A2.4.3 Supplementary results of the SMPC implementation

1000 SMPC executions are completed by repeating the procedure illustrated in the previous

subsection 1000 times. The gained results are shown in the following table.

Table A15: The joint constraint satisfaction probabilities at different sampling instants
based on the 1000 SMPC implementations of the HDS

t (h) 0.1 0.2 0.3 0.4 0.5

Pr

{︄
XH2 ≥ 0.7

X5 ≥ 0.9

}︄
94.03 % 93.06 % 80.19 % 89.11 % 89.60 %

t (h) 0.6 0.7 0.8 0.9 1.0

Pr

{︄
XH2 ≥ 0.7

X5 ≥ 0.9

}︄
87.82 % 89.60 % 89.60 % 87.98 % 88.79 %

t (h) 1.1 1.2 1.3 1.4 1.5

Pr

{︄
XH2 ≥ 0.7

X5 ≥ 0.9

}︄
88.87 % 89.19 % 88.87 % 89.35 % 88.55 %

t (h) 1.6 1.7 1.8 1.9 2.0

Pr

{︄
XH2 ≥ 0.7

X5 ≥ 0.9

}︄
89.35 % 88.15 % 88.39 % 88.87 % 87.90 %
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A3 Chapter 4 supplementary materials

A3.1 DRCCP based on Wasserstein ambiguity set

In literature, the DRCCP based on the Wasserstein ambiguity set (Wasserstein DRCCP) has

been widely studied. As a comparison to the proposed kernel DRCCP method, we introduce

the Wasserstein DRCCP in this section.

A3.1.1 Wasserstein ambiguity set

The Wasserstein ambiguity set DW constructed by exploiting the type-1 Wasserstein distance

is defined as (A12). The Wasserstein distance is explained in detail in Section 1.2.5.

DW =
{︂
P ∈ P(Ξ) : W1(P, P̂0) ≤ εW

}︂
(A12)

where P(Ξ) is the set of Borel probability measures supported on Ξ, which contains all can-

didate probability distributions P. The nominal distribution P̂0 is an empirical distribution

which is determined based on the collected samples of the random parameter vector. εW

is the Wasserstein radius which is a user-defined parameter. The solution conservatism of

the DRCCP over the Wasserstein ambiguity set can be controlled by adjusting εW . More-

over, to enable a tractable form for the DRCCP based on the Wasserstein ambiguity set,

the Wasserstein ambiguity set can be combined with the CVaR approximation to address

the DRJCC in the underlying DRCCP. The DRCCP based on the Wasserstein ambiguity

set and the CVaR approximation (CVaR-based Wasserstein DRCCP) is explained in de-

tail in A3.1.5. The CVaR-based Wasserstein DRCCP employed in this work relies on the

assumption that the constraint functions in the JCC are affine in random parameters, i.e.,

gi(x, ξ) = hi(x)
T ξ+h0i (x). Note that all the Wasserstein distances mentioned in the following

parts of this study refer to the 1-Wasserstein distance.
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A3.1.2 Worst-case expectation based on Wasserstein ambiguity set

To deal with the DRCCP based on the Wasserstein ambiguity set, the worst-case expectation

problem based on the Wasserstein ambiguity set should be first studied, which is given as:

max
P

EP [L(ξ)]

s.t. W1(P, P̂0) ≤ εW (A13)

where L(ξ) is the loss function.

The Wasserstein distance W1 can be formulated equivalently as the following optimal

transport problem [180]:

W1(P, P̂0) = min
π≥0

H∑︂
h=1

N∑︂
j=1

∥ξh − ξ0,j∥ πhj

s.t.
H∑︂
h=1

πhj =
1

N
, ∀j

N∑︂
j=1

πhj = ph, ∀h (A14)

In the above problem, P and P̂0 are discrete distributions. The candidate distributions P con-

taining the true distribution are assumed to be based on the finite support Ξ = {ξ1, ..., ξH},
with the probability mass ph for ξh. The nominal distribution P̂0 is based on the collected

samples {ξ0,1, ..., ξ0,N}, and every sample has equal probability mass
1

N
. πhj is the joint

probability of ξh and ξ0,j. Then, by plugging the above optimal transport expression into
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problem (A13), we have:

max
p≥0,π≥0

H∑︂
h=1

L(ξh)ph (A15a)

s.t. min
π≥0

H∑︂
h=1

N∑︂
j=1

∥ξh − ξ0,j∥ πhj ≤ εW (A15b)

s.t.
H∑︂
h=1

πhj =
1

N
, ∀j (A15c)

N∑︂
j=1

πhj = ph, ∀h (A15d)

By replacing ph in (A15a) with the expression shown in (A15d) and omitting the min operator

in inequality (A15b), we can obtain:

max
π≥0

H∑︂
h=1

N∑︂
j=1

L(ξh)πhj (A16a)

s.t.
H∑︂
h=1

N∑︂
j=1

∥ξh − ξ0,j∥ πhj ≤ εW (A16b)

H∑︂
h=1

πhj =
1

N
, ∀j (A16c)

Subsequently, after introducing dual variables κ and zj corresponding respectively to in-

equality (A16b) and equation (A16c), the dual problem of the above optimization can be

gained:

min
κ≥0,zj

κεW +
1

N

N∑︂
j=1

zj

s.t. zj ≥ L(ξh)− κ ∥ξh − ξ0,j∥ , ∀j, ∀h (A17)

Note that κ ≥ 0 since κ corresponds to the inequality constraint. The above problem can
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be rewritten as:

min
κ≥0,zj

κεW +
1

N

N∑︂
j=1

zj

s.t. zj ≥ max
h

L(ξh)− κ ∥ξh − ξ0,j∥ , ∀j (A18)

While H → ∞, infinite number of samples are considered that the above optimization

model is extended to the continuous support Ξ. Accordingly, the above optimization can be

rewritten as:

min
κ≥0,zj

κεW +
1

N

N∑︂
j=1

zj (A19a)

s.t. zj ≥ max
ξ∈Ξ

L(ξ)− κ ∥ξ − ξ0,j∥ , ∀j (A19b)

According to the definition of dual norm, we can obtain κ ∥ξ − ξ0,j∥ = max∥Vj∥∗≤κ ⟨Vj, ξ − ξ0,j⟩.
Thus, −κ ∥ξ − ξ0,j∥ in the above problem can be replaced with min∥Vj∥∗≤κ−⟨Vj, ξ − ξ0,j⟩. Af-
terwards, inequality (A19b) can be rewritten as zj ≥ maxξ∈Ξ L(ξ)+min∥Vj∥∗≤κ−⟨Vj, ξ − ξ0,j⟩.
Moreover, the min operator on the right-hand side of this inequality can be eliminated, and

then we plug this rewritten inequality back into inequality (A19b) to attain the following

problem:

min
κ≥0,zj ,Vj

κεW +
1

N

N∑︂
j=1

zj (A20a)

s.t. zj ≥ max
ξ∈Ξ

L(ξ)− ⟨Vj, ξ − ξ0,j⟩ , ∀j = 1, ..., N (A20b)

∥Vj∥∗ ≤ κ, ∀j = 1, ..., N (A20c)

The condition κ ≥ 0 in the above optimization can be removed because of inequality (A20c).

Also, ⟨Vj, ξ − ξ0,j⟩ in inequality (A20b) can be rewritten equivalently as ⟨Vj, ξ⟩ − ⟨Vj, ξ0,j⟩.
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Subsequently, the above problem can be reformulated as:

min
κ,zj ,Vj

κεW +
1

N

N∑︂
j=1

zj (A21a)

s.t. zj ≥ max
ξ∈Ξ

L(ξ)− ⟨Vj, ξ⟩+ ⟨Vj, ξ0,j⟩ , ∀j = 1, ..., N (A21b)

∥Vj∥∗ ≤ κ, ∀j = 1, ..., N (A21c)

A3.1.3 Special case 1

The model shown above can be further simplified if the loss function is a convex piece-wise

linear function L(ξ) = maxi=1,...,w a
T
i ξ + bi and the support set is Ξ ⊆ R

w. After plugging

the piece-wise linear loss function into inequality (A21b), we have

max
ξ∈Ξ

max
i=1,...,w

aTi ξ + bi − ⟨Vj, ξ⟩+ ⟨Vj, ξ0,j⟩ ≤ zj, ∀j = 1, ..., N

This expression can be further rearranged as :

max
ξ∈Ξ

(aTi ξ − ⟨Vj, ξ⟩) + bi + ⟨Vj, ξ0,j⟩ ≤ zj, ∀i = 1, ..., w, ∀j = 1, ..., N (A22)

For each i and each j, the maximization in the above inequality is a linear programming

(LP) problem given as:

max
ξ∈Ξ

(ai − Vj)T ξ (A23)

Since the above LP problem is unbounded that would give infinite value if ai − Vj ̸= 0,

ai − Vj should be equal to zero to make (A23) bounded. Accordingly, inequality (A22) can

be simplified as:

bi + ⟨ai, ξ0,j⟩ ≤ zj, ∀i = 1, ..., w, ∀j = 1, ..., N (A24)

After replacing inequality (A21b) with inequality (A24) and plugging ai = Vj into inequal-

ity (A21c), the optimization problem in equation (A21a)-(A21c) can be reformulated as a
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convex problem which is given as:

min
κ,zj

κεW +
1

N

N∑︂
j=1

zj

s.t. bi + aTi ξ0,j ≤ zj, ∀i = 1, ..., w, ∀j = 1, ..., N

∥ai∥∗ ≤ κ, ∀i = 1, ..., w, ∀j = 1, ..., N (A25)

The above formulation of the worst-case expectation problem is based on the assumptions

that the loss function L(ξ) is piece-wise linear and the support set is Ξ ⊆ Rw.

A3.1.4 Special case 2

In addition to the convex piece-wise linear loss function assumption made in the previ-

ous subsection (special case 1) L(ξ) = maxi=1,...,w a
T
i ξ + bi , if the support set is further

assumed polyhedral Ξ = {ξ ∈ Rw : Cξ ≤ d}, the maximization for each i and each j in

inequality (A22) can be formulated as a LP problem given as:

max
ξ∈Ξ

(ai − Vj)T ξ (A26a)

s.t. Cξ ≤ d (A26b)

After introducing a dual variable vector γij, the dual problem of the above LP is given as:

min
γij

dTγij

s.t. CTγij = ai − Vj
γij ≥ 0 (A27)

Due to the strong duality, problem (A27) can replace the maximization in inequality (A22),

and then inequality (A22) can be reformulated as follows:

min
γij

dTγij + bi + ⟨Vj, ξ0,j⟩ ≤ zj, ∀i = 1, ..., w, ∀j = 1, ..., N (A28a)

CTγij = ai − Vj, ∀i = 1, ..., w, ∀j = 1, ..., N (A28b)

γij ≥ 0, ∀i = 1, ..., w, ∀j = 1, ..., N (A28c)
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We can drop the min operator in inequality (A28a). By further replacing Vj with ai−CTγij

according to (A28b), the formulation including (A28a)-(A28c) can be reformulated as:

bi + aTi ξ0,j + γTij(d− Cξ0,j) ≤ zj, ∀i = 1, ..., w, ∀j = 1, ..., N (A29a)

γij ≥ 0, ∀i = 1, ..., w, ∀j = 1, ..., N (A29b)

By replacing inequalities (A21b) and (A21c) with the above inequalities, the optimization

problem in (A21a)-(A21c) can be formulated as a convex problem which is given as:

min
κ,zj ,γij

κεW +
1

N

N∑︂
j=1

zj

s.t. bi + aTi ξ0,j + γTij(d− Cξ0,j) ≤ zj, ∀i = 1, ..., w, ∀j = 1, ..., N⃦⃦
ai − CTγij

⃦⃦
∗ ≤ κ, ∀i = 1, ..., w, ∀j = 1, ..., N

γij ≥ 0, ∀i = 1, ..., w, ∀j = 1, ..., N (A30)

The above formulation of the worst-case expectation problem is based on the assumptions

that the loss function L(ξ) is piece-wise linear and the support set is polyhedral.

A3.1.5 DRCCP based on Wasserstein ambiguity set: CVaR method

To exploit the CVaR approximation to address the DRJCC, let’s begin with the DRJCC

expressed as:

max
P(ξ)∈P

Pr

(︃
max
i=1,...,w

{gi(x, ξ)} > 0

)︃
≤ δ (A31)

We apply an upper bounding function Φ

(︃
1

−β
max
i=1,...,w

{gi(x, ξ)}
)︃

=

(︃
1

−β
max
i=1,...,w

{gi(x, ξ)}+ 1

)︃+

(with β < 0) for I

(︃
max
i=1,...,w

{gi(x, ξ)}
)︃
. Assuming that gi(x, ξ) can be expressed as the affine

form hi(x)
T ξ + h0i (x), the CVaR approximation for inequality (A31) is given as:

max
P(ξ)∈P

min
β∈R

{︄
β +

1

δ

{︄
−βEP(ξ)

(︄[︃
1

−β
max
i=1,...,w

{︁
(hi(x)

T ξ + h0i (x))
}︁
+ 1

]︃+)︄}︄}︄
≤ 0 (A32a)

⇒ max
P(ξ)∈P

min
β∈R

{︄
β +

1

δ

{︄
EP(ξ)

(︄[︃
max
i=1,...,w

{︁
(hi(x)

T ξ + h0i (x))
}︁
− β

]︃+)︄}︄}︄
≤ 0 (A32b)
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maxP(ξ)∈P and minβ∈R in inequality (A32b) can be switched, and then inequality (A32b) can

be rewritten as:

min
β∈R

{︄
β +

1

δ
max
P(ξ)∈P

EP(ξ)

(︄[︃
max
i=1,...,w

{︁
(hi(x)

T ξ + h0i (x))
}︁
− β

]︃+)︄}︄
≤ 0 (A33)

Subsequently, by exploiting the formulation including (A21a)-(A21c), the inner prob-

lem maxP(ξ)∈P EP(ξ)

(︂[︁
maxi=1,...,w

{︁
(hi(x)

T ξ + h0i (x))
}︁
− β

]︁+)︂
in the above inequality can be

reformulated as:

min
κ,zj ,Vj

κεW +
1

N

N∑︂
j=1

zj (A34a)

s.t. zj ≥ max
ξ∈Ξ

[︃
max
i=1,...,w

{︁
(hi(x)

T ξ + h0i (x))
}︁
− β

]︃+
− ⟨Vj, ξ⟩+ ⟨Vj, ξ0,j⟩ , ∀j = 1, ..., N (A34b)

∥Vj∥∗ ≤ κ, ∀j = 1, ..., N (A34c)

Through replacing the worst-case expectation problem in inequality (A33) with the above

formulation, the left-hand side of inequality (A33) can be rewritten as:

min
β

{︄
β +

1

δ
min
κ,zj ,Vj

[︄
κεW +

1

N

N∑︂
j=1

zj

]︄}︄
(A35a)

s.t. zj ≥ max
ξ∈Ξ

[︃
max
i=1,...,w

{︁
(hi(x)

T ξ + h0i (x))
}︁
− β

]︃+
− ⟨Vj, ξ⟩+ ⟨Vj, ξ0,j⟩ , ∀j = 1, ..., N (A35b)

∥Vj∥∗ ≤ κ, ∀j = 1, ..., N (A35c)
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The above optimization problem can be rearranged as:

min
β,κ,zj ,Vj

β +
1

δ

[︄
κεW +

1

N

N∑︂
j=1

zj

]︄
(A36a)

s.t. zj ≥ max
ξ∈Ξ

[︃
max
i=1,...,w

{︁
(hi(x)

T ξ + h0i (x))
}︁
− β

]︃+
− ⟨Vj, ξ⟩+ ⟨Vj, ξ0,j⟩ , ∀j = 1, ..., N (A36b)

∥Vj∥∗ ≤ κ, ∀j = 1, ..., N (A36c)

In inequality (A36b), maxξ∈Ξ
[︁
maxi=1,...,w

{︁
(hi(x)

T ξ + h0i (x))
}︁
− β

]︁+
is a convex piece-wise

linear function with respect to ξ. Further notice that[︃
max
i=1,...,w

{︁
(hi(x)

T ξ + h0i (x))
}︁
− β

]︃+
= max

{︃
max
i=1,...,w

{︁
(hi(x)

T ξ + h0i (x))
}︁
− β, 0

}︃
,

So,

[︃
max
i=1,...,w

{︁
(hi(x)

T ξ + h0i (x))
}︁
− β

]︃+
can be written in the form of L(ξ) = maxi=1,...,w a

T
i ξ+

bi, with a1 = h1(x), b1 = h01(x)− β, ..., aw = hw(x), bw = h0w(x)− β, aw+1 = 0, bw+1 = 0

If the support set of uncertainty Ξ ⊆ Rw, inequalities (A36b)-(A36c) can be transformed

to be the form shown in (A25). Then, by plugging a1 = h1(x), b1 = h01(x) − β, ..., aw =

hw(x), bw = h0w(x) − β, aw+1 = 0, bw+1 = 0 into the transformed inequalities, the model

including (A36a)-(A36c) can be reformulated as the follows:

min
β,κ,zj

β +
1

δ

[︄
κεW +

1

N

N∑︂
j=1

zj

]︄
s.t. zj ≥ h0i (x)− β + hi(x)

T ξ0,j, ∀i = 1, ..., w, ∀j = 1, ..., N

zj ≥ bw+1 + aTw+1ξ0,j, ∀j = 1, ..., N

∥hi(x)∥∗ ≤ κ, ∀i = 1, ..., w

∥aw+1(x)∥∗ ≤ κ (A37)

Subsequently, because aw+1 = 0 and bw+1 = 0, aTw+1ξ+ bw+1 = 0. Then, formulation A37
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can be rewritten as:

min
β,κ,zj

β +
1

δ

[︄
κεW +

1

N

N∑︂
j=1

zj

]︄
(A38a)

s.t. zj ≥ h0i (x)− β + hi(x)
T ξ0,j, ∀i = 1, ..., w, ∀j = 1, ..., N (A38b)

zj ≥ 0, ∀j = 1, ..., N (A38c)

∥hi(x)∥∗ ≤ κ, ∀i = 1, ..., w (A38d)

κ ≥ 0 (A38e)

Inequality (A38e) is redundant because of inequality (A38d), and thus inequality (A38e) can

be removed. Then, by replacing the worst-case CVaR in inequality (A33) with the above

optimization model and omitting the min operator in (A38a), we can obtain the following

reformulation of inequality (A33):

β +
1

δ

[︄
κεW +

1

N

N∑︂
j=1

zj

]︄
≤ 0

zj ≥ h0i (x)− β + hi(x)
T ξ0,j, ∀i = 1, ..., w, ∀j = 1, ..., N

zj ≥ 0, ∀j = 1, ..., N

∥hi(x)∥∗ ≤ κ, ∀i = 1, ..., w (A39)

Afterwards, we can attain the formulation of the DRCCP by plugging formulation (A39)

into the DRCCP including (4.1a)-(4.1b) to replace the DRJCC stated in (4.1b). Therefore,

the attained model of the DRCCP based on the Wasserstein ambiguity set and the CVaR

approximation is given as:

min
x,β,κ,zj

f(x)

s.t. β +
1

δ

[︄
κεW +

1

N

N∑︂
j=1

zj

]︄
≤ 0

zj ≥ h0i (x)− β + hi(x)
T ξ0,j, ∀i = 1, ..., w, ∀j = 1, ..., N

zj ≥ 0, ∀j = 1, ..., N

∥hi(x)∥∗ ≤ κ, ∀i = 1, ..., w (A40)

The above formulation of the CVaR-based Wasserstein DRCCP is based on the following
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assumptions: 1) The constraint function involves convex piece-wise linearity; 2) The con-

straints in the joint chance constraint are affine in the uncertain parameters; 3) The support

set is Ξ ⊆ Rw.

On the other hand, if the support set of uncertainty is polyhedral (Ξ = {ξ ∈ Rw : Cξ ≤ d}),
inequalities (A36b)-(A36c) can be transformed to be the forms of the inequalities shown

in formulation (A30). Subsequently, by plugging a1 = h1(x), b1 = h01(x) − β, ..., aw =

hw(x), bw = h0w(x) − β, aw+1 = 0, bw+1 = 0 into the transformed inequalities, the model

including (A36a)-(A36c) can be reformulated as the follows:

min
β,κ,zj ,γij

β +
1

δ

[︄
κεW +

1

N

N∑︂
j=1

zj

]︄
s.t. zj ≥ h0i (x)− β + hi(x)

T ξ0,j + γTij(d− Cξ0,j),

∀i = 1, ..., w, ∀j = 1, ..., N

zj ≥ bw+1 + aTw+1ξ0,j + γTw+1,j(d− Cξ0,j), ∀j = 1, ..., N⃦⃦
hi(x)− CTγij

⃦⃦
∗ ≤ κ, ∀i = 1, ..., w, ∀j = 1, ..., N⃦⃦

aw+1 − CTγw+1,j

⃦⃦
∗ ≤ κ, ∀j = 1, ..., N

γij ≥ 0, ∀i = 1, ..., w, j = 1, ..., N

γw+1,j ≥ 0, ∀j = 1, ..., N (A41)

Since aw+1 = 0 and bw+1 = 0, the above formulation can be rewritten as:

min
β,κ,zj ,γij

β +
1

δ

[︄
κεW +

1

N

N∑︂
j=1

zj

]︄
(A42a)

s.t. zj ≥ h0i (x)− β + hi(x)
T ξ0,j + γTij(d− Cξ0,j), (A42b)

∀i = 1, ..., w, ∀j = 1, ..., N (A42c)

zj ≥ γTw+1,j(d− Cξ0,j), ∀j = 1, ..., N (A42d)⃦⃦
hi(x)− CTγij

⃦⃦
∗ ≤ κ, ∀i = 1, ..., w, ∀j = 1, ..., N (A42e)⃦⃦

−CTγw+1,j

⃦⃦
∗ ≤ κ, ∀j = 1, ..., N (A42f)

γij ≥ 0, ∀i = 1, ..., w, j = 1, ..., N (A42g)

γw+1,j ≥ 0, ∀j = 1, ..., N (A42h)

Since γTw+1,j(d−Cξ0,j) in inequality (A42d) and
⃦⃦
−CTγw+1,j

⃦⃦
∗ in inequality (A42f) are non-
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negative, the feasible set constructed by inequalities (A42d), (A42f), and (A42h), are the

same as the feasible set constructed by zj ≥ 0, κ ≥ 0, and γw+1,j = 0. Moreover, κ ≥ 0 is

redundant due to inequality (A42e). Thus, the above optimization model can be reduced as:

min
β,κ,zj ,γij

β +
1

δ

[︄
κεW +

1

N

N∑︂
j=1

zj

]︄
(A43a)

s.t. zj ≥ h0i (x)− β + hi(x)
T ξ0,j + γTij(d− Cξ0,j),

∀i = 1, ..., w, ∀j = 1, ..., N (A43b)⃦⃦
hi(x)− CTγij

⃦⃦
∗ ≤ κ, ∀i = 1, ..., w, ∀j = 1, ..., N (A43c)

γij ≥ 0, ∀i = 1, ..., w, j = 1, ..., N (A43d)

zj ≥ 0, ∀j = 1, ..., N (A43e)

By replacing the worst-case CVaR in inequality (A33) with the above optimization model and

omitting the min operator in (A43a), we can obtain the following reformulation of inequality

(A33):

β +
1

δ

[︄
κεW +

1

N

N∑︂
j=1

zj

]︄
≤ 0

zj ≥ h0i (x)− β + hi(x)
T ξ0,j + γTij(d− Cξ0,j),

∀i = 1, ..., w, ∀j = 1, ..., N⃦⃦
hi(x)− CTγij

⃦⃦
∗ ≤ κ, ∀i = 1, ..., w, ∀j = 1, ..., N

γij ≥ 0, ∀i = 1, ..., w, j = 1, ..., N

zj ≥ 0, ∀j = 1, ..., N (A44)

Finally, by plugging formulation (A44) into the DRCCP including (4.1a)-(4.1b), we can have
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the CVaR-based Wasserstein DRCCP formulation given as:

min
x,β,κ,zj ,γij

f(x)

s.t. β +
1

δ

[︄
κεW +

1

N

N∑︂
j=1

zj

]︄
≤ 0

zj ≥ h0i (x)− β + hi(x)
T ξ0,j + γTij(d− Cξ0,j),

∀i = 1, ..., w, ∀j = 1, ..., N⃦⃦
hi(x)− CTγij

⃦⃦
∗ ≤ κ, ∀i = 1, ..., w, ∀j = 1, ..., N

γij ≥ 0, ∀i = 1, ..., w, j = 1, ..., N

zj ≥ 0, ∀j = 1, ..., N (A45)

The above formulation of the CVaR-based Wasserstein DRCCP is based on the following

assumptions: 1) The worst-case expectation problem in the CVaR approximation involves

piece-wise linearity; 2) The constraints in the joint chance constraint are affine in the random

parameters; 3) The support set is polyhedral.
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A4 Chapter 5 supplementary materials

A4.1 Dual of the worst-case expectation problem

We first consider a worst-case expectation problem based on the Sinkhorn ambiguity set

Pγs,εs over support Ξ:

max
P∈Pγs,εs

EP [L(x, η)] (A46a)

s.t. Pγs,εs =
{︂
P :Wγs(P, P̂0) ≤ εs

}︂
(A46b)

where L is the loss function. x is the decision variable for the minimization problem outside

the worst-case expectation problem, and it is treated as a parameter here. P and P̂0 are the

candidate and nominal distributions, respectively. P and P̂0 are based on random parameter

vectors η and ξ, respectively. η ∈ Ξ and ξ ∈ Ξ. The nominal distribution is an empirical

distribution established by the collected data points {ξm}Mm=1, i.e., P̂0 =
1

M

∑︁M
m=1 δξm (δξm

denotes the one-point probability distribution supported on {ξm}). According to the defini-

tion of the Sinkhorn distance in Equation 5.5 (in the main text) and based on the choice of

reference measure B = P̂0, the above model is equivalent to

max
P

EP [L(x, η)]

s.t. Eπ

[︄
c(η, ξ) + γs log

(︄
dπ(η, ξ)

dA(η)dP̂0(ξ)

)︄]︄
≤ εs (A47)

The joint distribution π =
1

M

∑︁M
m=1 δξm ⊗ πm, where πm is the conditional distribution of π

given the first marginal of π equals ξm. c(·, ·) is the same cost function as used in (1.7) and

(5.5) (in the main text). A(η) is a Lebesgue measure [181] supported on Ξ that enables all the

candidate distributions P absolutely continuous with respect to A(η), to ensure the entropic

regularization in the Sinkhorn distance for the Sinkhorn ambiguity set well-defined [17].

Accordingly, the expectation in (A47) can be rewritten as:

1

M

M∑︂
m=1

Eπm
[︃
c(η, ξm) + γs log

(︃
dπm(η)

dA(η)

)︃]︃
(A48)
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Introduce a kernel probability distribution Qm

dQm(η) :=
exp(−c(η, ξm)/γs)∫︁

exp(−c(τ, ξm)/γs)dA(τ)
dA(η) (A49)

and use the following change-of-measure identity [64]

log

(︃
dπm(η)

dA(η)

)︃
= log

(︃
dQm(η)dπm(η)

dA(η)dQm(η)

)︃
= log

(︃
dQm(η)

dA(η)

)︃
+ log

(︃
dπm(η)

dQm(η)

)︃
(A50)

(A48) is converted to

1

M

M∑︂
m=1

Eπm
[︃
c(η, ξm) + γs log

(︃
dQm(η)

dA(η)

)︃
+ γs log

(︃
dπm(η)

dQm(η)

)︃]︃
(A51)

Then (A51) becomes:

1

M

M∑︂
m=1

Eπm
[︃
c(η, ξm) + γs log

(︃
exp (−c(η, ξm)/γs)∫︁

exp (−c(τ, ξm)/γs) dA(τ)

)︃
+ γs log

(︃
dπm(η)

dQm(η)

)︃]︃
(A52)

By combining the first two terms in the expectation, we can get:

1

M

M∑︂
m=1

Eπm
[︃
−γs log

(︃∫︂
exp (−c(η, ξm)/γs) dA(η)

)︃
+ γs log

(︃
dπm(η)

dQm(η)

)︃]︃
(A53)

After plugging the above formulation into (A47) and rearranging the inequality, we can gain:

1

M

M∑︂
m=1

Eπm
[︃
γs log

(︃
dπm(η)

dQm(η)

)︃]︃
≤ εs +

1

M

M∑︂
m=1

Eπm
[︃
γs log

(︃∫︂
exp (−c(η, ξm)/γs) dA(η)

)︃]︃
(A54)

In the right hand side of the above inequality,
∫︁
exp (−c(η, ξm)/γs) dA(η) is essentially an

expected value with respect to η. Thus, the second term in the right hand side of the above

inequality is equal to
1

M

∑︁M
m=1 γs log

(︁∫︁
exp (−c(η, ξm)/γs) dA(η)

)︁
.

Define the following new variable ε̄s to replace the right hand side

ε̄s := εs +
1

M

M∑︂
m=1

γs log

(︃∫︂
exp

(︃
−c(η, ξm)

γs

)︃
dA(η)

)︃
(A55)

264



Then, the constraint in (A46b) can be reformulated as:

1

M

M∑︂
m=1

Eπm
[︃
γs log

(︃
dπm(η)

dQm(η)

)︃]︃
≤ ε̄s (A56)

On the other hand, the objective function in (A46a) can be reformulated as:

max
πm∈Pγs,εs ,m=1,...,M

1

M

M∑︂
m=1

Eπm [L(x, η)]

Then, the worst-case expectation problem including (A46a)-(A46b) becomes:

max
πm∈Pγs,εs ,m=1,...,M

1

M

M∑︂
m=1

Eπm [L(x, η)]

s.t.
1

M

M∑︂
m=1

Eπm
[︃
γs log

(︃
dπm(η)

dQm(η)

)︃]︃
≤ ε̄s (A57)

Let Lm(η) =
dπm(η)

dQm(η)
. Then

Eπm [L(x, η)] =
∫︂
Ξ

L(x, η)dπm(η) =
∫︂
Ξ

L(x, η) dπm(η)
dQm(η)

dQm(η)

=

∫︂
Ξ

L(x, η)Lm(η)dQm(η) = EQm [L(x, η)Lm(η)]

Eπm
[︃
log

(︃
dπm(η)

dQm(η)

)︃]︃
=

∫︂
Ξ

log

(︃
dπm(η)

dQm(η)

)︃
dπm(η) =

∫︂
Ξ

log

(︃
dπm(η)

dQm(η)

)︃
dπm(η)

dQm(η)
dQm(η)

=

∫︂
Ξ

log (Lm(η))Lm(η)dQm(η) = EQm [log(Lm(η))Lm(η)] (A58)

Based on the above, (A57) can be rewritten as:

max
Lm(η)∈L,m=1,...,M

1

M

M∑︂
m=1

EQm [L(x, η)Lm(η)]

s.t.
1

M

M∑︂
m=1

EQm [γs log (Lm(η))Lm(η)] ≤ ε̄s (A59)

Note that L = {Lm(η) ∈ L(Qm(η)) : EQm [Lm(η)] = 1, Lm(η) ≥ 0, ∀m = 1, ...,M}. Note that
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EQm [Lm(η)] = 1 because EQm [Lm(η)] =
∫︁ dπm(η)

dQm(η)
dQm(η) =

∫︁
dπm(η) = 1. Since the

above optimization is a maximization problem involving the linear objective function and

the convex constraint, the above problem is convex. Thus, the strong dual problem of the

above optimization can be obtained:

min
λ≥0

max
Lm(η)∈L,m=1,...,M

{︄
λε̄s +

1

M

M∑︂
m=1

EQm [L(x, η)Lm(η)− λγs log (Lm(η))Lm(η)]

}︄
(A60)

where λ ≥ 0 is the dual variable corresponding to the inequality constraint in (A59). Let’s

first focus on the inner maximization of (A60):

max
Lm(η)∈L0

EQm [L(x, η)Lm(η)− λγs log (Lm(η))Lm(η)]

s.t. EQm [Lm(η)] = 1 (A61)

Notably, L0 = {Lm(η) ∈ L(Qm(η)) : Lm(η) ≥ 0, ∀m = 1, ...,M}. Since problem (A61) is

a maximization problem involving the concave objective function and the affine equality

constraint, it is a convex optimization problem. Then, the strong dual problem of (A61) is

given as:

min
ψm

max
Lm(η)∈L0

EQm [L(x, η)Lm(η)− λγs log (Lm(η))Lm(η) + ψm(Lm(η)− 1)] (A62)

where ψm is the dual variable corresponding to the equality constraint in (A61). Since the

inner maximization problem in (A62) is unconstrained, its optimality condition is

∂ {L(x, η)Lm(η)− λγs log (Lm(η))Lm(η) + ψm(Lm(η)− 1)}
∂Lm(η)

= 0

L(x, η)− λγs log (Lm(η))− λγs + ψm = 0

=⇒ L∗
m(η, ψ

∗
m) = exp

(︃
L(x, η) + ψ∗

m − λγs
λγs

)︃
L∗
m and ψ∗

m are optimums of Lm and ψm, respectively. After plugging the expression of
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L∗
m(η, ψ

∗
m) into the equality constraint in (A61), we can attain:

EQm

[︃
exp

(︃
L(x, η) + ψ∗

m − λγs
λγs

)︃]︃
= 1

=⇒ EQm

[︃
exp

(︃
L(x, η)
λγs

)︃]︃
exp

(︃
ψ∗
m − λγs
λγs

)︃
= 1

=⇒ EQm

[︃
exp

(︃
L(x, η)
λγs

)︃]︃
= exp

(︃
λγs − ψ∗

m

λγs

)︃
=⇒ log

{︃
EQm

[︃
exp

(︃
L(x, η)
λγs

)︃]︃}︃
=
λγs − ψ∗

m

λγs

=⇒ ψ∗
m = −λγs log

{︃
EQm

[︃
exp

(︃
L(x, η)
λγs

)︃]︃}︃
+ λγs

We can plug the above expression of ψ∗
m back to the expression of L∗

m(η, ψ
∗
m) to get:

L∗
m(η, ψ

∗
m) = exp

⎛⎜⎜⎝L(x, η)− λγs log
{︃
EQm

[︃
exp

(︃
L(x, η)
λγs

)︃]︃}︃
+ λγs − λγs

λγs

⎞⎟⎟⎠ =

exp

(︃
L(x, η)
λγs

)︃
EQm

[︃
exp

(︃
L(x, η)
λγs

)︃]︃
We plug the above expression of L∗

m(η, ψ
∗
m) into the objective function of (A61), which

becomes:

EQm

⎡⎢⎢⎣L(x, η) exp

(︃
L(x, η)
λγs

)︃
EQm

[︃
exp

(︃
L(x, η)
λγs

)︃]︃ − λγs log
⎛⎜⎜⎝ exp

(︃
L(x, η)
λγs

)︃
EQm

[︃
exp

(︃
L(x, η)
λγs

)︃]︃
⎞⎟⎟⎠ exp

(︃
L(x, η)
λγs

)︃
EQm

[︃
exp

(︃
L(x, η)
λγs

)︃]︃
⎤⎥⎥⎦

= EQm

⎡⎢⎢⎣λγs log(︃EQm

[︃
exp

(︃
L(x, η)
λγs

)︃]︃)︃ exp

(︃
L(x, η)
λγs

)︃
EQm

[︃
exp

(︃
L(x, η)
λγs

)︃]︃
⎤⎥⎥⎦

=

λγs log

(︃
EQm

[︃
exp

(︃
L(x, η)
λγs

)︃]︃)︃
EQm

[︃
exp

(︃
L(x, η)
λγs

)︃]︃ EQm

[︃
exp

(︃
L(x, η)
λγs

)︃]︃

= λγs log

(︃
EQm

[︃
exp

(︃
L(x, η)
λγs

)︃]︃)︃

Since problem (A61) is the sub-problem of problem (A60), we can plug λγs log

(︃
EQm

[︃
exp

(︃
L(x, η)
λγs

)︃]︃)︃
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back to problem (A60). Hence, the problem (A60) becomes a more tractable reformulation:

min
λ≥0

λε̄s +
1

M

M∑︂
m=1

λγs log

(︃
EQm

[︃
exp

(︃
L(x, η)
λγs

)︃]︃)︃
(A63)

We introduce epi-graphical variables sm to reformulate problem (A63) as:

min
λ≥0,s

λε̄s +
1

M

M∑︂
m=1

sm (A64a)

s.t. λγs log

(︃
EQm

[︃
exp

(︃
L(x, η)
λγs

)︃]︃)︃
≤ sm, ∀m = 1, ...,M (A64b)

The constraint (A64b) can also be rewritten as:

EQm

[︃
exp

(︃
L(x, η)
λγs

)︃]︃
≤ exp

(︃
sm
λγs

)︃
=⇒ 1 ≥ EQm

[︃
exp

(︃
L(x, η)− sm

λγs

)︃]︃
=⇒ λγs ≥ EQm

[︃
λγs exp

(︃
L(x, η)− sm

λγs

)︃]︃
Till this point, the strong dual problem of (5.18) (in the main text) is derived without as-

suming that the support Ξ is discrete. In the next subsection, the dual problem is discretized

to get a more tractable formulation.

A4.1.1 Discrete approximation of the dual problem

To enhance the computational tractability and efficiency, we approximate Qm by an em-

pirical distribution Q̂m established based on samples {ηn,m}Nn=1. Those samples are called

expansion points and they can be sampled from the kernel probability distribution dQm(η) :=
exp(−c(η, ξm)/γs)∫︁

exp(−c(τ, ξm)/γs)dA(τ)
dA(η). This step is called the discretized kernel distribution relax-

ation since the original support is relaxed to be a discrete support based on the finite discrete

points sampled from a kernel distribution. Note that this relaxation is not a conservative

approximation since it only provides an empirical estimation of the original support and

does not yield a bound for the original problem. According to (A49) and [17], Qm becomes

a Gaussian distribution N (ξm, γsId) if the cost function c(·, ·) is selected to be
1

2
∥ ·− · ∥22 and
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Ξ = Rd. Id is a d× d identity matrix. {ηn,m}Nn=1 can be sampled from N (ξm, γsId).

With the above discretization based approximation, the inequality becomes:

λγs ≥
1

N

N∑︂
n=1

λγs exp

(︃
L(x, ηn,m)− sm

λγs

)︃
, ∀m = 1, ...,M

or, equivalently

λγs ≥
1

N

N∑︂
n=1

an,m, ∀m = 1, ...,M

an,m ≥ λγs exp

(︃
L(x, ηn,m)− sm

λγs

)︃
, ∀n = 1, ..., N, ∀m = 1, ...,M

The last constraint is essentially (λγs, an,m,L(x, ηn,m)− sm) ∈ Kexp, where Kexp denotes the

exponential cone [166]. Finally, the optimization model including (A64a)-(A64b) can be

rewritten as:

min
λ,s,a

λε̄s +
1

M

M∑︂
m=1

sm (A65a)

s.t. λγs ≥
1

N

N∑︂
n=1

an,m, ∀m = 1, ...,M (A65b)

(λγs, an,m,L(x, ηn,m)− sm) ∈ Kexp, ∀n = 1, ..., N, ∀m = 1, ...,M (A65c)

λ ≥ 0, s ∈ RM , a ∈ RN×M
+ (A65d)
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A4.2 Employed Wasserstein DRCCP model and SAA model

The Wasserstein DRCCP model employed in this work is based on the type-1 Wasserstein

distance with ℓ2 norm, and it is given as:

min
x,β,κ,z

f(x)

s.t. β +
1

δ

[︄
κεW +

1

M

M∑︂
m=1

zm

]︄
≤ 0

zm ≥ h0i (x)− β + hi(x)
T ξm, ∀i = 1, ..., w, ∀m = 1, ...,M

zm ≥ 0, ∀m = 1, ...,M

∥hi(x)∥∗ ≤ κ, ∀i = 1, ..., w (A66)

where εW is the radius size of the Wasserstein ambiguity set. Since this Wasserstein DRCCP

model also employs the CVaR approximation, β in the above model also comes from the

CVaR approximation. δ is the user-defined tolerance for the JCSP. While using the above

Wasserstein DRCCP model, a constraint function gi(x, ξm) in the original problem based

on a collected sample ξm must be able to be expressed as the form affine in uncertainty:

gi(x, ξm) = hi(x)
T ξm + h0i (x). ∥ · ∥∗ is a dual norm. Since we use ℓ2 norm in this research,

the dual norm in the above model is still a ℓ2 norm (the dual norm of a ℓ2 norm is still a ℓ2

norm).

The SAA model employed in this work is given as:

min
x

f(x)

s.t.
1

M

M∑︂
m=1

I

(︄
w⋃︂
i=1

gi(x, ξm) > 0

)︄
≤ δ (A67)

where I is the indicator function defined as:

I
(︁⋃︁w

i=1 gi(x, ξm) > 0
)︁
=

{︄
0, for gi(x, ξm) ≤ 0, ∀i = 1, ..., w

1, for gi(x, ξm) > 0, ∃i = 1, ..., w (A68)

The above formulation based on a sample ξm can be reformulated as the following mixed-
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integer model:

1

M

M∑︂
m=1

ȳm ≤ δ

M(˜︁yim − 1) + ϵ ≤ gi(x, ξm) ≤M˜︁yim, ∀i,m

ȳm − 1 ≤ (
w∑︂
i=1

˜︁yim)− 1 ≤ wȳm − 1, ∀m

ȳm ∈ {0, 1} , ˜︁yim ∈ {0, 1} (A69)

where ȳm and ˜︁yim are binary variables. M is a big number that M ≥ gi(x, ξm), ∀i =

1, ..., w, ∀m = 1, ...,M, ∀x ∈ X . ϵ is a small positive number which is set as 10−8 in this

work.
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