
University of Alberta

MINT 709

Capstone Project Report

March 2016

OPENSTACK
ORCHESTRATE PUBLIC AND PRIVATE CLOUD
USING OPENSTACK/VCENTER INTEGRATION

AND PROVIDING TENANT SEPARATION

BIVEK RAJ SINGH
Masters of science in Internetworking

Supervisor: Muhammad Durrani
Brocade Communications Systems

 Capstone Project Report

i

Abstract
Rapid development and advancement in virtualization technology has made it possible to

effectively distribute physical resources of a machine across multiple operating systems running

simultaneously. With the virtualization technology getting more and more popular the need was

felt to centrally control and manage these virtual infrastructures which led to the evolution of

cloud computing.

With the concept of cloud computing gaining momentum many solutions emerged which

promise to provide complete virtualization and cloud computing package, but most of the

solution being proprietary solution followed different standard and architecture making them

incompatible with one another forcing a corporation to stick to a single solution. This led to a

need of a solution which could support multiple proprietary solution. The solution came in the

form of a community supported open source software package “OpenStack”.

This project presents a proof of concept implementation of integrating OpenStack with vCenter.

It demonstrates the step by step deployment of Mirantis OpenStack using Fuel (Intuitive GUI

based tool) and integrate it with the vCenter server to utilize the vSphere ESXi infrastructure as

the compute hypervisor providing central control and management using OpenStack dashboard.

This project also puts light into OpenStack Heat orchestration to create instances and finally

demonstrates the use of Vyatta vRouter as the network management tool for OpenStack cloud.

With OpenStack having the potential to be the future of cloud operation and management system,

the knowledge of OpenStack architecture and the ability to implement and administer cloud

infrastructure using OpenStack as shown in the project would be a great asset to have for an

internetworking graduate who wish to pursuit their career in the field of datacenter or cloud

design and administration.

 Capstone Project Report

ii

Acknowledgement
I would like to thank Dr. Mike MacGregor (MINT Director) and Mr. Shanawaz

Mir (MINT Coordinator) for providing me the opportunity to work on this project.

I would also like to express my gratitude to Mr. Muhammad Durrani for

supervising and providing valuable suggestions and guidance during the

implementation of this project. Finally, I would like to thank my family and all my

friends who have directly or indirectly helped me for the successful completion of

this project.

 Capstone Project Report

iii

TABLE OF CONTENTS
1 Introduction ... 1

2 Terminology and Concept ... 2

2.1 Virtualization .. 2

2.2 Hypervisor .. 2

2.3 CLOUD COMPUTING ... 3

2.4 Restful API ... 3

3 Components Of Project ... 4

3.1 OpenStack .. 4

3.2 VMWare vSphere ... 6

3.3 OpenStack vCenter Integration .. 7

3.4 Brocade Vyatta vRouter .. 8

4 Network Topology Design Considerations ... 9

4.1 Block Diagrammatic View of the Project Infrastructure ... 9

4.2 Physical and Logical Network Connection of Mirantis OpenStack with vCenter 10

4.3 Physical and Logical Network connection view of Project Infrastructure 11

5 Implementing Virtual Infrastructure .. 12

5.1 VMware Workstation Infrastructure Setup .. 12

5.1.1 Vyatta .. 13

5.1.2 ESXi 1 ... 15

5.1.3 ESXi 2 ... 17

5.1.4 vCenter Server .. 18

5.2 vCenter Infrastructure Setup .. 20

5.3 Deploying Mirantis OpenStack 5.0.1 VApp .. 21

5.3.1 Setting up network .. 21

5.3.2 Importing Mirantis OpenStack ... 22

5.3.3 Installing Fuel ... 24

5.3.4 Installing OpenStack ... 26

5.4 OpenStack Dashboard .. 35

6 Lab Experiment Demo With Result .. 36

6.1 Creating Instances using Heat Orchestration ... 36

6.1.1 Creating Image .. 36

6.1.2 Flavors... 37

6.1.3 Orchestration ... 37

6.2 Tenant Separation Using Vyatta Firewall .. 42

6.2.1 Vyatta vRouter Network Configuring .. 42

6.2.2 Vyatta vRouter Firewall configuration using Rest API .. 46

7 Summary and Conclusion .. 49

 Capstone Project Report

iv

TABLE OF FIGURES

Figure 2.1 type 1 hypervisor ... 2

Figure 2.2 type 2 hypervisor ... 2

Figure 3.1 OpenStack components overview ... 5

Figure 3.2 VMware vSphere overview ... 6

Figure 3.3VMWare driver architecture ... 7

Figure 4.1 Block diagram representation of OpenStack/vCenter integration 9

Figure 4.2Mirantis OpenStack physical and logical connection with vCenter 10

Figure 4.3 Physical and logical network connection diagram .. 11

Figure 5.1 View of VMWare Workstation listing all the Virtual Machines 12

Figure 5.2 View of VMWare Workstation Virtual Networks .. 12

Figure 5.3 Vyatta VM settings on VMware Workstation ... 13

Figure 5.4 View of Vyatta VM deployed on VMware Workstation .. 14

Figure 5.5 View of Vyatta vRouter VM after installing image on local drive 14

Figure 5.6 ESXI 1 VM setting on VMWare Workstation .. 15

Figure 5.7 Set static IP to ESXi 1 ... 16

Figure 5.8 View of ESXI 1 on VMWare workstation .. 16

Figure 5.9 ESXI 2 VM setting on VMWare Workstation .. 17

Figure 5.10 View of ESXI 2 on VMWare workstation .. 17

Figure 5.11 VCenter Server VM setting on VMWare Workstation ... 18

Figure 5.12View of VCenter Server on VMWare workstation .. 18

Figure 5.13 vCenter Server Setup login screen .. 19

Figure 5.14 step by step vCenter Server Appliance Setup ... 19

Figure 5.15 VMware vSphere client login .. 20

Figure 5.16 Creating clusters OpenStack and NovaCompute .. 20

Figure 5.17 view of vCenter inventory after adding hosts to clusters .. 21

Figure 5.18 Virtual Machine Port Group created to deploy Mirantis OpenStack 21

Figure 5.19 VM switch ports security setting ... 22

Figure 5.20 Deploy Mirantis OpenStack VApp ... 22

Figure 5.21 vCenter host inventory view after Deployment of Mirantis OpenStack VApp 23

Figure 5.22 ESXi 1 network view after deploying Mirantis OpenStack VApp 23

Figure 5.23 View of Fuel Master VM console ... 24

Figure 5.24 view of Fuel Master VM properties .. 24

Figure 5.25 view of Fuel Master VM console immediately after booting up with Mirantis

OpenStack iso ... 25

Figure 5.26 view of Fuel Master configuration setting... 25

Figure 5.27 view of mos-child-1VM properties and console ... 26

Figure 5.28 view Fuel Master console .. 26

Figure 5.29 view of Fuel Dashboard... 27

https://d.docs.live.net/5f081961d2965ab1/Capstone%20Report.docx#_Toc445651021
https://d.docs.live.net/5f081961d2965ab1/Capstone%20Report.docx#_Toc445651022
https://d.docs.live.net/5f081961d2965ab1/Capstone%20Report.docx#_Toc445651046

 Capstone Project Report

v

Figure 5.30 Adding and assigning role to nodes... 31

Figure 5.31 Configure interfaces on 3 nodes .. 32

Figure 5.32 OpenStack Network Setting .. 33

Figure 5.33 OpenStack Setting ... 34

Figure 5.34 view of OpenStack Horizon Dashboard login screen .. 35

Figure 5.35 OpenStack Horizon Dashboard Overview .. 35

Figure 6.1 Create An Image dialog box .. 36

Figure 6.2 View of images tab after creating multiple images ... 37

Figure 6.3 view of default OpenStack Flavors ... 37

Figure 6.4 Select Template dialogue box ... 38

Figure 6.5 Launch Stack dialogue box ... 39

Figure 6.6 view of Stacks.. 40

Figure 6.7 view of WindowsXP instance Overview and console .. 40

Figure 6.8 view of Ubuntu instance Overview and console .. 41

Figure 6.9 view of Fedora instance Overview and console ... 41

Figure 6.10 view of vCenter NovaCompute cluster after OpenStack instant deplyoment 41

Figure 6.11 view of vCenter Networking ... 42

Figure 6.12 view of ip configuration of Windows, Ubuntu and Fedora instances 43

Figure 6.13 Enabling HTTPS on Vyatta system ... 46

Figure 6.14 start configuration session and create a unique session ID using curl command 46

Figure 6.15 List active configuration mode sessions .. 46

Figure 6.16 view of Vyatta router firewall configuration ... 47

Figure 6.17 ping response before configuring firewall ... 48

Figure 6.18 ping response after configuring firewall .. 48

1

1 INTRODUCTION

The advancement in compute, storage and networking capacity and an increase in the adaption of

virtualization technology has changed the architecture of modern datacenter into a service

oriented architecture which utilizes distributed computing resources across the datacenter to

provide utility computing. This shift from on demand computing to a service based distributed

computing led to the evolution of cloud computing. Offering features such as high performance,

scalability and economic service the demand of cloud computing is increasing day by day. This

increase in demand created a need for software that provides a complete cloud computing

solution package.

There are many solutions developed that provide complete cloud computing solution. But the

problem with most of the solutions is they are proprietary solution and have their own hardware,

software and virtualization standards. This makes one solution incompatible with other which

makes it very difficult to implement these solutions in large environments with multiple

underline physical hardware and virtualization technology used. This initiated an open source

community effort to develop a ubiquitous cloud computing solution that supports multiple

hardware and hypervisor platform called “OpenStack”. Initially developed by NASA and

Rackspace, OpenStack is now managed by OpenStack Foundation. Within 5 short years of its

development OpenStack has gained a huge popularity in the world of cloud computing with

contributions from major player like Cisco, HP, RedHat, IBM etc.

In this project we demonstrate management of cloud on VMware vSphere infrastructure using

OpenStack vCenter integration. VMware vSphere is one of the most popular virtualization

solution used across enterprise datacenters. This integration of OpenStack with vCenter brings

all the benefits of vSphere to OpenStack environment which includes the advance feature like

vMotion, High Availability(HA), Fault Tolerance (FT) and Dynamic Resource Scheduling

(DRS) making it more scalable, flexible, robust and enterprise friendly. Also, it opens the

possibility to integrate other hypervisors (KVM, XEN etc.) to the cloud under the management

of OpenStack.

Scope

The scope of this project is to presents the proof of concept demonstration to orchestrate a

private and/or public cloud using OpenStack on vSphere infrastructure (OpenStack vCenter

integration) and manage the network resources of the cloud using Vyatta vRouter providing

tenant separation.

 Capstone Project Report

2

2 TERMINOLOGY AND CONCEPT

2.1 VIRTUALIZATION
Virtualization means creating a virtual version of an actual implementation or process. It is an

abstraction layer separating hardware from the software using a software that emulates the

underline hardware. Today with the advancement in virtualization technology almost all the

physical attribute of a computer can be virtualized which include memory virtualization, storage

virtualization, network virtualization etc.

By using virtualization technology, it is possible to capture the state of all the attributes at a point

of time (take snapshot) and save it so that user can roll back to that instance at any time. That

state can also be copied from one physical machine to another eliminating complete dependency

on one physical machine.

2.2 HYPERVISOR
Hypervisor is the software program that makes virtualization possible. It acts as a bridge between

the physical hardware and the operating systems running on that hardware. It allows multiple

operating systems to run simultaneously on top of a physical hardware by managing and

distributing the available physical resources to each operation system. Hypervisors can be

classified into two types:

 Type 1 hypervisors:

Type 1 hypervisors are also called bare metal or native

hypervisors. They are installed directly on physical

hardware and are more efficient. They are used in

production grade datacenters and servers across

enterprise environment e.g. Cirtix Xen server, VMWare

ESX/ESXi etc.

 Type 2 hypervisors:

Type 2 hypervisors are the hypervisors that are

installed on an operating system. They run guest

operating system inside host operating system. e.g.

VMWare Workstation, VMWare player, virtual box

etc.

Figure 2.1 type 1 hypervisor

Figure 2.2 type 2 hypervisor

 Capstone Project Report

3

2.3 CLOUD COMPUTING
Cloud computing is the process of utilizing the distributed hardware resources across the

network to perform computing task. The unused processing cycle of multiple processors

connected across the network are utilized to perform a computing operating which makes cloud

computing more efficient in terms of resource utilization. It allows users to share high power

computing resources securely and effectively. [14] Cloud computing has hugely benefited small

and medium enterprise as it has allowed them to use computing power as per requirement as a

service eliminating the upfront cost of implementing whole infrastructure and maintain them.

Deployment model of cloud

 Private Cloud:

Private cloud is the cloud that is entirely owned and managed by a single organization

and is tailored as per the organization’s requirements. All the infrastructure and services

of a private cloud are connected to organization’s private network. Creating a private

cloud requires the organization to own significant physical resources and is expensive to

build and manage. Private cloud is popular among the companies with very high data

security and secrecy requirements such as financial institutions and intelligence services.

 Public Cloud:

Public cloud is the cloud which are built and managed by cloud service providers and are

connected to public network which can be accessed through internet. The user of the

public cloud has no control over the infrastructure and architecture of the cloud and use

the cloud as a service. Public cloud is much more efficient and economical from end user

prospective. Google, Microsoft, Amazon are some of the large public cloud service

providers.

 Hybrid Cloud:

Hybrid cloud is the combination of public and private cloud. In hybrid cloud multiple

clouds are integrated as per the requirement of the organization to form a new cloud thus

its implementation may be different for different organizations.

2.4 RESTFUL API
RESTful (Representational state transfer) API is the application programming interface

following REST software architectural style which communicates over HTTP (Hypertext

Transfer Protocol). It is the API supported by most of the cloud based web services including

Google, Amazon, Facebook, Twitter etc. The communication is done using the following four

methods as defined in HTTP RFC 2616:

 Capstone Project Report

4

 PUT

Put is a idempotent method it is used to change the state or update data

 GET

Get is a nullipotent method used to retrieve data but does not change any data

 POST

Post method is used to create a data

 DELETE

Delete is also an idempotent method used to remove data

In our project we use Restful API to configure firewall on Vyatta vRouter using cURL command

line.

3 COMPONENTS OF PROJECT

3.1 OPENSTACK
OpenStack is an open source software that provides cloud computing services. It consists of

several interrelated components which are responsible for the control of hardware, storage and

networking resources packaged together to form a complete cloud operating system. There is an

intuitive GUI based web dashboard for management. Users can also use Restful API or

command line tools for management. OpenStack supports all the popular open source and

enterprise solutions making it a highly ubiquitous cloud computing platform ideal for

infrastructure consisting of solutions from multiple vendors.

Components of OpenStack

OpenStack consist of several different projects combined together to form a superior cloud

computing platform. Listed below are the core components of OpenStack.

 Compute (Nova)

Nova is the major component of OpenStack which manages the compute instances. It is

responsible for spawning, scheduling and decommissioning of machines on demand. It manages

and automates compute resources pool and supports all widely available virtualization

technologies and bare metal high performance configurations. [1] [11]

 Object Storage(Swift)

Swift is the object storage system in OpenStack. It is a highly scalable and redundant system. It

uses RESTful API based on HTTP protocol to store and retrieve arbitrary unstructured data

objects. It has a scale out architecture and provides data replication making it highly fault

tolerant. [1] [11]

 Block Storage(Cinder)

Cinder provides persistent block storage to running instances. It has a pluggable driver

architecture. Creation, attachment and detachment of the block devices to servers is managed by

cinder. [1] [11]

 Capstone Project Report

5

 Networking(Neutron)

Neutron is a system for managing network and IP address. It enables network connectivity as a

service for other OpenStack services, such as OpenStack Compute. It ensures the prevention of

network bottleneck during cloud deployments. Advance routing services from vendors is support

by neutron because of its pluggable backend architecture. [1] [11]

 Dashboard(Horizon)

OpenStack Dashboard (Horizon) is a web based user interface. Administrators and users use this

interface to provision and automate cloud-based resources. The design allows for third party

products and services, such as billing, monitoring and additional management tools. It can be

customized by vendors and services providers with their own brand. [1] [11]

 Identity Service(Keystone)

Keystone provides authentication and authorization service for other OpenStack services. It can

be integrated to backend directory services like LDAP and supports multiple forms of

authentication. [1] [11]

 Image Service(Glance)
Glance provides discovery, registration and delivery for disk and server images. It stores and

retrieves virtual machine disk images. It uses REST API to query information about disk image

and allows clients to stream the image to new servers. [1] [11]

-Source: OpenStack Training Guides (May 10, 2015)

Figure 3.1 OpenStack components overview

Source: http://docs.openstack.org/security-guide/introduction/introduction-to-openstack.html (13/3/2016)

Beside the above listed core components some of the other components of OpenStack are:

 Orchestration (Heat)

Heat orchestration is used to launch multiple cloud application based on templates. It

automatizes the scaling and addition of compute, storage and network resources across the cloud

platform through an OpenStack-native REST API by executing HOT (Heat Orchestration

Template) templates written in YAML. [9]

http://docs.openstack.org/security-guide/introduction/introduction-to-openstack.html

 Capstone Project Report

6

 Telemetry (Ceilometer)

Ceilometer is to metering tool. It collects and stores data used for automated actions or billing /

chargeback purposes in form of samples. [9]

-Source: https://www.OpenStack.org/software/icehouse/

3.2 VMWARE VSPHERE
VMWare vSphere is a cloud computing and virtualizing software package developed by

VMware. It is the most popular virtualization and cloud management tool and widely used across

enterprise datacenters. It manages large volume of computing, storage and networking resources

across the datacenter seamlessly. It offers distributive services such as vMotion, storage vMotion,

Distributed Resource Scheduler (DRS), High Availability HA, and fault tolerance which enable

very efficient and automated management of resources providing a highly available and reliable

virtual infrastructure. [3]

Figure 3.2 VMware vSphere overview

-source: www.vmware.com

-

Components of VMware vSphere
VMware vSphere includes the following components:

 VMware ESXi

VMware ESXi a hypervisor layer that is installed on a bare metal (physical) servers. It provides

effective distribution of processor, memory and storage resources across multiple virtual

machines. [3]

 VMware vCenter Server

VMware vCenter Server is the management tool to manage ESXi hypervisors across the

datacenters. It provides central management of compute, storage and network resources of all the

ESX/ESXi across the datacenter by aggregating them into a cluster to create a highly reliable,

fault tolerant and efficient virtual infrastructure. [3]

 VMware vSphere Client

VMware vSphere Client is a software that can be installed on any Windows PC that provides an

interface to remotely connect and manage ESXi and vCenter server. [3]

http://www.vmware.com/

 Capstone Project Report

7

 VMware vSphere Web Access

VMware vSphere Web Access is web based GUI interface which provides an intuitive way to

manage and administer vCenter server. [3]

-Source: Introduction to VMware vSphere (EN-000102-00)

3.3 OPENSTACK VCENTER INTEGRATION

Figure 3.3VMWare driver architecture
-source: OpenStack Configuration Reference icehouse (June 1, 2015)

One of the most important feature of OpenStack is its ability to integrate with vCenter to control

and manage the vSphere infrastructure. VMware VSphere is the most popular virtualization and

cloud management software used across the enterprise datacenters. By integrating OpenStack

with vCenter the advance features offered by vCenter such as vMotion, High Availability (HA),

Fault tolerance (FT) and Dynamic Resource Scheduler (DRS) can be leveraged on OpenStack

environment.

OpenStack nova-compute communicates with vCenter using VMware vCenter driver. The nova

compute service acts as a proxy to translate Nova API calls to vCenter API calls using vCenter

driver. Nova scheduler chooses a cluster on vCenter to launch an instance. Nova-compute then

makes an API call and hands over the request to vCenter to launch a VM on the cluster chosen

by nova scheduler. The actual ESXi host is then chosen by vCenter using Dynamic Resource

Scheduler (DRS). [17]

 Capstone Project Report

8

OpenStack Networking on vSphere is done using nova-network service. It can be configured in

following ways:

 Nova-network service with the FlatManager or FlatDHCPManager

In this configuration all VM NICs are attached to the same port group. The name of the

port group should be same as the flat_network_bridge value defined in nova.conf. It is

br100 by default. [2]

 Nova-network service with the with VlanManager

In this configuration VM NICs are attached to the port groups created automatically by

OpenStack compute to handle VLAN-tagged VM traffic. [2]

3.4 BROCADE VYATTA VROUTER
 The Brocade Vyatta vRouter is a Debian-Linux distribution based software that provides virtual

routing, firewall and VPN services for cloud computing environments. Listed below are some of

the features of Vyatta vRouter:

 Network Connectivity

 IPv4 and IPv6 dynamic routing protocols support

o BGP

o OSPF

o RIP

o Multicast

 Policy Based routing (PBR)

 802.11 wireless

 Serial WAN interfaces

 Ethernet interfaces up to 10Gbps

Firewall Protection

 IPv4/IPv6 stateful packet inspection

 zone- and time-based firewalling

 P2P filtering.

Secure Connectivity

 secure site-to-site VPN tunnels with standards-based IPsec VPN

 secure network access to remote users via Brocade SSL-based OpenVPN functionality

 Dynamic Multipoint VPN (DMVPN)

Administration and Authentication

 network-centric CLI,

 Web-based GUI,

 external management systems using the Brocade Remote Access API.

 securely managed network management sessions using SSHv2, RADIUS, or TACACS+.

-Source: Brocade 5400 vRouter Data sheet

 Capstone Project Report

9

4 NETWORK TOPOLOGY DESIGN CONSIDERATIONS

4.1 BLOCK DIAGRAMMATIC VIEW OF THE PROJECT INFRASTRUCTURE

Figure 4.1 Block diagram representation of OpenStack/vCenter integration

 Capstone Project Report

10

4.2 PHYSICAL AND LOGICAL NETWORK CONNECTION OF MIRANTIS OPENSTACK WITH VCENTER

Figure 4.2Mirantis OpenStack physical and logical connection with vCenter

Source: Mirantis Reference Architecture (17 December 2014), page 9

(NSX portion is removed from the diagram as it is not implemented in this project)

 Capstone Project Report

11

4.3 PHYSICAL AND LOGICAL NETWORK CONNECTION VIEW OF PROJECT INFRASTRUCTURE

Figure 4.3 Physical and logical network connection diagram

 Capstone Project Report

12

5 IMPLEMENTING VIRTUAL INFRASTRUCTURE

5.1 VMWARE WORKSTATION INFRASTRUCTURE SETUP

Figure 5.1 View of VMWare Workstation listing all the Virtual Machines

The infrastructure for this project is setup in a VMware Workstation 12 Pro installed on

Windows Server 2012 system with 64 GB Ram, 1TB Hard disk drive and Intel Xeon 2.4GHz

processor. Following four Virtual Machines are created for the project:

 Vyatta

 ESXi 1

 ESXi 2

 VMware-vCenter-Server

Also a new host only virtual network “vMnet3” is created on VMware Workstation.

Figure 5.2 View of VMWare Workstation Virtual Networks

 Capstone Project Report

13

5.1.1 Vyatta
Vyatta VM boots using Brocade Vyatta 5410 vRouter ISO. The Vyatta vRouter performs

following functions in this project:

 DHCP server (with Static MAC-IP Mapping)

 Network Address Translation (NAT)

 Firewall

Creation and Deployment of Vyatta VRouter

Step 1: Create a new Virtual Machine in VMware Workstation to boot from Vyatta vRouter

5400 6.7 64-bit ISO image, the 60-day trial version of which can be downloaded from the

following link: http://www1.brocade.com/forms/jsp/Vyatta-download/index.jsp

Step 2: Go to Virtual Machine setting and set the memory for this virtual machine to be 512MB

with one processor and 20GB hard disk space.

Step 3: Set Network Adapter to Bridged (Automatic) also add a second Network Adapter

“Network Adapter 2” and set the network connection to VMnet3

Figure 5.3 Vyatta VM settings on VMware Workstation

http://www1.brocade.com/forms/jsp/vyatta-download/index.jsp

 Capstone Project Report

14

Step 4: Power up the virtual machine and after successful boot, install image on local hard drive

using install image command.

Figure 5.4 View of Vyatta VM deployed on VMware Workstation

Step 5: After successfully installing image on local drive reboot the VM.

Figure 5.5 View of Vyatta vRouter VM after installing image on local drive

Step 6: Finally configure the interface connected to bridged interface to get IP from DHCP. For

the other interface connected to VMnet 3 assign a static IP of 192.168.3.254 and enable DHCP

server with default gateway being 192.168.3.254. Also enable NATing on the router setting the

bridged interface as outside interface.

 Capstone Project Report

15

5.1.2 ESXi 1
ESXi 1 VM boots using VMware ESXI 5.5 ISO image. This ESXi hypervisor is setup to host the

Mirantis OpenStack Fuel master and three child nodes.

Creation and Deployment of ESXi 1

Step 1: Create a new Virtual Machine in VMware Workstation to boot from VMware VSphere

5.5 ISO which can be downloaded from the following link:

https://my.vmware.com/group/vmware/evalcenter?lp=default&p=free-esxi5

Step 2: Go to Virtual Machine Setting and assign 32GB memory to the VM along with 8

processor cores. Also, assign 650GB hard disk space and set Network Adaptor to VMnet3.

Figure 5.6 ESXI 1 VM setting on VMWare Workstation

https://my.vmware.com/group/vmware/evalcenter?lp=default&p=free-esxi5

 Capstone Project Report

16

Step 3: Power on the Virtual Machine and install ESXi on the local drive.

Step 4: After successful installation assign static IP address of 192.168.3.11 to this ESXi.

Figure 5.7 Set static IP to ESXi 1

Figure 5.8 View of ESXI 1 on VMWare workstation

 Capstone Project Report

17

5.1.3 ESXi 2
Similar to ESXI 1, ESXi 2 VM boots using VMware ESXI 5.5 ISO image. All the instances

created using OpenStack are hosted in this ESXi 2 hypervisor.

Creation and Deployment of ESXi 2

All the steps in creation of ESXi 2 are similar to ESXi 1 except ESXi 2 is assigned with only

20GB memory and 200GB hard disk space.

Figure 5.9 ESXI 2 VM setting on VMWare Workstation

Also, ESXi 2 is assigned with static IP 192.168.3.12

Figure 5.10 View of ESXI 2 on VMWare workstation

 Capstone Project Report

18

5.1.4 vCenter Server
vCenter Server VM boots using VMware-vCenter-Server-Appliance-5.5 OVF file. Both

hypervisor ESXi 1 and ESXi 2 are managed using vCenter Server.

Creation and Deployment of vCenter Server

Step 1: Create a new Virtual Machine in VMware Workstation to boot from VMware-vCenter-

Server-Appliance-5.5 ovf file.

Step 2: Go to virtual machine setting and set Network Adapter to VMnet 3

Figure 5.11 VCenter Server VM setting on VMWare Workstation

Step 3: Power on the virtual machine and install the vCenter Server.

Figure 5.12View of VCenter Server on VMWare workstation

 Capstone Project Report

19

Step 4: After successful installation of vCenter Server on VMware workstation, open a web

browser and navigate to vCenter Server Appliance webpage https://192.168.3.10:5480 (as

shown in vCenter server console) and login using default username root and password vmware.

Figure 5.13 vCenter Server Setup login screen

Step 5: Start vCenter Server Setup. Select Set custom configuration as the configuration options,

database type embedded, assign new password for user administrator@vSphere.local and set

time synchronization as VMware Tools synchronization

Figure 5.14 step by step vCenter Server Appliance Setup

https://192.168.3.10:5480/
mailto:administrator@vsphere.local

 Capstone Project Report

20

5.2 VCENTER INFRASTRUCTURE SETUP

Step 1: Open VMware vSphere Client. Enter the vCenter IP address, username and password

and click on login.

Figure 5.15 VMware vSphere client login

Step 2: Create a new datacenter and name it Datacenter.

Step 3: Create two new clusters OpenStack and NovaCompute and turn on vSphere DRS feature

on both the clusters.

Figure 5.16 Creating clusters OpenStack and NovaCompute

 Capstone Project Report

21

Step 4: Add host ESXi 1 i.e. 192.168.3.11 to OpenStack cluster and ESXi 2 i.e. 192.168.3.12 to

NovaCompute Cluster.

Figure 5.17 view of vCenter inventory after adding hosts to clusters

5.3 DEPLOYING MIRANTIS OPENSTACK 5.0.1 VAPP

A VMware Virtual Appliance (VApp) can be download from Mirantis website and imported to

vCenter. This VApp offers a pre-configured deployment of virtual machines for Fuel, and

OpenStack. The steps taken to deploy this VApp is described below:

5.3.1 Setting up network
Step 1: Create Virtual Machine Port Groups for deploying Mirantis OpenStack VApp on ESXi 1

and assign them with VLAN IDs as listed below:

Network VLAN ID

Admin PXE 100

Management 101

Storage 102

Private 103

Public 0 (None)

Default 0 (None)

Figure 5.18 Virtual Machine Port Group created to deploy Mirantis OpenStack

 Capstone Project Report

22

Step 2: Configure all the port groups to accept Promiscuous mode, MAC Address Changes and

Forged Transmits.

Figure 5.19 VM switch ports security setting

5.3.2 Importing Mirantis OpenStack

Step 1: Download VApp for Mirantis OpenStack from the following link:

https://content.mirantis.com/vapp-mirantis-OpenStack-landing-page.html

Step 2: Select host 192.168.3.11 (ESXi 1) and from the file menu click on Deploy OVF template.

Step 3: Specify the location of Mirantis OpenStack VApp ova file and Map the network as

shown in the snapshot below:

Figure 5.20 Deploy Mirantis OpenStack VApp

Step 4: After successful deployment of Mirantis OpenStack VApp, a Fuel Master VM and three

child node VM are created as a part of the VApp as show in snapshot below:

https://vimeo.com/104349384
https://content.mirantis.com/vapp-mirantis-openstack-landing-page.html

 Capstone Project Report

23

Figure 5.21 vCenter host inventory view after Deployment of Mirantis OpenStack VApp

Figure 5.22 ESXi 1 network view after deploying Mirantis OpenStack VApp

 Capstone Project Report

24

5.3.3 Installing Fuel
Step 1: Download Mirantis OpenStack iso from the following link:

https://software.mirantis.com/OpenStack-download-form/ In this project we are using Mirantis

OpenStack 5.0.1 Icehouse ISO.

Step 2: Upload the ISO into datastore1 (ESXi 1’s datastore).

Step 3: Power on Fuel Master VM and connect it to the Mirantis OpenStack 5.0.1 iso stored on

the datastore and allow it to boot from the iso.

Figure 5.23 View of Fuel Master VM console

Figure 5.24 view of Fuel Master VM properties

https://software.mirantis.com/openstack-download-form/

 Capstone Project Report

25

Step 4: Change the showmenu option from no to yes and hit enter to continue Fuel Installation.

Figure 5.25 view of Fuel Master VM console immediately after booting up with Mirantis OpenStack iso

Step 5: In the configuration menu under the Network setup configure eth0 with default setting

and set eth1 to configure using DHCP. Also provide proper DNS and NTP server parameter and

then save and quit the configuration menu.

Figure 5.26 view of Fuel Master configuration setting

 Capstone Project Report

26

Setup 6: Wait for some time for the installation to finish. After the installation is completed

power on the remaining three child VMs mos-child-1, mos-child-2 and mos-child-3 which will

PXE boot from the Fuel Master.

Figure 5.27 view of mos-child-1VM properties and console

5.3.4 Installing OpenStack
Step 1: Open Fuel master console and login as root. Display the ip address of the interfaces using

ip -4 a command and note the ip address of eth1. In our case it is 192.168.3.15 as highlighted in

the snapshot below.

Figure 5.28 view Fuel Master console

 Capstone Project Report

27

Step 2: Open a web browser open link http://192.168.3.15:8000. This will open Fuel Dashboard

as shown in snapshot below

Figure 5.29 view of Fuel Dashboard

http://192.168.3.15:8000/

 Capstone Project Report

28

Step 3: Create a new OpenStack environment

1. Name the new OpenStack environment “MINT_Project” and select Icehouse on Ubuntu

12.04.2 release to be installed.

2. Choose Multi-Node Deployment mode.

 Capstone Project Report

29

3. Choose vCenter as the compute hypervisor.

4. Choose Nova network (Neutron is not available with vCenter as compute option in the

release we are using)

 Capstone Project Report

30

5. Choose Default Cinder and Glance Storage.

6. Install Celiometer (OpenStack Telemetry) as additional services.

 Capstone Project Report

31

Step 4: Configure OpenStack Environment

1. Add and assign role to the nodes.

 First node is assigned the role of controller

 Second node is assigned the role of Storage – Cinder

 Third node is assigned the role of Telemetry - MongoDB

Figure 5.30 Adding and assigning role to nodes

 Capstone Project Report

32

2. Configure interfaces on 3 nodes

 Assign eth0 to storage network

 Assign eth1 to Admin(PXE) network

 Assign eth2 to Public network

 Assign eth3 to Management network

 Assign eth4 to VM(Fixed) network

Figure 5.31 Configure interfaces on 3 nodes

 Capstone Project Report

33

3. Configure Network Setting

 Select FlatDHCP Manager

 Assign IP address range for Public, Management, Storage and Nova-network

Configuration as shown in the snapshot below.

 Click Verify Networks to check the configuration and

 Save the network Settings

Figure 5.32 OpenStack Network Setting

 Capstone Project Report

34

4. Configure OpenStack Settings

 Specify access credentials (Administrator username and password)

 Specify vCenter ip, username, password and cluster

 Select vCenter as hypervisor type

 Click on deploy changes

Figure 5.33 OpenStack Setting

 Capstone Project Report

35

5.4 OPENSTACK DASHBOARD
OpenStack Horizon Dashboard can be accessed using web URL after the successful deployment

of the OpenStack environment.

Figure 5.34 view of OpenStack Horizon Dashboard login screen

Figure 5.35 OpenStack Horizon Dashboard Overview

 Capstone Project Report

36

6 LAB EXPERIMENT DEMO WITH RESULT

6.1 CREATING INSTANCES USING HEAT ORCHESTRATION
As a part of this project three instances are orchestrated which boots Windows, Ubuntu and

Fedora operating system respectively. The process of orchestrating instances is described below:

6.1.1 Creating Image
To orchestrate an instance first of all an image of the operating system should be created. The

steps involved in creating an image is explained below:

Step 1: Login to the horizon dashboard

Step 2: Select the appropriate project from the drop down menu at the top left

Step 3: On the Project tab, open the Compute tab and click Images category

Step 4: Click Create Image (The Create an Image dialog box appears)

Step 5: Provide proper name, description of the image and choose image file as the image source.

Step6: point the location of the ISO image of the and choose format as ISO.

Step7: specify the architecture type, minimum disk and RAM required and make this image a

publicly available image by checking the public box.

Figure 6.1 Create An Image dialog box

Step 6: Finally click Create Image

 Capstone Project Report

37

Figure 6.2 View of images tab after creating multiple images

6.1.2 Flavors
Virtual hardware templates are called "flavors" in OpenStack. They define sizes for RAM, disk, number of cores,

and so on. The default install provides five flavors as shown in the snapshot below.

Figure 6.3 view of default OpenStack Flavors

Depending upon our physical hardware constrain we choose m1.small flavor for the three

instances we created.

6.1.3 Orchestration
Heat Orchestration used to configure and deploy resource in stack. Heat Orchestration Template

(HOT) is used to in this project to define Heat stack.

Step by step creation of stacks using Horizon dashboard:

Step 1: On the Project tab, open the Orchestration tab and click Stacks

Step 2: Click on Launch Stack, we see a dialog that lets us pull in a template by URL, upload it

from a file, or simply cut and paste it into an editable dialog.

 Capstone Project Report

38

Step 3: Select Direct Input template source and paste the heat template into the template data

field and click next.

Figure 6.4 Select Template dialogue box

The heat template for creating a single instance is listed below:

Heat template to create an Ubuntu instance:

heat_template_version: 2013-05-23

description: Simple template to deploy a single compute instance

resources:

 my_instances:

 type: OS::Nova::Server

 properties:

 image: ubuntu

 flavor: m1.small

 Capstone Project Report

39

Step 4: Give a name to the stack and provide admin password and click on launch.

Figure 6.5 Launch Stack dialogue box

Similarly, other two stacks WindowsXP and Fedora are created. The heat template for crating

WindowsXP and Fedora are listed below

Windows XP:

heat_template_version: 2013-05-23

description: Simple template to deploy a single compute instance

resources:

 my_instances:

 type: OS::Nova::Server

 properties:

 image: WindowsXP

 flavor: m1.small

Fedora:

heat_template_version: 2013-05-23

description: Simple template to deploy a single compute instance

resources:

 my_instances:

 type: OS::Nova::Server

 properties:

 image: Fedora

 flavor: m1.small

 Capstone Project Report

40

Figure 6.6 view of Stacks

The creation of three new stacks create three new instances which can be seen at the instances

tab

WindowsXP Instance:

Figure 6.7 view of WindowsXP instance Overview and console

 Capstone Project Report

41

Ubuntu Instance:

Figure 6.8 view of Ubuntu instance Overview and console

Fedora Instance:

Figure 6.9 view of Fedora instance Overview and console

Since vCenter is selected as the compute node the three instances are actually deployed on the

vCenter cluster (NovaCompute) which was specified during fuel deployment with the instance id

as the VM name.

Figure 6.10 view of vCenter NovaCompute cluster after OpenStack instant deplyoment

 Capstone Project Report

42

Also, all the three instances are by default connected to a virtual machine port group br100.

Figure 6.11 view of vCenter Networking

6.2 TENANT SEPARATION USING VYATTA FIREWALL
Vyatta router is the major part of this project. It is created on VMWare Workstation outside the

vCenter and OpenStack environment. Two network adapters are connected to this router, the first

one is bridged to the external network and the second is connected to the host only network

which connects to the local vCenter and OpenStack environment. The major functions of Vyatta

router in the project are as follows:

 DHCP server (with Static MAC-IP Mapping)

 Network Address Translation (NAT)

 Firewall

6.2.1 Vyatta vRouter Network Configuring
The steps involved in configuring Vyatta router are as follows:

Step 1: Configure interface eth0 connected to the bridged interface to get an IP from the external

DHCP server.

 Capstone Project Report

43

Step 2: Configure interface eth1 connected to the host only interface and assign three more static

IPs from different subnet range as follows:

192.168.4.254/24

192.168.5.254/24

192.168.6.254/24

Step 3: Configure DHCP server for the added three different subnet with the default gateway

pointed to ip on eth 1 from the same subnet.

Step 4: Configure static mapping such that the three instances (Windows, Ubuntu and Fedora)

get IP address from three different subnet as follows:

Instance MAC IP

Windows 00:50:56:b7:6e:75 192.168.4.100

Ubuntu fa:16:3e:a8:b6:26 192.168.5.100

Fedora fa:16:3e:0c:97:b1 192.168.6.100

Figure 6.12 view of ip configuration of Windows, Ubuntu and Fedora instances

Step 4: Configure NAT with eth0 as outside interface to translate all the internal address from the

subnet 192.168.0.0/16

 Capstone Project Report

44

Output of show configuration on Vyatta router is given below:

interfaces {

 ethernet eth0 {

 address dhcp

 duplex auto

 hw-id 00:0c:29:8b:66:39

 smp_affinity auto

 speed auto

 }

 ethernet eth1 {

 address 192.168.3.254/24

 address 192.168.4.254/24

 address 192.168.5.254/24

 address 192.168.6.254/24

 duplex auto

 hw-id 00:0c:29:8b:66:43

 smp_affinity auto

 speed auto

 }

 }

 nat {

 source {

 rule 1 {

 outbound-interface eth0

 source {

 address 192.168.0.0/16

 }

 translation {

 address masquerade

 }

 }

 }

 }

 service {

 dhcp-server {

 disabled false

 shared-network-name MINT {

 authoritative disable

 subnet 192.168.3.0/24 {

 default-router 192.168.3.254

 dns-server 8.8.8.8

 lease 86400

 start 192.168.3.100 {

 stop 192.168.3.200

 }

 }

 subnet 192.168.4.0/24 {

 default-router 192.168.4.254

 dns-server 8.8.8.8

 start 192.168.4.100 {

 stop 192.168.4.200

 }

 static-mapping Windows {

 ip-address 192.168.4.100

 mac-address 00:50:56:b7:6e:75

 }

 Capstone Project Report

45

 }

 subnet 192.168.5.0/24 {

 default-router 192.168.5.254

 dns-server 8.8.8.8

 start 192.168.5.100 {

 stop 192.168.5.200

 }

 static-mapping Ubuntu {

 ip-address 192.168.5.100

 mac-address fa:16:3e:a8:b6:26

 }

 }

 subnet 192.168.6.0/24 {

 default-router 192.168.6.254

 dns-server 8.8.8.8

 start 192.168.6.100 {

 stop 192.168.6.200

 }

 static-mapping Fedora {

 ip-address 192.168.6.100

 mac-address fa:16:3e:0c:97:b1

 }

 }

 }

 }

 https {

 http-redirect enable

 }

 }

 system {

 host-name Vyatta

 login {

 user Vyatta {

 authentication {

 encrypted-password 1.DjhByrl$.i5PyfOtP34liIYkk1FB//

 }

 level admin

 }

 }

 syslog {

 global {

 facility all {

 level notice

 }

 facility protocols {

 level debug

 }

 }

 user all {

 facility all {

 level emerg

 }

 }

 }

 time-zone GMT

 }

 Capstone Project Report

46

6.2.2 Vyatta vRouter Firewall configuration using Rest API
Vyatta router is used as a firewall to prevent communication between two instances. As we have

performed static mapping of the MAC addresses of the instances with IP address the three

instances created always get the same IP address from the DHCP server. Therefore, we setup a

Layer 3 firewall rule on the Vyatta router to block the traffic between Windows and Fedora

instance and allow the traffic between Windows and Ubuntu instance. This firewall rule is

configured on Vyatta router through rest API using curl command.

The steps involved in configuring firewall rule using rest API is as follows:

Step 1: Enable HTTPS on the Vyatta system using the command set services HTTPS

Figure 6.13 Enabling HTTPS on Vyatta system

Step 2: Start a configuration session and create a unique session ID. To perform this task

following curl command is passed through a Ubuntu terminal:

curl -k -s -i -u vyatta:vyatta -H "content-length:0" -H "Accept: application/json" -X POST https://192.168.3.254/rest/conf

Figure 6.14 start configuration session and create a unique session ID using curl command

Step 3: All the active configuration mode sessions can be listed by using following curl command:

curl -k -s -i -u vyatta:vyatta -H "content-length:0" -H "Accept: application/json" -X GET https://192.168.3.254/rest/conf

Figure 6.15 List active configuration mode sessions

https://192.168.3.254/rest/conf
https://192.168.3.254/rest/conf

 Capstone Project Report

47

Step 3: After creating a unique session ID, this session ID is used to reference the session for all

the other curl command. Listed below are the curl commands to create a firewall named MINT-

Firewall with default action accept. Within this firewall two rules are defined, the first one rule1

is defined to drop all the traffic with source address 192.168.4.100(Windows) and destination

address 192.168.6.100(Fedora) while the second rule rule2 is defined to accept(allow) all the

traffic with source address 192.168.4.100(Windows) and the destination address

192.168.5.100(Ubuntu).

curl -k -s -i -u vyatta:vyatta -H "content-length:0" -H "Accept: application/json" -X PUT

https://192.168.3.254/rest/conf/8271688DAEE87497/set/firewall/name/MINT-Firewall/default-action/accept

curl -k -s -i -u vyatta:vyatta -H "content-length:0" -H "Accept: application/json" -X PUT

https://192.168.3.254/rest/conf/8271688DAEE87497/set/firewall/name/MINT-Firewall/rule/1/action/drop

curl -k -s -i -u vyatta:vyatta -H "content-length:0" -H "Accept: application/json" -X PUT

https://192.168.3.254/rest/conf/8271688DAEE87497/set/firewall/name/MINT-Firewall/rule/1/source/address/192.168.4.100

curl -k -s -i -u vyatta:vyatta -H "content-length:0" -H "Accept: application/json" -X PUT

https://192.168.3.254/rest/conf/8271688DAEE87497/set/firewall/name/MINT-

Firewall/rule/1/destination/address/192.168.6.100

curl -k -s -i -u vyatta:vyatta -H "content-length:0" -H "Accept: application/json" -X PUT

https://192.168.3.254/rest/conf/8271688DAEE87497/set/firewall/name/MINT-Firewall/rule/2/action/accept

curl -k -s -i -u vyatta:vyatta -H "content-length:0" -H "Accept: application/json" -X PUT

https://192.168.3.254/rest/conf/8271688DAEE87497/set/firewall/name/MINT-Firewall/rule/2/source/address/192.168.4.100

curl -k -s -i -u vyatta:vyatta -H "content-length:0" -H "Accept: application/json" -X PUT

https://192.168.3.254/rest/conf/8271688DAEE87497/set/firewall/name/MINT-

Firewall/rule/2/destination/address/192.168.5.100

curl -k -s -i -u vyatta:vyatta -H "content-length:0" -H "Accept: application/json" -X PUT

https://192.168.3.254/rest/conf/8271688DAEE87497/set/interfaces/ethernet/eth1/firewall/in/name/MINT-Firewall

curl -k -s -i -u vyatta:vyatta -H "content-length:0" -H "Accept: application/json" -X PUT

https://192.168.3.254/rest/conf/8271688DAEE87497/set/interfaces/ethernet/eth1/firewall/out/name/MINT-Firewall

curl -k -s -i -u vyatta:vyatta -H "content-length:0" -H "Accept: application/json" -X POST

https://192.168.3.254/rest/conf/8271688DAEE87497/commit

curl -k -s -i -u vyatta:vyatta -H "content-length:0" -H "Accept: application/json" -X DELETE

https://192.168.3.254/rest/conf/8271688DAEE87497

The new firewall created by using rest API can be verified from Vyatta command prompt

Figure 6.16 view of Vyatta router firewall configuration

 Capstone Project Report

48

To verify that the firewall rule is working we perform ping test from Windows instance to

Ubuntu and Fedora instance.

 Ping response from Windows (192.168.4.100) to Ubuntu (192.168.5.100) and Fedora

(192.168.6.100) before configuring firewall.

Figure 6.17 ping response before configuring firewall

 Ping response from Windows (192.168.4.100) to Ubuntu (192.168.5.100) and Fedora

(192.168.6.100) after configuring firewall.

Figure 6.18 ping response after configuring firewall

 Capstone Project Report

49

7 SUMMARY AND CONCLUSION

From this proof of concept project, we were successfully able to demonstrate the integration of

OpenStack with vCenter and create instances on vSphere infrastructure (ESXi host) using Heat

orchestration. Mirantis OpenStack 5.0.1 Icehouse was deployed using Fuel which provided an

intuitive GUI driven web based interface to configure nodes and network setup to connect

OpenStack to vCenter. OpenStack Horizon dashboard was then used to orchestrate three

different instances (Windows, Ubuntu and Fedora) using Heat template. Also, though this project

we were able to demonstrate the use of Vyatta vRouter to manage the network resources of the

OpenStack cloud. We successfully configured firewall on Vyatta vRouter using Rest API to

perform network separation between the cloud tenant.

This proof of concept demonstration can be scaled up to create an enterprise scale cloud

controlled and managed using OpenStack. Due to the limitation on resources this project was

performed on a VMWare Workstation environment. The large scale would be installed on high

performance servers with high speed network and storage capacity. Each physical server can be

added as separate node and can be assigned with different OpenStack services. Also, NSX

component can be added to vSphere environment and integrated with OpenStack Neutron. The

integration of NSX with Neutron networking will provide full network management of the cloud

on vSphere infrastructure using OpenStack.

 Capstone Project Report

50

Bibliography & References:

1. OpenStack Training Guides (May 10, 2015)

2. OpenStack Configuration Reference icehouse (June 1, 2015)

3. Introduction to VMware vSphere (EN-000102-00)

4. Brocade 5400 vRouter DataSheet

5. Mirantis Reference Architecture (17 December 2014)

6. Brocade Vyatta -Remote Access API 2.0 Reference Guide (3.5R3 v01)

7. http://www.openstack.org/ (4/2/2016)

8. http://www.vmware.com/ (4/2/2016)

9. https://www.OpenStack.org/software/icehouse/

10. https://content.mirantis.com/vapp-mirantis-OpenStack-landing-page.html

11. http://www.OpenStack.org/software/project-navigator

12. http://docs.OpenStack.org/liberty/config-reference/content/vmware.html

13. https://content.mirantis.com/mirantis-vmware-reference-architecture-thank-you.html

14. http://www.webopedia.com/TERM/C/cloud_computing.html

15. http://blog.rackspace.com/architecting-vmware-vSphere-for-OpenStack/

16. http://docs.OpenStack.org/admin-guide-cloud/common/get_started_compute.html

17. http://blog.platform9.com/blog/explaining-how-vmware-vSphere-integrates-with-OpenStack/

(11/2/2016)

18. http://wikibon.org/wiki/v/The_Data_Center:_Past,_Present_and_Future

19. http://getcloudify.org/2014/07/10/what-is-OpenStack-tutorial.html

20. https://player.vimeo.com/video/90420485

21. http://docs.OpenStack.org/user-guide/dashboard_manage_images.html

22. https://developer.rackspace.com/blog/OpenStack-orchestration-in-depth-part-2-single-instance-

deployments/

23. https://www.mirantis.com/blog/mirantis-OpenStack-express-intro-heat-orchestration/

24. https://www.brocade.com/content/dam/common/documents/content-types/api-reference-

guide/vyatta-remote-access-api-3.5r3-v01.pdf

25. https://curl.haxx.se/docs/manpage.html

26. https://wiki.OpenStack.org/wiki/Fuel

27. http://www.thoughtsoncloud.com/2014/03/a-brief-history-of-cloud-computing/

28. http://www.academia.edu/8605710/Planning_Guide_Introduction_to_Mirantis_OpenStack_and_

Fuel_2

29. http://pubs.vmware.com/vSphere-

55/index.jsp?topic=%2Fcom.vmware.vSphere.install.doc%2FGUID-7C9A1E23-7FCD-4295-

9CB1-C932F2423C63.html

30. https://dzone.com/articles/what-OpenStack-quick-OpenStack

31. http://cloudarchitectmusings.com/2015/08/13/understanding-how-vmware-vSphere-integrates-

with-OpenStack/

32. http://www.dummies.com/how-to/content/comparing-public-private-and-hybrid-cloud-

computin.html

33. http://searchcloudstorage.techtarget.com/definition/RESTful-API

34. http://docs.openstack.org/security-guide/introduction/introduction-to-openstack.html

http://www.openstack.org/
http://www.vmware.com/
https://www.openstack.org/software/icehouse/
https://content.mirantis.com/vapp-mirantis-openstack-landing-page.html
http://www.openstack.org/software/project-navigator
http://docs.openstack.org/liberty/config-reference/content/vmware.html
https://content.mirantis.com/mirantis-vmware-reference-architecture-thank-you.html
http://blog.rackspace.com/architecting-vmware-vsphere-for-openstack/
http://docs.openstack.org/admin-guide-cloud/common/get_started_compute.html
http://blog.platform9.com/blog/explaining-how-vmware-vsphere-integrates-with-openstack/
http://wikibon.org/wiki/v/The_Data_Center:_Past,_Present_and_Future
http://getcloudify.org/2014/07/10/what-is-openstack-tutorial.html
https://player.vimeo.com/video/90420485
http://docs.openstack.org/user-guide/dashboard_manage_images.html
https://developer.rackspace.com/blog/openstack-orchestration-in-depth-part-2-single-instance-deployments/
https://developer.rackspace.com/blog/openstack-orchestration-in-depth-part-2-single-instance-deployments/
https://www.mirantis.com/blog/mirantis-openstack-express-intro-heat-orchestration/
https://www.brocade.com/content/dam/common/documents/content-types/api-reference-guide/vyatta-remote-access-api-3.5r3-v01.pdf
https://www.brocade.com/content/dam/common/documents/content-types/api-reference-guide/vyatta-remote-access-api-3.5r3-v01.pdf
https://curl.haxx.se/docs/manpage.html
https://wiki.openstack.org/wiki/Fuel
http://www.academia.edu/8605710/Planning_Guide_Introduction_to_Mirantis_OpenStack_and_Fuel_2
http://www.academia.edu/8605710/Planning_Guide_Introduction_to_Mirantis_OpenStack_and_Fuel_2
http://pubs.vmware.com/vsphere-55/index.jsp?topic=%2Fcom.vmware.vsphere.install.doc%2FGUID-7C9A1E23-7FCD-4295-9CB1-C932F2423C63.html
http://pubs.vmware.com/vsphere-55/index.jsp?topic=%2Fcom.vmware.vsphere.install.doc%2FGUID-7C9A1E23-7FCD-4295-9CB1-C932F2423C63.html
http://pubs.vmware.com/vsphere-55/index.jsp?topic=%2Fcom.vmware.vsphere.install.doc%2FGUID-7C9A1E23-7FCD-4295-9CB1-C932F2423C63.html
https://dzone.com/articles/what-openstack-quick-openstack
http://cloudarchitectmusings.com/2015/08/13/understanding-how-vmware-vSphere-integrates-with-OpenStack/
http://cloudarchitectmusings.com/2015/08/13/understanding-how-vmware-vSphere-integrates-with-OpenStack/
http://www.dummies.com/how-to/content/comparing-public-private-and-hybrid-cloud-computin.html
http://www.dummies.com/how-to/content/comparing-public-private-and-hybrid-cloud-computin.html
http://searchcloudstorage.techtarget.com/definition/RESTful-API

