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Abstract 
 

Elderly individuals and those affected by neuromuscular disorders are frequently not able to 

independently maintain seated balance. As a result, these individuals are limited in performing 

activities of daily living, and are susceptible to an increased risk of falling and secondary health 

complications. To develop therapies and targeted interventions for seated instability, it is essential, 

however, to first quantify the mechanisms responsible for controlling seated balance. In this 

context, classical system identification techniques are a promising tool for obtaining a quantitative 

description of such mechanisms. Motivated by these considerations, the objective of this M.Sc. 

research project was to quantify, using advanced system identification techniques, the active and 

passive control mechanisms, the muscular dynamics, and the sensorimotor time delay in seated 

balance control of non-disabled individuals.  

14 young, non-disabled individuals were perturbed while sitting using mild, mechanical surface 

perturbations. The body kinematics, muscle activity, and ground reaction forces were recorded 

during the perturbations. Neuromusculoskeletal time series, including the body sway, the joint 

torque using top-down and bottom-up inverse dynamics, and the weighted electromyography 

representing neural activation, were calculated. Using the joint input-output system identification 

technique, non-parametric estimates of the active control components (neural dynamics and 

sensorimotor time delay) and of the active-passive control components (neural dynamics, 

mechanical dynamics, sensorimotor time delay, and muscular dynamics) were obtained. 

Parametric estimates of these components were computed using model fitting. The parameters’ 

accuracy was evaluated using goodness-of-fit (GOF), the Akaike information criteria (AIC), and 

variance-accounted-for (VAF). The stability of the identified models was then assessed via a pole-
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zero analysis of the characteristic equation. Finally, the identified models were implemented in 

simulations to assess the robustness of the model parameters.  

While the thesis presents results for both the top-down and bottom-up inverse dynamics, only the 

top-down results are described in this abstract unless stated otherwise. For both the active and 

active-passive controller components, the frequency response was approximately constant for 

lower frequencies (< 0.4 Hz) and then steadily rose as the frequency increased. The active control 

component’s frequency response had a phase of 30 degrees for lower frequencies and steadily rose 

as the frequency increased; however, it saturated around 110 degrees as the frequency reached 

approximately 3 Hz. The active-passive control component’s frequency response had a constant 

phase of approximately 180 degrees for the lower frequencies (< 1Hz) that gradually increased to 

approximately 185 degrees at 2.5 Hz and then settled at approximately 180 degrees for higher 

frequencies. The across-participant variability of the non-parametric estimates of the active and 

active-passive control components was small. The neural dynamics were identified as a 

proportional-derivative (PD) controller with acceleration feedback; the sensorimotor time delay as 

an exponential decay function; the mechanical dynamics as a PD controller; and the muscular 

dynamics as a second-order transfer function. The fitting of the active control components using 

the stated models provided GOF, AIC, and VAF ranges of 99.2–99.8%, 1.1–1.5, and 29.0–60.8%, 

respectively. Similarly, the fitting of the active-passive control components using the stated models 

provided GOF, AIC, and VAF ranges of 99.9–99.9%, 0.4–0.5, and 97.7–99.7%, respectively. The 

stability analysis identified the neural dynamics, the sensorimotor time delay, and the mechanical 

dynamics (using bottom-up inverse dynamics) to produce a stable characteristic equation. The 

difference between the experimental and simulated parameters was low in most cases.  
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In this study, the mechanisms of seated balance have been successfully quantified for non-disabled 

individuals. The gained insights support the notion that closed-loop feedback control contributes 

to stabilizing the upper body during sitting and that a velocity-acceleration-based strategy is 

utilized for active control. The identified parameters can furthermore be used as a normative 

benchmark for quantitatively and mechanistically assessing the severity of seated imbalance in 

affected individuals, with the goal of optimizing rehabilitation therapies and interventions.   
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1 Introduction 

 

1.1 Motivation 

Seated balance is necessary for humans to maintain an upright position during many functional 

tasks. It is also essential for stabilizing the body against unpredictable internal and external 

disturbances [2]–[5]. The upper body, however, is inherently unstable [6], [7], such that any 

disturbance can lead the upper body to tip over. As a consequence, the body’s 

neuromusculoskeletal system and in particular the central nervous system (CNS), sensory systems, 

muscles, and passive tissue properties, such as stiffness and damping, work together in an 

integrated fashion, with the goal of maintaining seated balance [8]. However, due to aging as well 

as stroke, spinal cord injury (SCI), and other neurological or musculoskeletal disorders (Figure 

1-1), these systems can deteriorate [1], [9]–[11]. In particular, affected individuals experience loss 

of muscle control, insufficient muscle strength, and degraded sensory information, which can lead 

to an increase in the risk of falling [12], reduced functional independence [13], and secondary 

health complications such as kyphosis, pressure sores, or respiratory dysfunction [14], [15]. To 

develop therapies and targeted interventions for seated instability, it is essential, however, to first 

quantify the control mechanisms of seated balance [16]–[19]. Such knowledge is essential to 

define a baseline of seated balance; a baseline that can serve as a benchmark for quantitatively and 

mechanistically assessing the severity of seated imbalance in affected individuals, with the goal of 

identifying and prescribing optimal therapies and targeted interventions. 

 

1.2 Mechanisms of Seated Balance 

Seated balance is a complex task that requires the contributions from the CNS, sensory systems, 

muscles, and passive tissue properties such as stiffness and damping. Stiffness and damping due 

to muscles, ligaments, and surrounding tissue produce corrective joint torques (passive control) 

without the time delay that contribute to upper body stabilization (Human body dynamics) [20]. 

However, joint torques produced via such passive control are not sufficient to stabilize the upper 

body [17]. In addition, the human body senses the seated imbalance and generates additional joint 

torques via feedback control (active control) to complement the passive control and stabilize the 
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body. This active control component involves several steps: First, the body orientation in space is 

perceived by the sensory systems (sensory dynamics), such as the vestibular, proprioceptive, and 

visual systems [21]. The acquired information is then passed on to the brain, which converts the 

sensory information into a motor command (neural dynamics). Finally, this motor command 

activates relevant muscles (muscular dynamics) and generates the active joint torques contributing 

to body stabilization [22]. Note that the process of transferring information from the sensory 

systems to the brain, of integrating the sensory information, and of sending the motor command to 

the muscular system involves various time delays (overall summarized as sensorimotor time delay) 

[20]–[22].  

In contrast to the described feedback control, also feed-forward control is active, where the brain 

attempts to anticipate the intended body displacement and issues the required motor commands 

for muscle activation [23], [24]. Feed-forward control relies on past-experience and complements 

feedback control to provide stability. However, feedforward control is not sufficient to provide 

stability during unpredictable external disturbances [25].  

 

 

Figure 1-1: Prevalence of neuromuscular disorders in Canada that may impair seated balance 

(Statistics Canada. Table 13-10-0468-01 Neurological conditions in institution, and Table 13-10-

0467-01 Neurological conditions in household population). 
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Two methods exist to identify the above-mentioned feedback mechanisms of seated balance: (1) 

descriptive measures, where the motion of the body’s segments, the ground reaction forces, and/or 

muscle activity in quasi-static or voluntary movement conditions (also known as posturographic 

measures) are reduced to single-number measures to quantify balance proficiency [26]–[29]; and 

(2) classical system identification, where the body’s response (movement of the body segments, 

ground reaction forces, and/or muscle activity) to an unpredictable external (physical or sensory) 

disturbance is used to quantify balance [20]. It has been shown that, between these two techniques, 

system identification provides the most accurate estimation of balance control as posturographic 

measures include both the dynamics associated with balance control and with the external process 

disturbing balance [20]. In the context of seated balance, the human upper body and its control can 

be represented by a closed-loop control model, with the upper body dynamics serving as the plant, 

the brain serving as the active controller, and the output of the sensory systems being used as 

feedback [16], [17]. Closed-loop control models are identified through closed-loop system 

identification techniques, including the Direct Approach, the Indirect Approach, and the Joint 

Input-Output Approach [20], [30].  

Among the three approaches, the Direct Approach provides an erroneous identification of the 

closed-loop control model because it considers the closed-loop system as an open-loop system, 

where the output of the plant/controller is considered independent of the input; however, those two 

entities are clearly not independent [20], [31], [32]. The Indirect Approach calculates the 

sensitivities of the input/output of the plant/controller with respect to the applied external 

disturbance. Since this sensitivity includes both the plant and controller dynamics, the dynamics 

of one are needed to identify the other [31]. This is a significant limitation of the Indirect Approach 

for identifying human balance: to identify the neural dynamics; we require the knowledge of the 

human body dynamics, which are often approximated by a mathematical model that may 

significantly differ from the actual characteristics of the upper body. This difference is then often 

reflected in the identified controller, making its identification unreliable [20]. The Joint Input-

Output Approach compares the sensitivity of the output of the plant and the applied external 

physical disturbance with the sensitivity of the input of the plant and the applied external physical 

disturbance to quantify the controller. Similarly, the sensitivity ratios of the controller input/output 

and the applied external sensory disturbance provide estimates of the plant [31]. On the contrary, 
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the Joint Input-Output Approach does not require prior knowledge of other components, providing 

more accurate estimations of each component of the closed-loop control system [20].  

Several studies have applied closed-loop system identification techniques to assess the 

mechanisms of human balance. For standing balance in non-disabled individuals, researchers have 

attempted to quantify the human body dynamics [1], [8], [33], [34], passive and active control 

mechanisms [8], [22], the sensory dynamics [21], [35]–[37], muscular dynamics [8], [22], and the 

sensorimotor time delay [8], [22] through the Direct [38], Indirect [8], [21], [39]–[41] and Joint 

Input-Output Approaches [22], [34], [42]. For the upper body during seated balance, researchers 

have attempted to identify the passive and active control mechanisms [17] and the sensory 

dynamics [36] through the indirect approach in non-disabled individuals. However, these studies 

have not considered the muscular dynamics as part of the active control component; thus, the 

parameters for the neural dynamics are not an accurate representation of the neuromuscular control 

scheme in seated balance [8]. Moreover, these studies have applied the indirect approach that 

requires prior knowledge of at least one component; in this case, the human body dynamics were 

presumably known, which causes erroneous estimations of other components. Thus, to more 

accurately identify respective control components in seated balance, it is required to implement 

the Joint Input-Output Approach while also including the muscular dynamics in the closed-loop 

control model of human seated balance. As mentioned earlier, the obtained parameters and insights 

can ultimately be used as a benchmark for assessing balance proficiency and underlying 

mechanisms in clinical populations, with the goal of developing and prescribing targeted 

interventions. 

 

1.3 Thesis Objectives  

Based on the considerations above, the purpose of the proposed project is to quantify, using the 

Joint Input-Output Approach, the active (neural) control mechanisms, the passive (mechanical) 

control mechanisms, the muscular dynamics, and the sensorimotor time delay in seated balance 

control of non-disabled individuals. 
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1.4 Thesis Outline 

This thesis will consist of the following additional chapters: Chapter 2 focuses on the theory of 

system identification techniques and its application to the identification of mechanisms of human 

balance control. Chapter 3 provides a review of the existing literature on seated balance, human 

body dynamics, the passive (mechanical dynamics) and active (neural dynamics) control, the 

sensory dynamics, the muscular dynamics, and the sensorimotor time delay during standing and 

sitting. Chapter 3 will also review features and the current state of using and processing 

electromyography, motion capture system, and force plate data in the neuromuscular control and 

biomechanics studies. The feedback control models of human balance in standing and sitting were 

also discussed in Chapter 3. Chapter 4 discusses the methods of the performed work, with a focus 

on the experimental setup and equipment used, participants studied, the protocol employed, and 

signal processing techniques and analyses applied. Chapter 5 presents the experimental results, 

with the overall goal of identifying the parameters of seated balance control. Chapter 6 provides a 

discussion of the obtained results and the limitations of the performed study. Chapter 7 offers a 

summary of the work and concludes the findings with recommendations for future work. 
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2 System Identification 

 

2.1 Overview 

This chapter describes the theory of system identification in the field of control systems and its 

application to quantitatively characterize, or identify, a closed-loop system. A particular focus of 

this chapter is on the different existing approaches for identifying a closed-loop system. 

 

2.2 System Identification Theory 

To derive a mathematical model from experimental data is a prevalent process in science and 

engineering. In the field of control systems, this process is called system identification, and its 

primary objective is to obtain dynamic models (differential or difference equations) of a system 

based on the observed data. These systems are natural or human-made, e.g., animals, plants, 

vehicles, or food processors. The system can be classified as open-loop or closed-loop systems. In 

open-loop systems, the output of the system does not affect the system behavior, whereas in the 

closed-loop system the output of the system affects the system behavior by feeding back the output 

to the system.  Furthermore, systems can also be classified based on the number of inputs and 

outputs that it has. There is single input single output, single input multiple output, multiple input 

single output, and multiple input multiple output systems, depending on the number of independent 

inputs and outputs the system has. For this section, we will only focus on open-loop and closed-

loop single input single output systems. However, the same techniques apply to systems that have 

multiple inputs, multiple outputs, or both.  

System identification involves experimental design, data collection, selection of model set, fitting 

criteria, model estimation, and model validation based on some or no prior knowledge of the 

system in consideration (Figure 2-1). 

The most critical requirement of system identification is the experimental design that involves the 

collection of meaningful data that can correctly describe the properties of the system based on 

some or no previous knowledge of the system. The experimental design involves the choice of an 

excitation signal that can excite the relevant characteristics of the system, which is reflected in the 
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system’s output. The excitation signal should have the following characteristics to identify a 

system: 

➢ The following limit should exist: 

                                                           𝛾𝑢(𝜏) = 𝑙𝑖𝑚
𝑁→∞

1

𝑁
∑ 𝑈𝑡+𝜏𝑈𝑡

𝑇𝑁
𝑡=1 ,                                      Eq. (1) 

where 𝑈 is the excitation signal, 𝛾𝑢 is the autocorrelation function, 𝜏 is the time delay, 𝑡 is 

the time, and 𝑇 marks the matrix transpose. 

➢ The matrix 𝑅𝑢(𝑛) should be positive definite for a particular value of n, where a matrix is 

positive definite if it is a symmetric matrix and has positive eigenvalues [43]. 

𝑅𝑢(𝑛) = [
𝛾𝑢(0) ⋯ 𝛾𝑢(𝑛 − 1)

⋮ ⋱ ⋮
𝛾𝑢(1 − 𝑛) ⋯ 𝛾𝑢(0)

]                              Eq. (2) 

 

 

Figure 2-1: System identification loop, adapted from [44]. A typical system identification process 

requires some prior knowledge of the system. Based on that knowledge, the experimental design, 

model set, and fitting criteria are selected. After experimental data collection, models are estimated 

for that data set, and a validation study is performed. If the model passes the validation test, it is 

implemented for further use; otherwise, some or all of the above steps are repeated.  
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Signals that obey the above two rules are called persistent excitation signals. There are many types 

of persistent excitation signals; for example, an impulse, a step, a sinusoid, filtered white noise, 

multi-sinusoidal signals, and random binary sequences. The choice for the excitation signal is 

based on the order of the system into consideration. For example, if a system is an nth order linear 

system, the order of the persistent excitation signal should be at least 2×n to accurately identify it 

via system identification. The order of the signal is calculated as k if 𝑅𝑢(𝑛) is positive definite for 

n = k and not positive definite for n = k + 1. Thus, the order of an impulse response is 0, of a step 

response 1, and of white noise infinite. In general, the more complex and random an input signal 

is, the higher the order of that signal. While, white noise consequently is the ideal signal to identify 

any system, no physical system exists that can utilize white noise as an excitation signal. Therefore, 

researchers implement other signals, such as, multi-sinusoidal signals or filtered white noise that 

have the properties of white noise and can be utilized in combination with physical systems.    

The next step in system identification is to collect experimental data of the excitation signal and 

the response signal. Several factors need to be considered during experimental data collection; for 

example, analog-to-digital conversion, sampling frequency, sampling bandwidth, analog filtering, 

full-scale range of the analog input, quantization error, dynamic range, bit rate and signal-to-noise 

ratio. These factors are selected based on the properties of the system being identified as informed 

by previous knowledge or preliminary testing.  

Following data collection, a suitable model set for the system is selected. Several different model 

sets had developed and applied to previous studies. The choice of a model depends upon the model 

structure including black-box structures, physical modelling structures and semi-physical 

modelling structures. Black-box structures rely only on the data and no physical knowledge of the 

system. Black-box structures can be parametric- for example, Auto-Regressive with Exogenous 

input, Auto-Regressive Moving-Average with Exogenous input, Output-Error, Box-Jenkins and 

state-space; or non-parametric- for example, impulse response functions, step response functions, 

and frequency response functions (FRF). For physical modelling structures, we take advantage of 

the physical properties of the system and describe the system using physical laws and equations. 

However, both the black-box and physical modelling structures are too extreme for system 

identification as one ignores the physical properties of the system while the other is sometimes 

become too complicated or unrealistic to implement. Most commonly, people have implemented 
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semi-physical modelling structures, where they still consider the system to be a black box; 

however, the model equations and expressions are inspired by the physical properties of the 

system.  

Non-probabilistic and probabilistic are the two criteria used for estimating the model’s parameters. 

When using a non-probabilistic criterion, the “allowed” disturbance in the output of the model is 

constrained by a constant. When using a probabilistic criterion, the disturbance is defined as a 

random process with a known probability distribution function. Then, the best estimates of the 

model are identified using the prediction error method. Both probabilistic and non-probabilistic 

criteria sometimes identify more than one model of the system. Usually, the best model is selected 

based on the parsimony principle and Akaike’s information criteria, which ensure a less complex 

model structure and better goodness-of-fit [44].  

The model validation is performed by a cross-validation test, where the model output is compared 

to a new set of experimental output data, and the error between the model output and the new 

experimental data set is calculated. This error is used to calculate the goodness-of-fit of the model, 

which can be between 0 and 100%, with 0% corresponding to no fit and 100% corresponding to a 

perfect fit. If the model fails the validation test, some, or all, of the above steps need to be reiterated 

[45]–[47]. 

 

2.3 Closed-Loop System 

Human balance control is often considered as a feedback system such that, in system identification 

approaches, it is treated as a closed-loop system. A closed-loop system consists of a plant (𝑃), a 

controller (𝐶) and a feedback branch (𝐹) (Figure 2-2). The plant captures the process and actuator 

of the dynamic system. Any input (𝑢) to the plant will cause physical changes in the system. 

Typical examples of a plant are motors, engines, the human musculoskeletal system, and the 

transformation of raw material (e.g., silicon into high-tech devices such as cell phones). A given 

dynamic system is monitored by a controller that alters its operating conditions. The controller 

compares the set point, known as a reference (𝑟) to the output (𝑦) of the plant to adjust the plant 

input, such that, ideally, the plant output matches the reference value. Typical examples of the 

controller are microcontrollers, remote controls, joysticks, or the human brain. The feedback 



10 
 

branch is used to monitor the output of the plant and send it back to the controller for further 

processing (e.g., error calculation between 𝑟 and 𝑦 – see below). The feedback can have linear, 

non-linear, time-varying and time-invariant structures. There are two major types of feedback: 

negative feedback and positive feedback. Negative feedback is used to reduce an error between 

the output of the plant and desired set point, whereas positive feedback increases the error. 

Negative feedback has been implemented in cruise control of vehicles where a set speed is 

maintained. Positive feedback is used to amplify the output; for example, the human population 

growth model describes population growth depending on the current population which keeps on 

increasing[20], [45], [47]. 

 

 

Figure 2-2: Block diagram of a closed-loop system, where the plant (𝑃) receives the input (𝑢), 

including the unpredictable sensor noise (𝑣) and produces output (𝑦). The feedback (𝐹) measures 

this output, along with the unpredictable output noise (𝑤) The feedback information is then 

compared with a reference (𝑟) and sent to the controller (𝐶). The controller then produces an 

adequate input to the plant to ideally match the plant output with the reference [20].   

 



11 
 

Several noise sources can affect the stability of the system and are often unpredictable. Noise can 

affect the stability of the plant, corrupt feedback information, and produce an undesirable 

controller output. In closed-loop system diagrams, noise sources are represented by adding a noise 

input to the output of the plant, labelled as output noise (𝑤), or to the input of the controller, 

labelled as sensor noise (𝑣) (Figure 2-2) [20], [45], [47].  

A considerable literature has been developed to identify a closed-loop system using system 

identification [45], [47].  Three primary methods exist to identify the components of a closed-loop 

system using system identification: The Direct Approach, the Indirect Approach and the Joint 

Input-Output Approach [20]. In these approaches, FRF (Equation (3)) are computed, describing 

the characteristics of various components in the closed-loop system, where ∅gf(𝜔) corresponds to 

a cross-spectral density between two generic functions 𝑔(𝜔) and 𝑓(𝜔), and ∅gg(𝜔) corresponds 

to the power spectral density of the function 𝑔(𝜔).  

𝐹𝑅𝐹𝑔𝑓(𝜔) =
∅𝑔𝑓(𝜔)

∅𝑔𝑔(𝜔)
                                                   Eq. (3) 

To evaluate the FRF using each method consider the closed-loop system in Figure 2-2 and the 

following series of equations. The input and output can be written as the following equations: 

𝑦(𝜔) = 𝑃(𝜔) ∙ 𝑢(𝜔) + 𝑤(𝜔)                                           Eq. (4) 

𝑢(𝜔) = 𝐶(𝜔) ∙ [𝑟(𝜔) − 𝐹(𝜔) ∙ 𝑦(𝜔) + 𝑣(𝜔)]                             Eq. (5) 

Thus, substituting 𝑢(𝜔) from Equation (5) into Equation (4) would yield Equation (6), where 𝐼 is 

the identity matrix of an appropriate order. Equation (7) is obtained by substituting y(ω) from 

Equation (6) into Equation (5).  

𝑦(𝜔) =
𝑃(𝜔)∙𝐶(𝜔)

𝐼+𝑃(𝜔)∙𝐶(𝜔)∙𝐹(𝜔)
∙ 𝑟(𝜔) +

𝑃(𝜔)∙𝐶(𝜔)

𝐼+𝑃(𝜔)∙𝐶(𝜔)∙𝐹(𝜔)
∙ 𝑣(𝜔) +

𝐼

𝐼+𝑃(𝜔)∙𝐶(𝜔)∙𝐹(𝜔)
∙ 𝑤(𝜔)  Eq. (6) 

𝑢(𝜔) =
𝐶(𝜔)

𝐼+𝑃(𝜔)∙𝐶(𝜔)∙𝐹(𝜔)
∙ 𝑟(𝜔) −

𝐶(𝜔)∙𝐹(𝜔)

𝐼+𝑃(𝜔)∙𝐶(𝜔)∙𝐹(𝜔)
∙ 𝑤(𝜔) +

𝐶(𝜔)

𝐼+𝑃(𝜔)∙𝐶(𝜔)∙𝐹(𝜔)
∙ 𝑣(𝜔)   Eq. (7) 

To simplify the analysis, let’s take: 𝐹(𝜔) = 𝐼, and 𝑟(𝜔) = 0. A similar analysis can be performed 

for a non-zero reference and other feedback structures. We will also define 𝑆(ω) =
𝐼

𝐼+𝑃(ω)∙𝐶(ω)
 as 

output sensitivity, 𝑀(ω) = 𝐶(ω) ∙ 𝑆(ω) as input sensitivity, and 𝑄(ω) = 𝑃(ω) ∙ 𝑀(ω) as 
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complimentary sensitivity as described in [20]. Making these changes in the above equations will 

lead to the following equations: 

𝑦(𝜔) = 𝑆(𝜔) ∙ 𝑤(𝜔) + 𝑄(𝜔) ∙ 𝑣(𝜔)                                      Eq. (8) 

𝑢(𝜔) = −𝑀(𝜔) ∙ 𝑤(𝜔) + 𝑀(𝜔) ∙ 𝑣(𝜔)                                    Eq. (9) 

To apply the different system identification approaches, we have to calculate the power spectral 

density of the input (∅𝑢𝑢(𝜔)) and the output (∅𝑦𝑦(𝜔)), and the cross-spectral density between the 

output noise and the input (∅𝑤𝑢(𝜔)), the sensor noise and the input (∅𝑣𝑢(𝜔)), the input and the 

output (∅𝑢𝑦(𝜔)), the output noise and the output (∅𝑤𝑦(𝜔)), and the sensor noise and the output 

(∅𝑣𝑦(𝜔)). The power spectral density (∅𝑔𝑔(𝜔)) and cross-spectral density (∅𝑔𝑓(𝜔)) are defined 

as follow, where 𝑔(𝜔) and 𝑓(𝜔) are two different functions and 𝐸 is the expected value: 

∅𝑔𝑔(𝜔) = 𝐸{𝑔(−𝜔), 𝑔(𝜔)𝑇}                                          Eq. (10) 

∅𝑔𝑓(𝜔) = 𝐸{𝑔(−𝜔), 𝑓(𝜔)𝑇}                                          Eq. (11) 

Thus, the power spectral density of the input can be calculated via the following equation. 

∅𝑢𝑢(𝜔) = 𝐸{[−𝑀(−𝜔) ∙ 𝑤(−𝜔) + 𝑀(−𝜔) ∙ 𝑣(−𝜔)], [−𝑤𝑇(𝜔) ∙ 𝑀𝑇(𝜔) + 𝑣𝑇(𝜔) ∙ 𝑀𝑇(𝜔)]}   

Eq. (12) 

Since sensor noise and output noise are independent, all the cross terms (∅𝑣𝑤(𝜔) and ∅𝑤𝑣(𝜔)) are 

zero in the above equation, yielding a more compact form of the above equation, where ∅ww(ω) 

and ∅𝑣𝑣(ω) are the power spectral density of the output noise and the sensor noise, respectively:  

∅𝑢𝑢(𝜔) = 𝑀(−𝜔) ∙ ∅𝑤𝑤(𝜔) ∙ 𝑀𝑇(𝜔) + 𝑀(−𝜔) ∙ ∅𝑣𝑣(𝜔) ∙ 𝑀𝑇(𝜔)     Eq. (13) 

Similarly, we can write the power spectral density of the output using the following equation: 

∅𝑦𝑦(𝜔) = 𝑆(−𝜔) ∙ ∅𝑤𝑤(𝜔) ∙ 𝑆𝑇(𝜔) + 𝑄(−𝜔) ∙ ∅𝑣𝑣(𝜔) ∙ 𝑄𝑇(𝜔)       Eq. (14) 

In addition, all the cross-spectral densities between input, output, sensor noise and output noise 

can be written via the following equations: 

∅𝑤𝑢(𝜔) =  −∅𝑤𝑤(𝜔) ∙ 𝑀𝑇(𝜔)                                        Eq. (15) 
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∅𝑣𝑢(𝜔) =  ∅𝑣𝑣(𝜔) ∙ 𝑀𝑇(𝜔)                                           Eq. (16) 

∅𝑤𝑦(𝜔) =  ∅𝑤𝑤(𝜔) ∙ 𝑆𝑇(𝜔)                                           Eq. (17) 

∅𝑣𝑦(𝜔) =  ∅𝑣𝑣(𝜔) ∙ 𝑄𝑇(𝜔)                                            Eq. (18) 

∅𝑢𝑦(𝜔) = −𝑀(−𝜔) ∙ ∅𝑤𝑤(𝜔) ∙ 𝑆𝑇(𝜔) + 𝑀(−𝜔) ∙ ∅𝑣𝑣(𝜔) ∙ 𝑄𝑇(𝜔)      Eq. (19) 

Utilizing the analysis based on the derived equations, we can now determine the FRFs for all three 

system identification approaches. 

2.3.1 Direct Approach 

In the Direct Approach, the FRF is estimated between the input and output of the system, yielding 

the following FRF: 

𝐹𝑅𝐹𝑢𝑦(𝜔) =
∅𝑢𝑦(𝜔)

∅𝑢𝑢(𝜔)
                                               Eq. (20) 

Substituting Equation (13) and Equation (19) in the above equation, we obtain the following 

equation: 

𝐹𝑅𝐹𝑢𝑦(𝜔) =
−𝑀(−𝜔)∙∅𝑤𝑤(𝜔)∙𝑆𝑇(𝜔)+𝑀(−𝜔)∙∅𝑣𝑣(𝜔)∙𝑄𝑇(𝜔)

𝑀(−𝜔)∙∅𝑤𝑤(𝜔)∙𝑀𝑇(𝜔)+𝑀(−𝜔)∙∅𝑣𝑣(𝜔)∙𝑀𝑇(𝜔)
                Eq. (21) 

As we see from the above equation, 𝑀(−𝜔) is common in all the terms; therefore, multiplying the 

numerator and denominator by the inverse of 𝑀(−𝜔) will provide the following equation: 

𝐹𝑅𝐹𝑢𝑦(𝜔) =
∅𝑤𝑤(𝜔)∙𝑆𝑇(𝜔)+∅𝑣𝑣(𝜔)∙𝑄𝑇(𝜔)

∅𝑤𝑤(𝜔)∙𝑀𝑇(𝜔)+∅𝑣𝑣(𝜔)∙𝑀𝑇(𝜔)
                               Eq. (22) 

Substituting back 𝑀(𝜔) = 𝐶(𝜔) ∙ 𝑆(𝜔) and 𝑄(𝜔) = 𝑃(𝜔) ∙ 𝐶(𝜔) ∙ 𝑆(𝜔), we obtain the 

following FRF function: 

𝐹𝑅𝐹𝑢𝑦(𝜔) =
−∅𝑤𝑤(𝜔)∙𝑆𝑇(𝜔)+∅𝑣𝑣(𝜔)∙𝑆𝑇(𝜔)∙𝐶𝑇(𝜔)∙𝑃𝑇(𝜔)

∅𝑤𝑤(𝜔)∙𝑆𝑇(𝜔)∙𝐶𝑇(𝜔)+∅𝑣𝑣(𝜔)∙𝑆𝑇(𝜔)∙𝐶𝑇(𝜔)
                    Eq. (23) 

Separating the two terms in the numerator of the above equation will yield the following equation: 

𝐹𝑅𝐹𝑢𝑦(𝜔) =
−∅𝑤𝑤(𝜔)∙𝑆𝑇(𝜔)

∅𝑤𝑤(𝜔)∙𝑆𝑇(𝜔)∙𝐶𝑇(𝜔)+∅𝑣𝑣(𝜔)∙𝑆𝑇(𝜔)∙𝐶𝑇(𝜔)
+

∅𝑣𝑣(𝜔)∙𝑆𝑇(𝜔)∙𝐶𝑇(𝜔)∙𝑃𝑇(𝜔)

∅𝑤𝑤(𝜔)∙𝑆𝑇(𝜔)∙𝐶𝑇(𝜔)+∅𝑣𝑣(𝜔)∙𝑆𝑇(𝜔)∙𝐶𝑇(𝜔)
         

Eq. (24) 
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Now, we can multiply the numerator and denominator of the first term with 𝐶𝑇(𝜔) and extract 

𝑃𝑇(𝜔) from the second term. This will yield the following FRF: 

𝐹𝑅𝐹𝑢𝑦(𝜔) = (
∅𝑤𝑤(𝜔)

∅𝑤𝑤(𝜔)+∅𝑣𝑣(𝜔)
)

−1

𝐶𝑇(𝜔)
+ (

∅𝑣𝑣(𝜔)

∅𝑤𝑤(𝜔)+∅𝑣𝑣(𝜔)
)

𝑃𝑇(𝜔)

1
             Eq. (25) 

From the above equation, it can be seen that the Direct Approach in closed-loop system will lead 

to the identification of the plant and of the inverse of the controller. It can also be seen that this 

identification will depend on the power spectral densities of the output noise and the sensor noise, 

which, in this case, are unknown. Thus, it is challenging to identify the components of closed-loop 

system via the Direct Approach [20]. 

2.3.2 Indirect approach 

In the Indirect Approach, the FRF is estimated between the sensor noise or output noise and the 

input or the output. To the intrinsic sensor noise or output noise of the system, we add a known 

noise. The known noise has to have a higher power as compared to intrinsic sensor noise or output 

noise, which leads to the domination of the known noise on the intrinsic sensor noise or output 

noise. Therefore, the known noise signal is treated as the sensor noise or output noise of the system. 

The following equation has the FRF between the output noise and the input: 

𝐹𝑅𝐹𝑤𝑢(𝜔) =
∅𝑤𝑢(𝜔)

∅𝑤𝑤(𝜔)
                                               Eq. (26) 

Substituting Equation (15) in the above equation will yield the following equation: 

𝐹𝑅𝐹𝑤𝑢(𝜔) =
−∅𝑤𝑤(𝜔)∙𝑀𝑇(𝜔)

∅𝑤𝑤(𝜔)
                                        Eq. (27) 

As ∅𝑤𝑤(𝜔) appears in both numerator and denominator, we can remove the term: 

𝐹𝑅𝐹𝑤𝑢(𝜔) = −𝑀𝑇(𝜔)                                         Eq. (28) 

Similarly, other FRF can be computed as described below: 

𝐹𝑅𝐹𝑣𝑢(𝜔) = 𝑀𝑇(𝜔)                                            Eq. (29) 

𝐹𝑅𝐹𝑤𝑦(𝜔) = 𝑆𝑇(𝜔)                                             Eq. (30) 

𝐹𝑅𝐹𝑣𝑦(𝜔) = 𝑄𝑇(𝜔)                                             Eq. (31) 
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By substituting back 𝑀(𝜔) =
𝐶(𝜔)

𝐼+𝑃(𝜔)∙𝐶(𝜔)
, 𝑄(𝜔) =

𝑃(𝜔)∙𝐶(𝜔)

𝐼+𝑃(𝜔)∙𝐶(𝜔)
, and 𝑆(𝜔) =

𝐼

𝐼+𝑃(𝜔)∙𝐶(𝜔)
 in the 

above equations, we will obtain the following FRFs:  

𝐹𝑅𝐹𝑤𝑢(𝜔) = − (
𝐶(𝜔)

𝐼+𝑃(𝜔)∙𝐶(𝜔)
)

𝑇

                                 Eq. (32) 

𝐹𝑅𝐹𝑣𝑢(𝜔) = (
𝐶(𝜔)

𝐼+𝑃(𝜔)∙𝐶(𝜔)
)

𝑇

                                    Eq. (33) 

𝐹𝑅𝐹𝑤𝑦(𝜔) = (
𝐼

𝐼+𝑃(𝜔)∙𝐶(𝜔)
)

𝑇

                                    Eq. (34) 

𝐹𝑅𝐹𝑣𝑦(𝜔) = (
𝑃(𝜔)∙𝐶(𝜔)

𝐼+𝑃(𝜔)∙𝐶(𝜔)
)

𝑇

                                    Eq. (35) 

The FRF calculated above provide the estimates of both the controller and the plant. Since these 

FRF do not contain terms for the sensor and output noise, the Indirect Approach provides 

consistent estimates of both the plant and the controller. For this technique, however, it is required 

to have a model of the plant to obtain an estimate of the controller or a model of the controller to 

obtain an estimate of the plant [20]. 

2.3.3 Joint input-output approach 

In the Joint Input-Output Approach, the FRF are estimated from the ratios of the cross-spectral 

density between the sensor or output noise and the input, and the cross-spectral density between 

the sensor or output noise and the output. Similarly to Indirect Approach, we add known noise that 

dominates the intrinsic sensor noise or output noise. Thus, the known noise signal is considered as 

the sensor noise or output noise of the system. The two FRFs can be written as follows: 

𝐹𝑅𝐹𝐶(𝜔) =
∅𝑤𝑢(𝜔)

∅𝑤𝑦(𝜔)
                                             Eq. (36) 

𝐹𝑅𝐹𝑃(𝜔) =
∅𝑣𝑦(𝜔)

∅𝑣𝑢(𝜔)
                                              Eq. (37) 

Using Equation (15-18) in the above equations will yield the following equations: 

∅𝑤𝑢(𝜔)

∅𝑤𝑦(𝜔)
=

−∅𝑤𝑤(𝜔)∙𝑀𝑇(𝜔)

∅𝑤𝑤(𝜔)∙𝑆𝑇(𝜔)
                                         Eq. (38) 
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∅𝑣𝑦(𝜔)

∅𝑣𝑢(𝜔)
=

∅𝑣𝑣(𝜔)∙𝑄𝑇(𝜔)

∅𝑣𝑣(𝜔)∙𝑀𝑇(𝜔)
                                            Eq. (39) 

Substituting back 𝑀(𝜔) =
𝐶(𝜔)

𝐼+𝑃(𝜔)∙𝐶(𝜔)
, 𝑄(𝜔) =

𝑃(𝜔)∙𝐶(𝜔)

𝐼+𝑃(𝜔)∙𝐶(𝜔)
, and 𝑆(𝜔) =

𝐼

𝐼+𝑃(𝜔)∙𝐶(𝜔)
 in the above 

equations, we will obtain the estimates of the controller and plant as described below: 

∅𝑤𝑢(𝜔)

∅𝑤𝑦(𝜔)
= −𝐶(𝜔)                                               Eq. (40) 

∅𝑣𝑦(𝜔)

∅𝑣𝑢(𝜔)
= 𝑃(𝜔)                                                 Eq. (41) 

From the above equations, we obtain estimates of the controller and the plant, respectively. Since 

the above equations do not contain the terms for the sensor and output noise; the Joint Input-Output 

Approach provides consistent estimates of both the plant and the controller. Thus, this analysis 

states that calculating the ratio of the cross-spectral density between the sensor noise and output, 

and the cross-spectral density between the sensor noise and input will allow us to estimate the plant 

in the frequency domain. Similarly, the ratio of the cross-spectral density between the output noise 

and input, and the cross-spectral density between the output noise and output will allow us to 

estimate the controller in the frequency domain. Therefore, even if we do not have any information 

about the plant or the controller, we can still obtain the estimate of the other [20].
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3 Literature Review 

 

3.1 Overview 

This chapter reviews existing literature in the various domains of seated and standing balance. A 

particular focus will be on the domains of human body dynamics, sensory dynamics, neural 

dynamics, muscular dynamics, mechanical dynamics, and sensorimotor time delay, as well as on 

the domain of feedback control models in human balance.  

 

3.2 Seated Balance 

Seated balance is the ability of the upper body to stabilize itself against internal and external 

disturbances continuously. For example, these disturbances can occur in the form of breathing, 

supporting or carrying external loads, and experiencing a sudden or expected push (i.e., 

gravitational pull) [2]. The human body needs to detect these disturbances and respond to them 

appropriately. Aging individuals and those with various neurological or muscular impairments are 

often unable to maintain postural stability [1], [9]–[11]. As a consequence, such individuals have 

difficulties performing specific activities of daily living (ADL). Therefore, it is not surprising that 

16.5% of individuals with paraplegia have considered seated balance and upper body strength as 

one of the most essential functions, even surpassing arm/hand (3.3%) and walking function 

(15.9%) [13]. Seated imbalance can also cause poor posture, which can potentially lead to 

secondary health complications such as kyphosis, pressures sores, or respiratory dysfunctions [14], 

[15]. Kyphosis is an excessive curvature of the spine in the outward direction that can lead to 

vertebral fractures and loss of musculoskeletal integrity [48], [49]. Pressure sores result from 

prolonged pressure on the skin surfacing a bony prominence and can lead to tissue loss and deep 

tissue injury [50]. Respiratory disfunction can lead to alveolar hypoventilation, diffusion problems 

and neuromuscular problems [51]. The severity and impact of seated imbalance have motivated 

further research on the quantification of the mechanisms of seated balance control and the 

development of more effective therapies and targeted interventions for affected individuals.  
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Seated balance in healthy individuals is generally achieved by a combination of two mechanisms: 

feed-forward and feedback control [17], [20], [26], [52]–[55]. In feed-forward control, the body 

anticipates an upcoming disturbance with the goal of counteracting the effect of the disturbance 

on the body’s posture before or directly after the perturbation is experienced [56]–[59]. To 

maintain balance for such a scenario, the body executes a pre-programmed motor plan (often 

termed internal model) that has been developed through learning and previous experience [58]–

[60]. In case of seated balance, for example, the body co-activates the antagonist muscles such that 

the overall stiffness of the trunk is increased [24], [61], [62]. Another example of feed-forward 

control is the immediate activation of the relevant muscles to prevent the body from tipping over 

in the event of an external push [63], [64]. However, feed-forward control alone is not sufficient 

to maintain dynamic seated balance, due to both unpredictable internal and external disturbances 

that cannot be anticipated, requiring fine adjustments to recover stability [25]. Therefore, the 

human body also relies on feedback control to stabilize itself against external disturbances. 

Feedback control often involves combination of active and passive control. In active control, the 

body’s orientation in space is perceived by the sensory systems (see Section 3.4: Sensory 

Dynamics), such as the visual, proprioceptive, and vestibular systems. The acquired information 

is then passed on to the brain, which converts the sensory information into a motor command (see 

Section 3.5: Neural Dynamics). This motor command activates relevant muscles (see Section 3.6: 

Muscular Dynamics) and generates the active joint torques contributing to upper body stabilization 

(see Section 3.3: Human Body Dynamics). The process of transferring information from the 

sensory systems to the brain, integrating the sensory information, and sending the motor command 

to the muscular system involves various time delays (together known as sensorimotor time delay; 

see Section 3.8: Sensorimotor Time Delay). In passive control, stiffness and damping due to the 

mechanical properties of the involved muscles, ligaments, and surrounding tissue produce 

instantaneous, corrective joint torques (see Section 3.7: Mechanical Dynamics) that are not 

affected by time delays. These torques complement the active torques in stabilizing the upper body. 

A significant body of literature has attempted to characterize and assess seated balance. Traditional 

methods to characterize seated balance are based on subjective and qualitative measurements [65]–

[68]. These methods generally fail to identify the cause of impaired balance; therefore, 

recommended therapies and interventions based on such assessments may not be optimized for a 

given individual [69]–[71]. Therefore, it would be of clinical value to quantify the mechanisms 
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responsible for seated balance, such that the cause of a potential impairment can be identified. By 

gaining a better mechanistic understanding of seated balance control, targeted therapies and 

interventions can be developed and prescribed for affected individuals.  

Two main methods exist for quantitatively identifying the mechanisms involved in seated balance: 

descriptive measures and system identification [20]. In descriptive measures, scientists and 

clinicians measure the biomechanical and electrophysiological features of balance. For example, 

a motion capture system tracks the body segments in three-dimensional (3D) space using markers 

placed on the body, with the goal of obtaining the body’s center of mass (COM) fluctuations and 

the movement in the anterior-posterior (A-P) and the medio-lateral (M-L) direction during quasi-

static sitting and standing [72]. In addition to the COM, also the center of pressure (COP) 

fluctuations are used to characterize balance for these tasks [29]. Metrics that use COM or COP 

fluctuations to characterize balance are known as posturographic measures. Some of the basic 

posturographic measures implemented in the literature are the displacement of the COP from the 

central point of the stabilogram, the total length of the COP path, the mean velocity of the COP, 

and the displacement of the COM from a stable position [73], [74]. Some of the more advanced 

posturographic measures involve divergence analysis, stabilogram diffusion analysis, and 

dimensionality analysis [74]–[76]. Many studies have assessed posturographic measures for 

standing balance [73], [77]–[79] and sitting balance [18], [27], [28], [80] after neurological 

impairments. One study also compared COP-based posturographic measures between standing and 

sitting and found specific commonalities and differences between the measures. The differences 

in posturographic measures were attributed to specific differences in seated and standing balance 

control strategies, and to other biomechanical factors [29].  

Other devices can measure the kinematics and kinetics of the body or body segments, such as 

inertial measurement units (IMUs) [81], [82]. One study compared 38 different COM-based 

posturographic measures, which were calculated using IMUs, an optoelectronic system, and a 

force plate during unstable sitting. This study found that approximately half of the COM-based 

posturographic measures calculated from the IMUs were reliable against the same COM-based 

posturographic measures calculated from the optoelectronic system and force plate [83]. The same 

research suggested that implementing IMUs for obtaining COM-based posturographic measures 

of postural sway is valid. 
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Although descriptive measures prove to be effective in characterizing quasi-static balance or 

voluntary movements of the human body, they do not isolate the contributions of the different 

mechanisms involved in balance control [20]. To identify the various components of the seated 

balance, an external postural perturbation that triggers mechanical, sensory, or cognitive 

imbalances is required [20]. The technique by which the mechanisms of seated balance are 

identified using external postural perturbations is known as system identification (see Section 1). 

Researchers have obtained the sensitivity of the joint torque, the body sway, and the muscle 

activation with the external postural perturbations by applying the indirect approach to identify the 

frequency response functions (FRF) of various components involved in seated and standing 

balance [17], [20], [21], [36]. Some of the studies have identified the open-loop FRF by applying 

the joint input-output approach to identify various components in standing balance [22], [34], [42].  

In the literature, many therapies and interventions have been described for individuals suffering 

under seated imbalance [84]–[90]. They include task-oriented training [91], [92]; treadmill training 

[93]; training using a balance board, a balance ball, or a gym ball [94]; and training in standing 

positions [95] to improve seated balance. Other methods used to enhance seated balance include 

dual-task training [96], trunk performance training [97], and visual feedback training [98]. To 

target a specific impairment in seated balance, a number of rehabilitation approaches have been 

used, including sensory rehabilitation (e.g., vestibular rehabilitation therapy [99], proprioceptive 

training programs [100], and visuomotor training programs [101]), muscle and movement 

rehabilitation [102], [103], and neural rehabilitation programs [104]. Despite these efforts, 

prescribing an optimal therapy remains a challenge to date. One approach to address this need is 

to quantify the mechanisms contributing to seated balance. For this purpose, the next sections will 

conceptually explore the various mechanisms involved in human balance control and the 

techniques to quantify them. 

 

3.3 Human Body Dynamics 

A human body is made of a unique physical structure, which enables it to perform many functional 

tasks. One of the essential tasks for the human body is to maintain a seated balance that further 

enables it to perform ADL such as sitting on a chair without falling or eating while sitting without 

problems. The human upper body accounts for more than half of the total body weight, with the 
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trunk weighing 43% of the total body weight, both the upper limbs weighing 13% of the total body 

weight and the neck and the head weighing 7% of the total body weight. The human skeleton is 

made up of bones that are connected to each other by ligaments. Bones provide rigidity to the body 

and help to protect soft tissues, e.g., the heart and lungs [105].  

To facilitate the movement of different segments of the body and to maintain the skeletal structure, 

an extensive network of muscles is involved in this process. These muscles are known as skeletal 

muscles. Two other kinds of muscles are present in the body, i.e., cardiac (present in the heart) and 

smooth muscles (present in the organs, e.g., stomach, intestines, and bladder). The skeletal muscles 

are connected to the skeleton through tendons and are connected to other muscles through 

aponeuroses. The muscles produce the motion of a segment about a joint by pulling the bone of 

that segment in one direction. Two or more muscles are involved in producing motion in all 

possible directions about a joint. A pair of two muscles that produce contradictory motions are 

referred to as an agonist-antagonist pair. The agonist moves to its activation, and the antagonist 

opposes the movement produced by the agonist [105].    

In similar studies, the human body has often been treated as a rigid body, i.e., the various segments 

of the human body have a constant mass, a constant geometry, and do not deform under the 

influence of external forces. The study of the motion of the body segments under the influence of 

external and internal forces is known as human body dynamics. It is difficult to directly measure 

the internal joint torques and the net muscle moment, as this requires force transducers that are 

directly inserted into the muscles, which is not deemed ethical in human studies. Thus, human 

body dynamics are primarily studied via indirect measures that include information about 

anthropometric measurements, body kinematics, and body kinetics [72], [105].  

3.3.1 Anthropometric Measurements 

The human body consists of various segments, such as the arms, legs, trunk, and head, which are 

linked together via biomechanical joints. These segments can be further divided into sub-segments.  

For example, each leg has two sub-segments (i.e., upper leg and lower leg). Each segment has its 

dynamics based on its mass, shape, and tissue distribution. Thus, it is essential first to identify the 

anthropometric parameters of different segments of the human body that can be used together with 

kinematic and kinetic data to obtain the dynamics of various segments.  
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In the literature, researchers have assessed the anthropometric measures of different segments of 

the body, such as the upper arm, the lower arm, individual digits, the upper leg, the lower leg, the 

foot, the trunk, the upper trunk, the lower trunk, several vertebral segments of the trunk, the neck, 

and the head in both living and non-living (cadaver) human beings [72], [106]–[117]. Several 

lumped anthropometric measures have also been obtained for specific research purposes, such as 

the head-arms-and-trunk (HAT) and lower body segments [72]. These parameters were obtained 

using mechanical torsion, photogrammetry [108], volumetric analyses [109]–[112], X-ray 

absorptiometry [115], [116], gamma-ray scanning [107], [114], [117], magnetic resonance 

imaging [106], and system identification techniques [20], [34].  

3.3.2 Kinematics 

The spatiotemporal movements of the body segments, termed kinematics, are needed to obtain 

human body dynamics.  

3.3.2.1 Motion Tracking Devices 

The body’s kinematics can be obtained via motion tracking devices as summarized in Figure 3-1 

[118]. Motion tracking devices can be divided into three categories: visual systems, non-visual 

systems, and robotic-aided systems.  

Visual systems have the advantage of the ongoing advancement in optical sensor technology (e.g., 

cameras). Visual tracking can be performed by physically attaching markers to bony landmarks on 

the human body. This method is known as marker-based tracking. Visual tracking can be passive 

or active, depending on the marker-camera system being used [118]. In a passive system, the 

cameras emit infrared light that, upon reflection from infrared markers, is captured by the cameras 

[119]–[121]. In an active system, the marker itself emits light that can be detected by the camera 

system. Both the active and passive system then transforms the two-dimensional (2D) camera data 

into the 3D position of the markers using data from two or more cameras. Although active systems 

have the advantage of higher accuracy and sampling rate, passive systems can be wireless and less 

bulky [118]. Visual tracking systems with markers are considered as a “golden standard” in human 

motion tracking because the error in identifying the position of each marker is less than 1 mm 

[122], [123]. There are various types of marker-based visual tracking systems available on the 

market. Some of the leading passive tracking systems are VICON, Qualisys, and MacReflex 

motion capture systems. Among the active systems, Optotrack, CODA, and Polaris motion capture 
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systems have been extensively used in various areas of biomechanics research, particularly in 

seated balance, standing balance, and gait [118].  

 

 

Figure 3-1: Summary of human motion tracking devices, adapted from [118]. Human motion 

tracking devices can be divided into visual systems, non-visual system and robot-aided system. 

Visual systems can be marker-based, non-marker-based, or a combination of both marker- and 

non-marker-based techniques. The non-visual system consists of mechanical sensing, inertial 

sensing and other sensing, e.g., acoustic and radio sensing. 

 

Another type of visual tracking system does not use markers and is known as a non-marker-based 

visual tracking system [124]–[126]. Such visual tracking systems have gained popularity due to 

some of the limitations of the marker-based visual tracking systems. Marker-based visual tracking 

systems rely extensively on the accuracy of the placement of markers on the human body. The 

placement is subjected to human errors, as the identification of bony landmarks by an individual 

depends on their skills of precisely palpating the human body. Secondly, soft tissues artifacts that 

are caused by muscle contraction and sliding of skin underneath a given marker result in the 

undesired displacement of markers, resulting in noise-prone marker positions. Lastly, markers can 
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be occluded or fall off from the attached location during experimentation and produce missing data 

[118], [122], [123]. These limitations can be overcome with high speed and high pixel camera 

systems [118]. These high speed/high pixel camera systems record a video of the motion at a high 

sampling rate, which is post-processed to track the motion of the human body segments. Tracking 

can be done in 2D, where the 2D shape of individual segments are tracked, or in 3D, where model-

based tracking and feature-based tracking are employed [118]. Non-marker-based systems, though 

accurate, are expensive and require extensive computational resources [127]. A third technique 

that possesses advantages of both marker- and non-marker-based systems is known as 

combinatorial tracking. In this tracking, both markers and high-resolution video cameras are used 

to track human movement, compensating for specific limitations [128].  

Non-visual systems consist of sensing techniques that can capture human motion using non-visual-

based sensing techniques. These can be divided into mechanical, inertial, acoustic, radio, magnetic, 

and microwave sensing [118]. Some of these technologies are still being developed, with the goal 

of reaching the performance of visual-based tracking systems. The most reliable and validated 

techniques in non-visual-based sensing are mechanical sensing and inertial measurement-based 

sensing. Other sensors (mentioned above) are sometimes added to these two sensing techniques 

for improving the overall sensing capabilities of the system. Mechanical sensing was one of the 

early techniques to track human motion quantitatively, and it involves the use of goniometers 

(essentially an electric potentiometer) to measure human body joint angles [72], [129]. Inertial 

sensing includes the use of accelerometers, gyroscopes, and magnetometers that provide 

information on linear acceleration, angular velocity, and magnetic field strength, respectively. 

Inertial sensing is performed through IMUs, where IMUs data could be used to derive the 

kinematics and kinetics of a rigid body [130]. Studies have compared the motion tracking capacity 

of IMUs and motion capture systems in seated balance, standing balance, and gait, and have found 

comparable IMUs performance [131]–[136]. IMUs provide a wireless and out-of-lab environment 

solution for human motion tracking [118].  

Robot-aided systems are primarily implemented as therapeutic devices, where neuro-rehabilitation 

is provided for post-stroke human limbs. The robot-aided systems implement electro-mechanical 

or electromagnetic sensing technologies that can track human motion and provide feedback to the 
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affected individuals for rehabilitation. Some of these systems include Cozens, MIT-MANUS, 

MIME, and ARM Guide [118].       

3.3.2.2 Marker-based Motion Capture Systems 

The marker-based motion capture system’s markers are either placed directly on anatomical 

landmarks of the body or a plate or cuff with three or more markers, which is then placed on a 

body segment. The movement of the markers is then recorded via the motion camera system [71], 

[137]–[142]. Marker type and placement vary from study to study [8], [17], [21], [22], [34], [42]. 

A marker’s location in 3D space is obtained in a pre-defined frame of reference. A local coordinate 

system is defined to calculate the joint angles between two segments based on the markers attached 

to the segments being examined [72]. A local coordinate system (𝑥, 𝑦, 𝑧) is defined in Figure 3-2 

using the instantaneous position vectors (𝑑𝑎, 𝑑𝑏 , 𝑑𝑐) of three markers with respect to the global 

coordinate system (𝑋, 𝑌, 𝑍). The local coordinate system can be defined using Equation (42), 

where (𝑥, 𝑦, 𝑧) were used to define the local coordinate system; (𝑑𝑎, 𝑑𝑏 , 𝑑𝑐) were the position 

vectors of the markers with respect to the global coordinate system (𝑋, 𝑌, 𝑍); and 𝑦′ is the 

intermittent axis used to calculate the z-axis of the local coordinate system. 

𝑥 =
𝑑𝑐−𝑑𝑎

‖𝑑𝑐−𝑑𝑎‖
 , 𝑦′ =

𝑑𝑏−𝑑𝑎

‖𝑑𝑏−𝑑𝑎‖
 , 𝑧 =

𝑥×𝑦′

‖𝑥×𝑦′‖
, 𝑦 = 𝑧 × 𝑥                  Eq. (42) 

To obtain the position of the origin and the orientation of the axes from one coordinate system to 

another, the transformation matrix (𝑇) as mentioned in Equation (43) was applied, where 𝑝𝑖𝑗 are 

the rotation terms for 𝑖 and 𝑗 varying from 1 to 3; and 𝑎, 𝑏 and 𝑐 are the translation terms [119].  

𝑇 = [

𝑝11 𝑝12 𝑝13

𝑝21 𝑝22 𝑝23

𝑝31 𝑝32 𝑝33

    
𝑎
𝑏
𝑐

0     0     0        1

]                                          Eq. (43) 

Obtaining the flexion-extension angle, the lateral bending angle, and the axial rotation angle is 

often of interest [143]. The rotation matrix obtained through a Cardan sequence of rotations is 

presented in Equation 44, where (𝛼, 𝛽, 𝛾) are the Euler angles [144].  

𝑅𝑍𝑌𝑋(𝛾, 𝛽, 𝛼) = [

𝑐𝑜𝑠𝛽𝑐𝑜𝑠𝛾 −𝑐𝑜𝑠𝛽𝑠𝑖𝑛𝛾 𝑠𝑖𝑛𝛽
𝑠𝑖𝑛𝛼𝑠𝑖𝑛𝛽𝑐𝑜𝑠𝛾 + 𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝛾 −𝑠𝑖𝑛𝛼𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝛾 + 𝑐𝑜𝑠𝛼𝑐𝑜𝑠𝛾 −𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝛽

−𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝛽𝑐𝑜𝑠𝛾 + 𝑠𝑖𝑛𝛼𝑠𝑖𝑛𝛾 𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝛾 + 𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝛾 𝑐𝑜𝑠𝛼𝑐𝑜𝑠𝛽
]  

Eq. (44) 



26 
 

The rotation matrix obtained from Equation (44) was written as Equation (45). The angles (𝛼, 𝛽, 𝛾) 

were obtained through Equations (46-48), where 𝐴𝑡𝑎𝑛2(𝑦, 𝑥) computes the inverse tangent of  
𝑦

𝑥
 

by considering the sign of both 𝑥 and 𝑦 to determine the quadrant of the estimated angle [143]. 

𝑅𝑍𝑌𝑋(𝛾, 𝛽, 𝛼) = [

𝑝11 𝑝12 𝑝13

𝑝21 𝑝22 𝑝23

𝑝31 𝑝32 𝑝33

]                                            Eq. (45) 

𝛽 = 𝐴𝑡𝑎𝑛2(𝑝13, √𝑝23
2 + 𝑝33

22
)                                             Eq. (46) 

𝛼 = 𝐴𝑡𝑎𝑛𝑑2(
−𝑝23

𝑐𝑜𝑠𝛽
,

𝑝33

𝑐𝑜𝑠𝛽
)                                                     Eq. (47) 

𝛾 = 𝐴𝑡𝑎𝑛2(
−𝑝12

𝑐𝑜𝑠𝛽
,

𝑝11

𝑐𝑜𝑠𝛽
)                                                       Eq. (48) 

 

 

Figure 3-2: The local coordinate system (𝑥, 𝑦, 𝑧) is defined by using the instantaneous position 

(𝑑𝑎, 𝑑𝑏 , 𝑑𝑐) of the markers with respect to the global coordinate system (𝑋, 𝑌, 𝑍) 

 

3.3.3 Kinetics 

In the previous two sections, the segment’s anthropometric measurements and the tracking of the 

motion of each segment in 3D space were discussed. The motion of a segment is the effect of the 
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forces acting on the segment. The type of forces acting on a segment includes the gravitational 

force, ground reaction forces, tensile forces, and muscle and ligament forces. The study of the 

forces acting on a mechanism is known as kinetics. We required an understanding of all the forces 

acting on a segment to have complete knowledge of human segment dynamics  [72]. 

3.3.3.1 Link-segment Model 

The human body consists of various segments. To evaluate the dynamics of each segment, human 

body segments can be represented via a link-segment model. In what follows, we describe the 

assumptions that are considered in the literature to develop such models [72]. 

➢ all segments have a constant mass, and the mass is located at the COM location of that 

segment; 

➢ the location of the COM is fixed and should not change during the movement of the 

segment; 

➢ the joints are approximated by a hinge or ball-and-socket joints depending on the degrees 

of freedom of the respective joints; 

➢ the moment of inertia of the segment remains constant when calculated from a fixed axis. 

This axis could pass through the COM location, the distal joint, the proximal joint, or any 

user-defined axis of rotation on the segment; and  

➢ the length of the segment is fixed during the movement of the segment. The length of a 

segment is defined as the distance between the proximal and distal joints of the segment. 

An example of a link-segment model of the human upper body is presented in Figure 3-3. The 

model has two segments, including the HAT and legs segment, and one joint at the fifth lumbar 

vertebra. The mass of the HAT segment (𝑚𝑐𝑜𝑚) is concentrated at the COM location of the HAT 

segment. The axis of rotation is passing through the fifth lumbar vertebra in the frontal plane. The 

length between the COM and axis of rotation is defined as 𝑙𝑐𝑜𝑚. The free body diagram of the 

single link-segment model is also shown in Figure 3-3, where 𝑚𝑐𝑜𝑚 ∙ 𝑔 is the force due to gravity 

on the upper body, and 𝐹𝑦 and 𝐹𝑧 are the ground reaction forces in the anterior direction and the 

vertically upward direction, respectively. The ground reaction forces are assumed to be applicable 

at the COP location. The distance of the COP location from 𝑑𝐿5 in  the A-P direction is represented 

by 𝑑𝐶𝑂𝑃, and the distance between the base of support and the fifth lumbar vertebra is represented 

by 𝑑𝐿5 [72], [117]. 
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Figure 3-3: A link-segment model of the upper body, including two segments: the head-arms-trunk 

and leg segments, which are connected via a joint at the fifth lumbar vertebra. The upper body 

mass (𝑚𝑐𝑜𝑚) is situated at the center of mass (COM) location of the upper body. 𝑙𝑐𝑜𝑚 is the 

distance between the COM and the fifth lumbar vertebra. 𝐹𝑦 and 𝐹𝑧 are the ground reaction forces 

in the anterior direction and the vertically upward direction, respectively. 𝑑𝐶𝑂𝑃 is the distance of 

the center of pressure location from 𝑑𝐿5 in the anterior-posterior direction. 𝑑𝐿5 is the distance 

between the base of support and the fifth lumbar vertebra. 

      

3.3.3.2 Force Plate 

The force-sensing devices measure the forces exerted by the human body on another body. Force 

can be measured using a force transducer that will produce an electrical signal proportional to the 

applied force. Some of the available force transducers are piezoelectric transducers, strain gauges, 
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piezoresistive transducers, and capacitive force-sensing devices. The external force produces a 

small strain on the device that is measured by the force transducers and converted into a voltage 

output. To measure forces in multiple directions, bi-directional or tri-directional force transducers 

(that have two or three force transducers, respectively) are mounted orthogonally (𝑋, 𝑌, 𝑍) to each 

other [72]. 

Among commercially available force-sensing devices, force plates are a frequent choice. They 

measure the ground reaction forces and moments for many activities [145], [146]. There are two 

types of force plates: the first type has four triaxial transducers supporting a flat plate, and the 

second type has a centrally instrumented pillar that supports a flat plate. Force plate data can be 

used to calculate the COP. The COP can be calculated as described in Equation (49-50), where 𝑎 

and 𝑏 are the coordinates of the COP in the M-L and the A-P directions, respectively; 𝑀𝑦 is the 

moment in the A-P direction; 𝑀𝑥 is the moment in the M-L direction; 𝐹𝑥 , 𝐹𝑦 and 𝐹𝑧 are the forces 

in the A-P, the M-L, and the vertically upwards directions, respectively; and 𝑑 is the distance 

between the force plate transducer and the top of the plate. 

𝑎 =
𝑀𝑦+𝐹𝑥∗𝑑

𝐹𝑧
                                                                Eq. (49) 

𝑏 =
𝑀𝑥+𝐹𝑦∗𝑑

𝐹𝑧
                                                                Eq. (50) 

Some devices can measure the distribution of a force on the base of support, e.g., pressure soles 

[147]. Such devices are useful when knowledge of the exact distribution of a force on the base of 

support is required. For example, during midstance in walking, the heel and the forefoot of the foot 

produce pressures at two different parts of the foot. Force plate data are not able to distinguish 

between these two pressure components; therefore, devices like pressure soles prove effective [72].  

3.3.4  Dynamics of Seated Balance using First Principles and Biomechanical Measurements 

The dynamics of seated balance can be quantified by utilizing anthropometric measurements (see 

Section 3.3.1), kinematics measurements (see Section 3.3.2), and kinetic measurements (see 

Section 3.3.3). For seated balance, consensus exists that the body stabilizes the HAT segment 

above the lower body, such that lower body remains stable and static with respect to the base of 

support [17], [19], [148], [149]. Studies have modelled the HAT segment to be a single-link 

inverted pendulum (Figure 3-4), with the mass of the HAT segment being concentrated at the 3D 
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COM location of the HAT segment. The COM is connected to the pelvis by a massless rod. The 

axis of rotation is considered at the pelvis, particularly between the fourth and the fifth lumbar 

vertebrae [8], [17], [33], [149], [150].  

The dynamics of the single-link inverted pendulum model of human seated balance was obtained 

via the following analysis [151]: The torque produced at the joint was estimated using a top-down, 

inverse dynamics approach. To calculate the joint torque using this approach, consider Figure 3-

4, where the mass of the HAT segment is attached to the massless rod. The length of the rod is the 

distance between the COM location of the HAT segment and the fifth lumbar vertebra. The angle 

θ represents the deflection of the inverted pendulum from the vertically upward direction. 𝜏 

represents the joint torque produced to correct the deflection. 𝑙𝐶𝑂𝑀 represents the distance between 

the fifth lumbar vertebra and the COM. 𝑑𝐶𝑂𝑃 represents the distance of the COP from the fifth 

lumbar vertebra in the A-P direction. 𝐹𝑦 and 𝐹𝑧 are the ground reaction forces in the A-P and the 

vertically upward directions, respectively. The joint torque using the top-down approach can then 

be calculated using Equation (51), where 𝜏 is the joint torque; 𝐽 is the moment of inertia about the 

axis of rotation; 𝛼 is the angular acceleration; 𝑚𝑐𝑜𝑚 is the mass of the upper body; 𝑔 is the 

acceleration due to gravity; 𝑙𝑐𝑜𝑚 is the length between the joint and the COM; and 𝜃 is the angular 

displacement of COM: 

𝜏 = 𝐽𝛼 − 𝑚𝑐𝑜𝑚𝑔𝑙𝑐𝑜𝑚𝑠𝑖𝑛𝜃                                         Eq. (51) 

For small variations in 𝜃 (~ 0 to 5 degrees), we can approximate Equation (51) by Equation (52). 

𝜏 = 𝐽𝛼 − 𝑚𝑐𝑜𝑚𝑔𝑙𝑐𝑜𝑚𝜃                                             Eq. (52) 

Assuming zero initial conditions, transforming Equation (52) into Laplace domain yields the 

following transfer function of the single-link inverted pendulum model. This transfer function 

represents the dynamics of a single-link inverted pendulum: 

𝜃

𝜏
=

1

𝐽𝑠2−𝑚𝑐𝑜𝑚𝑔𝑙𝑐𝑜𝑚
                                                        Eq. (53) 
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Figure 3-4: Inverted pendulum model of human seated balance. The mass of the head-arms-trunk 

(HAT) segment is attached to a massless rod, and the length of the rod is the distance between the 

center of mass location of the HAT segment and the fifth lumbar vertebra. 𝜃 is the angle, or angular 

deflection, of the inverted pendulum from the vertically upward direction. 𝜏 is the joint torque 

produced to counteract the deflection. 𝑑𝐿5 is the distance between the fifth lumbar vertebra and 

the base of support. 𝑑𝐶𝑂𝑃 is the distance of the center of pressure from the fifth lumbar vertebra in 

the anterior-posterior (A-P) direction. 𝐹𝑦 and 𝐹𝑧 are the ground reaction forces in the A-P and the 

vertically upward directions, respectively. 

 

The joint torque was also obtained using the bottom-up, inverse dynamics approach as reflected in 

Equation (54), where 𝑑𝐿5 is the distance between the base of support and the fifth lumbar vertebra, 

𝑑𝐶𝑂𝑃 is the COP location in the A-P direction, and 𝐹𝑦  and 𝐹𝑧 are the ground reaction forces 

measured by the force plate in the A-P and the vertically upward direction, respectively: 

𝜏 = 𝑑𝐿5 × 𝐹𝑦 + 𝑑𝐶𝑂𝑃 × 𝐹𝑧                                                  Eq. (54) 

The human vertebral column, or spine, consists of 33 different vertebrae that are separated from 

each other via intervertebral discs [105]. Each vertebra has a degree of freedom in the A-P and the 

M-L directions. The vertebral column is also divided into regions, namely, the cervical region, the 

thoracic region, the lumbar region, the sacrum region, and the coccyx region. Researchers have 
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modelled the human spine as a multi-link system, with each link having mass based on the 

anthropometric characteristics of each vertebra [119], [152]. The joint from one link to the next is 

assumed to be located at the intervertebral disc between regions (cervical, thoracic, and lumbar) 

or between vertebras. Implementing a top-down or bottom-up, inverse dynamics approach, the 

moments acting at each joint and the forces acting on each link can be calculated for multi-link 

models [72], [153]–[155]. 

3.3.5 Identification of Human Body Dynamics using System Identification 

Researchers have modelled the dynamics of the human body using system identification, where a 

sensory perturbation is applied and neuromusculoskeletal time series such as body sway, joint 

torques, and/or weighted electromyography (EMG) are measured in response to that perturbation. 

To estimate the human body dynamics using this method, both the indirect (see Section 2.3.2) 

and/or the joint input-output approaches (see Section 2.3.3) have been implemented [8], [33], [34]. 

One of the models for upper body dynamics as identified by some of these studies is presented in 

Equation (53).  

 

3.4 Sensory Dynamics 

Three main sensory systems exist that can detect the 3D orientation of the human body in space: 

the visual system, the vestibular system, and the proprioceptive system. The body also regulates 

balance with the help of other somatosensory systems, where information about touch, pain, 

temperature, and vibration is utilized, along with information from the already mentioned sensory 

systems [21], [156]–[158].  

3.4.1 Visual System 

The visual system is part of the central nervous system (CNS) and has two main functions: (i) to 

process visual information, and (ii) to use non-image photo response functions. Visual information 

processing involves the reception of visible light and monocular image formation in the eyes; and 

the combination of 2D images obtained from each eye into one 3D image within the optic tract 

[159]. Non-image photo response functions include the circadian photoentrainment and pupillary 

light reflex [160]. 
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The visual system is also believed to be involved in postural control in seated balance [21], [36], 

[161]. It has been shown that the visual system is the significant contributor to balance, surpassing 

the role of both the vestibular and proprioceptive systems [162]. Factors such as the environment 

perception clarity, the size of the visual field, the perceived depth, and the light and glare 

susceptibility play a significant role in the postural control of balance [163]. Many studies exist 

that artificially alter the visual information (physical motion of a screen or virtual motion of the 

image on the screen) or study disrupted visual information due to a disease (cataracts), with the 

goal of assessing their effects on balance. Such studies have shown that deprived or corrupted 

visual information leads to degraded balance [8], [21], [34], [164]–[166]. 

3.4.2 Vestibular System 

The vestibular system is a major contributor to the sense of spatial orientation and balance [11], 

[21], [167]–[170]. It is part of the auditory system, being contained within the cochlea and the 

labyrinth of the inner ear. The vestibular system consists of two components: the semicircular 

canals to detect rotational motion of the head, and the otoliths to detect linear motion of the head. 

The vestibular system transmits signals to the brain, which in turn may activate muscles involved 

in postural control and/or to the neural structures involved in eye movement control (vestibulo-

ocular reflex). The latter is required for stable vision [21], [167], [171], [172]. 

The vestibular system plays a vital role in human postural balance. There have been many studies 

that have assessed the role of the vestibular system in human stance control [21], [34]–[36], [167]–

[170], [173]. Galvanic vestibular stimulation has been applied to excite the vestibular nerve fibers 

that can alter or corrupt the vestibular information and the biomechanical outcomes, including 

COP, COM, and gait parameters [169], [173]. 

3.4.3 Proprioceptive System 

The proprioceptive system can sense the movement of joints in 3D space, but also the body’s tissue 

movement, pain, and hunger [174]. Proprioception is achieved via specific receptors known as 

proprioceptors. They are present in tendons (Golgi tendon organs), skeletal striated muscle 

(muscles spindles), and the joints’ fibrous capsules [174], [175]. The information provided by the 

proprioceptive and vestibular systems is often combined by the brain, along with other sensory 

information, to create a complete sense of the kinematic state of the body [21]. 
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To disturb proprioceptive information, research studies have used rotations applied to the base of 

support of human test participants, demonstrating that this paradigm resulted in increased body 

sway during quiet standing [176]–[179]. Another study assessed the role of the proprioceptive 

system in stabilizing the trunk. The authors concluded that the proprioceptive system assists with 

stabilizing the trunk above the pelvis. However, this study also mentioned that trunk stability is 

primarily achieved via vestibular and visual information [180].  

3.4.4 Models of Sensory Dynamics 

The process of sensing the body’s orientation in space by the visual, vestibular, and proprioceptive 

systems and of transferring this information to the CNS is referred to as sensory dynamics. 

Researchers have estimated models of the sensory dynamics by artificially stimulating individual 

sensory receptors. Methods used include galvanic vestibular stimulation [181] or muscle/tendon 

vibration [179], providing transient stimuli (for example, a perceived movement of the base of 

support [176], [182], [183]), and the application of motion stimuli (for example, rotating the base 

of support and/or visual surround [8], [21], [34]–[36]). The biomechanical and 

electrophysiological features (e.g., body kinematics, muscle activity, and ground reaction forces) 

of the human body are recorded. System identification techniques have been applied to identify 

the sensory dynamics [20], [21]. 

Each sensory system has a different sensory reference. For example, the visual system takes visual 

cues from the environment, the vestibular system captures deviations from the direction of gravity, 

and the proprioceptive system assesses, for example, the flatness of the base of support. The body’s 

deviation from a reference orientation is sensed by the sensory systems, with the sensory 

information being combined linearly. One hypothesized concept of such linear combination is that 

each sensory system uses an individual weight, and the sum of all sensory weights is equal to one 

[21]. 

Some studies have identified a non-linearity in the sensory dynamics, which has been attributed to 

sensory channel re-weighting. In this process, the brain can dynamically change the weights for 

each sensory modality, termed dynamic regulation in sensory dynamics. This regulation is 

essential since, if information from one sensory system becomes corrupt or unavailable, the CNS 

can rely on other sensory information to maintain balance. For example, suddenly closing the eyes 

while standing on an unstable support surface will cause the brain to rely more heavily on 
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vestibular and/or proprioceptive information. If all sensory information is available, researchers 

have considered the sensory dynamics to be unity [21], [35], [157]. 

 

3.5 Neural Dynamics 

The process by which the sensory system information is converted into motor commands in the 

CNS through active feedback control is defined as the neural dynamics. 

3.5.1 Central Nervous System 

The human brain, together with the spinal cord, is part of the CNS. In the CNS, all the information 

from various senses are received, processed, and an appropriate response (e.g., motor commands 

to muscles) is created. The human brain is also believed to be involved in domains related to 

language, creativity, thinking, reasoning, emotions, and memory. The human brain consists of the 

cerebrum (the most substantial part of the brain), the cerebellum, and the brain stem. The cerebrum 

is further divided into two cerebral hemispheres, where each hemisphere consists of a frontal, a 

temporal, a parietal, and an occipital lobe. The frontal lobe is associated with motor function, 

memory, language, judgement, planning, reasoning, and social behavior. The temporal and 

occipital lobes are primarily associated with auditory and visual perception, respectively. Two 

functional regions exist in the parietal lobe: one of the regions is involved in perception and 

sensation, and the other in integrating sensory information [184].  

The cerebellum is involved in receiving information from various sensory systems, the spinal cord, 

and other parts of the brain. It is involved in voluntary motor movements, such as balance, posture, 

speech, and coordination. It helps in producing smooth and balanced muscular activity in motor 

movements. The brain stem controls the flow of information from the brain to the rest of the body. 

It is also involved in the control of breathing, heart rate, blood pressure, swallowing, 

consciousness, and sleep [184].  

The spinal cord is made up of nervous tissues and support cells that extend from the brain stem to 

the lumbar vertebra. It is involved in the passage of information, acquired from sensory systems 

to the brain. It also acts as a channel to transfer the motor cortex information from the brain to the 

targeted muscles group. The spinal cord is also responsible for minor reflex actions such as the 

withdrawal reflex [185].  
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3.5.2 Control of Human Seated Balance through CNS 

The control of human seated balance is a complex process that involves a series of steps as shown 

in Figure 3-5. Information on balance performance is sensed by visual, vestibular, and 

proprioceptive systems and converted into electrical signals that are further transmitted to the 

brain. Both the visual and the vestibular systems send information directly to the brain stem, 

whereas the proprioceptive system sends information to the brain stem through the spinal cord 

[186]. In the brain stem, balance information from these sensors is isolated from other information 

(for example, the body’s distance to an object is separated from the color of the object in the visual 

image) and integrated to obtain a complete sense of balance performance. The integrated balance 

information is then passed on to the cerebellum, which combines it with past knowledge (via 

learning) sent by the cerebrum, to generate motor commands [21]. Simultaneously, the generated 

motor commands are transferred to the cerebrum for storage, learning, and future requirements. It 

has been proposed by many studies that the motor commands are generated based on the body’s 

orientation and velocity with respect to an axis of the body [8], [22], [26], [187]. Some other studies 

argue that the motor commands are also affected by the body’s acceleration with respect to such 

axis [8], [22]. Furthermore, the eye’s gaze is kept stable by the brain to produce an accurate visual 

estimation of the body’s orientation in space through the vestibulo-ocular reflex. Finally, the motor 

commands pass through the spinal cord to reach the muscles, facilitating postural adjustments 

ensuring seated balance [186], [188]. 

3.5.3 Identification of Neural Dynamics using System Identification 

Several studies have identified the non-parametric estimates of the neural dynamics using system 

identification in standing and seated balance [8], [17], [22], [33]. As mentioned previously, to 

identify the controller, the external output noise should dominate the intrinsic output noise. In the 

literature, studies have implemented multi-sinusoidal and/or filtered white noise signals as the 

external output noise signal [8], [17], [20], [22], [30], [42], [189], [190].  

As mentioned previously, the HAT segment dynamics can be modelled as a single-link inverted 

pendulum. It has been shown in a previous study that a proportional derivative (PD) controller is 

sufficient to balance a single-link inverted pendulum [191]. Some studies have fitted the neural 

dynamics to basic controllers, such as a proportional-integrative-derivative (PID) controller [17], 

[21], [35], [36], [178], a PD controller [26], [189], and a PD controller with acceleration feedback 
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[8], [192], [193] in standing and seated balance. Other studies have fitted the neural dynamics to 

more advanced controllers, such as neural network models and genetic algorithm models [191], 

[194]–[198]. The PD controller and PD controller with acceleration feedback were implemented 

in a feedback control model representing human standing balance in a simulation software, and 

both controllers were able to balance the single-link inverted pendulum model [8], [26]. 

 

 

Figure 3-5: Overview of the process of neural dynamics (adapted from [186]). The neural 

dynamics involve the acquisition of information from sensory systems (visual, vestibular and 

proprioceptive systems). The information is then passed on to the central nervous system. The 

brain stem integrates and sorts the sensory information related to balance. The cerebellum then 

develops motor commands based on the brain stem’s information and past knowledge sent by the 

cerebrum. The eye’s gaze is kept stable to produce an accurate visual estimate of the body’s 

orientation in space through the vestibulo-ocular reflex. Final postural adjustments are made for 

seated balance through the activation of relevant muscles. 
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3.6 Muscular Dynamics 

Skeletal muscles are responsible for the stability of the human skeleton and the motion of all joints. 

These muscles are also responsible for establishing and maintaining seated balance at the 

instruction of the neuromuscular controller, which is influenced by internal and external 

disturbances that affect stability [72]. Thus, in this section, we discuss the underlying physiology 

of skeletal muscles, the muscles involved in seated balance, techniques for measuring electrical 

activity in muscles, and the modelling of the muscular dynamics, which is the process of generating 

torque in response to neuromuscular signals. 

3.6.1 Physiology of muscles 

The smallest unit that can be controlled by a motor neuron in human skeletal muscles is the motor 

unit. A motor unit consists of a motor neuron (starting from the synaptic junction between the 

motor neuron and the ventral root of the spinal cord to the motor neuron axonal terminal) and the 

muscle fibers innervated by the motor neuron. Each motor neuron can control a range of muscle 

fibers, varying from 3 to 2000, depending on the level of control required by that muscle [199]. 

Muscle fibers vary in length depending on location in the body. For example, muscle fibers of 

eyes, fingers, and face are shorter in length than the muscles fibers in the legs and trunk. Each 

muscle fiber is approximately 100 𝜇𝑚 in diameter and consists of many fibrils that are each 

approximately 1 𝜇𝑚 in diameter. Each fibril consists of many filaments, each of which has a 

diameter of approximately 100 Å. Each filament is made of several actin and myosin elements, 

together forming a contractile element called sarcomere. Tension in a muscle is produced by the 

sarcomere. The basic structure of a sarcomere is shown in Figure 3-6. The thin actin filament slides 

past thick myosin filaments by way of the cross-bridges (cross-hatched lines). This causes the 

sarcomere to reduce its length and produce tension in the muscle. The contractile elements are 

contained within fascia, which enclose the muscle, separate muscles into layers and groups, and 

connect muscles to the tendons [72]. 

The brain independently controls all the motor units in a muscle, and the recruitment process of 

each motor unit depends upon the size principle [72], [200]. The size principle states that, when 

the tension of muscle increases, the next recruited motor unit will have a larger size in comparison 

to the previously recruited motor unit. Each neural signal to the motor unit produces a twitch of 

tension in the muscle fiber. Thus, maintaining a constant tension in the muscle can be achieved in 
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two ways: (i) by increasing the simulation rate when sending repetitive brain signals; and/or (ii) 

by the recruitment of additional motor units [72]. Each motor unit has a maximum firing rate, and 

this rate is achieved well after the next motor unit is recruited [201]. 

 

 

Figure 3-6: A basic structure of a sarcomere. Thick myosin filaments remain stable and thin actin 

filaments slide over it with the help of cross-bridges (cross-hatched lines). 

 

3.6.2 Muscles Involved in Seated Balance 

It is well established that there are many muscles in the trunk as well as the lower limbs that assist 

in seated balance through active feedback control. Muscles in the human body have been 

categorized as superficial, intermediate, and deep muscles. Invasive techniques are required to 

acquire the precise activity of intermediate and deep muscles. Surface EMG, which requires the 

electrodes being placed on the skin to measure a muscle’s activity with reasonable accuracy, can 

be used for superficial muscles. Thus, the role of superficial muscles in seated balance can be 

studied through non-invasive measures. Superficial muscles have been divided into flexors causing 

the body segments to bend inwards, and extensors causing the body segments to bend outwards 

[72]. 

It has been reported that the trunk flexors involved in upper body stabilization include the rectus 

abdominis (RA), internal obliques, and external obliques (EO) muscles [202]–[207]. RA 

contributes to trunk flexion and to resisting a trunk displacement in the posterior direction. Internal 

obliques and EO contribute to trunk bending in the lateral and anterior directions and to axial 

rotation of the body in the transverse plane [208]. The trunk extensors include the erector spinae 

(ES) muscle that spans the whole back [208]. ES consists of three muscle groups, i.e., the 
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longissimus, spinalis, and iliocostalis muscles [208]. These muscle groups are involved in 

extending the back in an upright posture, and in resisting forward trunk displacement during a 

sudden forward push (trunk) or a sudden backward acceleration (base of support) [209]–[211]. 

Other superficial muscles exist that are involved in upper body stabilization. For example, the 

latissimus dorsi, which is on the dorsolateral side of the trunk, is involved in arm and shoulder 

movement, and lateral movement of the lower trunk [208]. A few muscles in the legs, e.g., the 

rectus femoris (RF) and biceps femoris (BF), are indirectly involved in trunk stabilization. The 

primary function of RF and BF relates to flexion and extension of the upper leg, respectively. They 

also produce stability of the trunk through stabilizing the pelvis above the pelvis via hip flexion 

and extension [212]–[216].  

3.6.3 Electromyography (EMG) 

Muscle contraction is accompanied by the generation of electrical signals that can be measured 

using a technique called electromyography (EMG). These electrical signals include the signal 

generated from the release of neurotransmitters by the motor axons (also known as end plate 

potential), the signal associated with electrical potentials in muscle tissue to recruit motor units, 

and the signal reflecting the influx and outflux of several ions throughout the muscle contraction 

process. The signal that can be detected by EMG is the second, i.e., the one due to the electrical 

potentials in muscle tissue. It is called a motor unit action potential. Electrodes used in EMG 

capture the algebraic sum of several motor unit action potentials travelling across the muscle fiber 

at a given moment [72].  

EMG can be applied via both invasive and non-invasive methods. Invasive EMG involves the use 

of indwelling electrodes that are placed under the skin, while non-invasive EMG involves the use 

of surface electrodes. Surface electrodes and therefore non-invasive EMG is a preferred choice for 

superficial muscles, while indwelling electrodes and invasive EMG is preferred for intermediate 

or deep muscles. Invasive EMG is also used to record activity associated with subtle movements. 

The improved reproducibility of the data from surface electrodes versus indwelling electrodes for 

the same muscle suggests that surface electrodes are a better choice [217]. Surface electrodes are 

usually a metallic disk made up of silver/silver chloride, with a diameter close to 1 cm. There are 

other commercially available electrodes, for example, 2D array electrodes [218]. Indwelling 
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electrodes are hypodermic needles, with the conductor insulated from the outside and a bare end 

at the tip of the needle, with the diameter range of 2 to 15 mm [72], [219]. 

Some variables affect the quality of an EMG signal, particularly for surface electrodes. Among 

these factors is the propagation velocity of the signal in the muscle fiber, the distance between the 

electrode and muscle in consideration, the depth of the muscle fiber, and the electrode surface area 

[72]. It has been shown that electrodes with a small surface area produce a higher quality signal as 

compared to those with a larger surface area [220]. The same research has also shown that motor 

unit action potentials can be detected via electrodes that are very close to the motor units and, thus, 

the chance of also capturing signals from nearby muscles (crosstalk) is minimal. 

Surface EMG requires the use of two electrodes that measure the voltage between two different 

muscle locations. In addition, a reference electrode is placed on a bony landmark (e.g., elbow or 

clavicle), allowing the removal of signals that are not due to the activity of the targeted muscle 

(e.g., heart rate). The voltage difference measured with the two main electrodes needs to be 

amplified to log the signal with physical instruments. EMG signals recorded from surface 

electrodes have a maximum voltage of 5 mV peak to peak. This signal is amplified such that the 

range of the amplified signal is within the range of the acquisition device. Good bio-amplifiers 

provide variability of ranges such that the amplified signal can be recorded optimally and without 

any clipping [72].  

An electrode attached to the skin has a finite impedance that depends on the skin thickness, the 

amount of dead skin under the electrode, the surface area of the electrode, and the temperature at 

the contact site. These impedances cause a drop in the voltage signal acquired with the electrodes. 

Thus, there is a need for a high input impedance of the amplifier that can protect the EMG signal 

from attenuation. It is recommended to have an input impedance of 1 MΩ or higher and to have a 

skin impedance of less than 1000 Ω. The skin impedance can be reduced by sterilizing the skin. 

Usually, the skin is shaved to remove hair from the targeted skin area, and the area is wiped with 

alcohol to remove any dead skin. For many EMG systems, there is the need to add gel between the 

electrode and the skin to reduce the overall impedance of the skin-electrode interface [72], [221]. 

Another characteristic that needs to be looked upon in EMG amplification is the frequency 

bandwidth of the obtained signal. It has been reported that EMG recordings have a meaningful 

signal between 10 and 1000 Hz [72]. Thus, it is required that the EMG measuring instrument not 
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attenuate any frequency content of the signal within the above range. Attenuation of the signal 

outside of the EMG frequency bandwidth can reduce noise that is below 10 Hz (movement 

artifacts) and above 1000 Hz. However, several sources of noise, e.g., due to heart contractions at 

100 Hz and the general power line (60 Hz), have frequencies within the frequency bandwidth of 

the signal and cannot be removed at this stage [72]. 

EMG is affected by the presence of radiations from domestic power sources, such as electronic 

machinery, power cables, and fluorescent lighting. These radiations add noise to the recorded 

EMG data known as hum, which could be up to 100 mV in amplitude. The most common method 

for reducing hum is to implement a differential amplifier that rejects any common signal between 

the two data streams recorded in di-electrode EMG. Since hum is present for both electrodes, it is 

rejected by the differential amplifier. A measure to calculate the differential amplifier’s capability 

to reject the common signal is termed common-mode rejection ratio (CMRR). An expression of 

CMRR is presented in Equation (55), where 𝐴𝑑 is the differential gain and |𝐴𝑐| the absolute 

common mode gain. It is recommended to have a CMRR of more than 80 dB for EMG devices 

[72].  

𝐶𝑀𝑅𝑅 = 20 𝑙𝑜𝑔 (
𝐴𝑑

|𝐴𝑐|
) 𝑑𝐵                                          Eq. (55) 

Once a high-quality, amplified EMG signal is acquired, the raw EMG data can be processed. This 

is required as the raw EMG signal has a high-frequency content (up to 1,000 Hz), which is difficult 

to visualize and relate to other biomechanical measures (e.g., body movement or joint torques). 

EMG processing involves some or all the following steps [72]: 

➢ removal of DC bias 

➢ full-wave or half-wave rectification 

➢ filtering 

➢ normalization 

➢ more advanced processing (e.g., principal component analysis) 

The EMG signal acquired after amplification may have a DC bias that is present due to 

instrumental error or constant voltage shifts. Removal of this DC component is essential for further 

processing of the signal and for correlating the signal with other biomechanical measures. 

Additional filtering can be performed to remove the influences of the heart rate and/or the power 
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line. Oftentimes, the signal is also full-wave, or half-wave rectified, such that the absolute value 

of the signal is taken [222], [223]. 

A full wave rectified EMG signal will have the same absolute value as the original signal, and the 

mean of the signal will correspond to the average activity of the muscle. Thus, to capture the time-

varying activity of the muscle, an envelope of the signal is acquired. To obtain this envelope, a 

low-pass Butterworth filter with a cut-off frequency within the range of 2 to 10 Hz has oftentimes 

been employed [8], [22], [34], [206], [207], [224]–[226]. There are other time domain methods, 

for example, root mean square, mean absolute value, zero crossings, and integrated EMG that have 

been used to smooth the signal [64]. Sometimes the frequency information in EMG is of interest 

and, thus, parameters like mean frequency, median frequency, and wavelet coefficients are also 

computed. The choice of smoothening technique depends on the EMG features to be extracted 

[227]. 

If there is a need to compare EMG signals from one muscle to the other or from one individual to 

the other, EMG signals need to be normalized [228]–[230]. The normalization process scales the 

muscle activity as a percentage of a reference value. EMG normalization in the literature is 

oftentimes performed by using maximal voluntary contractions (MVC) of individual muscles, 

where the participants perform an exercise that produces a target muscle’s maximum effort in a 

muscle [205], [228], [231], [232]. Along with MVC, baseline signals for all muscles in 

consideration are recorded when the participant is lying comfortably on a bed or mat, with all the 

muscles in a relaxed state. With these recordings, the normalized EMG can be calculated according 

to Equation (56) [210], [233]:  

𝐸𝑀𝐺𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝐸𝑀𝐺−𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑀𝑉𝐶−𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
∗ 100%                                 Eq. (56) 

MVC are recorded by performing a set of exercises that are common among some of the muscles 

[229]. To produce a maximum effort, it may be required to provide a resistive force against the 

exercising motion. This external force can be provided either manually or by using a device such 

as a dynamometer [234]–[236]. The process of normalization has one major limitation: impaired 

individuals may not be able to produce maximum contractions for muscles affected by impairment 

[230], [232], [237]. Therefore, EMG results obtained from non-disabled individuals cannot be 

directly compared with those from impaired individuals.  
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Scientists have employed another normalization technique known as sub-maximal voluntary 

contractions (sub-MVC), where participants produce sub-maximal muscle activity or a percentage 

of maximum activity [228], [231], [232], [238]. This technique is employed when a participant is 

not able to produce maximum effort in the target muscles [230], [232], [237], when acquiring 

MVCs from a muscle is anatomically not possible [222], or when low levels of muscle activity 

need to be detected [204], [231], [239]. This sub-MVC is then used to calculate the normalized 

EMG, using the same technique as for the MVC (Equation (56)), but with the MVC value being 

replaced by the sub-MVC value. However, maintaining an equivalent sub-maximal load across 

participants and muscles is a difficult process [228].  

Some studies normalize EMG signals by computing the standard deviation of the EMG time series 

across all trials and all participants. The EMG time series is then divided by the standard deviation 

to obtain normalized EMG signals [8], [22], [34]. This approach does not include specific exercises 

used in the MVC or sub-MVC approach. However, since the standard deviation is affected by the 

instrument type used, the placement of electrodes, the preparation of the skin, and the muscles in 

consideration [72], this approach provides some form of normalization as well.  

Normalized EMG signals from several muscles are often combined to produce one weighted EMG 

signal [8], [22], [34]. Past perturbation studies have recorded the muscle activity from up to seven 

different muscles, where posterior muscles were given positive weights and anterior muscles 

negative weights [34]. The weights were then optimized, with the goal of maximizing the 

coherence between the weighted EMG and an external disturbance [34]. This signal was further 

used in system identification to estimate the mechanisms of seated and standing balance [8], [22], 

[34].  

3.6.4 Neuromusculoskeletal modelling 

In the literature, researchers have tried to quantify the muscular dynamics to make predictions 

about joint torques produced by muscles [8], [26], [34], [240], [241]. Such information is useful 

to develop rehabilitation devices, which can assist affected individuals in ADL [16], [240], [242]–

[245]. Muscular dynamics are divided into three components: (i) Muscle activation dynamics; (ii) 

Muscle contraction dynamics; and (iii) Musculoskeletal dynamics [241]. 

Human skeletal muscle can be thought of as a mechanical actuator that also acts as a low-pass 

filter. This is due to the calcium dynamics in muscle, the transmission of muscle action potentials 
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requiring a finite amount of time, and the viscoelasticity of muscle and tendon [241]. EMG is a 

measure of the electrical signal flowing through the muscle fiber causing it to activate. The 

electrical activity measured by an EMG signal produces a chain of chemical reactions in the 

muscle, causing the muscle to produce a force by contraction [241]. The process of converting an 

EMG signal into muscle activation is termed muscle activation dynamics and can be modelled by 

first order, linear differential equation as shown in Equation (57) [246]: 

𝑒(𝑡) = 𝜏𝑎𝑐𝑡
𝑑𝑎(𝑡)

𝑑𝑡
+ [𝛽 + (1 − 𝛽)𝑒(𝑡)]𝑎(𝑡)                         Eq. (57) 

Here, 𝑒(𝑡) is the processed EMG signal, 𝑎(𝑡) is the muscle activation, 𝜏𝑎𝑐𝑡 is the time constant, 

and β is a constant between 0 and 1. The muscle activation and the derivative of muscle activation 

appear in Equation (57) on the right hand side; thus, it needs to be solved using numerical 

integration, for example, via the Runge-Kutta algorithm. Another model of the same dynamics 

uses a second order, critically damped difference equation as shown in Equation (58) [247], where 

𝑀, 𝐵, and 𝐾 are constants and can be identified experimentally for the muscles in consideration: 

𝑎(𝑡) = 𝑀
𝑑𝑒(𝑡)2

𝑑𝑡2 + 𝐵
𝑑𝑒(𝑡)

𝑑𝑡
+ 𝐾𝑒(𝑡)                                  Eq. (58) 

It has been reported that 𝑎(𝑡), when calculated via the above equation, may not be an accurate 

representation of muscle activation as it is non-linearly related to EMG [248]–[250]. Equation (59) 

includes the non-linearity present at lower muscle activation levels, and the linear relationship 

present at higher activation levels, where 𝑑, 𝑐, 𝑏, and 𝑚 are constants. This form of activation has 

been validated [251] and related to the size principle of motor unit recruitment [72].  

𝑎(𝑡) = 𝑑 𝑙𝑛(𝑐𝑒(𝑡) + 1) 0 ≤ 𝑒(𝑡) < 0.3 

𝑎(𝑡) = 𝑚𝑒(𝑡) + 𝑏  0.3 ≤ 𝑒(𝑡) ≤ 1                            Eq. (59) 

Another study has proposed Equation (60), which includes the non-linear characteristics of muscle 

activation, where A is a constant [252], [253]: 

𝑎(𝑡) =
𝑒𝐴𝑒(𝑡)−1

𝑒𝐴−1
,                                                              Eq. (60) 

Once activated the muscle will contract and produce a force. This process is known as muscle 

contraction dynamics. The most common model that represents the muscle contraction dynamics 
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is the Hill-Type model [254]. The muscle-tendon arrangement can be modelled with viscoelastic 

tendons, and with a muscle fiber represented by an elastic component parallel to the contractile 

element (sarcomere). The Hill-Type model provides a model for the contractile element and can 

be represented by Equation (61), where 𝐹(𝑡) is the time-varying muscle fiber force, 𝑓𝑣(𝑡) is the 

normalized time-varying velocity-dependent fiber force, 𝑓𝑙(𝑡) is the normalized time-varying 

length-dependent fiber force, 𝑓𝑜 is the maximum isometric muscle fiber force, and 𝑎(𝑡) is the 

muscle activation signal [241]: 

𝐹(𝑡) = 𝑓𝑣(𝑡) ∗ 𝑓𝑙(𝑡) ∗ 𝑓𝑜 ∗ 𝑎(𝑡)                                    Eq. (61) 

Tendon dynamics are similar to elastic rubber band dynamics, such that they have a slack length 

below which there will be no pulling force. Above that, the force varies with length. It has been 

reported that a maximal load produced by the muscle causes 3.3 % of tendon strain and that the 

tendon fails at 10% strain [246]. Tendon dynamics can be modelled by Equation (62), where 𝑇𝑡 is 

the tension produced in the tendon and 𝑠 is the slack length: 

𝑇𝑡 = 0      𝑠 ≤ 0 

𝑇𝑡 = 1480.3𝑠2                 0 < 𝑠 < 0.0127 

𝑇𝑡 = 37.5𝑠 − 0.2375  𝑠 ≥ 0.0127                               Eq. (62) 

The moment arm of the muscles needs to be known to compute the joint torques. However, both 

the moment arm and length of a muscle change with the joint angles [255], [256]. Therefore, 

musculoskeletal dynamics consider the change in moment arms and the joint angle. More complex 

models exist that include the geometry of the bones and the joint kinematics to determine changes 

in moment arms [257]. The moment arm was modelled as a function of muscle length and joint 

angle by An et al. (1984) using Equation (63), where 𝑟(𝜃) is the moment arm and 𝑙(𝜃) is the length 

of muscle as a function of joint angle 𝜃 [258]:  

𝑟(𝜃) =
𝜕𝑙(𝜃)

𝜕𝜃
                                                   Eq. (63) 

However, this is a simplified approximation of the actual process. The muscle paths are complex: 

muscles cannot be approximated by a straight line as they often twist around bones, and the joints 
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oftentimes do not act as simple hinges [241]. Considering these factors would result in a highly 

sophisticated model that is computationally expensive to implement. 

3.6.5 Identification of Muscular Dynamics using System Identification 

Researchers have modelled the muscular dynamics using the system identification approach, 

where they apply a sensory disturbance and measure the neuromusculoskeletal time series (such 

as body sway, joint torques, and/or weighted EMG) as a response to a perturbation. They 

implemented the indirect (see Section 2.3.2) and/or the joint input-output approach (see Section 

2.3.3) to estimate the muscular dynamics [8], [34]. The model for the muscular dynamics as 

estimated in these studies is presented in Equation (64), where 𝐻𝑎𝑐𝑡 are the muscular dynamics in 

the Laplace domain, 𝛽 is the damping coefficient, 𝜔 is the natural frequency, 𝑓 is the frequency, 

and 𝑠 is the Laplace variable.  

𝐻𝑎𝑐𝑡 =
𝜔2

(𝑠2+2𝛽𝜔𝑠+𝜔2)
, 𝜔 = 2𝜋𝑓                                         Eq. (64) 

 

3.7 Mechanical Dynamics 

As mentioned previously (see Section 3.3), the human body consists of skeletal, muscular, 

integumentary, and other organ systems (for example, respiratory and digestive systems). These 

systems are made up of tissues and gases (for example, oxygen and carbon dioxide in the lungs), 

with each of them having specific inertial and elastic properties, also known as intrinsic properties 

of the material. The intrinsic properties of a substance will resist the motion of the body when 

subjected to an external force and/or moment. The body’s ability to resist an external disturbance 

due to intrinsic properties of its materials (bones, tissues, and intra-abdominal pressures) is termed 

mechanical dynamics [8], [17], [20]–[22], [26], [34], [35]. 

The human skeleton alone is not able to maintain an upright posture under the influence of gravity 

[72], [105]. It requires constant support from the muscles to maintain its structure. The musculo-

tendon structure (see Section 3.6.4) can be modelled as a spring-damping system. Thus, even if 

the muscles were not activated, the physical properties of muscle would resist, but not prevent the 

body’s movement away from the upright position. In that sense, physical stretching of the ES, as 

well as abdominal pressure, will resist the body’s movement in the anterior direction. For posterior 

movements, stretching of the RA will resist the body’s movement [72], [105]. 
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In the literature, researchers have consistently modelled the mechanical dynamics of the upper 

body via a mass-spring-damper system [8], [17], [21], [22], [38], [259]. In one study, external 

perturbations were applied from eight different directions to obtain estimates of the mechanical 

dynamics in both the frontal and sagittal planes [148]. Mechanical dynamics can also be estimated 

using system identification, where physical or sensory perturbations are applied, and 

neuromusculoskeletal time series are measured. Using the indirect approach and joint input-output 

approach, non-parametric estimates of the mechanical dynamics are obtained, which are then 

further converted into parametric form via a first order differential equation (representing, 

essentially, a mass-spring-damper system) [8], [17], [22], [259].  

   

3.8 Sensorimotor Time Delay 

The process of transmitting the information from sensory systems to the CNS, processing the 

information in the CNS, transmitting the processed information to the periphery (e.g., muscles), 

and generating a response in the periphery (e.g., muscles), involves a time delay. Three types of 

time delays are mentioned in the literature, i.e., a feedback time delay, motor command time delay, 

and electromechanical time delay. The feedback time delay is the delay caused by the transmission 

of information from the sensory systems to the CNS. The motor command time delay is the delay 

caused by the processing of information in the CNS and transmitting the information to the muscles 

to produce a response. The electromechanical time delay is the delay caused by the muscles effort 

to produce a force and, ultimately, joint torque as a response to the electrical signals from the CNS 

[26]. The mathematical model to represent a time delay in the Laplace domain is mentioned in 

Equation (65), where 𝑇𝐷 is the time delay in seconds. 

𝐻𝑇𝐷 = 𝑒−𝑇𝐷𝑠                                      Eq. (65) 

 

3.9 Feedback Control Models of Human Balance in Sitting and Standing 

System identification is a powerful mathematical tool that can be used to predict the characteristics 

of a system based on experimental input-output data. A control model of the given system is 

required to apply system identification techniques. In the literature, researchers have proposed 

models of seated and standing balance [8], [17], [20], [21], [26], [34], [38], [150], [189], [259], 
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[260]. All models follow one general framework: The plant represents the human body dynamics 

of standing or seated balance. The feedback branch considers the sensory dynamics. The controller 

encompasses an active controller that consists of neural dynamics, muscular dynamics, a 

sensorimotor time delay, and a passive controller that consists of mechanical dynamics. The output 

of the model is the body’s orientation in space, measured via human motion tracking devices. The 

input is the joint torque measured via force transducers. In addition, some studies also consider 

muscle activity measured via EMG systems.  

Audu et al. (2015) have modelled the seated balance as shown in Figure 3-7. They have modelled 

the body dynamics, or trunk dynamics, with a single-link inverted pendulum, with the mass 

situated at the COM location. The output is the trunk angle relative to the vertical direction. The 

input to the plant is the combined torque generated from the active and passive controller [17]. The 

active controller (neural dynamics) is modelled using a PID controller followed by a long latency 

time delay (sensorimotor time delay). The passive controller (mechanical dynamics) is modelled 

via a PD controller, with the differential term followed by a small latency time delay. The reference 

value is set to be the nominal trunk angle, which in this case reflects stable, upright sitting. The 

feedback is assumed to be unity [17]. 

 

 

Figure 3-7: Closed-loop control model of human seated balance as described in [17]. This model 

consists of a plant modelled as a single-link inverted pendulum; the active controller dynamics 

modelled as a proportional-integrative-derivative controller; and the passive controller dynamics 

modelled as a proportional-derivative controller. The feedback dynamics equal one. 
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Masani et al. (2003) have implemented a closed-loop control model for standing balance as shown 

in Figure 3-8. Similar to the control model for seated balance mentioned above, the standing 

balance control model has a plant modelled as a single-link inverted pendulum. The controller is 

modelled as a PD controller with a reference set to zero degrees. The output measured is the body 

sway in the A-P direction, and the input to the plant is the joint torque produced by the PD 

controller as well as Gaussian noise. Two separate time delays are considered in this model, one 

in the feedback branch (feedback time delay), and another one as part of the neuromuscular 

dynamics (neuro-mechanical delay). The reference is selected as zero degrees from the vertical 

[38]. 

 

 

Figure 3-8: Closed-loop control model of human standing balance as described in [38]. This model 

consists of a plant, modelled as a single-link inverted pendulum; neural controller dynamics 

modelled as a proportional-derivative controller; and a sensorimotor time delay divided into a 

feedback time delay and a neuro-mechanical delay. The feedback dynamics equal one. 

 

Vette et al. (2010) have described a standing balance control model as shown in Figure 3-9. The 

plant depicts the single-link inverted pendulum that produces body sway as an output. The output 

is fed back to the active controller (neural dynamics) and passive controller (mechanical 

dynamics). Both the active and passive controllers are modelled using a PD equation. A second-
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order critically damped system represents the neuromusculoskeletal dynamics (muscular 

dynamics). There are three separate time delays considered: a feedback time delay, motor 

command time delay, and electromechanical delay (together called sensorimotor time delay) [26]. 

 

 

Figure 3-9: Closed-loop control model of human standing balance as described in [26]. This model 

consists of a plant modelled as a single-link inverted pendulum; neural controller dynamics and 

mechanical controller dynamics modelled as proportional-derivative controllers; and sensorimotor 

time delays divided into a feedback time delay, a motor command time delay, and an 

electromechanical time delay. The feedback dynamics equal one. 

 

Pasma et al. (2014) have represented standing balance as a two-link inverted pendulum as shown 

in Figure 3-10. This model includes both the sensory and physical perturbations, and the 

biomechanical and electrophysiological responses that can be measured. For sensory 

perturbations, each sensory system can be perturbed via a separate mechanism. The visual system 

can be perturbed using the movement of the screen, the vestibular system can be perturbed using 

galvanic stimulation, and the proprioceptive system can be perturbed by rotating the base of 

support. Physical perturbations can be applied via two external pushes, one at the trunk level and 

one at the level of the lower segments. Two independent perturbations are required to separately 

identify the control mechanisms for both segments [33]. The biomechanical response measured 

can be the body sway using motion tracking and/or the ground reaction forces using force 
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transducers. The muscle activity can be measured using EMG. From the obtained data, one can 

estimate the characteristics of human body dynamics, the sensory systems, the active controller, 

the passive controller, the muscular dynamics, and the sensorimotor time delay using system 

identification techniques (Section 2.3). This method applies to identify the mechanisms of seated 

balance [261]. 

 

 

Figure 3-10: Closed-loop control model of human standing balance as described in [261]. This 

model provides a general framework for identifying the mechanisms of standing balance. To 

obtain estimates of the plant, controller and feedback branch, it is required to apply either sensory 

and/or physical perturbations. Sensory perturbations can be applied using the movement of the 

visual screen, galvanic stimulation, or a rotation of the base of support to affect the visual, 

vestibular, or proprioceptive systems, respectively. Physical perturbations can be applied by 

applying an external force. The response of these perturbations is estimated by recording body 

sway, ground reaction forces, and muscle activity. 
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Pasma et al. (2017) have implemented the model presented in Figure 3-11. It includes a plant, 

modelled as a single-link inverted pendulum. In this study, a sensory disturbance in the form of a 

rotation of the base of support is applied. Therefore, the proprioceptive feedback is isolated from 

other sensory systems (vision and vestibular system). The neural dynamics are modelled as a PD 

with acceleration feedback controller, and the mechanical dynamics are modelled as a PD 

controller. The sensorimotor time delay is considered as a single, lumped time delay. The 

activation dynamics (muscular dynamics) are modelled using a second-order, critically damped 

system. Force feedback is also considered in the model, providing information about muscle 

tension to the brain. The force feedback is modelled via a first order, low-pass filter [8].  

 

 

Figure 3-11: Closed-loop control model of human standing balance as described in [8]. This model 

consists of the plant modelled as a single-link inverted pendulum, proprioceptive feedback isolated 

from the others, an active controller, a time delay, and activation dynamics. A mechanical 

controller reflecting the mechanical dynamics is also included in the model. Force feedback is 

added to include the effect of the Golgi-tendon organ. 

 

Peterka et al. (2002) have utilized the model presented in Figure 3-12 to accurately identify the 

individual weights of each of the sensory systems in standing balance. The plant is considered as 

a single-link inverted pendulum, the active controller is modelled as a PID controller, and the 
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passive controller as a PD controller. A time delay added to the neural controller encompasses the 

sensorimotor delays in the active control branch [21]. 

 

 

Figure 3-12: Closed-loop control model of human standing balance as described in [21]. This 

model consists of a plant modelled as a single-link inverted pendulum, feedback weights for 

individual sensory systems, neural dynamics and mechanical dynamics modelled as proportional-

integrative-derivative and proportional-derivative controllers, respectively, and a time delay. 

 

The models described above provide a consensus among researchers regarding the modelling of 

human balance. These models are, to a great extent, applicable to seated balance as well. As 

mentioned previously, human seated balance involves sensory systems to sense the body’s 

orientation in space, a neural controller to integrate sensory information and provide motor 

commands to the muscles, and muscles to generate stabilizing joint torques. Thus, a human seated 

balance control model can be developed similarly to the ones described in this section. 
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4 Materials and Methods 

 

4.1 Overview 

This chapter focuses on the materials and methods implemented in this study. It includes the details 

of the participants, the feedback control model of human seated balance, the experimental setup 

and recordings, the experimental protocol, data cleaning and parameter extraction, and the 

experimental data analysis employed to estimate the mechanisms of seated balance. The estimated 

parameters of the mechanisms of seated balance were finally verified with a simulation analysis.  

 

4.2 Participants 

Fourteen male individuals participated in this study (mean age (standard deviation, SD): 24 (4) 

years; mean height (SD): 178 (7) cm; and mean weight (SD) 76 (11) kg). Using self-reporting via 

a health screening form (Appendix I), the participants reported that they did not have any history 

of neurological or musculoskeletal impairments or any significant injuries or disorders that may 

have affected their seated balance capabilities. Written consent regarding their participation in the 

study was provided before the start of the experiment (Appendix II). The experimental protocols 

were approved by the University of Alberta Health Research Ethics Board (Study ID: 

Pro00063998). 

 

4.3 Feedback Control Model of Human Seated Balance 

System identification is a tool used to identify the characteristics of a system based on the system’s 

inputs and outputs (see Section 2). Human seated balance can be modelled as a closed-loop 

feedback system that can be subjected to system identification techniques. A common feedback 

control model of human seated balance is presented in  

Figure 4-1. Human body dynamics represent the plant (𝑃) of the closed-loop system, where the 

input is the joint torque (𝜏) about an axis of rotation at the fifth lumbar vertebra in the medio-

lateral (M-L) direction, and the output is body sway (𝜃) in the anterior-posterior (A-P) direction. 

Tissue stiffness, tissue damping, and intra-abdominal pressure are captured in the mechanical 
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dynamics (𝐶𝑃) for which the input and output are body sway and passive joint torque, respectively. 

The information obtained by the sensory systems and its transmission to the brain are captured in 

the sensory dynamics. The central nervous system (CNS) is modelled as neural dynamics (𝐶𝐴), 

where sensory data is integrated and interpreted to generate an appropriate motor command (𝑀𝐶). 

The muscular response to the motor command and the generation of a corrective, active joint 

torque are modelled as muscular dynamics (𝐻𝑎𝑐𝑡). The process of transmitting the information 

from the sensory systems to the CNS, processing the information in the CNS, transmitting the 

processed information to the periphery (e.g., muscles), and generating a response in the periphery 

(e.g., muscles), involves a time delay which is modelled as a sensorimotor time delay (𝐻𝑇𝐷). The 

body’s intention to have a particular orientation of the head-arms-trunk (HAT) segment in the A-

P direction is modelled as the set point. The external perturbation (𝑑𝑒𝑥𝑡) required for applying 

certain system identification techniques to the feedback control model is added to the input of the 

plant. 

 

 

Figure 4-1: Feedback control model of human seated balance (adapted from [1]). Human body 

dynamics represent the plant (𝑃), sensory dynamics the feedback, and neural dynamics (𝐶𝐴) the 

central nervous system controller of the closed-loop system. The mechanical dynamics (𝐶𝑃) 

capture the passive control components, and the muscular dynamics (𝐻𝑎𝑐𝑡) capture the muscular 

response to the motor command (𝑀𝐶). The time delay due to transmitting and integrating 

information is modelled as the sensorimotor time delay (𝐻𝑇𝐷). The plant’s input (𝜏) is the joint 
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torque, and the plant’s output (𝜃) is body sway. The set point is the intent of the control task. 𝑑𝑒𝑥𝑡 

is the external perturbation. 

4.4 Experimental Setup and Recordings 

In order to acquire the data needed for performing the system identification, each participant was 

asked to sit on a customized stool and maintain seated balance during quiet sitting and in the 

presence of external perturbations. This setup was realized using the Computer-Assisted 

Rehabilitation Environment (CAREN; Motekforce link, Amsterdam, The Netherlands). When 

applying the surface perturbations via motion of the CAREN platform on which each participant 

was sitting, the kinematics, muscle activity, and kinetics of the human body were measured. 

Kinematics were obtained using a 12-camera (T020) motion capture system (Vicon Motion 

Systems Ltd., Oxford, UK) and the Nexus 2.3 software (Vicon Motion Systems Ltd.) at a sampling 

rate of 100 Hz. The sampling rate for the motion capture system was chosen based on the motion 

in consideration and in agreement with similar, previous studies [8], [20], [22], [72]. Based on the 

manufacturer’s specifications, the mean error (SD) in the position of the markers as captured by 

the motion capture system was 1 mm (1 mm). The capture volume of the motion capture system 

was 3.40 m (x-direction; M-L) × 3.20 m (y-direction; A-P) × 2.70 m (z-direction; vertical). The 

camera locations and the motion capture coordinate system are shown in Figure 4-2. 

 

 

Figure 4-2: 12-camera motion capture system, installed within the Computer-Assisted 

Rehabilitation Environment.  
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Muscle activity was recorded using a 16-channel BagnoliTM Electromyography (EMG) system 

(Delsys Inc., Natick, MA, USA) as presented in Figure 4-4, at a sampling rate of 2,000 Hz. 

Previous studies have reported that the meaningful EMG content is below 1,000 Hz. Hence, EMG 

data should be acquired at a minimum of 2,000 Hz [8], [22], [227]. The EMG system had one main 

amplifier and two input modules. Each input module had nine inputs to collect data from eight 

surface EMG sensors and one reference electrode. The input modules were connected with each 

other using an intermodule cable. The input modules were connected to the main amplifier with 

an input module cable. The surface EMG sensors (Delsys Inc.) had an inter-electrode gap of 1 cm. 

The baseline noise of the EMG system was in the range of 5 to 10 𝜇𝑉 peak-to-peak. The applied 

signal gain was muscle- and participant-dependent (varying from 100 to 10,000) and was removed 

later in the data processing. The common-mode rejection ratio (Equation (55)) of the EMG system 

was -92 dB, and the input impedance of the electrodes was 1015 Ω and 0.2 𝑝.  

 

 

Figure 4-3: Electromyography (EMG) system. (1) Surface EMG electrodes; (2) main amplifier; 

(3) input modules; (4) input module cable; (5) intermodule cable; and (6) power supply. {Image 

source: Figure 1. BagnoliTM EMG system user’s guide 2014, Delsys Inc.}  
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The kinetics were obtained using a force plate (Advanced Mechanical Technology Inc., 

Watertown, MA, USA) as presented in Figure 4-4A, at a sampling rate of 2,000 Hz. The force 

plate data has meaningful frequencies of up to 500 Hz. Hence, the recommended sampling rate for 

the force plate was 1,000 Hz [72]. However, due to the integration of the EMG system and force 

plate into one system for synchronization purposes, we have acquired data from both systems at 

2,000 Hz. The force plate signals, which were amplified with a Gen-5 Amplifier (Advanced 

Mechanical Technology Inc.), captured the ground reaction forces, 𝐹𝑥 , 𝐹𝑦 and 𝐹𝑧 , and the moments, 

𝑀𝑥, 𝑀𝑦 and 𝑀𝑧, for three orthogonal axes. Measurements were also used to obtain the center of 

pressure (COP) fluctuation in the A-P and M-L directions. A manual calibration of the force plate 

was performed to test the accuracy of the force plate data as mentioned in Appendix III. The 𝐹𝑧 

component had an accuracy of ±1.31% relative to the applied load, the COP A-P component of 

±1.18 mm, and the COP M-L component of ±2.36 mm relative to the actual location. The 

dimensions of the force plate were 464 mm × 508 mm × 82.5 mm. Data were recorded in ‘fully-

conditioned mode’, for which the platform’s calibration matrix was applied to the signal. In 

addition, the voltage drop along the length of wire was accounted for and the gains and excitation 

voltages determined from the amplifier calibration were used. The force plate was mounted on a 

customized stool as shown in Figure 4-4A. The force plate’s front edge was placed perpendicular 

to the A-P direction of the platform. It was also assured that the force plate was at the center of the 

platform by measuring the distance (L) of the stool’s legs from the edges of the red strips marked 

on the platform (Figure 4-4B). 

All the three data streams acquired from the motion capture system, the EMG system, and the 

force plate were time synchronized using the lockbox (Vicon Motion Systems Ltd.) as shown in 

Figure 4-5A. The force plate and EMG outputs were connected to the lockbox with the BNC cables 

and connector box seen in Figure 4-5B. 
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Figure 4-4: Force plate setup. (A) The force plate was mounted on top of the stool; (B) the stool 

was placed at a fixed distance L from the red markings. There were four markers placed on the 

force plate to assess potential movement of the force plate and stool relative to the Computer-

Assisted Rehabilitation Environment platform and to define a local coordinate system. 

 

 

 

Figure 4-5: Lockbox setup. (A) Lockbox highlighted in red; (B) BNC box after connecting it with 

the analog outputs of the force plate and electromyography system using BNC cables. 
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The external perturbations were applied using the robotic platform of the CAREN. It has six 

hydraulic actuators connected in a Stewart configuration that allows motion for six degrees of 

freedom: three linear translations (x, y, and z) and three rotations (roll, pitch, and yaw) as shown 

in Figure 4-6. It also features a treadmill embedded in the platform and an 180o curved projection 

screen in front, for the purpose of altering the visual environment of the users. The projections on 

the screen were applied by four F-10 AS3D projectors (Barco, Fredrikstad, Norway). The 

perturbations to the participants were applied by moving the platform in the y-direction (refer to 

Figure 4-6). White two-dimensional (2D) grid lines on a black background were projected onto 

the virtual-reality screen [21], [22]. The CAREN facility lights were turned off during the 

experiment to allow for the visuals on the screen to be more effective. The platform was controlled 

by the D-flow 3.24.0 software (Motekforce link). A start trigger, sent by D-flow to the lockbox, 

time synchronized the CAREN signals (perturbation command and visual scene) with the other 

systems (motion capture system, EMG system, and force plate). 

 

 

Figure 4-6: Computer-Assisted Rehabilitation Environment (CAREN). The CAREN includes a 

virtual-reality screen as well as a treadmill embedded in the platform. It also features a overhead 

support system to which a safety harness can be attached. There were four markers placed on the 

platform to record the platform motion by the motion capture system. 
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The external perturbation signal used to move the CAREN platform had characteristics of filtered 

white noise. The unfiltered white noise had a mean power spectral density of 4 cm²/Hz and a 

sampling rate of 200 Hz. The unfiltered white noise was filtered using a 1st order high-pass 

Butterworth filter with a cut-off frequency of 0.1 Hz, and an 8th order low-pass Butterworth filter 

with a cut-off frequency of 5 Hz. The first and the last 5 s of the 240 s perturbations had no platform 

motion. For the signal periods of 5 to 10 s and 230 to 235 s, the perturbation signal was multiplied 

with an increasing and decreasing ramp function, respectively, avoiding an abrupt beginning and 

end of the perturbations [22]. Only the middle 220 s were analyzed for each trial. 

 

4.5 Experimental Protocol 

As stated earlier, the study was performed in the CAREN, which is housed in the Glenrose 

Rehabilitation Hospital, Edmonton, Alberta, Canada. The motion capture system is already pre-

installed and, hence, core component of the CAREN. Before each experiment, the EMG system 

and the force plate were connected with the motion capture system through the previously 

mentioned lockbox, using BNC cables (Figure 4-5B). 

 

 

Figure 4-7: Placement of the electromyography electrodes on the human body. The electrodes were 

placed over the rectus abdominis, the external obliques, the rectus femoris, the erector spinae at 

the ninth thoracic vertebra, the erector spinae at the third lumbar vertebra, and the biceps femoris. 

{Image Source: istock photo} 

https://www.istockphoto.com/ca/
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4.5.1 Health Screening and Anthropometric Parameters 

The participants reported their body height, body weight, age, and any existing medical conditions 

(if any) on a Health Screening form (Appendix I). The medical conditions were used to determine 

the eligibility of a participant to perform the experiment. The body weight was used further to 

calculate other biomechanical parameters specific to the participant.      

4.5.2 EMG Electrode Placement and Maximum Voluntary Contractions 

Once all the hardware connections were established, we identified and marked the placement sites 

of the EMG electrodes and the motion capture system’s markers on the participants. The muscles 

where EMG electrodes were placed are shown in Figure 4-7. The electrodes were placed bilaterally 

on the muscles. The anatomical location within each muscle over which the EMG electrodes were 

placed and the orientation of each electrode on each muscle are presented in Table 4-1. 

Once the locations for electrode placement were identified, the next step was to clean the skin. 

Cleaning involved shaving (if the target location had hair) and removing dead cells using alcohol 

wipes. After cleaning, the electrodes were placed on the skin using 2-bar sensor adhesive interfaces 

(Delsys Inc.). Skin sensitive tape (3M TransporeTM) was used to secure the electrodes during the 

experiment. In addition, a self-adhesive reference electrode (Dermatrode, Delsys Inc.) was placed 

over the right iliac crest. All electrodes, including the reference electrode, were connected to one 

of the two input modules (worn by the participants).  

Following electrode placement, participants were asked to lie down in a relaxed position on a 

mattress facing upwards, with their eyes closed and the body kept still. This position was used to 

measure the baseline EMG in a relaxed state for 60 seconds (Figure 4-8).  

 

 

Figure 4-8: The relaxed state of the participant in which the baseline of electromyography was 

collected for the different muscles.  
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Table 4-1. The electromyography electrodes placement sites for different muscles and the direction 

of the electrode on each muscle. 

Muscle Anatomical location Direction of electrode References 

Rectus Abdominis 

(RA) 

3 cm lateral of the umbilicus Vertically downwards [202], 

[205]–[207], 

[262] 

External Obliques 

(EO) 

15 cm lateral of the umbilicus 45o from the vertically 

downward, in the 

direction of muscle fiber 

[202], [206], 

[207], [262] 

Thoracic Erector 

Spinae (EST9) 

5 cm lateral of the ninth 

thoracic vertebra 

Vertically downwards [202], [204], 

[207], [262] 

Lumbar Erector 

Spinae (ESL3) 

3 cm lateral of the third lumbar 

vertebra 

Vertically downwards [202], [205], 

[207], 

[262]–[264] 

Rectus Femoris 

(RF) 

Mid-point of the imaginary 

line between the anterior 

superior iliac spine and the 

superior part of the patella 

Vertically downwards [265]–[269] 

Biceps Femoris 

(BF) 

Mid-point of the imaginary 

line between the ischial 

tuberosity and the lateral 

condyle of the tibia 

Vertically downwards [267]–[269] 

 

 

The next step was for the participant to perform maximum voluntary contractions (MVC) 

exercises. Each exercise was carried out for 30 s, with a resting time of 30 s in between exercises 

[270]. Each exercise was performed three consecutive times to account for learning effects and 

statistical errors [210]. The muscle activity was monitored during the exercise to ensure the highest 

quality of the signal. The instructions for each exercise were given by the author of this thesis, and 

the help of the assistant was only used for static bracing. The exercises for individual muscles are 
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as described below and as shown in Figure 4-9. Note that all participants were instructed to exert 

their maximum effort in the direction of motion as specified in the individual exercises.  

➢ Rectus Abdominis – seated abdomen crunch (Figure 4-9A). The participant’s torso was at 

an angle of 45o with respect to the base of support. The legs and knees were flexed at 45o, 

and both the hands were at the back of the head. The participant’s legs were braced by an 

assistant to avoid any movement of the legs. The torso was held by another assistant to 

resist the effort made by the participant in crunching upward [271]–[275]. 

➢ External Obliques – side crunch (Figure 4-9B). Similar to the rectus abdominis position, 

the participant’s torso was at an angle of 45o with respect to the base of support, the legs 

and knees were flexed at 45o, and both the hands were at the back of the head. The 

participant’s legs were braced by an assistant to avoid any movement of the legs, and the 

torso was held by another assistant to resist the twist motion. In the twist motion, the 

participant had to touch the right (left) knee with the left (right) elbow to rotate the upper 

body with a twisting motion and maximum effort [272], [273], [276]. 

➢ Thoracic and Lumbar Erector Spinae – supine back extension (Figure 4-9C). The 

participant was lying down on the mattress, with the front of the body facing the mattress 

and both arms extended forward, without touching the ground or body. The participant’s 

legs were braced by an assistant to avoid any movement of the legs. The torso was held by 

another assistant at the inferior border of the scapula to resist the effort exerted by the 

participant to extend himself upwards [271], [274], [275], [277]. 

➢ Biceps Femoris – prone knee flexion (Figure 4-9D). The participant was lying down, with 

the front of the body facing the mattress. The participant’s lower leg was held by an 

assistant at an angle of 90o with respect to the base of support, while the participant was 

instructed to extend the knee joint with maximum effort [278]. 

➢ Rectus Femoris – seated knee extension (Figure 4-9E). The participant was sitting on a 

chair with both feet on the ground and both arms on the armrest of the chair. One leg at a 

time, the participant’s leg was held by an assistant. The participant exerted maximum effort 

to extend his leg as the assistant resisted the motion [278]. 
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Figure 4-9: Exercises for the different muscles to obtain the maximum voluntary contractions. (A) 

Seated abdomen crunch; (B) Side crunch; (C) Supine back extension; (D) Prone knee flexion; and 

(E) Seated Knee Extension. 
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4.5.3 Motion Capture Marker Placement 

After performing MVC, the next step was to place thirty-seven motion capture markers (Vicon 

Motion Systems Ltd.) on anatomical landmarks of the body as shown in Figure 4-10. The marker 

placement sites were based on past studies [279] and Vicon preparation guidelines (Vicon Motion 

Systems Ltd.). The markers were attached to the skin using double-sided adhesive tape and plastic 

marker bases (Vicon Motion Systems Ltd.). The markers were placed bi-symmetrically on the 

human body as described in Table 4-2. 

 

 

Figure 4-10: Placement of the motion capture markers on the anatomical landmarks of the body. 

Markers were placed on the head, arms, trunk, and leg segment. C7: seventh cervical vertebra; T9: 

ninth thoracic vertebra; L5: fifth lumbar vertebra; ASIS: anterior superior iliac spine; and PSIS: 

posterior superior iliac spine. {Image Source: body pictures} 

 

http://bodypictures.org/p/4/bodies/picture-4
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Table 4-2. List of markers placed on anatomical landmarks of the human body, including their 

lateral position and label. 

Body Segment Anatomical Location Lateral Position Label 

Head Condyloid process Left LFHD 

Condyloid process Right RFHD 

Mastoid process Left LBHD 

Mastoid process Right RBHD 

Trunk Shoulder (acromion) Left LSHO 

Shoulder (acromion) Right RSHO 

Seventh cervical vertebra Center C7 

Suprasternal Center SUP 

Xiphoid Center XIP 

Ninth thoracic vertebra Center T9 

Fifth lumbar vertebra Left (5 cm) LL5 

Fifth lumbar vertebra Center L5 

Fifth lumbar vertebra Right (5 cm) RL5 

Anterior superior iliac spine Left LASIS 

Anterior superior iliac spine Right RASIS 

Posterior superior iliac spine Left LPSIS 

Posterior superior iliac spine Right RPSIS 

Arms Elbow (lateral epicondylitis) Left LLELB 

Elbow (lateral epicondylitis) Right RLELB 

Elbow (olecranon) Left LMELB 

Elbow (olecranon) Right RMELB 

Distal ulna bone Left LDUB 

Distal ulna bone Right RDUB 

Little finger, metacarpal head Left LPFMH 

Little finger, metacarpal head Right RPFMH 

Middle finger, distal phalanges Left LMFDP 

Middle finger, distal phalanges Right RMFDP 

Legs Greater trochanter Left LGTR 
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Greater trochanter Right RGTR 

Knee (lateral epicondylitis) Left LLKNE 

Knee (lateral epicondylitis) Right RLKNE 

Knee (medial epicondylitis) Left LMKNE 

Knee (medial epicondylitis) Right RMKNE 

Ankle (lateral malleolus) Left LLANK 

Ankle (lateral malleolus) Right RLANK 

Ankle (medial malleolus) Left LMANK 

Ankle (medial malleolus) Right RMANK 

 

 

The markers were also placed on the force plate and the CAREN platform as defined in Table 4-3 

(Figure 4-4A and Figure 4-6). 

 

Table 4-3. List of the markers placed on top of the force plate and the Computer-Assisted 

Rehabilitation Environment platform. 

Instrument Relative position Label 

Force Plate Left-Forward LFFP 

Left-Backward LBFP 

Right-Forward RFFP 

Right-Backward RBFP 

Platform Left-Forward LFP 

Left-Backward LBP 

Right-Forward RFP 

Right-Backward RBP 
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4.5.4 Anatomical Calibration 

After placing the markers, participants were asked to stand on the CAREN platform in a T-pose 

while facing the CAREN’s virtual reality screen for anatomical calibration (Figure 4-11A). The 

anatomical calibration was performed to capture the relative positions of the markers on the body, 

to reconstruct any markers that were occluded during an experimental trial, to develop template 

models in the Nexus software, and to label markers automatically across trials and participants. 

Following calibration, participants were asked to wear a safety harness to ensure safety in case of 

any malfunctioning of the CAREN platform. The safety harness was secured to the platform via 

the overhead support system as shown in Figure 4-11B. 

 

 

Figure 4-11: Anatomical calibration and human posture during the experimental trials. (A) T-pose; 

and (B) Crossed arms, legs hanging, eyes open, and spine completely erect.  
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4.5.5 Quiet Sitting Trial 

The participants were asked to sit on top of the customized force plate, with their arms crossed 

above the chest, the legs hanging in the air without touching the base of support or stool, the eyes 

open, and the spine completely erect (Figure 4-11B). Each participant was asked to maintain 

balance for 120 seconds. A 1-minute break for resting was given at the end of the trial. This trial 

was used to compare the neuromusculoskeletal time series obtained during quiet sitting and 

perturbed sitting. A significant difference between the two would confirm the applicability of the 

system identification techniques in this study.  

4.5.6 Perturbed Sitting Trial 

In this trial, the participants had to sit on the customized force plate with their arms crossed above 

the chest, the legs hanging in the air without touching the base of support or stool, the eyes open 

and looking straight onto the virtual reality screen, and the spine completely erect (Figure 4-11B). 

Platform perturbations were applied in the A-P direction for 240 s as described earlier. Each 

participant was asked to maintain balance for the whole trial. A total of three trials were performed, 

with external perturbations that had statistically independent signal characteristics (while still 

fulfilling the signal characteristics described above). The same three perturbation signals were used 

across all participants. A one-minute gap was administered between trials, allowing the participant 

to recover. 

 

4.6 Experimental Data Cleaning and Neuromusculoskeletal Time Series Extraction 

The Nexus 2.6 software was used for experimental data acquisition and preliminary data cleaning. 

MATLAB R2017a (MathWorks, Natick, MA, USA) was used for further data cleaning and 

neuromusculoskeletal time series extraction. 

4.6.1 EMG Data 

The EMG data, including MVC data, baseline data, quiet sitting data, and perturbed sitting data 

were first exported to a Microsoft Excel file from the Nexus 2.6 software. They were then imported 

into MATLAB as distinct MATLAB variables using MATLAB R2017a. 

MVC data for each muscle were divided by gain, converted from Volts to mV, demeaned, rectified, 

filtered using a 4th order Butterworth filter with a cut-off frequency of 5 Hz, and down-sampled to 

100 Hz [72]. The maximum value of the three filtered MVC trials for each exercise was selected 
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as the MVC value for a particular muscle of that participant [210]. The baseline trial for each 

muscle was divided by gain, converted from Volts to mV, demeaned, rectified, filtered using a 4th 

order Butterworth filter with a cut-off frequency of 5 Hz, and down-sampled to 100 Hz (same as 

for the MVC data) [72]. The mean value of the filtered baseline trial was selected as the baseline 

value for a particular muscle of a given participant [210]. The MVC and EMG baseline values for 

all 12 muscles and 14 participants were calculated based on the described approach. The MVC 

and EMG baselines values were then compared between the left and right muscles to assess the 

similarity between body sides using the Wilcoxon signed rank test. 

The EMG data obtained during the quiet and perturbation sitting trials were divided by gain, 

converted from Volts to mV, demeaned, rectified, filtered using a 4th order Butterworth filter with 

a cut-off frequency of 5 Hz, and down-sampled to 100 Hz. The EMG signal was normalized using 

the MVC and baseline values for each muscle according to Equation (56) [210].  

After cleaning the EMG data from the perturbation trials, the data sets from different muscles were 

used to obtain the neuromusculoskeletal time series called “weighted EMG”. The weighted EMG 

can represent the motor command mentioned earlier and is a time series of combined muscle 

activity obtained by applying weights to the activity time series for individual muscles. The process 

of obtaining the weighted EMG is captured in Equation (66) [8], [22], where 𝑤1 to 𝑤12 are the 

weights, 𝑅𝐴, 𝐸𝑂, 𝑅𝐹, 𝐸𝑆𝐿3, 𝐸𝑆𝑇9, and 𝐵𝐹 are the activity time series of individual muscles, and 

𝑅 is the coefficient corresponding to right muscles and 𝐿 is the coefficient corresponding to left 

muscles. 

𝐸𝑀𝐺 = 𝑤1 ∗ 𝑅𝑅𝐴 + 𝑤2 ∗ 𝑅𝐸𝑂 + 𝑤3 ∗ 𝑅𝑅𝐹 + 𝑤4 ∗ 𝑅𝐸𝑆𝐿3 + 𝑤5 ∗ 𝑅𝐸𝑆𝑇9 + 𝑤6 ∗ 𝑅𝐵𝐹 …  

… + 𝑤7 ∗ 𝐿𝑅𝐴 + 𝑤8 ∗ 𝐿𝐸𝑂 + 𝑤9 ∗ 𝐿𝑅𝐹 + 𝑤10 ∗ 𝐿𝐸𝑆𝐿3 + 𝑤11 ∗ 𝐿𝐸𝑆𝑇9 + 𝑤12 ∗ 𝐿𝐵  

Eq. (66) 

The muscles of the front of the body, i.e., rectus abdominis, external obliques, and rectus femoris, 

were given negative weights, whereas the muscles of the back of the body, i.e., erector spinae at 

third lumbar vertebra, erector spinae at ninth thoracic vertebra, and biceps femoris, were given 

positive weights. The absolute sum of all the weights was maintained at one. The weights were 

optimized by maximizing the mean squared coherence between the weighted EMG and the 

external perturbation signal. The mean squared coherence between the two time series (𝑎, 𝑏) was 
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calculated using Equation (67), where 𝑃𝑎𝑎(𝜔) and 𝑃𝑏𝑏(𝜔) are the power spectral densities of time 

series 𝑎 and 𝑏, respectively. 

 |𝐶𝑎𝑏(𝜔)|2 = |
|𝑃𝑎𝑏(𝜔)|2

𝑃𝑎𝑎(𝜔)𝑃𝑏𝑏(𝜔)
|

2

                                       Eq. (67) 

The optimization was performed in MATLAB R2017a using the function fmincon, where a 

customized function is developed to calculate the mean squared coherence value between the 

weighted EMG signal and the external perturbation. The MATLAB function used to calculate the 

mean squared coherence is mscohere, where a Hanning window was chosen with 40 s window 

length, 50% overlap, and a frequency range of 0.3 to 5 Hz [22].   

4.6.2 Motion Capture Data 

The motion capture data was processed using Nexus 2.6 to label the markers, reconstruct missing 

marker locations, and export the data to Microsoft Excel. Note that labelling of markers could be 

done manually by labelling individual markers for each trial, or automatically by Nexus 2.6 when 

a pre-defined template of markers was provided. For this study, it was decided to label individual 

markers manually for each trial.  

When a marker went missing during a trial (e.g., due to occlusion), it was reconstructed in Nexus 

2.6 through either a spline fill or a rigid-body fill. In the spline fill, the gap was filled by performing 

a cubic spline interpolation operation, based on data points on either side of the gap. This method 

required sufficient data before and after the gap to accurately estimate the cubic spline. The spline 

fill was generally used when the gap size was small (typically less than ten missing points). In the 

rigid-body fill, if two markers were placed on a rigid body or semi-rigid-body segment and one of 

the markers went missing, the other marker on the segment could be used to reconstruct data for 

the missing marker. In our study, we used spline fill to reconstruct smaller gaps, and rigid-body 

fill to reconstruct larger gaps.  

After the reconstruction of missing markers, motion capture data was exported to Microsoft Excel. 

The exported data contained the three-dimensional (3D) coordinates of each marker in the motion 

capture coordinate system. The Microsoft Excel data was then imported into MATLAB as distinct 

MATLAB variables. 
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The coordinate system (𝑋, 𝑌, 𝑍) of the Vicon motion capture system is shown in Figure 4-6. The 

force plate had four markers placed on top that were used to define a local coordinate system 

(𝑥, 𝑦, 𝑧) as shown in Figure 4-4A. Since a coordinate system could be defined using any of the 

three markers as mentioned in Section 3.3.2.2, we used markers LFFP, LBFP, and RBFP to define 

the local coordinate system. From this, we defined the positive x-axis to be pointing to the right of 

the participant when facing the virtual reality screen, the positive y-axis to be pointing in the 

anterior direction, and the positive z-axis to be pointing upwards. All other marker data were 

converted into the local coordinate system according to Equation (68), where 𝑥, 𝑦, 𝑧 is the marker 

location in the local coordinate system; 𝑋, 𝑌, 𝑍 is the marker location in the motion capture 

coordinate system; and 𝑃1, 𝑃2, 𝑃3 is the distance vector from the motion capture coordinate system 

to the local coordinate system. 

[
𝑥
𝑦
𝑧

] = [
−1 0 0
0 −1 0
0 0 1

] ∗ [
𝑋
𝑌
𝑍

] + [
𝑃1

𝑃2

𝑃3

]                                          Eq. (68) 

The motion capture data was used to measure the external perturbation time series, the 2D center 

of mass (COM) location, and the body sway as would be explained in the upcoming sections. 

4.6.2.1 External Perturbation Time Series and Estimated Perturbation Torque 

The four markers (LFFP, LBFP, RBFP, and RFFP) placed on top of the force plate were used to 

calculate the acceleration of the base of support, which in turn was used to quantify the external 

perturbation. Since the platform accelerated only in the y-direction (A-P direction), there was 

negligible change in position of the force plate markers in the z-direction (as defined in the local 

coordinate system). Thus, the z-component of all four markers was ignored in the subsequent 

analysis. The x- and y-components of the marker data were filtered using a 4th order Butterworth 

filter with a cut-off frequency of 5 Hz [72]. The x-component of the LFFP, LBFP, RFFP, and 

RBFP markers were compared to assess the force plate rotation about the z-axis. As mentioned in 

Section 4.4, it was assured that the front edge of the force plate was perpendicular to the forward 

direction of the platform. The force plate orientation obtained via motion capture data verified the 

experimental choice. Thus, also the x-component was ignored in the subsequent analysis. After 

removing the DC offset from the y-component of the LFFP, LBFP, RBFP, and RFFP markers, the 

mean of all four marker’s y-component was taken to quantify the perturbation. These data were 
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double-differentiated using Equation (69), where 𝑝𝑛+1 and 𝑣𝑛+1 are the y-direction position and 

velocity of the base of support, respectively, at sample 𝑛 + 1; 𝑝𝑛−1 and 𝑣𝑛−1 are the y-direction 

position and velocity of the base of support, respectively, at sample 𝑛 − 1; 𝑣𝑛 and 𝑎𝑛 are the y-

direction velocity and acceleration of the base of support, respectively, at sample 𝑛; and ∆𝑡 is the 

sampling time period. Zeroes were added at the beginning and end of the velocity and acceleration 

vectors to ensure that the acceleration data had the same length as the position data. 

𝑣𝑛 =
𝑝𝑛+1−𝑝𝑛−1

2∆𝑡
  

𝑎𝑛 =
𝑣𝑛+1−𝑣𝑛−1

2∆𝑡
                                                     Eq. (69) 

The human body was approximated as a single-link inverted pendulum when quantifying the effect 

of the external perturbations on the participants (Figure 3-4). The human body, due to its inertia, 

feels a sudden force acting opposite to the direction of acceleration of the base of support [280]. 

The external torque, which causes the human body to move in the A-P direction, is caused by the 

sudden force and can be calculated using Equation (70). In Equation (70), 𝑑𝑒𝑥𝑡 is the torque 

experienced by the human body due to the acceleration of the base of support; 𝑚𝑐𝑜𝑚 is the mass 

of the HAT segment; 𝑎 is the acceleration of the base of support; 𝑙𝑐𝑜𝑚 is the distance between the 

COM location and the axis of rotation; and 𝜃 is the body sway. The torque was used as the external 

perturbation for further analysis. 

𝑑𝑒𝑥𝑡 = −𝑚𝑐𝑜𝑚𝑎𝑙𝑐𝑜𝑚𝑐𝑜𝑠𝜃                                                Eq. (70) 

4.6.2.2 Calculation of COM Location and of Other Biomechanical Parameters 

The markers placed on the HAT segment were used to calculate the COM location of the HAT 

segment. The relevant markers’ 3D data were filtered using a 4th order Butterworth filter with a 

cut-off frequency of 5 Hz [72]. Since the external perturbation was applied in the y-direction, there 

was minimal human motion in the x-direction. Therefore, the COM location was obtained in the 

y- and z-directions only.  

The y- and z-direction components of the COM of the head were obtained from the mid-point of 

the line joining the LFHD and RFHD markers. The COM of the upper arm segment was obtained 

as 40.59% of the straight-line distance between the elbow (lateral epicondylitis) marker and the 

shoulder (acromion) marker. Similarly, the COM location for the lower arm segment was obtained 
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as 54.26% of the straight-line distance between the distal ulna bone marker and the elbow (lateral 

epicondylitis) marker. The z-direction COM location of the trunk segment was obtained as 51.12% 

of the straight-line distance between the seventh cervical vertebra marker and mid-point of the line 

joining the RGTR and LGTR markers. The y-direction COM of the trunk segment was calculated 

as the mid-point between the y-direction component of the T9 marker and the y-direction 

component of the XIP marker. The COM locations of the HAT segment in the y- and z-directions 

were then obtained through Equation (71), where 𝐶𝑂𝑀𝑦 and 𝐶𝑂𝑀𝑧 are the y- and z-direction 

components of the HAT segment COM, respectively; ŷ and ẑ are the y- and z-direction 

components of a given segment’s COM respectively; 𝐻 and T stand for the head and trunk 

segments, respectively; 𝐿𝑈𝐴, 𝑅𝑈𝐴, 𝐿𝐿𝐴 and 𝑅𝐿𝐴 stand for the left upper arm, right upper arm, 

left lower arm and  right lower arm segments, respectively [72], [117]. 

𝐶𝑂𝑀𝑦 =
0.0694(ŷ𝐻)+0.4346(ŷ𝑇)+0.0271(ŷ𝐿𝑈𝐴)+0.0271(ŷ𝑅𝑈𝐴)+0.0162(ŷ𝐿𝐿𝐴) +0.0162(ŷ𝑅𝐿𝐴)

0.5711
  

𝐶𝑂𝑀𝑧 =
0.0694(ẑ𝐻)+0.4346(ẑ𝑇)+0.0271(ẑ𝐿𝑈𝐴)+0.0271(ẑ𝑅𝑈𝐴)+0.0162(ẑ𝐿𝐿𝐴) +0.0162(ẑ𝑅𝐿𝐴)

0.5711
   Eq. (71) 

The self-reported weight of the participants was used to estimate the mass of the upper body 

(𝑚𝐶𝑂𝑀) for each participant based on Equation (72). 

𝑚𝐶𝑂𝑀 = 0.603 ∗ 𝑤𝑒𝑖𝑔ℎ𝑡                                              Eq. (72) 

The length of the COM (𝐿𝐶𝑂𝑀) for each participant was calculated using the COM location in the 

y- and z-direction, and the position of the L5 marker during the perturbed sitting trials as shown 

in Equation (73). Note that 𝐿5𝑦 and 𝐿5𝑧 are the positions of the L5 marker in the y- and z-direction, 

respectively. 

𝐿𝐶𝑂𝑀 =  √(𝑚𝑒𝑎𝑛 (𝐶𝑂𝑀𝑦) − 𝑚𝑒𝑎𝑛(𝐿5𝑦))
2

+ (𝑚𝑒𝑎𝑛(𝐶𝑂𝑀𝑧) − 𝑚𝑒𝑎𝑛(𝐿5𝑧))2  Eq. (73) 

The mean z-direction distance between the base of support and the fifth lumbar vertebra (𝑑𝐿5) for 

each participant was calculated using the L5, LFFP, LBFP, RFFP, and RBFP markers during the 

perturbed sitting trials as shown in Equation (74). Note that 𝐿5𝑧, 𝐿𝐹𝐹𝑃𝑧 , 𝐿𝐵𝐹𝑃𝑧 , 𝑅𝐹𝐹𝑃𝑧 , and 

 𝑅𝐵𝐹𝑃𝑧 are the positions of the L5, LFFP, LBFP, RFFP, and RBFP markers in the z-direction, 

respectively.  
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𝑑𝐿5 =  𝑚𝑒𝑎𝑛 (𝐿5𝑧) − 𝑚𝑒𝑎𝑛(𝐿𝐹𝐹𝑃𝑧 , 𝐿𝐵𝐹𝑃𝑧 , 𝑅𝐹𝐹𝑃𝑧 , 𝑅𝐵𝐹𝑃𝑧)            Eq. (74) 

The moment of inertia of the upper body (𝐽) with respect to the axis of rotation fixed at the fifth 

lumbar vertebra was calculated, for each participant, using 𝑚𝐶𝑂𝑀 and 𝐿𝐶𝑂𝑀 and Equation (75) 

[117]. 

𝐽 = 1.6 ∗ 𝑚𝐶𝑂𝑀 ∗ 𝐿𝐶𝑂𝑀
2                                                       Eq. (75) 

4.6.2.3 Body Sway 

The 2D COM location of the HAT section could be identified for the quiet sitting trial and 

perturbation trials by following the procedure mentioned in Section 4.6.2.2. The line segment 

joining the L5 marker and the 2D COM position of the HAT segment forms an angle 𝜃 with respect 

to the positive z-axis (when the axis of rotation points to the left of the individual), as depicted in 

Figure 3-4. 𝜃 can be calculated as mentioned in Equation (76). 

𝜃 = 𝑡𝑎𝑛−1 (
𝐶𝑂𝑀𝑧−𝐿5𝑧

𝐶𝑂𝑀𝑦−𝐿5𝑦
)                                                   Eq. (76) 

The mean value of the 𝜃 time series was subtracted from 𝜃 to obtain the body sway. The body 

sway angle was converted from degrees to radians. In addition to the weighted EMG, the body 

sway was another neuromusculoskeletal time series used to estimate the mechanisms of seated 

balance.  

4.6.2.4 Joint Torque using Top-down Inverse Dynamics Approach 

The body sway data were used to estimate the joint torque produced by the muscles to counter the 

effects of the external perturbation, gravity, and internal disturbances. The human body HAT 

segment could be modelled as the single-link inverted pendulum as mentioned in Section 3.3.3.1. 

This model was used to estimate the joint torque using a top-down inverse dynamics approach 

(“top-down joint torque”) as described in Equation (77), where 𝜏𝑐𝑜𝑛𝑡𝑟𝑜𝑙 is the top-down joint 

torque,  𝐽 is the moment of inertia of the upper body, and �̈� is the angular rate of change of body 

sway. The top-down joint torque was another neuromusculoskeletal time series used to estimate 

the mechanisms of seated balance.  

𝜏𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 𝐽�̈� − 𝑚𝑐𝑜𝑚𝑔𝑙𝑐𝑜𝑚𝑠𝑖𝑛𝜃 − 𝑚𝑐𝑜𝑚𝑎𝑙𝑐𝑜𝑚𝑐𝑜𝑠𝜃                      Eq. (77) 
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4.6.3 Force Plate Data 

The force plate data were exported to Microsoft Excel in Nexus 2.6. The Microsoft Excel data 

were further imported into MATLAB using distinct MATLAB variables. The force plate data were 

converted from units of voltages to physical units by multiplying by 1,000 and dividing by the 

sensitivity matrix mentioned in Equation (78). The force plate data with physical units were filtered 

using a 4th order Butterworth filter with a cut-off frequency of 5 Hz [72]. The signal was then 

down-sampled to 100 Hz to compare it with the weighted EMG and the body sway data.  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = [0.8992, 0.8992, 0.2248, 2.2127, 2.2127, 4.4254 ]         Eq. (78) 

The inertial effects due to the acceleration of the force plate were removed from the force plate 

data according to the method mentioned in Appendix IV. The lower body inertial effect was 

removed from the force plate data by normalizing the force plate data of a trial with the mean 𝐹𝑧 

component of force of that trial [155]. 

4.6.3.1 COP 

As mentioned in Section 3.3.3.2, the COP can be obtained using Equations (49) and (50). The 

same technique was applied to obtain the COP for the HAT segment under the influence of the 

external perturbation. The coordinate system of the force plate is shown in Figure 4-12. The COP 

readings were converted from the force plate coordinate system to the local coordinate system as 

mentioned in Equation (79), where 𝐶𝑂𝑃𝑥, 𝐶𝑂𝑃𝑦, and 𝐶𝑂𝑃𝑧 are the COP components in the local 

coordinate system, 𝐶𝑂𝑃𝑋, 𝐶𝑂𝑃𝑌, and 𝐶𝑂𝑃𝑍 are the COP components in the force plate coordinate 

system, and 𝑄1, 𝑄2, and 𝑄3 are the components of the position vector from the force plate 

coordinate system to the local coordinate system. 

[

𝐶𝑂𝑃𝑥

𝐶𝑂𝑃𝑦

𝐶𝑂𝑃𝑧

] = [
−1 0 0
0 1 0
0 0 −1

] ∗ [
𝐶𝑂𝑃𝑋

𝐶𝑂𝑃𝑌

𝐶𝑂𝑃𝑍

] + [
𝑄1

𝑄2

𝑄3

]                               Eq. (79) 
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Figure 4-12: Force plate coordinate system. {Image source: AMTI Force Platform Manual_V4.3, 

Advanced Mechanical Technology, Inc., USA} 

 

4.6.3.2 Joint Torque using Bottom-up Inverse Dynamics Approach 

The joint torque using the bottom-up inverse dynamics approach (“bottom-up joint torque”) was 

calculated using Equation (54). The torque was normalized by dividing the joint torque by the 

mean 𝐹𝑧 component of the force of the trial and scaled by a factor of upper body mass multiplied 

by gravity. The bottom-up joint torque was another neuromusculoskeletal time series used to 

estimate the mechanisms of seated balance.   

 

4.7 Experimental Data Analysis    

The mean squared coherence (|𝐶𝑎𝑏(𝜔)|2) and the maximum normalized cross-correlation (�̅�𝑎𝑏(𝑖)) 

were calculated between the external perturbation and the neuromusculoskeletal time series, 

including the body sway, the weighted EMG, the top-down joint torque, and the bottom-up joint 

torque, to assess their relation. The normalized cross-correlation between the two time series (𝑎, 𝑏) 

was calculated using Equation (80), where 𝑅𝑎𝑏(𝑖) is the cross-correlation magnitude of two time 

series (𝑎, 𝑏) at the 𝑖𝑡ℎ  time lag; 𝐸 is the expected value; n is the sample number; 𝑅𝑎𝑎(0) is the 
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magnitude of the auto-correlation of time series 𝑎 at 0 lag; and 𝑅𝑏𝑏(0) is the magnitude of the 

auto-correlation of time series 𝑏 at 0 lag.  

𝑅𝑎𝑏(𝑖) = 𝐸{𝑎𝑛+𝑖𝑏𝑛
∗ } 

�̅�𝑎𝑏(𝑖) =
𝑅𝑎𝑏(𝑖)

√𝑅𝑎𝑎(0)∗𝑅𝑏𝑏(0)
                                              Eq. (80) 

The time lag between the external perturbation and the neuromusculoskeletal time series was used 

to verify the position of individual blocks in the implemented feedback control model. The time 

lag between the external perturbation and the body sway, and between the external perturbation 

and the weighted EMG time series were selected as the lag at which �̅�𝑎𝑏(𝑖) was maximum. The 

time lag between the external perturbation and the top-down joint torque, and between the external 

perturbation and the bottom-up joint torque time series were selected as the lag at which �̅�𝑎𝑏(𝑖) 

was minimum. 

4.7.1 Non-Parametric Estimates 

As mentioned in Section 2.3, to obtain the non-parametric estimates of the components of a closed-

loop system, we could have applied either an indirect or a joint input-output approach. However, 

as mentioned in Section 2.3.2, the indirect approach requires the knowledge of the plant to obtain 

estimates of the controller, whereas the joint input-output approach did not require this. The joint 

input-output approach was therefore chosen and applied to obtain the estimates of the control 

mechanisms of seated balance.  

The cross-spectral density (𝑃𝑎𝑏(𝜔)) between two time series (𝑎, 𝑏) can be calculated with 

Equation (81), where 𝑅𝑎𝑏(𝑖) is the cross-correlation magnitude of two time series (𝑎, 𝑏) at the 𝑖𝑡ℎ  

time lag; and 𝜔 is the angular frequency. To smoothen the cross-spectral density estimates, 

Welch’s averaged modified periodogram method of spectral estimation was applied [281].  

𝑃𝑎𝑏(𝜔) = ∑ 𝑅𝑎𝑏(𝑖)𝑒−𝑗𝜔𝑖∞
𝑖=−∞                               Eq. (81) 

The ratio of the cross-spectral density between the weighted EMG signal and the external 

perturbation, as well as the cross-spectral density between the body sway and the external 

perturbation provided us with the estimates of active controller components (including the neural 
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dynamics and the sensorimotor time delay) as described in Equation (82), where 𝐶𝑆𝐷 is the cross-

spectral density function. 

𝐶𝑆𝐷(𝑑𝑒𝑥𝑡, 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐸𝑀𝐺)

𝐶𝑆𝐷(𝑑𝑒𝑥𝑡,𝜃)
= −𝐻𝑇𝐷𝐶𝐴                                   Eq. (82) 

Similarly, the ratio of the cross-spectral density between the joint torque and the external 

perturbation and the cross-spectral density between the body sway and the external perturbation 

provided us with the estimates of active-passive controller components (including the neural 

dynamics, the mechanical dynamics, the muscular dynamics and the sensorimotor time delay) as 

described in Equation (83). 

𝐶𝑆𝐷(𝑑𝑒𝑥𝑡,𝜏)

𝐶𝑆𝐷(𝑑𝑒𝑥𝑡,𝜃)
= −(𝐶𝑃 + 𝐻𝑇𝐷𝐶𝐴𝐻𝑎𝑐𝑡)                                 Eq. (83) 

We calculated the cross-spectral density and complex coherence between two time series for all 

the participants using the MATLAB function cpsd and mscohere, respectively, with a Hanning 

window of length 40 s, 50% overlap, and a frequency range of 0.3 to 5 Hz at 100 different 

frequencies equally spaced on the logarithmic scale [22]. The bootstrap standard error in the 

estimates of active and active-passive controller components among all the participants was 

computed using the percentile-t method with 400 nested bootstrap resamples for variance 

estimation, and 4,000 bootstrap resamples [282]. 

4.7.2 Parametric Estimates 

The parametric estimates of the neural dynamics, the mechanical dynamics, the muscular 

dynamics, and the sensorimotor time delay were obtained through model fitting, where different 

orders of linear transfer functions were fitted to the data in MATLAB. The optimization was 

performed using the function fminsearch that uses a simplex algorithm to compute the minimum 

of the cost function. This algorithm does not guarantee a global minimum; therefore, we used 

various combinations of initial values of the constants of the transfer function, with the aim to 

reach the global minimum. The optimization was also performed using the MATLAB function ga 

that uses a genetic algorithm to compute the minimum of the cost function. This algorithm 

guarantees the global minimum, and the results from the simplex algorithm were compared with 

it to guarantee that the identified parameters produce the best fit to the experimental data points. 
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The error minimized by the function is presented in Equation (84), where 𝑦𝑝𝑟𝑒(𝑓) is the predicted 

value from the transfer function and 𝑦𝑎𝑐𝑡(𝑓) is the experimental value, both at frequency 𝑓. 

𝐸𝑟𝑟𝑜𝑟 =
∑ (|𝑔𝑎𝑖𝑛(𝑦𝑝𝑟𝑒(𝑓)−𝑦𝑎𝑐𝑡(𝑓))|)𝑁

𝑖=1

∑ (|𝑔𝑎𝑖𝑛(𝑦𝑝𝑟𝑒(𝑓))|)𝑁
𝑖=1

 +
∑ (|𝑝ℎ𝑎𝑠𝑒(𝑦𝑝𝑟𝑒(𝑓)−𝑦𝑎𝑐𝑡(𝑓))|)𝑁

𝑖=1

∑ (|𝑝ℎ𝑎𝑠𝑒(𝑦𝑝𝑟𝑒(𝑓))|)𝑁
𝑖=1

          Eq. (84) 

The selection of the transfer function was based on the Akaike information criteria (AIC) and the 

goodness-of-fit (GOF) as presented in Equations (85) and (86), where 𝑣 is the number of variables 

in the transfer function, 𝑁 is the number of data points used in the optimization, 𝑦𝑝𝑟𝑒 is the 

predicted value, 𝑦𝑎𝑐𝑡 is the actual value obtained from the experiment, and 𝑓 is the frequency [8], 

[30]. 

𝐴𝐼𝐶 = 𝑙𝑜𝑔(𝐸𝑟𝑟𝑜𝑟) +
2𝑣

𝑁
                                                  Eq. (85) 

𝐺𝑂𝑓(%) = [1 − (
∑ |𝑦𝑝𝑟𝑒(𝑓)−𝑦𝑎𝑐𝑡(𝑓)|𝑁

𝑖=1

∑ |𝑦𝑝𝑟𝑒(𝑓)|𝑁
𝑖=1

)]                                   Eq. (86) 

Once an appropriate transfer function was selected for a mechanism (i.e., the neural dynamics, the 

mechanical dynamics, the muscular dynamics, and the sensorimotor time delay), the variance 

accounted for (VAF) between the experimental time series data (𝑦(𝑡)) and the predicted time 

series data (ŷ(𝑡)) was computed, as stated in Equation (87). The experimental time series includes 

the top-down joint torque, the bottom-up joint torque, and the weighted EMG. The predicted time 

series were calculated from the estimated transfer functions of the active and active-passive control 

components and from the experimental body sway time series. The VAF computes the quality of 

the model in the time domain, such that, the higher the percentage of VAF, the better the quality 

of the estimated model. 

𝑉𝐴𝐹𝑦(𝑡),ŷ(𝑡) = (1 −
𝑣𝑎𝑟(𝑦(𝑡)−ŷ(𝑡))

𝑣𝑎𝑟(𝑦(𝑡))
) ∗ 100%                              Eq. (87) 

4.7.3 Stability Analysis 

The stability of the identified transfer functions was computed by calculating the zeroes of the 

characteristic equation (mentioned in Equation 88) of the closed-loop control model. A stable 

system is defined in the literature as a system where all the zeroes of the characteristic equation 

have negative real parts, i.e., the zeroes are on the left of the imaginary axis in the pole-zero plot 

[283].  
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𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠𝑡𝑖𝑐 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 = 1 + 𝑃 ∗ (𝐶𝑃 + 𝐻𝑇𝐷𝐶𝐴𝐻𝑎𝑐𝑡)               Eq. (88) 

 

4.8 Simulation Data Analysis 

Lastly, we performed simulations in Simulink R2017a (MathWorks, Natick, MA, USA) to 

evaluate our findings in a closed-loop model (Figure 4-13). This model incorporated the estimated 

transfer functions of the neural dynamics, the mechanical dynamics, the muscular dynamics, the 

sensorimotor time delay, and the external perturbations. The human body dynamics were selected 

as the single-link inverted pendulum dynamics described in Equation (53). The parameters of the 

human body dynamics were selected based on the mean anthropometric measurements of the 

fourteen participants. The time series of the body sway, the joint torque, and the EMG were 

generated (at a 100 Hz sampling rate) as a response to the three statistically independent external 

perturbation time series used in the experiments (100 Hz sampling rate). The same joint input-

output approach was implemented as employed for the experimental, non-parametric estimates to 

identify the non-parametric estimates of the active and active-passive controller components. The 

parametric estimates of the neural dynamics, the mechanical dynamics, the muscular dynamics 

and the sensorimotor time delay were obtained using the same optimization as for the experimental 

data. The experimental and simulated parameters were compared by calculating the mean relative 

difference (Equation (89)), where 𝑚𝑑 is the mean relative difference, 𝑃1 is the parameter calculated 

from the experimental data, and 𝑆1 is the parameter calculated from simulated data [8], [26].  

𝑚𝑑 = [
𝑃1−𝑆1

𝑆1
] ∗ 100 %                                             Eq. (89) 
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Figure 4-13: Closed-loop model implementing the estimated transfer functions. The model 

consists of the human body dynamics, the neural dynamics, the muscular dynamics, the 

mechanical dynamics, and the sensorimotor time delay. The human body dynamics parameters 

were based on the anthropometric measurements of the participants, while all other parameters 

were selected based on the experimental data. The external perturbation is added as an external 

noise to the system. In response to the external perturbation, the body sway, the weighted EMG, 

the joint torque, the torque generated by mechanical dynamics, and the torque generated by neural 

dynamics were obtained. The set-point is set to be zero.  
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5 Results 

 

5.1 Overview 

This chapter presents the results obtained by conducting experiments as described in Chapter 4. It 

includes the results regarding the external perturbation and the estimation of the 

neuromusculoskeletal time series. Subsequent to that presentation, the correlation, coherence, and 

time delay between the external perturbation and the neuromusculoskeletal time series are 

documented. Next, the non-parametric estimates, parametric estimates, and the stability analysis 

of the identified mechanisms are presented. Finally, the simulation results are compared with the 

experimentally identified parameters. 

 

5.2 External Perturbation and Neuromusculoskeletal Time Series Estimation 

The time series of the external perturbation and the neuromusculoskeletal time series, including 

the body sway, the weighted EMG, the top-down joint torque, and the bottom-up joint torque, 

required knowledge of anthropometric measurements, maximum voluntary contractions (MVC) 

and Electromyography (EMG) baseline values, and EMG weights.    

5.2.1 Body Segment Parameters 

Fourteen male individuals participated in this study whose weight, height, mass of the upper body, 

mean distance (standard deviation, SD) between the center of mass (COM) and the axis of rotation, 

mean distance (SD) between the base of support and the fifth lumbar vertebra, and the moment of 

inertia about the axis of rotation are presented in Table 5-1.  

5.2.2 Maximum Voluntary Contractions and EMG Baseline 

Examples of processed (demeaned, rectified, and filtered) muscle activity time series obtained for 

the different MVC exercises and muscles (see Section 4.5.2) are presented for one participant in 

Figure 5-1 (muscles in front of body) and Figure 5-2 (muscles in back of body). The MVC values 

for the front and back muscles are listed in Table 5-2. Similarly, the EMG baseline values for the 

front and back muscles are listed in Table 5-3.  
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Table 5-1. Body Segment Parameters of all the participants. 𝑚𝐶𝑂𝑀 denotes the mass of the upper 

body, 𝐿𝐶𝑂𝑀 the mean distance (standard deviation, SD) between the center of mass and axis of 

rotation, 𝑑𝐿5 the mean distance (SD) between the base of support and the fifth lumbar vertebra, 

and J the moment of inertia about the axis of rotation. 

Participant 

Number 

Weight 

(𝑘𝑔) 

Height 

(𝑐𝑚) 

𝑚𝐶𝑂𝑀 

(𝑘𝑔) 

𝐿𝐶𝑂𝑀  

(𝑐𝑚) 

𝑑𝐿5        

(𝑐𝑚) 

𝐽  

(𝑘𝑔 ∙ 𝑚2) 

1 61 173 36.7 33.3 (0.4) 13.1 (1.2) 6.5 

2 78 178 47.0 38.1 (0.1) 17.5 (0.3) 11.1 

3 85 183 51.3 24.9 (0.1) 13.0 (0.2) 5.1 

4 90 187 54.3 39.1 (0.4) 16.4 (0.4) 13.6 

5 80 183 48.4 18.1 (0.2) 13.3 (0.4) 2.6 

6 60 169 36.2 37.5 (0.1) 21.6 (0.2) 8.3 

7 82 183 49.5 39.2 (0.1) 22.8 (0.3) 12.2 

8 68 170 41.0 36.9 (0.1) 24.7 (1.4) 8.9 

9 86 184 51.9 42.4 (0.1) 28.7 (0.3) 15.0 

10 83 182 50.1 34.0 (0.2) 26.2 (0.8) 9.4 

11 60 175 36.2 36.9 (0.1) 15.7 (0.4) 7.8 

12 92 185 55.3 37.1 (0.2) 15.8 (0.6) 12.2 

13 63 164 38.1 35.8 (0.2) 14.7 (0.5) 7.8 

14 80 178 48.2 37.3 (0.1) 12.4 (0.8) 10.9 

Mean 76  178 46.0 35.0  18.3 9.4 

SD 11 7 6.7 6.1 5.3 3.3 
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Figure 5-1: Processed electromyography signal (demeaned, rectified, and filtered) of the muscles 

in the front of the body, obtained during maximum voluntary contractions (MVC) exercises. The 

figure shows the data for one participant and the various MVC exercises. Note that the three peaks 

in a given trial correspond to the three bursts of MVC effort applied by the participant. LRA: left 

rectus abdominis; RRA: right rectus abdominis; LEO: left external obliques; REO: right external 

obliques; LRF: left rectus femoris; and RRF: right rectus femoris. 
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Figure 5-2: Processed electromyography signals (demeaned, rectified, and filtered) of the muscles 

in the back of the body, obtained during maximum voluntary contractions (MVC) exercises. The 

figure shows the data for one participant and the various MVC exercises. Note that the three peaks 

in a given trial correspond to the three bursts of MVC effort applied by the participant. LESL3: 

Left erector spinae at the third lumbar vertebra; RESL3: Right erector spinae at the third lumbar 

vertebra; LEST9: Left erector spinae at the ninth thoracic vertebra; REST9: Right erector spinae 

at the ninth thoracic vertebra; LBF: Left biceps femoris; and RBF: Right biceps femoris. 
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Table 5-2. Maximum voluntary contractions values for the front and back muscles. RA: rectus 

abdominis; EO: external obliques; RF: rectus femoris; ESL3: erector spinae at the third lumbar 

vertebra; EST9: erector spinae at the ninth thoracic vertebra; and BF: biceps femoris. R marks 

right, and L marks left muscles. SD: Standard deviation. 

P No. RA (𝑚𝑉) EO (𝑚𝑉) RF (𝑚𝑉) ESL3 (𝑚𝑉) EST9 (𝑚𝑉) BF (𝑚𝑉) 

R L R L R L R L R L R L 

1 0.14 0.24 0.17 0.31 0.07 0.13 0.16 0.16 0.34 0.34 0.12 0.06 

2 0.12 0.14 0.16 0.14 0.04 0.03 0.07 0.07 0.14 0.10 0.06 0.06 

3 0.12 0.15 0.16 0.15 0.05 0.10 0.05 0.06 0.16 0.27 0.09 0.12 

4 0.05 0.05 0.15 0.15 0.10 0.07 0.10 0.08 0.24 0.08 0.09 0.08 

5 0.24 0.10 0.24 0.29 0.20 0.14 0.10 0.10 0.11 0.09 0.22 0.18 

6 0.16 0.08 0.08 0.09 0.13 0.07 0.08 0.08 0.24 0.15 0.13 0.19 

7 0.14 0.06 0.13 0.09 0.07 0.07 0.08 0.08 0.17 0.12 0.12 0.15 

8 0.05 0.09 0.09 0.05 0.12 0.05 0.07 0.07 0.25 0.23 0.09 0.10 

9 0.08 0.05 0.03 0.06 0.09 0.03 0.06 0.08 0.09 0.10 0.20 0.11 

10 0.08 0.10 0.14 0.18 0.13 0.05 0.16 0.13 0.34 0.16 0.12 0.13 

11 0.18 0.09 0.23 0.19 0.12 0.12 0.14 0.15 0.09 0.06 0.19 0.13 

12 0.12 0.10 0.08 0.16 0.18 0.17 0.08 0.09 0.27 0.22 0.10 0.14 

13 0.03 0.04 0.12 0.17 0.08 0.12 0.09 0.17 0.14 0.19 0.08 0.08 

14 0.17 0.20 0.04 0.05 0.03 0.03 0.05 0.06 0.04 0.03 0.19 0.16 

Mean 0.12 0.11 0.13 0.15 0.10 0.08 0.09 0.10 0.19 0.15 0.13 0.12 

SD 0.06 0.06 0.06 0.08 0.05 0.04 0.04 0.04 0.09 0.08 0.05 0.04 
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Table 5-3. Electromyography baseline values for the front and back muscles. RA: rectus 

abdominis; EO: external obliques; RF: rectus femoris; ESL3: erector spinae at the third lumbar 

vertebra; EST9: erector spinae at the ninth thoracic vertebra; and BF: biceps femoris. R marks 

right, and L marks left muscles. SD: Standard deviation. 

P No. RA (𝜇𝑉) EO (𝜇𝑉) RF (𝜇𝑉) ESL3 (𝜇𝑉) EST9 (𝜇𝑉) BF (𝜇𝑉) 

R L R L R L R L R L R L 

1 1.4 1.7 1.6 1.6 1.6 1.5 2.1 1.4 2.9 2.2 1.9 2.2 

2 2.7 2.8 1.8 1.9 3.3 1.3 2.2 1.9 2.5 2.1 1.2 5.4 

3 1.6 1.9 2.3 1.8 2.1 2.1 2.4 2.2 1.9 2.3 2.0 3.0 

4 1.8 1.7 2.4 2.1 1.9 1.5 1.6 1.5 2.3 3.3 1.7 2.0 

5 1.8 1.6 2.3 1.7 1.9 1.8 2.7 3.5 2.5 2.4 0.4 2.2 

6 1.6 1.6 1.6 1.5 1.7 1.6 1.9 1.5 2.1 2.1 1.9 1.6 

7 1.8 2.4 2.1 3.3 2.0 2.1 1.9 1.6 1.9 1.5 1.3 2.1 

8 1.5 1.8 1.7 1.7 1.5 1.7 1.5 1.4 2.1 2.1 2.4 1.2 

9 2.6 8.9 1.7 1.8 5.1 1.7 2.4 1.9 2.2 2.3 1.8 3.0 

10 1.7 2.3 1.9 2.1 1.6 1.6 1.6 1.6 1.7 3.0 2.0 1.7 

11 2.1 2.6 2.6 2.7 1.7 1.6 2.1 1.7 2.3 2.3 1.6 1.6 

12 2.0 3.1 1.4 1.2 3.6 3.0 2.6 2.0 8.1 5.1 1.9 3.2 

13 1.4 1.6 1.8 1.6 1.6 2.2 1.8 2.7 2.0 3.6 0.9 1.1 

14 2.1 2.8 2.2 2.0 2.7 1.9 1.5 1.5 1.5 1.7 1.7 2.5 

Mean 1.9 2.6 2.0 1.9 2.3 1.8 2.0 1.9 2.6 2.6 1.6 2.3 

SD 0.4 1.8 0.3 0.5 1.0 0.4 0.4 0.6 1.6 0.9 0.5 1.1 
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The comparison of the left and right muscle’s MVC values, and the comparison of the left and 

right muscle’s EMG baseline values revealed a p-value of p > 0.05 when using the Wilcoxon 

signed rank test. Only exception was the EMG baseline values for rectus abdominis (RA) and 

biceps femoris (BF), which had p-values of p = 0.002 and p = 0.042, respectively. As such, there 

was no difference in MVC and baseline values for most muscles when comparing the same muscle 

across body sides. 

5.2.3 EMG Weights   

The weights for individual muscles across participants that were identified for the perturbation 

trials are presented in Table 5-4 and Table 5-5.  

 

Table 5-4. The mean electromyography weights (standard deviation) for the front muscles as 

obtained in all perturbation trials. RA: rectus abdominis; EO: external obliques; and RF: rectus 

femoris. R marks right, and L marks left muscles. 

P 

No. 

RA EO RF 

R L R L R L 

1 -0.000 

(0.000) 

-0.148 

(0.064) 

-0.110 

(0.070) 

-0.195 

(0.040) 

-0.065 

(0.023) 

-0.007 

(0.010) 

2 -0.138 

(0.020) 

-0.096 

(0.059) 

-0.124 

(0.025) 

-0.171 

(0.017) 

-0.006 

(0.006) 

-0.001 

(0.001) 

3 -0.142 

(0.108) 

-0.034 

(0.049) 

-0.001 

(0.001) 

-0.085 

(0.120) 

-0.000 

(0.000) 

-0.000 

(0.000) 

4 -0.000 

(0.000) 

-0.000 

(0.000) 

-0.203 

(0.158) 

-0.251 

(0.189) 

-0.118 

(0.167) 

-0.122 

(0.149) 

5 -0.021 

(0.030) 

-0.000 

(0.001) 

-0.123 

(0.070) 

-0.215 

(0.050) 

-0.069 

(0.046) 

-0.071 

(0.101) 

6 -0.297 

(0.106) 

-0.075 

(0.045) 

-0.059 

(0.072) 

-0.251 

(0.096) 

-0.031 

(0.043) 

-0.000 

(0.000) 
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7 -0.044 

(0.022) 

-0.026 

(0.011) 

-0.093 

(0.029) 

-0.004 

(0.005) 

-0.015 

(0.020) 

-0.014 

(0.013) 

8 -0.014 

(0.016) 

-0.063 

(0.047) 

-0.095 

(0.054) 

-0.066 

(0.021) 

-0.041 

(0.020) 

-0.027 

(0.022) 

9 -0.069 

(0.049) 

-0.029 

(0.024) 

-0.040 

(0.036) 

-0.131 

(0.057) 

-0.003 

(0.004) 

-0.003 

(0.004) 

 10 -0.040 

(0.029) 

-0.023 

(0.024) 

-0.062 

(0.008) 

-0.115 

(0.057) 

-0.148 

(0.029) 

-0.012 

(0.009) 

11 -0.020 

(0.022) 

-0.049 

(0.041) 

-0.129 

(0.091) 

-0.142 

(0.056) 

-0.039 

(0.024) 

-0.016 

(0.023) 

12 -0.024 

(0.035) 

-0.010 

(0.014) 

-0.191 

(0.091) 

-0.159 

(0.086) 

-0.043 

(0.021) 

-0.041 

(0.058) 

13 -0.046 

(0.009) 

-0.033 

(0.007) 

-0.062 

(0.026) 

-0.227 

(0.048) 

-0.035 

(0.014) 

-0.214 

(0.013) 

14 -0.356 

(0.262) 

-0.034 

(0.048) 

-0.186 

(0.059) 

-0.115 

(0.072) 

-0.030 

(0.021) 

-0.009 

(0.008) 

 

 

Table 5-5. The mean electromyography weights (standard deviation) for the back muscles as 

obtained in all perturbation trials. ESL3: erector spinae at the third lumbar vertebra; EST9: erector 

spinae at the ninth thoracic vertebra; and BF: biceps femoris. R marks right, and L marks left 

muscles. 

P 

No. 

ESL3 EST9 BF 

R L R L R L 

1 0.080 

(0.023) 

0.049 

(0.044) 

0.217 

(0.053) 

0.074 

(0.025) 

0.037 

(0.034) 

0.018 

(0.015) 
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2 0.123 

(0.001) 

0.142 

(0.000) 

0.034 

(0.011) 

0.153 

(0.027) 

0.013 

(0.013) 

0.000 

(0.000) 

3 0.179 

(0.049) 

0.222 

(0.033) 

0.007 

(0.010) 

0.100 

(0.075) 

0.119 

(0.097) 

0.111 

(0.069) 

4 0.100 

(0.088) 

0.090 

(0.076) 

0.059 

(0.083) 

0.009 

(0.008) 

0.000 

(0.000) 

0.048 

(0.064) 

5 0.000 

(0.000) 

0.127 

(0.090) 

0.110 

(0.017) 

0.095 

(0.014) 

0.083 

(0.053) 

0.085 

(0.117) 

6 0.036 

(0.004) 

0.074 

(0.036) 

0.029 

(0.018) 

 0.096 

(0.044) 

0.014 

(0.013) 

0.038 

(0.054) 

7 0.461 

(0.209) 

0.051 

(0.016) 

0.098 

(0.029) 

0.079 

(0.029) 

0.116 

(0.062) 

0.000 

(0.000) 

8 0.054 

(0.039) 

0.098 

(0.007) 

0.159 

(0.086) 

0.168 

(0.023) 

0.014 

(0.017) 

0.201 

(0.081) 

9 0.075 

(0.025) 

0.106 

(0.045) 

0.087 

(0.069) 

0.089 

(0.046) 

0.313 

(0.232) 

0.055 

(0.053) 

10 0.062 

(0.012) 

0.095 

(0.041) 

0.215 

(0.033) 

0.071 

(0.023) 

0.034 

(0.043) 

0.124 

(0.096) 

11 0.177 

(0.065) 

0.214 

(0.105) 

0.014 

(0.009) 

0.011 

(0.001) 

0.101 

(0.089) 

0.089 

(0.066) 

12 0.094 

(0.042) 

0.001 

(0.002) 

0.105 

(0.007) 

0.089 

(0.027) 

0.044 

(0.032) 

0.199 

(0.070) 

13 0.099 

(0.028) 

0.045 

(0.026) 

0.045 

(0.016) 

0.156 

(0.036) 

0.018 

(0.026) 

0.020 

(0.028) 

14 0.116 

(0.052) 

0.078 

(0.037) 

0.029 

(0.015) 

0.047 

(0.011) 

0.000 

(0.000) 

0.000 

(0.000) 
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The mean EMG weights for each muscle and all participants, along with their 95% confidence 

interval, are depicted in Figure 5-3. The external obliques (EO) seem to provide the largest 

magnitude in weights (left EO: -0.152 and right EO: -0.105) in the front trunk muscles, and the 

erector spinae at third lumbar vertebra (ESL3) seem to provide the largest magnitude in weights 

(left ESL3: 0.099 and right ESL3: 0.118) in the back trunk muscles. Both leg muscles (rectus 

femoris, RF and BF) provided relatively small magnitudes in weights (left RF: -0.038, right RF: -

0.046, left BF: 0.071, and right BF: 0.065).  

 

 
Figure 5-3: The mean electromyography weights for each muscle and all participants, with error 

bars marking the 95% confidence interval. RA: rectus abdominis; EO: external obliques; RF: 

rectus femoris; ESL3: erector spinae at third lumbar vertebra; EST9: erector spinae at ninth 

thoracic vertebra; and BF: bices femoris. R marks right, and L marks left muscles.   

 

5.2.4 Time Series   

The time series of the external perturbation, the body sway, the weighted EMG, the top-down joint 

torque and the bottom-up joint torque for one trial of one participant are presented in Figure 5-4. 

A visual inspection suggests, that the external perturbation, the body sway, and the weighted EMG 
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signals follow similar trends. However, the top-down and bottom-up joint torques adhere to a 

reversal of sign when compared to the external perturbation. This and previous correlation analyses 

suggest that the body sway and weighted EMG signals were in phase with the external 

perturbation, whereas the top-down and bottom-up joint torque signals were 180o out of phase with 

the external perturbation.  

 

 

Figure 5-4: The time series of the external perturbation, the body sway, the weighted EMG, the 

top-down torque and bottom-down torque for one participant and one trial. (A) dext: external 

perturbation; (B) BS: body sway; (C) EMG: weighted EMG; (D) Top T: top-down joint torque; 

and (E) Bot T: bottom-up joint torque. 
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5.3 Correlations, Coherence, and Time Delay between External Perturbation and 

Neuromusculoskeletal Time Series 

The normalized cross-correlations and the mean squared coherence between the external 

perturbation and the neuromusculoskeletal time series (including the body sway, the weighted 

EMG, the top-down joint torque, and the bottom-up joint torque) are presented in Table 5-6 to 

Table 5-9. The absolute cross-correlation coefficients and the mean squared coherence values 

between the external perturbation and all time series were high. The time delay was small between 

the external perturbation and the body sway (0.00–0.04 s), followed by a larger time delay between 

the external perturbation and the weighted EMG (0.10–0.23 s), and an even larger time delay 

between the external perturbation and the joint torque (top-down joint torque: 0.27–0.32 s, and 

bottom-up joint torque: 0.26–0.50 s).  
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Table 5-6. The normalized cross-correlation coefficient values, time delays, and mean squared 

coherence values between the external perturbation and the body sway across all participants. The 

mean values (standard deviation, SD) from three trials are presented.  

Participant 

Number 

Body Sway 

Correlation Coefficient Delay (s) Mean Squared Coherence 

1 0.42 (0.04) 0.02 (0.01) 0.84 (0.04) 

2 0.45 (0.02) 0.04 (0.00) 0.86 (0.02) 

3 0.42 (0.02) 0.03 (0.00) 0.82 (0.02) 

4 0.45 (0.03) 0.04 (0.00) 0.78 (0.02) 

5 0.55 (0.00) 0.04 (0.01) 0.83 (0.01) 

6 0.47 (0.03) 0.00 (0.01) 0.83 (0.01) 

7 0.43 (0.02) 0.03 (0.00) 0.86 (0.01) 

8 0.45 (0.03) 0.01 (0.00) 0.81 (0.03) 

9 0.40 (0.04) 0.04 (0.00) 0.81 (0.01) 

10 0.55 (0.03) 0.01 (0.00) 0.90 (0.01) 

11 0.45 (0.02) 0.00 (0.00) 0.87 (0.02) 

12 0.29 (0.14) 0.03 (0.01) 0.67 (0.11) 

13 0.59 (0.01) 0.02 (0.00) 0.89 (0.02) 

14 0.61 (0.03) 0.01 (0.00) 0.88 (0.01) 

Mean (SD) 0.47 (0.08) 0.02 (0.01) 0.83 (0.05) 
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Table 5-7. The normalized cross-correlation coefficient values, time delays, and mean squared 

coherence values between the external perturbation and the weighted EMG across all participants. 

The mean values (standard deviation, SD) from three trials are presented.  

Participant 

Number 

Weighted EMG 

Correlation Coefficient Delay (s) Mean Squared Coherence 

1 0.51 (0.10) 0.14 (0.01) 0.61 (0.07) 

2 0.38 (0.01) 0.18 (0.00) 0.48 (0.01) 

3 0.48 (0.02) 0.16 (0.00) 0.55 (0.03) 

4 0.37 (0.02) 0.23 (0.02) 0.37 (0.01) 

5 0.54 (0.09) 0.17 (0.02) 0.61 (0.02) 

6 0.65 (0.02) 0.15 (0.01) 0.63 (0.03) 

7 0.42 (0.03) 0.14 (0.00) 0.46 (0.08) 

8 0.55 (0.07) 0.15 (0.00) 0.57 (0.03) 

9 0.54 (0.03) 0.21 (0.00) 0.56 (0.00) 

10 0.68 (0.04) 0.16 (0.00) 0.69 (0.01) 

11 0.48 (0.04) 0.15 (0.00) 0.61 (0.04) 

12 0.35 (0.10) 0.15 (0.01) 0.38 (0.03) 

13 0.60 (0.03) 0.16 (0.01) 0.53 (0.02) 

14 0.57 (0.01) 0.10 (0.01) 0.57 (0.00) 

Mean (SD) 0.51 (0.10) 0.16 (0.03) 0.54 (0.09) 
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Table 5-8. The normalized cross-correlation coefficient values, time delays, and mean squared 

coherence values between the external perturbation and the top-down joint torque across all 

participants. The mean values (standard deviation, SD) from three trials are presented. 

Participant 

Number 

Top-Down Joint Torque 

Correlation Coefficient Delay (s) Mean Squared Coherence 

1 -0.63 (0.02) 0.28 (0.01) 0.86 (0.04) 

2 -0.64 (0.01) 0.30 (0.00) 0.88 (0.02) 

3 -0.61 (0.01) 0.30 (0.00) 0.83 (0.02) 

4 -0.68 (0.01) 0.31 (0.00) 0.80 (0.02) 

5 -0.71 (0.01) 0.32 (0.01) 0.84 (0.01) 

6 -0.61 (0.03) 0.27 (0.01) 0.84 (0.01) 

7 -0.63 (0.02) 0.29 (0.00) 0.87 (0.01) 

8 -0.68 (0.04) 0.30 (0.01) 0.83 (0.03) 

9 -0.65 (0.02) 0.32 (0.00) 0.83 (0.01) 

10 -0.75 (0.02) 0.30 (0.00) 0.91 (0.01) 

11 -0.53 (0.03) 0.27 (0.00) 0.88 (0.02) 

12 -0.60 (0.08) 0.31 (0.01) 0.71 (0.09) 

13 -0.66 (0.03) 0.28 (0.00) 0.89 (0.02) 

14 -0.63 (0.01) 0.27 (0.00) 0.89 (0.01) 

Mean (SD) -0.64 (0.05) 0.29 (0.02) 0.85 (0.05) 
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Table 5-9. The normalized cross-correlation coefficient values, time delays, and mean squared 

coherence values between the external perturbation the bottom-up joint torque across all 

participants. The mean values (standard deviation, SD) from three trials are presented. 

Participant 

Number 

Bottom-Up Joint Torque 

Correlation Coefficient Delay (s) Mean Squared Coherence 

1 -0.31 (0.06) 0.29 (0.00) 0.83 (0.04) 

2 -0.24 (0.01) 0.35 (0.01) 0.82 (0.02) 

3 -0.23 (0.02) 0.33 (0.00) 0.77 (0.04) 

4 -0.32 (0.04) 0.30 (0.19) 0.61 (0.02) 

5 -0.33 (0.07) 0.26 (0.00) 0.77 (0.03) 

6 -0.58 (0.05) 0.32 (0.01) 0.84 (0.01) 

7 -0.29 (0.03) 0.32 (0.01) 0.86 (0.01) 

8 -0.36 (0.05) 0.34 (0.02) 0.82 (0.03) 

9 -0.30 (0.06) 0.39 (0.01) 0.81 (0.01) 

10 -0.51 (0.04) 0.31 (0.00) 0.90 (0.01) 

11 -0.46 (0.03) 0.34 (0.01) 0.85 (0.02) 

12 -0.17 (0.03) 0.50 (0.13) 0.62 (0.02) 

13 -0.38 (0.02) 0.30 (0.01) 0.89 (0.02) 

14 -0.61 (0.07) 0.27 (0.02) 0.85 (0.01) 

Mean (SD) -0.36 (0.13) 0.33(0.06) 0.80 (0.09) 

 

 

5.4 Estimates of the Mechanisms of Seated Balance 

We obtained the non-parametric estimates of the active and active-passive controller components 

as well as the parametric estimates of the neural dynamics, the mechanical dynamics, the muscular 
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dynamics, and the sensorimotor time delay. The stability analysis assesses the stability of the 

identified mechanisms when implemented in a closed-loop system. 

5.4.1 Non-parametric Estimates   

The non-parametric estimates of the active, active-passive (calculated using top-down joint 

torque), and active-passive controller components (calculated using bottom-up joint torque) are 

presented in Figure 5-5. For the active and active-passive (calculated using top-down joint torque) 

controller components, the gain of the frequency response was approximately constant for lower 

frequencies (< 0.4 Hz) and then steadily rose as the frequency increased. For the active-passive 

controller components (calculated using bottom-up joint torque), the gain of the frequency 

response was approximately constant for lower frequencies (< 1.5 Hz) and then steadily rose as 

the frequency increased.  

The frequency response of the active control components had a phase of 30 degrees for the lower 

frequencies and steadily rose as the frequency increased; however, it saturated around 110 degrees 

as the frequency reached approximately 3 Hz. The frequency response of the active-passive control 

components (calculated using top-down joint torque) had a constant phase of approximately 180 

degrees for the lower frequencies (< 1Hz) that gradually increased to approximately 185 degrees 

at 2.5 Hz and then settled at approximately 180 degrees. The frequency response of the active-

passive control components (calculated using bottom-up joint torque) had a constant phase of 

approximately 180 degrees for the lower frequencies (< 1.4 Hz) and steadily rose as the frequency 

increased. 

The across-participant variability of the non-parametric estimates of the active, active-passive 

(calculated using top-down joint torque), and active-passive (calculated using bottom-up joint 

torque) controller components was small. The standard errors of the gain and phase in the 

frequency response of the active control components ranged from 3.1 to 5.8 dB and from 7.8 to 

32.9 degrees, respectively, across the different frequencies. The standard errors of the gain and 

phase in the frequency response of the active-passive control components (calculated using top-

down joint torque) ranged from 2.3 to 3.1 dB and from 0.2 to 4.3 degrees, respectively, across the 

different frequencies. The standard errors of the gain and phase in the frequency response of the 

active-passive control components (calculated using bottom-up joint torque) ranged from 3.8 to 

13.4 dB and from 6.9 to 37.2 degrees, respectively, across the different frequencies. 
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Figure 5-5: Non-parametric estimates of active, active-passive (calculated using top-down joint 

torque), and active-passive (calculated using bottom-up joint torque) controller components. (A-

B) Htd Ca: active control components; (C-D) Cpa Top Torque: active-passive control components 

(calculated using top-down joint torque); and (E-F) Cpa Bot Torque: active-passive control 

components (calculated using bottom-up joint torque). The solid and dashed lines represent the 

mean and the bootstrap standard error, respectively.  
 

5.4.2 Parametric Estimates   

The non-parametric estimates obtained in the last section were further used to obtain the parametric 

estimates of the neural dynamics, the mechanical dynamics, the muscular dynamics, and the 

sensorimotor time delay. The equations that fit the non-parametric estimates of the active, active-

passive (calculated using top-down joint torque), and active-passive (calculated using bottom-up 

joint torque) controller components, are presented in Equations (90-92), where 𝐻𝑇𝐷𝐶𝐴 represents 

the active controller components, 𝐶𝑃𝐴−𝑇 the active-passive controller components (calculated 
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using top-down joint torque), 𝐶𝑃𝐴−𝐵 the active-passive controller components (calculated using 

bottom-up joint torque), and 𝑠 the Laplace variable, with all other symbols being constants. 

𝐻𝑇𝐷𝐶𝐴 = 𝐶1 ∗ 𝑒−𝑇𝐷𝑠 ∗ (𝐾𝐴 + 𝐷𝐴𝑠 + 𝐴𝐴𝑠2)                            Eq. (90) 

𝐶𝑃𝐴−𝑇 = −𝐾𝑃 −  𝐷𝑃𝑠 + [𝐶1 ∗ 𝑒−𝑇𝐷𝑠 ∗ (𝐾𝐴 + 𝐷𝐴𝑠 + 𝐴𝐴𝑠2) ∗
𝐶2(1+𝑎1𝑠)

(1+𝑏1𝑠−𝑏2𝑠2)
]    Eq. (91) 

𝐶𝑃𝐴−𝐵 = −𝐾𝑃2 + [𝐶1 ∗ 𝑒−𝑇𝐷𝑠 ∗ (𝐾𝐴 + 𝐷𝐴𝑠 + 𝐴𝐴𝑠2) ∗
𝐶3(1−𝑎2𝑠−𝑎3𝑠2−𝑎4𝑠3)

(1+𝑏3𝑠)
]    Eq. (92) 

The neural dynamics were identified as a proportional-derivative (PD) controller with acceleration 

feedback, the sensorimotor time delay as an exponential decay function, the mechanical dynamics 

as a PD controller (estimated using top-down joint torque) and proportional controller (estimated 

using bottom-up joint torque), and the muscle activation dynamics as a second-order transfer 

function (estimated using top-down joint torque) and third-order transfer function (estimated using 

bottom-up joint torque). The across-participant values of the parametric estimates, goodness-of-fit 

(GOF), Akaike information criteria (AIC), and variance accounted for (VAF) for the active, active-

passive (calculated using top-down joint torque), and active-passive (calculated using bottom-up 

joint torque) control components are presented in Table 5-10 to Table 5-12.  
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Table 5-10. The across-participant values of the parameters for the active control components. 𝐾𝐴, 

𝐷𝐴, 𝐴𝐴, 𝑇𝐷, and 𝐶1 are constants, GOF% the goodness-of-fit, AIC the Akaike Information 

Criterion, and VAF the variance-accounted-for. SD: Standard deviation. 

P No.  𝐾𝐴 
𝑁∙𝑚

𝑟𝑎𝑑
 𝐷𝐴 

𝑁∙𝑚∙𝑠

𝑟𝑎𝑑
 𝐴𝐴 

𝑁∙𝑚∙𝑠2

𝑟𝑎𝑑
 𝑇𝐷 𝑚𝑠 𝐶1 𝐺𝑂𝐹% 𝐴𝐼𝐶 𝑉𝐴𝐹 

1 1144.9 379.5 42.1 34 0.0024 99.74 1.19 41.96 

2 1095.0 280.4 25.3 38 0.0035 99.61 1.31 41.36 

3 837.6 280.4 30.5 48 0.0063 99.51 1.24 50.35 

4 1526.4 365.5 26.4 21 0.0031 99.49 1.54 28.95 

5 1419.3 322.1 36.3 29 0.0032 99.69 1.18 56.84 

6 1356.3 393.5 32.6 36 0.0041 99.69 1.24 50.25 

7 1445.0 466.1 51.0 28 0.0010 99.60 1.28 41.20 

8 1272.3 374.0 60.2 52 0.0029 99.82 1.10 54.61 

9 1137.9 361.2 25.9 47 0.0055 99.64 1.15 59.48 

10 1243.2 361.4 33.0 37 0.0029 99.71 1.17 60.75 

11 1086.8 268.3 19.6 37 0.0061 99.68 1.13 50.74 

12 1597.5 348.6 46.0 21 0.0015 99.24 1.40 36.24 

13 1277.2 493.2 36.3 32 0.0010 99.61 1.24 47.32 

14 956.4 342.6 47.9 20 0.0033 99.76 1.22 60.47 

Mean 1242.6 359.8 36.7 34.3 0.0033 99.63 1.24 48.61 

SD 208.1 61.9 11.1 9.7 0.0016 0.14 0.11 9.31 

 

 

 



105 
 

Table 5-11. The across-participant values of the parameters for the active-passive (calculated using 

top-down joint torque) control components. 𝐾𝑃, 𝐷𝑃, 𝑎1, 𝑏1, 𝑏2, and 𝐶2 are constants. GOF% the 

goodness-of-fit, AIC the Akaike Information Criterion, and VAF the variance-accounted-for. SD: 

Standard deviation. 

P No.  𝐾𝑃 
𝑁∙𝑚

𝑟𝑎𝑑
 𝐷𝑃 

𝑁∙𝑚∙𝑠

𝑟𝑎𝑑
 𝑎1 𝑏1 𝑏2 𝐶2 𝐺𝑂𝐹% 𝐴𝐼𝐶 𝑉𝐴𝐹 

1 437.2 89.1 492.1 305.2 12.7 53.2 99.92 0.49 99.03 

2 706.3 152.5 423.2 170.5 6.8 56.6 99.92 0.48 99.02 

3 356.7 66.7 549.8 370.8 14.2 41.3 99.92 0.36 99.70 

4 798.3 169.3 547.4 145.3 5.9 42.5 99.90 0.52 99.31 

5 202.5 31.5 149.0 348.4 14.0 70.0 99.91 0.44 99.54 

6 501.8 107.0 363.7 242.4 9.7 69.6 99.93 0.40 99.36 

7 755.8 161.7 380.8 175.6 6.9 69.8 99.92 0.41 99.44 

8 565.1 115.1 371.0 202.5 8.7 62.3 99.91 0.47 99.11 

9 897.2 201.2 245.1 123.8 5.0 93.9 99.90 0.51 99.02 

10 579.5 117.5 439.8 208.5 8.5 54.2 99.91 0.41 99.53 

11 496.5 108.0 423.9 328.1 13.0 79.9 99.94 0.35 99.52 

12 767.6 164.4 396.4 186.3 7.8 72.2 99.90 0.54 97.66 

13 495.8 103.7 438.6 249.6 10.2 56.5 99.92 0.40 99.39 

14 669.7 134.2 413.6 181.9 7.4 58.9 99.92 0.37 99.53 

Mean 587.9 123.0 402.5 231.4 9.3 62.9 99.92 0.44 99.23 

SD 183.4 43.2 102.3 75.6 2.9 13.7 0.01 0.06 0.48 
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Table 5-12. The across-participant values of the parameters for the active-passive (calculated using 

bottom-up joint torque) control components. 𝐾𝑃2, 𝑎2, 𝑎3, 𝑎4, 𝑏3, and 𝐶3 are constants. GOF% the 

goodness-of-fit, AIC the Akaike Information Criterion, and VAF the variance-accounted-for. SD: 

Standard deviation. 

P No.  𝐾𝑃2 
𝑁∙𝑚

𝑟𝑎𝑑
 𝑏3 𝑎2 𝑎3 𝑎4 𝐶3 𝐺𝑂𝐹% 𝐴𝐼𝐶 𝑉𝐴𝐹 

1 101.1 583.1 986.3 215.7 21.7 0.4 99.78 0.76 53.26 

2 112.5 458.9 1164.2 126.2 16.7 0.6 99.80 0.90 70.87 

3 91.6 1081.9 84.6 134.9 16.3 1.0 99.79 0.77 84.33 

4 377.4 73.0 0.0 154.1 14.0 2.1 99.27 1.62 14.98 

5 51.5 973.0 0.0 198.3 18.9 1.5 99.42 1.07 36.68 

6 164.7 431.1 1470.4 76.7 7.2 1.0 99.77 0.80 54.95 

7 153.6 577.5 811.7 64.6 6.6 2.3 99.78 0.75 63.82 

8 131.0 310.1 1285.2 171.5 8.0 0.9 99.78 0.92 47.19 

9 181.5 293.3 1293.7 74.1 10.1 1.3 99.76 0.94 68.71 

10 145.6 343.2 1037.3 93.1 7.1 1.6 99.80 0.77 85.24 

11 132.2 773.1 1084.5 106.8 5.0 1.0 99.79 0.81 65.60 

12 133.1 682.0 0.0 232.5 22.7 0.8 99.64 1.00 68.02 

13 90.5 810.3 0.3 249.1 30.8 0.4 99.83 0.77 82.45 

14 134.3 660.8 0.0 412.0 23.1 0.3 99.78 0.97 69.64 

Mean 142.9 575.1 658.4 165.0 14.9 1.1 99.71 0.92 61.84 

SD 72.7 269.7 577.2 90.1 7.6 0.6 0.16 0.22 18.69 
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The fitting of the frequency response for the parametric equations with that for the mean non-

parametric estimates of the active, active-passive (calculated using top-down joint torque), and 

active-passive (calculated using bottom-up joint torque) controller components is shown in Figure 

5-6. The GOF and AIC values for respective fitting were 99.77 % and 0.92 (active components), 

99.92 % and 0.39 (active-passive components using top-down joint torque), and 99.82 % and 0.63 

(active-passive components using bottom-up joint torque), respectively. 

 

Figure 5-6: The fitting of the frequency response for the parametric equations with that for the 

mean non-parametric estimates of the active, active-passive (calculated using top-down joint 

torque), and active-passive (calculated using bottom-up joint torque) controller components. (A-

B) Htd Ca: active control components; (C-D) Cpa Top Torque: active-passive (calculated using 

top-down joint torque) control components; and (E-F) Cpa Bot Torque: active-passive (calculated 

using bottom-up joint torque) control components. 
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The parameters obtained from the fitting are presented in Table 5-13. Parameters including 𝐽, 𝑙𝐶𝑂𝑀 

and 𝑚𝐶𝑂𝑀 are the mean of the participant’s moment of inertia, distance of the COM from the joint 

of rotation, and upper body mass, respectively.  

 

Table 5-13: The parameters obtained from fitting. Top Torque: active-passive control components 

(calculated using top-down joint torque); and Bot Torque: active-passive control components 

(calculated using bottom-up joint torque). 

Parameter Symbol Mean Value (SD) 

Moment of Inertia 𝐽 9.4 (3.3) 𝑘𝑔 ∙ 𝑚2 

Length from axis of rotation to COM 𝑙𝐶𝑂𝑀 35 (6) c𝑚 

Mass of upper body 𝑚𝐶𝑂𝑀 46 (7) 𝑘𝑔 

Reflexive stiffness 𝐾𝐴  964.5 (208.1) 
𝑁∙𝑚

𝑟𝑎𝑑
 

Reflexive damping 𝐷𝐴  280.0 (61.9) 
𝑁∙𝑚∙𝑠

𝑟𝑎𝑑
 

Acceleration feedback 𝐴𝐴  27.2 (11.1) 
𝑁∙𝑚∙𝑠2

𝑟𝑎𝑑
 

Sensorimotor time delay 𝑇𝐷  36 (10) 𝑚𝑠 

EMG normalization constant 𝐶1  0.0040 (0.0016)  

Passive stiffness (Top torque) 𝐾𝑃  588.5 (183.4) 
𝑁∙𝑚

𝑟𝑎𝑑
 

Passive Damping (Top torque) 𝐷𝑃  122.9 (43.2) 
𝑁∙𝑚

𝑟𝑎𝑑
 

Passive stiffness (Bot torque) 𝐾𝑃2  164.5 (72.6) 
𝑁∙𝑚

𝑟𝑎𝑑
 

Muscular dynamics (Top torque) 𝐶2  54.6 (13.7) 

Muscular dynamics (Bot torque) 𝐶3  1.0 (0.6) 

Muscular dynamics (Top torque) 𝑎1  407.6 (102.3) 
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Muscular dynamics (Bot torque) 𝑎2  630.9 (577.2) 

Muscular dynamics (Bot torque) 𝑎3  184.4 (90.1) 

Muscular dynamics (Bot torque) 𝑎4  15.4 (7.6) 

Muscular dynamics (Top torque) 𝑏1  190.2 (75.6) 

Muscular dynamics (Top torque) 𝑏2  7.8 (2.9) 

Muscular dynamics (Bot torque) 𝑏3  458.1 (269.7) 

 

 

5.4.3 Stability Analysis   

The poles and zeros of the characteristic equation (Equation (88)) were computed using the 

parameters listed in Table 5-13. The parameters for the muscular dynamics and the mechanical 

dynamics computed using the top-down joint torque were implemented to quantify the 

characteristic equation. There were four zeros at (-3.4 + 𝑗 2.4), (-3.4 - 𝑗 2.4), (195.5 + 𝑗 0.0), and 

(-0.0 + 𝑗 0.0) as shown in Figure 5-7. Since there was one zero on the right-hand side of the 

imaginary axis, the system was unstable.  

The characteristic equation was also quantified by implementing the muscular dynamics and the 

mechanical dynamics computed via the bottom-up joint torque. There were five zeros at (-11.9 + 

𝑗 0.0), (-4.9 + 𝑗 0.0), (-2.7 + 𝑗 5.7), (-2.7 - 𝑗 5.7), and (0.0 + 𝑗 0.0) as shown in Figure 5-8. Since 

one zero was on the imaginary axis (origin), the system was marginally stable.  

The parameters for the muscular dynamics and the mechanical dynamics calculated from the top-

down joint torque and the bottom-up joint torque produced an unstable system. In a subsequent 

step, it was identified that the muscular dynamics model calculated from the top-down joint torque 

and the bottom-up joint torque caused the instability. In addition, also the mechanical dynamics 

model calculated from the top-down joint torque caused the instability. Therefore, to validate the 

neural dynamics, the sensorimotor time delay, and the mechanical dynamics (computed using the 

bottom-up joint torque), we decided to implement a muscular dynamics model from the literature 

into the simulation model. The muscular dynamics model chosen for the simulation is presented 
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in Equation (64), where 𝜔 was equal to 9.3 
𝑟𝑎𝑑

𝑠𝑒𝑐
 and 𝛽 was equal to 1.3 [8]. The poles and the zeros 

of the characteristic equation using this muscular dynamics model from the literature and the 

mechanical dynamics (computed using the bottom-up joint torque) are shown in Figure 5-9. There 

were four zeros at (-8.5 + 𝑗 7.9), (-8.5 - 𝑗 7.9), (-3.6 + 𝑗 5.5), and (-3.6 - 𝑗 5.5). Since all the zeros 

were on the left-hand side of the imaginary axis, the system was stable. 

 

Figure 5-7: Pole-zero plot of the characteristic equation when implementing the mechanical 

dynamics and the muscular dynamics parameters computed using the top-down joint torque. The 

zeros are presented as circles, and the poles are presented as crosses.  
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Figure 5-8: Pole-zero plot of the characteristic equation when implementing the mechanical 

dynamics and the muscular dynamics parameters computed using the bottom-up joint torque. The 

zeros are presented as circles, and the poles are presented as crosses. 

 

Figure 5-9: Pole-zero plot of the characteristic equation when implementing the muscular 

dynamics model from the literature [8] and the mechanical dynamics (computed using the bottom-

up joint torque). The zeros are presented as circles, and the poles are presented as crosses. 
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5.5 Simulations  

We have implemented the estimated neural dynamics, the sensorimotor time delay, the mechanical 

dynamics (computed using the bottom-up joint torque), and the muscular dynamics from the 

literature [8] in a closed-loop model (see Section 4.8) for simulations. The GOF and AIC values 

for fitting the non-parametric estimates of the simulated active controller components to the 

parametric equations were 97.7 % and 1.7, respectively. The GOF and AIC values for fitting the 

non-parametric estimates of the simulated active-passive controller components to the parametric 

equations were 99.5 % and 2.0, respectively. The parameters obtained from the simulations are 

presented in Table 5-14. The mean relative difference between the simulated and experimental 

values was small for 𝐾𝐴, 𝐷𝐴, 𝑇𝐷, and 𝐾𝑃2.   

 

Table 5-14. Summary of the simulation results. The experimental values are compared to the 

simulation values for each parameter. The mean relative difference (𝑚𝑑) is presented.   

Parameter Experimental Value Simulation Value 𝑚𝑑 % 

𝐾𝐴 964.5 (208.1) 
𝑁.𝑚

𝑟𝑎𝑑
 954.6 

𝑁.𝑚

𝑟𝑎𝑑
 1.0 

𝐷𝐴 280.0 (61.9) 
𝑁.𝑚.𝑠

𝑟𝑎𝑑
 329.6 

𝑁.𝑚.𝑠

𝑟𝑎𝑑
 15.0 

𝐴𝐴 27.2 (11.1) 
𝑁.𝑚.𝑠2

𝑟𝑎𝑑
 54.3 

𝑁.𝑚.𝑠2

𝑟𝑎𝑑
 50.0 

𝑇𝐷 36 (10) 𝑚𝑠 37 𝑚𝑠 2.7 

𝐾𝑃2 164.5 (72.6) 
𝑁.𝑚.𝑠

𝑟𝑎𝑑
 195.3 

𝑁.𝑚.𝑠

𝑟𝑎𝑑
 15.8 
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6 Discussion 

 

6.1 Overview 

This chapter discusses the adequacy of the methods of the study as well as its results and their 

significance. First, the adequacy of using the applied system identification for quantifying the 

mechanisms of seated balance as well as the adequacy and quality of the neuromusculoskeletal 

time series are discussed. Then, the identified mechanisms of seated balance and the associated 

parameters are characterized in the context of existing work. Finally, the limitations of this study 

are presented for consideration in future studies.  

 

6.2 Adequacy of using System Identification to Quantify the Mechanisms of Seated 

Balance 

Extensive research has been performed to understand the mechanisms of balance during postural 

control. Techniques associated with system identification prove to be a reliable method for 

quantifying the mechanisms of seated and standing balance [20]. Our results support the 

conclusion that system identification can be used to robustly quantify the mechanisms of seated 

balance, and this with reasonable variability across individuals. As previously described (see 

Figure 2-1), the use of system identification requires several choices regarding the feedback 

control model(s) of human postural balance, the external perturbation characteristics, the 

neuromusculoskeletal time series, the identification approach, and the fitting and validation 

criteria. The following sections will demonstrate that the system identification approach 

implemented in this study – along with associated experimental and methodological choices – can 

facilitate the quantification of the mechanisms responsible for the control of seated balance. 

6.2.1 Feedback Control Models of Human Postural Balance 

The utilized feedback control models of human postural balance have varied across studies and 

depended on the research question being addressed. Past studies have focused on identifying the 

human body dynamics, neural dynamics, mechanical dynamics, sensory dynamics, muscular 

dynamics, and sensorimotor time delay in seated and standing balance [8], [17], [20]–[22], [26], 
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[30], [33]–[35]. In addition, one study had proposed additional feedback (force feedback) in the 

feedback control model that incorporates the Golgi tendon force feedback dynamics [8]. Previous 

studies had considered a general framework of postural control balance, where the plant 

represented the human body dynamics, the controller represented the neural dynamics and the 

mechanical dynamics, the feedback represented the sensory dynamics, and the time delays 

represented the sensorimotor time delay. Based on the described body of research, it was decided 

to adhere to the same methodological choices and their configuration in the present work. In fact, 

the sequential order of the mechanisms of seated balance was confirmed with the temporal 

relationships found in this study, as discussed in more detail below. 

The small time delay between the external perturbation and body sway (0.00 to 0.04 s) suggested 

a direct linkage between (1) the external perturbation and (2) the human body and its sway in the 

feedback control model (Figure 4-1), which was in line with previous studies [8], [20], [22]. The 

second largest time delay relative to the perturbation was found between the external perturbation 

and the combined muscle activity (“weighted EMG”) (0.10 to 0.23 s). This agrees with the 

placement of the human body dynamics, sensory dynamics, and neural dynamics between the 

external perturbation and the weighted EMG in the feedback control model. The largest time delay 

relative to the perturbation was found between the external perturbation and the joint torque (0.27 

to 0.32 s for the top-down joint torque, and 0.26 to 0.50 s for the bottom-up joint torque). This 

suggests that the placement of the human body dynamics, sensory dynamics, neural dynamics, 

muscular dynamics, and passive dynamics between the external perturbation and the joint torque 

in the feedback control model was adequate. 

6.2.2 External Perturbation Characteristics 

The external perturbation signal was designed to be a persistent excitation signal [22] and to have 

characteristics recommended and used in the literature. Accordingly, the order of the signal (5,500) 

was much larger than the maximum order of the mechanisms being identified (4th order). In 

addition, the body sway evoked by the external perturbation signal had a root-mean-square (RMS) 

value of approximately 4 degrees, which is four times greater than the RMS of the body sway 

during quiet sitting (approximately 1 degree; data not reported). This, in turn, suggests that the 

power of the external perturbation signal was significantly larger than the power of the noise 

intrinsically present in quiet sitting (e.g., due to breathing and internal movements). As a 
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consequence, the external perturbation in the feedback control model could be treated as the output 

noise, allowing us to implement system identification approaches to quantify mechanisms of 

human sitting control.  

6.2.3 Identification Approach 

Among the closed-loop system identification approaches, only the indirect approach and the joint 

input-output approach can provide reliable estimates of the components in a closed-loop control 

system [20]. In agreement with studies that have reported on non-parametric estimates of the 

mechanisms involved in human stance control [22], [34], [42], the present study chose to 

implement the joint input-output approach. This approach is particularly recommended when two 

or more neuromusculoskeletal time series are used. In the present case, time series for the body 

sway, the weighted EMG, and the joint torque have been reliably identified (see Section 6.3 below) 

using high-quality experimental data together with established theoretical methods.  

6.2.4 Fitting and Validation Criteria 

The objective cost function implemented in this study to fit the non-parametric estimates with the 

parametric equations was informed by previous work that also performed the fitting in the 

frequency domain [240]. As data in the frequency domain can be represented by gain and phase, 

the fitting criteria can be designed to incorporate fitting for both the gain and phase. This ensures 

no bias in the fitting procedure, and that the estimated parametric equations can adequately capture 

the experimental data. The algorithm implemented to optimize the cost function uses a simplex 

search method, which is a direct method that does not include the use of numerical or analytical 

gradients [284]. However, the simplex search method cannot guarantee the detection of the global 

minimum. Therefore, a genetic algorithm was also implemented (data not reported) to verify the 

results obtained with the simplex search method. In the present study, the two algorithms were 

found to converge to similar results, confirming the detection of the global minimum. Lastly, the 

validation criteria implemented in the study (goodness-of-fit, GOF; and Akaike information 

criteria, AIC) were based on previous studies that used them as their standard evaluation criteria 

[8], [26], [41]. 
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6.3 Adequacy and Quality of the Neuromusculoskeletal Time Series  

To quantify the mechanisms involved in seated balance, it is essential to select appropriate 

neuromusculoskeletal time series in response to the external perturbations. As argued in the 

literature, the body sway and activity of relevant muscles can be used to estimate the active 

controller components [20]. Similarly, the body sway and relevant joint torque can be used to 

estimate the active-passive controller components [20]. In the following sections, the choices for 

obtaining these time series are justified and validated.  

6.3.1 Body Sway 

The orientation of the upper body was obtained using a ‘gold standard’ marker-based motion 

capture system. The system was implemented to track the motion of the head-arms-trunk (HAT) 

segment, the pelvis, and the lower body segments. The accuracy of the body sway estimation via 

motion capture was affected by the accuracy of anatomical landmark identification use in marker 

placement [118], [122], [123]. Other potential sources of error include the use of extrapolation to 

reconstruct missing marker samples and the use of previously reported data to estimate body 

segment parameters. 

The placement locations for the markers were based on similar studies in the past (e.g., [279]) and 

the Vicon preparation guidelines. Placement sites chosen were bony anatomical landmarks that 

could be easily identified and that were highly repeatable across participants. All the measures 

were taken to correctly identify the placement sites of the markers. In addition, the motion capture 

system’s accuracy in identifying a marker’s location was approximately 1 mm, which is small 

compared to the body motion observed in this study. The accuracy of the extrapolation to 

reconstruct missing marker samples depended on the length of the gap. The shorter in length, the 

more accurate the reconstruction. Since, in this study, most gaps were shorter than ten frames, 

spline fill was used to reconstruct the missing markers. In cases where reconstruction through 

spline fill was not possible due to larger gap sizes, pattern fill was adopted. Both techniques, the 

spline fill and pattern fill, were able to reconstruct missing marker trajectories with reasonable 

accuracy (as stated by the manufacturer). The body segment parameters were identified following 

the procedure described by DeLeva et al. (1996), using the participant’s height and weight [117]. 

Note that the values proposed by DeLeva et al. (1996) were identified via a similar population and 

are, hence, valid for this study [117]. However, body segment parameters obtained via this method 
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can still be error-prone. It has been suggested that more accurate body segment parameters could 

be obtained through the identification of human body dynamics using system identification [20].   

In addition to the above considerations, the calculation of body sway required choosing a 

representative joint for the single-degree of freedom model. In the literature, studies focusing on 

trunk motion during its flexion/extension have concluded that trunk rotation is most prominent 

between the fifth lumbar vertebra and the first sacral vertebra [285],[286]. Using the fifth lumbar 

vertebra as the single-degree of freedom joint as well as the three-dimensional (3D) center of mass 

(COM) location calculated via motion capture, the body sway in the anterior-posterior direction 

could be computed.  

The body sway of a representative participant (Figure 5-4B) had a range of approximately 10 

degrees when subjected to the external perturbation. In a previous study by Audu et al. (2015), this 

range of body sway was approximately 4 degrees [17]. The difference in the two ranges can be 

attributed to the difference in perturbation signal amplitude and in the instrumentation used to 

deliver the perturbation. In studies by Kiemel et al. (2011) and Pasma et al. (2017), the range of 

body sway in a standing posture was approximately 8 and 2 degrees, respectively [8], [22], when 

subjected to external perturbations. Thus, the range of body sway obtained in our study was 

comparable to some of the ranges obtained in past studies on sitting and standing posture. Since 

body sway obtained in our study was relatively small (<10 degrees), the use of the small angle 

approximation was justified.  

The correlation coefficient (0.29 to 0.61) and the mean squared coherence (0.67 to 0.90) between 

the body sway and the external perturbation time series indicate substantial similarity between the 

two signals in both the time and frequency domains. This suggests that the fluctuation in body 

sway angle is primarily affected by the external perturbation. While other, intrinsic disturbances 

affect body sway as well, they can be assumed to be negligible in comparison to the external 

perturbation.   

6.3.2 Muscle Activity 

Muscle activity was recorded from surface muscles that have been understood to be involved in 

seated balance [202]–[206], [208], [210], [287]. While the obtained electromyography (EMG) data 

contained frequency components between 0 and 1,000 Hz, it has been shown that the meaningful 

frequencies in the EMG data for small motion lies below 10 Hz [72], [210]. Therefore, we chose 
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a low-pass filter with an appropriate cut-off frequency that was relevant to our purposes. Note that 

the implemented filtering method and normalization technique were previously applied in other 

studies (e.g., [210]).  

The comparison of the maximum voluntary contractions (MVC) values between left and right 

muscles had p-values of p > 0.05 for all muscles, suggesting that no significant differences were 

found between left and right MVC values. Similarly, the EMG baseline values for all muscles, 

except the rectus abdominis and biceps femoris, were not found to be significantly different 

between corresponding left and right muscles (p-value of p > 0.05). The low p-value for the EMG 

baseline comparison for the rectus abdominis (p = 0.002) and the biceps femoris (p = 0.042) 

suggests that differences between the left and right baseline values existed. These differences may 

be attributed to the fact that, during baseline testing, a few participants exhibited comparably high 

muscle activity in these muscles for one body side. Small motions of the participant and/or pressing 

the EMG electrodes against the base of support could be potential reasons for higher EMG activity 

in these cases.  

The EMG data for the twelve muscles were combined into one EMG signal based on the technique 

described by Kiemel et al. (2008) [34]. The mean weights obtained across all participants were 

significantly different from zero within a 95% confidence interval. In the literature, the rectus 

abdominis (RA) and external obliques (EO) are involved in trunk stabilization during sudden 

backward movement, whereas the erector spinae are involved in trunk stabilization during sudden 

forward movement [210]. Since we obtained large weights for RA, EO, the erector spinae at the 

ninth thoracic vertebra, and the erector spinae at the third lumbar vertebra, these muscles’ 

contributions may be fundamental in the trunk stabilization process. The two lower limb muscles 

(biceps femoris and rectus femoris), which were indirectly involved in trunk stabilization by 

stabilizing the pelvis, exhibited lower weights compared to the other muscles. The lower weights 

might correspond to a lower relative contribution of these muscles to the trunk stabilization 

process. One reason may be that the lower amplitude of the external perturbation might not demand 

higher activities in the leg muscles.  

The weighted, normalized muscle activity shown in Figure 5-4C had a magnitude between –1 and 

1% of MVC. It has been reported in past studies that the effect of the used normalization technique 

could be seen only in the gain of the estimated frequency response function [34]. Therefore, during 
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the parametric identification of the active controller components, a normalization constant was 

added to the parametric equation to remove the effect of normalization from the estimated 

parameters [34].  

The correlation coefficient (0.35 to 0.68) and the mean squared coherence (0.37 to 0.69) between 

the weighted EMG and the external perturbation time series indicate substantial similarity between 

the two signals in both the time and frequency domains. This suggests that the activity in the 

studied trunk and leg muscles is primarily caused by the external perturbation. While other, 

intrinsic disturbances can affect the muscles’ activity, they can be assumed to be negligible in 

comparison to the external perturbation.   

6.3.3 Joint Torque 

The joint torque was used in the past to quantify the mechanisms of standing balance using system 

identification techniques. However, none of the existing studies had used the joint torque for 

quantifying the mechanisms of seated balance. One reason may be associated with the error that 

accompanies joint torque calculations in general [154], [155]. In this research, the joint torque was 

computed using top-down and bottom-up inverse dynamics, and the mechanisms obtained from 

both approaches were compared. 

6.3.3.1 Top-Down Inverse Dynamics Approach 

The top-down inverse dynamics approach required the body segment parameters and the body’s 

orientation over time (i.e., body sway angle) to estimate the joint torque (“top-down joint torque”). 

The accuracy of the body segment parameters and of the body sway angle have previously been 

discussed (see Section 6.3.1). One challenge with the top-down inverse dynamics approach is that 

it can amplify high-frequency noise in the results due to calculating angular acceleration from the 

body sway time series.  

The top-down joint torque shown in Figure 5-4D had a magnitude between –90 and 85 N·m. The 

joint torque of the upper body required to compensate for the torque due to gravity (for body sway 

of up to 10 degrees), due to the external disturbance, and due to the inertia of the upper body was 

approximately 40 N·m, 20 N·m, and 40 N·m, respectively. Therefore, the range of the computed 

top-down joint torque agrees with the range that was required to stabilize the upper body.  
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The correlation coefficient (–0.75 to –0.53) and the mean squared coherence (0.71 to 0.91) between 

the top-down joint torque and the external perturbation time series indicate substantial similarity 

between the two signals in both the time and frequency domains. This suggests that the top-down 

joint torque was generated mostly due to the external perturbation. While other, intrinsic 

disturbances can affect the top-down joint torque, they can be assumed to be negligible in 

comparison to the external perturbation. 

6.3.3.2 Bottom-up Inverse Dynamics Approach 

The bottom-up inverse dynamics approach required the estimation of the forces and moment arms 

in the relevant directions to calculate the joint torque (“bottom-up joint torque”). In this study, the 

forces were obtained from the force plate, and the moment arms were obtained via the force plate 

and motion capture system. The accuracy of the force plate data was discussed previously (see 

Section 4.4).  

The top-down joint torque as shown in Figure 5-4D had a magnitude between –90 and 85 N·m, 

and the bottom-up joint torque as shown in Figure 5-4E had a magnitude between -9 and 13 N·m. 

Similar differences between the magnitudes of the top-down and the bottom-up joint torques were 

observed in past studies, which were attributed to the (in)accuracy in the body segment parameters 

and potential offsets in the center of pressure location [154]. 

The correlation coefficient (–0.61 to –0.17) and the mean squared coherence (0.61 to 0.90) between 

the bottom-up joint torque and the external perturbation signal indicate substantial similarity 

between the two signals in the time and frequency domains. This suggests that the bottom-up joint 

torque was mostly generated due to the external perturbation. Other intrinsic disturbances effect 

on the bottom-up joint torque were present. While other, intrinsic disturbances can affect the 

bottom-up joint torque, they can be assumed to be negligible in comparison to the external 

perturbation.    

 

6.4 Quantification of the Mechanisms of Seated Balance 

Non-parametric and parametric estimates of the mechanisms of seated balance were obtained in 

this study. The non-parametric estimates exhibited low variability across participants, and the 

parametric estimates were stable as verified by the stability analysis.  
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6.4.1 Non-Parametric Estimates 

6.4.1.1 Active Controller Components 

The frequency response function (FRF) of the active controller components shown in Figure 5-5A 

and 5-5B consisted of the neural dynamics and the sensorimotor time delay. The trend in the gain 

of the frequency response suggested neural dynamics consistent with proportional-derivative (PD) 

control [21], [22], [178]. The saturation in the phase of the frequency response implied the presence 

of a time delay in the active feedback loop. The fact that the phase in the active control component 

settled at approximately 110 degrees suggested a deviation from PD control, which indicated the 

presence of higher-order terms in the neural dynamics.  

A previous study identifying the active feedback component for upright stance computed the open-

loop FRF between the trunk segment angles and the weighted EMG signals of the hip and ankle 

muscles. The gain and phase of the frequency response were almost constant for lower frequencies. 

With increasing frequency, also the gain and phase increased. The phase reached a maximum of 

approximately 100 degrees at a frequency of 1.2 Hz, and fell for higher frequencies [22]. In another 

study from the same group that identified the postural control system, the open-loop FRF between 

the trunk segment angles and the weighted EMG signals of the hip and lower trunk muscles were 

computed. Similar trends in the gain and phase of the FRF were obtained as in the present study 

[42]. 

By comparing the non-parametric estimates of the active controller components between standing 

and sitting balance, it is possible to assess, and quantify, the similarities and differences in the 

active control strategy between the two postures. In both sitting and standing, the brain relies on 

the body’s displacement and velocity information in the active feedback loop. Since this loop is 

affected by a time delay for both standing and seated posture, active feedback control is not an 

instantaneous mechanism, but one that takes time to execute. The presence of additional, higher-

order terms in both standing and seated balance further supports the notion that commonalities 

exist between these two control applications.  

6.4.1.2 Active-Passive Controller Components 

The FRF of the active-passive controller components, obtained via the top-down and bottom-up 

joint torques are shown in Figure 5-5C to 5-5F. The active-passive controller components 

consisted of the neural dynamics, the mechanical dynamics, the muscular dynamics, and the 
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sensorimotor time delay. The trend in the gain of the frequency response of the active-passive 

control components suggested feedback control consistent with PD control. The saturation in the 

phase of the frequency response of the active-passive control components implied the presence of 

a time delay in the feedback loop. The higher gain, compared to the FRF of the active control 

component, suggests the presence of passive feedback control. The phase of the frequency 

response obtained from the top-down joint torque remained almost constant at 180 degrees, 

suggesting that the joint torque was consistently out of phase with the body sway. This result agrees 

with the fact that the joint torque is generated to counter the body sway movement [20]. The 

frequency response obtained from the bottom-up joint torque had an almost constant phase of 180 

degrees for lower frequencies, agreeing with the frequency response results for the top-down joint 

torque. However, for higher frequencies, the phase of the frequency response for the bottom-up 

joint torque increased steadily, suggesting the presence of higher-order terms.  

Based on the literature reviewed in this study, no previous study has reported the frequency 

response of the active-passive control components in seated and standing balance. As mentioned 

earlier, this may be due to errors associated with the estimation of joint torques [154]. The authors 

recommend more research into the estimation of joint torques, for the purpose of accurate 

quantification of the active-passive controller components. 

6.4.2 Parametric Estimates 

The high GOF and low AIC values suggest the identified parametric models of the active and 

active-passive control components fit the non-parametric estimates well. The high variance-

accounted-for (VAF) for the active-passive control components indicate adequate prediction of the 

top-down joint torque from body sway. The VAF for the active controller components was not 

high, possibly due to the noise in the EMG data that cannot be accounted for by linear functions 

implemented in this study. Similarly, the VAF of the active-passive controller components 

calculated via the bottom-up joint torque is not high, possibly due to the noise in the center of 

pressure measurements that cannot be accounted for by linear functions implemented in this study. 

To account for noise, advanced model fitting techniques, e.g., stochastic or non-linear modelling, 

may be needed. 



123 
 

6.4.2.1 Neural Dynamics 

The neural dynamics were identified as a PD controller with acceleration feedback. Previous work 

on standing and sitting balance has modelled the neural dynamics using a proportional-integrative-

derivative (PID) or PD controller [17], [189]. The additional acceleration feedback and the absence 

of integral feedback in the neural dynamics have been reported by another study [8]. In line with 

past efforts, the use of a proportional and derivative term suggests that the body’s displacement 

and velocity information is critical for maintaining balance. The use of acceleration feedback 

suggests a strong consideration of the body’s inertia when humans maintain balance [192], [193].  

Pasma et al. (2017) obtained mean values of 908.2 
𝑁∙𝑚

𝑟𝑎𝑑
, 591.7 

𝑁∙𝑚∙𝑠

𝑟𝑎𝑑
, and 89.1 

𝑁∙𝑚∙𝑠2

𝑟𝑎𝑑
 for the 

proportional, derivative, and acceleration feedback constants, respectively [8]. Peterka et al. (2002) 

obtained proportional and derivative constants within the ranges of 859 to 1432 
𝑁∙𝑚

𝑟𝑎𝑑
 and 286 to 

573 
𝑁∙𝑚∙𝑠

𝑟𝑎𝑑
, respectively [21]. As such, the parameter values obtained in the present study were 

similar to the abovementioned results. However, the values obtained by Audu et al. (2015) were 

quite different than the present results [17], possibly due to the difference in model fitting 

procedure.   

6.4.2.2 Sensorimotor Time Delay 

The sensorimotor time delay was identified as an exponential decay function, which was in 

agreement with findings of previous studies [8], [17], [20], [22], [26]. The mean value of the 

sensorimotor delay obtained by Pasma et al. (2017) was 0.10 s [8]. The sensorimotor delay 

obtained by Peterka et al. (2002) was in the range of 0.10 to 0.25 s [21], whereas Audu et al. (2015) 

reported a range of 0.10 to 0.15 s [17]. As sitting balance requires shorter times than standing 

balance to transfer information from the sensory systems to the brain and from the brain to the 

muscles, it is reasonable that the delay obtained in this study was shorter (0.036 s). 

6.4.2.3 Mechanical Dynamics 

The mechanical dynamics were identified as a PD controller and a proportional controller using 

the top-down and bottom-up joint torques, respectively. In the subsequent stability analysis, it was 

found, however, that the PD controller produced an unstable system, which was further verified in 

the simulations. The proportional controller produced a stable system when combined with the 
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muscular dynamics reported in the literature (see below). This combination was used for further 

analyses.    

The mean values for the proportional constant, as obtained by Pasma et al. (2017), Peterka et al. 

(2002), and Audu et al. (2015), were 94.4 
𝑁∙𝑚

𝑟𝑎𝑑
, 1.6 

𝑁∙𝑚

𝑟𝑎𝑑
, and 3.0 

𝑁∙𝑚

𝑟𝑎𝑑
, respectively [8], [17], [21]. 

The proportional constant reported in our study (164.5 
𝑁∙𝑚

𝑟𝑎𝑑
) was higher than the above values that 

were reported for the standing posture. This may be due to the difference in standing and sitting 

postures, considering that sitting posture is understood to be more stable and stiffer than standing 

posture [29]. The non-identification of the derivative term in the mechanical dynamics could be 

due to the low power in the lower frequency content (< 0.1 Hz) of the external perturbation signal 

that was not able to excite all the relevant characteristics of the mechanical dynamics. It should 

also be noted that past studies have reported a small value for the derivative constant (< 5 
𝑁∙𝑚∙𝑠

𝑟𝑎𝑑
); 

hence, a similarly small value may have not been captured in the model fitting.   

6.4.2.4 Muscular Dynamics 

The muscular dynamics calculated from the active-passive controller estimates via the top-down 

and bottom-up joint torques had a second- and third-order transfer function, respectively. 

Similarly, past studies have identified the muscular dynamics as a second-order critically damped 

system [8], [240], [242]. In the stability analysis, the muscular dynamics obtained via both the top-

down and bottom-up joint torques produced, however, an unstable system, which was further 

confirmed in the simulations. Therefore, in the subsequent analysis, a second-order critically 

damped system reported in the literature was used as the muscular dynamics.  

Both the top-down and bottom-up joint torques were not able to yield stable muscular dynamics. 

In fact, the muscular dynamics may not have been identified correctly due to errors in the joint 

torque estimation (see Section 6.3.3). One solution may be to use better optimization techniques 

(as described in [154]) to obtain more correct estimates of the joint torque and, in turn, identify the 

active-passive controller components for better prediction of the muscular dynamics.  
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6.5 Robustness of the Obtained Parameters 

The neural dynamics, the sensorimotor time delay, and the mechanical dynamics identified in this 

study, along with the muscular dynamics reported in the literature, were implemented in a closed-

loop feedback model (Figure 4-13) in Simulink. The model produced, when used in simulations, 

a stable response for the estimated models of the neural dynamics, the sensorimotor time delay, 

and the mechanical dynamics. The high GOF and low AIC values suggest an excellent fit of the 

parametric equations to the non-parametric estimates of the simulated active and active-passive 

controller components. The low mean relative differences for 𝐾𝐴, 𝐷𝐴, 𝑇𝐷, and 𝐾𝑃2 suggest that the 

experimentally estimated parameters were robust. The high mean relative differences for 𝐴𝐴 

suggest the need for further work when estimating this parameter.  

 

6.6 Limitations of the Thesis Research 

The performed research had a number of limitations in the methodology and processing of the 

data. Human motion tracking when using marker-based motion capture is affected by variations 

in marker placement. Accuracy in locating the bony landmarks and placing the markers on the 

same location across participants required intense practicing. While the experimenters were well 

trained before placing the markers, perfect accuracy in placing the markers cannot be achieved. 

The EMG electrodes used in this study were surface electrodes that can register electrical activity 

from nearby muscles or other sources. More accurate measurements of muscle activity can be 

obtained via other types of electrodes, e.g., indwelling electrodes. However, these techniques are 

invasive and are accompanied by other limitations. Each participant’s weight acquired by self-

reporting may be affected by errors, which can be eliminated by measuring each participant’s 

weight in the actual experiments (e.g., via a scale or the force plate).  

The joint torque estimation using both top-down and bottom-up inverse dynamics was prone to 

errors. The top-down inverse dynamics approach was primarily affected by inaccuracies in the 

body segment parameters. However, there is no direct measure to identify body segment 

parameters in living humans. The bottom-up inverse dynamics approach was primarily affected 

by biases in the center of pressure estimation. The combination of the EMG measurements into a 

single muscle activity signal can lead to an underrepresentation of some muscles, which may 
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negatively impact the estimation of the neural dynamics. Single-input-multiple-output models can 

be adapted to ensure equal representation of each muscle in the neural dynamics estimation.  

As mentioned above, the neuromusculoskeletal time series included errors that propagate within 

the estimations of the active and active-passive controller components. The uncertainty in the joint 

torque identification can lead to unreliable estimates of the muscular and mechanical dynamics. 

More reliable estimates of the muscular and mechanical dynamics can be obtained by including 

sensory noise in the identification process [20]. 
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7 Conclusion 

 

The ability to balance the upper body during sitting is required to perform activities of daily living 

and to counteract internal and external disturbances. Individuals affected by seated imbalance can 

benefit from therapies and targeted interventions. However, suggesting an optimal therapy or 

intervention that facilitates speedy recovery of affected individuals is challenging. Motivated by 

the need to optimize existing therapies and interventions based on a mechanistic understanding of 

the severity of seated imbalance, this work set out to quantify the control mechanisms of seated 

balance in non-disabled individuals. The obtained knowledge can shed light on the 

neuromechanical control structure and associated components used to stabilize the upper body 

during sitting. Furthermore, it can be used as a normative benchmark for assessing individuals 

with balance impairments, with the aim of optimizing therapies and targeted interventions.  

In this study, the control mechanisms of seated balance were quantified using system 

identification. The active controller components provided estimates of the neural dynamics and 

the sensorimotor time delay, whereas the active-passive controller components provided estimates 

of the mechanical dynamics and muscular dynamics. The low across-participant variability of the 

non-parametric estimates of the active and active-passive control components implies reliability 

of the proposed method to quantify seated balance control. On the one hand, the non-parametric 

estimates of the active controller components suggest neural dynamics consistent with a 

proportional-derivative controller that are furthermore affected by a sensorimotor time delay. On 

the other hand, the non-parametric estimates of the active-passive controller components suggest 

a phase reversal between the body sway and joint torque, as well as the presence of passive 

feedback in the control loop.   

The parametric, active control estimates indicate that the brain utilizes the body’s displacement, 

velocity, and acceleration information to control seated balance, whereas the parametric, passive 

control estimates indicate that the body’s mechanical contributions to the control goal are linked 

to the body’s displacement. Furthermore, active control was found to be delayed, whereas passive 

control occurred instantaneously.   



128 
 

The models of the neural dynamics, the mechanical dynamics, and the sensorimotor time delay 

produce a stable response in the closed-loop system. In other words, using the identified models 

of the control mechanisms of seated balance, one can stabilize a single-link inverted pendulum 

subjected to gravity and external disturbances. Since upper body dynamics can be approximated 

by the dynamics of a single-link inverted pendulum, the identified control mechanisms can be 

thought to stabilize the upper body as well. However, further research is required to test the 

efficacy of the identified control mechanisms in stabilizing the human upper body.  

Having obtained parametric estimates of the neural dynamics, the mechanical dynamics, and the 

sensorimotor time delay in non-disabled individuals, we will be able to quantify and, particularly 

characterize, the mechanisms of seated balance in impaired populations. It is expected that affected 

individuals will demonstrate deviations from the obtained parameters. Associated insights can be 

used to specifically target the identified mechanisms in the affected individuals. In this light, the 

presented work has made significant contributions toward a mechanistic understanding of the 

mechanisms of seated balance, such that the insights can be used in future, clinically relevant 

applications. 

 

7.1 Recommendation for Future Work 

In a fundamental context, one focus of future work could be on assessing the reliability of the 

obtained parameters using another, larger sample of non-disabled individuals. Also, our 

fundamental knowledge on seated balance control could be further advanced by estimating reliable 

estimates of the muscular dynamics, sensory dynamics, and human body dynamics in non-disabled 

individuals using the described system identification techniques.  

In a more clinical context, the parameters obtained in this work should be characterized in 

comparison to those obtained in the elderly or a population affected by trunk instability (e.g., stroke 

survivors). Such comparison would provide us with more insights into the seated balance control 

mechanisms of both non-disabled and disabled individuals. It should also be noted that the control 

mechanisms obtained in this study are restricted to seated balance in the anterior-posterior 

direction. Seated balance in other directions (e.g., medio-lateral direction) could be assessed, for 

the purpose of assessing overall trunk stabilization. Finally, wearable technologies (e.g., inertial 
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measurement units or wireless electromyography) could be used instead of laboratory equipment 

to develop feasible out-of-lab assessment protocols for the clinical context.      

In a third domain, the results obtained in this work could be used to develop assistive technologies, 

particularly closed-loop control schemes for delivering functional electrical stimulation (FES). 

The neural dynamics obtained in this research may provide controller gain estimates mimicking 

physiological behavior that could reduce fatigue in FES applications for trunk control. However, 

before applying the presented findings in an FES system, more experimental research involving 

FES is required. 
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Appendix II – Consent form 
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Appendix III – Force plate characterization 

The accuracy in the force plate center of pressure (COP) measurements and the force 

measurements in perpendicular direction were assessed before the study. A self-made grid was 

placed on top of the force plate with the grid size of 1 cm × 1 cm. Each intersections of the grid 

was pushed with a manual force of more than 100 N and computed the COP from the force plate 

measurements as shown in Table III-1. Discrete weights in the range of 4 to 132 kg were placed 

on top of the force plate and measured the weight from the force plate as shown in Table III.2. The 

mean error (standard deviation, SD) in x- and y-direction component of the COP was 0.23 (0.11) 

and 0.12 (0.08) cm, respectively. The mean perpendicular force (SD) as a percentage of applied 

load was 1.31 (1.19) %.   
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Table III-1. Accuracy of center of pressure measured from the force plate.  

Actual x (cm) Actual y (cm) Measured x (cm) Measured y (cm) Error x (cm) Error y (cm) 

4 4 4.34 4.05 0.34 0.05 

8 8 8.28 8.21 0.28 0.21 

12 12 12.15 12.25 0.15 0.25 

16 16 16.05 16.05 0.05 0.05 

20 20 19.73 19.97 0.27 0.03 

-4 -4 -3.72 -4.12 0.28 0.12 

-8 -8 -7.80 -8.25 0.20 0.25 

-12 -12 -11.75 -12.16 0.25 0.16 

-16 -16 -15.60 -16.08 0.40 0.08 

-20 -20 -19.51 -19.94 0.49 0.06 

4 -4 4.22 -4.02 0.22 0.02 

8 -8 8.30 -8.16 0.30 0.16 

12 -12 12.21 -12.10 0.21 0.10 

16 -16 16.17 -15.85 0.17 0.15 

20 -20 19.98 -19.88 0.02 0.12 

-4 4 -3.74 3.99 0.26 0.01 

-8 8 -7.82 7.98 0.18 0.02 

-12 12 -11.87 11.90 0.13 0.10 

-16 16 -15.71 15.85 0.29 0.15 

-20 20 -19.76 19.72 0.24 0.28 
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Table III-2. Accuracy of the perpendicular direction force measured from the force plate. 

Actual weight (kg) Actual weight (N) Measured weight (N) Error (N) Error % 

4.9 48.07 46.10 1.97 4.10 

10.1 99.08 99.19 0.11 0.11 

15.0 147.15 145.98 1.17 0.79 

10.1 99.08 99.20 0.12 0.12 

20.2 198.16 198.42 0.26 0.13 

22.7 222.69 225.25 2.57 1.15 

23.5 230.54 234.41 3.88 1.68 

65.4 641.57 652.68 11.11 1.73 

70.1 687.68 699.17 11.49 1.67 

131.8 1292.96 1314.00 21.04 1.63 
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Appendix IV – Identifying the inertial parameters of the customized force plate in the 

anterior-posterior direction 

Force plate under motion causes erroneous measurements of the forces and moments. It is desirable 

to remove the inertial components from the force plate measurements. Force plate can be 

considered to be a rigid body and Newton laws of motion are applicable to it. Consider a case 

where the force plate is accelerated in the positive y-direction. This causes a pseudo-force (𝐹𝑦) 

acting at the center of mass (COM) of customized force plate in negative y-direction as shown in 

Figure IV-1. In addition, the pseudo-force produce a moment (𝜏x) in the negative x direction with 

the axis of rotation at force plate geometric center. As a result of acceleration of the customized 

force plate, the pseudo-force and the moment measured by the sensors of the force plate in the 

anterior-posterior (A-P) direction and medio-lateral (M-L) direction, respectively can be described 

by the Equations (93-94), where 𝑚𝑎𝑠𝑠 is the mass of the force plate and stool; and 𝑑 is the distance 

between force plate geometric center and COM. 

𝐹𝑦 = 𝑚𝑎𝑠𝑠 ∗ 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛                                                 Eq. (93) 

𝜏𝑥 =  𝐹𝑦 ∗ 𝑑                                                              Eq. (94) 

 

 

Figure IV-1. Force plate setup with its center of mass (COM) location. 𝐹𝑦 is the pseudo force 

acting at the COM of force plate and stool. 
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The force plate was placed on the Computer-Assisted Rehabilitation Environment (CAREN) 

platform as shown in Figure 4-11A. The A-P perturbations were applied to the customized force 

plate similar to those applied in our study on human participants. The force plate had no weight 

on top of it. The forces and moments readings were measured from the force plate. The acceleration 

of the force plate was calculated from the motion capture markers placed on top of the force plate. 

Three trials of 240 s each were conducted, with independent perturbation signals according to the 

procedure mentioned by Preuss et al. (2004). 

The external perturbation’s frequency content was in the range of 0.1 to 5 Hz (designed by us) and 

considering the force plate to be an LTI system, similar frequencies were expected to be present 

in the force plate data. The force plate data was filtered by an 8th order Butterworth filter with a 

cut-off frequency of 10 Hz. A 1st order Autoregressive Exogenous (ARX) model is implemented 

to fit the data. The model implements least square estimation to calculate the polynomials A and 

B. The transfer function for ARX model is shown in Equation (95).  

 𝐴𝑦𝑡 = 𝐵𝑥𝑡 + 𝑒𝑡                                                     Eq. (95) 

For calculating the mass of the customized force plate as mentioned in Equation (93), the input 

(𝑥𝑡) was considered to be the acceleration of the force plate and output (𝑦𝑡) was the y-direction 

component of the force measured from the force plate. For calculating the moment arm (d) as 

mentioned in Equation (94), input (𝑥𝑡) was considered to be the acceleration of the force plate and 

output (𝑦𝑡) was the x-direction component of the moment measured from the force plate.  B was 

considered to be a first order polynomial and A was considered to be a zeroth order polynomial 

for both mass and moment arm calculations. The first two trial data were utilized to estimate the 

values of the variables, while the third trial was used to validate the values.   

Table IV-1 presents the inertial parameters values obtained from the experiment. The value of 

mass of the customized force plate was predicted to be 49.77 Kg and the moment arm was 

predicted to be 0.12 m. The model fitting percentages for calculation of mass and moment arm 

were 95.9 % and 88.9 %, respectively. 

The high model fitting percentages suggest a good fit of the ARX model on the data. This also 

supports that ARX model could be used to predict the pseudo-force and moment from the 
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acceleration of the force plate. Therefore, enabling the removal of inertial components from the 

force plate under motion. 

 

Table IV-1. Inertial parameters of the customized FP. 

Parameter Value Model Fitting Percentage 

Mass (m) 49.77 ± 0.10 Kg 95.92 % 

Moment arm (d) 0.12 ± 0.01 m 88.90 % 

 

 

 


