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Abstract

This thesis investigates the use of general value functions for detecting anoma-

lous behavior in machines. Identifying abnormal behavior is critical for ensur-

ing the safety and reliability of any machine or industrial process. When the

cause of these anomalies is due to accumulated wear on components over time,

maintenance needs to be conducted before failure occurs. The goal of a con-

dition monitoring system is to identify faults that precede machine failure,

using only data collected during regular machine operation. Here, we develop

a method of using general value functions for the semi-supervised learning

problem of machine fault detection.

This method of time series anomaly detection, named General Value Func-

tion Outlier Detection (GVFOD), is compared to nine existing methods of

novelty detection, including eight multivariate techniques, and one method for

time series data. We evaluate these algorithms on a machine failure dataset,

collected from a robotic arm previously created at the University of Alberta.

The dataset consists overwhelmingly of data collected under normal opera-

tion, in addition to five different types of artificially induced failure. It was

found that GVFOD outperforms all other algorithms by mean F1-score when

sufficient training data is provided, along with fault data for hyperparameter

selection. At smaller training sizes, GVFOD performs similarly to multivari-

ate outlier detection algorithms. When default hyperparameters are used, or

when selected through expert knowledge without the use of fault data, it was

found that GVFOD continues to outperform other algorithms with sufficient
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training data, whereas some other algorithms suffer.

Furthermore, a simulation of the robot arm setup was developed using a

mechanistic model, and parameter search was used to find unknown material

properties and experimental conditions. Using this simulator, gradual failure

data was generated and used to compare the performance of GVFOD, UDE

(Unexpected Demon Error), and LOF (Local Outlier Factor). These results

help us understand why GVFOD is superior to other methods for machine fault

detection; the tracking behavior of GVFOD creates a boundary of normality

tailored to the tail-end of training data. This allows GVFOD to better identify

future normal data, while maintaining its ability to discriminate data arising

from faulty operation.

This work demonstrates the challenges of creating effective data-driven

machine fault detection systems, and how GVFOD and reinforcement-learning

methods are especially suitable for this task. This is a significant improvement

upon existing methods of anomaly detection for industrial machine reliability,

and contributes to the overall goal of improved system safety and operational

efficiency. However, the methods presented in this thesis are generic, and are

easily extensible to other fields where anomaly detection in time series data is

desired.
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Preface

The robot arm simulator in Chapter 4 of this thesis was originally developed

by Anthony Maltais and Prof. Michael Lipsett of the Mechanical Engineering

Department at the University of Alberta. The model was translated from its

original MATLAB code to a Python implementation by myself. The modifi-

cations to the model, as well as control, and experimental results were of my

own work.

I intend to publish the GVFOD algorithm and its empirical results from

Chapter 3 in the future.
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Chapter 1

Introduction

1.1 Introduction to Fault Detection

One of the greatest impediments to the automated production of goods is

equipment malfunction. In the 200 years since the first industrial revolution,

machines have taken over what was previously done by hand, at a scale that

would have been impossible with only human labour. With these gargantuan

advances, the cost of downtime due to equipment failure has grown propor-

tionally, and can now reach upwards of millions of dollars per hour [34][5].

Ensuring reliability of industrial processes starts with good process design,

but given sufficient time, even the best-engineered machines will deteriorate.

Maintenance is necessary to keep the equipment in a good state of repair.

Two classic maintenance techniques are breakdown maintenance and sched-

uled maintenance [21]. Breakdown maintenance occurs when machines are

fixed after they have broken. Scheduled maintenance occurs periodically, with

parts preventatively replaced regardless of their state of wear. Breakdown

maintenance, often employed for consumer products and systems with low

cost of failure, can lead to extended downtimes and increased costs since the

operator needs to react to an unexpected event. There is a loss of revenue

from delayed production, and there may be damage caused to nearby ma-

chinery and injury to personnel. Scheduled maintenance, often seen in higher

cost-of-failure systems, can lead to an excess of servicing costs, since parts are

replaced before it is necessary, and the process is interrupted to facilitate this

service. It also requires up-front engineering costs, where the life of a compo-
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nent needs to be estimated using expert knowledge. Scheduled maintenance

does not consider the variance in individual component quality, nor the inten-

sity and environment of its use, instead just considering a worst-case scenario

and compounding the risk into a general safety factor.

In the space between the extremes of breakdown and scheduled main-

tenance, is condition-based maintenance (CBM). CBM utilizes information

about the current condition of the machinery to determine the necessary main-

tenance activities. The sensors used for CBM can be targeted for specific

modes of failure. For example, a vibration sensor can be installed on a bear-

ing, and a strain gauge can be installed on a beam to measure the deflection

under load. However, we want to investigate the utility of sensors not designed

for condition monitoring towards the goal of CBM. These sensors may exist for

a variety of reasons, including feedback control, machine calibration, or if the

sensory output was the intended output of the process. If the existing sensors

on a machine can be used to monitor its health, CBM can be retrofitted to

old machines. Likewise, these same algorithms could be used to achieve cost

efficient CBM on new machines, with no need for additional sensors.

Jardine et al . [21] describes the CBM methodology in three major parts:

1. Data Acquisition, to collect relevant data for system health

2. Data Processing, to handle and transform the data

3. Maintenance Decision-Making, to analyze the data to recommend effi-

cient maintenance

This holistic view of machine maintenance encompasses more than just fault

detection. The first step, data acquisition, includes collecting condition mon-

itoring (CM) data as well as event data (times and details of maintenance

activities, operational events, etc.). With modern technology, condition moni-

toring data can be stored and processed automatically. Event data still needs

to be collected with some level of human interaction, but is crucial for feedback

for the condition monitoring system; in a machine learning context, event data

can act as labels, used for supervised/semi-supervised learning. The collected
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data is stored, and made available for data processing. Historically, event

data has been used extensively in the field of reliability analysis. The second

step, data processing, transforms raw condition monitoring data into a form

more useful for maintenance decision making. The possibilities include no

processing, fourier transforms into the frequency domain, some combination

of time-frequency analysis using wavelets, among others. A time series analy-

sis technique like Auto-Regressive Integrated Moving Average (ARIMA) can

be used, to find a set of coefficients matching the ARIMA model. Statistical

methods like principal component analysis (PCA) and independent compo-

nent analysis (ICA) can be used to reduce the dimensionality of condition

monitoring data. After these transformations are completed, the processed

data can be used for maintenance decision making. This consists of two major

components:

• Fault Diagnostics, including

– Fault Detection

– Fault Classification

• Fault Prognostics

Fault detection, the topic of this thesis, considers the question “Is there some-

thing wrong with the machine?”, as opposed to fault classification, which con-

siders “What is the problem with the machine?”. Fault prognostics is a more

difficult problem for CBM, asking questions like “What is the remaining useful

life (RUL) of the machine?” and “What is the probability of failure (POF) on

the machine within the next week/month/year etc.?”. The data requirements

of each task in maintenance decision making differ substantially. Fault de-

tection requires only normal-operation data to learn from. Fault classification

requires either CM data under different faulty situations, or expert knowledge,

in order to determine the type of failure. Meanwhile, fault prognostics requires

event data, in combination with expert knowledge in order to accurately find

the RUL or POF.
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In this thesis, we define machine fault and machine failure as follows. Ma-

chine failure has occurred when the machine has worn down until it can no

longer perform its task to a satisfactory level. Machine fault is an event that

indicates machine failure is incipient. Two ideas are implied in this definition

of machine failure. Firstly, machine degradation is gradual. A sudden failure,

such as electronic damage from a power surge, or physical damage from an

external impact, does not have any reasonable warning signs that a CBM pro-

gram could detect. Secondly, machine failure can occur without a catastrophic

stoppage in the process. If the product quality has dropped beyond an accept-

able quality, failure has occurred. For example, in steel plate production, if

steel plate thicknesses are beyond tolerable limits, failure has occurred, even

though the process has not stopped.

1.2 State of the Art and Limitations

This thesis investigates the use of condition monitoring (CM) data for fault

detection. An overview of current methods and their limitations is described

here.

1.2.1 Techniques for Fault Detection

Engineered fault detection methods are the most direct methods of fault de-

tection. In these applications, a sensor is specifically installed for the purpose

of detecting faulty behaviour arising from a single failure mode. For example,

for a component where there is a risk of overheating, a thermocouple can be

installed and monitored. For a shaft or rotating assembly that is known to

become unbalanced over time, a vibration sensor can be installed to ensure

that the imbalance remains tolerable. Engineered fault detection methods are

highly explainable, which consequently makes it relatively simple to set limits

on acceptable behaviour using expert knowledge. The utility of engineered

fault detection goes beyond maintenance, and can be used to guarantee the

safety of a process against specific modes of failure. If safe operating limits

are exceeded, alarms can be raised, and if necessary, the machine can be shut
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down. Certain systems have automatic shut-down procedures, bringing the

entire process to a safe halt without human intervention. However, engineered

fault detection is not cheap. By definition, these sensors can be removed from

the machine and it would still be operable. Likewise, there is a development

cost for these targeted maintenance and condition monitoring systems, and it

may be inconvenient to retrofit them into existing machines. Finally, a tar-

geted fault detection method is precise - it likely will not be able to detect a

fault that was not anticipated in the design phase.

Data-driven fault detection methods are an approach to fault detection

through indirect means. This usually means that the machine is more afford-

able. Two possibilities for data-driven fault detection exist - model-based, and

model-free. A model-based fault detection system uses a physics-based model

of the machine in order to simulate its behaviour in real-time. Condition

monitoring data, collected on the real machine, is compared with simulator

values. Discrepancies between the model and empirical data can be explained

through sensor error, random noise, or most critically - the dynamics of the

machine have changed. This is a potential indicator of failure. Although not

as explicit as engineered fault detection, there is some explainability, and the

source of the fault could be interpreted depending on which sensors are be-

having anomalously. Developing a simulator is difficult, and requires, at the

minimum, extensive expert knowledge. For a simple machine, we highlight

specific challenges for developing a simulator in Chapter 4. For a complex

system, it may be completely unfeasible to develop a simulator. This can

be caused by having too many unidentifiable parameters in the model. Or,

it can be too computationally expensive to evaluate the model in real-time.

Model-free methods, (used synonymously in this thesis with machine learning

methods), are an alternative to model-based methods.

1.2.2 Machine Learning for Fault Detection

Using machine learning and outlier detection methods for fault detection in

machines was previously studied in Riazi et al . [35] [36]. Not only did Riazi

et al . provide a comprehensive review of this subject, they also created an
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empirical dataset suitable for evaluating fault detection algorithms. Outlier

detection is a semi-supervised learning technique. Given a dataset consisting

of normal exemplars, the algorithm draws a boundary of normality. When

presented with test data, it determines whether that new data is within or

beyond this boundary of normality. An overview of the algorithms tested in

this thesis is available in 2.2.1. In general, Riazi found that all outlier detection

algorithms could differentiate between faulty and normal operation [36], with

no statistically significant difference in performance between them. This thesis

complements and builds upon the findings in Riazi et al .

There are two limitations to the previous study that deserve further con-

sideration. Firstly, Riazi [36] considers each sample from the normal operating

condition to be independent and identically distributed. However, for real ma-

chinery, there can be drift between a number of normal operating conditions,

and training on past normal data may not generalize well to future normal

operating data. Secondly, all the outlier detection algorithms tested were gen-

eral multivariate methods, and not explicitly designed for time series. For this

study, each data sample consists of time series of equal length from multiple

sensors. If the elements in each sample were reordered, multivariate outlier

detection algorithms would perform identically. Intuitively, there is more in-

formation to be exploited, which we explore in this study.

1.3 Thesis Statement and Contributions

This thesis seeks to answer the following question

Can we use general value functions and temporal difference learning with

native data to detect faults and assess machine health in machines?

Native data is defined here as condition monitoring data collected from sen-

sors that were not installed specifically for engineered fault detection. In the

process of answering this research question, we have made the following con-

tributions.

We developed the General Value Function Outlier Detection (GVFOD)

algorithm, a general value function (GVF) based outlier detection technique
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specifically designed for predicting machine failure. The algorithm is based

upon surprise and unexpected demon error (UDE) [48]. UDE was shown to

be successful in detecting local additive outliers in machine operating data

[15]. By adapting that algorithm to use a fixed model, it is better suited to

detect machine faults, which present as innovative outliers. This algorithm is

introduced in Chapter 3.

We compare this new algorithm with existing outlier detection algorithms

for the purposes of machine fault detection. Instead of running experiments

with shuffled data and k-folds cross-validation, we have elected to evaluate

algorithms based upon how they would be used in the real world - by training

on historical data, and testing on future data. This accomplishes two goals

- it enables us to use reinforcement learning algorithms like GVFOD, which

requires temporal continuity (a “stream of experience”), and it lets us evaluate

outlier detection methods in a setting that can be more challenging, due to

non-stationarity in the machine’s behaviour.

Previous contributors to this research agreement have created a robot-arm

testbench, along with a preliminary dynamical model describing its operation.

We completed the development of this model for the purposes of generating

simulated data suitable for evaluating fault detection algorithms. The model

consists of twenty parameters, all of which have physical meaning, which can

modified in order to simulate real machine failure. The process of developing

this model is of potential utility to researchers and engineers who may have an

idea of how to model their machinery, but without the ability to test everything

empirically. Instead, unknown parameters are learned from data.

1.4 Thesis Layout and Structure

The following chapters of this thesis are laid out in the following manner.

Chapter 2 goes over the necessary information required to understand this

thesis. Included within is an explanation of the problem of machine failure,

the multivariate and time series outlier detection algorithms which we use to

predict failure, an introduction to reinforcement learning and general value

7



functions, and an overview of testbench development previously by others, on

which our own developments build upon.

In Chapter 3, we go over the GVFOD algorithm, and evaluate its perfor-

mance compared to multivariate outlier detection algorithms on the dataset

for machine fault detection. This dataset consists of time series data collected

from a robot arm apparatus, with labels for normal and faulty operating con-

ditions. Semi-supervised experiments are done with this dataset to investigate

the training data needs of different algorithms, and how learning from the past

generalizes into accurate predictions of failure in the future.

Lastly, in Chapter 4, we develop a simulator to generate new failure data.

We modify an existing simulator, tuning parameters with a hyperparameter

search algorithm, and add a control method to ensure consistent generation of

data. Using this, we are able to create gradual failure data, and we can create

an intuition for the inner workings of the GVFOD algorithm. This includes a

comparative evaluation of a representative multivariate outlier detection algo-

rithm, GVFOD, and unexpected demon error (UDE).

The last chapter concludes this thesis, where we will briefly discuss and

summarize these results, and present some potential areas of further research.
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Chapter 2

Background Material

2.1 Machine Failure

A brief overview of the possible causes of failure in industrial machinery is out-

lined below. They are grouped broadly into mechanical causes, environmental

causes, and electrical causes. The goal of CBM is to predict failure caused

by accumulated wear on a component of a machine. In an outlier detection

setting, this accumulated wear would present as innovative outliers (or level

shift) - where the deviation from normal behaviour grows over time. This is

in contrast to additive outliers - more indicative of an unpredictable1 failure.

2.1.1 Mechanical Failure

A machine has failed mechanically when some component has failed due to

the application of physical force.

Two terms commonly used to describe a material’s response to the appli-

cation of a force are stress and strain. Stress is the force applied per unit

area, whereas strain is a unitless measure of the relative change in dimension

of the material. The strain of a component under load can be measured using

a strain gauge, and with knowledge of the material properties and its shape,

the stress can be calculated using a stress-strain curve. A typical stress-strain

curve is shown in Figure 2.1

From a materials science and engineering point of view [6], mechanical fail-

1unpredictable using CBM methodology, but most likely predictable using physics and
engineering knowledge
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Figure 2.1: A typical engineering stress-strain curve for a metal. The ultimate
tensile strength (TS/UTS) is shown. The transition from elastic deformation
(linear) to plastic deformation (non-linear) occurs at the elbow on the left
hand side of the curve. Image source: Callister and Rethwisch [6].

ure occurs when a fracture has developed within a component. Fracture can

be classified as either brittle or ductile based upon visual inspection of the

broken component. Brittle fracture occurs when the component breaks with

no plastic (permanent) deformation. Ductile fracture occurs when there is

plastic deformation at the break - and the material’s shape had changed per-

manently prior to fracturing. When a component is improperly engineered, or

loaded beyond its design envelope, the internal stress will exceed the ultimate

tensile strength (UTS) and fracture will occur. The effect of this can be seen

by excessive deflection, buckling, and in most materials, some sort of plastic

deformation. In general, this type of material failure is not consistent with

the goals of CBM, since this failure mode is not attributed to component wear

over a period of use. Rather, it happens the first time the load on the machine

exceeds what the material allows. In order to prevent this kind of failure,

proper engineering and testing is required.

Three kinds of material failure that are due to accumulated wear are fa-

tigue, creep, and mechanical wear.

Fatigue is material failure that occurs when a crack propagates through a

component due to repeated application of stresses less than the UTS. Examples

of components that could fail due to fatigue include shafts and bearings, vessels
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where the internal pressure varies, and parts that vibrate. Any component that

cycles between loading and unloading can encounter fatigue failure. Fatigue

failures are responsible for 90% of failures in metals, and affect plastics and

composites too. Fatigue failure initiates from an imperfection in the part;

where there is a stress concentration - an area where, due to geometry, local

stress is greater than the bulk material stress. A crack initiates; then with each

loading cycle, the crack grows a small amount, separating the material a little

more. Over time, the cross-sectional area of the component decreases, and the

crack propagation accelerates, until the part fails catastrophically. A possible

symptom of fatigue failure could be increased deflection to a load, as the

growing crack reduces the effective stiffness of the component. This can be very

difficult to detect. In materials with low fracture toughness (like ceramics),

fatigue failure may be unpredictable, since a small defect will quickly propagate

through almost the entire cross-section.

Creep is a mode of failure where a constant applied stress on a component

under a high temperature causes it to stretch out over time. Creep affects

metals, polymers, and ceramics alike. Note that this is different from melting:

in metals, creep becomes a problem at temperatures around 0.4Tm, where Tm

is the absolute melting temperature of the metal. For polymers, creep can be

very significant even at room temperature and with low stresses. Ceramics, in

general, require a higher temperature than polymers and metals before they

exhibit creep. In a machine, creep will cause the dimensions of a component

to change, potentially causing problems with operation. With sufficient time,

the geometry will have changed sufficiently leading to an inevitable fracture.

Mechanical wear is the process where a component wears by having two

contacting surfaces slide relative to one another. The friction between the two

surfaces causes material to slough off. Some forms of mechanical wear are a

part of design - for example, brake pads on the brake rotor of a motor vehi-

cle. Sometimes mechanical wear is unintended; examples include improperly

lubricated surfaces, or a design and manufacturing error.

Of the modes of failure described above, the ones that CBM aims to pre-

vent are the gradual ones - fatigue, creep, and mechanical wear. These gradual
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failures all have a notion of accumulated degradation. On the other hand, me-

chanical failure that is not dependent on the duration and severity of machine

operation is much more difficult to predict. These situations, where a one-

time load exceeds what the component can handle (due to improper design,

manufacturing, misuse, or accidents), are not a problem that CBM is intended

to solve.

2.1.2 Environmental Causes

The environment can cause gradual degradation to materials.

Corrosion and oxidation are processes where metals are [unintentionally]

chemically attacked. The canonical example of corrosion is the oxidation of

iron and its alloys. In the presence of water and oxygen, untreated iron will

turn from its metallic form (Fe) to rust (Fe(OH)3). Methods which are used

to mitigate corrosion in steel exposed to the environment include physical

barriers like paint and polymer coatings, chemical treatment like galvanization,

passivity by alloying with other elements (stainless steel), and active methods

like cathodic protection.

Metals that are typically not susceptible to corrosion can become so when

they are stressed. For example, aluminum in normal environments forms a pas-

sivizing layer of aluminum oxide which prevents metal underneath from wear-

ing. However, when stressed, cracks can form and grow. This combination of

static or dynamic loading and a corrosive environment causes stress-corrosion

cracking (SCC), which can further evolve into fatigue cracking.

Ceramics, unlike metals, rarely degrade in normal environments. Under

extreme environments, they may simply dissolve, but do not react chemically

like metals. For these reasons, ceramics are used commonly where exposure

to harsh chemicals or high temperatures is needed.

The degradation of polymers is usually physical, or a combination or phys-

ical and chemical processes. Many polymers will swell in the presence of a

susceptible solvent. The solvent molecules diffuse into the polymer structure

and change its physical properties. Depending on the solvent, some polymers

will simply dissolve. The process by which the chemical bonds in a polymer

12



breaks is called scission. This can happen with exposure to chemicals, ther-

mally, or with radiation. The symptoms of this mode of failure are similar to

those of creep.

Environmental causes of failure are typically gradual. Since they often

cannot be wholly prevented, these modes of failure are all potential candidates

for CBM, to ensure appropriate remediation can take place before a machine

fails.

2.1.3 Electrical Failure

Compared to mechanical systems, electronics are usually more intricate and

complex. In industrial settings, the physical size of electrical systems is typi-

cally far smaller than its mechanical counterpart. Failures of these electronics

happen on the micro or nano scale, as opposed to the macro scale of mechani-

cal failures. Electronic failures can sometimes be intermittent, and some faults

may not even lead to any change in functionality until failure occurs. All of

these factors couple with the continued miniaturization of electronics, so the

tolerance for defects continues to tighten. Prognostics and Health Manage-

ment (PHM) for electronics is therefore significantly more difficult than its

mechanical counterpart [47] [32].

The failure mechanisms of electronics are not consistently defined in liter-

ature. Pecht [30] provides an overview of PHM for electronics, and identifies

the following failure mechanisms which are common among wear-out failures.

• Fatigue (from thermal and/or mechanical stress)

• Corrosion

• Electromigration

• Conductive filament formation

• Stress driven diffusion voiding

• Time-dependent dielectric breakdown
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The failure mechanisms arise from a variety of loads. Whereas mechanical

failure is always caused by mechanical stress, electrical failure can arise from

thermal loads, voltage gradients and current density, and mechanical stress;

some of which also interact with environmental effects like humidity, moisture,

and mean temperature.

Just as in mechanical failure, electronics failure from over-stress events

(single loads that exceed the component’s strength) cannot be easily predicted

using CBM and PHM. Of concern is that wear-out failures of electronics can

progress steadily, but may be asymptomatic. In order to mitigate this risk,

engineered solutions of PHM are necessary. Thermocouples can be used to

monitor the temperature of components, and strain gauges and accelerome-

ters can measure the mechanical loads. Outside of direct measurement using

diagnostic sensors, canary devices can be installed alongside the electronic

components. These are specifically designed components that experience the

same loads as the functional component, but wear at an accelerated rate. The

intention is for the canary to fail before the functional part, to ensure service

and replacement of the main component before failure.

2.2 Outlier Detection

This section describes the problem of outlier detection in generic data (multi-

variate outlier detection), and algorithms to do so. Furthermore, we introduce

outlier detection for time series, and the use of Markov models for doing so.

We hope to apply outlier detection for detecting faulty behaviour in machines.

This is an example of semi-supervised learning, where an algorithm learns

from a training set consisting of only normal data, and future observations are

classified as normal or abnormal accordingly 2.

2In this thesis, we use the terms normal and inlier interchangeably; in the same way, the
terms abnormality, outlier, novelty, anomaly, and fault are interchangeable
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2.2.1 Multivariate Outlier Detection

An anomaly is an “observation which deviates so much from other observa-

tions as to arouse suspicions that it was generated by a different mechanism”

[19]. Anomaly detection is, in general, a difficult problem to define, since

the ground truth is often arbitrarily decided. The terminology used is also

confusing and poorly differentiated, especially across different fields of study.

Nonetheless, Hodge and Austin [20] divides anomaly detection into three sub-

problems: supervised anomaly detection, unsupervised anomaly detection, and

semi-supervised anomaly detection.

Supervised anomaly detection is imbalanced classification framed as

an anomaly detection problem [7]. To conduct supervised anomaly detection,

a training dataset is required which consists of labelled normal and abnor-

mal data. Based upon these labelled data points, a classification algorithm

will devise a procedure to evaluate future observations, and whether they lie

within the area of normality or the area(s) of abnormality. This classification

is imbalanced, since in the majority of cases, the available normal data greatly

outnumbers the abnormal data. In the context of machine failure detection,

supervised anomaly detection is generally infeasible, due to the lack of ab-

normal data. Only when data originating from a machine operating in both

normal and faulty modes is available, can supervised anomaly detection be

done.

Unsupervised anomaly detection is the process of identifying obser-

vations in a dataset that contains mixed normal and abnormal data. The

difference between this and supervised anomaly detection is the availability

of labels - in the unsupervised setting, no labels are available to learn from.

Instead, outliers are the observations that appear to arise from a different

distribution that the remainder of the data. This is often used as data pre-

processing, as some statistical and machine learning methods are sensitive to

the presence of outliers: where a proportionally small number of outliers can

disproportionately affect the results of the statistical or machine learning pro-

cedure. This sensitivity can negatively affecting the accuracy of the results,
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and preprocessing with outlier detection can be used to increase the robustness

of the method.

Semi-supervised anomaly detection is the process by which an algo-

rithm learns a boundary of normality on a dataset of normal observations. If

a future observation is beyond this boundary, it is classified as abnormal (an

outlier, or a positive observation), and as normal (an inlier, a negative obser-

vation) otherwise. More often than not, one does not want to draw a boundary

surrounding all of the normal data, as there may be some contamination due to

noise or measurement error. Instead, the boundary should contain a large ma-

jority of the data. For all outlier detection algorithms, a contamination ratio

(CR) is designated, which designates the probability that a future inlier will be

incorrectly classified as an outlier; and equivalently, the proportion of training

data that lies beyond the outlier threshold. The CR can also be thought of

as the false positive rate on the training data. In practice, setting the CR is

difficult: a low contamination ratio will create an overly large area within the

outlier threshold, and future abnormal observations will be misclassified. A

high CR will lead to a high false positive rate, and true normal observations

will be designated as outliers. Applications of outlier detection include de-

tecting criminal activity, rare events, or in general, finding special cases that

may be worth investigating [4]. In this thesis, we use semi-supervised anomaly

detection for machine failure detection.

In the available literature, these three sub-problems may be difficult to

differentiate based only on the terminology [7]. An author may refer to any

one of them as anomaly detection, outlier detection, novelty detection, fault

detection, rare event detection, etc. Further compounding the confusion is

the similarity between unsupervised anomaly detection and semi-supervised

anomaly detection. A semi-supervised anomaly detection, trained on normal

data, and tested on the same data, is equivalent to unsupervised anomaly

detection. For the purposes of this thesis, I will use outlier detection or OD

to represent semi-supervised anomaly detection. Anomalous observations will

be synonymous with anomalies, outliers, abnormalities, and faults.

The most succinct delineation of the different classes of semi-supervised

16



anomaly detection algorithms is presented in Pimentel et al . [31].

1. Probabilistic - model a probability distribution over the normal class of

data

2. Distance-based - Measure the proximity to inliers

3. Reconstructed-based - Measure the error when a sample is compressed

and uncompressed, compared to reconstruction error optimized for nor-

mal data

4. Information-theoretic - measure the information content of a dataset

with and without a sample

5. Domain-based - Model the outlier boundary explicitly

These divisions of the outlier detection algorithms is fairly straightforward. For

methods that do not fit into the first four groupings, domain-based methods

serves as the catch-all class, since the goal of all outlier detection algorithms

is to find a boundary of normality. Other reviews of outlier detection [20][8],

anomaly detection [9][36], and novelty detection [28][27][31], have different

classification of methods; some classify them depending on their originating

field of research, like statistical, classification, and machine learning, but this

gives little intuition for the mechanisms of the algorithms. Other groupings,

like distance-based and density-based, and nearest-neighbour-based methods,

are not distinctive enough to warrant individual classes for each one.

There exist open source implementations of many common OD algorithms,

an example of this is PyOD [50]. In general, they function as follows: an out-

lier score is assigned for every training and testing sample. An observation is

classified as an outlier when its outlier score is greater than a threshold value;

this threshold is a quantile (based on the CR) of the outlier scores in train-

ing data. This convention, where outliers have higher scores, is maintained

throughout this thesis.
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Probabilistic Outlier Detection

Probabilistic outlier detection methods learn a probability density function

(density) over normal data. An observation that occurs in an area of low

density is more likely to be an outlier. The negative density of an observation

(or some monotonic mapping of it) can be used as the outlier score, allowing

us to keep the convention that a higher outlier score indicates more outlying

behaviour.

Probabilistic methods of estimating a density function can be parametric or

non-parametric. Parametric methods assume that the underlying data is sam-

pled from a known distribution, and are defined with a finite set of parameters

θ. These parameters are then estimated from normal data, using methods such

as maximum likelihood estimation (MLE), Expectation-Maximization (EM),

and others. Non-parametric methods make fewer assumptions on the under-

lying distribution of the data, and the size of the model can expand with

additional training data. Note that the distinction between parametric and

non-parametric methods is difficult to ascertain - for example, some authors

consider histogram based density estimation as non-parametric, when it could

be considered a [parametric] mixture of uniformly distributed continuous vari-

ables.

The Minimum Covariance Determinant (MCD) [37] is a parametric

probabilistic method which assumes that the majority of normal data is sam-

pled from a multivariate normal distribution:

p(x | µ,Σ) =
1

(2π)
d
2

√
det Σ

exp

(
−1

2
(x− µ)ᵀΣ−1(x− µ)

)
Instead of calculating model parameters with the maximum likelihood esti-

mates, MCD finds a more robust estimate of these values (µ̂, Σ̂). The MCD

estimates of model parameters are made using the h data points that mini-

mize det(Σ̂). This estimate is more robust to outliers in the training set, and

is equivalent to the maximum likelihood estimate when h = n. The algorithm

used, FastMCD is described in [38]. The outlier score used is the Mahalanobis
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Distance from the centre of the training data:

scoreMCD(x) =

√
(x− µ̂)ᵀΣ̂

−1
(x− µ̂)

Histogram Based Outlier Score (HBOS) [13] is a non-parametric method

of learning the distribution from which the training data was sampled from. By

assuming the independence of every feature, HBOS estimates the joint density

of any observation as a product of the marginal densities of each feature. For

each feature, a simple histogram is constructed from the training data. The

pre-defined number of bins per dimension, k, along with the maximum and

minimum of each feature, is used to calculate the locations of the equal-width

bins. By scaling all the bin heights so they have a total area of 1, a valid prob-

ability distribution is found. Because HBOS assumes the independence of each

feature, computation can occur for each feature concurrently, yielding a fast

and simple method for outlier detection. Outlier scores for each observation

is calculated as a negative log likelihood:

scoreHBOS(x) = −
d∑
j=1

log(histj(xj))

Distance-Based Outlier Detection

These are methods reliant on a measure of proximity to other normal obser-

vations. These include nearest-neighbour methods, local density measures,

and measures of distance between three points using inscribed angles. Obser-

vations are more likely to be outliers if they are a large distance away from

observations in the training set, and more likely to be inliers otherwise.

kth Nearest Neighbour (KNN) for outlier detection [33] assigns an out-

lier score for each observation x, as its distance to its kth nearest neighbour

in the training data x(k). k is a hyperparameter that needs to be set before

learning occurs. An additional hyperparameter is the distance metric used,

19



which is usually one of the standard Lp norms: L1, L2, or L∞.3

scoreKNN(x) = d(k)p (x) = dp(x,x
(k)) =

(
d∑
j=1

(xj − x(k)
j )p

)1/p

Local Outlier Factor (LOF) [4] is a density-based algorithm that identi-

fies outliers based on neighbourhood density. LOF differs from KNN by finding

local outliers in addition to global outliers. Whereas global outliers are obser-

vations that appear different from the whole of the training data, local outliers

are those that appear different from its closest neighbours. For each sample,

its neighbourhood of the k-closest neighbours is defined. An outlier is defined

when its own neighbourhood density is much lower than the densities of its

neighbours. In LOF, the distance to the kth nearest neighbour is used, identical

to scoreKNN(x) = d
(k)
p (x) defined above. Using this, a non-symmetric mea-

sure of distance between two observations - reachability-distance - is defined

as rdk(a, b) = max(d
(k)
p (b), dp(a, b)). The LOF algorithm works as follows:

1. For every record, find its Local Reachability Density :

LRDk(x) =

(∑
y∈Nk(x)

rdk(x,y)

| Nk(x) |

)−1

Note that Nk(x) is the neighbourhood of points within d
(k)
p (x) of x. Its

cardinality is equal to k except when there are multiple samples that are

equal distance to x.

2. Compare the LRD of x to the LRDs of its neighbours in Nk(x)

scoreLOFk
(x) =

1
|Nk(x)|

∑
y∈Nk(x)

LRDk(y)

LRDk(x)

The LOF of records in the middle of a cluster will be close to 1, and the LOF

of global and local outliers will be greater.

Angle Based Outlier Detection (ABOD) [24] attempts to alleviate the

problems of distance-based metrics in high dimensional space. This problem

3The L1 norm is the Manhattan distance. The L2 norm is the Euclidean distance. The
L∞ norm is the Chebyshev distance.
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is termed the “Curse of Dimensionality”, where in higher dimensions, the dis-

tance between points concentrates towards a single value. One method of intu-

iting this behaviour is by looking at the chi-squared distribution, χ2
d(α). The

chi-squared distribution describes the Euclidean (L2) distance of a standard

multivariate normally distributed variable from the center. In 2 dimensions,

1% of points is further than χ2
2(0.01) = 9.2 units away from the center, and

the 1% are closer than χ2
2(0.99) = 0.020, a factor of 500 times. In 100 dimen-

sions, χ2
100(0.01) = 135.8, χ2

100(0.99) = 70.065, a difference of only 1.9 times.

Because of this effect, distances become less meaningful in higher dimensions.

ABOD addresses this problem by looking at the inscribed angle between a

record, and two other samples in the training set. If the angle is small, the

observation is more likely to be an outlier.

ABOD(x) = −V ARy,z∈D
(

(y − x)ᵀ(z − x)

‖y − x‖2‖z − x‖2

)
In order to better identify local outliers in addition to global outliers, ABOD

weighs the scores of closer pairs more than farther-away pairs y, z in the

training set D. To increase performance, an alternative algorithm, FastA-

BOD, replaces the entire training set D, with the points in the test record’s

k-neighbourhood, Nk(x). Note that because ABOD and FastABOD still rely

on a measure of distance, they do not fully overcome the curse of dimension-

ality.

scoreFastABOD(x) = −V ARy,z∈Nk(x)

(
(y − x)ᵀ(z − x)

‖y − x‖2‖z − x‖2

)
Reconstruction-Based Outlier Detection

Oftentimes, a multivariate observation is a high dimensional representation of

a set of latent variables in a lower dimensional space. By learning a method

to compress, view, or project training data to a lower dimensional space, such

that its reconstruction is similar to the original observation, a model of nor-

mality can be obtained. An outlier will not be as easily represented using

the same reconstruction model, and outlier scores can be assigned based on

reconstruction error.
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Principal Components Analysis (PCA) is a method of decomposing a

random variable into a linear combination of orthogonal vectors (eigenvectors).

The eigenvectors that point in the directions of greatest variance can be used

to roughly estimate the data. Any deviation that is not captured by the k

major eigenvectors is calculated as a weighted sum of squares, and used as the

outlier score.

1. Calculate the covariance of the [centred and whitened] data X.

S =
1

n
XᵀX

2. Calculate the eigenvectors ei ∈ Rd and eigenvalues λi ∈ R, i ∈ {0, 1, ..., d}

of S by some process like SVD. The eigenvectors all have unit length, and

the corresponding eigenvalues non-negative and arranged in decreasing

order.

S =
d∑
i=1

λieie
ᵀ
i

3. For any record, calculate its outlier score by its weighted distance to the

plane spanned by the largest n eigenvectors.

scorePCA(x) =
d∑

i=k+1

eTi x

λi

Information-theoretic Outlier Detection

Information theoretic outlier detection measures the information content in a

dataset. Outliers are identified when their presence “alters the information

content in the dataset” [31].

One information-theoretic method of identifying outliers is found in Keogh

et al. [23]. Data is discretized into strings, and the Kolmogorov complexity

is calculated. The Kolmogorov complexity is a measure of the length of in-

structions needed to produce that record, and more complex records are more

likely to be outliers. No information-theoretic outlier detection techniques are

evaluated in this thesis, but the ideas of time series discretization and surprise

are explored in Markov Chain outlier detection and GVFOD respectively.
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Domain-Based Outlier Detection

This catch-all class contains all the methods which explicit learn a boundary

around the normal data. New exemplars are evaluated in comparison to this

boundary.

One-class Support Vector Machines (OCSVM) [39] is a domain-learning

algorithm that extends previous work in support-vector classifiers [11] to the

case of outlier detection. The original SVM for binary classification begins

with the idea of finding a hyperplane that separates the data, where all the

data of one class lies on one side of the plane, and vice versa. However, in the

case where the data is not linearly separable, slack variables are introduced,

penalizing observations that are on the “wrong” side of the plane. Addition-

ally, a feature map can be used to lift the variables φ : X 7→ F into a higher

dimensional space, so that a separating hyperplane can be found. In order

to extend this idea, OCSVM aims to find a separating hyperplane between

the origin and the bulk of the data. OCSVM makes theoretical sense when

the observations in the lifted space, F , close to the origin are abnormal (and

those far away from the origin are normal). Instead of computing transforma-

tions into the higher dimensional space explicitly, kernels can be used, since

the optimization problem depends only on k(x,y) := φ(x)ᵀφ(y), a measure

of the similarity between transformed samples. Because this function of sam-

ple similarities often comes with computation savings compared to explicitly

transforming the observations with φ, the utilization of the kernel function is

called the kernel-trick. Possible choices of k are the linear kernel,

k(x,y) = xᵀy + c

the Gaussian kernel,

k(x,y) = exp (−γ‖x− y‖2)

or sigmoid kernel,

k(x,y) = tanh(αxᵀy + c)
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among others. Following the optimization of the following quadratic program:

min
α

1

2

∑
ij

αiαjk(xi,x, j)

s.t. 0 ≤ αi ≤
1

νn∑
i

αi = 1

there ends up being a decision boundary at
∑

i αik(xi,x) − ρ = 0, and the

outlier score is

scoreOCSVM (x) = −

(∑
i

αik(xi,x)− ρ

)
A global hyperparameter, ν, represents the minimum fraction of support vec-

tors (the samples with αi > 0), and maximum fraction of outliers in the

training set. Other hyperparameters are specific to each kernel type.

Isolation Forest (IForest) aims to build models of the outliers explicitly

[26]. Isolation Forest is an ensemble method - the scores of multiple models

are averaged to get the score of a record. Each model is an iTree - a proper

binary tree (one where every node has either 0 or 2 children), and each node

has an attribute q, along with a test value p. Starting with the training dataset

X at the root node, the selection of the q’th dimension is made at random,

and p is selected randomly in between the maximum and minimum of the q’th

feature in X. With part of X now in the left daughter node (those records

with xq < p), and the remainder in the right node, and the iTree grows until

every child leaf contains a single record per node. When multiple trees are

constructed this way, anomalous observations tend to be those that traverse a

shorter distance before being isolated. Meanwhile, normal observations tend

to be deeper in the tree, since more divisions are needed to separate it from

its neighbours.

1. Given X, which may be a random subset of the full training data, con-

struct m iTrees

2. For any record, calculate its score on each tree, d(x): the depth of traver-

sal before reaching a leaf node
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3. Use the negative average depth as the outlier score.

scoreiForest = − 1

m

m∑
i

d(x)

The usage of these outlier detection algorithms for detecting the onset of

machine failure was previously evaluated by Riazi et al . [35]. Moreover, a

comparative study of the algorithms outlined above was completed, with deep

learning outlier detection methods (a subclass of reconstruction-based OD),

using different feature construction methods (no transform, PCA, T* [12], and

tsfresh [10]), and found no statistically-significant difference in performance

between the methods [36]. However, the experiments were set up in a way

that does not utilize the temporal aspect of machine condition monitoring

data, which we will do.

2.2.2 Outlier Detection for Temporal Data

Gupta et al. [17] surveyed the literature for the methods and applications of

outlier detection in time series data. Compared to multivariate techniques,

temporal data has significantly more structure that can usually be exploited

to increase the performance on a task - whether it be detecting anomalies,

or making future predictions. Some types of temporal data are, in order of

complexity, are given below. Note that these are not necessarily mutually

exclusive.

1. Univariate time series - data collected from a single sensor

2. Multivariate time series - data collected from multiple sensors

3. Data streams - online data (where data is constantly being recorded),

and models and algorithms can be constantly self-updating

4. Spatially distributed data - data with an element of spatial correlation

and continuity

5. Temporal networks - graph data, usually for data about communications

and connectivity

25



Multivariate outlier detection techniques can be applied to multivariate

time series data, by using the sensor value(s) arriving at each time step as a

single observation. This is equivalent to partitioning the time series at every

time step. When the process supplying the data is periodic, the time series can

instead be partitioned at the end of each period. This would significantly in-

crease the number of observations for outlier detection, especially if the period

contains many time steps. Doing either of these processes discards some of the

advantage that could be gained by knowing the data is temporally correlated.

What can be gained by using time-series specific methodologies? Chandola

et al. [8] divides outliers into three classes:

1. Type I - An individual outlying instance w.r.t. the entire data set

2. Type II - An individual outlying instance that is normal w.r.t. the entire

data set, but is outlying in its context

3. Type III - A subset of instances that are outlying w.r.t. the entire data

set

CBM is targeted towards a mixture of Type II and Type III outliers. Firstly,

Type II outliers require either temporal or spatial variables to provide context.

By using time series outlier detection techniques, these outliers can be better

isolated. Using multivariate methods, they may be completely overlooked.

Then, there are Type III outliers, such as the previously discussed innovative

outliers. These are dependent on the idea of a larger temporal scale, where each

individual element may not be outlying, but the group of them are shifting

away from the distribution of normal data. Previously, we emphasized the

importance of machine failure caused by accumulated wear as the core problem

of CBM, which fits firmly within the definition of a Type III outlier.

Starting in the 1970s, the most prominent statistical time-series anaysis and

forecasting techniques were based upon Auto-Regressive Integrated Moving-

Average models (ARIMA) [46]. These models started off as univariate time-

series analysis techniques, but have been adapted to the multivariate case.

Relevant to this study is the idea of a (weakly) stationary time-series, defined
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as a time series {xt} where a constant length sub-time-series xt, xt+1, ..., xt+k

has the same distribution independent of t.

However, around the 1980s, with the introduction of the Kalman filter and

linear state-space models, state-space analysis became more prominent [46].

ARIMA has no concept of state; state being the underlying nature of the world

(or system) generating the data. State is a latent variable, and the observations

are generated as a linear function of state. Linear state-space models also add

on to ARIMA modelling with the addition of regressor (a.k.a. input) variables,

and native support for the multiple-output (a.k.a. multivariate) case. The

discrete linear state-space model (with no input variables) is:

s(t) =Ps(t− 1) + e(t)

x(t) =Hs(t) + ε(t)

Here we can see the unobserved state vector, s, and a state-to-state linear

transition function P . The observation vector x(t) is a linear function of

state, and both state transitions and observed variables have error terms e

and ε respectively. ARIMA and state-space models can be interchanged [46],

but the mapping from one form to the other is not necessarily one-to-one. [1]

This state-space model of the world highlights the Markov property: that

the current state fully defines the distribution of the next state. A system that

satisfies this Markov property is memory-less, formally described as

P(St | St−1) = P(St | St−1, St−2, St−3, ..)

Moreover, this allows as to speak even more generally about non-linear state-

space models, namely, Hidden Markov Models (HMM):

s(t) =f(s(t− 1)) + e(t)

x(t) =g(s(t)) + ε(t)

where f and g can be either linear or non-linear functions.

2.2.3 Markov Chain for Outlier Detection

A Markov Chain is like a HMM, except that observations are a known function

of state. Therefore using Markov Chains for outlier detection relies on the as-
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sumption that the states are fully observable using the sensor values (observa-

tions). Let there be nmultivariate time series (X i ∈ RT×k, i ∈ {0, 1, ..., n−1}),

with constant period T and with k sensors.

1. Sort sensor values into contiguous bins, where the bins are of equal width

and cover the entire range of the sensor/feature.

2. For the observations at each time step, map the observation x ∈ Rk

back into the state st ∈ S. The discrete state space S is the Cartesian

product of the k binnings4. E.g . if there are 4 bins per sensor, and 3

sensors, | S |= 43

3. Construct the starting probability vector u

ui = number of times a time series starts with Si

4. Construct the transition probabilities P , empirically:

Pij =
number of times where Sj follows Si

number of times where Si occurs

5. Given any observation X ∈ TT×k, find its state space representation (in

ST ), and use the negative log likelihood as its outlier score

scoreMC = −log(u(s0))−
T−1∑
t=0

log(P (st, st+1)))

2.3 Reinforcement Learning

Reinforcement Learning (RL) [42] is the problem of learning about, navigating,

and controlling an environment, often in an online and incremental manner.

Central to the RL problem is the Markov Decision Process (MDP). Further-

more, the RL methods we introduce in this section are adapted for the devel-

opment of GVFOD. There are two intertwined goals of RL: prediction, and

control. In this thesis, we focus only on RL for prediction, in which case the

MDP effectively degenerates into a Markov Reward Process (MRP).

4We make the assumption that this state space S is the true state space behind the
Markov Chain.
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2.3.1 Markov Decision/Reward Processes

The Markov Decision Process is a model of an agent’s interactions with the

world. The MDP is defined with a state space S, an action space A, the

transition measure P : S × A × S 7→ R+, and the reward measure R : S ×

A× R 7→ R+.

Based on the current state, St ∈ S, the agent will take an action sampled

from its policy, At ∼ πt = P(At | St). Afterwards, the environment will inform

the agent of its reward Rt+1 and next state St+1. Thus the chain of experience

is

S1, A1, R2, S2, A2, R3, S3, A3, ...

The behaviour of the agent can be stochastic. Likewise, the dynamics of the

stochastic environment determine the next state and reward based upon the

current state and action: 5

St+1 ∼ P(St, At, St+1) = P(St | St−1, At−1)

Rt+1 ∼ R(St, At, Rt+1) = P(Rt | St−1, At−1)

This demonstrates the Markov property - where the transitions from the cur-

rent state are fully determined and independent of prior states.

The difference between prediction and control in RL is whether the agent

modifies its behaviour π as experience is gathered. In control, the policy is

modified over time in order to maximize future rewards. In the prediction

task, estimates of the value of a state are made given a policy π.

The return is defined as a exponential weighted sum of future rewards:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ...

The discount factor, γ, lies in the range [0, 1), in order to ensure the return

remains finite. When γ = 0, the value is myopic, and the return is equal to the

next reward. This return is stochastic: it depends on the stochastic starting

state, St. Even controlling for the stating state, there’s still randomness in the

5For simplicity, we introduce these with conditionally independent St+1 and Rt+1
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future rollouts of experience. Thus, the expected return as a function of state

is desired, named the state-value function, is desired:

vπ(s) = Eπ [Gt | St = s]

The state-value function depends on the random distribution of the chain of

experience. In the case that the policy remains constant, we can remove the

decision aspect of an MDP, leaving a Markov Reward Process (MRP). We

can disregard the idea of actions, and marginalize it into the dynamics of the

environment.

At this point6, the only difference between the MRP and a Hidden Markov

Model is the observability of state. Further discussion on observability is left

to the section on function approximation.

2.3.2 Temporal Difference Learning

Temporal difference (TD) learning aims to generate estimates of the state-

value function. One of the driving principles behind TD learning is that it is

online and incremental, meaning that learning is completed after each piece of

data arrives, and discarded after. This ensures that the algorithm scales well

- and learning and acting do not slow down as additional experience accrues.

This limitation can be a technical challenge. An algorithm that can learn

value functions by referring to a stored database of MRP experience cannot

necessarily learn online, at least not in a computationally efficient manner.

TD learning makes updates to its value function based on the TD error (δ,

TDE), and an estimate of the value function (v̂)

TDE = δ = Rt+1 + γv̂(St+1)− v̂(St)

The first part, Rt+1 + γv̂(St+1), is the estimate of the value function using

the latest experience Rt+1, St+1, while the second term is the previous value

estimate. The difference in estimated value with the passage of time gives way

to the naming temporal difference.

6If we also assume the conditional independence of St and Rt given St−1
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To reduce noise in the estimates, the state value functions are updated in

small increments: v̂(St) ← v̂(St) + αδ. The value function estimates take a

small step to correct the TD error, with a step-size α ∈ (0, 1].

2.3.3 Function Approximation

The tabular setting of TD learning described above updates only states that

are visited. However, if the state space is very large, each state will be visited

so seldomly that it would be unreasonable to expect learning to occur very

quickly. In that case, generalization is required to learn approximate value

functions over the entire state space. This is also true for continuous state

spaces - where the number of individual states is uncountably infinite. Using

function approximation, updates to a value function will affect not only the

visited state, but also nearby states.

A special case of function approximation is the linear form:

v(s) ≈ v̂(s) = wᵀφ(s)

Here, the feature vector φ : S 7→ Φ ⊆ Rd is a mapping from state space to the

feature space. This mapping needs to be cleverly constructed in a way that

allows for appropriate generalization (learning on one state improves nearby

states) and resolution (the differences in value between nearby states can be

represented). If the state space is a subset of R|S|, then common feature

mappings are polynomial, Gaussian, and Fourier basis functions.

An effective and computationally efficient feature mapping is tile coding

[41]. In this representation, the feature vector is sparse and binary (φ(s) ∈

{0, 1}d), and the number of non-zero elements is always constant. Tile-coding

maps multidimensional continuous spaces from the observation space into a

sparse binary feature vector. There is one active feature per tiling - corre-

sponding to the tile that the observation lies in (see Figure 2.2). For a 2-D

bounded continuous input space, we can imagine a grid of unit squares (tiles),

with the corners aligned to integer values. Additional tilings can be added

that are offset from one another and the main tiling. With n tilings, the fea-

ture vector is a binary vector with n ones, each indicating the location of the
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active tile for each tiling. This method of feature construction allows for both

generalization and specificity of the value function estimates. The amount

of generalization is defined by the size of the tiles - in Figure 2.2, the value

function estimates are updated for all the states within the 4 thick bounded

squares. Meanwhile, specificity can still be achieved; the intersection of those

4 boxes is the smallest portion of the observation space that must share the

same value estimate.

Figure 2.2: A demonstration of Tile Coding. The gray area is the bounded
and continuous observation space. A number of offset tilings are , the active
tile in each of the tilings composes the feature vector. With 4 tilings, there
will always be 4 active features in the binary feature vector. Source: Sutton
and Barto [42].

In order to learn, the weights w get modified through stochastic gradient

descent. This is known as the TD(0) algorithm with linear function approxi-

mation:

w ←w + α [R + γv̂(s′)− v̂(s)]∇wv̂(s)

=w + αδφ(s)

In order to learn a little bit more quickly, updates need not be made only

to the most recently visited state and its neighbours. A history of recently

visited states can be kept in a memory-efficient fashion, using an eligibility

trace z ∈ Rd. With each step, the entire trace decays geometrically with

decay factor λ, and then the current representation φ(s) is added. The full
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TD(λ) algorithm, with function approximation, is given as:

z ← γλz + φ(s)

w ← w + αδz

Up until now, reinforcement learning has been presented for solving MDPs

or MRPs. In an MDP, the true state is visible, and value updates are made to

value functions for the state; with function approximation, updates are also

made to nearby states. More often than not, the true state of the environment

is not observable by the agent, and it receives an approximation of state:

the observations x. In an industrial machine, these observations come from

sensors, corrupted by noise, and almost certainly fails to uniquely represent

the entire state of the system. This partial observability is characterized in a

POMDP - Partially Observable Markov Decision Process. This is analogous

to the relationship between a Markov Chain and a Hidden Markov Model.

In practice, the fact that TD(λ) was developed assuming full observability

of state is of little concern. Linear function approximation limits the space of

representable state-value functions, analogous to how observations are approx-

imations of state. Therefore, although the theoretical rigour is lost by using

observations instead of true state, empirical evaluations can still be done to see

if the methods are effective. Another commonly discussed topic is agent-state:

where the observations are sufficient for the agent to build a representation of

state. Further discussion of observability and state can be found in Section

17.3 of Sutton and Barto [42].

Henceforth we will simply use the observations as an approximation of

state: x u s

2.3.4 General Value Functions

A general value function extends the idea of a state-value function beyond

estimating discounted sums of rewards. Instead, any signal can be predicted.

A signal can be external - as in sensor values, or it can be internal - like model

parameters, errors and their statistics etc. A non-reward signal like this is
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called a cumulant, Ct ∈ R. The general value function to given as

vC(s) = E

[
∞∑
k=t

γt−kCk+1 | St = s

]

and this can be estimated using linear function approximation as well:

vC(s) ≈ v̂C(s) = wᵀ
Cφ(x)

General value functions serve as predictions. When γ = 0, it’s a myopic predic-

tion of the expected next signal. Chaining myopic GVFs (making predictions

of predictions) allows for a prediction some number of time steps into the

future [44]. With γ ∈ (0, 1), it is a prediction of the discounted sum of the

cumulant, just as in a value function. The discount factor γ can be a function

of state as well: γ(St). One example is a robot exploring a room - where its

cumulant signal is 1 if the robot moves in one direction, and −1 if it moves

in the opposite direction. By setting γ as 1 normally, and 0 when the agent

reaches a wall, the general value function provides an estimate of the distance

in that direction to a wall.

GVFs were used in an industrial setting to form predictions of a welding

process [16]. GVFs were able to predict the quality of a weld seam using a

feature representation combining both tile-coding and a deep-learning autoen-

coder. Predictions at different time scales were made by modifying γ. A Horde

[43] of GVFs can create predictions in the world directly, in order to extract

as much knowledge as possible. These GVFs can further be used as a basis to

build agent-state for the value function. These individual GVF predictions are

called demons - a name chosen in reference to the Pandemonium architecture.

These predictions were scaled up in Modayil et al. [29], and demonstrated the

ability of TD learning to learn 6000 GVFs using a reasonable amount of com-

putational hardware. This usage of GVFs imitates the biological phenomena

of nexting - the “propensity of people and many other animals to continually

predict what will happen next.” [29]

These predictions effectively form a model of the world - any divergence

from this model would be surprising, and perhaps an indicator of something
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gone wrong. This was introduced as “unexpected demon error”, or UDE, in

White et al. [49]. Günther et al. [15] demonstrated that UDE can effec-

tively detect unexpected disturbances to a machine, and keep records of which

perceptions were affected by a surprising event. GVFOD will adapt these tech-

niques to the semi-supervised learning problem of machine failure detection -

using GVFs as a predictive model of the world, and an adaptation of UDE to

create the outlier score.

2.4 Testbench Construction

To generate a machine failure dataset, a robot arm was commissioned at the

University of Alberta, Department of Mechanical Engineering. The details of

the robot arm’s hardware, software, and dynamics are described here. This

section is a summary of the content in [36] and [25].

2.4.1 Hardware

The robotic arm apparatus (Figure 2.3) consists of two major components -

the arm and the driver. The arm itself is supported on one end by a bearing,

fixed in position, but permitted to rotate about the vertical axis. The other

end of the arm is supported by an aluminum wheel and bearing, which rolls

on a flat steel plate. A holder for removal weights is located on the arm; for

all experiments, a stack of plates weighing 5.5kg was added to this arm.

The driver is a belt and pulley system. There are three pulleys, and three

belt-segments between them (Figure 2.4). The three pulleys are named as

the motor pulley, the idler pulley, and the arm pulley. The arm pulley is

attached to the arm. The idler pulley position is movable, by adjusting the

4 tensioner screws that keep it in position. The motor pulley is attached to

a shaft, driven by a motor. The shaft has a torque sensor embedded within.

The belt looping around these three pulleys is contiguous with the exception

of a cut made in Belt Section 3 - between the motor and arm pulley - where

a tension meter / strain gauge was installed. The belt and pulley profiles are

toothed - no appreciable skipping was noted through the entire data collection
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Figure 2.3: Robot arm hardware.

process. The nominal belt tension is 160N . The entire driver is rigid and

firmly mounted to a 3 tonne seismic platform to reduce vibrations.

2.4.2 Software

In operation, the arm regularly moves between two [nominal] angular positions:

19◦ and 126◦. Three sensors record data: an encoder on the arm pulley,

recording the arm position; a torque sensor on the motor output shaft; and a

tension sensor on the belt between the motor and arm pulleys. The sampling

rate of all sensors is 200Hz. The velocity profile of the arm is approximately

trapezoidal. With a period of 10s, the arm takes 5s to move from 19◦ to 126◦

and pauses, and takes the remainder of the 5s to move and pause.

2.4.3 Empirical Fault Data

The amount of data collected for normal and faulty operation is given in Table

2.1

The overwhelming majority of data was collected under normal operating

conditions. In order to generate faulty data, the machine was modified in a way

that simulates operation in a near-failure condition. This included modifying
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Figure 2.4: Robot arm component names.

the belt tension with the tensioner on the idler pulley; with addition of sand

onto the steel plate upon which the arm rolls; and with heating the system

with a floodlight.

Table 2.1: Robot arm fault dataset.

Failure Type Samples

Nominal
Belt

Tension
(N)

Description

Normal (non-faulty) 7193 160 Normal operation.
Tension - Loose L2 180 120

Varying belt tension levels.Tension - Loose L1 182 140
Tension - Tight 194 180

Sandy 183 160 Sand on track rolling surface

High Temperature 210 180
Robot arm heated with two
incandescent floodlights.
Surface temperature ∼40 ◦C

2.4.4 Dynamical System Modelling

Lipsett et al. [25] derived a dynamical model of the robot arm. A diagram of

this is given in Figure 2.5. The model models the dynamics of the three pulleys
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Im

Ii

Ia

torque

Figure 2.5: The dynamical system model of the robot arm given in Lipsett et
al . [25].

as rigid bodies that are free to rotate. Each pulley has two parameters: radius

and moment of inertia. The belts are modeled as Kelvin-Voigt viscoelastic

elements - with a single spring and dashpot in parallel. Although the actual

apparatus consists of one contiguous belt, it is modelled as three separate

belt sections. Each belt section has a different length li, and their dampening

factors di and stiffnesses ki are a function of this length. These three belt

sections share a damping factor CL and stiffness EA7. The belt specific spring

constant and dampening constants are given by:

ki =
EA

li
=

Young’s Modulus× Cross Sectional Area

Length

di =
CL
li

=
Damping Factor

Length

In the modelling and equation, we use the following conventions:

• The positive sense is CCW

• The subscripts m, i, a denote motor, idler, and arm respectively

• The belt sections are:

1. between motor and idler

7EA is the product of Young’s modulus E and the cross-sectional area A; these were not
measured independent, but the product of them was empirically known
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2. between idler and arm

3. between arm and motor

At all times, the state is fully defined by the angular position (θ) and

angular velocity (θ̇) of each of the three pulleys.

The tension in each belt is a deterministic function of the belt properties

and the pulley position and speed. As an example, the tension in Belt Section

1 is given as:

Ft1 = max
(

0, Ft,base + k1(θiri − θmrm) + d1(θ̇iri − θ̇mrm)
)

where Tbase is the static equilibrium tension in the belt. Furthermore, the

differential equations describing the dynamics of the pulleys are:

θ̈mIm = rm(Ft1 − Ft3) + τm

θ̈iIi = ri(Ft2 − Ft1)

θ̈aIa = ra(Ft3 − Ft2)

where τm is the torque applied to the motor pulley by the motor shaft.

These equations, and knowledge of all the system properties (such as belt

lengths, pulley radii, belt properties, etc.), constitute the dynamical model of

machine behaviour in Lipsett et al . [25]. The input of this dynamical system

is the motor torque, τm, and the output is the position and velocities of each

pulley; i.e., the state vector. For the system to be solved, the initial state

also needs to be defined. If all these components are available, any generic

differential equation solver can find the machine state as a function of time

and motor torque input.
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Chapter 3

General Value Function Outlier
Detection - GVFOD

In this chapter, we introduce the GVFOD algorithm. Furthermore, we evaluate

its performance compared to multivariate techniques on the robot arm fault

dataset.

3.1 GVFOD - General Value Function Outlier

Detection

The motivation behind GVFOD is to learn general value functions as a predic-

tive model of the machine’s normal behaviour, and detect outliers using these

models.

The training of GVFOD takes place in two stages. First, the algorithm

makes a single forward pass through the normal training data to learn a group

of GVFs. Afterwards, the models are saved, learning is stopped, and a second

pass through the training data is made to learn the distribution of errors.

These errors are calculated using the fixed model. Future data can be evaluated

based on its deviation from the learned models. In order to determine if the

machine has entered a faulty operating condition, the prediction errors from

the testing data is compared to distribution of errors learned in the training

phase. In doing so, we have transformed the online nature of GVFs and TD

learning into an offline method, but retain the incremental-learning aspect.

To construct the group of GVFs (Horde of Demons), the cumulants need
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to be chosen. Choosing which predictions each GVF needs to make can be

difficult; for machine fault detection, we suggest that there be one GVF per

sensor, with the sensor value as the cumulant, and one shared discount factor

(γ) for all of them. Since the GVF estimates the discounted sum of each

cumulant into the future, the discount rate sets a pseudo-horizon for the sum

of ( 1
1−γ ).

General value functions are functions of state. In practice, the true state

of a machine is never completely observed. The only visible variables are the

observations - which themselves are some unknown function of state, measure-

ment noise, system inputs etc. Using these observations x as the agent-state,

features can be constructed, through some mapping from observation space to

feature space. These feature functions can be as simple as using the observa-

tions themselves (using an identity map). When this is insufficient, the true

GVFs will not be well represented as a linear cannot of these features, and a

more complex feature representation may be needed. Previous study of tempo-

ral difference learning has found that tile-coding [42] is effective. Open-source

implementations of this include tiles3 [41] and tile coder [14].1

vCi
(s) = E

[
∞∑
k=t

γt−kCk+1 | St = s

]
≈ wᵀφ(x) = v̂Ci

(x(s))

With a list of cumulants Ci, a discount rate γ, and a method to transform

observations into features, the value function is defined and can be estimated.

The step-size α and trace-decay parameter λ are hyperparameters that need

to be set prior to learning. Using linear function approximation, the TD(λ)

algorithm can estimate the GVFs. After one pass through the training data,

the GVF parameters wCi
are saved, and constitute the model of machine

behaviour. In a second pass, the Unexpected Demon Error (UDE) [49] is

calculated using this fixed model and the temporal difference errors δi .

UDE(t) = surprise(t) =

∣∣∣∣∣
1
β

∑t
i=t−β δi

sδ,0:t

∣∣∣∣∣
1tiles3 uses hashing - often resulting in slower runtimes, but less memory usage. tile coder

does not utilize hashing, which increases the memory requirements, but is vectorized to take
advantage of modern processor architectures
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The standard deviation of δi is calculated using only historical TD errors:

sδ,0:t =
√
var{δ0, ..., δt}; in an online learning setting, UDE could be calculated

online as well. β is a hyperparameter - corresponding to the window over which

TD errors are averaged.

In cases where an outlier score is desired for a multivariate time series

X ∈ RT×d, there will be T UDEs for each of the d cumulants. The average

UDE can be used as the outlier score.

scoreGV FOD(X) =
1

T × k

T∑
t=1

k∑
i=1

UDEi(t)

GVFOD is not a multivariate outlier detection algorithm for the following

reasons:

1. GVFOD requires the input data to be time series. For a multivariate

OD algorithm, shuffling the features for all samples (e.g . shuffling the

order of observations in a single period) would have no effect. Doing the

same shuffling for GVFOD would likely reduce its performance.

2. Likewise, the training samples need to remain ordered, whereas a multi-

variate OD algorithm can learn from shuffled training data. The training

of GVFOD by TD(λ) with a constant step-size is intentional. Samples

later on in the training set have a larger effect on the GVF parame-

ters than earlier samples, and the learned from earlier samples can be

overwritten.

3. Testing data cannot be shuffled, since the outlier scores are not indepen-

dent. This is caused by UDE being a function of not just the current

TD error, but also of previous errors. In the experimental section of this

chapter, GVFOD’s testing set always starts with normal data, and is

followed by fault data. This non-standard arrangement of test data is

valid, since a real machine would be expected to be working normally

before it encounters a fault.

The full algorithm is given in Algorithm 1.
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Algorithm 1 GVFOD (for a single cumulant)

Input:
Training samples Dtrain = {X i, ci}ni=1,
X i ∈ RT×d, ci ∈ RT

Function approximator φ : Rd 7→ Rk

Contamination ratio α ∈ (0, 0.5)
Input:

Testing samples Dtest = {Xj, cj}mj=1

Output:
Outlier scores ytest ∈ [0,∞)m

Outlier threshold y∗ ∈ [0,∞)m

1: Initialize:
w ∈ 0k, z ∈ 0k

α > 0, λ ∈ [0, 1], γ ∈ [0, 1), β ∈ N
2: for X i, ci ∈ Dtrain do
3: for t = 0 to T − 1 do
4: δ ← Ct+1 + γwᵀφ(xt+1)−wᵀφ(xt)
5: z ← γλz + φ(xt)
6: w ← w + αδz
7: end for
8: end for
9: wC = w
10: for X i, ci ∈ Dtrain do
11: for t = 0 to T − 1 do
12: δt ← Ct+1 + γwᵀ

Cφ(xt+1)−wᵀ
Cφ(xt)

13: UDEt ← surprise(δ0:t, β)
14: end for
15: yi ← 1

T

∑T−1
t=0 UDEt

16: end for
17: y∗ = quantile(OS, (1− α))
18: for Xj, cj ∈ Dtest do
19: for t = 0 to T − 1 do
20: δt ← Ct+1 + γwᵀ

Cφ(xt+1)−wᵀ
Cφ(xt)

21: UDEt ← surprise(δ0:t, β)
22: end for
23: ytestj ← 1

T

∑T−1
t=0 UDEt

24: end for
25: return ytest, y∗
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3.2 Experiment

In this application, each sample of robot arm data is a flattened multivariate

time series. Each sample has 6000 features. This corresponds to the 3 time

series (position, torque, tension), each with a length of T = 2000. A large

challenge with outlier detection, and machine learning in general, is the curse

of dimensionality. In order to reduce the dimensionality, principal components

analysis (PCA) can be used to produce a lower dimensional representation of

the data. PCA is optimal in the sense that it retains the maximum possible

variance in the data using a limited number of variates. PCA is sensitive to

feature scaling; if PCA is used, each of the 6000 features is scaled to zero mean

and unit variance beforehand.

In this experiment, the number of principal components used is 20, which

retains 96.2% of the variance in the normal data (Figure 3.1). Whether or

not PCA is used before passing data to the outlier detection algorithm is a

hyperparameter that will be chosen for each algorithm.

Figure 3.1: The proportion of explained variance is shown as a function of
the number of principal components retained. Features were scaled to unit
variance and zero mean prior to application of PCA. Standard multivariate
analysis techniques require that the number of retained components exceeds
the elbow on the graph. We determine visually that this elbow occurs around
n = 12. This graph is truncated at n = 50, but the plot reaches 1 at n = 6000.
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After the preprocessing step, each algorithm is evaluated by training on

normal data, and then evaluating on a test dataset of normal and abnormal

data. The following metrics were used to evaluate performance. We maintain

the convention that positive observations are faults, and negative observations

are normal records.2

precision =
tp

tp+ fp

recall =
tp

tp+ fn

F1 =
2

recall−1 + precision−1

For every algorithm, hyperparameters need to be set before the training phase.

The only shared parameter between all outlier algorithms is the contamination

ratio. The contamination ratio determines the cutoff between normality and

abnormality - it is a quantile of the outlier scores on the training data. In all

experiments, the contamination ratio was set to 5%. Thus, any test record

with an outlier score greater than 95% of the training scores will be classified

as an outlier.

For every other hyperparameter, Hyperopt [3] was used to find the optimal

value. Optimal is used very loosely here - there is no guarantee that the

selected parameters are the best; it is limited by the search algorithm, the

computational resource availability, and the number of evaluations completed.

Optimization was done using only hyperparameter tuning data from the

first 12.8 hours of normal data and the first half of each fault dataset. This

segmentation was done in order to keep a set of fresh data for evaluating the

algorithms afterwards (see Figure 3.2). The last 12.8 hours of normal data, and

last half of each fault dataset, is termed the model evaluation set or validation

set

The optimal parameters found for each algorithm is given in Table 3.1. The

optimization algorithm used was Tree of Parzen Estimators [2]. The sequential

model-based optimization is done as follows:

2tp is the number of true positives, fp are the false positives, tn are the true negatives,
and fn are the false negatives.
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Normal Data

Abnormal Data

7193 samples
20 hours

Hyperparameter Tuning

12.8 hrs Model Evaluation

12.8 hrs

182 Samples
30 minutes

180 Samples
30 minutes

Loose L1

Loose L2

194 Samples
32 minutes

183 Samples
30 minutes

Tight

Sandy

210 Samples
35 minutes

High Temperature

All abnormal
data has a 50/50

split between 
hyperparameter 

tuning and model
evaluation

Figure 3.2: A visualization of the utilization of the normal and fault data. The
first 12.8 hours of normal data are used for hyperparameter tuning, and the
last 12.8 hours of normal data are used in algorithm evaluation. To achieve
the desired sample sizes there is some overlap. Fault data is split 50/50 with
no overlap.

1. A candidate set of hyperparameters is chosen by Hyperopt.

2. Repeat the following 10 times, using the splitting scheme shown in Figure

3.3.

(a) Get the training set of 1000 contiguous normal records. Train the

OD algorithm with the selected hyperparameters.

(b) Use the subsequent 1000 contiguous normal records, as well as the

abnormal data, as the testing set. Get outlier scores, evaluate

against the outlier threshold, and get F1-score.

3. Report the average F1-score of these 10 runs back to Hyperopt.

4. Repeat the above 400 times. Return the best hyperparameters.
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Figure 3.3: The method by which normal data is split for hyperparameter
optimization. In practice, 10 splits are made, with 1000 periods in training,
and 1000 periods in testing. Abnormal data is not split - since it is only ever
used in testing.
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3.3 Results and Discussion

Algorithm evaluations were done with a single outlier class at a time. In

general, Loose L1 data exhibited the worst performance, and are reported

here. The 95% confidence interval on the mean is displayed in every plot.

Performances on other outlier classes are provided in Appendix A.

The metrics used to evaluate algorithm performance are precision, recall,

and F1-score, all of which have been previously defined. These metrics have

good intuitive meaning when applied to machine fault detection. An algorithm

with low recall will fail to identify machine faults when the behaviour is truly

faulty. An algorithm with low precision will wrongly classify normal operation

data as faulty. Ideally both would be high - and F1-score is a harmonic mean of

the two. Additionally, all these metrics are sensitive to the balance of normal

vs abnormal classes. To ensure that different experiments can be appropriately

compared, the number of samples in the normal and the Loose L1 abnormal

class are kept constant in all test sets.

The metrics are calculated as a function of the training data used, since

it’s worth knowing the effect that training data quantity has on algorithm per-

formance. It is obviously beneficial if an algorithm can learn with a smaller

amount of data, since there would be a shorter lead time between machine

startup and the availability of the fault detection algorithm. Moreover, if

machine behaviour is non-stationary in its normal operation, it would be in-

teresting if additional training causes deteriorated performance. To evaluate

this, the splitting scheme for each run is shown in Figure 3.4. Splitting is only

done for normal data - since abnormal data only goes into the testing set. In

order to have an estimate of error, there are offsets of 10 minutes for each

experiment, and a total of 20 experiments. I.e. the last experiment starts at

minute 200. In each experiment, there are a further 20 runs, each taking a

different amount of training data. The runs range from between 50 samples

(8m20s) and 2000 samples (5h33m) of training data; the subsequent 600 sam-

ples (1h40m) of normal data, and Loose L1 outlier data is used for testing.

Note that these experiments are not independent, and that there is less inde-
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pendence between runs at large training sizes: the offsets between runs stays

constant, but the amount of overlapping data grows.

Figure 3.4: Normal data splitting method. In this study, 20 runs are made,
with anywhere 50 to 2000 periods in training, and 600 periods in testing.
Abnormal data is not split - since it is only ever used in testing.

Figure 3.5: Normal data splitting method. A delay is added between training
and testing sets.

Figure 3.6 shows the performance of different algorithms on the hyperpa-

rameter tuning data. Since we optimized the hyperparameters on this data,

this plot represents the best-case performance. However, even though these re-

sults cannot be reported as the algorithm’s testing performance, it’s still worth

investigating whether there is a difference in performance between training and

testing sets. In general, it can be seen that most algorithms have very good

recall - indicating that most algorithms are capable of identifying faulty be-

haviour. The algorithm performance is better discriminated by their precision.

In general, GVFOD outperforms all the other algorithms, with no significant
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change in performance from training sizes between 600 and 2000. Below a

training size of 600, the precision of most algorithms is poor. Curiously, the

performance of all other algorithms seems to drop off as training data increases.

More importantly, we need to evaluate these algorithms on validation data -

data which was [mostly] unused for hyperparameter tuning.

Figure 3.6: Algorithm performance on “hyperparameter tuning” normal data
and Loose L1 fault data. Optimal parameters used.

Figure 3.7 shows the performance using the validation data. Overall, we see

a significant decrease in model performance compared to Figure 3.6. When

encountering reduced model performance on validation data, a likely cause

that needs to be ruled out is overfitting - where the hyperparameters have

been selected to fit the noise of the hyperparameter-tuning data. Another

plausible explanation is that in the validation data the underlying mechanisms

generating machine data are shifting significantly, and the normal test data

is being sampled from a process which has changed since learning on the

training data. Of note is also the drop in performance for most multivariate OD

algorithms and Markov Chain as training data is increased from 500 periods

to 1500 periods. In general, more data leads to better performance, but that
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is clearly not the case here. The exception is GVFOD, which seems to scale

linearly with more data, and hits 100% precision and recall at a training size

of 2000. These promising results come with two caveats: there is more overlap

in the training sets as training data size increases, leading to less independence

between runs. Additionally, GVFOD tends to have greater variance than most

other methods. This can be a large problem in practice, since this can manifest

as inconsistent algorithm performance.

Figure 3.7: Algorithm performance on “model evaluation” normal data and
Loose L1 fault data. Optimal parameters used.

Furthermore, Figure 3.8 shows experiments that are done with a 720 pe-

riod (2 hour) delay between training and testing, using the validation data.

In a machine fault detection setting, this would be similar to the operational

case where the model was trained using older data, and has not been updated

with the most recently available normal data. The splitting scheme which

incorporates a delay can be seen in Figure 3.5. The difference between per-

formance with and without delay is likely due to non-stationary behaviour in

the robot arm data. If the normal data arising from the robot arm was identi-

cally distributed over time, there would be no such reduction in performance
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when a delay is added between testing and training. Hence, we conclude that

there exists significant non-stationary behaviour in the robot arm data; fur-

thermore, it seems that GVFOD is suitable for learning normal behaviour in

non-stationary environments, shown by its consistent performance.

Figure 3.8: Algorithm performance on “model evaluation” normal data and
Loose L1 fault data. Optimal parameters used. A two hour delay occurred
between training and testing.

It would be remiss not to mention Markov Chain performance in Figures

3.7 and 3.8: similar to GVFOD, Markov Chain is a state-space model of time

series outlier detection. It may not have the same asymptotic performance

that GVFOD has exhibited, but it consistently performs about as well as

other multivariate techniques. Moreover, it has significantly less variance than

GVFOD - a highly desirable property in practice.

In a machine fault detection application, fault data is often not available.

Imagine, after installing a brand new machine, that it has to be modified

to simulate failure. This would seem like a ridiculous action, and it would

probably reduce the machine’s reliability in the future. As such, we evalu-

ated the performance of these algorithms using the default values provided
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in PyOD (Table 3.1). For GVFOD, no default parameters are available, so

parameters were chosen based upon general knowledge of the machine and of

reinforcement-learning.

1. divs per dim: the number of tiles (or bins) to have for each dimension

(sensor). The chosen value is [10, 10, 10], which corresponds to the num-

ber of tiles for position, torque, and tension respectively. This deter-

mines the amount of generalization: learning on one state can at most

affect value function estimates of states 1
10

= 10% of the sensor range in

either direction.

2. numtilings : the number of tilings to use. It also determines the number

of ones in the feature vector. The chosen value is 10. Combined with the

previous choice of divs per dim, there is 1
10×10 = 1% resolution in each

dimension.

3. discount rate: The chosen value is 0.9. This yields a pseudo-horizon of

the GVF predictions of 1
1−0.9 = 10 time-steps; and the discounted sum

(and the value function) will be on a scale roughly 10x the scale of the

cumulant.

4. learn rate: the amount of correction with each visit to a state. The

chosen value is 0.01. This value needs to be in the range (0, 1]. Note

that when using the TD-learning rule, α = learn rate
numtilings

, to ensure there

is no overshoot in the updates. If there is no noise, and the true value

function is fully representable with the feature mapping, the ideal value

is always 1. The inverse of learn rate is similar to the time-constant -

the “elapsed time required for the [error] to decay to zero if the system

had continued to decay at the initial rate” [45]. With a learn rate of 1%,

the error would decay to zero in 100 visits to that state if the initial rate

of learning was kept.

5. lambda: the trace-decay parameter. The chosen value was 0.1. This

value is typically fairly arbitrary - larger values pass more information
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backwards in time to update previously visited states, but have higher

variance.

6. beta: the “window width” for UDE. The chosen value was 250. This

should be set to a value representative of how many time steps it would

take to recognize an outlier. Since the period of the robot arm is 2000

steps, a choice of 250 seemed reasonable.

These choices of hyperparameters were made without any feedback from the

algorithm performance, in order to ensure there is no unintentional tuning of

results, which was done previously using parameter optimization. We wish to

conduct this experiment in a way to best mimic a real deployment of a fault

detection algorithm, where no fault data is available for tuning the hyperpa-

rameters, and therefore there would be no objective function to optimize over

the hyperparameters.

Markov Chain’s hyperparameter, divisions, was kept the same as the op-

timal value. The meaning behind that parameter is the same as GVFOD’s

divs per dim, except that this implementation of Markov Chain requires that

all sensors must be divided into the same number of tiles.

The counterparts to the previous three experiments, using these default

hyperparameters, are shown in Figures 3.9, 3.10, and 3.11. Again we see better

performance on the hyperparameter tuning data than on the model evaluation

data. Since parameter search was not done, this is evidence against overfitting

in the first set of experiments, although it does not rule it out completely.

However, the performance drop could be much better explained by changes in

the machine - indicating there is significant non-stationarity in normal machine

behaviour. Interestingly, the expert-selected GVFOD parameters are better

than what Hyperopt could find in 400 trials. Recall that the SMBO procedure

searched for the best average F1-score at a training size of 1000 samples; at this

training size, the optimal parameters acheived a mean F1-score of only 96.8%

compared to the expert-selected parameter F1-score of 98.8%. Most other

algorithms behaved as expected, where SMBO finds better hyperparameters

than the default values. Using parameter optimization, LOF, kNN, OCSVM,
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and MCD exceed an F1-score of 80% somewhere along the curve; without

optimization, only MCD exceeds 80%.

Figure 3.9: Algorithm performance on “hyperparameter tuning” normal data
and Loose L1 fault data. Default parameters used.
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Figure 3.10: Algorithm performance on “model evaluation” normal data and
Loose L1 fault data. Default parameters used.

Figure 3.11: Algorithm performance on “model evaluation” normal data and
Loose L1 fault data. Optimal parameters used. A two hour delay occurred
between training and testing.
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From these experiments, we have identified low precision as the biggest

limitation of machine learning algorithms for fault detection in the robot-

arm dataset. High recall in a machine fault detection setting is important

- it indicates that a machine can reliably identify faulty behaviour when it

occurs. However, with the number of false positives reported, any of the

multivariate outlier detection algorithms would quickly overwhelm an operator

with machine-fault warnings, rendering the fault detection system near-useless.

Kay et al . [22] discusses the importance of tying computing science mea-

sures of algorithm performance (precision, recall, accuracy, etc.) to the ac-

ceptability of the algorithm in a user-facing application. In this case, a single

period of machine operation takes 10s. If an algorithm achieves a 99% false

positive rate, there will still be 86 false alarms per day! In an industrial setting,

this would have to be scaled up for each machine in the fleet. It’s not difficult

to imagine that there would be very little user trust in the CBM system.

In practice, we recommend using averaging techniques or other low-pass

filtering techniques to remove the noise from the outlier scores. With the

requirement that CBM targets only accumulated-wear failures, it is a valid

assumption that only when the average rate of fault alarms rises, does there

exist a fault in the system behaviour.

3.4 Conclusion

In this chapter, we introduced General Value Function Outlier Detection (GV-

FOD), a new algorithm for detecting outliers in machine operation data. GV-

FOD uses general value functions as a predictive model of machine behaviour,

and Unexpected Demon Error (UDE) as a measure of surprise. GVFOD was

compared to Markov Chain and a selection of multivariate outlier detection al-

gorithms for finding faulty behaviour in the robot-arm dataset. Using the Tree

of Parzen Estimators [2] algorithm for sequential model-based optimization,

we searched for the best parameters for every algorithm using both normal

and faulty data. GVFOD performed at least as well as other algorithms in the

majority of situations. With the availability of more training data, GVFOD
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seemed to outperform all other algorithms. Furthermore, GVFOD parameters

were selected using expert knowledge, without the use of fault data; it was

found that the intuitive nature of GVFOD parameters for time series data

led to good performance relative to other algorithms. Some drawbacks of

GVFOD include its reduced performance at small training sizes compared to

multivariate outlier detection methods, and its high variance overall. Lastly,

we discovered significant non-stationarity in the latter part of the robot arm

dataset, within the normal operating condition. Since this non-stationarity is

uncontrolled, the next chapter will build a simulator for further evaluation of

GVFOD in synthetic non-stationary environments. Overall, these contribu-

tions to the field of CBM highlight the importance of exploiting the tempo-

ral dimension of data for machine fault detection, and how developments in

online-and-incremental RL methods can achieve equal-or-better performance

in offline semi-supervised learning problems.
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Chapter 4

Fault Detection for Simulated
Non-Stationary Machine
Behaviour

In this chapter, we introduce an updated simulator of the robot arm, and

use it to generate data for outlier detection. In particular, we are able to

simulate gradually changing machine conditions in a controlled manner. We

then compare LOF, GVFOD, and UDE for the purpose of fault detection in

CBM.

4.1 Robot Arm System Identification

First, we need to evaluate the performance of the simulator in Lipsett et al .

[25]. We pick a small two-period (20s) slice of operation early on in the nor-

mal dataset, starting at period 500 (1h23m since machine start). The initial

conditions are calculated under the assumption that the robot arm starts off

stationary, and with no net force on any pulley. Using linearly interpolated

torque data as the input, we solve the equations given in Subsection 2.5 us-

ing a numerical differential equation solver. The solver used is LSODA [40],

implemented in the SciPy package.
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Figure 4.1: Performance of default parameters on robot-arm data.

Figure 4.1 shows the simulated performance of the robot arm using the

default parameters. The calculated angle diverges from the true angle almost

immediately. The dynamical model of the simulated robot arm is therefore

not representative of the real arm. These default parameters were empiri-

cally measured and derived [25], and are tabulated in Table 4.1. Two major

considerations need to be made:

1. The only source of energy dissipation in the default model is through

belt damping parameters. Since the arm angle increases in a superlin-

ear fashion, there likely needs to be more sources of energy dissipation

through friction.

2. The torque applied at 5s and the torque applied at 10s are unequal

and non-zero. However, at those times, the arm is nearly stationary.

Therefore, there needs to be an equal and opposite force elsewhere in

the robot arm system. A likely source is that the surface upon which

the arm rolls is not perfectly level, and the arm is applying a torque to

the arm pulley as it rests on the slanted surface.

To address these issues, additional forces are added to the system. Friction

61



forces need to be added to each of the three pulleys. Adding friction can

be difficult - the Coulomb model of friction is a non-differentiable function

of the tangential force, the normal force, and the pulley speed. Instead, we

implement a linear model of friction, similar to a viscous model, and attach

an additional soft-sign term. An example of this frictional force for the motor

pulley is given as:

τf,m = −Nm(f1m sgn(θ̇m) + f2mθ̇m)

whereNm is the normal force applied to the pulley by the two belt sections. f1m

is the frictional term similar to the Coulomb model of dynamic friction, except

it is implemented with a soft-sign (sigmoidal) function1 for differentiability,

which is necessary for the initial value problem solver used. The second term,

f2m corresponds to the viscous model of friction - where the frictional force is

proportional to the speed of the pulley. A similar model of friction is used on

the other pulleys.

In order to account for the force of gravity and the slope in the rolling

surface, an additional force is added to the arm pulley:

τg = slope1 × sin(θa) + slope2 × cos(θ1)

Altogether, the new equations defining the motion of the robot arm are:

θ̈mIm = rm(Ft1 − Ft3) + τm(t) + τf,m

θ̈iIi = ri(Ft2 − Ft1) + τf,i

θ̈aIa = ra(Ft3 − Ft2) + τg + τf,a

To learn all the parameter values, the same Sequential Model-Based Op-

timization (SMBO) scheme is used: Tree of Parzen Estimators [2], which is

implemented in the Hyperopt package [3]. The optimal values are shown in

Table 4.1. Although this package was developed for optimizing hyperparam-

eters in computer vision architectures, it proves to be useful here. Certain

parameters (CL, EA) have a large error between empirical and optimized val-

ues, due to insensitivity of the simulator’s arm position to the parameter value.

1sgn(x) = tanh(20x)
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The objective function was the mean-squared-error (MSE) between the calcu-

lated and measured arm angle, over the same 20s of data in Figure 4.1. All

20 parameters were allowed to be modified; however, certain parameters that

have a lower probability of measurement error (such as belt lengths, pulley

diameters) were restricted to a neighborhood of their empirical values. The

size of the neighborhoods was chosen as ±5% for belt lengths and ±25% for

pulley diameters. 20,000 runs were completed to find these parameters, taking

roughly two days on 16 Broadwell Xeon cores.

Table 4.1: Optimal and empirical parameters for robot arm simulator.

Parameter Description
Optimal Value

(Hyperopt)
Laboratory

Measured Value
CL Belt damping factor 5.506Ns 0.183Ns
EA Belt stiffness constant 41079N 7058N
l1 Length of belt section 1 0.1263m 0.127m
l2 Length of belt section 2 0.1529m 0.152m
l3 Length of belt section 3 0.1787m 0.178m

Im
Mass moment of inertia

(motor pulley)
1.51× 10−4

kg ·m2 unknown

Ii
Mass moment of inertia

(idler pulley)
3.99× 10−7

kg ·m2

2.445× 10−6

kg ·m2

Ia
Mass moment of inertia

(arm pulley and assembly)
0.300
kg ·m2

0.547
kg ·m2

rm Radius of motor pulley 0.0115m 0.0122m
ri Radius of idler pulley 0.0103m 0.0122m
ra Radius of arm pulley 0.0209m 0.0189m
Tbase Base tension in belt 155N 155N

f1m
Friction parameter 1

(motor pulley)
7.3× 10−7m unknown

f2m
Friction parameter 2

(motor pulley)
5.2× 10−8s unknown

f1i . . . 1.3× 10−5m unknown
f2i . . . 6.2× 10−6s unknown
f1a . . . 3.4× 10−4m unknown
f2a . . . 5.7× 10−4s unknown

slope1 Slope correction factor 1 −0.341Nm unknown
slope2 Slope correction factor 2 0.310Nm unknown

Figure 4.2 shows the performance using the optimal parameters. The first

20 seconds is the training data - the arm position’s MSE was optimized over
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this range. The training loss over these 20 seconds was 1.39. In the following

20 seconds, the testing loss was 2.12. The testing loss in the last 20 seconds

was 2.27. Initial value problems can be sensitive to the initial conditions. If

this is the case here, it may be evidenced by errors that propagate and grow

over time. In Figure 4.2, we can see that the MSE grows over the 40 seconds

following the training data.

Figure 4.2: Performance of default parameters on robot-arm data.

Furthermore, when the initial motor position was increased by 1% (from

0.533rad to 0.539rad), the loss in the training data increased to 2.17 from

2.12, and the following 20 seconds of data saw the MSE increase from 2.12 to

2.23. We can therefore assume that as time increases, the errors will continue

to propagate, and the arm’s position will diverge from the measured values.

Therefore, we cannot use empirical torque data to generate robot arm data

over a significantly longer period of time, since the range of motion will drift

over time.

4.1.1 Control

To complete the simulator, and release the dependence on empirical torque

measurements, a PID controller was implemented. The process variable to be
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Table 4.2: PID control parameters.

Control Parameters

Kp

Gain
25 Nm/rad

Tint
Integration

Time
2.0 s

Tdt
Derivative

Time
0.01 s

controlled is the arm angle, and the manipulated variable is the motor torque.

Ideally, the controller of the experimental robot arm would be ported into

our simulation. However, that code is unavailable, and instead we define our

own setpoint and PID parameters. We do not seek to match experimental and

computed torque profiles, since the purpose of this simulation is to generate

normal and abnormal data for the robot arm. What matters is a logical effect

of the system dynamics parameters on system response, and not whether the

simulated system dynamics match the true dynamics exactly.

A basic way of smoothly moving an object from one point to another is by

using a trapezoidal velocity profile (Figure 4.3). The object accelerates up to

its maximum speed, maintains this speed, and decelerates such that it reaches

0 velocity at its desired location. By integrating this velocity profile, we have

the setpoint for robot arm position. This setpoint has an ‘S’ shape. The IVP

solver used is requires the differentiability of the arm angle setpoint: although

the function is defined piecewise, and the trapezoidal velocity profile ensures

the setpoint is differentiable.

The PID controller is given as a function of the arm position error, e(t) =

θSPa (t)− θa(t), and with motor torque τm(t) as the output.

τm(t) = Kp

(
e(t) +

1

Tint

∫ t

0

e(t′)dt′ + Tdt
de(t)

dt

)
The parameters chosen for this equation are given in Table 4.2. These param-

eters were selected by hand, to visually minimize the error in the robot arm

position. Note that d
dt
e(t) = d

dt
θSPa (t) − θ̇a(t), which can be calculated using

the existing state variables. The missing variable, E
.
=
∫ t
0
e(t′)dt′ is added to

the state vector, using the first order ODE Ė(t) = e(t), with an initial value

of zero.
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Figure 4.3: Trapezoidal velocity profile of the robot arm simulator target (in
CCW direction).

Table 4.3: State vector and initial values of dynamical system.

Parameter Description Initial Value
θm Motor pulley angle (rad) 0.533

θ̇m Motor pulley velocity (rad/s) 0
θi Idler pulley angle (rad) 0.533

θ̇i Idler pulley velocity (rad/s) 0
θa Arm pulley angle (rad) 0.344

θ̇a Arm pulley velocity (rad/s) 0

E =
∫ t
0
θSPa − θadt′

Cumulative arm pulley angle
error (rad · s) 0

4.2 Experiment

Figure 4.4 demonstrates the ability of this controlled simulator to generate

data for the robot arm in perpetuity, at the same sampling rate and with the

same sensors/observations as the empirical machine. Because there is feedback

control on the robot arm position, the arm position will always tend towards its

setpoint. The torque values are given by the PID controller, and the tension

is given by the equations in Section 2.4.4. Note that there is a difference

between empirical and simulated torque values and tension values. By visual

inspection, the periodicity and range of the simulated data seem reasonably

similar to empirical values, so we can accept this as a good simulator to base

further analysis. We will verify this by modifying parameters and seeing if they

have explainable effects on the simulated data. Recall that the goal is not to

emulate the behaviour of the robot arm perfectly, but to have a reasonable
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model that can generate data with explainable parameters.

Figure 4.4: Simulated controlled robot arm data. The torque and tension are
calculated as functions of state.

The parameters of the model can now be modified to see what changes

then induce in the data. This will serve as a sanity check that the simulator
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behaves in ways we expect. In Figure 4.5, the static belt tension is modified

about its nominal and optimal value of 155N. It can be seen that the arm

position remains nearly unchanged (due to the PID control), which will also

be seen in the later experiments. Here we also see that the torque magnitude

increases when the arm is in motion and when it is being accelerated, but has

a smaller magnitude when the arm is being decelerated - this can be explained

by increased friction from a tighter belt. The dynamic tension measurements

are as expected, the majority of the change being due to the offset in static

tension.

Figure 4.5: Changing the base belt tension (Ft,base) in the PID controlled robot
arm simulator.

In Figure 4.6, the rolling surface of the arm has been tilted in one direction.

We would expect that the slope-induced torque in the arm pulley would change

as a function of the arm position. We see the effect of this in the motor torque

measurements and in the tension measurements - where there is a significantly

larger effect when t = 2.5s, 12.5s, ... as compared to when t = 7.5s, 17.5s, ...

Lastly, in Figure 4.7, the viscous friction in the arm pulley is being modified.

Because viscous friction is proportional to arm velocity, we would expect the

biggest changes to arm dynamics when the arm is moving. This is reflected in

the torque and tension measurements again - localized to when the arm is in

motion (t = 0s to 2s, 5s to 7s, etc.).

Overall, we see that changing these parameters induce explainable and
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Figure 4.6: Changing the slope parameter (slope1) in the PID controlled robot
arm simulator.

Figure 4.7: Changing the arm pulley viscous friction (f2a) in the PID controlled
robot arm simulator.

reasonable effects in the robot arm simulator, and extrapolate that this is a

good model of the robot arm for the purposes of generating reasonable failure

data. The goal is then to use the simulator to compare a multivariate OD

algorithm with GVFOD and the online UDE.

Prior to starting the experiment, we need to have a sense of what non-

stationary normal machine operation looks like. Using our previous definitions

of fault and failure - where fault is an event that precedes incipient failure -

we can define the [idealized] models of machine health shown in Figure 4.8.

The machine health presented here is inversely correlated to the outlier score.
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When the machine’s normal operation is stationary, the machine health will

stay consistent until a fault occurs. This would be best-case scenario for CBM,

since the distribution of normal data encountered in training is the same as

that in testing. However, we saw that this was not the case on the robot-

arm dataset. Instead, if we assume that normal data is accurately modelled

as gradual linear degradation, we define fault to be the event where there

is a change in the degradation rate, and health profile becomes non-linear.

This acceleration in degradation will predict the upcoming failure. In this

situation, there is a lead time between the occurrence of machine fault and

the occurrence of machine failure. A limitation of this definition is that it is

perfectly plausible that failures can occur with no fault (such as in electronic

systems, or in systems that wear only a very small amount and then fail

suddenly), but we do not consider them here.
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Figure 4.8: Our model of non-stationary machine operation, fault, and failure.

In Figure 4.9, we see the simulator being used to a create non-stationary

normal data, and the data following the occurrence of a fault. The belt is

gradually loosening, characteristic of a belt aging in application [18]. As the

static belt tension (Tbase) drops below 145N , a fault occurs, and the rate of

degradation increases. This figure exists to visualize how we generate data

over a very short time scale (only three period), and a full experiment over a

longer period of time will be done.
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Figure 4.9: Simulated controlled robot arm data with gradual degradation and
fault.

4.3 Results and Discussion

In the previous section we introduced the non-stationary environment of fault

detection, with 2 periods of normal machine operation, and a single period of

operation after the fault occurs. In Figure 4.10, we see the difference between

LOF (a multivariate OD algorithm), GVFOD, and UDE when presented with

the gradual failure data. For LOF and GVFOD, the training phase is from

0s to 4000s. Afterwards (from 4000s to 15000s), these algorithms are used to

calculate the outlier scores of the test data. The difference between GVFOD

and our representative multivariate OD algorithm is clear - GVFOD has the

lowest outlier scores towards the end of training (save for some noise in the

beginning), whereas the LOF scores are consistent for the entirety of the train-

ing data. Furthermore, the time at which test outlier scores rises above the

outlier threshold is different - LOF starts detecting faulty behaviour soon after

the end of training, at around 5500s. Whereas, the GVFOD algorithm starts

detecting faulty data much later, at around 8000s. Since the fault occurs at

10000s, LOF misclassifies significantly more normal data than GVFOD.
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This is simply explained by knowing that LOF is learning a model of nor-

mality for the entire set of normal data. Whereas for GVFOD, because the

GVFs have learned models best adapted to the end of training, this also gen-

eralizes well to the system dynamics at the start of testing. Another way of

viewing this is, since GVFOD has learned a model tuned for the end of train-

ing, it is more tolerant towards the amount of model drift that occurred since

the beginning of training to the end of training, and thus is more tolerant of

model drift from the beginning of testing.

Why does the online UDE differ from GVFOD? In GVFOD, the model is

kept fixed, i.e. the GVF parameters at the end of training (in this case, at

4000s), are used to calculate the outlier score for all other observations. In

UDE, learning happens continually, in an online and incremental manner, so

the model parameters are changing with each time step. With the right step-

size, we are able to have a consistent UDE value up until the fault occurs.2. In

doing so, online UDE bests GVFOD and LOF in identifying the fault, showing

a distinct elbow just past 10000s. This elbow is much closer to closer to the

true fault occurrence at 10, 000s, than the times at which LOF and GVFOD

scores crossed their outlier threshold. Learning the proper threshold for UDE

in order to classify samples as normal or abnormal, as well as learning the

step-size parameter, is a potential topic of future study. We can extrapolate

from the results in Figure 4.10 that UDE has the potential to be a better fault

detection algorithm than GVFOD and LOF in online fault-detection settings.

There needs to be some reconciliation between the results in this chapter

and those in Chapter 3. First, we have defined fault in two different ways -

in Chapter 3, fault data was a set of sequential time series where the machine

was physically modified to collect data simulating a near-failure condition. In

this chapter, we have defined fault as an event that causes a change in rate of

non-stationarity/degradation of the machine. These two potentially conflicting

definitions arises from the definition of the problem - Chapter 3 framed fault

detection as a semi-supervised learning task, and this chapter frames it as an

2Matching this step-size to the rate of non-stationarity is done empirically - in Figure
4.10, the TD learning parameter α was tuned by hand.
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Figure 4.10: Outlier scores of LOF, GVFOD, as well as UDE on gradual
failure data. The data is collected from the controlled robot arm simulator,
with gradual degradation, and a fault occuring at 10000s.
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online / continuous learning task. We leave the reader to decide which setting

best fits their application, and choose the best algorithm accordingly.

4.4 Advantages and Limitations of Simulation

The two primary advantages of using the simulation are consistency and the

ability to be modified. If parameters are kept consistent, time series data

generated by the simulator will be consistent over time (stationary). Secondly,

the simulated machine can be modified while it is running. This is not possible

on the physical robot.

There were a few limitations to the simulator. First, the optimization was

done only over the parameters that affected the arm’s dynamics, but not the

control dynamics. Instead, we optimized the control dynamics by hand, and

they only roughly match (as seen in Figure 4.4). This optimization could have

been done numerically, but we chose not to since there was no benefit for our

application. Furthermore, we only validated the arm dynamics with four more

periods post-training. In order to more confidently believe in the results of

the simulator, more validation could be done, perhaps using fault data. This

could determine how much the dynamics can be generalized to other operating

conditions.

4.5 Conclusion

In this chapter, we presented the robot arm simulator first developed by Lipsett

et al . [25], and modified it to emulate the behaviour of the robot arm device.

We implemented a PID controller so that the simulator can output position,

torque, and tension data indefinitely, and with a number of explainable phys-

ical parameters. By modifying these parameters, we simulated non-stationary

normal operation, induced a fault event where the rate of degradation in-

creased, and used this data to compare the performance of a multivariate OD

algorithm, GVFOD, and online UDE. It was found that because GVFOD mod-

els not only normal behaviour, but also the amount of non-stationarity that

exists in normal behaviour, it is better suited for generalizing to future non-
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stationary machine behaviour. Overall, it was found that online UDE, with

an appropriate step-size, is best suited for finding fault events. We hope that

these findings allow future users of these algorithms to have a deeper under-

standing of the challenges of CBM in non-stationary environments, and hope

that future advancements in RL and GVF research can likewise be adapted to

commercial machine monitoring and maintenance applications. In doing so,

industrial processes could become more reliable, safer, and more economical

as they leverage machine intelligence towards the production of goods.
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Chapter 5

Conclusion

We conclude this thesis by reintroducing the initial thesis statement posed.

Can we use general value functions and temporal difference learning with

native data to detect faults and assess machine health in machines?

We first looked at the offline setting of machine fault detection, where we

used condition monitoring (CM) data collected from a robot-arm machine op-

erating normally, and aimed to identify future test data as either normal or

faulty. We introduced the GVFOD algorithm, which uses a group of general

value functions to form a predictive model of the machine using the CM data.

Test data is mapped to an outlier score using unexpected demon error, in-

dicating whether the machine is in good condition or not. When comparing

different outlier detection algorithms with General Value Function Outlier De-

tection (GVFOD), it was found that all methods are equally capable of detect-

ing faulty behaviour; whereas certain algorithms make more errors identifying

normal behaviour than others. In general, it was found that GVFOD outper-

forms other algorithms when presented with sufficient quantities (over 4 hours)

of training data, albeit with higher variance. Moreover, with a background in

knowledge and the machine dynamics, GVFOD was shown to outperform out-

lier detection methods, when no fault data is available for parameter selection.

GVFOD was the only method to consistently perform better with the addition

of more training data, whereas some other methods would perform worse. This

outlines the importance of accounting for non-stationarity in normal machine
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operation. To the best of our knowledge, GVFOD is the first application of

general value functions in an offline fault detection setting. This RL-based

outlier detection method promises to improve user-belief in a fault detection

system by reporting fewer false positives, and significantly advances the feasi-

bility of data-driven condition based maintenance systems.

We then created an online setting of machine fault detection using a simu-

lator based upon the robot-arm apparatus. Using this, we were able to model

a machine operating a normal situation with gradual degradation. A fault was

induced, which caused an accelerated rate of wear. A representative multivari-

ate outlier detection algorithm, local outlier factor (LOF), was compared to

GVFOD and the online unexpected demon error (UDE) metric. From this,

we were able to better understand the differences between LOF and GVFOD

- LOF makes a model of normal machine operation; but GVFOD also models

the amount of wear that is considered normal. However, comparing both to

UDE demonstrated that the online UDE algorithm has potential to be better

than both LOF and GVFOD in online fault detection, as it better measure the

rate of wear in the machine. Nonetheless, this online setting of fault detection

led us to better understand the promising performance of GVFOD in offline

settings.

This thesis is yet another demonstration of the applicability of reinforce-

ment learning methods towards industrial processes; in this case, to ensuring

process reliability with CBM. We hope that the findings can be implemented

in both the industrial production of goods, and potentially in consumer and

household goods as well, so machines can be safer, more reliable, and more

economical in the future.
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Appendix A

Extended Results for GVFOD

The following figures accompany those found in Chapter 3, where only the

Loose L1 class of failure was reported. It can be seen that no substantive

difference in performance between fault classes is seen, and that the analysis

in Chapter 3 generalizes to all five failure modes.
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(a) Loose L1 (b) Loose L2

(c) Tight (d) Sandy

(e) High Temperature

Figure A.1: Algorithm comparison on hyperparameter tuning data with optimized parameters. No
delay.
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(a) Loose L1 (b) Loose L2

(c) Tight (d) Sandy

(e) High Temperature

Figure A.2: Algorithm comparison on validation data with optimized parameters. No delay.
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(a) Loose L1 (b) Loose L2

(c) Tight (d) Sandy

(e) High Temperature

Figure A.3: Algorithm comparison on validation data with optimized parameters. 2 hour delay.
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(a) Loose L1 (b) Loose L2

(c) Tight (d) Sandy

(e) High Temperature

Figure A.4: Algorithm comparison on hyperparameter tuning data with default parameters. No
delay.
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(a) Loose L1 (b) Loose L2

(c) Tight (d) Sandy

(e) High Temperature

Figure A.5: Algorithm comparison on validation data with default parameters. No delay.
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(a) Loose L1 (b) Loose L2

(c) Tight (d) Sandy

(e) High Temperature

Figure A.6: Algorithm comparison on validation data with default parameters. 2 hour delay.
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