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Abstract

Motion control of multirotor Unmanned Aerial Vehicles (UAV) is an area of research which

continues to generate significant interest in the community. Being able to accurately follow a broad

class of trajectories clearly improves the mission capabilities of the vehicle. Model uncertainty

and external disturbances are important factors reducing motion control performance. Improving

the robustness of motion control can clearly broaden UAV capability. In this thesis we propose a

number of trajectory tracking motion controls which are based on a backstepping design method.

By incorporating disturbance observers for external force and torque the proposed methods provide

exponentially stable tracking error dynamics for the constant disturbance case. For time-varying

disturbances tracking error is proven to be ultimately bounded. The stability analysis accounts for

the full nonlinear vehicle model which includes translational and rotational dynamics. This avoids

having to make common simplifying assumptions typical of designs with inner outer loop structure

(e.g., linear approximation of the rotational dynamics) during the closed-loop stability analysis.

The proposed design provides a model-based partial compensation of rotor drag. Software-in-the-

loop (SITL) simulation and experimental flight testing results are presented. These results show

the effectiveness of the proposed method using the commonly used open-source PX4/Pixhawk

development framework. The results demonstrate the methods’ practical usefulness including their

robustness and tracking error performance.

The developed motion control algorithms require an accurate knowledge of the system’s state, in

some applications a description of the environment and an estimate of external forces (e.g., aerial

manipulation and load transport). Having an algorithm that only depends on onboard sensors

can increase autonomy and reliability. There has been an increasing amount of work developing

state estimation algorithms using vision and inertial measurements. However, incorporation of the

dynamics modelling and actuation data, which are already available on UAVs and can provide
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more information about the vehicle’s motion, are normally ignored or just an approximate model

with unrealistic assumption on force modelling is used. In this thesis, we include an accurate

dynamical modelling of a multirotor by considering the effect of rotor drag and also a disturbance

observer developed with the assumption of constant force disturbance into an existing open source

state estimation approach. The effect of rotor drag is proved to be significant in control and

state estimation and its consideration can improve both the estimation and control tasks. In

addition, the proposed disturbance observer which is reformulated as a residual term can assist the

estimator to differentiate between the constant or slowly time-varying component of the external

force and the accelerometer bias providing a more accurate force estimate which is a need in many

UAVs applications. Furthermore, this structure increases the odometry accuracy. We evaluate the

performance of our proposed method by integrating it with an open source Visual-Inertial Odometry

(VIO) system and testing it on benchmark datasets. The results show a significant improvement

in the estimation accuracy.
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Chapter 1

Introduction

Multirotors are a special type of Unmanned Aerial Vehicles (UAV) which have gained popularity

in applications due to their unique advantages: simple and robust mechanical structure, maneu-

verability, available open-source autopilots, and low-cost [2]. Example applications for these UAVs

include environment monitoring, terrain mapping, and emergency response [3]. The importance

of multirotors is confirmed by the numerous research projects which they have generated. Well

known examples are Skydio 1, Urban Air Mobility (UAM) 2, DARPA Fast Lightweight Autonomy

[4], and the MBZIRC competition 3. This thesis is divided into two parts. The first part focuses on

improving the robustness of UAV motion control to external wrench with the assumption that the

vehicle state is an available measurement. The second part investigates visual-inertial state esti-

mation which provides a vehicle state and an estimate of the external forces. Hence, the results are

particularly relevant to improving the system’s autonomy and handling applications with external

forces.

1.1 Motion Control

Motion control of multirotor Unmanned Aerial Vehicles (UAV) is an area of research which

continues to generate significant interest in the community [5]. We remark that this thesis focusses

on traditional quadrotor UAVs given their abovementioned benefits. However, in general the results

derived are applicable to other rotary-wing UAVs in other configurations, e.g., traditional helicopters

with a main and tail rotor. Motion control normally involves tracking specified trajectories for the

vehicle’s 3D position and yaw. Path following is another related control objective. Being able to

accurately and robustly track a broad class of trajectories clearly improves the mission capabilities

of the vehicle. Interest in motion control comes from a range of challenges due to: the system’s

underactuated nonlinear dynamics [6], bounded inputs [7], model uncertainty [8], measurement

noise [9], and external disturbances [1]. Although the topic of motion control for these vehicles

1https://www.skydio.com/
2https://www.easa.europa.eu/domains/urban-air-mobility-uam
3https://www.mbzirc.com/
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has received significant attention to-date, improving robustness to external disturbance forces and

torques remains an important goal which can broaden UAV capability. For example, emerging load

transport applications lead to a range of external force and torques which must be compensated [10].

Other examples of disturbances include wind gusts [11] or contact wrench from the environment

due to a manipulator attached to the UAV [12, 13]. These disturbances have significant effect on

motion control performance [14] and should be compensated. In addition, a force which is usually

not explicitly accounted for is rotor drag which has attracted attention recently [15, 16]. Especially

for high air speed applications, rotor drag is an important force whose compensation improves

motion control.

One approach to account for disturbances uses a disturbance observer (DO) whose estimate

is used in the state feedback control to cancel its effect on the closed-loop stability. Usually

estimation is done by comparing measurements of the state with the value expected based on a

nominal system model. The accuracy of the disturbance estimate depends on an accurate nominal

system model used in the observer design. In addition to the robustness to the external disturbances,

successful motion control must be robust to uncertainty, implementable on onboard autopilots with

specific software and hardware and provide provable bounds for performance. This thesis proposes

a disturbance observer-based state feedback to improve the robust performance of motion control.

1.2 Visual-Inertial Odometry (VIO)

The state feedback motion control discussed in Section 1.1 requires an estimate of the vehicle

state (i.e., position, linear velocity, attitude, and angular velocity) and in general some applications

require a map of the vehicle’s environment (e.g., to perform obstacle avoidance or path planning).

Which vehicle states can or need to be estimated and whether a map is required depends on

the available sensors, the motion control task, and the level of autonomy needed. The literature

contains work involving many of these possible combinations. For example, optical flow and an IMU

measurement might be sufficient (i.e., no GPS is required) for landing on a moving platform [17].

Performing state estimation using onboard sensors clearly improves the UAV’s autonomy, e.g., it

enables GPS-denied applications and avoids dependence on a Motion Capture System (MCS) [2, 18].

However, these state estimation problems are particularly challenging for UAVs given their high

speed, maneuverability, limited computational power, and operation in challenging environments.

Two closely related particular state estimation problems which have been extensively researched

are Visual Odometry (VO) and Visual Simultaneous Localization and Mapping (SLAM) (VSLAM),

which are algorithms that process only images from a computer vision system in order to estimate

the UAV state and a map the environment. See [19, 20] for an overview and tutorial. A recent

survey of the developments on VSLAM is in [21]. Although other sensors such as Lidar can augment

or replace vision, a camera has the advantages of being lightweight, passive, low-power, inexpensive,

and suitable for a range of environments. Vision yields vast information about the environment

which makes it suitable for mapping [22]. Even in applications where it is not required, estimating
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a map alongside the vehicle state improves vehicle state estimation accuracy. Vision data can be

captured by a range of sensors, e.g., monocular, RGBD, and stereo cameras. Multiple cameras can

also be used. RGBD cameras measure the depth by projecting a pattern on the environment and

processing its distortion. Stereo cameras have the advantage of depth estimation which can be

useful in state estimation. However, RGBD and stereo cameras suffer from a number of limitations

including limited range and increased cost. Hence, this thesis adopts a monocular camera as it is

inexpensive lightweight and commonly available sensor.

One problem with monocular vision-only estimation algorithms is determining metric scale

and the direction of gravitational force. This limits their use in some applications [23]. Another

limitation is their relatively slow estimation frequency which makes them unsuitable for applications

such as UAV motion control [24]. These limitations motivate fusing the relatively slow visual data

with high frequency inertial measurement units (IMU) data, i.e., to perform so-called Visual-inertial

Odometry (VIO) or SLAM (VISLAM). A performance comparison of some recent methods is in

[25].

Combining monocular vision with an IMU allows the scale to be estimated. Furthermore, the

IMU renders the direction of gravitational force observable which is essential for UAV motion

control. In addition, employing an IMU can increase the system’s reliability by bridging the gap

between a VIO failure and reinitialization. Failures can arise due to motion blur, sudden change

of illumination, and texture-less environments [23]. Developing an accurate and robust VIO that

is enable to operate in real environments and which can provide state estimates for being used in

UAV motion control is a major challenge. This thesis provides an extension to an existing VIO

system [26, 27] by integrating the estimation of external forces including rotor drag.

1.3 Motion Control: Literature Review

Traditional Control: Many traditional linear and nonlinear motion control laws have been

proposed, where traditional refers to a little or no analysis for the design’s robustness. Typically

linear control refers to a design based on an approximate linear model. Examples of such linear

designs include Proportional-Integral-Derivative (PID) control in [6] or Linear Quadratic (LQ)

optimal control in [28, 29]. Since linear designs lead to a local convergence result, nonlinear control

methods, which directly account for all or part of the nonlinearity in the system’s dynamics, have

been proposed to achieve improved performance supported by a mathematically rigorous proof.

Examples of existing nonlinear methods include backstepping in [30, 31], feedback linearization in

[32, 33], sliding mode in [34–36], and differential flatness in [15, 37, 38]. We review the relevant

subset of these papers below. As discussed below, many nonlinear methods take an inner-outer loop

design approach which designs a separate control for the outer translational and inner rotational

subsystems. This approach has the advantage of a simple design and is often used in practice,

e.g., in the PX4 autopilot firmware [39]. Normally most methods which have this structure ignore

the effect of coupling between inner and outer loops on closed-loop stability [40, 41]. On the other
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hand, centralized designs account for the entire (i.e., coupled rotational and translational) dynamics

in the stability analysis, e.g., [38, 42, 43]. These methods, like the centralized approach proposed

in this thesis, result in an improved stability proof with fewer simplifying assumptions.

Original work on nonlinear control uses dynamic state feedback linearization (DSFBL) for a

traditional helicopter UAV [32]. With typical modelling assumptions, nominal helicopter dynamics

are the same as a quadrotor, and hence the result in [32] can be applied to quadrotors with small

modifications in how the inputs appear. The DSFBL extends the state by two dimensions to

include thrust input and its time derivative. The approach does not provide a robustness analysis

to general model uncertainty, e.g., additive force and torque disturbance entering the translational

and rotational dynamics.

Since a quadrotor admits a DSFBL, it is necessarily differentially flat [44] and work in [37, 45]

applies this framework for open-loop motion planning or trajectory generation. In this same work,

and similar to [46], an inner-outer state feedback control is proposed to avoid the complexities of

DSFBL control law expressions. The proposed inner rotational loop uses rotation matrices to avoid

the drawbacks associated with parameterizations of SO(3), e.g., the singularities of the commonly-

used Euler angles [47]. Related earlier work on an inner-outer loop flatness-based control for a

traditional helicopter is in [48].

Backstepping is a popular recursive method for controlling a class of nonlinear systems [49].

This approach has a number of benefits including simpler controller expressions and a natural

integration into an adaptive and robust design framework. For example, the non-robust cancellation

of model nonlinearity can be avoided. Various forms of backstepping controllers have been proposed

for motion control of UAVs using a centralized structure [30, 50, 51] and using an inner-outer loop

structure in [52]. As backstepping is performed iteratively subsystem-at-a-time, it leads to a simpler

control law relative to the DSFBL in [32]. In particular, backstepping can be implemented using

reduced amount of state augmentation [30, 50, 51] as only thrust is taken as the controller state.

Alternately, backstepping can be performed using an inner-outer loop approach which eliminates

the need for state augmentation, e.g., [52]. Backstepping has been shown to be robust relative to

other control methods in experiment [53]. However, these are experimental results and no rigorous

theory for the robustness is provided.

Most of the above-mentioned methods suffer from a lack of rigorous robustness analysis to

external disturbances, parametric model uncertainty, or unmodeled dynamics. Some exceptions

which address robustness include adaptive techniques [1, 54], integral state augmentation [53, 55],

sliding surfaces [56, 57], and disturbance observer based control [9, 41, 58, 59]. We focus on robust

designs below.

Adaptive Control: A number of researchers have applied adaptive control to improve robust-

ness. Work in [1] proposes an adaptive backstepping control which is proven asymptotically stable

for constant force disturbance which is treated as an uncertain parameter. The method augments

the state with thrust and its time derivative, and uses two parameter update laws to estimate the
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force disturbance. Torque disturbance is not considered and overparameterization [60, Ch. 3] of

the disturbance leads to two 3-dimensional parameter update laws. A saturation function-based

control from [61] is used to limit thrust while ensuring asymptotic stability. A projection operator

is used to avoid wind-up of the parameter estimates. The combination of the projection operator,

overparameterization, and saturation functions contributes to the complexity of the design. The

method is validated experimentally with the controller implemented on a ground computer using

Matlab. The work by the same authors in [62] also takes a backstepping approach which relies

on overparameterization. A saturated control and timing law are used to ensure bounded thrust

in a path following problem. Both [1, 62] do not control yaw motion or consider the time-varying

disturbance case.

Work in [54] designs an adaptive nonlinear control which compensates for disturbances. This

work is based on the non-adaptive design [37, 46]. Similar to that work, [54] is developed on the

Special Euclidean Group SE(3), i.e., it uses rotation matrices to represent attitude. Separate atti-

tude and position control modes are proposed. In both modes, adaptive laws compensate the effect

of torque and force disturbances which are assumed linearly parameterized by an unknown constant

parameter. The position mode provides position tracking by relating the direction of desired thrust

to the position error. This direction defines a column of the desired rotation matrix. The controller

is capable of aggressive maneuvers not commonly considered in the literature. Almost global at-

tractiveness is guaranteed in the case of constant disturbances provided certain gain conditions are

satisfied which depend on the model parameters such as mass and inertia. The authors do not

consider the effect of mode switching on stability of the hybrid system. The method is validated

in simulation and experiment but the effect of external disturbances is not investigated. A local

inner-outer loop stability result is provided.

Robust Control: Work in [38] proposes a flatness-based approach which is related to [32], but

explicitly accounts for disturbances. As in [32], the state is augmented with a nominal thrust

variable and its time derivative. The disturbance is assumed to enter the snap dynamics and its

norm is assumed bounded by a linear function of the norm of translational tracking error. This is

a restrictive assumption (e.g., nonzero constant disturbances do not satisfy the assumption) which

allows for exponential stability to be proven. The control law assumes the magnitudes of roll and

pitch are bounded by π/2 to avoid singularities in the control law which appear in DSFBL using

Euler angles.

Sliding mode control is commonly used to improve robustness in a range of applications. A

Nonlinear Sliding Surface (NSS) method with inner-outer loop structure is presented in [56]. The

NSS provides a variable damping ratio for the closed-loop. This leads to a fast response with low

overshoot. Experimental results are presented which include an external disturbance from a small

fan. Motion is constrained as the UAV is attached to a stand for safety. Work in [57] combines

backstepping and sliding mode techniques. The dynamics is divided into four subsystems: lateral

position, altitude, yaw, and actuator dynamics. Similar to [41], to avoid complex expressions for the
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control law, low-pass filtered derivatives are employed to estimate derivatives of the virtual control.

Asymptotic stability of the closed-loop is derived without accounting for subsystem interaction.

A sign function used in the sliding surface equation is approximated by a continuous function to

address chattering. However, the effect of this approximation is not investigated in the stability

proof. The method is validated on a stand which limits motion to vertical and yaw Degrees of

Freedom DoF.

As mentioned above, another way to improve robustness is to add integral action to the feedback.

As is well-known for PID control, integral action improves robustness to disturbances and reduces

steady-state tracking error [63]. Work in [64] proposes an integral-augmented backstepping control.

The iterative backstepping design begins with the integral of position error. Asymptotic rejection

of constant disturbances is achieved. However, the disturbance is introduced in the error dynamics

in a non-physical way. Further, the norm of the disturbance is assumed bounded by a linear

function of the error. This assumption is impractical as it is not valid for constant disturbance.

An inner-outer loop control is proposed in [65] where the inner loop reference is generated by an

integral augmented backstepping outer loop. However, disturbances or model uncertainty are not

considered in the design. Simulations demonstrate that integral-augmentation improves closed-loop

robustness. An inner-outer loop control is proposed in [66] where integral-augmented backstepping

is combined with sliding mode control. The sliding mode controller is used to achieve asymptotic

stability for constant disturbances. Coupling between the inner and outer loops is neglected.

Work [8] proposes an inner-outer loop controller which is adaptive to external force and torque

disturbances and the position of centre of mass. The outer loop is divided into vertical and hori-

zontal subsystems. The inner loop controls the rotational dynamics. A Lyapunov stability analysis

is provided for the outer loop and asymptotic convergence is proven. The effect of tracking error

in the inner loop, which uses gravity compensated PD control, is not considered.

Disturbance Observers: A number of papers adopt a disturbance observer-based approach to

achieve robust control [9, 41, 58, 59, 67]. A disturbance observer is an estimator which is designed to

estimate the external and internal disturbances using a model of the system and measurements [68].

A disturbance observer provides an estimate of a disturbance which can be used in the controller

for disturbance rejection or attenuation. This approach is adopted in this thesis in Chapter 3.

Work in [58] considers a disturbance observer using results from [69]. The observer is combined

with a backstepping control and applied to a traditional helicopter. The disturbance observer is

designed independently of the feedback control, and the disturbance estimate error is not compen-

sated in the backstepping control. Further, low-pass filters are used to estimate angular acceleration

in order to reduce controller complexity. An ultimate boundedness result is obtained due to the

estimation error in angular acceleration.

Work in [67] considers a disturbance observer-based method to solve an attitude stabilization

problem. Time-varying disturbance torques are considered and a high-gain extended state observer

is designed for angular velocity and disturbance. Ultimate boundedness of the estimation error
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is proven. A sliding mode feedback control is proposed to prove ultimate boundedness of the

closed-loop. Work in [59] presents a disturbance observer-based control for the position control of

a hexarotor. This work assumes that linear acceleration is measured, the dynamics are linearized

about hover, and a force disturbance enters the translational dynamics. The inverse of the model’s

transfer function is used to estimate the external force disturbance. This estimate is used in an

inner-outer loop control structure. A model inversion controller is used to specify desired roll,

pitch, and thrust from the desired acceleration. Stability analysis is performed using the Small

Gain Theorem. Simulation and experimental results are presented including a comparison with

backstepping without a disturbance observer. Work [41] takes an inner-outer loop structure and

combines an extended state observer, backstepping, and dynamic surface control to account for

parametric uncertainty and disturbances. The extended state observer estimates disturbances and

unmeasured linear and angular velocity states. Dynamic surface control [70] eliminates the complex

expressions normally found in backstepping laws. It should be noted that the method [41] assumes

simplified rotational dynamics to derive their method. The closed-loop is proven ultimately bounded

in the presence of time-varying disturbances. The method is validated in simulation.

The work [9] uses a disturbance observer-based backstepping control with inner-outer loop struc-

ture. A simplified linear dynamics is considered for the rotational dynamics and the translational

system is approximated about hover. A range of uncertainty is considered: external disturbance,

modelling error, and input delay. The outer loop control is based on a simplified dynamics and ulti-

mate boundedness is proven for the outer loop. Simulation and experimental results are presented

using a fan as a source of disturbance.

Work in [71] presents an observer-based anti-disturbance control scheme for a UAV subject to

wind-gust and suspended payload. A disturbance observer-based control and an extended state

observer-based control are employed for the outer loop. A second extended state observer-based

control is applied to the rotational dynamics. Experimental results are presented. Work in [72]

develops a disturbance observer-based backstepping control using dynamic surfaces to reduce com-

plexity. A minimum performance is ensured by the employing the prescribed performance method.

Rotor Drag Modelling for Control: Rotor drag is a force arising from blade flapping or in-

duced drag [73]. Research has shown that directly compensating for this force improves motion

control performance [15, 16]. Rotor drag compensation is particularly important for high-speed

trajectories where these aerodynamics effects are significant. The above-mentioned methods either

ignore rotor drag or lump these forces into a disturbance. Existing work on rotor drag compensation

includes [16] which presents first-order aerodynamic modelling. An inner-outer loop control was

proposed with a saturated PD outer loop and quaternion-based inner loop. Integral action is added

to the outer loop for improved robustness. Asymptotic stability of the closed-loop is proven. Ex-

ternal force and torque disturbances are not considered and performance is validated with Matlab

simulation. Paper [15] shows quadrotor position and heading are flat outputs for a dynamics which

includes a first order rotor drag model. Flatness is used to calculate a feed-forward control used
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in an inner-outer loop controller which compensates rotor drag. An optimization-based approach

estimates the rotor drag coefficients. The improved performance of the method is shown experimen-

tally. External disturbances are neglected and wind velocity is assumed zero. The outer-loop is run

on the ground using a laptop which sends thrust and angular velocity reference to the onboard flight

controller. Work in [73] develops a 3-level inner-outer loop control with outer-level translational

DoF control, mid-level rotational DoF control, and inner-level thrust control. Modeling of rotor

drag is investigated in detail and used to estimate the varying aerodynamic conditions around the

rotor. This estimated model and measured electrical power are used for low-level thrust control.

Similar to [16] the rotor drag is decomposed into two components: one in the direction of thrust,

and the other independent of attitude which can be compensated in the high-level control. Perfect

attitude tracking is assumed in the position/velocity controller, i.e., subsystem coupling is ignored.

In [55] the effect of rotor drag and blade flapping are included in the dynamic model and

controller design. Integral augmentation is combined with nonlinear control in an inner-outer

loop structure. The outer loop controller is designed to translational DoF. To achieve robustness

against model uncertainty and external disturbances, saturated integrators with fast desaturation

are employed. The approach is experimentally validated for various reference trajectories and in the

presence of wind forces. However, only asymptotic (as opposed to exponential) stability is proven

for the outer loop design and inner-outer loop coupling is ignored. This thesis integrates rotor drag

modelling into the proposed motion control in order to compensate a component of this force.

1.4 Visual-inertial Odometry: Literature Review

In visual odometry (VO), data is normally processed in two approaches: feature-based and direct

methods. In feature-based approaches, the features, which are distinct pieces of information in an

image, are extracted and tracked by a feature extraction and tracking system. Therefore, the map is

represented by map features (e.g., 3D points) in the environment and the camera pose is estimated

by tracking the detected features in the reconstructed map and minimizing the reprojection error. In

direct approaches the whole image is processed without feature detection and tracking. The motion

estimation is normally based on minimizing the photometric error between two consecutive frames.

This approach is normally used to cope with environments with few features. Since there is no need

for feature extraction, the direct approaches normally have less computational cost. However, it is

known that the extra computational cost makes feature-based methods more robust to changes in

illumination [74]. As robustness is an important factor for UAV applications, Chapter 4 and the

literature survey below focuses on feature-based methods using a single monocular camera.

VIO involves the fusion of inertial and visual measurements. This can be done in a loosely-

coupled [75, 76] or tightly-coupled [77, 78] framework. Loosely-coupled approaches are usually

based on fusing the estimates from a VO system with IMU data using a Bayesian filter. Although

this approach reduces computational complexity, it ignores coupling between the two subsystems

and this reduces estimation accuracy. On the other hand, tightly-coupled algorithms fuse visual
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and IMU data by respecting their inherent coupling. The approach incorporates metric scale

information from the IMU data into the depth estimation. Hence, scale estimation is not required.

A number of researchers have developed VIO for UAV applications [24, 26, 76, 79, 80].

Another property for categorizing VIO is whether it is filter or optimization-based. In filter-

based methods, the pose and map are represented by probability density functions (PDF) that are

updated using a recursive Bayes filter. This approach requires motion and measurement models

which depend on the particular vehicle and sensors [81]. A popular Bayes filter used for VIO is

the Extended Kalman Filter (EKF) which relies on a Gaussian White Noise (GWN) model. For

example, in [82] the six DoF camera motion and 3D position of the feature points are represented

as a state vector. A covariance matrix is propagated to account for uncertainty. New map states

are added as new feature points are detected. IMU measurements are used in a motion model to

predict camera motion and pose uncertainty. A pinhole camera model in the measurement update

step. EKF-based VIO suffer from computational cost that grows in proportion to the number

of map points. As well, estimates can become inconsistent due to error in linearization and the

GWN assumption [83, 84]. To reduce computational complexity, in [77] a structureless approach

is proposed where landmark positions are marginalized out of the state vector and only a select

history of poses are estimated. However, this method has the disadvantage of not incorporating

the correlations between pose and map features.

In optimization-based approaches, pose and map estimation is normally performed by min-

imizing a cost function constructed from the reprojection error of the mapped points onto the

image plane and the integrated IMU measurements between camera frames. Uncertainty in the

measurement models assumes GWN and covariance is normally used in the optimization weights.

Optimization-based approaches can be divided into full smoothers or batch optimization algorithms,

which perform the optimization over the complete history of poses and map points, and fixed-lag

smoothers or sliding window optimization algorithms, which consider a sliding window of the latest

poses.

Smoothing algorithms are known to be more accurate as they relinearize past measurement

models multiple times until a global minimum is reached. Normally in filtering methods lineariza-

tion happens only once. However, it has been shown that an extension of EKF called iterated EKF

is equivalent to the Gauss–Newton algorithm commonly used in optimization-based methods [85].

Relative to full-smoothing algorithms, fixed-lag smoothers are less accurate as they marginalize the

states outside the estimation window. Due to this marginalization, fixed-lag smoothers share some

of the issues of filtering approaches (inconsistency, and drift due to the buildup of linearization

errors). Although full-smoothing algorithms provide higher accuracy as they optimize over the

complete history and keep all the correlation between the states optimized, their real-time imple-

mentation is a challenge as the number of optimization states increases as the trajectory grows.

Therefore, fixed-lag smoothing which compromises between accuracy and computational demand

for real-time performance, is normally employed for real-time implementation. Full and fixed-lag

smoothing is combined in [86] where full-smoothing runs in a parallel in a low frequency thread to
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update the state of the fixed-lag smoothing. This work increases computational efficiency by adding

a new state for the pose only at certain frames called keyframes. A keyframe is selected when there

exists a large difference between the current frame and one of the previously chosen keyframes.

This frame selection reduces computation as it discards frames with less information. According

to [87], increasing the number of map points leads to a significant increase in the accuracy of the

estimation, while increasing the number of keyframes results improves algorithm robustness.

Work in [77] develops a Multi-state Constraint Kalman Filter (MSCKF) VIO method which

is based on a tightly-coupled modified VSLAM system. The state consists of the current camera

pose, linear velocity, sensor bias and a history of past camera poses. A measurement model is

derived by expressing the geometric constraint arising from viewing a feature from multiple poses.

Measurements of each feature are used to define a constraint between all camera poses where

the feature is observed. This approach results in computational complexity which is linear in the

number of features and therefore real-time operation is possible. The filter propagation is performed

by discretization of the motion model which includes the IMU measurement noise models. Least

square optimization is employed for estimating the 3D position of the features. Then, the 3D

estimates are used to derive a measurement residual based on the poses in which the features were

observed. The residual is linearized so that it can be used in the EKF measurement update. The

method is validated by experiment using a camera/IMU setup mounted on a car. The final position

error is 0.31% of the travelled distance.

In [79] a VISLAM method is proposed using a monocular camera and IMU. The method is

based on a modified version of vision only Parallel Tracking and Mapping (PTAM) [86]. Some

parameters of PTAM are tuned so that the number of keyframes and map points are reduced. This

reduces the amount of computation required. The output of the modified PTAM system is fused

with IMU data through an EKF in a loosely-coupled approach to estimate the unknown scale. The

mapping capability of the approach enables path planning and obstacle avoidance for a UAV and

motion drift cancellation when the UAV is returned to a previously-visited location. The system

is implemented in real-time and demonstrated in UAV flight tests.

Paper [80] proposes a tightly-coupled EKF algorithm for data fusion of a camera and IMU

onboard a UAV by making use of the platform specific dynamics. The advantages of tightly-

coupled approach over the commonly used loosely-coupled ones are robustness improvement of

the feature tracking and also computational cost reduction by having a smaller search region for

feature extraction. The inverse depth parameterization is used for undelayed feature initialization,

reducing the complexity of the measurement model. Results of a comparison with a loosely coupled

method show a significant improvement in the estimation accuracy.

The problem of aggressive maneuvering for a quadrotor UAV using only a onboard camera and

IMU is investigated in [24]. The objective is to control the UAV trajectory through a small window

opening using only onboard sensors. The navigation task consists of state estimation, trajectory

planning and trajectory estimation. The state estimation has two modules. The first one is an EKF-

based VIO system. The prediction step of the EKF is based on IMU integration and measurement
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update is based on the projection of 3D feature points onto the image plane using an inverse

depth parametrization. The relative position of the UAV to the window and the structure of the

window are estimated. However, the high computational cost of mapping in the VIO leads to low

frequency pose estimates which cannot be used for fast and aggressive maneuvers. To compensate

for this, an Unscented Kalman Filter (UKF) is employed in a separate module for high rate (500

Hz) estimation of pose. The UKF allows for a larger range of roll and pitch. The UKF uses the VIO

output as an initial value and begins to estimate pose by integrating IMU measurements until a

new VIO measurement is provided. The trajectory planning generates a feasible path for achieving

the aggressive maneuver and a backstepping controller with an inner-outer loop structure performs

output tracking.

Paper [26] presents VINS-Mono which is a tightly-coupled VI-SLAM algorithm. A sliding

window of preintegrated IMU measurements and feature observations are fused using nonlinear

optimization. The camera-to-IMU extrinsic calibration and IMU bias estimation are performed

in real-time. Due to the relatively high frequency of the IMU, its measurements are used for

pre-estimation of pose between two consecutive frames using a low-cost preintegration method.

A loosely-coupled approach is adopted for the initialization phase. The core of the system uses

tightly-coupled VIO which is based on bundle adjustment over a sliding window of IMU state and

feature observations. A relocalization module for loop detection is proposed to compensate the

accumulated drift. The relocalization results are then used in a global optimization module based

on a pose graph to ensure consistency of the map and previous poses. Due to the high accuracy of

roll and pitch estimation, drift only occurs in 4 DoF and therefore global optimization is performed

for these variables. Experimental results are provided for public datasets and closed-loop UAV

motion control.

Reference [76] investigates the autonomous navigation problem of multiple UAVs in an unknown

and GPS-denied environment. Two navigation modules are developed: local and global. The

local navigation module runs in real-time and onboard each UAV. This module contains a SLAM

algorithm that is fused with IMU measurements using an EKF, estimating the local pose and the

map. It also includes a controller that performs output tracking of the planned trajectories provided

by the global navigation module. The global navigation module that runs on a ground station uses

data from all UAVs to construct a global map and estimates the pose of each UAV within this

map. The path intersections and loop closures are used to increase accuracy of the map and pose

estimation. A pose graph-based optimizer for pre-alignment and a bundle adjustment is used in

the global navigation module. The updated global pose and the desired trajectories are sent to the

UAVs for their local navigation modules. Experimental results for three UAVs are presented.

Most of the existing approaches for VIO do not consider the dynamics of the multirotor. When

it is considered, the effect of rotor drag is neglected in the UAV dynamics. VIO which includes

some form of force estimation is referred to as Visual-Inertial-Actuator Odometry (VIAO). Re-

cently, rotor drag has been shown to be important in state estimation and control [73]. The proper

use of this modelling in a tightly-coupled estimation algorithm can improve its accuracy. An-
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other important component to UAV dynamics is the external force disturbance. Estimating this

disturbance is important for improving motion control. This can be clearly seen in the many ref-

erences on force estimation given in Section 1.3. Further, force estimation is especially important

in applications where the vehicle is required to sense interaction forces, such as contact inspection,

grasping, manipulation, and load transport. It is natural that a tightly-coupled joint estimation of

the disturbance with other system states will improve estimation accuracy. Such an approach is

proposed in this thesis. Joint estimation requires additional measurements (i.e., actuation or force

sensor data) and a model of the system dynamics. To our knowledge the only work to-date that

follows this approach is [27]. However, in this work the effect of rotor drag is not considered in

the UAV dynamics. Also, the work assumes the external force is zero mean Gaussian noise. In

practice, most disturbances encountered are not zero mean (e.g., wind-gust, ground effect, or forces

due to load transport). In the case where the external force is not zero mean, the offset is estimated

in the accelerometer bias which is not ideal for applications which need an accurate external force

estimation.

1.5 Overview of Thesis

This thesis is divided into two main parts: robust motion control design for multirotor UAVs

subject to external disturbances and multirotor state and map estimation using visual, inertial

and actuator data. Before presenting the main contents we present the multirotor dynamical

modelling equations with and without rotor drag consideration in Chapter 2. In the same chapter

we present our experimental quadrotor platform and discuss the hardware, software and controller

implementation. Also the SITL simulation framework is presented.

In Chapter 3 we present different motion control methods for an output tracking problem where

the outputs are position and yaw. It is assumed that the multirotor is subject to external force and

torque disturbances. Backstepping is employed as the main control design method and estimated

wrench from a disturbance observers are used in the backstepping to achieve disturbance rejection.

We present the controller-observer design in a coupled and decoupled structure. Exponential con-

vergence is proven in all the designs with the assumption of constant disturbances. In the coupled

design, we add an extra term to the observer dynamics in order to improve the theoretical results.

However, the onboard implementation is found to be sensitive for this structure. As well, the

complexity of the control law expressions make the method difficult to implement. Hence, we only

present Matlab simulation results. To address the complexity of this design, we employ a decoupled

observer-controller structure. This approach is implemented and flight tested on the PX4 autopilot

and simulated in Software in the Loop (SITL). Integral augmentation and rotor drag modelling is

included in the decoupled design. In Chapter 4, we investigate the problem of multirotor state,

external force and map estimation using visual, inertial and actuator data. We start the chapter

by presenting the different coordinate frames and the fundamentals of VIO. Then we present the

problem formulation into a tightly-coupled optimization problem that consists of visual, inertial

12



and dynamic residuals. Afterward we present the derivation of these residuals and the propagation

formulas. The effect of rotor drag is incorporated into the vehicle’s dynamics. A nonlinear force

disturbance observer is reformulated as a residual and incorporated into the dynamic residual. The

proposed method is implemented on top of VIMO [27] and tested on benchmark datasets. We show

that the proposed method has improved the estimation accuracy. Finally, in Chapter 5 we present

our conclusions and future work.

1.6 Contributions

The contribution of this thesis are summarized in this section.

1.6.1 Disturbance Observer-based Control

• Coupled disturbance observer-based backstepping control design for multirotor UAV trajec-

tory tracking [88]. A backstepping controller is designed coupled to two disturbance observers

for external force and torque by considering a general form for the observer dynamics. The

concept of tuning function is employed to avoid overparameterization. The design leads to a

rigorous exponential stability result for the case of constant disturbances. Ultimate bound-

edness is achieved for time-varying disturbances.

• Decoupled disturbance observer-based backstepping control design for multirotor UAV trajec-

tory tracking [89]. Due to the particular decoupled structure, the disturbance observer error

dynamics is LTI, globally exponentially stable, and depends only on disturbance estimate

error. The disturbance estimate error feeds the tracking error dynamics in a cascade inter-

connection. This cascade structure makes the stability analysis, onboard implementation,

and controller tuning straightforward. Using cascade stability analysis, exponential stability

is proven in the presence of constant disturbances.

• Decoupled disturbance observer-based integral backstepping control design with rotor drag

compensation [90]. Integral augmentation and the rotor drag compensation is added to the

work [89] to improve the robust performance of the motion control. As in [89] the observer

is decoupled from the controller. Following [16], rotor drag is compensated by decompos-

ing it into two components: one is independent of UAV attitude, and the other is in the

direction of thrust and can be compensated by appropriate choice for desired thrust dur-

ing backstepping. Exponential stability is proven for the case of constant disturbances. We

demonstrate the improved tracking performance of the disturbance observer-based integral

backstepping control in the presence of wind force disturbance. Also, the benefits of including

rotor drag compensation are shown by simulating the proposed method with and without its

compensation.

• The full dynamics of the system in the control design [88–90]. This avoids having to make

common simplifying assumptions typical of designs with inner outer loop structure (e.g., linear
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approximation of the rotational dynamics) during the closed-loop stability analysis of the

entire rotational and translational system dynamics [91].

• SITL Validation on PX4 autopilot [89, 90]. The PX4 firmware is a widely-used and open

source project intended for research and commercial use. It runs on a number of hardware

platforms including the Pixhawk family. SITL simulation is an important step in the de-

velopment of flight controllers since it allows for safe and efficient debugging and tuning

and it captures the many real-world constraints of onboard implementation (e.g., multi-rate

measurements, control, and state estimation, bounded signals, and constrained hardware

resources)..

• Experimental testing [89]. The proposed method is also implemented experimentally using

the Applied Nonlinear Control Lab (ANCL) quadrotor platform in the presence of a wind

disturbance. The proposed method is compared with a traditional backstepping controller and

the built-in PX4 motion controller. The results demonstrate improved performance for the

decoupled disturbance observer-based backstepping control. It is important to note that our

implementation does not require simplifying approximations (e.g., small angle assumptions,

inner-outer loop structure) that are common in work with experimental validation [8, 9, 41].

• The PX4 code is available online at [92, 93] and should be useful to researchers in nonlinear

multirotor control. By basing our work on the open source and commonly used PX4 platform,

our results are accessible to the research community.

1.6.2 Visual-Inertial-Actuator Odometry (VIAO)

• VIA state estimation for multirotor UAV with rotor drag consideration. The rotor drag is

incorporated into a tightly-coupled state estimation and also a more realistic assumption of

slowly time-varying force disturbance is used. These modifications and assumptions have

been included by revisiting the vehicles dynamics to include the rotor drag effect and also by

deriving a residual term from a disturbance observer proposed for a UAV [89] designed for

constant external forces and incorporating the residual into the optimization. We implement

our proposed method on top of VIMO [27] which itself is based on VINS-Mono [26], an open

source VIO system implemented on Robot Operating System (ROS). We have shown that

the proposed method can result in an increased accuracy.
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Chapter 2

Quadrotor Modelling and Experimen-

tal Platform

This chapter presents the mathematical models and defines the notation that will be used

throughout this thesis. Also the experimental platform that is used for performing the flight tests

is introduced. In Section 2.1 we introduce the dynamic equations of a quadrotor with and without

consideration of rotor drag force. In Section 2.2 the ANCL platform is introduced and details of

hardware and software specifications are discussed.

2.1 Modeling

We consider a traditional quadrotor UAV as shown in Figure 2.1. We choose a commonly used

nonlinear rigid body model which ignores motor/propeller dynamics, and rotor gyroscopic effects.

Further details on modelling where such effects are considered can be found in [53, 73]. We require

two reference frames: a fixed inertial navigation frame N with orthonormal basis {n1, n2, n3} and

a body frame B whose origin is at the vehicle’s center of mass (CoM) and with orthonormal basis

{b1, b2, b3}. We define b1 to point in the forward direction of vehicle, b2 pointing right, and b3

pointing down. The set of vectors {n1, n2, n3} are considered to be orientated north, east, and

down, respectively. The configuration of the quadrotor belongs to the special Euclidean group

SE(3), and includes the position p ∈ R3 of the origin of B relative to N , and the orientation

R ∈ SO(3) of B with respect to N . The distance of each propeller to the origin of B is ` (arm

length) and Θi is the angle of ith arm with respect to b1. We assume each propeller generates

thrust in the −b3 direction with magnitude of ui = kuΩ2
i for the ith propeller where Ωi is the

rotational speed of ith propeller and ku is the thrust coefficient. We define the total thrust due to

all propellers by the scalar input u :=
∑4

i=1 ui > 0, i.e., the thrust vector is −ub3. The generated

torque for each propeller is around the b3 and is τ i = kτΩ2
i for i = 1, 2, which are rotating clockwise

and τ i = −kτΩ2
i for i = 2, 3, which are rotating counterclockwise. The total input torque acting

on the vehicle is denoted by τ := [τ1, τ2, τ3]> ∈ R3 which is expressed in B and can be calculated
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Figure 2.1: Diagram of a quadrotor showing navigation frame N and body frame B.

by projecting the generated thrusts and torques of each propeller into the direction of b1 and b2.

For a quadrotor in “cross” configuration where Θ1 = Θ, Θ2 = π + Θ, Θ3 = −Θ, Θ4 = π − Θ, the

relation between the u and τ and the rotational speed of each propeller can be written as

[
u

τ

]
=


ku ku ku ku

−ku` sin Θ ku` sin Θ ku` sin Θ −ku` sin Θ

ku` cos Θ −ku` cos Θ ku` cos Θ −ku` cos Θ

kτ kτ −kτ −kτ




Ω2
1

Ω2
2

Ω2
3

Ω2
4

 (2.1)

Since the physical input to the UAV are PWM signals to the Electronic Speed Controller (ESC)

which are denoted Wi, i = 1, 2, 3, 4, we can write the equation (2.1) as bellow

[
u

τ

]
=


Ku Ku Ku Ku

−Ku` sin Θ Ku` sin Θ Ku` sin Θ −Ku` sin Θ

Ku` cos Θ −Ku` cos Θ Ku` cos Θ −Ku` cos Θ

Kτ Kτ −Kτ −Kτ



W̃ 2

1

W̃ 2
2

W̃ 2
3

W̃ 2
4

 (2.2)

where W̃i is a normalized PWM signal defined by W̃i = (Wi −Wmin)/(Wmax −Wmin) where Wmin

and Wmax are the minimum and maximum values of Wi, respectively. Therefore, W̃i ∈ [0, 1]. Also

Ku and Kτ are accordingly normalized thrust and torque coefficients. Thrust model (2.2) clearly

shows that u and τ are bounded. To ease presentation of the control design we take torque τ and

thrust u as system inputs.
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2.1.1 Traditional Modelling

The traditional and widely used dynamics equations that neglect the aerodynamic effects such

as rotor drag are given by

ṗ = v (2.3a)

mv̇ = mgn3 − uRn3 + df (2.3b)

Ṙ = RS(ω) (2.3c)

Jω̇ = −ω × Jω + τ + dτ (2.3d)

where v ∈ R3 is linear velocity expressed in N , ω ∈ R3 is angular velocity expressed in B, m is

mass, J is inertia, g is the gravity constant, and n3 = [0, 0, 1]>. The disturbance force df ∈ R3 and

disturbance torque dτ ∈ R3 are unknown and used to model external forces such as wind gusts or

other model uncertainty. The skew operator S(·) : R3 → so(3) is defined as

S(x) =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 , where x =

x1

x2

x3

 . (2.4)

2.1.2 Rotor Drag Modelling

z

[I − n3n
>
3 ]R>via

Fdi

ui

Figure 2.2: Drag force on a single rotor.

With the assumption of rigid blades, (which is reasonable assumption for small multirotors) one

aerodynamic effect that affects the multirotor dynamics is the induced drag. The induced drag is

generated when the rotor is moving in a specific direction and the advancing blade is experiencing

a relatively higher air velocity than the retreating blade as shown in Figure 2.2. Therefore the

thrust generated by each blade is different in magnitude and as a result a nonzero net force is

created which lies in the horizontal plane of the rotor. This force is called H-Force in aerodynamic

literature and can be expressed by [94] (for the ith rotor)

Fdi = −√ui d1[I − n3n
>
3 ]via (2.5)

where d1 is a positive constant, via is the translational air velocity that the ith rotor is experiencing

expressed in B frame which can be written as via = R>va + S(ω)`ri , where va = v − w, is the air
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velocity at the center of the body frame with w ∈ R3 as constant wind speed expressed in N and `ri
is the position of the ith rotor in the body frame. The summation of the above drag force in body

frame can be estimated by the following equation considering the thrust for each rotor is equal to

ui = mg
4 [16] (near hover condition)

Fd =
4∑
i=1

Fdi = −DR>va (2.6)

with D as the drag coefficient matrix

D =

d11 0 0

0 d11 0

0 0 0

 , (2.7)

and d11 = 2d1
√
mg. Now, the dynamics of the quadrotor with consideration of the effect of rotor

drag can be written by

ṗ = v (2.8a)

mv̇ = mgn3 − uRn3 −RDR>va + df (2.8b)

Ṙ = RS(ω) (2.8c)

Jω̇ = −ω × Jω + τ + dτ (2.8d)

As we mentioned before, the drag force −RDR>va in (2.8b) is normally neglected in nonlinear con-

troller design which accounts for the entire dynamics (i.e., the coupled rotational and translational

dynamics). The compensation of drag force in the proposed method assumes va is measured and

drag coefficient D is known. Since drag force −RDR>va has a dependence on R, the backstepping

procedure requires its decomposition into two components: one is independent of vehicle attitude

and the other is in the direction of thrust:

−RDR>va = −d11va + d11(v>a )Rn3Rn3 (2.9)

This decomposition (shown in Fig. 2.3) is also used in [16] where it is applied to an inner-outer loop

design. Although the term −d11va can be readily compensated using the proposed backstepping

design, the term d11v
>
a Rn3Rn3, which is in the direction of thrust, must be counteracted by an

appropriate definition of desired thrust which will be explained below.

When deriving the control for heading or yaw below we rely on the ZYX Euler paramterization

η = [φ, θ, ψ]>, where φ, θ and ψ are roll, pitch, and yaw, respectively. The rotation matrix R is

18



Thrust

Thrust

v
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Figure 2.3: Drag force decomposition.

expressed in terms of η as

R(η) =

cθcψ sφsθcψ − cφsψ cψsθcφ + sψsφ

cθsψ sψsθsφ + cψcφ cφsθsψ − sφcψ
−sθ cθsφ cθcφ


where cθ = cos θ and sθ = sin θ. The rotational kinematics (2.3c) expressed in η are η̇ = W (η)ω

with

W (η) =

1 sφtθ cφtθ

0 cφ −sφ
0 sφ/cθ cφ/cθ


and where tθ = tan θ.

Unit quaternion is a parameterization that can be used for representation of rotations without

singularities. However, each rotation does not have a unique unit quaternion since there is double

coverage. A unit quaternion is normally represented by q = [q0, q
>
v ]>, where q0 ∈ R is the scalar

part and qv = [q1, q2, q3]> ∈ R3 is the vector part. The unit quaternion set Qu is defined by

Qu = {q = [q0, q
>
v ]>|q0 ∈ R, qv ∈ R3, ‖q‖ = 1} (2.10)

The rotation matrix can be expressed using the unit quaternion

R(q) =

q
2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

 (2.11)

The quaternion multiplication denoted as ⊗ between two unit quaternions q and q̂ is defined by

q ⊗ q̂ =

[
q0q̂0 − q>v q̂v

q0q̂v + q̂0qv + qv × q̂v

]
(2.12)

where “×” is the cross product. With the above definitions the rotation kinematics with quaternion

is given by [95]

q̇ =
1

2
q ⊗

[
0

ω

]
(2.13)
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which also can be written as

q̇ =
1

2
Ω(ω)q (2.14)

where the operator Ω(·) is defined on R3 by

Ω(ω) =

[
0 −ω>
ω −S(ω)

]
(2.15)

and the operator S(·) was defined in (2.4).

2.2 Experimental Platform

Figure 2.4: The ANCL-Q3 quadrotor vehicle.

Experimental flight test is a necessary step in validating the performance of the control laws.

This testing demonstrates if the design can tolerate unmodelled effects such as measurement noise

and input saturation under typical operating conditions. In this section we introduce the hardware

and software components of ANCL quadrotor platform in details.

2.2.1 Hardware Platform

In this section we present the hardware components of ANCL quadrotor platform that consists

of a quadrotor vehicle ANCL-Q3, a Vicon MCS, a QGroundControl ground station (QGC) and a

Computer Vision System. The block diagram of the hardware platform is shown in Figure 2.5.

The Quadrotor Vehicle ANCL-Q3

The ANCL-Q3 quadrotor is shown in Figure 2.4 which consists of a 3D Robotics quadrotor do-

it-yourself (DIY) frame in a cross configuration equipped with a Pixhawk 1 flight controller (shown

in Figure 2.6) which has a 180 MHz ARM CPU, two 3D accelerometers, two 3D gyroscopes, a

3D magnetometer, and a pressure sensor [96]. ANCL-Q3 includes a 2.4 GHz LairdTech transceiver

connected to the Pixhawk to receive data from the MCS which is equipped with a matching onboard

LairdTech radio transmitter. The Pixhawk is also connected to a Spektrum satellite receiver which

is paired to a Spektrum DX8 transmitter. The DX8 enables manual control and allows the operator
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Figure 2.5: Block diagram of the ANCL-Q3.0 quadrotor platform.

Table 2.1: ANCL-Q3 model parameters.

J1 J2 J3 m ` Θ Ku Kτ

0.03 kg m2 0.03 kg m2 0.05 kg m2 1.6 kg 0.165 m 0.58 rad 7.75 N 0.8 N m

to switch between different control modes. A RN-XV WiFly Module is used to connect the PX4

to the local network via WiFi. ANCL-Q3 is powered by a 12 V, 3 cell, 5000 mA h lithium polymer

battery (LiPo). This provides a flight time of about 10 minutes. The Pixhawk outputs a PWM

signal to Afro 30 A ESCs which are connected to Turnigy 1100 KV Brushless Outrunner Motors.

The APC propellers are 11 ”. The Pixhawk logs data onto its SD card. The mass of the quadrotor

is 1.6 kg including the battery. The quadrotor is designed such that it hovers at approximately

50% of its maximum thrust. This ensures enough thrust is available when aggressive maneuvers

are required. Table 2.1 lists model parameters in (2.3) and (2.2).

The Motion Capture System (MCS)

The MCS uses a network of eight Vicon Bonita 3 (B3) cameras, a Windows PC, and a 2.4 GHz

LairdTech transceiver paired to the one on-board ANCL-Q3. The B3 is a 0.3 MP near infrared (NIR)

camera with maximum frame rate of 240 frames per second (fps) and a resolution of 640×480. The

quadrotor can be detected by using four 38.1 mm reflective markers mounted on its frame. The

position and yaw of the UAV are estimated by the MCS which introduces a constant 10 ms delay

[97]. Linear velocity is estimated using a low pass filtered finite difference of position. The data

rate of LairdTech transceiver is about 100 Hz and includes a constant 15 ms delay [97].
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Figure 2.6: Image of Pixhawk 1 autopilot.

The Ground Station

The quadrotor communicates to a ground control station running QGC [98] that is an open-

source ground control software which can be used for flashing the Pixhawk, parameter tuning,

data visualization, status monitoring, and mission planning. QGC and PX4 are connected through

WiFi. The MAVLink protocol [99] is used for communication between from the MCS to ANCL-Q3

and between ANCL-Q3 and QGC.

The Computer Vision System

The computer vision system consisting of an embedded computer system and a camera is a

separate system from the PX4, but is still located on the quadrotor and communicating to PX4

through a serial connection using the MAVLink protocol. The embedded computer system that we

use is Nvidia Jetson TX2 has a 64 bit ARM central processing unit (CPU), up to 8 GB memory

and a graphics processing unit (GPU) with 256 Nvidia CUDA cores. The Jetson TX2 is mounted

on an Auvidea carrier board that provides serial connection to for transferring vision data to PX4.

Our main camera is the FLIR (previously Point Grey) Chameleon 3 USB 3 camera. It is attached

to the quadrotor facing down about 5 cm below the quadrotor’s CoM. This is a global shutter

camera that can achieve frame rates of up to 149 Hz at a resolution of 1280× 1024.
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2.2.2 Software Platform

We implement our proposed control on the PX4 autopilot firmware which is an active and

mature open-source project intended for research and commercial applications [39]. PX4 runs

on a number of hardware platforms and various robot types. It has a modular structure where

individual autopilot functionality (e.g., motion control, state estimation) is separated into self-

contained modules which each runs as a task on NuttX RTOS platforms (e.g., Pixhawk) or as a

thread within the main PX4 process on POSIX platforms (e.g., SITL). This modular structure has

a number of advantages. For example, adding a new control method to the system is relatively

straightforward as only a small component of the code with a well-defined interface needs to be

modified. The so-called PX4 middleware supports communication between the modules, sensor

device drivers, and communication outside PX4. Module communication is implemented with

the micro-object request broker (uORB) which provides a publish/subscribe bus. Using uORB,

publishers send messages (e.g., a UAV control input) onto a bus instead of sending the messages

directly to specific subscriber modules. Also, subscribers receive messages as soon as there are

updates. PX4 provides driver modules for the hardware components (e.g., IMU, GPS and PWM

outputs) and libraries for programming (e.g., matrix computation). The diagram of data flow in

PX4 is shown in Figure 2.7.

To implement the DOB-BS control we created a new module using the v1.5.5 release of PX4.

To simplify its implementation the module uses a so-called “Block” structure in the Controller

Library contained in px4/src/lib/controllib. This library simplifies the process of subscription

and publication. The library also provides functions for numerical integration which are used in the

disturbance observer (3.3) and integration for thrust in (3.20). The controller module also uses the

PX4 Matrix Library (https://github.com/PX4/Matrix) to improve the readability of the control

law expressions. Control gains are implemented using PX4’s parameter system. This simplifies

controller tuning by allowing users to adjust gains from the PXH command line or from QGC. The

attitude estimator attitude_estimator_q uses quaternions to keep track of the attitude and mixes

the roll and pitch estimates from the accelerometer, the heading from the the MCS, and the gyro-

scope measurements. Position and linear velocity are obtained from local_position_estimator

which uses the MCS and IMU data. The state machines modules commander and navigator

manages the quadrotorbetween different control modes: Standby, Armed, Manual, ANCL Manual,

ANCL Auto 1 (setpoint), ANCL Auto 2 (trajectory tracking). Further details on the modules used

are in [97].

2.2.3 SITL Simulation Framework

Performing a simulation that recreates the actual flight conditions and matches on-board im-

plementation has several advantages when developing motion control algorithms. SITL simulation

is a method that allows you to run the actual autopilot code and investigate its behaviour without

any hardware. In this method, the code is running on a PC and is interfaced with a simulator
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Figure 2.8: Visualizing the simulated motion control in jMAVSim.

that models the vehicle dynamics and the environment conditions (e.g. wind-gust). It recreates

the significant constraints of autopilot hardware and software. For example, it ensures that the

proposed design can be implemented in a typical autopilot framework where unmodelled effects

(e.g., controller saturation, multiple sample rates, computational delays, etc.) influence perfor-

mance or even prevent the controller from running (e.g., due to limited on-board processing power

or memory). Therefore, SITL simulation can be an important step to the actual flight testing, by

accelerating the debugging process and controller tuning.

We adopt the open-source PX4 autopilot SITL framework given the lab’s investment in this

platform to-date [39, 97, 100, 101] and since it is a mature standard in the research community.

We choose the lightweight jMAVSim simulator which simplifies implementation while allowing

multirotor model and environment customization. SITL and jMAVSim are built into the PX4

project. In general, SITL is not commonly used for validating control laws in the literature.

However, it is clearly a safer and faster way of developing controllers which can be flown. A

contribution of this paper is to provide simulation source code which can be validated or extended

by the community [92, 93]. Our work is based on v1.5.5 of the PX4 firmware. The jMAVSim

simulator receives PWM inputs from the autopilot code and outputs GPS position, IMU and

barometer measurements related to the simulated UAV motion.

jMAVSim is developed in Java and employs java3d library for visualization of a 3D virtual

flight environment. Communication between PX4 and jMAVSim is done by the MAVLink protocol

using localhost User Datagram Protocol (UDP). A PXH shell, similar to NSH shell in the Pix-

hawk/NuttX platform, facilitates code debugging and controlling the modules. It can be used to

set the parameters, start and stop the modules and listen to the PX4 messages. Figure 2.8 shows

a screenshot of the 3D visualization of the simulation.

The UAV’s model parameters can be hardcoded in the Simulator class. To match the real

experiment presented in Section 3.3.4, we chose the model parameters as specified in Table 2.1

with a cross (or “x”) vehicle configuration. The jMAVSim simulator accepts normalized torque and

thrust inputs from PX4 and therefore includes thrust saturation. To model the actuator dynamics,
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the normalized inputs are low-pass filtered to generate individual rotor thrust (see class Rotor).

The time constant of the low-pass filter is set to 5 ms. To recreate the actual flight conditions,

jMAVSim adds adjustable time delay to GPS measurements and zero mean Gaussian noise to the

gyro, accelerometer and magnetometer measurements. The default numbers for these parameters

were chosen. The thrust constant is scaled such that normalized thrust is 0.51 in hover.

un = 0.51 +
u−mg

60
(2.16)

This value was obtained from the stock PX4 controller mc_pos_control when the quadrotor is in

hover. The torque commands τ1, τ2 and τ3 are also normalized by factors nτ1 = 0.33, nτ2 = 0.33

and nτ3 = 1, respectively.

Environmental disturbances can be easily generated in jMAVSim. We use this feature to create

the force disturbance df . The model that generates the force disturbance is in AbstractMultiCopter

class and the force disturbance it outputs is proportional to the airspeed i.e.,

df = cf · (w − v) (2.17)

where cf is a drag coefficient whose default value 0.03 Ns/m is used and w ∈ R3 is the wind velocity

vector expressed in N . The wind velocity is a random process whose variance and mean can be

controlled by the user and is obtained from

dw

dt
= −w

τ
+

(
W

τ
+ ν

)
(2.18)

where we take W = [0,−20, 0]T m/s as the constant which determines the mean steady state value

of w, τ = 2 s and ν = [ν1, ν2, ν3]T ∈ R3 where its components are Gaussian white noise processes

with zero mean and variance (τσwk)
2, i.e.,N (0, (τσwk)

2), where σw1 = 6 m/s, σw2 = 8 m/s, σw3 = 0.

The parameters σwk and W can be set using the GUI or can be hard-coded in the Simulator class.

To investigate the effectiveness of the proposed method to reject torque disturbances, a simple

model for the torque disturbance is added to the jMAVSim simulation model using

dτ = −cτ · ω (2.19)

where cτ = 0.3 Nms/rad is the drag coefficient. As well, rotor drag force was added to model using

a drag coefficient d11 = 0.3 s−1 which is a reasonable value for the quadrotor considered [15].
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Chapter 3

Disturbance Observer-Based Backstep-

ping Controller

This chapter focuses on solving an output tracking problem for the dynamics equation (2.3) (or

(2.8) for modelling with rotor drag) where the output includes p and ψ. Given smooth bounded

desired trajectories for position and yaw, denoted by pd ∈ R3 and ψd ∈ R, respectively, we derive

a dynamic state feedback control for inputs u and τ to ensure exponential convergence of the

tracking errors p − pd and ψ − ψd in the presence of constant bounded disturbances df and dτ .

The full state measurement is assumed available. The proposed design adopts a backstepping

approach inspired by [1] and the references within. As discussed before, the approach in [1] relies

on high-dimensional parameter update laws to estimate df , whereas our proposed methods uses

two 3-dimensional disturbance observers to reject disturbances df and dτ . Since p and ψ can be

independently controlled, the design is presented in separate sections: position and yaw control.

The proposed structure for the force and torque disturbance observers that are adopted through-

out this research are presented in Section 3.1. In Section 3.2 we take a coupled structure for the

controller-observer design with the concept of tuning functions which results in strong stability

proof: exponentially stable error dynamics with provable bounds and ultimate boundedness in the

case of time-varying disturbances. Matlab simulation results are presented as the control expres-

sions are too complicated for onboard implementation.

To achieve a simpler and implementable control law we adopt a decoupled structure for controller-

observer design in Section 3.3 where error dynamics of force and torque disturbance observers is

decoupled from the rest of the closed-loop. This important property simplifies the exponential sta-

bility proof of the closed-loop. Similar to Section 3.2 still the backstepping approach is employed

for the controller design, however, the stability proof is done by adopting the theory of cascaded

system for the Linear Time Variant (LTV) systems as we show the error coordinates resulted from

the backstepping approach are in the form of LTV system with force and torque disturbance esti-

mation errors as the inputs. Results for SITL simulation and experimental testing are presented for

the evaluation of the proposed controller. Section 3.4 extends the decoupled structure in Section
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3.3 by adding the integral augmentation and rotor drag modelling in the controller design. The

rotor drag is decomposed into two components: one independent of the vehicle attitude which can

be readily compensated by an appropriate choice of virtual control in the backstepping procedure

and the one which is in the direction of thrust and can be compensated by an appropriate choice

for desired thrust during backstepping. SITL simulation results are presented for this controller

showing an improved performance as a result of integral augmentation and the rotor drag compen-

sation. The results also show the effectiveness of the controller-observer in the case of time-varying

disturbance.

3.1 Disturbance Observers

In this section we present the structure that is used throughout this thesis for the force and

torque disturbance observers. The idea for this structure is taken from [102] which originally

was proposed for fixed-based manipulators. As we show throughout the rest of this chapter this

structure allows us to achieve exponential stability which is known to be essential for controller

robustness.

3.1.1 Force Disturbance Observer

To understand the basic structure of the disturbance observer used in the output tracking

control, we consider the simplified problem of estimating df assuming the system state is measured.

In addition, if we assume linear acceleration v̇ is measured, a simple disturbance observer for the

translational subsystem with traditional modelling (2.3b) is

˙̂
df = −kdf d̂f + kdf (mv̇ −mgn3 + uRn3) (3.1)

where d̂f denotes estimate, and kdf ∈ R is a positive observer gain. Defining the estimate error

d̃f = df − d̂f , observer (3.1) has error dynamics

˙̃
df = ḋf − kdf d̃f (3.2)

which is exponentially stable if ḋf = 0 and ultimately bounded if ḋf is bounded. Since linear

acceleration is normally noisy, we take a new structure for the disturbance observer with zdf ∈ R3

as the new state coordinate and observer is introduced as

d̂f = zdf + kdfmv (3.3a)

żdf = −kdf d̂f − kdf (mgn3 − uRn3). (3.3b)

This idea was used for fixed-based manipulators in [102]. Taking the derivative of d̂f gives

˙̂
df = żdf + kdfmv̇ = −kdf d̂f − kdf (mgn3 − uRn3) + kdf (mgn3 − uRn3 + df ) = kdf d̃f
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which yields error dynamics (3.2), that under the assumption of constant force disturbance ḋf = 0,

yields
˙̃
df = −kdf d̃f (3.4)

which is exponentially stable. However, if we consider the modelling with rotor drag (2.8) effect

the observer will be

d̂f = zdf + kdfmv (3.5a)

żdf = −kdf d̂f − kdf (mgn3 − uRn3 −RDR>va). (3.5b)

which again results in exponentially stable error dynamics

˙̃
df = kdf d̂f + kdf (mgn3 − uRn3 −RDR>va)− kdf (mgn3 − uRn3 −RDR>va + df )

= −kdf d̃f (3.6)

Depending on the modelling assumption, we will use one of the force disturbance observers (3.3)

or (3.5) in the controller design.

We remark that u in the equation (3.3b) is theoretically the actual thrust measured by the

feedback from the ESCs, not the commanded thrust from the controller, as these two are normally

different due to the motor dynamics. However, in this thesis we assume these two are the same as

we neglect the motor dynamics.

3.1.2 Torque Disturbance Observer

Also, we consider the following structure for the torque disturbance observer

d̂τ = zdτ + kdτJω (3.7a)

żdτ = −kdτ d̂τ − kdτ (−ω × Jω + τ) (3.7b)

which results in the estimation error dynamics
˙̃
dτ = −kdτ d̃τ which is exponentially stable.

In the next sections, depending on the structure of the controller-observer design (if coupled),

extra terms can be added to the right-hand side of (3.3b) and (3.7b). However, for the decoupled

structure the observers structure are kept the same and no extra terms will be added.

3.2 Coupled Controller-Observer Design

In this section, we drive a coupled structure for the controller-observer design using the backstep-

ping method and the observer structure proposed in Section 3.1. The concept of tuning functions

is employed in conjunction with coupling the observer to the controller by adding extra terms to

achieve rigorous theoretical results. The extra terms which are a function of backstepping tracking

error coordinates are added to the right-hand-side of equations (3.3b) and (3.7b). The block dia-
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gram of this structure is shown in Fig. 3.1. First the position controller is presented in section 3.2.1

with the assumption of constant force and torque disturbances. However, the stability results are

evaluated for the case of time-varying disturbances resulting in ultimate boundedness of the track-

ing errors. The yaw control is presented in Section 3.2.2. Matlab simulation results are presented

in Section 3.2.3.

Quadrotor

Observer

Controller
pd, ψd u, τ

u, τ

p, v, R, ω

d̂f , d̂τ

µ(δ2, δ3, δ4)

df , dτ

v, R, ω

Figure 3.1: Block diagram of the Disturbance Observer-based Control with coupled structure.

3.2.1 Position Tracking Control

In this subsection we derive a tracking control for position. We begin by defining a position

tracking error δ1 = p− pd and the first Lyapunov function candidate V1 = 1
2‖δ1‖2. Taking the time

derivative of V1 and using (2.3a) gives

V̇1 = δ>1 δ̇1 = δ>1 (v − vd) (3.8)

where vd = ṗd. Taking v as a virtual control to (3.8) we choose α1 = vd − k1δ1 as its desired value,

where k1 > 0 is a scalar controller gain. Defining δ2 = mv −mα1 and substituting this expression

into (3.8) we have

V̇1 = −k1‖δ1‖2 +
1

m
δ>1 δ2.

Next, we consider the second Lyapunov function candidate V2 = V1 + 1
2‖δ2‖2 + 1

2‖d̃f‖2 and take its

time derivative

V̇2 = −k1‖δ1‖2 +
1

m
δ>2 δ1 + δ>2 δ̇2 + d̃>f

˙̃
df . (3.9)
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Substituting df = d̂f + d̃f and α̇1 into the expression for δ̇2 gives

δ̇2 = mv̇ −mα̇1 = mgn3 − uRn3 + d̂d + d̃f −mv̇d +mk1v −mk1vd. (3.10)

where we have used (2.3b). Hence, substituting (3.10) into (3.9) gives

V̇2 = −k1‖δ1‖2 +
1

m
δ>2 δ1 + δ>2 (mgn3 − uRn3 + d̂f + d̃f −mv̇d +mk1v −mk1vd) + d̃>f

˙̃
df . (3.11)

We denote α2 as the desired value for the second virtual control uRn3 and take

α2 = mgn3 + d̂f −mv̇d +mk1v −mk1vd +
1

m
δ1 + k2δ2 (3.12)

where k2 > 0 is a controller gain. We remark that the virtual input uRn3 is the thrust vector

expressed in N . Introducing error coordinate δ3 = α2 − uRn3 and substituting (3.12) into (3.11)

gives

V̇2 = −k1‖δ1‖2 − k2‖δ2‖2 + δ>2 δ3 + d̃>f (δ2 +
˙̃
df ). (3.13)

At this stage it would be possible to compensate the effect of d̃f by assigning the estimation law

for d̂f . However, instead we tolerate the presence of d̃f in (3.13) and introduce the first tuning

function γ1 = δ2. Consider the Lyapunov function candidate

V3 = V2 +
1

2
‖δ3‖2. (3.14)

Differentiating (3.14) and substituting (3.13) we have

V̇3 = −k1‖δ1‖2 − k2‖δ2‖2 + δ>2 δ3 + d̃>f (γ1 +
˙̃
df ) + δ>3 δ̇3 (3.15)

where

δ̇3 = α̇2 − u̇Rn3 − uRS(ω)n3

=
˙̂
df −mv̈d + k1(mgn3 − uRn3 + df )−mk1v̇d +

1

m
(v − vd)

+ k2(mgn3 − uRn3 + df −mv̇d +mk1v −mk1vd)− u̇Rn3 − uRS(ω)n3. (3.16)

As in Section 3.1, we propose a new disturbance observer

d̂f = zdf + kdfmv (3.17a)

żdf = −kdf d̂f − kdf (mgn3 − uRn3) + µ(δ2, δ3, δ4) (3.17b)
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where zdf is the observer state, and kdf > 0 is an observer gain. The error coordinate δ4 and

function µ will be determined below. Observer (3.17) leads to

˙̂
df = kdf d̃f + µ. (3.18)

It is important to remark that observer (3.17) was chosen to introduce a damping term −kdf d̃f
in the expression for

˙̃
df . This ensures the negative definite term −kdf ‖d̃f‖2 appears in V̇3 and is

eventually necessary to obtain an exponentially stable closed-loop. Without this damping term,

only an asymptotically stable result could be proven using the Lassale-Yoshizawa Theorem.

Substituting (3.18) and df = d̂f + d̃f in (3.16) we obtain

δ̇3 = µ+ β + (kdf + k1 + k2)d̃f − u̇Rn3 − uRS(ω)n3 (3.19)

where

β = −mv̈d + k1mgn3 − k1uRn3 + k1d̂f −mk1v̇d +
1

m
v − 1

m
vd + k2mgn3 − k2uRn3

+ k2d̂f − k2mv̇d + k2mk1v − k2mk1vd.

Hence, substituting (3.19) and
˙̃
df = −kdf d̃f − µ into (3.15) gives

V̇3 = −k1‖δ1‖2 − k2‖δ2‖2 + δ>2 δ3 − kdf ‖d̃f‖2 + d̃>f (γ1 − µ)

+ δ>3 (µ+ β + (kdf + k1 + k2)d̃f − u̇Rn3 − uRS(ω)n3)

= −k1‖δ1‖2 − k2‖δ2‖2 + δ>2 δ3 − kdf ‖d̃f‖2 + d̃>f (γ2 − µ)

+ δ>3 (µ+ β − u̇Rn3 − uRS(ω)n3)

where γ2 = γ1 + (kdf + k1 + k2)δ3 is the second tuning function. We can eliminate the effect of d̃f

by choosing µ = γ2. However, we retain γ2 as the second tuning function and tolerate the presence

of d̃f in V̇3. It should be noted that the terms u̇Rn3 and uRS(ω)n3 can be written as

uRS(ω)n3 = R

 uω2

−uω1

0

 , u̇Rn3 = R

0

0

u̇

 .
Since u is the system input we can assign the value of u̇ at this stage and continue the backstepping

design with uRS(ω)n3 as a virtual control. We pick

u̇ = n>3 R
>(β + δ2 + k3δ3 + γ2) (3.20)

where k3 > 0 is a controller gain. Letting δ4 = α3 − uRS(ω)n3 where

α3 = R[I − n3n
>
3 ]R>(β + δ2 + k3δ3 + γ2)
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gives

V̇3 = −k1‖δ1‖2 − k2‖δ2‖2 − kdf ‖d̃f‖2 + d̃>f (γ2 − µ)− k3‖δ3‖2 + δ>3 (µ− γ2) + δ>3 δ4.

Considering V4 = V3 + 1
2‖δ4‖2 as a new Lyapunov function candidate, we have

V̇4 = −k1‖δ1‖2 − k2‖δ2‖2 − kdf ‖d̃f‖2 + d̃>f (γ2 − µ)− k3‖δ3‖2 + δ>3 (µ− γ2) + δ>3 δ4 + δ>4 δ̇4

where

δ̇4 = α̇3 − u̇RS(ω)n3 − uRS(ω)2n3 − uRS(ω̇)n3 (3.21)

and

α̇3 = RS(ω)[I − n3n
>
3 ]R>(β + δ2 + k3δ3 + γ2) +R[I − n3n

>
3 ]S(ω)>R>(β + δ2 + k3δ3 + γ2)

+R[I − n3n
>
3 ]R>(β̇ + δ̇2 + k3δ̇3 + γ̇2).

Calculating expressions for β̇, δ̇2, δ̇3 and γ̇2 and substituting df = d̂f + d̃f we obtain

β̇ = β̇′ + (k1kdf +
1

m2
+ k2kdf +mk1k2)d̃f

δ̇2 = δ̇′2 + d̃f

δ̇3 = δ̇′3 + (kdf + k1 + k2)d̃f

γ̇2 = γ̇′2 + (1 + (kdf + k1 + k2)2)d̃f

where β̇′, δ̇′2, δ̇′3 and γ̇′2 are the known parts of β̇, δ̇2, δ̇3 and γ̇2, respectively, and given by

β̇′ = −m...
v d − k1u̇Rn3 − k1uRS(ω)n3 + k1µ−mk1v̈d +

1

m2
(mgn3 − uRn3 + d̂f )− 1

m
v̇d

− k2u̇Rn3 − k2uRS(ω)n3 + k2µ− k2mv̈d + k2k1(mgn3 − uRn3 + d̂f )− k1k2mv̇d

δ̇′2 = mgn3 − uRn3 + d̂f −mv̇d +mk1v −mk1vd

δ̇′3 = µ+ β − u̇Rn3 − uRS(ω)n3

γ̇′2 = δ̇′2 + (kdf + k1 + k2)δ̇′3.

If we define the known part of α̇3 as

α̇′3 = RS(ω)[I − n3n
>
3 ]R>(β + δ2 + k3δ3 + γ2) +R[I − n3n

>
3 ]S(ω)>R>(β + δ2 + k3δ3 + γ2)

+R[I − n3n
>
3 ]R>(β̇′ + δ̇′2 + k3δ̇

′
3 + γ̇′2)

then

α̇3 = α̇′3 + kR[I − n3n
>
3 ]R>d̃f
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where

k = (k1kdf +
1

m2
+ k2kdf +mk1k2) + 1 + k3(kdf + k1 + k2) + 1 + (kdf + k1 + k2)2.

We define desired angular acceleration ω̇d satisfying

u̇RS(ω)n3 + uRS(ω)2n3 − uRS(n3)ω̇d = α̇′3 + δ3 + k4δ4 + ν (3.22)

where k4 > 0 is a controller gain, and ν is a correction term to be determined and added to eliminate

the effect of transient disturbance estimation error. From (3.21) and substituting for δ̇4 gives

V̇4 = −k1‖δ1‖2 − k2‖δ2‖2 − kdf ‖d̃f‖2 + d̃>f (γ2 − µ)− k3‖δ3‖2 + δ>3 (µ− γ2)

+ δ>3 δ4 + δ>4 (α̇3 − α̇′3 − δ3 − k4δ4 − ν)

= −k1‖δ1‖2 − k2‖δ2‖2 − kdf ‖d̃f‖2 + d̃>f (γ2 − µ)− k3‖δ3‖2 + δ>3 (µ− γ2)

+ kδ>4 R[I − n3n
>
3 ]R>d̃f − k4‖δ4‖2 − δ>4 ν

= −k1‖δ1‖2 − k2‖δ2‖2 − kdf ‖d̃f‖2 + d̃>f (γ3 − µ)− k3‖δ3‖2 + δ>3 (µ− γ2)

− k4‖δ4‖2 − δ>4 ν

where γ3 = γ2 + kR[I − n3n
>
3 ]R>δ4 is the third tuning function. If we consider

µ = γ3

then µ− γ2 = kR[I − n3n
>
3 ]R>δ4 and

V̇4 = −k1‖δ1‖2 − k2‖δ2‖2 − kdf ‖d̃f‖2 − k3‖δ3‖2 − k4‖δ4‖2 + δ>4 kR[I − n3n
>
3 ]R>δ3 − δ>4 ν.

Taking

ν = kR[I − n3n
>
3 ]R>δ3

we get

V̇4 = −k1‖δ1‖2 − k2‖δ2‖2 − kdf ‖d̃f‖2 − k3‖δ3‖2 − k4‖δ4‖2 < 0.

Denoting ω̇d = [ω̇d1, ω̇d2, ω̇d3]> and solving (3.22) for ω̇d1 and ω̇d2 gives

ω̇d1 = −n
>
2 R
>

u
(α̇′3 − u̇RS(ω)n3 − uRS(ω)2n3 + δ3 + k4δ4 + ν) (3.23a)

ω̇d2 =
n>1 R

>

u
(α̇′3 − u̇RS(ω)n3 − uRS(ω)2n3 + δ3 + k4δ4 + ν). (3.23b)

Expressions (3.23a) and (3.23b) have a singularity at u = 0. Conditions for avoiding it are given

below in Remark 1.

In order to obtain the expressions for the torque input τ which achieves position tracking, we

assume one uncontrolled rotational degree of freedom and take ω̇d3 = 0. In the case of no torque
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disturbance in the rotational dynamics, torque can be derived from the algebraic relation between

τ and ω̇d

τ = Jω̇d + ω × Jω

which ensures ω̇ = ω̇d and, as a result, negative definiteness of V̇4. However, in the case disturbance

torque appears, we cannot use τ = Jω̇d + ω × Jω − dτ since it depends on dτ , which is unknown.

Therefore, we introduce an observer for dτ and use its estimate d̂τ in the control law

τ = Jω̇d + ω × Jω − d̂τ . (3.24)

From (2.3d), this implies

ω̇ = ω̇d + J−1d̃τ (3.25)

where d̃τ is the torque disturbance estimation error. Now, we can write

V̇4 = −k1‖δ1‖2 − k2‖δ2‖2 − kdf ‖d̃f‖2 − k3‖δ3‖2 − k4‖δ4‖2 + δ>4 uRS(n3)J−1d̃τ .

Considering the new Lyapunov function candidate

V5 = V4 +
1

2
‖d̃τ‖2 (3.26)

and its time derivative

V̇5 = −k1‖δ1‖2 − k2‖δ2‖2 − kdf ‖d̃f‖2 − k3‖δ3‖2 − k4‖δ4‖2 + δ>4 uRS(n3)J−1d̃τ + d̃>τ
˙̃
dτ

= −k1‖δ1‖2 − k2‖δ2‖2 − kdf ‖d̃f‖2 − k3‖δ3‖2 − k4‖δ4‖2 + d̃>τ (uJ−1S(n3)>R>δ4 +
˙̃
dτ ).

Since we have assumed a constant disturbance then
˙̃
dτ = − ˙̂

dτ , and the observer

d̂τ = zdτ + kdτJω (3.27a)

żdτ = −kdτ d̂τ − kdτ (−ω × Jω + τ) + uJ−1S(n3)>R>δ4 (3.27b)

provides

V̇5 = −k1‖δ1‖2 − k2‖δ2‖2 − kdf ‖d̃f‖2 − k3‖δ3‖2 − k4‖δ4‖2 − kdτ ‖d̃τ‖2. (3.28)

The above derivation of the position tracking control is summarized with the following Theorem.

Theorem 3.1. Given system (2.3) with constant disturbances df , dτ , bounded smooth reference

trajectory pd, and under the assumption that u and τ do not saturate and u > 0, the equilibrium

[δ>1 , δ
>
2 , δ

>
3 , δ

>
4 , d̃

>
f , d̃

>
τ ] = 0 of the closed-loop dynamics is exponentially stable with dynamic state
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feedback control

u̇ = n>3 R
>(β + δ2 + k3δ3 + γ2)

τ = Jω̇d + ω × Jω − d̂τ

ω̇d1 = −n
>
2 R
>

u
(α̇′3 − u̇RS(ω)n3 − uRS(ω)2n3 + δ3 + k4δ4 + ν)

ω̇d2 =
n>1 R

>

u
(α̇′3 − u̇RS(ω)n3 − uRS(ω)2n3 + δ3 + k4δ4 + ν)

d̂f = zdf + kdfmv

żdf = −kdf d̂f − kdf (mgn3 − uRn3) + µ(δ2, δ3, δ4)

d̂τ = zdτ + kdτJω

żdτ = −kdτ d̂τ − kdτ (−ω × Jω + τ) + uJ−1S(n3)>R>δ4

Proof. From (3.28), the time derivative of the quadratic Lyapunov function (3.26) evaluated along

the trajectories of the closed-loop dynamics is globally negative definite assuming u > 0.

Remark 1. To ensure thrust u > 0 to avoid the singular points in (3.23) we derive a condition

involving initial conditions of the system, observer, controller state, and bounds on df , dτ and v̇d.

From δ3 = α2 − uRn3, we have

uRn3 = α2 − δ3. (3.29)

From the definition of α2 in (3.12) and v = 1
m(δ2 +mα1) we have

α2 = mgn3 + d̂f −mv̇d + (
1

m
−mk2

1)δ1 + (k1 + k2)δ2.

Hence, we can rewrite (3.29) as

uRn3 = mgn3 + df − d̃f −mv̇d + (
1

m
−mk2

1)δ1 + (k1 + k2)δ2 − δ3.

Therefore, a lower bound for thrust is

‖u‖ ≥ mg − bdf −m‖v̇d(t)‖∞ − ‖d̃f‖ − |
1

m
−mk2

1|‖δ1‖ − (k1 + k2)‖δ2‖ − ‖δ3‖

where bdf is an upper bound for the force disturbance ‖df‖ ≤ bdf , and ‖·‖∞ is the infinity norm. If

we consider km as km = max(1, | 1
m −mk2

1|, k1 + k2) then

‖d̃f‖+ | 1
m
−mk2

1|‖δ1‖+ (k1 + k2)‖δ2‖+ ‖δ3‖ ≤ km(‖d̃f‖+ ‖δ1‖+ ‖δ2‖+ ‖δ3‖)

≤ 2km

√
‖d̃f‖2 + ‖δ1‖2 + ‖δ2‖2 + ‖δ3‖2

≤ 2km
√

2V5(0).
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Therefore, we can write

‖u‖ ≥ mg − bdf −m‖v̇d(t)‖∞ − 2km
√

2V5(0)

and provided

2km
√

2V5(0) ≤ mg − bdf −m‖v̇d(t)‖∞ (3.30)

then u > 0. However, since df and dτ are not known, V5(0) cannot be calculated and therefore

condition (3.30) cannot be verified directly. However, if we consider ‖dτ‖ ≤ bdτ and choose d̂f (0) =

0, d̂τ (0) = 0, we can derive an upper bound for V5(0):

V5(0) ≤ 1

2
‖δ1(0)‖2 +

1

2
‖δ2(0)‖2 +

1

2
‖δ3(0)‖2 +

1

2
‖δ4(0)‖2 +

1

2
b2df +

1

2
b2dτ (3.31)

therefore, condition (3.30) can be written as

2km
√
‖δ1(0)‖2 + ‖δ2(0)‖2 + ‖δ3(0)‖2 + ‖δ4(0)‖2 + b2df + b2dτ ≤ mg − bdf −m‖v̇d(t)‖∞ (3.32)

3.2.2 Yaw Tracking Control

In this subsection we extend the control presented in Section 3.2.1 to track position and yaw.

Given a smooth bounded reference trajectory for yaw ψd, we define the tracking error ε1 = ψ−ψd,
and consider the Lyapunov function candidate Vψ1 = 1

2‖ε1‖2 whose time derivative is V̇ψ1 = ε1(ψ̇−
ψ̇d). We take ψ̇ as a virtual control and define ε2 = ψ̇ − αψ1, where

αψ1 = ψ̇d − kψ1ε1

is the desired value for ψ̇, and kψ1 > 0 is a controller gain. We obtain

V̇ψ1 = −kψ1‖ε1‖2 + ε1ε2.

Defining the second Lyapunov function candidate as Vψ2 = Vψ1 + 1
2‖ε2‖2 we have

V̇ψ2 = V̇ψ1 + ε2ε̇2 = −kψ1‖ε1‖2 + ε1ε2 + ε2(ψ̈ − α̇ψ1) (3.33)

where α̇ψ1 = ψ̈d − kψ1(ψ̇ − ψ̇d). Since ψ̈ is algebraically related to ω̇ which can be considered as

the system input, we can assign its value directly. Next, we present the relation between ψ̈ and ω̇.

Time differentiating η̇ = W (η)ω gives

η̈ = Ẇ (η)ω +W (η)ω̇.
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Taking the last row of this equation gives

ψ̈ = n>3 Ẇ (η)ω +
sφ
cθ
ω̇2 +

cφ
cθ
ω̇3

since ω̇2 and ω̇3 are not measurable, we replace them by their desired value using (3.25), and

therefore,

ψ̈ = n>3 Ẇ (η)ω +
sφ
cθ
ω̇d2 +

cφ
cθ
ω̇d3 +

sφ
J22cθ

d̃τ2 +
cφ
J33cθ

d̃τ3 (3.34)

where d̃τ = [d̃τ1, d̃τ2, d̃τ3]>, and Jij is the (i, j)th entry of J . In order to simplify (3.34) and without

loss of generality, we have taken the practical case of J diagonal. Now if we consider ω̇d3 as

ω̇d3 =
cθ
cφ

(α̇ψ1 − ε1 − kψ2ε2 − n>3 Ẇ (η)ω − sφ
cθ
ω̇d2) (3.35)

and substitute (3.35) into (3.34), we obtain

ψ̈ = α̇ψ1 − ε1 − kψ2ε2 +
sφ
J22cθ

d̃τ2 +
cφ
J33cθ

d̃τ3 (3.36)

We observe (3.35) has singular points at φ = π/2 + kπ, k ∈ Z. Further, θ = π/2 + kπ, k ∈ Z
are singular points for the Euler angles. We must therefore assume (φ, θ) ∈ S = {(φ, θ) : −π/2 <
φ < π/2,−π/2 < θ < π/2} when controlling yaw and position. Considering the Lyapunov function

candidate V6 = V5 + Vψ2 and substituting (3.36) into (3.33) results

V̇6 = −k1‖δ1‖2 − k2‖δ2‖2 − kdf ‖d̃f‖2 − k3‖δ3‖2 − k4‖δ4‖2 − kψ1‖ε1‖2 − kψ2‖ε2‖2

+ δ>4 uRS(n3)J−1d̃τ +G>d̃τ + d̃>τ
˙̃
dτ

= −k1‖δ1‖2 − k2‖δ2‖2 − kdf ‖d̃f‖2 − k3‖δ3‖2 − k4‖δ4‖2 − kψ1‖ε1‖2 − kψ2‖ε2‖2

+ d̃>τ (uJ−1S(n3)>R>δ4 +G+
˙̃
dτ )

where

G = [0,
sφ
J22cθ

ε2,
cφ
J33cθ

ε2]>.

The torque disturbance observer is given by

d̂τ = zdτ + kdτJω (3.37a)

żdτ = −kdτ (−ω × Jω + τ + d̂τ ) + uJ−1S(n3)>R>δ4 +G (3.37b)

so that

V̇6 = −k1‖δ1‖2− k2‖δ2‖2− kdf ‖d̃f‖2− k3‖δ3‖2− k4‖δ4‖2− kψ1‖ε1‖2− kψ2‖ε2‖2− kdτ ‖d̃τ‖2. (3.38)

Theorem 3.2. Given system (2.3) with constant disturbances df , dτ , bounded smooth reference

trajectories pd, ψd, and under the assumption that u and τ do not saturate and also u > 0, the

38



equilibrium [δ>1 , δ
>
2 , δ

>
3 , δ

>
4 , ε1, ε2, d̃

>
f , d̃

>
τ ] = 0 of the closed-loop system is exponentially stable with

dynamic state feedback control

u̇ = n>3 R
>(β + δ2 + k3δ3 + γ2)

τ = Jω̇d + ω × Jω − d̂τ

ω̇d1 = −n
>
2 R
>

u
(α̇′3 − u̇RS(ω)n3 − uRS(ω)2n3 + δ3 + k4δ4 + ν)

ω̇d2 =
n>1 R

>

u
(α̇′3 − u̇RS(ω)n3 − uRS(ω)2n3 + δ3 + k4δ4 + ν)

ω̇d3 =
cθ
cφ

(α̇ψ1 − ε1 − kψ2ε2 − n>3 Ẇ (η)ω − sφ
cθ
ω̇d2)

d̂f = zdf + kdfmv

żdf = −kdf d̂f − kdf (mgn3 − uRn3) + µ(δ2, δ3, δ4)

d̂τ = zdτ + kdτJω

żdτ = −kdτ (−ω × Jω + τ + d̂τ ) + uJ−1S(n3)>R>δ4 +G

Proof. As shown in (3.38) and provided (φ, θ) ∈ S, the time derivative of the quadratic Lyapunov

function V6 evaluated along the trajectories of the closed-loop dynamics is negative definite.

Remark 2. In the case of bounded time-varying disturbances, i.e. when
˙̃
df 6= 0 and

˙̃
dτ 6= 0 and

‖ḋf‖ ≤ cdf and ‖ḋτ‖ ≤ cdτ , for some constants cdf , cdτ , we can write for the time derivative of V6

V̇6 ≤ −k1‖δ1‖2 − k2‖δ2‖2 − k3‖δ3‖2 − k4‖δ4‖2 − kψ1‖ε1‖2 − kψ2‖ε2‖2

+ ‖d̃f‖(cdf − kdf ‖d̃f‖) + ‖d̃τ‖(cdτ − kdτ ‖d̃τ‖).

now, based on [103, Theorem. 4.18], the trajectory error x = [δ>1 , δ
>
2 , δ

>
3 , δ

>
4 , ε1, ε2, d̃

>
f , d̃

>
τ ]> is

ultimately bounded with ‖x‖ ≤ max(
cdf
kdf

,
cdτ
kdτ

). Furthermore, the bound can be reduced by increasing

the observer gains kdf and kdτ .

3.2.3 Matlab Simulation Results

This section presents simulation results to validate the performance of the proposed method

and compare it to that in [1]. The parameters of the simulation are chosen to match conditions

of the ANCL (Applied Nonlinear Control Lab) quadrotor platform discussed in [97, 100]. The

platform parameters are presented in Table 3.1. The desired trajectory has a figure-8 shape and

given by pd(t) = [A sin(2πt
T ), B sin(4πt

T ),−1] m, where A is the amplitude of the trajectory in the

n1-direction, B is the amplitude in the n2-direction, and T is the period of the trajectory. The

trajectory for yaw is ψd(t) = atan(cos(4πt
T )/cos(2πt

T )) rad. Based on the available flight volume

we choose A = 1.5 m, B = 1 m, and T = 12 s. The desired trajectory is smooth and bounded

as required, and sufficiently aggressive enough to test performance of the nonlinear control. The

initial conditions of the quadrotor are p0 = [0, 1, 0]> m, η0 = [0, 0,−0.46]> rad which result initial
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errors δ1(0) = [0, 1, 1]> m and ε1(0) = −0.92 rad. The initial conditions for the linear and angular

velocities are v(0) = 0 and ω(0) = 0, respectively. To simulate the noise which appears in the

system state in practice, we have added Gaussian white noise to the angular velocity and the

position signals. Further, linear velocity is calculated by low-pass filtering the finite difference

of the noisy position signal. This accurately simulates the experimental conditions found in our

lab (e.g., [97]) where position is available from a motion capture system and the linear velocity

is estimated by low-pass filtered finite difference. Based on actual experimental data we use zero

mean Gaussian white noise with variance np = [0.0619, 0.2320, 0.3223]> × 10−5 m for position and

nω = [0.1373, 0.0344, 0.9105]> × 10−4 rad/s for angular velocity.

Table 3.1: Model parameters.

m J11 J22 J33 Ku Kτ `

1.6 kg 0.03 kg m2 0.03 kg m2 0.05 kg m2 8 N 0.8 N m 0.25 m

Constant Disturbance

In this section we apply constant disturbances df = [−1, 2,−2]> N and dτ = [0.3,−0.2, 0.1]>N m.

The initial values for zdf and zdτ are set to zero, and the controller gains are summarized in Ta-

ble 3.2.

Table 3.2: Observer and controller gains: constant disturbance.

k1 k2 k3 k4 kψ1 kψ2 kdf kdτ

0.4 0.6 0.8 2 2 2 0.05 1

Figure 3.2 shows the 3-D position trajectory of the quadrotor. Postion and tracking error versus

time are shown in Figure 3.3(a). Tracking error converges to a sufficiently small neighborhood of

zero after about 10 second. Disturbance estimation error is in Figure 3.3(b). We note that d̃f

converges to an acceptable neighborhood of the origin. Torque disturbance estimation error d̃τ is

affected by the measurement noise added. However, due to the system’s inertia, the state trajec-

tories do not react to the high frequency noise in the estimate, and motion control performance is

not degraded. The trajectories for thrust, torque, and Euler angles are shown in Figure 3.3(c). The

trajectory for thrust is far from the singularity at u = 0. We conclude that despite relatively large

initial condition error and the measurement noise added, position and yaw tracking performance

is acceptable. When we remove the measurement noise, asymptotic convergence of the tracking

errors is achieved.
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Figure 3.2: 3D Position p = [p1, p2, p3]> trajectory: constant disturbance.

(a) Position p = [p1, p2, p3]>, position error δ1 =
[δ11, δ12, δ13]>, yaw error ε1.

(b) Distrubance estimation error.

(c) Inputs torque τ , thrust u, and Euler angles.

Figure 3.3: Simulation results: constant force and torque disturbance.
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Time-Varying Disturbance

In this subsection we test the proposed backstepping controller with and without the disturbance

observer in the case of time-varying disturbances. The force and torque disturbances are taken as

df (t) = [sin(πt), cos(2πt), − sin(0.5πt)]> N and dτ (t) = [0.2 sin(πt), −0.1 cos(2πt), −0.3 sin(0.5πt)]>

N m, respectively. The controller gains are summarized in Table 3.3. Simulation results are shown

in Figures 3.4 and 3.5. The tracking error for the backstepping controller without a disturbance

observer is in Figure 3.6. For both cases, the initial states are the same as the constant disturbance

case. The gains for both controllers are the same, other than kdf and kdτ which are not present

when no disturbance observer is used. As can be seen from the results, the tracking error converges

to a small neighborhood of the origin with the disturbance estimators, while tracking error diverges

without an observer. The upper bound of the tracking error can be decreased by increasing the

observer gains kdf and kdτ . However, large gains lead to large controls which are not practical. We

observe that the effect of measurement noise is seen in the torque and its estimate. However, as

with the constant disturbance case, the motion control performance is not degraded.

Figure 3.4: 3D Position p = [p1, p2, p3]> trajectory: time-varying disturbance.

Table 3.3: Observer and controller gains: time-varying disturbance.

k1 k2 k3 k4 kψ1 kψ2 kdf kdτ

0.8 0.75 1 2.5 2.5 2.5 0.6 3
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(a) Position p = [p1, p2, p3]>, position error δ1 =
[δ11, δ12, δ13]>, yaw error ε1.

(b) Disturbance estimation error.

(c) Inputs torque τ , thrust u, and Euler angles.

Figure 3.5: Simulation results: time-varying force and torque disturbance.
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Figure 3.6: Tracking error in the case of time-varying disturbances with no disturbance observer.
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Comparison of the Proposed Method

In this subsection we compare the proposed design (denoted D1) with the adaptive backstepping

controller in [1] (denoted D2). The reference trajectory for position is the same as the previous

section. Since for D2 yaw is uncontrolled and torque disturbances are not considered, we implement

D1 without yaw tracking or a torque disturbance observer. Also due to the high complexity of

expressions in the control law for the torque actuation case for D2, we simulate the angular velocity

actuation case which has reduced complexity. However, D1 is simulated for the torque actuation

case. Since the stable gains could not be determined for D2 using the disturbance and initial

conditions considered in the previous section, we reduced the magnitudes of these quantities in this

section. The initial conditions are p(0) = [0.5, 0.5,−0.5]> m, v(0) = 0, R(0) = I rad, and ω(0) = 0.

The force disturbance is df = [1, 1, 0]> N, and initial values for zdf and b̂ are zero.

After significant tuning for both methods, the final gains are in Table 3.4 for D1 and k3 = 8 and

kb1 = 10 for D2. As seen in Figures 3.7 and 3.8, D1 yields better transient response in the tracking

error and disturbance estimation errors. In particular, δ3, d̃f3 show very slow convergence for D2.

The improved performance of D1 is attributed to the exponential convergence property of the

closed-loop. Further, D2 has a complex implementation so that simulation times are significantly

longer than those of the proposed method which implements the torque actuation case. If the

torque actuation case were implemented for D2, complexity would be a larger problem. The

improved performance of D1 relative to D2 is due to the introduction of the proposed observer to

the controller which provides exponential stability of the system and guaranteed rates of convergence

for the errors. Figure 3.9 shows the inputs with improved response for D1.

Figure 3.7: 3D Position p = [p1, p2, p3]> trajectory: desired, D1 and D2.
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Table 3.4: Observer and controller gains of the proposed method

k1 k2 k3 k4 kdf

1 0.75 1 2.5 0.05

0 5 10 15 20

0

0.2

0.4

0 2 4 6 8 10

0

2

4

0 5 10 15 20

0

0.2

0.4

0 2 4 6 8 10
-0.5

0

0.5

1

0 5 10 15 20

-0.2

0

0.2

0.4

0 2 4 6 8 10
-2

-1

0

1

1

Figure 3.8: Comparison of the proposed method and the adaptive backstepping method in [1].
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Figure 3.9: Control inputs for the proposed method and the adaptive backstepping method in [1].
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3.2.4 Summary

In this section we proposed a nonlinear position and yaw tracking controller which can reject

or attenuate the effect of force and torque disturbances. Exponential stability of the closed-loop is

proven for constant disturbances, and ultimate boundedness is shown when disturbances are time-

varying. The design method uses a backstepping approach. Unlike existing work on backstepping

control, our method integrates a low-dimensional disturbance observer using tuning functions. The

benefit of the disturbance observers is that exponential stability of the tracking error and distur-

bance estimate error is obtained when disturbances are assumed constant. Exponential stability

also ensures ultimate boundedness of tracking error in the case of time-varying disturbances. The

method is validated in simulation and compared to the backstepping method in [1]. The comparison

shows the proposed method’s reduced complexity and improved transient performance. However,

due to the complexity of the control expression, the onboard implementation resulted into failure

as the control laws were diverging which is due to the high sensitivity of the controller to the

numerical integration error and model uncertainty. This problem can also be predicted from the

simulation plots where a large oscillation can be seen in the torques the disturbance estimation error

even in Matlab environment where numerical error is significantly smaller than common onboard

systems. In the next section, we try to resolve this problem by simplifying the control expressions

by adopting a decoupled structure.
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3.3 Decoupled Controller-Observer Design

In this section we try to reduce the complexity of the controller-observer design by employ-

ing a decoupled structure so that the design is implementable on onboard systems. Again the

backstepping approach and the observer proposed in 3.1 are employed. The block diagram of the

proposed structure is shown in Fig. 3.10. The position tracking design is presented in section 3.3.1

and the yaw tracking controller is presented in 3.3.2. SITL simulation and experimental results are

respectively presented in sections 3.3.3 and 3.3.4.

Quadrotor

Observer

Controller
pd, ψd u, τ

u, τ

p, v, R, ω

d̂f , d̂τ

df , dτ

v, R, ω

Figure 3.10: Block diagram of the Disturbance Observer-based Control with Decoupled Structure.

3.3.1 Position Tracking Control

In this subsection we design a controller for position tracking. We start by defining a tracking

error δ1 = p− pd and the first Lyapunov function candidate V1 = 1
2‖δ1‖2. Using (2.3a) gives

V̇1 = δ>1 δ̇1 = δ>1 (v − vd) (3.39)

where vd = ṗd. Taking v as a virtual control to (3.8) we choose α1 = vd − k1δ1 as its desired value,

where k1 > 0 is a scalar controller gain. Defining the second error coordinate as δ2 = mv −mα1

we get

δ̇1 = −k1δ1 + δ2/m (3.40)
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Substituting this expression into (3.8) we have V̇1 = −k1‖δ1‖2 + δ>1 δ2/m. Next, considering the

second Lyapunov function candidate V2 = V1 + 1
2‖δ2‖2 and taking its time derivative we have

V̇2 = −k1‖δ1‖2 +
1

m
δ>2 δ1 + δ>2 δ̇2. (3.41)

Substituting df = d̂f + d̃f and α̇1 into the expression for δ̇2 gives

δ̇2 = mv̇ −mα̇1

= mgn3 − uRn3 + d̂f + d̃f −mv̇d +mk1v −mk1vd. (3.42)

where we have used (2.3b). Hence, substituting (3.42) into (3.41) gives

V̇2 = −k1‖δ1‖2 +
1

m
δ>2 δ1 + δ>2 (mgn3 − uRn3 + d̂f + d̃f −mv̇d +mk1v −mk1vd) (3.43)

We denote α2 as the desired value for the second virtual control uRn3 and take

α2 = mgn3 + d̂f −mv̇d +mk1v −mk1vd +
1

m
δ1 + k2δ2 (3.44)

where k2 > 0 is a controller gain. We remark that the virtual input uRn3 is the thrust vector ex-

pressed in inertial frame N . Introducing the third error coordinate δ3 = α2−uRn3 and substituting

(3.44) into (3.43) gives

V̇2 = −k1‖δ1‖2 − k2‖δ2‖2 + δ>2 δ3 + d̃>f δ2. (3.45)

and

δ̇2 = −δ1/m− k2δ2 + δ3 + d̃f (3.46)

Now considering V3 = V2 + 1
2‖δ3‖2 as the third Lyapunov function candidate and taking its time

derivative, by substituting (3.45) we get

V̇3 = −k1‖δ1‖2 − k2‖δ2‖2 + δ>2 δ3 + d̃>f δ2 + δ>3 δ̇3 (3.47)

where

δ̇3 = α̇2 − u̇Rn3 − uRS(ω)n3

=
˙̂
df −mv̈d + k1(mgn3 − uRn3 + df )−mk1v̇d +

1

m
(v − vd) + k2(mgn3 − uRn3 + df

−mv̇d +mk1v −mk1vd)− u̇Rn3 − uRS(ω)n3. (3.48)

Substituting (3.1.1) and df = d̂f + d̃f in (3.48) we obtain

δ̇3 = β + (kdf + k1 + k2)d̃f − u̇Rn3 − uRS(ω)n3 (3.49)
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where β is a function of known variables

β = −mv̈d + k1mgn3 − k1uRn3 + k1d̂f −mk1v̇d +
1

m
v − 1

m
vd + k2mgn3 − k2uRn3 + k2d̂f

− k2mv̇d + k2mk1v − k2mk1vd.

Hence, substituting (3.49) into (3.47) gives

V̇3 = −k1‖δ1‖2 − k2‖δ2‖2 + δ>2 δ3 + δ>3 (β − u̇Rn3 − uRS(ω)n3) + d̃>f (δ2 + (kdf + k1 + k2)δ3)

The terms u̇Rn3 and uRS(ω)n3 can be written as

uRS(ω)n3 = R

 uω2

−uω1

0

 , u̇Rn3 = R

0

0

u̇

 .
Since u is the system input, we can assign the value of u̇ at this stage and continue the backstepping

design with uRS(ω)n3 as a virtual control. So we choose

u̇ = n>3 R
>(β + δ2 + k3δ3) (3.50)

where k3 > 0 is a controller gain. Letting δ4 = α3 − uRS(ω)n3 where

α3 = R[I − n3n
>
3 ]R>(β + δ2 + k3δ3) (3.51)

gives us

δ̇3 = −δ2 − k3δ3 + δ4 + (kdf + k1 + k2)d̃f (3.52)

The choice (3.20) and (3.51) cancels the effect of indefinite terms δ>2 δ3 and δ>3 β in V̇3 and adds a

damping term −k3‖δ3‖2. We have

V̇3 = −k1‖δ1‖2 − k2‖δ2‖2 − k3‖δ3‖2 + δ>3 δ4 + d̃>f (δ2 + (kdf + k1 + k2)δ3)

Considering V4 = V3 + 1
2‖δ4‖2 as a new Lyapunov function candidate, we have

V̇4 = −k1‖δ1‖2 − k2‖δ2‖2 − k3‖δ3‖2 + δ>3 δ4 + d̃>f (δ2 + (kdf + k1 + k2)δ3) + δ>4 δ̇4

where

δ̇4 = α̇3 − u̇RS(ω)n3 − uRS(ω)2n3 − uRS(ω̇)n3 (3.53)
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and

α̇3 = RS(ω)[I − n3n
>
3 ]R>(β + δ2 + k3δ3) +R[I − n3n

>
3 ]S(ω)>R>(β + δ2 + k3δ3)

+R[I − n3n
>
3 ]R>(β̇ + δ̇2 + k3δ̇3).

Calculating expressions for β̇, δ̇2 and δ̇3 and substituting df = d̂f + d̃f we obtain

β̇ = β̇′ + (k1kdf +
1

m2
+ k2kdf + k1k2)d̃f

δ̇2 = δ̇′2 + d̃f

δ̇3 = δ̇′3 + (kdf + k1 + k2)d̃f

where β̇′, δ̇′2 and δ̇′3 are the known parts of β̇, δ̇2 and δ̇3, respectively, and given by

β̇′ = −m...
v d − k1u̇Rn3 − k1uRS(ω)n3 −mk1v̈d +

1

m2
(mgn3 − uRn3 + d̂f )− 1

m
v̇d

− k2u̇Rn3 − k2uRS(ω)n3 − k2mv̈d + k2k1(mgn3 − uRn3 + d̂f )− k1k2mv̇d

δ̇′2 = mgn3 − uRn3 + d̂f −mv̇d +mk1v −mk1vd

δ̇′3 = β − u̇Rn3 − uRS(ω)n3.

therefore, the known part of α̇3 can be defined by α̇′3 : α̇3 = α̇′3 + kR[I − n3n
>
3 ]R>d̃f where

α̇′3 = RS(ω)[I − n3n
>
3 ]R>(β + δ2 + k3δ3) +R[I − n3n

>
3 ]S(ω)>R>(β + δ2 + k3δ3)

+R[I − n3n
>
3 ]R>(β̇′ + δ̇′2 + k3δ̇

′
3)

and

k = (k1kdf +
1

m2
+ k2kdf + k1k2) + 1 + k3(kdf + k1 + k2).

Now we can write the expression for V̇4 as

V̇4 = −k1‖δ1‖2 − k2‖δ2‖2 − k3‖δ3‖2 + δ>4 (α̇′3 + δ3 − u̇RS(ω)n3 − uRS(ω)2n3 − uRS(ω̇)n3)

+ d̃>f (δ2 + (kdf + k1 + k2)δ3 + kR[I − n3n
>
3 ]R>δ4)

At this stage, we define a desired value for the rate of angular velocity ω̇d, such that

δ>4 (α̇′3 + δ3 − u̇RS(ω)n3 − uRS(ω)2n3 − uRS(ω̇d)n3) = −k4δ
>
4 δ4
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where k4 > 0 is a controller gain. This leads to the expression −k4‖δ4‖2 appearing in V̇4. Consid-

ering the structure for S(ω̇d)n3, we can write the above equation as

δ>4 R

 ω̇d2

−ω̇d1

0

u = δ>4 (α̇′3 + δ3 − u̇RS(ω)n3 − uRS(ω)2n3 + k4δ4) (3.54)

now using the fact that the third component of R>δ4 is zero, we can conclude that by selecting

ω̇d1 = −n
>
2 R
>

u
(α̇′3 − u̇RS(ω)n3 − uRS(ω)2n3 + δ3 + k4δ4) (3.55a)

ω̇d2 =
n>1 R

>

u
(α̇′3 − u̇RS(ω)n3 − uRS(ω)2n3 + δ3 + k4δ4). (3.55b)

that (3.54) is satisfied. In order to obtain the expressions for the torque input τ which achieves

position tracking, we consider ω̇d3 = 0. Now we try to get the expression for torque which is the

actual sytem input. From the rotational dynamics, we consider

τ = Jω̇d + ω × Jω − d̂τ (3.56)

where, d̂τ is the torque disturbance estimate from (3.7) to cancel the effect of dτ . From (3.56) and

(2.3d) we get

ω̇ = ω̇d + J−1d̃τ (3.57)

Substituting (3.55) and (3.57) in δ̇4, gives us

δ̇4 = −δ3 − k4δ4 + uRS(n3)J−1d̃τ + kR[I − n3n
>
3 ]R>d̃f (3.58)

Now we can write the following expression for V̇4

V̇4 = −k1‖δ1‖2 − k2‖δ2‖2 − k3‖δ3‖2 − k4‖δ4‖2 + δ>4 uRS(n3)J−1d̃τ

+ d̃>f (δ2 + (kdf + k1 + k2)δ3 + kR[I − n3n
>
3 ]R>δ4) (3.59)

The closed loop stability of the proposed backstepping controller is summarized by the follow-

ing theorem. Rather than show the negative definiteness of V̇4 in (3.59), we take a more intu-

itive approach and present the closed-loop stability result for the proposed control by exploiting

a cascade of two subsystems: the tracking error dynamics expressed in the δ-coordinates, where

δ = [δ>1 , δ
>
2 , δ

>
3 , δ

>
4 ]>, and the disturbance estimate error dynamics expressed in the d̃ coordinates,

where d̃ = [d̃>f , d̃
>
τ ]>.

Theorem 3.3. Given system (2.3) with constant disturbances df and dτ , bounded smooth reference

trajectory pd and assuming u > 0, the equilibrium [δ>1 , δ
>
2 , δ

>
3 , δ

>
4 , d̃

>
f , d̃

>
τ ]> = 0 of the closed-loop

dynamics is exponentially stable with dynamic state feedback control (3.3), (3.7), (3.20), (3.55), and
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(3.56).

Proof. Denoting δ = [δ>1 , δ
>
2 , δ

>
3 , δ

>
4 ]> and d̃ = [d̃>f , d̃

>
τ ]> then from (3.40), (3.46), (3.52) and (3.58)

the tracking error dynamics is

δ̇ = Aδ +B(δ, t)d̃ (3.60)

where

A =


−k1I3×3 I3×3/m 03×3 03×3

−I3×3/m −k2I3×3 I3×3 03×3

03×3 −I3×3 −k3I3×3 I3×3

03×3 03×3 −I3×3 −k4I3×3



B(δ, t) =


03×3 03×3

I3×3 03×3

(kdf + k1 + k2)I3×3 03×3

kR[I − n3n
>
3 ]R> uRS(n3)J−1


We remark that the term B(δ, t)d̃ that interconnects the δ and d̃ subsystems is time-varying due

to the tracking problem considered. We apply the exponential stability result for cascades in [104,

Prop. 2.3]. Clearly, the disturbance estimate error dynamics is LTI and exponentially stable. As

well, assuming “zero input”, i.e., d̃ = 0, the dynamics (3.60) are LTI and exponentially stable for

any k1, k2, k3, k4 > 0. Hence, it only remains to show

‖B(δ, t)‖ ≤ C1 + C2‖δ‖ (3.61)

for some C1, C2 > 0. Since δ3 = α2 − uRn3, we can deduce |u| ≤ ‖α2‖ + ‖δ3‖, and from α2 =

mgn3 + d̂f −mv̇d +mk1v−mk1vd + 1
mδ1 + k2δ2, and by replacing d̂f = df − d̃f , v = 1

m(δ2 −mα1)

and α1 = vd − k1δ1 we get

α2 = mgn3 + df − d̃f −mv̇d + k1(δ2 −m(vd − k1δ1))−mk1vd +
1

m
δ1 + k2δ2

therefore, we can obtain an upper bound ‖α2‖ ≤ C̄1‖δ‖+ C̄2, C̄1, C̄2 > 0.

Hence, we conclude all entries of B are linearly bounded in the norm of δ and we obtain (3.61).

Therefore, the conditions for [104, Prop. 2.3] are satisfied the equilibrium [δ>1 , δ
>
2 , δ

>
3 , δ

>
4 , d̃

>
f , d̃

>
τ ]> =

0 of closed-loop (2.3), (3.3), (3.7), (3.20), (3.55) and (3.56) is exponentially stable.

3.3.2 Yaw Tracking Control

In this subsection we develop a controller to track trajectories for yaw using τ3. Given a

smooth bounded reference trajectory ψd, we define the tracking error ε1 = ψ−ψd, and consider the

Lyapunov function candidate Vψ1 = 1
2‖ε1‖2 whose time derivative is V̇ψ1 = ε1(ψ̇ − ψ̇d). We take ψ̇

as a virtual control and define ε2 = ψ̇ − αψ1, where αψ1 = ψ̇d − kψ1ε1 is the desired value for ψ̇,

and kψ1 > 0 is a controller gain. We obtain V̇ψ1 = −kψ1‖ε1‖2 + ε1ε2. Defining the second Lyapunov
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function candidate as Vψ2 = Vψ1 + 1
2‖ε2‖2 we get

V̇ψ2 = V̇ψ1 + ε2ε̇2 = −kψ1‖ε1‖2 + ε1ε2 + ε2(ψ̈ − α̇ψ1) (3.62)

where α̇ψ1 = ψ̈d − kψ1(ψ̇ − ψ̇d). At this stage we can immediately assign the value of ψ̈ since it is

directly related to ω̇ which can be considered as the system input. Next, we present the relation

between ψ̈ and ω̇. Taking time derivative of η̇ = W (η)ω gives η̈ = Ẇ (η)ω +W (η)ω̇. From the last

row of this equation we have

ψ̈ = n>3 Ẇ (η)ω +
sφ
cθ
ω̇2 +

cφ
cθ
ω̇3 (3.63)

Since ω̇2 and ω̇2 are not measurable, we replace them by their desired value using equation (3.57)

ψ̈ = n>3 Ẇ (η)ω +
sφ
cθ
ω̇d2 +

cφ
cθ
ω̇d3 +

sφ
J22cθ

d̃τ2 +
cφ
J33cθ

d̃τ3 (3.64)

where d̃τ = [d̃τ1, d̃τ2, d̃τ3]>, and Jij is the (i, j)th entry of J . In order to simplify (3.64) and without

loss of generality we have considered the practical case of J diagonal. Now, if we consider ω̇d3 as

ω̇d3 =
cθ
cφ

(α̇ψ1 − ε1 − kψ2ε2 − n>3 Ẇ (η)ω − sφ
cθ
ω̇d2) (3.65)

and substitute (3.65) into (3.34), we obtain

ψ̈ = α̇ψ1 − ε1 − kψ2ε2 +
sφ
J22cθ

d̃τ2 +
cφ
J33cθ

d̃τ3 (3.66)

We observe (3.65) has singular points at φ = π/2 + kπ, k ∈ Z. Further, from the definition of

W (η), θ = π/2 + kπ, k ∈ Z are singular points for the Euler angles. We must therefore assume

(φ, θ) ∈ S = {(φ, θ) : −π/2 < φ < π/2,−π/2 < θ < π/2} when controlling yaw and position.

Considering the Lyapunov function candidate V5 = V4 + Vψ2 and substituting (3.36) into (3.33)

results

V̇5 = −k1‖δ1‖2 − k2‖δ2‖2 − k3‖δ3‖2 − k4‖δ4‖2 − kψ1‖ε1‖2 − kψ2‖ε2‖2

+ d̃>τ (uJ−1S(n3)>R>δ4 +Gε2) + d̃>f (δ2 + (kdf + k1 + k2)δ3 + kR[I − n3n
>
3 ]R>δ4)

where G = [0,
sφ

J22cθ
,

cφ
J33cθ

]>.

Theorem 3.4. Given system (2.3) with constant disturbances df and dτ and bounded smooth

reference trajectories pd, ψd, assuming u > 0 and provided (φ, θ) ∈ S, the equilibrium of the closed-

loop system [δ>1 , δ
>
2 , δ

>
3 , δ

>
4 , ε1, ε2, d̃

>
f , d̃

>
τ ]> = 0 is exponentially stable with dynamic state feedback

control (3.3), (3.7), (3.20), (3.55), (3.56) and (3.65).

Proof. The procedure of the proof is similar to the proof of Theorem 3.3 except matrices A and B
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are

A =



−k1I3×3 I3×3/m 03×3 03×3 03×1 03×1

−I3×3/m −k2I3×3 I3×3 03×3 03×1 03×1

03×3 −I3×3 −k3I3×3 I3×3 03×1 03×1

03×3 03×3 −I3×3 −k4I3×3 03×1 03×1

01×3 01×3 01×3 01×3 −kψ1 1

01×3 01×3 01×3 01×3 −1 −kψ2



B =



03×3 03×3

I3×3 03×3

(kdf + k1 + k2)I3×3 03×3

kR(I − n3n
>
3 )R> uRS(n3)J−1

01×3 01×3

01×3 G>



An important contribution of this work is the decoupled structure of the control law. The distur-

bance observer design is decoupled from the state feedback control and this simplifies the controller

expressions and allows for implementation on a commonly used autopilot such as PX4/Pixhawk.

Also, assuming d̃ is an input the closed-loop tracking error dynamics is linear, and exponentially

stability can be readily proven. This should be compared to the adaptive backstepping control in

[1] which achieves asymptotic stability. In fact, most of the mentioned existing work in Section 1.3

only provides asymptotic stability results, sometimes only for an outer loop subsystem [41] or for

approximate models [9, 59].

3.3.3 SITL/jMAVSim Simulation

To evaluate the performance of the controller the reference trajectory is taken as a figure-8 given

by pd(t) = [A sin(2πt/T ) + 1, B sin(4πt/T ),−0.85] m, with A = 1.5 and B = 0.75. The velocity

of the trajectory is increased by decreasing T from 20 at t = 0 to 12 in 8 seconds. The setpoint

for yaw is zero. In order to investigate the benefit of the disturbance observer, the disturbance

observer based backstepping (DOB-BS) control is compared to the backstepping controller (BS)

and the PX4 built-in position control (PX4MC). Extensive simulation was performed at different

values for controller gains while monitoring the RMS value of the tracking error. This testing led

to optimal values k1 = k2 = k3 = k4 = 7. We observed that lower values of gain generally led

to larger RMS error while larger values destabilized the UAV. After tuning k1 = k2 = k3 = k4, a

similar process was used to find optimal observer gains kdf = 0.5 and kdτ = 0.5. The vehicle is

initialized in hover at p(0) = [0.5, 0.5,−1]> m. Hence, a relatively large initial error exists when

the controller is switched on, i.e., p̃(0) = [0.5, 0.5,−0.15]> m.

Simulation results for the DOB-BS control are shown in Figure 3.11. As can be observed, the

tracking error converges to an acceptable neighborhood of the origin in approximately 10 s and
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remains there. The normalized torques and thrust inputs are in Figure 3.11(b). The inputs have

reasonable magnitude and remain unsaturated throughout the simulation. As expected, the thrust

has an average value close to 0.51 N. The disturbance estimates are shown in Figure 3.11(c) and

3.11(d). We observe d̂f1 has approximately −0.1 N average in steady-state and oscillations at the

frequency of the reference trajectory. The average value of d̂f2 in steady-state is about −4 N which

is consistent with the applied wind disturbance in the −n2 direction. The steady-state mean of d̂f3
is almost 0.3 N which is due to modeling error. We observe the estimate for the torque disturbance

is almost zero. This is consistent with the disturbance the model (2.19) and since the angular

velocity of the quadrotor along the figure-8 trajectory is small.

0 10 20 30 40 50 60

0

0.2

0.4

0 10 20 30 40 50 60

-0.2

0

0.2

0.4

0 10 20 30 40 50 60

-0.1

-0.05

0

0 10 20 30 40 50 60

-0.15

-0.1

-0.05

0

(a) Tracking error.

0 10 20 30 40 50 60

-0.2

0

0.2

0 10 20 30 40 50 60
-0.2

0

0.2

0 10 20 30 40 50 60
-0.2

0

0.2

0 10 20 30 40 50 60
0.4

0.5

0.6

(b) Normalized controller inputs.

0 10 20 30 40 50 60

-0.2

-0.1

0

0 10 20 30 40 50 60

-4

-2

0

0 10 20 30 40 50 60
-0.2

0

0.2

0.4

(c) Force disturbance estimates.
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(d) Torque disturbance estimates.

Figure 3.11: Trajectory tracking error, controller inputs, force and torque disturbance estimates
for the DOB-BS control in the SITL/jMAVSim simulation.

The simulation results for the actual and desired trajectories are shown in 2D for all controllers
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Figure 3.12: Desired and actual trajectories for the control methods simulated using
SITL/jMAVSim.
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Figure 3.13: Norm of trajectory tracking error of the simulated using SITL/jMAVSim.
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in Figure 3.12. Table 3.5 provides the root mean square of the position error (RMSE) in steady-

state. The trajectory of the norm of the tracking error is in Figure 3.13. We observe from Table 3.5

the DOB-BS control achieves the lowest steady-state RMSE norm of tracking error. The 2D plots

clearly reflect this reduced error and the effectiveness of the proposed disturbance observer on

improving the tracking performance. The code which reproduces this simulation is available online

for public use [92].

Table 3.5: RMSE of the steady-state position tracking error in the SITL/jMAVSim simulation.

Controller PX4MC BS DOB-BS

RMSE(‖p̃‖) m 0.9583 0.2907 0.0268

3.3.4 Physical Experiment

In this section we investigate the performance of the proposed controller implemented on the

ANCL quadrotor platform. External disturbances are created with a fan which was placed at a

height of about 0.85 m (relative to the fan’s centre) and 3 m away from the UAV’s initial position.

The fan has a blade diameter of about 0.6 m and it produces an airflow of about 1.6 m/s in the

direction of the n1 axis. We remark that the airflow due to the fan will alter the thrust generation

of the vehicle, and this change in aerodynamics is difficult to model. As in the simulation, the

reference trajectory is a figure-8 given by pd(t) = [A sin(2πt/T ) + 1, B sin(4πt/T ),−0.8] m, with

A = 0.7 and B = 0.3. The velocity of the trajectory is increased as a function of time by decreasing

T from 20 to 12 in 8 seconds. The setpoint for yaw is zero. As in the simulation, the DOB-BS

control is compared with BS and PX4MC controllers. The experiment consists of flying close to

the starting point of the reference trajectory manually. Then the controller is switched to setpoint

regulation mode (using the stock PX4 control) with setpoint pd(0) = [1, 0,−0.8] m. Next, one of

Table 3.6: Observer and controller gains used in experiment.

k1 k2 k3 k4 kψ1 kψ2 kdf

14 8.5 1.5 1.5 3.1 1.3 2.7

the three trajectory tracking controllers is enabled and the fan turned on. The controller gains for

the DOB-BS control are in Table 3.6. In order to tune the controller gains, the lateral position

subsystem was considered initially. We began with small values of k1, k2, k3, k4 and the remaining

2 DoF (i.e., yaw and altitude) controlled by the stock PX4 motion controller. The RMS value to

the tracking error was observed as k1, k2, k3, k4 and torque normalization parameters nτ1 , nτ2 and

nτ3 were systematically varied. A similar procedure was applied to tune the other 2 DoF which are

affected by kψ1, kψ2 and the thrust normalization parameters (2.16).

The resulting tracking errors, p1-p2 plot, control inputs and disturbance estimates are shown

in Figures 3.14, 3.15, 3.16 and 3.17, respectively. As can be observed from Figures 3.14 and 3.15,
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Figure 3.14: Experimental results: tracking error.
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Figure 3.15: Experimental results: p1-p2 plot.

the DOB-BS controller provides better performance in the steady state compared with the BS and

PX4MC controllers. We observe an offset about 20 cm in the n1 direction for the tracking error of

the BS controller. This offset is due to the applied force disturbance from the fan and since the BS

control has no disturbance compensation. The force disturbance estimate is shown in Figure 3.17.

The average steady state value of d̂f1 is about 0.5 N. From Figure 3.16 we observe the torques

are noisy which is mainly due to the noise in angular velocity measurements. The mean value

and the root mean square error (RMSE) of the tracking error for the three methods are shown in

Table 3.7. We observe the DOB-BS controller achieves better performance which is to be expected

as it estimates and compensates for the disturbance force.

Figure 3.18 shows a picture of the experimental setup. A video of the experiment is provided

at 1.

1https://youtu.be/-90w_FPmNWE
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Figure 3.16: Experimental results: normalized control inputs.

Table 3.7: Experimental results: mean and RMSE of position tracking error.

Controller p̃1(mean) p̃2(mean) p̃3(mean) p̃1(RMSE) p̃2(RMSE) p̃3(RMSE) ‖p̃‖(RMSE)

PX4MC (m) -0.0193 0.0037 -0.0337 0.2598 0.2036 0.0467 0.2810
BS (m) 0.1509 -0.0312 -0.0089 0.1796 0.0497 0.0475 0.1501

DOB-BS (m) 0.0433 -0.0101 -0.0010 0.0952 0.0380 0.0346 0.0668
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Figure 3.17: Experimental results: disturbance estimates.

Figure 3.18: Experimental setup.

3.3.5 Summary

In this section we proposed a nonlinear position and yaw tracking control which combines back-

stepping with a disturbance observer to increase its robustness to external force disturbances. The

disturbance observer error dynamics is decoupled from the tracking error dynamics and the cascade

structure of the closed-loop makes the stability analysis, implementation, and tuning straightfor-

ward. Exponential stability is proven for the constant disturbance case. The method is validated

in SITL simulation and flight experiment using the commonly used PX4 autopilot firmware. The

DOB-BS control is compared with a stock PX4 inner outer loop control and a traditional backstep-

ping method. The DOB-BS control demonstrates improved tracking performance and robustness

relative to these controllers.
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3.4 Decoupled Controller-Observer Design with Integral Augmen-

tation and Rotor Drag Effect

In this section we extend the work presented in Section 3.3 by adding integral augmentation

and rotor drag modelling to the controller design. SITL simulation results are provided showing

increased performance when the integral augmentation is added. Also the importance of rotor drag

compensation is shown in simulation where a considerable performance deterioration is observed

when rotor drag is ignored in the controller-observer design.

3.4.1 Position Tracking Control

We begin backstepping with integral augmentation by defining δ1 =
∫ t
t0

(p(ξ)−pd(ξ))dξ and the

first Lyapunov function candidate V1 = 1
2‖δ1‖2. This yields V̇1 = δ>1 δ̇1 = δ>1 (p − pd). Taking p as

the first virtual control and its desired value as α1 = −k1δ1 + pd, gives

V̇1 = δ>1 (δ2 + α1 − pd) = −k1‖δ1‖2 + δ>1 δ2

where δ2 = p − α1. Now, defining the second Lyapunov function V2 = V1 + 1
2‖δ2‖2 gives V̇2 =

−k1‖δ1‖2 + δ>1 δ2 + δ>2 δ̇2, where δ̇2 = v + k1(p− pd)− ṗd. Hence,

V̇2 = −k1‖δ1‖2 + δ>1 δ2 + δ>2 (v + k1(p− pd)− ṗd)

Denoting α2 as the desired value for virtual control v and taking

α2 = −δ1 − k1(p− pd) + ṗd − k2δ2

gives V̇2 = −k1‖δ1‖2− k2‖δ2‖2 + δ>2 δ3/m where δ3 = mv−mα2. Next, taking V3 = V2 + 1
2‖δ3‖2 we

get

V̇3 = −k1‖δ1‖2 − k2‖δ2‖2 + δ>2 δ3/m+ δ>3 δ̇3

Using (2.9) and defining a new input as us = u − d11v
>
a Rn3, which is the sum of the rotor thrust

and drag force component in the direction of rotor thrust vector, we can write δ̇3 as

δ̇3 = mgn3 − usRn3 − d11va + df +mδ̇1 +mk1(v − ṗd)−mp̈d +mk2δ̇2

where we have used

usRn3 = uRn3 − d11v
>
a Rn3Rn3. (3.67)

Now, we consider usRn3 as the next virtual control and take its desired value as

α3 = δ2/m+ k3δ3 +mgn3 − d11va + d̂f +mδ̇1 +mk1(v − ṗd)−mp̈d +mk2δ̇2
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Note that we have replaced df appearing in δ̇3 from α3 by its estimate d̂f from the disturbance

observer (3.5). Defining δ4 = α3 − usRn3 gives

V̇3 = −k1‖δ1‖2 − k2‖δ2‖2 − k3‖δ3‖2 + δ>3 δ4 + d̃>f δ3

Defining V4 = V3 + 1
2‖δ4‖2 so that

V̇4 = −k1‖δ1‖2 − k2‖δ2‖2 − k3‖δ3‖2 + δ>3 δ4 + d̃>f δ3 + δ>4 δ̇4 (3.68)

where δ̇4 = α̇3 − u̇sRn3 − usRS(ω)n3 and α̇3 can be expressed as

α̇3 = δ̇2/m+ k3(mgn3 − usRn3 − d11va + df +mδ̇1 +mk1(v − ṗd)−mp̈d +mk2δ̇2)

− d11

m
(mgn3 − usRn3 − d11va + df ) + kdf d̃f +m(ṗ− ṗd)

+ k1(mgn3 − usRn3 − d11va + df −mp̈d)
−m...

p d + k2(mgn3 − usRn3 − d11va + df +mk1(v − ṗd)−mv̇d) (3.69)

We note the expression for α̇3 in (3.69) depends on df , the unknown force disturbance. Therefore,

α̇3 is estimated by β whose expression is (3.69) with df replaced by its estimate. Hence, we obtain

α̇3 = β + (k1 + k2 + k3 + kdf −
d11

m
)d̃f

where we get the following expression for δ̇4

δ̇4 = β + (k1 + k2 + k3 + kdf −
d11

m
)d̃f − u̇sRn3 − usRS(ω)n3 (3.70)

substituting (3.70) into (3.68) gives

V̇4 = −k1‖δ1‖2 − k2‖δ2‖2 − k3‖δ3‖2 + δ>3 δ4 + d̃>f (δ3 + (k1 + k2 + k3 + kdf −
d11

m
)δ4)

+ δ>4 (β − u̇sRn3 − usRS(ω)n3) (3.71)

Now, we assign expressions for u̇s and usRS(ω)n3 to make V̇4 negative definite. At this stage of the

backstepping, we cancel β, the indefinite term δ>3 δ4, and add a damping term −k4‖δ4‖2. Hence,

we define the desired value for u̇s as

u̇sd = n>3 R
>(β + δ3 + k4δ4) (3.72)

and also we take α4 = R[I − n3n
>
3 ]R>(β + δ3 + k4δ4) as the desired value for the virtual control

usRS(ω)n3. From the definition of us (us = u− d11v
>
a Rn3) and using the assumption of constant
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wind velocity ẇ = 0, the following expression for u̇ can make u̇s equal to its desired value in (3.72):

u̇ = n>3 R
>(β + δ3 + k4δ4) +

d11

m
(mgn3 − usRn3 − d11va + df )>Rn3 + d11v

>
a RS(ω)n3 (3.73)

However, since df is unknown we replace it with its estimate in (3.73) and this leads to an extra

term proportional to disturbance estimation error in (3.73). That is,

u̇s = n>3 R
>(β + δ3 + k4δ4)− d11

m
d̃>f Rn3 (3.74)

Now by defining a new error coordinates as δ5 = α4 − usRS(ω)n3 and using the equality

δ>4 d̃
>
f Rn3Rn3 = d̃>f (Rn3)>Rn3δ4 we get

V̇4 = −k1‖δ1‖2 − k2‖δ2‖2 − k3‖δ3‖2 − k4‖δ4‖2

+ d̃>f (δ3 + (k1 + k2 + k3 + kdf −
d11

m
+
d11

m
(Rn3)>Rn3)δ4) + δ>4 δ5

Now by choosing V5 = V4 + 1
2‖δ5‖2,

V̇5 = −k1‖δ1‖2 − k2‖δ2‖2 − k3‖δ3‖2 − k4‖δ4‖2

+ d̃>f (δ3 + (k1 + k2 + k3 + kdf −
d11

m
+
d11

m
(Rn3)>Rn3)δ4) + δ>4 δ5 + δ>5 δ̇5

where δ̇5 = α̇4 − u̇sRS(ω)n3 − usRS(ω)2n3 − usRS(ω̇)n3 and α̇4 is given by

α̇4 = RS(ω)[I − n3n
>
3 ]R>(β + δ3 + k4δ4) +R[I − n3n

>
3 ]S(ω)>R>(β + δ3 + k4δ4)

+R[I − n3n
>
3 ]R>(β̇ + δ̇3 + k4δ̇4). (3.75)

Similar to Section 3.3 the expression for α̇4 is unknown due to the presence of df , and d̃f which

appears in β̇, δ̇3, and δ̇4. However, the expressions for these quantities can be estimated by replacing

df by its estimate. We denote these “estimated” quantities as β̇′, δ̇′3 and δ̇′4. Since these expressions

are complicated, they are omitted here. Using the expressions for the estimates β̇′, δ̇′3 and δ̇′4 in

(3.75) we can obtain an estimate of α̇4 which is denoted α̇′4. We have

α̇4 = α̇′4 +KR[I − n3n
>
3 ]R>d̃f

whereK is a constant matrix depending on controller and observer gains; and the system parameters

m and d11. At this stage, we try to define a desired value for the rate of angular velocity ω̇d so that

we have

δ>5 (α̇′4 − u̇sdRS(ω)n3 − usRS(ω)2n3 − usRS(ω̇d)n3) = −k5δ
>
5 δ5 − δ>5 δ4 (3.76)
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Note that we used u̇sd since u̇s is unknown. Now, considering the structure for S(ω̇d)n3 and using

the fact that the third component of R>δ5 is zero, we can conclude that by selecting

ω̇d1 =
−n>2 R>
us

(α̇′4 − u̇sdRS(ω)n3 − usRS(ω)2n3 + δ4 + k5δ5) (3.77a)

ω̇d2 =
n>1 R

>

us
(α̇′4 − u̇sdRS(ω)n3 − usRS(ω)2n3 + δ4 + k5δ5) (3.77b)

then (3.76) will be satisfied. In the above equation k5 > 0 is a controller gain. Replacing (3.76) in

V̇5 and using ω̇ = ω̇d + J−1d̃τ and u̇s = u̇sd − d11
m d̃>f Rn3 gives us

V̇5 = −k1‖δ1‖2 − k2‖δ2‖2 − k3‖δ3‖2 − k4‖δ4‖2 − k5‖δ5‖2

+ d̃>f (δ3 + (k1 + k2 + k3 + kdf −
d11

m
+
d11

m
(Rn3)>Rn3)δ4 + (KR[I − n3n

>
3 ]R>

+
d11

m
(Rn3)>RS(ω)n3)δ5) + δ>5 usRS(n3)J−1d̃τ

Again we take ω̇d3 = 0 in order to obtain the expression for τ using the equation

τ = Jω̇d + ω × Jω − d̂τ . (3.78)

We remark that since the yaw dynamics is independent from the position dynamics, the controller

proposed in Section 3.3.2 can be used for the yaw control. The closed-loop exponential stability of

the proposed backstepping controller is summarized with the following theorem.

Theorem 3.5. Consider the closed-loop (2.3) with dynamic state feedback control (3.3), (3.7),

(3.73), (3.77) and (3.78). Assuming constant disturbances df and dτ , bounded smooth reference

trajectory pd, bounded wind velocity w, us ≥ ε, for some ε > 0 the equilibrium of the closed-loop

system [δ>1 , δ
>
2 , δ

>
3 , δ

>
4 , δ

>
5 , d̃

>
f , d̃

>
τ ]> = 0 is exponentially stable.

Proof. By defining δ = [δ>1 , δ
>
2 , δ

>
3 , δ

>
4 , δ

>
5 ]> and d̃ = [d̃>f , d̃

>
τ ]> the tracking error dynamics is

δ̇ = Aδ +B(δ, t)d̃ (3.79)

where

A =


−k1I3×3 I3×3/m 03×3 03×3 03×3

−I3×3/m −k2I3×3 I3×3 03×3 03×3

03×3 −I3×3 −k3I3×3 I3×3 03×3

03×3 03×3 −I3×3 −k4I3×3 I3×3

03×3 03×3 03×3 −I3×3 −k5I3×3
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B(δ, t) =


03×3 03×3

03×3 03×3

I3×3 03×3

(k1 + k2 + k3 + kdf − d11
m + d11

m (Rn3)>Rn3)I3×3 03×3

KR[I − n3n
>
3 ]R> + d11

m (Rn3)>RS(ω)n3 usRS(n3)J−1


We remark that the term B(δ, t)d̃ that interconnects the δ and d̃ subsystems is time-varying due

to the tracking problem considered. We apply the exponential stability result for cascades in [104,

Prop. 2.3]. Clearly, the disturbance estimate error dynamics is LTI and exponentially stable. As

well, assuming “zero input”, i.e., d̃ = 0, the dynamics (3.79) are LTI and exponentially stable for

any k1, k2, k3, k4, k5 > 0. Hence, it only remains to show

‖B(δ, t)‖ ≤ C1 + C2‖δ‖ (3.80)

for some C1, C2 > 0. Since δ4 = α3 − usRn3, we can deduce |us| ≤ ‖α3‖ + ‖δ4‖, and from

α3 = δ2/m + k3δ3 + mgn3 − d11va + d̂f + mδ̇1 + mk1(v − ṗd) − mp̈d + mk2δ̇2, and by replacing

δ̇2 = v+k1(p−pd)−ṗd, va = v−w, d̂f = df−d̃f , v = 1
m(δ3+mα2), α2 = −δ1−k1(p−pd)+ṗd−k2δ2,

δ̇1 = p− pd and p = δ2 − k1δ1 + pd, we get

α3 = δ2/m+ k3δ3 +mgn3 − d11(
1

m
(δ3 +m(−δ1 − k1(δ2 − k1δ1) + ṗd − k2δ2))− w) + df − d̃f

+m(δ2 − k1δ1) +mk1(
1

m
(δ3 +m(−δ1 − k1(δ2 − k1δ1) + ṗd − k2δ2))− ṗd)−mp̈d

+mk2(
1

m
(δ3 +m(−δ1 − k1(δ2 − k1δ1) + ṗd − k2δ2)) + k1(δ2 − k1δ1)− ṗd)

therefore, we can obtain an upper bound ‖α3‖ ≤ C̄1‖δ‖+ C̄2, C̄1, C̄2 > 0. Now we can deduce

|us| ≤ C̃1‖δ‖+ C̃2, C̃1, C̃2 > 0

Next, we obtain a bound for ‖RS(ω)n3‖. From δ5 = α4−usRS(ω)n3, we can deduce ‖RS(ω)n3‖ ≤
1
ε (‖α4‖+ ‖δ5‖), and from α4 = R[I − n3n

>
3 ]R>(β + δ3 + k4δ4) and the relation for β we can find a

linear bound for ‖RS(ω)n3‖ for some C̃3, C̃4 > 0

‖RS(ω)n3‖ ≤ C̃3‖δ‖+ C̃4,

Hence, we conclude all entries of B are linearly bounded in the norm of δ and we obtain (3.80).

Therefore, the conditions for [104, Prop. 2.3] are satisfied and the equilibrium of the closed-loop

system (2.3), (3.3), (3.7), (3.73), (3.77) and (3.78) [δ>1 , δ
>
2 , δ

>
3 , δ

>
4 , δ

>
5 , d̃

>
f , d̃

>
τ ]> = 0 is exponentially

stable.
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3.4.2 SITL Simulation Results

The reference trajectory is taken as a circle given by pd(t) = [3 sin(2πt
T ), 3 cos(2πt

T ),−1.1]> m.

The velocity of the trajectory is increased by decreasing T from 20 at t = 0 to 10 in 10 seconds,

reaching a maximum speed of 1.8850 m/s which ensures disturbances and drag forces are sufficiently

large. We use the yaw control in [88] with a zero yaw setpoint. The controller and observer gains

are selected as k1 = k2 = k3 = k4 = k5 = kdf = kdτ = 2. The vehicle is initialized in hover

at p(0) = [0.0, 0.0,−0.85]> m. Hence, a relatively large initial error exists when the controller is

switched on, i.e., p̃(0) = [0.0,−3.0,−0.15]> m.
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Figure 3.19: Position tracking error for the
DOB-IBS controller
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Figure 3.20: Control inputs for the DOB-IBS
controller
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Figure 3.21: Force disturbance estimates for the
DOB-IBS controller.
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Figure 3.22: Torque disturbance estimates for
the DOB-IBS controller.
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troller
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Figure 3.24: Drag force −RDR>va.

Simulation results for the proposed control (referred to as DOB-IBS) are shown in Figures 3.19–

3.24. We observe the tracking error in Figure 3.19 converges to an acceptable neighborhood of the

origin (i.e., ‖p̃‖ ≈ 5 cm in steady-state) in about 20 s and remains there. The normalized torques

and thrust are in Figure 3.20 and have reasonable magnitudes. The force and torque disturbance

estimates are shown in Figure 3.21 and Figure 3.22. We observe the average steady-state of d̂f1

converges to a value close to 5 N and has oscillations at the frequency of the reference trajectory.

The average value is consistent with the applied wind disturbance in the n1 direction. Similarly,

the steady-state average value of d̂f2 is −5 N and near its expected value. The steady-state average

of d̂f3 is about 5 N which is due to error in thrust scaling required to convert force to normalized

input in the controller. From Figure 3.22 it can be seen that the torque disturbance estimates are

small and quickly converge to zero. This is consistent with equation (2.19) as the angular velocity

ω is close to zero for the desired trajectory. Plots for the Euler angles are shown in Figure 3.23.

Figure 3.24 shows the rotor drag force −RDR>va has a significant amplitude.

To show the effect of compensating the drag force −RDR>va in the controller design, we tested

the DOB-IBS controller without drag force compensation. The 2D plots of the desired trajectory

and DOB-IBS controller with and without drag compensation are shown in Figure 3.25. The

compensation leads to noticeable tracking performance improvement.

In order to investigate the effect of the disturbance observer and integral augmentation on

performance, the DOB-IBS control is compared with a number of related control laws: Backstep-

ping (BS), Disturbance Observer-based Backstepping (DOB-BS), Integral Backstepping (IBS). The

simulation results for the actual and desired trajectories are shown in 2D for all controllers and in

steady-state, 20 ≤ t ≤ 40 s, in Figure 3.27. Table 3.8 provides the root mean square (RMS) of the

position error in steady-state. The trajectory for the norm of the tracking error is in Figure 3.26.

We remark that all controllers exhibit some level of oscillation at the frequency of the reference

input. In theory the error for the DOB-IBS should converge to zero. However, jMAVSim includes
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Figure 3.25: 2D plots of the desired Trajectory, DOB-IBS controller with drag compensation and
DOB-IBS controller without drag compensation

a number of unmodelled effects which explain the lack of convergence: rotor inertia, sensor noise,

and error in thrust scaling. We observe from Table 3.8 that the DOB-IBS control achieves the best

performance. The 2D plots clearly reflect this reduced error. The BS control suffers from a lack of

robustness to the wind forces and has the largest steady-statetate error. Adding the disturbance

observer (DOB-BS) or the integral term (IBS) improves robustness, but not to the level of the

DOB-IBS control. Controller gains could be adjusted to improve steady-state response of the other

controllers. However, gains cannot be found to match the size of the DOB-IBS error and smaller

error leads to reduced stability margin.
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Figure 3.26: Norm of trajectory tracking error

Next, we perform a simulation to investigate the effect of parametric model error and time-

varying disturbance. To introduce parameter error, we m = 1.2kg (25% parameter error) and
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Table 3.8: Root mean square (RMS) of the steady-state position tracking error

Controller BS DOB-BS IBS DOB-IBS DOB-IBS (no drag)

RMS (‖p̃‖) [m] 5.2454 0.2201 0.2830 0.0743 0.2959
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Figure 3.27: Desired and actual trajectories

J = diag(0.02, 0.02, 0.03)kg m2 in the control law. We introduce a time-varying wind velocity

whose n1 and n2 components vary on [−10, 10] m/s. All the other conditions of the simulation are

the same as above. The wind velocity and position tracking errors can be seen in Figures 3.28-

3.29. The disturbance estimates are given in Figures 3.30-3.31. We observe that even with a

significantly time-varying and large wind velocity, the tracking errors are ultimately bounded to

a practically small neighbourhood of the origin. The RMS of the steady-state error is 0.2023 m

which is acceptable given the simulation conditions. From Figure 3.30 we observe that the force

disturbance estimate has a similar shape to the wind velocity as the wind velocity in the n1 and n2.

This implies the disturbance observer is tracking the low frequency components of the disturbance

force. There is a 5 N offset in d̂f3 which corresponds to the 0.4 kg error in vehicle mass. Hence,

the disturbance observer is able to compensate for parametric uncertainty.
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Figure 3.28: Wind velocity.
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Figure 3.29: Position error for the case of
time-varying wind and model uncertainty.
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Figure 3.30: Force disturbance estimates for
the case of time-varying wind and model un-
certainty.
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Figure 3.31: Torque disturbance estimates
for the case of time-varying wind and model
uncertainty.
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3.4.3 Summary

In this section a disturbance observer-based integral backstepping controller was proposed for

trajectory tracking of multirotor UAVs. We included the rotor drag in the translational dynamics.

The drag effect is compensated by decomposing it into two components: the first one is independent

of the vehicle attitude. This component can be readily compensated by an appropriate choice of

virtual control in the backstepping procedure. The second component of the drag force is in the

direction of thrust and can be compensated by an appropriate choice for desired thrust during

backstepping. Exponential stability of the closed loop is proven assuming constant wind velocity

and constant disturbances. SITL simulations demonstrate improved controller performance of the

method, and the importance of rotor drag compensation. The simulations illustrate the approach

can compensate for time-varying disturbances and parametric uncertainty. Self-contained code for

the PX4 SITL simulation is available online at [93].
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Chapter 4

Visual-Inertial-Actuator Odometry

The motion control algorithms presented in the previous chapter are state feedback laws which

require knowledge about the system states. A combination of camera and IMU is considered

to be an ideal choice of sensors as they are normally onboard UAV and possess complementary

characteristics. In some UAV applications, external force estimation is necessary in order to improve

the motion control performance or perform specified tasks where UAV is interacting with the

environment. Force estimation is possible by using the vehicle’s dynamics and the actuator inputs

which are either the rotor thrust and torque or the rotor speeds. In addition to providing force

estimation, including the vehicle dynamics and input can increase state estimation accuracy.

This chapter presents a sliding window optimization-based method for the problem of multirotor

UAV VIAO. Inertial measurements, visual data and actuator information are used in conjunction

with the vehicle’s dynamic model. The effect of rotor drag is included in the vehicle’s modelling.

Also, the assumption found in [27] that the external disturbance force is zero mean white noise is

replaced by a more realistic Gaussian white noise plus a random walk process. Furthermore, the

force disturbance observer proposed in 3.1 which was designed for the constant case is formulated

as a residual and added to the optimization.

The organization of this chapter is as follows: in Section 4.1 the vehicle’s state is introduced and

vision measurements, IMU measurements, noise models and estimator initialization are discussed.

Section 4.2 presents for tightly-coupled optimization framework. A cost function is introduced

which is a sum of norm-squared of so-called residual terms. The inertial residual is derived in

Section 4.3 and propagation formulas are given. Section 4.4 discusses how the vehicle dynamics

including rotor drag is integrated into a residual A disturbance observer is presented to estimate

slowly time-varying force disturbances. The simulation results for evaluating the proposed method

are discussed in Section 4.6. Finally, results are summarized in Section 4.7.
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Figure 4.1: Multirotor indicated with body B, camera C, world W and N navigation frames.

4.1 Preliminaries

We assume three coordinate frames as depicted in Figure 4.1: a body frame B which is assumed

fixed and aligned with the IMU frame, a camera frame C which is fixed with respect to the body

frame and a world frameW as the inertial frame. As discussed later, the world frame is established

in the initialization step of the VIAO and the location of its origin is set as the first camera frame

in the initialization sliding window with its w3 axis aligned with the direction of the gravity. There

is no control over the directions of the w1 and w2 axes as they depend on the direction of the first

camera frame. For these reasons we distinguish between the world frame established by the VIAO

system and the navigation frame used in the previous chapters which is normally coming from the

MCS. Also, we define bk and ck respectively as the body and camera frames at time tk, which is the

time when the kth keyframe is taken. With these definitions the UAV state at time tk is defined

by

xk = [pk
>, vk

>, qwbk
>, bak

>, bωk
>]> (4.1)

where pk ∈ R3 is the position of the origin of B relative to the origin of W expressed in W, vk ∈ R3

is the linear velocity of B with respect to W, expressed in W, qwbk is the rotation of B with respect

to W expressed as a quaternion, and bak ∈ R3, bωk ∈ R3 are accelerometer and gyroscope sensor

biases, respectively. Although the rotation is represented by quaternion, whenever necessary we use

the rotation matrix for vector transformation. Specifically the rotation matrix is used when a vector

needs to be transformed between body and world frames. We assume that the rigid transformation
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from camera frame to body frame as (pbc, R
b
c) and assume it is known through calibration. This can

be calculated by several available toolbox [105].

For the feature points we use inverse depth parametrization [106] which is a direct parametriza-

tion of the inverse depth of point features relative to the camera locations where they were first

observed. This parametrization is known to generate measurement models with high degree of

linearity and also suitable for far features which show low parallax during camera motion. The

inverse depth parametrization for the sth feature is denoted by a 6-dimensional vector

ls = [p>cj , θs, φs, rs]
>

where pcj is the location of the camera frame at jth frame (where the feature received its first ob-

servation), θs and φs are respectively azimuth and elevation angles for the sth feature in the camera

frame and rs is the inverted distance of the sth feature to the camera frame. The relation between

the vector ls and the Euclidean parametrization of the feature point, represented by [Xs, Ys, Zs]
>,

is Xs

Ys

Zs

 = pcj +
1

rs
m(θs, φs) (4.2)

with

m(θs, φs) =

cosφs sin θs

− sinφs

cosφs cos θs

 (4.3)

4.1.1 Vision Measurements Processing

For every new image, which is denoted by c̄, new features are detected and existing features are

tracked by a feature tracking algorithm (KLT sparse optical flow in [26]). Normally, the algorithm

enforces a minimum number of features for each image and also a minimum pixel distance between

two adjacent features. The keyframe selection is performed at this stage. Keyframes are special

image frames that are selected when there exists a large difference between the current frame

and the previously last keyframe. This keyframe selection leads to efficient use of computational

resources as we can discard the frames that provide less information. The average parallax from

the previous keyframe (if greater than a certain threshold) and number of tracked features (if less

than a certain threshold) are the two criteria for selecting the keyframes. These criteria guarantee

that that there exist enough differences between the keyframes and therefore the computational

resources are used efficiently by discarding the frames that provide less important information.
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Figure 4.2: Inverse depth parametrization of a feature which received its first observation in jth
camera frame.

4.1.2 IMU Measurements

The IMU normally consists of a three-axis gyro and a three-axis accelerometer which respectively

measure the angular velocity and the acceleration in the body frame with respect to an inertial

frame. The measurements of the gyro and accelerometer are respectively, ω̄b = ωb + bω + ηω and

āb = ab −Rbwg + ba + ηa, where ωb is the angular velocity of B with respect to W, expressed in B.

Also, ab is the acceleration of the sensor expressed in B and g = [0, 0, 9.81]> m/s2 is the gravity

vector inW. As previously defined ba and bω are unknown slowly time-varying sensor biases whose

derivatives are zero mean Gaussian noise, ḃa = ηba and ḃω = ηbω , with ηba ∼ N (0, σ2
ba
I3) and

ηbω ∼ N (0, σ2
bω
I3), where N (µ̄, σ2I3) denotes a Gaussian distribution with mean as µ and σI3 as

covariance. Also, ηω and ηa are measurement noise, ηω ∼ N (0, σ2
ωI3), ηa ∼ N (0, σ2

aI3). With these

definitions the accelerometer measures the specific force (ab − Rbwg) in the ideal case (ba = 0 and

ηa = 0). The kinematic model of the body frame is as follows

ṗ = v (4.4a)

v̇ = a = Rwb a
b = Rwb (āb +Rbwg − ba − ηa) = Rwb (āb − ba − ηa) + g (4.4b)

q̇wb =
1

2
qwb ⊗

[
0

ω̄b − bω − ηω

]
(4.4c)
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Since the IMU frequency is much higher than the camera output, in order to reduce the computa-

tional cost, the IMU measurements are normally integrated between two consecutive image frames

and a single constraint is formed. The formulation for deriving such a constraint is explained in

detail in Section 4.3.

4.1.3 Estimator Initialization

Since the tightly coupled visual-inertial optimization is a highly nonlinear problem, a relatively

accurate initial value for the state estimate is required for the optimization to converge to the global

minimum. This is normally addressed by a loosely-coupled alignment of IMU preintegration with

the vision-only up-to-scale pose and feature points estimation. In [26] an up-to-scale translation

and relative rotation between the two frames in the sliding window (the frames that have the

largest parallax) is derived using the five-point algorithm [107] and all the features seen in these

two frames are triangulated. Then a perspective-n-point (PnP) method [108] is applied to find

the poses of all other frames in the window. With the assumption of known camera to the body

frame transformation, all poses from the camera frame are translated to the body frame. Using the

constraints derived from the integration of the IMU measurements between the frames, a loosely-

coupled linear least-square problem is constructed to solve for linear velocities, gravity and the scale.

The world frame is selected as the first camera frame with the z axis aligned with the direction of

the gravity. After setting the world frame, all variables are translated to the world frame and a

sufficiently accurate initial estimate is available for the tightly-coupled VIO.

4.2 Tightly Coupled VIA Odometry

We assume an optimization window of n recent keyframes plus the current frame (which might

not necessarily be a keyframe). The optimization variables consist of

χ = [x0
>, dbf0

>
, x1
>, dbf1

>
, ..., xn−1

>, dbfn−1

>
, xn
>, l1

>, ..., lm
>]> (4.5)

where dbfk is the external force applied to the multirotor in the interval [tk, tk+1) for k = 0, ..., n−
1 expressed in the body frame, m is the number of features seen by all frames existing in the

optimization window and ls is the inverse depth of the sth feature. We assume an unknown slowly

time-varying external force disturbance (in W) whose derivative is zero mean Gaussian noise,

ḋf = ηdf , where ηdf ∼ N (0, σ2
df

). Considering B as the set of keyframes in the sliding window

plus the current frame, L as the set of features that have been seen at least in two frames within

the sliding window, Īkk+1 as the set of IMU measurements between two consecutive keyframes (or

the last keyframe and the current frame), Ūkk+1 as the set of actuator measurements between two

consecutive keyframes (or the last keyframe and the current frame), Z̄cks as the measurement of the

sth feature in the kth frame with ck as the kth camera frame. The posterior probability of χ with

the available visual and inertial measurements in the current sliding window (denoted by Z) and
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the prior p(χ0) is

p(χ|Z) ∝ p(χ0)p(Z|χ) = p(χ0)
∏
k∈B

p(Īkk+1|χ)
∏
k∈B

p(Ūkk+1|χ)
∏

k∈B,s∈L
p(Z̄cks |χ)

The maximum-a-priori (MAP) estimate corresponds to the minimum of the negative log-posterior.

Under the assumption of zero-mean Gaussian noise for the measurement models which are pre-

sented later by deriving the relation between the states of the two consecutive keyframes and the

measurements, the negative log-posterior can be written as the sum of the squared residual errors

derived from the mismatch between the measurements and their predicted values

min
χ
{
∑
k∈B

‖rI(Īkk+1, xk, xk+1)‖2P I
k

+
∑
k∈B

‖rD(Ūkk+1, xk, d
b
fk
, xk+1, d

b
fk+1

)‖2PD
k

+
∑

s∈L, k∈B

‖rV (Z̄cks , χ)‖2PV
sk

+‖rP (χ)‖2}

(4.6)

In order to appropriately represent the uncertainty, the residual errors are weighted by the covari-

ance matrices using the Mahalanobis distance ‖·‖ which measures the difference between a point

and a distribution. In the above equation rI and rD are respectively the inertial and dynamic

residuals. The P Ik and PDk are the covariance matrices representing the uncertainty in rI and rD

respectively between the times tk and tk+1. The rV is the vision residual calculated from the dif-

ference between the expected measurement and its actual measurement and P Vsk is the covariance

matrix representing the uncertainty in the vision residual. Furthermore, rP is the prior information

from marginalization in order to keep the number of frames in the sliding window less than n. The

block diagram of the visual-inertial-actuator odometry system is shown in Figure 4.3 illustrating

the structure of the system and the data flow. In the next sections we derive the explicit relations

for the residuals in equation (4.6).
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Figure 4.3: Block diagram of the Visual-Inertial-Actuator Odometry.
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4.3 The Inertial Factor

We follow the procedure presented in [26] to derive the inertial residual. To derive the constraints

between two consecutive keyframes, equations (4.4) are integrated over the interval [tk, tk+1]

pk+1 = pk +

∫ tk+1

tk

vkdτ +

∫ ∫ tk+1

tk

Rwbτa
b
τdτ

2 (4.7a)

vk+1 = vk +

∫ tk+1

tk

Rwbτa
b
τdτ (4.7b)

qwbk+1
= qwbk ⊗

∫ tk+1

tk

1

2
Ω(ωbτ )qbkbτ dτ (4.7c)

where the operator Ω(·) was defined in (2.15) and the double integration in (4.7a) is defined as∫ ∫ tk+1

tk

Rwbτa
b
τdτ

2 =

∫ tk+1

tk

(

∫ µ

tk

Rwbτa
b
τdτ)dµ

Considering ∆tk = tk+1 − tk and substituting for abτ and ωbτ we obtain

pk+1 = pk + vk∆tk +
1

2
g∆t2k +

∫ ∫ tk+1

tk

Rwbτ (ābτ − bak − ηa)dτ2 (4.8a)

vk+1 = vk + g∆tk +

∫ tk+1

tk

Rwbτ (ābτ − bak − ηa)dτ (4.8b)

qwbk+1
= qwbk ⊗

∫ tk+1

tk

1

2
Ω(ω̄bτ − bωk − ηω)qbkbτ dτ (4.8c)

We remark that the integrals in (4.8) have to be recalculated whenever the states at time tk change
during every iteration of the optimization. Performing this recomputation would lead to excessive

computation. To reduce the dependence of the integral terms on the optimization variables at time

tk, we change the reference frame from w to bk. This leads to the following expressions

Rbkw (pk+1 − pk − vk∆tk −
1

2
g∆t2k) = αkk+1 (4.9a)

Rbkw (vk+1 − vk − g∆tk) = βkk+1 (4.9b)

qbkw ⊗ qwbk+1
= γkk+1 (4.9c)

with

αkk+1 =

∫ ∫ tk+1

tk

Rbkbτ (ābτ − bak − ηa)dτ2 (4.10a)

βkk+1 =

∫ tk+1

tk

Rbkbτ (ābτ − bak − ηa)dτ (4.10b)

γkk+1 =

∫ tk+1

tk

1

2
Ω(ω̄bτ − bωk − ηω)γkτ dτ (4.10c)
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with αkk+1 ∈ R3, βkk+1 ∈ R3 and γkk+1 ∈ Qu. We also define γkτ = qbkbτ . It can be seen that the

dependence of integrals on optimization variables in (4.10) has diminished from Rwbk , bak and bωk
to bak and bωk in (4.10). Note that Rwbτ = RwbkR

bk
bτ

and Rbkbτ depends on the IMU measurements

between tk and τ . We observe the right hand side of (4.8) still depends on the sensor biases at time

tk. This problem is tackled by assuming bak and bωk are known and remain constant between two

keyframes and then evaluate the integrals. But when the biases vary slightly during optimization,

instead of reintegration, the integrals are updated by their first order approximations with respect

to the changes in the biases. This procedure is given in Section 4.3.2. When the change in bias is

above a threshold, the integrals are recalculated.

Equation (4.9) can be considered as measurement model. The equation (4.10) has a complex

dependence on measurement noise and it is known that, for a MAP estimator a clear definition

of the measurement densities, which in this case are represented by covariance matrix, is required.

Also αkk+1, βkk+1 and γkk+1 cannot be calculated as the ηa and ηω are white noises. Therefore, we

compute their estimates, denoted (̄·), by assuming ηa = ηω = 0

ᾱkk+1 =

∫ ∫ tk+1

tk

Rbkbτ (γ̄kτ )(ābτ − bak)dτ2 (4.11a)

β̄kk+1 =

∫ tk+1

tk

Rbkbτ (γ̄kτ )(ābτ − bak)dτ (4.11b)

γ̄kk+1 =

∫ tk+1

tk

1

2
Ω(ω̄bτ − bωk)γ̄kτ dτ (4.11c)

Therefore, we can write our measurement model as

ᾱkk+1

β̄kk+1

γ̄kk+1

0

0


=



Rbkw (pk+1 − pk − vk∆tk − 1
2g∆t2k)

Rbkw (vk+1 − vk − g∆tk)

qbkw ⊗ qwbk+1

bak+1
− bak

bωk+1
− bωk


(4.12)

which gives us the following residual

rI(Ī
k
k+1, xk, xk+1) =



Rbkw (pk+1 − pk − vk∆tk − 1
2g∆t2k)− ᾱkk+1

Rbkw (vk+1 − vk − g∆tk)− β̄kk+1

2[qbkw ⊗ qwbk+1
⊗ (γ̄kk+1)−1]v

bak+1
− bak

bωk+1
− bωk


(4.13)

in above equation the operator [·]v extracts the vector part of the quaternion q = [q0, q
>
v ]>.

The residual (4.13) is called the inertial factor and will be used later in a siding-window opti-
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mization for VIAO. As mentioned before, the covariance matrix is required for the weight in the

optimization (4.6). In the next section we present the procedure for calculation of αkk+1, β
k
k+1, γ

k
k+1

and also the covariance propagation of the inertial factor.

4.3.1 Preintegration and Covariance Propagation

The integrals in (4.11) are in continuous time. For implementation the integrals need to be

discretized. Different methods can be used for discretization. Here we take the trapezoidal rule for

integration. We define i as the discrete time between two consecutive keyframes at tk and tk+1 and

δt as the time difference between i and i+ 1 IMU samples. We also take αkk+1[0] = 0, βkk+1[0] = 0

and γkk+1[0] = [1, 01×3]> as the initial values for the preintegrations. With these assumptions the

discretized relations with trapezoidal rule for integrals (4.10) and accelerometer and gyro biases

will be

αkk+1[i+ 1] = αkk+1[i] + βkk+1[i]δt+

1

2

R(γkk+1[i])(āb[i] + ηa[i]− bak [i]) +R(γkk+1[i+ 1])(āb[i+ 1] + ηa[i+ 1]− bak [i+ 1])

2
δt2

(4.14a)

βkk+1[i+ 1] = βkk+1[i]+

R(γkk+1[i])(āb[i] + ηa[i]− bak [i]) +R(γkk+1[i+ 1])(āb[i+ 1] + ηa[i+ 1]− bak [i+ 1])

2
δt (4.14b)

γkk+1[i+ 1] = γkk+1[i]⊗
[

1
1
2 ( ω̄

b[i]+ηω[i]+ω̄b[i+1]+ηω[i+1]
2 − bωk

[i])δt

]
(4.14c)

bak [i+ 1] = bak [i] + ηba [i]δt (4.14d)

bωk
[i+ 1] = bωk

[i] + ηbω [i]δt (4.14e)

Given the above equations, the linear approximation of the error term due to the measurement

noise is

δαkk+1[i+ 1]

δβkk+1[i+ 1]

δθkk+1[i+ 1]

δbak [i+ 1]

δbωk
[i+ 1]


=



I δt F13 F14 F15

0 I F23 −R(γk
k+1[i])+R(γk

k+1[i+1])

2 δt F25

0 0 I − S( ω̄
b[i]+ω̄b[i+1]

2 − bωk
[i]) 0 −δt

0 0 0 I 0

0 0 0 0 I


︸ ︷︷ ︸

F [i]



δαkk+1[i]

δβkk+1[i]

δθkk+1[i]

δbak [i]

δbωk
[i]



+



1
4R(γkk+1[i])δt2 V12

1
4R(γkk+1[i+ 1])δt2 V14 0 0

1
2R(γkk+1[i])δt V22

1
2R(γkk+1[i+ 1])δt V24 0 0

0 1
2δt 0 1

2δt 0 0

0 0 0 0 δt 0

0 0 0 0 0 δt


︸ ︷︷ ︸

V [i]



ηa[i]

ηω[i]

ηa[i+ 1]

ηω[i+ 1]

ηba [i]

ηbω [i]


(4.15)
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where δθkk+1[i] ∈ R3 is the error term considered as a perturbation about the mean of γ̂kk+1[i]

defined by

γkk+1[i] = γ̂kk+1[i]⊗
[

1
1
2δθ

k
k+1[i]

]
and

F13 =
−R(γkk+1[i])S(āb[i]− bak [i])δt2

4
+

−R(γkk+1[i+ 1])S(āb[i+ 1]− bak [i])(I − S( ω̄
b[i]+ω̄b[i+1]

2 − bωk
[i])δt)δt2

4
(4.16a)

F23 =
−R(γkk+1[i])S(āb[i]− bak [i])δt

2
+

−R(γkk+1[i+ 1])S(āb[i+ 1]− bak [i])(I − S( ω̄
b[i]+ω̄b[i+1]

2 − bωk
[i])δt)δt

2
(4.16b)

F14 −
1

4
(R(γkk+1[i]) +R(γkk+1[i+ 1]))δt2 (4.16c)

F15 =
1

4
(−R(γkk+1[i+ 1])S(āb[i+ 1]− bak [i])δt2)(−δt) (4.16d)

F25 =
1

2
(−R(γkk+1[i+ 1])S(āb[i+ 1]− bak [i])δt)(−δt) (4.16e)

V12 =
1

4
(−R(γkk+1[i+ 1])S(āb[i+ 1]− bak [i])δt2)(

1

2
δt) (4.16f)

V14 =
1

4
(−R(γkk+1[i+ 1])S(āb[i+ 1]− bak [i])δt2)(

1

2
δt) (4.16g)

V22 =
1

2
(−R(γkk+1[i+ 1])S(āb[i+ 1]− bak [i])δt)(

1

2
δt) (4.16h)

V24 =
1

2
(−R(γkk+1[i+ 1])S(āb[i+ 1]− bak [i])δt)(

1

2
δt) (4.16i)

Now, using the linear approximation (4.15) the Jacobian matrix can be propagated recursively by

the initial condition JIk [0] = I and

JIk [i+ 1] = F [i]JIk [i] (4.17)

Also the covariance of the measurement model noise can also be propagated using the formula

P Ik [i+ 1] = F [i]P Ik [i]F [i]> + V [i]QdV [i]> (4.18)

with P Ik [0] = 0 and Qd ≈ δtQt as the discrete-time covariance matrix where Qt is the continuous

time covariance matrix available from the sensor specifications

Qt =



σ2
aI3 0 0 0 0 0

0 σ2
ωI3 0 0 0 0

0 0 σ2
aI3 0 0 0

0 0 0 σ2
ωI3 0 0

0 0 0 0 σ2
ba
I3 0

0 0 0 0 0 σ2
bω
I3


.
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4.3.2 Accelerometer and Gyro Bias Correction

Normally the bias estimate at time tk changes during the optimization. This requires updating

the integrated terms as the current bias estimate is different. One way to perform this is to

reintegrate the equation (4.11) which is computationally demanding. One way to avoid this is to

replace the integrals by their first order approximations using the Jacobians with respect to the

biases when the changes are less than certain thresholds

ᾱkk+1 = ᾱkk+1 + [JIk ]ᾱbaδbak + [JIk ]ᾱbωδbωk (4.19a)

β̄kk+1 = β̄kk+1 + [JIk ]β̄babak + [JIk ]β̄bωδbωk (4.19b)

γ̄kk+1 = γ̄kk+1 ⊗
[

1
1
2 [JIk ]γ̄bωδbωk

]
(4.19c)

Otherwise, we can repropagate the integration (4.11) with the new bias estimates derived from

the optimization.

4.4 The Dynamic Factor

The multirotor dynamics subject to external force disturbance and rotor drag is

ṗ = v (4.20a)

mv̇ = −mg +Rwb T
b −Rwb DRwb >va + df (4.20b)

q̇wb =
1

2
qwb ⊗

[
0

ωb

]
(4.20c)

where T b is the thrust vector generated by the propellers expressed in body frame, df is the

external force disturbance expressed in the world frame, m is mass, va = v − w is the air velocity

with w ∈ R3 as constant wind speed, D is a matrix including the rotor drag coefficients (2.7). As

the wind velocity is normally unknown, in the rest of the paper, we assume w = 0, which means

va = v. Considering ū as the collective thrust measured from the ESCs, we propose a measurement

model for T b as

T̄ b =

0

0

ū

+ ηT (4.21)

where ηT is a GWN as the measurement noise.

In the following we present the residual term rD by employing the dynamical model and the

thrust measurements between two consecutive keyframes at times tk and tk+1.
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4.4.1 Position Residual

If we consider the time interval between two consecutive image frames (or key-frames) as ∆tk =

tk+1 − tk, then we have

pk+1 = pk + vk∆tk −
1

2
g∆t2k +

1

m

∫ ∫ tk+1

tk

Rwbτ (T bτ −DRwbτ
>vτ + dbfτ )dτ2 (4.22a)

vk+1 = vk − g∆tk +
1

m

∫ tk+1

tk

Rwbτ (T bτ −DRwbτ
>vτ + dbfτ )dτ (4.22b)

qwk+1 = qwk ⊗
∫ tk+1

tk

1

2
Ω(ωbτ )qkτ dτ (4.22c)

where Rwbτ = RwbkR
bk
bτ

. Changing the reference frame from w to bk (multiplying by Rbkw ) we get

Rbkw (pk+1 − pk − vk∆tk +
1

2
g∆t2k) =

1

m

∫ ∫ tk+1

tk

Rbkbτ (T bτ −DRbkbτ
>
Rwbk

>vτ + dbfτ )dτ2 (4.23a)

Rbkw (vk+1 − vk + g∆tk) =
1

m

∫ tk+1

tk

Rbkbτ (T bτ −DRbkbτ
>
Rwbk

>vτ + dbfτ )dτ (4.23b)

To bring vτ outside of the integral and simplify the integration we consider Rbkbτ ≈ I, RbkbτDR
bk
bτ

> ≈ D
which gives RbkbτDR

bk
bτ

>
Rwbk

>vτ ≈ DRwbk
>vτ , therefore

Rbkw (pk+1 − pk − vk∆tk +
1

2
g∆t2k) =

1

m

∫ ∫ tk+1

tk

(RbkbτT
b
τ −DRwbk

>vτ +Rbkbτd
b
fτ )dτ2 (4.24a)

Rbkw (vk+1 − vk + g∆tk) =
1

m

∫ tk+1

tk

(RbkbτT
b
τ −DRwbk

>vτ +Rbkbτd
b
fτ )dτ (4.24b)

considering vτ to be constant in the interval [tk, tk+1], we can write the above equation as

Rbkw (pk+1 − pk − vk∆tk +
1

2
g∆t2k) +

1

2m
DRwbk

>vk∆t
2
k = ζkk+1 (4.25a)

Rbkw (vk+1 − vk + g∆tk) +
1

m
DRwbk

>vk∆tk = λkk+1 (4.25b)

where

ζkk+1 =
1

m

∫ ∫ tk+1

tk

Rbkbτ (T bτ + dbfτ )dτ2 (4.26a)

λkk+1 =
1

m

∫ tk+1

tk

Rbkbτ (T bτ + dbfτ )dτ (4.26b)

Due to the presence of measurement noise the actual value of T b is not exactly known, therefore,

the measured thrust can be treated as an estimate and used to calculate ζ̄kk+1 and λ̄kk+1 which are
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the estimates for ζkk+1 and λkk+1

ζ̄kk+1 =
1

m

∫ ∫ tk+1

tk

Rbkbτ (T̄ bτ + dbfτ )dτ2 (4.27a)

λ̄kk+1 =
1

m

∫ tk+1

tk

Rbkbτ (T̄ bτ + dbfτ )dτ (4.27b)

4.4.2 Disturbance Observer

Considering the dynamics of the multirotor (4.20), and with the assumption of random walk

process for df (i.e., ḋf = ηdf ≈ 0) (which is an accurate assumption for slowly time-varying distur-

bances) the following disturbance observer [89] has a globally exponential stable dynamics

d̂f = zdf + kdfmv (4.28a)

żdf = −kdf d̂f − kdf (−mg +Rwb T
b −Rwb DRwb >v). (4.28b)

where zdf ∈ R3 is the observer state, d̂f ∈ R3 is disturbance estimate expressed in the world frame,

and kdf > 0 is an observer gain. Defining d̃f = df − d̂f , observer (3.3) has the error dynamics

˙̃
df = −(żdf + kdfmv̇)

= kdf d̂f + kdf (−mg +Rwb T
b −Rwb DRwb >v)− kdf (−mg +Rwb T

b −Rwb DRwb >v + df )

= −kdf d̃f (4.29)

which is globally exponentially stable. Now, we write the observer dynamics as a residual and

include it in the optimization. From equation (4.28b), the force disturbance estimate at time tk+1

can be written as

d̂fk+1
= zk+1

df
+ kdfmvk+1 (4.30)

where

zk+1
df

= zkdf +

∫ tk+1

tk

(−kdf d̂fτ − kdf (−mg +RwbτT
b
τ −RwbτDRwbτ

>vτ ))dτ.

Assuming constant d̂fτ within the time interval [tk, tk+1] we can write

zk+1
df

= zkdf − kdf d̂fk∆tk + kdfmg∆tk − kdf
∫ tk+1

tk

(RwbτT
b
τ −RwbτDRwbτ

>vτ )dτ

and considering Rwbτ = RwbkR
bk
bτ

yields
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zk+1
df

= zkdf − kdf d̂fk∆tk + kdfmg∆tk − kdfRwbk
∫ tk+1

tk

(RbkbτT
b
τ −RbkbτDR

bk
bτ

>
Rwbk

>vτ )dτ (4.31)

Now considering Rbkbτ ≈ I, RbkbτDR
bk
bτ

> ≈ D we can write

zk+1
df

= zkdf − kdf d̂fk∆tk + kdfmg∆tk − kdfRwbk
∫ tk+1

tk

(RbkbτT
b
τ −DRwbk

>vτ )dτ (4.32)

and by the assumption of constant velocity within the time interval [tk, tk+1]

zk+1
df

= zkdf − kdf d̂fk∆tk + kdfmg∆tk + kdfR
w
bk
DRwbk

>vk∆tk − kdfRwbk
∫ tk+1

tk

RbkbτT
b
τ dτ (4.33)

which gives us

ρkk+1 = − 1

kdf
Rbkw (zk+1

df
− zkdf + kdf d̂fk∆tk − kdfmg∆tk − kdfRwbkDR

w
bk
>vk∆tk) (4.34)

where

ρkk+1 =

∫ tk+1

tk

RbkbτT
b
τ dτ (4.35)

Also, by using the relations

zk+1
df

= d̂fk+1
− kdfmvk+1 (4.36)

and

zkdf = d̂fk − kdfmvk (4.37)

we can write

ρkk+1 = − 1

kdf
Rbkw (d̂fk+1

− kdfmvk+1 − d̂fk + kdfmvk + kdf d̂
k
f∆tk − kdfmg∆tk − kdfRwbkDRwbk

>vk∆tk)

=
1

kdf
Rbkw (−d̂fk+1

+ kdfmvk+1 + d̂fk − kdfmvk − kdf d̂fk∆tk + kdfmg∆tk + kdfR
w
bk
DRwbk

>vk∆tk)

=
1

kdf
Rbkw (d̂fk − d̂fk+1

) +Rbkw (mvk+1 −mvk − d̂fk∆tk +mg∆tk +RwbkDR
w
bk

>vk∆tk)

=
1

kdf
(d̂bfk −R

bk
bk+1

d̂bfk+1
) +Rbkw (mvk+1 −mvk +mg∆tk)− d̂bfk∆tk +DRwbk

>vk∆tk (4.38)

The difference between this constraint and the one in equation (9) in VIMO [27] is that the

assumption of slowly time-varying force disturbance is included in the residual. Since the actual

value of thrust is unknown, we consider its measurements and derive an estimate for ρkk+1 by

ρ̄kk+1 =

∫ tk+1

tk

Rbkbτ T̄
b
τ dτ (4.39)
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4.4.3 Dynamic Residual

The other assumption that can be added to the residual is the assumption of slowly time-

varying force disturbance in the world frame which is a realistic assumption for modelling the force

disturbances as a result of wind-gust or ground effect. We can express this assumption by the

following equation

d̂fk − d̂fk+1
= Rwbk d̂

b
fk
−Rwbk+1

d̂bfk+1
≈ 0 (4.40)

The following dynamic residual is proposed which consists of (4.25a), (4.38) and (4.40)

rD(Ūkk+1, xk, d̂
b
fk
, xk+1, d̂

b
fk+1

) =
Rbkw (pk+1 − pk − vk∆tk + 1

2g∆t2k) + 1
2mDR

w
bk
>vk∆t

2
k − ζ̄kk+1

1
kdf

(d̂bfk −R
bk
bk+1

d̂bfk+1
) +Rbkw (mvk+1 −mvk +mg∆tk)− d̂bfk∆tk − ρ̄kk+1

Rwbk d̂
b
fk
−Rwbk+1

d̂bfk+1

 (4.41)

As defined before, Ūkk+1 is the set of all control inputs within the time interval [tk, tk+1]. We remark

that for the tightly coupled optimization (4.6) we consider df = d̂f .

4.4.4 Preintegration and Covariance Propagation

The integrals in (4.10), (4.26) and (4.39) are in continuous time. For implementation the

integrals need to be discretized. Similar to Section 4.3.1 here we take the trapezoidal rule for

integration. We define i as the discrete time between two consecutive keyframes at tk and tk+1

and δt as the time difference between i and i + 1 samples. We also take ζkk+1[0] = 0, λkk+1[0] = 0,

ρkk+1[0] = 0 and γkk+1[0] = [1, 01×3]> as the initial values for the preintegrations. With these

assumptions the discretized relations with trapezoidal rule for integrals (4.26), (4.10c) (4.39) and

force disturbance and gyro biases will be

ζkk+1[i+ 1] = ζkk+1[i] + ρkk+1[i]δt+

1

2

R(γkk+1[i])(T̄ b[i] + ηT [i]− d̂bfk [i]) +R(γkk+1[i+ 1])(T̄ b[i+ 1] + ηT [i+ 1]− d̂bfk [i+ 1])

2
δt2

(4.42a)

λkk+1[i+ 1] = λkk+1[i]+

R(γkk+1[i])(T̄ b[i] + ηT [i]− d̂bfk [i]) +R(γkk+1[i+ 1])(T̄ b[i+ 1] + ηT [i+ 1]− d̂bfk [i+ 1])

2
δt (4.42b)

ρkk+1[i+ 1] = ρkk+1[i] +
R(γkk+1[i])(T̄ b[i] + ηT [i]) +R(γkk+1[i+ 1])(T̄ b[i+ 1] + ηT [i+ 1])

2
δt (4.42c)

γkk+1[i+ 1] = γkk+1[i]⊗
[

1
1
2 ( ω̄

b[i]+ηω [i]+ω̄b[i+1]+ηω[i+1]
2 − bωk

[i])δt

]
(4.42d)

d̂bfk [i+ 1] = d̂bfk [i] + ηdf [i]δt (4.42e)

bωk
[i+ 1] = bωk

[i] + ηbω [i]δt (4.42f)
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The linear approximation of the error term in the above equation in the presence of measurement

noise is

δζkk+1[i+ 1]

δλkk+1[i+ 1]

δρkk+1[i+ 1]

δθkk+1[i+ 1]

δd̂bfk [i+ 1]

δbωk
[i+ 1]


=



I δt 0 F̄14 F̄15 F̄16

0 I 0 F̄24 −R(γk
k+1[i])+R(γk

k+1[i+1])

2 δt F̄26

0 0 I F̄34 −R(γk
k+1[i])+R(γk

k+1[i+1])

2 δt F̄36

0 0 0 I − S( ω̄
b[i]+ω̄b[i+1]

2 − bωk
[i]) 0 −δt

0 0 0 0 I 0

0 0 0 0 0 I


︸ ︷︷ ︸

F̄ [i]



δζkk+1[i]

δλkk+1[i]

δρkk+1[i]

δθkk+1[i]

δd̂bfk [i]

δbωk
[i]



+



1
4R(γkk+1[i])δt2 V̄12

1
4R(γkk+1[i+ 1])δt2 V̄14 0 0

1
2R(γkk+1[i])δt V̄22

1
2R(γkk+1[i+ 1])δt V̄24 0 0

1
2R(γkk+1[i])δt V̄32

1
2R(γkk+1[i+ 1])δt V̄34 0 0

0 1
2δt 0 1

2δt 0 0

0 0 0 0 δt 0

0 0 0 0 0 δt


︸ ︷︷ ︸

V̄ [i]



ηT [i]

ηω[i]

ηT [i+ 1]

ηω[i+ 1]

ηdf [i]

ηbω [i]


(4.43)

where

F̄14 =
−R(γkk+1[i])S(T̄ b[i]− d̂bfk [i])δt2

4
+

−R(γkk+1[i+ 1])S(T̄ b[i+ 1]− d̂bfk [i])(I − S( ω̄
b[i]+ω̄b[i+1]

2 − bωk
[i])δt)δt2

4
(4.44a)

F̄24 =
−R(γkk+1[i])S(T̄ b[i]− d̂bfk [i])δt

2
+

−R(γkk+1[i+ 1])S(T̄ b[i+ 1]− d̂bfk [i])(I − S( ω̄
b[i]+ω̄b[i+1]

2 − bωk
[i])δt)δt

2
(4.44b)

F̄15 −
1

4
(R(γkk+1[i+ 1]) +R(γkk+1[i]))δt2 (4.44c)

F̄16 =
1

4
(−R(γkk+1[i+ 1])S(T̄ b[i+ 1]− d̂bfk [i])δt2)(−δt) (4.44d)

F̄26 =
1

2
(−R(γkk+1[i+ 1])S(T̄ b[i+ 1]− d̂bfk [i])δt)(−δt) (4.44e)

F̄34 =
−R(γkk+1[i])S(T̄ [i])δt

2
+
−R(γkk+1[i+ 1])S(T̄ b[i+ 1])(I − S( ω̄

b[i]+ω̄b[i+1]
2 − bωk

[i])δt)δt

2
(4.44f)

F̄36 =
1

2
(−R(γkk+1[i+ 1])S(T̄ b[i+ 1])δt)(−δt) (4.44g)
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and

V̄12 =
1

4
(−R(γkk+1[i+ 1])S(T̄ b[i+ 1]− d̂bfk [i])δt2)(

1

2
δt) (4.45a)

V̄14 =
1

4
(−R(γkk+1[i+ 1])S(T̄ b[i+ 1]− d̂bfk [i])δt2)(

1

2
δt) (4.45b)

V̄22 =
1

2
(−R(γkk+1[i+ 1])S(T̄ b[i+ 1]− d̂bfk [i])δt)(

1

2
δt) (4.45c)

V̄24 =
1

2
(−R(γkk+1[i+ 1])S(T̄ b[i+ 1]− d̂bfk [i])δt)(

1

2
δt) (4.45d)

V̄32 =
1

2
(−R(γkk+1[i+ 1])S(T̄ b[i+ 1])δt)(

1

2
δt) (4.45e)

V̄34 =
1

2
(−R(γkk+1[i+ 1])S(T̄ b[i+ 1])δt)(

1

2
δt) (4.45f)

Now the Jacobian matrix can be propagated recursively by the initial condition JDk [0] = I and

JDk [i+ 1] = F̄ [i]JDk [i] (4.46)

The covariance can also be propagated from the formula

P̄Dk [i+ 1] = F̄ [i]P̄Dk [i]F̄ [i]> + V̄ [i]Q̄dV̄ [i]> (4.47)

with P̄Dk [0] = 0 and Q̄d as the discrete-time covariance matrix and Q̄d = δtQ̄t, where Q̄t is the

continuous time covariance matrix available from the sensors specifications

Therefore, the residual weight used in the VIAO optimization (4.6) is given by

PDk =


P̄Dk(1:3,1:3) P̄Dk(1:3,7:9) P̄Dk(1:3,13:15)

P̄Dk(7:9,1:3) P̄Dk(7:9,7:9) P̄Dk(7:9,13:15)

P̄Dk(13:15,1:3) P̄Dk(13:15,7:9) P̄Dk(13:15,13:15)

 (4.48)

4.4.5 Force Disturbance and Gyro Bias Correction

Similar to the previous section, the force disturbance estimate might change during the opti-

mization. Here in order to avoid repropagation of preintegrations, a first order approximation is

used when the changes are less than a threshold

ζ̄kk+1 = ζ̄kk+1 + [JDk ]ζ̄
d̂bf
δd̂bfk + [JDk ]ζ̄bωδbωk (4.49a)

λ̄kk+1 = λ̄kk+1 + [JDk ]λ̄
d̂bf
δd̂bfk + [JDk ]λ̄bωδbωk (4.49b)

γ̄kk+1 = γ̄kk+1 ⊗
[

1
1
2 [JDk ]γ̄bωδbωk

]
(4.49c)

However, if the changes are greater than the specified value, the integrals are recalculated.
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4.5 Vision Residual

We denote the image measurement at kth image frame as ck. The measurement model for the

sth feature (which we assume received its first observation in the jth image) observed in the kth

image is defined [26] as

Zcks =
V ck
s

‖V ck
s ‖

(4.50)

with

V ck
s = Rcb(R

bk
w (Rwbj (R

b
c

1

rs
π−1
c

([
ū
cj
s

v̄
cj
s

])
+ pbc) + pj − pk)− pbc) (4.51)

where [ū
cj
s , v̄

cj
s ]> is the first pixel measurement of the sth feature in the jth image. Also, π−1

c

is a projection function that project a pixel location into the unit sphere using camera intrinsic

parameters. The actual output of the vision system (which consists of feature detector and tracker)

is z̄cks = [ūcks , v̄
ck
s ]> that is the observation of the same feature (that was first observed in the jth

image) in the kth image. With the above definition, the vision residual can be defined as

rV (z̄cks , χ) = [h1 h2]> · (Z̄cks − Zcks ) (4.52)

with

Z̄cks = π−1
c

([
ūcks

v̄cks

])
(4.53)

and [h1 h2]> as the vector space spanning the tangent plane of Z̄cks . A visual illustration for

definition of the vision residual is shown in Figures 4.4.

The covariance of the residual which is needed as a weight in the optimization (4.6) can be

directly propagated from projection of the pixel coordinates onto the unit sphere. A Pseudo code

of the algorithm can be seen below.
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Figure 4.4: Vision residual on unit sphere.

Algorithm 1: Tightly-Coupled Visual-Inertial-Actuator State Estimation

Result: χ = [x0
>, dbf0

>
, x1
>, dbf1

>
, ..., xn−1

>, dbfn−1

>
, xn
>, l1

>, ..., lm
>]>

1-Measurement preprocessing:
for every new image do

-Existing features are tracked and new features are detected to keep a minimum number of features;

-Check for being keyframe or not;

-IMU and thrust measurements preintegrations (4.14), (4.42) and covariance propagation (4.18), (4.48);

end

2-Initialization;

while Not initialized do

-Up-to-scale vision-only pose estimation using the five-point algorithm and PnP method;

-Loosely-coupled alignment of vision-only estimates with preintegrated IMUs → velocity, gravity and

scale;

-World frame is established and all variables are translated to the world frame;

end

3-Tightly-Coupled Optimization:
for every new image do

The cost function (4.6) is formed;

for every optimization iteration do

Update the solution by Quasi-Newton method;

if δdbfk , δbωk , δbak are below a certain threshold then

Update the preintegrations with their 1st order approximation (4.19), (4.49);

else

Repropagate (4.14), (4.42);

end

end

end
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4.6 Simulation Results

In order to validate the performance we test the proposed method on public datasets and

compare it with the state-of-the-art algorithms. We have implemented our method on top of

VIMO [27] which itself is based on VINS [26], a widely used open-source visual inertial odometry

system. We use the BlackBird Dataset [109] which is a large scale, aggressive flight dataset for a

custom-built quadrotor platform. Although stereo images are provided in the BlackBird Dataset,

we only use the images from the left camera as visual data to be used in our algorithm. The

speed of the IMU measurements is 100 Hz, and the frequency of motor speed sensors (as the

actuator data that are converted to thrust using the thrust constant CT = 2.03 × 10−8 N/rpm2)

is 190 Hz. The images are provided by photorealistic virtual cameras at the frequency of 120 Hz,

but in our implementation the speed is down-sampled to 30 Hz as we have the assumption that

the IMU data are much faster than camera measurements. A ground truth for the pose of the

quadrotor is provided at the rate of 360Hz with millimeter accuracy. The testing is run on a

desktop computer with 16GB of RAM and an Intel(R) Core(TM) i7-3770 CPU @ 3.40 GHz. The

estimates are published at 10 Hz. The algorithm parameters are considered as follows: image size:

1024 px × 768 px, projection parameters: fx = 665.108 mm, fy = 665.108 mm, cx = 511.5 px,

cy = 383.5 px. Maximum number of features: 150, minimum distance between two features: 30,

maximum number of optimization iteration 10. Gyroscope measurement noise standard deviation:

σω = 0.1I3 rad/s
√

Hz, accelerometer bias random work noise standard deviation: σa = 0.001I3

m/s2
√

Hz, gyroscope bias random work noise standard deviation: σbω = 0.003I3 rad/s2
√

Hz, mass

normalized collective thrust in the body z axis noise standard deviation ηT3 = 0.01 N/kg, mass

normalized collective thrust in the body x and y axis noise standard deviation: ηT1 = ηT2 = 0.005

N/kg. No loop closure were applied for a fair evaluation of the proposed method and performance

comparison between algorithms. A snapshot of the running simulation visualized in Rviz, the 3D

visualization tool for ROS, is shown in Figure 4.5.

Figure 4.5: Snapshot of the simulation running on the Blackbird datasets.

The dataset used for the evaluation are the star trajectories with forward yaw (the yaw angle is
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aligned with the tangent of the trajectory) and the maximum speed of 1 ms−1 (referred to as Star-

1) and 3 ms−1 (referred to as Star-3). The parameter d11 = 1 s−1 was hand-tuned after repeating

the simulation and checking for performance improvement. However, after the initial tuning the

parameters were kept the same for all other experiments. We repeated the simulations 10 times for

each trajectory and logged the data. For analysing the data and comparing the performance with

the ground truth, we used the trajectory evaluation toolbox [110]. We use the absolute trajectory

error (ATE) as a criteria for performance evaluation and compare our method against VIMO [27].

ATE is defined as the RMS value of the alignment error between the trajectory estimate and the

ground truth. Figure 4.6 shows the side and top views of the ground truth, VIMO and our proposed

method. From the top views it can be seen that our method outputs a trajectory closer to the

ground truth than VIMO. Also, not obvious in the Star-1 trajectory, but it can be easily seen in the

side view of Star-3 trajectory that our method has a better performance with respect to the VIMO

estimating in the z component of the position. These results are consistent with the numerical

results presented in Table 4.1, which shows our proposed has improved the performance by 23.8%

for Star-1 and 18% for Star-3 trajectories.
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(a) Side View for Star-1 trajectory.
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(b) Top View for Star-1 trajectory.
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(c) Side View for Star-3 trajectory.
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Figure 4.6: Side view and top view of the ground truth, trajectory estimation by VIMO and our
proposed method.

Table 4.1: Average ATE for star trajectory (10 runs)

Traj. VIMO (tran.) VIMO-DO (tran.) % Increase VIMO (rot.) VIMO-DO (rot.) % Increase

Star-1 0.180 m 0.137 m 23.8% 0.142 deg 0.150 deg −5.6%

Star-3 0.343 m 0.280 m 18% 0.620 deg 0.526 deg 15.1%

93



0 20 40 60 80 100 120

0

5

10

0 20 40 60 80 100 120

-2

0

2

4

0 20 40 60 80 100 120

-10

-5

0

(a) Force disturbance estimate for Star-1 trajectory.
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(b) Drag force for Star-1 trajectory.
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(c) Force disturbance estimate Star-3 trajectory.
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Figure 4.7: Force disturbance estimate and drag force for the proposed method.

The plots of the estimated force disturbance and rotor drag is also shown in Figure 4.7. The

reason we selected the star trajectory is that it was the only trajectory that had an acceptable

performance while the loop closure was disabled, which was necessary for a fair comparison with

VIMO for the purpose of evaluation of our contribution in the preintergation. Also the average

computation time of our method was similar to VIMO method.

One drawback of the Blackbird Dataset is it has no sequences where the multirotor is subject to

an actual external force disturbance (e.g., wind-gust or interaction with the environment) so that

we can better highlight the advantage of our method. As mentioned in [27], in the case where the

multirotor is subject to a an external force that has a constant or slowly time-varying component,

the VIMO estimates the constant part as the accelerometer bias which is not ideal, specifically

in the applications where an accurate estimate of the external force is needed (e.g., maintenance

of infrastructure using an aerial manipulator). Also, the other drawback is that the Blackbird
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Dataset provides the commanded rotor speeds which are different from the actual rotor speeds that

affect the vehicle dynamics. This difference which is detected as force disturbance can hinder the

accuracy of the estimation, however it can be mitigated in flight testing by employing the actual

rotor speeds which can be obtained from certain electronic speed controllers (ESC).

4.7 Summary

In this chapter we investigated the problem of multirotor state, external force and map esti-

mation using visual, inertial and actuator data. We extended a VIO system by incorporating a

dynamic residual formed from a revisited model of a multirotor dynamics subject to rotor drag and

actuator data. Adding dynamic residual enables the estimator to estimate the difference between

the dynamic and the inertial residuals as external force which is useful in applications where an

external force estimate is needed and also can increase the odometry accuracy. We also considered

a more realistic assumption of constant or slowly time-varying force disturbance in the problem

formulation instead of a traditional model of zero mean Gaussian noise model which is not a proper

representation for the disturbances arising from wind-gust or interaction with the environment.

This assumption is implemented by deriving a residual term from a disturbance observer proposed

for UAVs and including it into the optimization. This enables the estimator to differentiate be-

tween the drag force and the external disturbance forces which is important for applications where

an exact estimate of the external force is needed. The proposed method was implemented on top

of an open source VIO system VIMO [27] and was tested on benchmark dataset for performance

evaluation, showing a significant improvement in the estimation accuracy with respect to VIMO.

95



Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis we investigated the problem of robust motion control design for the position and

yaw tracking control for a multirotor UAV in the presence of external force and torque disturbances.

First we presented the quadrotor modelling and derived an expression for rotor drag force which

is proven to be important. Then we presented the ANCL quadrotor platform that employed for

testing and evaluation of the proposed motion controls.

In this thesis we proposed motion control based on backstepping design that were using estimates

from nonlinear disturbance observers to compensate for the effect of disturbances. The observer

was coupled to the backstepping controller by adding extra terms to its dynamics to improve the

transient response. The coupled structure in conjunction with the concept of tuning function lead

to a rigorous exponential stability readily deducted from Lyapunov theorem for the case of constant

disturbances. Ultimate boundedness is shown when disturbances are time-varying. The proposed

controller was evaluated in Matlab simulation however control expressions were too complicated

for on-board implementation.

In order to simplify the control expressions we employed a decoupled structure. Due to the

cascade structure, convergence of the tracking error is not readily implied from the derivative of

the Lyapunov function which the common procedure for the stability proof in backstepping method.

However, by checking the system dynamics it can be seen that the decoupled structure converts

the tracking error dynamics to a LTV system with the disturbance estimate error acting as a

system input. Using LTV system stability analysis, exponential stability is proven in the presence

of constant disturbances. The method is validated in SITL simulation and flight experiment using

the commonly used PX4 autopilot firmware. It was also compared with a stock PX4 inner outer

loop control and a traditional backstepping method demonstrating improved tracking performance

and robustness relative to these controllers.

In this thesis we employed a more accurate modelling for the multirotor UAV by considering the

effect of rotor drag in the translational dynamics and compensating its effect in the motion control
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by decomposing it into two components. The first one is independent of the vehicle attitude and can

be readily compensated by an appropriate choice of virtual control in the backstepping procedure.

The second component of the drag force is in the direction of thrust and can be compensated by

an appropriate choice for desired thrust during backstepping. Also integral augmentation were em-

ployed for increasing the robustness to external disturbances and model uncertainties. Exponential

stability of the closed loop is proven assuming constant wind velocity and constant disturbances.

SITL simulations were presented demonstrating improved controller performance of the method,

and the importance of rotor drag compensation. The simulations illustrate the approach can com-

pensate for time-varying disturbances and parametric uncertainty.

In this thesis we extended a visual-inertial odometry system by incorporating a dynamic residual

formed from a revisited model of a multirotor dynamics subject to rotor drag and actuator data.

Adding dynamic residual enabled the estimator to estimate the difference between the dynamic

and the inertial residuals as external force which is useful in applications where an external force

estimate is needed and also can increase the odometry accuracy. We also considered a more realistic

assumption of constant or slowly time-varying force disturbance in the problem formulation instead

of a traditional model of zero mean Gaussian noise model which is not a proper representation for

the disturbances arising from wind-gust or interaction with the environment. We implemented

this assumption by deriving a residual term from a disturbance observer proposed for UAVs and

including that residual into the optimization. This enabled the estimator to differentiate between

the drag force and the external disturbance forces which is important for applications where an

exact estimate of the external force is needed. The proposed method is implemented on top of an

open source VIO system VIMO [27] and have been tested on benchmark dataset for performance

evaluation, showing a significant improvement in the estimation accuracy with respect to VIMO.

5.2 Future work

For the future work, the decoupled control-observer design with integral augmentation and rotor

drag compensation (Section 3.4) can be experimentally tested on the ANCL-Q3 platform under

disturbances exerted from an industrial fan. Also there is still a lot of research than can improve

the design performance. For example although it has been shown the proposed method is robust

with respect to model uncertainty, the design can be modified by incorporation of adaption laws

for mass and inertia in order to increase the performance.

Also dataset recording is another step that we are planning for by flying the ANCL-Q3 withing

the lab environment and collecting visual data, IMU measurements and rotor speeds data. The

dataset can be used to test our proposed algorithm and evaluate its performance. The advantage

of such a dataset is that we can exert external disturbances with known values as use them as

groundthruth to evaluate the accuracy of the force disturbance estimate form the proposed method.

This is a significant advantage as the dataset that we used for evaluation [109] does not include any

trajectory where the multirotor is under external disturbances. Also the actual rotor speeds, which
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are different from the commonly used commanded speeds, can be used as actuator measurements.

The ultimate goal is to run the proposed motion control using the estimates from the proposed

state estimation algorithm (rather than MCS) and evaluate the closed-loop performance as this

was the ultimate goal of this research: increasing the autonomy and reliability of multirotor UAVs

by developing robust controller and estimation algorithms relying on onboard sensors.
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