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Abstract

The dynamical balance within abyssal equator-crossing flows is examined by study-
ing simplified models of the flow in the equatorial region in the context of one- and
two-layer shallow-water theory.

It is first demonstrated that. under reasonable assumptions. the shallow-water
model is an appropriate model with which to study equatorial dynamics.

A simple model is then presented for one-layer cross-equatorial flow. where geostro-
phy is replaced at the equator by frictional flow down the pressure gradient. This
model is compared via numerical simulations with the one-layer reduced gravity
shallow-water model. first over idealized bottom topography. then over realistic equa-
torial Atlantic Ocean bottom topography. It is found that the frictional geostrophic
model predicts certain aspects of the flow well. but neglects fluid inertia. which does
affect the dvnamics significantly.

Numerical simulations of the shallow-water equations over realistic Atlantic Ocean
topography are described that show good agreement with the observed velocity fields
of abyssal Antarctic Bottom Water as it crosses the equator. In particular. the ob-
served southern-intensified flow within the equatorial channel at 36°W is reproduced.
Additionally. our time-dependent simulations show that the large time variability ob-
served in equatorial-crossing Antarctic Bottom Water can be reproduced by inducing
relatively small temporal fluctuations in the current well before it reaches the equator.

The effects of baroclinicity are investigated by deriving a two-layer model of these
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currents. We first calculate the theoretical speed of a steadily-travelling. dense eddy
on a slope, taking into account the effects of upper-layer pressure variations and
bottom friction. where the height field of the eddy is assumed to have compact support
and the f-plane approximation is assumed to apply. We then derive a two-layer model
of cross-equatorial flow. The model is uniformly valid in the sense that it reduces.
at leading order. to the appropriate equatorial model when expressed in equatorial
scales. and to the correct mid-latitude model when in mid-latitude scales. The lower
layer resembles the shallow-water equations, and the upper layer is similar to the
Charney balance equations. The form of the model implies the two layers are partially

decoupled at the equator.
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Chapter 1

Introduction

The earth’s oceans and atmosphere form a complex coupled fluid system. While
atmospheric dynamics alone. to a first approximation. govern the daily weather we
experience. oceanic dynamics cannot be neglected in studying the long-term behaviour
of the climate. The oceans are known to transport a significant amount of heat from
the equatorial regions to the polar regions (Trenberth and Caron 2001). It is therefore
important to develop an understanding of the ocean currents that transport this heat
around the planet.

The thermohaline circulation is the global-scale ocean circulation driven by den-
sity differences arising from temperature and salinity variations. In the Atlantic.
the deepest part of the thermohaline circulation consists of Antarctic Bottom Water
(AABW). which originates in the Weddell Sea near Antarctica. In this location. par-

ticularly cold and fresh water sinks to the bottom of the ocean and flows northward
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along the sloping ocean floor in the western Atlantic Ocean. While part of this flow
remains in the Southern Hemisphere and ultimately mixes upward into shallower wa-
ters (Ledwell et al. 2000), part of the flow has been observed to cross the equator
into the Northern Hemisphere (see DeMadron and Weatherly 1994: Friedrichs and
Hall 1993). This current, therefore, acts as a conduit for heat. salt and nutrients to
be transported global-scale distances.

Unlike atmospheric flows. oceanic currents that exist at depth are difficult to
observe. and indeed. observations are notably sparse. For example. the path of AABW
in the southern Atlantic Ocean is disputed in the literature. since more than one path
is consistent with existing observations (DeMadron and Weatherly 1994: Speer and
Zenk 1993: Sandoval and Weatherly 2001). A study of ocean dynamics is thus essential
not only to understand why and how some currents flow. but in certain cases. to help
determine where the currents flow.

Like many mesoscale and large-scale flows in the atmosphere and ocean. these
abyssal flows are observed to be geostrophically balanced at mid-latitudes and polar
regions. That is. the pressure gradient forces approximately balance the Coriolis
effect. giving rise to a more or less steady flow. Indeed. many models of motion on
these scales are derived by assuming the leading order velocity fields are geostrophic
(e.g. Karsten and Swaters 1999). However. geostrophy must necessarily break down in
the vicinity of the equator. since the Coriolis parameter f = 2Qsin 8. where Q = 27

radians/day is the Earth’s angular velocity and @ is the latitude. vanishes at the

(8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



equator, and therefore so does the Coriolis effect. The question. therefore. is as
follows: If these flows are geostrophically balanced away from the equator. what
balance, if any. exists at the equator? An equally important question to resolve is
how the geostrophic balance is re-established after a current traverses the equator.
This thesis. in part. addresses these questions. with an emphasis on the former.

Potential vorticity, defined as ¢ = (f + ¢)/h in the shallow-water approximation.
where ( = €3 - V x u is the vertical (or radially outward. if considering motion on
the surface of a sphere) component of the relative vorticity and h is the thickness of
the fluid layer. is exactly conserved following the flow if frictionai and diabatic effects
are neglected. However. away from the equator in either hemisphere. the flow is often
observed to be relatively quiescent so that |f]| > |(]| and thus q = f/h. Therefore.
since the Coriolis parameter changes sign over the path of the fluid. these equator-
crossing abyssal flows cannot conserve potential vorticity. This violation of potential
vorticity conservation in cross-equatorial flows and the breakdown of geostrophy at
the equator constitute two significant challenges in modelling these flows.

Previous research has focussed on two processes to explain potential vorticity
modification: nonlinearity and friction. Potential vorticity modification in equator-
crossing currents where the nonlinear terms were not negligible was addressed by
Edwards and Pedlosky (1998a. 1998b). Theyv modelled the equatorial ocean using
a nonlinear one-layer shallow-water model with f = Jy. assuming a flat bottom

topography. and horizontal friction. They forced fluid across the equator in numerical
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simulations by specifying a localized mass source in the Northern Hemisphere and a
distributed mass sink in the Southern Hemisphere. Eddies developed in the current as
it approached the equator. particularly for the more strongly forced runs. An analysis
of the vorticity flux showed that. in general. the eddy field transports vorticity to
the western boundary, where friction dissipates the vorticity. They concluded that
for cross-equatorial flow to occur. the eddy field must work in conjunction with the
dissipative side-layer to modify the vorticity.

In a companion paper. Edwards and Pedlosky (1998b) described a linear stability
analysis of a steady meridional current. using the f-plane approximation. The depen-
dence of the instabilities on the Coriolis parameter f. and thereby the dependence on
latitude. was investigated. The instability was found to be greater at lower latitudes
and at higher current velocities. which was consistent with what they observed in
their numerical simulations. They argued that the instability is essentially an in-
viscid shear instability. so that. although friction is necessary for potential vorticity
modification. it does not play a role in the production of the eddies that transport
the potential vorticity to the side boundary.

IKawase. Rothstein. and Springer (1992) numerically integrated the three dimen-
sional equations of motion (specifically. the Boussinesq. hyvdrostatic. incompressible
fluid equations in spherical coordinates) over a domain centred on the equator. Al-
though they included complicated dvnamics. they neglected bottom topography and

the geometry of the side boundaries. Their numerical investigation focussed on a
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southern flowing deep western boundary current as it approached the equator. Dur-
ing the initial spin-up stages, the current turned eastward along the equator. but in
the steady-state ocean, the current crossed the equator along the western boundary.

Note that Edwards and Pedlosky (1998a. 1998b) and Kawase et al. (1992) all
neglected variable bottom topography. Their studies therefore apply to deep currents.
but not necessarily the abyssal flows that are strongly affected by topography. The
role of variable topography is an important aspect of the dynamics not previously
examined and an issue we address in this thesis.

Antarctic Bottom Water is an abyssal current that is strongly affected by topog-
raphy. It flows northward along the floor of the Atlantic Ocean. within a basin that
lies between North and South America and the mid-Atlantic ridge. It is observed
to flow northward along the western flank of the ocean basin (i.e. closest to South
America) as it approaches the equator. but flows along the eastern flank of the ocean
basin (i.e. next to the mid-Atlantic ridge) after crossing the equator. Nof and Olson
(1993) proposed that simple geostrophy requires that the current can cross the equa-
tor only if it switches sides of the basin as it crosses. To support this. they studied the
phenomenon using two steady. inviscid. reduced-gravity models: a 11 layer model
in a parabolic meridional channel. and a 2 layer model with flat topography. where
the current has constant potential vorticity. Their analytic solutions showed that the

equator was successfully crossed and that the bottom current did switch sides of the

'An n + % layer model is a model with n dynamically active layers coupled to a relatively thick

inactive layer.

1)
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channel. Johnson (1993) has also studied a steady. inviscid. reduced-gravity model
with a constant potential vorticity flow, but with a linear bottom topography, and
found that changes in the width and height of the current allowed it to cross the
equator.

Borisov and Nof (1998) suggested that deep currents may cross the equator in the
form of eddies and so studied the dynamics of eddies approaching the equator in a
parabolic meridional channel. They first studied the dynamics of solid. frictionless.
noninteracting particles in the channel and obtained statistics about how likely a
given particle is to cross the equator given its initial position and velocity. They then
employved a one-layer reduced-gravity shallow-water model and performed numerical
experiments on eddies approaching the equator. How much of the eddy crossed the
equator was found to depend on the geometry of the channel and the initial speed
and direction of the eddy. The presence of friction altered the potential vorticity of
the eddy to allow some of the fluid to cross the equator. but how much of the fluid
crossed was found to be dependent more on the geometry than on the magnitude of
the friction present.

Nof and Borisov (1998) performed numerical simulations of abyssal currents ap-
proaching the equator on a meridional channel. with bottom topography varying
parabolically in the zonal direction. using a reduced-gravity shallow-water model.
They found that the shallow-water simulations compared more favourably with the

dynamics of the solid particles as studied by Borisov and Nof (1998) than with the
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analytic solution of Nof and Olson (1993). Nof and Borisov (1998) therefore con-
cluded that the equator-crossing process is an inertial one in which the geometry of
the bottom topography plays a crucial role. (Note that similar conclusions were made
by Rodwell and Hoskins (2001) about the atmospheric equator-crossing flow associ-
ated with the summer monsoon.) The differences between the analytic solutions. in
which potential vorticity is conserved. and the shallow-water simulations led them to
conclude that the potential vorticity is modified by friction as the current proceeds.
allowing the flow to proceed along the path prescribed by the bottom topography.
The movement of abyssal waters in the equatorial ocean has also been studied by
Stephens and Marshall (2000). who performed numerical simulations of a simplified
model over realistic oceanic bathymetry. In this model. the full shallow-water conser-
vation of mass equation is retained (with a small sink term representing the effects of
upwelling). but the momentum equations are replaced by a planetary geostrophic for-
mulation with the addition of friction in the form of Rayleigh damping terms linear in
velocity. The steady-state flow was found to be broadly consistent with observations.
Thus. in summary. recent research into these flows has focussed either on study-
ing the full dynamics of the flow over idealized topography or on examining the
steady-state flow over realistic equatorial topography as predicted by a simplified
model. An omission in the literature is the performance of numerical simulations
of one-layer reduced-gravity shallow-water equations over realistic topography. We

have performed simulations of this nature and we discuss them in this thesis. These

-
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simulations are compared to the simulations of a simplified model in order to assess
what aspects of these flows are successfully described by the simple model and to
what degree nonlinearity and time dependence are important in these flows.

The dynamics of cross-equatorial flows have been shown to involve frictional ef-
fects, the effects of bottom topography. and inertial effects. One aspect of the dynam-
ics that has received little attention is how these currents dynamically couple with the
overlying fluid. This may be addressed by studying a two-layer model of the flow. If
we are to study a two-layer equatorial model. it is desirable for that model to reduce
to the appropriate geostrophically balanced model in the mid-latitude limit. Karsten
and Swaters (1999) derived and classified all the possible frontal geostrophic models
derivable from two-layer shallow-water theory. and found that the appropriate one
for the case in which the lower layer is shallow and the bottom topography plays an
important dynamical role is the model derived by Swaters and Flierl (1991).

The Swaters and Flierl (1991) model captures the baroclinic. subinertial dynamics
of a thin lower layer flowing over bottom topography coupled to a thick upper layer.
The model is derived from two-layer shallow-water theory by an asymptotic expansion
in terms of a parameter that plays the role of the Rossby number of the flow (Swaters
1991: Swaters and Flierl 1991). The resulting dynamics may be thought of as being
modelled by planetary geostrophy in the lower layer and quasi-geostrophy in the
upper layer. with a coupling between the pressure fields of the two layers. Planetary

geostrophy is a model of the flow where the evolution of the thickness of the layer is
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governed by the conservation of mass, with the velocity assumed to be given by the
geostrophic relations. whereas in quasi-geostrophic flow. the evolution equation is the
vorticity equation. with the velocity again assumed to be geostrophic.

However the model of Swaters and Flierl (1991) cannot be used near the equator
because it was derived under the f-plane approximation. That is. dynamics arising
from the meridional variation of the Coriolis parameter are neglected. This is a
reasonable approximation at mid-latitudes and on small enough length scales. but
not if the domain includes the equator. One of the goals of this work is to investigate
to what extent the Swaters and Flierl (1991) model may be extended to the equator.
In other words. can a model be developed that captures the dynamics of these equator-
crossing currents and that simplifies. in the mid-latitude limit. to the Swaters and
Flierl (1991) model?

We will show that such a model can. in fact. be derived. provided that the
geostrophic balance relation is generalized to a relation describing well-defined ve-
locities in the f — 0 limit. We will employ two such generalizations. each valid only
for its respective layer. While neither relation is individually new. they have not. to
our knowledge. previously been written down together to form a coupled two-layver
model applicable at the equator.

The shallow-water equations are used as the starting point for our theory in
this thesis. and so in Chapter 2 we present general results about the application

of shallow-water theory to the equatorial region. We first address the applicability
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of the shallow-water equations as a model of equatorial dynamics by expanding the
three-dimensional Navier-Stokes equations in an asymptotic expansion. where the
small parameters are the ratio of the horizontal length scale of the motion to the
Earth’s radius and the ratio of the vertical to horizontal length scales. It is shown
that the horizontal component of the Coriolis effect and Earth curvature effects may
be neglected as long as the horizontal length scale of motion is of sufficiently large
magnitude.

In Chapter 2. we also present the shallow-water equations of motion. and state
some of their conservation properties. Equatorial wave theory is reviewed. and it is
shown that in a two-layer system where the layers have unequal depths. the waves
contained in the model can be related to the waves contained in the one-laver model.
with appropriate scaling factors. These waves are relevant in the context of the model
we derive in Chapter 4.

In Chapter 3. a simple model is presented for one-laver cross-equatorial flow. where
geostrophy is replaced at the equator by frictional flow down the pressure gradient.
This model is compared via numerical simulations to the one-layer reduced-gravity
shallow-water model. first over idealized bottom topography. then over realistic equa-
torial Atlantic Ocean bottom topography. We find from the idealized topography
simulations that the simplified model predicts qualitatively correct fluid paths and
reproduces well the theoretical along-slope speed of a dense. compactly-supported

eddy on a slope. However. the simplified model is unreliable with respect to certain

10
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aspects of the flow where the momentum of the fluid plays a role, since fluid inertia
is neglected in the model.

Our simulations over realistic topography are intended to simulate Antarctic Bot-
tom Water flow northward in the southern Atlantic Ocean. so we introduce a mass
source of dense fluid at the southern edge of our numerical domain. and observe it as
it flows northward. We perform two experiments: steady inflow conditions with an
analysis of the steady-state conditions. and time-varving inflow conditions to simu-
late the annual signal seen in observational studies. Qur comparison of the simplified
model to the shallow-water model confirms the results of our idealized topography
simulations. Additionally. our comparison of the shallow-water model results to ob-
servations shows qualitative agreement with the observed velocity field. Our time-
dependent simulations show that the relatively large time variability observed in the
cross-equatorial current can be reproduced. and furthermore. is reproduced by a rel-
atively small amplitude in time-variability of the Antarctic Bottom Water current
as it approaches the equator. We believe the good agreement between observations
and the predictions of one-layer reduced-gravity shallow-water equations is strong ev-
idence that certain aspects of these flows can be well understood from the standpoint
of inertial. reduced-gravity dynamics.

In Chapter 4. we investigate the degree to which baroclinicity may also be impor-
tant in the dynamics of these currents by deriving a two-layver model of equatorial

flow. We first motivate the need for an upper layer by deriving the theoretical speed

11
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of a dense, compactly-supported eddy on a slope on an f-plane. where the effects of
pressure variations in the upper layer and the (parameterized) effects of friction are
taken into account. We then derive a two-layer model of cross-equatorial flow where
the lower layer may be taken to be either of the one-layer models studied in Chapter 3.
and the upper layer uses a generalization to geostrophy that is similar to the Charney
balance equations (Gent and McWilliams 1983). In the limit of motion far from the
equator, this two-layer model reduces to the Swaters and Flierl (1991) model. which is
the appropriate geostrophically balanced model describing the motion of a relatively
thin lower layer interacting with topography.

To focus on the two-layer dynamics in the limit of motion right on the equator. we
describe in Chapter 4 the equations of motion re-scaled using a standard equatorial
J-plane scaling. and a two-layver model is derived in the context of that scaling. By
comparing this model. which is valid for equatorial scales. to the previously derived
model. which is valid for mid-latitude scales. a leading-order uniformly valid “meta-
model” is derived. This meta-model reduces. when expressed in mid-latitude scales
or equatorial scales. to the mid-latitude or equatorial model. respectively.

The conclusions of our research and related future research projects to be pursued

are discussed in Chapter 5.
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Chapter 2

Governing equations and

preliminary results

2.1 Applicability of shallow-water theory

To begin with. we address the question of the applicability of shallow-water theory to
the equatorial region. We do so by following Karsten and Swaters (1999). who perform
an asymptotic expansion of the fully three-dimensional Navier-Stokes equations in
spherical coordinates to determine the relative importance of the various terms in the
equations of motion. Qur analysis differs from theirs in that. while they assume a
priori that the flow is geostrophically balanced. we do not.

We shall assume frictionless flow and a single layer of homogeneous density for

this analysis. We fully anticipate including friction in our model. but this analysis

13
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is intended only to evaluate the validity of neglecting terms such as nonhydrostatic
terms. the horizontal component of the Coriolis effect. and Earth curvature terms. so
we neglect friction for now.

The governing equations for a single homogeneous layer of fluid flowing over the
surface of the Earth may be expressed in spherical coordinates as follows (Cushman-

Roisin 1994; Karsten and Swaters 1999):

du® “w* “v" Jp*
il —tanG-Li—g— — 20 sin fv® + 2Q cos buw™ = ___l_Q&
dt- re pr*cos 8 do
dv  vtw" u"? 1 op°
tanf— + 2Qsinfu” = — ——.
dt= + re +tan re + 20sin fu pr= 00
dw* ™+ L dp°
— ) | S S S *)
PIE — 2Q cos Qu o g. (2.1)
Jw" w* Jd 1 du”
Qe b ———(v"c0sb) + ——— =
dr= re r*cos ¢ 0“ cos 6) + r*cos do 0
where
(1_3+ uw” (')+v'0+_8
—_— = —— A —————— — — — l'
dt* ~ Ot~  r cos@do r-08 ‘ ar®

is the material derivative. r* is the radial distance from the Earth’s centre.  is
the latitude. o is the longitude. ¢* is time. p* is the pressure. and u®. ¢v*. and w«*
are the velocities in the eastward. northward and radial directions. respectively. An
asterisk denotes a dimensional variable. The dimensional parameters 2. g. and p are
the angular velocity of the Earth. the gravitational acceleration. and the constant
density. respectively.

One may convert these equations from spherical coordinates (r*.0.#6) to a local

cartesian coordinate system (z*.y".=") by expanding about a central latitude § = 6,

14
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ro. Then. by writing the pressure as the sum of its

and the planetary radius r*

hydrostatic and dynamic parts,
p" = —pg=" + pp~(z”.y". 27), (2.2)
and introducing the generic nondimensionalizations
(r*.y"y=L(r.y). ="=H:. («.v°)=U(u.v).
w'=Wuw. t°=Tt. p" = Pp.
the equations of motion may be written as follows:
l.
= + Aafuw — Etanur — (— + C—By) v+ Aa (COt o - éy) w
dt € € € €
1 9p ,
= —(1 - Az)—= 5 + O(&°).
(1479 = Az) 7 50 + O(E)
dv + Aafvw + Etan Gou® + (l + 6—L’y> u=—(1- Af:)—l-gﬂ + O(€%).
dt € € F?dy
,dw 2 2 cotfy £ L op 2 -
al I-—/\f(u +L,)—,\a( —Lyu= F20:+O(g ). (2.3)

(—"1 - .,1.) + (1= AE2)(1 + w)% +0(€%) = 0.

+aw—.
au a-

-~

a-(:l—.v-\t-'.’/\afw—l»-(l — Aéz)
d _erd ; d ‘

where 7= ?B—t+(l — A€2) [(l +7y)uaI +Lay]

£ =L/rg €1 and

In writing the above equations. we have introduced the variable
WL

the following nondimensional parameters:
v=Etanby. a = —.
> UCH

H U
A=—. F=—.
L vP

€= C €er = L e3 = Ecoth
TRl TTRT TR
15
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As described in Karsten and Swaters (1999). the parameters A. F. +. a. €. e and
€3 are, respectively, the aspect ratio of the motion. the Froude number. a metric
term (measuring Earth curvature effects), a measure of the relative importance of the
vertical gradient of the vertical velocity to the horizontal divergence of the horizontal
velocity. the Rossby number. the temporal Rossby number. and the planetary Rossby
number (ratio of the planetary vorticity gradient to the planetary vorticity itself).
We may check the applicability of the shallow-water model at the equator by
taking the limit as y — 0 in the governing equations. Since |¢| — >c in that limit.
we first rewrite the terms proportional to cot 8y/¢ for a clearer interpretation. With

the standard definitions of the two forms of the heta parameter (see Pedlosky 1937.

§6.2)
20
Jo = — cos .
r'o
and
3= Jo{"z _ S’_’QL("os 00.
[ [
we find
cot o = i and - J.
€ 13 €

Substituting these into the equations of motion and taking the limit as 8, — 0. (so

that |¢] > o and ¥ — 0 as well) we find the leading order governing equatorial

equations take the form

16
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du A 1-X=09p

— 4+ dafuw — Fyv + Ba—w = — + O(€2.€N).

dt € T F? ar
:l“ + Aaévw + Byu = %gz O(€?).
aAZ(fi—w — AE(u? + v?) ,B%u = Fl.g gf’ +O(.6)). (2.4)
a%—+-/\afw+(l — Aé: )(32 +g;) +0(&%) =
diEC—Tgt (l——/\f)[ua%-i—v%]+aw—(%

We are discussing flows for which § = L/ry < 1. i.e. the length scale of motion
is much smaller than the radius of the Earth. Let us also assume the aspect ratio
A = H/L is a small parameter. which is true for most geophysical flows. Then. by the
conservation of mass equation. we have that o < O(1). Thus. the governing equations

reduce to

d:u - Jye + Jcréw = - rlv)()—p + O(E2.60).
al S For
dv _ 1 dp 2
d—+3JU ——ﬁa—'-{—O(f LEA).
A1 dp 2 -
—Jsu =-F3 + O(&°.&N). (2.5)
du Jdu dt
()~ + — oz d— + O(f EA) =0.
d e 0 ad Jd 7]

—_—=s— _+ +  J—
dt e Ot + ‘oz dy R

When do these equations reduce to the shallow-water equations? In the shallow-
water model. the dependent variables do not vary with height =. If it were true that
A/€ < 1. then 9p/d= would be zero to leading order. Since p would be independent

of =. the velocity components would remain independent of = if initially so. Thus.

17
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if A/ < 1, then the above equations reduce to the (equatorial beta plane) shallow-
water equations.

What is the significance of A\/§ <« 1?7 The terms containing A/€ represent the
horizontal component of the Coriolis force and contribute to the breakdown of the

nonhydrostatic assumption. In terms of more basic scaling factors.

so that our first result is as follows:

Theorem 1 For constant-density flow near the equator with horizontal scales much
smaller than the radius of the Earth and aspect ratio much less than unity. shallow-

water theory will be applicable as long as

HY’O
L?

< L.

The larger the horizontal length scale. the better this requirement will be satisfied.
For H = 5 km. we require L > 180 km. The current itself is of considerably smaller
vertical extent. on the order of H = 0.5 km (Hall. McCartney. and Whitehead 1997).
which means that the requirement is instead L >> 60 km. Observations of Antarctic
Bottom Water as it approaches the equator suggest that the current has a width of
approximately L = 200 km (Sandoval and Weatherly 2001).

We note that the above result is not completely new. since de Verdiere and Schopp
(1994) showed that if L < (Hrg)'/2. then equatorial dynamics must include the hor-
izontal component of the Coriolis effect. However. the above analysis does establish

I8
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that, under the mentioned assumptions, this effect is the only effect that one needs
to add when considering equatorial dynamics. e.g. Earth curvature effects need not

be considered.

2.2 Shallow-water theory

The equations of motion may be cast into various forms., some of which have advan-
tages over others when attempting to integrate the equations numerically. We state
some of the more useful forms here. and state the conserved quantities. The notation

here closely follows that of Arakawa and Lamb (1981) and Arakawa and Hsu (1990).

2.2.1 Inviscid model

The inviscid shallow-water equations can be written in the form

?}—':+v-Vv+fk x v =—gV(h+hg). (2.6)
oh
—_ . = 0. 2.7
5t +V.-(hv)=0 (2.7)

where v is the horizontal velocity. k is the vertical unit vector. f is the Coriolis pa-
rameter. h is the thickness of the fluid. and A g is the height of the bottom topography
(assumed independent of time) above an arbitrary reference level. The first equation
expresses conservation of momentum. and the second expresses conservation of mass.
These equations may be rewritten in the equivalent form

%—:’-ﬁ-qu (hv) + V(K +®) =0. (2.8)

19
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oh
E+V~(hv)=0, (2’9)

where g = (¢(+ f)/h is the potential vorticity, ( = k-V x v is the relative vorticity, A" =
v-v/2, and ® = g(h + hg). R and ® are related to the kinetic and potential energy
of the fluid, respectively. More specific comments on the physical interpretation of A’
and ® will be made below.

Taking the inner product of hv and (2.8) and using (2.9) gives
a ) .
a—t(hl\)+V-(hvl\)+hv-v¢=0.
while multiplying (2.9) by ® produces

a% (%ghz +ghh5> + V- (hv®)— hv -V =0.

Adding the previous two equations vields the statement of conservation of total energy

of the system

o

t%(hl\'«i» %ghughh,,) + V- [ho(h +®)] =0. (2.10)
where we may now interpret AR as the (local) kinetic energy of the fluid. %gh2 +ghhg
as the potential energy. hv A" as the kinetic energy flux. and hv® as the potential
energy flux. Note that. while the kinetic energy flux is velocity multiplied by kinetic
energy. the potential energy flux is not simply the product of velocity and potential
energy.

The potential vorticity equation is derived by first taking the vertical component
of the curl of (2.8) to form the (absolute) vorticity equation.

G

—_ - (¢ = 2.
ot + V- (¢av) =0. (2.11)

20
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where (4 = ( + f is the absolute vorticity. Then. by using the conservation of mass
(2.9) to eliminate V - v from the vorticity equation. the potential vorticity equation

may be written as follows:

dq 9 |-
a—t+v'Vq—0. (2.

I
—
tw
~

Potential vorticity is thus conserved following the motion. that is. it is advected in

space like a material tracer. The total absolute vorticity in the domain is conserved.

but it may accumulate or disperse locally. much like the surface height of the fluid.
Equations (2.7) and (2.12) may be used to confirm the following conservation law:

For an arbitrary differentiable function F(r).

0
3¢ (hF(a)) + V- (hvF(q) = 0. (2.13)

thus. h F(q) is a conserved quantity ( Yavneh and McWilliams 1994: Ren and Shepherd
1997). Note that the height (mass) of the fluid and the absolute vorticity are governed

by identical equations of motion. Therefore. it is also true that

9 .
gt“(CAF(Q))‘*‘V‘(QAvF(Q))=0~ (2.14)

where F(r) again represents an arbitrary differentiable function. Equations (2.13)

and (2.14) may be thought of as expressing the same fact. since hF(q) = h - (Ca/h)-

(F(q)/q) = ¢aF(q)/q = ¢aFl(q).
[f the assumption is made that the bottom topography does not depend on the

zonal coordinate r. then another conserved quantity is the zonal momentum

M:h(u—/yf(f)df).

21
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where f(y) is the Coriolis parameter, stated with an arbitrary latitude dependence.
(McPhaden and Ripa 1990; Ren and Shepherd 1997). It is easily checked. using the

conservation of momentum (2.6) and mass (2.7), that

oM N S
SV (vM+z§gh ) =0,

where t is the unit vector in the r-direction. This is a conservation law for M.

2.2.2 Frictional effects

Since we will study models that contain a parameterization of vertical friction. we
briefly review in this section the effects of a small but nonzero amount of friction in a
rotating system. where the friction is between the fluid and the bottom solid boundary.
We neglect horizontal friction and the surface wind stress in this discussion. Further
details may be found in the text by Pedlosky (1987).

For a small amount of friction. the flow may be thought of as being separated into
an interior inviscid flow and a frictional boundary layer. The boundary laver near
a solid bottom boundary in a rotating system is called an Ekman layer and has a

thickness on the order of

.

b = | —.

f

where v. is a vertical eddy viscosity coefficient and f is the Coriolis parameter (Ped-
losky 1987). Within the Ekman laver. friction allows fluid to flow down the pressure

gradient (i.e. geostrophic balance is broken). which sets up patterns of convergence
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and divergence that are different than in the interior inviscid region. By the con-
servation of mass. convergence (divergence) in the Ekman layer results in upward
(downward) vertical mass flux out of (into) the Ekman layer itself. This phenomenon
is called Ekman pumping. Assuming nearly geostrophic flow. the vertical velocity at
the top of the Ekman layer may be related to the vorticity of the interior inviscid flow
(Pedlosky 1987),

Oe

Y =_-
W > q.

where ( = dv/dz — du/dy is the relative vorticity of the interior flow.

This vertical velocity into or out of the interior flow affects the vorticity balance
in the interior. Assuming the interior flow may be modelled with the inviscid shallow-
water equations. the Ekman pumping may be thought of as a mass source. so that

the equations of motion. (2.6) and (2.7). become

v

a_t+v.v”+kav=—QV(h+hB)~
oh dg .
W%—V-(hv)_t—g.

We form the equation governing the evelution of potential vorticity by taking the
curl of the momentum equations and eliminating the divergence term using the mass

equation. The result is

8 (40) y v (L) 2 teeen,

Under the assumption of nearly geostrophic flow. ( + f = f. Then the potential
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vorticity equation may be written in the form

¢+ f C+fy_ r. -
5 (T) +v-V (T) =—=C. (2.15)

where r = g f/(2h). This says that potential vorticity is dissipated by a sink term
proportional to the relative vorticity. In fact, this dissipation is through vortex tube
stretching and compression resulting from the Ekman pumping associated with the
relative vorticity. Note that, if f and h are assumed constant. (2.13) reduces to the
statement that relative vorticity is dissipated by a term proportional to the relative
vorticity itself, with proportionality coefficient r (Pedlosky 1987).

Suppose that. instead of modelling vertical friction effects with an Ekman pumping
term providing a mass source. the friction effects are modelled with Rayleigh damping

terms providing a velocity drag,

%%+v-Vv+fkxv=—gV(h+ha)—"v~
oh
a—t-if-V-(hv)._O.

with the same r = §¢ f/(2h) as the drag coefficient. The potential vorticity equation

of this model is exactly

i(u) +U'V(¥) =—%C.

which is identical to (2.15). That is. although the physical mechanisms of mass source
(via Ekman pumping) and velocity drag are different from the point of view of mass
and momentum balance. they affect the vorticity evolution in exactly the same way.
This fact will be exploited in our choice of idealized model in Section 3.1.

24
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2.3 Equatorial waves

2.3.1 Review of barotropic wave theory

Particular dynamics exist at the equator, so it is useful to briefly review the theory
of equatorial waves. The barotropic and two-layer baroclinic waves we discuss here
will be relevant to the two-layer model we derive in Chapter 4. This work was first
conducted by Matsuno (1966b), and further details may be found in textbooks such
as Pedlosky (1987) or Holton (1992).

We focus on the horizontal structure of equatorial waves. The vertical structure
may be factored out of the equations of motion using separation of variables (Pedlosky
1987). Alternately. one may assume the vertical structure consists of a relatively thin
active layer and an infinitely thick inactive layer. i.e. the reduced gravity or one-and-
a-half layer model. The case where the motion may be described by two active layers
of unequal thicknesses is treated in the next section.

It is assumed that the fluid is described by the shallow-water equations. (2.6)
and (2.7). with mean depth H. The equatorial beta plane approximation is made.
replacing the Coriolis parameter f with Jy. where y is the meridional coordinate.
Neglecting variable bottom topography and linearizing about a state of no motion

vields the equations

Uy — JYyv = —gn;.

vy + Jyu = —gny. (2.16)

(V]
(1]
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n+ H(uz +v,) =0.

where u,v, and 7 are the eastward velocity, northward velocity. and height deviation

from H, respectively. Under the assumption of zonally propagating waves of the form

{u.v.n} = {aly). 5(y). i(y)} expli(kz — wt)] + c.c..

where c.c. denotes the complex conjugate of the preceding expression. the amplitudes

of the waves are governed by the ordinary differential equations

—wi — Jyv = —ikgn.

|8
—
=1
-~

— Wt + Jyu = —gny. (2.

—iwii + H(iki + 8,) = 0.

The first of these equations may be used to eliminate & from the remaining equations.

to obtain

i(FPy? — oo + g(wny, + k3yij) = 0. (2.18)

i(gHK* — &*)ij + H(wd, — k3yd) = 0. (2.19)

The solution corresponding to & = 0 is called the equatorial Kelvin wave. From
(2.19). the dispersion relation for this mode is w = +\/gHk. That is. this is a nondis-
persive wave with the same dispersion relation as shallow-water gravity waves. Denote
¢ = +\/gH. The solution of (2.18) is then 7j(y) x exp(—.3y*/2c). For the solution
to be bounded as y — *oc. ¢ must be positive. Thus the equatorial Kelvin wave
solutions are trapped near the equator (that is. they decay exponentially away from
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the equator), exhibit no meridional motion and always travel eastward with the speed
of a shallow-water gravity wave.

In fact, it is exactly this equatorial Kelvin wave propagating eastward that allows
the equatorial Pacific Ocean to alter its condition from a La Nina state to an El Nirno
state. In a La Nina state. westward winds at the equator cause the layver of warm
surface water to preferentially deepen in the western part of the basin. When those
winds weaken. an equatorial Kelvin wave propagates eastward along the thermocline.
deepening the surface layer in the eastern part of the equatorial Pacific. establishing
El Nino conditions (Neelin. Latif, and Jin 1994).

The non-Kelvin wave solutions are sought by forming a single equation for ¢ from
(2.18) and (2.19).

2o w? koo, 3
%}%4»[——3——1:--—;/2]5:0. (2.20)

which. by a change of variables ¥ = (3/\/gH)"*y. may be transformed into

dzlt‘ Vg]; w'2 k 2 -2 -
dy.z‘f‘[T(g—iI—J:—/\. —)’ L-—O.

Note that the derivation of (2.20) required the assumption that & # ck. A solution

that remains bounded as y =& +oc exists if and only if

vl (&3 k 2
Yo — 3=k =2 : =0.1.2.....
3 gH j.‘: k ntl n=0

and that solution is & = H,(Y)exp(—Y7?/2). where H,(Y") is the nth Hermite poly-

nomial (Butkov 1968). This dispersion relation may be nondimensionalized by ex-

~
bt |
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pressing it in terms of & = w/(3vgH)"/? and k = k(\/gH/3)"/2.
2 k1o .
w —“_—)-k =2n+1; n=0.12.... (2.21)

For positive integers n, (2.21) has for any given k three solutions for &. corresponding
to the westward and eastward propagating planetary-scale gravity waves and the west-
ward propagating equatorial Rossby wave. For n = 0. there are only two solutions.
The third solution. & = —k. must be rejected since we assumed that « # ck in the
derivation of (2.20). The n = 0 mode is called a mixed Rossby-gravity wave (some-
times called a Yanai wave) because. particularly at high wave numbers. the eastward
propagating wave behaves like a gravity wave and the westward propagating wave
behaves like a Rossby wave.

The dispersion diagram for the various modes is displayed in Figure 2.1. Note that
the equatorial Kelvin wave is sometimes labelled as the n = —1 mode since & = k is

indeed a solution of (2.21) when n = —1.

2.3.2 Two-layer waves

We seek to describe equatorial waves under the assumption of two-layer dynamics
where the layers may be unequal in mean depth. Let the upper and lower layer mean
depths be denoted H, and H,. respectively. Assuming shallow-water theory applies

to each layer. the linearized equations of motion are
uy — Jyvy = —gn;.
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Figure 2.1: The dispersion diagram for equatorial waves. MRG stands for the mixed
Rossby-gravity mode. The dotted line shows & = —1/k. which is relevant for the
barotropic modes of two-layer waves.

vy + Jyu, = —gm,.

|5
A
I~
—

—hy + H\(ur + v1y) = 0. (2.2
uz — JYyre = —gnr — g'h-.
o + Jyus = —gny — g'h,,.

he + Hy(uz: + voy) = 0.

where numeric subscripts refer to the layer (1 for upper. 2 for lower). variable sub-
scripts dencte partial derivatives. np is the upper-layer pressure. h is the lower-laver

height deviation from H, and g’ = g(p2 — p1)/p2 is the reduced gravity. The rigid-
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lid approximation has been made by neglecting 7, as compared to h; in the third
equation, and by neglecting ¢’n as compared to ¢g’h and gn. This will be a reason-
able approximation for the large length scales and small density differences under
consideration here.

Equations (2.22) may be combined into two sets of equations that can be solved
independently. The baroclinic equations are formed by subtracting the upper layer
momentum equations from the lower layer momentum equations. and subtracting H;

times the upper layer mass equation from H, times the lower layer mass equation.

(uz — uy)e — 3y(va — vy) = —g'h;.

(v2 — v1)e + Sy(ug — uy) = —g'h,,. (2.23)
H H
he + ﬁg[(u'z —up)s + (v2 —ry)y] = 0.

The barotropic equations are formed by adding H, times the upper laver momentum
equations to H; times the lower layer equations. and adding the two conservation of

mass equations together. These equations take the form

(Hiuy + Haug)e — Jy(Hivy + Havp) = —g(Hy + Ho)ne — g'Hah .
(Hyvy + Havp)e + Sy(Hyuy + Hyuy) = —g(Hy + Ha)n, — g'hy,. (2.24)
(Hyuy + Haug): + (Hyvy + Hpv), = 0.
The baroclinic equations (2.23) are in the exact same form as the one-laver equa-
tions (2.16). and so have already been solved in the previous section. That is. defining

the baroclinic velocities uy. = uz — uy and vy = v2 — vy. the baroclinic equations will
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have wave solutions with
{tubc. vbe, R} = {i(y). 8(y). h(y)} expli(kz — wt)] + c.c..

where c.c. stands for the complex conjugate of the preceding expression. only when

k and w are related so that their nondimensional forms

& =w/(8c)"? and k = k(c/3)"/*. where ¢ = V fllf:i[;lzz.

fall upon one of the dispersion curves shown in Figure 2.1. If we take 3 = 2Q/r¢ =
2.27x 107" m~! s7! (where Q is the angular velocity of the Earth and rg is the Earth’s
radius). A, = 4000 m. H; = 400 m. and ¢’ = 1.7 x 107> m/s? (Stephens and Marshall
2000). then ¢ =~ 0.79 m/s and so @ = | corresponds to w = 4.2 x 107® s~!. which
implies a wave period of 17.2 days. With those same parameters. & = | corresponds
to k= 5.4 x 107® m~!. for a wavelength of 1200 km.

Defining the barotropic variables

wee = Hyu, + Hau, e = Hyvy + Hyeo ando—n-’:-pz_pl H, h
bt H +H, =™ H, + H, ps H +H;
the barotropic equations (2.24) take the form
Uy — FYUbe = —gor.
Ubte + JYube = —goy. (2.25)

Uber + Ubey = 0.

These are similar to the one-layer equations (2.16). except that the velocity is non-
divergent. Just as with the one-layer equations. we may assume a wave solution and
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form a single ordinary differential equation governing the amplitude of ..
&*v k
v, [_g__kﬂ] b = 0. (2.26)

which is almost exactly like (2.20), except without any of the terms involving H.
This is consistent with the fact that the nondivergent case may be thought of as the
H — oo limit of the system. The only nontrivial solutions that remain bounded as
y — *oc are wave solutions in the meridional direction. and these exist only under
the condition that
—dﬁ‘ -k >0.
w

Nondimensionalizing k and w as & = w/(Jc)'/? and k = k(c/.3)!/2. for any speed c.
this condition is equivalent to

l .
—=<w<0. fork>O0.

0<J:<-%. for k < 0.
For brevity in what follows. this condition for the existence of nontrivial solutions
to the barotropic equations will be referred to as the barotropic condition. For com-
parison. @ = —1/k is displaved on the dispersion diagram (Figure 2.1) as a dotted
line. Let the meridional wave number be denoted by [. Then. for anv & and « such
that the above barotropic condition is satisfied (equivalently. for any (k.<) on the
dispersion diagram located between the dotted line and the k-axis). a wave solution

exists to the barotropic equations. with meridional wave number
. k
= —-3——k%.
=
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This relation may be rearranged to find the dispersion relation for this mode:

__ Bk
k47

Thus, these solutions are merely Rossby waves.
If there exist (l;',d.v) for which both baroclinic and barotropic modes can simul-
taneously exist, then interaction between the barotropic and baroclinic modes is a

-

possibility. For which (k.&). then. do both baroclinic and barotropic modes exist?
Since baroclinic modes exist only along the curves appearing in the dispersion dia-
gram (Figure 2.1). and barotropic modes exist for any (k.Z) satisfying the barotropic
condition. the question reduces to: Which modes in the dispersion diagram satisfy
the barotropic condition?

From the dispersion diagram. it appears that no eastward travelling gravity waves.
no Kelvin waves. only some westward travelling gravity waves. only the westward
travelling mixed Rossby-gravity waves. and all of the baroclinic Rossby wave modes
satisfy the barotropic condition. In the discussion below. we confirm these statements
analytically.

From the dispersion diagram. it appears that only some of the equatorial wave
modes satisfy the barotropic condition: some westward-travelling gravity waves. the
westward-travelling mixed Rossby-gravity waves. and all of the baroclinic Rossby wave
modes. The following wave modes appear not to satisfv the barotropic condition: the
eastward-travelling gravity waves. the Kelvin waves. the eastward-travelling mixed

Rossby-gravity waves. and some of the westward-travelling gravity waves. In the
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discussion below, we confirm these statements analytically.

The westward propagating gravity waves satisfy the barotropic condition only for
sufficiently small wave numbers. In fact, by substituting & = —1/k into the dispersion
relation (2.21), it may be shown that the mode-n baroclinic gravity wave associated

with (k,&) can couple with barotropic Rossby waves exactly when

. 1 .
k < —=—. for £ > 0.
Vo1 o
1:’>———1—. for k < 0.

V22n +1

To show analytically that the westward propagating Rossby-gravity wave and all
the baroclinic Rossby modes satisfy the barotropic condition. we will assume that
k> 0 and & < 0. and we will demonstrate that & < —1/Z for these modes. Since the
entire dispersion diagram is antisvmmetric (i.e. & is an antisymmetric function of &
for all modes). similar arguments may be applied for k<0and&>0.

The dispersion relation for the Rossby-gravity mode may be written

which is (2.21) with the & + k& = 0 mode factored out. By solving for &.

. 1 1
k=—7‘+u..'<—-,—.

- '
it is immediately apparent that this mode satisfies the barotropic condition.
We may regard the dispersion relation (2.21) as a quadratic equation in k. and so

express k as a function of <.

—L /1 +4&% = 4(2n + 1)@
D *

o

i =
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The Rossby modes correspond ton > 1 and —1 < & < 0. i.e. 0 < &% < 1. The neg-
ative sign in the numerator corresponds to the part of the curve that asymptotically
approaches 0 as £ — oo (more specifically, that part of the curve where k > —1 /(22))
and the positive sign describes the 0 < k < —1/(2<) part of the curve. We choose
the negative sign because the k < —1/(2&) part of the curve clearly satisfies the

barotropic condition. Since 2n + | — &? > 0 for any positive n.

-

A B YA v T W R
k: -~ < o =

=2& 2

El[ —

and so all the Rossby modes satisfy the barotropic condition.

In this chapter. we have established that shallow-water theory is appropriate to
study large-scale equatorial flow: we have reviewed some of the well-known features
of shallow-water theory. both in the inviscid limit and in the context of Ekman dv-
namics: and we have reviewed the theory of equatorial waves in one and two shallow
layers. In the next chapter. we will investigate a simple model of equator-crossing
flow and compare its dynamics to those of the one-layer shallow-water model. In the
subsequent chapter. we derive a two-layer model of equatorial flow which is shown to

contain the waves discussed here.
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Chapter 3

One-layer model

The frictional geostrophic model employved by Stephens and Marshall (2000) includes
frictional effects. allows the flow to be steered by topography. and supplies a diagnostic
relation for the velocity field in terms of the pressure field which. unlike the usual
geostrophic relations. remains valid even at the equator. However. even though this
model has been used to study one-layer equator crossing tlow in the literature. the
model has not been evaluated to determine which aspects of the dvnamics it retains
and which it neglects. In this chapter. we compare the frictional geostrophic model to
the more realistic shallow-water equations to ascertain how well the model captures
the essential physics of the problem.

The reduced-gravity shallow-water model is itself a crude approximation to abyssal
dynamics. Neglected effects include turbulent entrainment. vertical overturning be-

haviour. and baroclinic effects. Possible improvements to the model include employ-
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ing several shallow layers to mimic an isopycnal coordinate system. We also caution
that, as shown by de Verdiere and Schopp (1994) and confirmed in the analysis of
Section 2.1. the “horizontal component” of the Coriolis force. which is neglected as
part of the hydrostatic approximation, may be important in equatorial dvnamics.
particularly if the horizontal length scales of motion are smaller than ( Hrg)!/2. where
H is a vertical scale of the motion and rg is the radius of the earth. For a vertical
scale of H = 200 m. this length scale is on the order of 40 km. which is smaller than
the O(500 km) length scales we study here. and thus the traditional approximation is

retained.

3.1 Frictional geostrophic model

Models in which the momentum equations have been reduced to the geostrophic
relations with the addition of a linear term representing the effects of friction have
been used to study various large-scale motions by several authors (see Stephens and
Marshall 2000: Edwards. Willmott. and Killworth 1998: Samelson 19938: Samelson

and Vallis 1997. and further references therein). The model may be written

—fr = ‘*Q,M — ru. (3.1)
Jr
fu= —-g'M -rt (3.2)
dy
dh o -
—,dT+V'(hu)=O. (3.3)
37
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where u = (u, v) is the horizontal velocity. h is the height of the fluid laver. hg is the

bottom topography elevation, ¢’ is the reduced gravity. and r is a damping coefficient

to be specified.

Kawase and Straub 1991) that. from a vorticity evolution point of view. the effect of
a bottom Ekman layer is equivalent to the effect of linear Rayleigh friction with a
coefficient r = (v.f/2)"2/h = f8g/2h. where v. is a vertical eddy viscosity coefficient.
dg is the Ekman layer thickness. and & is the layer thickness. This implies that r — 0
at the equator. In order to allow friction to be nonzero at the equator. Stephens
and Marshall (2000) neglect the dependence of r on f. but retain the A dependence.
However. Edwards «t al. (1998). Samelson (1998) and Samelson and Vallis (1997) all
neglect the A dependence as well. taking r to be a prescribed constant. For simplicity
we will take r to be independent of f and h in this study.

Modelling friction effects with Rayleigh damping terms has the advantage of al-

lowing the velocities to be solved for in a diagnostic relation in terms of the pressure

gradients.
‘= ,—fI:y —ree g,fp: ~ Py (3.4)
fP4+r? fr+rd

where p = h + hp and subscripts denote partial derivatives. [t is important to
note that (for r # 0) these equations do not have a singularity at f = 0. unlike
the usual geostrophic relations. Thus. the model contains a geostrophic component

(terms proportional to f in the numerator). and a down-pressure-gradient component
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(terms proportional to r in the numerator). In the limit as f — 0. the motion is that
of a potential flow. Note that frictional effects prevent the unbounded acceleration of
the fluid downhill, since the downhill component may be interpreted to represent the
terminal velocity that the fluid would attain when acceleration and friction effects
are in balance at steady state.

A consequence to the form of (3.4) is that the component of velocity parallel to
the pressure gradient is necessarily in the direction opposite to that gradient. From
(3.4).

u-Vp = ,—fpy —rp: fpr — rpy

= 9 —pm_ 2 Pt TPy
fi+r fP+r

/

g 2 2
= fg+r2(—nyPr_"P;'*‘nyPr—"Py)

_ gr 2 2
- —f2+r2(p.t+py)
- gr 2
- _f2+r2l |

< 0.

Geometrically. ¥ - Vp < 0 means the velocity and pressure-gradient vectors have an
angle § > 7/2 between them. Roughly speaking. the velocity may have a downhill
component. but never an uphill one.

The model may be written as a single evolution equation for the height field. A. by

substituting the velocity relations (3.4) into the conservation of mass equation (3.3).

(3.5)

h 'hW (h + h
"‘*"(”'(“"B"f—z%):"v'[g e B)]-

f'Z + f‘2
where J(A.B) = A.B, — A,B,. This form of the model reveals that. despite its

simplicity. it is a nonlinear model. As well. it is clear that r determines how diffusive
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the model will be, since it multiplies the diffusion-type operator on the right-hand
side of the equation. In the r — 0 and f — 1 limit. this equation reduces to the
lower layer of the (uncoupled) Swaters and Flierl (1991) model. that is. planetary
geostrophy.

The nonlinearity in the right-hand side friction term is a result of modelling fric-
tion with Rayleigh damping. Had we modelled friction with a mass source term
representing Ekman pumping, the right-hand side of this equation would be linear in
h. However, the geostrophic relations would have had a singularity at f = 0. and so
such a model could not have been used to study cross-equatorial flow.

The potential vorticity equation of this model is

9(f wl(f)\-_r-
5 (h)+u V(h)— hg. (3.6)

where ( = dv/dr — Ju/dy is the relative vorticity. By comparing this equation to
the potential vorticity equation of shallow-water theory with Ekman friction (2.15).
we see that this model neglects relative vorticity in favour of planetary vorticity. and
it simulates the dissipation of potential vorticity by Ekman friction.

Although r # 0. r is considered to be a small parameter. The potential vorticity
equation (3.6) may be investigated to see the behaviour this model predicts in the
small-r parameter regime. In the limit as r — 0. (3.6) states that f/h is conserved
following the flow. This implies that. for small r (to be precise. r is assumed to
be small relative to the largest value of f. i.e. 0 < r « max|f|). a mass of fluid
approaching the equator will tend to decrease in height. since |f| decreases as the
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equator is approached. This process continues until the right hand side of (3.6)
becomes non-negligible, which is when r/h ~ O(1) (nondimensional values). This
represents the point at which the effects of friction will be dynamically important.
Under the assumption that h and f are each O(1) initially. frictional effects will thus
be important at a latitude where f = O(r); that is. at a nondimensional distance
from the equator of r/J3. where 3 = df/dy at y = 0. With r = 0.05. 3 = | and
L = 500 km. this corresponds to a dimensional distance of 25 km.

An equation expressing the evolution of potential energy in this model is found

as follows: Writing (3.1) and (3.2) into the vector form
ru+ fkxu+Veod =0.
where ® = g'(h 4+ hg). we take the inner product of this equation and hu to find
rhu -u+hu-Vo =0. (3.7)
Upon multiplying ® by the conservation of mass equation (3.3). it is found that

) (1
g—t (;gh2 +ghh5) + &V - (hu) =0.

which. by using (3.7). may be written in the form

gt (égh'2 +ghh3) + V- -(bhu) = —rhu - u. (3.8)

Equation (3.8) is the equation analogous to the conservation of energy in the shallow-
water model (2.10). However. (3.8) implies that potential energy. 1gh? + ghhg. is not
conserved in this model. but. in fact. decreases with time. [t appears that the rate
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of potential energy dissipation is simply proportional to the damping parameter r:

however.

2
u-u = (f’_(i)—rm[(—fpy = rp:)® + (fp= — rpy)?]
(9')?

(3.9)

so that the potential energy dissipation is only proportional to r as long as f > r.
Very near the equator. where f < r. the velocity is proportional to 1/r. and thus the
dissipation of potential energy is actually proportional to 1/r there.

The major disadvantage of this model is its oversimplification of the dynamics. In
particular. fluid inertia has been neglected. Since the fluid must always move down
the pressure gradient. a mass of fluid flowing down one side of an ocean basin does
not have the momentum to flow back up the other side.

[t is not expected that this model will reproduce the realistic dyvnamics within
the equatorial region. The model will be evaluated on its ability to predict the net
effect on a geostrophically balanced flow as it passes through the equatorial region.

and emerges on the other side or recirculates. again geostrophically balanced.

3.2 Numerical methods

We numerically integrate forward in time the reduced-gravity shallow-water model.
(2.6) and (2.7). and the frictional geostrophic model. (3.3) and (3.4). in order to

compare the two models. The shallow-water model may be written in nondimensional
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form as

Ou f 1 )

—a—t—+u-Vu+h—o-kxu_—EV(h+ha)+ch. (3.10)
oh ,
S+ (uh) =0, (3.11)

where u is the horizontal velocity vector. Fy;. represents the friction term (see equa-
tion 3.12 below for the specific form of friction used). Ro = {7/ foL is the Rossby
number. and U. L. fy.and hq are typical scales for the velocity. length. Coriolis pa-
rameter and fluid depth. respectively. It has been assumed that the time variable
is scaled advectively, T = L/U . for a time scale T. and that the scale slope for the
bottom topography is the same as the scale slope of the fluid height. ho/L. We have
also emploved the geostrophic scaling fol’ = g’ho/L. i.e. [*/(g’ho) = Ro. Since the
(dimensional) Coriolis parameter f* passes through zero in the domain of interest.
but we wish to allow the fluid to be in a state of geostrophic balance in part of our
numerical domain. we scale f* by its value fy, = 2Q0sinfy at a latitude 8, away from
the equator where the flow is geostrophic. Thus. we will take Ro <« | and the flow
will be in approximate geostrophic balance at f =~ +1.

These equations are discretized on an Arakawa C-grid (Figure 3.1. see also Arakawa
and Hsu 1990). The spatial discretization of the advection. Coriolis and pressure gra-
dient terms is performed using the scheme of Arakawa and Hsu (1990). This scheme.
which is designed to tolerate an arbitrarily small laver thickness (i.e. intersections of
the fluid interface with the bottom topography). conserves energy and weakly dissi-

pates potential enstrophy when the mass flux is nondivergent (neglecting friction and
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Figure 3.1: The Arakawa C-grid. (a) One cell. q represents vorticity. Note that
variables inside the dotted-line box are all labelled identically. (b) Selected points
near the edges of the computational domain indicate how the boundary conditions
are imposed.

any errors introduced by the time-stepping routine). It is a second-order accurate
scheme in space.

We note that the possibility of vanishing layer thickness in the shallow-water
equations is an issue that must be carefully treated by the spatial discretization
scheme. The momentum equations are discretized in the flux form. (2.8). where the
mass flux. hv. multiplies potential vorticity. ¢ = (¢ + f)/h. Near grid points where
h — 0. ¢ may be large. which can lead to numerical instability if care is not taken.

The temporal discretization of the momentum equations is done according to a
third-order accurate scheme due to Matsuno (1966a). [t is a third-order Runge-Kutta
method.

The mass equation is stepped forward in time using the method of Hsu and
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Arakawa (1990), which is a predictor-corrector scheme second-order accurate in time
and space that maintains the positive-definiteness of the height field 2 and conserves
mass. One other popular method that maintains the positive-definiteness of the laver
thickness as it is advanced forward in time is the Flux-Corrected Transport method
{Sun. Bleck. and Chassignet 1993). In our tests. we found the scheme of Hsu and
Arakawa (1990) to possess superior numerical stability. as compared to the Flux-
Corrected Transport method.

To integrate the frictional geostrophic model numerically. the same routine as for
the full shallow-water equations is used for the mass equation. but since there is no
time derivative to evaluate in the velocity relations (3.1). these are simply evaluated
at each time step using second-order accurate central differences for the derivatives.

For all the simulations reported here. the boundary conditions used for the height
field were Dirichlet conditions. That is. the height was specified on the boundary.
usually to be zero. but nonzero in the case of the inflow simulations performed over
realistic topography. Except for inflow conditions. no-slip and no-flux conditions were
enforced at the boundary. that is. both components of the velocity were held fixed at
zero all along the boundary for all times. For the simulations with inflow conditions.
the velocity at the boundary was set to be the geostrophic velocityv. based on the

topography and the height field of the inflow current at the boundary.
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3.3 Parameter values and observations

We have taken friction to be of the form

u

Ffric = .4HV2u + .4,vv6‘u - .-\v;z_—z.

(3.12)
where Ay, Ay and Ay are the horizontal, numerical and vertical friction coefficients.
respectively. For the simulations reported here Ay = 107>, Ay = 107°. and Ay =
4 x 1078, unless otherwise noted. These values were all chosen to be as small as
possible so that the friction increased the stability of the scheme. but affected the
leading-order dynamics as little as possible. The horizontal friction term is intended
to represent the effects of horizontal diffusion of momentum by subgrid-scale eddies.
The numerical and vertical friction terms are added for numerical stability. Numerical
friction effectively removes small scale features. and vertical friction is added only to
preveui the unphysical acceleration of massless grid points. (All grid points in the
numerical domain. including grid points at which there is no fluid. have velocities
associated with them. The topography causes downhill acceleration. even at these
massless grid points. The vertical friction term prevents unbounded acceleration at
such points.) The horizontal and numerical terms are evaluated at each of the three
time levels in the Matsuno (1966a) scheme. but the vertical term is fully implicit at
each time step.

Note that the numerical scheme of Arakawa and Hsu (1990) tolerates arbitrarily
small thicknesses. but not a thickness of exactly zero. since potential vorticity ¢ = ((+

f)/h must be explicitly calculated. Thus. we maintained a minimum nonzero height
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field at all grid points. This was set to a nondimensional value of 107®. Smaller values
led to increased numerical instability, and larger values led to poorer conservation of
kinetic and potential energy.

Typical velocities observed for the Antarctic Bottom Water current as it ap-
proaches the Equator from the south are on the order of several centimetres per
second. DeMadron and Weatherly (1994) measured the geostrophic velocity of the
current at 25° S latitude at approximately 1-2 cm/s. 2 cm/s at 17° S. and 5 cm/s
at 10° S. Rhein. Stramma. and Send (1995) took direct and geostrophic velocity
measurements at 5° S. and found a highly variable current with velocities up to 10
cm/s there. Sandoval and Weatherly (2001) also analyzed measurements at 4°30'S.
and found velocities in the range 3-8 cm/s. Hall ef al. (1997) took direct measure-
ments of the velocity (without employing any geostrophic calculations) right at the
equator. and found that velocities of approximately 53 cm/s are typical in the centre
of the current. with temporal variations giving velocities of up to 10 cm/s. Rhein
et al. (1995) also measured AABW velocities of 5-10 cm/s in the equatorial channel.
Unless otherwise noted. we will assume a velocity scale of 5 cm/s.

When one chooses a value for the parameter ¢’. thereby setting the density dif-
ference between the two layers. one assumes that the density is constant within
the current and outside the current. with a jump discontinuity at the interface.
This is a rough approximation to the actual density variation. which is continu-

ously varving in the vertical direction even within the current itself. and changes
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slightly along the current path (see, for example, the density sections of DeMadron
and Weatherly 1994 and Sandoval and Weatherly 2001). Stephens and Marshall
(2000). in their numerical simulations of equatorial flow using a simplified model. use
g = 1.7 x 1073 m/s%. but Borisov and Nof (1998) and Nof and Borisov (1998) use a
much smaller ¢’ = 2 x 107! m/s?. In these papers. Nof and Borisov state that they
use a ¢’ smaller than is often used because they are studying the core of the current.
We will take the more typical value ¢ = 1 x 1072 m/s?. unless otherwise specified.

it is known that AABW enters and exits the Brazil Basin (a region of the southern
Atlantic Ocean between South America and the mid-Atlantic ridge. extending from
about 30°S to the equator) through specific channels. The volume flux entering the
basin has been measured at 6.9 x 10° m®s~! = 6.9 Sv (Hogg. Siedler. and Zenk 1999).
where Sv stands for the flux units of Sverdrups. and 1 Sv = 10° m® s~!. The amount
exiting through the equatorial channel northwest of the basin is 2.0-2.2 Sv (Hall ¢f al.
1997). and the amount exiting through fracture zones in the mid-Atlantic ridge to the
northeast of the basin is 1.22 + 0.25 Sv (Mercier and Speer 1993) (see Figure 3.8 for
the geography of the bottom topography). The remaining 3.6 Sv of fluid is believed to
upwell. or mix vertically. into shallower waters (Ledwell et al. 2000). The behaviour
of the current is complicated by the fact that it is believed to split up into two parts
with different paths (Sandoval and Weatherly 2001) and that it is highly variable in
time (Hall et al. 1997: Rhein et al. 1995: Mercier and Speer 1993).

The bottom topography and functional form of Coriolis parameter are chosen in a
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particular way to provide a clean testing ground for the comparison of the two models.
In particular, we are interested in diagnosing how well the propagation speed of an
eddy, as predicted by each of the models, agrees with the Nof (1983) speed. ¢'s/ f.
where s is the bottom slope. A nearly constant bottom slope and Coriolis parameter
away from the channel bottom and equator facilitates computing this diagnostic.
Therefore. the bottom topography is chosen to be a simplified meridional channel
with a hyperbolic cross section. hg = v/r? + L. which has a slope approaching +1
away from r = 0. and the Coriolis parameter is chosen to be f = tanh(JoLy/ fo).
which tends to a non-dimensional f-plane value of unity away from y = 0. and has
a slope at y = 0 of JL/fo. For simulations reported here. JoL/fo = L. which.
for fo evaluated at 5° latitude. corresponds to choosing a horizontal length scale of
L = 500km. The variation of this functional form of the Coriolis parameter is shown

in Figure 3.2.

3.4 Flow over idealized topography

The frictional geostrophic (hereafter referred to as FG. not to be confused with the
term frontal geostrophic) model and the shallow-water model are compared for flow
over simplified bottom topography. The topography takes the shape of a meridional
channel. Simulations were performed with all the fluid initiallvy south of the equator.
flowing northward along the western half of the channel. in the form of an eddy. i.e.

the height field initially had compact support in the domain. The height of the eddy
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Figure 3.2: Coriolis parameter variation with latitude. Solid line is Coriolis parameter

f = tanhy. Dotted line is df /dy = sech®’y. Nondimensional domain is —3 < y < 3.
or dimensionally. —13500 km < y* <1500 km .

is set to have a cosine cross-section.

TR
Rmax

4

hmax
h = [l+cos( )] 0 < R < Ryax-

where R = \/(1' —r. )2+ (y—y:)* and (r..yc). hmax and Rpax are specified param-
eters corresponding to the centre coordinates. height and the radius of the eddy.
respectively. This height profile was chosen so that the height field is continuous and
differentiable. These initial conditions were chosen. in part. to simulate the Antarc-
tic Bottom Water flow. which flows northward along the western slope toward the
equator.

The motion of an isolated eddy. as opposed to a current. is studied in this section
because we are evaluating the FG model and not trving to simulate the details of
AABW flow. One advantage of isolated eddy simulations over current simulations is
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the flow may be easily analyzed in terms of the evolution of the centre of mass of the
eddy. The propagation speed of the centre of mass of the eddy will be compared to
its theoretical speed (Nof 1983). Numerical simulations of the evolution of a current
will be described in the next section. where simulations over realistic topography are
discussed.

Several simulations of an isolated abyssal dome of fluid approaching the equator
from the south have been carried out varying only the damping parameter r in the
case of the FG model. or the Rossby number Ro in the case of the shallow-water
model. In Figure 3.3. we show snapshots from a typical simulation emploving the
shallow-water equations. The panels in Figure 3.3 are labelled with nondimensional
time. With L =500 km and ' = 5 cm/s. one nondimensional time unit corresponds
to a dimensional value of T = L/U" = 107s = 116 days. The eddy is observed to
propagate along the shelf without losing much height until almost at the equator (top
left panel. ¢t = 0.2 or t* = 23 days). when fluid starts to accelerate downhill (top right.
t = 1.4 or t* = 162 days). Part of the fluid is located slightly north of the equator
while flowing downhill. The fluid rises up the other side of the channel (bottom left.

= 2.4 or t* = 278 days). and ultimately splits into two eddies: one flowing north.
the other flowing south (bottom right. ¢t = 4.0 or ¢* = 463 days). This is qualitatively
consistent with the simulations of Borisov and Nof (1998). who investigated eddies
crossing the equator in a meridional channel.

Figure 3.4 displays the simulation of the motion of the same initial eddy. but as
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Figure 3.3: The results of a shallow-water simulation. Ro = 0.02. The contour spacing
is 0.02.

predicted by the FG model. The eddy is seen to travel initially along the slope (top
left. ¢ = 0.2 or t* = 23 days). as in the shallow-water simulation. but upon reaching
the equator. flows directly downhill. with very little fluid found north of the equator
as it does so (top right. ¢t = 1.4 or t* = 162 days). The fluid pools at the bottom of the
channel at the equator (bottom left. ¢ = 2.4 or ¢t* = 278 days). and then proceeds to
split into two parts. one flowing north. and the other recirculating back south (bottom

right. ¢ = 4.0 or t* = 463 days). Despite the simplicity of the model. it captures the
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Figure 3.4: The results of an FG model simulation. r = 0.02. The contour spacing is
0.02.

characteristic splitting of the fluid into northward and southward flowing parts seen
in the shallow-water simulation. The lack of inertia in the model is seen in both the
sharp turn from along-slope flow to downhill flow and the immediate deceleration
from fast downhill flow to nearly stationary fluid pooling at the equatorial channel
bottom. Thus the net result of the lack of inertia in the model is that the north-south
splitting of the flow is very symmetric. and that the final flow is very near the bottom

of the channel.
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Figure 3.5: Centre of mass motion. Solid lines correspond to the FG model. r =
0.02,0.1.0.2,0.3. Dash-dot lines: shallow-water. Ro = 0.02. Dotted lines: shallow-
water. Ro = 0.1. Dashed line is the slope with which an eddy moving with the Nof
(1983) speed would move.

We calculate the centre of mass of fluid in the domain at each time for the different

runs performed. where the z- and y-coordinates of the centre of mass are

// zhd-!. / yhdA
//hd4 / hdA

respectively. where the integral is performed over the whole domain.
Q={(r.y)lle] <3|yl <3}

The evolution of the centre of mass with time is displayed in Figure 3.5. One may
see from the  versus time plot (Figure 3.3a) that for r = 0.02. the eddy propagates
primarily along the shelf with almost no downhill motion. then suddenly accelerates
in the downhill direction. For higher values of r. the downslope motion is greater
initially. and the maximum downhill velocity is lower. For all the FG model runs.
the fluid does not flow as high onto the opposite bank as for the shallow-water runs.
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This further points to the lack of fluid inertia in the FG model. The j versus time
plot (Figure 3.5b) shows that the initial propagation speed along the shelf of all the
runs agreed well with the Nof (1983) speed. To reveal the splitting of the fluid after
passing the equatorial bottom of the channel. we compute three centres of mass: the
overall centre of mass location. (Z, j) (as already defined). the centre of mass of fluid

in the northeastern quadrant of the domain.

//mzhcn - / yhdA

e = /mhd»l /thu

and the centre of mass of fluid in the southeastern quadrant.

‘ //ﬂthchl /nzyhd-l

IsE = . JbE—_—'—-
/ hdA / hd
Q2 Qa2

In the left half of the y versus r plot in Figure 3.5c. we display the centre of mass

={{z.y)]0<r<3.0<y <3}

Q= {(r.y)l0<r<3.-3<y <0}

of the entire fluid (Z. 7). but in the right half of the plot we display the centres of
mass of fluid in the northeastern quadrant (Zyg. jyg) and the southwestern quadrant
(Ise.gse) of the domain.

The plots in Figure 3.6 show diagnostics of the motion after the fluid has reached
the bottom of the channel and split into northward and southward flowing parts. The
motion predicted by the FG model is seen to be quite steady in time as compared with
the shallow-water model. In the plot of centre of mass speed versus time (Figure 3.6b).
the speed is scaled by the local Nof speed. s(f.y)/f(7) in nondimensional variables.
where the slope s(f.7) and the Coriolis parameter f(j) are each evaluated at the
the centre of mass position. The propagation speed in the shallow-water simulation
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Figure 3.6: Motion after splitting. Solid lines correspond to the FG model. r =

0.02.0.1.0.2.0.3. Dash-dot lines: shallow-water. Ro = 0.02. Dotted lines: shallow-
water. Ro = 0.1. The propagation speed is scaled by the local Nof speed.

with low Rossby number is seen to agree well with the theoretical speed. The higher
Rossby number flow is highly variable in time, and so it is difficult to say whether or
not it moves with the predicted speed in the long-term time-mean case or not. The
FG model predicts that the centre of mass of the flow propagates slower than the Nof
speed for all damping parameters shown. This reflects the fact that the fluid is not
in the form of northward- and southward-propagating isolated domes of fluid. but
is instead spreading, with part of the fluid remaining stationary in the centre of the
channel (see Figure 3.4. ¢t = 4.0).

Figure 3.7 displays the fraction of the total fluid residing in either hemisphere
for £+ > 0 as a function of time. The FG model seems to consistently predict a

verv symmetric north-south splitting of the current. The shallow-water model does
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Figure 3.7: Amount of fluid in each hemisphere after splitting. Solid lines correspond
to the FG model. r = 0.02.0.1.0.2.0.3. Dash-dot lines: shallow-water. Ro = 0.02.

Dotted lines: shallow-water. Ro = 0.1. The FG model predicts a symmetric splitting
due to lack of fluid inertia in the model.

not predict a perfectly symmetric splitting. As documented by Borisov and Nof
(1993). the amount of fluid ending up in either hemisphere is a complicated function
of the channel geometry and the initial conditions of the eddy. For the particular
simulations shown in Figure 3.7. the higher Rossby number flow has slightly more
fluid recirculating south than flowing north. and vice versa for the lower Rossby
number flow. The cause for this is likely related to the subtle differences in the speed
and direction with which the eddy impinges upon the equator. which Borisov and

Nof (1998) found to be the important factors determining how much fluid crossed the

-1
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



equator.

The bottom topography of the Atlantic Ocean is certainly more complicated than
that of a meridional channel (Figure 3.8). Although one may argue that the topog-
raphy may reasonably be modelled as a meridional channel away from the equator.
in the vicinity of the equator, the large-scale channel nature disappears. and the lo-
cal topography is actually better approximated by an east-west channel. or a basin.
Thus it remains to compare the predictions of these models over a realistic bottom

topography.

3.5 Flow over realistic topography

The bottom topography of the Atlantic is shown in Figure 3.8. One detail of note
is that the 4500 m contour does not cross the equator. So if. as observations seem
to suggest. Antarctic Bottom Water flows at depths of approximately 4500 m. and
vet successfully crosses the equator. then a certain amount of uphill flow is part of
the current’s path. If this is true. then the frictional geostrophic model studied here
would have difficulty describing such a flow. since the model does not capture motions
involving flow up the dynamic pressure gradient. We shall see that this is indeed the

case.
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Figure 3.8: Bottom topography of the equatorial Atlantic. Contours of depths 4000 m.

4500 m. and 5000 m are shown. Bathymetric data is from the Naval Oceanographic
Office Data Warehouse at http://idbms.navo.navy.mil/.
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Figure 3.9: Bottom topography before and after smoothing. The smoothed
topography is used in the numerical simulations. Shading interval is 200 m.
Bathymetric data is from the Naval Oceanographic Office Data Warehouse at
http://idbms.navo.navy.mil/. The six + signs mark the mooring locations of Hall
et al. (1997). The five lines labelled (a)-(¢) are the lines across which the flux is
measured in our simulations.
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3.5.1 Numerical scheme

To perform numerical simulations, we first smooth the bathymetry data to remove
gridscale features. The bathymetric data is projected onto a 148 by 253 grid. and it
is smoothed by six iterations of replacing a data point with the nine-point average
of the data surrounding it. This averaging was judged by eye to be a reasonable
compromise between removing gridscale features and retaining large-scale features of
the topography. The raw topographic data and the smoothed topography is shown
for the actual numerical domain in Figure 3.9.

The inflow conditions are specified via Dirichlet boundary conditions on the height

and velocity fields. The height at the boundary is set to have a cosine profile.

h=ﬁ'f;;“[l+cos(n-3

. 0 < R < Rnax-
| LELEL

where R = |r — r.| and r.. hpax and Rnax are specified parameters corresponding to
the centre. height and the half-width of the inflow profile. respectively. This height
profile was chosen so that the height field is continuous and differentiable. to assist
with numerical stability. The influx velocity is calculated from the height profile on
the boundary. assuming the flow is geostrophic. Unless otherwise specified. the inflow
has a height of 0.7 (280 metres) and a half-width of 0.5 (100 km). Outflow conditions
are crudely set by providing a mass sink along the northern and eastern edges of the
domain. The mass sink decreases the height field. with factors that decrease smoothly
from exactly one over most of the domain to zero right near the edge of the domain.

The velocity scale has been taken to be 3cm s~!. the Coriolis parameter has been
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Figure 3.10: Height field at steady state. shallow-water model. Contour interval is
0.1. or 20 metres.

scaled by its value at 5°N. and the horizontal length scale is 200 km. This gives a
Rossby number (at 5°N or 3°S) of Ro = 0.0197. and a time scale of T = 146.3 days.
i.e. | vear is 7.88 nondimensional time units. The spatial variation of the Coriolis

parameter is f = sin#/sin 5°. where 6 is latitude.

3.5.2 Steady-state results

The shallow-water model and the frictional geostrophic model were run to steady
state. Steady state was determined to have been reached when the output diagnostic
values of potential and kinetic energy approached steady values. (Typically. at steady

state the diagnostic variables were varying by less than |% of their value over one
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Figure 3.11: Height field near steady state. FG model. Contour interval is 0.1. or 20
metres.

nondimensional time unit.) An image of the resulting height field for each run. with
identical influx conditions. is shown in each of Figures 3.10 and 3.11. Note that Figure
3.11 shows the system when it is not quite at steady state. since the equatorial basin
is still filling slowly. However. the height field east of 34°W is already as it appears
at steady state.

For both models. the flow is observed to follow bathymetric contours quite closely.
While the entire current initially flows northward along the contours. part of the flow
turns north-west and enters the equatorial basin. which is located between 1°S and
1°N and between 34°W and 38°W. and part of the flow turns east and exits the
numerical domain. However. the frictional geostrophic model predicts much less flow

into the equatorial basin. and ultimately. across the equator.
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Line label Description Location | Direction Range

(a) into domain 7°S North | 35°W-30°W
(b) out of domain 25°W East 3°S-0.5°S
(c) into eq. basin 33.7°W West 4°5-0.2°S
(d) HMW moorings | 35.9°W West 2°S-1°N

(e) out of eq. basin | 39.2°W West 0.8°S-1.3°N

Table 3.1: Lines across which the flux is calculated in the simulations.

The mass transport of this current is measured for each of these simulations across
five locations (see Figure 3.9 and Table 3.1). The measured fluxes are (a) the flow into
the domain. (b) the flow eastward out of the domain. (c) the flux into the equatorial
basin. (d) the flux across the mooring locations of Hall et al. (1997). and (e) the flux
out of the equatorial basin.

For the simulations shown in Figures 3.10 and 3.11. the shallow-water model
predicts a 0.115 Sv flux across the equator. but the frictional geostrophic model
predicts only a flow of 0.024 Sv across the equator. Since uphill flow is not permitted
in the FG model. the only fluid successfully crossing the equator is fluid that was
initially at shallow enough depths to flow over the ridges located before and after the
equatorial basin.

If this hypothesis is true. then the equator-crossing flux predicted by the FG
model should therefore sensitively depend upon influx position. The influx position

was varied. and the flux across the equator measured at steady state. with the results
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Figure 3.12: Flux across equator as a function of inflow position. Dotted line corre-
sponds to shallow-water simulations. solid line to FG model.

shown in Figure (3.12). For this figure. the depth of the current is the position
relative to the ocean suriace of ine centre of mass of the influx profile. as calculated
by numerically integrating over the region of inflow for each of the different current
locations. For both models. the equator-crossing flux depends on the initial depth of
the current. with the frictional geostrophic model consistently predicting less equator-
crossing flow than the shallow-water model at the same initial current position.

It is worth noting that we have not observed. no matter how shallow the inflow
depth. the entire current crossing the equator. Sandoval and Weatherly (2001) pro-
pose that the AABW splits up into two currents: the shallower one. which flows with

1.1 Sv flux at 4.5°S at a depth of 4400 to 4300 m. flows directly into the equatorial
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basin, eventually crossing the equator.! Since we have not observed more than 50%
of the current flowing into the equatorial basin in our numerical simulations. even
for current depths much more shallow than oceanic observations suggest. we propose
that only part of this observed shallower current flows into the equatorial basin.

Note that for realistic inflow depths. the shallow-water model captures the ob-
served southern-intensified western flow within the equatorial basin. (See Hall et al.
1997 for observations, Figure 3.13 for our simulations.) However. for inflow higher
up on the topography, the resulting flow is observed to circulate the opposite way in
the equatorial basin. and is seen to be much more variable in time. (It has not been
observed to settle to a steady state.) This alternate flow appears to be the result
of a small amount of fluid that flows through the gap in the ridge near (4°S.34°W).
and. as it enters the equatorial basin. interacts with the remaining flow. diverting it
northward and establishing a counterclockwise flow in the basin.

Since the downhill component of flow in the FG model also depends upon the
damping coefficient. that coefficient should also affect the amount of current crossing
the equator. The damping parameter was varied. and the percentage flux crossing
the equator measured at steady state. The results are shown in Figure 3.14. An
increase in the damping parameter leads to a decrease in the amount of fluid crossing

the equator. The damping parameter is set to r = 0.05 for most simulations since

'The discrepancy in measured fluxes near 5°S and across the equator (2.1 Sv. Hall et al. 1997)
may be due to entrainment effects or to measurement errors due to large variability. For example.

the best estimates (Sandoval and Weatherly 2001) of the transport in this current at 13°S is 3.8 Sv.
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Figure 3.13: Velocity fields in the equatorial basin for realistic and very shallow inflow.
Upper plot: inflow depth = 4575 m. arrow at bottom is for 5 cm s~!. Lower plot:

inflow depth = 4226 m. arrow at bottom is for 20 cm s™!.
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Figure 3.14: Percentage flux across equator as a function of damping parameter.

the velocity at f = 0 is proportional to 1/r (see equation 3.9). so smaller damping
parameters lead to unreasonably high velocities at the equator. causing numerical

instability unless the time step is quite small.

3.5.3 Time-dependent flow

Hall et al. (1997) (hereafter referred to as HMW) measured a mean equator crossing
flux of about 2.0 Sv. but also observed a significant time variability in the AABW
flow in the equatorial basin. In Figure 3.15. we display their figure showing the
measured transport of Antarctic Bottom Water across the equator as a function of

time. They measured changes in the observed transport on the order of 4 Sv in a few
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Figure 3.15: Time-dependent flux as measured by HMW. Thin line: daily trans-
port. Thick line: 40-day boxcar average. Negative values indicate northward flow.
Reproduced with permission of the journal publishers.
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days, varying from as much as 5 Sv northward to 2 Sv southward over the 604 day
dataset. Perhaps most significantly, they observed that the 40-day averaged transport
was slightly greater than 2 Sv northward for much of the year. but was close to zero
at the same time of year (beginning of March) two years in a row. This implies that
the AABW has an annual signal associated with it. with magnitude on the order of
the total volume flux itself.

To evaluate the ability of the shallow-water model and the frictional geostrophic
model to capture this time variability, simulations were performed with time-varying
influx conditions. and the flux was measured as a function of time across the five key
positions. The model was first run out to steady state. then the influx was varied
sinusoidally in time. with a period of one vear and an amplitude of 10 percent. The
results are shown in Figures 3.16 and 3.17.

Figure 3.16 shows the five measured fluxes as they vary in time. Although the
magnitude of the inflow was varied by only 10%. the response of the measured fluxes
was significantly greater. As a result of the time-varyving inflow conditions. the flow
into the equatorial basin actually reversed direction for a brief period of time. while
the flow that actually crossed the equator changed its volume flux by 17% of its
mean value. Most significantly. the time variability of the fluid across the position
where HMW took their data shows a relative change of 75% of its mean value. The
difference in time variability of the fluid at the mooring locations and at the exit

of the equatorial basin is easily explained by the fact that much of the extra fluid
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Figure 3.16: Time-dependent flux as predicted by shallow-water theory. inflow posi-
tion of r. = 1.25. Solid line: inflow conditions. Dash-dot: outflow eastward. Dashed
line: flow into equatorial basin. Dotted line: flow out of equatorial basin. Solid with
+: flow across HMW mooring locations. Bottom plot is shown with limited axis
range to show time variability.
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entering the basin simply filled it, and did not exit.

These results imply that the time variability observed by HMW is a result of the
local topography and of the location of the current meters. and does not reflect the
amount of time variability of the amount of fluid crossing the equator. nor the time
variability of the AABW current as it approaches the equatorial basin.

The same experiment was conducted with the frictional geostrophic model. with
the results shown in Figure 3.17. Although this model does display less time-variability
than the shallow-water model. it still predicts that a 10% change in flux approaching
the equatorial basin leads to larger relative changes in flux into and through the basin.
The flow into the equatorial basin varied by 44% of its mean value. while the flow
across the HMW mooring locations varied by 25%. The flow out of the equatorial
basin varied by 9.4% of its mean.

To investigate how the time-dependent behaviour seen in Figure 3.16 depends on
inflow location. we performed the same experiment as in Figure 3.16. but with the
current inflow set to a nondimensional position of 1.15 (centre of mass at 4477 m
depth) instead of 1.25 (centre of mass at 4375 m depth). The centre of mass of the
current at the southern boundary is thus at a depth consistent with observations. The
results are shown in Figure 3.18. The amplitudes of the fluctuations in and through
the equatorial basin are not quite as great as for the deeper current case. Also. the
crests and troughs seem more symmetric in this shallower current experiment than

in the deeper current experiment. where the asymmetry is similar to the asvmmetry
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I T T

4

3 ]
=
2

5 2 b _

=

1 - _

Flux (Sv)

O L . i t
O 0.5 1 1.5

ime (years)

N)

Figure 3.17: Time-dependent flux as predicted by FG model. Solid line: inflow
conditions. Dash-dot: outflow eastward. Dashed line: flow into equatorial basin.
Dotted line: flow out of equatorial basin. Solid with +: flow across HMW mooring
locations. Bottom plot is shown with limited axis range to show time variability.
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Figure 3.18: Time-dependent flux as predicted by shallow-water theory. inflow posi-
tion of r. =1.15. Solid line: inflow conditions. Dash-dot: outflow eastward. Dashed
line: flow into equatorial basin. Dotted line: flow out of equatorial basin. Solid with
+: flow across HMW mooring locations. Bottom plot is shown with limited axis
range to show time variability.
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Figure 3.19: Amplitude of time-dependent fluxes versus amplitude of time-dependent
inflow condition, shallow-water simulations. Inflow position. r. =1.15. Solid line with
circles: inflow conditions. Dashed line with circles: flow into equatorial basin. Dotted
line with circles: flow out of equatorial basin. Solid line with +: flow across HMW
mooring locations.

seen in the observations (Figure 3.153).

In the experiment shown in Figure 3.18. the inflow was varied by 10% over the
course of one year. The same experiment was repeated. but with inflow variations of
7.5%. 5%. and 2.5%. and the results are summarized in Figure 3.19. The experiments
were run for two simulated vears. and each of the transports was averaged over the
two years. We compute the “relative amplitude” of time variability as

0.5(max. transport — min. transport)

relative amplitude =
average transport

This is a simple measure of how much the transport deviates from its average. If

the transport were a sinusoidal function of time. the numerator would be the crest-

5]
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to-average amplitude. We plot the relative amplitude in Figure 3.19 as a measure of
how much the relative time-variation of transport across each of the locations depends
on the relative time-variation of transport as AABW approaches the equator. The
amount of fluid successfully crossing the equator is seen to show slight amplification
of time-variability, but the amount of fluid flowing into the equatorial basin and also
across the HMW mooring locations shows large amplification of time-variability.

These results suggest that the large time-variability in cross-equatorial transport
observed by HMW may be the result of variations in the source of AABW on the
order of merely 10% to 15% of its mean transport. These results also suggest that
the amount of fluid successfully crossing the equator (i.e. exiting the equatorial basin)
does not have the same amplitude of time-variability as was measured by HMW. but
has a smaller amplitude of approximately 10% to 20% of the mean flow.

The model studied here parameterizes frictional and other ageostrophic effects into
a simple Rayleigh damping term. This model has been used in studies of large-scale
flow. including abyssal equator-crossing flow. We have investigated the viability of
this model by comparing its predictions to the predictions of shallow-water theory over
simplified and realistic topography. Despite the simplicity of the model. it broadly
captures certain aspects of shallow-water flow well.

Aithough the model studied in this chapter is a candidate for the lower layer of the
two layer model we are constructing. it is not a reasonable model for the upper layer

because the thick upper layer would not have bottom friction playing a leading-order
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role in the dynamics. In the next chapter, we will explore two-layer models.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4

Two-layer model

In this chapter. the effect of a dynamically active upper layer is ccnsidered. Leading-
order two-layer models are derived for a mid-latitude scaling as well as an equatorial
scaling. In the mid-latitude scaling. the shallow-water equations or the frictional
geostrophic model studied in the previous chapter may be employed in the lower laver.
and in the upper layer a relation is derived that resembles the balaince equations (Gent
and McWilliams 1983). A model is thus derived that. while predicting a well-defined
flow at the equator. simplifies to the Swaters and Flierl (1991) model in the mid-
latitude limit. In the equatorial scaling. we obtain two models. corresponding to two
different mechanisms for inducing motion in the upper layer. In one of the equatorial
models. the lower layer dynamics are governed by the shallow-water equations. and the
upper layer dvnamical equations are shown to be related to the linearized shallow-

water equations. Thus. the equatorial wave analysis of Chapter 2 applies to that

~1
(v.4]
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equatorial scaling model. Finally, the three models are merged into one leading-order
uniformly valid model which reduces in each of the limits to the appropriate local
model.

We first present a modified Nof (1983) analysis to help motivate the need for an

upper layer.

4.1 Modified Nof analysis

Nof (1983) showed that the velocity of any steadily-travelling compactly-supported
mass of inviscid shallow water on a linearly sloping bottom on an f-plane is along the
slope with speed g's/f. where ¢’ is the reduced gravity. s is the slope of the bottom
topography. and f is the Coriolis parameter. Swaters and Flierl (1991) modified Nof’s
analysis to include the effects of baroclinic interactions with the upper layer on the
velocity. Here. we extend the analysis further to include the effects of bottom friction
as parameterized by a linear damping term.

The equations of motion for the lower layer. including the effects of variation in

pressure of the upper layer and linear damping. may be written
u,+u-Vu+ fés xu+gV(h—sy)+9g¥Vn=—ru. (4.1)

he + V - (uh) = 0. (4.2)

where we have assumed the bottom topography is linearly sloping. deepening in the

positive y direction. and we have applied the rigid lid approximation. We assume

9
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that the region of non-zero height has compact support. i.e. that the fluid occupies a

local region only. Denote the region of non-zero height by R and let the boundary of

the region, @R, be given by &(z,y.t) = 0. On R, the following boundary conditions
apply:

H+u-Vo=0 and h=0. (4.3)

What is the speed at which this eddy travels at steady-state? We assume the dome

of fluid is steadily travelling with velocity ¢ = (c;.cy). and re-write the equations in

the co-moving frame of reference. Let
E=r—ct. (=y—cyl. (4.4)

define the moving coordinates. Then the equations and boundary conditions in the

moving frame of reference are

(u—c)-Vu+ fés3 xu+gV(h—sy)+9g¥Vn=—-ru. (4.5)
V- [(u —c)h] = 0. (4.6)
(w—¢c)-Vo=0. on o(€.¢)=0. (4.7)

where we have used V - ¢ = 0. We may determine the steady speed ¢ by multiplying

(4.5) by h and integrating over R. yielding
/R {h(u—c)-Vu+hfés x u+hg'Vih—sy)+hgVn+hruldi=0. (1.8

Let us simplify this equation term-by-term. Note that the nonlinear advection term

vanishes. since
/R h(u —c¢) - Vudd = [m[h(u —¢)-njudl — va - [h(u — ¢)]udA = 0.
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The term proportional to ¢’ may also be simplified as follows:
/
'h e — —ond 4 g 2 - oo
/Rg V(h — sy)dA eggs/thA-}- : /RV(h )dA eggs/thA.

To simplify the second and fifth terms in (4.8), note that the fact that the mass flux
in the moving frame is nondivergent (4.6) implies that there exists a function ¢ such

that €3 x V¢ = (u — ¢)h. Thus,

[uhda = [ chda+ [ & x Veda
R R R
= cf hda+és x [ wid
R aR
= c[ hda.
R
where the second integral vanishes because v is constant on dR. which is true since
ono=0.0=h(u—c)- Vo =(é3xVi)-Vo = J(¢.0). Using this in (4.8) simplifies
it to

fés xc+re=g'sé;—g(hVn).

where ((*)) = fg(*)dA/ frhdA. The translation velocity ¢ may be solved for.

r ' s f ) A
€= 5T 7 {g'sés — g(hVn)} + T {g'sé, + ge; x (hVn)}. (4.9)

or. componentwise.

_ fg's — g¢hny)} — rghn:)

Cr it (4.10)
_ fg(hn:) + r{g's — g(hny)}
¢, = oy : (4.11)

Equation (4.9). or the pair (4.10) and (4.11). is the Nof (1983) velocity modified to

include the effects of upper layer pressure and lower layer friction.

31
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Some special cases may be investigated. In the limit as n — 0 and r — 0.
equation (4.9) reduces to the Nof (1983) result describing along-slope motion with
velocity ¢’'s/f. If only r — 0, (4.9) reduces to the Swaters and Flierl (1991) result in

which the Nof velocity is modified to include the effects of the upper layer pressure.

er = T — F(hny). ey = 7o)

In the limit as n — 0 with r > 0. (4.9) recovers the fact that friction in the one-layer
frictional geostrophic model induces a downslope component to the flow.

's

IS g
Cc = m(reg +fe[).

Note that an alternate derivation may be used to arrive at this result. The alternate
derivation requires the assumption that a fluid parcel is moving along a slope in such
a way that there exists a three-way balance between the forces of gravity. Rayleigh
friction. and the Coriolis effect. Since such a derivation may be applied to any fluid
parcel in such a balance. the result generalizes to currents in balance in addition to
steady-travelling eddies.

Clearly. the presence of a dynamically active upper layer modifies the direction of
flow of the lower layer. In particular. note that it is possible for the lower layer to

have an upslope component to the velocity field.
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4.2 Generic nondimensionalization

We seek to model abyssal flow. taking into account interactions with the fluid above.
From the outset, then, we anticipate that the lower layer is relatively thin and the
upper layer is thick. This implies that. while bottom friction is potentially important
in the lower layer, it may be neglected in the upper layer. Thus, our starting point is
two-layer shallow-water equations. where the upper layer is frictionless and the lower
layer retains a Rayleigh damping term representing the effects of bottom friction.

The two-layer shallow-water equations may be written in dimensional form as

ui,. +uy-Vul + fféz x uj = —gV™p° (4.12)

(" =R )+ V- [u] (H+n"—h"—h3)]=0 (4.13)
W +u) - VUl 4 [ x U = -;lz-V'p' - rug (4.14)
hte + V™ - (u3h*) = 0. (1.15)

where an asterisk denotes a dimensional variable. The upper and lower layer velocities
are denoted by u; and u; respectively. H is the scale depth of the upper layer. h is the
lower layer thickness. hg is the height of the bottom topography above an arbitrary

reference level. n is the upper layer pressure and the lower layer pressure p® is given

by

P" = pmgn" + p2g'(h”™ + hy). (4.16)

where ¢ = g(p2 — p1)/p2 is the reduced gravity. The form of the upper and lower
layer pressure terms is such that the pressure vanishes at the upper layer surface and
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the pressure is continuous across the interface between the two layers. Here, by “pres-
sure”, we are referring to the dynamic pressure, where the hydrostatic component has
been subtracted out. In the lower layer momentum equation. we have retained the
Rayleigh damping term. which parameterizes the effects of bottom friction. to allow
for the possibility of recovering the FG model in the lower layer.

We first employ the generic scalings
(r".y*) = L(x.y), ui=U0,u,. u;=~U0u,.

t*=Tt. f = fof. r"=for. p" =spg'Hp (4.17)
gl
n" = -g—JHT]._ h* =8Hh. h.B =sHhg.
where s = hy/H = s"L/H and § = h*/H are dimensionless parameters representing
the ratios of the scale height of. respectively. the bottom topography and the lower
layer thickness. to the scale height of the upper layer (see Figure 4.1). A relatively thin

lower layer and a shallowly sloping bottom correspond to 0 < § < 1 and 0 < s <« .

Substituting the above scalings into the shallow-water equations yields

U, (%u“ + Uy .vul) + fol'\ Lfés x uy = —8g'HV . (4.18)
V-u, =she+ V- (u(6h + shg)). (4.19)

UF(uz, +ug-Vug) + fol2Lféz x uy = —g'HV [8(n + h) + shg] — fol 2 Lru,. (4.20)
he + W - (ugh) = 0. (4.21)

Time has been scaled advectively with respect to the lower layer velocity so that
T = L/U,. Also. we have made the rigid lid approximation. valid for ¢’/g <« 1. by
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____________ >
n*=§ (Ap/p,)t:T

h*=8Hh, P H

Figure 4.1: The geometry of the problem.

neglecting the 7 terms in the upper layer conservation of mass equation (4.13) and
the term proportional to ¢’/g in the lower layer pressure equation (4.16). The lower
layer height A and bottom topography hg have been assumed to be much smaller in
amplitude than the overlying ocean, and the upper and lower layer pressures have
been scaled such that the upper layer pressure strongly interacts with the lower layer

height. We have retained a generic dependence of the Coriolis parameter on latitude.

f=fly).

4.3 Mid-latitude model: Equatorial Swaters-F'lierl

The scaling of Swaters and Flierl (1991) is applicable at mid-latitudes. Their scalings

arise out of the generic scalings by setting

va'H ) l . gst  gsH )
. Ui=68ff,. T=—. = = ——=sfol =1 . (4.22
fa 1 fo A 2 fo ToL fo 1/# ( )

L=
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where s is the slope of the bottom topography and

® S

(4.23)

The parameter y is one of the key parameters related to the stability characteristics
of the Swaters and Flierl (1991) model, and we will refer to it as the Swaters stability
parameter. [t is a measure of the ratio of the destabilizing effect of baroclinicity to
the stabilizing effect of bottom slope (Swaters 1991).

The length scale is then the Rossby deformation radius of the upper layer. and
the lower layer velocity scale is the Nof (1983) speed. The parameter s is related to
the slope of the bottom topography. s*. via s = s*L/H. and so is referred to as the
scaled slope parameter. In these scalings. s also plays the role of the Rosshy number

of the flow!. by virtue of the definition for {’;.

U,
s=—.
fol
We will. in general. assume that s < 1. so that s will serve as the small parameter

in our asymptotic expansions.

With the scalings (4.22). the governing equations now take the form

s(uy +puy - Vuy) + fés x uy = -V (4.24)
V'u[ =s{h¢+V [u[(ﬂh +h5)]}. (425)
s(uz + w2 - Vug) + fés x ug = =V(u(n + h) + hg) — ru,. (4.26)

ls is the temporal and advective Rossby number of the lower layer. but only the temporal Rossby

number of the upper layer. 4 is the advective Rossby number of the upper layer.
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hi+ V - (uzh) = 0. (4.27)

When f = 1, the model is geostrophic to leading order, and expanding the de-
pendent variables in terms of the asymptotic parameter s. as well as taking r — 0.
yields the Swaters and Flierl (1991) model. However, when f — 0, the scaling of the
terms in the upper layer momentum equation (4.24) implies that the nondimensional
gradient of pressure V7 will adjust from O(1) to O(s) to balance the remaining terms.
Thus. in the context of these nondimensional scales. we expect that ¥V will be O(s)
at the equator. In fact, we show in Section 4.4 that such an assumption about the
scaling of n yields dynamics equivalent to that of a model derived from standard
equatorial 3-plane scalings.

The model we will obtain with these scalings is derived by forming the vorticity
equation and the divergence equation of the upper layer. The divergence equation is
formed by taking the divergence of the momentum equations. and will provide a gen-
eralization or geostrophic balance that is valid at the equator. The vorticity equation
is formed by taking the curl of the momentum equation. The upper layer equations
will be expressed in terms of a stream function and a velocity potential. using the
assumption that the upper layer velocity field may be written as the sum of a nondi-

vergent part and an irrotational part. i.e. employing the Helmholtz decomposition
u; =é3 x Vi +sVy. (4.28)

The irrotational part is assumed to be O(s) because the divergence of the upper laver
velocity is O(s) (see 4.253).
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4.3.1 Derivation of the vorticity equation

The vorticity equation is formed by taking (the vertical component of) the curl of
the momentum equation (4.24). We first rewrite the momentum equation into the

following form:
o a L
Sy + (f + SﬂQ)e;; xu +V (f] + ;syul . ul) = 0.

where = &;3-V xu, is the relative vorticity of the upper layer. Note that ( = A¢. by
virtue of (4.28). Applying the differential operator (é; - ¥V x) to the above equation.
and using the following vector identity. which is valid for any vector function u(r.y)

and scalar function A(r.y):
Vx(Aezxu)=e3(u-VA+ AV - u).
we arrive at the vorticity equation
sG+uw - V(f+sug)+(f+s5u)V -u, =0. (4.29)

The upper layver conservation of mass (4.25) is used to eliminate the divergence term
and (4.28) is used to rewrite the vorticity equation in terms of v' and \. The vector
identities

u - VA =Jw. A)+sVy- VA

and

V-(u ) =J(w.4) +sV - VA + s 1Ay

38
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where J(A, B) = A;B,—A,B; is the Jacobian operator, allow us to write the vorticity

equation, without approximation, as

sAYy + J(¥, f + suldy) + sV - V(f + sulv)
+s(f + spA¢) [he + J(¢, ph + hg) + s(uh + hp)Ax (4.30)

+ sV x - V(uh + hg)] =0.

While it may appear that the leading order vorticity equation is J(v. f) = 0.
this is not true since. on the scales of motion we are considering. df/dy = O(s)
(and. of course. df /dr = 0). The alternate assumption. df /dy = O(s°). corresponds
to considering basin-sized scales of motion. Our analysis does not apply to that
scale since we have neglected other dynamics important on that scale such as wind-
driven circulation. which causes vertical velocities. In fact. the leading-order vorticity
balance on that scale is known to be Jv = fdw/d=. where w is the vertical velocity.
and is called the Sverdrup relation (Pedlosky 1996). Note that J(v.f) = 0 is the
Sverdrup relation with w = 0.

The leading-order vorticity equation may therefore be written

Avy + J(@. f/s +ude) + f {he + J(v.ph + hg)} = 0. (4.31)

where v is the stream function for the rotational part of the velocity. The vorticity
equation used in the model of Swaters and Flierl (1991) is recovered if f = l. Note

that we have neglected the V - V f term since df /dy = O(s).
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4.3.2 Divergence equation derivation

To derive the divergence equation. it is convenient to use the form of the momentum

equations as expressed in (4.24). The following definitions and relations are used:
V-su,=s*Ay,., V-Vp=JAn

and

V-[fésxw] = V- {f[-Vy +sé;3 x V\]}

-V [fV¢]+sVf-é3 x Vy

= -V [fVy¢]+sJ(x.f).

The most straightforward way to calculate the divergence of the advection terms is
to write out the terms explicitly. Denoting v, = (u.v) so that u = —¢, + s\, and
v =Y+ S\y.
V-u -Vu| = uu,+2uyv: + ooy + u(uz + vy)e + vlue + vy)y
= 2J(¢y.ve) + s{J(0. Q)+ 2J (e xe) + 2 (wyny)}
+53{V - [A V] + 2J (v o)}
The full divergence equation is therefore

$2A\ + 2spd (g wr) + S2u{J (€. AY) + 2J (e xz) + 20 (wy\y) }

(4.32)
+52u{V - [AV ]+ 2J (o \)} = V- V] + s f) + An =0
Therefore. the leading order balance is
An=V.[fVu]. (4.33)

This equation is a generalization of geostrophic balance. When f =1 (and with
identical boundary conditions on 7 and «'). this reduces to n = v. the statement that
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the geostrophic pressure is a stream function for the flow. Equation (4.33) is the di-
vergence equation in the “Linear Balance Equations” of Gent and McWilliams (1983).
Additionally, note that this relation contains within it the equatorial geostrophic re-
lation Bu = —n,,, where 3 is the meridional derivative of the Coriolis parameter. The
equatorial geostrophic relation may be derived by taking the meridional derivative of
the expression of geostrophic balance between the zonal velocity and the meridional
pressure gradient, assuming that the meridional pressure gradient vanishes right on
the equator (McCartney and Curry 1993). At f = 0. (4.33) reduces to Ap = Ju,.
which simplifies to the equatorial geostrophic relation if it is further assumed that

n:x = 0.

4.3.3 Mid-latitude model

For reference. we state here the model we have derived. We first state the equations
of motion for which no approximations have been made. In the upper layer. these
consist of the vorticity equation (4.30) and the divergence equation (4.32). while in
the lower laver. they are the conservation of momentum (4.26) and mass (4.27). One
more equation is required: the upper-layer conservation of mass equation. which will

be used to solve for . if needed. From (4.25).

Ay = he+ V- [uy(pth + hp)]
= hie+u, - V(ph + hg) + (ph + hg)sAy

= hi+ J(v.puh + hg) + sV - [V (uh + hp)].
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This set of equations is, in fact, the full set of shallow-water equations stated in terms
of ¥, y and s, and are valid for any s. This fact will be exploited when we derive a
model valid for both mid-latitude scalings and equatorial scalings simultaneously.
Full equations without approximation
These equations are as follows:

sAvy + J(. f + spudy) + sV - V(f + spdvw)

+s(f + spAv) [he + J(¥. ph + hg) + s(uh + hg) Ay (4.34)

+ sV - V(uh + hg)] =0.

$2AN + 2spd (Uy. wz) + $S2p{J (0. A\) + 20 (W x ) + 2 (€y\y)}

(4.35)
+82u{V - [AYV\] +2J (- \2)} = V- VU] + sJ(x. f) + Ap = 0.
A\ =hy+ J(&.ph + hg) + sV - [V (uh + hp)). (1.36)
s(uy +uz - Vu,) + fés x uy = —V(u(n+ h) + hg) — ru,. (4.37)
he + V- (uzh) = 0. (4.38)

The leading-order equations for the upper layer in this model are the vorticity
equation (4.31) and the balance equation (4.33). Our two-layer model is formed by

coupling these equations with the complete lower-layer equations as stated above in

(4.37) and (4.38).
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Equatorial Swaters-Flierl model

In summary, then, the leading-order model derived from a mid-latitude scaling is

Ay + J(¥. f]s+ pA¢) + f{he + J(v.ph + hp)} = 0. (4.39)
An =V -[fVu]. (4.40)

hy + W - (uzh) = 0. (4.41)

s(uz + uy - Vuy) + fés x ug = —V(u(n + k) + hg) — ru,. (4.42)

Although the model was derived from a mid-latitude scaling, it allows f to vary.
and indeed. no singularities arise in the f — 0 limit. It is straightforward to check
that as f — 1 and r — 0. this system reduces to the Swaters and Flierl (1991) model.
Thus. we have successfully derived a version of that model that describes well-defined
flow at the equator. and so we refer to it as the Equatorial Swaters-Flierl model.
henceforth abbreviated as the ESF model.

In the lower layer momentum equations (4.42), we have retained both the O(s) in-
ertial terms and the O(r) frictional term. In the s <« r limit. the frictional geostrophic
model discussed in the previous chapter is recovered. In the r <« s limit. the fric-
tionless and inertial shallow-water model. with s as a Rossby number. is recovered.
Thus. the model as written is general enough to employ either model studied in the

previous chapter to govern the lower layer dvnamics.
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4.3.4 ESF model simulations

Numerical simulations of this model will allow us to assess whether this model does.
in fact, reproduce the behaviour of the Swaters and Flierl (1991). and to investigate
if this model has any equatorial waves.

The numerical procedure used is similar to the procedure of Swaters (1998) for
the upper layer equations. and identical to the procedure described in Chapter 3 for
the lower layer equations. At each time step. we solve the model equations in the
following order:

q+J(w.q+ f— fh)+ fJ(v.h+ hy) = 0.
s(uy + w2 - VUu,) + féy x uy = =V(u(n + h) + hg) — ru,.
he + V - (uzh) = 0.
Av =q— fh.
Ap =V [fVu].

where the vorticity ¢ = A« + fh is updated using a leapfrog time discretization.
Arakawa and Lamb (1981) schemes are employed for the Jacobian terms. and the
Laplacian operators are inverted using the same direct solver (see Swaters 1998). The
lower layer velocity field and the lower layer height field are advanced via methods
described in Chapter 3.

We begin with a test simulation of the ESF model where f = L. r = 0. and the

bottom topography is that of a linearly sloping shelf. hg = y. Under the conditions
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of f = 1 and r = 0, the model should reduce to the Swaters (1991) model. The
simulation shown in Figure 4.2 is set up similarly to the simulations of Swaters (1998).
The results seem very similar to those of Swaters (1998). For example. the baroclinic
instabilities that are preferentially amplified on the downslope side of the current are
clearly seen. Throughout the simulation. the n and v fields are identical. This shows
that the ESF model derived is indeed a generalization of the Swaters and Flierl (1991)
model to the case of varying Coriolis parameter. and indeed. allowing for f = 0 in
the domain.

When we perform simulations of the ESF model over idealized meridional channel
topography (Figure 4.3), we see little qualitative differences from the one-layer model
simulations. As the equator is approached. the lack of coupling between layers is
apparent. In Figure 4.3. the lower layer is FG dynamics. We show in Figure 1.4
snapshots from simulations in which the lower layver is governed by shallow-water
dynamics. In neither of these simulations does there appear to be much wave motion
in the upper layer. The lower layer seems to behave exactly as in the one-layer
simulations. Even quantitatively (right-hand plots). there is not much difference.

To investigate the wave-nature of the upper layer. we display in Figure 4.5 a
similar simulation. but with the eddy initially on the left slope of the topography
right on the equator. The results are similar: although the upper layer seems to he
forced by the lower layer. there seems to be little dynamical influence of the upper

laver back on the lower layer.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-6 -4 -2 0 2 4 6

-6 -4 -2 0 2 4 6

Figure 1.2: Two-layer model simulation with f = 1. r = 0. and hg = y. The shaded
region is the lower layer height. darker corresponds to higher values. Contours are of

the upper layer n field. The v field is exactly equal to the n field. Contour interval is
0.05 for t =0. 5 and 0.25 for t =10. 15. Dotted contours denote negative values.
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2.0 -2.0 0.0 2.0 -2.0 0.0 2.0

Figure 4.3: Two-layer model simulation over idealized channel. lower laver is FG
model. The shaded region is the lower layer height. darker corresponds to higher
values. Contours are of the upper layer n field. ¢ field. or A field. where Ah =
h I-layer ~ h‘?.-la_ver' Contour interval is 0.005. with £0.001 replacing the zero contour

for \h.
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Figure 4.4: Two-layer model simulation over idealized channel. lower layer is governed
by the shallow-water model. Displayed fields and contour levels are as in Figure 4.3.
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Figure 4.5: Two-layer model simulation. eastward eddy. Contour interval is 0.00025
for ¢ = 0.1.0.5 and 0.0025 for t = 1.0.
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Figure 4.6: Two-layer model simulation over idealized channel. lower layer is governed
by the shallow-water model. periodic conditions. Contour interval is 0.0025.
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Figure 4.7: Two-layer model simulation over idealized channel. lower layer is governed
by the shallow-water model, inflow current. Contour interval is 0.0025 for n and w.

and 0.005 for A\hA.

A test run was performed (Figure 4.6) to make sure the boundaries were not
impeding wave motions in the upper layer. In this run. the upper layer boundary
conditions were periodic in the zonal direction. The upper layer eddy which was spun
up from the initial conditions remains stationary. however. There is a slow drift. but
it is on much slower time scales than the behaviour of the lower layer.

Finally. to investigate conditions that are more relevant to AABW flow than
that of an eddy. we simulated a current flowing into the domain with steady inflow
conditions (Figure 4.7). The current behaves in a similar way to that observed in the

simulations of Nof and Borisov (1998).
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4.4 Equatorial model

The traditional nondimensional scaling in the study of equatorial dynamics uses the
equatorial deformation radius (Cushman-Roisin 1994) as the length scale. The equa-
torial scaling may be conveniently stated by replacing fo with JoL. where we define
do =df/dy at y = 0.

L=YLT Uy = pudolL?. T=_l_' Uzzgs g'sH

— _ 2 _ [
3oL oL Gl = dorz = LT =tk

(4.43)
Note that the Nof (1983) velocity scaling is retained. but the length scale is now the
Rossby deformation radius of the lower layer. We have scaled the velocity slightly
differently in the two layers. incorporating the Swaters stability parameter u in the
same way as in the mid-latitude scaling. With the scaling (4.43). the equations of

motion (4.18)-(4.21) become

u, +uu, - Vu, + fés xu, = -Vn. (4.44)

V- -u, =s{h+ V- [ui(nh + hg)]}. (4.45)

Uy + Uy - Vuy, + féz x u, = =V(u(n+h)+ hg) — ru,. (4.46)
he+ V - (uzh) = 0. (4.47)

The variable f appearing in the equations now acts as the inverse of the Rosshy
number of the flow. In the f > | regime. the dynamics will be geostrophic. and so

the Swaters and Flierl (1991) model is relevant in that limit.
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4.4.1 Equatorial model derivation

The momentum equations scaled for equatorial flow do not seem to be simplified at
all as compared to the full shallow-water equations. However. in the upper layer.
the conservation of mass equation implies that we can still justify the assumption of
the Charney balance model, in which the velocity field is written as the sum of its
irrotational and nondivergent parts, with an order O(s) irrotational part.
u, =V x v +sVy. (1.48)
Following the derivation of the upper layer equations for the case of the mid-
latitude scaling. we first note that the upper layer vorticity equation.

G+u -V{f+pC)+(f+uq)V-u, =0. (++.49)

is as in Section 4.3. but effectively with s = 1. Eliminating the divergence term and

writing the vorticity equation in terms of v and .

Av, + J(w. f+pde) + sV - V(f + pdve)
+s(f + pAv)[he + J(v.ph + hg) + s(ph + hg) A\ (4.50)

+ sV - V(uh + hg)] =0.
The leading-order vorticity equation is
Auwy + J(v, f + pAe) =0. (4.51)

In this form. the connection to equation (4.39) is clear: this form may be derived
from (4.39) in the limit as f = O(s). Stated another way. the model of Swaters and
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Flierl (1991) may be derived from this model in the limit as f = O(s~!). Note that,
in the equatorial scaling, df /dy = O(1), so the J(¢, f) term is retained.

According to (4.51), the vorticity equation is not at all coupled to the lower
layer height field. This is reasonable in the sense that as f — O(s) in (4.39). the
terms involving the lower layer height do indeed move to the next order. Also. the
model is still coupled in the sense that motions in the v field will affect the £ field.
However, there is nothing to induce motions in the upper layer stream function field
except perhaps boundary forcing. i.e. the stream function may be forced by waves
propagating in from the far-field. If motions are not explicitly inserted into the upper
layer stream function field by boundary forcing, then the solution to (4.51) is v = 0.
In that case. the stream function is an O(s) quantity to leading order. Therefore. we
have two cases to explore: the boundary-forced v = O(1) case. and the v = O(s)
case. Let us first complete our derivation of the v = O(1) model before we turn our

attention to the v = O(s) model.

4.4.2 Boundary-forced v» = O(1) model

The leading-order momentum equation for this model is (4.51). The derivation of
the divergence of the momentum equations is similar to the Section 4.3 derivation.

vielding

sAv A+ 2ud(wywe) + sp{J(e. A) + 20 (weons) + 2J (0 1)}

+82u{V - [A\V ]+ 2J (D)} = V- [fVE] + sJ(x. f) + An = 0.
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Neglecting the O(s) terms. the upper layer balance may be written

An =V - [fVO] +2J(¥z. ¥y), (4.53)

which is similar to the balance equation with the mid-latitude scaling, but with the
additional nonlinear term. This equation is exactly the form of the divergence equa-
tion appearing in the Balance Equations of Gent and McWilliams (1983).

For convenient reference, we restate here the entire leading-order boundary-forced
equatorial model. The vorticity equation is as stated in (4.51). The divergence
equation is (4.53). The conservation of momentum (4.46) and mass (4.47) equations

are only simplified by the neglect of the O(r) term.

Boundary-forced equatorial model

This model consists of the following set of equations:

ey + J(e. f+pde) =0. (4.34)
An =V [fVu] +2J(es v,). (4.55)
Uy + Uy - Vur + féz x u; = —V(u(n+ h) + hp). (4.56)
he + V - (uzh) = 0. (4.57)
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4.4.3 Lower-layer-forced ¢v' = O(s) model

We assume here that the stream function is an O(s) quantity to leading order. We
rescale ¥ so that

v = si,

where ¢ = O(1). Rescaling the full vorticity equation (4.50) to take this into account

reveals that the leading order vorticity equation is
MG+ (6. )+ V\ -V f + fhy =0, (4.58)

Physically. this means that the time rate of change of Au + fh. which is the leading-
order potential vorticity in the upper layer. is forced by the northward advection of
planetary vorticity. At this order. h appears explicitly so that the upper layer relative
vorticity may be thought of as being forced by the lower layer height field.

The divergence of the momentum equations (4.52) with v = s¢' becomes

SAYe + 282 pud (0 U) + S2u{J (€. AX) + 2 (Pro\:) + 20 (g \y)}

(4.59)
+52u{V - [AYV] +2J(\ e X2} = sV - [f V0] + (v ) + An = 0.
which alerts us to the fact that n must be rescaled for the same reasons as v
n = si.
The leading-order balance equation is now
A+ Ai=V-[fVe] + J(f ) (4.60)
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With n = O(s), however, the upper layer variables are removed from the lower layer
dynamics to leading order. The motion in the lower layer is still forced by the sloping
topography, so the solution of the lower layer is not that of no motion.

The velocity potential y appears explicitly in the model. Therefore. we will need

an additional equation to solve for y. From (4.45).

Ay = he+V-[u(ph + hp)]
= he+u - V(ph +hg)+ (ph + hp)sAy

= he+sJ(d.ph + hg) + sV - [V (ph + hp).

so the leading-order equation for \ is
Ak = hg. (4.61)

This is the statement that lower layer height changes cause divergence or convergence
in the upper layer. This is reasonable. considering that the rigid-lid approximation
has been made.

In the lower layer equations (4.46) and (4.47). all the terms seem to be scaled with
equal weight. except for the n in the pressure term. which is now O(s). Therefore.
the lower layer equations of this model are the shallow-water equations. uncoupled

from the upper layer.

Lower-layer-forced v = O(s) model
The equatorial model in which v is driven by coupling with the lower layer is thus

At + J(@. )+ V-V f+ fh, =0. (1.62)
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Axe + A7 =V - [fVE] + J(f.\). (4.63)

AX = hc. (464)
u2¢+u2-Vug+fé3 X Uy = —V([lh-‘f'hg). (465)
he + V - (uzh) = 0. (4.66)

Each of the two models derived from equatorial scales of motion is a partially
uncoupled model. In the ¢ = O(1) model (4.54)-(4.57). the upper laver variables are
not directly affected by the lower layer variables. and in the v = O(s) model (4.62)-
(4.66). the lower layer variables are not directly affected by the upper laver variables.
This weakening of the coupling mechanism in the vicinity of the equator lends support

to the relevance of the reduced-gravity simulations studied in Chapter 3.

4.4.4 'Waves in the lower-layer-forced model

We show in this section that the ¥ = O(s) equatorial model (4.62)-(4.66) is equivalent
to a two-layer equatorial model whose upper layer is described by linear equatorial
dynamics and whose lower layer is governed by the shallow-water equations. Let us
write out the model for the case where f = 3y, r = 0. ¢ = L. and hgp = 0. and
linearize the equations about a state where h = | and all the other variables are zero.

The model then takes the form
Ay + 30 + Iy, + JyAy = 0.

A\ + A = dydv + 3y, — ..
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Ay = hy, (4.67)
Uy + Byes x u; = —Vh,
ht +V- w,; = 0.

The lower layer equations are identical to the linearized equations of motion (2.16)
in our analysis of one-layer equatorial waves, with the nondimensional scalings such
that H = 1 and g = I. How similar are the model’s upper layer equations to the
upper layer equations in the two-layer rigid-lid model whose waves were analyzed in
Chapter 2?7 The upper layer equations in the set (2.22). which represents two-layer

linear dynamics. with ¢ = 1 and H, = | are

uyp — Jyry = —n;.
v + Jyuy = —ny. (-1.68)

—he + w4+ 01, =0.

With the Helmholtz decomposition u; = —t;y +\r U = c;, + \,. the vorticity.

divergence. and mass equations take the form
Ay + JyA\ + (e, + \y)=0.
Ave — 3yAw + 3wy, — \2) = A7
—h:+ A\ =0.

which are identical to the upper layer equations in (4.67). Note that the assumptions
r = 0. hg = 0 and the linearizing process do not affect the upper layver equations at
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all. Thus, if f = By, the upper layer equations in the v = O(s) equatorial model
are completely equivalent to the upper layer of the linearized two-layer shallow-water
theory analyzed in Chapter 2. Therefore. our system consists of an independent lower
layer that contains all the waves of one-layer equatorial wave theory. and an upper
layer driven by those waves. Although the coupling is slightly different than in the
analysis of the two-layer waves performed there, it may be shown that baroclinic
waves do exist in the system by considering (4.68) as the equations of motion in the

upper layer. For any wave solution {u,.v;. h} in the lower layer.
Uy = —uz. vy = —r2. n=—h

transforms the upper layer equations (4.68) into the lower layer equations. therefore
{uy.vy.n} is a solution. Thus. any wave solution discussed in Chapter 2 for the

one-layer case exists in the equatorial model as a baroclinic mode.

4.5 Uniformly valid model

We seek a model that at mid-latitudes is. to leading order. the ESF model we de-
rived. but at the equator reduces. again to leading order. to the equatorial models
we found. In this section. we first derive such a model using a heuristic approach in
which the balance of forces is considered at mid-latitudes and in the limit of f — 0.
We then show rigourously that this “meta-model™ does reduce at leading order to

the appropriate local model in each of the limits by expressing the variables in the
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appropriate scales. We start by summarizing the mid-latitude and equatorial models
we have derived, stating both the full unapproximated equations of motion and the

leading-order model in each limit.

4.5.1 Model summary

The models we have derived are as follows:

Unapproximated mid-latitude model

sAYe+ J(U. f + sude) + sV -V(f + sudve)
+s(f + sudw) [he + J(@.ph + hp) + s(ph + hg) Ay

+ sV - V(uh + hg)] =0.

$2AN + 2sud (@, ve) + S2p{J(0.AX) + 2T (e xe) + 20wy ) } (1.69)

+52u{V - [A\V ]+ 2J(\y\2)} = V- [fVe] + sJ(\. )+ Ap = 0.
A\ =h+ J(w.uh + hg) + sV - [V (uh + hp)].

s(tge + Uz - Vur) + féz x uy = =V (u(n + h) + hg) — ru,.

h: +V - (uzh) = 0.

Leading-order mid-latitude model

Auve + J(w. f/s +pde) + f {he + J(v.uh + hg)} = 0.

Anp =V - [fVe]. (4.70)
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hg+V'(‘u2h) =0,

S(ug + w2 - Vur) + féz x u; = =V (u(n + k) + hg) — ru,.

Unapproximated equatorial model

Ave + J(Y, f + pAY) + sV - V(f + pAvy)
+s(f + pAuw) (A + J(0.ph + hp) + s(uh + hp) Ay

+ sV - V(gh + hg)] = 0.
sAXe + 2ud(wy, vre) + sp{J (0. )+ 2J(erons) + 20wy 1)}
(4.71)
+52{V - [V + 2J(\y &)} = V- [fVe] + sJ(\. f)+ Ap = 0.
A =he+J(W.uh+hg) + sV - [V (uh + hp)].

u2¢+u2»Vug+fé3 X Uy = —V([.l(!]-{-h) +h5) — ru;.

hg+V'(u2h) =0.

Leading-order equatorial model, v = O(1)

Ay + J(@&. f + pAw) = 0.

An =V -[fVu] +2J(vr wy). (4.

-]
(%
~

Uy +uy - Vuy + féz x ux = =V (u(n + h) + hp).

h,+V-(u2h) =0.
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Leading-order equatorial model, v = O(s)

Aty +J(@. f)+ V-V f+ fh, =0.

A+ AT =V - [fVQ] + J(f. ). (4.73)
A\ = ht.
Uy + uz - Vuy + fés x up = —V(uh + hp).

h¢+V'(u'zh)=0.

4.5.2 Adjustment of dependent variables

In the above analysis. the mid-latitude nondimensional scalings led only to the mid-
latitude model. However. it is possible to also derive the equatorial models using the
mid-latitude scalings as long as the dependent variables are re-scaled. Observe that.
if the equations of motion are scaled using the mid-latitude length and time scalings

along with the additional re-scalings
f=0(s). r=0(s). n=0(s). h=0(s). and hg=0(s).

then the full equations of motion in mid-latitude variables (4.69) transform exactly to
their equatorial counterparts. (4.71). except for the upper-layer mass equation. which
does not appear in either the mid-latitude model nor the v = O(1) equatorial model.

Thus. the leading-order v = O(1) equatorial model (4.72) is derived.
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In the case where the solution to the leading-order vorticity equation was v+ =
O(s), the ¥ and n fields are each re-scaled to be an order of magnitude smaller.

Thus, note that the mid-latitude scaling with the re-scalings

f=0(s), r=0(s), v=0(s), n=0(s*), h=0(s). and hg=O0(s).

yields exactly the full equations of the equatorial model. (4.71). but with v and p
an order smaller, and thus the leading-order ¥' = O(s) equatorial model is recovered.
again with the exception of the upper-layer mass equation.

From this point of view. the mid-latitude scaling with n = O(1) vields the mid-
latitude model. or the “outer™ equations. and the mid-latitude scaling with n = O(s?)
yields the lower-layer-forced equatorial scaling model. or the “inner” equations. while
the mid-latitude scaling with n = O(s). which may be thought of as an “intermediate”
set of equations. produces the boundary-forced equatorial model.

Given this connection between the outer. inner and intermediate models. we may
now identify in the mid-latitude derivation those terms that emerge in the leading-
order equatorial model. By retaining those terms in the mid-latitude model. we will
find a model that is. to leading order. uniformly valid. We retain exactly those higher-
order terms that. although not leading-order terms at mid-latitudes. contribute to the
leading-order balance in the equatorial (inner and intermediate) limit.

Therefore. we refer to the vorticity equation in the mid-latitude scaling that states
all the terms. and we retain the leading-order terms plus the terms that contribute to
the equatorial vorticity balance. The leading-order vorticity equation may therefore
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be written
Ape+ I, f/s +pd) + VN -V + f{he+ J(¥.ph + hg)} = 0. (4.74)

where ¢ is the stream function for the rotational part of the velocity. This is the
equation that expresses the dynamical evolution of the upper layer in this model.
It remains true that the model of Swaters and Flierl (1991) is recovered in the case
where f = 1.

To derive the unified version of the divergence (or balance) equation. we refer to
the complete divergence equation in the mid-latitude scaling and retain the leading-
order terms plus the terms that contribute to the equatorial balance. Explicitly

keeping the appropriate O(s) and O(s?) terms in our balance equation.
An =V [fVe] + 2su (Ve ) — 2 A\ + sT(fo\) (4.73)

Our two-layer model is formed by coupling these equations with the lower layer
equations. which are unapproximated as stated in the model. The complete model.

which we will refer to as the meta-model. may be written

Aue+ J(e fls+pude)+ V-V f+ f{he+ J(¢.uh + hp)} = 0. (4.76)

An =V - [fV] + 2spd (v wy) — 2 A\ + sJ(f. ). (4.77)

A\ = h.. (4.78)

he + V - (uzh) = 0. (4.79)

s(uz +uy-Vuy) + fés xu, = =V(u(n+h)+ hg) — ru; (4.80)
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The form of the divergence equation (4.77) is consistent with the family of balance
models studied by Gent and McWilliams (1983). The balance when s — 0. which
is the balance found in the mid-latitude scaling model. is part of the Linear Balance
Equations (LBE). The balance retaining the leading-order plus the J(v..¢,) term,
which is the balance found in the equatorial scaling with boundary forcing, corre-
sponds to the Balance Equations (BE). Retaining the leading-order terms plus the
J(f.x) term produces the balance equation of the global Linear Balance Equations
(gLBE), and retaining all the terms except Ay, vields the balance equation for the
global Balance Equations (gBE).

All the forms of the balance equations neglect the Ay, term. This reduces the
number of prognostic equations in the system. thereby filtering out an entire class of

waves.

4.5.3 Adjustment of length, velocity and time scales

The meta-model as written is expressed in terms of variables which have been nondi-
mensionalized using the mid-latitude scaling. To show explicitly that this model
contains the equatorial scaling model within its dynamics. we re-scale the uniform
model using the equatorial nondimensional scales. That is. we shall show that the
meta-model. when expressed in equatorial variables. recovers the leading-order equa-
torial model. and therefore is a uniformly-valid model.

The length. time and velocity scales in the equatorial and mid-latitude scalings
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Mid-latitude Equatorial

L =Ry L=s'?Ry

['rl = ﬂsfoRd Lfl = }lsllzfoRd

U =sfoRs | Uy =3s'?foRy

T =L/U, T =L/,

Table 4.1: Length, velocity and time scales in the mid-latitude and equatorial nondi-
mensional scalings. Ry = /¢'H/ fo is the internal Rossby deformation radius of the
upper layer. fo = 3oL in the equatorial scaling.

are summarized in Table (4.1). When the scales are written in terms of the internal

Rossby deformation radius of the upper layer.

/gl H
fo -~

where fq stands for 3oL in the equatorial scalings. the scales only differ by powers of s.
Thus. denoting equatorial variables (nondimensional variables having been scaled by
the equatorial scalings) with a caret (e.g. ). and the mid-latitude variables without
a caret.

(r.y) = sY3(5.9). wy=s""Y%u,. w; =s""a,. t=st

We must scale v and y as well. The nondimensionalization of ¢* and \ arises directly

from their definition in the Helmholtz decomposition of u; (4.48).
vt = LU'[U". \. = .SL["[\.

Therefore. v and \ actually scale exactly the same in both coordinates.
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There is no need to express the variables h, hg, n, and f. in terms of equatorial
variables since their scales are set in the generic nondimensionalization. independent of
Uy, Uz, L or T. Writing the meta-model equations (4.76)—(4.80) in terms of equatorial

variables. they transform to

Adi + J(d. f +pAd) + 595 - Vf + sf {h; + J(d.ph + hp)} = 0. (4.81)

An =V - [fV] + 2 (s dhg) — sAG + sJ(£. %) (4.82)
Ax =h;. (4.83)

hi + ¥ - (1h) = 0. (4.34)

By + ity - Vg + fés x @ty = =V (u(n + h) + hg) — rie,. (4.85)

At leading order. this reduces to the boundary-forced equatorial model. Therefore.
the meta-model contains within it the dvnamics described by that model.

[t remains to investigate whether or not the lower-layer-forced equatorial model
is contained within the meta-model. In that model. the v and n fields are a factor of

s smaller than in the boundary-forced equatorial model. That is.

&
|
0
&
=
Il
Yy
e

which. upon substituting into the set of equations (4.81)—(4.85). transforms them into

the form
Av;+J(u. f+spude) + VL -Vf+ f {h,- + sd(v.uh + hB)} =0. (4.86)

Af = V- [fV0] + 2spd (€5 05) — A+ J(F.0). (4.87)
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Ax = hy, (4.88)
h; + ¥ - (42h) = 0. (4.89)
iy + iy - Vity + fég x ity = —V(spu(n + h) + hg) — risa. (4.90)

At leading order. this set of equations reduces to the lower-layer-forced equatorial
model. This completes the proof that the meta-model is indeed a leading-order uni-
formly valid model.

We note that it remains for future research to investigate the uniformly-valid
model numerically. Since this model contains within it two-layer shallow-water dy-
namics (with a linear upper layer). it contains faster scales of motion than the slow
dynamics of Swaters and Flierl (1991). One numerical technique to dealing with these
faster time scales in layered models is to separate the dynamics into barotropic and
baroclinic modes. and advance these modes forward in time using different schemes.
The barotropic mode requires shorter time steps or more sophisticated methods be-
cause of the faster waves it contains. Another difficulty is the fact that the sy,
term in the divergence equation is multiplied by a small parameter. suggesting that

the evolution of Ay itself may be rapid.

4.6 Summary

In this chapter. we have addressed the issue of two-layer equatorial models. In the

generalized Nof analysis. we have demonstrated that. with two layers and friction.

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



an analytical expression may be derived for the steady propagation of an eddy on a
constant slope in the context of the f-plane approximation.

We derived three preliminary models of equatorial flow, one from a mid-latitude
nondimensionalization. and two from an equatorial nondimensionalization. These
models have not previously been stated in the literature, and all models predict
well-defined flow at the equator. The mid-latitude (ESF) model may be thought of
as a direct extension of the Swaters and Flierl (1991) model to the case of vary-
ing Coriolis parameter f. The equatorial model with lower-layer forcing has linear
shallow-water dynamics in the upper layer and nonlinear shallow-water dynamics in
the lower layer. and so contains within it the equatorial waves reviewed in Chapter 2.
Both equatorially-scaled models are only partially coupled in their dynamics.

A leading-order uniformly valid model was then derived that. when written using
the appropriate nondimensionalization. simplified to the preliminary mid-latitude or

equatorial model.
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Chapter 5

Conclusions

5.1 Summary

One of the goals of this research was to investigate models of equatorial abyssal
flows in order to learn about the dynamics of these flows. Our approach was to
base the models on the shallow-water equations. either in their original form or with
simplifications. and in one- or two-layer configurations. Thus. our first step was to
establish the conditions under which the shallow-water model is appropriate for these
flows.

Therefore. we performed an asymptotic expansion of the three-dimensional equa-
tions of motion on the surface of a sphere. under the assumptions of constant density
and frictionless flow. We showed that for motion near the equator. the equations of

motion reduce to the shallow-water equations without curvature terms or the hor-
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izontal component of the Coriolis effect as long as the length scales of motion are
less than the Earth’s radius and longer than /Hro, where H is the vertical scale of
motion and rg is the Earth’s radius.

We then summarized some known results about the shallow-water model. and re-
viewed equatorial wave theory. The two-layer model we derived later in the thesis was
based on two-layer shallow-water theory where the layers were of unequal depth and
the surface of the upper layer was constrained by a rigid-lid assumption. In anticipa-
tion of deriving such a model. we investigated equatorial wave theory in the context
of those same assumptions. It was shown that the waves of barotropic free-surface

equatorial wave theory arise in the form of baroclinic modes. with the frequency and

wave number scaled using a wave speed ¢ = \/g’Hl H,;/(H, + H3). where ¢’ is the
reduced gravity and H,. H; are the depths of the two layvers. Superimposed on this
baroclinic motion are nondivergent barotropic Rossby waves.

The frictional geostrophic model was then described and its predictions compared
with that of reduced-gravity shallow-water theory. In the frictional geostrophic model.
the momentum equations are replaced by geostrophic balance plus a Rayleigh damp-
ing term. Thus. ageostrophic effects are parameterized as a flow down the pressure
gradient. The two models were compared in simulations of a localized mass of dense
fluid moving over idealized bottom topography. and in simulations of the evolution
of a dense current over realistic Atlantic Ocean bottom topography. where the fluid

is constantly flowing into the domain from the south.
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In numerical simulations over idealized topography. the frictional geostrophic
model was observed to successfully capture the overall path of northward along-slope.
downhill, and north-south splitting that is predicted by the shallow-water model.
Quantitatively, the simple model even predicts the along-slope Nof (1983) speed well.
However, the lack of fluid inertia causes the simple model to underestimate the height
that the fluid will reach when flowing up the opposite side of the channel. It also
causes a very symmetric north-south splitting of the fluid.

In simulations of the two models over realistic equatorial topography. the sim-
ple model again captured the qualitative path of the fluid quite well. However. as
compared to the shallow-water model simulations. it predicted a smaller mass flux
across the equator. owing to the lack of inertia and the inability to flow up and over
key ridges along the path. The amount of fluid crossing the equator was seen to
depend sensitively on the choice of damping parameter r. with higher r correlating
with less cross-equatorial flow. The amount crossing the equator was also seen to
depend strongly upon initial depth of the current that approaches the equator. This
is consistent with the concept that in this model the fluid is constrained to have a
downhill component only. and no uphill flow.

For realistic parameter regimes. the shallow-water model was seen to agree qual-
itatively with observations. including capturing the clockwise flow in the equatorial
basin. For inflow currents at shallower depths. the shallow-water model was observed

to predict a dramatically different flow regime. characterized by a counterclockwise
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flow in the equatorial basin and high time variability. This is understood to be caused
by the introduction of new pathways of the current.

In the time-dependent simulations over realistic topography, we observed large
fluctuations in the mass transport across the equator. as calculated at the mooring
locations of Hall et al. (1997). In fact, we saw time-dependence that seemed to be con-
sistent with their observed time-dependence of AABW flow across the equator. Our
simulations implied that the extreme time-dependence may partially be an artifact
of the precise location of the data collection site. That is. the amount of AABW suc-
cessfully crossing the equator may not exhibit the same magnitude of time variability
as the amount of AABW crossing those particular mooring locations. Furthermore.
our simulations implied that the large time variability observed may be the result of
a much smaller time variability in the source current.

The shallow-water simulations over realistic topography seemed to imply that the
flow is almost entirely determined by the location (horizontal position and depth) of
the narrow constrictions of the flow located at shallow sills. This. in turn. implies
that observational studies should be focussed on these sills. such as the one at the
entrance to the equatorial basin (from the southeast) or the exit of the basin (to the
northwest). The overall behaviour of the flow depends critically upon these kev spots.
and so current meters placed in these locations would reveal much about the actual
flow of the current.

We introduced baroclinicity in the form of two dynamically active layvers in Chap-
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ter 4. First, we derived the propagation speed of a relatively dense mass of fluid
with compact support (i.e. an eddy), under the assumptions that the propagation
speed is steady in time, the bottom topography has a constant slope, and the f-plane
approximation may be applied. Our contribution here was the inclusion of frictional
effects in addition to the effects of a dynamic upper layer pressure. The result is a
generalization of the Nof (1983) and the Swaters and Flierl (1991) results. Friction
was shown to introduce a down-slope component to the flow. However. the effects of
upper-layer pressure may. in principle. restore the possibility of up-slope motion in
the model.

A two-layer model was then derived that. while predicting geostrophically bal-
anced flow away from the equator. allows O(1) variations in the Coriolis parameter f.
and indeed. predicts well-defined flow at the equator. In this model. the lower layer
reduces to either the inviscid. inertial shallow-water equations. or to the frictional
geostrophic model investigated in Chapter 3. The upper laver uses a generalization to
geostrophy similar to the Charney balance equations. This model was shown to sim-
plify. in the f-plane limit. to the Swaters and Flierl (1991) model. which was demon-
strated by Karsten and Swaters (1999) to be the appropriate geostrophically-balanced
model when the lower layer is relatively thin and the bottom topography dvnamically
important. This model was therefore referred to as the Equatorial Swaters-Flierl (or
ESF) model.

After considering models that arise from equatorial scalings. a meta-model was
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presented that simplifies, at leading order, to the ESF model. and by rewriting into
equatorial scalings, simplifies to the equatorial models. Thus, this meta-model is valid

both at the mid-latitude limit and at the equatorial limit.

5.2 Future directions

We have left for future research the study of abyssal flows in the other ocean basins.
extending the research to multi-layer models (or even continuously-stratified models).
and applying the model derived here to global-scale flows.

It is also left for future work to derive a simple model for the lower layer that.
while describing simple or “slow™ dynamics. retains more realistic dynamics than the
Rayleigh damped models employed here. if that is indeed possible. The work of Warn.
Bokhove. Shepherd. and Vallis (1995) may be helpful in this regard.

Adding extra dynamical layers (or developing a continously-stratified model. which
would also add the possibility of including internal gravity wave dyvnamics) would be
interesting from the point of view of investigating the interaction and the time vari-
ability of the transport of the Antarctic Bottom Water and the southward-flowing
North Atlantic Deep Water through the equatorial channel. Hall et al. (1997) found
that the currents each had a strong annual variation. and were not separated by much
distance in the vertical direction. Dynamical coupling between these currents almost

certainly affects their time evolution.
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