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ABSTRACT 

Milk is a valuable source of energy, high quality protein, and several key minerals and vitamins 

for humans. Selection for milk production in dairy cattle was first based on phenotype and 

pedigree information and the knowledge of genetic parameters for the trait of interest. However, 

substantial advances in molecular genetics technology including bovine SNP discovery and 

sequencing projects have enabled researchers to apply new selection tools (such as genomic 

selection or GS) to identify genetically superior animals. GS is based on linkage disequilibrium 

(LD) between unknown functional variants and SNP genotypes that are spread out across the 

whole genome. It is hypothesized in this work that incorporation of candidate causal mutations 

into genotyping panels can increase the accuracy of genomic predictions. These variations are 

expected to more likely affect the trait and to be more effective across populations and 

generations due to persistent LD. The objectives of this study were to identify candidate causal 

genes and variants for production and fertility traits in Holstein dairy cattle, and then to include 

the candidate variants in genomic predictions by constructing and using a custom genotyping 

panel. In order to develop a more balanced selection tool, fertility traits were also included in this 

study. In the first study, genome-wide association analysis (GWAS) was performed to identify or 

refine the positions of genomic regions associated with milk production, milk components and 

fertility traits, and these positions were used to identify genes and pathways that may influence 

these traits. The identified QTL regions for production traits support previous findings, 

overlapping with genes with known relevant biological functions identified in earlier studies 

such as DGAT1 and CPSF1. A significant region on chromosome 21 encompassing the gene 

FAM181A and not previous linked to fertility in dairy cattle was identified for the calving to first 

service interval and days open traits. A functional enrichment analysis of the association results 
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yielded GO terms consistent with the specific phenotypes tested; for example, GO term 

GO:0007595 (lactation) for milk production (MILK) and GO:0040019 (positive regulation of 

embryonic development) for calving to first service interval (CTFS). In the second study, GWAS 

was performed to determine the locations of genome regions affecting lifetime profit index 

(LPI), female fertility (age at first service, cow first service to conception, heifer and cow non-

return rate) and longevity (direct and indirect herd life and daughter herd life) in the Canadian 

Holstein dairy cattle population. As with study 1, the results overlap in part with previous 

findings and some novel regions were discovered, specifically loci on BTA13 and BTA27 

associated with lactation persistency. Previously proposed causative and candidate genes 

supported by this work include GRINA while new candidates are SLC2A4RG and THRB. In the 

third study, a custom genotyping panel was designed using the GWAS results from the first two 

studies, sequence and SNP information from a variety of sources, with the goal of including 

candidate causal mutations. The new Affymetrix panel, termed 80K, was evaluated as a tool for 

improving genomic predictions. The effects of combining the panel with the existing 50K panel 

(creating a 124K panel) and of using only those SNPs that overlap with transcribed sequences 

(transcriptome panel) were also investigated. The results showed that a small increase in the 

accuracy of genomic prediction (0.57% averaged across all traits) was achieved by incorporating 

the genotypes of candidate variants identified through GWAS. The accuracy of prediction using 

the transcriptome panel was better (0.72% averaged across all traits). In summary, GWAS results 

have detected several regions associated with milk production, LPI, longevity and fertility traits 

in Canadian Holstein cattle. Most of these regions were identified in other studies; however, 

novel regions of association were detected for days open, calving to first service interval and 

lactation persistency. These novel regions can be used to guide future mapping and functional 
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analysis to identify genes and sequence differences that explain variations in these traits. The 

genomic prediction results obtained through the use of custom genotyping panel show a small 

increase in the accuracy; however, the accuracy was better for a subset of variants selected 

within the transcribed regions. Coupling variant annotation information with more recent 

approaches, including imputation to the sequence data, may lead to better prediction accuracies. 
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CHAPTER 1. GENERAL INTRODUCTION 

1.1. Introduction 

Genetic improvement has been one of the fundamental drivers behind the success of the 

Canadian dairy sector. Due to selection over the last 30 years, milk production has vastly 

increased particularly within North American Holstein-Friesian cattle (Walsh et al., 2011). 

However, one of the drawbacks of improvement in milk production has been a decline in fertility 

performance and reductions in genetic merit for other functional traits such as health and fitness 

traits (Walsh et al., 2011; Lucy, 2001; Egger-Danner et al., 2014). For example, conception rates 

to first service intervals have decreased by 30 to 52% between 1985 and 2003 and the incidence 

of production associated disease has increased (Dillon et al., 2006; Macdonald et al., 2008; Pryce 

et al., 2004; Norman et al., 2009; Oltenacu and Broom, 2010). Efforts to address fertility 

associated issues face several challenges: fertility traits have low heritability, are expressed late 

in life and are affected by multiple factors such as nutrition and management (Oltenacu and 

Broom, 2010). Demand for milk production is increasing, and based on recent estimations (in 

2010) the American dairy industry (United State Department of Agriculture) is expected to 

maintain the same milk supply from eight million dairy animals by 2050 as opposed to the 

current population of nine million dairy cattle (Santos et al., 2010; Walsh et al., 2011). 

Understandably, breeding goals in dairy cattle are changing to consider both production (milk) 

and functional traits (such as health and fertility) (Groen et al., 1997; Miglior et al.).  

Major improvements in increasing milk production have been achieved with quantitative 

genetics based on phenotypic and pedigree information and the knowledge of genetic parameters 

for the traits of interest (Dekkers and Hospital, 2002). Recent advances in molecular genetics 
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have enabled researchers to identify and use DNA markers for making selection decisions. In 

marker-assisted selection, markers that are in linkage equilibrium (LE) or linkage disequilibrium 

(LD) with quantitative trait loci (QTL) are used (Dekkers, 2004). However, the application of 

MAS by the dairy industry has been limited (Boichard et al., 2003). The reason is that many 

quantitative traits including milk production in dairy cattle are affected by many loci each with a 

small effect; the number of markers available for MAS was small and therefore only a small 

proportion of the total genetic variance could be captured with these markers. Consequently, 

relatively small gains were possible (Sallam et al., 2015). Furthermore, the cost of genotyping 

these early markers was high (Dekkers, 2004; Lande and Thompson, 1998; Sallam et al., 2015) 

The sequencing of the bovine genome and the subsequent HapMap project made a huge amount 

of markers available in the form of single nucleotide polymorphism (SNPs) (Meredith et al., 

2012; Matukumalli et al., 2009; Gibbs et al., 2012). This progress, with the emergence of high 

throughput genotyping, allows for genomic selection (GS) to be performed. With GS, selection 

decisions are based on genomic breeding values (GEBV) calculated for selection candidates 

using estimates of single nucleotide polymorphism (SNP) marker effects that were trained in a 

reference population with both phenotypes and genotypes (Goddard and Hayes, 2007; Hayes et 

al., 2009). Long generation intervals and the fact that nearly all the economically important traits 

are expressed only in female cattle has made the dairy cow an especially good candidate for 

genome-based selection methods (Dekkers, 2004). 

1.2. Research rationale and hypothesis 

Genomic selection can be applied without knowledge of the underlying quantitative trait 

nucleotides (the QTN) that affect phenotype. However, the identification of the QTNs or markers 

which are in very strong linkage disequilibrium (LD) with causal mutations can give us a better 
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understanding of the biology underlying these traits. Also, the application of panels based on 

QTN information may provide greater accuracy in calculating genomic prediction due to a more 

direct link between phenotype and genotype, and may yield prediction equations that work more 

effectively across breeds and generations. There is also the potential to use QTN or near-to-QTN 

markers for the development of smaller, less expensive marker panels for genomic prediction 

evaluations. The goal of this work was to identify QTNs or markers near QTNs and to include 

these on a custom panel for use in genomic selection in dairy cattle. Using this panel, this work 

tested the hypothesis that the inclusion of candidate QTN genotypes in genomic prediction 

calculations can increase prediction accuracies. 

1.3. Research objectives and chapter details 

The objectives of this study were to 1) identify DNA markers targeted on causal mutations for 

milk production, longevity, lifetime profit index and fertility traits through genome-wide 

association studies and candidate gene identification and to 2) test whether application of these 

markers can increase accuracy of genomic selection in Canadian dairy cattle. Having known that 

potential QTNs can be identified using information from a variety of sources (Veerkamp and 

Beerda, 2007; Zhu and Zhao, 2007; Grant et al., 2011; Ron and Weller, 2007), our experiments 

were performed through the following steps. First, positional and functional candidate genes 

identified based on the results of association studies of a high-density (HD) marker panel and on 

known biological roles or expression patterns of genes. Second, DNA variations were identified 

within the selected candidate genes. For this step we used information from a public SNP 

database, genomic DNA sequencing and RNA-seq. Third, the potential impacts of variants were 

predicted (for example initiator-codon-variant or missense variant) using bioinformatics tools. A 

custom SNP panel was then designed containing variants identified through previous steps and 
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was used to genotype Holstein bulls in training and validation sets. The information derived from 

the training set was used to estimate marker allele substitution effects for all the SNPs in the 

panel and to calculate genomic breeding values (GEBVs) for the validation set. Finally, the 

accuracy of the GEBVs was assessed through comparison with the bull proofs.  

This dissertation is organized as follows. Chapter 2 presents background material covering 

tissues, metabolic pathways and genes that are involved in the physiological adaptations early in 

lactation in dairy cattle. Chapter 3 reports results from a genome-wide association study for 

production (milk production, fat production, fat deviation, protein production and protein 

deviation) and fertility (calving to first service interval, days open, daughter fertility and heifer 

first service to calving interval) traits along with positional and functional candidate genes within 

the associated regions. Additionally, an enrichment analysis was performed to test for 

overrepresentation of significant SNPs in biological pathways. Chapter 4 describes the result of 

the association analysis for lifetime profit index, longevity (herd-life, indirect herd-life and direct 

herd-life), lactation persistency and other female fertility-associated traits (age at first service, 

cow first service to conception and heifer and cow non-return rate). Chapter 5 is a description of 

the development of a custom made SNP panel and calculation of the accuracy of GEBVs. The 

main results, limitations of the work and recommendations are summarized in Chapter 6. 
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CHAPTER 2. LITERATURE REVIEW: TISSUES, METABOLIC 

PATHWAYS AND GENES of KEY IMPORTANCE IN LACTATING 

DAIRY CATTLE
1
 

2.1. Abstract 

Milk and dairy products are valuable sources of food for humans. Increased milk yield and 

changes in milk composition in dairy cows have been achieved through a variety of means 

including better nutrition, management and genetic selection. This selection can be performed 

without consideration of the specific genes and genetic variation involved. However, association 

analysis using dense SNP genotyping panels provides an approach for identifying genomic 

regions affecting milk production. Coupling physiological and metabolic information with 

association analysis results can provide greater insight into the specific genetic variants and 

molecular mechanisms affecting production traits as well as the potential effects of these variants 

on fertility in dairy cattle. To this end, this review highlights key tissues, metabolic pathways and 

genes of importance in lactating dairy cattle, particularly early in lactation. Physiological and 

metabolic adaptations in three key tissues (adipose, mammary gland and liver) are discussed, 

followed by the important endocrine adaptations during negative energy balance (NEB). Key 

genes mediating metabolic and endocrine adaptations are also highlighted. Finally, genes that 

account for variation in production traits are presented in relation to the tissues and processes 

described. Knowledge of the genes and pathways involved will be important for ongoing efforts 

aimed at finding other genes and variants that contribute to milk production and fertility traits. 

                                                             
1 A version of this chapter has been published in the journal of Springer Science Reviews. Nayeri et al. 

2016. Literature Review: Tissues, metabolic pathways and genes of key importance in lactating dairy 
cattle. pp 1:29 DOI: 10.1007/s40362-016-0040-3 
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Also, a better understanding of the molecular basis of these traits may lead to more accurate 

genomic predictions. 

2.2. Introduction 

Humans have recognized milk and dairy products as a valuable source of sustenance since as 

early as 4000 BC (Lucy 2001; Bauman et al. 2006). Indeed, milk is a source of energy, high 

quality protein, several key minerals and vitamins (Bauman et al. 2006). The demand for milk 

and milk products continues to increase, as does the production capacity of individual cows. For 

example, from 2005 to 2012, milk production of the Canadian dairy herd increased by 6%, while 

the number of dairy cows declined by 11% (www.cdn.ca). Ongoing genetic selection as well as 

advances in the understanding of the biology of lactation and biosynthesis of milk such as 

improved understanding of the interrelations between dietary components, digestive processes in 

the rumen and the regulation of mammary synthesis of milk, fat have led to improvements in 

management and substantial increases in milk production and productivity (Bauman et al. 2006; 

Ha et al. 2015). This knowledge includes advanced understanding of: the biology of lactation in 

many mammals (such as goat, sheep, guinea pigs, mice, rats and several other species); the 

relationship between structure and function of mammary epithelial cells; the biochemical 

pathways for the synthesis of milk components; the role of hormones in the development of the 

mammary gland and the regulation of mammary gland function (Heid and Keenan 2005; 

Bauman et al. 2006; Keenan and Mather 2009). Specific genes and gene variants that account for 

variation in milk production traits have been identified and represent another source of 

knowledge of the molecular events that can contribute to increases in production. For example, a 

missense mutation in the DGAT1 gene on chromosome 14 has been identified with major effects 

on milk composition and fat content in dairy cattle (Grisart et al. 2002). Two other loci with 
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major effects on milk yield and composition have been identified on chromosomes 6 and 20 and 

involving the ABCG2 and GHR genes, respectively (Blott et al. 2003; Cohen-Zinder et al. 2005). 

The identification of such genes and variants has been guided in large part by existing 

knowledge of the roles of certain genes in lactation. This review seeks to present information on 

tissues, pathways and genes that can guide future studies aimed at understanding the underlying 

genetic differences that contribute to variation in milk production and fertility traits. 

Consideration of fertility is important because of the unfavourable correlations between milk 

yield and fertility traits (Pryce et al. 2004). Many reproductive disorders including late 

resumption of ovarian activity or poor conception rate are related to negative energy balance at 

the peak of lactation in dairy cows (Taylor et al. 2004; Wathes et al. 2007). The identification of 

the specific genetic variants responsible for variation in these traits should lead to more accurate 

approaches to genomic selection that work better across generations and breeds (Snelling et al. 

2013), and may help us understand or predict potential negative effects on other traits.  

Substantial advances in molecular genetics and genomics tools have made the identification of 

genes and mutations causing simply inherited Mendelian traits relatively straightforward 

(Dekkers 2004; Goddard et al. 2014). However, quantitative traits such as milk production in 

dairy cattle are polygenic, affected by multiple genes and mutations at many sites in the genome 

(Snelling et al. 2013; Goddard et al. 2014). Many of the mutations that affect these quantitative 

traits have small effects on the phenotype and explain only a small portion of the genetic 

variance. Therefore, successfully identifying casual mutations and regions affecting these traits is 

more difficult compared to simple, highly heritable traits (Goddard et al. 2014).  

A major goal of quantitative trait loci (QTL) studies in livestock is to identify regions, genes and 

markers that can be used in breeding programs. A QTL is a section of DNA (a locus) that is 



 
 

12 

correlated with variation in a given phenotype (Khatkar et al. 2004). Identifying the QTL 

affecting a trait has previously involved low density markers and the application of linkage 

mapping (Meuwissen et al. 2001; Goddard et al. 2014). Subsequently, through the discovery of 

markers within new target regions, the use of fine mapping, and the application of high density 

SNP (single nucleotide polymorphism) panels, the accuracy of QTL detection increased (Kemper 

et al. 2015). Fine mapping relies on linkage disequilibrium (LD) between SNPs and unknown 

casual variants, which are also called quantitative trait nucleotides or QTN (Snelling et al. 2013; 

Höglund et al. 2014a). Recent association analyses using dense genetic markers have detected 

variants associated with milk production-related traits including mammary gland development, 

and prolactin signaling and involution pathways (Sutherland et al. 2007; Raven et al. 2014a; 

Höglund et al. 2014a; Höglund et al. 2015). After identifying a QTL region, however, it may still 

be difficult to determine which variants in the region truly affect the trait. Knowledge of the 

physiology of the trait and of relevant metabolic pathways can be valuable in this regard, as it 

can highlight genes in the QTL region of potential importance (Weng et al. 2011). One of the 

aims of this review is to facilitate discovery of the mechanisms underlying QTL associated with 

milk production and fertility related traits, through highlighting tissues, pathways, and genes 

known to play important roles in lactation.  

2.3. Physiological and metabolic adaptations early in lactation in dairy cattle 

The transition period in dairy cattle presents an enormous metabolic change and challenge to the 

high-yielding dairy cow (Bell 1995). During this time, the energy requirements of the cow 

increase to accommodate milk production and maintenance (Jorritsma et al. 2003; Walsh et al. 

2011). This increase in energy requirements can be partially met by increased feed consumption 

but is limited due to low dry matter intake and decrease in appetite that tend to occur around this 



 
 

13 

time; the remainder is met by mobilization of body reservoirs (Grummer 2007). Adipose tissue is 

the predominant energy reserve in dairy cattle during periods of chronic energy deficit (Bell 

1995; Roche et al. 2009). Through homeostasis mechanisms, adipose tissue optimizes non-

esterified fatty acid mobilization to maintain physiological equilibrium and to provide the 

required energy early in lactation (Bauman and Currie 1980; Bell 1995; Roche et al. 2009). 

However, not only is the homeostasis mechanism in adipose tissue important to support changes 

in a cow’s condition, a coordinated change in lipid metabolism of other body tissues is also 

necessary to support the physiological state of the animal (Bauman and Currie 1980; Roche et al. 

2009). This mechanism of regulation is called homeorhesis and applies to nutritionally 

insensitive (genetically controlled) regulation of lipid metabolism in dairy cattle to support the 

physiological state of the animal (Bauman and Currie 1980; Roche et al. 2009). Liver is the main 

site for the uptake of serum free fatty acid, increased lipid β-oxidation and increased 

gluconeogenesis early in lactation in dairy cattle (Bauman and Currie 1980; Roche et al. 2009). 

Another metabolic adaptation associated with negative energy balance and homeostasis in dairy 

cows is related to increased use of nutrients and milk lipid droplet in the mammary gland (Roche 

et al. 2009). Therefore, the liver and the mammary gland in dairy cattle are also important tissues 

in homeostasis and homeorhetic control of lipid metabolism during early lactation (Fielding and 

Frayn 1998; Drackley 1999). The physiological and metabolic pathways as well as the regulatory 

components in these three tissues (adipose, liver, and mammary gland) are described in 

subsequent sections. 

2.3.1. Adipose tissue  

Early in lactation, lipid metabolism characteristics change in adipose cells (adipocytes). 

Endocrine profile changes and mobilization of fatty acid from adipocytes begins (Bauman and 
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Griinari 2001). Subsequently, the abundance of non-esterified fatty acids (NEFA) in the serum 

albumin increases to allow uptake by various tissues (Roche et al. 2009). Two main metabolic 

pathways optimizing NEFA mobilization to maintain physiological equilibrium are lipolysis and 

lipogenesis (Roche et al. 2009). 

Lipogenesis 

Major sites where lipogenesis generally occurs are the intestinal mucosal cells, the hepatocytes 

(liver cells) and the adipose tissue (Laliotis et al. 2010). In ruminants, the predominant sites are 

adipose tissue and the mammary gland of lactating dairy cows (Laliotis et al. 2010). These 

tissues are responsible for the uptake of pre-formed fatty acids from lipid circulation and for de 

novo fatty acid synthesis using acetyl-CoA derived from the catabolism of carbohydrates (Roche 

et al. 2009; Laliotis et al. 2010). Most of the carbohydrates in ruminants are fermented into 

acetate while butyrate and propionate are produced to a lesser extent. As such, acetate is the 

predominant lipogenic substrate in adipose tissue and the mammary gland for de novo fatty acid 

synthesis (Vernon et al. 2001; Laliotis et al. 2010).  

Acetate is first transformed into pyruvate and then into acetyl-CoA through oxidation within 

mitochondria (Laliotis et al. 2010). Fatty acid synthesis (lipogenesis) begins with carboxylation 

of this acetyl-CoA to malonyl-CoA. This reaction is catalyzed by the rate-limiting enzyme, 

acetyl-CoA carboxylase (ACC) (Roche et al. 2009). Malonyl-CoA is then condensed with acetyl-

CoA by Acyl-malonyl ACP condensing enzyme to produce a four-unit substrate and CO2 as a 

result (Berg et al. 2002; Roche et al. 2009). The next three steps in fatty acid synthesis are 

reduction of a keto- group at C-3 to a methylene group and formation of butryl-ACP (Berg et al. 

2002). With formation of burtryl-ACP, the first cycle of elongation completes. The elongation 

cycle continues with condensation of butryl ACP with malonyl ACP to form C6-β-ketoacyl ACP, 
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and a similar cycle of reactions repeats until C16-acyl ACP is formed; this intermediate is then 

hydrolyzed by thioestrase to yield palmitate (C16:00) and ACP (Berg et al. 2002). In the case of 

fatty acid uptake from circulating lipids, the second pathway of lipogenesis in the adipocyte 

starts, which is hydrolysis of plasma triacylglycerides (TAG) by lipoprotein lipase (LPL), 

producing NEFA and monoacylglycerides (Lehner and Kuksis 1996; Roche et al. 2009). 

Depending upon availability of glycerol-3-phosphate and monoacylglycerides, TAGs are 

synthesized through either phosphatidic or monoacylglycerol pathways (Lehner and Kuksis 

1996; Roche et al. 2009). 

Lipolysis 

The hydrolysis of triacylglycerols (TAG) by lipase is activated by signals from molecules such 

as catecholamine (epinephrine and norepinephrine) and adrenocorticotropic hormones (Roche et 

al. 2009). These hormones trigger membrane receptors that activate adenylate cyclase (Fig. 1). 

Increased levels of cyclic adenosine monophosphate (cAMP) then simulate protein kinase A. 

This simulation leads to activation of lipase (hormone sensitive-lipase or HSL), which 

hydrolyzes fatty acids at the sn-1 and sn-3 positions (Berg et al. 2002). Then, monoacylglycerol 

lipase hydrolyzes the remaining fatty acid at the sn-2 position and generates 3 fatty acids 

(NEFA) and glycerol (Berg et al. 2002). Following this hydrolysis, NEFA mobilizes into 

circulation and quickly attaches to serum albumin for transport to various tissues (Roche et al. 

2009). 
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2.3.2. Liver 

The liver has a key role in lipid metabolism and maintaining lipid homeostasis in animals 

(Nguyen et al. 2008; Lin et al. 2013). Physiological, metabolic and endocrine adaptations that 

take place in the liver during early lactation support lipid metabolism in dairy cattle (Lin et al. 

2013). Many metabolic disorders affecting transition cows, such as fatty liver syndrome and 

ketosis occur as a result of increased lipid and fatty acid oxidation in the liver during this period 

of metabolic challenge (Goff and Horst 1997; Dann and Drackley 2005). The oxidation of long 

chain fatty acids occurs in hepatic mitochondria and peroxisomes (Dann and Drackley 2005; 

Roche et al. 2009). Then triglycerides, the end product of liver β-oxidation, are carried by the 

lipoprotein VLDL (very low density lipoprotein). Lipoproteins are composed of triglycerides, 

cholesteryl esters, phospholipids and cholesterol (Kessler et al. 2014). Since cholesterol 

metabolism early in lactation has been a subject of intense investigation with regard to 

lipoprotein carriers, lipid metabolism related disorders, membrane fluidity and steroid hormone 

synthesis (Dann and Drackley 2005; Kessler et al. 2014), this section will review pathways and 

genes that are involved in lipid metabolism as well as cholesterol and steroid hormone synthesis 

in the liver.  

 Lipid metabolism in the liver 

NEFA generated through lipid metabolism can be oxidized by liver mitochondria or peroxisomes 

for use as an energy source or used by the mammary glands as a source of milk fat (Drackley 

1999; Roche et al. 2009). β-oxidation occurring in the mitochondria involves production of 

acetyl-CoA, and reduction of nicotinamide adenine dinucleotide (NAD
+
) and flavin adenine 

dinucleotide (FAD
+
) in order to produce adenosine triphosphate (ATP) in the citric acid cycle 
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and electron transport chain. The alternative pathway of hepatic fatty acid oxidation is through 

peroxisomes. 

2.3.2.1.1. Oxidation of fatty acids in mitochondria 

The β-oxidation of fatty acids in liver occurs mainly in the mitochondria. The carnitine 

palmitoyltransferase (CPT) system is recognized as a component of fuel homeostasis and 

transport system for these NEFA for β-oxidation (McGarry and Brown 1997). This system is 

composed of three enzymes, carnitine palmitoyltransferase I (CPT-I), carnitine-acylcarnitine 

translocase, and CPT-II (McGarry and Brown 1997; Dann and Drackley 2005). NEFA are 

delivered to the liver and converted to fatty acyl-CoA esters by acyl-CoA synthase. Then acyl-

CoA is taken up by CPT-I on the outer mitochondrial membrane to be activated in the form of 

fatty acyl-carnitine (Berg et al. 2002). This step is believed to be the rate-limiting regulatory step 

in the metabolism of long chain fatty acids (McGarry and Brown 1997). Then, fatty acyl-

carnitine permeates the inner membrane and by the enzyme CPT-II reforms fatty acyl-CoA 

(McGarry and Brown 1997). The activated fatty acyl then enters the pathway of β-oxidization in 

the mitochondrial matrix by a recurring sequence of four reactions: oxidation by flavin adenine 

dinucleotide (FAD), hydration, oxidation by NAD
+
, and thiolysis by CoA (Table 2.1) (Mannaerts 

et al. 1979; Berg et al. 2002). The NADH (nicotinamide adenine dinucleotide hydrogen) and 

FADH produced during these reactions generate ATP in the citric acid cycle and electron 

transport chain, respectively (Berg et al. 2002). When fatty acid mobilization increases in 

adipocytes, excessive acetyl-CoA generated from β-oxidation is converted into acetoacetate and 

BHBA (beta-hydroxybutyrate), which are ketone bodies (Roche et al. 2009). Ketone bodies are 

an important energy-providing mechanism for vital organs such as the brain in early dairy cow’s 

lactation (Roche et al. 2009). The remaining free fatty acids will be re-esterified to triglycerides 
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(TG) and exported as VLDL to the plasma (Fig. 1) (Kessler et al. 2014; Gross et al. 2015). Van 

den Top et al. (1995) and Kessler et al. (2014) showed that plasma VLDL-cholesterol, LPL-

cholesterol (lipoprotein lipase) and TG concentrations decrease distinctively after parturition. 

Limited secretion of VLDL from liver and accumulation of TG in the liver can then lead to fatty 

liver syndrome (Van den Top et al. 1995). 

2.3.2.1.2. Oxidation of fatty acid in peroxisomes 

The oxidative pathway of NEFA in peroxisomes is similar to that in mitochondria. However, one 

of the products of these reactions is hydrogen peroxide instead of NADH. In addition, 

peroxisomes do not contain a respiratory chain linked to ATP which results in capture of less 

energy and more heat during peroxisomal β-oxidation (Drackley 1999). Therefore, peroxisomal 

β-oxidation may be considered an overflow pathway to oxidize fatty acids (FA) during extensive 

NEFA mobilization (Drackley 1999). 

Cholesterol and steroid hormone metabolism 

The transition period not only requires homeorhetic changes in glucose and lipid metabolism but 

also cholesterol metabolism (Bauman and Currie 1980; Kessler et al. 2014). Cholesterol is a 

fundamental lipid in modulating cell membrane fluidity and is the precursor of steroid hormones 

such as progesterone, testosterone, estradiol and cortisol (Berg et al. 2002). This section 

describes the biochemical pathways involved in cholesterol and steroid hormone synthesis, as 

well as regulatory components and interactions mediating cholesterol homeostasis in dairy cows 

during the transition period. 
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2.3.2.1.3. Cholesterol synthesis 

Cholesterol and fatty acids are synthesized in the liver (Horton et al. 1998). Cholesterol has 27 

carbon atoms in its structure, all of which are derived from acetyl-CoA. Synthesis of cholesterol 

starts with the formation of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) from acetyl-CoA and 

acetoacetyl-CoA. This stage is mediated by 3-hydroxy-3-methylglutaryle-CoA synthase (Viturro 

et al. 2009). Then, HMG-CoA is reduced to mevalonate for the synthesis of cholesterol. The 

synthesis of mevalonate is the main step in cholesterol formation and is catalyzed by 3-hydroxy-

3-methylglutaryl CoA reductase (HMG-CoA reductase) (Berg et al. 2002; Viturro et al. 2009). 

Mevalonate is converted into 3-isopentenyl pyrophosphate and this molecule condenses in three 

steps to form farnesyl pyrophosphate (Berg et al. 2002). Then, two molecules of farnesyl 

pyrophosphate reduce to form squalene. This reaction is catalyzed by the endoplasmic reticulum 

enzyme, squalene synthase. Squalene is cyclized by oxidosqualene cyclase to form lanosterol (2. 

1). The final stage of cholesterol synthesis is the conversion of lanosterol to cholesterol in a 

multistep process (Berg et al. 2002). 

2.3.2.1.4. Steroid hormone synthesis from cholesterol 

Cholesterol is the building block for all of the five major classes of steroid hormones: 

progestagens, glucocorticoids, mineralocorticoids, androgens and estrogens (Berg et al. 2002). 

Steroid hormone synthesis is stimulated and controlled by different peptide hormones in different 

organs. For example, follicle-stimulating hormone (FSH) controls the progesterone and estrogen 

synthesis in ovarian granulosa cells, whereas luteinizing hormone (LH) regulates progesterone 

synthesis in ovary luteinized granulosa-luteal cells, and androgen production in ovarian theca-

interstitial cells (Hu et al. 2010). Steroid hormones contain 21 carbon atoms. The first stage in 



 
 

20 

the synthesis of steroid hormones is the removal of a six-carbon unit from cholesterol to form 

pregnenolone, a reaction catalyzed by the cytochrome P450 side-chain cleavage enzyme 

(P450scc, CYP11A1) on the inner mitochondrial membrane (Lambeth 1986; Hu et al. 2010). 

Progesterone is then synthesized from pregnenolone in two steps: 1) oxidization of the 3-

hydroxyl group of pregnenolone and 2) isomerization of the ∆
5
 double bond to a ∆

4
 double bond 

(Berg et al. 2002). This step is catalyzed by the rate limiting Δ
5
-3β hydroxysteroid 

dehydrogenase isomerase (3βHSD) enzyme in steroidogenic cells in the ovary (Payne and Hales 

2004; Hu et al. 2010).  

Androgens and estrogens are synthesized from progesterone in two steps: 1) hydroxylation of 

progesterone at C-17 and 2) cleavage of the side chain consisting of C-20 and C-21 carbons to 

yield androstenedione which is an androgen. This reaction is catalyzed by the 17α-hydroxylase 

enzyme which uses Δ
5 

as substrate for the lyase activity (Payne and Hales 2004). Testosterone, 

which is secreted from theca-interstitial cells of the ovary, is another androgen and is formed by 

the reduction of the 17-keto group of androstenedione (Berg et al. 2002; Payne and Hales 2004). 

This reaction is catalyzed by 17β-hydroxysteroid dehydrogenases (Payne and Hales 2004). The 

estrogens, estrone and estradiol (E2), are synthesized from androgens by the loss of the C-19 

methyl group (Berg et al. 2002). Testosterone and androstenedione can be further metabolized to 

estradiol and estrone, respectively, in the ovary in a reaction catalyzed by the aromatase enzyme 

(CYP19A1) (Berg et al. 2002; Hu et al. 2010). The ovarian granulosa cells secret progesterone 

(P4) and estradiol, and ovarian theca cells predominantly synthesize androgens. 
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2.3.3. Mammary gland 

The mammary gland synthesizes and secretes a large number of products in the milk including 

proteins (whey 20% and casein 80%), carbohydrates, coated lipid droplets, water and ions 

(Bauman et al. 2006). Milk fat is of major importance to the dairy industry, as it influences the 

manufacturing properties and other organoleptic qualities of milk and dairy products (Bauman et 

al. 2006; Bionaz and Loor 2008a). Several studies have defined and quantified major metabolic 

aspects of mammary lipid metabolism. These main lipid associated metabolic pathways are the 

ones involved in fatty acid uptake from the blood (through endothelial long-chain fatty acid 

transport), de novo fatty acid (FA) synthesis (in cytosol), FA synthesis in the mitochondria and 

milk lipid synthesis, droplet formation and secretion (in the endoplasmic reticulum (ER) 

membrane) (Bauman and Griinari 2003; Bauman et al. 2006; Bionaz and Loor 2008a). Fat 

production and milk FA composition are affected by the stage of lactation and level of 

production (Kay et al. 2005; Bernard et al. 2008; Bionaz and Loor 2008a). Transcriptional 

studies of the bovine mammary gland have highlighted a complex and coordinated set of 

molecular events that are involved in mammary adaptations to lactation (Lemay et al. 2007; 

Bionaz and Loor 2008a). This section will briefly review these molecular events from 

endothelial FA uptake to lipid droplet formation in the ER membrane. 

2.3.3.1.  Blood fatty acid uptake and de novo fatty acid synthesis 

The mammary gland can use two sources of fatty acids for milk fat synthesis. One source is the 

de novo synthesized fatty acids produced by mammary epithelial cells; the other source is fatty 

acids that are obtained from the digestive tract or through mobilization of body reservoirs (Ma 

and Corl 2012). Short chain (4-8 carbons), medium chain (10-14 carbons) and a portion of long 
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chain fatty acids (16 carbons) are synthesized from acetate and β-hydroxybutyrate in the de novo 

FA synthesis process; the remaining long chain fatty acids (including the other half of 16 carbon 

FA and all FA longer than 16 carbons) are taken up from circulation by the mammary gland 

(Bauman and Griinari 2003). In ruminants, fatty acids are derived predominantly from intestinal 

absorption of dietary and microbial fatty acids (Bauman and Griinari 2003). Early in lactation, 

however, when the animal is in negative energy balance, the contribution from mobilized fatty 

acids (such as circulating lipoproteins and NEFA) increases (Bauman and Griinari 2001; Ma and 

Corl 2012). Mammary cells take up albumin-bound FA (or NEFA) and lipoproteins. The VLDL 

or chylomicrons are also anchored to mammary endothelium by lipoprotein lipase (LPL) which 

hydrolyzes triacylglycerol (TAG) in the lipoprotein to release the FA (Fielding and Frayn 1998). 

Most of these long chain fatty acids (LCFA) are then esterified with CoA to LC-acyl-CoA 

(LCACoA) in the inner face of the plasma membrane before participating in metabolic pathways 

(Bionaz and Loor 2008a). This step is regulated by the acyl-CoA synthetase long-chain family 

member 1 (ACSL1) gene which has been shown to be the most predominant among other acyl-

CoA synthetase mRNA isoforms in the bovine mammary tissue during lactation (Bionaz and 

Loor 2008a; Bionaz and Loor 2008b). The ACSL1 gene converts free long-chain fatty acids into 

fatty acyl-CoA esters (Fig. 1). Specific localization of ACSL1 gene product in the plasma 

membrane, endoplasmic reticulum and the mitochondria-associated membrane supports 

channelling of LCFA and synthesis of TG from LCFAs (Coleman et al. 2002; Bionaz and Loor 

2008a; Bionaz and Loor 2008b). 

Triacylglycerol (TAG) synthesis and formation of milk lipid droplets 

The activated long-chain fatty acids (LCACoA) bound to FABP3 (fatty acid binding protein 3) 

gene protein are used as substrate for the SCD (stearoyl-CoA desaturase) enzyme, which is 
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located on the ER membrane (Bionaz and Loor 2008a; Bionaz and Loor 2008b). SCD adds a 

double bond to the ∆
9 

position of unsaturated fatty acids (myristoyl-, palmitoyl- and stearoyl-

CoA) and triacylglycerol synthesis (TAG) begins through a series of sequential reactions carried 

out by the products of the GPAM (glyceol-3-phosphate acyltransferase), LPIN1 (Lipin I) and 

DGAT1 (Diacylglycerol acyltransferase I) genes (Fig. 1) (Bionaz and Loor 2008b). The first step 

in TAG synthesis is the acylation of glycerol-3-phosphate to form lysophosphatidic acid (LPA); 

this step is catalyzed by the glycerol-3-phosphate acyltransferase (GPAT) enzyme (Gimeno and 

Cao 2008). Then a fatty acid is transferred to LPA by LPA acyltransferase (also called AGPAT) 

enzyme to produce phosphatidate (PA) (Takeuchi and Reue 2009). The PA is then served as a 

precursor of diacylglycerol (DAG). Lipin enzyme (an endoplasmic reticulum enzyme) catalyzes 

this reaction (Table 2.1) (Reue and Dwyer 2008). Finally, DAG converts to TAG by way of the 

diacylglycerol acyltransferase (DGAT) enzyme (Shindou et al. 2008; Takeuchi and Reue 2009). 

The formed TAGs are enveloped by the ER plasma membrane and gradually move to the apical 

surface of the cell to the point that they dissociate from the cell (Keenan and Mather 2009). The 

bovine milk lipid droplet is dependent on the adipose differentiation related protein (adipophilin, 

ADFP) for differentiation from the ER membrane and the product of the butyrophilin, subfamily 

I, member AI (BTN1A1) gene for differentiation from cell membrane (Bionaz and Loor 2008a; 

Keenan and Mather 2009).  

2.4. Endocrine adaptations in transition dairy cows 

As a result of negative energy balance (NEB) early in lactation, major changes in hormonal 

regulation occur in high-yielding dairy cows (Djoković et al. 2014). This involves changes in 

concentrations of key hormones as well as tissue responsiveness. For example, an increase in 

lipolysis and decrease in lipogenesis occur in order to maintain physiological equilibrium of the 
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body and to satisfy the needs of the mammary gland through nutrient redistribution (Bauman and 

Currie 1980; Bauman and Griinari 2001; Roche et al. 2009; Djoković et al. 2014). Blood 

hormone concentrations have an important role in mammary gland development and lactogenesis 

during the periparturient period (Bauman and Currie 1980). Pituitary growth hormone (GH), the 

thyroid gland hormones, insulin, cathecholamines and leptin are some examples of the endocrine 

factors regulating lipid metabolism (Bauman and Currie 1980; Roche et al. 2009; Djoković et al. 

2014).  

The physiological effects of growth hormone are initiated when it binds to GH receptors (GHR) 

on target cells. Growth hormone enhances the lipolytic response of adipose tissue to β-

adrenergic-signals and is reported to have a positive effect on hormone-sensitive lipase (HSL) 

activity in adipose tissue (Etherton and Bauman 1998; Roche et al. 2009). Binding of GH to its 

receptors (GHR-1A) in the liver initiates synthesis and secretion of insulin-like growth factor 1 

(IGF-1) (Roche et al. 2009). Despite the increase in plasma GH concentrations early in lactation, 

the abundance of hepatic GH receptors decreases, and as a result plasma IGF-1 also decreases 

(Block et al. 2001; Lucy 2001; Roche et al. 2009). Decreasing liver GHR abundance initiates 

lipolysis (Roche et al. 2009). Since the concentration of IGF-1 does not fluctuate with feeding 

activity, it is a good indicator of nutritional status (Taylor et al. 2004). An optimum 

concentration of IGF-1 to maintain enough of a pool of circulating IGF-1 and its widespread 

actions is achieved by six binding proteins (IGFBPs 1 to 6) and the acid-labile subunit (ALS) 

(Rhoads et al. 2004; Taylor et al. 2004). In addition, many members of the somatotropic axis 

(hypothalamo-pituitary axis) are expressed locally within endometrium (Wathes et al. 2011). For 

example, IGF-1 and IGF-2 act through type 1 IGF receptor (IGF1R) and are also expressed in 

the postpartum uterus (Wathes et al. 2011). IGF1 and IGF2 are expressed in many organs of the 
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body and have an influence on proliferation, differentiation and metabolic activities. These genes 

may therefore play a role in uterine involution (Llewellyn et al. 2008; Wathes et al. 2011).  

Insulin has a regulatory effect on lipogenesis and is an antagonist to the lipolytic actions of GH 

(Vernon et al. 2001). Hypoinsulinemia (low concentrations of insulin in the blood) and a 

decrease in responsiveness of skeletal muscle and adipose tissue to insulin occurs simultaneously 

in early lactation and leads to an insulin-independent uptake of the available glucose by the 

mammary gland and greater body lipid mobilization to the liver (Bell and Bauman 1997; Roche 

et al. 2009). This process begins with lower insulin concentration and elevated placental lactogen 

in the uterus during late pregnancy which stimulates adipose metabolism to provide nutrients for 

the growing fetus (Sivan and Boden 2003).  

Leptin, secreted from adipocytes, decreases immediately postpartum as a consequence of energy 

deficit (Leury et al. 2003; Roche et al. 2009). This reduction in leptin production matches the 

plasma insulin profile early in lactation and is consistent with reduced adipose tissue glucose 

uptake (Leury et al. 2003; Roche et al. 2009). Leptin hormone secretion is regulated by a 

complex of different molecules and hormones such as insulin, glucocorticoids and cytokines 

(tumor necrosis factor (TNF) α), unterleukin-1 (IL-1), catecholamines, testosterone and PPARγ 

(Vernon et al. 2001).  

Catecholamines, such as epinephrine and norepinephrine, act as lipolytic stimulators through 

activating cAMP and then PKA which activates subunits of both HSL and perilipin proteins that 

subsequently increase lipolysis (Fig. 1) (Berg et al. 2002; Roche et al. 2009). Perilipin 

phosphorylation, which occurs through a cAMP-dependent PKA cascade, is essential for 
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translocation of HSL hormone from cytosol to the surface of the lipid droplet (Roche et al. 

2009). It has been reported that the transcription of the genes producing perilipin, ß-adrenergic 

receptors and HSL in adipose tissue increase early in lactation in dairy cows (Sumner and 

McNamara 2007). In addition, the responsiveness of bovine adipose tissue to catecholamines 

increases in early lactation (McNamara 1988).  

Thyroid hormones have an important role in the dairy cattle transitional period and in 

determining cell metabolism intensity, metabolism of lipids and carbohydrates and lactation 

course in general (Djoković et al. 2007). These hormones are known for their importance in milk 

production through stimulation of metabolic rates with other hormones (Blum et al. 1983). It has 

been shown that there is a positive correlation between thyroid hormones in blood and energy 

metabolism (Reist et al. 2002). During negative energy balance and high lipid metabolism, 

however, the concentrations of T4 (thyroxine) and T3 (triiodothyronine which is four times more 

active than T4) are reduced (hypothyroidism) in the blood of dairy cows shortly before and after 

calving (Blum et al. 1983; Reist et al. 2002; Pezzi et al. 2003). Negative energy balance and an 

increase in lipid mobilization and hypothyroidism early in lactation in dairy cows are 

accompanied by metabolic disorders associated with carbohydrate and lipid metabolism such as 

ketosis and fatty liver (Djoković et al. 2014). Therefore, thyroid hormones are considered to be 

important indicators of homeorhetic adaptation to negative energy balance in dairy cows until 

energy balance is achieved (Djoković et al. 2007; Kasagic et al. 2011; Djoković et al. 2014). 
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2.5. Reproductive endocrinology and hormonal adaptations in cows in negative 

energy balance (NEB) stage 

Reproductive function in dairy cattle is dependent on balanced and coordinated endocrine 

activity (Wathes et al. 2011). This includes homeostasis between different reproduction 

hormones such as gonadotrophin releasing hormones (GnRH), follicle stimulating hormone 

(FSH), luteinizing hormone (LH), prolactin (PRL) and gonadal steroids as well as prostaglandin 

F2 alpha (PGF2α) from the uterus (Leslie 1983). Shortly before parturition, PGF2α increases and 

luteolysis of corpus luteum (CL) begins. Progesterone decreases rapidly as a result of CL 

regression. Plasma estrogen concentration drops immediately after calving to the values below 

those found during the normal estrous cycle (Jorritsma et al. 2003).  

It has been shown that NEB is a reason for poor conception rates in transition dairy cows 

(Wathes et al. 2003; Wathes et al. 2007; Fenwick et al. 2008). The relationship between NEB 

and fertility stems from the effects of NEB on the resumption of cyclicity and on the quality of 

oocyte or the corpus luteum which is discussed in below.  

Ovarian cyclicity and ovulation after calving are necessary for a successful insemination and 

cows should be able to ovulate approximately 2-3 months postpartum (Jorritsma et al. 2003). 

Gonadotropins play an important role in the onset of this activity. FSH concentrations remain at 

relatively constant levels throughout the post-pubertal life of a dairy cow, but LH concentrations 

become pulsatile in cyclic animals (Leslie 1983). Inhibition of LH pulsatility before puberty 

leads to decreased ovarian activity (Jorritsma et al. 2003). Besides, the onset of puberty has been 

shown to be associated with attainment of a critical level of body fat (Schillo et al. 1992; 
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Jorritsma et al. 2003). Therefore, it has been suggested that there is a relationship between the 

metabolic status of the animal and reproductive endocrine system of dairy cow not only for onset 

of puberty in heifers, but also for resumption of ovarian activity in non-adoptive dairy cows early 

in lactation (Schillo et al. 1992). In this regard, LH seems to have a more important role than 

FSH after calving (Stagg et al. 1998). Low glucose concentrations have also been associated with 

less amplitude of LH pulses. In addition, endogenous opioid peptides, which are secreted during 

stress, have negative effects on LH pulsatility and the onset of ovarian activity post-partum 

(Ahmadzadeh et al. 1998; Jorritsma et al. 2003).  

The IGF-1 system is thought to influence the establishment and maintenance of pregnancy of 

dairy cows through affecting reproductive tract of cows (Taylor et al. 2004). The IGF-1 protein 

acts as a co-gonadotroph and amplifies the effects of FSH and LH on the growth and 

differentiation of ovarian follicles (Lucy 2001; Taylor et al. 2004). The IGF-1 system also plays 

an important role in the survival of the embryo and its plasma concentrations was shown to be 

associated with longer calving to conception intervals (Wathes et al. 2003; Taylor et al. 2004). It 

has been reported that regulation of IGF1 and IGF2 is positively associated with ovarian 

oestradiol production (Stevenson and Wathes 1996; Jorritsma et al. 2003; Fenwick et al. 2008). 

The concentration of IGF-1 increases notably at a time of increasing oestradiol dominance in the 

bovine oviduct (Stevenson and Wathes 1996). Moreover, IGF-1 and insulin have a stimulatory 

effect on ovarian granulosa cells, increasing proliferation, as well as progesterone and oestradiol 

production. Insulin and IGF-1 also stimulate androgen production in (ovarian) theca cells (Spicer 

and Echternkamp 1995; Jorritsma et al. 2003). Recent studies have further suggested the role of 

thyroid hormones in the onset of ovarian activity (Van den Top et al. 1995; Jorritsma et al. 

2003). 
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The quality of oocytes at the time of insemination is important in non-adopting dairy cows and is 

dependent on the sufficient number of ovarian cycles and the time that an antral follicle needs to 

reach its ovulatory size after calving (Jorritsma et al. 2003). Several factors and hormones can 

affect the quality of oocytes. IGF-1 and its binding proteins might affect the quality of oocytes. 

Follicular development can be inhibited with increased IGFBPs that are known to function as 

IGF-1 inhibitors (Jorritsma et al. 2003). The second is the metabolic status of the dairy cow. As a 

result of an increase in body fat mobilization and to some extent body protein mobilization, 

plasma urea concentrations increase early in lactation (Jorritsma et al. 2003). The increase in 

ammonia concentrations may also occur as a result of accumulation of triacylglycerides and 

inhibition of ureagenesis during the transition period in dairy cows (Zhu et al. 2000). A high 

concentration of circulating urea and ammonia in the bloodstream of cows is associated with 

reduced fertility (Rhoads et al. 2004; Laven et al. 2007; Wathes et al. 2011). Exposure of oocytes 

in antral follicles to high levels of ammonia concentrations during fertilization may hamper 

cleavage and blastocyst formation (Sinclair et al. 2000). Increased urea concentration in the 

blood early in lactation is associated with declined cleavage ratios and blastocyst formation of 

the fertilized embryo (Jorritsma et al. 2003; Wathes et al. 2011). This increased level of urea 

concentration in the blood after calving may also influence the expression of endometrial IGF 

and insulin receptor (INSR) (Wathes et al. 2011). Wathes et al. (2011) reported that expression 

of IGF1R and INSR was not altered by the energy balance status of the dairy cow early in 

lactation but was positively correlated with the circulating urea concentration (Wathes et al. 

2011).   
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2.6. Regulatory components and genes mediating metabolic and endocrine 

adaptations  

Differences in the success of adaptation early in lactation between cows, under the same 

conditions and similar production level, suggest that adaptability may have a genetic basis (Van 

Dorland et al. 2009; Kessler et al. 2014; Ha et al. 2015). Many genes, pathways and key 

candidate metabolites in the plasma have been previously confirmed to be essentially involved in 

the regulation of metabolic and endocrine adaptations in dairy cow (Dann and Drackley 2005; 

Bionaz and Loor 2008b; Wathes et al. 2011; Ha et al. 2015). However, these genes and pathways 

might be expressed only at a certain point of time in the individual (Ha et al. 2015). Some genes, 

for example those affecting glucose levels, might be expressed in early lactation and others, 

affecting the abundance of non-esterified fatty acids (NEFA) for example, are expressed 4 weeks 

before or 13 weeks after calving (Ha et al. 2015). Identifying the genes and pathways regulating 

important biological functions during specific physiological states of dairy cattle may help in the 

identification of DNA variants that affect milk production and subsequent fertility (Snelling et al. 

2013). 

2.6.1. Genes and key pathways in multiple tissues 

The onset of lactation in dairy cows is accompanied by an increase in milk synthesis and nutrient 

requirements, and eventually there is metabolism adaptation to lactation-associated challenges. 

These adaptations include metabolism adjustments in liver and peripheral tissues (including 

adipose tissue, mammary gland, skeletal muscle tissues and kidney), and mobilization of body 

reserves and increased lipid metabolism (Weikard et al. 2012). The increase in lipid metabolism 

results in an increase in concentrations of key metabolites NEFA and BHBA in plasma (Figure 
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1.1), and TAG in liver (Roche et al. 2009; Schlegel et al. 2012). Several genes and pathways in 

multiple tissues are involved in regulating these metabolites in lactating dairy cows (Mandard et 

al. 2004; Carlson et al. 2007; Bionaz and Loor 2008a; Ling and Alcorn 2008; Bionaz and Loor 

2008b; Schlegel et al. 2012; Ha et al. 2015). A gene-based mapping and pathway analysis 

indicated that three pathways (steroid hormone biosynthesis, ether lipid metabolism and 

glyceropholipid metabolism) jointly affect the concentrations of NEFA, BHBA and glucose in 

cows during the transition period (Ha et al. 2015). The key genes that are involved in regulating 

energy metabolism in multiple tissues include PPRA, PCK1, PCK, ACACA, FASN, FBP2, 

FABP3, PPARGC1A, ACSL1, PPARGC1A, AGPAT6, PCCA, LPIN1, ACO, CPT-I, CPT-II, and 

ACSL (Chmuzynska 2006; Rudolph et al. 2007; Loor et al. 2007; Bionaz and Loor 2008b; Baik 

et al. 2009; Weikard et al. 2012) These genes are involved in fatty acid uptake (mainly in the 

liver and mammary gland), mitochondrial and peroxisomal fatty acid oxidation, ketone body 

metabolism (ketogenesis), and cholesterol metabolism (in liver) early in lactation in dairy cattle 

(Schlegel et al. 2012) and are discussed in the following tissue-specific sections in more detail.  

Gene expression studies are revealing the extent to which different genes are involved in 

different tissues (Baik et al. 2009; Schlegel et al. 2012; Weikard et al. 2012; Zhang et al. 2015). 

For example, genes that are involved in carbohydrate metabolism, such as those encoding 

gluconeogenesis and propionate metabolism enzymes (including PCK1), were expressed more in 

liver than mammary tissues (Baik et al. 2009; Zhang et al. 2015). However, the related PCK2 

gene shows a small difference in expression between mammary gland and liver (Baik et al. 2009; 

Weikard et al. 2012; Zhang et al. 2015). Other studies showed that the PCK2 gene might also be 

active in glyceroneogenesis in lipogenic tissues (adipose tissues) during fasting or restricted feed 

intake (Hanson and Reshef 2003; Reshef et al. 2003) and in the epithelial cells of mammary 
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tissue during lactation (Hsieh et al. 2011). Weikard et al. (2012) reported that expression of the 

PPARGC1A gene was significantly increased in liver, mammary gland and skeletal muscle in 

lactating cows. The PPARGC1A gene coordinates expression of several proteins and in this way 

it controls the regulation of several metabolic pathways in response to metabolic challenges 

(Weikard et al. 2012). This gene has been reported to have a pivotal role in hepatic glucose 

synthesis (gluconeogenesis) (Puigserver and Spiegelman 2003), to be a key gene in 

mitochondrial oxidative phosphorylation metabolism (Mootha et al. 2003; Patti et al. 2003), and 

to independently regulate the expression of several lipogenic genes after the onset of lactation in 

dairy cattle (Bionaz and Loor 2008a). In a study comparing gene expression patterns between 

liver, mammary gland and skeletal muscle tissues in lactating cows, Weikard et al. (2012) 

indicated that the PPARGC1A and PCCA genes display a significantly altered mRNA abundance 

between the tissues and across all the cow groups under investigation: cows with different 

genetic potential for milk performance (high milk performance, medium and low milk 

performance) and cows with different genetic backgrounds (purebred and combined beef, dairy 

background). Fatty acid binding proteins (FABP) are the main transporters of long chain fatty 

acids (LCFA) to specific organelles for metabolism (Mcarthur et al. 1999). Different isoforms of 

FABPs have shown unique patterns of tissue-specific gene expression (Frolov et al. 1997) and 

are most abundant in tissues that are involved in active lipid metabolism (Baik et al. 2009). In 

this regard, FABP3 was shown to have a major role in bovine mammary gland lipid synthesis 

and is much more abundant in this tissue (Bionaz and Loor 2008a; Baik et al. 2009). FABP1 was 

shown to be more abundant in liver (Chmuzynska 2006), whereas expression of FABP4 was 

reported to be greater in mammary and adipose tissues (Hunt et al. 1986; Baik et al. 2009). There 

are nine isoforms of 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) in mammals, an 
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enzyme that catalyzes the transfer of fatty acyl-CoA to lysophosphatidic acid (Yamashita et al. 

2007). The AGPAT1 isoform is the most abundant one in both liver and mammary tissues (Baik 

et al. 2009), but a knockout study in mice suggests an important roll for AGPAT6 as well in 

mammary tissues, in the biosynthesis of milk fat (Beigneux et al. 2006). 

2.6.2. Genes and key pathways regulating liver lipid and cholesterol metabolism in 

transition dairy cow 

NEFA, beta-hydroxybutryate (BHBA) and glucose are key factors in the metabolic status of 

transition dairy cows (Van Dorland et al. 2009; Graber et al. 2012; Ha et al. 2015). Ha et al. 

(2015) reported that several pathways jointly regulate concentrations of these metabolites, 

including three highly significant pathways: steroid hormone biosynthesis, ether lipid 

metabolism and glycerophospholipid metabolism. Several genes are associated with these 

pathways including CD53, ABCC1, ADCYAP1R1, ZNF551, AHCYL1, WWC1 and MED19 (Ha et 

al. 2015). Ha et al. (2015) also reported similar links to pathways and genes associated with 

cholesterol metabolism and NEFA concentrations in dairy cows. These results are in agreement 

with Kessler et al. (2014) who showed that mRNA abundance of genes involved in cholesterol 

synthesis (SREBF2, HMGCS1 and HMGCR and ABCG1) markedly increased early in lactation 

(Horton et al. 1998; Kessler et al. 2014). 

The high concentration of NEFAs early in lactation can act as signaling molecule, regulating the 

expression of hepatocyte genes that are involved in lipid metabolism (Duplus et al. 2000; Jump 

et al. 2005; Li et al. 2013). In this regard, AMP-activated protein kinase (AMPK) signaling 

pathways have been shown to be a key regulator of hepatic lipid metabolism, responding to 

hormones and metabolites including NEFAs (Li et al. 2013). AMPK acts as a mediator for 
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expression of transcriptional factors, peroxisome proliferator-activated receptor α (PPARα), 

sterol regulatory element-binding protein-1c (SREBP-1c) and carbohydrate responsive element-

binding protein (ChREBP) (Viollet et al. 2006; Li et al. 2013). Activation of these transcriptional 

factors leads to expression of lipolytic and lipogenic genes (Zhou et al. 2001; Kawaguchi et al. 

2002; Li et al. 2013). Activated PPRAα can increase expression of lipolytic genes (ACO, CPT-I, 

CPT-II, L-FABP and ACSL) and subsequently lipid oxidation (Li et al. 2013). This is while 

AMPKα inhibits transcription factors (SREBP-1c and ChREBP) which decrease expression of 

lipogenic genes (ACC1, FAS and SCD-1) and eventually lipid synthesis (Fig. 1) (Li et al. 2013). 

In addition, CPT-I activity increases by activated AMPKα; activated CPT-I increases 

downstream hepatic enzymatic activity and lipid metabolism (Li et al. 2013). 

One of the important genes that control synthesis of sterols is SREBF2 (Horton et al. 1998). 

Kessler et al. (2014) showed that there is a significant correlation between SREBF2 mRNA 

expression and the hepatic gene expression of both 3-hydroxy-3-methylglutaryl-CoA reductase 

(HMGCR) and HMGCS1. In addition, several investigations showed that occurrence of fatty 

liver syndrome early in lactation is associated with cholesterol carrier lipoproteins such as VLDL 

(Kessler et al. 2014; Gross et al. 2015). Cholesterol is transported by high density lipoproteins 

(HDL) from peripheral tissues to the liver (Kessler et al. 2014). The ABCA1 gene regulates 

formation of HDL. Furthermore, Viturro et al. (2009) reported a maximum increase in the 

expression levels of two transcription regulatory proteins, SREBP1 and SREBP2, on the week 2 

postpartum that was coordinately and significantly correlated with an increase in expression 

levels of the enzymes 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and 3-hydroxy-3-

methylglutaryl-CoA synthesis (Viturro et al. 2009). These results indicate that there are complex 

regulatory mechanisms involved in homeostasis of cholesterol in transition dairy cows. 



 
 

35 

2.6.3. Genes and key pathways regulating milk fat synthesis in mammary gland in 

transition dairy cow 

Early in lactation, fatty acid (FA) uptake from blood predominates relative to de novo FA 

synthesis in the mammary gland (Bionaz and Loor 2008a). This change in milk FA synthesis is 

mediated by up-regulation of genes and pathways that are associated with FA uptake from blood 

(such as LPL, CD36) and intracellular transport/channelling genes (such as FABP3) (Bionaz and 

Loor 2008a). Moreover, early in lactation, significant up-regulation of other genes and pathways 

has been observed, such as up-regulation of genes responsible in activation of fatty acids (e.g., 

ACSL1, ACSS2), de novo FA synthesis (e.g., ACACA, FASN), FA desaturation (e.g., SCD, 

FADS1), synthesis of TAG (e.g., AGPAT6, GPAM), lipid droplet formation (e.g., BTNA1) and 

ketone body utilization (e.g., BDH1, OXCT1) (Bionaz and Loor 2008a). Bionaz and Loor (2008) 

also suggested that expression of SREBF1 is central to milk fatty acid synthesis and that the 

genes PPARG, LASS2, INSIG1 and OSBP have a pivotal role in regulating lipid synthesis and 

mammary intracellular equilibrium between cholesterol and sphingolipids in lactating dairy 

cows.   

2.6.4. Genes and key pathways regulating lipid metabolism in adipose tissue in 

transition dairy cow 

With increasing milk production and onset of a period of negative energy balance, the expression 

of many genes and enzymes controlling lipid metabolism in adipose tissue changes (Khan et al. 

2013; Li et al. 2013). These changes favour a decrease in lipogenesis and an increase in lipolysis. 

Khan et al. (2013) reported a decrease in expression of genes controlling adipogenesis including 

PCK1, FASN, SCD, DGAT2, PPRAG, WNT10B and SREBF1. These results are in agreement 
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with previous work by Sumner and McNamara (2007) and Bionaz and Loor (2012) which 

reported that adipose lipogenesis in cows during early lactation is primarily regulated through 

control of gene expression. Expression of key lipolytic enzyme genes (LIPE, PNPLA2, MGLL 

and ADRB2) followed a similar pattern early in lactation, indicating that the control of lipolysis 

in the adipose tissue is likely controlled by post-transcriptional events (McNamara and Murray 

2001; Vernon et al. 2001; Khan et al. 2013). Post-transcriptional activation of HSL through 

simulation of the β-2-adrenergic receptor and the phosphorylation cascade has been shown to be 

the first step in beginning of lipolysis and providing fatty acids to the mammary gland and other 

tissues (Sumner-Thomson et al. 2011; Khan et al. 2013). The transcription of other lipolysis 

genes (LIPE, PLIN1 and ADRB2) increases following an increase in the enzymatic capacity for 

continued supply of FA to other organs and rebuilding adipose stores (McNamara 1988). 

Adipose triglyceride lipase (PNPLA2) has been reported to be a highly-expressed lipolytic 

enzyme in the white adipose tissue of dairy cattle, which is associated with basal and β-2-

adrenergic-simulated triacylglycerol hydrolysis (Miyoshi et al. 2007).  

2.6.5. Influence of energy balance and metabolites early in lactation on gene 

expression in the endometrium of postpartum dairy cow 

It has been reported that severe negative energy balance (SNEB) in high-producing postpartum 

dairy cows is associated with subsequent low fertility (Wathes et al. 2011). Excessive lipid 

metabolism, increased concentrations of NEFAs and BHB and reduced concentrations of glucose 

and IGF-1 are associated with reproductive disorders and poor conception rates (Bauman and 

Griinari 2003; Wathes et al. 2007). The failure of multiparous cows to conceive is correlated 

with low IGF-1 circulation in the first two weeks postpartum (Taylor et al. 2004; Wathes et al. 
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2011). It has been shown that expression of IGF-binding protein 4 (IGFBP4) and inflammatory 

response genes including matrix metalloproteinases (MMP1, MMP3, MMP9 and MMP13), 

chemokines, cytokines and calgranulins significantly increase in the endometrium as a result of 

metritis in cows with SNEB (Wathes et al. 2009; Wathes et al. 2011). Wathes et al. (2011) also 

reported that the expression of hormone receptors in the endometrium (IGF1R, IGF2R, INSR, 

GHR, NR3C1, ESR1 and ESR2) did not change according to the energy balance status and that 

there is a coordinated expression between hormone receptors IGF1R, IGF2R and INSR as well as 

GHR with ESR1 and NR3C1 with ESR2 (Wathes et al. 2011). Furthermore, increased 

concentrations of blood urea as a result of dietary factors and tissue protein catabolism may 

influence the expression of endometrial IGF and INSRs (Wathes et al. 2011). 

2.7. Candidate genes identified in the key tissues through association analysis for 

production and fertility traits  

The availability of highly informative marker maps, genome-wide association analysis (Dekkers 

2004), gene-based mapping (an association approach that tests each gene instead of each SNP 

separately as described in Ha et al (2015)) and pathway analysis (Ha et al. 2015) have resulted in 

the identification of several crucial regulated target genes and metabolic pathways in the 

mammary gland, liver and blood plasma that are responsible for the regulation of the metabolism 

early in lactation. For example, a QTL with a major effect on milk yield and composition has 

been identified on the centromeric end of the chromosome 14, and involves the DGAT1 gene 

(Grisart et al. 2002). Figure 2 shows a strong association of SNPs with milk production on 

chromosome 14 close to the DGAT1 gene in a genome-wide association study done on Canadian 

Holstein dairy cattle (Nayeri et al. 2016). Similarly, linkage disequilibrium (LD) analysis 
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highlighted a chromosomal region on bovine chromosome 20 harboring the GHR gene which 

affects milk yield and composition (Georges et al. 1995; Arranz et al. 1998; Blott et al. 2003). 

Another association analysis revealed highly significant SNPs (false discovery rate at P-value ≤ 

10
-8

) associated with fat and protein percentage on chromosome 19 residing within ACLY, which 

is a fatty acid biosynthesis gene (Raven et al. 2014b). Significant associations involving markers 

within or close to other fat metabolism associated genes such as FASN, SREBPB1 and STAST5A 

have also been reported for milk production traits in dairy cattle (Bouwman et al. 2011). In a 

recent study of a German Holstein-Friesian population, two highly significant polymorphisms 

were found to be associated with milk fat content; one of these variants is located within the 

promoter region of the EPS8 gene on chromosome 5 and the other variant is located near the 

GPAT4 gene on chromosome 27 (Wang et al. 2012).  

The product of the EPS8 gene provides a substrate for receptor tyrosine kinases and physically 

interacts with the epidermal growth factor receptor (EGFR) (Fazioli et al. 1993). Interaction of 

the EPS8 gene product with EGFR increases the signaling response to epidermal growth factor 

(EGF) (Raven et al. 2014b). The promoter SNP reported by Wang et al. (2012) in EPS8 may 

mediate the binding of transcription factor TFAP2A to influence the transcription rate of EPS8. 

The expression of TFAP2A is correlated with the concentration of NEFA and liver 

triacylglycerol (Wang et al. 2012). It has been demonstrated that sterol regulatory element-

binding proteins (SREBPs), which control the expression of genes required for the uptake and 

synthesis of cholesterol, fatty acid and triglycerides, are regulated by the epidermal growth 

factors (Chatterjee et al. 2009). Therefore, it is plausible that an increased milk fat biosynthesis 

in the lactating mammary gland is the result of an enhanced transcription rate of EPS8, conferred 

by binding of TFAP2A. The GPAT4 gene is near a QTL region reported to contribute to the 
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genetic variation of milk fatty acid composition in the Dutch Holstein population (Bouwman et 

al. 2011; Wang et al. 2012). This gene plays an important role in lipid biosynthesis in mammals. 

The transcription rate of GPAT4 is highly correlated with concentrations of diacylglycerols and 

triacylglycerols in milk (Beigneux et al. 2006; Bionaz and Loor 2008b). In a more recent study, 

this region on chromosome 27 was reported for associations with milk fat and milk volume, 

protein and lactose content in Holstein and Jersey crossbreds (Littlejohn et al. 2014). Mullen et 

al. (2011) have detected several novel and previously identified associations involving variants 

within introns of the IGF1 gene associated with milk protein yield, milk fat yield, milk fat 

concentration, somatic cell score and carcass associated traits in Holstein dairy cattle (Mullen et 

al. 2011). The IGF-1 protein stimulates protein synthesis in the epithelial cells of the mammary 

gland and plays an important role in mammary gland growth and function (Burgos and Cant 

2010). A more comprehensive list of major candidate genes associated with milk production 

traits is shown in Table 2.2.  

The impact of poor fertility in the dairy industry has led to the inclusion of a female fertility 

index in some breeding programs and has undoubtedly contributed to interest in identifying the 

loci affecting fertility (Höglund et al. 2009; Höglund et al. 2012; Höglund et al. 2014a; Höglund 

et al. 2015). Association and QTL mapping studies have identified several candidate genes 

affecting fertility traits including interval from calving to first insemination, days from first to 

last insemination, 56-day non-return rate and insemination per conception. For example, an 

investigation of QTL regions affecting female fertility traits in Nordic Holstein cattle identified a 

strongly associated missense mutation within the multifunctional CD36 gene on chromosome 4 

(Höglund et al. 2014a). In two other association studies in Nordic Red dairy cattle using 50K 

SNP genotypes imputed into whole genome sequencing data, several other genes including 
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SLC6A17, SDS5, ADCY1, SLC1A4 and PPM1B associated with cow and heifer non-return rate, 

calving to first service interval, number of inseminations per conception and days from first to 

last insemination were identified (Höglund et al. 2014b; Höglund et al. 2015). The TGFB2, 

APOH and IGLL1 genes were reported as important candidate genes under significant peaks 

associated with non-return rate and days to first service in Italian Holstein cattle (Minozzi et al. 

2013). The genes TGFB2 and APOH are both involved in the process of the follicular 

development as they interact with the reproductive hormones LH and FSH (Minozzi et al. 2013). 

The TGFB isoforms can stimulate FSH receptor expression and amplify progesterone production 

and LH receptor induction (Knight and Glister 2006). The IGLL1 gene has also been reported to 

be up regulated during the peripartum period in the endometrium of the lactating dairy cow and 

may play an important role in energy balance by influencing production and fertility traits at the 

same time (Cerri et al. 2012). A list of major candidate genes identified through association 

studies for fertility-associated traits is provided in Table 2.3. 

2.8. Genomic regions and genes affecting multiple traits in dairy cattle 

Milk production and fertility traits are polygenic, affected by many genes and variants, each with 

a small effect on the observed phenotype (Snelling et al. 2013; Nayeri et al. 2016). GWAS 

studies of different production and fertility traits in dairy cattle have identified shared 

quantitative regions and candidate genes—regions that appear to influence multiple traits 

(Chmuzynska 2006; Höglund et al. 2009; Reverter and Fortes 2012; Nayeri et al. 2016). In some 

cases the effects are confined to multiple production traits. For example, the underlying genomic 

region on chromosome 14 that includes DGAT1 gene has been shown to have a major effect on 

milk fat content and several other production traits including milk yield, fat percentage and 

protein percentage (Ashwell et al. 2004; Pimentel et al. 2011; Maxa et al. 2012; Meredith et al. 
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2012; Xie et al. 2014; Nayeri et al. 2016). Similarly, several studies have reported associations of 

SNPs on chromosome 20 surrounding the GHR gene with milk yield, protein yield and protein 

percentage (Blott et al. 2003; Viitala et al. 2006; Meredith et al. 2012; Chamberlain et al. 2012; 

Raven et al. 2014b; Nayeri et al. 2016). More recently, variants close to the MGST1 gene on 

chromosome 5 have been shown to be associated with increased fat yield, protein percentage and 

lactose percentage, and a decrease in protein yield, lactose yield and protein volume (Littlejohn 

et al. 2016). Through the collection and analysis of gene expression data the authors demonstrate 

that a strong MGST1 eQTL (expression QTL) likely underlies these associations, however the 

specific role of MGST1 in regulating milk composition is not known (Littlejohn et al. 2016). The 

identification of genes that influence multiple production traits is not surprising given the shared 

underlying molecular mechanisms (Solovieff et al. 2013). For example, it has been shown that 

the main functional pathways that are regulated by the K232A polymorphism in DGAT1 gene 

(associated with reduced milk production and increased milk fat yield) were related to cell 

energy metabolism (lipid biosynthesis, oxidative phosphorylation, electron transport chain), 

protein degradation and cell signaling (Mach et al. 2012). This might reflect the underlying 

biological pleiotropic effect, where a single casual variant is related to the variations in multiple 

traits as explained by Solovieff et al. (2013).  

Regions and candidate genes associated with multiple fertility traits have been described. For 

example, chromosome 21 was shown to harbor a region overlapping among two fertility traits, 

calving to first service interval and days open, and a candidate gene in that region has been 

proposed, FAM181A (Nayeri et al. 2016). In another GWAS study in Nordic Red cattle, a shared 

significant SNP (rs43271631) on chromosome 1 was associated with multiple fertility traits such 

as fertility index, 56-day non-return rate, number of insemination per conception and days from 
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first to last insemination (Höglund et al. 2015). This SNP is located within an intron of the 

TRPC1 gene, which was shown to regulate osteoblast formation in mice (Ong et al. 2013). Cole 

et al (2009) reported a common SNP (ss86324977) on chromosome 18 in an intronic region of 

the sialic acid binding Ig-like lectine-5 (SIGLEC5) gene, associated with sire and daughter 

calving ease, that was also reported to affect direct calving traits in multiple studies (Kuehn et al. 

2003; Thomasen et al. 2008; Cole et al. 2009; Sahana et al. 2011). In humans this gene is 

expressed in the placenta and has been suggested to have a role in the initiation of parturition 

(Brinkman-Van Der linden et al. 2007). In a GWAS study for calving traits in Danish and 

Swedish cows, the majority of the identified QTL showed an effect on more than one calving 

trait (such as birth index, stillbirth, calving ease, calf survival and calving index) (Sahana et al. 

2011). The sharing of regions among fertility traits can reflect the similarity of some of the 

assessment procedures. For example, the number of inseminations per conception (number of 

insemination) is related to the days from first to last insemination (which measure time between 

first and last insemination) (Höglund et al. 2015). It also likely reflects, as with the overlap 

among production traits, shared mechanisms.   

Perhaps the most interesting and challenging genes and variants are those that affect production 

and fertility. The success in increasing production in high-producing dairy cows is accompanied 

by a decline in reproductive performance, first-service pregnancy rate and reproductive 

efficiency (Lucy 2001; Pryce et al. 2004; Veerkamp and Beerda 2007). Cows with higher milk 

production at day 56 postpartum were shown to have significantly a longer commencement of 

luteal activity postpartum and a shorter first luteal phase (Royal et al. 2002). There is an 

antagonistic relationship between production and fertility traits due to pleiotropic gene effects, 

linkage or complex physiological associations (Kadarmideen et al. 2000; Veerkamp and Beerda 
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2007). For example, a region with effects on both production and fertility traits was reported on 

chromosome 5 (Kolbehdari et al. 2009; Pimentel et al. 2011; Guo et al. 2012; Saatchi et al. 2013; 

Nayeri et al. 2016). The significant variants identified in this region (at 87 to 100 Mb on 

chromosome 5) were reported to be associated with C22:1 milk fatty acid content, milk fat yield 

(Guo et al. 2012; Saatchi et al. 2013), protein yield (Cochran et al. 2013), calving to first service 

interval (Nayeri et al. 2016) and sire conception rate in Angus, Brown Swiss and Holstein cattle 

(Peñagaricano et al. 2012; Höglund et al. 2014b). Several candidate genes were reported within 

this region including ST8SIA1, ABCC9, GABARAPL1 and SLO1C1 (Pimentel et al. 2011; Nayeri 

et al. 2016). The ABCC9 gene is thought to form ATP-sensitive potassium channels in cardiac, 

vascular and non-vascular smooth muscles (Gene ID: 10060). This gene is reported as a potential 

inhibitor of human myometrial contractility (Curley et al. 2002) through opening ATP-sensitive 

potassium channels, flowing K
+ 

ion and reducing cellular excitability (Khan et al. 2001), and was 

speculated to be a candidate gene in dairy cattle for calving to first service interval (Nayeri et al. 

2016). This gene has also been reported to be associated with protein yield in dairy cattle in 

Holstein cattle (Cochran et al. 2013; Nayeri et al. 2016). Olsen et al. (2011), reported a region on 

chromosome 12 significant for non-return rate in Norwegian Red cattle previously reported to be 

associated with several milk production traits (milk, fat and protein yield). They showed that the 

most significant SNP in this region had a positive effect on milk traits and a negative effect on 

non-return rate (mainly for cows returning to oestrus after insemination) (Olsen et al. 2011). A 

GWAS of fertility and production traits in Italian Holstein cattle revealed one SNP on 

chromosome 5 (at 199 Mb) associated with protein yield, calving interval, fertility index, 

angularity and days to first service (Minozzi et al. 2013). This SNP (BTA-27242-no-rs) was 

reported with a positive effect for protein yield but had negative effects on calving interval, 
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fertility index, days to first service and angularity, and is not located within any gene, however 

five genes (DUSP6, POC1B, ATP2B1, C12orf12, EPYC) were reported within 1 Mb of the SNP 

(Minozzi et al. 2013). In another recent GWAS study using imputed whole-genome sequenced 

data, Iso-Touru et al. (2016) identified SNPs in five genes (ENSBTAG00000034643, GBF1, 

TMEM180, ACTR1B, and bta-mir-146b) associated with both fertility and milk yield. GBF1 and 

bta-mir-146b may influence fat yield through a gene network linked to lipid and carbohydrate 

metabolism and to reproduction through a network connected to inflammatory response and cell-

to-cell signaling (Iso-Touru et al. 2016). The authors suggest that application of whole-genome 

sequence data in GWAS analysis along with gene-network and pathway information may help to 

better identify candidate genes and variations affecting multiple production and fertility traits and 

indicates possible pathways that correlate these traits. 

2.9. Conclusion 

Genetic selection in the dairy industry has contributed to impressive gains in productivity that 

will help address increasing demand for milk and milk products. Knowledge of the biology of 

lactation including the key tissues, metabolic pathways, hormones and genes that are involved 

can help researchers identify the underlying variants that contribute to phenotypic differences. 

Indeed, association studies have highlighted several polymorphisms potentially accounting for 

variation in production and fertility traits. Continued studies of gene function and expression in 

the context of lactation and reproduction in cattle and other species will likely improve our 

ability to identify causative genes and variants for these traits, and may eventually lead to more 

accurate approaches to genomic selection that work better across generations and breeds. 
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Table 2. 1: Major enzymes and their physiological function early in lactation in dairy cattle. 

Enzyme name Tissue Function Reference 

Acetyl-CoA carboxylase 

(ACC) 

 

Adipocytes Lipogenesis (carboxylation of 

acetyl-CoA to malonyl-CoA 

Bauman 

(1980) 

Acyl-malonyl ACP 
condensing 

Adipocytes Lipogenesis (condensation of 
acetyle-CoA to form malonyl-

CoA) 

 

Bauman 
(1980); 

Fielding and 

Frayn 
(1998) 

Lipoprotein lipase (LPL) Adipocytes Lipogenesis (Hydrolization of 

plasma TAG to form NEFA 
and monoacylglycerides) 

 

Bauman 

(1980); 
Nguyen et 

al. (2008) 

 

Thioesterase  Adipocytes Lipogenesis (Hydrolization of 
C16-acyl ACP to palmitate) 

 

Lehner and 
Kuksis 

(1996) 

Hormone sensitive-lipase 
(HSL) 

Adipocytes Lipolysis (hydrolysis of fatty 
acids at sn-1 and sn-3 position) 

 

Lehner and 
Kuksis 

(1996) 

Monoacylglycerol lipase  Adipocytes Lipolysis (hydrolysis of the 
remaining fatty acid at the sn-2 

position to generates NEFA) 

 

Berg et al. 
(2002) 

Acyl-CoA synthase Hepatocyte (cytoplasm) Conversion of NEFA to fatty 
acyl-CoA  

 

Berg et al. 
(2002); 

McGarry 

and Brown 
(1997) 

Carnitine 

palmitoyltransferase I (CPT-

I) 

Hepatocytes (outer 

membrane 

mitochondria) 

Fatty acid β-oxidation (uptake 

and formation of fatty acids to 

fatty acyl-CoA) 
 

Berg et al. 

(2002) 

Carnitine-acylcarnitine 

translocase 

Hepatocytes (inner 

membrane of 
mitochondria) 

Fatty acid β-oxidation 

(translocation of fatty acyl-CoA 
into the mitochondria) 

 

Berg et al. 

(2002) 

Carnitine-
palmitoyltransferase II 

(CPT-II) 

Hepatocytes (inner 
membrane of 

mitochondria) 

Fatty acid β-oxidation 
(reforming acyl-CoA in 

mitochondria matrix) 

 

Berg et al. 
(2002); 

McGarry 

and Brown 

(1997) 
Acyl-CoA dehydrogenase Hepatocytes 

(mitochondria matrix) 

Fatty acid β-oxidation 

(Dehydrogenation of acyl-CoA 

by FAD) 
 

Mannaerts et 

al. (1979) 

Enoyl-CoA hydratase Hepatocytes 

(mitochondria matrix) 

Fatty acid β-oxidation 

(Hydration of enoyl-CoA to 
hydroxyacyl-CoA) 

Mannaerts et 

al. (1979) 



 
 

69 

 

3-hydroxyacyl-CoA 

dehydrogenase 

Hepatocytes 

(mitochondria matrix) 

Fatty acid β-oxidation 

(oxidation of β-hydroxyacyl-
CoA to β-ketoacyl-CoA by 

NAD
+
) 

 

Mannaerts et 

al. (1979) 

ß-ketothiolase Hepatocytes 

(mitochondria matrix) 

Fatty acid β-oxidation (thiolysis 

of β-ketoacyl-CoA) 

 

Mannaerts et 

al. (1979) 

3-hydroxy-3-
methylglutaryle-CoA 

synthase 

Liver Cholesterol synthesis 
(formation of 3-hydroxy-3-

methylglutaryl-CoA from 

acetyl-CoA and acetoacetyl-
CoA) 

 

Horton et al. 
(1998); 

Viturro et al. 

(2009) 

3-hydroxy-3-methylglytaryl 
CoA reductase  

Liver Cholesterol synthesis 
(reduction of 3-hydroxy-3-

metyhylglutaryl-CoA to 

mevalonate) 

 

Berg et al. 
(2002); 

Viturro et al. 

(2009) 

Squalene synthesis Liver (endoplasmic 

reticulum) 

Cholesterol synthesis 

(reduction of two farnesyl 

pyrophosphate to form 
squalene) 

 

Berg et al. 

(2002) 

Oxidosqualene cyclase Liver Cholesterol synthesis (cyclizes 
of squalene to lanosterol) 

 

Berg et al. 
(2002) 

Glycerol-3-phosphate 

acyltransferase (GPAT) 

Mammary gland 

(endoplasmic reticulum 
and/or mitochondria) 

TAG synthesis (acylation of 

glycerol3-phosphate to form 
lysophosphatidic acid (LPA)) 

 

Gimeno and 

Cao (2008); 
Takeuchi 

and Reue 

(2009) 
1-acylglycerol-3-phoshplte 

acyltransferase (AGPAT; 

also known as LPA 

acyltransferase) 
 

Mammary gland 

(endoplasmic reticulum 

and/or mitochondria) 

TAG synthesis (transfer of an 

additional fatty acid to LPA to 

form phosphatidate (PA)) 

 

Takeuchi 

and Reue 

(2009) 

Lipin  Mammary gland 

(endoplasmic 
reticulum) 

TAG synthesis (conversion of 

the phosphatidate to 
diacylglycerol) 

 

Takeuchi 

and Reue 
(2009); 

Reue and 

Dwyer 
(2008) 

Diacylglycerol 

acyltransferase (DGAT) 

Mammary gland 

(endoplasmic 

reticulum) 
 

TAG synthesis (acylation of 

DAG to TAG) 

Takeuchi 

and Reue 

(2009); 
Shindou et 

al. (2008); 

Bionaz and 
Loor 
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(2008a) 

P450 side-chain cleavage 

enzyme (P450scc, 
CYP11A1) 

Inner mitochondrial 

membrane of 
steroidogenic cells 

(ovary) 

 

Steroid hormone synthesis 

(Pregnenolone synthesis) 

Hu et al. 

(2010); 
Lambeth 

(1986) 

∆
5
-3ß hydroxysteroid 

dehydrogenase isomerase 

(3ßHSD) 

Steroidogenic cells 

(granulosa cells) in 

ovary 

 

Steroid hormone synthesis 

(progesterone synthesis) 

Hu et al. 

(2010); 

Payne and 

Hales (2004) 
17α-Hydroxypregnenolone Steroidogenic cells 

(theca cells) ovary  

Synthesis of estrogen and 

androstenedione from 

progesterone 

Payne and 

Hales (2004) 

17β-Hydroxysteroid 

dehydrogenases 

Ovary  Synthesis of testosterone from 

androstenedione 

 

Payne and 

Hales (2004) 

CYP19A1 (aromatase) Theca-interstitial cells 

of ovary  

Testosterone  Hu et al. 

(2010); 

Lambeth 

(1986) 
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Table 2. 2: List of major candidate genes identified through association studies for production traits in dairy cattle. 

Gene Gene name Chromosome PUBMED-ID Trait Year 

POU1F1  POU class 1 homeobox 1 1 18557974 Milk yield, 

productive life 

2008 

DIP2A  DIP2 disco-interacting 

protein 2 homolog A  

1 21048968 Protein yield 2010 

TNFSF10  Tumor necrosis factor  1 21198698 Fat yield, protein 

yield, fat percentage, 

interval from first to 
successful 

insemination (cow) 

2011 

MIS18A MIS18 kinetochore protein 
homolog A (S. pombe) 

1 24456127 Somatic cell score 2014 

SLC37A1 solute carrier family 37 

member 1  

1 26613780 Milk production 2016 

STAT1  Signal transducer and 
activator of transcription 1 

2 17033032 Milk yield, fat yield, 
protein yield 

2006 

CYP27A1  Cytochrome P450, family 

27, subfamily A, polypeptide 
1 

2 21198698 Milk yield, somatic 

cell score 

2011 

IFIH1  Interferon induced with 

helicase C domain 1 

2 21198698 Milk yield, fat yield, 

fat percentage 

2011 

IGFBP2  Insulin-like growth factor 

binding protein 2, 36kDa 

2 21198698 Lactation, 

establishment of 

pregnancy 

2011 

SLC40A1  Solute carrier family 40  2 25148050 Milk yield 2014 

SP110 SP110 nuclear body protein 2 24456127 Fat percentage 2014 

SDC3 syndecan 3 2 24456127 Mammary system 2014 

SMARCAL1 SWI/SNF related, matrix 
assoc., actin dep. Reg. of 

chromatin, subfamily a-like 

1 

2 24456127 Mammary system 2014 

GBA  Glucosidase beta, acid 3 24456127 Protein percentage 2014 

CTTNBP2NL CTTNBP2 N-terminal like 3 24456127 Somatic cell score 2014 

MUC1 mucin 1, cell surface 3 26613780 Milk production 2016 
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associated 

LEP  Leptin 4 15905454, 

18565947, 
18650297, 

15927775 

Milk protein, milk 

fat, lactation 
performance, health, 

daily milk 

reproduction, 
postpartum luteal 

activity 

2005, 2008 

OLR1  Oxidized low density 

lipoprotein  

5 16606746 Milk fat yield, milk 

fat percentage 

2006 

GABARAPL1  GABA type A receptor 

associated protein like 1 

5 21198698, 

27287773 

Milk yield, fat 

percentage, fat 

production 

2011, 2016 

MGP  Matrix Gla protein 5 21198698 Milk yield, fat 

percentage 

2011 

EPS8  Epidermal growth factor 
receptor pathway substrate 8 

5 24456127 Milk yield 2014 

MGST1  Microsomal glutathione S-

transferase 1 

5 24456127 Fat yield, fat 

percentage 

2014 

RPAP3  RNA polymerase II 
associated protein 3 

5 24456127 Milk yield, protein 
percentage 

2014 

SOCS2  Suppressor of cytokine 

signaling 2 

5 24779965 Mammary 

development 
pathways, prolactin 

signaling pathways, 

lactation 

2014 

ATF4  Activating transcription 

factor 4 

5 24779965 Lactation yields, 

involution pathways 

2014 

CCDC91  Coiled-coil domain 

containing 91 

5 25148050 Fat percentage 2014 

ITPR2  inositol 1,4, 5-triphosphate 

receptor, type 2 

5 25148050 Fat percentage 2014 

ACSS3  Acyl-CoA synthetase short-
chain family member 3 

5 25511820 Milk fat 
composition, milk 

fat percentage 

2014 

MKL1 megakaryoblastic leukemia 5 27006194 Milk yield 2016 
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(translocation) 1 

VDR vitamin D (1,25- 

dihydroxyvitamin D3) 
receptor 

5 26613780 Milk production 2016 

CSF2RB colony stimulating factor 2 

receptor beta common 
subunit  

5 26613780 Milk production 2016 

NCF4 neutrophil cytosolic factor 4 5 26613780 Milk production 2016 

CSN1S2  Casein alpha-S2 6 15040897 Protein yield, protein 

percentage, fat yield, 
fat percentage, milk 

yield) 

2004 

CSN2  Casein beta 6 15040897 Protein yield, protein 
percentage, fat yield, 

fat percentage, milk 

yield) 

2004 

PPARGC1A  Peroxisome proliferator-

activated receptor gamma, 

coactivator 1 alpha 

6 15781588 Milk fat 2005 

SPP1  Secreted phosphoprotein 6 16230712 Milk production, 
milk protein 

percentage, milk fat 

percentage 

2005 

IL8  
 

Interleukin 8 

 
 

6 17433017 

 
 

Milk yield, fat yield, 

protein yield, 

somatic cell score 

2007 

 
 

IGFBP7  Insulin-like growth factor 

binding protein 7 

6 21198698 Milk yield, 56 day 

non-return rate, 

interval from first 

service to successful 
insemination (heifer)  

2011 

FAM13A1  Family with sequence 

similarly 13, member A 

6 21257065 Milk yield, fat yield, 

fat percentage 

2011 

IGFBP-5  Insulin-like growth factor 

binding protein-5 

6 21338820 Calving ability, milk 

yield, protein yield, 

mammary gland 

2011 
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involution 

PKD2  Polycystic kidney disease 2  6 25148050 Protein percentage 2014 

CSN1S1 Casein alpha s1 6 12939094, 
15905454, 

16840633 

Milk yield, fat yield, 
protein yield, milk 

fat percentage, milk 

protein percentage 

2003, 2005, 2006 

CSN3  Casein kappa  6 12939094, 

18666558 

Milk yield, fat yield, 

protein yield, milk 

fat percentage, milk 

protein percentage 

2003, 2008 

ABCG2  ATP-binding cassette, sub-

family G 

6 15998908, 

17584938, 

17106124 

Milk yield, milk fat 

and protein 

concentration 

2005, 2007 

PPARGC1A Proliferative peroxisome-

activated receptor, 

coactivator 1 

6 22669841 Milk performance 2012 

CAS1A Casein alpha s1 6 24456127 Protein percentage 2014 

LARP1  La ribonucleoprotein domain 

family, member 1 

7 24456127 Somatic cell score 2014 

IRF1  Interferon regulatory factor 1 7 24779965 Lactation yields, 
involution pathways 

2014 

GRIA1  Glutamate receptor, 

ionotropic, AMPA1 

7 25511820 Milk fat 

composition, milk 
fat percentage 

2014 

CAST  Calpastatin 7 16734705, 

23759029 

Daughter pregnancy 

rate, productive life, 
protein yield, milk 

yield, fat yield, 

somatic cell score, 

net merit, conception 
rate (heifer and cow) 

2006, 2013 

FBP1 Fructose 1,6 bisphosphatase 

1 

8 22669841 Milk performance 2012 

FBP2 Fructose 1,6 bisphosphatase 

2 

8 22669841 Milk performance 2012 

TP53  Tumor protein p53 9 17584498 Lactation and 2007 
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involution, 

pregnancy, puberty 

TEP1 telomerase associated protein 
1 

10 27506634 Test day protein 
yield, test day fat 

yield 

2016 

PCK2 Phosphoenolpyruvate 
carboxykinase 2, 

mitochondrial isoform 

10 22669841 Milk performance 2012 

GFI1B  Growth factor independent 

1B transcription receptor 

11 21048968 Fat percentage 2010 

LGB  Lactoglobulin, beta 11 22192223, 

19032698, 

12836958 

Milk protein 

composition, milk 

beta-lactoglobulin 
protein concentration  

2012, 2009, 2003 

NLRP6 NLR family, pyrin domain 

containing 6 

11 24456127 Mammary system 2014 

PRKCE Protein kinase C, epsilon 11 24456127 Mammary system 2014 

NRXN1 neurexin 1 11 24456127 Somatic cell score 2014 

PAEP progestagen-associated 

endometrial protein 

11 26613780 Milk production 2016 

RNF219 Ring finger protein 219 12 24456127 Fat production 2014 

ACSS2  Acyl-CoA synthetase short-

chain family member 2 

13 21569316 Fat yield, milk fatty 

acids 

2011 

PLK1S1 kizuna centrosomal protein 13 27506634 Somatic cell score 2016 

PCK1 Phosphoenolpyruvate 

carboxykinase 1, cytosolic 
isoform 

13 22669841 Milk performance 2012 

CYP11B1 Cytochrome P450, subfamily 

XI B, polypeptide 1 

14 17179535 Milk production, 

somatic cell score, 

maternal calving 
ease, 90-day non-

return rate (maternal 

and paternal) 

2007 

VPS28  Vacuolar protein sorting 28 

homolog  

14 21048968 Milk yield, protein 

percentage, fat yield, 

fat percentage 

2010 
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MAF1  MAF1 homolog  14 21048968 Milk yield, fat 

percentage 

2010 

OPLAH  5-oxoprolinase  14 21048968 Fat percentage 2010 

MAPK15  Mitogen-activated protein 

kinase 15 

14 21048968 Fat percentage 2010 

ZNF623  Zinc finger protein 623 14 21048968 Fat percentage, milk 
yield 

2010 

EEF1D  Eukaryotic translation 

elongation factor 1 delta  

14 21048968 Fat percentage 2010 

ZC3H3  Zinc finger CCCH-type 
containing 3 

14 21048968 Fat percentage 2010 

GML  Glycosylphosphatidylinositol 

anchored molecule like 

14 21048968 Fat percentage, milk 

yield 

2010 

GPIHBP1  Glycosylphosphatidylinositol 

anchored high density 

lipoprotein binding protein 1 

14 21048968 Milk yield, protein 

yield, fat percentage 

2010 

RHPN1  Rhophilin, Rho GTPase 

binding protein 1 

14 21048968 Fat percentage 2010 

PTK2  Protein tyrosine kinase 2 14 21048968 Fat percentage 2010 

KCNK9  Potassium channel, 
subfamily K, member 9 

14 21048968 Fat percentage 2010 

COL22A1  Collagen, type XXII, alpha 1 14 21048968 Milk yield, protein 

yield, fat percentage 

2010 

KHDRBS3  KH domain containing, RNA 

binding, signal transduction 

associated 3 

14 21048968 Fat percentage 2010 

NIBP  IKKβ binding protein 14 21831322 Fat percentage 2011 

CEBPD  CCAAT/enhancer binding 

protein  

14 24779965 Involution pathways 2014 

MYC  v-myc avian 
myelocytomatosis viral 

oncogene homolog 

14 24779965 Involution pathways 2014 

CYHR1 Cysteine/histidine-rich 1 14 25511820, 
27287773 

Milk fat 
composition, milk 

fat percentage, milk 

production 

2014, 2016 
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ARHGAP39  Rho GTPase activating 

protein 39 

14 25511820, 

27287773 

Milk fat 

composition, milk 

fat percentage, fat 
production 

2014, 2016 

CPSF1 Cleavage and 

polyadenylation specific 
factor 1 

14 25511820 Milk fat 

composition, milk 
fat percentage 

2014 

GRINA  Glutamate receptor, 

ionotropic, N-methyl D-

aspartate-associated protein 
1 

14 25511820 Milk fat 

composition, milk 

fat percentage 

2014 

FAM83H  Family with sequence 

similarity 83, member H 

14 25511820 Milk fat 

composition, milk 
fat percentage 

2014 

DGAT1  Diacylglycerol O-

acyltransferase 1 

14 11827942, 

16621755, 
17179535, 

18650297, 

18666558, 

18669245 

Milk yield and 

composition, milk 
protein yield, milk 

fat yield, milk fat 

and protein 

percentage, somatic 
cell score, maternal 

non-return rate, 

productive life, 
conformation traits  

2002, 2006, 2007, 

2008 

CYP11B1  Cytochrome P450, subfamily 

XI B, polypeptide 1 

14 21048968, 

17179535 

Milk yield, fat yield, 

protein yield, milk 
fat percentage, milk 

protein percentage, 

somatic cell score, 

maternal calving 
ease, 90-day non-

return rate (paternal 

and maternal) 

2010, 2007 

ADCK5 AarF domain containing 

kinase 5  

14 27506634 Test day fat yield 

(milk fat%) 

2016 

TONSL Tonsoku-like, DNA repair 14 27506634, Test day fat yield 2016 
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protein 27287773 (milk fat%), milk 

production 

PPP1R16A Protein phosphatase 1 
regulatory subunit 16A 

14 27506634, 
27287773 

Test day fat yield 
(milk fat%), milk 

production 

2016 

TRAPPC9 Trafficking protein particle 
complex 9 

14 27506634 Test day fat yield 
(milk fat%) 

2016 

LRRC14 Leucine rich repeat 

containing 14  

14 27506634 305 day fat yield, 

lactose percentage 

2016 

FOXH1 forkhead box H1 14 27287773 milk production 2016 

PPP1R16A protein phosphatase 1 

regulatory subunit 16A 

14 27287773 fat production, and 

fat percentage 

2016 

SMPD5 Sphingomyelin 
phosphodiesterase 5 

14 27287773 Fat production, and 
fat percentage 

2016 

MROH1 Maestro heat like repeat 

family member 1 

14 27287773 Fat production, and 

fat percentage 

2016 

EIF2C2 Argonaute 2, RISC catalytic 

component  

14 25510969 Milk yield, fat yield, 

protein yield 

2014 

TRAPPC9 Trafficking protein particle 

complex 9 

14 25510969 Milk yield, fat yield, 

protein yield 

2014 

HEATR7A Maestro heat like repeat 

family member 1 

14 25510969 Fat percentage 2014 
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Table 2. 3: List of major candidate genes identified through association studies for fertility traits in dairy cattle. 

Gene Gene name Chromosome PUBMED-ID Trait Year 

PCCB  Propionyl CoA 

carboxylase, beta 

polypeptide 

1 23759029 Daughter pregnancy 

rate 

2013 

TRPC1 
 

Transient receptor 
potential cation channel 

subfamily C member 1 

1 26369327 Female fertility index, 
56-day non-return 

rate, number of 

inseminations per 
conception 
 

2015 
 

IGFBP2  Insulin-like growth factor 

binding protein 2, 36kDa 

2 21198698 Lactation, 

establishment of 
pregnancy 
 

2011 

TSHB  Thyroid stimulating 

hormone, beta 

3 23759029 Daughter pregnancy 

rate 

2013 

WDR77 Bos taurus WD repeat 

domain 77 

3 25216717 Heifer non-return rate 2015 

VAV3 Vav guanine nucleotide 
exchange factor 3 

3 25216717 Days from first to last 
insemination 

2015 

CD36  Platelet glycoprotein 4 4 25216717 Number of 

inseminations, 56-day 

non-return rate, days 
from first to last 

insemination, the 

interval from calving 
to first insemination 

2014 

LEP  Leptin 4 15905454, 18565947, 

18650297, 15927775 

Milk protein, milk fat, 

lactation performance, 

health, daily milk 
reproduction, 

postpartum luteal 

activity 

2005, 2008 

ADCY1  Adenylate cyclase 1  4 24428918, 18565942 Number of 

inseminations, 56-day 

2014, 2008 
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non-return rate, days 

from first to last 

insemination, the 
interval from calving 

to first insemination, 

mammary system, 
conformation traits, 

daughter fertility, 

calving ease 

SEMA3C Sema domain, 
immunoglobulin domain 

(Ig), short basic domain, 

secreted, (semaphorin) 3C 

4 25216717 Number of 
insemination per 

conception; days from 

first to last 
insemination; 56-day 

non-return rate; the 

length in days of the 
interval from calving 

to first insemination 

2014 

GNAT3 G protein subunit alpha 

transducin 3 

4 25216717 Number of 

insemination per 
conception; days from 

first to last 

insemination; 56-day 
non-return rate; the 

length in days of the 

interval from calving 
to first insemination 

2014 

CSNK1E  Casein kinase 1, epsilon 5 23759029 Daughter pregnancy 

rate, heifer conception 

rate, productive life 

2013 

IGF1  Insulin-like growth factor 

1 

5 24265800 Days to first service 2013 

AMHR2  Anti-mullerian hormone 
receptor type II 

5 24265800 Calving interval 2013 

CPT1B  Carnitine 

palmitoyltransferase 1B 

5 24265800 56-day non-return rate 2013 
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ATP2B1  ATPase, Ca++ 

transporting plasma 

membrane 1 

5 24265800, 19448026, 

12926772 

Calving interval, 56-

day non-return rate, 

days to first service, 
305-day first parity 

lactation, fat yield, 

protein yield 

2013, 2009, 2003 

SOX5 
 

SRY (sex determining 

region Y)-box 5 
 

5 
 

24456127 
 

Fertility 
 

2014 
 

IGFBP7  Insulin-like growth factor 
binding protein 7 

6 21198698 Milk yield, 56 day 
non-return rate, 

interval from first 

service to successful 

insemination (heifer)  
 

2011 

IGFBP-5  Insulin-like growth factor 

binding protein-5 

6 21338820 Calving ability, milk 

yield, protein yield, 

mammary gland 
involution 

2011 

CLOCK  Clock circulation regulator 6 23759029 Daughter pregnancy 

rate 

2013 

GPR125 
 

Adhesion G protein-

coupled receptor A3 

6 
 

26369327 
 

Female fertility index 
 

2015 
 

NPFFR2 
 

Neuropeptide FF receptor 
2 

6 
 

24456127 
 

Fertility 
 

2014 
 

EPGN Epithelial mitogen 6 26613780 Calving interval 2016 

CSF2  Colony stimulating factor 

2  

7 23759029 daughter pregnancy 

rate 

2013 

CAST  Calpastatin 7 16734705, 23759029 daughter pregnancy 

rate, productive life, 

protein yield, milk 
yield, fat yield, 

somatic cell score, net 

merit, conception rate 

(heifer and cow) 

2006, 2013 

TP53  Tumor protein p53 9 17584498 Lactation and 

involution, 

2007 
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pregnancy, puberty 
 

ACAT2  Acetyl-CoA 
acetyltransferase 2 

9 23759029 Daughter pregnancy 
rate, conception rate 

(cow and heifer), 

productive life 

2013 

WDR27 
 

WD repeat domain 27 
 

9 
 

24456127 
 

Survival 
 

2014 
 

SLC1A4  Solute carrier family 1  11 24428918 56-day non-return rate 

(cow), days interval 

from calving to first 
service 

2014 

PPM1B  Protein phosphatase 

Mg2+/Mn2+ 
dependent,1B 

11 24428918 56-day non-return rate 

(cow), days interval 
from calving to first 

service 

2014 

FSHR  Follicle stimulating 

hormone receptor 

11 23759029, 20207511 Conception rate 

(heifer), productive 
life, superovulation 

response 

2013, 2010 

NLRP6 
 

NLR family, pyrin domain 
containing 6 
 

11 
 

24456127 
 

Survival 
 

2014 
 

HNF4A  Hepatocyte nuclear factor 

4, alpha 

13 23759029 Daughter pregnancy 

rate 
 

2013 

CACNB2  Calcium channel, voltage-

dependent, beta 2 subunit 

13 25216717 Number of 

inseminations, 56-day 

non-return rate, days 
from first to last 

insemination, the 

interval from calving 

to first insemination 

2014 

ZEB1  Zinc finger E-box binding 

homeobox 1 

13 25216717 Number of 

inseminations, 56-day 

non-return rate, days 
from first to last 

2014 
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insemination, the 

interval from calving 

to first insemination 

ARHGAP12  Rho GTPase activating 

protein 12 

13 25216717 Number of 

inseminations, 56-day 

non-return rate, days 
from first to last 

insemination, the 

interval from calving 

to first insemination 

2014 

ANKRD60 
 

Ankyrin repeat domain 60  
 

13 
 

26369327 
 

Female fertility index 
 

2015 
 

ANKRD60 Ankyrin repeat domain 60 13 25216717 Female fertility index; 

days from first to last 
insemination 

2015 

CYP11B1 Cytochrome P450, 

subfamily XI B, 
polypeptide 1 

14 17179535 Milk production, 

somatic cell score, 
maternal calving ease, 

90-day non-return rate 

(maternal and 
paternal) 
 

2007 

PLAG1  PLAG1 zinc finger 14 22100599 Calving ease 2012 

MOS  V-mos Moloney murine 
sarcoma viral oncogene 

homolog 

14 22100599 Reproduction rate 2012 

TOX  Thymocyte selection-

associated high mobility 
group box 

14 22100599 Age at puberty 2012 

CSPP1  Centrosome and spindle 

pole associated protein 1 

14 23759029 Daughter pregnancy 

rate 

2013 

CPSF1  Cleavage and 

polyadenylation specific 

factor 1, 160kDa 

14 23759029 Daughter pregnancy 

rate 

2013 

DGAT1  Diacylglycerol O-
acyltransferase 1 

14 11827942, 16621755, 
17179535, 18650297, 

18666558, 18669245 

Milk yield and 
composition, milk 

protein yield, milk fat 

2002, 2006, 2007, 
2008 
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yield, milk fat and 

protein percentage, 

somatic cell score, 
maternal non-return 

rate, productive life, 

conformation traits  
 

CYP11B1  Cytochrome P450, 

subfamily XI B, 

polypeptide 1 

14 21048968, 17179535 Milk yield, fat yield, 

protein yield, milk fat 

percentage, milk 
protein percentage, 

somatic cell score, 

maternal calving ease, 

90-day non-return rate 
(paternal and 

maternal) 

2010, 2007 

CD82  CD82 molecule 15 21831322 Daughter stillbirth 2011 

PGR  Progesterone receptor-like 15 23759029, 23076525 In vitro fertilization or 

development, 

daughter pregnancy 
rate 

2013 

HSD17B12  Hydroxysteroid 17-beta 

dehydrogenase 12 

15 23759029 Daughter pregnancy 

rate 

2013 

NEU3  Neuraminidase 3 
 

15 23759029 Conception rate 
(heifer and cow), 

productive life 

2013 

GRAMD1B  
 

GRAM domain containing 
1B 
 

15 
 

26369327 
 

Female fertility index 
 

2015 
 

PAPPA2  Pappalysin 2 16 22100599 Pregnancy rate, 

daughter calving ease 
 

2012 

MTOR  Mechanistic target of 

rapamycin  

16 22100599 Reproduction rate 

(regulation of GnRH 

release before the 
initiation of ovarian 

cycling) 

2012 
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DYRK3  Dual-specificity tyrosine- 16 23759029 Daughter pregnancy 

rate 

2013 

TGFB2  Transforming growth 
factor, beta 2 

16 24265800 Number of days open 2013 

IGLL1  Immunoglobulin lambda-

like polypeptide 1 

17 24265800 Fertility index 2013 

PGLYRP1  Peptidoglycan recognition 

protein 1 

18 21831322 Fat yield, protein 

yield, service-sire, 

daughter calving-ease, 

net merit, milk yield, 
productive life, fat 

percentage, protein 

percentage 

2011 

IGFL1 Insulin growth factor-like 

family member 1 

18 21831322 Fat yield, protein 

yield, service-sire, 

daughter calving-ease, 
net merit, milk yield, 

productive life, fat 

percentage, protein 

percentage 

2011 
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Figure 2. 1: Proposed steps, genes and pathways controlling energy metabolism in different tissues early in lactation. Solid/thick lines 

denote processes that are activated. Solid non-arrow lines denote processes that are inhibited. Adapted from Khan et al. (2013); Li et al. 

(2013); Bionaz and Loor (2008) and Roche et al. (2006). 
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CHAPTER 3. Genome-wide association for milk production and female 

fertility traits in Canadian dairy Holstein cattle
2
 

3.1. Abstract 

Genome-wide association studies (GWAS) are a powerful tool for detecting genomic regions 

explaining variation in phenotype. The objectives of the present study were to identify or refine 

the positions of genomic regions affecting milk production, milk components and fertility traits 

in Canadian Holstein cattle, and to use these positions to identify genes and pathways that may 

influence these traits. Several QTL regions were detected for milk production (MILK), fat 

production (FAT), protein production (PROT) and fat and protein deviation (FATD, PROTD 

respectively). The identified QTL regions for production traits (including milk production) 

support previous findings and some overlap with genes with known relevant biological functions 

identified in earlier studies such as DGAT1 and CPSF1. A significant region on chromosome 21 

overlapping with the gene FAM181A and not previous linked to fertility in dairy cattle was 

identified for the calving to first service interval and days open. A functional enrichment analysis 

of the GWAS results yielded GO terms consistent with the specific phenotypes tested, for 

example GO terms GO:0007595 (lactation) and GO:0043627 (response to estrogen) for milk 

production (MILK), GO:0051057 (positive regulation of small GTPase mediated signal 

transduction) for fat production (FAT), GO:0040019 (positive regulation of embryonic 

development) for first service to calving interval (CTFS) and GO:0043268 (positive regulation of 

potassium ion transport) for days open (DO). In other cases, the connection between the enriched 

                                                             
2 A version of this chapter has been published in the Journal BMC Genetics. Nayeri et al., 2016. Genome-

wide association for milk production and female fertility traits in Canadian dairy Holstein cattle. 
10;17(1):75. DOI: 10.1186/s12863-016-0386-1. 
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GO terms and the traits were less clear, for example GO:0003279 (cardiac septum development) 

for FAT and GO:0030903 (notochord development) for DO trait. The chromosomal regions and 

enriched pathways identified in this study confirm several previous findings and highlight new 

regions and pathways that may contribute to variation in production or fertility traits in dairy 

cattle.  

3.2. Introduction 

Milk production and fertility are two economically important traits affecting profitability in dairy 

cattle. These traits are polygenic, affected by many genes and variants, each with small effects on 

the observed phenotype (Snelling et al., 2013). Improvements in management and nutrition, 

along with intense genetic selection have increased milk production in recent decades. However, 

selection has also changed the reproductive physiology of the cow and led to a decrease in 

reproductive efficiency (Lucy, 2001). For example, time in estrus has been reduced to less than 8 

hours in lactating dairy cows (Nebel et al., 2000), pregnancy rate has decreased, days open and 

services per conception has increased (Lucy, 2001). In the last decade, advances in genome 

sequencing technologies and availability of a tremendous number of genetic variants in the form 

of single nucleotide polymorphisms (SNP) (Bovine HapMap Consortium, 2009) have led to the 

application of genomic selection (GS) (Meuwissen et al., 2001). Genomic selection is based on 

linkage disequilibrium (LD) of unknown functional mutations and SNP genotypes that are spread 

out across the whole genome (Meuwissen et al., 2001). Incorporation of functional mutations 

into genotyping panels could increase GS accuracy and applicability across populations 

(Meuwissen and Goddard, 2010; Snelling et al., 2013).  
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Many quantitative regions and candidate genes associated with milk production and fertility have 

been identified by means of genome-wide association analysis studies (GWAS) (Pimentel et al., 

2009; Höglund et al., 2009b; Reverter and Fortes, 2012). Several QTL regions and genes 

associated with milk yield, fat yield, protein yield, fat deviation and protein deviation have been 

reported in previous studies (Boichard et al., 2003; Ashwell et al., 2004; Schnabel et al., 2005; 

Kolbehdari et al., 2009). Earlier studies have also identified strong functional candidate genes 

that affect milk production traits such as DGAT1 and GHR (Blott et al., 2003; Grisart et al., 

2004). Similarly, important genomic associations for fertility traits were found in previous 

GWAS studies, including significant QTLs for calving to first service interval (Daetwyler et al., 

2008; Höglund et al., 2009a; Sahana et al., 2010), days open (Schulman et al., 2008), cow non-

return rate (Höglund et al., 2009a; Olsen et al., 2011), heifer non-return rate (Holmberg and 

Andersson-Eklund, 2006), daughter pregnancy rate (Schnabel et al., 2005; Cole et al., 2011), age 

at puberty (Hawken et al., 2012) and interval from first service to last service for cows and 

heifers (Höglund et al., 2009a).  

Most of the previously described genetic variants, however, are not causal, but rather are in 

linkage disequilibrium with the functional mutation. The level of LD is a limiting factor for the 

precision of QTL location detection in dairy cattle populations (Pryce et al., 2010). This is 

because even SNPs at long distances from the QTL may show associations with the phenotypic 

trait of interest due to extended LD (Höglund et al., 2014). Identifying pathways and genes that 

are associated with significant SNPs can give us a deeper biological insight into expression 

mechanisms of the trait under study (Snelling et al., 2013; Szkiba et al., 2014). Refining the 

position of QTL regions harboring candidate genes, and identifying causal mutations underlying 



 
 

90 

variation in complex traits, can lead to an increase in accuracy of selection for these traits 

(Hirschhorn and Daly, 2005).  

The goals of the current study were to identify or refine the position of QTL regions for milk 

production (MILK), fat production (FAT), protein production (PROT), fat deviation (FATD), 

protein deviation (PROTD), heifer first service to calving interval (FSTCh), calving to first 

service interval (CTFS), daughter fertility (DF), and days open (DO) in Canadian Holstein dairy 

cattle. Additionally we performed an enrichment analysis to test for overrepresentation of 

significant SNPs in biological pathways. 

3.3. Materials and Methods 

3.3.1. Animals and data 

A population of 3,729 North American Holstein bulls was used in this study, which examined 

nine production and fertility traits: milk production (MILK), fat production (FAT), protein 

production (PROT), fat and protein deviation (FATD and PROTD respectively), daughter 

fertility (DF), first service to calving interval (FSTCh), calving to first service interval (CTFS), 

and days open (DO). The Canadian Dairy Network (CDN) provided available pedigree, 

genotypes and official evaluations for proven bulls born between 1956 and 2009. Individuals 

were genotyped using the BovineSNP50K (50k) panel (3,729 bulls) (Illumina, San Diego, CA) 

or the high density (HD, 777k) SNP panel (2,387 bulls), respectively. In this work only 

autosomal SNPs were included. For 50k panel, SNP list used for official genomic evaluation by 

CDN was considered. These SNPs have passed standard quality control measures used by CDN. 

Quality control (QC) was performed on the HD genotyping data using snp1101 software 

(Sargolzaei, 2014) and 116,619 SNPs were excluded on the basis of Mendelian error rate higher 
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> 0.05 (3,566 SNPs), low call rate < 0.9 (6,446 SNPs), with low MAF (1e-06 – 0.5; 61,577 

SNPs), excess of heterozygosity > 0.15 (90 SNPs) and excluded by user (46,433 SNPs excluded 

from sex chromosome and misplaced SNPs). The number of SNPs kept in the analyses before 

imputation was 40,666 and 657,986 SNPs for 50k and HD panels, respectively. 

Genotypes of 3,729 50k animals were imputed to HD with a reference population of 2,387 HD 

individuals using FImpute V2.2 software (Sargolzaei et al., 2014). Quality control (QC) was 

performed on the imputed data as well. SNPs with minor allele frequency (MAF) of less than 1% 

(55,817 SNPs) and high Mendelian error rate more than 5% (74 SNPs) were excluded. After 

quality control, 602,095 SNPs remained for use in the subsequent association analysis. 

Animal Care and Use Committee approval was not obtained for this study because analyses were 

performed on existing data obtained under standard farm management from commercial dairy 

farmers and breeders. As previously stated, data used in this research was provided by CDN, 

which is the organization that runs the national dairy cattle genetic evaluations in Canada. All 

dairy farmers in Canada must follow “The Code of Practice for the Care and Handling of Dairy 

Cattle” developed by the National Farm Animal Care Council of Canada (http://www.nfacc.ca/). 

3.3.2. Calculating de-regressed proofs: 

In this study de-regressed Holstein bull proofs were used as pseudo phenotypes. A bull’s 

published estimated breeding value (EBV) is a weighted mean of his daughters deviations (DD) 

and his parental average (PA) (VanRaden et al., 2009). The de-regressed bull proofs were 

computed by CDN as shown below (VanRaden et al., 2009): 
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Where, DEprg is the daughter equivalent from progeny information, RelEBV and RelPA are the 

reliabilities of EBV and PA, respectively, RelDD is the reliability of DD, and DEBV is the de-

regressed bull proof.  

3.3.3. Genome wide association analysis (GWAS) 

Association analysis was performed using a single SNP regression mixed linear model 

implemented in the snp1101 software (VanRaden, 2008; Sargolzaei, 2014). The mixed linear 

model was: 

                   

where Yi is pseudo phenotype of the i
th

 bull (de-regressed bull proofs, DEBV);   is the overall 

mean;   is the linear regression coefficient (allele substitution effect) of the SNP;  i is the SNP 

genotype of the i
th

 bull, which was coded as 0, 1 and 2 for SNP genotypes BB, AB and AA, 

respectively;    is the random additive polygenic effect of the i
th

 bull and  i is the random error 

term.  
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Assumptions for the model are   :             
   where G is the genomic relationship matrix 

(VanRaden, 2008) and   
  is the polygenic additive genetic variance;                

   where 

  
  is the residual variance. R is a diagonal matrix containing weights for the residual variance 

based on the reliabilities of the de-regressed bull proofs (VanRaden, 2008). 

To account for multiple tests, 5% and 1% genome-wise false discovery rate (FDR) were used to 

identify significant and highly significant associations, respectively. The inflation factor   

(Devlin and Roeder, 1999) and quantile-quantile (Q-Q) plots were calculated to compare 

observed distributions of –log (P-value) to the expected distribution under the no association 

model for each trait.   

3.3.4. Candidate SNP enrichment analysis 

The SNP2GO R package was used for functional analysis of the genome-wide association results 

(Szkiba et al., 2014). Genomic annotations, associated Gene Ontology terms (GO terms) and the 

list of significant (P-value < 0.01) and non-significant SNPs (termed “candidate” and “non-

candidate” SNPs in the SNP2GO documentation) for each trait were provided as input to 

SNP2GO, which reports biological pathways or processes that are enriched for significant SNPs. 

For this analysis, the Ensembl version 78 genomic annotation file for Bos taurus UMD 3.1 

assembly was used in conjunction with the Ensembl gene ID file from Ensembl version 78, 

which contains gene ID to GO term associations. The SNP2GO “extension” value was set to 50 

nucleotides, which expands the gene region (by 50 nucleotides upstream and 50 nucleotides 

downstream) when identifying overlaps between genes and markers. The “runs” parameter was 

set to 100,000 and a false discovery rate (FDR) of 1% was used to correct for multiple testing. 
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3.4. Results and discussion: 

3.4.1. Association analysis 

Association analysis identified strong associations for most of the production traits (Figure 3.1 to 

Figure 3.5) and some of the fertility traits (Figure 3.6 to Figure 3.9) in this study. Representative 

Manhattan plots are shown in Figure 3.1 for milk production (MILK) and calving to first service 

interval (CTFS) traits. No significant associations were detected for FSTCh and DF. For those 

traits yielding significant associations, the number of significant SNPs identified at a genome-

wise FDR of 5% varied from 1,416 for PROTD to 8 for DO (Table 3.1). Q-Q plots comparing 

the observed distribution of –log (P-value) to the expectation under null hypothesis are shown in 

Figure 3.10 to Figure 3.14 (milk production traits) and Figure 3.15 to Figure 3.18 (fertility traits). 

The plots show a distribution close to the expected distribution line for CTFS (median = 1.0567), 

DO (median = 1.0115) and some production traits (MILK median = 1.0056; FAT median = 0.9558; 

PROT median = 1.05), whereas there were strong deviations from expectation for FATD (median 

= 0.7844) and PROTD (median = 0.8969). When a high-density marker panel is used in single 

maker association analysis potentially a large number of markers in linkage disequilibrium may 

display association (and similar low P-values) with the same QTL region. This yields many 

significant tests that are not independent and, therefore, deviate from the expected distribution of 

test statistics. However, this does not imply in an overall inflation of P-values. The deviations 

from expectations observed for milk, fat, protein and fat deviations appear to be due largely to 

the strong effect of the DGAT1 gene and the many SNPs in linkage disequilibrium that show 

some degree of association with it. When BTA14 was excluded from the analyses to assess this 

possibility, the median values for milk production (MILK), fat production (FAT), fat deviation 
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(FATD) and protein deviation (PROTD) were 1.0605, 1.0896, 1.1005 and 0.9709, respectively, 

much closer to the expectation. 

3.4.2. Production traits: 

3.4.2.1. Milk production (MILK) 

In total 292 SNPs were found to be significant for milk production at a genome-wise FDR of 5% 

(Additional file3 S3.1). Highly significant SNPs (genome-wise 1% FDR) were mostly localized 

on BTA 5, 6, 14, 15, 20 (Figure 3.1).  

Many of the strong associations detected in this study support previously reported regions for the 

same or correlated traits. For example, a region containing numerous highly significant SNPs on 

BTA14 includes DGAT1, a gene with a major effect on milk fat content (Grisart et al., 2004) and 

several other production traits (Ashwell et al., 2004; Pimentel et al., 2009; Maxa et al., 2012; 

Meredith et al., 2012; Xie et al., 2014). A peak on BTA20 overlaps with growth hormone 

receptor (GHR) (Blott et al., 2003; Viitala et al., 2006; Flori et al., 2009) and a nearby peak at 

31-32 Mb contains several genes previously identified as potentially influencing milk 

production, milk fat percentage, lean meat yield, carcass weight, residual feed intake, age at 

puberty and male fertility traits in beef cattle (Additional file S3.2) (Blaschek et al., 2011; Rolf et 

al., 2012; Fortes et al., 2013; Doran et al., 2014; Jiang et al., 2014). We have also detected 

regions that were previously identified on BTA5 at position 87 and 107 Mb for milk yield 

(Chmuzynska, 2006). The presence of a QTL at confidence interval of 45-52 Mb on BTA6 was 

confirmed by previously reported significant QTLs found for clinical mastitis in Norwegian Red 

dairy cattle (Sodeland et al., 2011). A significant peak on BTA15 at the genomic interval of 54 to 

                                                             
3
 Additional files are accessible through the link http://dx.doi.org/10.7939/DVN/10939.  

http://dx.doi.org/10.7939/DVN/10939
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58 Mb in this study is close to a significant SNP that was reported to be associated with 

persistency of milk production in dairy cattle by Kolbehdari et al. (2009), which is located in an 

intronic region of the CD44 gene.  

The most significant SNP (BovineHD1400000216: rs134432442) for this trait was located 

within the CPSF1 gene on BTA14. Cochran et al. (2013) has reported this SNP to be 

significantly associated with fat yield and fat percentage in Holstein cattle. Other highly 

significant (genome-wise FDR ≤ 1%) SNPs in this study are located within genes TONSL 

(BovineHD1400000206: rs137472016), CYHR1 (BovineHD1400000204: rs137727465), FOXH1 

and PPP1R16A (ARS-BFGL-NGS-57820: rs109146371) (Additional file S3.1).  

Of the 7,586 SNPs that were introduced as candidate SNPs (P-value < 0.01) to SNP2GO for 

enrichment analysis, a total of 1,576 were enriched in biological pathways that may provide 

better insight into key pathways and genes associated with milk production. Enrichment analysis 

found 545 significant GO terms (genome-wise FDR ≤ 1%) with a minimum of 10 genes 

associated with each GO term (Additional file S3.3). Included among the top 10 most significant 

GO terms (FDR ≤ 1%) are those with clear relevance to the trait, such as GO:0007595 (lactation) 

and GO:0043627 (response to estrogen) whereas for others the relevance is less clear, for 

example GO:0003785 (actin monomer binding) and GO:0010569 (regulation of double-strand 

break repair via homologous recombination). The complete list of enriched terms is given in 

Additional file S3.3.  

3.4.2.2. Fat production (FAT) and fat deviation (FATD) 

Significant SNPs identified for fat production (FAT) were located on BTA5 and 14 (Additional 

file S3.1). Similarly, GWAS identified highly significant peaks for fat deviation (FATD) on 
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BTA5, 6, 14 and 20 (Additional file S3.1). Significant SNPs were mostly located on BTA14 for 

these two traits (Figure 3.2 and Figure 3.3).  

This association analysis supports the presence of QTLs on BTA5 (76 to 107 Mb), BTA14 (0 to 

20 Mb and 31 to 63 Mb), BTA20 (22 Mb and 31 to 33 Mb) related to milk production traits 

reported in multiple studies (Boichard et al., 2003; Kolbehdari et al., 2009; Jiang et al., 2010; 

Cochran et al., 2013; Jiang et al., 2014; Raven et al., 2014). In addition to a significant peak at 0 

to 20 Mb on BTA14, the location of DGAT1, we identified another peak with highly significant 

SNPs at a genomic interval of 60 to 70 Mb associated with FATD and MILK (Additional file 

S3.1). The presence of significant SNPs associated with milk production has been reported for 

this region at 63 Mb by Kolbehdari et al. (2009). Heyen et al. (1999) and Ashwell et al. (2004) 

have also reported three regions on BTA14 at 55 and 69 Mb (between markers D14S55-ILSTS39 

and D14S31-CSSM66) and 69 to 79 Mb (between markers BM4305-IRNA100), with a 

significant effect on fat yield and fat percentage, milk yield and protein yield respectively. The 

common highly significant SNPs among FAT and FATD were mostly associated with BTA14 

and assigned to several known and some newly identified genes including ARHGAP39 

(BovineHD1400000188: rs134892687), PPP1R16A (BovineHD1400000199: rs134839376), 

GRINA (BovineHD1400000275: rs133271979), SMPD5 (BovineHD1400000262: rs135549651) 

and MROH1 (BovineHD1400000243: rs133119726). 

Chromosome 5 contained the second highest number of significant SNPs for both FAT and 

FATD (135 and 185, respectively; genome-wise FDR ≤ 1%). A significant peak on this 

chromosome was detected extending between 87 to 100 Mb in this study. This region was 

reported to be associated with a SNP (ss117963826) in the GABARAPL1 gene with an 

antagonistic effect on milk yield and fat percentage (Chmuzynska, 2006). Kolbehdari et al. 
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(2009) also reported a SNP (rs41592948) in this region linked to the GABARAPL1 gene with an 

effect on dairy strength. Furthermore, we identified five significant SNPs (genome-wise FDR ≤ 

5%) within previously known QTL regions (BovineHD0500025075: rs137830740; 

BovineHD0500025146: rs133732696; BovineHD0500025147: rs42406616; 

BovineHD0500025415: rs109234621; BovineHD0500025488: rs109374096) on BTA5 for FAT 

trait (Additional file S3.2). These SNPs are all intron variants and are located within genes 

ST8SIA1, ABCC9, SLO1C1 and PDE3A. The QTL region that these SNPs are located in were 

found associated with C22:1 fatty acid content, milk fat yield and sire conception rate in Angus, 

Brown Swiss and Holstein cattle (Additional file S3.2) (Guo et al., 2012; Saatchi et al., 2013).  

Several SNPs within the identified significant peak on BTA20 for FATD in this study (31-32 

Mb) are located within growth hormone receptor (GHR) gene including BovineHD2000009236: 

rs109719726; ARS-BFGL-NGS-118998: rs110482506 and UA-IFASA-7069: rs41639261 

(Additional file S3.1). Association of significant SNPs affecting milk fat content within GHR 

gene was already reported in German Holstein-Friesian cattle (Wang et al., 2012). This region 

was also reported to be associated with early embryonic survival, sire conception rate (Ma et al., 

2012) and carcass weight in Holstein-Friesian cattle (Doran et al., 2014) (Additional file S3.2). 

Another highly significant peak region for FATD was located on BTA6 and within a known 

QTL region (at 37-47 Mb) (Saatchi et al., 2014). This region has also been reported significant 

for milk protein content, carcass weight and fat production in US cattle breeds (Huang et al., 

2012; Saatchi et al., 2014).  

In the candidate SNP enrichment analysis, 1,958 SNPs were enriched in biological pathways for 

FAT (from 7,024 candidate SNPs P-value < 0.01). These SNPs were overrepresented in 330 

significant GO terms (Additional file S3.3). Included among the top 10 most significant GO 
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terms the most relevant ones with the trait are (genome-wise FDR ≤ 1%) GO:0051057 (positive 

regulation of small GTPase mediated signal transduction) and GO:0030513 (positive regulation 

of BMP signaling pathway). For other terms the relevance is less clear such as GO:0003281 

(ventricular septum development), GO:0003279 (cardiac septum development) and GO:0003215 

(cardiac right ventricle morphogenesis). The complete list of enriched GO terms for this trait is 

shown in Additional file S3.3.  

A total of 5,290 candidate SNPs (P-value < 0.01) associated with FATD were overrepresented in 

445 enriched GO terms (Additional file S3.3). Among the top seven most significant GO terms 

the ones with clear relevance to the FATD trait are GO:0042403 (thyroid hormone metabolic 

process) and GO:0035357 (peroxisome proliferator activated receptor signaling pathway), 

whereas the relevance is less clear for other GO terms including GO:0033158 (regulation of 

protein import into nucleus, translocation).  

3.4.2.3. Protein production (PROT) and protein deviation (PROTD) 

Association analysis detected significant SNPs on BTA 5, 9 and 14 (Additional file S3.1). The 

largest number of significant SNPs for protein production (PROT) was located on chromosome 

14, with 41 significant SNPs (genome-wise 1% FDR) (Figure 3.4). Significant regions detected 

for protein deviation (PROTD) were identified on chromosomes 3, 5, 6, 10, 14, 15, 20, 26 and 29 

(Additional file S3.1) with the majority of significant SNPs located on chromosomes 3, 6, 14 and 

20 (Figure 3.5).  

Our study detected strong associations on chromosome 20 from 28 to 38 Mb for PROTD. These 

results are consistent with previous studies reporting QTL regions surrounding GHR on 

chromosome 20 for milk yield and milk composition trait (Blott et al., 2003; Meredith et al., 
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2012; Raven et al., 2014). SNPs affecting protein yield and protein percentage on BTA20 

associated with growth hormone receptor gene has been reported for several breeds including 

Holstein (Blott et al., 2003; Chamberlain et al., 2012), and Ayrshire dairy cattle (Viitala et al., 

2006). We also identified highly significant SNPs including (ARS-BFGL-NGS-118998: 

rs110482506) in our study at 32 Mb on BTA20 which supports a QTL reported by Wang et al. 

(2012) with a SNP downstream of the GHR gene.  

Significant peaks were detected on chromosome 6, spanning 24 to 40 and 80 to 90 Mb for 

PROTD. The presence of QTLs on BTA6 in dairy cattle affecting milk production traits, near the 

casein gene cluster (around 87 Mb) has been reported in multiple breeds and populations 

including Dutch, US Holstein cattle for milk fat and milk protein yield (Bovenhuis et al., 1992; 

Georges et al., 1995; Zhang et al., 1998) German Holsteins (Kühn et al., 1999; Freyer et al., 

2003) and Brazilian Holstein cattle (Silva et al., 2011) for milk yield and fat yield. Several highly 

significant SNPs (FDR ≤ 5%) on BTA6 in this study associated with PROT and PROTD 

(including ARS-BFGL-NGS-42501: rs110388088; BovineHD0600006866: rs109858710; 

BovineHD0600009641: rs135525961; BovineHD0600009643: rs135142364; 

BovineHD0600009650: rs137464778) are located within a known QTL region associated with 

milk whey protein in dairy cattle (Huang et al., 2012). The complete list of these SNPs is given 

in Additional file S3.2. Also two highly significant SNPs (genome-wise FDR ≤ 1%) 

(Hapmap24324-BTC-062449 and BTA-121739-no-rs) on BTA6 for PROTD in this study were 

reported to be very close to ABCG2 gene (in a distance of 100 kb) (Cohen-Zinder et al., 2005; 

Fang et al., 2014). Variants close and within this gene were associated with protein percentage in 

Chinese dairy cattle (Cohen-Zinder et al., 2005; Fang et al., 2014).  
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The peak detected for PROTD on chromosome 3 at 10 to 34 Mb is supported by previous 

investigations (Additional file S3.2) (Lipkin et al., 1998; Chmuzynska, 2006; Kolbehdari et al., 

2009; Jiang et al., 2014). For example, four highly significant SNPs (genome-wise FDR ≤ 1%) 

within this region (at 11 Mb) in this study (BovineHD0300003802: rs109857972; 

BovineHD0300003805: rs136467848; BovineHD0300003811: rs132784836 and 

BovineHD0300003779: rs110122034) are located within a reported QTL region associated with 

protein percentage in German Holstein cattle (Chmuzynska, 2006). Two other SNPs in our study 

(BTB-00604223: rs41769311) at 52 Mb and (ARS-BFGL-NGS-4613: rs110428369) at 54 Mb 

on BTA15 were also found to be associated with protein percentage in Irish Holstein cattle 

(Meredith et al., 2012). 

We identified five significant SNPs in this study for PROT on BTA5 at 88 Mb including 

BovineHD0500025150: rs42406611; BovineHD0500025181: rs109795387 and 

BovineHD0500025189: rs136903701 within the gene ABCC9. This region was detected to be 

significantly associated with protein yield (at 75 to 110 Mb) in Cochran et al. (2013) study.  

Enrichment analysis of the candidate SNPs for PROT found 2,280 SNPs overrepresented in 658 

GO terms (FDR ≤ 1%). Included among the top 10 most highly significant GO terms (FDR ≤ 

1%) are those GO terms with a more clear relevance to the trait such as GO:0040037 (negative 

regulation of fibroblast growth factor receptor signaling pathway) and GO:0021903 (rostrocaudal 

neural tube patterning), whereas for others the relevance is less clear such as GO:0097228 

(sperm principal piece). The complete list of enriched GO terms is provided in Additional file 

S3.3.  

Candidate SNP enrichment analysis for PROTD identified 447 significant GO terms potentially 

involved in pathways affecting protein production deviation (Additional file S3.3). These 
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enriched GO terms were overrepresented by a total number of 2,557 highly significant SNPs. 

The most relevance GO terms among the top 10 most significant GO terms (FDR ≤ 1%) are 

GO:0007595 (lactation), GO:1902742 (apoptotic process involved in development), 

GO:0010257 (NADH dehydrogenase complex assembly) and GO:0033108 (mitochondrial 

respiratory chain complex assembly). The complete list of the significant GO terms is given in 

Additional file S3.3. 

3.4.3. Fertility traits: 

In balanced genomic selection programs, one aim is to select bulls which sire daughters with 

higher reproductive performance (daughters showing an early heat in the mating period with a 

high probability of conception) (Haile-Mariam et al., 2003). To examine fertility, we first 

focused on daughter performance traits including daughter fertility and then examined the 

regions associated with success of insemination traits such as calving interval and days open. 

Association analysis did not detect any significant SNP for daughter fertility or heifer first 

service to calving interval (Figure 3.7 and Figure 3.8). The identified chromosomes and 

significant regions for CTFS and DO are discussed in detail below. In order to detect the regions 

with potential significant pleiotropic effects on both production and fertility traits, we also 

investigated the overlapping regions between these two traits (Table 3.2 and Table 3.3). No 

overlapping region was detected between production and fertility traits in this study.   

3.4.3.1. Calving to first service interval (CTFS) 

A total of 20 SNPs (genome-wise FDR ≤ 5%) were found to be associated with calving to first 

service interval (Figure 1 B). These SNPs were mostly located on BTA13 and 21 (Additional file 
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S3.4). The most significant SNP (genome-wise 1% FDR) was BovineHD2100017054: 

rs136777407 (on BTA21), which is an intronic variant within the gene FAM181A. 

Little is known about the function of this gene, although it was shown that methylation of this 

gene increases during mid-secretory phase of progesterone (P4) hormone in human endometrium 

(Houshdaran et al., 2014); This region (at 47-59 Mb) on BTA21 has not been previously reported 

to be associated with fertility traits in cattle or other species. The region also includes the ASB2 

gene. Therefore, these two genes can be considered as potential candidate genes affecting CTFS 

and calving interval associated traits in dairy cattle. The two other highly significant SNPs 

(genome-wise FDR ≤ 5%) in this study on BTA21 at the same region (47-57 Mb) were 

BovineHD2100016620: rs136994701, within the SLC24A4 gene, and BovineHD2100013476: 

rs136407309 a 3-prime UTR variant within the NKX2-1 gene. The SLC24A4 gene encodes a 

member of potassium-dependent sodium or calcium exchanger protein family and has been 

identified to be associated with hair color, skin pigmentation (Han et al., 2008) and eye color in 

humans (Liu et al., 2010). The gene NKX2-1 encodes a transcription factor that regulates the 

expression of thyroid-specific genes (Gene ID: 7080) as well as genes that are involved in 

morphogenesis (Gene ID: 7080). However, no association of these two genes with fertility trait 

has been previously reported. 

We also detected two significant SNPs associated with CTFS at 30-32 Mb on BTA13; this 

region has previously been reported by Sahana et al (2010) as associated with interval from 

calving to first insemination and fertility index traits (Sahana et al., 2010). These two SNPs on 

BTA13 (BovineHD1300008936: rs136296491 and BovineHD1300009502: rs109815929) are 

located within candidate genes FAM188A and MRC1, respectively. The location of these SNPs is 

within known QTL regions associated with Inhibin level, shear force and lean meat yield in 
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several cattle breeds (Additional file S3.5). The single significant SNP on BTA5 

(BovineHD0500025143: rs42718239) is located within gene ABCC9 at 88 Mb. This region 

previously has been validated for calving to first insemination (ICF) trait in Nordic Holstein, 

Nordic Red and Jersey cattle breed but the gene ABCC9 was not assigned to any of the 

associated SNPs (Höglund et al., 2014). This SNP is also located within a known QTL region 

associated with sire conception rate in Holstein dairy cattle (Peñagaricano et al., 2012). The 

protein coded by ABCC9 gene is thought to form ATP-sensitive potassium channels in cardiac, 

skeletal, vascular and non-vascular smooth muscle (Gene ID: 10060). ATP-sensitive potassium 

channels are expressed in many tissues and regulate different cellular functions by coupling cell 

metabolism with membrane potential (Curley et al., 2002). The opening of these channels results 

in a flow of K
+
 ions and thus, reducing cellular excitability and contractility (Khan et al., 2001). 

The K
+
 channel opening components are reported as potent inhibitors of human myometrial 

contractility (Curley et al., 2002). It has been indicated that down-regulation of ATP-sensitive 

potassium channel (KATP channel) subunits may facilitate myometrial function during late 

pregnancy in humans (Curley et al., 2002). In another study in humans, it has been revealed that 

estrogen may induce the activation of KATP channels to promote cell proliferation in the 

myometrial (Park et al., 2008). Therefore, the ABCC9 gene can be considered as a potential 

candidate gene in dairy cattle and may have a role in cell proliferation of myometrial cells and 

resuming the reproduction cycle after calving. 

Of 8,834 SNPs that were introduced to SNP2GO (P-value < 0.01), 2,330 SNPs were 

overrepresented in biological pathways and molecular functions for CTFS. These SNPs were 

associated with 459 significant GO terms with FDR ≤ 1%. The GO terms with the clearest 

relevance for CTFS trait among the top nine most significant GO terms (FDR ≤ 1%) are 
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GO:0040019 (positive regulation of embryonic development) and GO:0045663 (positive 

regulation of myoblast differentiation), while for others the relevance is less clear, for example 

GO:0045836 (positive regulation of mitotic nuclear division). The complete list of significant 

GO terms is given in Additional file S3.6. 

3.4.3.2. Days open (DO) 

Association analysis identified a total of eight highly significant SNPs (genome-wise 1% FDR) 

on BTA21 associated with DO (Additional file S3.4; Figure 3.9). These significant SNPs span 

the 53-59 Mb region. The peak on chromosome 21 overlaps with the one detected for CTFS, and 

has not been previously reported for this trait. As noted above, this peak includes gene 

FAM181A. Schulman et al. (2008) reported a QTL associated with days open EBV on 

chromosomes 1, 2, 5, and 25 for Finnish Ayrshire dairy cattle. These regions were not detected 

in our study.  

The number of candidate SNPs overrepresented in the enrichment analysis was 1,897 (P-value ≤ 

0.01). These SNPs were involved in 381 significant GO terms for days open (Additional file 

S3.6). Among the top 10 most significant GO terms, the ones with clear relevance to the trait are 

GO:0043268 (positive regulation of potassium ion transport), GO:0071353 (cellular response to 

interleukin-4). Additional GO terms, for which the relationship to the trait is less clear, include 

GO:0000786 (nucleosome) and GO:0005070 (SH3/SH2 adaptor activity). The complete list of 

significant GO terms is given in Additional file S3.6.  
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3.4.4. Overlapping regions among milk production traits 

The only overlapping peak among all of the production traits (MILK, FAT, FATD, PROT and 

PROTD) was the region identified on BTA14 (Table 3.2). This region spans around 1.4 to 2.9 

Mb and includes 74 highly significant SNPs (genome-wise FDR ≤ 1%).  

3.4.5. Overlapping regions among fertility traits 

Investigating overlapping regions among fertility traits has resulted in identifying eight 

significant SNPs on BTA21 at 53-59 Mb between two fertility traits CTFS and DO in this study 

(Table 3.3). The overlapping region among these fertility traits was not reported to be associated 

with days open or calving to first interval traits in previous GWAS.  

3.5. Conclusion  

Genome wide association analysis in this study detected several regions associated with milk 

production and female fertility in Canadian Holstein cattle. Most of the regions in this study were 

identified in other independent studies. However, novel regions of association were detected. 

Our result shows a novel significant region on chromosome 21 (at 47-59 Mb), which overlaps 

among CTFS and DO, which was not reported for fertility traits in previous association studies. 

This region includes several genes including FAM181A, SLC24A4 and NKX2-1. The inclusion of 

several traits in one study allowed us to more easily compare overlaps that might, for example, 

highlight regions with pleiotropic effects. Although overlaps were observed within production 

and fertility traits, we did not see any overlap between production and fertility in this study. GO 

term enrichment analysis of the GWAS results identified terms consistent with the known 

physiology of the traits as well as novel or unexpected terms. The chromosomal regions 
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identified in this study confirm several previous findings affecting production traits. Our result 

could also highlight new regions and pathways that may contribute to variation in fertility trait in 

dairy cattle. These novel regions can be used for further functional analysis to identify genes, 

gene networks and variants that explain variation in these traits. 

3.6. Legend 

Additional files are accessible through http://dx.doi.org/10.7939/DVN/10939.  

  

http://dx.doi.org/10.7939/DVN/10939
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Table 3. 1: The number of significant SNPs (5% and 1% genome-wise FDR) using single SNP 

regression mixed linear model on imputed BovineHD (777k) genotypes in Holstein dairy cattle. 

Trait Heritability 

No. of sig SNPs (1% 

FDR) 

No. of sig. SNPs (5% 

FDR)  

Milk production  0.410 221 292 

Fat production 0.340 595 813 

Protein production 0.370 41 87 

Fat deviation (%) 0.370 998 1,230 

Protein deviation (%) 0.370 912 1,416 

Daughter fertility 0.070 0 0 

First service to calving interval (heifer) 0.033 0 0 

Calving to first service interval  0.072 8 20 

Days open 0.102 8 0 

*
 FDR: false discovery rate  

** 
Sig. SNPs: Significant SNPs 

Heritability is calculated by CDN and used in national genetic evaluation.  
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Table 3. 2: Common significant SNPs (genome-wise 1% FDR) identified among all production 

related traits (MILK, FAT, PROT, PROTD) using single SNP regression mixed linear model on 

imputed BovineHD (777K) genotypes in Holstein cattle. 

SNPID Chromosome Position P-value
*
 

(nominal) 

FDR_genome-

wise 

BovineHD1400000188 14 1588879 1.00E-300 0.01 

BovineHD1400000199 14 1638045 1.00E-300 0.01 

BovineHD1400000200 14 1640406 1.00E-300 0.01 

ARS-BFGL-NGS-

57820 

14 1651311 1.00E-300 0.01 

BovineHD1400000204 14 1667797 1.00E-300 0.01 

BovineHD1400000206 14 1679844 1.00E-300 0.01 

BovineHD1400000216 14 1736599 1.00E-300 0.01 

ARS-BFGL-NGS-

4939 

14 1801116 1.00E-300 0.01 

BovineHD1400000275 14 2019390 1.00E-300 0.01 

BovineHD1400000281 14 2046297 1.00E-300 0.01 

ARS-BFGL-NGS-

107379 

14 2054457 7.45E-256 0.01 

BovineHD1400000262 14 1967325 6.45E-252 0.01 

BovineHD1400000282 14 2051225 2.26E-245 0.01 

BovineHD1400000283 14 2057629 2.26E-245 0.01 

BovineHD1400000285 14 2066638 2.26E-245 0.01 

BovineHD1400000286 14 2069181 2.26E-245 0.01 

BovineHD1400000287 14 2076458 2.26E-245 0.01 

BovineHD1400000290 14 2089613 2.26E-245 0.01 
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BovineHD1400000324 14 2257386 1.09E-150 0.01 

Hapmap30383-BTC-

005848 

14 1489496 9.35E-147 0.01 

BovineHD1400000443 14 2758369 2.47E-106 0.01 

ARS-BFGL-NGS-

34135 

14 1675278 6.44E-104 0.01 

BovineHD1400000207 14 1683767 1.40E-101 0.01 

BovineHD4100010518 14 1672047 3.94E-99 0.01 

BovineHD1400000205 14 1672913 3.94E-99 0.01 

ARS-BFGL-NGS-

94706 

14 1696470 4.68E-99 0.01 

BovineHD1400000462 14 2857000 8.68E-94 0.01 

BovineHD1400000326 14 2273502 1.26E-86 0.01 

BovineHD1400000482 14 2940147 9.19E-86 0.01 

BovineHD1400000457 14 2833552 1.82E-85 0.01 

BovineHD1400000463 14 2875999 5.11E-78 0.01 

BovineHD1400000464 14 2883623 5.11E-78 0.01 

BovineHD1400000465 14 2885790 5.11E-78 0.01 

BovineHD1400000467 14 2898515 5.11E-78 0.01 

BovineHD1400000468 14 2901016 5.11E-78 0.01 

BovineHD1400000469 14 2902668 5.11E-78 0.01 

BovineHD1400000470 14 2904752 5.11E-78 0.01 

ARS-BFGL-NGS-

18858 

14 2909929 5.11E-78 0.01 

BovineHD1400000471 14 2910531 5.11E-78 0.01 
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BovineHD1400000288 14 2084067 2.16E-76 0.01 

BovineHD1400000445 14 2763040 1.23E-57 0.01 

BovineHD1400000446 14 2763621 1.23E-57 0.01 

BovineHD1400000442 14 2756339 1.97E-56 0.01 

BovineHD1400000480 14 2936478 1.25E-47 0.01 

BTA-34956-no-rs 14 1514056 4.89E-47 0.01 

BovineHD1400000167 14 1493001 1.58E-46 0.01 

BovineHD4100010510 14 1494482 1.58E-46 0.01 

BovineHD4100010511 14 1497296 1.58E-46 0.01 

BovineHD1400000170 14 1504519 1.58E-46 0.01 

BovineHD4100010512 14 1509091 1.58E-46 0.01 

BovineHD1400000172 14 1514738 2.04E-46 0.01 

BovineHD4100010513 14 1516428 2.04E-46 0.01 

BovineHD1400000173 14 1517553 2.04E-46 0.01 

BovineHD4100010514 14 1518492 2.04E-46 0.01 

BovineHD1400000174 14 1522098 2.04E-46 0.01 

BovineHD4100010515 14 1524573 2.04E-46 0.01 

BovineHD4100010516 14 1527842 2.04E-46 0.01 

BovineHD4100010517 14 1529914 2.04E-46 0.01 

BovineHD1400000166 14 1487447 5.89E-46 0.01 

BovineHD1400000164 14 1486102 1.37E-45 0.01 

BovineHD1400000165 14 1486682 1.37E-45 0.01 

BovineHD1400000143 14 1427669 4.48E-44 0.01 

BovineHD1400000429 14 2676321 7.35E-40 0.01 

BovineHD1400000145 14 1429389 8.84E-36 0.01 
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BovineHD1400000152 14 1439476 8.84E-36 0.01 

BovineHD4100010506 14 1442028 2.44E-35 0.01 

BovineHD1400000154 14 1444759 2.44E-35 0.01 

BovineHD1400000277 14 2027812 8.52E-25 0.01 

BovineHD1400000273 14 2006872 1.28E-19 0.01 

BovineHD1400000258 14 1949077 1.71E-19 0.01 

BovineHD1400000259 14 1951389 1.71E-19 0.01 

ARS-BFGL-NGS-

71749 

14 1954317 1.71E-19 0.01 

BovineHD1400000267 14 1988704 4.14E-19 0.01 

BovineHD1400000270 14 1999406 4.14E-19 0.01 

*
 P-value (nominal): The most significant P-value for each SNP among all milk production traits 
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Table 3. 3: Common significant SNPs (genome-wise 1% FDR) identified among all fertility related 

traits (CTFS and DO) using single SNP regression mixed linear model on the imputed BovineHD 

(777K) genotypes in Holstein cattle. 

SNPID Chromosome Position P-value
*
 

(nominal) 

FDR_genome-

wise 

BovineHD2100017054 21 59118105 4.97E-11 0.01 

BovineHD2100017056 21 59123690 8.58E-11 0.01 

ARS-BFGL-NGS-

22156 

21 55059767 1.09E-10 0.01 

BovineHD2100015321 21 53432378 8.52E-10 0.01 

BTB-00649131 21 53457352 8.52E-10 0.01 

BTB-00649148 21 53500339 8.52E-10 0.01 

BovineHD2100015609 21 54594098 2.11E-07 0.05 

BovineHD2100015610 21 54600298 2.11E-07 0.05 

*
 P-value (nominal): The most significant P-value for each SNP among all milk production traits 

  



 
 

124 

 

Figure 3. 1: Genome-wide association analysis of P-values of SNPs from single SNP regression 

mixed linear model for milk production (MILK). The –log10 of the P-value for association with SNPs 
is plotted. Chromosome number is shown on the horizontal axis. The red line is the threshold for 

significant SNPs at 1% FDR. The green line is the threshold for significant SNPs at 5% FDR.  
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Figure 3. 2: Genome-wide association analysis of P-values of SNPs from single SNP regression 

mixed linear model for fat production (FAT). The –log10 of the P-value for association with SNPs is 
plotted. Chromosome number is shown on the horizontal axis. The red line is the threshold for significant 

SNPs at 1% FDR. The green line is the threshold for significant SNPs at 5% FDR.  
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Figure 3. 3: Genome-wide association analysis of P-values of SNPs from single SNP regression 

mixed linear model for fat deviation (FATD). The –log10 of the P-value for association with SNPs is 

plotted. Chromosome number is shown on the horizontal axis. The red line is the threshold for significant 

SNPs at 1% FDR. The green line is the threshold for significant SNPs at 5% FDR.  
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Figure 3. 4: Genome-wide association analysis of P-values of SNPs from single SNP regression 

mixed linear model for protein production (PROT). The –log10 of the P-value for association with 

SNPs is plotted. Chromosome number is shown on the horizontal axis. The red line is the threshold for 
significant SNPs at 1% FDR. The green line is the threshold for significant SNPs at 5% FDR.  
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Figure 3. 5: Genome-wide association analysis of P-values of SNPs from single SNP regression 

mixed linear model for protein deviation (PROTD). The –log10 of the P-value for association with 

SNPs is plotted. Chromosome number is shown on the horizontal axis. The red line is the threshold for 

significant SNPs at 1% FDR. The green line is the threshold for significant SNPs at 5% FDR.  
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Figure 3. 6: Genome-wide association analysis of P-values of SNPs from single SNP regression 

mixed linear model for calving to first service interval (CTFS). The –log10 of the P-value for 
association with SNPs is plotted. Chromosome number is shown on the horizontal axis. The red line is the 

threshold for significant SNPs at 1% FDR. The green line is the threshold for significant SNPs at 5% 

FDR.  
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Figure 3. 7: Genome-wide association analysis of P-values of SNPs from single SNP regression 

mixed linear model for daughter fertility (DF). The –log10 of the P-value for association with SNPs is 
plotted. Chromosome number is shown on the horizontal axis. The red line is the threshold for significant 

SNPs at 1% FDR. The green line is the threshold for significant SNPs at 5% FDR.  
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Figure 3. 8: Genome-wide association analysis of P-values of SNPs from single SNP regression 

mixed linear model for heifer first service to calving interval (FSTCh). The –log10 of the P-value for 
association with SNPs is plotted. Chromosome number is shown on the horizontal axis. The red line is the 

threshold for significant SNPs at 1% FDR. The green line is the threshold for significant SNPs at 5% 

FDR.  
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Figure 3. 9: Genome-wide association analysis of P-values of SNPs from single SNP regression 
mixed linear model for days open (DO). The –log10 of the P-value for association with SNPs is plotted. 

Chromosome number is shown on the horizontal axis. The red line is the threshold for significant SNPs at 

1% FDR. The green line is the threshold for significant SNPs at 5% FDR.  
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Figure 3. 10: Quantile-quantile (Q-Q) of P-values of SNPs from single SNP regression mixed linear 

model for milk production (MILK). In the Q-Q plots the blue dots represent the –log10(P-values) to the 
expected distribution under the null hypothesis of no association. The red line denotes the expected 

pattern under the null hypothesis. Deviations between the red line and blue dots indicate how the test 

statistics of loci deviate from the null hypothesis. 
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Figure 3. 11: Quantile-quantile (Q-Q) of P-values of SNPs from single SNP regression mixed linear 
model for fat production (FAT). In the Q-Q plots the blue dots represent the –log10(P-values) to the 

expected distribution under the null hypothesis of no association. The red line denotes the expected 

pattern under the null hypothesis. Deviations between the red line and blue dots indicate how the test 
statistics of loci deviate from the null hypothesis. 
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Figure 3. 12: Quantile-quantile (Q-Q) of P-values of SNPs from single SNP regression mixed linear 

model for fat deviation (FATD). In the Q-Q plots the blue dots represent the –log10(P-values) to the 
expected distribution under the null hypothesis of no association. The red line denotes the expected 

pattern under the null hypothesis. Deviations between the red line and blue dots indicate how the test 

statistics of loci deviate from the null hypothesis. 
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Figure 3. 13: Quantile-quantile (Q-Q) of P-values of SNPs from single SNP regression mixed linear 

model for protein production (PROT). In the Q-Q plots the blue dots represent the –log10(P-values) to 
the expected distribution under the null hypothesis of no association. The red line denotes the expected 

pattern under the null hypothesis. Deviations between the red line and blue dots indicate how the test 

statistics of loci deviate from the null hypothesis. 
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Figure 3. 14: Quantile-quantile (Q-Q) of P-values of SNPs from single SNP regression mixed linear 

model for protein deviation (PROTD). In the Q-Q plots the blue dots represent the –log10(P-values) to 

the expected distribution under the null hypothesis of no association. The red line denotes the expected 
pattern under the null hypothesis. Deviations between the red line and blue dots indicate how the test 

statistics of loci deviate from the null hypothesis. 
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Figure 3. 15: Quantile-quantile (Q-Q) of P-values of SNPs from single SNP regression mixed linear 

model for calving to first service interval (CTFS). In the Q-Q plots the blue dots represent the –log10(P-

values) to the expected distribution under the null hypothesis of no association. The red line denotes the 

expected pattern under the null hypothesis. Deviations between the red line and blue dots indicate how the 
test statistics of loci deviate from the null hypothesis. 
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Figure 3. 16: Quantile-quantile (Q-Q) of P-values of SNPs from single SNP regression mixed linear 

model for daughter fertility (DF). In the Q-Q plots the blue dots represent the –log10(P-values) to the 

expected distribution under the null hypothesis of no association. The red line denotes the expected 

pattern under the null hypothesis. Deviations between the red line and blue dots indicate how the test 
statistics of loci deviate from the null hypothesis. 
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Figure 3. 17: Quantile-quantile (Q-Q) of P-values of SNPs from single SNP regression mixed linear 

model for heifer first service to calving interval (FSTCh). In the Q-Q plots the blue dots represent the 

–log10(P-values) to the expected distribution under the null hypothesis of no association. The red line 

denotes the expected pattern under the null hypothesis. Deviations between the red line and blue dots 
indicate how the test statistics of loci deviate from the null hypothesis. 
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Figure 3. 18: Quantile-quantile (Q-Q) of P-values of SNPs from single SNP regression mixed linear 

model for days open (DO). In the Q-Q plots the blue dots represent the –log10(P-values) to the expected 

distribution under the null hypothesis of no association. The red line denotes the expected pattern under 

the null hypothesis. Deviations between the red line and blue dots indicate how the test statistics of loci 
deviate from the null hypothesis. 
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CHAPTER 4. Genome wide association study for female fertility, longevity 

and lifetime profitability index traits in North American dairy Holstein cattle. 

4
 

4.1. Abstract 

Female fertility in Holstein cattle has declined through intense genetic selection for milk 

production over the last 20 years. One approach to improving fertility is to identify the genomic 

regions and variants affecting fertility traits and incorporate this knowledge into selection 

decisions. The objectives of this study were to identify or refine position of the genomic regions 

affecting lifetime profitability index, female fertility traits (age at first service, cow first service 

to conception, heifer and cow non-return rate) and longevity (herd life, direct and indirect herd 

life) in the North American Holstein dairy cattle population. A genome-wide association study 

(GWAS) was performed for each trait, using a single SNP regression mixed linear model and 

imputed HD panel (777k) genotypes. Several peak regions were detected for lifetime 

profitability index, lactation persistency and longevity. The results overlap with previous 

findings as well as identify some novel regions for lactation persistency. Previously proposed 

causative and candidate genes supported by this work include DGAT1, GRINA, CPSF1 while 

new candidates are SLC2A4RG and THRB. Thus the chromosomal regions identified in this 

study not only confirm several previous findings but also highlight new regions that may 

contribute to genetic variation in lactation persistency and longevity associated traits in dairy 

cattle. 

                                                             
4 A version of this chapter has been published in the Journal of Dairy Science. Nayeri et al. 2016. 

Genome-wide association study for lactation persistency, female fertility, longevity and lifetime profit 
index traits in Holstein dairy cattle. DOI: http://dx.doi.org/10.3168/jds.2016-11770. 

http://dx.doi.org/10.3168/jds.2016-11770
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4.1. Introduction 

Milk production and female fertility are two important traits that contribute to the profitability of 

the dairy industry (Boichard, 1990). Increasing milk production in dairy cattle has been a 

primary focus of genetic selection (Oltenacu and Algers, 2005). This selection has caused a 

decline in cow fertility because of the negative genetic correlation between fertility and milk 

production (Kadarmideen et al., 2000; Royal et al., 2002). It has been concluded that a 

combination of physiology, nutrition, genetic and management strategies should be considered to 

provide a long-term improvement in fertility of high producing dairy cows (Shook, 2006). Dairy 

breeding programs stand to improve the overall profitability of the industry through an emphasis 

on durability, health and fertility of cows alongside the increase in milk production (Kulak et al., 

1997).  

Genomic regions explaining variation in female fertility traits in cattle have been identified in 

several genome-wide association studies (GWAS) within a variety of breeds (Höglund et al., 

2009; Pryce et al., 2010; Schulman et al., 2011; Sahana et al., 2011; Hawken et al., 2012; 

Peñagaricano et al., 2012; Minozzi et al., 2013; Höglund et al., 2015). Significant associations 

have been identified on several chromosomes for age at puberty (Hawken et al., 2012), cow non-

return rate (Holmberg and Andersson-Eklund, 2006), pregnancy rate (Ashwell et al., 2004) and 

calving performance (Holmberg and Andersson-Eklund, 2006). More in-depth analyses have 

identified several candidate genes affecting fertility traits such as pregnancy-associated plasma 

protein-A2 (PAPP2-A2) on chromosome 16 (associated with calving ease) (Wickramasinghe et 

al., 2011) and calpastatin (CAST) on chromosome 7 (Garcia et al., 2006) (associated with fertility 

and longevity) in dairy cattle (Minozzi et al., 2013). 
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The objective of this study was to detect genome regions affecting first service to conception 

cow (FSTCc), age at first service (AFS), heifer non-return rate (NNRh) and cow non-return rate 

(NRRc) as well as longevity and productivity related traits such as lactation persistency (LP), 

herd life (HL), indirect herd life (IHL) and direct herd life (DHL) in the North American 

Holstein population. Lifetime profitability Index (LPI) was also studied and consists of three 

main components: production (yield traits and milk components); durability (herd life, mammary 

system, feet and leg, dairy strength); health and fertility (daughter fertility). The LPI reflects the 

relative profitability that can be expected during the lifetime of future daughters.  

4.2. Materials and methods 

4.2.1. Animals and Data 

A population of North American Holstein bulls was used in this study of nine fertility and 

profitability related traits including lifetime profitability index (LPI), lactation persistency (LP), 

herd life and indirect herd life (HL, IHL respectively), direct herd life (DHL), cow first service to 

conception (FSTCc), age at first service (AFS), heifer 56-day non-return rate (NNRh) and cow 

56-day non-return rate (NRRc). The Canadian Dairy Network (CDN) provided genotypes, 

available pedigree information and official evaluations for proven bulls born between 1956 and 

2009. Herd life was measured as the survival of each cow at five specific points during their 

productive life including: 1) survival from first calving to 120 days in milk in first lactation, 2) 

survival from 120 to 240 days in milk in first lactation, 3) survival from 240 days in milk in first 

lactation to second calving, 4) survival from second calving to third calving, and 5) survival from 

third calving to fourth calving (www.cdn.ca). Indirect herd life was evaluated based on a 

combination of conformation traits, reproduction traits and udder health (www.cdn.ca). Age at 
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first service was considered as the age in days at which a heifer was inseminated for the first 

time. Individuals were genotyped using the BovineSNP50K (50k) panel (3,729 bulls) or the high 

density (HD, 777k) SNP panel (2,387 bulls), respectively (Illumina, San Diego, CA). The 50k 

panel SNP genotypes were subjected to the standard quality control measures that are used by 

CDN (Wiggans et al., 2009). Quality control was performed on the HD genotyping data using 

the snp1101 (Sargolzaei, 2014) software. This step excluded 116,619 SNPs including 46,433 

SNPs from sex chromosome or misplaced SNPs, 3,566 SNPs with high Mendelian error rate (> 

0.05), 6,446 SNPs with low call rate (< 0.9), 61,577 SNPs with low Minor Allele Frequency 

(MAF < 0.000001) and 90 SNPs with the excess of heterozygosity (> 0.15). The number of 

SNPs remaining for downstream imputation was 40,666 SNPs for the 50k panel and 657,986 

SNPs for the HD panel. 

The 3,729 50k genotypes were imputed to the HD panel, using the 2,387 HD panel genotypes as 

the reference and the FImpute V2.2 software (Sargolzaei et al., 2014). After imputation, an 

additional quality control step was performed on the imputed data. A total of 55,817 SNPs with 

MAF of less than 1% and 74 SNPs with a Mendelian error rate of more than 5% (74 SNPs) were 

excluded. After quality control, 602,095 SNPs remained for use in the subsequent association 

analysis. 

Animal Care and Use Committee approval was not obtained for this study because analyses were 

performed on existing data obtained under standard farm management from commercial dairy 

farmers and breeders. All dairy farmers in Canada must follow “The Code of Practice for the 

Care and Handling of Dairy Cattle” developed by the National Farm Animal Care Council of 

Canada (http://www.nfacc.ca/).  
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4.2.2. De-regressed Proofs Calculation 

In this study, we used de-regressed genetic evaluations of Holstein bulls as independent variables 

to test the association with the HD panel. In this genetic evaluation, a bull’s published estimated 

breeding value (EBV) is a weighted mean of his daughters deviations (DD) and his parental 

average (PA) (VanRaden et al., 2009). The de-regressed bull proofs were computed by CDN as 

shown below (VanRaden et al., 2009): 

       
      

        
   

     

       
 

 

       
     

        
 

 

         
        

     
 

DEprg is the daughter equivalent from progeny information, and RelEBV and RelPA are the 

reliabilities of EBV and PA, respectively. RelDD is the reliability of DD, and DEBV is the de-

regressed bull proof.  

4.2.3. Genome Wide Association Analysis (GWAS) 

A single SNP regression mixed linear model implemented in the snp1101 software (Sargolzaei et 

al., 2014; VanRaden, 2008) was used for association analysis: 
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Where   is a vector of de-regressed proofs of the trait of interest;   is the fixed mean effect and 1 

is a vector of 1s;   is the linear regression coefficient on the i
th

 SNP; x is a vector of allele count 

for the i
th

 SNP;   is a vector of the random additive polygenic effects; Z is an incidence matrix 

associated with additive polygenic effects and   is a vector of random error terms. 

The model assumptions are   :             
   where G is the genomic relationship matrix 

(VanRaden, 2008) and   
  is the polygenic additive genetic variance;                

   where 

  
  is the residual variance. R is a diagonal matrix containing weights for the residual variance 

based on the reliabilities of the de-regressed bull proofs (VanRaden, 2008). 

In order to account for multiple tests, the false discovery rate (FDR) was controlled at 5% and 

1% genome-wise levels to identify significant and highly significant associations, respectively.  

The quantile-quantile (Q-Q) plots and inflation factor   (Devlin and Roeder, 1999) were used to 

compare observed distributions of –log (P-value) to the expected distribution under the no 

association model for each trait. 

4.3. Result and discussion 

4.3.1. Statistical Analysis 

GWAS identified strong associations for LPI on Bos taurus autosome (BTA) 14 and 18, for LP 

on BTA 20 and for IHL, HL and DHL on BTA 18 (Figure 4.1 to Figure 4.5). However, no 

significant association was found for AFS, FSTCc, NRRc and NRRh (Figure 4.6 to Figure 4.9). 

For those traits yielding significant associations, the number of significant SNPs identified 

(genome-wise FDR of 5% and 1%) is shown in Table 4.1.  
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The q-q plots showing the observed distribution of –log (P-value) to the expected distribution, 

under null hypothesis, are shown in Figure 4.10 to Figure 4.14. The inflation factor (median) 

values for lifetime profitability index (LPI), lactation persistency (LP), herd life (HL), indirect 

herd life (IHL) and direct herd life (DHL) were close to the expected value of 1 are 1.0572, 

1.065, 1.1221, 0.9763 and 1.3063, respectively.  

4.3.2. Lifetime Profitability Index (LPI) 

Selection for more profitable cows began with selection improvements in milk protein 

percentage in dairy cows (VanRaden, 2004). Later, traits were combined to form selection 

indexes including yield traits, service sire calving ease, daughter calving ease, daughter 

pregnancy rate and body conformation traits (VanRaden, 2004). LPI includes most of the traits 

that impact the profitability of a dairy cow. Genome-wide association analysis for LPI identified 

53 SNPs significant at genome-wise FDR 5% (Additional file5 S4.1). These significant SNPs 

were localized on BTA14 and 18 (Figure 4.1).  

The most significant SNPs for LPI were identified on chromosome 14 at 1.6 to 1.8 Mb. Our 

result indicate that several SNPs within this region including BovineHD1400000271: 

rs136792973, BovineHD1400000204: rs137727465 (within the CYHR1 gene), 

BovineHD1400000216: rs134432442 (within the CPSF1 gene), ARS-BFGL-NGS-4939: 

rs109421300 (within the DGAT1 gene), BovineHD1400000275: rs133271979 (within the 

GRINA gene) are located within the confidence intervals of previously identified QTL regions 

(Additional file S4.2). The significant influence of polymorphism (K232A polymorphism) in 

DGAT1 gene on bovine milk production traits (milk yield, protein content, fat content and fatty 

                                                             
5
 Additional files are accessible through the link http://dx.doi.org/10.7939/DVN/10941.  

http://dx.doi.org/10.7939/DVN/10941
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acid composition) was previously shown in different studies (Grisart et al., 2002; Schennink et 

al., 2007, 2008; Conte et al., 2010). In addition, CYHR1, CPSF1, and GRINA genes were 

reported to be associated with milk fat component in Danish and Chinese Holstein cattle 

(Buitenhuis et al., 2014; Jiang et al., 2014). These SNPs also overlap with regions associated 

with clinical mastitis in Holstein dairy cattle (Additional file S4.2) (Sahana et al., 2013). We also 

identified a highly significant SNP (genome-wide FDR 1%) in this study, Hapmap52798-

ss46526455: rs41256919, that overlaps with the MAF1 gene on BTA14. The MAF1 gene was 

shown to be associated with increased mammary gland milk protein synthetic capacity in 

lactating dairy cows (Sciascia et al., 2013). 

Another highly significant SNP (BovineHD1400000188: rs134892687) on BTA14 was located 

within the Rho GTPase activating protein 39 (ARHGAP39) gene. This SNP and the assigned 

gene (ARHGAP39) along with other SNPs and genes (CYHR1, CPSF1, DGAT1, GRINA, 

SMPD5) were reported to be significantly associated with milk fat and fat component traits in 

Danish Holstein cattle (Buitenhuis et al., 2014). Additionally, in a GWAS study in Chinese 

Holstein cattle, several significant SNPs, including the ones identified significant in this study 

for LPI (ARS-BFGL-NGS-4939; ARS-BFGL-NGS-107379 and ARS-BFGL-NGS-57820) were 

reported to be associated with somatic cell score EBVs (Wang et al., 2015). The authors 

speculated that the linked gene to these SNPs (ARHGAP39) is a candidate gene for mastitis 

susceptibility in Holsteins (Wang et al., 2015). Mastitis is the most costly disease associated with 

loss of milk production and increase in culling rates in dairy cattle (Nemcova et al., 2007). The 

overlap in results between this previous mastitis work and our LPI results could be due to the 

influence of these variants on mastitis and consequently LPI.  
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4.3.3. Lactation Persistency (LP) 

The GWAS analysis for lactation persistency identified several genomic regions with highly 

significant SNPs on BTA6, 13, 20 and 27 (Figure 4.2). The total number of significant SNPs was 

83 after correcting for multiple testing at a genome-wise FDR of 5%, with the highest number of 

significant SNPs on BTA20 (Additional file S4.1). 

Lactation persistency as a trait has been analyzed in several previous studies (Boichard et al., 

2003; Harder et al., 2006; Kolbehdari et al., 2009). Some of the regions identified in our analysis 

overlap with the QTL regions that were reported previously. The most significant SNPs on 

BTA6 in our GWAS were located at 88 Mb. This region overlaps with a QTL region on BTA6 

(between markers DIK082 at 48 Mb/57.55 cM and ILSTS097 at 64 Mb/72.43 cM) associated 

with persistency of milk yield (PMY), protein yield (PPY) and persistency of milk energy yield 

(PEY) in German Holstein cattle (Harder et al., 2006).  

The region on BTA6 at 88Mb in the present study was previously reported to be associated with 

somatic cell score in Holstein cattle (Abdel-Shafy et al., 2014). Interestingly, we also assigned 

several significant SNPs including BovineHD0600024162: rs134391498 on this chromosome 

within the intronic region of the gene solute carrier family 4 (sodium bicarbonate cotransporter), 

member 4 (SLCA4A4). This gene has been reported as a candidate gene associated with mastitis 

susceptibility in Danish Holstein cattle (Wu et al., 2015). Cole et al. (2009) and Appuhamy et al. 

(2009) reported negative genetic correlations between clinical mastitis (after 100 days in milk) 

and persistency of yield traits (milk, fat and protein yield) in different cattle breeds. They 

indicated that an increase in persistency of milk, fat and protein yield traits is associated with 

decreases in persistency of somatic cell score (PSCS); somatic cell score is an indicator of 
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clinical and subclinical mastitis in dairy cattle (Appuhamy et al., 2009; Cole and Null, 2009). 

This result suggests that identified SNPs at 88Mb on BTA6 might affect udder disease 

susceptibility and subsequently lactation persistency in the dairy cattle.  

Another major signal for lactation persistency in this study was identified on BTA13 at 54 to 55 

Mb (Additional file S4.1). This region was not reported to be associated with lactation 

persistency in dairy cattle in previous investigations. The SNPs in this region (Additional file 

S4.1) are located within the genes MYT1, SLC2A4RG, SLC17A9, LAMA5, ADRM1, OSBPL2 and 

SS18L1. Boinaz and Loor (2008) indicated that expression of the gene OSBPL2 in the mammary 

gland increases along with SREBF1 and SREBF2 genes during lactation. They suggested that this 

gene might be involved in the regulation of SREBF1 and coordination of sphingolipid and 

cholesterol synthesis within the mammary gland in dairy cattle (Bionaz and Loor, 2008). 

Kolbehdari et al. (2008) reported a significant SNP on BTA27 at 12 Mb affecting persistency of 

milk yield. Littlejohn et al. (2014) also reported significant variants on chromosome 27, affecting 

expression of AGPAT6 gene (at 36 Mb), that are causally involved in milk fat synthesis and has 

pleiotropic effects on other milk components. The associated SNPs to the AGPAT6 gene in 

Littlejohn et al. (2014) study were not significant in our results. However, we detected five 

significant SNPs on BTA27 at 41 Mb for lactation persistency (Additional file S4.1) overlapping 

with significant SNPs found on BTA 27 associated with milk fat percentage by Littlejohn et al. 

(2014). This region has not been reported to be associated with lactation persistency before, and 

we speculate this region to be a new region for this trait (Additional file S4.1). One significant 

SNP in this region (BovineHD2700012022: rs134277881) is located within the gene thyroid 

hormone receptor, beta (THRB). This gene encodes a nuclear hormone receptor for 

triiodothyronine and mutations in this gene are known to be the cause of generalized thyroid 
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hormone resistance (GTHR). Thyroid hormones are known for their importance in milk 

production through stimulation of metabolic rates with other hormones (including endocrine 

pancreas and adrenal gland cortex) (Blum et al., 1983). It has also been shown that there is a 

positive correlation between thyroid hormones in blood and energy metabolism (Reist et al., 

2002). This proposed gene might be considered as a new potential candidate gene affecting 

production traits in the dairy cattle. 

Significant SNPs on BTA20 for LP in this study were span from 31 to 32 Mb. Several of these 

SNPs including BovineHD4100014643: rs41639260, ARS-BFGL-NGS-118998: rs110482506 

and UA-IFASA-7069: rs41639261 are intronic variants residing within the growth hormone 

receptor (GHR) gene. Association of significant SNPs close to GHR gene affecting milk fat 

content was reported in a study carried out on German Holstein cattle (Wang et al., 2012). This 

region on BTA20 was also in agreement with QTL regions previously identified to affect lean 

meat, carcass yield (Doran et al., 2014) and sire conception rate (Li et al., 2012) in Holstein 

cattle in general (Additional file S4.2). 

The current study also revealed one significant SNP (5% FDR) on chromosome 17 at 72 Mb. 

Boichard et al. (2003) also reported a significant QTL associated with milk persistency (close to 

marker CSSM033) on chromosome 17. However, the position of this QTL was at 56 Mb 

(Boichard et al., 2003), which is different from the result found in the present study.  

4.3.4. Longevity Related Traits 

Longevity is one of the highly desirable traits in the dairy cattle industry that affects overall 

profitability (Sewalem et al., 2008). This trait is determined by voluntary and involuntary culling 

decisions based on production, health, fertility and other functional traits (VanRaden and 
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Wiggans, 1995; Sewalem et al., 2008). Genetic evaluation of longevity for proof bulls is based 

on herd-life evaluations that reflect the additional number of lactations which daughters of these 

bulls are expected to have due to reduced culling for non-production reasons (www.cdn.ca). 

Genetic evaluations and analysis of herd life for bulls are based on two evaluations; direct herd 

life (DHL) and indirect herd life (IHL) (www.cdn.ca). One of the components of direct herd life 

is daughter survival in the herd, at five specific points during their productive life. These five 

measurements of the daughter survival are inter-correlated and are used to compute an overall 

bull proof for direct herd life. Indirect herd life (IHL) value is calculated based on a function of 

proof for other non-production traits including conformation traits, reproduction traits and udder 

health traits (www.cdn.ca). 

Herd Life (HL), Indirect Herd Life (IHL) 

GWAS identified several significant regions on BTA5, 6, 7, 14, 18, 20 and 21 for HL with the 

highest number of significant SNPs on BTA6 and 18 (Figure 4.3; Additional file S4.1). 

Likewise, genome wide association analysis detected significant SNPs (genome-wise FDR 5%) 

on BTA5, 6 and 18 associated with IHL (Figure 4.4; Additional file S4.1).  

The most significant SNPs for HL and IHL were located on BTA18 at 42 to 65 Mb (Additional 

file S4.1). The location of several highly significant SNPs on BTA18 in this study 

(BovineHD1800016754: rs135253383, BovineHD1800016606: rs137554975 and 

BovineHD1800016612: rs136113894) is in agreement with QTLs affecting direct calving 

(fertility associated trait) on BTA18 at 57.12 Mb, for both HL and IHL (Sahana et al., 2011; 

Höglund et al., 2012). Additionally, our study identified a significant intronic SNP 

(BovineHD1800016754: rs135253383) in the cytosolic thiouridylase subunit 1 (CTU1) gene. It 
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has been reported that a missense mutation in the CTU1 gene is the most likely candidate variant 

for direct calving difficulty in the Holstein-Friesian cattle population (Purfield et al., 2015). 

Calving ease is a fertility-associated trait. Fertility and postpartum performance of replacement 

heifers are important traits to minimize the non-productive period of an animal’s life (Akanno et 

al., 2015). 

In another genome scan study carried out on economically important traits in Holstein cattle by 

Daetwyler et al. (2008) using a linkage disequilibrium single locus regression model, several 

QTL were identified on BTA6 (at 84 cM/82 Mb) and BTA13 (at 63 cM/50 Mb) associated with 

herd life. The SNPs identified in our study on BTA6 (for both HL and IHL), are located at 88 

Mb. Furthermore, the significant SNPs on BTA13 in our analysis are mostly localized at 30 Mb. 

We also identified several SNPs on BTA6 at 88 Mb within the confidence intervals of QTLs 

associated with somatic cell score (Abdel-Shafy et al., 2014), milk yield and body condition 

score (Veerkamp et al., 2012) in the Holstein cattle breed (Additional file S4.2). One other 

highly significant SNP on this chromosome for both HL and IHL (BovineHD0600024403: 

rs110432804) was assigned to the intron of the gene neuropeptide FF receptor 2 (NPFFR2). This 

gene has been reported as a candidate gene for udder health and susceptibility to mastitis in 

Danish Holstein cattle (Wu et al., 2015).  

Most of the significant SNPs that we found for these two traits were located within the QTL 

regions that have been previously reported to affect calving traits (calving ease, calf size, 

stillbirth), clinical mastitis, milk yield and conformation traits in Holstein and other cattle breeds 

(Additional file S4.2). According to the fact that indirect herd life evaluations are based on a 

combination of fertility, conformation and udder health traits, it is very possible that these 

regions and associated candidate genes, particularly on BTA6 and 18 influence this trait. 



 
 

155 

Direct Herd Life (DHL)  

Genome wide association analysis for direct herd life (DHL) detected significant peaks on 

BTA6, 7, 14, 18, 20 and 21(Figure 4.5). The most significant SNPs (genome-wise FDR 1%) are 

shown in Additional file S4.1. One significant peak on BTA18 at 52 to 60 Mb, overlaps among 

DHL, HL and IHL in this study. This region on BTA18 with the highest number of significant 

SNPs (258 SNPs) for DHL was close to significant QTLs found by Cole et al. (2009) at 57 Mb 

and Kolbehdari et al. (2009) at 53 Mb associated with calf growth rate, conformation, calving 

ease and fertility traits in Canadian Holsteins. We further investigated the position of these 

significant SNPs relative to previously known QTLs. The result indicated several SNPs were 

located within confidence interval of QTLs affecting somatic cell score (Brand et al., 2009), 

disease susceptibility (M. paratuberculosis susceptibility) (Pant et al., 2011) and calving-

associated traits (Schulman et al., 2011; Höglund et al., 2012) on BTA18 in Holstein cattle 

(Additional file S4.2). 

The position of a significant SNP on BTA13 (BovineHD1300016998: rs110323780) at 59 Mb 

was in agreement with significant SNPs within a QTL identified in a previous study, associated 

with HL (Daetwyler et al., 2008). This location also overlaps with the position of a QTL found to 

be associated with calving ease, calf size and stillbirth in Holstein dairy cattle (Höglund et al., 

2012). Additionally, the location of the highly significant SNPs on BTA21 in our study is 

consistent with a QTL associated with somatic cell score in Norwegian Red cattle (Sodeland et 

al., 2011) (Additional file S4.2). 

Somatic cell score is an indicator of udder health and is highly correlated with clinical mastitis 

(Brand et al., 2009). Short et al. (1992) reported that udder traits have large absolute genetic 
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correlations with herd life traits (Short and Lawlor, 1992). Furthermore, increased susceptibility 

to disease is one of the main factors of reduced productivity, premature culling and mortality 

(Pant et al., 2011). Taken together with these previous results, our findings indicate that these 

regions and significant SNPs may potentially have an effect on longevity in dairy cattle and may 

be used for further genomic prediction analysis to identify causal candidate variants that affect 

herd life traits.  

4.4. Conclusion 

The present GWAS study identified SNPs associated with lactation persistency, longevity and 

lifetime profitability index in Holstein dairy cattle. However, no associations could be identified 

for female fertility traits. The strongest associations were detected on BTA14 and 18 for lifetime 

profitability index and BTA6 and 20 for lactation persistency. In addition, two novel regions 

associated with lactation persistency were identified on BTA13 and BTA27. These regions 

contain several candidate genes including MYT1, SLC2A4RG and SLC17A9 on BTA13 and 

THRB on BTA27. The most significant SNPs associated with longevity traits were found on 

BTA18 and are mostly located within known QTL regions affecting mastitis and calving-

associated traits. In summary, these results can be used for identifying candidate genes and 

casual mutations that might help to increase the accuracy of genomic selection and provide 

mechanistic insight into traits. 

4.5. Legend 

Additional files are accessible through the link http://dx.doi.org/10.7939/DVN/10941.  
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Table 4. 1: The number of significant SNPs (5% and 1% genome-wise FDR) using single SNP 

mixed linear model on imputed BovineHD (777k) genotypes in Holstein dairy cattle. 

Trait Heritability 

No. of sig.
**

 SNPs (1% 

FDR
*
) 

No. of sig. SNPs (5% 

FDR)  

Lifetime profitability index  0.370 43 53 

Lactation persistency 0.363 25 83 

Herd life 0.097 197 510 

Indirect herd life 0.097 59 140 

Direct herd life 0.097 197 662 

*
 FDR: false discovery rate  

** 
Sig. SNPs: Significant SNPs 

Heritability is calculated by CDN and used in national genetic evaluation. 
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Figure 4.  1: Genome-wide association analysis of P-values of SNPs from single SNP regression 

mixed linear model for lifetime profitability index (LPI). The –log10 of the P-value for association with 

SNPs is plotted. Chromosome number is shown on the horizontal axis. The red line is the threshold for 

significant SNPs at 1% FDR. The green line is the threshold for significant SNPs at 5% FDR.  
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Figure 4.  2: Genome-wide association analysis of P-values of SNPs from single SNP regression 

mixed linear model for lactation persistency (LP). The –log10 of the P-value for association with SNPs 
is plotted. Chromosome number is shown on the horizontal axis. The red line is the threshold for 

significant SNPs at 1% FDR. The green line is the threshold for significant SNPs at 5% FDR.  
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Figure 4.  3: Genome-wide association analysis of P-values of SNPs from single SNP regression 

mixed linear model for herd-life (HL). The –log10 of the P-value for association with SNPs is plotted. 
Chromosome number is shown on the horizontal axis. The red line is the threshold for significant SNPs at 

1% FDR. The green line is the threshold for significant SNPs at 5% FDR.  
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Figure 4.  4: Genome-wide association analysis of P-values of SNPs from single SNP regression 
mixed linear model for indirect herd-life (IHL). The –log10 of the P-value for association with SNPs is 

plotted. Chromosome number is shown on the horizontal axis. The red line is the threshold for significant 

SNPs at 1% FDR. The green line is the threshold for significant SNPs at 5% FDR.  
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Figure 4.  5: Genome-wide association analysis of P-values of SNPs from single SNP regression 
mixed linear model for direct herd-life (DHL). The –log10 of the P-value for association with SNPs is 

plotted. Chromosome number is shown on the horizontal axis. The red line is the threshold for significant 

SNPs at 1% FDR. The green line is the threshold for significant SNPs at 5% FDR.  
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Figure 4.  6: Genome-wide association analysis of P-values of SNPs from single SNP regression 
mixed linear model for age at first service (AFS). The –log10 of the P-value for association with SNPs 

is plotted. Chromosome number is shown on the horizontal axis. The red line is the threshold for 

significant SNPs at 1% FDR. The green line is the threshold for significant SNPs at 5% FDR.  
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Figure 4.  7: Genome-wide association analysis of P-values of SNPs from single SNP regression 
mixed linear model for first service to conception (FSTCc). The –log10 of the P-value for association 

with SNPs is plotted. Chromosome number is shown on the horizontal axis. The red line is the threshold 

for significant SNPs at 1% FDR. The green line is the threshold for significant SNPs at 5% FDR.  
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Figure 4.  8: Genome-wide association analysis of P-values of SNPs from single SNP regression 
mixed linear model for cow non-return rate (NRRc). The –log10 of the P-value for association with 

SNPs is plotted. Chromosome number is shown on the horizontal axis. The red line is the threshold for 

significant SNPs at 1% FDR. The green line is the threshold for significant SNPs at 5% FDR.  
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Figure 4.  9: Genome-wide association analysis of P-values of SNPs from single SNP regression 
mixed linear model for heifer non-return rate (NRRh). The –log10 of the P-value for association with 

SNPs is plotted. Chromosome number is shown on the horizontal axis. The red line is the threshold for 

significant SNPs at 1% FDR. The green line is the threshold for significant SNPs at 5% FDR.  
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Figure 4.  10: Quantile-quantile (Q-Q) of P-values of SNPs from single SNP regression mixed linear 
model for lifetime profitability index (LPI). In the Q-Q plots the blue dots represent the –log10(P-

values) to the expected distribution under the null hypothesis of no association. The red line denotes the 

expected pattern under the null hypothesis. Deviations between the red line and blue dots indicate how the 

test statistics of loci deviate from the null hypothesis. 
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Figure 4.  11: Quantile-quantile (Q-Q) of P-values of SNPs from single SNP regression mixed linear 

model for lactation persistency (LP). In the Q-Q plots the blue dots represent the –log10(P-values) to the 
expected distribution under the null hypothesis of no association. The red line denotes the expected 

pattern under the null hypothesis. Deviations between the red line and blue dots indicate how the test 

statistics of loci deviate from the null hypothesis. 
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Figure 4.  12: Quantile-quantile (Q-Q) of P-values of SNPs from single SNP regression mixed linear 

model for herd-life (HL). In the Q-Q plots the blue dots represent the –log10(P-values) to the expected 

distribution under the null hypothesis of no association. The red line denotes the expected pattern under 
the null hypothesis. Deviations between the red line and blue dots indicate how the test statistics of loci 

deviate from the null hypothesis. 
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Figure 4.  13: Quantile-quantile (Q-Q) of P-values of SNPs from single SNP regression mixed linear 

model for indirect herd-life (IHL). In the Q-Q plots the blue dots represent the –log10(P-values) to the 
expected distribution under the null hypothesis of no association. The red line denotes the expected 

pattern under the null hypothesis. Deviations between the red line and blue dots indicate how the test 

statistics of loci deviate from the null hypothesis.  
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Figure 4.  14: Quantile-quantile (Q-Q) of P-values of SNPs from single SNP regression mixed linear 
model for direct herd-life (DHL). In the Q-Q plots the blue dots represent the –log10(P-values) to the 

expected distribution under the null hypothesis of no association. The red line denotes the expected 

pattern under the null hypothesis. Deviations between the red line and blue dots indicate how the test 
statistics of loci deviate from the null hypothesis.  
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CHAPTER 5. Adding new markers to genomic evaluations for milk 

production and fertility traits in Canadian Holstein dairy cattle through 

whole-genome sequencing, variant annotation, and candidate gene 

identification  

5.1. Introduction 

Milk production and fertility traits are influenced by many genes with small individual effects 

(Glazier et al., 2002; Schork et al., 2013). Selection for these traits was previously based on 

phenotypic and pedigree information and the knowledge of genetic parameters for the traits of 

interest (Dekkers and Hospital, 2002). However, recent advances in molecular genetic 

technology (Meuwissen et al., 2001; Matukumalli et al., 2009; Dekkers, 2012) in conjunction 

with bovine SNP discovery and sequencing projects (The Bovine Hapmap Consortium, 2009; 

Stothard et al., 2011; Daetwyler et al., 2014) have led to the of use genomic selection (GS) to 

identify genetically superior animals (Schaeffer, 2006; The Bovine Hapmap Consortium, 2009; 

Stothard et al., 2011; Daetwyler et al., 2014).  

Selection decisions in GS are based on genomic estimated breeding values (GEBVs) obtained 

using genome-wide dense markers (Meuwissen et al., 2001). To calculate GEBVs, the effects of 

markers (mostly in the form of SNPs) are first estimated in a reference population (consisting of 

animals that are genotyped and phenotyped for the traits of interest). These effects are used to 

build a prediction equation that is then applied to a second population, consisting of selection 

candidates, for which genotype information is available but not necessarily phenotype 

information. The estimated effects of the markers that each animal carries are summed across the 
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whole-genome to calculate the GEBV (Meuwissen et al., 2001; Hayes et al., 2009) representing 

the genetic merit of the individual (Meuwissen and Goddard, 2007). The GS approach can 

increase the accuracy of selection (Meuwissen et al., 2001; Schaeffer, 2006; Poland and Rutoski, 

2015), and can reduce generation intervals. In the dairy industry generation intervals declined 

from 5 to 6 years under traditional selection to 1.5 years with GS (Pryce and Daetwyler, 2012). 

This is because rather than waiting until a bull has daughters with phenotypic records, GS can 

predict breeding value of selection candidates based solely on genotype (Meuwissen et al., 2001; 

Pryce and Daetwyler, 2012), although caution is warranted when making decisions based only 

on genotype (Littlejohn et al., 2014). Genomic selection can be applied without knowledge of the 

underlying genes and pathways involved, however an understanding of the corresponding 

quantitative trait nucleotides (QTNs) may be valuable (Meuwissen and Goddard, 2007; Goddard 

and Hayes, 2009). Knowledge of the QTNs or the markers in high LD with the causal mutations 

can a) provide a better understanding of the physiology and biological pathways underlying 

variations in traits; b) allow for the use of a smaller DNA marker panel (containing QTN) for 

selection purposes, c) further increase the accuracy of genome-based breeding values, and d) 

potentially allow these panels to be applied across breeds due to a more direct link between 

genotype and phenotype (Snelling et al., 2013).  

Potential QTNs can be identified using information from variety of sources. Positional candidate 

genes can be identified based on the results of association studies, for example a GWAS 

(genome-wide association study) (Veerkamp and Beerda, 2007). Existing knowledge of gene 

function and expression can be used to further refine the list of positional candidates (Snelling et 

al., 2013). DNA variation can then be identified within the candidate genes. Recently developed 

next-generation sequencing (NGS) technologies are helpful in this regard as large numbers of 
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animals can be characterized through genome sequencing or RNA-seq (Snelling et al., 2013; 

Koufariotis et al., 2014). The potential impacts/effects of variants can be predicted using 

bioinformatics tools (Grant et al., 2011), and further association studies and functional studies 

can be carried out to verify the importance of the putative QTNs (Ron and Weller, 2007).  

The objective of this study was to identify candidate genes and mutations for production and 

fertility traits in Holstein dairy cattle by integrating information from GWAS, whole-genome 

sequencing and a variety of bioinformatics tools. A new genotyping panel was then constructed 

and evaluated to test whether it could lead to improved genomic predictions for eighteen 

production and fertility traits in Canadian Holstein dairy cattle.  

5.2. Materials and method 

5.2.1. Animals, phenotype and genotype data 

Eighteen milk production and fertility associated traits were used in this study including milk 

production (MILK), fat production (FAT), protein production (PROT), fat deviation (FATD), 

protein deviation (PROTD), herd life (HL), lactation persistency (LP), lifetime profitability index 

(LPI), direct herd life (DHL), indirect herd life (IHL), daughter fertility (DF), age at first service 

(AFS), heifer non-return rate (NRRh), heifer first service to conception (FSTCh), cow non-return 

rate (NRRc), calving to first service interval (CTFS), cow first service to conception (FSTCc) 

and days open (DO). The Canadian Dairy Network (CDN) provided data for Holstein cattle with 

official evaluation for proven bulls in 2008. SNP genotypes for 16,054 Holstein bulls were 

obtained using the Illumina BovineSNP50K BeadChip (Illumina, San Diego, CA) and imputed 

to Illumina Bovine HD (777k) BeadChip genotypes using the FImpute V.2.2 software 

(Sargolzaei, 2012) and a reference set of Illumina Bovine HD from 1,659 animals. Quality 
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control (QC) was performed on genotyping data using the Sleuth software (Mehdi Sargolzaei) to 

remove SNPs with less than a 90% call rate, a minor allele frequency (MAF) of less than 1%, or 

heterozygosity more than 15%. After quality control, a total number of 311,725 SNPs across the 

bovine autosomal chromosomes remained for use in association analysis. 

5.2.2. Genome-wide association analysis 

Association analysis was performed by means of the Generalized Quasi-Likelihood Score 

(GQLS) method developed by Feng et al. (Feng et al., 2011), and implemented in the Sleuth 

software package. The GQLS method can handle the correlation structure among related subjects 

and is based on the logistic regression model to link the trait to the distribution of allelic 

frequencies (Feng et al., 2011). In this model the observed phenotype of each individual is 

treated as a covariate and the proportion of a specified allele in the genotype is the response 

(Feng et al., 2011). Breeding values were estimated for each trait and then association analysis 

was performed using both BovineSNP50 and the high-density (HD) imputed SNP datasets. A 

genome-wise false discovery threshold (FDR) of 5% was used to correct for multiple testing 

(Benjamini and Hochberg, 1995). 

5.2.3. Complementary DNA (cDNA) library construction and sequencing 

Tissue samples were collected from adipose (8 animals in pool, 4 pre-partum and 4 post-partum) 

(collected under Washington State University Institutional Animal Care and Use Committee, 

IACUC; project 3478), mammary gland (6 animals in pool, 3 non-lactating and 3 lactating, 

University of Vermont, USA) and liver (8 animals in pool, 4 non-lactating and 4 lactating; 

University of Alberta, Animal Care protocol number 143/10/11). Libraries were prepared using 

reagents and protocols provided by Applied Biosystems (ABI) and sequenced using the ABI 
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SOLiD 3 sequencer (Life Technologies Corporation, CA, USA). Sequence reads were mapped to 

the UMD 3.1 bovine genome assembly using the LifeScope 2.0 software with default settings 

(Life Technologies Corporation, CA, USA). Putative SNPs and indels were identified using 

SAMtools (Li et al., 2009). Variants were removed if they had a quality score less than 20, more 

than two alleles, or less than four reads supporting the alternative allele.  

5.2.4. Candidate gene identification 

Gene mapping and positional candidate gene identification 

Significant QTL were detected at 5% FDR genome-wise from GWAS results. Then, for each 

trait considered in this study, a set of most significant regions that were common between the 

GWAS results/analyses with the BovineSNP50K and imputed HD (777K) panels were selected. 

We also selected new peak regions that were only detected in high density GWAS 

result/analysis. A list of significant markers from the peak regions was generated for all the 

traits. The position of each significant SNP was used to identify overlapping and nearby genes 

(within a distance of 1000 bp), using the Ensembl (release 67) Perl API. A list of these positional 

candidate genes was built and used for functional candidate gene identification.  

Functional candidate gene identification  

The positional candidate genes were prioritized based on their involvement in biological 

processes and relationships with other genes or gene products, using ingenuity pathway analysis 

(IPA). The IPA system uses records from the Ingenuity Pathway Knowledge Base (IPKB), 

which is the largest curated database of previously published findings on genes and their 

interactions in mammalians such as human, mouse and rat (Ficenec et al., 2003; Calvano et al., 
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2005). For this study the network analyses were performed by filtering out the tissues that are of 

less interest and specifying tissues and organs known to have key roles in fat, protein, 

carbohydrate and reproductive system hormone metabolism including mammary gland, liver, 

ovary, pancreas, adrenal, pituitary and hypothalamus gland. These tissues are known to have 

important roles early in lactation, pre and post-partum in dairy cattle. The results were then used 

to identify the positional candidate genes that were directly or indirectly inter-connected and 

represented in significant pathways and biological processes. 

5.2.5. Marker selection for inclusion in a custom genotyping panel  

The positional candidate genes deemed by in silico analysis to represent functional candidates 

formed the basis of the SNP and indel identification step. For each candidate gene, overlapping 

SNPs and indels were obtained from three sources: Ensembl (release 67), whole-genome 

sequencing of two bulls (Stothard et al., 2011), and the aforementioned RNA-Seq. NGS-SNP 

(Grant et al., 2011) was used to assign a functional class to each SNP and indel and to provide 

flanking sequences extracted from the UMD3.1 reference assembly for use in panel design. This 

software uses information from Ensembl, NCBI and UniProt to place SNPs into functional 

categories (Grant et al., 2011). Next, variants that were close to another variant (within 20 bp) or 

with flanking sequences that yielded multiple BLAST hits (E-value = 0.003 using 100 nt before 

and 100 nt after variant site) when compared back to the UMD3.1 assembly were removed from 

consideration, unless they were predicted to have a dramatic functional consequence (stop 

gained, frame-shift, stop lost, initiator codon variant, inframe insertion, inframe deletion, 

missense variant, or mature miRNA variant). Lastly, for each gene the remaining set of candidate 

markers was sorted based on functional consequence, followed by source (variants observed in 

multiple data sets were ranked higher than those observed in a single data set). This list of 
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refined variants was submitted to Affymetrix for further evaluation using their probe design 

system. In this step, variants were excluded if they were already available on the Illumina HD 

panel, or if they were flagged as unsuitable by the panel design software used in-house by 

Affymetrix. Finally, a custom Affymetrix panel was ordered, consisting of 135,256 markers.  

5.2.6. Genotyping 

A total of 1,326 Holstein bulls (poof bulls from 2008) were genotyped using the custom panel. 

Quality control (QC) was performed on the genotyping results and variants exhibiting a MAF < 

0.005 (n=39,582 SNPs), excess of heterozygosity > 0.15 (n=9 SNPs), or departure from Hardy-

Weinberg equilibrium P < 0.00001 (n=350 SNPs) were excluded. Also, variants with low call 

rates (< 90%) were removed. Removing these variants from the genotyping results produced a 

final set of 80,294 SNPs, which we refer to as the “Affymetrix 80K” SNP panel. Combining 

these 80K SNPs with those genotyped using the 50K panel (44,369 SNPs remaining after quality 

control) yields what we refer to as the “124K SNP panel” (124,663 SNPs). Lastly, a 

“transcriptome panel” (with 74,884 SNPs) was prepared in silico by removing SNPs from the 

124K SNP panel that were located in the intergenic, upstream, downstream or intronic regions of 

the bovine genome. 

5.2.7. Imputation 

50K panel genotypes from 53,022 Holstein bulls were imputed to the 124K panel using FImpute 

V.2.2 (Sargolzaei, 2012) and a reference set of 124K genotypes obtained from 1,326 Holstein 

bulls. The accuracy of imputation was evaluated by calculating the concordance rate between the 

imputed genotype and the true genotype (Browning and Browning, 2008). To calculate the 

accuracy, from 1,326 animals that were genotyped with 124K panel 319 younger animals (born 
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on 2006 or after) were considered as target group considering just their 50K genotypes (this 

group of animals used to validate the accuracy of imputation) and the remaining 1007 animals 

were considered as a reference group. Allelic r
2
 was also calculated as the squared correlation 

between imputed and true genotypes (Browning and Browning, 2008).  

5.2.8. Genomic prediction and validation 

Genomic evaluation to assess the utility of the new custom SNP panel and other subsets of SNPs 

as tools for selection was performed using the genomic best linear unbiased prediction (GBLUP) 

method (VanRaden, 2008; VanRaden et al., 2009) implemented in the gebv genomic evaluation 

software (Sargolzaei et al., 2013). A total of 11,461 bulls (with domestic or MACE EBVs in 

2008) were used as the reference population for genomic evaluation. The selection candidate 

population (used here as a population to validate prediction accuracy) consisted of animals born 

between years 2004 to 2008 without proofs in April 2008 but with domestic proofs in December 

2012. Direct genomic breeding values (DGV) were obtained and the accuracy of genomic 

prediction was measured for each trait as the correlation between the DGVs of animals in 2008 

and the estimated breeding values of domestic proofs in 2012. The SNP subsets evaluated were 

50K, imputed Affymetrix 80K, imputed 124K genotypes (124K SNP panel) and imputed 

Transcriptome genotypes (Transcriptome panel).  

5.2.9. GBLUP statistical model 

A linear genomic model was computed for genomic predictions as described in VanRaden 

(2008). In this prediction method, the traditional additive genetic relationship matrix between 

individuals is replaced by a genomic relationship matrix derived from markers and equal genetic 
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variance is assigned to all markers (Nejati-Javaremi, 1997; VanRaden et al., 2009). The model is 

as below: 

          

Where   is the vector of phenotypic records on individuals;    is the mean in which   is the 

vector of fixed effects of generations and   is an incidence matrix relating fixed effects of 

generations to the records; e is a random error vector with variance    
 . Matrix   is diagonal 

with elements,      
 

    
  , where      is the bull's reliability obtained from daughters.   is 

the vector of additive genetic effects that correspond to allele substitution effects for each 

marker. The sum of    over all marker loci is assumed to equal the vector of breeding values (a). 

GEBVs are obtained using the selection index equation (Nejati-Javaremi, 1997; VanRaden et al., 

2009), which is used to predict    directly using the genomic relationship matrix  . The selection 

index equation is constructed as below:  

           
  

 

  
   

  

       . 

In which   is genomic relationship matrix and is computed as,  

   

           
 

 

In this equation    is the allele frequency of the     SNP.  

In this approach allele frequencies are estimated in the base (founder) population with a linear 

model that solves for gene content of non-genotyped ancestors and descendants using pedigrees 

(Gengler et al., 2007; VanRaden et al., 2009). The known genotypes are treated as data and the 

unknown genotypes of relatives are estimated using the inverse of the traditional relationship 
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matrix and standard mixed model equations. Allele frequencies were obtained from the known 

genotypes. 

In order to visualize and test for the effect of population stratification on the accuracy of genomic 

predictions, population stratification was investigated for 11,461 animals that passed quality 

control, using PLINK v1.07 (Purcell et al., 2007). Figures (Figure 5 – 1 and Figure 5 – 2) of the 

population structure were obtained using three dimensions of a classical multidimensional 

scaling (MDS). 

5.3. Results   

5.3.1. Association analysis 

Association analysis identified strong associations for all of the production and fertility traits in 

this study. The number of significant SNPs varied depending on the trait between 22,879 

(genome-wise FDR 1%) for protein deviation (PROTD) to 279 SNPs (genome-wise FDR 1%) 

for heifer non-return rate (Table 5.1). Strong peaks and associated significant SNPs (genome-

wise FDR 1%) were used for candidate gene identification.  

5.3.2. Analysis of gene networks and pathway analyses 

A list of positional candidate genes was constructed for each trait under consideration, consisting 

of genes located within 1000 bases of a significant SNP from the GWAS analysis. In total 4,050 

positional candidate genes were identified, most of which were shared among multiple traits.  

To incorporate gene function criteria into gene selection, gene-network analysis was performed 

using IPA. For this purpose, IPA network analysis was performed on the 4,050 identified genes. 
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A summary of the five top significant gene networks (P-value < 0.05) identified by IPA is given 

in Table 5.2. Results from IPA indicated that the gene sterol regulatory element binding 

transcription factor 1 (SREBF1) was directly and indirectly interacting with several other genes 

in our list including PCK1, FADS1, ACACB, FASN, SCD, INSIG2, ELOVL5. This result shows 

components of a lipid metabolism gene network overrepresented in the list of GWAS genes and 

the SNPs within these genes (from our GWAS analysis) were reported to be associated with 

multiple production and fertility traits including fat production (FAT), protein production 

(PROT), fat deviation (FATD), age at first service (AFS), heifer first service to conception 

(FSTCh) and lifetime profitability index (LPI). The SREBF1 protein is known to activate the 

expression of lipogenic genes such as acetyl-CoA carboxylase , fatty acid synthase (FASN), 

ELOVL fatty acid elongase 6 and stearoyl-CoA desaturase (Horton et al., 2002; Nafikov et al., 

2014). Mutations in the SREBF1 gene have also been reported to be associated with milk 

production and variations in lauric (12:0) and myristic acid concentrations in milk (Nafikov et 

al., 2013). The significant SNP within SREBF1 gene identified in the GWAS study, 

BovineHD1900010279, was associated with traits fat deviation (FATD) and protein deviation 

(PROTD). 

Components of an IPA gene network associated with embryonic development, organismal and 

cellular development were also over-represented in the GWAS results. This network includes the 

candidate genes insulin receptor (INSR), fibronectin 1 (FN1), insulin like growth factor 2 (IGF2), 

CD83 molecule (CD83), activating transcription factor 3 (ATF3), LDL receptor related protein 5 

(LRP5) and protein tyrosine kinase 2 (PTK2). The PTK2 gene is located on BTA14 (2 Mb 

upstream from the DGAT1 gene). It has been shown that several SNPs within this gene were 

significantly associated with involution pathways, milk production and milk composition in 
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Holstein cattle (Wang et al., 2012; Raven et al., 2014). The IGF2 gene has been reported to be 

related to fetal growth in human (Frost and Moore, 2010) and placenta development and tissue 

differentiation in bovine (Gebert et al., 2006). The SNPs assigned to these genes from our 

GWAS analysis were significantly associated to lifetime profitability index (LPI), milk 

production (MILK), fat production (FAT), protein production (PROT), fat and protein deviation 

(FATD, PROTD) and direct herd life (DHL).  

The IPA gene network analysis results were used to select 2,500 positional and functional 

candidate genes from the list of 4,050 positional candidate genes. 

5.3.3. Affymetrix panel design 

For each functional candidate gene, overlapping SNPs and indels were obtained from Ensembl 

(release 67), whole-genome sequencing and the RNA-Seq data. RNA-seq was built from tissues 

samples, liver, adipose and mammary gland and sequencing was performed. From the total 

number of 921,197 SNPs (annotated with NGS-SNP), 210,189 variants were fully known and 

711,008 were identified as novel variants (Table 5.3). Following guidelines from Affymetrix, a 

custom panel was built. 

5.3.4. Genomic prediction result using new custom panel 

The utility of subsets of SNPs from the custom genotyping panel were evaluated in terms of their 

performance for genomic prediction. For each SNP set the correlation [r(DGVs/TBV)] and 

accuracy of genomic breeding values (the squared correlation of the DGVs for the validation 

group and the corresponding proofs in December 2012; r
2
) were calculated (Table 5.4).  
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Imputation accuracy was evaluated (concordance rate of 99.47% and allelic r
2 

of 99.18%) and 

then genomic prediction accuracy accuracies obtained with the imputed 124K SNP panel were 

compared with those obtained with the 50K panel. The prediction accuracy of GEBVs from the 

imputed 124K panel were generally slightly higher than those obtained using the 50K SNP panel 

(Table 5.4).  

In order to decrease redundancy as a result of imputation in calculating genomic breeding values, 

an LD analysis (SNP pruning) was performed on the imputed 124K genotypes. In this analysis if 

a pair of SNP exhibited high LD (r
2 

> 0.95), then the SNP that was not on the 50K panel was 

removed. If both SNPs were on the Affymetrix 80K or both on the 50K panel, then the SNP that 

had the smaller base pair, position was removed. Performing LD-based SNP pruning led to the 

removal of 16,461 SNPs from the 124K panel and the accuracy between true breeding values and 

predicted values in the validation dataset were calculated (Table 5.5). Removing redundant SNPs 

led to a small change in the average of the prediction accuracies, and was 0.366 (Table 5.5). This 

result was in agreement with Harris et al. (2010) which demonstrated that accuracy was slightly 

different when density of the panel increased from 20K to 1000K.  

We also compared prediction accuracies resulting from different SNP densities (Table 5.5). For 

this purpose, we selected SNPs that were 30 kb (28K selected SNPs in the panel), 38 kb (26K 

selected SNPs in the panel) and 89 kb (15K selected SNPs in the panel) apart and genomic 

breeding values were predicted for the selected number of SNPs in the panel. As the number of 

markers increased in the panel (distance between variants decreased), the accuracy over the 50K 

panel tended to increase and was the greatest when SNPs were 38 kb apart (averaged accuracy 

across all traits was 0.3611) (Table 5.5) and was similar to the accuracy of the genomic 

prediction with 50K panel (0.360) (Table 5.5).  
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The prediction accuracies from the transcriptome panel, (Table 5.6) showed a higher increase 

(0.367 averaged across all the traits) than the averaged accuracy obtained by 50K (Table 5.4). 

The average gain in accuracy for all the traits with the transcriptome panel over 50K panel was 

0.72%. This is while the gain in accuracy with the 124K over 50K panel was 0.57% 

5.4. Discussion  

Several studies have compared the accuracy of genomic predictions obtained using high-density 

marker panels (such as Illumina Bovine HD chip) to those from medium-density marker panels 

(such as Illumina Bovine 50K) (Erbe et al., 2012; Su et al., 2012b; Gao et al., 2013). Increasing 

the SNP density in genomic selection has the advantage of increasing LD between the SNP 

markers and the QTL (Harris and Johnson, 2010). An increased level of LD can provide a better 

QTL signal across and within families (Harris and Johnson, 2010). The results of previous 

studies, however, showed that the gains in accuracy of genomic predictions in Holstein dairy 

cattle moving from a lower density to a higher density marker panel were small (Harris and 

Johnson, 2010; VanRaden et al., 2011; Su et al., 2012a; Gao et al., 2013). For example, in a 

study carried out by Su et al. (2012), the reliability of direct genomic breeding values based on 

HD markers (averaged over the traits protein, udder health and fertility) were 0.5% higher than 

values obtained using 54K data in Nordic Holstein and 1.0% higher in Red dairy cattle. This 

result was in agreement with a simulation study by VanRaden et al. (2011), which reported gains 

of 0.9 to 1.2% using an imputed 500K marker genotypes. Similarly, Harris and Johnson (2010) 

reported a very small gain of 0.8% when moving from 20K to 1,000K in their simulation study. 

Erbe et al. (2012) also reported a small increase in the accuracy of genomic predictions (by 0.01 

averaged across the traits milk, fat and protein yield) when an imputed 800K marker genotypes 

was used rather than 50K panel. There are several possible reasons for these results. First, 
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although increasing density of the marker panel has the advantage of increasing the LD, the 

number of unknown parameters to be estimated also increases. One way to reduce the number of 

unknown parameters is to reduce the non-informative markers by deleting markers in complete 

LD with the other marker in the dataset (Su et al., 2012a). In the present study however, 

removing such variants led to a small increase in the accuracy of genomic prediction (Table 5.2). 

Su et al. (2012) suggested that it might be necessary to further reduce the redundancy by 

removing markers that are nearly non-informative. Second, in modern dairy cattle populations, 

the effective population size is small. Therefore, LD between the potential QTL and SNP marker 

can be captured sufficiently even with medium density marker panels such as the 50K panel 

(Erbe et al., 2012). A third reason is that improvements with higher density may require a more 

sophisticated variable selection methods (rather than linear models) (Erbe et al., 2012; Su et al., 

2012a; Gao et al., 2013). For example, Su et al. (2012) showed that a Bayesian mixed model 

performed slightly better than GBLUP model for HD data (777K). Erbe et al. (2012) and Gao et 

al. (2013) also reported better genomic predictions using a Bayesian model than GBLUP for 

high-density marker panels. Another driver behind the lack of improvement in accuracy of 

predictions could be the underlying genetic structure (Habier et al., 2007; Harris and Johnson, 

2010). In dairy cattle populations, factors such as artificial insemination, genetic selection and 

changes in gene frequency, genomic sampling (drift) and genetic hitchhiking of selection 

(changes in allele frequency due to linkage disequilibrium with loci that is subjected to selection) 

are significantly contributing to population stratification and spurious associations (Barton, 2000; 

Ma and Corl, 2012). Yet another reason is that the additive genetic relationships between 

individuals can be captured by the markers that are used to estimate marker effects in genomic 

prediction methods (Fernando, 1998). Thus in related training and validating populations, even if 
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markers are not in LD with QTL, the accuracy of GEBVs is expected to be non-zero (Fernando, 

1998; Habier et al., 2007). This could contribute to the lack of change in accuracy observed 

when using 26K vs 15K SNP subsets in this study (Table 5.5).  

In this work we not only investigated the utility of adding more SNPs—we tested the hypothesis 

that using a higher density marker panel targeting candidate genes and candidate causal variants 

can increase the accuracy of estimated genomic breeding values. The accuracy of genomic 

prediction expressed as [r(DGVs/TBV)]
2
 when using the imputed Affymetrix 80K was less than 

that of the 50K, showing a reduction of 0.34% averaged across all traits. When the Affymetrix 

80K marker panel was used in conjunction with the 50K (yielding the imputed 124K panel 

genotypes) there was an increase over 50K alone, but a modest one of 0.57% averaged across all 

traits (Table 5.4). Thus based on our findings we found little benefit to adding candidate 

mutations, at least the ones we were able to identify using the sequence data sets and 

bioinformatics tools described in this work. 

One explanation for the disappointing performance of the candidate SNP panel is simply that we 

did not include many true causal SNPs or SNPs in high LD with those causal SNPs on the new 

panel. Identifying candidate causal mutations from among the many variants identified in a 

region is challenging due to incomplete existing knowledge of the roles of genes and regulatory 

sequences. A further challenge in this study was that the limited sequence information made it 

likely that some causative mutations were simply not present in the data set. Another possibility 

is that the 50K panel already contains markers in high LD with many of the causal mutations. 

Yet another limitation / challenge relates to our reliance on imputation in order to obtain a higher 

accuracy in genomic predictions. Imputation of SNPs with low MAF is more difficult than SNPs 

with moderate or high allele frequencies (Erbe et al., 2012), and in our analysis we removed 
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SNPs with low MAF. Removing SNPs with low MAF can result in a part of the genetic variance 

being missed and consequently a decrease in accuracies of genomic predictions (Erbe et al., 

2012).  

The most promising result in our study was obtained from the imputed transcriptome panel 

genotypes (Table 5.4), which we built removing SNPs that were located in the intergenic, 

upstream, downstream or intronic regions of the bovine genome. This custom set of SNPs 

worked well for all the traits and on average led to a better accuracy (0.72%) than what was 

obtained using the imputed 124K or 50K genotypes. Erbe et al. (2012) performed a similar 

analysis, comparing the prediction accuracy obtained when using variants in transcribed regions 

(named as “TRANS” panel with 58,532 SNP) to that obtained when using 50K or imputed 800K 

genotypes. They showed that the accuracy of prediction was better than imputed 800K when the 

“TRANS” panel was used. In a study in Drosophila melanogaster using SnpEff program, 

variants in regulatory and coding regions were noted to be the most influential effectors of gene 

function (Cingolani et al., 2012) and are more likely to have an effect on any trait. In addition, a 

recent study examining the influence of various SNP types on traits in cattle reported that 

missense and synonymous variants explain significantly more variation per SNP than the intron, 

intergenic and non-coding conserved SNPs (Koufariotis et al., 2014). 

Continued studies into gene regulation through, for example, the ongoing FAANG project, as 

well as the collection of additional sequence information (genomic and expressed sequence), 

should allow for the construction of better transcriptome panels. In addition, imputation to the 

level of genome sequence could better ensure that the causative variants are included in the 

predictions. However, one challenge will continue to be rare causative variants. Yang et al., 

(2010) reported that cumulative effect of causal variants with small effects or rare alleles with 
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large effect (low MAF) can explain 45% of the phenotypic variation for human height (Yang et 

al., 2010). Assuming that the situation is similar for many complex traits, imputation to sequence 

will need to be done in a way that yields accurate genotypes for these rare markers if prediction 

accuracies are to be maximized.  

5.5. Conclusion 

In this study we examined whether the addition of markers from candidate causal genes and 

regions can improve the accuracy of genomic predictions. The result showed that the custom 

genotyping panel could not increase in the accuracy of genomic prediction, however, the 

accuracy of prediction, for a subset of variants that were selected from regions near transcribed 

regions was promising. This result supports the assumption of the good predictive ability of 

biologically significant SNPs that are located within or near transcribed regions.  
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Table 5.  1: The number of significant SNPs (5% and 1% genome-wise DSR) using generalized 

quasi-likelihood score (GQLS) study on Bovine 50K and Imputed HD (777K) genotypes in Holstein 

dairy cattle. 

 

 

 Bovine 50K Imputed HD (777 K) 

Trait Heritability No. Significant 

SNPs (1% FDR) 

No. Significant 

SNPs (5% FDR) 

No. Significant 

SNPs (1% FDR) 

No. Significant 

SNPs (5% FDR) 

Lifetime 

profitability 

Index 

0.37 2,359 4,812 15,820 33,188 

Milk  

Production 

 

0.41 3,355 6,155 22,607 42,571 

Fat production  

 

0.34 2,983 5,444 20,325 38,310 

Protein 

production  

 

0.37 3,337 6,368 23,055 44,229 

Fat deviation 0.37 1,937 3,474 12,981 24,075 

Protein 

deviation 

 

0.37 3,570 5,663 22,879 38,230 

Lactation 

persistency 

 

0.3637 243 734 1,596 4,806 

Herd life 0.0975 700 1,659 4,802 11,013 

Direct herd life 0.0975 313 749 1,989 4,686 

Indirect herd 

life 

 

0.0975 86 233 598 1,967 

Daughter 

fertility 

 

0.07 279 812 1,885 5,697 

Age at first 

service 

 

0.0942 77 348 576 2,142 

Non-return rate 

(heifer) 

 

0.03 23 95 279 805 

First service to 

conception 

(heifer) 

 

0.033 99 246 720 1,600 

Non-return rate 

(cow) 

0.0395 89 283 708 1,870 

Calving to first 

service interval 

0.0715 859 2,193 6,139 14,921 

First service to 

conception 

(cow) 

0.0772 778 2,063 5,473 14,124 

Days open 0.1018 1,612 3,556 11,249 24,667 
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Table 5.  2: Network analysis and associated functions detected for 4,050 positional candidate genes 

for production and fertility traits. 

Associated Network Functions Score 

1. Carbohydrate Metabolism, Molecular Transport, Small Molecule Biochemistry 23 

2. Cardiovascular System Development and Function, Cellular Development, Cellular 
Growth and Proliferation 

23 

3. Post-Translational Modification, Cell Signaling, Cellular Assembly and 

Organization 

23 

4. Hereditary Disorder, Neurological Disease, Psychological Disorders 23 

5. RNA Post-Translational Modification, RNA Damage and Repair, Cardiac 
Enlargement 

23 
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Table 5.  3: Summary of the basic annotation stats from NGS-SNP 

All the chromosomes Number  

3_prime_UTR_variant 11743 

5_prime_UTR_variant 1224 

coding_sequence_variant 30 

downstream_gene_variant 37495 

initiator_codon_variant 31 

intergenic_variant 266074 

intron_variant 528141 

mature_miRNA_variant 16 

missense_variant 16155 

nc_transcript_variant 2 

non_coding_exon_variant 1062 

splice_acceptor_variant 6798 

splice_donor_variant 2214 

splice_region_variant 15155 

stop_gained 1157 

stop_lost 14 

stop_retained_variant 5 

synonymous_variant 11049 

upstream_gene_variant 22832 

Total 921197 

fully_known 210189 

novel 711008 

partially_known 0 

Total 921197 
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Table 5.  4: The squared correlation (r2) between direct genomic breeding values (DGVs) and the corresponding domestic proofs in 

validation Holstein bull cattle 

50K. Number of total SNPs in the 50K SNP panel after quality control (44,369 SNPs) 

Imputed124K. Number of SNPs in the Imputed124K panel (124,507 SNPs) 

     Panels   

Trait Heritability 

(h
2
) 

No. Animals 

G1 

No. 

Animals G2 

 

50K Imputed 80K 

 

Imputed124K 

 

Transcriptome 

Trait01_LPI 0.37 8456 
1528 

0.408302176 0.394862231 0.407116174 0.411029903 

Trait05_MILK 0.41 8851 1528 0.590000356 0.573155542 0.590050448 0.593670123 

Trait06_FAT 0.34 8848 1528 0.570435178 0.572358661 0.579900807 0.579979915 

Trait07_PROT 0.37 8849 1528 0.51514291 0.48982253 0.512535644 0.51644315 

Trait08_FATD 0.37 8848 1528 0.64502109 0.656342315 0.661622635 0.664566068 

Trait09_PROTD 0.37 8849 1528 0.647192391 0.655015714 0.665520757 0.666465311 

Trait40_LP 0.3637 2164 1528 0.356945052 0.333173156 0.350579899 0.363491175 

Trait43_HL 0.0975 8694 
1528 

0.380721652 0.373802426 0.385544394 0.384916927 

Trait44_DHL 0.0975 8169 
1528 

0.274662224 0.265540543 0.274903901 0.27692122 

Trait45_IHL 0.0975 7823 
1528 

0.32182322 0.333047774 0.338600257 0.33078926 

Trait48_DF 0.07 8144 1541 0.221724197 0.223472393 0.228057206 0.229691257 

Trait49_AFS 0.0942 2144 1541 0.164152156 0.164960938 0.173587301 0.170440451 

Trait50_NRRh 0.03 2449 1541 0.156090048 0.154936295 0.158424726 0.15936246 

Trait51_FSTCh 0.033 2144 1541 0.174618646 0.169432616 0.175435854 0.181155125 

Trait54_NRRc 0.0395 4440 1541 0.170010329 0.167029561 0.172379142 0.174989896 

Trait55_CTFS 0.0715 8246 1541 0.282159799 0.28471646 0.290725804 0.287665322 

Trait56_FSTCc 0.0772 8195 1541 0.27881113 0.281876261 0.286668785 0.287894279 

Trait59_DO 0.1018 8184 1541 0.33288478 0.33521586 0.341728314 0.342045733 

Average of the 

accuracy for all the 

traits 

   0.360594296 0.357153404 

 

0.366299003 0.367862088 

Average gain (x100) 

in accuracy over 50K  

    -0.3440892 

 

0.570470649 0.726779127 
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Transcriptome. Set of SNPs within and near transcribed regions from Imputed124K panel (74,884 SNPs) 

80K. Number of total SNPs in the 80K SNP panel after Imputation and quality control (80,138 SNPs); this panel consisted of all the newly 

discovered SNPs  

No. Animals G1. Number of animals in the estimation group 

No. Animals G2. Number of animals in the validation group  
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Table 5.  5: The squared correlation (r
2
) between direct genomic breeding values (DGVs) and the corresponding domestic proofs with 

different SNP subset in validation Holstein bull cattle 

     Panels 

 

  

 

Trait 

No. Animals G1 No. Animals 
G2 

 
50K 

 
Scenario 1 

 
Scenario 2 

 
Scenario 3 
 

 
Scenario 4 

        

Trait01_LPI 8456 1528 0.408302176 0.40572909 0.400815871 0.400097035 0.391302353 

Trait05_MILK 8851 1528 0.590000356 0.591076497 0.583328892 0.586329509 0.576068769 

Trait06_FAT 8848 1528 0.570435178 0.575506099 0.558600838 0.571751966 0.535420501 

Trait07_PROT 8849 1528 0.51514291 0.513272081 0.506990918 0.508755061 0.50217947 

Trait08_FATD 8848 1528 0.64502109 0.658618318 0.624835798 0.651439661 0.602073342 

Trait09_PROTD 8849 1528 0.647192391 0.665751471 0.63155435 0.654750595 0.632167238 

Trait40_LP 2164 1528 0.356945052 0.35451512 0.348444668 0.351213661 0.336695527 

Trait43_HL 8694 1528 0.380721652 0.386438089 0.372754167 0.382476962 0.37775971 

Trait44_DHL 8169 1528 0.274662224 0.274737609 0.275894395 0.274920704 0.278465341 

Trait45_IHL 7823 1528 0.32182322 0.338081673 0.298698934 0.329887584 0.30404424 

Trait48_DF 8144 1541 0.221724197 0.230117435 0.213815705 0.22425554 0.212816027 

Trait49_AFS 2144 1541 0.164152156 0.171808431 0.143778511 0.165478564 0.15768305 

Trait50_NRRh 2449 1541 0.156090048 0.157140454 0.158075896 0.156237256 0.156638678 

Trait51_FSTCh 2144 1541 0.174618646 0.17536077 0.170054193 0.174239794 0.171279296 

Trait54_NRRc 4440 1541 0.170010329 0.173928812 0.165332868 0.169246203 0.165076936 

Trait55_CTFS 8246 1541 0.282159799 0.288241891 0.274040405 0.277687967 0.271183442 

Trait56_FSTCc 8195 1541 0.27881113 0.287368771 0.272655264 0.282603417 0.271851107 

Trait59_DO 8184 1541 
 

0.33288478 0.34179414 
 

0.32310146       0.337563313 0.325366915 
 

Average of the 

accuracy for all the 

traits 

  0.360594296 0.366082597 
 

0.351265174 0.361051933 0.348226219 

Average gain (x100) 

in accuracy over 

50K 

    0.535872341 

 

-0.932912229 0.045763658 -1.236807723 

50K. Number of total SNPs in the 50K SNP panel after quality control (44,369 SNPs) 

Scenario 1. Set of SNPs without redundant SNPs (SNPs that are in high LD (r2  0.95)) from Imputed124K panel (108,046 SNPs) 

Scenario 2. Set of SNPs (28K) that are 30kb far apart 

Scenario 3. Set of SNPs (26K) that are 38kb far apart 

Scenario 4. Set of SNPs (15K) that are 89kb far apart 

No. Animals G1. Number of animals in the estimation group 

No. Animals G2. Number of animals in the validation group  
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Table 5.  6: Correlations (r) between direct genomic breeding values (DGVs) and the corresponding domestic proofs in validation Holstein 

bull cattle 

     Panels 

 

  

 

Trait 

No. Animals 

G1 

No. Animals 

G2 

No. Animals  

G3 

 

50K 

 

124K 

 

80K 
 

 

Transcriptome 

        

Trait01_LPI 8456 3111 1528 0.638985271 0.638056561 0.628380642 0.641116138 

Trait05_MILK 8851 2717 1528 0.768114806 0.768147413 0.757070368 0.770499917 

Trait06_FAT 8848 2720 1528 0.755271592 0.761512184 0.756543892 0.761564124 

Trait07_PROT 8849 2719 1528 0.717734568 0.715915947 0.699873224 0.718639792 

Trait08_FATD 8848 2720 1528 0.80313205 0.813401891 0.810149563 0.815209217 

Trait09_PROTD 8849 2719 1528 0.804482685 0.815794555 0.809330411 0.816373267 

Trait40_LP 2164 9357 1528 0.597448786 0.59209788 0.577211535 0.602902293 

Trait43_HL 8694 2873 1528 0.61702646 0.620922212 0.611393838 0.620416737 

Trait44_DHL 8169 3399 1528 0.524082268 0.524312789 0.515306262 0.526233047 

Trait45_IHL 7823 3715 1528 0.56729465 0.581893682 0.577102914 0.575142817 

Trait48_DF 8144 3422 1541 0.470875989 0.477553354 0.472728667 0.479261158 

Trait49_AFS 2144 9384 1541 0.405156952 0.416638094 0.406153835 0.412844343 

Trait50_NRRh 2449 9091 1541 0.39508233 0.398026037 0.39361948 0.39920228 

Trait51_FSTCh 2144 9384 1541 0.417873959 0.418850635 0.411621933 0.425623219 

Trait54_NRRc 4440 7100 1541 0.412323088 0.415185672 0.408692501 0.418317936 

Trait55_CTFS 8246 3320 1541 0.53118716 0.539189951 0.533588287 0.536344406 

Trait56_FSTCc 8195 3266 1541 0.528025691 0.535414592 0.530920202 0.536557806 

Trait59_DO 8184 3382 1541 0.57696168 0.584575328 0.57897829 0.58484676 

Average of the 

correlation for 

all the traits 

   

0.585058888 0.589860488 0.582148103 0.591171959 

50K. Number of total SNPs in the 50K SNP panel after quality control (44,369 SNPs) 

Imputed124K. Number of SNPs in the Imputed124K panel (124,507 SNPs) 

80K. Number of total SNPs in the 80K SNP panel after Imputation and quality control (80,138 SNPs); this panel consisted of all the newly 

discovered SNPs  

Transcriptome. Set of SNPs within and near transcribed regions from Imputed124K panel (74,884 SNPs) 

No. Animals G1. Number of animals in the estimation group 

No. Animals G2. Number of animals in the prediction group 

No. Animals G3. Number of animals in the validation group  
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Figure 5.  1: Population structure identified by first 3 dimensions of a classical multi-dimensional 

scaling approach. The population is Canadian Holstein cattle. 
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Figure 5.  2: Population structure identified by second 3 dimensions of a classical multi-dimensional 

scaling approach. The population is Canadian Holstein cattle. 
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CHAPTER 6: General conclusion 

Selection for milk production, milk composition and fertility traits can be performed without 

consideration of the specific genes and genetic variation involved. However, the application of 

dense SNP genotyping panels through association analysis will help to identify genomic regions 

affecting milk production and fertility traits. Knowledge of QTNs or the markers that are in high 

LD with the causal mutations can allow us to: understand the molecular mechanisms underlying 

variations in traits; and to develop a smaller DNA marker panel for selection purposes that may 

be more effective across generations and populations due to a more direct link between genotype 

and phenotype (Snelling et al., 2013). The purpose of this study was to identify candidate causal 

mutations and genes for production and fertility traits integrating information from genome-wide 

association study (GWAS), whole genome sequencing and different bioinformatics tools in 

Holstein dairy cattle and to develop and evaluate a customized marker panel using new 

biologically important candidate variants identified in this study. 

The objectives of the first study in Chapter 3 were to identify or refine the positions of genomic 

regions affecting milk production and milk components (milk production, fat production, fat 

deviation, protein production, protein deviation) and fertility traits (heifer first service to calving 

interval, daughter fertility, calving to first service interval, and days open) in Canadian Holstein 

dairy cattle, and to use these positions to identify genes and pathways that may influence these 

traits. Many of the identified QTL regions for production traits (including milk production) 

support previous findings and some overlap with genes with known relevant biological functions 

identified in earlier studies such as DGAT1 and CPSF1. Significant SNPs identified for FAT and 

FATD were located on chromosomes 5, 6, 14 and 20. A common region (between 87 to 100 Mb) 

on chromosome 5 in this study for FAT and FATD was reported to be associated with a SNP in 
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the GABARAPL1 gene with an antagonistic effect on milk yield and fat percentage in a previous 

study (Chmuzynska, 2006). Our study also detected strong associations on chromosomes 5, 9, 14 

for PROT and 3, 6, 14 and 20 for PROTD.  Several highly significant SNPs (FDR ≤ 5%) on 

BTA6 in this study, associated with PROT and PROTD are located within a known QTL region 

associated with milk whey protein in dairy cattle (Huang et al., 2012). Association analysis, 

however, did not detect any significant SNP for daughter fertility or heifer first service to calving 

interval. The identified chromosomes and significant regions for CTFS were mostly located on 

BTA13 and 21. The only significant region for DO was on BTA21. The significant region on 

chromosome 21 was overlapping with the gene FAM181A and was not previously reported 

linked to fertility traits in dairy cattle. A functional enrichment analysis of the GWAS results 

yielded GO terms associated with the specific phenotypes tested; for example GO terms 

GO:0043627 (response to estrogen) for milk production and GO:0051057 (positive regulation of 

small GTPase mediated signal transduction) for fat production, GO:0040019 (positive regulation 

of embryonic development) for calving to first service interval (CTFS) and GO:0043268 

(positive regulation of potassium ion transport) for days open (DO). In other cases the 

connection between the enriched GO terms and the traits were less clear; for example 

GO:0003279 (cardiac septum development) for FAT and GO:0030903 (notochord development) 

for DO trait. The chromosomal regions and enriched pathways identified in this study confirm 

several previous findings and highlight new regions and pathways that may contribute to 

variation in production or fertility traits in dairy cattle. 

Identifying genomic regions affecting longevity (herd life, indirect herd life, and daughter herd 

life), female fertility (age at first service, cow first service to conception, heifer non-return rate 

and cow non-return rate), and lifetime profitability index was carried out in the second study, 
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described in Chapter 4. For this purpose, GWAS analysis was performed using a single SNP 

regression mixed linear model implemented in the snp1101 software. The GWAS result 

identified strong associations for LPI on BTA14 and 18, for LP on BTA20 and for IHL, HL and 

DHL on BTA18. However, no significant association was found for AFS, FSTCc, NRRc and 

NRRh. Previously proposed causative and candidate genes supported by this work include 

DGAT1, GRINA, CPSF1 for lactation persistency. The significant region on BTA6 identified for 

LP at 88 Mb in this study was reported to be associated with persistency of milk yield and milk 

composition traits in German Holstein cattle; this region was also shown to overlap with a QTL 

identified associated with somatic cell score in Holstein cattle. The suggested candidate gene for 

this region is SCLA4A4, which was shown to be related to mastitis susceptibility in Danish 

Holstein cattle. This result suggests that significant SNPs on BTA6 might affect udder disease 

susceptibility and subsequently lactation persistency in dairy cattle. A novel region for lactation 

persistency in this study is speculated on BTA13 at 54 to 55 Mb. The SNPs in this region are 

located within the genes MYT1, SLC2A4RG, SLC17A9, LAMA5, ADRM1, OSBPL2 and SS18L1. 

A previous study reported that expression of the gene OSBPL2 in the mammary gland increases 

along with SREBF1 and SREBF2 genes during lactation (Bionaz and Loor, 2008). We also 

identified another region in our study on BTA27 associated with lactation persistency. 

Significant SNPs in this region were previously reported to affect expression of AGPAT6 gene 

and were involved in milk fat synthesis. The associated significant SNPs within this gene were 

not significant in our study; however, our result detected five significant SNPs on BTA27 at 41 

Mb which is speculated to be a new region for lactation persistency. One significant SNP in this 

region is assigned to the gene thyroid hormone receptor, beta (THRB). This gene encodes a 

nuclear hormone receptor for triiodothyronine and mutations in this gene are known to be the 
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cause of generalized thyroid hormone resistance (GTHR). It has also been shown that there is a 

positive correlation between thyroid hormones in blood and energy metabolism (Reist et al., 

2002). This proposed gene might be considered as a new potential candidate gene affecting 

production traits in the dairy cattle. 

The GWAS analysis for herd life, indirect herd life and direct herd life (DHL) identified 

significant SNPs on several chromosomes. The highest number of significant SNPs for HL is 

detected on BTA6 and 18. Significant SNPs for IHL were mostly located on BTA5, 6 and 18. 

The overlapping region on BTA18 for HL, IHL and DHL was spanning at 42 to 65 Mb. This 

region was reported to be associated with one of the fertility-associated traits, calving ease, in a 

previous study. Fertility and postpartum performance of replacement heifers are important traits 

to minimize the non-productive period of the animal’s life (Akanno et al., 2015). The SNPs 

identified in this study for BTA6 (for both herd life and indirect herd life) are located at 88 Mb. 

This region was reported associated with somatic cell score, milk yield and body condition score 

in Holstein cattle breed. Most of the significant SNPs that we found for longevity-associated 

traits were located within the QTL regions that have been previously reported to affect calving 

traits (calving ease, calf size, stillbirth), clinical mastitis, milk yield and conformation traits in 

Holstein and other cattle breeds. According to the fact that herd life evaluations are based on a 

combination of fertility, conformation and udder health traits, it is very possible that these 

regions and associated candidate genes, particularly on BTA6 and 18 influence this trait. Taken 

together with these previous results, our findings indicate that these regions and significant SNPs 

may potentially have an effect on longevity traits in dairy cattle and may be used for further 

genomic prediction analysis to identify causal candidate variants that affect herd life traits. 
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The objective of the third study, described in Chapter 5, was to investigate the possibility of 

increasing the accuracy of genomic predictions by using a higher density marker panel targeting 

candidate genes and potential causal variants. For this purpose a custom Affymetrix panel was 

developed, containing 135K (135,256) markers identified through GWAS, candidate gene and 

RNA-sequencing studies. Three subsets of SNPs were then evaluated in terms of genomic 

breeding value accuracy for a variety of traits: the new Affymetrix panel (termed the 80K after 

quality control), the Affymetrix panel combined with the 50K (the 124K panel), and the subset 

of SNPs from the combined set within transcribed regions (transcriptome SNP panel).  

The results indicated that the accuracy of genomic predictions using the custom 80K panel 

dropped by 0.34% (averaged across all the traits) when compared to 50K panel whereas when 

using the custom genotyping panel in conjunction with the 50K (124K genotypes), prediction 

accuracy was slightly increased (0.57%) over 50K panel, averaged across all the traits. The most 

promising result in the current study was obtained from a set of SNP genotypes that are located 

in transcribed regions. This subset of markers from the 124K SNP panel, consisting of 74K 

markers, worked well for all the traits and on average led to an accuracy of 0.72% over 50K 

genotypes. In conclusion, these results indicated that the inclusion of candidate QTN did little to 

increase prediction accuracy but that further efforts aimed at using genotypes from gene regions 

are warranted.  

6.1. Limitations and general recommendations 

The genome-wide association study for milk production, longevity, fertility and lifetime 

profitability index in our study resulted in identifying many significant regions previously 

reported in other independent studies. Our study could also identify several novel regions 
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associated with calving to first service interval, days open (on chromosome 21) and lactation 

persistency (on chromosome 27). According to our findings, there was a little improvement in 

the accuracy of genomic predictions by including candidate variants to the custom genotyping 

panel. One of the limitations of this study was our challenge in identifying these causal variants 

due to incomplete knowledge of gene function and variants, for example regulatory sequences, 

which affect the traits under investigation. Another challenge was the limited number of 

sequenced animals in our data set, which made the list of variants considered for inclusion in the 

panel far from comprehensive. Notably, when a subset of SNP genotypes was selected consisting 

of variants near transcribed regions, a greater gain in accuracy was observed than when all the 

candidate variants were used. This result suggests that further efforts to identify biologically 

relevant variants are warranted. Continued studies of gene expression and gene regulatory 

regions in cattle will be helpful in this regard by allowing for more accurate predictions of 

variant function. In addition, imputation to whole-genome sequence for genomic prediction 

might result in greater accuracy provided that causal variants can be imputed accurately. 

Together these efforts stand to increase the rate of genetic gain achieved through the application 

of genomic selection in dairy cattle, and could contribute to a better understanding of the 

molecular basis of traits.  
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