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Abstract

Magnetic fields have become an essential ingredient of black hole as-

trophysics. The study of simplified models of magnetized black holes

can shed light on some of the complicated phenomena observed near as-

trophysical black holes. In this thesis we studied the three-dimensional

motion of charged particles in the background of Schwarzschild and Kerr

black holes immersed in a weak uniform axisymmetric magnetic field. We

studied in particular the escape of charged particles after they are kicked

out of circular orbits.

We started with neutral particles and gave analytical conditions for

their escape. Unlike with the Schwarzschild black hole, the escape con-

ditions were non-trivial when the black hole is rotating where escape de-

pends essentially on the particle initial position.

It was not possible to give analytical conditions for charged parti-

cles escape. The magnetic field renders their equations of motion non-

integrable in general. Numerical study of the problem revealed that the

dynamics of charged particles near magnetized black holes is generally

chaotic. With the help of the basin of attraction approach, we could give

empirical formulae for guaranteed escape. We found that the final fate

of a charge particle is nearly determined by its proximity to the black

holes. No general relationship between the chaoticness in the dynamics

and black hole rotation could be found.
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Chapter 1

Introduction

1.1 Magnetic Fields near Black Holes

Magnetic fields are an essential component in black hole astrophysics.
They can exist near black holes due to various external sources. A black
hole can be magnetized by the large-scale magnetic fields. Magnetic fields
have been observed in the galactic and intergalactic media [1]1. They have
typical strengths in the range of 0.1–102 microgauss. Although large-scale
magnetic fields may have cosmological implications, they are insignifi-
cant in black hole astrophysics. A black hole can also be magnetized by
a companion magnetic star. Black hole-neutron star binaries are likely
to exist [2]. A special class of neutron stars known as magnetars may
have the strongest known magnetic fields in the universe. The magnetar
SGR 1806-20 has the strongest magnetic field ever known (B ∼ 1015 gauss
[3, 4]). The most significant magnetic fields for black holes are generated
by their own accretion disks [5, 6]. Several measurements of magnetic
fields around stellar mass and supermassive black holes have been con-
ducted. According to [7, 8], magnetic fields near stellar mass and super-
massive black holes have strengths of ∼ 108 gauss and ∼ 103 − 105 gauss,
respectively.

There are several theoretical reasons urging for the inclusion of mag-

1In each chapter the numbers in square brackets refer to the references list at the end
of the chapter.
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1.2. MAGNETIZED BLACK HOLES

netic fields in black holes astrophysics. Many of these theoretical moti-
vations are related to the bipolar jets of the active galactic nuclei which
are believed to be supermassive black holes. Magnetic fields seem to be
inevitable to explain the ejection of the jets. Large scale magnetic fields
are required to explain the collimation of the jets and the synchrotron ra-
diation from the ultrarelativistic particles in them.

Magnetic fields are essential for black hole accretion disk physics [5,
9]. The mechanism in which matter orbiting a black hole loses angular
momentum in accretion flow requires a theoretical explanation. It was
suggested that winds and magnetic viscosity in the disk can do the job.
There has been observational evidence that winds in the disk of stellar
mass black hole are powered by the pressure due to magnetic viscosity
(see [10] and references therein).

1.2 Magnetized Black Holes

There are two approaches to magnetized black holes: (1) Exact magne-
tized solutions and (2) Weakly magnetized solutions. The former are exact
solutions of the Einstein-Maxwell equations (see Appendix B), they take
into account the back-reaction of the magnetic field on the spacetime ge-
ometry. The back-reaction is ignored in the weakly magnetized solutions
and the magnetic field is sensed by charged particles only.

1.2.1 Exact Solutions

We introduce here a few exact magnetized black hole solutions and demon-
strate their mathematical and conceptual difficulties. The spacetime around
a Schwarzschild black hole of mass M immersed in a uniform axisymmet-
ric magnetic field B is given by the Ernst solution [11]. It reads

ds2 = Λ
[
−gdt2 +

dr2

g
+ r2dθ2

]
+

r2

Λ
sin2 θdϕ2, (1.1)

where g = 1 − 2M/r and Λ = (1 + 1
4 B2r2 sin2 θ)2. The electromagnetic

2



1.2. MAGNETIZED BLACK HOLES

potential is given by

A =
2
B

(
1 − Λ−1/2

)
dϕ. (1.2)

Unlike the field components, the Ernst metric is quadratic in B. Keeping
only linear terms in B leads to the axisymmetric weak field approximation
which will be discussed below. When M = 0, the Ernst metric reduces to
Melvin metric introduced in [12]. The magnetized Reissner-Nordström
and Kerr-Newman solutions are by far more involved. The spacetime
around a Kerr-Newman black hole of mass M, spin angular momentum
a and charge Q placed in a homogeneous axisymmetric magnetic field B
was given in [13, 14]. According to [14] the metric reads

ds2 = H(r,θ)
[
− f dt2 + R2

(
dr2

∆
+ r2dθ2

)]
+

Σsin2 θ

H(r,θ)R2 [dϕ − ω(r,θ)dt]2, (1.3)

where R2 = r2 + a2 cos2 θ, ∆ = r2 + a2 + Q2 − 2Mr, f = R2∆Σ−1 and Σ =

(r2 + a2)2 − a2∆sin2 θ. The functions H = H(r,θ) and ω = ω(r,θ) as well
as the electromagnetic potential are given in the appendix at the end of
this chapter (Sec. 1.5) . The interpretation of the parameters in this solu-
tion is non-trivial according to [15]. It is interesting that even when a = 0
there will be a dtdϕ term in the metric for any Q ̸= 0. The magnetization
of a Reissner-Nordstörm black hole induces spacetime rotation. Surpris-
ingly, the magnetized Reissner-Nordstörm black hole has an ergo-region
[14]. This ergo-region extends to infinity along the poles for any B or Q
values. Therefore, the magnetized Reissner-Nordsröm black hole is not
asymptotic to Melvin magnetic universe. The structure of the ergo-region
is more complicated in the case of the magnetized Kerr-Newman black
hole. The geometry is asymptotic to Melvin solution only if the charge
has the special value Q = B

aM (1 + 1
4 a2M2B4). The ergo-region can have

different shapes joint and disjoint from the horizon.
The thermodynamics of the magnetized Kerr-Newman black hole was

studied in [15, 16]. Since B can be an additional thermodynamic variable,

3



1.2. MAGNETIZED BLACK HOLES

the first law is modified to

dM =
κ

8π
dAH + ΩdJ + ΦdQ − µdB, (1.4)

where µ can be thought of as an induced magnetic moment of the black
hole [16]. Ω = ΩH −Ω∞ is the difference between the black hole’s angular
velocity at the horizon and infinity, and Φ = ΦH − Φ∞ is the difference in
electric potential at the horizon and infinity. To first order in Q, µ reads

µ = aQ(1 + a2M2B4) +O(Q2). (1.5)

1.2.2 Weakly Magnetized Black Holes

Magnetic fields around astrophysical black holes are extremely weak to
have significant effect on the spacetime geometry. For a solar mass black
hole, the magnetic field around it needs to be of order 1019 gauss to have
an effect comparable to that of the black hole’s mass. This is by far greater
than magnetic fields around astrophysical black holes or any known mag-
netic field. Additionally, we have seen that the exact solutions are ex-
tremely cumbersome and physically ambiguous. Therefore it is more eco-
nomical to ignore the back-reaction of the magnetic field on the metric for
all astrophysical purposes. This is known as the weak field approximation.

The magnetization procedure introduced by Wald is of special inter-
est. It describes a Kerr black hole immersed in a uniform axisymmetric
weak magnetic field [17]. The magnetic field of the accretion disk is well
approximated by an axsisymmetric field when the accretion disk is very
large compared to the black hole. According to [17], any linear combi-
nation of the Killing vectors that a Ricci flat spacetime admits serves as
a solution to the Maxwell equations in that spacetime. The rotation of
the black hole induces electric fields near the horizon. Due to the electric
potential difference between the horizon and infinity the black hole will
accrete charges until its charge reaches Q = 2Ba.

The Hawking radiation from a Kerr-Newman black hole immersed in
a uniform axisymmetric magnetic field was studied numerically in [18].

4



1.3. CHARGED PARTICLES MOTION NEAR MAGNETIZED BLACK HOLES

It was found that the magnetic field increases the evaporation process
greatly.

In astrophysical applications, the direction of the magnetic field and
the black hole’s spin are not usually aligned. The solution for a Kerr black
hole in a tilted uniform magnetic field was found in [19] with the help
of the Newman-Penrose formalism. The case when a Kerr black hole is
drifting in arbitrary direction with respect to a uniform magnetic field in
any orientation was treated in [20].

More astrophysically realistic weakly magnetized black hole solutions
were worked using the Newman-Penrose formalism. The magnetic fields
of an axisymmetric current loop around a Schwarzschild black hole and
its dipole part were given in [21]. A generalization that includes eccen-
tric symmetric current loops was made in [22]. The results in [22] were
generalized for a Kerr black hole in [19]. Another generalization for the
extreme Reissner-Nordström blackhole was conducted in [23].

1.3 Charged Particles Motion near Magnetized
Black Holes

The equatorial motion of charged particles near magnetized black holes—
where the equations of motion are usually integrable—has been studied
extensively. Charged particles equatorial orbits in the Ernst solution were
investigated in [24]. Equatorial orbits near a Schwarzschild black hole
endowed with a dipole magnetic field were discussed in [25]. A simi-
lar study in the background of a weakly magnetized Kerr black hole was
conducted in [26]. Two types of test magnetic field were used, a dipole
field and uniform axisymmetric field. The innermost stable circular or-
bits (ISCO)s of a charged particle around a Kerr black hole in a uniform
axisymmetric weak magnetic field were studied in [27].

There have been several studies for charged particles motion outside
the equatorial plane of magnetized black holes. In [28], it was shown that
charged particles are ejected from a Schwarzschild black hole endowed
with a toroidal magnetic test field from within a small range near the

5



1.4. THIS WORK

poles.
Many other references concluded that the general motion of charged

particles near magnetized black holes can be chaotic. The chaotic motion
of charged particles in the Ernst spacetime was studied in [29]. It was also
demonstrated that the equations of motion appear to be separable in the
equatorial plane only. A study of the motion near a Kerr black hole in the
presence of a magnetic field generated by a current loop was conducted
in [30]. It was shown in it that motion can have chaotic character depend-
ing on the initial conditions. The chaotic nature of the dynamics near a
Schwarzschild black hole perturbed by an axisymmetric magnetic field
was analyzed in [31] using the Poincaré-Melnikov method. In [32], the
off-equatorial motion in Kerr background in the presence of a dipole mag-
netic field was inspected. Using the Poincaré map, it was shown that the
motion is chaotic. The authors also concluded that rapid rotation of the
black hole weakens the chaotic behavior in particles trajectories. Another
study of the off-equatorial motion of charged particles was performed
in [33] where the onset of chaos was investigated using the Recurrence
Plots approach. The systems studied there are a Schwarzschild black hole
with a dipole magnetic field and a Kerr black hole immersed in a uni-
form axisymmetric magnetic field. It was found that the off-equatorial
motion is regular until the particle energy is raised to the level at which
trans-equatorial motion occurs. It was also concluded that the effect of
black hole’s rotation on the chaoticness is more involved than what was
thought before.

1.4 This Work

In addition to the fact that astrophysical black holes are magnetized, they
are rapidly rotating. Even slowly rotating black holes can be spun up by
matter accretion [34, 35]. The spinning process is thought to be limited by
a = 0.998M due to the counteracting torque resulting from the absorption
of the radiation from the disk [36]. Recent observational measurements
of various black holes spins concluded that astrophysical black holes are

6
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indeed rapidly rotating [37, 38, 39, 40].
The physics behind the bipolar jets associated with compact objects,

in particular, active galactic nuclei is still an urging mystery. There have
been several jet launching and collimation mechanisms proposed. It is
noteworthy that a magnetic field is an essential ingredient in many of
them. Nowadays, the most commonly discussed models are the gravito-
hydromagnetic models which are studied via advanced computer simula-
tions (see the references in the recent textbook [5]). It is unknown whether
jets are powered by the accretion disk or the black hole’s rotational en-
ergy. Recent observations concluded that the jets power is proportional
to the black hole’s spin [41, 42], in agreement with the mechanisms pro-
posed by Blandford and Znajek [43]. The observations are congruent with
computer simulations of gravitohydromagnetics of plasma accreting into
rotating black holes, e.g. [44, 45, 46]. It should be noted, however, that a
previous observation found no evidence for black hole rotation powering
the jets in X-ray binaries [47].

In this thesis we consider a simplified and yet interesting model that
may shed light on the high energy emissions associated with astrophys-
ical black holes. The system we study consists of a charged particle in
an equatorial circular orbit around Schwarzschild and Kerr black holes
immersed in a weak uniform axisymmetric magnetic field. The magnetic
field is normal to the orbital plane.

We then give the particle a kick off the orbit and observe how its dy-
namics evolves and whether it escapes or ends up captured by the black
hole. In real situations the kick could be given for example by another
particle or photon. To reduce the complexity of the problem we will con-
sider only kicks that give the particle a velocity v⊥ normal to the orbit,
while keeping the azimuthal angular momentum unchanged.

The main effect of the magnetic field on the circular orbits of charged
particles is bringing the ISCOs closer to the black hole event horizon. Neg-
atively ’superbound’ anti-Larmor retrograde stable circular orbits appear
if the magnetic force is large enough (see Ch. 3). The inclusion of the
magnetic field breaks down the constant of motion associated with the

7
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Kerr spacetime hidden symmetry, the Carter constant (or simply the total
angular momentum when the black hole is not rotating). Consequently,
the equations of motion become non-integrable in general and numeri-
cal integration is required. Depending on the initial conditions and the
parameters of the dynamical system, the motion can be chaotic as men-
tioned above.

The problem in the background of a Schwarzschild black hole is the
subject of Ch. 2. The generalization of the problem when the black hole is
rotating is the subject of Ch. 3.

Chapter 2 is based on the peer reviewed paper:
A. Al Zahrani et al., "Critical Escape Velocity for a Charged Particle Mov-
ing around a Weakly Magnetized Schwarzschild Black Hole". Phys. Rev.
D 87, 084043 (2013).
Chapter 3 is based on the paper (in progress):
A. Al Zahrani, "Escape of Charged Particles Moving around a Weakly
Magnetized Kerr Black Hole".

1.5 Appendix

The function H(r,θ) in the magnetized Kerr-Newman metric Eq. (1.3) is
as follows:

H = 1 +
H(1)B + H(2)B2 + H(3)B3 + H(4)B4

R2 , (1.6)

H(1) = 2aQr sin2 θ, (1.7)

H(2) =
1
2
[(r2 + a2)2 − a2∆sin2 θ]sin2 θ +

3
2

Q(a2 + r2 cos2 θ), (1.8)

8



1.5. APPENDIX

H(3) = −Qa∆
2r

[r2(3 − cos2θ)cos2 θ + a2(1 + cos2 θ)]

+
aQ(r2 + a2)2(1 + cos2 θ)

2r
+

Q2a[(2r2 + a2)cos2 θ + a2]

2r
, (1.9)

H(4) =
1

16
(r2 + a2)2R2 sin4 θ +

1
4

Ma2r(r2 + a2)sin6 θ

+
1
4

Ma2Q2r(cos2 θ − 5)sin2 θ cos2 θ

+
1
4

M2a2[r2(cos2 θ − 3)2 cos2 θ + a2(1 + cos2 θ)2]

+
1
8

Q2(r2 + a2)(r2 + a2 + a2 sin2 θ)sin2 θ cos2 θ

+
1

16
Q4[r2 cos2 θ + a2(1 + sin2 θ)2]cos2 θ. (1.10)

The expression for ω(r,θ) reads:

ω =
(2Mr − Q2)aω(1)B + ω(2)B2 + ω(3)B3 + ω(4)B4

Σ
, (1.11)

ω(1) = −2Qr(r2 + a2), (1.12)

ω(2) = −3
2

aQ2(r2 + a2 + ∆cos2 θ), (1.13)

ω(3) = 4QM2a2r +
1
2

Qr(r2 + a2)[r2 − a2 + (r2 + 3a2)cos2 θ]

+
1
2

Q3r[(r2 + 3a2)cos2 θ − 2a2]− 2Ma2Q3

+ QM[r4 − a4 + r2(r + 3a2)sin2 θ], (1.14)

9
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ω(4) =
1
2

a3M3r(3 + cos4 θ)− 1
16

aQ6 cos4 θ

− 1
8

aQ4[r2(2 + sin2 θ)cos2 θ + a2(1 + cos4 θ)]

+
1

16
aQ2(r2 + a2)[r2(1 − 6cos2 θ + 3cos4 θ)− a2(1 + cos4 θ)]

− 1
4

a3M2Q2(3 + cos4 θ) +
1
4

aM2[r4(3 − 6cos2 θ + cos4 θ)

+ 2a2r2(3sin2 θ − 2cos4 θ)− a4(1 + cos4 θ)]

+
1
8

aMQ4r cos4 θ +
1
4

aMQ2r[2r2(3 − cos2 θ)cos2 θ

− a2(1 − 3cos2 θ − 2cos4 θ)]

+
1
8

aMr(r2 + a2)[r2(3 + 6cos2 θ − cos4 θ)

− a2(1 − 6cos2 θ − 3θ4θ)]. (1.15)

The vector potential generating the electromagnetic fields is

Aµ = (Φ0 − ωΦ3,0,0,Φ3). (1.16)

Φ0 is given as

Φ0 =
Φ(0)

0 + Φ(1)
0 B + Φ(2)

0 B2 + Φ(3)
0 B3

4Σ
, (1.17)

where
Φ(0)

0 = 4[−Qr(r2 + a2)], (1.18)

Φ(1)
0 = −6aQ2(r2 + a2 + ∆cos2 θ), (1.19)

Φ(2)
0 = −3Q{(r + 2M)a4 − (r2 + 4Mr + ∆cos2 θ)r3

+ a2[2Q2(r + 2M)− 6Mr2 − 8M2r − 3∆r cos2 θ]}, (1.20)
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Φ(3)
0 = −1

2
a{4a4M2 + (a4 + 12a2M2)Q2 + 2a2Q4 + 2a4Mr

− 24a2M3r + 4a2Mq2r − 24a2M2r2 − 4a2Mr3 − 12M2r4

− Q2r4 − 6Mr5 − 6r∆[2M(r2 + a2)− Q2r]cos2 θ

+ ∆[Q4 − 3Q2r2 + 2Mr3 + a2(4M2 − Q2 − 6Mr)]cos4 θ}. (1.21)

Φ3 reads

Φ3 =
Φ(0)

3 + Φ(1)
3 B + Φ(2)

3 B2 + Φ(3)
3 B3

R2H
, (1.22)

where
Φ(0)

3 = aQr sin2 θ, (1.23)

Φ(1)
3 =

1
2
[Σsin2 θ + 3Q2(a2 + r2 cos2 θ)], (1.24)

Φ(2)
3 =

3
4

aQr(r2 + a2)sin4 θ +
3
2

aQM[r2(3 − cos2 θ)cos2 θ

+ a2(1 + cos2 θ)]− 3
4

aQ3r sin2 θ cos2 θ, (1.25)

Φ(3)
3 =

1
8

R2(r2 + a2)2 sin4 θ +
1
2

a2Mr(r2 + a2)sin6 θ

− 1
2

a2Q2Mr(5 − cos2 θ)sin2 θ cos2 θ

+
1
2

a2M2[r2(3 − cos2 θ)2 cos2 θ + a2(1 + cos2 θ)2]

+
1
4

Q2(r2 + a2)[r2 + a2(1 + sin2 θ)]sin2 θ cos2 θ

+
1
8

Q4[r2 cos2 θ + a2(2 − cos2 θ)2]cos2 θ. (1.26)
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[20] O. Kopáček, WDS’08 Proceedings of Contributed Papers Part III, 198
(2008).

[21] J. Pettterson, Phys. Rev. D 10, 3166 (1974).
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Chapter 2

Escape of Charged Particles
Moving around a Weakly
Magnetized Schwarzschild Black
Hole

2.1 Introduction

In this chapter it is demonstrated that charged-particle motion near a
weakly magnetized Schwarzschild black hole is generically chaotic. The
critical escape velocity required for such a particle to escape to infinity
is found, and some properties of the near-critical motion are discussed.
In Sec. 2.2 the model used is discussed and an expression for the escape
velocity for a neutral particle is presented. The Wald magnetization pro-
cedure is introduced in Sec. 2.3. In Sec. 2.4 the equations of motion of
a charged particle moving around a weakly magnetized Schwarzschild
black hole are written. A dimensionless form of the equations and the ini-
tial conditions for the particle’s motion are given in Sec. 2.5. In Sec. 2.6
several examples of qualitatively different orbits of a charged particle
near the weakly magnetized black hole are given. The basin of attrac-
tion method is applied for an analysis of the charged-particle motion in
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2.2. ESCAPE VELOCITY OF A NEUTRAL PARTICLE

Sec. 2.7. There the chaotic properties of the trajectories are demonstrated
and the fractal dimensions in the proper domains are determined. The
chapter is concluded with a brief summary of results in Sec. 2.8.

2.2 Escape Velocity of a Neutral Particle

Before considering the escape-velocity problem for a charged particle in
a weakly magnetized black hole, let us recall the well-known results for
a similar problem in the simpler case when a particle is neutral and the
magnetic field is absent. The background Schwarzschild metric is

ds2 = − f dt2 + f−1dr2 + r2dω2, (2.1)

dω2 = dθ2 + sin2 θdϕ2 , f = 1 −
rg

r
. (2.2)

Here rg = 2GM is the gravitational radius of the black hole. There exist
three commuting integrals of motion. Two of them are generated by the
Killing vectors

ξ
µ

(t) = δ
µ
t , ξ

µ

(ϕ)
= δ

µ
ϕ , (2.3)

reflecting invariance with respect to time translations and rotations around
the symmetry axis. The corresponding conserved quantities are the spe-
cific energy E and the specific azimuthal angular momentum L,

E ≡ −pµξ
µ

(t)/m = ṫ f , (2.4)

L ≡ pµξ
µ

(ϕ)
/m = ϕ̇r2 sin2 θ. (2.5)

Here m is the mass of the particle, and uµ and pµ = muµ are its four-
velocity and four-momentum, respectively. Here and in what follows, the
overdot denotes the derivative with respect to the proper time. The third
integral of motion is the square of the specific total angular momentum,

J 2 ≡ r4θ̇2 +
L2

sin2 θ
= r2v2

⊥ + L2. (2.6)
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2.2. ESCAPE VELOCITY OF A NEUTRAL PARTICLE

Here v⊥ denotes the following quantity:

v⊥ ≡ −rθ̇k. (2.7)

where θ̇k is the initial polar angular velocity of the particle. Using the
normalization condition uµuµ = −1 one obtains

ṙ2 = E2 − U , U = f (1 + J 2/r2). (2.8)

The motion of the particle is planar. We let this plane coincide with
the equatorial plane. Then θ̇ = 0 and the effective potential for the radial
motion takes the form

U = Ũ ≡ f (1 + L2/r2). (2.9)

Consider a particle at the circular orbit r = ro, where ro corresponds to
the local minimum of the effective potential Ũ. This orbit exists for ro ∈
(3rg,∞). The corresponding specific energy and azimuthal angular mo-
mentum are

Eo =

√
2(ro − rg)√

ro(2ro − 3rg)
, |Lo| =

ro
√rg√

2ro − 3rg
. (2.10)

The ISCO is defined by ro = 3rg, which corresponds to an inflection point
of the effective potential where ∂2

r Ũ = ∂rŨ = 0. For the ISCO we have
EISCO = 2

√
2/3 ≈ 0.943 and |LISCO| = rg

√
3.

Suppose now that the particle in a circular orbit collides with another
particle or photon, so that after the collision it will move within a new
plane tilted with respect to the original equatorial plane. In a general
case, all three types of its motion are possible: (i) bounded motion, (ii)
escape to infinity, and (iii) capture by the black hole. The result certainly
depends on the details of the collision mechanism. For small values of
the transferred energy and momentum the orbit will be only slightly per-
turbed. However, for larger values of E − Eo the particle can go away
from the initial plane, and finally be captured by the black hole or escape
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2.2. ESCAPE VELOCITY OF A NEUTRAL PARTICLE

to infinity.
In a general case, as a result of the collision the particle will have new

integrals of motion: E , L and J 2. For the case of a neutral particle in the
Schwarzschild black hole one can easily obtain the conditions of escape in
an analytical form. To be able to obtain results which allow a rather simple
analysis and presentation we simplify the problem and reduce the space
of initial data by imposing the following restrictions: (i) the azimuthal
angular momentum is not changed, and (ii) the initial radial velocity after
the collision remains the same. Under these restrictions there exists only
one parameter that determines the motion of the particle, namely the new
value of its energy. Under these conditions, as a result of the collision the
particle acquires a velocity v⊥ in the direction orthogonal to the equatorial
plane [see Eq. (2.7)].

After the collision, the total angular momentum and the energy of the
particle are

J 2 = r2
ov2

⊥ + L2, (2.11)

E =
√
E2

o + v2
⊥(ro − rg)/ro. (2.12)

As a result of the collision, the total angular momentum of the particle
changes from its original value L2 to J 2, given by Eq. (2.11). The effective
potential U defined by the new value of J 2 is greater than that before the
collision. Moreover, the particle always accelerates away from the black
hole since

U′(ro) = −
(2ro − 3rg)

r2
o

v2
⊥ , (2.13)

is always negative outside the photon sphere given by ro =
3
2rg. The par-

ticle is therefore to the right of the single maximum of U and will not
experience any turning point and escape to infinity if E ≥ 1, or

|v⊥ | ≥
√

ro(1 − E2
o )

(ro − rg)
. (2.14)

In particular, for the ISCO we have the escape condition vesc
⊥ ≥ 1/

√
6,
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2.3. WEAKLY MAGNETIZED BLACK HOLES

where the equality corresponds to E = 1.
The black hole metric (2.1) has the evident discrete symmetries

ϕ →−ϕ, θ → π − θ, (2.15)

which imply the symmetry of the problem with respect to the transfor-
mations

L→−L, v⊥ →−v⊥ . (2.16)

2.3 Weakly Magnetized Black Holes

We follow the magnetization procedure introduced by Wald [1]. In a Ricci
flat spacetime a Killing vector ξµ obeys the equation

ξ
µ ;ν

;ν = 0. (2.17)

This is identical to the source-free Maxwell equations for a four-potential
Aµ in the Lorentz Gauge (Aµ

;µ = 0),

Aµ ;ν
;ν = 0. (2.18)

Therefore, any linear combination of the Killing vectors the spacetime ad-
mits will serve as a solution to the Maxwell equations in that Ricci flat
spacetime. It should be mentioned that the corresponding electromag-
netic field is assumed to be too weak to modify the spacetime geometry.
The choice

Aµ =
B
2

ξ
µ

(ϕ)
, (2.19)

corresponds to a uniform axisymmetric magnetic field that has strength B
asymptotically [1, 2, 3]1. It is this potential that will be used in this thesis.
In what follow we will refer to this choice as the electromagnetic potential
or simply Aµ.

1The choice Aµ =− Q
2M ξ

µ

(t) corresponds to a weakly charged black hole with a charge
Q ≪ M.
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2.3. WEAKLY MAGNETIZED BLACK HOLES

The dynamics of a charged particle of mass m and charge q in an elec-
tromagnetic field in a curved spacetime is governed by the equation

m
duµ

dτ
= qFµ

νuν, (2.20)

where Fµ
ν is the electromagnetic field tensor given by

Fµν = Aν,µ − Aµ,ν. (2.21)

The generalized four-momentum of the particle is

Pµ = muµ + qAµ. (2.22)

In the frame of an observer with four-velocity uµ, the electric and mag-
netic fields are, respectively

Eµ = Fµνuν, (2.23)

Bµ = −1
2

εµνλσ

√−g
Fλσuν, (2.24)

where g is the determinant of the spacetime metric and εµνλσ is +1 (−1)
for even (odd) permutations of 0123 and 0 otherwise.

The weak field approximation breaks down when the magnetic field
creates curvature comparable to that made by the black hole mass. We
therefore write

B2 ∼ M−2, (2.25)

In Gaussian units, the Wald approximation breaks down when

B ∼ c4

G3/2M
(gauss). (2.26)

For solar mass black holes one gets B ∼ 1019 gauss! The typical mag-
netic field strength near a black hole horizon has been estimated to be
∼ 108 gauss (or 10−15 meter−1) for stellar mass black holes and ∼ 104

gauss (or 10−19 meter−1) for supermassive black holes [4, 5]. These es-
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2.4. CHARGED PARTICLES NEAR A MAGNETIZED BLACK HOLE

timates validate ignoring corrections to the metric due to the presence of
the magnetic field. Despite that B is tiny its effect on the dynamics is
significant since the charge-to-mass ratio q/m = 2.04 × 1021(1.11 × 1018)

for electrons (protons). For electrons (protons) near a typical stellar mass
black hole qB

m ∼ 107 (103) meter−1 and near typical a supermassive black
hole qB

m ∼ 103 (10−1) meter−1.

2.4 Charged Particles near a Magnetized Black
Hole

The specific energy and azimuthal angular momentum of the particle are
constants of motion since the electromagnetic potential is compatible with
the temporal and azimuthal Killing vectors. We therefore write

E ≡ −ξ
µ

(t)Pµ/m = ṫ f , (2.27)

L ≡ ξ
µ

(ϕ)
Pµ/m = (ϕ̇ + b) r2 sin2 θ. (2.28)

where b ≡ qB
2m . Solving for ṫ and ϕ̇ we get

ṫ = f−1E , ϕ̇ =
L

r2 sin2 θ
− b. (2.29)

The ρ and θ components of Eq. (2.20) read, respectively,

r̈ =
1
2
(2r − 3rg)

(
θ̇2 +

L2

r4 sin2 θ

)
+

rg(2Lb − 1)
2r2

− b2

2
(2r − rg)sin2 θ, (2.30)

θ̈ = −2
r

ṙθ̇ +
L2 cosθ

r4 sin3 θ
− b2 sinθ cosθ. (2.31)

The normalization of the four-velocity uµuµ = −1 gives the following
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2.5. DIMENSIONLESS FORM OF THE EQUATIONS

first-order equation

E2 = ṙ2 + r2 f θ̇2 + Ueff, (2.32)

Ueff = f

[
1 + r2 sin2 θ

(
L

r2 sin2 θ
− b

)2
]

. (2.33)

This equation is a constraint. If it is satisfied at the initial moment of time,
then it is always valid, provided that the dynamics of r(τ) and θ(τ) is
controlled by Eqs. (2.30) and (2.31).

From Eqs. (2.30)–(2.33) we can see that there are two dynamically dif-
ferent modes of radial motion, depending on whether Lb > 0 or Lb < 0. In
the equatorial plane, the Lorentz force is radially outward (inward) when
Lb > 0 (Lb < 0). In this chapter we choose to keep b > 0 and let L take
both signs to consider all dynamically distinct cases.

The dynamics is invariant under reflection with respect to the equato-
rial plane or

θ → π − θ, θ̇ →−θ̇. (2.34)

This makes it possible to keep v⊥ > 0 without loss of generality.

2.5 Dimensionless Form of the Equations

In order to study charged particles escape we need to integrate the equa-
tion of motion numerically. For convenience, we rewrite them in a dimen-
sionless form. Let us define the dimensionless quantities

σ =
τ

rg
, ρ =

r
rg

, ℓ =
L
rg

, β = brg. (2.35)
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Equations (2.30)–(2.33) recast in the dimensionless form read

d2ρ

dσ2 =
1
2
(2ρ − 3)

(
dθ

dσ

)2

+
(2ℓβ − 1)

2ρ2 +
ℓ2(2ρ − 3)
2ρ4 sin2 θ

− β2

2
(2ρ − 1)sin2 θ, (2.36)

d2θ

dσ2 = −2
ρ

dρ

dσ

dθ

dσ
+

ℓ2 cosθ

ρ4 sin3 θ
− β2 sinθ cosθ . (2.37)

E2 =

(
dρ

dσ

)2

+ ρ(ρ − 1)
(

dθ

dσ

)2

+ Ueff, (2.38)

Ueff =

(
1 − 1

ρ

)[
1 +

(ℓ− βρ2 sin2 θ)2

ρ2 sin2 θ

]
. (2.39)

In an equatorial circular orbit of radius ρo the particle energy is

Eo =

(
1 − 1

ρo

)1/2 [
1 +

(ℓ− βρ2
o)

2

ρ2
o

]1/2

. (2.40)

After the kick, the particle acquires a polar velocity v⊥ > 0 and its energy
changes to

E =

[
E2

o +
(ρo − 1)

ρo
v2
⊥

]1/2

. (2.41)

The azimuthal angular momentum of the particle ℓ will be kept constant
as mentioned above. For brevity, we will take the initial circular orbit to
be an ISCO. The parameters ℓ and β for an ISCO—in terms of the orbit
radius ρo—are obtained by solving U′

eff = U′′
eff = 0 with θ = π/2 for these

parameters. The expressions read

ℓ = ± ρo√
2

√
3ρo − 1√

(4ρo − 9)ρo ±
√

3ρo − 1
√

3 − ρo + 3
(2.42)

β =
1√
2ρo

√
ρo − 3√

(4ρo − 9)ρo ±
√

3ρo − 1
√

3 − ρo + 3
(2.43)
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2.6. TYPES OF THE TRAJECTORIES

When ρ0 = 3, β = 0 as expected. For very large β, the radius of the ISCO
approaches ρo = 1 for ℓ > 0 and ρo = (5 +

√
13)/4 for ℓ < 0.

2.6 Types of the Trajectories

Given the orbit radius ρ = ρo and the energy E > Eo of the particle after the
kick, we integrate the dynamical equations (2.36) and (2.37) numerically.
The numerical integration yields the trajectory corresponding to the given
initial conditions. The dynamical equations were solved using the built-
in MATHEMATICA 8.0 function NDSOLVE. The integral of motion of the
system E [see Eqs. (2.38) and (2.41)] was used to estimate the accuracy
of the numerical solver. For our calculations the energy error |∆E| was
found to be less than 10−6.

The results of the numerical integration show that there are three dif-
ferent types of final motion for the particle:

1. The particle is captured by the black hole.

2. The particle escapes to z → +∞.

3. The particle escapes to z →−∞.

The outcome of the motion is considered a capture when ρ reaches 1.
It is considered an escape if |z| reaches 103. In most cases at least, the
specific gravitational potential there is much smaller than v2

z, where vz is
z-component of the particle’s velocity. The maximum computation time
was chosen as σ = 105. In escape cases, it was found that the cumulative
error |∆E| can reach 10−2. The accuracy of the numerical solver can be
increased to achieve much better accuracy. While increasing the accuracy
is not a problem when only a few trajectories are to be generated, it can
increase the computation time greatly when the equations of motions are
integrated hundreds of thousands of times, as in the case of producing
the basins of attraction plots (see below). However, at least in the cases
we have studied, increasing the accuracy of the numerical solver does not
change the final state of the motion significantly.
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2.6. TYPES OF THE TRAJECTORIES

(a)

(b)

(c)

Figure 2.1: Examples of “capture” trajectories. In each case a charged
particle is kicked up from its original ISCO at ρo = 2 for ℓ > 0. The energy
E after the kick is (a) 1.12 (b) 1.2 and (c) 1.3.
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(a)

(b)

(c)

Figure 2.2: Examples of “capture” trajectories. In each case a charged
particle is kicked up from its original ISCO at ρo = 2.5 for ℓ < 0. The
energy E after the kick is (a) 1.35 (b) 1.475 and (c) 1.525.
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(a) (b) (c)

Figure 2.3: Examples of “escape” trajectories. In each case a charged par-
ticle is kicked up from its original ISCO at ρo = 2 for ℓ > 0. The energy E
after the kick is (a) 1.025 (b) 1.05 and (c) 1.135.
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(a) (b) (c)

Figure 2.4: Examples of “escape” trajectories. In each case a charged par-
ticle is kicked up from its original ISCO at ρo = 2.5 for ℓ < 0. The energy
E after the kick is (a) 1.415 (b) 1.46 and (c) 1.5.
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2.6. TYPES OF THE TRAJECTORIES

To distinguish the final states of the particle we introduce an integer
number n. It takes the value 0 for the capture case and ±1 for escape to
z →±∞, respectively.

If one focuses on a single trajectory, one can see that there exists a va-
riety of its type, each with qualitatively different behavior of the particle
within the domain close to the black hole. For each of these types of mo-
tion the particle may pass through the equatorial plane a number of times.
To characterize the dynamical behavior of the particle in this domain we
introduce the "crossing" number c, which counts how many times the par-
ticle crosses the equatorial plane before it gets captured or escapes to the
spatial infinity. For our choice of the initial conditions, the particle after
the kick starts its motion from the equatorial plane in the positive z direc-
tion. For this reason, it is evident that for n = +1 the crossing number c
is even, while for n = −1 it is odd. In particular, when a particle goes to
z → +∞ without further crossing the equatorial plane, c = 0.

In rare cases of the computations the particle stays in the vicinity of
the equatorial plane during the numerical lifetime σ. It crosses the plane
many times and forms a compact cloud in the corresponding phase space.

Figures 2.1–2.4 illustrate possible "capture" and "escape" trajectories of
the charged particle near the magnetized black hole for both the ℓ > 0 at
ρo = 2 and ℓ < 0 at ρo = 2.5 cases. The figures collect several examples of
such trajectories for different values of the invariants n and c.

The fate of a kicked particle was found to be extremely sensitive to
the initial conditions; even a very tiny change of these conditions may
drastically modify its global behavior. Such an extreme sensitivity is an
indication of the nonintegrability of the system and its chaotic nature. It
can be shown that the system is Hamiltonian and conservative. Chaos in
Hamiltonian systems has been extensively studied (see, e.g., Ref. [6] and
references therein). For an analysis of our dynamical system we shall use
the methods developed for the study of chaotic dynamical systems that
possess several coexisting final states.

In our system the particle is fated to be captured by the black hole,
escape it up (down) and approach z = ∞ (z =−∞) asymptotically, or end
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2.7. BASIN OF ATTRACTION ANALYSIS

up in an orbit "meta-stable" within the computation time. Keeping the
possible meta-stable orbits aside, the system therefore has three attractors.

An attractor of a dynamical system is a subset of the set of all pos-
sible states of the system which an orbit with certain initial conditions
approaches asymptotically [6]. The set of initial conditions that leads to
an attractor is its basin of attraction. In our system, we have a charged par-
ticle at an ISCO around a magnetized black hole with fixed parameters
M, and B. Therefore the space of initial conditions for the particle is the
set {ρo,E(θ̇k)}. The boundary between different basins of attraction is a
simple smooth curve in case of regular systems. In chaotic systems the
basin boundary is a fractal boundary. A fractal is a geometrical object that
has fractal dimension D f larger than its topological dimension. A char-
acteristic of fractals is the appearance of self-similar patterns at different
magnifications.

2.7 Basin of Attraction Analysis

2.7.1 Basin of Attraction Plots

Here we use the basin of attraction approach for the analysis of the asymp-
totic behavior of the particle trajectories. The approach is well suited for
non-compact scattering systems. This method, in particular, was used in
the analysis of another dynamical system appearing in general relativity
(see, e.g., Ref. [7]). The corresponding basins of attraction are presented
in Fig. 2.5. As we mentioned, the particle is initially at the ISCO. Fig-
ure 2.5(a) corresponds to the case ℓ > 0 and Fig. 2.5(b) to the case ℓ < 0.
The horizontal axis on these plots shows the dimensionless parameter ρo

of the ISCO, while the vertical axis shows the dimensionless energy E of
the particle after the kick. The white domains in these plots correspond to
the region forbidden for the particle’s ISCO. The colored regions in these
plots consist of square pixels with a side size ρ and E equal to 2.5 × 10−3.
We used three different colors for these pixels. The color of a pixel deter-
mines the final outcome of the particle motion. These colors are chosen so
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2.7. BASIN OF ATTRACTION ANALYSIS

that red corresponds to the particle capture, green corresponds to escape
to z → +∞ (n = 1), yellow corresponds to escape to z → −∞ (n = −1),
and blue corresponds to meta-stable orbits.

2.7.2 Critical Escape Energy and Velocity

The general structure of the plots shown in Fig. 2.5 can be described as
follows. The red region—which adjoins to the white region at the bottom
of the plots—corresponds to the particle capture. The uniformly green
region in the upper-right part of the plots corresponds to the particle’s
escape to z → +∞. The crossing number in this region is c = 0. This re-
gion is restricted from below by a diffuse domain. The uniform region
is separated from the diffuse domain by a line which we call the critical-
escape-energy line. Using our numerical results we can estimate the crit-
ical escape energy of the particle describing this line. The approximate
empirical expression for the case ℓ > 0 is

Eesc ≈ 1 +
0.115(3.463 − ρo)

(ρo − 1.851)(3.433 − ρo)
. (2.44)

and for the case ℓ < 0 is

Eesc ≈ 1 +
0.4393(3.198 − ρo)

(ρo − 2.105)(3.667 − ρo)
, (2.45)

The maximal relative error of the escape energy in these expressions is
0.2%. Figures 2.6(a) and 2.6(b) illustrate the escape energy Eesc for the
ℓ > 0 and ℓ < 0 cases, respectively.

Using these empirical expressions together with Eqs. (2.40)–(2.43) we
can determine the critical escape velocity vesc

⊥ as a function of ρo. Fig-
ures 2.7(a) and 2.7(b) illustrate the critical escape velocity for ℓ > 0 and
ℓ < 0, respectively.
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Figure 2.5: Basins of attraction for a charged particle kicked from the ISCO
of the given ρo (horizontal axis) to different energies (vertical axis). The
red zones correspond to capture, the green zones correspond to escape to
z →+∞, and the yellow zones correspond to escape to z →−∞. (a) is for
ℓ > 0 and (b) is for ℓ < 0. The step size for both ρ and E is 2.5 × 10−3.
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Figure 2.6: Critical escape energy for (a) ℓ > 0 and (b) ℓ < 0. The curves
are given by the empirical expression (2.44) for (a) and by (2.45) for ( b).
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Figure 2.7: Critical escape velocity for (a) ℓ > 0 and (b) ℓ < 0.
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2.7.3 Near-Critical Behavior

For a given ρo and energies close to but less than the critical one, the final
state of the particle cannot be strictly predicted. The corresponding near-
critical domain contains the final states of all three different types. To
illustrate this more clearly let us consider a small strip in these domains.
Magnifications of the strips are shown in Fig. 2.8. The horizontal axis on

Ρo

1.9 1.92 1.94 1.96 1.98 2.

(a)

Ρo

2.22 2.24 2.26 2.28 2.3

(b)

Figure 2.8: Magnified strips from the fractal region in the basins of attrac-
tion. (a) A stripe at E 1.9 for ℓ > 0. (b) A strip at E 2.5 for ℓ < 0.

these plots shows the dimensionless parameter ρo of the ISCO, while the
vertical axis shows the dimensionless energy E of the particle after the
kick, which is chosen at 1.9 for ℓ > 0 and at 2.5 for ℓ < 0. These magnified
plots demonstrate the linear structure of different regions corresponding
to capture and both types of the escape (corresponding to n =±1). Similar
magnified strips can be constructed for different values of the magnifica-
tion factor. The remarkable fact is that each of these plots has a similar
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structure, which does not depend on the value of the magnification. In
other words, the near-critical diffuse domain has a fractal structure. This
fractal structure is a very complicated Cantor-set-like structure, such that
a magnification of any portion of the fractal region reveals a similar pat-
tern of the escape and capture regions on a smaller scale, and it continues
ad infinitum. In the fractal regions the crossing number c corresponding to
either escape or capture can take different values and generally increases
with the increasing repetition of the patterns.

2.7.4 Fractal Dimension of the Near-Critical Domains

To get a qualitative measure of the complexity of the fractal regions we
calculate the box-counting fractal dimension D f ,

D f ≡ lim
ϵ→0

ln N(ϵ)

ln 1
ϵ

, 1 ≤ D f < 2, (2.46)

where N(ϵ) is the number of squares of the side length ϵ needed to cover
a basin boundaries. Such squares are counted only if they contain at least
two different colors. The box-counting fractal dimension gives us a quan-
titative measure of the uncertainty in our numerical computations (see,
e.g., Ref. [6]).

Figure 2.9 contains plots of ln N(ϵ) vs ln (1/ϵ) for different values of
ϵ for the fractal structures shown in Fig. 2.5. The plots illustrate a linear
relation for sufficiently small values of ϵ. The fractal dimensions of the
two basins boundaries are

D ≈ 1.60 , ℓ > 0, (2.47)

D ≈ 1.85 , ℓ < 0. (2.48)

The fractal dimension is closer to 2 for the ℓ < 0 case and thus the corre-
sponding near-critical domain has a more complex fractal structure.
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Figure 2.9: The box-counting dimension. Plot (a): ln N(ϵ) vs. ln(1/ϵ) for
ℓ > 0. Plot (b): ln N(ϵ) vs. ln(1/ϵ) for ℓ < 0.
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2.7.5 Additional Details of the Basins of Attraction Struc-
ture.

We have described the main features of the structure of the domains in the
basins of attraction. However, these plots contain additional structure,
which we briefly describe now. First of all, let us mention that for ℓ > 0
and the values of ρo in the vicinity of ≈ 1.5 and E & 1.2 there is an escape
lagoon, illustrated by the yellow color. For the initial data corresponding
to this lagoon the charged particle also escapes to infinity but in the direc-
tion opposite to the initial kick, that is, with n =−1. The crossing number
in this region is c = 1. Besides this, there are also smaller-size yellow re-
gions that correspond to different values of the crossing number. These
regions form a well-visible set of the yellow strips located to the right of
the lagoon. Similar yellow strips corresponding to the backscattering to
z →−∞ are present for ℓ < 0.

2.8 Summary

In this chapter the escape of a charged particle from a weakly magnetized
Schwarzschild black hole was studied. The particle—initially at a stable
(for neutral particles) or marginally stable (for charged particles) circular
orbit—is kicked in the direction normal to the orbital plane. Putting aside
possible meta-stable orbits, the particle eventually gets captured by the
black hole or escapes it to spatial infinity.

The neutral particle case was tackled first. It was found that it is suffi-
cient for the particle to have energy equal to or greater that its rest energy
to ensure escape.

The charged particle problem was found to be more involved where
the equations of motion are non-integrable in general. The motion demon-
strated chaoticness which made it impossible to write analytical condi-
tions for escape. With the help of the basin of attraction plots, it was pos-
sible to write empirical formulae for escape energy for a particle initially
at an ISCO.
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Chapter 3

Escape of Charged Particles
Moving around a Weakly
Magnetized Kerr Black Hole

3.1 Introduction

In this chapter we study charged particles escape from a weakly magne-
tized rotating black hole. The simpler case of neutral particles is tackled
first. The effect of the black hole’s rotation on charged particles escape is
investigated. We also discuss the effect of rotation on the chaoticness in
the dynamics. The chapter is organised as follows: In Sec. 3.2 we analyse
the case of neutral particles. We review particles dynamics and circular
orbits in Kerr geometry and then give the escape conditions analytically.
In Sec. 3.3 we treat the charged particles case. We discuss their circular or-
bits and study the ISCOs numerically, and then analyze charged particles
dynamics and give the escape conditions. We conclude the chapter with
a summary of results in Sec. 3.4.
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3.2. ESCAPE VELOCITY OF A NEUTRAL PARTICLE

3.2 Escape Velocity of a Neutral Particle

3.2.1 Circular Orbits

The spacetime geometry around a rotating black hole is described by the
Kerr metric. In Boyer-Linquist coordinates, the Kerr metric reads [1]

ds2 = −Σ
∆
A

dt2 +
Σ
∆

dr2 + Σdθ2 +
A
Σ

(
dϕ − 2aMr

A
dt
)2

sin2 θ, (3.1)

where Σ = r2 + a2 cos2 θ, ∆ = r2 − 2Mr + a2, A = (r2 + a2)2 − a2∆sin2 θ. M
is the black hole’s mass and J = aM, with −M ≤ a ≤ M, is its spin angular
momentum.

The Kerr spacetime admits two commuting Killing vectors

ξ
µ

(t) = δ
µ
t , ξ

µ

(ϕ)
= δ

µ
ϕ , (3.2)

and a Killing tensor
Kµν = ∆k(µlν) + r2gµν, (3.3)

where

lµ =
1
∆

(
r2 + a2,∆,0, a

)
, (3.4)

kµ =
1
∆

(
r2 + a2,−∆,0, a

)
. (3.5)

Consider a particle of mass m in Kerr spacetime moving with four-velocity
uµ. The three Killing symmetries are associated with three constants of the
particle’s motion

−E = pµξ
µ

(t)/m, (3.6)

L = pµξ
µ

(ϕ)
/m, (3.7)

K+ (L− aE)2 = uµuνKµν, (3.8)

where pµ = muµ is the particle’s four-momentum. E and L are the spe-
cific energy and azimuthal angular momentum, respectively, and K is the
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Carter constant1. Using these three constants of motion along with the
normalization uµuµgµν = −1 we can reduce the equations of motion to
quadratures:

ṫ = E +
2Mr[(r2 + a2)E − aL]

∆Σ
, (3.9)

ϕ̇ =
L

Σsin2 θ
+

a(2MrE − aL)
∆Σ

, (3.10)

Σ2ṙ2 = [(r2 + a2)E − aL]2 − ∆[r2 +K+ (L− aE)2], (3.11)

Σ2θ̇2 = K+ (L− aE)2 − a2 cos2 θ −
(

aE sinθ − L
sinθ

)2

, (3.12)

where the overdot denotes the derivative with respect to the proper time.
The particle dynamics is invariant under reflection with respect to the
equatorial plane or

θ → π − θ, θ̇ →−θ̇. (3.13)

The dynamics is also invariant under the transformations

ϕ →−ϕ, ϕ̇ →−ϕ̇, L→−L, a →−a. (3.14)

Let us define R(r) to be the right hand side of Eq. (3.11)

R(r) := [(r2 + a2)E − aL]2 − ∆[r2 +K+ (L− aE)2]. (3.15)

R(r) is positive semidefinite, it vanishes at radial turning points only.
There are two dynamically distinct cases for radial motion, depending on
whether the black hole’s spin and particle’s azimuthal angular momen-
tum are aligned (aL > 0) or oppositely aligned (aL < 0). Without loss of
generality, in this chapter L will be kept positive while a can take both
signs. We refer to orbits with aL> 0 as prograde and orbits with aL< 0 as
retrograde.
Circular orbits exist where R(r) and its first derivative R′(r) vanish. For

1The second term on the LHS of Eq. (3.8) does not appear in the standard definition
of Carter constant. We chose our definition for convenience.
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equatorial orbits (θ = π
2 ,K = 0), these two conditions yield

[(r2 + a2)E − aL]2 − ∆[r2 + (L− aE)2] = 0, (3.16)

2rE [(r2 + a2)E − aL]− 2r∆ − 2(r − M)[r2 + (L− aE)2] = 0. (3.17)

We will use ro, Eo and Lo to denote circular orbits from here on. Solving
for Eo, Lo one obtains after tedious algebra

Eo =
aM1/2 + r1/2

o (ro − 2M)√
2aM1/2r3/2

o + r2
o(ro − 3M)

, (3.18)

Lo =
M1/2(a2 + r2

o)− 2aMr1/2
o√

2aM1/2r3/2
o + r2

o(ro − 3M)
. (3.19)

The radius of the last circular orbit rlc, is given by

rlc =
[M + M1/3(

√
a2 − M2 − a)2/3]2

M1/3(
√

a2 − M2 − a)2/3
. (3.20)

Plugging rlc in Eq. (3.18) reveals that Eo is positive for all circular orbits.
A particle is at an ISCO when R′′(r)|r=ro vanishes, or

(6r2
o + a2)(E2

o − 1) + 6Mro −L2
o = 0. (3.21)

Plugging the Eo and Lo values above in this condition one obtains

rms(rms − 6M) + 8a
√

Mrms − 3a2 = 0. (3.22)

We used rms (for marginally stable) to denote the ISCOs. The Eo and Lo

expressions reduce for an ISCO to

L2
ms =

2
3

M
rms

(3r2
ms − a2), E2

ms = 1 − 2
3

M
rms

. (3.23)

Fig. 3.1 shows how rms changes with a. For a = M, a = −M one gets
rms = M, rms = 9M, respectively. rms becomes 6M when a = 0 as expected.
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Figure 3.1: The radius of the last stable circular orbit rms vs. the black
hole’s rotation parameter a.

3.2.2 Conditions for Escape from a Circular Orbit

Three-Dimensional Motion

Consider a particle at a stable circular orbit ro that has the four-velocity
uµ = (−Eo,0,0,Lo). As we mentioned above the particle is kicked in such
a way that it only acquires velocity parallel (or antiparallel) to the axis
of the black hole rotation. The kick changes the particle’s four-velocity to
uµ = (−E ,0,r3

o θ̇k,Lo), where θ̇k =−v⊥/ro. We can express the dependence
of E and K on θ̇k using Eqs. (3.11) and (3.12). The expressions are

E =
1

r3
o + a2(ro + 2M)

[
2aLo M + ∆1/2√

a2(r + 2M)(r3
o θ̇2

k + ro) + r2
o(r4

o θ̇2
k + r2

o + L2
o)
]

(3.24)

K = r4
o θ̇2

k . (3.25)

The positive root for the energy was selected to have the four-velocity
vector future-directed. To study the particle’s behaviour after the kick it
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is more appropriate to recast Eq. (3.11) as

Σ2ṙ2 = r[r3 + a2(r + 2M)](E − V+)(E − V−), (3.26)

where

V±(r) =
1

r3 + a2(r + 2M)

[
2aLM ± ∆1/2√

a2(r + 2M)(K/r + r) + r2(K+ r2 + L2)
]
, (3.27)

where again V+(r) will be considered for future-directed four-velocity
vector. In order to determine the escape conditions we need to inspect
the effective potential V+(r) to figure out how a particle will move after
getting kicked.

Escape Conditions

The effective potential V+(r) becomes unity far away from the black hole.
Trivially, the particle must be energetically unbound (E ≥ 1) to be able to
escape. The θ̇k value at which the particle becomes energetically unbound
is designated by θ̇E=1. We use Eqs. (3.25) and (3.27) to express it as

|θ̇E=1| =
[

2M[(a −Lo)2 + r2
o ]−L2

oro

∆r3
o

]1/2

. (3.28)

We will assume that the trivial condition |θ̇k| ≥ |θ̇E=1| is always satisfied.
Unfortunately, energetic freedom is not sufficient for the particle to

escape when a > 0. Depending on the black hole’s parameters, particle’s
initial conditions and the kick strength |θ̇k|, the particle may accelerate
both away or toward the black hole. The particle will experience only
one radial turning point and hence the sign of the radial acceleration r̈
just after the kick determines whether it escapes or gets captured. An
example is shown in Fig. 3.2.

Careful inspection of V+(r) reveals that there are three distinct regions
in which the kicked particle accelerates in a specific way. The three re-
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Figure 3.2: V+(r) for a particle before (dashed line) and after (solid line)
getting kicked to energy E = 1. (a) The particle accelerates away from
the black hole after getting kicked from a circular orbit at ro = 3M. (b)
The particle accelerates toward the black hole after getting kicked from a
circular orbit at r0 = 3/2M. In both cases a = M.
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gions are as follows:

• Escape region: In this region r̈ > 0 for any θ̇k. The acceleration is
proportional to the kicking energy. The escape region is given by
r > resc, where resc is determined by the equation

(resc − 3M)r2
esc + a2(resc + M) = 0. (3.29)

The particle oscillates around the initial orbit if |θ̇k| ≪ |θ̇E=1|. The
ISCO is located in this region when a . 0.853M.

• Capture region: In this region r̈ < 0 for any θ̇k. The stronger is the
kick the faster the capture is. This region lies in the interval rH ≤ r <
rcap, where rH is the black hole’s event horizon and rcap is given by
the equation

M1/2(ar2
cap + a3) + (rcap − 3M)r5/2

cap + a2(rcap − M)r1/2
cap = 0. (3.30)

The particle will be always captured unless if the kick is tiny. It will
just oscillate around the initial orbit in that case. The orbit at ro = M
(when a = M) is an exception. That is because Eq. (3.24) reduces
to E = 1/

√
3, which means that the particle becomes irresponsive

to the kick. The ISCO is located in the capture region for M ≥ a &
0.952M.

• The critical escape region: The particle acceleration is more involved
in this region because its direction depends on |θ̇k| value. r̈ > 0 if |θ̇k|
is below some critical value |θ̇c|. For |θ̇k| > |θ̇c|, the acceleration be-
comes inwards. For orbits with |θ̇E=1| > |θ̇c|, the particle can never
escape. The critical escape region lies between the escape and cap-
ture regions. θ̇c is determined by

∂rV+(r, θ̇c) = 0; rcap < r < resc. (3.31)

In Fig. 3.3 we plot |θ̇c| and |θ̇E=1| vs. ro for a = 0.95M. We see that |θ̇c|
vanishes at rcap ≈ 1.92M and approaches infinity as ro approaches
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resc ≈ 2.49M. Figure 3.4 shows how the initial orbit radius ro at
which |θ̇c| = |θ̇E=1| changes with a. It is always greater than rcap.
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Figure 3.3: |θ̇c| (solid) and |θ̇E=1| (dashed) vs. ro for a = 0.95M. |θ̇c| van-
ishes at rcap and approached infinity as ro approaches resc.
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Figure 3.4: The radius of the initial orbit ro at which |θ̇c| = |θ̇E=1| (solid)
as a function of a. The dashed curve is rcap.
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Figure 3.5 shows the three regions along with the ISCO and how they
change with a. Incorporating all of the above analyses, a particle in a
circular orbit around a Kerr black hole kicked in the direction normal to
the orbit can escape in the following two cases:

resc

M

rcap

M
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0.0
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0.6

0.8

1.0

ro�M

a�
M

Figure 3.5: The dependence of resc, rcap and rms (dashed) on a. The escape
region is to the right of resc, the capture region is to the left of rcap, while
the critical escape region is the one in between. The dotted line is rlc.

1. Its initial orbit is in the escape region, ro ≥ resc.

2. Its initial orbit is in the critical escape region, rcap < ro < resc, where
it is possible to have |θ̇E=1| ≤ |θ̇o| < |θ̇c|.

3.3 Escape Velocity of a Charged Particle

3.3.1 Circular Orbits

The particle’s energy and azimuthal angular momentum are still con-
stants of motion since the electromagnetic potential Eq. (2.19) is invariant
with respect to the temporal and azimuthal Killing isometries

Lξ(t)
Aµ = Lξ(ϕ)

Aµ = 0. (3.32)
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The specific energy E and azimuthal angular momentum L are

−E = Pµξ
µ

(t)/m =

(
2Mr

Σ
− 1

)
ṫ − 2aMr

Σ
(b + ϕ̇)sin2 θ, (3.33)

L = Pµξ
µ

(ϕ)
/m =

[
−2aMr

Σ
ṫ +

A
Σ
(b + ϕ̇)

]
sin2 θ, (3.34)

where b = qB/2m. The introduction of Aµ breaks down the Carter integral
of motion. It can be checked by direct differentiation with respect to the
proper time that K̇ ̸= 0. Using the normalization condition uµuµ = −1
along with Eqs. (3.33) and (3.34) one can write

Σ2
(

ṙ2 + ∆θ̇2
)

= AE2 − 4aMELr − ∆Σ(1 − 2bL)

+
L2(2Mr − Σ)

sin2 θ
− b2A∆sin2 θ. (3.35)

This equation simplifies in the equatorial plane to

r3ṙ2 = (E2 − b2∆)[r(r2 + a2) + 2Ma2]− 4aMEL
− r∆(1 − 2bL)−L2(r − 2M). (3.36)

There are four dynamically distinct cases of equatorial motion. They are
determined by the four combinations of the signs of bL and aL. As men-
tioned above, we fix L to be positive. We just alter the signs of a and b to
consider the four cases. We refer to the b > 0 (b < 0) case as anti-Larmor
(Larmor) motion. The radial acceleration of the particle f r = q

m Frνuν is
positive (negative) in the anti-Larmor (Larmor) case. Let define U(r) to
be the right hand side of Eq. (3.36)

U(r) : = (E2 − b2∆)[r(r2 + a2) + 2Ma2]− 4aMEL
− r∆(1 − 2bL)−L2(r − 2M). (3.37)

Then using the circular orbit conditions U(r) = 0 and U′(r) = 0 one ob-
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tains

(E2 − b2∆)[r(r2 + a2) + 2Ma2]− 4aMEL − r∆(1 − 2bL
−L2(r − 2M) = 0, (3.38)

2b2(r − M)[r(r2 + a2) + 2Ma2] + (1 − 2bL)[2r(r − M) + ∆]

−(E2 − b2∆)(3r2 + a2) + L2 = 0. (3.39)

The extra condition for ISCOs U′′(r) = 0 gives

(2bL− 1)(3r − 2M) + 3E2r − 2b2r[r(5r − 6M) + 3a2] = 0. (3.40)

It seems possible to solve Eqs. (3.38) and (3.39) and obtain analytic expres-
sions for Eo and Lo, however, the resulting expressions are extremely com-
plicated. We solve these equations numerically instead. We also require
that ṫ > 0 to exclude past-directed solutions. Using Eqs. (3.33) and (3.34),
an expression for ṫ in the equatorial plane can be written as

r∆ṫ = [r3 + a2(r + 2M)]E − 2aLM. (3.41)

It is interesting to see how the ISCO depends on a for selected val-
ues of the magnetic parameter b. Knowing the dependence of the ISCO
on a is essential for measuring the spins of astrophysical black holes [2].
The a–rms curves are shown for selected b values in Fig. 3.6. When b = 0
Fig. 3.1 is reproduced. In both Larmor and anti-Larmor motions rms gets
closer to the black hole as |b| increases. It converges to an asymptotic
value as |b| becomes large. The shift in rms is more evident in the anti-
Larmor motion case. The value of rms is different from the asymptotic
value by less than 0.1% when 5.8 × 103 < b < −0.82M−1. For retrograde
motion rms is always outside the static limit. Figures 3.7 and 3.8 show
Lms and Ems corresponding to the ISCOs shown in Fig. 3.6. It is interest-
ing that negative energy stable circular orbits can exist in the retrograde
anti–Larmor motion. The possibility for the existence of negative extra-
ergospheric energy states was pointed out in [3] and further explored in
[4]. The energy-emission processes related to it were discussed in [5, 6].
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Ems becomes zero at a = −M when b = bc, where bc = xM−1 and x is the
positive real root of

45056x12 − 52224x10 + 3072x8 − 3776x6 + 4656x4 − 1320x2 = 25. (3.42)

Approximately x = 1.05344. As b increases further Ems becomes negative
for a ≥−M. Asymptotically, Ems becomes negative for all retrograde anti-
Larmor orbits and approaches a minimum of 2(1 −

√
2)Mb at a = −M

where rms = (1 +
√

2)M. This immense binding energy is intriguing. A
charged particle of mass mq and b ≫ M−1 ending up in this ’superbound’
state can give off energy

E = mqEms = (
√

2 − 1)qBM. (3.43)

For typical stellar mass and supermassive black holes of masses MSt and
MSu, respectively, this amounts to

E = 1.832 × 106(
MSt

M⊙
)GeV, (3.44)

E = 1.832 × 102(
MSu

M⊙
)GeV, (3.45)

where M⊙ is the solar mass.
It should be noted that there is only one rms solution after past-directed

orbits are excluded. The equation for rms given in [7] yields future-directed
solutions only when b < bc.

3.3.2 Three-Dimensional Motion and Conditions for Es-
cape from a Circular Orbit

It does not seem possible to determine the escape conditions analytically
due to the lack of a fourth constant of motion. The r and θ components
of the dynamical equation2 (2.20) were solved using the built-in MATHE-

2See the appendix at the end of this chapter Sec. 3.5 for the explicit forms of these
components.
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Figure 3.6: The ISCO’s radius rms dependence on a for different values of
the magnetic parameter b for (a) anti–Larmor and (b) Larmor motion.
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MATICA 7.0 function NDSOLVE. We used the constant of motion E as a
gauge of error in the numerical solver as before.

The numerical integration reveals that the escape and capture regions
are more involved than those in the neutral particle case. In Fig. 3.9
the trajectories of a charged particle kicked to three different energies
E = 1.0890, E = 1.0893 and E = 1.0900 are shown. E is related to θ̇k by
Eq. (3.35). As in the Schwarzschild black hole case, the particle in each
case ends up following a completely different trajectory despite that the
difference in energies is tiny. This extreme sensitivity to initial conditions
is an indicator of chaos. To obtain a comprehensive view of the problem
we will need to identify which initial conditions lead to escape and which
lead to capture. As we did in Ch. 2, we use the basin of attraction for this
purpose.

Let us see how the basin of attraction looks like for a neutral particle
first. We use the same color notation adopted in Ch. 2. Fig. 3.10 shows the
basin of attraction for a neutral particle generated numerically with ini-
tial values of ro ∈ (rlc,rlc + 6M) plotted horizontally and initial values of
E ∈ (1.0,2.0) plotted vertically. The resolution of the plot is 600×600. The
state of the particle is considered an escape if it reaches 200M. This escape
criterion is very efficient even when the particle is charged and hence was
adopted in this chapter. The maximum integration time is 105M. We tack-
led the a = 0.999M case, where rlc = 1.052M, because the structure of the
basin of attraction in this case is the richest. The basin boundaries are reg-
ular as they should be for a regular system. The structure of the attractors
is in accord with that described analytically in Sec. 3.2.2. The red color ap-
proaches resc as E becomes very large. The particle is backscattered near
resc and at low energies, where it barely makes it to escape.

Now we return to charged particles. Figure. 3.11 shows the basins
of attraction for anti-Larmor motion (b = 0.1M−1) with initial values of
ro ∈ (rms,rms + 6M) plotted horizontally and initial values of E ∈ (1.0,2.0)
plotted vertically. Figure. 3.12 shows the Larmor motion (b = −0.1M−1)
basins of attraction but with initial values of E ∈ (1.0,3.0) since E0 is usu-
ally considerably larger than 1. The value of |b| considered here may be
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small compared to typical astrophysical values. Nonetheless, we find this
value appropriate to demonstrate the various aspects of the problem. The
resolution of the plots in these figures is 800×800. The spin parameter a
was taken at selected values between −1 and 1. The similarity between
Fig. 3.10 and 3.11 (f) is striking. The main effect of the magnetic field is to
distort the basin boundaries from regular lines to fractals.

Let is discuss the general structures of the basins of attraction and for-
mulate the escape conditions. The main parts in the basins of attraction
can be identified as follows:

• Escape region: In this region particles escape directly in the direc-
tion of the kick. This region is the upper right large green area in the
figures. It gets reduced from left as a increases. We use the bound-
ary of this region to define the effective escape energy Eesc, which
can be linked to a corresponding θ̇esc through Eq. (3.35). This effec-
tive escape energy curve can be fitted with a tiny relative error to a
function of the form

Eesc = 1 +
a + bro + cr2

o
d + ero + f r2

o
. (3.46)

where a,b, ... and f are fitting parameters.

• Capture region: This is the red nearly rectangular area in the left
side of the plots when a = 0.999M. The particle is always swallowed
by the black hole in this region for any energy. It is the proximity of
ro from the horizon that makes particles always accelerate inward
no matter how energetic the kick is. Therefore this region shows up
only when a is close to M. Increasing b for anti-Larmor motion (see
Fig. 3.6) would also leads to the emergence of this region because
rms would become closer to the horizon.

• Fractal region: The escape region is most of the time bounded by a
region of extremely fine threads that demonstrate a repetitive pat-
tern of red, green and yellow colors. These threads get finer as they
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get closer from the escape region. We refer to this region as the frac-
tal region. The particle in it may cross the equatorial plane several
times. The fractal structure is persistent at any magnification level.
The red color ceases to exist near the end of the horizontal tail of the
fractal. This effect becomes more noticeable as a increases until the
red color completely disappears from the lower half of the fractal
structure when a = 0.999M.

• Stability region: It is represented by the blue strip in the Larmor
motion plots. We expected that the left boundary of this region
becomes smooth if the numerical integrator is run for longer time.
However, increasing the integration time will increase the compu-
tation time immensely without modifying significantly the quantity
we want to measure, namely D f (see below).

• Backscattering region: It is the yellow isle located between the cap-
ture region and the upper branch of the fractal region. In the back-
scattering region the particle escapes in the direction opposite to
the kick. Like the capture region, the backscattering region appears
when ro is close from the horizon.

3.3.3 Rotation and Chaoticness

It is interesting to see how the black hole’s spin a affects the chaoticness
in the dynamics. We use the fractal dimension D f of the basin boundary
as a measure of chaoticness. It should be mentioned that D f cannot be
used to make a general conclusion since the basins of attraction are pro-
duced for specific ranges of initial conditions. Moreover, rms depends on
a and one should be consistent when choosing the ranges of initial con-
ditions for different values of a. We therefore prefer to take the ranges of
initial conditions identical to those of the basins of attraction in Figs. 3.11
and 3.12, in particular ro ∈ (rms,rms + 6M). Although Eo in the Larmor
motion depends strongly on a as well we choose to keep the range of E as
before for brevity. The dependence of D f on a for the specified ranges of
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initial conditions is shown in Fig. 3.13 for (a) anti-Larmor motion and (b)
Larmor motion.
For Larmor retrograde motion D f is nearly constant while it is linearly
increasing (within error) for the remaining cases. It is not surprising that
D f increases with a since the gravitational field gets stronger as rms gets
closer to the horizon. As mentioned above, the D f –a relation depends on
the set of initial conditions. For example, D f becomes inversely propor-
tional to a if ro ∈ (4M,10M) is chosen instead!

3.4 Summary

In this chapter the escape of charged particles orbiting a weakly magne-
tized Kerr black hole was investigated. The magnetic field is parallel or
anti-parallel to the black hole’s spin. The particle is kicked from a sta-
ble circular orbit in the direction perpendicular to the orbit’s plane. We
studied the case of neutral particles first and gave the escape conditions
analytically. It was found that there are three regions in which the particle
behaves in a specific way after the kick. If the particle’s orbit is far enough
from the black hole it accelerates away and escapes if it has sufficient en-
ergy. If it is too close it accelerates inwardly and gets captured unless if
the kick energy is tiny. Between the two regions the particle accelerates
away if the kick velocity is below some critical velocity. The particle can
escape if it can be made energetically unbound before reaching the critical
kick velocity.

We have written the equations determining the stable and marginally
stable circular orbits and studied the latter numerically. A result of spe-
cial interest is that extra-ergospheric stable circular orbits with negative
energies can exist. It was shown that a particle can give off energy several
orders of magnitude greater than its rest energy if it ends up in a ’super-
bound’ orbit. The energy released is independent of the falling particle
mass when b ≫ M−1.

The case of charged particles escape has two extra complications: (1)
The magnetic field shifts the ISCO inward, and more importantly (2) the
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dynamics becomes chaotic. By inspecting the basins of attraction for neu-
tral and charged particles we find that the main effect of the magnetic
field is to make the basin boundaries fractals instead of simple curves.
We identified several regions of interest in the basins of attraction and
gave an empirical criterion for charged particles guaranteed escape.

It seems that the particle escape becomes more difficult as the black
hole’s rotation parameter increases because the ISCO becomes closer to
the horizon. However, if a whole accretion disk is considered then the
dependence is more involved. No general conclusion about the relation
between chaoticness and black hole’s rotation was found, mainly because
our measure of chaoticness, the fractal dimension, is strongly dependant
on the ranges of initial conditions selected. In spite of that, it seems true
that the dynamics gets more chaotic when the gravitational field gets
stronger.

Increasing the values of |b| would modify the dynamics, especially in
the anti-Larmor motion since rms would be significantly affected. Never-
theless, we don’t expect that to show new aspects of the problem.
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3.5 Appendix

In this appendix we write the r and θ components of the dynamical equa-
tion (2.20) in Kerr background explicitly. They read

r̈ =
M∆(2r2 − Σ)

Σ3

(
2asin2 θ ṫϕ̇ − ṫ2

)
+

r∆
Σ

θ̇2 −
(

r
Σ
− ∆,r

2∆

)
ṙ2

− Σ,θ

Σ
ṙθ̇ − ∆(2rA − ΣA,r)sin2 θ

2Σ3 ϕ̇2

+ qB

[
aM∆(2r2 − Σ)sin2 θ

Σ3 ṫ − ∆(2rA − ΣA,r)sin2 θ

2Σ3 ϕ̇

]
, (3.47)

θ̈ = −2r
Σ

ṙθ̇ − MrΣ,θ

Σ3 ṫ2 − Σ,θ

2Σ
θ̇2 +

Σ,θ

2∆Σ
ṙ2 − 2aMr(2Σcosθ − Σ,θ sinθ)sinθ

Σ3 ṫϕ̇

− [A(Σ,θ sinθ − 2Σcosθ)− ΣA,θ sinθ]sinθ

2Σ3 ϕ̇2

− qB
{

aMr(2Σcosθ − Σ,θ sinθ)sinθ

Σ3 ṫ

+
[A(Σ,θ sinθ − 2Σcosθ)− ΣA,θ sinθ]sinθ

2Σ3 ϕ̇

}
, (3.48)

We then eliminate ṫ and ϕ̇ using Eqs. (3.33) and (3.34).
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Figure 3.7: The ISCO’s azimuthal angular momentum Lms dependence
on a for different values of the magnetic parameter b for (a) anti–Larmor
and (b) Larmor motion.
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Figure 3.8: The ISCO’s energy Ems dependence on a for different values of
the magnetic parameter b for (a) anti–Larmor and (b) Larmor motion.
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(a) (b) (c)

Figure 3.9: The trajectories of a charged particle initially at ro = 4M kicked
to three different energies (a): E = 1.0890 (b): E = 1.0893 (c): E = 1.0900.
The black hole’s spin parameter is a = 0.5M and b = 0.1M−1. The particle
is scattered to a different final state in every case.
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Figure 3.10: The basin of attraction for a neutral particle. resc and rcap are
shown as well. The black hole’s rotation parameter is a = 0.999M.
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Figure 3.11: The basins of attraction for a charged particle with b =
0.1M−1 for selected a values.
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Figure 3.12: The basins of attraction for a charged particle with b =
−0.1M−1 for selected a values.
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Figure 3.13: D f of the basin boundaries vs. a for (a) anti-Larmor motion
(b = 0.1M−1) and (b) Larmor motion (b = −0.1M−1).
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Chapter 4

Conclusion

In this thesis we studied the escape of charged particles from a stable
circular orbit around a weakly magnetized Schwarzschild and Kerr black
holes. This problem can be relevant to the high energy emissions from
astrophysical black holes, where magnetic fields play an essential role.
We assumed that the field is uniform, axisymmetric and normal to the
orbital plane. Essentially, we studied the three-dimensional motion of the
particle after it is given a kick in the direction perpendicular to the plane
of the orbit. The initial parameters of the particle are fixed by the orbit’s
radius. The set of initial conditions of the dynamics therefore consists
of the initial radius and kick velocity (energy) {ro,E(θ̇k)}. Mainly, the
particle either gets captured by the black hole or escapes it and approach
spatial infinity.

We started with neutral particles. When the black hole is not rotat-
ing, the particle always accelerates away after the kick and escapes if it is
energetically free. When the black hole is rotating the particle’s accelera-
tion is always outward only if the particle’s orbit is far enough from the
black hole. If it is in the proximity of the black hole then it always accel-
erates inwardly. In between, the particle accelerates away if the velocity
given to it by the kick is below some critical value. Since there is only one
radial turning point, the particle can escape the black hole if it is made
energetically free and accelerating outwardly. We referred to the outward
and inward acceleration regions in the {ro,E(θ̇k)} space as the escape and
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capture regions, respectively, and to the region in between as the critical
escape region. The emergence of the escape and capture regions is due to
the proximity of the initial orbit to the black hole while the emergence of
the critical escape region is due to the black hole’s rotation.

The problem when the particle is charged is more involved. The mag-
netic field breaks the general integrability of the equations of motion. The
dynamics becomes generally chaotic. Additionally, the magnetic field
brings the ISCO closer to the black hole. The effect of this is the possibility
of the emergence of a capture region even when the black hole is not ro-
tating. The chaoticness in the dynamics manifests itself in the boundaries
between different regions of capture and escape. The boundaries become
fractals instead of simple lines. This fact makes the analytical determina-
tion of the escape conditions formidable. We therefore used the boundary
of the main escape region to set an effective escape condition.

There does not seem to be any lucid general relation between the black
hole’s rotation and the chaoticness in the dynamics. Instead, this kind of
relations can be given in a restricted subset of the set of initial conditions
of the dynamics. Nonetheless, the dynamics appears to be more chaotic
near the black hole’s horizon where the gravitational field is stronger.

It would be interesting to see how the problem changes when fur-
ther sophistications are involved. Namely, when more realistic magnetic
fields, more general initial orbits and more general kicks with physical
kicking mechanisms are used. While these modifications may enrich the
problem, we expect that its main features will be sustained.
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Appendix A

Geometrized Units

We adopted in this thesis geometrical units in which the speed of light
c and the gravitational constant G are set to unity. The dimensions of
Length, Time and Mass are designated by L, T and M, respectively. A
quantity with dimension LnTmMp in conventional units has the dimen-
sion Ln+m+p in geometrical units with the conversion factor cm(G/c2)p

[1]. Table A.1 below lists some physical quantities of interest with the
appropriate conversion factors.

Table A.1: Various physical quantities in conventional and geometrized
units and the conversion factors.

Quantity Conventional Geometrized Conversion
units units factor

Length L L 1
Time T L c
Velocity LT−1 1 c−1

Acceleration LT−2 L−1 c−2

Mass M L Gc−2

Momentum MLT−1 L Gc−3

Angular Momentum ML2T−1 L2 Gc−3

To express electromagnetic quantities in geometrized units we set the
Coulomb constant ke = (4πε0)

−1 equal to 1, where ε0 is the electric per-
mittivity of free space. We designate electric charge dimension by Q. A
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quantity with dimension LnTmMpQq in conventional units has the dimen-
sion Ln+m+p+q in geometrized units where the corresponding conversion
factor is cm−q(G/c2)p+q/2kq/2

e . Table A.2 below lists a few interesting elec-
tromagnetic quantities with the appropriate conversion factors.

Table A.2: Some interesting electromagnetic quantities in conventional
and geometrized units and the conversion factors.

Quantity Conventional Geometrized Conversion
units units factor

Electric charge Q L G1/2k1/2c−2

Electric current TQ L2 G1/2k1/2c−1

Electric field MLT−2Q−1 L−1 G1/2k−1/2c−2

Magnetic field MT−1Q−1 L−1 G1/2k−1/2c−1

Electric potential ML2T−2Q−1 1 G1/2k−1/2c−2

Magnetic potential MLT−1Q−1 1 G1/2k−1/2c−1

qB/m1 T−1 L−1 c−1

[1] R. Wald, General Relativity (The univerity of Chicago Press, Chicago, 1984).

1See Chapters 2 and 3 where this quantity is used.
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Appendix B

Einstein-Maxwell Equations

In this Appendix we give a quick review of Einstein-Maxwell equations.
The Einstein-Hilbert-Maxwell action reads

SEHM =
∫
(LEH + LEM + LI)

√
−gd4x, (1)

where

LEH =
1

16π
R, (2)

LEM = − 1
16π

FµνFµν, (3)

LI = jµ Aµ. (4)

Here R is the Ricci scalar, Fµν is the electromagnetic field tensor given by
Fµν = Aν,µ − Aµ,ν where Aµ is the electromagnetic four-potential and jµ

in the interaction term LI is the electromagnetic four-current. Variation of
the action with respect to gµν yields the Einstein field equations with the
electromagnetic stress-energy tensor

Rµν −
1
2

gµνR = 8πT(EM)
µν , (5)
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where

T(EM)
µν =

1
4π

(
FµαF α

ν − 1
4

gµνFβγFβγ

)
. (6)

To get the Maxwell equations in the curved background described by
gµν we variate the action with respect to the vector potential Aµ. The
variation yields

Fµν
;µ = 4π jν. (7)
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