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© Özlem Aslan, 2017



Abstract

Most machine learning problems can be posed as solving a mathematical program

that describes the structure of the prediction problem, usually expressed in terms of

carefully chosen losses and regularizers. However, many machine learning prob-

lems yield mathematical programs that are not convex in model parameters, forcing

the consideration of heuristic optimization strategies that do not provide guarantees

of solution quality. The main focus of this thesis is to develop convex approxi-

mations of important non-convex machine learning problems; in particular, new

convex formulations for deep latent modelling and robust estimation are developed.

Training deep predictive models with latent hidden layers poses a hard com-

putational problem: since the model parameters have to be trained jointly with

inference over latent variables, the convexity of the training problem is usually de-

stroyed. This thesis first proposes a novel reformulation of supervised training of

a twolayer architecture by introducing a latent feature kernel, which allows a rich

set of latent feature representations to be captured while still allowing useful con-

vex formulations via semidefinite relaxation. To tackle the resulting computational

problem, efficient training algorithms are developed to exploit the specific structure

of the problem and overcome the inadequate scaling of general purpose semidefinite

solvers. Promising empirical results are obtained that show useful hidden structure

can still be captured even in the presence of convex relaxations.

The thesis then shows that the two–layer approach can be extended to handle

an arbitrary number of latent layers. To achieve this extension, a novel layer loss
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is proposed that is jointly convex in the adjacent normalized latent feature kernels.

An efficient algorithmic approach is then developed for this extended formulation.

Again, promising empirical results are obtained that demonstrate improved capabil-

ities over single latent layer models. These results demonstrate the first fully convex

formulation of training a deep architecture with an arbitrary number of hidden lay-

ers.

A final non-convex problem this thesis addresses is robust regression in presence

of outliers. Although the field of robust regression is well established, standard

estimators in the robust regression literature are not convex and pose intractable

computational problems, while robust estimators proposed in the machine learning

literature are only robust under unrealistic assumptions. To address these short-

comings, this thesis proposes a new formulation of robust regression that admits a

convex relaxation and efficient training algorithm, while still satisfying nontrivial

robustness and consistency guarantees.
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To my parents.
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“ . . . in fact, the great watershed in optimization isn’t between lin-

earity and nonlinearity, but convexity and nonconvexity.”

– R. Tyrrell Rockafellar

“Truth . . . is much too complicated to allow anything but approxi-
mations.”

– John von Neumann
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Chapter 1

Introduction

Machine Learning (ML) has been playing the lead role in achieving impressive ad-

vances in challenging prediction problems across several areas of perceptual com-

puting; including speech recognition (Dahl et al., 2012), image analysis and object

detection (Krizhevsky et al., 2012; Le et al., 2012), and natural language processing

(Socher et al., 2011). Recently, ML has also facilitated revolutionary progress in

more general artificial intelligence tasks (Mnih et al., 2015; Silver et al., 2016). It is

interesting to note that these results have all been based on deep learning methods,

suggesting that predictive representation learning is a critical principle for obtain-

ing state of the art prediction performance.

The automatic acquisition of representations is motivated by the observation that

appropriate features make any learning problem easy, whereas poor features ham-

per learning. Given the practical significance of feature engineering, automated

methods for feature discovery offer a valuable tool for applied machine learning.

Ideally, automatically acquired features capture simple but salient aspects of the in-

put distribution, upon which subsequent feature detection can compose increasingly

abstract and invariant aspects (Bengio, 2009); an intuition that appears to be well

supported by recent empirical evidence (Bengio et al., 2013).

The fundamental principles that underlie deep learning (formerly artificial neu-
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ral networks) and reinforcement learning have been well studied for decades. How-

ever, the recent availability of massive computational resources has enabled well-

known but not previously dominant methods to improve the state of the art in sev-

eral large scale problems (Bottou et al., 2016). While these recent achievements

are promising, there remains a need for significant progress on reducing training

time and improving prediction performance to yield satisfactory performance on

many real world problems. Of course, there is also a need for a comprehensive

theoretical understanding. These goals require the careful design of learning proce-

dures and improvement in their algorithmic efficiency to solve large scale problems

more quickly and accurately. A working hypothesis of this thesis is that such im-

provements can be achieved by leveraging current techniques in field of numerical

optimization.

Most training problems in ML can be formulated as a mathematical program

(MP) (Bennett & Hernandez, 2006; Sra et al., 2012) (or as an integration problem,

but I will not consider integration formulations in this thesis). Generally, an MP is

formulated as

min
x∈Σ

f(x) (1.1)

fi ≤ 0 (1.2)

fi = 0 (1.3)

where Σ is the subset of Rn, N or Sn where Sn denotes set of positive semi-definite

matrices. Below we will cover how the problems in ML can be formulated as MP’s.

According to the empirical risk minimization (ERM) principle described by

Vapnik (1998), a ‘learning process’ consists of an input space X where x ∈ X

has a fixed but unknown distribution P (x), an output space Y where y ∈ Y has a

fixed but unknown distribution P (y|x), and a hypothesis space H that consists of

hypotheses h ∈ H each of which is a predictor function h : X 7→ Y . Let us define

the product space as Z = X × Y where z ∈ Z and a fixed but unknown joint
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distribution D(x, y) = P (x)P (y|x). We are given a training set that is composed

of n instances S = {(x1, y1), (x2, y1) . . . (xn, yn)} = {z1, z2, z3 . . . zn} identically

and independently drawn according to a joint distribution D(z). The goal in a su-

pervised learning problem is to solve the following risk minimization problem

min
h∈H
R(h) = EZ∼D[f(h;Z)] (1.4)

where f(h; (x, y)) = `(h(x), y) is a known cost function (Shalev-Shwartz et al.,

2010)(Vapnik, 1998). We cannot perform this optimization since the joint distribu-

tion D is unknown. Hence we use the training set to calculate and minimize the

empirical risk:

Remp(h) =
1

n

n∑

i=1

`(h(x), y) (1.5)

which defines the objective function of an MP. In the case of classification, where

the y values correspond to class labels, the true error consists of counting misclas-

sifications, referred to as ‘zero-one’ loss

`(h(x), y) = 1(h(x)6=y) (1.6)

where 1 is the indicator function. However this loss is neither convex (Appendix

B.1 provides some basic background on convexity), or continuous, nor differen-

tiable, and this loss is known to be NP-hard to minimize (Ben-David et al., 2003;

Feldman et al., 2009). Using surrogate losses that are generally a convex upper

bound of the true error is a common approach to this problem. Some well-known

such surrogate losses are

Exponential : exp(−yf) (1.7)

Binomial Deviance : log2(1 + 2−2yf ) (1.8)

Squared : (y − f)2 (1.9)

Hinge : max(0, 1− yf). (1.10)

These losses are illustrated in Figure 1.1.
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Figure 1.1: Surrogate losses.

A well-known performance measure for training procedure is the misclassifica-

tion error which is simply the average difference between predictions and known

targets. A standard caveat is that when one selects the best hypothesis based on

only training error, there is a risk of obtaining a high generalization error (i.e. a

large misclassification error on unseen test data). In general, we therefore also de-

fine a structure over the hypothesis space to overcome such issues. For example, in

structural risk minimization (SRM), for a predictor f with parameter w, f(x, w), a

structure is constructed by controlling the model complexity via bounding the norm

of the weights using some Si = {w : ||w|| ≤ Ci} and C1 < C2 · · · < Ck. Then, the

MP equivalent to this constraint minimization has the form

Remp(h) =
1

n

n∑

i=1

`(h(x), y) + γi||w|| (1.11)

where γi is the Lagrange multiplier, which can be approximately chosen such that

γ1 > γ2 · · · > γk for γi matching Ci with same index respectively. The term γi||w||
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is also known as a regularization term, and different norms are designed for var-

ious problem structures. Different choices of loss and regularization, which yield

different MP’s, can require the development of novel algorithms that exploit the

structure of the MP, since off-the-shelf optimization methods often do not give rea-

sonable performance for large-scale learning problems (Bottou et al., 2016). Since

ML problems can be formulated as a MP, optimization is almost always at the heart

of ML (Bennett & Hernandez, 2006).

1.1 Convex Approximations for Global Training

Convexity has always been a central topic in the field of optimization (Rockafellar,

1993). It has been shown that checking whether a feasible solution is not a lo-

cal minimum for a general smooth non-convex function is NP-complete (Murty &

Kabadi, 1987) which means it is NP-complete to find a global minimum. A convex

optimization problem guarantees that any local solution is globally optimal, while

local solutions can be suboptimal in a non-convex optimization problem; worse, it is

hard to know how close a local minima might be to global optimality in such cases

(Boyd & Vandenberghe, 2004). In the context of ML, where one typically fits mod-

els to data by optimizing some parameters such as in Equation 1.11, non-convexity

can negatively effect prediction performance. Sophisticated and often computa-

tionally expensive heuristics have been used in practice to handle non-convex ma-

chine learning problems, usually without any guarantees of solution quality. The

heuristics that have been proved to work well in practice have been very difficult to

discover, often taking a decade or more of empirical exploration. Moreover, these

heuristic approaches yield methods that have limited foundation, making their use

difficult for anyone who has not subjected themselves to the same experience of

designing such heuristics. Experienced experts can carefully initialize, tune and

adopt the solvers that try to minimize a non-convex learning problem for obtaining
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some acceptable results. Note that this trial and error process can be also costly as

exhaustively trying bad initializations and parameter values without experience can

take a significant time (e.g. in deep learning setting). If one obtains local solutions

for a non-convex problem, different results can be obtained with different initial-

izations and heuristics. It is hard to see whether any change on the result is coming

from a poor local minima or poorly designed objective function for a specific prob-

lem. By contrast, convex problems do not create such difficulties since any local

minimum is guaranteed to be globally optimal. Non-experts are often able to solve

convex problems by downloading packages and running them on their own tasks

without worrying about the impact of suboptimality on their solutions. Despite the

current popularity of non-convex formulations in ML, there have been many pop-

ular non-convex ML problems that have been improved by convex approximations

(Lanckriet et al., 2004; Xu & Schuurmans, 2005; Lanckriet et al., 2007; Argyriou

et al., 2008). The primary focus of this thesis is expanding the set of non-convex

problems in ML that can be tackled by convex formulations, by employing convex

relaxation (Vandenberghe & Boyd, 1996).

1.2 Deep Nonlinear Models

Deep learning has recently been enjoying a resurgence (Le et al., 2012; Srivastava

& Salakhutdinov, 2012; Krizhevsky et al., 2012) due to the discovery that initial-

ization heuristics can significantly improve the results of classical training methods

(Bengio et al., 2013; Bengio, 2009; Hinton, 2007; Hinton et al., 2006). Deep learn-

ing is essentially an instance of latent variable modelling. The advantage of latent

variable models is that they allow abstract semantic features of observed data to

be represented, which can enhance the ability to capture predictive relationships

between observed variables. Capturing the semantic features of words is a well-

known example of latent modelling in natural language processing: for instance,
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‘girl’ has the semantic features of ‘human’, ‘young’ and ‘female’, while ‘boy’ has

has the semantic features of ‘human’, ‘young’ and ‘’male’. For image analysis, the

presence of high level objects can define latent features in the context of scene clas-

sification: a ‘street’ scene can have instances of ‘tree’, ‘road’, ‘building’ and ‘sky’,

for example.

In this way, latent variable models can greatly simplify the description of oth-

erwise complex relationships between observed variates. For example, in unsuper-

vised settings, latent variable models have been used to express feature discovery

problems such as dimensionality reduction (Lawrence, 2005), clustering (Banerjee

et al., 2005), and sparse coding (Elad & Aharon, 2006), to name a few. More re-

cently, such latent variable models have been used to discover abstract features of

visual data that are invariant to low level transformations (Le et al., 2012; Srivas-

tava & Salakhutdinov, 2012; Hinton, 2007). These learned representations not only

facilitate understanding, they can also enhance subsequent learning.

In this thesis, I restrict attention to latent variable models for conditional model-

ing. One simple setup for the architecture of a basic multi-layer conditional model

with fully connected layers is shown in Figure 1.2. Here, the pixel values of the

grayscale digits are the values of an example shown in first layer and the corre-

sponding label that identifies the digit is the output in last layer. The middle layers,

{φi}, are latent (or hidden) layers that store the values of hierarchical representa-

tions. Hierarchical latent layers are modelled by nested nonlinearities: each suc-

cessive layer, φi, is calculated by multiplying the previous layer φi−1 by a weight

matrix Wi and applying a nested nonlinear transfer (activation) function. A loss

function with the output of last layer and target labels as two arguments is mini-

mized to obtain the parameters. A simple two-layer model can discriminate some

datasets that are not linearly separable, by performing appropriate nonlinear trans-

formations at a hidden layer (e.g. representations that correspond to AND opera-

tions in a latent layer can separate the well-known XOR dataset).
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Figure 1.2: Deep latent architecture in a conditional setting.

In a supervised (i.e. conditional) setting, latent variable models are used to

discover intervening feature representations that allow more accurate reconstruc-

tion of outputs from inputs. One advantage in the supervised case is that output

information can be used to better identify relevant features to be inferred. How-

ever, latent variables also cause difficulty in this case because they impose nested

nonlinearities between the input and output variables. Some important examples

of conditional latent learning approaches include those that seek an intervening

lower dimensional representation (Carreira-Perpiñán & Lu, 2010), latent clustering

(Tishby et al., 1999), sparse feature representation (Elad & Aharon, 2006) or invari-

ant latent representation (Le et al., 2012; Rifai et al., 2011; Bengio, 2009; Hinton,

2007) between inputs and outputs.

Depth has been an essential property for obtaining state of the art results in

8



benchmark datasets, such as image datasets like CIFAR 10 and ImageNet (Bengio

et al., 2013). Although this fact has been hard to rigorously formalize, the common

intuition is that feature re-use in a directed acyclic hierarchy leads to more accurate

and invariant representations being learned than in shallower models (Bengio et al.,

2013). There have been some theoretical attempts to understand the effect of depth.

For networks with piecewise linear activations, Montufar et al. (2014) show that a

composition of layers exponentially increases the number of linear input regions,

and claim that this property increases the expressiveness of the model class while

yielding better generalization performance for deeper models.

The intuition behind using hierarchical latent layers via nested nonlinearities has

been grounded in the fact that natural perceptive signals in the world exhibit com-

positional hierarchies: higher level representations are compositions of lower-level

representations (LeCun et al., 2015; Cun et al., 1990). If we consider the features of

images, it can be observed that local combinations of edges form motifs, motifs are

combined to form parts and parts form objects (LeCun et al., 2015). This hierarchi-

cal feature structure is also valid for speech and text data. Methods that yield state

of art results are mostly based on the convolutional neural network (CNN) archi-

tectures which have four key properties: local connections, shared weights, pooling

and many layers (LeCun et al., 2015). The first three properties are enforced by con-

volutional and pooling layers. Convolutional layers are composed of feature maps

where each unit is connected to each of the local patches (receptive fields) in a pre-

vious feature map, where units of each feature map share the same weights. This

locality idea is based on two principles: the local features in the image are highly

correlated and the same motif can appear in different locations. The pooling oper-

ation merges similar features with similar semantics into one. A CNN architecture

is shown in Figure 1.3 which is taken from LeCun et al. (2015). The Figure 1.4 that

is taken from Lee et al. (2011) shows the edge filters that are commonly extracted

in lower layers of deep architectures. The higher lever representations learnt, which
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are taken from for different tasks, are shown in Figure 1.5 which is taken from Lee

et al. (2011). These visualizations empirically support the intuitive claims about the

inherent structures that can be captured by deep architectures.

Despite their growing success, the difficulty of training a predictive latent vari-

able model remains clear: since the model parameters have to be trained concur-

rently with inference over latent variables, the convexity of the training problem is

usually destroyed. A well-known result states that a neural network with just one

hidden layer can approximate any smooth function (Barron, 1993), however it has

been shown that finding the weights that best fit training data in a one layer net-

work is NP-hard (Blum & Rivest, 1992). Therefore, in practice, one relies upon

heuristic methods. In particular, stochastic gradient descent algorithms have be-

come the most common approach to training deep models. These methods optimize

the hypothesis parameters through a calculation of gradients on individual training

examples via the chain rule (known as back propagation), which allows scaling

to large datasets more readily than obtaining a full gradient by summing over an

entire dataset. There are also second order methods that shown some promising

results (Martens, 2016). These stochastic methods have theoretical guarantees for

convex functions, but there are only a few weak results for non-convex functions.

Unfortunately, only highly restricted models can be trained to optimality, and

current deep learning strategies provide no guarantees about solution quality (Gori

& Tesi, 1992). This remains true even when restricting attention to a single stage

of stage-wise pre-training: simple models such as the two-layer auto-encoder or

restricted Boltzmann machine (RBM) still pose intractable training problems, even

within a single stage (in fact, simply computing the gradient of the RBM objec-

tive is currently believed to be intractable (Swersky et al., 2011)). Beyond well

known problems like local minima (Gori & Tesi, 1992), deep training landscapes

also exhibit plateaus (Erhan et al., 2010) that arise from credit assignment prob-

lems in backpropagation. An intuitive understanding of the optimization landscape
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Figure 1.3: The outputs of layers of CNN.

Figure 1.4: The edge filter visualization of first layers.
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Figure 1.5: Hierarchical learnt representations in second and third layers.

and careful initialization both appear to be essential aspects of obtaining successful

training (Sutskever et al., 2013). Nevertheless, the development of recent train-

ing heuristics has improved the quality of feature discovery at lower levels in deep

architectures. These advances began with the idea of bottom-up, stage-wise unsu-

pervised training of latent layers (Hinton et al., 2006; Vincent et al., 2010) (pre-

training), and progressed to more recent ideas like dropout (Hinton et al., 2012;

Krizhevsky et al., 2012). Despite the resulting empirical success, however, such

advances occur in the context of a problem that is known to be NP-hard in the worst

case (even to approximate (Hoeffgen et al., 1995)), hence there is no guarantee that

worst case versus “typical” behavior will not show up in any particular problem.

1.3 Robust Models

Beyond learning deep representations, another important concern when learning

conditional predictors is resistance to outliers in data. Outliers are data points that

are abnormal relative to the rest of the data (Rousseeuw & Leroy, 1987a). Such

data points usually arise from some form of contamination, whether by mistakes in

measurements, or faulty experiments, etc. Such data points can adversely affect the
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quality of model learned when they are not noticed.

In this thesis, I will restrict attention to regression problems. For regression, the

standard convex losses are sensitive to outliers. For example, the squared loss is

a well-known non-robust regression loss. The problem with squared loss is that it

puts more emphasis on outliers since the loss grows quadratically for large resid-

uals, as can be seen in Figure 1.8. The least square estimation for the number of

international phone calls from Belgium in years 1950-1973 is shown in Figure 1.6

that is taken from (Rousseeuw & Leroy, 1987b). The data has many outliers since

the total number of minutes instead of the number of these calls was reported in

1964 -1969 and partly in 1963 and 1970 because of a change in measurement sys-

tem. It can be seen that the least squares solution is affected by the outliers in the

measurement errors. In fact, even a single erroneous observation can arbitrarily

change the estimates produced by methods such as least squares, which can be seen

in Figure 1.7.

Although there are preprocessing techniques that attempt to eliminate outliers

before parameter estimation, such methods are generally not reliable since it is

not straightforward to detect the outliers without a model, which is what we are

trying to learn in the first place. In general, preprocessing techniques can harm

performance by eliminating original data points rather than outliers (Rousseeuw &

Leroy, 1987a). Therefore, the field of robust statistics has investigated losses that

are designed to be resistant to outliers, which allows estimation and outlier detection

to be performed concurrently. (I present some basic background related to robust

estimation in Section B.4 of the appendix.) One example is the Huber loss shown in

Figure 1.8, which grows only linearly for large residuals and hence is less sensitive

to outliers than squared loss. Unfortunately, even Huber loss is not robust, even in

the weak sense that I will investigate in this thesis.

Although the field of robust regression is well established, it has not consid-

ered computational complexity analysis to be one of its central concerns: there is
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Figure 1.6: The squared error on a data with outliers.

Figure 1.7: The squared error on data with one outlier.
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Figure 1.8: The squared, Huber and absolute loss.

no current loss based regression procedure that is both robust and tractable (Bern-

holt, 2005; Nunkesser & Morell, 2010). Therefore another focus of this thesis is

to develop loss based estimators that are tractable and have robustness properties.

The main strategy I will investigate is a convex relaxation approach to obtaining a

tractable robust estimation procedure.

1.4 Contributions

In this thesis, I propose the following three main contributions that address the

intractability of learning deep latent models and robust estimation.

Convex Two-layer Modeling. The first contribution of this thesis, presented in

Chapter 3, is to demonstrate that a latent variable structure can be accommodated

within a tractable convex framework. In particular, we show how two-layer latent
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conditional models with a single latent layer can be expressed equivalently in terms

of a latent feature kernel. This reformulation allows a rich set of latent feature

representations to be captured, while allowing useful convex relaxations in terms

of a semidefinite optimization. Unlike (Cho & Saul, 2010), the latent kernel in

this model is explicitly learned (non-parametrically). To cope with scaling issues,

we further develop an efficient algorithmic approach for the proposed relaxation.

Importantly, the resulting method preserves sufficient problem structure to recover

prediction models that cannot be represented by any one-layer architecture over

the same input features, while improving the quality of local training. This work

was published in Advances in Neural Information Processing Systems 2013 (Aslan

et al., 2013).

Convex Multi-layer Modeling. Although the first contribution develops a convex

formulation for latent kernel learning, the approach is restricted to a single latent

layer. The next contribution of this thesis, presented in Chapter 4, is to develop

a convex formulation of multi-layer learning that allows multiple latent kernels to

be connected through nonlinear conditional losses. In particular, each pair of suc-

cessive layers is optimized with a prediction loss that is jointly convex in the adja-

cent kernels, while expressing a non-trivial, non-linear mapping between layers that

supports multi-factor latent representations. The resulting formulation significantly

extends the previous convex model, which is only able to train a single adaptive ker-

nel while maintaining a convex training objective (Aslan et al., 2014). Additional

algorithmic developments yield an approach with improved scaling properties over

previous methods, although not yet at the level of current deep learning methods.

We believe the result is the first fully convex training formulation of a deep learning

architecture with adaptive hidden layers, which demonstrates some useful potential

in empirical investigations. This work has been published in Advances in Neural

Information Processing Systems 2014 (Aslan et al., 2014).
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Convex Robust Modeling. Another contribution of this thesis, presented in Chap-

ter 5, is to develop a convex approximation of general robust regression in the pres-

ence of outliers. First, instead of focusing on one particular robust regression form

(e.g. a bounded loss from robust statistics), we adopt a general formulation of adap-

tive M-estimation, Variational M-estimation. We show that many bounded losses

can be expressed with this adaptive form. Hence the variational form allows us

to obtain a general flexible formulation. We then add Tikhonov regularization that

allows us to extend the setting to reproducing kernel Hilbert spaces (RKHSs). We

derive an equivalent formulation of the original adaptive estimation that is conve-

nient to develop a novel convex relaxation. We provide results that show the convex

relaxation gives estimator that is robust, consistent and tractable. We also empiri-

cally demonstrate the robustness and tightness of the approximation on an artificial

dataset and some real datasets.This work has been published in Advances in Neural

Information Processing Systems 2012 (Yu et al., 2012).
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Chapter 2

Background

I first briefly review related work on global learning approaches to deep learning

and robust estimation.

2.1 Tractability in Deep Learning

A growing body of research has investigated reformulations of latent variable learn-

ing that are able to yield tractable global training methods in special cases. Even

though global training formulations are not a universally accepted goal of deep

learning research (LeCun, 2007), there are several useful methodologies that have

been been applied successfully to other latent variable models, including: boosting

strategies (Bengio et al., 2005; Nowozin & Bakir, 2008; Bradley & Bagnell, 2009),

semidefinite relaxations (Joulin & Bach, 2012; Joulin et al., 2010; Guo & Schuur-

mans, 2007) and matrix factorization (Goldberg et al., 2010; Candes et al., 2009;

Zhang et al., 2012). Unfortunately, none of these approaches has yet been able to

accommodate a non-trivial hidden layer between an input and output layer while

retaining the representational capacity of an auto-encoder or RBM (e.g. boost-

ing strategies embed an intractable subproblem in these cases (Bengio et al., 2005;

Nowozin & Bakir, 2008; Bradley & Bagnell, 2009)). Some recent work has been
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able to capture restricted forms of latent structure in a conditional model—namely,

a single latent cluster variable (Joulin & Bach, 2012; Joulin et al., 2010; Guo &

Schuurmans, 2007)—but this remains a rather limited approach.

One key motivation for recent theoretical work was to ground deep learning

on a well understood computational foundation. For example, Arora et al. (2014)

demonstrates that polynomial time (high probability) identification of an optimal

deep architecture can be achieved by restricting weights to bounded random variates

and considering hard-threshold generative gates. Other recent work (Livni et al.,

2014a) considers a sum-product formulation (Gens & Domingos, 2012), where

guarantees can be made about the efficient recovery of an approximately optimal

polynomial basis. Although these treatments do not cover the specific models that

have been responsible for state of the art results, they do provide insight into the

computational structure of deep learning.

Another recent line of research focuses on exploring the structure of the non-

convex cost landscape for training a deep model. This type of work has recently

been unified under the label of non-convex optimization in ML. Initially, Baldi &

Hornik (1989) showed that the optimization surface for a linear neural network with

one hidden layer has no local minima (however, it has saddle points). Although they

claim that this result should intuitively generalize to nonlinear models, no such re-

sult has been proved. More recently, Saxe et al. (2014) have shown that optimizing

deep linear models share similarities to optimizing deep nonlinear models, such

as experiencing plateaus followed by rapid transitions to lower error; they achieved

these results by deriving exact solutions to the nonlinear learning dynamics for deep

linear networks.

It has also been shown that the critical points of random Gaussian error func-

tions on high dimensional continuous spaces are exponentially likely to be saddle

points with both negative and approximate plateau directions, while all local min-

ima are likely to have error close to the global minimum (Bray & Dean, 2007; Fyo-
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dorov & Williams, 2007). Although this result seem promising, it is not straightfor-

ward to generalize these conclusions to the optimization surfaces created by deep

neural networks. Dauphin et al. (2014) attempt to show empirically that there is

a connection between nonlinear neural networks and the Gaussian error functions,

arguing that neural networks also tend to produce many saddle points rather than

local minima in high dimensional spaces. However this work is restricted to empir-

ical analysis without any theoretical justification. They also propose a saddle-free

Newton method to tackle saddle points, but the proposed method does not have rea-

sonable scaling properties for training deep models. Choromanska et al. (2015a)

extend this work by theoretically showing that neural network landscapes exhibit

structures like the Hamiltonian of a spin-glass model, and these in turn have struc-

ture that suggests they are likely to have saddle points but not local minima in high

dimensions. However Choromanska et al. (2015a) state that this connection re-

lies on many unrealistic assumptions, and have posed the question of eliminating

such constraints as an open problem at COLT 2015 (Choromanska et al., 2015b).

Goodfellow et al. (2015) have also empirically investigated optimization trajecto-

ries taken by standard training methods on neural network landscapes. Kawaguchi

(2016) recently extended the work of Choromanska et al. (2015a), solving one of

the open problems in Choromanska et al. (2015a), by eliminating some of the con-

straints. However there is still a significant gap between theory and practice.

Another approach to the problem of non-convexity of neural networks is to im-

pose assumptions on the cost function, regularizers and/or weights to be able to

develop algorithms that can find a global minimum in polynomial time. For ex-

ample, Sedghi & Anandkumar (2014) investigate a method-of-moments approach

by using the cross-moments between the labels and score function of the input. In

particular, they show that they can recover the first layer weights in a network with

one hidden layer, given the assumptions that: the input comes from a known score

function, the network is sparse, the weights come from a specific distribution, and
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the problem has large dimension and a large number of output labels. Janzamin

et al. (2015) eliminate many of these assumptions and provide an algorithm that is

based on a tensor decomposition, under some non-degeneracy assumptions. These

works are restricted to networks with a single hidden layer: extending the analysis

to multi-layer networks remains a challenging open problem.

Livni et al. (2014b) investigate an alternative way to address intractability by

considering an improper learning framework, where instead of fixing the network

architecture, a different architecture that is almost as good as the target architecture

is considered. They show that a neural network with quadratic activation functions

and a sufficient number of layers and hidden units can approximate the sigmoid

transfer function, from which they obtain a guaranteed approximation to the best

network by greedily adding single hidden neurons using an eigen-decomposition.

Unfortunately, the approach is not entirely practical since training time and sample

complexities both grow quickly in the number of layers. A key bottleneck is that the

sigmoidal approximation requires a high degree polynomial network. Zhang et al.

(2015a) extend this approach to obtain a polynomial time guarantee with a kernel

based classifier, under the assumption that the depth of the network is constant and

the l1 norm of the weight in each layer is also bounded by a constant. Unfortunately,

these assumption do not normally hold in practice. (Zhang et al., 2015b) extend the

result to non-kernel based learning, with a time complexity that is polynomial in

the input dimension and sample size. Unfortunately, this result is exponential in the

excess risk, and they could only provide results for artificial data, which suggests

that the method does not easily scale to large datasets.

Training deep models with many layers is a hard task in practice since it is a

highly non-convex optimization problem (Romero et al., 2015). Many heuristics

have been tried to overcome the optimization difficulties. To eliminate vanishing

gradients, common activation functions have been recently changed to ReLu type

functions (Nair & Hinton, 2010). To further speedup training, batch normaliza-

21



tion has been introduced to reduce covariate shift (Ioffe & Szegedy, 2015). Deeper

architectures such as AlexNet (Krizhevsky et al., 2012), VGG (Simonyan & Zisser-

man, 2015) and GoogLeNet (Szegedy et al., 2015) have exploited such heuristics

to achieve state of the art performance on the ImageNet dataset. However accom-

modating dozens of layers still remains an empirically hard problem. Very recently,

residual networks (ResNet), which explicitly add an identity map and parametrizes

the residual, have made the training of hundreds of layers possible and significantly

improved the performance on some image classification benchmarks (He et al.,

2016).

Although many heuristics and theoretical analyses have been attempted, current

deep learning strategies still do not offer guarantees of solution quality under real-

istic assumptions. The dramatic changes in the claims based on empirical evidence

obtained from a few benchmark datasets (or from analysis based on unrealistic as-

sumptions) indicates that there is still a great need for careful rigorous work, rather

than a sole focus on trial and error based investigation.

2.2 Tractability in Robust Statistics

None of the standard regression estimators in the literature are both robust and

tractable, even in a weak sense: it has been shown that standard robust regression

formulations with non-zero breakdown are NP-hard (Bernholt, 2005; Nunkesser

& Morell, 2010), while any estimator based on minimizing a convex loss cannot

guarantee bounded response to even a single leverage point (Maronna et al., 2006)

Surprisingly, there remain no standard regression formulations that guarantee both

polynomial run-time with bounded response to even single outliers.

It is important to note that robustness and tractability can be achieved under re-

stricted conditions. For example, if the domain is bounded, then any estimator based

on minimizing a convex and Lipschitz-continuous loss achieves high breakdown

22



(Huber & Ronchetti, 2009). Such results have been extended to kernel-based re-

gression under the analogous assumption of a bounded kernel (Christmann & Stein-

wart, 2007; Christmann et al., 2009). Unfortunately, these results can no longer hold

when the domain or kernel is unbounded: in such a case arbitrary leverage can oc-

cur (Huber & Ronchetti, 2009; Rousseeuw & Leroy, 1987a) and no (non-constant)

convex loss, even Lipschitz-continuous, can ensure robustness against even a single

outlier (Maronna et al., 2006).

The closest previous work is by Black & Rangarajan (1996), who formulated

variational representations of certain robust losses, and by Yu et al. (2010), who

formulated a convex relaxation of bounded loss minimization. Unfortunately, Black

& Rangarajan (1996) did not offer a general characterization, while Yu et al. (2010)

did not prove that their final estimator was robust, nor was any form of consistency

established. The formulation we present in Chapter 5 generalizes the work of Black

& Rangarajan (1996) while the convex relaxation scheme we propose is simpler and

tighter than that given by Yu et al. (2010); we are thus able to establish non-trivial

forms of both robustness and consistency while maintaining tractability.

There are many other notions of robust estimation in the ML literature that do

not correspond to the specific notion being addressed in this thesis. Work on ro-

bust optimization (El Ghaoui & Lebret, 1997; Xu et al., 2008, 2009) for example,

considers minimizing the worst case loss achieved given bounds on the maximum

data deviation that will be considered. Such results are not relevant to the present

investigation because we explicitly do not bound the magnitude of the outliers. An-

other notion of robustness is algorithmic stability under leave-one-out perturbation

(Mukherjee et al., 2006), which analyzes specific learning procedures rather than

describing how a stable algorithm might be generally achieved.
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Chapter 3

Tractable Two-Layer Modeling

Latent variable prediction models, such as multi-layer networks, impose auxiliary

latent variables between inputs and outputs to allow automatic inference of implicit

features useful for prediction. Unfortunately, such models are difficult to train be-

cause inference over latent variables must be performed concurrently with param-

eter optimization, creating a highly non-convex problem. Instead of proposing an-

other local training method, in this chapter we instead develop a convex relaxation

of hidden-layer conditional models that admits global training. The work presented

in this chapter was published in Neural Information Processing Systems(NIPS) con-

ference (Aslan et al., 2013).

3.1 Introduction

Many non-convex ML problems have been tackled by convex relaxations, as dis-

cussed in the introduction. The main bottleneck that makes the convex approxima-

tion much harder for this particular learning problem is nested nonlinearities. There

are approaches that tackle the non-convexity of conditional latent models, however

none of these can handle latent models that consist of one or more hidden layers

with global optimum guarantee under realistic assumptions. In this chapter, rather
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than tackling a model with many hidden layers, we first focus on a conditional

model with one hidden layer, since this already creates a challenging non-convex

problem. We present a convex relaxation strategy that yields a fully convex model

for this problem. This appealing result allows a non-trivial extension to many hid-

den layers, which is covered in Chapter 4 in detail.

Our first contribution in this chapter is designing a predictive two-layer latent

modeling as a joint optimization problem. This novel approach gives a convenient

form by decoupling the nested nonlinearities. The next significant contribution is

using output kernels to obtain a convex approximation for losses that have the out-

put as unknown variable. Although we obtain the first convex relaxation result for

a conditional model with one hidden layer, the nonlinear constrained semidefinite

problem is computationally expensive to solve using off-the-shelf solvers. There-

fore, we also develop an efficient algorithm to solve the final relaxation by carefully

exploiting the problem structure.

The rest of the chapter is organized as follows: we first introduce our framework

for two-layer conditional modelling in Section 3.2 where we eliminate nested non-

linearities by decoupling layers in a joint formulation. Here we apply a relaxation

that accommodates losses for discrepancy between output of a layer and output of

previous layer. We then develop a specific discriminative margin loss for hidden

layers in Section 3.2.1. In Section 3.3, we derive the equivalent non-convex for-

mulation which enables obtaining jointly convex formulation in Section 3.4. We

then present the efficient algorithm that solves the final convex form in Section 3.5.

Finally, we empirically demonstrate that proposed convex relaxation preserves the

structure of the hidden layers in Section 3.6.

3.2 Two-Layer Conditional Modeling

We address the problem of training a two-layer latent conditional model in the form

of Figure 3.1; i.e., where there is a single layer of h-dimensional latent variables,
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φ, between a layer of n-dimensional input variables, x, and m-dimensional output

variables, y. The goal is to predict an output vector y given an input vector x. Here,

a prediction model consists of the composition of two nonlinear conditional models,

f1(Wx) ; φ and f2(V φ) ; ŷ, parameterized by the matrices W ∈ Rh×n and V ∈

Rm×h. Once the parameters W and V have been specified, this architecture defines

a point predictor that can determine ŷ from x by first computing an intermediate

representation φ.

To learn the model parameters, we assume we are given t training pairs {(xj,

yj)}tj=1 stacked in two matrices X = (x1, ...,xt) ∈ Rn×t and Y = (y1, ...,yt) ∈

Rm×t, but the corresponding set of latent variable values Φ = (φ1, ...,φt) ∈ Rh×t

remains unobserved. Also, let 1 denote the vector of all 1s with length determined

by context.

W φj

f1

V

xj yjf2

t

Figure 3.1: Latent conditional model

To formulate the training problem, we will consider two losses, L1 and L2, that

relate the input to the latent layer, and the latent to the output layer respectively.

For example, one can think of losses as negative log-likelihoods in a conditional

model that generates each successive layer given its predecessor; i.e., L1(Wx,φ) =

− log pW (φ|x) and L2(V φ,y) = − log pV (y|φ). (However, a loss based formu-

lation is more flexible, since every negative log-likelihood is a loss but not vice

versa.)
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Given such a set-up many training principles become possible. For simplicity,

we consider a Viterbi based training principle where the parameters W and V are

optimized with respect to an optimal imputation of the latent values Φ. To do so,

define the first and second layer training objectives as

F1(W,Φ) = L1(WX,Φ) + α
2
‖W‖2

F and F2(Φ, V ) = L2(V Φ, Y ) + β
2
‖V ‖2

F (3.1)

where we assume the losses L1 and L2 are convex in their first arguments. Here

it is typical to assume that the losses decompose columnwise; that is, L1(Ψ̂,Φ) =
∑t

j=1 L1(ψ̂j,φj) and L2(Z, Y ) =
∑t

j=1 L2(ẑj,yj), where ψ̂j is the jth column

of Ψ̂ and ẑj is the jth column of Ẑ respectively. This follows for example if the

training pairs (xj,yj) are assumed I.I.D., but such a restriction is not necessary.

Note that we have also introduced Euclidean regularization over the parameters, that

will provide a useful representer theorem (Kimeldorf & Wahba, 1971) we exploit

later. These two objectives can be combined to obtain the following joint training

problem:

min
W,V

min
Φ
F1(W,Φ) + γF2(Φ, V ), (3.2)

where γ > 0 is a trade off parameter that balances the first versus second layer

discrepancy. Unfortunately (3.2) is not jointly convex in the unknowns W , V and

Φ.

A key modeling question concerns the structure of the latent representation φ.

As noted, the extensive literature on latent variable modeling has proposed a variety

of forms for latent structure. Here, we follow work on deep learning and sparse cod-

ing and assume that the latent variables are boolean, φ ∈ {0, 1}h×1; an assumption

that is also often made in auto-encoders (Swersky et al., 2011), PFNs (Neal, 1992),

and RBMs (Hinton et al., 2006). A boolean representation can capture structures

that range from a single latent clustering (Tishby et al., 1999; Joulin et al., 2010;

Guo & Schuurmans, 2007), by imposing the assumption that φ′1 = 1, to a general

sparse code, by imposing the assumption that φ′1 = k for some small k (Le et al.,
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2012; Swersky et al., 2011; Hinton, 2007). Observe that, in the latter case, one can

control the complexity of the latent representation by imposing a constraint on the

number of “active” variables k rather than directly controlling the latent dimension-

ality h.

3.2.1 Multi-Layer Perceptrons and Large-Margin Losses

To complete a specification of the two-layer model in Figure 3.1 (where f1(Wx) ;

φ, f2(V φ) ; ŷ, φj is a latent variable, xj is an observed input vector, yj is an

observed output vector, W are first layer parameters,and V are second layer param-

eters.) and the associated training problem (3.2), we need to commit to specific

forms for the transfer functions f1 and f2 and the losses in (3.1). For simplicity,

we will adopt a large-margin approach over two-layer perceptrons. Although it

has been traditional in deep learning research to focus on exponential family con-

ditional models (e.g. as in auto-encoders, PFNs and RBMs), these are not the only

possibility; a large-margin approach offers additional sparsity and algorithmic sim-

plifications that will clarify the development below.

First, consider the second layer model. We will conduct our primary evaluations

on multi-class classification problems, where output vectors y encode target classes

by indicator vectors y ∈ {0, 1}m×1 such that y′1 = 1. Although it is common

to adopt a softmax transfer for f2 in such a case, it is also useful to consider a

perceptron model defined by f2(ẑ) = indmax(ẑ) such that indmax(ẑ) = 1i (vector

of all 0s except a 1 in the ith position) where ẑi ≥ ẑl for all l. Therefore, for multi-

class classification, we will simply adopt the standard large-margin multi-class loss

(Crammer & Singer, 2001):

L2(ẑ,y) = max(1− y + ẑ− 1y′ẑ). (3.3)

Intuitively, if yc = 1 is the correct label, this loss encourages the response ẑc = y′ẑ

on the correct label to be a margin greater than the response ẑi on any other label i 6=
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c. Second, consider the first layer model. Although the loss (3.3) has proved

to be highly successful for multi-class classification problems, it is not suitable for

the first layer because it assumes there is only a single target component active in

any latent vector φ; i.e. φ′1 = 1. Although some work has considered learning

a latent clustering in a two-layer architecture (Joulin & Bach, 2012; Joulin et al.,

2010; Guo & Schuurmans, 2007; Tishby et al., 1999), such an approach is not able

to capture the latent sparse code of a classical PFN or RBM in a reasonable way:

using clustering to simulate a multi-dimensional sparse code causes exponential

blow-up in the number of latent classes required. Therefore, we instead adopt a

multi-label perceptron model for the first layer, defined by the transfer function

f1(ψ̂) = step(ψ̂) applied componentwise to the response vector ψ̂; i.e. step(ψ̂i) =

1 if ψ̂i > 0, 0 otherwise. Although several loss formulations exist for multi-label

classification (Fuernkranz et al., 2008; Guo & Schuurmans, 2011), we adopt the

following:

L1(ψ̂,φ) = max(1− φ+ ψ̂φ′1− 1φ′ψ̂)

≡ max
(
(1− φ)/(φ′1) + ψ̂ − 1φ′ψ̂/(φ′1)

)
. (3.4)

Intuitively, this loss encourages the average response on the active labels, φ′ψ̂

/(φ′1), to exceed the response ψ̂i on any inactive label i, φi = 0, by some mar-

gin, while also encouraging the response on any active label to match the average

of the active responses. Despite their simplicity, large-margin multi-label losses

have proved to be highly successful in practice (Fuernkranz et al., 2008; Guo &

Schuurmans, 2011). Therefore, the overall architecture we investigate embeds two

nonlinear conditionals around a non-trivial latent layer.

3.3 Equivalent Reformulation

The main contribution of this section is to show that the training problem (3.2)

has an exact equivalent reformulation. To demonstrate this reformulation, we first
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need to establish the key observation that problem (3.2) can be re-expressed in

terms of a kernel matrix between latent representation vectors. Importantly, this

reformulation allows the problem to be re-expressed in terms of an optimization

objective that is jointly convex in all participating variables. We establish this key

intermediate result in this section in three steps: first, by re-expressing the latent

representation in terms of a latent kernel; second, by reformulating the second layer

objective; and third, by reformulating the first layer objective by exploiting large-

margin formulation outlined in Section 3.2.1. Below let K = X ′X denote the

kernel matrix over the input data, let Im(N) denote the row space of N , and let and
† denote Moore-Penrose pseudo-inverse.

First, simply define N = Φ′Φ. Next, re-express the second layer objective F2

in (3.1):

Lemma 1. For any fixed Φ, letting N = Φ′Φ, it follows that

min
V
F2(Φ, V ) = min

B∈Im(N)
L2(B, Y ) + β

2
tr(BN †B′). (3.5)

Proof. The result follows from the following sequence of equivalence preserving

transformations:

min
V
L2(V Φ, Y ) + β

2
‖V ‖2

F = min
A
L2(AN, Y ) + β

2
tr(ANA′) (3.6)

= min
B∈Im(N)

L2(B, Y ) + β
2

tr(BN †B′), (3.7)

where, starting with the definition of F2 in (3.1), the first equality in (3.6) fol-

lows from the representer theorem applied to ‖V ‖2
F , which implies that the optimal

V must be in the form of V = AΦ′ for some A ∈ Rm×t (Kimeldorf & Wahba,

1971); and finally, (3.7) follows by the change of variable B = AN .

Note that Lemma 1 holds for any loss L2. In fact, the result follows solely from

the structure of the regularizer. However, we require L2 to be convex in its first
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argument to ensure a convex problem below. Convexity is indeed satisfied by the

choice (3.3). Moreover, the term tr(BN †B′) is jointly convex in N and B since

it is a perspective function (Argyriou et al., 2008), hence the objective in (3.5) is

jointly convex.

Next, we reformulate the first layer objective F1 in (3.1). Since this transfor-

mation exploits specific structure in the first layer loss, we present the result in

two parts: first, by showing how the desired outcome follows from a general as-

sumption on L1, then demonstrating that this assumption is satisfied by the specific

large-margin multi-label loss defined in (3.4). To establish this result we will ex-

ploit the following augmented forms for the data and variables: let Φ̃ = [Φ, kI],

Ñ = Φ̃′Φ̃, Ψ̃ = [Ψ̂, 0], X̃ = [X, 0], K̃ = X̃ ′X̃ , and t̃ = t+ h.

Lemma 2. For anyL1 if there exists a function L̃1 such thatL1(Ψ̂,Φ)= L̃1(Φ̃′Ψ̃, Φ̃′Φ̃)

for all Ψ̂ ∈ Rh×t and Φ ∈ {0, 1}h×t, such that Φ′1 = 1k, it then follows that

min
W

F1(W,Φ) = min
D∈Im(Ñ)

L̃1(DK̃, Ñ) + α
2

tr(D′Ñ †DK̃). (3.8)

Proof. Similar to above, consider the sequence of equivalence preserving transfor-

mations:

min
W

L1(WX,Φ) + α
2
‖W‖2

F = min
W

L̃1(Φ̃′WX̃, Φ̃′Φ̃) + α
2
‖W‖2

F (3.9)

= min
C
L̃1(Φ̃′Φ̃CX̃ ′X̃, Φ̃′Φ̃)

+ β
2

tr(X̃C ′Φ̃′Φ̃CX̃ ′) (3.10)

= min
D∈Im(Ñ)

L̃1(DK̃, Ñ) + α
2

tr(D′Ñ †DK̃), (3.11)

where, starting with the definition of F1 in (3.1), the first equality (3.9) simply

follows from the assumption. The second equality (3.10) follows from the rep-

resenter theorem applied to ‖W‖2
F , which implies that the optimal W must be in
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the form of W = Φ̃CX̃ ′ for some C ∈ Rt̃×t̃ (using the fact that Φ̃ has full rank

h) (Kimeldorf & Wahba, 1971). Finally, (3.11) follows by the change of variable

D = ÑC.

Observe that the term tr(D′Ñ †DK̃) is again jointly convex in Ñ and D (also

a perspective function), while it is easy to verify that L̃1(DK̃, Ñ) as defined in

Lemma 3 below is also jointly convex in Ñ and D (Argyriou et al., 2008); therefore

the objective in (3.8) is jointly convex.

Next, we show in Lemma 3 that the assumption of Lemma 2 is satisfied by the

specific large-margin multi-label formulation in Section 3.2.1; that is, assume L1 is

given by the large-margin multi-label loss (3.4):

L1(Ψ̂,Φ) =
∑

j max
(
1− φj + ψ̂jφ

′
j1− 1φ′jψ̂j

)

= τ
(
11′ − Φ + Ψ̂ diag(Φ′1)− 1 diag(Φ′Ψ̂)′

)
, (3.12)

such that τ(Θ) :=
∑

j max(θj),

where we use ψ̂j , φj and θj to denote the jth columns of Ψ̂, Φ and Θ respec-

tively.

Lemma 3. For the multi-label loss L1 defined in (3.4), and for any fixed Φ ∈

{0, 1}h×t where Φ′1 = 1k, the definition L̃1(Φ̃′Ψ̃, Φ̃′Φ̃) := τ(Φ̃′Ψ̃ − Φ̃′Φ̃/k) +

t − tr(Φ̃′Ψ̃) using the augmentation above satisfies the property that L1(Ψ̂,Φ) =

L̃1(Φ̃′Ψ̃, Φ̃′Φ̃) for any Ψ̂ ∈ Rh×t.

Proof. Since Φ′1 = 1k we obtain a simplification of L1:

L1(Ψ̂,Φ) = τ
(
11′ − Φ + kΨ̂− 1 diag(Φ′Ψ̂)′

)

= τ(kΨ̂− Φ) + t− tr(Φ̃′Ψ̃). (3.13)

It only remains is to establish that τ(kΨ̂−Φ) = τ(Φ̃′Ψ̃−Φ̃′Φ̃/k). To do so, consider

the sequence of equivalence preserving transformations:
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τ(kΨ̂− Φ) = max
Λ∈Rh×t̃+ :Λ′1=1

tr
(
Λ′(kΨ̃− Φ̃)

)
(3.14)

= max
Ω∈Rt̃×t̃+ :Ω′1=1

1
k

tr
(
Ω′Φ̃′(kΨ̃− Φ̃)

)
= τ(Φ̃′Ψ̃− Φ̃′Φ̃/k), (3.15)

where the equalities in (3.14) and (3.15) follow from the definition of τ and

the fact that linear maximizations over the simplex obtain their solutions at the

vertices. To establish the equality between (3.14) and (3.15), since Φ̃ embeds the

submatrix kI , for any Λ ∈ Rh×t̃
+ there must exist an Ω ∈ Rt̃×t̃

+ satisfying Λ = Φ̃Ω/k.

Furthermore, these matrices satisfy Λ′1 = 1 iff Ω′Φ̃′1/k = 1 iff Ω′1 = 1.

Combining Lemmas 1–3 yields the desired result of this section.

Theorem 1. For any second layer loss and any first layer loss that satisfies the

assumption of Lemma 2 (for example the large-margin multi-label loss (3.4)), the

following holds:

(3.2) = min
{Ñ :∃Φ∈{0,1}t×hs.t. Φ1=1k,Ñ=Φ̃′Φ̃}

min
B∈Im(Ñ)

min
D∈Im(Ñ)

L̃1(DK̃, Ñ) + α
2

tr(D′Ñ †DK̃) + γL2(B, Y ) + γβ
2

tr(BÑ †B′). (3.16)

Theorem 1 follows immediately from Lemmas 1–3. Note that no relaxation

has occurred thus far: the objective value of (3.16) matches that of (3.2). Not only

has this reformulation resulted in (3.2) being entirely expressed in terms of the

latent kernel matrix Ñ , the objective in (3.16) is jointly convex in all participating

unknowns, Ñ , B and D. Unfortunately, the constraints in (3.16) are not convex.

3.4 Convex Relaxation

We first relax the problem by dropping the augmentation Φ 7→ Φ̃ and working with

the t× t variable N = Φ′Φ. Without the augmentation, Lemma 3 becomes a lower
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bound (i.e. (3.14)≥(3.15)), hence a relaxation. To then achieve a convex form we

further relax the constraints in (3.16). To do so, consider

N0 =
{
N : ∃Φ ∈ {0, 1}t×h such that Φ1 = 1k and N = Φ′Φ

}
(3.17)

N1 =
{
N : N ∈ {0, ..., k}t×t, N � 0, diag(N) = 1k, rank(N) ≤ h

}
(3.18)

N2 = {N : N ≥ 0, N � 0, diag(N) = 1k} , (3.19)

where it is clear from the definitions that N0 ⊆ N1 ⊆ N2. (Here we use N � 0

to also encode N ′ = N .) Note that the set N0 corresponds to the original set of

constraints from (3.16). The setN1 simplifies the characterization of this constraint

set on the resulting kernel matrices N = Φ′Φ. However, neitherN0 norN1 are con-

vex. Therefore, we need to adopt the further relaxed setN2, which is convex. (Note

that Nij ≤ k has been implied by N � 0 and Nii = k in N2.) By also dropping

constraints B ∈ Im(N) and D ∈ Im(N) in (3.16), we obtain the following relaxed

problem, which is jointly convex in N , B and D:

min
N∈N2

min
B∈Rt×t

min
D∈Rt×t

L̃1(DK,N)+ α
2

tr(D′N †DK)+γL2(B, Y )γβ
2

tr(BN †B′). (3.20)

3.5 Efficient Training Approach

Unfortunately, nonlinear semidefinite optimization problems in the form (3.20) are

generally thought to be too expensive in practice despite their polynomial theo-

retical complexity (Nesterov & Nimirovskii, 1994; Boyd & Vandenberghe, 2004).

Therefore, we develop an effective training algorithm that exploits problem struc-

ture to bypass the main computational bottlenecks. The key challenge is that N2

contains both semidefinite and affine constraints, and the pseudo-inverse N † makes

optimization over N difficult even for fixed B and D.

To mitigate these difficulties we first treat (3.20) as the reduced problem, minN∈N2

F(N), where F is an implicit objective achieved by minimizing outB andD. Note

34



that F is still convex in N by the joint convexity of (3.20). To cope with the con-

straints on N we adopt the alternating direction method of multipliers (ADMM)

(Boyd et al., 2010) as the main outer optimization procedure; see Algorithm 1. This

approach allows one to divide N2 into two groups, N � 0 and {Nij ≥ 0, Nii = k},

yielding the augmented Lagrangian

L(N,M,Γ) = F(N) + δ(N�0) + δ(Mij≥0,Mii=k)− 〈Γ, N−M〉

+ 1
2µ
‖N−M‖2

F , (3.21)

where µ > 0 is a constant and δ is an indicator such that δ(·) = 0 if · is true,

∞ otherwise. In this procedure, Steps 4 and 5 cost O(t2) time; whereas the main

bottleneck is Step 3, which involves minimizing GT (N) := L(N,MT−1,ΓT−1) over

N � 0 for fixed MT−1 and ΓT−1.

Boosting for Optimizing over the Positive Semidefinite Cone. To solve the

problem in Step 3 we develop an efficient boosting procedure based on (Laue,

2012) that retains low rank iterates NT while avoiding the need to determine N †

when computing G(N) and ∇G(N); see Algorithm 2.

The key idea is to use a simple change of variable. For example, consider the

first layer objective and let G1(N) = minD L̃1(DK,N) + α
2

tr(D′N †DK). By

defining D = NC, we obtain G1(N) = minC L̃1(NCK,N) + α
2

tr(C ′NCK),

which no longer involves N † but remains convex in C; this problem can be solved

efficiently after a slight smoothing of the objective (Chapelle, 2007) (e.g. by LBFGS).

Moreover, the gradient ∇G1(N) can be readily computed given C∗. Applying

the same technique to the second layer yields an efficient procedure for evaluating

G(N) and ∇G(N). Finally note that many of the matrix-vector multiplications in

this procedure can be further accelerated by exploiting the low rank factorization of

N maintained by the boosting algorithm.
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Algorithm 1: ADMM to optimize F(N) for N ∈ N2.

1 Initialize: M0 = I , Γ0 = 0.

2 while T = 1, 2, . . . do

3 NT ← arg minN�0 L(N,MT−1,ΓT−1), by using the boosting Algorithm

2.

4 MT ← arg minM≥0,Mii=k L(NT ,M,ΓT−1), which has an efficient closed

form solution.

5 ΓT ← ΓT−1 + 1
µ
(MT −NT ); i.e. update the multipliers.

6 return NT .

Additional Relaxation. One can further reduce computation cost by adopting

additional relaxations to (3.20). For example, by dropping N ≥ 0 and relaxing

diag(N) = 1k to diag(N) ≤ 1k, the objective can be written as min{N�0,maxiNii≤k}

F(N). Since maxiNii is convex in N , it is well known that there must exist a con-

stant c1 > 0 such that the optimal N is also an optimal solution to minN�0F(N) +

c1 (maxiNii)
2. While maxiNii is not smooth, one can further smooth it with a

softmax, to instead solve minN�0F(N) + c1 (log
∑

i exp(c2Nii))
2 for some large

c2. This formulation avoids the need for ADMM entirely and can be directly solved

by Algorithm 2.

3.6 Experimental Evaluation

To investigate the effectiveness of the proposed relaxation scheme for training a

two-layer conditional model, we conducted a number of experiments to compare

learning quality against baseline methods. Note that, given an optimal solution N ,

B and D to (3.20), an approximate solution to the original problem (3.2) can be

recovered heuristically by first rounding N to obtain Φ, then recovering W and V ,

as shown in Lemmas 1 and 2. However, since our primary objective is to determine
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Algorithm 2: Boosting algorithm to optimize G(N) for N � 0.

1 Initialize: N0 ← 0, H0 ← [ ] (empty set).

2 while T = 1, 2, . . . do

3 Find the smallest arithmetic eigenvalue of ∇G(NT−1), and its

eigenvector hT .

4 Conic search by LBFGS: (aT , bT )← mina≥0,b≥0 G(aNT−1 + bhTh
′
T ).

5 Local search by LBFGS: HT← local minHG(HH ′) initialized by

H=(
√
aHT−1,

√
bhT ).

6 Set NT ← HTH
′
T ; break if stopping criterion met.

7 return NT .

whether any convex relaxation of a two-layer model can even compete with one-

layer or locally trained two-layer models (rather than evaluate heuristic rounding

schemes), we consider a transductive evaluation that does not require any further

modification of N , B and D. In such a set-up, training data is divided into a labeled

and unlabeled portion, where the method receives X = [X`, Xu] and Y`, and at test

time the resulting predictions Ŷu are evaluated against the held-out labels Yu.

Methods. We compared the proposed convex relaxation scheme (CVX2) against

the following methods: simple alternating minimization of the same two-layer

model (3.2) (LOC2), a one-layer linear SVM trained on the labeled data (SVM1),

the transductive one-layer SVM methods of (Joachims, 1999) (TSJ1) and (Sind-

hwani & Keerthi, 2006) (TSS1), and the transductive latent clustering method of

(Joulin & Bach, 2012; Joulin et al., 2010) (TJB2), which is also a two-layer model.

Linear input kernels were used for all methods (standard in most deep learning

models) to control the comparison between one and two-layer models. Our experi-

ments were conducted with the following common protocol: First, the data was split

into a separate training and test set. Then the parameters of each procedure were
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optimized by a three-fold cross validation on the training set. Once the optimal

parameters were selected, they were fixed and used on the test set. For transduc-

tive procedures, the same three training sets from the first phase were used, but

then combined with ten new test sets drawn from the disjoint test data (hence 30

overall) for the final evaluation. At no point were test examples used to select any

parameters for any of the methods. We considered different proportions between

labeled/unlabeled data; namely, 100/100 and 200/200.

Synthetic Experiments. We initially ran a proof of concept experiment on three

binary labeled artificial data sets depicted in Figure 3.2, Figure 3.3 and Figure 3.4

(showing data set sizes n× t) with 100/100 labeled/unlabeled training points. Here

the goal was simply to determine whether the relaxed two-layer training method

could preserve sufficient structure to overcome the limits of a one-layer architecture.

Clearly, none of the data sets in Figure 3.2, Figure 3.3 and Figure 3.4 are adequately

modeled by a one-layer architecture (that does not cheat and use a nonlinear kernel).
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Figure 3.2: “Xor” dataset

The results are shown in the Table 3.1.

As expected, the one-layer models SVM1 and TSS1 were unable to capture

any useful classification structure in these problems. (TSJ1 behaves similarly to
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Figure 3.3: “boxes” dataset
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Figure 3.4: “interval” dataset

TSS1.) The results obtained by CVX2, on the other hand, are encouraging. In these

data sets, CVX2 is easily able to capture latent nonlinearities while outperforming

the locally trained LOC2. Although LOC2 is effective in the first two cases, it

exhibits weaker test accuracy while failing on the third data set. The two-layer

method TJB2 exhibited convergence difficulties on these problems that prevented
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XOR BOXES INTER

TJB2 49.8±0.7 45.7 ±0.6 49.3 ±1.3

TSS1 50.2±1.2 35.7 ±1.3 42.6 ±3.9

SVM1 50.3±1.1 31.4 ±0.5 50.0 ±0.0

LOC2 4.2±0.9 11.4 ±0.6 50.0 ±0.0

CVX2 0.2±0.1 10.1 ±0.4 20.0 ±2.4

Table 3.1: Mean test misclassification error % (± stdev) for artificial datasets

reasonable results.

Figure 3.5 shows the output kernel of a test sample for the Xor dataset. If we de-

note each of classes in the Xor dataset by P and N , one can observe that the classes

P and N are each composed of two subclasses, denoted {P1, P2} and {N1, N2}

respectively. To allow convenient visualization, the instances with indexes from

top to down and left to right in the matrix belong to subclasses P1, N1, P2 and N2

respectively. Therefore, the kernel demonstrates that the latent representation ac-

quired by CVX2 captures the structure very well. The corresponding weight, latent

matrix and response matrix are given in Appendix A.1.2 which show clearly how

the discrimination works.

Experiments on “Real” Data Sets. Next, we conducted experiments on real data

sets to determine whether the advantages in controlled synthetic settings could

translate into useful results in a more realistic scenario. For these experiments

we used a collection of binary labeled data sets: USPS, COIL and G241N from

(Chapelle et al., 2006), Letter from (Lichman, 2013), MNIST from (LeCun &

Cortes, 2010), and CIFAR-100 from (Krizhevsky, 2009). (See Appendix A.1.2

for further details.)

The results are shown in Tables 3.2 and 3.3 for the labeled/unlabeled proportions

100/100 and 200/200 respectively.
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Figure 3.5: The latent kernel for “Xor” test data

MNIST USPS Letter COIL CIFAR G241N

TJB2 19.3 ±1.2 53.2±2.9 20.4±2.1 30.6±0.8 29.2±2.1 26.3 ±0.8

LOC2 19.3 ±1.0 13.9±1.1 10.4±0.6 18.0±0.5 31.8±0.9 41.6 ±0.9

SVM1 16.2 ±0.7 11.6±0.5 6.2±0.4 16.9±0.6 27.6±0.9 27.1 ±0.9

TSS1 13.7 ±0.8 11.1±0.5 5.9±0.5 17.5±0.6 26.7±0.7 25.1 ±0.8

TSJ1 14.6 ±0.7 12.1±0.4 5.6±0.5 17.2±0.6 26.6±0.8 24.4 ±0.7

CVX2 9.2 ±0.6 9.2±0.5 5.1±0.5 13.8±0.6 26.5±0.8 25.2 ±1.0

Table 3.2: Mean test misclassification error % (± stdev) for 100/100 la-

beled/unlabeled.

The relaxed two-layer method CVX2 again demonstrates effective results, al-

though some data sets caused difficulty for all methods. The data sets can be di-

vided into two groups, (MNIST, USPS, COIL) versus (Letter, CIFAR, G241N). In

the first group, two-layer modeling demonstrates a clear advantage: CVX2 outper-

forms SVM1 by a significant margin. Note that this advantage must be due to two-
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MNIST USPS Letter COIL CIFAR G241N

TJB2 13.7 ±0.6 46.6±1.0 14.0±2.6 45.0±0.8 30.4±1.9 22.4 ±0.5

LOC2 16.3 ±0.6 9.7±0.5 8.5±0.6 12.8±0.6 28.2±0.9 40.4 ±0.7

SVM1 11.2 ±0.4 10.7±0.4 5.0±0.3 15.6±0.5 25.5±0.6 22.9 ±0.5

TSS1 11.4 ±0.5 11.3±0.4 4.4±0.3 14.9±0.4 24.0±0.6 23.7 ±0.5

TSJ1 12.3 ±0.5 11.8±0.4 4.8±0.3 13.5±0.4 23.9±0.5 22.2 ±0.6

CVX2 8.8 ±0.4 6.6±0.4 3.8±0.3 8.2±0.4 22.8±0.6 20.3 ±0.5

Table 3.3: Mean test misclassification error % (± stdev) for 200/200 la-

beled/unlabeled.

layer versus one-layer modeling, since the transductive SVM methods TSS1 and

TSJ1 demonstrate no advantage over SVM1. For the second group, the effective-

ness of SVM1 demonstrates that only minor gains can be possible via transductive

or two-layer extensions, although some gains are realized. The locally trained two-

layer model LOC2 performed quite poorly in all cases. Unfortunately, the convex

latent clustering method TJB2 was also not competitive on any of these data sets.

Overall, CVX2 appears to demonstrate useful promise as a two-layer modeling ap-

proach.

3.7 Conclusion

We have introduced a new convex approach to two-layer conditional modeling by

reformulating the original non-convex problem in terms of a latent output kernel

over intermediate feature representations. The proposed model can accommodate

latent feature representations that go well beyond a latent clustering, extending cur-

rent convex approaches. A semidefinite relaxation of the latent kernel allows a

reasonable implementation that is able to demonstrate advantages over single-layer

models and local training methods. From a deep learning perspective, this work
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demonstrates that trainable latent layers can be expressed in terms of reproducing

kernel Hilbert spaces, while large margin methods can be usefully applied to multi-

layer prediction architectures. Although the nonlinear semidefinite programs are

difficult to solve, we also designed an efficient algorithm adopting a low-rank ap-

proach. We then empirically demonstrated that the structure of latent modeling is

preserved by showing promising results.
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Chapter 4

Tractable Multi-Layer Modeling

We demonstrated in Chapter 3 that an adaptive hidden layer could be expressed

as a formulation that is jointly convex in weight parameters and the output latent

variable kernel. Although this shows clearly how latent kernel learning can be

formulated, the two-layer convex model remained restricted to a single adaptive

layer, with no clear paths suggested for a multi-layer extension.

In this chapter, we develop a new architecture for nested nonlinearities that al-

lows arbitrarily deep compositions to be trained to global optimality. Similarly to

the model in Chapter 3, we represent the nonlinearities in each layer through non-

linear losses that are extended to the multi-layer architecture; these new losses are

combined to obtain a joint form, after which we apply a convex relaxation to obtain

the final convex formulation. The approach admits both parametric and nonpara-

metric forms through the use of a new type of kernel to represent each latent layer.

The outcome is a fully convex formulation that is able to capture compositions of

trainable nonlinear layers to arbitrary depth. We also carefully design a novel ef-

ficient algorithm for this new model. The work in this chapter was published in

Neural Information Processing Systems conference(Aslan et al., 2014).
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4.1 Introduction

One of the key contributions of Chapter 3 was to develop a convex formulation of

one hidden layer training utilizing output kernels. One focus of this thesis therefore

is to ground deep learning in kernel-based approaches, which offer a potentially

easier path to achieving a simple computational understanding. Kernels (Kimeldorf

& Wahba, 1971) have had a significant impact in machine learning, partly because

they offer flexible modeling capability without sacrificing convexity in common

training scenarios (Schoelkopf & Smola, 2002). Given the convexity of the re-

sulting training formulations, suboptimal local minima and plateaus are eliminated

while reliable computational procedures are widely available. A common miscon-

ception about kernel methods is that they are inherently “shallow” (Bengio, 2009),

but depth is an aspect of how such methods are used and not an intrinsic property.

For example, (Cho & Saul, 2010) demonstrates how nested compositions of kernels

can be incorporated in a convex training formulation, which can be interpreted as

learning over a (fixed) composition of hidden layers with infinite features. Other

work has formulated adaptive learning of nested kernels, albeit by sacrificing con-

vexity (Zhuang et al., 2011). More recently, (Joulin & Bach, 2012; Joulin et al.,

2012) has considered learning kernel representations of latent clusters, achieving

convex formulations under some relaxations.

After providing the background material about the multi-layer and showing the

significant difficulty of extension of two-layer convex model introduced in Chapter

3 to multi-layer convex model in Section 4.2, we introduce a key novel regulariza-

tion trick that results in a new output kernel type that yields a convex reformulation

for arbitrary number of layers in Section 4.3. We exploit the structure of the new

formulation presented in Section 4.3 and develop a novel efficient algorithm with

further advantages compared to the algorithm in Chapter 3 in Section 4.4. We also

present appealing empirical results in Section 4.5 which shows that the multi-layer

structure is preserved after the relaxations.
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4.2 Background

We consider a multi-layer conditional model where the input xi is n dimensional

and the output yi ∈ {0, 1}m is a multi-label target vector over m labels. For

concreteness, consider a three-layer model (Figure 4.1). Here, the output of the

first hidden layer is determined by multiplying the input, xi, with a weight ma-

trix W ∈ Rh×n and passing the result through a nonlinear transfer σ1, yielding

φi = σ1(Wxi).

Figure 4.1: Multi-layer conditional models

The output of the second layer is determined by multiplying the first layer out-

put, φi, with a second weight matrix U ∈ Rh′×h and passing the result through a

nonlinear transfer σ2, yielding θi = σ2(Uφi), etc. The final output is then deter-

mined via ŷi = σ3(V θi), for V ∈ Rm×h′ . For simplicity, we will set h′ = h.

The goal of training is to find the weight matrices, W , U , and V , that minimize

a training objective defined over the training data (with regularization). In particu-

lar, we assume the availability of t training examples {(xi,yi)}ti=1, and denote the

feature matrix X := (x1, . . . ,xt) ∈ Rn×t and the label matrix Y := (y1, . . . ,yt) ∈

Rm×t respectively. One of the key challenges for training arises from the fact that

the latent variables Φ := (φ1, . . . ,φt) and Θ := (θ1, . . . ,θt) are unobserved.

To introduce our main development, we begin with a reconsideration of the

formulation from Chapter 3, which proposed a convex formulation of a simpler

two-layer model. Although the techniques proposed in Chapter 3 are intrinsically

restricted to two layers, we will eventually show how this barrier can be surpassed
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through the introduction of a new tool—normalized output kernels. However we

first need to provide a more general treatment of the three main obstacles to obtain-

ing a convex training formulation for multi-layer architectures like Figure 4.1.

First Obstacle: Nonlinear Transfers. The first key obstacle arises from the pres-

ence of the transfer functions, σi, which provide the nonlinearity of the model. If,

as in Chapter 3, one optimizes rather than marginalizes over hidden layer values,

Φ and Θ, a generalized training objective for a multi-layer architecture (Figure 4.1)

can be expressed similarly as:

min
W,U,V,Φ,Θ

L1(WX,Φ)+ 1
2
‖W‖2+L2(UΦ,Θ)+ 1

2
‖U‖2 +L3(VΘ, Y )+ 1

2
‖V ‖2 (4.1)

where ‖W‖2, ‖U‖2 and ‖V ‖2 are regularizers such that the norm is the Frobenius

norm and the nonlinear loss L1 bridges the nonlinearity introduced by σ1 and L2

bridges the nonlinearity introduced by σ2. These losses are assumed to be convex

in their first argument. For clarity we have omitted the regularization parameters,

relative weightings between layers, and offset weights from the model. These are

obviously important in practice, but they play no key role in the technical develop-

ment and removing them simplifies the expressions.

Unfortunately, even though the overall objective (4.1) is convex in the weight

matrices (W,U, V ) given (Φ,Θ), it is not jointly convex in all participating variables

due to the interaction between the latent variables (Φ,Θ) and the weight matrices

(W,U, V ).

Second Obstacle: Bilinear Interaction. The second key obstacle arises from the

bilinear interaction between the latent variables and weight matrices in (4.1). To

overcome this obstacle, consider a single connecting layer, which consists of an

input matrix (Φ) and output matrix (Θ) and associated weight matrix (U ):

min
U
L(UΦ,Θ) + 1

2
‖U‖2 . (4.2)
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By the representer theorem, it follows that the optimal U can be expressed as

U = AΦ′ for some A ∈ Rm×t. Denote the linear response Z = UΦ = AΦ′Φ =

AK where K = Φ′Φ is the input kernel matrix. Then tr(UU ′) = tr(AKA′) =

tr(AKK†KA′) = tr(ZK†Z ′), where K† is the Moore-Penrose pseudo-inverse (re-

call KK†K = K and K†KK† = K†), therefore

(4.2) = min
Z
L(Z,Θ) + 1

2
tr(ZK†Z ′), where Z ∈ RK. (4.3)

This is essentially the value regularization framework (Rifkin & Lippert, 2007).

Importantly, the objective in (4.3) is jointly convex in Z and K, since tr(ZK†Z)

is a perspective function (Argyriou et al., 2008). Therefore, although the single

layer model is not jointly convex in the input features Φ and model parameters

U , it is convex in the equivalent reparameterization (K,Z) given Θ. This is the

technique used in Chapter 3 for the output layer. Finally note that Z satisfies the

constraint Z ∈ Rm×nΦ := {UΦ : U ∈ Rm×n}, which we will write as Z ∈ RΦ for

convenience. Clearly it is equivalent to Z ∈ RK.

Third Obstacle: Joint Input-Output Optimization. The third key obstacle is

that each of the latent variables, Φ and Θ, simultaneously serve as the inputs and

output targets for successive layers. Therefore, it is necessary to reformulate the

connecting problem (4.2) so that it is jointly convex in all three components, U , Φ

and Θ; and unfortunately (4.3) is not convex in Θ. Although this appears to be an

insurmountable obstacle in general, Chapter 3 proposed an exact reformulation in

the case when Θ is boolean valued (consistent with the probabilistic assumptions

underlying a PFM or RBM) by assuming the loss function satisfies an additional

postulate.

Postulate 1. L(Z,Θ) can be rewritten as Lu(Θ′Z,Θ′Θ) for Lu jointly convex in

both arguments.

Intuitively, this assumption allows the loss to be parameterized in terms of the
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propensity matrix Θ′Z and the unnormalized output kernel Θ′Θ (hence the super-

script of Lu). That is, the (i, j)-th component of Θ′Z stands for the linear response

value of example j with respect to the label of the example i. The j-th column

therefore encodes the propensity of example j to all other examples. This reparam-

eterization is critical because it bypasses the linear response value, and relies solely

on the relationship between pairs of examples. Chapter 3 proposed a particular

multi-label prediction loss that satisfies Postulate 1 for boolean target vectors θi;

we propose an alternative below.

Recall that letting the Z = UΘ, the objective function in (4.2) can be rewritten

as

Lu(Θ′UΦ,Θ′Θ) +
1

2
‖U‖2 , (4.4)

using Postulate 1. Then by the representer theorem, the optimal U can be expressed

by U = ΘAΦ′ for some matrix A. Denoting S := Θ′Z = Θ′UΦ and N := Θ′Θ,

the objective becomes

min
U
Lu(S,N) +

1

2
tr(K†S ′N †S), (4.5)

since

tr(K†S ′N †S) = tr(K†Φ′U ′ΘN †Θ′UΦ) = tr(K†Φ′ΦA′Θ′ΘN †Θ′ΘAΦ′Φ) (4.6)

= tr(K†KA′NN †NAK) = tr(KA′NA) (using KK†K=K) (4.7)

= tr(Φ′ΦA′Θ′ΘA) = ‖ΘAΦ′‖2
= ‖U‖2 . (4.8)

Therefore, Postulate 1 allows (4.2) to be re-expressed in a form that is jointly

convex in the propensity matrix S and output kernel N . Given that N is a discrete

but positive semidefinite matrix, a final relaxation is required to achieve a convex

training problem.

Postulate 2. The domain of N = Θ′Θ can be relaxed to a convex set preserving

structure.
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Below we will introduce an improved scheme for such relaxation. Although

these developments supported the formulation of Chapter 3, they appear insufficient

for deeper models. For example, by applying (4.3) and (4.5) to the three-layer

model of Figure 4.1, one obtains

Lu1(S1, N1) + 1
2

tr(K†S ′1N
†
1S1) + Lu2(S2, N2) + 1

2
tr(N †1S

′
2N
†
2S2)

+L3(Z3, Y ) + 1
2

tr(Z3N
†
2Z
′
3),

where N1 = Φ′Φ and N2 = Θ′Θ are two latent kernels imposed between the input

and output. Unfortunately, this objective is not jointly convex, since tr(N †1S
′
2N
†
2S2)

is not jointly convex in (N1, S2, N2), hence the approach of Chapter 3 cannot extend

beyond a single hidden layer.

4.3 Multi-layer Convex Modeling via Normalized Ker-

nels

Although obtaining a convex formulation for general multi-layer models appears

to be a significant challenge, progress can be made by considering an alternative

approach. The failure of the previous development in Chapter 3 can be traced back

to (4.2), which eventually causes the coupled, non-convex regularization to occur

between connected latent kernels. A natural response therefore is to reconsider the

original regularization scheme, keeping in mind that the representer theorem must

still be supported. One such regularization scheme appears has been investigated

in the clustering literature (Peng & Wei, 2007; Cheng et al., 2013), which suggests

a reformulation of the connecting model (4.2) using value regularization (Rifkin &

Lippert, 2007):

min
U
L(UΦ,Θ) + 1

2
‖Θ′U‖2. (4.9)

Here ‖Θ′U‖2 replaces ‖U‖2 from (4.2). The significance of this reformulation is

that it still admits the representer theorem, implying that the optimal U has the form
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U = (ΘΘ′)†AΦ′ for some A ∈ Rm×n. Since Θ generally has full row rank (i.e.

more examples than labels), one may execute a change of variables A = ΘB. Such

a substitution leads to the regularizer
∥∥Θ′(ΘΘ′)†ΘBΦ′

∥∥2, which can be expressed

in terms of the normalized output kernel (Peng & Wei, 2007):

M := Θ′(ΘΘ′)†Θ. (4.10)

The term (ΘΘ′)† normalizes the spectrum of the kernel Θ′Θ, and it is obvious that

all eigen-values of M are either 0 or 1, i.e. M2 = M (Peng & Wei, 2007). The

regularizer can be finally written:

‖MBΦ′‖2
= tr(MBKB′M) = tr(MBKK†KB′M) = tr(SK†S ′), (4.11)

where S := MBK. It is easy to show S = Θ′Z = Θ′UΦ, which is exactly the

propensity matrix.

As before, to achieve a convex training formulation, additional structure must

be postulated on the loss function, but now allowing convenient expression in terms

of normalized latent kernels.

Postulate 3. The loss L(Z,Θ) can be written as Ln(Θ′Z,Θ′(ΘΘ′)†Θ) where Ln

is jointly convex in both arguments. Here we write Ln to emphasize the use of

normalized kernels.

Under Postulate 3, an alternative convex objective can be achieved

Ln(S,M) + 1
2

tr(SK†S ′), where S ∈MRK. (4.12)

Crucially, this objective is now jointly convex in S, M and K; in comparison to

(4.5), the normalization has removed the output kernel from the regularizer. The

feasible region {(S,M,K) : M � 0, K � 0, S ∈ MRK} is also convex (see

Appendix A.2.1). Applying (4.12) to the first two layers and (4.3) to the output

layer, a fully convex objective for a multi-layer model (e.g., as in Figure 4.1) is
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obtained:

Ln1 (S1,M1) + 1
2

tr(S1K
†S ′1) + Ln2 (S2,M2) + 1

2
tr(S2M

†
1S
′
2)

+L3(Z3, Y ) + 1
2

tr(Z3M
†
2Z
′
3), (4.13)

where S1 ∈M1RK, S2 ∈M2RM1, and Z3 ∈ RM2. (Clearly the first layer can still

use (4.5) with an unnormalized output kernel N1 since its input X is observed.) All

that remains is to design a convex relaxation of the domain of M (for Postulate 2)

and to design the loss Ln (for Postulate 3).

4.3.1 Convex Relaxation of the Domain of Output Kernels M

Based on its definition (4.10), M has a non-convex domain. Ideally one should

design convex relaxations for each domain of Θ. However, M exhibits some nice

properties for any Θ:

M � 0, M � I, tr(M) = tr((ΘΘ′)†(ΘΘ′)) = rank(ΘΘ′) = rank(Θ). (4.14)

Here I is the identity matrix, and we also use M � 0 to encode M ′ = M . There-

fore, tr(M) provides a convenient proxy for controlling the rank of the latent rep-

resentation, i.e. the number of hidden nodes in a layer. Given a specified number

of hidden nodes h, we may enforce tr(M) = h. The main relaxation introduced

here is replacing the eigenvalue constraint λi(M) ∈ {0, 1} (implied by M2 = M )

with 0 ≤ λi(M) ≤ 1. Such a relaxation retains sufficient structure to allow, e.g., a

2-approximation of optimal clustering to be preserved even by only imposing spec-

tral constraints (Peng & Wei, 2007). Experimental results below further demon-

strate that nesting preserves sufficient structure, even with relaxation, to capture

relationships that cannot be recovered by shallower architectures.

More refined constraints can be included to better account for the domain of

Θ. For example, if Θ expresses target values for a multiclass classification (i.e.

Θij ∈ {0, 1}, Θ′1 = 1 where 1 is a vector of all one’s), we further have Mij ≥ 0
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and M1 = 1. If Θ corresponds to multilabel classification where each example

belongs to exactly k (out of the h) labels (i.e. Θ ∈ {0, 1}h×t, Θ′1 = k1), then M

can have negative elements, but the spectral constraintM1 = 1 still holds: consider

the compact SVD: Θ = UΣV ′ where U ′U = I and V ′V = I . Then Θ′1 = k1

implies ΣU ′1 = kV ′1. Since M = V V ′: M1 = V V ′1 = 1
k
V ΣU ′1 = 1

k
Θ′1 = 1

(Note Θij ∈ {0, 1} is not used). So we will choose the domains for M1 and M2 in

(4.13) to consist of the spectral constraints:

M := {0 �M � I : M1 = 1, tr(M) = h}. (4.15)

4.3.2 A Jointly Convex Multi-label Loss for Normalized Kernels

An important challenge is to design an appropriate nonlinear loss to connect each

layer of the model. Rather than conditional log-likelihood in a generative model,

Chapter 3 introduced the idea of a using large margin, multi-label loss between a

linear response, z, and a boolean target vector, y ∈ {0, 1}h:

L̃(z,y) = max(1− y + k z− 1(y′z)) (4.16)

where 1 denotes the vector of all 1s. Intuitively this encourages the responses on

the active labels, y′z, to exceed k times the response of any inactive label, kzi, by

a margin, where the implicit nonlinear transfer is a step function. Remarkably, this

loss can be shown to satisfy Postulate 1 which follows from Chapter 3.

This loss can be easily adapted to the normalized case as follows. We first

generalize the notion of margin to consider a a “normalized label” (Y Y ′)†y:

L(z,y) = max(1− (Y Y ′)†y + k z− 1(y′z))

To obtain some intuition, consider the multiclass case where k = 1. Then Y Y ′

is a diagonal matrix whose (i, i)-th element is the number of examples in each

class i. Dividing by this number allows the margin requirement to be weakened

for popular labels, while more focus is shifted to less represented labels. For a
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given set of input/output pairs (Z, Y ) the sum of the losses can then be compactly

expressed as L(Z, Y ) =
∑

j L(zj,yj) = τ(kZ − (Y Y ′)†Y ) + t− tr(Y ′Z), where

τ(Γ) :=
∑

j maxi Γij . This loss can be shown to satisfy Postulate 3.

Proposition 1.

Ln(S,M) = τ(S − 1
k
M) + t− tr(S), (4.17)

where S = Y ′Z and M = Y ′(Y Y ′)†Y .

Proof. A simple derivation extends the one given in Chapter 3. Observe that

τ(kZ − (Y Y ′)†Y ) = max
Λ:Rm×t+ :Λ′1=1

tr(Λ′(kZ − (Y Y ′)†Y ))

= max
Ω:Rt×t+ :Ω′1=1

1
k

tr(Ω′Y ′(kZ − (Y Y ′)†Y ))

= τ(Y ′Z − 1
k
M).

Here the second equality follows because for any Λ ∈ Rm×t
+ satisfying Λ′1 = 1,

there must be an Ω ∈ Rt×t
+ satisfying Ω′1 = 1 and Λ = Y Ω/k.

This loss can be naturally interpreted using the remark following Postulate 1. It

encourages that the propensity of example j with respect to itself, Sjj , should be

higher than its propensity with respect to other examples, Sij , by a margin that is

defined through the normalized kernel M . However note this loss does not corre-

spond to a linear transfer between layers, even in terms of the propensity matrix

S or normalized output kernel M . As in all large margin methods, the initial loss

(4.16) is a convex upper bound for an underlying discrete loss defined with respect

to a step transfer.

4.4 Efficient Optimization

Efficient optimization for the multi-layer model (4.13) is challenging, largely due to

the matrix pseudo-inverse. Fortunately, the constraints on M are all spectral, which
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Algorithm 3: Conditional gradient algorithm to optimize f(M1,M2) for

M1,M2 ∈M.

1 Initialize M̃1 and M̃2 with some random matrices.

2 while s = 1, 2, . . . do

3 Compute the gradients G1 = ∂
∂M1

f(M̃1, M̃2) and G2 = ∂
∂M2

f(M̃1, M̃2).

4 Compute the new bases M s
1 and M s

2 by invoking oracle (4.19) with G1

and G2 respectively.

5 Totally corrective update: minα∈∆s,β∈∆s f (
∑s

i=1 αiM
i
1,
∑s

i=1 βiM
i
2).

6 Set M̃1 =
∑s

i=1 αiM
i
1 and M̃2 =

∑s
i=1 βiM

i
2; break if stopping criterion

is met.

7 return (M̃1, M̃2).

makes it easier to apply conditional gradient (CG) methods (Jaggi, 2013). This is

much more convenient than the models based on unnormalized kernels in Chapter

3, where the presence of both spectral and non-spectral constraints necessitated ex-

pensive algorithms such as alternating direction method of multipliers (Boyd et al.,

2010).

Denote the objective in (4.13) as g(M1,M2, S1, S2, Z3). The idea is to optimize

f(M1,M2) := min
S1∈M1RK,S2∈M2RM1,Z3∈RM2

g(M1,M2, S1, S2, Z3) (4.18)

by CG. The algorithm is described in Algorithm 3.

We next demonstrate how each step can be executed efficiently.

Oracle problem in Step 4. This requires solving, given a real symmetric gradient

G:

max
M∈M

tr(−GM) ⇔ max
0�M1�I, tr(M1)=h−1

tr(−G(HM1H + 1
t
11′)), (4.19)

where H = I − 1
t
11′. Here we used Lemma 1 of (Cheng et al., 2013). By (Over-

ton & Womersley, 1993, Theorem 3.4), max0�M1�I, tr(M1)=h−1 tr(−HGHM1) =

55



∑h−1
i=1 λi where λ1 ≥ λ2 ≥ . . . are the leading eigenvalues of −HGH . The max-

imum is attained at M1 =
∑h−1

i=1 viv
′
i, where vi is the eigenvector correspond-

ing to λi. The optimal solution to argmaxM∈M tr(−GM) can be recovered by
∑h−1

i=1 viv
′
i + 1

t
11′, which has low rank for small h.

Totally corrective update in Step 5. This is the most computationally intensive

step:

min
α∈∆s, β∈∆s

f
(∑s

i=1
αiM

i
1,
∑s

i=1
βiM

i
2

)
, (4.20)

where ∆s stands for the s dimensional probability simplex (sum up to 1). If one can

solve (4.20) efficiently (which also provides the optimal S1, S2, Z3 in (4.18) for the

optimal α and β), then the gradient of f can also be obtained easily by Danskin’s

theorem (for Step 3 of Algorithm 3). However, the totally corrective update is

expensive because given α and β, each evaluation of the objective f itself requires

an optimization over S1, S2, and Z3. Such a nested optimization can be prohibitive.

A key idea is to show that this totally corrective update can be accomplished

with considerably improved efficiency through the use of block coordinate descent

(Dinuzzo et al., 2011). Taking into account the structure of the solution to the

oracle, we denote

M1(α) :=
∑

i

αiM
i
1 = V1D(α)V ′1 , and M2(β) :=

∑

i

βiM
i
2 = V2D(β)V ′2 , (4.21)

where D(α) = diag([α11
′
h, α21

′
h, . . .]

′) and D(β) = diag([β11
′
h, β21

′
h, . . .]

′). De-

note

P (α,β, S1, S2, Z3) := g (M1(α),M2(β), S1, S2, Z3) . (4.22)

Clearly S1 ∈M1(α)RK iff S1 = V1A1K for some A1, S2 ∈M2(β)RM1(α) iff

S2 = V2A2M1(α) for some A2, and Z3 ∈ RM2(β) iff Z3 = A3M2(β) for some
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A3. So (4.20) is equivalent to

min
α∈∆s, β∈∆s,A1,A2,A3

P (α,β, V1A1K,V2A2M1(α), A3M2(β)) (4.23)

= Ln1 (V1A1K,M1(α)) + 1
2

tr(V1A1KA
′
1V
′

1) (4.24)

+ Ln2 (V2A2M1(α),M2(β)) + 1
2

tr(V2A2M1(α)A′2V
′

2) (4.25)

+ L3(A3M2(β), Y ) + 1
2

tr(A3M2(β)A′3). (4.26)

Thus we have eliminated all matrix pseudo-inverses. However, it is still expensive

because the size of Ai depends on t. To simplify further, assume X ′, V1 and V2

all have full column rank. (This assumption is valid provided the features in X

are linearly independent, since the bases (eigen-vectors) accumulated through all

iterations so far are also independent. The only exception is the eigen-vector 1√
t
1.

But since α and β lie on a simplex, it always contributes a constant 1
t
11′ to M1(α)

and M2(β).) Denote B1 = A1X
′ (note K = X ′X), B2 = A2V1, B3 = A3V2.

Noting (4.21), the objective becomes

R(α,β, B1, B2, B3) := Ln1 (V1B1X, V1D(α)V ′1) + 1
2

tr(V1B1B
′
1V
′

1) (4.27)

+ Ln2 (V2B2D(α)V ′1 , V2D(β)V ′2) + 1
2

tr(V2B2D(α)B′2V
′

2) (4.28)

+ L3(B3D(β)V ′2 , Y ) + 1
2

tr(B3D(β)B′3). (4.29)

This problem is much easier to solve, since the size of Bi depends on the number of

input features, the number of nodes in two latent layers, and the number of output

labels. Due to the greedy nature of CG, the number of latent nodes is generally low.

So we can optimize R by block coordinate descent (BCD), i.e. alternating between:

1. Fix (α,β), and solve (B1, B2, B3) (unconstrained smooth optimization, e.g.

by LBFGS).

2. Fix (B1, B2, B3), and solve (α,β) (e.g. by LBFGS with projection to sim-

plex).
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BCD is guaranteed to converge to a critical point when Ln1 , Ln2 and L3 are

smooth. (Technically, for BCD to converge to a critical point, each block opti-

mization needs to have a unique optimal solution. To ensure uniqueness, we used

a method equivalent to the proximal method in Proposition 7 of (Grippoa & Scian-

drone, 2000).) In practice, these losses can be made smooth by, e.g. approximating

the max in (4.17) by a softmax. It is crucial to note that although both of the two

steps are convex, R is not jointly convex in its variables. So in general, this alternat-

ing scheme can only produce a stationary point ofR. Interestingly, we further show

that any stationary point must provide a global optimal solution to P in (4.22).

Theorem 2. Suppose (α,β, B1, B2, B3) is a stationary point of R with αi > 0 and

βi > 0. Assume X ′, V1 and V2 all have full column rank. Then it must be a globally

optimal solution to R, and this (α,β) must be an optimal solution to the totally

corrective update (4.20).

To enforce Theorem 2, we will use constraints

αi ≥ 1/s, βi ≥ 1/s, 1′α = 1, 1′β = 1. (4.30)

Proof. Let

C2 = B2D(α), C3 = B3D(β) (4.31)

Then R is equivalent to

R(α,β, B1, B2, B3) = S(α,β, B1, C2, C3) (4.32)

:= Ln1 (V1B1X, V1D(α)V ′1) +
1

2
tr(V1B1B

′
1V
′

1) (4.33)

+ Ln2 (V2C2V
′

1 , V2D(β)V ′2) +
1

2
tr(V2C2D(α)†C ′2V2) (4.34)

+ L3(C3V
′

2 , Y ) +
1

2
tr(C3D(β)†C ′3). (4.35)
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Clearly S is jointly convex in (α,β, B1, C2, C3). Thanks to the invertability of

D(α) and D(β), we apply chain rule to the stationarity condition of Bi:

0 =
∂

∂B1

R(α,β, B1, B2, B3) =
∂

∂B1

S(α,β, B1, C2, C3)

⇒ ∂

∂B1

S(α,β, B1, C2, C3) = 0 (4.36)

0 =
∂

∂B2

R(α,β, B1, B2, B3) =
∂

∂C2

S(α,β, B1, C2, C3)D(α

⇒ ∂

∂C2

S(α,β, B1, C2, C3) = 0 (4.37)

0 =
∂

∂B3

R(α,β, B1, B2, B3) =
∂

∂C3

S(α,β, B1, C2, C3)D(β)

⇒ ∂

∂C3

S(α,β, B1, C2, C3) = 0 (4.38)

Note R is convex in (α,β) given Bi, and αi, βi satisfy the constraint (4.30). So

KKT conditions (regarding the optimality of (α,β) given B1, B2, B3) ensure that

there exist Lagrange multipliers (µ, λ) (corresponding to the sum up to one con-

straints) and (ai, bi) (corresponding to the greater than or equal to 1/s constraint)

such that

αi ≥
1

s
, βi ≥

1

s
, 1′α = 1, 1′β = 1, (4.39)

ai(αi − 1
s
) = 0, bi(βi − 1

s
) = 0, ai ≥ 0, bi ≥ 0, (4.40)

and

0 =
∂

∂αi
R(α,β, B1, B2, B3)− µ− ai (4.41)

(chain rule) =
∂

∂αi
S(α,β, B1, C2, C3) +

〈
∂

∂αi
B2D(α),

∂

∂C2

S(α,β, B1, C2, C3)

〉

− µ− ai (4.42)

by (4.37) =
∂

∂αi
S(α,β, B1, C2, C3)− µ− ai, (4.43)
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and similarly,

0 =
∂

∂βi
S(α,β, B1, C2, C3)− λ− bi. (4.44)

Since S is jointly convex in all its variables, (4.36)-(4.40), (4.43), and (4.44) provide

all the KKT conditions required to establish the global optimality of (α,β, B1, C2, C3)

for S. The claims in the theorem then follow.

It is noteworthy that the conditions αi > 0 and βi > 0 are trivial to meet because

CG is guaranteed to converge to optimal if αi ≥ 1/s and βi ≥ 1/s at each step s.

4.5 Empirical Investigation

To investigate the potential of deep versus shallow convex training methods, and

global versus local training methods, we implemented the approach outlined above

for a three-layer model along with comparison methods. Below we use CVX3 and

CVX2 to refer respectively to three and two-layer versions of theTSJ1 proposed

model. For comparison, SVM1 refers to a one-layer SVM; and TSS1 (Sindhwani

& Keerthi, 2006) and TSJ1 (Joachims, 1999) refer to one-layer transductive SVMs;

NET2 refers to a standard two-layer sigmoid neural network with hidden layer size

chosen by cross-validation; and LOC3 refers to the proposed three-layer model

with exact (unrelaxed) with local optimization. In these evaluations, we followed a

similar transductive set up to that of Chapter 3: a given set of data (X, Y ) is divided

into separate training and test sets, (XL, YL) andXU , where labels are only included

for the training set. The training loss is then only computed on the training data, but

the learned kernel matrices span the union of data. For testing, the kernel responses

on test data are used to predict output labels.
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4.6 Synthetic Experiments

Our first goal was to compare the effective modeling capacity of a three versus two-

layer architecture given the convex formulations developed above. In particular,

since the training formulation involves a convex relaxation of the normalized ker-

nel domain,M in (4.15), it is important to determine whether the representational

advantages of a three versus two-layer architecture are maintained. We conducted

two sets of experiments designed to separate one-layer from two-layer or deeper

models, and two-layer from three-layer or deeper models. Although separating two

from one-layer models is straightforward, separating three from two-layer models

is a subtler question. Here we considered two synthetic settings defined by basic

functions over boolean features:

Parity: y = x1 ⊕ x2 ⊕ . . .⊕ xn, (4.45)

Inner Product: y = (x1 ∧ xm+1)⊕ (x2 ∧ xm+2)⊕ . . .⊕ (xm ∧ xn) (4.46)

where m = n
2
. It is well known that Parity is easily computable by a two-layer

linear-gate architecture but cannot be approximated by any one-layer linear-gate

architecture on the same feature space (Hajnal, 1993). The Inner Product (IP)

problem is motivated by a fundamental result in the circuit complexity literature:

any small weights threshold circuit of depth 2 requires size exp(Ω(n)) to compute

(4.46) (Hajnal, 1993; Razborov, 1992). To generate data from these models, we

set the number of input features to n = 8 (instead of n = 2 as in Chapter 3), then

generate 200 examples for training and 100 examples for testing; for each example,

the features xi were drawn from {0, 1} with equal probability. Then each xi was

corrupted independently by a Gaussian noise with zero mean and variance 0.3. The

experiments were repeated 100 times, and the resulting test errors of the two mod-

els are plotted in Figure 4.2 and Figure 4.3 (larger dots mean repetitions fall on the

same point). Figure 4.3 clearly shows that CVX3 is able to capture the structure of

the Inner Product problem much more effectively than CVX2, as the theory sug-
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gests for such architectures. In almost every repetition, CVX3 yields a lower (often

much lower) test error than CVX2. Even on the Parity problem (Figure 4.2), CVX3

generally produces lower error, although its advantage is not as significant. This

is also consistent with theoretical analysis (Hajnal, 1993; Razborov, 1992), which

shows that IP is harder to model than parity.
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Figure 4.2: Parity dataset results

15 20 25 30 35 40 45 5015
20
25
30
35
40
45
50

Error of CVX2

Er
ro

r o
f C

VX
3

Figure 4.3: Inner Product dataset results
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4.7 Experiments on Real Data

We also conducted an empirical investigation on some real data sets. Here we

tried to replicate the results of Chapter 3 on similar data sets, USPS and COIL

from (Chapelle et al., 2006), Letter from (Lichman, 2013), MNIST from (LeCun

& Cortes, 2010), and CIFAR-100 from (Krizhevsky, 2009). Similar to (Joulin &

Bach, 2012), we performed an optimistic model selection for each method on an

initial sample of t training and t test examples; then with the parameters fixed the

experiments were repeated 5 times on independently drawn sets of t training and t

test examples from the remaining data.

CIFAR MNIST USPS COIL Letter

TSS1 30.7±4.2 16.3 ±1.5 12.7±1.2 16.0±2.0 5.7±2.0

TSJ1 26.0±6.5 16.0 ±2.0 11.0±1.7 20.0±3.6 5.0±1.0

SVM1 33.3±1.9 18.3 ±0.5 12.7±0.2 16.3±0.7 7.0±0.3

NET2 30.7±1.7 15.3 ±1.7 12.7±0.4 15.3±1.4 5.3±0.5

CVX2 27.7±5.5 12.7 ±3.2 9.7±3.1 14.0±3.6 5.7±2.9

LOC3 36.0±1.7 22.0 ±1.7 12.3±1.1 17.7±2.2 11.3±0.2

CVX3 23.3±0.5 13.0 ±0.3 9.0±0.9 9.0±0.3 5.7±0.2

Table 4.1: Mean test misclassification error % ((± stdev) 100/100 la-

beled/unlabeled.

The results shown in tables in Table 4.1 and Table 4.1 show that CVX3 is able

to systematically reduce the test error of CVX2. This suggests that the advantage

of deeper modeling does indeed arise from enhanced representation ability, and not

merely from an enhanced ability to escape local minima or walk plateaus, since

neither exist in these cases.
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CIFAR MNIST USPS COIL Letter

TSS1 32.0±2.6 10.7 ±3.1 10.3±0.6 13.7±4.0 3.8±0.3

TSJ1 26.0±3.3 10.0 ±3.5 11.0±1.3 18.9±2.6 4.0±0.5

SVM1 32.3±1.6 12.3 ±1.4 10.3±0.1 14.7±1.3 4.8±0.5

NET2 30.7±0.5 11.3 ±1.3 11.2±0.5 14.5±0.6 4.3±0.1

CVX2 23.3±3.5 8.2 ±0.6 7.0±1.3 8.7±3.3 4.5±0.9

LOC3 28.2±2.3 12.7 ±0.6 8.0±0.1 12.3±0.9 7.3±1.1

CVX3 19.2±0.9 6.8 ±0.4 6.2±0.7 7.7±1.1 3.0±0.2

Table 4.2: Mean test misclassification error % ((± stdev) 200/200 la-

beled/unlabeled.

4.8 Conclusion

We have presented a new formulation of multi-layer training that can accommodate

an arbitrary number of nonlinear layers while maintaining a jointly convex training

objective. We proposed a new output kernel to be able to overcome the bottleneck

that prevented the extension of the two-layer model of Chapter 3 to an arbitrary

number of layers. We also developed a novel algorithm by exploiting the struc-

ture of the new formulation. We had to optimize the parameters for calculating

the the function values in the previous two-layer formulation in Chapter 3, which

proved to be an expensive step that required accurate parameter optimization to pre-

vent instability. Instead, the current formulation enabled us to use alternation with

global optimum guarantees, which eliminated the nested optimization of parame-

ters. Accurate learning of additional layers, when required, appears to demonstrate

a marked advantage over shallower architectures, even when models can be trained

to optimality.
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Chapter 5

Tractable Robust Modeling

We presented convex approximations of predictive latent models in Chapters 3

and 4. However real world datasets are often contaminated with many types of

outliers, hence another critical aspect of ML in practice is robustness. Despite

the variety of robust regression methods that have been developed, current regres-

sion formulations are either NP-hard, or allow unbounded response to even a sin-

gle leverage point. In this chapter, we present a general formulation for robust

regression—Variational M-estimation—that unifies a number of robust regression

methods while allowing a tractable approximation strategy. We develop an esti-

mator that requires only polynomial-time, while achieving certain robustness and

consistency guarantees. The work in this chapter was published in Neural Informa-

tion Processing Systems conference (Yu et al., 2012).

5.1 Introduction

As stated in background chapter, tractability and robustness have both only been

achieved under restricted conditions, such as a bounded domain (Huber & Ronchetti,

2009; Christmann & Steinwart, 2007; Christmann et al., 2009). Our main motiva-

tion is to extend these existing results to the case of an unbounded domain. Unfor-
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tunately, the inapplicability of convex losses in this situation means that computa-

tional tractability becomes a major challenge, and new computational strategies are

required to achieve tractable robust estimators.

The main contribution of this chapter is to develop a new robust regression strat-

egy that can guarantee both polynomial run-time and bounded response to individ-

ual outliers, including leverage points. Although such an achievement is modest, it

is based on two developments of interest. The first is a general formulation of adap-

tive M-estimation, Variational M-estimation that unifies a number of robust regres-

sion formulations, including convex and bounded M-estimators with certain subset-

selection estimators such as Least Trimmed Loss (Rousseeuw & Leroy, 1987a). By

incorporating Tikhonov regularization, these estimators can be extended to repro-

ducing kernel Hilbert spaces (RKHSs). The second development is a convex re-

laxation scheme that ensures bounded outlier influence on the final estimator. The

overall estimation procedure is guaranteed to be tractable, robust to single outliers

with unbounded leverage, and consistent under non-trivial conditions. An exper-

imental evaluation of the proposed estimator demonstrates effective performance

compared to standard robust estimators.

After presenting the related background material of robust regression in Section

5.2, we introduce the general form of adaptive M-estimation in Section 5.3. We

then add Tikhonov regularizer and develop a convex relaxation that is lower bound

on the original objective in Section 5.4. We show that the relaxation is tight and

therefore maintains the robustness properties of the original formulation in Section

5.5. We empirically demonstrate the effectiveness of final relaxation in Section 5.6.

5.2 Background

We start by considering the standard linear regression model

y = x′θ∗ + u (5.1)
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where x is an Rp-valued random variable, u is a real-valued random noise term, and

θ∗ ∈ Θ ⊆ Rp is an unknown deterministic parameter vector. Assume we are given

a sample of n independent identically distributed (i.i.d.) observations represented

by a matrix X ∈ Rn×p and a vector y ∈ Rn×1, where each row Xi: is drawn from

some unknown marginal probability measure Px, and yi are generated according to

(5.1). Our task is to estimate the unknown deterministic parameter θ∗ ∈ Θ. This is

a well-studied problem in statistics and ML. If the noise distribution has a known

density p(·), then a standard estimator is given by maximum likelihood, which is a

well-known setting in statistics .

θ̂ML ∈ arg min
θ∈Θ

1
n

∑n
i=1− log p(yi −Xi:θ) = arg min

θ∈Θ

1
n

∑n
i=1− log p(ri),(5.2)

where ri = yi−Xi:θ is the ith residual. When the noise distribution is unknown,

one can replace the negative log-likelihood with a loss function ρ(·) and use the

estimator

θ̂M ∈ arg min
θ∈Θ

1
n
1′ρ(y −Xθ), (5.3)

where ρ(r) denotes the vector of losses obtained by applying the loss component-

wise to each residual, hence 1′ρ(r) =
∑n

i=1 ρ(ri). Such a procedure is known as

M -estimation in the robust statistics literature, and empirical risk minimization in

the ML literature. (Generally one has to introduce an additional scale parameter σ

and allow rescaling of the residuals, ri/σ, to preserve parameter equivariance (Hu-

ber & Ronchetti, 2009; Maronna et al., 2006). However, we will initially assume a

known scale σ.)

Although uncommon in robust regression, it is conventional in machine learning

to include a regularizer. In particular we will use Tikhonov regularization by adding

a squared penalty

θ̂MR ∈ arg min
θ∈Θ

1
n
1′ρ(y −Xθ) + λ

2
‖θ‖2

2 for λ ≥ 0. (5.4)
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The significance of Tikhonov regularization is that it ensures θ̂MR = X ′α for some

α ∈ Rn (Kimeldorf & Wahba, 1970). More generally, under Tikhonov regulariza-

tion, the regression problem can be conveniently expressed in a reproducing kernel

Hilbert space (RKHS). If we let H denote the RKHS corresponding to positive

semidefinite kernel κ : X × X → R, then f(x) = 〈κ(x, ·), f〉H for any f ∈ H

by the reproducing property (Kimeldorf & Wahba, 1970; Steinwart & Christmann,

2008). We consider the generalized regression model

y = f ∗(x) + u (5.5)

where x is an X -valued random variable, u is a real-valued random noise term

as above, and f ∗ ∈ H is an unknown deterministic function. Given a sample of n

i.i.d. observations (x1, y1), ..., (xn, yn), where each xi is drawn from some unknown

marginal probability measure Px, and yi are generated according to (5.5), the task

is then to estimate the unknown deterministic function f ∗ ∈ H. We are obviously

assuming X is equipped with an appropriate σ-algebra, and R with the standard

Borel σ-algebra, such that the joint distribution P over X × R is well defined and

κ(·, ·) is measurable. To do so we can express the estimator (5.4) more generally as

f̂MR ∈ arg min
f∈H

1
n

∑n
i=1 ρ(yi − f(xi)) + λ

2
‖f‖2

H. (5.6)

By the representer theorem (Kimeldorf & Wahba, 1970), the solution to (5.6) can

be expressed by f̂MR(x) =
∑n

i=1 αiκ(xi, x) for some α ∈ Rn. and therefore (5.6)

can be recovered by solving the finite dimensional problem

α̂MR ∈ arg min
α

1
n
1Tρ(y −Kα) + λ

2
αTKα such that Kij = κ(xi, xj). (5.7)

Our interest is understanding the tractability, robustness and consistency aspects of

such estimators.

68



5.2.1 Consistency

Much is known about the consistency properties of estimators expressed as reg-

ularized empirical risk minimizers. For example, the ML-estimator and the M -

estimator are both known to be parameter consistent under general conditions (van der

Vaart & Wellner, 1996).

In particular, let Mn(θ) = 1
n

∑n
i=1 ρ(yi − xTi θ), let M(θ) = E(ρ(y1 − xT1 θ)),

and equip the parameter space Θ with the uniform metric ‖ · ‖Θ. Then θ̂
(n)

M → θ∗,

provided ‖Mn − M‖Θ → 0 in outer probability (adopted to avoid measurability

issues) andM(θ∗) > supθ∈GM(θ) for every open setG that contains θ∗. The latter

assumption is satisfied in particular whenM : Θ 7→ R is upper semicontinuous with

a unique maximum at θ∗. It is also possible to derive asymptotic convergence rates

for general M -estimators (van der Vaart & Wellner, 1996).

The regularized M -estimator in RKHSs (5.6), is loss consistent under some

general assumptions on the kernel, loss and training distribution.

Specifically, let ρ∗ = inff∈HE[ρ(y1 − f(x1))]. Then Christmann et al. (2009)

showed that 1
n

∑n
i=1 ρ(yi − f̂MR(xi)) → ρ∗ provided the regularization constant

λn → 0 and λ2
nn → ∞, the loss ρ is convex and Lipschitz-continuous, and the

RKHS H (induced by some bounded measurable kernel κ) is separable and dense

in L1(P) (the space of P-integrable functions) for all distributions P on X . Also,

Y ⊂ R is required to be closed where y ∈ Y .

Furthermore, a weak form of f -consistency has also established in (Christmann

et al., 2009). For bounded kernel and bounded Lipschitz losses, one can similarly

prove the loss consistency of the regularized M -estimator (5.6) (in RKHS).

Let us start by establishing some notation. Recall that H is the RKHS induced

by some kernel κ, {(xi, yi)}ni=1 are i.i.d.samples from the underlying training dis-

tribution P(x, y). For any function f (possibly random), define

R(f) :=

∫

X×R
ρ(y − f(x))dP(x, y).
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Then the following functions all aim at minimizingR(f) in one way or another:

f ∗ ∈ argmin
f
R(f) (5.8)

fH ∈ argmin
f∈H

R(f) (5.9)

fH,λ ∈ argmin
f∈H

R(f) + λ‖f‖2
H (5.10)

f̂H,λ ∈ argmin
f∈H

R̂(f) + λ‖f‖2
H, (5.11)

where R̂(f) := 1
n

∑n
i=1 ρ(yi − f(xi)). For simplicity, we have tacitly assumed the

existence of all minimizers in the above. We will also ignore measurability issues

for the time being. Note that only the last function f̂H,λ depends on the data.

The regularized M -estimator f̂H,λ is said to be (loss) consistent if

R(f̂H,λ)−R(f ∗)→ 0 (5.12)

as the sample size n increases to infinity and the regularization constant λ decreases

to zero. To investigate when consistency can be assured, the following decomposi-

tion is standard and helpful (Steinwart & Christmann, 2008):

R(f̂H,λ)−R(f ∗) = R(f̂H,λ)−R(fH,λ)− λ‖fH,λ‖2
H (5.13)

+R(fH,λ) + λ‖fH,λ‖2
H −R(fH) (5.14)

+R(fH)−R(f ∗), (5.15)

where the last term is usually called the approximation error, which measures how

well can functions in H approximate f ∗ under the ρ loss; the second term can be

thought of as some stability error (where the regularization constant λ plays the role

of perturbation); and the first term is related to the sampling error. Note that the last

two terms depend only on the interaction between the RKHS H (hence the kernel

κ), the training distribution P(x, y), and the loss ρ. It is however independent of any

estimation procedure (except perhaps providing some insights on how to practically

tune the regularization constant). Very general bounds for the last two terms exist
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in the learning theory literature, see, for instance (Steinwart & Christmann, 2008)

and (Cucker & Zhou, 2007). To make our presentation less complicated we will

simply assume the sum of the last two terms, as a function of λ, goes to 0 when

λ itself decreases to 0. The interested reader can consult the books (Steinwart &

Christmann, 2008) and (Cucker & Zhou, 2007) for precise technical conditions

under which this is indeed so. The right-hand side in (5.13) is apparently upper

bounded by

R(f̂H,λ) + λ‖f̂H,λ‖2
H −R(fH,λ)− λ‖fH,λ‖2

H = R(f̂H,λ)− R̂(f̂H,λ) + R̂(f̂H,λ)

+λ‖f̂H,λ‖2
H−R̂(fH,λ)−λ‖fH,λ‖2

H

+R(fH,λ)− R̂(fH,λ)

≤ R(f̂H,λ)− R̂(f̂H,λ) +R(fH,λ)

− R̂(fH,λ)

≤ sup
f :‖f‖H≤ 1√

λ

|R(f)− R̂(f)|,

(5.16)

where the first inequality is due to the optimality of f̂H,λ, and the second inequality

follows under the assumption 0 ≤ ρ ≤ 1. Therefore we have related the right-

hand side in (5.13) to the (uniform) sampling error. Applying standard uniform

convergence bounds, for instance, the Rademacher complexity bound in (Bartlett

& Mendelson, 2003, Theorem 8; Theorem 12; Lemma 22), leads to the following

consistency result:

Proposition 2. Assuming (5.14) and (5.15) approach 0 when λ → 0, the loss ρ is

Lipschitz and bounded between 0 and 1, supx∈X κ(x, x) ≤ 1, then the regularized

M -estimator defined in (5.11) is (ρ-loss) consistent.

It is also possible to derive consistency results that depends on the capacity of

the RKHS (Steinwart & Christmann, 2008). Generally speaking, any estimator that

can be expressed as a regularized empirical loss minimization is consistent under
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“reasonable” conditions. That is, one can consider regularized loss minimization

to be a (generally) sound principle for formulating regression estimators, at least

from the perspective of consistency. However, this is no longer the case when we

consider robustness and tractability; here sharp distinctions begin to arise within

this class of estimators.

5.2.2 Robustness

Although robustness is an intuitive notion, it has not been given a unique technical

definition in the literature. Several definitions have been proposed, with distinct

advantages and disadvantages (Huber & Ronchetti, 2009). Some standard defini-

tions consider the asymptotic invariance of estimators to an infinitesimal but arbi-

trary perturbation of the underlying distribution, e.g. the influence function (Ham-

pel et al., 1986; Huber & Ronchetti, 2009). Although these analyses can be useful,

we will focus on finite sample notions of robustness since these are most related

to concerns of computational tractability. In particular, we focus on the following

definition related to the finite sample breakdown point (Donoho & Huber, 1983;

Davies & Gather, 2007).

Definition 1 (Bounded Response). Assuming the parameter set Θ is metrizable, an

estimator has bounded response if for any finite data sample its output remains in a

bounded interior subset of the closed parameter set Θ (or respectivelyH), no matter

how a single observation pair is perturbed.

This is a much weaker definition than having a non-zero breakdown point: a

breakdown of ε requires that bounded response be guaranteed when any ε fraction of

the data is perturbed arbitrarily. Bounded response is obviously a far more modest

requirement. However, importantly, the definition of bounded response allows the

possibility of arbitrary leverage; that is, no bound is imposed on the magnitude

of a perturbed input (i.e. ‖x1‖ → ∞ or κ(x1, x1) → ∞). Surprisingly, we find
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that even such a weak robustness property is difficult to achieve while retaining

computational tractability.

5.2.3 Computational Dilemma

The goals of robustness and computational tractability raise a dilemma: it is easy to

achieve robustness (i.e. bounded response) or tractability (i.e. polynomial run-time)

in a consistent estimator, but apparently not both.

Consider, for example, using a convex loss function. These are the best known

class of functions that admit computationally efficient polynomial-time minimiza-

tion (Nesterov & Nimirovskii, 1994) (see also (Nesterov, 2003) ). It is sufficient

that the objective be polynomial-time evaluable, along with its first and second

derivatives, and that the objective be self-concordant (Nesterov & Nimirovskii,

1994). (A function ρ is self-concordant if |ρ′′′(r)| ≤ 2ρ′′(r)3/2; see e.g. (Boyd

& Vandenberghe, 2004, Ch.9).) Since a Tikhonov regularizer is automatically self-

concordant, the minimization problems outlined above can all be solved in poly-

nomial time with Newton-type algorithms, provided ρ(r), ρ′(r), and ρ′′(r) can all

be evaluated in polynomial time for a self-concordant ρ (Boyd & Vandenberghe,

2004, Ch.9). Standard loss functions, such as squared error or Huber’s loss satisfy

these conditions, hence the corresponding estimators are polynomial-time. Unfor-

tunately, loss minimization with a (non-constant) convex loss yields unbounded

response to even a single outlier (Maronna et al., 2006, Ch.5).

We extend this result to also account for regularization and RKHSs.

Theorem 3. Empirical risk minimization based on a (non-constant) convex loss

cannot have bounded response if the domain (or kernel) is unbounded, even under

Tikhonov regularization.

We will separately prove the two cases; first, assuming an explicit feature rep-

resentation expressed in a data matrix X , and second, in the case of an RKHS.
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Explicit Feature Case

Proof. Consider the L2-norm regularized M -estimator:

θ̂ = arg min
θ∈Θ

λ

2
‖θ‖2

2 +
n∑

i=1

ρ(yi −Xi:θ), (5.17)

where ρ is some (non-constant) convex function. For simplicity, we assume ρ is

differentiable (otherwise one can consider subdifferentials to arrive at the same con-

clusion).

Suppose the theorem is false, then θ̂ remains in a bounded interior subset.

From the first order optimality condition (see, for instance, (Boyd & Vandenberghe,

2004)), we know that

[ρ′(y1−X1:θ̂) + λ]X1: +
n∑

i=2

[ρ′(yi−Xi:θ̂) + λ]Xi: = 0. (5.18)

Now we perturb (X1:, y1) to cause a contradiction. Since ρ is a univariate convex

and non-constant function, we apparently have limd→∞ ρ
′(d) > 0 or limd→−∞ ρ

′(d)

< 0 or both. Assume limd→∞ ρ
′(d) > 0 (the other case can be proved similarly).

Let y1 and ‖X1:‖ tend to infinity in a way that y1
‖X1:‖ also tends to infinity. Then

y1 −X1:θ̂ ≥ y1 − ‖X1:‖ · ‖θ̂‖ (5.19)

= ‖X1:‖ ·
(

y1

‖X1:‖
− ‖θ̂‖

)
(5.20)

tends to infinity since θ̂ is bounded. Therefore ρ′(y1 − X1:θ̂) tends to a positive

number. But then the first term in (5.18) is unbounded in norm while the second

term is bounded in norm (for we did not perturb {(Xi:, yi)}ni=2), contradiction.

Intuitively the meaning of this theorem is clear: If the loss function is un-

bounded, then any sample that is far enough can drag the estimate θ̂ outside of

any bounded interior subset. Tikhonov regularization is not able to overcome this

effect. Note that we need to perturb both X1: and y1, in order to derive a contra-

diction (for instance, if one only perturbs y1, then convex functions with bounded

derivatives will survive the proof).
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RKHS Case

Proof. Let us consider the standard regularized M -estimator:

f̂MR ∈ arg min
f∈H

1

n

n∑

i=1

ρ(yi − 〈φ(xi), f〉) +
λ

2
‖f‖2

H, (5.21)

where {(xi, yi)}ni=1 are samples from the domain X × R; and H is the RKHS in-

duced by some unbounded kernel κ, with its canonical feature map φ : X 7→ H.

As above, we assume ρ is some non-constant convex loss function. For simplicity,

we assume that the minimum in (5.21) is attained.

Suppose the theorem is false, then f̂MR remains in a bounded set. The first order

necessary condition for the optimality of f̂MR yields

ρ′
(
y1 − 〈φ(x1), f̂MR〉

)
φ(x1) +

n∑

i=2

ρ′
(
yi − 〈φ(xi), f̂MR〉

)
φ(xi) + nλf̂MR

= 0, (5.22)

where ρ′ denotes the subdifferential of ρ (whose existence is guaranteed by convex-

ity, moreover since ρ is finite-valued on R, ρ′ is also finite-valued on R). The second

term and third term above are bounded since f̂MR is assumed to be bounded. We

will perturb (x1, y1) such that the first term is not bounded in norm, hence creating

a contradiction.

Since ρ is convex and non-constant, we must have either limy→∞ ρ
′(y) > 0 or

limy→−∞ ρ
′(y) > 0 (or both). Let us assume limy→∞ ρ

′(y) > 0 (the other case can

be proved similarly).

Let both y1 and κ(x1, x1) tend to infinity in a way such that y1√
κ(x1,x1)

also tends

to infinity. Then

y1 − 〈φ(x1), f̂MR〉 ≥ y1 −
√
κ(x1, x1)‖f̂MR‖H

=
√
κ(x1, x1)

(
y1√

κ(x1, x1)
− ‖f̂MR‖H

)
, (5.23)

75



hence

∥∥∥ρ′
(
y1−〈φ(x1), f̂MR〉

)
φ(x1)

∥∥∥
H

=
∣∣∣ρ′
(
y1−〈φ(x1), f̂MR〉

)∣∣∣
√
κ(x1, x1)→∞(5.24)

due to our assumptions.

Note that again we need to perturb both κ(x1, x1) and y1 to reach a contra-

diction (for instance, if one only perturbs y1, then convex functions with bounded

derivatives will survive our proof).

It should be clear in both these proofs that one may replace the L2-norm with

other regularizers without affecting Theorem 3.

By contrast, consider the case of a (non-constant) bounded loss function. (A

bounded function obviously cannot be convex over an unbounded domain unless

it is constant.) Bounded loss functions are a common choice in robust regression

because they not only ensure bounded response, trivially, they can also ensure a

high breakdown point of (n−p)/(2n) (Maronna et al., 2006, Ch.5). Unfortunately,

estimators based on bounded losses are inherently intractable.

Theorem 4. Bounded (non-constant) loss minimization is NP-hard. (Proof given

in Appendix A.3.4.)

These difficulties with empirical risk minimization have led the field of robust

statistics to develop a variety of alternative estimators (Huber & Ronchetti, 2009,

Ch.7). For example, (Rousseeuw & Leroy, 1987a) recommends subset-selection

based regression estimators, such as Least Trimmed Loss

θ̂LTL ∈ arg minθ∈Θ

∑n′

i=1 ρ(r[i]). (5.25)

Here r[i] denotes sorted residuals r[1] ≤ · · · ≤ r[n] and n′ < n is the number of

terms to consider. Traditionally ρ(r) = r2 is used. These estimators are known

to have high breakdown (Rousseeuw & Leroy, 1987a), and obviously demonstrate
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bounded response to single outliers. Unfortunately, it is NP-hard (Bernholt, 2005)

(when n′ approaches n/2 the breakdown of (5.25) approaches 1/2 (Rousseeuw &

Leroy, 1987a)).

5.3 Variational M-estimation

To address the dilemma, we first adopt a form of adaptive M-estimator that allows

flexibility while allowing a general approximation strategy. The key idea is a varia-

tional representation of M-estimation that can express a number of standard robust

(and non-robust) methods in a common framework. In particular, consider the fol-

lowing adaptive form of loss function

ρ(r) = min
0≤η≤1

η`(r) + ψ(η). (5.26)

where r is a residual value, ` is a closed convex base loss, η is an adaptive weight

on the base loss, and ψ is a convex auxiliary function. The weight can choose to

ignore the base loss if `(r) is large, but this is balanced against a prior penalty ψ(η).

Different choices of base loss and auxiliary function will yield different results, and

one can represent a wide variety of loss functions ρ in this way (Black & Rangara-

jan, 1996). For example, any convex loss ρ can be trivially represented in the form

(5.26) by setting ` = ρ, and ψ(η) = δ{1}(η). (We use δC(η) to denote the indicator

for the point set C; i.e., δC(η) = 0 if η ∈ C, otherwise δC(η) =∞.) Bounded loss

functions that can also be represented in this way are given in Appendix A.3.1.

Therefore, all of the previous forms of regularized empirical risk minimization,

whether with a convex or bounded loss ρ, can be easily expressed using only convex

base losses ` and convex auxiliary functions ψ, as follows

θ̂VM ∈ arg min
θ∈Θ

min
0≤η≤1

η′`(y −Xθ) + 1′ψ(η) + λ
2
‖η‖1‖θ‖2

2 (5.27)

α̂VM ∈ arg min
α

min
0≤η≤1

η′`(y −Kα) + 1′ψ(η) + λ
2
‖η‖1α

′Kα. (5.28)
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Note that we have added a regularizer ‖η‖1/n, which increases robustness by en-

couraging η weights to prefer small values. This particular form of regularization

has two advantages: (i) it is a smooth function of η on 0 ≤ η ≤ 1 (since ‖η‖1 = 1′η

in this case), and (ii) it enables a tight convex approximation strategy, as we will see

below. (Other forms of robust regression can be expressed in a similar framework;

see Appendix A.3.3.)

These formulations are all convex in the parameters given the auxiliary weights,

and vice versa. However, they are not jointly convex in the optimization variables

(i.e. in θ and η, or in α and η). Therefore, one is not assured that the problems

(5.27)–(5.28) have only global minima; in fact local minima exist and global min-

ima cannot be easily found (or even verified).

5.4 Computationally Efficient Approximation

We present a general approximation strategy for the variational regression estima-

tors above that can guarantee polynomial run-time while ensuring certain robust-

ness and consistency properties. The approximation is significantly tighter than

the existing work (Yu et al., 2010), which allows us to achieve stronger guaran-

tees while providing better empirical performance. In developing our estimator we

follow standard methodology from combinatorial optimization that was partly ap-

plied also in Chapter 3 and in Chapter 4: given an intractable optimization problem,

first formulate a (hopefully tight) convex relaxation that provides a lower bound on

the objective, then round the relaxed minimizer back to the feasible space, hope-

fully verifying that the rounded solution preserves desirable properties, and finally

re-optimize the rounded solution to refine the result; see e.g. (Peng & Wei, 2007).

To maintain generality, we formulate the approximate estimator in the RKHS

setting. Consider (5.28). Although the problem is obviously convex in α given

η, and vice versa, it is not jointly convex (recall the assumption that ` and ψ are
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both convex functions). This suggests that an obvious computational strategy for

computing the estimator (5.28) is to alternate between α and η optimizations (or

use heuristic methods (Nunkesser & Morell, 2010)), but this cannot guarantee any-

thing other than local solutions (and thus may not even achieve any of the desired

theoretical properties associated with the estimator).

Reformulation: We first need to reformulate the problem to allow a tight relax-

ation. Let ∆(η) denote putting a vector η on the main diagonal of a square matrix,

and let ◦ denote componentwise multiplication. Since ` is closed and convex by

assumption, we know that `(r) = supν νr − `∗(ν), where `∗ is the Fenchel conju-

gate of ` (Boyd & Vandenberghe, 2004). This allows (5.28) to be reformulated as

follows.

Lemma 4. min
0≤η≤1

min
α
ηT`(y −Kα) + 1Tψ(η) + λ

2
‖η‖1α

TKα (5.29)

= min
0≤η≤1

sup
ν

1Tψ(η)− ηT (`∗(ν)−∆(y)ν)− 1
2λ
νT
(
K ◦ (η‖η‖−1

1 η
T )
)
ν, (5.30)

where the function evaluations are componentwise.

Proof. The lemma amounts to dualizing the interior convex minimization problem

min
α
η′`(y −Kα) + 1′ψ(η) + λ

2
‖η‖1α

′Kα. (5.31)

Recall from the main body that the function ` is assumed to be closed and convex.

Therefore, strong Fenchel duality holds:

η′`(y −Kα) = sup
ν
ν ′∆(η)(y −Kα)− η′`∗(ν) (5.32)

and we can therefore re-write (5.31) as

(5.31) = min
α

sup
ν

1′ψ(η)− η′`∗(ν) + ν ′∆(y)η − ν ′∆(η)Kα

+
λ

2
‖η‖1α

′Kα (5.33)

= sup
ν

min
α

1′ψ(η)− η′`∗(ν) + ν ′∆(y)η − ν ′∆(η)Kα

+
λ

2
‖η‖1α

′Kα, (5.34)
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where (5.34) follows by strong duality (since for all fixed ν in (5.34) the sublevel

sets in α are bounded (Boyd & Vandenberghe, 2004, Ch.3)).

Finally, α can be eliminated from the inner problem by solving for a critical

point (the inner objective is convex in α). Taking the gradient in α and setting

to zero gives the system of equations ∇α = K∆(η)ν + λ‖η‖1Kα = 0, which is

satisfied byα = ∆(η)ν/(λ‖η‖1). Substituting this solution back into (5.34) yields

(5.34) = sup
ν

1′ψ(η)−η′(`∗(ν)−∆(y)ν)− 1

2λ‖η‖1

ν ′∆(η)K∆(η)ν (5.35)

= sup
ν

1′ψ(η)−η′(`∗(ν)−∆(y)ν)− 1

2λ
ν ′
(
K ◦ (η‖η‖−1

1 η
′)
)
ν, (5.36)

establishing the lemma.

Although no relaxation has been introduced, the new form (5.30) has a more

convenient structure.

Relaxation: Let N = η‖η‖−1
1 η

T and note that, since 0 ≤ η ≤ 1, N must

satisfy a number of useful properties. We can summarize these by formulating a

constraint set N ∈ Nη given by:

Nη = {N : N < 0, N1 = η, rank(N) = 1} (5.37)

Mη = {M : M < 0,M1 = η, tr(M) ≤ 1}. (5.38)

Unfortunately, the set Nη is not convex because of the rank constraint. However,

relaxing this constraint leads to a setMη ⊇ Nη which preserves much of the key

structure, as we verify below.

Lemma 5.

(5.30) = min
0≤η≤1

min
N∈Nη

sup
ν

1Tψ(η)−ηT (`∗(ν)−∆(y)ν)− 1
2λ
νT (K ◦N)ν (5.39)

≥ min
0≤η≤1

min
M∈Mη

sup
ν
1Tψ(η)−ηT (`∗(ν)−∆(y)ν)− 1

2λ
νT (K ◦M)ν (5.40)

using the fact that Nη ⊆Mη.
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Proof. First, to prove the equality (5.39) consider any fixed η ∈ [0, 1]n. We will

show that N = η‖η‖−1
1 η

′ ⇔ N ∈ Nη, which will immediately yield the equality.

The direction⇒ can be verified by a simple check. To prove⇐, assume N ∈ Nη.

Since N < 0 and rank(N) = 1 we know that N = qλq′ for some λ > 0 and q

such that ‖q‖ = 1. But now, since N1 = η, it must follow that q = η/(λη′1),

hence q = η/‖η‖ and λq′1 = ‖η‖. Therefore, λ = ‖η‖/q′1 = ‖η‖2/(η′1). That

is, N must have the form N = qλq′ = η‖η‖−1
1 η

′.

The inequality (5.40) then follows from the above argument, and the fact that

‖η‖2/(η′1) ≤ 1, which implies tr(N) ≤ 1 for any N ∈ Nη. Therefore Nη ⊆

Mη.

Crucially, the constraint set {(η,M) : 0 ≤ η ≤ 1,M ∈ Mη} is jointly convex

in η and M , thus (5.40) is a convex-concave min-max problem. To see why, note

that the inner objective function is jointly convex in η and M , and concave in ν.

Since a pointwise maximum of convex functions is convex, the problem is convex

in (η,M) (Boyd & Vandenberghe, 2004, Ch.3). We conclude that all local minima

in (η,M) are global. Therefore, (5.40) provides the foundation for an efficiently

solvable relaxation.

Rounding: Unfortunately the solution to M in (5.40) does not allow direct

recovery of an estimator α achieving the same objective value in (5.29), unless M

satisfies rank(M) = 1. In general we first need to round M to a rank 1 solution.

Fortunately, a trivial rounding procedure is available: we simply use η (ignoring

M ) and re-solve for α in (5.29). This is equivalent to replacing M with the rank 1

matrix Ñ = η‖η‖−1
1 η

T ∈ Nη, which restores feasibility in the original problem.

Of course, such a rounding step will generally increase the objective value.

Reoptimization: Finally, the rounded solution can be locally improved by al-

ternating between η and α updates in (5.29) (or using any other local optimization

method), yielding the final estimate α̃.
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5.5 Properties

Although a tight a priori bound on the size of the optimality gap is difficult to

achieve, a rigorous bound on the optimality gap can be recovered post hoc once after

the re-optimized estimator is computed. LetR0 denote the minimum value of (5.29)

(not efficiently computable); letR1 denote the minimum value of (5.40) (the relaxed

solution); let R2 denote the value of (5.29) achieved by freezing η from the relaxed

solution but re-optimizing α (the rounded solution); and finally let R3 denote the

value of (5.29) achieved by re-optimizing η and α from the rounded solution (the

re-optimized solution). Clearly we have the relationships R1 ≤ R0 ≤ R3 ≤ R2.

An upper bound on the relative optimality gap of the final solution (R3) can be

determined by (R3 − R0)/R3 ≤ (R3 − R1)/R3, since R1 and R3 are both known

quantities.

5.5.1 Tractability Properties

Under mild assumptions on ` and ψ, computation of the approximate estimator

(solving the relaxed problem, rounding, then re-optimizing) admits a polynomial-

time solution.

Recall that the approximate estimator is computed in three steps: First, the re-

laxed lower bound (5.40) is computed, recovering η (see Lemma 5). Second, the

parametersα are recovered by fixing η and re-solving forα in (5.29) (see Lemma 4

in Section 5.4). Third, η and α are locally reoptimized in (5.29) using the previous

(η,α) as the initial point. We discuss an efficient implementation strategy, and the

conditions under which polynomial run-time can be ensured.

For clarity we consider the case ψ(η) = 1−η. (An efficient algorithm is possible

for general ψ, but the details unnecessarily complicate the presentation.)

Relaxation: The first step of the approximate estimator is to compute the

lower bound (5.40) given in Lemma 5, and recover the optimal η and M . This
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optimization can be solved efficiently as follows. Recall the definitionMη = {M <

0,M1 = η, tr(M) ≤ 1}, apply the definition ψ(η) = 1− η, and observe

(5.40) = max
ν

min
0≤η≤1

min
M∈Mη

n− 1′η − η′(`∗(ν)−∆(y)ν)

− 1

2λ
ν ′ (K ◦M)ν (5.41)

= max
ν

max
a≥0,b≥0

min
η

min
M∈Mη

n− 1′η − η′(`∗(ν)−∆(y)ν)

− 1

2λ
ν ′ (K ◦M)ν − a′M1 + b′(M1− 1) (5.42)

= max
ν

max
a≥0,b≥0

min
M<0,tr(M)≤1

n− 1′M1− 1′M(`∗(ν)−∆(y)ν)

− 1

2λ
ν ′ (K ◦M)ν − a′M1 + b′(M1− 1) (5.43)

= max
ν,a≥0,b≥0

n− b′1− max
M<0,tr(M)≤1

1′M1 + 1′M(`∗(ν)−∆(y)ν)

+
1

2λ
ν ′ (K ◦M)ν + a′M1− b′M1, (5.44)

where (5.41) follows by Sion’s minimax theorem (Rockafellar, 1970, Cor.37.3.2);

(5.42) follows by Lagrange duality; (5.43) follows by substituting M1 = η to

replace the constraint and eliminate η; and (5.44) is simple regrouping. Therefore

(5.44) can be solved as a nonsmooth maximization:

max
ν,a≥0,b≥0

n− b′1− f(ν, a,b), (5.45)

where

f(ν, a,b) = max
M<0,tr(M)≤1

1′M1+1′Mc+
1

2λ
ν ′ (K ◦M)ν+a′M1−b′M1 (5.46)

=
1

2
max

M<0,tr(M)≤1
tr(MC(ν, a,b)), (5.47)

such that

C(ν, a,b) = 211′+1c(ν)′+c(ν)1′+
1

λ
(K ◦ νν ′)+a1′+1a′−b1′−1b′ (5.48)

c(ν) = `∗(ν)−∆(y)ν. (5.49)
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Note that in the maximization problem (5.45), f(ν, a,b) must be convex, since

it is a pointwise maximum of linear functions (Boyd & Vandenberghe, 2004, Ch.3);

hence (5.45) is a concave maximization problem. Each evaluation of f(ν, a,b)

requires no more than O(n3) time, since (5.47) can be solved by computing the

maximum eigenvector of C(ν, a,b) (Overton & Womersley, 1993). Moreover, a

subgradient in (ν, a,b) can easily be recovered from the maximizer M , based on

the fact that

∂f 3




∆(M1)(`′(ν)− y) + 1
λ
(K ◦M)ν

M1

−M1


 (5.50)

by Danskin’s theorem (Bertsekas, 1995, Ch.6). (Note that the maximizer M might

not be unique, so f is nonsmooth at points where this occurs.) Finally, at a solution

(ν, a,b;M) the weight vector η is recovered via η = M1.

Therefore, computing the relaxed solution requires solving a nonsmooth con-

cave maximization over 3n variables, where each function evaluation (and subgra-

dient) can be computed inO(n3) time. An ellipsoid algorithm can therefore be used

to solve (5.45) in polynomial-time (Nesterov, 2003) (Primak & Kheyfets, 1995).

Rounding: The rounding procedure involves a simple, smooth convex mini-

mization ofα in (5.29), where η is fixed from the relaxation step. This problem can

be solved in polynomial-time provided only that the base loss ` (assumed convex)

is also self-concordant (Nesterov & Nimirovskii, 1994).

Reoptimization: Finally, in the reopimization step, both η and α are jointly

(and locally) optimized in (5.29), starting from the solution above. A local optimum

can, once again, be recovered in polynomial-time adding only the assumption that

ψ (in addition to being convex) is also self-concordant.

Therefore, the estimation procedure requires only polynomial-time under the

stated assumptions.

Once η is recovered from the relaxed solution, the subsequent optimizations of
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(5.29) can be solved efficiently under weak assumptions about ` and ψ; namely that

they both satisfy the self-concordance and polynomial-time computation properties

discussed in Section 5.2.

5.5.2 Robustness Properties

Despite the approximation, the relaxation remains sufficiently tight to preserve

some of the robustness properties of bounded loss minimization. To establish the

robustness (and consistency) properties, we will need to make use of a specific

technical definition of outliers and inliers.

Definition 2 (Outliers and Inliers). For an L-Lipschitz loss `, an outlier is a point

(xi, yi) that satisfies `(yi) > L2Kii/(2λ) − ψ′(0), while an inlier satisfies `(yi) +

L2Kii/(2λ) < −ψ′(1).

Theorem 5. Assume the loss ρ is bounded and has a variational representation

(5.26) such that ` is Lipschitz-continuous and ψ′ is bounded. Also assume there

is at least one (unperturbed) inlier, and consider the perturbation of a single data

point (y1, x1). Under the following conditions, the rounded (re-optimized) estima-

tor maintains bounded response:

(i) If either y1 remains bounded, or κ(x1, x1) remains bounded.

(ii) If |y1| → ∞, κ(x1, x1)→∞ and `(y1)/κ(x1, x1)→∞.

Note that the latter condition causes any convex loss ` to demonstrate unbounded

response. Therefore, the approximate estimator is strictly more robust (in terms of

bounded response) than regularized empirical risk minimization with a convex loss

`.
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To prove this theorem, first let

R0 = min
0≤η≤1

min
α
η′`(y −Kα)+1′ψ(η)+

λ

2
‖η‖1α

′Kα (5.51)

R1 = min
0≤η≤1

min
M∈Mη

sup
ν

1′ψ(η)+η′(∆(y)ν−`∗(ν))

− 1

2λ
ν ′ (K ◦M)ν (5.52)

R2 = sup
ν

1′ψ(η)+η′(∆(y)ν−`∗(ν))

− 1

2λ
ν ′
(
K ◦ (η‖η‖−1

1 η
′)
)
ν (5.53)

= min
α
η′`(y−Kα)+1′ψ(η)+

λ

2
‖η‖1α

′Kα, (5.54)

where η in (5.53) is fixed at the optimal assignment determined by (5.52), and

(5.54) follows by Lemma 4. Here, R0 denotes the objective value obtained by the

(intractable) oracle minimizer, R1 is the objective value obtained by the relaxed

solution, and R2 denotes the objective value obtained by the rounded solution.

It is immediate that R0 and R1 must be bounded, since

R1 ≤ R0 ≤ nψ(0) < ∞ (5.55)

where the first inequality follows from Lemma 5, and the second inequality is

achieved by choosing η = α = 0 in (5.52). The key question is whether R2,

the rounded objective value, remains bounded. Once this is established for each of

the cases, we finally show that this will imply that ‖f̂2‖H remains bounded, and the

theorem will be proved.

Proof for Case (i), Bounded y

Proof. Assume that y remains bounded. We will need to make use of the fact that,

since ` is closed and convex, we have

max
ν

η(yν − `∗(ν)) = ηmax
ν

yν − `∗(ν) = η`(y). (5.56)
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Therefore, from (5.53) and (5.56) it follows that

R2 ≤ sup
ν

1′ψ(η)− η′(`∗(ν)−∆(y)ν) (5.57)

= 1′ψ(η) + η′`(y) (5.58)

≤ nγ (5.59)

such that γ = max0≤η≤1 ψ(η) + max|y|≤B `(y) <∞.

Proof for Case (i), Bounded K

Proof. Assume K remains bounded; in particular that |Kij| ≤ B for some B <∞.

We will need to make use of the fact that ` is Lipschitz-continuous. In particular, let

` have a Lipschitz-constant of L. Then it follows from Lemma 4 and the definition

of Fenchel conjugate (Rockafellar, 1970) that

R2 = sup
−L≤ν≤L

1′ψ(η)− η′(`∗(ν)−∆(y)ν)

− 1

2λ
ν ′
(
K ◦ (η‖η‖−1

1 η
′)
)
ν (5.60)

≤ sup
−L≤ν≤L

1′ψ(η)− η′(`∗(ν)−∆(y)ν) (5.61)

= sup
−L≤ν≤L

1′ψ(η)−η′(`∗(ν)−∆(y)ν)− 1

2λ
ν ′(K ◦M)ν

+
1

2λ
ν ′(K ◦M)ν (5.62)

≤ sup
−L≤ν≤L

{
1′ψ(η)− η′(`∗(ν)−∆(y)ν)− 1

2λ
ν ′(K ◦M)ν

}

+ sup
−L≤ν≤L

1

2λ
ν ′(K ◦M)ν (5.63)

= R1 + sup
−L≤ν≤L

1

2λ
ν ′(K ◦M)ν (5.64)

≤ nψ(0) + sup
−L≤ν≤L

1

2λ
ν ′(K ◦M)ν. (5.65)

87



Therefore it suffices to bound

sup
−L≤ν≤L

ν ′(K ◦M)ν

≤ L2 tr(KM) (5.66)

≤ L2Bn, (5.67)

since M < 0, tr(M) ≤ 1, and λmax(K) ≤ Bn (Horn & Johnson, 1985, p.292).

Proof for Case (ii)

Proof. The proof in this case proceeds differently than the previous cases. Here

we assume we are given a fixed data set (x1, y1), ..., (xn, yn), where only the first

data point (x1, y1) is perturbed (without loss of generality), so that |y1| → ∞,

κ(x1, x1) → ∞ and `(y1)/κ(x1, x1) → ∞. Note that such a point must eventually

become an outlier. We will show that this forces the corresponding weight η1 to

eventually satisfy η1 = 0 in the relaxed solution (5.52), which will automatically

imply that the rounded value R2 stays at the same finite value thereafter (since no

other data point is perturbed).

Consider the inner objective in (5.52):

1′ψ(η) + η′(∆(y)ν − `∗(ν))− 1

2λ
ν ′(K ◦M)ν (5.68)

= 1′ψ(M1) + η′(∆(y)ν − `∗(ν))− 1

2λ
ν ′(K ◦M)ν. (5.69)

The gradients with respect to the parameters for this objective are given by

∇ν = ∆(η)(y − `∗(ν)′)− 1

λ
(K ◦M)ν (5.70)

∇M = ψ′(M1)1′ + (∆(y)ν − `∗(ν))1′ − 1

2λ
(K ◦ νν ′) (5.71)

d

dη1

= ψ′(η1) + y1ν1 − `∗(ν1)− 1

2λn
K1:νν1. (5.72)

Since ` is Lipschitz-continuous with Lipschitz constant L, we know that |ν| ≤ L

(Rockafellar, 1970), hence∣∣∣∣
1

2λn
K1:νν1

∣∣∣∣ ≤
max |K1:|

2λn
L2n =

L2

2λ
K11. (5.73)
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Now consider the tentative assignment M1: = 0′, η1 = 0. At this assignment,

all of the quadratic terms in ν1 have been nullified in (5.68) and (5.69), leaving the

optimization over ν1 as

max
ν1

y1ν1 − `∗(ν1) = `(y1) (5.74)

by (5.56). Now note that at this solution for ν1 we have

d

dη1

= ψ′(η1) + `(y1)− 1

2λn
K1:νν1 (5.75)

d

dη1

∣∣∣∣
η1=0

= ψ′(0) + `(y1)− 1

2λn
K1:νν1. (5.76)

Therefore, if `(y1) > L2

2λ
K11 − ψ′(0) (the outlier condition) then d

dη1

∣∣∣
η1=0

> 0,

which implies that η1 stays at 0. We conclude that once the outlier condition is

achieved (guaranteed by the assumptions), R2 retains the same finite value after all

subsequent perturbations of (x1, y1), independent of `(y1) and κ(x1, x1).

Final Step: Bounding ‖f̂‖H Consider the rounded estimate f̂2, corresponding to

the solution to (5.54). It remains to bound ‖f̂2‖H in all the three cases discussed

above.

Proof. Observe that

‖f̂2‖H = α′Kα ≤ 2R2

λ‖η‖1

. (5.77)

Since R2 has been proved bounded under the stated assumptions, we only need to

consider the behavior of ‖η‖1, which we do in two cases: η = 0 and η 6= 0.

First, assume η = 0. Thenα = 0 is an optimal solution of (5.54), implying that

‖f̂2‖H = 0, which is obviously bounded.

So it only remains to consider η 6= 0. In this case it suffices to bound ‖η‖1 away

from zero. We achieve this by appealing to the assumption that there is at least one

inlier; that is, an unperturbed point (xi, yi), i 6= 1, such that `(yi) + L2Kii/(2λ) <

−ψ′(1). For any such point, we can establish that ηi = 1, and the result will follow.
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To show that any inlier gets weight ηi in the relaxed solution (5.52), tentatively

consider the assignment ηi = 1 then recall from (5.72) that

d

dηi
= ψ′(ηi) + yiνi − `∗(νi)−

1

2λn
Ki:ννi (5.78)

d

dηi

∣∣∣∣
ηi=1

= ψ′(1) + yiνi − `∗(νi)−
1

2λn
Ki:ννi. (5.79)

in the relaxed problem. By (5.74) above we know that yiνi − `∗(νi) ≤ `(yi). Fur-

thermore, by (5.73) we know that |Ki:ννi/(2λn)| ≤ L2Kii/(2λ). Therefore, if

the condition `(yi) + L2Kii/(2λ) < −ψ′(1) is satisfied then d
dηi

∣∣∣
ηi=1

< 0, which

implies that ηi stays at 1.

5.5.3 Consistency Properties

Finally, we can establish consistency of the approximate estimator in a limited albeit

non-trivial setting, although we have yet to establish it generally.

Theorem 6. Assume ` is Lipschitz-continuous and ψ(η) = 1 − η. Assume that

the data is generated from a mixture of inliers and outliers, where P (inlier) >

P (outlier). Then the estimate θ̂ produced by the rounded (re-optimized) method is

loss consistent.

Proof. From the proof of Theorem 5, we know that the relaxed solution will set

ηi = 0 for all outliers, and ηi = 1 for all inliers. Since only outliers and inliers are

present in the data, the solution η will be discrete {0, 1}n, and all outliers will be

ignored. Thus the reoptimized estimator f̂2 is based only on the inliers, and on such

data the estimator is solved by a standard regularized empirical risk minimization.

The consistency then follows from the standard results on regularized empirical risk

minimization above.
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5.6 Experimental Evaluation

We conducted a set of experiments to evaluate the effectiveness of the proposed

method compared to standard methods from the literature. Our experimental eval-

uation was conducted in two parts: first a synthetic experiment where we could

control data generation, then an experiment on real data.

The first synthetic experiment was conducted as follows. A target weight vec-

tor θ was drawn from N(0, I), with Xi: sampled uniformly from [0, 1]m, m = 5,

and outputs yi computed as yi = Xi:θ + εi, εi ∼ N(0, 1
2
). We then seeded the

data set with outliers by randomly re-sampling each yi and Xi: from N(0, 108) and

N(0, 104) respectively, governed by an outlier probability p. Then we randomly

sampled 100 points as the training set and another 10000 samples are used for

testing. We implemented the proposed method with two different base losses, L2

and L1, respectively; referring to these as CvxBndL2 and CvxBndL1. We com-

pared to standard L2 and L1 loss minimization, as well as minimizing the Huber

minimax loss (Huber) (Huber & Ronchetti, 2009). We also considered standard

methods from the robust statistics literature, including the least trimmed square

method (LTS) (Rousseeuw & Leroy, 1987a; Rousseeuw & Van Driessen, 2006),

and bounded loss minimization based on the Geman-McClure loss (GemMc) (Black

& Rangarajan, 1996). Finally we also compared to the alternating minimization

strategies outlined at the end of Section 5.3 (AltBndL2 and AltBndL1 for L2 and

L1 losses respectively), and implemented the strategy described in (Yu et al., 2010).

We added the Tikhonov regularization to each method and the regularization

parameter λ was selected (optimally for each method) on a separate validation set.

Note that LTS has an extra parameter n′, which is the number of inliers. The ideal

setting n′ = (1− p)n was granted to LTS. We also tried 30 random restarts for LTS

and picked the best result.

All experiments are repeated 10 times and the average root mean square errors

(RMSE) (with standard deviations) on the clean test data are reported in Table 5.1.
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Methods
Outlier Probability

p = 0.4 p = 0.2 p = 0.0

L2 43.5 (13) 57.6 (21.21) 0.52 (0.01)

L1 4.89 (2.81) 3.6 (2.04) 0.52 (0.01)

Huber 4.89 (2.81) 3.62 (2.02) 0.52 (0.01)

LTS 6.72 (7.37) 8.65 (14.11) 0.52 (0.01)

GemMc 0.53 (0.03) 0.52 (0.02) 0.52 (0.01)

(Yu et al., 2010) 0.52 (0.01) 0.52 (0.01) 0.52 (0.01)

AltBndL2 0.52 (0.01) 0.52 (0.01) 0.52 (0.02)

AltBndL1 0.73 (0.12) 0.74 (0.16) 0.52 (0.01)

CvxBndL2 0.52 (0.01) 0.52 (0.01) 0.52 (0.01)

CvxBndL1 0.53 (0.02) 0.55 (0.05) 0.52 (0.01)

Table 5.1: RMSE on clean test data for an artificial data set with 5 features and 100

training points, with outlier probability p, and 10000 test data points. Results are

averaged over 10 repetitions. Standard deviations are given in parentheses.
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For p = 0 (i.e. no outliers), all methods perform well; their RMSEs are close to

optimal (1/2, the standard deviation of εi). However, when outliers start to appear,

the result of least squares is significantly skewed, while the results of classic robust

statistics methods, Huber, L1 and LTS, indeed turn out to be more robust than the

least squares, but nevertheless are still affected significantly. Both implementations

of the new method performs comparably to the the non-convex Geman-McClure

loss while substantially improving the alternating strategy under the L1 loss. Note

that the latter improvement clearly demonstrates that alternating can be trapped in

poor local minima. The proposal from (Yu et al., 2010) was not effective in this

setting (which differed from the one investigated there).

Next, we conducted an experiment on four real datasets taken from the StatLib

repository (sta, 2010) and DELVE (del, 1996). For each data set, we randomly

selected 108 points as the training set, and another random 1000 points as the test

set. Here the regularization constant is tuned by 10-fold cross validation. To seed

outliers, 5% of the training set are randomly chosen and their X and y values are

multiplied by 100 and 10000, respectively.

All of these data sets have 8 features, except pumadyn which has 32 features.

We also estimated the scale factor on the training set by the mean absolute devia-

tion method, a common method in robust statistics (Maronna et al., 2006). Again,

the ideal parameter n′ = (1 − 5%)n is granted to LTS and 30 random restarts are

performed. The RMSE on test set for all methods are reported in Table 5.2. It is

clear that all methods based on convex losses (L2, L1, Huber) suffer significantly

from the added outliers. The method proposed in this section consistently outper-

form all other methods with a noticeable margin, except on the abalone data set

where GemMc performs slightly better (Note that we obtain different results than

(Yu et al., 2010) arising from a very different outlier process). Again, we observe

evidence that the alternating strategy can be trapped in poor local minima, while the

method from (Yu et al., 2010) was less effective. We also measured the relative op-
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Methods
Datasets

cal-housing abalone pumadyn bank-8fh

L2 1185 (124.59) 7.93 (0.67) 1.24 (0.42) 18.21 (6.57)

L1 1303 (244.85) 7.30 (0.40) 1.29 (0.42) 6.54 (3.09)

Huber 1221 (119.18) 7.73 (0.49) 1.24 (0.42) 7.37 (3.18)

LTS 533 (398.92) 755.1 (126) 0.32 (0.41) 10.96 (6.67)

GemMc 28 (88.45) 2.30 (0.01) 0.12 (0.12) 0.93 (0.80)

(Yu et al., 2010) 967 (522.40) 8.39 (0.54) 0.81 (0.77) 3.91 (6.18)

AltBndL2 967 (522.40) 8.39 (0.54) 0.81 (0.77) 7.74 (9.40)

AltBndL1 1005 (603.00) 7.30 (0.40) 1.29 (0.42) 1.61 (2.51)

CvxBndL2 9 (0.64) 7.60 (0.86) 0.07 (0.07) 0.20 (0.05)

CvxBndL1 8 (0.28) 2.98 (0.08) 0.08 (0.07) 0.10 (0.07)

Gap(Cvx2) 2e-12 (3e-12) 3e-9 (4e-9) 0.025 (0.052) 0.001 (0.003)

Gap(Cvx1) 0.005 (0.01) 0.001 (0.001) 0.267 (0.269) 0.011 (0.028)

Table 5.2: RMSE on clean test data for 108 training data points and 1000 test data

points, with 10 repeats. Standard deviations shown parentheses. The mean gap

values of CvxBndL2 and CvxBndL1, Gap(Cvx2) and Gap(Cvx1) respectively, are

given in the last two rows.

94



timality gaps for the approximate CvxBnd procedures. The gaps were quite small

in most cases (the gaps were very close to zero in the synthetic case, and so are not

shown), demonstrating the tightness of the proposed approximation scheme.

5.7 Conclusion

We first out pointed out that there is a dilemma between ensuring robustness and

tractability, by proving that a bounded estimator cannot be convex while convex

losses cannot be robust. In response, we developed a new robust regression method

that can guarantee a form of robustness (bounded response) while ensuring tractabil-

ity (polynomial run-time). To do so, we first designed an adaptive form of M -

estimation and applied a convex relaxation to this form. The estimator was proved

consistent under some restrictive but non-trivial conditions, although we have not

established general consistency. We also gave results that established the robust-

ness of the estimator, and developed an efficient optimization algorithm on the re-

laxation. The empirical evaluation revealed that the method meets or surpasses the

generalization ability of state-of-the-art robust regression methods in experimen-

tal studies. Although the method is more computationally involved than standard

approaches, it achieves reasonable scalability in real problems.
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Chapter 6

Conclusion and Future Work

I summarize the main contributions of the previous chapters and discuss relevant

future work for each.

In Chapter 3, I presented a reformulation of a non-convex two-layer model as

a joint optimization problem, by explicitly defining the latent layers with free vari-

ables and relaxing the strict nonlinear transformation in consecutive layers using

losses that are convex in first argument. This relaxed reformulation leads to an ap-

pealing strategy that decouples layers. We showed that for some particular losses,

one can obtain an equivalent reformulation that has an objective function that is

jointly convex in all variables. However, the constraint set of the equivalent refor-

mulation is non-convex, we therefore relaxed the non-convex constraints. Although

the final problem is a fully convex formulation for a conditional latent model with

one hidden layer, it yields an expensive optimization problem that prevent off-the-

shelf solvers from achieving satisfactory scaling properties. We then designed an

ADMM-based algorithm to separate the constraints, and also adopted a hybrid con-

ditional gradient algorithm with a low-rank strategy to handle the SDP constraint.

The low-rank approach improved space complexity by incrementally adding bases

and eliminating storage of the full SDP matrix, which can also be significantly ac-

celerated by using local updates. We observed that this boosting style algorithm
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converges in a few iterations and is stable in practice. To demonstrate that the re-

laxation can still capture the latent structure in original model, we first provided

an empirical sanity check which shows that the relaxation can separate classes that

one layer models cannot. The proposed model also outperforms baseline one layer

models and a local alternating version on some real datasets. The misclassifica-

tion results indicate that relaxation can still capture the predictive latent structure.

Important directions for future work include replacing the step and indmax trans-

fers with more traditional sigmoid and softmax transfers, while also replacing the

margin losses with more traditional Bregman divergences; refining the relaxation

to allow more control over the structure of the latent representations and extending

the two-layer model to a model with multiple number of hidden layers which we

studied in Chapter 4. Another direction is proving the tightness of the relaxation

bounds by analyzing the gap between original problem and relaxation.

In Chapter 4, I presented a significant extension of the approach in Chapter

3. It is well-known that the depth is one of the key components of the current

state of the art models in deep learning. Consequently, even though achieving a

convex formulation of conditional latent modeling with one hidden layer is an ex-

citing result, extending the convex approach to more than one hidden layer is an

essential step. I first showed in Chapter 4 that this extension is not a trivial task.

Then, using the similar decoupling of layers strategy, we developed a new output

kernel type and a novel loss for connecting hidden layers, which yielded a jointly

convex objective. We then relaxed the nonconvex constraints. To cope with the re-

sulting optimization problem, we then developed a novel algorithm that eliminates

the nested optimization bottleneck that was present in the two-layer model. As in

Chapter 3, we conducted some sanity check experiments on artificial data to show

that the relaxation preserves much of the important structure of the original model.

We also report promising results on real data for which we compare the three-layer

model to a local version and two-layer models. One essential direction for future
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work is to improve the current efficiency of the algorithm, so that it can scale to

the sizes of current large datasets. Aside from further improvements in algorithmic

efficiency, an interesting direction for future investigation is to also capture unsu-

pervised stage-wise training principles via auxiliary autoencoder objectives within

a convex framework, rather than treating input reconstruction as a mere heuristic

training device.

In Chapter 5, I presented a study of the nonconvexity of bounded loss func-

tions in M -estimation, proposing a tractable robust estimation scheme with certain

robustness, consistency and tractability guarantees. I first posed the dilemma that

bounded losses cannot be convex while convex losses cannot be robust. We then

proposed an adaptive form for robust estimation, which was then reformulated to

achieve a novel convex relaxation. We showed certain robustness and consistency

properties of the approximation. We then developed an efficient learning strategy,

and empirically validated the effectiveness of the relaxed estimation scheme on ar-

tificial and real datasets. One direction for future work would be to investigate

whether the proposed estimator achieves stronger robustness properties, such as

high breakdown or bounded influence. It would also be interesting to extend the

approach to estimate scale in a robust and tractable manner. Finally, investigating

whether other techniques from the robust statistics and machine learning literatures

can be incorporated in the general framework, while preserving desired properties,

would also be interesting.
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Appendix A

Supplementary Material

A.1 Details for Training a Two-layer Model

A.1.1 Faster Gradient Calculation by Low Rank Decomposition

Note that the gradient ∇G1(N) can be readily computed given C∗. Applying the

same technique to the second layer yields an efficient procedure for evaluating

G(N) and ∇G(N). Finally note that many of the matrix-vector multiplications

in this procedure can be further accelerated by exploiting the low rank factorization

of N maintained by the boosting algorithm.

Recall that G consists mainly of two parts: the first layer objective in (3.11)

and the second layer objective in (3.7). We just show how to solve the first layer,

while the technique can be applied directly to the second layer too. For simplic-

ity, we only consider linear kernel on X , and extension to nonlinear kernel is also

straightforward.
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For convenience we copy (3.11) to here, using NT and HT :

min
W

L1(WX,HT ) + α
2
‖W‖2

F = min
W

L̃1(H ′TWX,H ′THT ) + α
2
‖W‖2

F (A.1)

= min
C
L̃1(H ′THTCX

′X,H ′THT )

+ β
2

tr(XC ′H ′THTCX
′) (A.2)

= min
D∈Im(NT )

L̃1(DK,NT ) + α
2

tr(D′N †TDK).

(A.3)

Denote this objective as G1(N) or H1(H). The boosting Step 4 indeed only

requires the gradient ∇H1(HT ), while the gradient ∇G1(NT ) is needed only in

Step 3. So we focus on the efficient computation of these two gradients.

To compute ∇H1(HT ), it suffices to optimize over W in (A.1). This is advan-

tageous because a) the objective is strongly convex which is in favor of LBFGS; b)

the size of W is nT , where T is the iteration index of boosting and is often quite

small; c) the gradient inW can be computed inO(tnT ) time, which can also benefit

from the low value of T .

To compute ∇G1(NT ), one possible approach is to solve for C in (A.2):

min
C
L̃1(NTCX

′X,NT ) + β
2

tr(XC ′NTCX
′). (A.4)

However, the cost for computing the gradient in C is O(t2n), which is expensive if

done at each iteration of optimization. Therefore we introduce one more change of

variable: E = CX ′ and then the problem becomes

min
E
L̃1(NTEX,NT ) + β

2
tr(E ′NTE). (A.5)

So our final strategy is:

• Find the optimal W ∗ for (A.1) as in computing ∇H1(HT ),

• Recover the optimal E∗ for (A.5) by finding any E that satisfies W ∗ = HTE,

• Use E∗ to compute the gradient ∇G1(NT ) via (A.5).
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The first and second steps can make use of the low value of T as in computing

∇H1(HT ). The last step does cost O(t2n), but it needs to be done only once,

rather than in each iteration of solving for C in (A.4). So in summary, the total

computational cost is O(tnT ) per iteration in optimizing W , followed by O(t2n)

for one time to recover E∗ and to compute ∇G1(NT ) via (A.5).

A.1.2 Experimental Details for Two-layer Model

For the “real” experiments we used a collection of binary labeled data sets: USPS

(241 × 1500) and G241N (241 × 1500) from Chapelle et al. (2006), Letter (vowel

letters A-E vs non vowel letters B-F 16 × 3098) from (Lichman, 2013), MNIST

({1, 9}vs{4, 8}: 784 × 28484), and CIFAR-100 (bicycle and motorcycle vs lawn-

mower and tank 256 × 1526 where red channel features are preprocessed by aver-

aging pixels) from (LeCun & Cortes, 2010) and (Krizhevsky, 2009).

The weight, latent matrix and response matrix for “Xor’ dataset are given in

Figure A.1, Figure A.2 and Figure A.3.

Figure A.1: Weight matrix V for second layer
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Figure A.2: The latent matrix H

Figure A.3: Response matrix V H for second layer
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A.2 Details for Training a Multi-layer Model

A.2.1 Proof that the Feasible Region of (4.12) is Convex

Here we prove that the set

V := {(M,S,K) : M � 0, K � 0, S ∈MRK} (A.6)

is convex.

Recall that RΦ consists of matrices in the row span of Φ. Since M and K are

PSD, the constraint S ∈MRK involves the intersection of two convex constraints.

Let

V1 = {(M,S,K) : M � 0, K � 0, S ∈MR} (A.7)

V2 = {(M,S,K) : M � 0, K � 0, S ∈ RK}. (A.8)

First, we show that the set V1 is convex. Suppose S1 ∈ M1R and S2 ∈ M2R where

M1 � 0 and M2 � 0. To prove that S1 +S2 ∈ (M1 +M2)R, it suffices to show that

M1R ∪M2R ⊆ (M1 + M2)R. To this end, consider its contrapositive, i.e., there

exists r1, r2, x such that x′(M1r1 +M2r2) 6= 0 while x′(M1 +M2) = 0. However

this is impossible, because the latter implies x′M1 = x′M2 = 0′ when M1 � 0 and

M2 � 0.

V2 is convex for isomorphic reasons. It remains only to show V = V1∩V2, since

an intersection of convex sets is convex. The ⊆ relationship is straightforward. To

show ⊇, let S = MP = QK for some P and Q; then note that SK†K = S =

MM †S. Hence MM †SK†K = S, i.e. S ∈ V .
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A.3 Details for Training a Robust Model

A.3.1 Variational form for bounded loss functions

Some of bounded loss function examples represented in variational form are

(Geman-McClure) (Black & Rangarajan, 1996) ρ(r) = r2

1+r2
`(r) = r2

ψ(η) = (
√
η − 1)2, (A.9)

(Geman-Reynolds) (Black & Rangarajan, 1996) ρ(r) = |r|
1+|r| `(r) = |r|

ψ(η) = (
√
η − 1)2, (A.10)

(LeClerc) (Black & Rangarajan, 1996) ρ(r) = 1− exp(−`(r)) `(·) convex

ψ(η) = η log η − η + 1, (A.11)

(Clipped-loss) (Yu et al., 2010) ρ(r) = max(1, `(r)) `(·) convex

ψ(η) = 1− η. (A.12)

A.3.2 Least Trimmed Loss

(Rousseeuw & Leroy, 1987a) recommends subset-selection based regression esti-

mators, such as Least Trimmed Loss:

θ̂LTL ∈ arg minθ∈Θ

∑n′

i=1 ρ(r[i]). (A.13)

Here r[i] denotes sorted residuals r[1] ≤ · · · ≤ r[n] and n′ < n is the number of

terms to consider. Traditionally ρ(r) = r2 is used. These estimators are known

to have high breakdown (Rousseeuw & Leroy, 1987a),when n′ approaches n/2 the

breakdown of (A.13) approaches 1/2 (Rousseeuw & Leroy, 1987a). And obviously

demonstrate bounded response to single outliers. Unfortunately, (A.13) is NP-hard

(Bernholt, 2005).
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A.3.3 Variational form of other Robust regression forms

Generalized M-estimation (GM-estimation) can be formulated simply by forcing

each ηi to take on a specific value determined by ‖xi‖ or ri (Rousseeuw & Leroy,

1987a), ignoring the auxilary function ψ. Least Trimmed Loss (A.13) can be ex-

pressed in the form (5.26) provided only that we add a shared constraint over η:

θ̂LTL ∈ arg min
θ∈Θ

min
0≤η≤1:1′η=n′

η′`(r) +ψ(η) (A.14)

where ψ(ηi) = 1 − ηi and n′ < n specifies the number of terms to consider in the

sum of losses. Since η ∈ {0, 1}n at a solution (see e.g. (Yu et al., 2010)), (A.14) is

equivalent to (A.13) if ψ is the clipped loss (A.12).

A.3.4 Proofs of NP-hardness

Our goal is to prove that minimizing a bounded loss function is NP-hard in gen-

eral. After establishing the preliminary definitions required to be sufficiently precise

about the results, we first prove that a special case—clipped-loss minimization—is

strongly NP-hard in Section A.3.4. Then the NP-hardness of bounded loss mini-

mization can be easily established by a reduction from clipped-loss minimization

in Section A.3.4.

Hardness of Clipped Loss Minimization

Definition 3 (Loss function). A function ` : R→ R is a loss function if (i) `(r) ≥ 0

for all r; (ii) `(0) = 0; and (iii) `(r) is nondecreasing in r away from r = 0; that is,

r1 ≤ r2 ≤ 0 implies `(r1) ≥ `(r2), and 0 ≤ r1 ≤ r2 implies `(r1) ≤ `(r2).

Definition 4 (τ -minimal two-sided loss). A loss function ` is a τ -minimal two-sided

loss if there exists a finite Bτ > 0 such that (i) r ≤ Bτ implies `(r) ≥ τ ; and (ii)

r ≥ Bτ implies `(r) ≥ τ .
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Definition 5 (β-bounded loss). A loss function ρ is a β-bounded loss if ρ(y−ŷ) ≤ β

for all y and ŷ.

Definition 6 (weakly τ -minimal loss). A loss function ` is a weakly τ -minimal loss

if it is a (τ − ε)-minimal loss for all ε > 0.

Definition 7 (Clipped loss minimization).

Instance: t×nmatrixX of training data, t×1 vector y of training labels, 1-minimal

two-sided loss function `, nonnegative threshold number c.

Question: Is there an n× 1 vector θ such that
∑t

i=1 min(1, `(yi −Xi:θ)) ≤ c?

Definition 8 (Bounded loss minimization).

Instance: t×nmatrixX of training data, t×1 vector y of training labels, 1-bounded

and weakly 1-minimal two-sided loss function `, nonnegative threshold number b.

Question: Is there an n× 1 vector θ such that
∑t

i=1 `(yi −Xi:θ) ≤ b?

Definition 9 (Maximum 2-satisfiability).

Instance: Set U of variables, collection C of clauses over U such that each clause

c ∈ C has |c| = 2, positive integer K ≤ |C|.

Question: Is there a truth assignment for U that simultaneously satisfies at least K

of the clauses in C?

Note that MAX2SAT is known to be NP-complete in general (Garey & Johnson,

1979). It is solvable in polynomial-time if K = |C| (Garey & Johnson, 1979),

but NP-hard to approximate within a multiplicative constant better than 21/22 =

0.95454 (Håstad, 2001).

Theorem 7. Clipped loss minimization is strongly NP-hard.

Proof. We transform MAX2SAT to clipped-loss minimization. Let (U,C,K) con-

stitute an instance of MAX2SAT.
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Let 1i denote a boolean vector with a single 1 in position i. We will also use a

scale factor s that will be specified below (we will be able to choose a value for s that

is polynomial in |U |). Widget construction: For each variable in uj ∈ U associate

a feature X:j with corresponding weight θj . For each clause c ∈ C construct three

training examples in the form (x>, y) as follows:

• For ui ∨ uj clauses, construct three examples (s1>i , s), (s1>j , s) and (s(1i +

1j)
>, s).

• For ui∨¬uj clauses, construct three examples (s1>i , s), (s1>j , 0) and (s(1i−

1j)
>, 0).

• For ¬ui∨uj clauses, construct three examples (s1>i , 0), (s1>j , s) and (s(1i−

1j)
>, 0).

• For¬ui∨¬uj clauses, construct three examples (s1>i , 0), (s1>j , 0) and (s(1i+

1j)
>, s).

To illustrate how this construction will work, consider a training example (s1>i , s).

For a weight vector θ one will obtain a prediction ŷ = s1>i θ = sθi, which is com-

pared to the target value y = s. Note that if θi = 1, then the loss must be zero on

this example, since ŷ = s = y. However, as θi moves away from 1 the loss must

increase until it “saturates”. Let

ρ(y − ŷ) = min(1, `(y − ŷ)) (A.15)

denote the “clipped” loss. Since ` is a 1-minimal two-sided loss there must exist

a finite B1 > 0 such that for any y, ŷ ≤ y − B1 implies ρ(y − ŷ) = 1 and

ŷ ≥ y + B1 implies ρ(y − ŷ) = 1. Conversely, if ρ(y − ŷ) < 1 then it must

follow that y − B1 < ŷ < y + B1. The role of the scale factor s, therefore, is to

control the width of the “trough” where the losses remain strictly less than 1: Note

that for any scale factor s > 0, if ρ(sy − sŷ) < 1 then sy − B1 < sŷ < sy + B1,
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Figure A.4: Depiction of the error surface for the ui ∨ uj type of clause (for i 6= j)

which holds if and only if y − B1/s < ŷ < y + B1/s. Thus, the larger the choice

of s, the narrower the trough where losses less than 1 can be achieved for a given

training example.

Figure A.4, Figure A.5, Figure A.6 and Figure A.7 depict the error surfaces in

(θi, θj) created by the set of three training examples for each of the four clause types

(for sufficiently large s) when the variables are distinct, i 6= j(The trough widths

are controlled by the scale factor s.). Note that the minimum loss any weight vector

can achieve on a clause (i.e., on its associated set of three training examples) is

always 1, and this can only be achieved by assigning boolean weights that “satisfy”

the clause.

Choosing the scale factor s: The scale factor s needs to be fixed to a suffi-

ciently large value so that, for any weight vector θ, there exists a “gap” between 0

and 1
2

(and a corresponding mirror gap between 1
2

and 1) that contains no individual

weight component θi. In particular, consider a partition of the interval [B1(1+
√

2)
s

, 1
2
]

into disjoint bins of size B1

√
2

s
. There are at least b

(
1
2
− B1(1+

√
2)

s

)
/B1

√
2

s
c =
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Figure A.5: Depiction of the error surface for the ui∨¬uj type of clause (for i 6= j)
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Figure A.6: Depiction of the error surface for the ¬ui∨uj type of clause (for i 6= j)
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Figure A.7: Depiction of the error surface for the ¬ui ∨ ¬uj type of clause (for

i 6= j)

b s
B12
√

2
− 1√

2
− 1c such bins that fit entirely within the interval.1 So, by setting

s = B12
√

2(|U |+ 3) (A.16)

it follows that there must be at least |U | + 1 disjoint bins of width B1

√
2

s
within the

interval [B1(1+
√

2)
s

, 1
2
], plus a mirror set of |U | + 1 disjoint bins within the interval

[1
2
, 1− B1(1+

√
2)

s
]; see Figure A.8. Given that the weight vector only has |U | compo-

nents, by construction, we know that for any particular θ there must be at least one

(bin, mirror bin) pair such that neither bin contains any θi value; see Figure A.9.

We will use these empty bins to define which θi values are considered to be “nearly

discrete” versus “close to 1
2
”, as shown in Figure A.9.

Main argument: We now proceed to show that there is always a boolean weight

1 The reason for considering the interval [B1(1+
√
2)

s , 12 ] instead of [0, 12 ] is that we also need to

ensure the empty bin does not intersect the parallelogram at the interesction between an axis-parallel

and diagonal trough. For a given s this will be true for any bin that is at least B1(1+
√
2)

s away from

0 or 1.

130



Figure A.8: Illustrating bins of width B1

√
2

s
between B1(1+

√
2)

s
and 1

2
, and their mirror

images between 1
2

and 1− B1(1+
√

2)
s

.

vector that is a global minimizer of the total clipped loss. Let

ρ(θ) =
t∑

i=1

ρ(yi −Xi:θ) (A.17)

denote the total clipped loss obtained by a weight vector θ on the constructed set

of training examples. Let θ(0) be a global minimizer of (A.17). Then we know

that there must be some (bin, mirror bin) pair that contains no component of θ(0),

which we can use to define “nearly discrete” versus “close to 1
2
” weight values (Fig-

ure A.9). Then by Lemma 6 below we know there must be some weight vector θ(1)

which contains only boolean or “close to 1
2
” values such that ρ(θ(1)) ≤ ρ(θ(0)).

Then by Lemma 7 below we know there must exist a pure boolean weight vector

θ(2) such that ρ(θ(2)) ≤ ρ(θ(1)). Finally given a boolean assignment θ(2), a corre-

sponding truth assignment u(2) can be directly recovered via the transformation

ui = true ⇔ θi = 1

ui = false ⇔ θi = 0. (A.18)

Furthermore, for a boolean weight vector θ(2) we have that

ρ(θ(2)) = 3× |{clauses falsified by u(2)}|

+ 1× |{clauses satisfied by u(2)}| (A.19)

= 3|C|−2× |{clauses satisfied by u(2)}|. (A.20)
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It then follows that |{clauses satisfied by u(2)}| ≥ K if and only if ρ(θ(2)) ≤ 3|C|−

2K. That is, the minimum clipped loss achieved can be used to decide whether K

clauses can be satisfied in the original instance.

0 1
1

2

close 
to !

nearly
discrete

nearly
discrete

���� ����
empty

bin
empty

bin

Figure A.9: Illustrating how an empty (bin, mirror bin) pair can be used to define

which component weight values are “nearly discrete” versus “close to 1
2
”.

Lemma 6. For any weight vector θ there is always a weight vector θ̃ with only

boolean components or components that are “close to 1
2
” such that ρ(θ̃) ≤ ρ(θ).

Proof. Fix θ and use one of its empty bins to define which component values are

“nearly discrete” versus “close to 1
2
”. Let θ̃ be the vector obtained by rounding all

“nearly discrete” values of θ to their nearest boolean value. We show that the total

clipped loss obtained by θ̃ cannot be greater than that of θ.

Consider Figure A.10, which depicts the effect of rounding for a clause of the

ui ∨ uj type (the other three cases are isomorphic). For any clause, there are two

situations to consider: when both weights are rounded and when only one weight is

rounded.

First, consider the case where both weights (θi, θj) are “nearly discrete” and

hence both are rounded to their nearest boolean value. This corresponds to being in

one of the red corner quadrants shown in Figure A.10. Weight pairs (θi, θj) in the

four red corner quadrants are rounded to the boolean corners. Weight pairs (θi, θj)
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in the four blue semi-rectangles on the edges are rounded to the line where the

“nearly discrete” value becomes boolean. Weight pairs (θi, θj) in the green central

square are not rounded. No weight pair occurs in the cross-hatch formed by the

empty bins. By inspection, one can see that the boolean assignment within each

quadrant achieves the minimum loss attainable within the quadrant. In particular,

in the three “satisfying” quadrants the boolean assignment is the strict minimizer

of the loss, whereas in the “falsifying” quadrant all assignments achieve the same

loss of 3. Therefore, the total loss cannot have increased on such a clause due to

rounding.

Figure A.10: Illustrating the rounding scheme of Lemma 6 for a ui ∨ uj clause.

(The scheme for the other three clause types depicted in Figures A.4, A.5, A.6 and

A.7 are isomorphic.

Second, consider the case where one of the weights is “nearly discrete” and

hence rounded, while the other is “close to 1
2
” and hence not rounded. This cor-

responds to being in one of the blue semi-rectangles on the edges shown in Fig-

ure A.10. Once again, by inspection one can see that rounding the “nearly discrete”
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weight to its nearest boolean value cannot increase the loss obtained. In particu-

lar, rounding the “nearly discrete” variable yields the minimum loss assignment in

the top and right semi-rectangles, while every assignment in the bottom and left

semi-rectangles obtains the same loss of 3. This latter property is precisely what is

achieved by the bin definitions: the empty bin width of B1

√
2

s
is sufficient to ensure

that the blue semi-rectangles do not intersect the diagonal trough. Therefore, the

total loss cannot have increased on such a clause due to rounding.

In clauses where both weights are “close to 1
2
” (the green square in the middle)

neither weight is rounded, hence the loss does not change. The result follows.

Lemma 7. For any weight vector θ with only boolean components or components

that are “close to 1
2
” there is always a boolean weight vector θ̂ such that ρ(θ̂) ≤

ρ(θ).

Proof. Consider Figure A.11, which depicts the possible weight pairs (θi, θj) par-

ticipating in a clause of type ui ∨ uj . (The situation for any of the clause types is

isomorphic.) The isolated red points are the only purely boolean values, the blue

line segments indicate pairs where one value is boolean, and the green square shows

the region where both weights are “close to 1
2
”. Observe that any weight pair with

one or more “close to 1
2
” values (i.e., the union of the blue lines and the green

square) has loss at least 2.

Given the weight vector θ, patition the clauses into three subsets: the set of

clauses where both weight values are boolean (“closed clauses”), the set of clauses

where one weight is boolean and the other is not (“mixed clauses”), and the set of

clauses where both weights are “close to 1
2
” (“open clauses”). Let the set of “non-

closed clauses” consist of the union of the “mixed clauses” and the “open clauses”.

From above, we know that θ achieves a loss of at least 2 on each “non-closed

clause”. Let c denote the loss per clause achieved by θ on the “closed clauses”.

There are two cases to consider.

Case 1: (c ≥ 2) In this case the overall loss per clause achieved by θ must be
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Figure A.11: Possible weight pairs that can occur after rounding.

at least 2, which implies the total loss is ρ(θ) ≥ 2|C|. Therefore, by Lemma 8

below we know that there must exist some assignment û to the variables in U that

satisfies at least |C|
2

of the clauses in C. Let θ̂ denote the corresponding boolean

weight vector, recovered via the translation (A.18). By (A.20) we know that

ρ(θ̂) = 3|C| − 2× |{clauses satisfied by u(2)}| (A.21)

≤ 2|C| (A.22)

≤ ρ(θ). (A.23)

Case 2: (c < 2) Let B denote the indices where θ is boolean, and let N denote the

indices where θ is “close to 1
2
”. (Since c < 2 there must be at least one component

θi that is boolean.) Fix the boolean components of θB, which in turn fixes the out-

comes on the “closed clauses”. For any “mixed clause” let θi denote the weight that

is boolean. We would like to preserve the assignment of θi. Therefore, temporarily
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replace such a mixed clause with a new singleton clause defined by substituting ui

with its partner uj . Consider the new set of altered “mixed clauses”, in union with

the set of “open clauses”. Denote this new set C̃. Note that C̃ is defined only on

the subset of variables UN corresponding to weights in θ that are “close to 1
2
”. By

Lemma 8 below, there must be some assignment ũN that satisfies at least half of

the clauses in C̃, hence there exists a corresponding boolean weight vector θ̃N that

achieves a loss of at most 2|C̃| on C̃.

Now consider the boolean weight vector θ̂ formed by conjoining θB with θ̃N .

Note that for any “closed clause” θ and θ̂ behave identically and hence achieve

the same loss. However, recall θ achieves a loss of at least 2 on each “non-closed

clause”, while by the above construction, θ̂ achieves a loss of at most 2 per clause

over the “non-closed clauses”. (In particular, even though ûN was constructed by

satisfying temporarily altered “mixed clauses” above, if it satisfies such a clause,

then it must also satisfy the original “mixed clause”.) Hence ρ(θ̂) ≤ ρ(θ).

Since in each of the two cases we were able to identify a boolean weight vector

θ̂ that achieves a loss no worse than θ, the result must follow.

Lemma 8. For any MAX2SAT instance (U,C,K) and any assignment u to its

variables U , either u or its negation ¬u must satisfy at least |C|
2

of the clauses in C.

Proof. Consider any assignment u. Note that ¬u must satisfy each clause that u

falsifies. Therefore, if u satisfies fewer than |C|
2

clauses, it must falsify at least |C|
2

of

the clauses, hence ¬u would have to satisfy at least |C|
2

of the clauses. Otherwise,

u satisfies at least |C|
2

of the clauses.
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Hardness of Bounded Loss Minimization

Finally, we are in a position to prove Theorem 2 from the main body. Recall the

definition of bounded loss minimization (Definition 8).

Theorem 2. Bounded (non-constant) loss minimization is NP-hard.

Proof. We transform MAX2SAT to bounded-loss minimization. Let (U,C,K)

constitute an instance of MAX2SAT. Use the same widget construction as in the

proof of Theorem 7. Let

t = 3|C| (A.24)

`(θ) =
t∑

i=1

`(yi −Xi:θ) (A.25)

`∗ = min
θ
`(θ) (A.26)

on the constructed training set.

To prove that minimizing the bounded loss ` can be used to decide whether K

clauses can be satisfied, first consider an intermediate clipped-loss version of the

problem. In particular, let

ˆ̀(y − ŷ) =
1

1− 1
2t

`(y − ŷ) (A.27)

ρ̂(y − ŷ) = min(1, ˆ̀(y − ŷ)) (A.28)

ρ̂(θ) =
t∑

i=1

ρ̂(yi −Xi:θ) (A.29)

ρ̂∗ = min
θ
ρ̂(θ) (A.30)

on the constructed training set. Note that ˆ̀ is a 1-minimal loss with B̂1 = B1− 1
2t

(see Definition 4). Therefore, by Theorem 7, ρ̂∗ can be used to decide whether K

clauses can be satisfied in the original MAX2SAT instance. Recall also that ρ̂∗ must

be integer valued in this case.

Lemma 9 below shows that ρ̂∗ − 1
2
≤ `∗ ≤ ρ̂∗. It then follows that for any

integer n, ρ̂∗ ≤ n if and only if `∗ < n + 1
2
. To see why this must hold, note: (⇐)
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if `∗ < n + 1
2

then ρ̂∗ ≤ `∗ + 1
2
< n + 1, hence ρ̂∗ ≤ n since ρ̂∗ is integer valued;

and also (⇒) if `∗ ≥ n+ 1
2

then ρ̂∗ ≥ `∗ ≥ n+ 1
2
, hence ρ̂∗ > n since ρ̂∗ is integer

valued. Therefore, `∗ can be used to decide what integer value ρ̂∗ achieves, which

in turn can be used to decide whether K clauses can be satisfied by Theorem 7.

Note that bounded-loss minimization is strongly NP-hard ifB1− 1
2t

is polynomial

in t = 3|C|.

Lemma 9. ρ̂∗ − 1
2
≤ `∗ ≤ ρ̂∗.

Proof. First, note that for any (y, ŷ)

ρ̂(y − ŷ)− 1
2t
≤ (1− 1

2t
)ρ̂(y − ŷ) (A.31)

= (1− 1
2t

) min(1, ˆ̀(y − ŷ)) (A.32)

= min(1− 1
2t
, `(y − ŷ)) (A.33)

≤ `(y − ŷ) (A.34)

≤ ρ̂(y − ŷ). (A.35)

Therefore, for any θ

ρ̂(θ)− 1
2
≤ `(θ) ≤ ρ̂(θ). (A.36)

If we let θ∗ = arg minθ `(θ) and θ̂ = arg minθ ρ̂(θ), it is then immedate that

ρ̂(θ̂)− 1
2
≤ ρ̂(θ∗)− 1

2
(A.37)

≤ `(θ∗) (A.38)

≤ `(θ̂) (A.39)

≤ ρ̂(θ̂). (A.40)
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Appendix B

Some Basic Background

In this chapter, I present basic tutorial background on convexity, convex approxima-

tions in ML, deep learning, and robust estimation. In particular, I cover basic back-

ground on convexity in Section B.1 and then present background on deep learning

and robust estimation in Sections B.3 and B.4, respectively.

B.1 Convexity Background

This section covers some essential background on convex optimization for the sake

of completeness. Let us start by giving the fundamental definitions.

Definition B.1.1. Convex Combination. Given a set S ⊆ Rn and points xi, . . . , xk ∈

S,
∑k

i=1 αixi is called a convex combination where
∑k

i=1 αi = 1 and αi ≥ 0 for all

i ∈ {1, . . . , k} (Boyd & Vandenberghe, 2004).

Definition B.1.2. Convex sets. A set S ⊆ Rn is a convex set if and only if it

contains every convex combination of points in S (Boyd & Vandenberghe, 2004).

Some examples for shapes of convexity of sets are shown in Figure B.1(a).

Geometrically, a set is convex if every line between two points is inside the set.

First set is convex whereas the rest are nonconvex. Red line in each nonconvex
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(a) Convex and non convex sets.

(b) Convex hull.

Figure B.1: Some convex and nonconvex sets and the illustration of convex hull

(red dotted lines and inside) of nonconvex sets

set shows that some points in this line do not lie in the set hence these sets do not

satisfy the requirement in the Definition B.1.2.

Definition B.1.3. Convex Hull. Given a set S ⊆ Rn, convex hull, denoted as

conv(S) is a set constructed by all convex combinations of points in S, i.e. conv(S) =

{
∑k

i=1 θixi|xi ∈ S, αi ≥ 0, i = 1, . . . , k,
∑k

i=1 αi = 1}.

It is not hard to see that convex hull of set S is the smallest convex set containing

S. Hence, the convex hull of a convex set equals to itself. The convex hulls of

the non-convex sets in Figure B.1(a) are shown in Figure B.1(b) where the convex

hull is the red lines and interior. Convex hulls are a particularly important tool to

approximate nonconvex sets with convex ones via convex relaxations, which will

be covered in Section B.2.1.

Definition B.1.4. Convex functions. If a function f : Rn 7→ R that has a convex

domain S satisfies f(αx+ (1−α)y) ≤ αf(x) +(1−α)f(y) for all points x, y ∈ S

and for all α ∈ [0, 1], then the function f is a convex function.
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(a) Convex function

(b) Nonconvex function

Figure B.2: The shapes of some convex and nonconvex functions.
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Geometrically, if the line segments between every two points in the domain

of a function is above the graph of this function between these two points, it is a

convex function. The quadratic function is a common convex function and it is

given in Figure B.2(a). A nonconvex function is given in Figure B.2(b) and a red

line segment shown is below the graph. For common problems, the function can

contain many local minima. Some well-known convex functions are exponential,

power function, logarithm, negative entropy, max function, norms, log-sum-exp and

log-determinant (Boyd & Vandenberghe, 2004).

Definition B.1.5. Local minima.. If a point x∗ ∈ S where S is the domain of a

function f and if there exists some ε > 0 such that f(x∗) ≤ f(x) for all x ∈ S with

||x∗ − x|| ≤ ε, x∗ is called local minimizer (or minima).

Definition B.1.6. Global minima.. If a point x∗ ∈ S where S is the domain of

a function f and f(x∗) ≤ f(x) for all x ∈ S, x∗ is called global minimizer (or

minima).

The definition of convex functions and convex sets are used to assess the con-

vexity of to objective function and constraint set respectively in mathematical pro-

grams. A mathematical program with the form

min
x∈S

f(x) (B.1)

is the minimization of an objective function f over a constraint set S. If f is a

convex function and S is a convex set, then (B.1) is called a convex optimization

problem and all local minima are global minima. If either f is not a convex function

or S is not a convex set, (B.1) is not a convex problem and the algorithms that try

to find a locally optimal point without any guarantee to find a global minimum are

usually classified in local optimization (Boyd & Vandenberghe, 2004). There are

well-known drawbacks of local methods. First, initialization has a significant effect

on the results thereby local methods may need careful initialization. Second, there
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is no guarantee for solution quality. Third, they can be very sensitive to parameters

of the algorithm. However, convex problems do not suffer from any of these draw-

backs since every local minimum is the global minimum. Hence solving convex

optimization problems is much more convenient and straightforward.

B.2 Semidefinite Relaxations

B.2.1 Semidefinite Programming

Semidefinite programming (SDP), is the optimization problem that minimizes a lin-

ear function of a variable subject to the constraint that an affine combination of

symmetric matrices with coefficient vector equivalent to the variable is positive

semidefinite (Vandenberghe & Boyd, 1996).

The SDP that minimizes a linear function of x ∈ Rm is

min
x

c′x

s.t. F (x) � 0, i = 1, . . . ,m.

Ax = b

(B.2)

where F (x) = F0 +
∑m

i=1 xiFi, c ∈ Rm and symmetric matrices Fi ∈ Rn×n,

A ∈ Rp×m and b ∈ Rp (Boyd & Vandenberghe, 2004). The inequality symbol �

is used for positive semidefinite constraint. The positive semidefinite constraint is

nonlinear and non-smooth however it is convex and this yields a convex optimiza-

tion problem (Vandenberghe & Boyd, 1996; Robert & Hande Yurttan, 2000).

SDP can take two specific forms: standard form and inequality form (Boyd &

Vandenberghe, 2004). Standard form SDP for X ∈ Sm is formulated as

min
x

tr(CX)

s.t. tr(AiX) = bi, i = 1, . . . , p.

s.t. X � 0

(B.3)
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where C,Ai ∈ Sm for i = 1, . . . , p. And inequality form SDP is formulated as

min
x

c′x

s.t. F (x) � 0. i = 1, . . . ,m.
(B.4)

SDP’s have been widely used as a useful tool to deal with NP-hard combina-

torial optimization problems (Vandenberghe & Boyd, 1996). In particular, they

have been mostly applied to nonconvex quadratically constrained quadratic pro-

gram (denoted as QCQP or Q2P ) because many well-known NP-hard combina-

torial problems can easily be reformulated as non-convex QCQP (d’Aspremont &

Boyd, 2003). A QCQP is formulated as

min
x

x′P0x+ q0x+ r0

s.t. x′Pix+ qix+ ri ≤ 0. i = 1, . . . ,m.
(B.5)

where Pi ∈ Sn+, i = 0, 1 . . .m where S denotes set of positive semidefinite matrices

(Boyd & Vandenberghe, 2004; Nesterov et al., 2000). If all of the Pi’s are positive

semidefinite, then the QCQP is a convex problem. If at least one of the Pi’s is not

positive semidefinite, then it is not a convex problem. The non-convex QCQP is

NP-hard (d’Aspremont & Boyd, 2003). While there is no complete proof about the

hardness of them, they have been considered as hard since the complexity of all the

algorithms known to solve them are exponential in terms of problem dimensions.

Here a well-known known hard optimization problem that is encountered fre-

quently and we introduce that it can be formulated as a QCQP.

Example B.2.1. MAX-CUT. Consider an undirected graph G = (V,E) with n

nodes and a corresponding nonnegative symmetric weight matrix W for arcs of the

graph where Wij = 0 if (i, j) /∈ E. Given a partition of nodes of G to disjoint sets

S and S, cut(S, S) denotes the edges that have one end point in S and the other

in S (Goemans & Williamson, 1995). The problem of finding the cut with largest

total weights is called the maximum cut (MAX-CUT) problem. The maximum cut
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problem can be formulated as the following integer program

max
x

1

2

∑

i<j

Wij(1− xixj)

s.t. xi ∈ {−1, 1} ∀i ∈ V.
(B.6)

where xi determines the partition node i belongs to. Letting W̃ij = −Wij, ∀ i 6=

j where i, j ∈ V and W̃ii =
∑

j=1,...,nWij , Equation B.6 can be written as the fol-

lowing nonconvex QCQP (d’Aspremont & Boyd, 2003),

min
x∈Rn

x′W̃x

s.t. x2
i = 1, i = 1, . . . , n,

(B.7)

where W̃ is a positive definite matrix. MAX-CUT has long been known as NP-

complete problem (Goemans & Williamson, 1995). Rewriting the hard integer pro-

gramming problem as a non-convex QCQP has been a crucial step to deal with

many other hard combinatorial optimization problems since it allows applying a

powerful technique to find a convex approximation of non-convex problem which

will be covered in Section B.2.1 in more detail.

The semidefinite relaxation (SDR) of combinatorial problems is performed af-

ter rewriting them first as the QCQP given in Equation B.5. Recall that x′Pix =

tr(xx′Pi), substituting new variable X = xx′ allows the following exact reformu-

lation
min

xRn,X∈Sn
tr(XP0) + q0x+ r0

s.t. tr(XPi) + qix+ ri ≤ 0, i = 1, . . . ,m.

X = xx′

(B.8)

This has been called the lifting procedure (Lemaréchal & Oustry, 1999). Every

term except the last constraint in the last problem is now linear, hence convex. The

next key observation is that X = xx′ is equivalent to X � xx′ and rank(X) = 1

(Vandenberghe & Boyd, 1996). The X � xx′ is PSD constraint hence convex.

However the rank constraint is non-convex (Natarajan, 1995; Davis et al., 1997).
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Simply dropping the rank constraint and writing X � xx′ as the equivalent the

Schur complement yields the following SDR

min
xRn,X∈Sn

tr(XP0) + q0x+ r0

s.t. tr(XPi) + qix+ ri ≤ 0, i = 1, . . . ,m.
[
X x′

x 1

]
� 0,

(B.9)

which is an instance of SDP described in Section B.2.1. This procedure describes

the essence of SDR. The optimal value of the SDR gives a lower bound on the

optimal value of the original non convex problem. Since non convex QCQP formu-

lation of many hard combinatorial problems is an instance of this general QCQP

form, SDR in Equation B.9 has been directly applied to non convex QCQP’s of

non-convex problems. For example, it is easy to see that SDP relaxation of the non

convex QCQP of MAX-CUT problem given in Equation B.7 is the following SDP

max
X

tr(XW̃ )

s.t. Xii = 1, i = 1, . . . , n.

X � 0

(B.10)

where the x disappears from MAX-CUT SDR.

B.2.2 Recovering a Solution from a SDR

Although the using SDR seems an natural and straightforward step to obtain a con-

vex approximation for some nonconvex problems, the main bottleneck arises after

finding the global minimum of SDR problem. Even though the optimum objective

value of the SDR problem gives a lower bound for the original non convex prob-

lem, recovering a good feasible solution for the original problem from the global

optimum X∗ of the SDR problem is not trivial and indeed is the most crucial step

of convex approximations (d’Aspremont & Boyd, 2003; Luo et al., 2010). We have
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seen that SDR formulation is reached by dropping the rank constraint. Therefore, if

X∗ is of rank one, then the relaxation is tight which means x∗0 where X∗ = x∗0(x∗0)′

is also optimal for the original problem. However, if X∗ has rank more than one,

then more work needs to be done to get some good feasible solutions of the original

problem. An intuitively reasonable way to get such feasible solutions has been to

use best rank-one approximations. One can show that the best rank one approxi-

mation of X∗ with respect to 2-norm is X∗1 = λ1q1q
′
1 where λ1 is the maximum

eigenvalue of X∗ and q1 is corresponding eigenvector (Luo et al., 2010). We could

simply extract an approximation for x∗0 by x̃0 =
√
λ1q1 if it was feasible, however

in general, x̃0 may not be feasible. One possibility then is to “project” x̃0 to the

nearest feasible point using x̃0 = sign(x̃0). The vector x̃0 then is the eigenvector

approximation (Luo et al., 2010).

An appealing alternative is to use randomization (d’Aspremont & Boyd, 2003;

Luo et al., 2010). Recall that the last constraint in SDR in Equation B.9 is equivalent

to X − xx′ � 0 by using Schur complement and then we can define Gaussian

random variable x̃ with distribution x̃ ∼ N (x∗, X∗ − x∗(x∗)′) where X∗ and x∗

are solutions of SDR. The original non-convex QCQP can be solved in expectation

with the following stochastic QCQP,

min
X−xx′�0

Ex̃∼N (x,X−xx′)[x̃
′P0x̃+ q0x̃+ r0]

s.t. Ex̃∼N (x,X−xx′)[x̃
′Pix̃+ qix̃+ ri] ≤ 0. i = 1, . . . ,m.

(B.11)

Knowing the fact thatX−xx′ = Ex̃∼N (x,X−xx′)[x̃x̃
′]−xx′ and x = Ex̃∼N (x,X−xx′)

[x̃] impliesX = Ex̃∼N (x,X−xx′)[x̃x̃
′]. This clearly shows the equivalence of stochas-

tic QCQP to SDR which eventually allows an intuitive randomization procedure as

follows. First we solve SDR and obtain X∗. Then sample solution candidates x̃

from the distribution N (x,X − xx′). However, not all random samples can be

feasible. A rounding procedure that is specific to problem structure can be applied

in this case. For example, we can obtain discrete points from samples by simply

using x̃ = sign(x̃) (Luo et al., 2010). This stochastic setting allows a convenient
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way to obtain a theoretical results on the accuracy of the SDR (e.g. bounds on the

gap between the original problem and approximation) (Luo et al., 2010; Goemans

& Williamson, 1995).

As a matter of course, SDR was first studied extensively in optimization field

for a long time. SDR had its first significant impact in Signal Processing field long

before sparking great interest in ML community (Luo et al., 2010). The idea of

SDR has first mentioned in 1979 by Lovász (Lovász, 1979) and Nesterov et al.

(2000) states that first SDR was proposed by Lovász & Schrijver (1991). However,

the importance of SDR was not recognized until a well-known work by Goemans

& Williamson (1995) which they have first shown the very promising approxima-

tion quality of SDR for MAX-CUT problem by using the randomization technique

described above. More specifically, they proved that SDR can result in an objective

value that is at least 0.8756 times the optimal value of original problem which was

a clear evidence of the potential of high impact of SDR on dealing with NP hard

problems by providing accurate approximations to them. In fact, this novel analysis

of SDR stimulated a significant number of theoretical extensions for approximation

quality analysis for different problems (even some analysis proving exact approx-

imation of SDR under some conditions) (Luo et al., 2010). However elaborating

the technical details of approximation guarantee proofs is beyond the scope of this

thesis.

B.2.3 SDR in Machine Learning

SDR techniques were frequently applied to different problems in ML since the first

related seminal work of Lanckriet et al. (2004) that quickly stimulated many other

SDR applications in ML. Lanckriet et al. (2004) proposed a relaxation that learns

the kernel matrix for two-class SVM. Bie & Cristianini (2003) developed a convex

relaxation for transductive two-class SVM. Xu et al. (2004) used SDR for cluster-

ing that favors maximum margin hyperplanes for both unsupervised and semisuper-
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vised setting. Xu & Schuurmans (2005) extended the convex SVM contributions of

Xu et al. (2004); Bie & Cristianini (2003) to multi-class SVMs for both unsuper-

vised and semisupervised setting. Lanckriet et al. (2007) et al. differently applied

SDR to a dimension reduction problem, particularly to sparse principal component

analysis (SPCA) which was proposed by Zou et al. (2006) and proposed a new

convex version called direct SPCA(DSPCA) .

The early appealing progress in convex relaxations in ML has been very influen-

tial and opened new avenues to attack many other well known challenging noncon-

vex problems in ML. Guo & Schuurmans (2007) has sharply applied a novel SDR

technique to a non-convex EM based latent variable model which was very inspira-

tional for other works. Joulin & Bach (2012) extends this work to another convex

relaxation with a soft-max loss for semisupervised setting. Argyriou et al. (2008)

proposed a novel convex relaxation for learning representations that are common

across many tasks in a multi-task setting. Zhang et al. (2011) developed convex for-

mulations of representation learning problems such as sparse coding and dimension

reduction. Cheng et al. (2013) presented convex relaxations for Bregman diver-

gence clustering. Unfortunately, none of these results can handle predictive latent

models with one hidden layer and this problem will be the focus of this thesis. Yu

et al. (2010) propose convex approximation for bounded loss minimization without

any result for robustness for the final estimator and any consistency result. In this

thesis, we also develop a novel convex approximation for robust estimators which

significantly improves the previous work.

B.2.4 SDP Solvers

Nowadays, ML applications require learning algorithms with less computational

effort since dimensions of datasets are usually very large. Hence, it is critical to

develop highly scalable algorithms.

SDP’s sparked great interest after Nesterov and Nimirovskii had proposed first
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high-impact algorithmic techniques to find solution of SDP’s with polynomial run-

time guarantees by extending interior point (or barrier) methods used for LP’s and

QP’s to SDP’s (Nesterov & Nimirovskii, 1994; Boyd & Vandenberghe, 2004). In-

terior point methods use a barrier function that is convex and ensures the inequality

constraint is satisfied. This function is moved to the objective function to eliminate

the inequality constraints by putting an appropriate Lagrangian coefficient in front

of the barrier function. The well-known barrier function for the semidefinite con-

straint X � 0 is − log(det(X)) which is convex. It has been used very frequently

because it has the following nice and intuitive property. Semidefinite constraint is

satisfied if and only if X has eigenvalues all positive (Strang, 1996). Recall that

− log(det(X)) =
∑n

i=1 log(1/λi) where λi’s are eigenvalues of X . Thus if one

of the eigenvalues goes to zero, the barrier function goes to infinity, preventing the

violation of the semidefinite constraint.

The most popular SDP toolboxes such as SeDuMi, SDPT3, CVX and MOSEK

use interior point methods (Sturm, 1999; Toh et al., 1999; Grant & Boyd, 2014,

2008; Andersen & Andersen, 2000). Hence, they give solutions with high accu-

racy. On the other hand, interior point methods are second order methods and their

complexity is a low-order polynomial of problem size which does not allow it to

scale beyond small size problems. first order methods that tackled scaling bot-

tleneck of SDP solvers even sometimes in the expense of less accurate solutions.

Hence, first order methods was preferred over second order methods because of

having low complexity per iteration.

As a matter of fact, many strategies that attempted to scale better is trading

the high accuracy for better running times. The first-order methods proposed by

Nesterov (2007), Nemirovski (2007) and Sanjeev et al. (2005) that adopt proximal

methods to SDP’s are well-known examples that fall into this category. A random-

ized version of the method proposed by Sanjeev et al. (2005) was developed (Garber

& Hazan, 2011).
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Another line of first order methods is spectral bundle method that exploited the

non-negativeness of the smallest eigenvalue of the variable matrix (Helmberg &

Rendl, 2000). Using the fact that all SDP problems can be written as a maximum

eigenvalue problem given in Helmberg & Rendl (2000), a smooth stochastic al-

gorithm that solves a smooth approximation to the eigenvalue problem achieving

improvement in efficiency (d’Aspremont & Karoui, 2014). Another interesting ad-

vance in first-order methods was established with a key transformation trick discov-

ered to turn the original problem to an equivalent saddle-point eigenvalue problem

(Renegar, 2014) .

There are also other first order approaches applied to SDP e.g. the so called Aug-

mented Lagrangian based methods (ADMM) and block coordinate descent meth-

ods. The ADMM based methods are usually computationally expensive because

full eigen–decomposition is required in each iteration (Wen et al., 2010). Block

coordinate descent based methods was also applied to SDP’s by using Schur com-

plements characterization of PSD constraints for updates on one row or column

on solving subproblems (Wen et al., 2012). However, space complexity of O(n2)

makes it prohibitive for applying on large-scale problems. Another block coor-

dinate descent based method scales to millions of dimensions for positive definite

constraints by exploiting problem structure for a sparse inverse covariance selection

(Hsieh et al., 2013).

Another category of first order methods which was prominent is Frank Wolfe

(FW) algorithm which is also known as Conditional Gradient (CG) algorithm to

solve SDP’s (Frank & Wolfe, 1956; Hazan, 2008; Laue, 2012). FW was first intro-

duced in a seminal paper by Frank and Wolfe for minimization of smooth convex

function with respect to a convex set in 1956 (Frank & Wolfe, 1956). An intuitive

illustration of the FW iteration taken from (Jaggi, 2013) is shown in the Figure B.3

. The need for expensive projections to feasible set in each iteration was considered

as the main drawback of gradient descent methods. In each iteration, the vanilla
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Figure B.3: A FW iteration illustration.

FW algorithm finds the direction to move by minimizing a linear approximation

to the original objective function over the constraint set of interest. Hence, FW

is projection-free compared to gradient descent methods and this made it attrac-

tive for large scale constrained convex optimization. On the other hand, FW has

convergence rate on the order of 1/t and it’s convergence rate is slow compared

gradient descent methods and to some other first order methods such as Nesterovs

accelerated gradient which has a general convergence rate of 1/t2 (Nesterov, 1983).

However, it was shown that vanilla FW can converge at the rate 1/t2 for the special

case of the strongly convex function and also strongly convex feasible sets (Garber

& Hazan, 2014).

FW was first adopted for SDP by Hazan (2008) where the algorithm is crucially

producing sparse solutions. Sparse solutions mean low rank solutions in case of

SDP. The low rank solution is critical since it has advantages in terms of storage

and computation. By applying the factorization X = V V ′ where V ∈ Rn×r and

r ≤ n, we can store V instead of X which saves much space for large dimensions.

Multiplying X with a vector becomes also much cheaper when V is used and this

can significantly improve running time. Hazan (2008) starts with a column vector

for V and incremental rank-1 updates. However, the main drawback here is slow
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convergence rate of FW. There are also nonlinear techniques that aim to take the

advantage of low rank by optimizing directly over V . However the problem be-

comes no longer convex in V . Burer & Monteiro (2003) proposed such a method

without a convergence guarantee to global solution trades the theoretical guarantees

for practical efficiency.

The low rank approach in Burer & Monteiro (2003) sparked significant inter-

est since it also provided practically efficient results for the SDP problems that do

not have strict accuracy requirements, allowing one to enjoy the efficiency of a

nonlinear non-convex approach (Kulis et al., 2007; McCoy & Tropp, 2011). This

also opened a line of research that attempted to provide the analysis and condi-

tions for stationary points that are globally optimal for this particular regime. First,

Burer & Monteiro (2003) introduced a sufficient condition for global optimality in

their original work, which was then extended by a crucial analysis of the necessary

condition in (Grippo et al., 2008). Journée et al. (2010) also provided necessary

and sufficient conditions for stationary points to be global minima under specific

conditions. Their work was extended by developing an algorithm called SpeeDP

that solves very large MAX-CUT problems by exploiting problem specific features

of MAX-CUT (Grippo et al., 2012). In addition, some specific problems with a

suitable structure were shown to give global optimum guarantees for this low rank

approach (Jain et al., 2013; Netrapalli et al., 2013, 2014; Feng et al., 2013). For

example, in case of matrix completion, it is already assumed that data is low rank

and that a property called restricted isometry property (RIP) was satisfied. Under

these conditions, one can show the convergence guarantee to global minimum (Jain

et al., 2013).

It was explained above that the FW based method proposed by Hazan (2008)

has theoretical guarantees whereas it does not offer practical efficiency. In contrast,

nonlinear low rank approach of (Burer & Monteiro, 2003) does not have theoretical

guarantees but practically efficient. A hybrid algorithm that crucially combines the
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parts that are advantageous from two methods by adding a nonlinear local step in

FW (Laue, 2012). This hybrid algorithm empirically improves performance of FW

without sacrificing convergence guarantees for global optimum solution.

B.3 Deep Nonlinear Models

A deep model with fully connected layers is shown in Figure 1.2. The hidden layers

Φi are calculated by nested activation functions

φi(x) = σi(φi−1(x)Wi). (B.12)

where x is an instance of data, i = 2, 3, . . . , l, l is the number of hidden layers,

φ1(x) = σ1(xW1). Mostly the same activation function is used in all layers. Some

of the commonly used non-linear transfer functions are the following

Sigmoid :
1

1 + exp(−x)

ReLu : max(0, x)

softplus : log(1 + exp(x))

tanh :
sinh(x)

cosh(x)

(B.13)

and they are shown in Figure B.4. The prediction function is calculated by softmax

applied to the last hidden layer’s values

f(x) =
exp(φl(x)′W )∑

exp(φl(x)′W )
(B.14)

The arguments of loss function are the prediction that is calculated by the out-

put of last layer and the original output. The goal of the learning algorithm is to

minimize an objective function that combines a classification loss and regularizer

with respect to weights. Cross-entropy is the most common among other losses in

deep learning and Tikhonov regularizer is the common regularizer which is known

as weight decay in deep learning (Goodfellow et al., 2015). Although the objective
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Figure B.4: Some well known activation functions for hidden layers.

function is convex at the last layer for the fully connected network in Figure 1.2,

it is not jointly convex over all weights because of nested nonlinearities through

layers that appears in loss function (Gori & Tesi, 1992).

B.4 Robust Models

A general approach to tackle sensitivity to outliers in robust statistics is called M -

estimation (Zhang, 1997). M -estimation is essentially the minimization of sum of

functions of the residual with respect to parameters and has the form

θ̂M ∈ arg min
θ

1
N

∑N
i=1 ρ(ri) (B.15)

where ρ is a symmetric, positive-definite function, ri = yi − xiθ is the residual,

θ ∈ Rp. Then estimator θ is solution to the following p equations

N∑

i=1

ψ(ri)
∂ri
∂θm

, for m = 1, . . . , p (B.16)
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where ψ(ri) = dρ(ri)
dri

is the influence function. Influence function measures the

sensitivity of the estimate with respect to residual. Ideal ρ should have a bounded

influence function. Some M -estimators proposed in robust statistics and computer

vision that have bounded influence function are listed in Figure B.5 and shown in

Figure B.6 (Zhang, 1997). It can be observed that these losses have more resistance

to outliers. For example, Huber and Geman-McClure are well known among them:

Huber is piecewise function that changes a quadratic function for small residuals

and linear for large residuals therefore is has some resistance to outliers. Huber

is also convex which makes it tractable. Geman-McClure is a bounded estimator

however it is not convex.

Ideally, we want the predictor to be both bounded and tractable. However, there

is a fundamental dilemma that we prove in Chapter 5 for losses: convex losses in

literature cannot be robust to outliers whereas bounded losses cannot be tractable.
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ρ

Huber

{
(r)2

2
for |r| ≤ δ,

δ(|r| − δ
2
) otherwise.

Cauchy r
(1+(r/δ)2)2

Geman-McClure c2

2
log(1 + r2)

Welsch δ2

2
[1− exp(−(x/δ)2)]

Tukey

{
δ2

6
(1− [1− (r/δ)2]3) for |r| ≤ δ,

δ2

6
otherwise.

(a) ρ-functions

ψ

Huber

{
ri for |r| ≤ δ,

δsign(r) otherwise.

Cauchy r
(1+(r/δ)2)2

Geman-McClure r
(1+r2)2

Welsch x exp(−(x/δ)2)

Tukey

{
r[1− (r/δ)2]2 for |r| ≤ δ,

0 otherwise.
(b) ψ influence functions

Figure B.5: The formulations of the losses and the influence functions for some

M -estimators.
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(a) ρ-functions

(b) ψ influence functions

Figure B.6: The figures of Huber, Cauchy, Geman-McClure, Welsch and Turkey

from left to right.
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