
 

University of Alberta 
 
 
 

BIOPHYSICS UNDERLYING BISTABLE NEURONS WITH 

BRANCHING DENDRITES 

 
by 

 
Hojeong Kim 

 
 
 
 
A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment 

of the requirements for the degree of  
 
 

Doctor of Philosophy 
 

in 
 

Medical Sciences – Biomedical Engineering 
 
 
 
 
 
 
 
 
 

© Hojeong Kim 

Spring 2011 
Edmonton, Alberta 

 

 

 

 

 
Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis 
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is 

converted to, or otherwise made available in digital form, the University of Alberta will advise potential users 
of the thesis of these terms. 

 
The author reserves all other publication and other rights in association with the copyright in the thesis and, 

except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or 
otherwise reproduced in any material form whatsoever without the author's prior written permission.



 

 

EXAMINING COMMITTEE 
 

 

Dr. Kelvin Jones, Physical Education and Recreation, Biomedical Engineering 

Dr. Keir Pearson, Department of Physiology, Centre for Neuroscience 

Dr. David Bennett, Faculty of Rehabilitation Medicine, Centre for Neuroscience 

Dr. Jack Tuszynski, Department of Physics, Division of Experimental Oncology 

Dr. Youssef Belhamadia, Department of Mathematics, Biomedical Engineering 

Dr. Randall Powers, Physiology and Biophysics, University of Washington



 

 

ABSTRACT 

 

The goal of this thesis is to investigate the biophysical basis underlying the 

nonlinear relationship between firing response and current stimulation in single 

motor neurons.  After reviewing the relevant motoneuron physiology and theories 

that describe complex dendritic signaling properties, I hypothesize that at least 

five passive electrical properties must be considered to better understand the 

physiological input-output properties of motor neurons in vivo: input resistance, 

system time constant, and three signal propagation properties between the soma 

and dendrites that depend on the signal direction (i.e. soma to dendrites or vice 

versa) and type (i.e. direct (DC) or alternating (AC) current).  To test my 

hypothesis, I begin with characterizing the signal propagation of the dendrites, by 

directly measuring voltage attenuations along the path of dendrites of the type-

identified anatomical neuron models.  Based on this characterization of dendritic 

signaling, I develop the novel realistic reduced modeling approach by which the 

complex geometry and passive electrical properties of anatomically reconstructed 

dendrites can be analytically mapped into simple two-compartment modeling 

domain without any restrictive assumptions.  Combining mathematical analysis 

and computer simulations of my new reduced model, I show how individual 

biophysical properties (system input resistance, time constant and dendritic 

signaling) contribute to the local excitability of the dendrites, which plays an 

essential role in activating the plateau generating membrane mechanisms and 

subsequent nonlinear input-output relations in a single neuron. The biophysical 

theories and computer simulations in this thesis are primarily applied to motor 



 

 

neurons that compose the motor neuron pool for control of movement. However, 

the general features of the new reduced neuron modeling approach and important 

insights into neuronal computations are not limited to this area. My findings can 

be extended to other areas including artificial neural networks consisting of single 

compartment processors. 
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CHAPTER 1: INTRODUCTION 

 

 

1.1 PREFACE  

 

Theoretical neuroscience using computational methods (also called computational 

neuroscience) has grown tremendously since Hodgkin and Huxley demonstrated 

that the computational membrane model can be tightly connected to the biological 

phenomenon of action potentials and useful to understand the underlying 

mechanisms (Hodgkin and Huxley, 1952). Furthermore, our view on the roles of 

highly branching dendritic trees attached to their cell bodies (Ramón y Cajal, 

1933) was changed by the Rall’s theoretical studies for the passive dendrites (Rall, 

1957; Rall et al., 1995). His biophysical model of the dendrites (i.e. cable) has 

served as the theoretical foundation in many experimental and computational 

studies that have investigated the neuronal output behaviour (i.e. action potentials) 

in response to synaptic inputs spatially and temporally distributed over the 

dendritic trees. More recently, it has been clear that voltage-gated ionic channels 

distributed over the dendrites are actively involved in modulating synaptic effects 

(Stuart et al., 1999). In this thesis, I focus on the roles of the dendrites including 

active membrane mechanisms that are responsible for the complex output 

behaviour of ventral horn motor neurons (MNs) in the mammalian spinal cord, 

which are the final path to excitation of muscle and production of movement. 

Combining mathematical analysis and computer simulations, I identify the 

essential properties of the dendrites and derive biophysical principles underlying 

bistable output firing behaviour of motor neurons (Hounsgaard et al., 1984). The 

theory established in this thesis will serve a basis for understanding how the 

dendritic signaling contributes to nonlinear dynamics of neurons including 

dendritic voltage-gated channels.  
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1.2 MOTOR UNITS  

 

The spinal cord makes up the central nervous system (CNS) together with the 

brain. It transmits motor commands from the brain down to the rest of the body, 

as well as sensory information from the body up to the brain. In addition, the 

spinal neural circuits consisting of MNs and interneurons serve functionally 

independent operation modes without brain intervention,  including various reflex 

actions (Sherrington, 1906) and central pattern generation (CPG) of rhythmic 

movements (Hooper, 2000). A single α-MN in the ventral horn of the spinal cord 

and the muscle fibers it innervates form the motor unit, which is the fundamental 

element for all motor output. In general, the MNs within the motor neuron pool 

controlling a single muscle have been classified into three types according to the 

mechanical properties of their corresponding muscle fibers: Slow twitch (S-type), 

Fatigue-Resistant fast twitch (FR-type) and Fatiguable Fast twitch (FF-type) 

(Burke et al., 1973). Several electrical properties (i.e. input resistance, time 

constant and rheobase) of MNs have been also reported to be correlated to MN 

types in the population (Zengel et al., 1985). Thus all movement depends on the 

pattern of recruitment and rate modulation of motor units (Fuglevand et al., 1993), 

which are determined by electrical properties of MNs. 

 

 

1.3 EXPERIMENTAL OBSERVATIONS OF MOTOR NEURON 

ELECTRICAL PROPERTIES 

 

To identify the essential electrical properties determining the complex firing 

response of MNs to current input, electrophysiological data mainly from the 

lumbar α–MNs of the adult cat was hierarchically reviewed from passive 

subthreshold to active whole-cell behaviour (Fig. 1-1). The electrical properties 

identified in each hierarchical level were used to develop the realistic neuron 

modeling framework. The cat α–MNs are the first mammalian neurons that have 

been extensively studied using sharp microelectrode to the soma for their 
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activation properties and manners targeting the various types of skeletal muscle 

fibres (Brock et al., 1952; Eccles et al., 1957). 

 

 

 

 

 

 

Subthreshold Response

Action Potential

Spike Trains

Bistable Firing Behaviour

Eccles (1957)

Kernell (1965)

Hounsgaard (1984)

Anaesthetized 

Cats

Unanaesthetized 

Cats

 

 

Figure 1-1. Hierarchy of experimental observations on electrical properties of cat 

MNs. Note that the whole-cell behaviour (i.e. bistable firing behaviour) was 

observed in the unanaesthetized preparations where the active membrane 

mechanisms in the dendrites were intact. 
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1.3.1 Passive properties: Subthreshold response 

 

The onset of action potentials in the soma is determined by the subthreshold 

response of membrane potential to the current input below the rheobase (i.e. 

current threshold for triggering a single action potential, Irh). Under little synaptic 

activities in anaesthetized adult cat preparations, the membrane potential at the 

soma of MNs tends to rest at around – 70 mV (Eccles et al., 1957). When a long 

stimulating step of current with a low intensity (e.g. 1 nA) is injected to the soma, 

the membrane potential starts to rapidly depolarize and gradually approach to the 

steady-state value. This time course of voltage response in the subthreshold region 

has been characterized with the system time constant (τm) representing the rate of 

changes in membrane potential, and the input resistance (RN) indicating the 

membrane excitability i.e. the higher RN, the less current is needed for 

depolarizing the cell to the threshold for spike discharge. τm is determined by 

membrane resistance (Rm) multiplied by membrane capacitance (Cm), whereas RN 

is determined as a function of Rm and cytoplasmic resistance (Ri) along with 

dendritic geometry. It is important to note that the properties (τm and RN) of the 

subthreshold transient response have been also suggested to be tightly related to 

MN types (Zengel et al., 1985). 

 

The appearance of the transient membrane potential in the subthreshold region is 

mainly mediated by two passive membrane currents, leak (IL) and capacitive  

current (IC) (Hodgkin and Huxley, 1952). However it should be noted that other 

types of active membrane mechanisms (e.g. hyperpolarization-activated non-

selective cation currents (Ih), inward rectified K+ currents (IKir), background 

synaptic activities or electrogenic pump) may influence the subthreshold 

membrane dynamics (Destexhe and Pare, 1999; Ito and Oshima, 1965). 

 

1.3.2 Active properties: Action potential 
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When the intensity of the depolarizing current step is large enough for membrane 

potential to exceed the threshold for a spike or action potential (i.e. Irh), the cat 

MNs generate a positive voltage overshoot with an amplitude of around 80–90 

mV during 1–2 ms, followed by a negative voltage undershoot with an amplitude 

of around 3–4.9 mV during 65–160 ms that ultimately returns to the resting 

membrane potential. In general, a single action potential consists of four different 

states in a cycle: resting, rising, falling, afterhyperpolarizing (AHP) and back to 

the initial resting state (refer to Fig. 1-2). 

 

When analyzed using voltage clamp recording technique, each state during an 

action potential is governed by the balance between inward and outward ionic 

currents that are typically time– and voltage–dependent. The rapid rising state is 

mainly mediated by inward fast Na+ currents (INa,f) whose conductance is 

progressively increased by the positive feedback mechanism (i.e. activation of 

voltage gated Na+ channels by the depolarization caused by the influx of INa,f ). 

During the falling state, outward delayed rectified K+ currents (IK,Dr) with slow 

kinetics pull down the depolarized membrane potential even below the resting 

voltage level along with the inactivation of INa,f. Finally K+ currents (IK(Ca)) 

activated by Ca2+ influx through high voltage activated Ca2+ channels (ICa,N) 

shapes the time course of membrane potential during AHP state. It is noted that 

other types of active membrane mechanisms are also likely to be involved to 

modulate the shape of an action potential (Hornby et al., 2002).
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Figure 1-2. Schematic diagram of a single action potential and underlying 

conductances in generic adult motor neurons. The major conductance responsible 

for each state of the spike cycle is shown in bold italics. Plateau potential 

mediated by Ca2+ and Na+ currents is indicated with a dotted line (Adopted from 

Hornby et al., 2002).  
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1.3.3 Active properties: Spike train 

 

The MNs can fire spikes tonically (i.e. spike train) when stimulated with a step of 

suprathreshold current that is typically higher than what is needed to evoke a 

single action potential by about 1.5 fold. The temporal pattern of the spike train 

has been characterized measuring variations of instantaneous firing frequency in 

response to a wide range of long lasting suprathreshold current steps (Granit et al., 

1963; Kernell, 1965b). These studies have showed that the firing rates of MNs 

gradually decrease as a function of time (i.e. spike-frequency adaptation) with 

constant current intensity and the repeated spiking may disappear at a current 

stimulation which is strong enough to diminish the spike size. 

 

The relationship between output firing rates (f) and steady current intensity (I) has 

been characterized with two straight lines: a shallow slope line over a lower 

frequency range (called primary range) and a steep slope line over a higher-

frequency (called secondary range) (Kernell, 1965a). The frequency range higher 

than the secondary range has sometimes been referred to as a tertiary range with 

the line slope that has been suggested to be typically flatter than in the secondary 

range (Schwindt, 1973). The f-I relation below the primary range (called 

subprimary) may also be functionally important in rats (Manuel et al., 2009). 

 

Possible electrophysiological mechanism underlying the secondary range was first 

suggested to be correlated to the actual manner of AHP conductance summation 

(called saturating summation) (Baldissera et al., 1978). Although the realistic 

AHP model could reproduce the f-I relationship of MNs including secondary 

range firing, the more extensive voltage clamp analysis revealed the presence of  

the voltage-dependant persistent inward currents (PICs) that are likely to be 

involved in the steep f-I relation over the higher frequency range (Schwindt and 

Crill, 1982). Even for the MNs in anaesthetized cats, PICs were observed to be 

already activated at subthreshold potentials and gradually activated as the 

membrane potential gets more depolarized (Schwindt and Crill, 1980a; Schwindt 
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and Crill, 1977; Schwindt and Crill, 1980c). Thereafter it has been suggested that 

PIC channels may provide an intrinsic source of depolarizing currents during the 

secondary range in the f-I relationship. 

 

1.3.4 Active properties: Bistable firing behaviour 

 

The experimental observations of the PICs by Schwindt and Crill have brought 

researchers’ attention to the nonlinearities in the firing behaviour of the spinal 

MNs. The consequence of the fully activated PICs responsible for generating 

plateau potentials has been shown to be related to the sustained firing of cat MNs 

in the absence of external driving current (Hounsgaard et al., 1984). Thus the 

MNs can stay in either two stable states that can be switched by brief excitatory 

and inhibitory current pulses. For example, the MNs with PICs may initiate and 

sustain spikes by brief excitatory input, and turn back to the resting state by brief 

inhibitory input. This phenomenon has been referred as bistable firing behaviour. 

 

Typically using the triangular current stimulation to the soma, the bistable firing 

behaviour of MNs has been characterized in terms of two features: 1) counter-

clockwise frequency hysteresis in the f-I relationship (Lee and Heckman, 1998a; 

Lee and Heckman, 1998b), and 2) sustained firing during the descending phase of 

current stimulation below the current threshold for the spiking during the 

ascending phase (Bennett et al., 2001). The first feature of the counter-clockwise 

f-I curve also implies that during fully bistable firing action potentials may 

propagate into the dendrites and  influence on the activation of the PICs mediated 

by L-type Ca2+ channels (Carlin et al., 2000a; Hounsgaard and Mintz, 1988; Li 

and Bennett, 2003; Schwindt and Crill, 1980b). Based on above two features of f-

I relationship, four types of firing behaviour in spinal motor neurons have been 

classified in the rat MNs (Bennett et al., 2001): Type I (no frequency hysteresis 

and sustained firing), Type II (clockwise frequency hysteresis and no sustained 

firing) Type III (no frequency hysteresis but sustained firing) and Type IV 

(counter-clockwise frequency hysteresis and sustained firing). Type IV firing is 
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comparable to the fully bistable firing that has been observed mainly in large 

input resistance MNs (Lee and Heckman, 1998b). 

 

The spatial distribution of the PIC channels responsible for the nonlinear (i.e. 

bistable) firing of MNs have been investigated both experimentally and 

computationally, showing that the PIC channels are concentrated on the dendritic 

branches physically distal to the soma i.e. 300-500 µm (Ballou et al., 2006; Carlin 

et al., 2000b; Elbasiouny et al., 2005; Grande et al., 2007; Heckman et al., 2003). 

Another indirect evidence for the dendritic localization of PIC channels is that a 

sequence of excitatory synaptic inputs to the dendrites gave rise to progressively 

lower the voltage threshold for generating plateau potential by ‘warming up’ the 

PIC channels (Bennett et al., 1998; Svirskis and Hounsgaard, 1997). 

 

The voltage sensitivity of PIC channels in the dendrites is also modulated by 

metabotropic receptors activated by various neurotransmitters, including 

monoamines (e.g. norepinephrine and serotonin) deriving from descending tracts 

originating in the brainstem. Recently, it has become clear that neuromodulatory 

control of voltage gated channels in motor neuron dendrites is essential in 

specifying both electrical properties and nonlinear dynamics of MNs (Lee and 

Heckman, 2000). 

 

 

1.4 THEORETICAL FOUNDATIONS OF NEURONAL ACTIVITY 

 

Having reviewed the relevant motoneuron physiology, it became obvious that to 

better understand the bistable firing behaviour of MNs, not only active membrane 

mechanisms responsible for spiking at the soma and plateau potential in the 

dendrites but also dendritic signaling properties determining the interaction 

between those physically separated conductances should be taken into account in 

a unified modeling framework. It was not surprising that the biophysically 

plausible models have been derived to figure out the mechanisms underlying 
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experimental observations on neuronal activities in different levels (Fig. 1-1), 

followed by the abstract models to further use the powerful mathematical tools. 

One of the important theoretical strategies to study neuronal excitability has been 

the usage of the dynamical systems theory, by which many fundamental insights 

into the generation of action potentials has been suggested. In particular, the 

reduced modeling framework has been extensively used due to its favor to 

mathematical analysis (Mainen and Sejnowski, 1996; Sejnowski et al., 1988). 

 

1.4.1 Passive properties: Subthreshold response 

 

The resting transmembrane potential (or voltage, Vm) of a neuron is determined 

by ion movement (or ionic current, Ii) flowing through various types of proteins 

(i.e. ion channels and pumps) across the lipid bilayer membrane. The unbalanced 

concentration of individual ions inside and outside the cell gives rise to 

electrochemical gradient across the membrane, which in turn provides the 

intrinsic driving force exerting ions to move passively. This biological battery has 

been quantified by measuring membrane potential (called equilibrium or reversal 

potential, Erev) at which Ii is zero. For a particular ion species (i), Erev can be 

calculated by the following Nernst equation. 
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imrev

C
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ln)0( ===                                     (1-1) 

where R is the gas constant (1.98 cal/°K-mol); T is absolute temperature (°K); z is 

the valence of the ion (dimensionless); F is Faraday’s constant (96,480 C/mol); 

[C] is the ion concentration. 

 

To describe the dynamic response of Vm to various types of Ii and current 

stimulation in the perfectly voltage−clamped membrane, the electrical circuit 

model equivalent to the biological membrane was first proposed by Hodgkin & 

Huxley (1952) that consists of a membrane capacitance (Cm) per unit area 

(corresponding to lipid bilayer membrane) and various types of membrane 
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conductances (Gm) per unit area (corresponding to ionic channels) in parallel. 

Applying Kirchhoff’s current law to the equivalent circuit, the total ionic current 

flowing across a patch of membrane (Im) becomes the sum of the capacitive (IC) 

and various types of ionic currents (Ii for a specific type) governed by Ohm’s law, 

 

( )∑∑ −+=+= irevmim
m

miCm EVG
dt

dV
CIII ,,                     (1-2) 

where the difference between Vm and Erev,i represents the electromotive force for 

the specific ion, i.  

 

Gm can be either linear or nonlinear. A linear conductance exhibits a linear 

relation between Ii and Vm (I-V relation is always straight line), whereas a 

nonlinear conductance varies depending on both membrane potential and time. At 

the resting state, voltage-and time-dependent membrane conductances are 

typically assumed to be zero thus the resting potential (Vr) are determined by 

various types of leaky ion channels (e.g. Na+, K+ and Cl-). Thus the resting 

potential is determined by the linear conductances applying Thévenin's theorem1 

to the equivalent circuit membrane,  
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The resting potential may be also estimated in terms of ion permeability in 

accordance with Goldman-Hodgkin-Katz (GHK) equation, 
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where P is the permeability of individual ion species. 

                                                           
1 Reduction method of linear circuit networks consisting of voltage and current sources and 
resistors with two terminals to an equivalent circuit consisting of a single voltage source and 
resistor in series (Thévenin 1883). 
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In the equivalent circuit model of passive membrane, the input resistance (RN) is 

identical to the sum of all individual membrane resistances (i.e. GK,Leak + GNa,Leak + 

GCl,Leak). The system time constant (τm) is determined by multiplying RN with Cm. 

Thus the subthreshold dynamics of Vm is governed by a single exponential 

function with τm in the equivalent circuit.  

 

1.4.2 Active properties: Action potential 

 

One of the most important models for the action potential is the Hodgkin & 

Huxley (1952) (H-H) formulation (Eq. 1-5). They successfully reproduced action 

potentials of the squid giant axon based on the equivalent circuit modeling (Eq. 1-

2), pharmacologically identifying types and densities of time-and voltage-gated 

ion currents (i.e. fast Na+ for generating action potentials and delayed rectified K+
 

with leak channels for recovering membrane resting potential) and then 

mathematically describing their kinetics with gating variables (i.e. m and h for 

activation and inactivation of Na+ currents,  and n for activation of K+ currents). It 

should be noted that the equations governing kinetics of active ion channels in Eq. 

1-5 were empirically determined to match the experimental data. 
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where GNa, GK and GLeak are maximum conductance densities for Na
+, K+ and 

leak ionic currents respectively. ENa, EK and ELeak are equilibrium potentials Na
+, 

K
+ and leak ionic currents respectively. τm, τh and τn are time constants 

representing the rates at which m, h and n approach their steady-state values of m∞, 

h∞ and n∞ respectively. Iapp is the current intensity applied to the axon. 
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The additional features of H-H type of membrane excitability were further 

analyzed by FitzHugh (1961), expanding the van der Pol oscillator model2 to 

lower the four-dimensional H-H equations (called FitzHugh-Nagumo model) into 

two-dimensional system (Eq. 1-6). The simplicity of his abstract model allowed 

the useful mathematical analysis of the H-H membrane excitability using phase-

plane methods (refer to Fig. 1-3). It turned out that there was no explicit voltage 

threshold for action potential in H-H model, showing the absence of all or none 

spikes. In addition, the action potential could be initiated by even hyperpolarizing 

current pulse (called anodal break excitation). Thereafter the phase-plane analysis 

has been extensively used to characterize the model excitability. 
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where w is the recovery variable similar to the gating variable, n, in H-H model 

(Eq. 1-5). 

 

Morris-Lecar model (1981) has been one of the popular excitable membrane 

models in computational neuroscience because it is based on only two types of 

active conducantces (Ca2+ for inward and K+ for outward currents in Eq. 1-7) with 

Ohmic leak channels and two-dimensional so that the model excitability could be 

fully analyzed and readily manipulated using phase-plane methods. The main 

assumption in using this model is that the real higher-order system can be mapped 

onto a two-dimensional phase space without altering the topological properties of 

the phase profile. This assumption has been suggested to be true for the four-

dimensional H-H system, showing that all excitation phenomena can be 

                                                           
2 The concept of limit cycle occurred in nonlinear dynamical systems was originally introduced by 
the physicist Balthasar van der Pol (van der Pol and van der Mark, 1927). He demonstrated stable 
oscillations (i.e. limit cycle) in the electrical circuits governed by the second-order differential 
equation, 
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duplicated with minimal number of active currents in the two-dimensional 

Morris-Lecar model. 
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where GCa is the maximum conductance density for Ca2+ ion current. 
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Figure 1-3. Graphical representation of membrane potential (V) response over 

time (t) (top) onto the phase plane consisting of V & recovery variable (n) 

(bottom). Resting membrane potential corresponds to filled (attractive) or blank 

(repelling) circles in the phase plane. The response of membrane potential (V) to 

the current stimulation is represented by a curve (or solution trajectory) with 

directional arrows. (a). Subthreshold membrane potential response: all solution 

trajectories starting with different default values of V come back to stable resting 

sate. (b) Action potential: a large solution trajectory corresponds to a single spike. 

(c) Sustained firing activity: all solution trajectories are attracted into one periodic 

orbit curve. Note the qualitative change in the stability of equilibrium point and 

resulting periodic spiking behaviour, indicating the occurrence of bifurcation. All 

figures were adopted from (Izhikevich, 2007). 
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1.4.3 Active properties: Spike train 

 

Hodgkin (1948) identified three phenomenologically different classes of firing 

responses to current pulses with various amplitudes in the squid axon (i.e. 

frequency (F)-current (I) relationship). In the first class (i.e. Class I) of the F-I 

relation, the firing frequency were initially low and gradually increased with 

increasing strength of the applied current. In the second class (i.e. Class II), the 

firing frequency was initially jumped to and sustained in a certain frequency band 

that is relatively insensitive to variations of the applied current intensity. In the 

third class (i.e. Class III), only a single action potential was evoked in response to 

a pulse of current. Sustained spiking activity could be observed only for 

extremely strong current intensity or not at all. 

 

Given the fact that there are limited types of ion channels in the squid axon, it has 

been pointed out that the different classes of spiking responses may be generated 

due to the difference in the bifurcation3 mechanisms (refer to Fig. 1-4) underlying 

the cellular excitability, instead of the variety of ion channels (Rinzel and 

Ermentrout, 1989). Thereafter the possible bifurcation mechanisms have been 

extensively investigated using the nonlinear dynamical systems theory (Izhikevich, 

2007), to describe and understand the mechanisms underlying fluctuation 

phenomenon (e.g. firing) observed in various membrane systems: axons (Fitzhugh, 

1961), muscle fibers (Morris and Lecar, 1981), neurons (Izhikevich, 2007) and 

endocrine cells (Sherman et al., 1988). 

 

From the dynamical systems point of view (Strogatz, 2000), the neuron can be 

considered as a highly nonlinear dynamical system (Glass, 2001). Unlike the 

linear systems, the neurons with the ability to generate action potentials (top 

panels in Fig. 1-3) typically have following characteristics in the phase plane 

(bottom panels in Fig. 1-3): 1) multiple equilibrium points (indicated by circles) 

                                                           
3 The bifurcation indicates the sudden transition of output behaviour of dynamical systems to the 
qualitatively different state as system parameters of interest (called bifurcation parameters) change. 
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representing resting states that can be either stable (filled circle) or unstable 

(blank circle), 2) qualitative transition in system dynamics (called bifurcation) by 

changes in numbers of equilibria or their stability while varying parameters, 3) 

periodic oscillations (called limit-cycle or periodic orbit) and 4) deterministic but 

unpredictable dynamics (called chaos). 
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Figure 1-4. Four bifurcation mechanisms underlying the transition from the 

resting to sustained spiking activity as the intensity of the injected current 

increases. (a). Saddle-node bifurcation. At rest, there are two stable states: resting 

state and spiking limit cycle. The transition to the sustained spiking state occurs 

through the coalescence and annilhilation of two equilibrium points (marked by 

node and saddle). (b)  Saddle-node on invariant circle bifurcation. At rest, there is 

only one stable state: resting state (node). Similar to the saddle-node bifurcation, 
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the transition to the sustained spiking state occurs through the coalescence and 

annilhilation of two equilibrium points (marked by node and saddle) except the 

existence of invariant circle at the bifurcation moment. (c). Subcritical Andronof-

Hopf bifurcation. At rest, there are two stable states: resting state (node) and a 

large spiking limit cycle. The transition to the sustained spiking state occurs 

through the loss of the stability in the stable equilibrium point with shrinking 

unstable limit cycle. (d). Supercritical Andronof-Hopf bifurcation. At rest, there is 

only one stable state (node): resting state. A small stable limit cycle is generated 

followed by the loss of stability in the stable equilibrium point. The amplitude of 

the limit cycle increases to a full-size spiking limit cycle with increasing current 

intensity. All figures were adopted from (Izhikevich, 2007).
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The neurons have been thought to be highly excitable since they typically rest 

near the transition point to generate spikes. Thus, the transition feature (i.e. 

bifurcation mechanism) from the resting state (i.e. stable equilibrium point) to the 

sustained spiking activity (i.e. limit-cycle) has been reported to be a critical factor 

to determine firing responses to the current stimulation (Prescott et al., 2008). In 

general, only four bifurcation mechanisms shown in Fig. 1-4 are sufficient to 

describe many different electrophysiological mechanisms of neuronal excitability 

(Izhikevich, 2007): Saddle-node, Saddle-node on invariant circle bifurcation, 

Subcritical Andronov-Hopf, and Supercritical Andronov-Hopf bifurcation. The 

Hodgkin’s classification of F-I relations have been fully explained using different 

bifurcation mechanisms. The Class I excitability occurs via the saddle-node 

bifurcation on an invariant circle (Fig. 1-4 (b)), whereas the other three 

bifurcations (Fig. 1-4 (a), (c) and (d)) result in the Class II excitability. The 

experimental study on the third class of excitability has been neglected at least 

partially due to the assumption that a single spiking neuron might be unhealthy. 

However, Prescott and his colleagues have shown that the third class of 

excitability could be generated in healthy spinal sensory neurons and explained by 

the distinct dynamical mechanism of initiating spikes (called separatrix-crossing). 

They have also demonstrated that the two-dimensional Morris-Lecar like models 

could generate all types of firing responses (i.e. Class I, II and III) by varying the 

coefficient value to control the steady-state activation curve (i.e. w∞ in Eq. 1-7) of 

the slow outward current. This study has indicated that the details of 

transmembrane currents might not be necessarily needed to set up, by matching 

the bifurcation mechanism for the initiation of spiking between the target and 

model neuron. 
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1.4.4 Passive properties: Functional significance of branching dendrites 

 

If a single neuron with the dendrtic trees were assumed to be something like a 

sphere with a uniform distribution of membrane potential, it would be possible to 

fully characterize neuronal dynamics based on the equivalent circuit modeling 

framework. However this isopotential neuron model turned out to mislead 

experimentalists in interpreting the measurement of the membrane time constant, 

since the time course of subthreshold membrane potential in the dendritic neuron 

model follows the error function4 that is quite different from a single exponential 

function that has been estimated in the isopotential neuron model (Rall, 1957). 

The roles of the dendrites attached to the soma in the electrical properties of 

neurons began to get attention late 1950s by Rall’s series of theoretical papers.  

 

Core conductor theory: The first neuron model considering the passive dendrites 

was suggested by Wilfrid Rall, based on the resemblance of the cylinder-like 

dendritic branches to an electrical cable or core conductor whose property was 

first analyzed by Lord Kelvin in 1855. Applying Ohm’s law to a cylinder of 

infinite length with uniform passive nerve membrane, the spatio-temporal 

distribution of membrane potential is govend by a partial differential equation 

expression known as the cable equation, 
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where V is the deviation from the resting membrane potential, λ=√(Rm·d)/(Ri·4) is 

the space constant, τ=Cm·Rm is the time constant, Rm is the specific membrane 

resistivity [Ω·cm
2
], Ri is the cytoplasmic or core resistivity [Ω·cm], d is the cable 

diameter [cm], Cm is the specific membrane capacitance [F/cm
2
], x and t are the 

physical distance [cm] and time [ms]. 

                                                           
4
 In the error function, the membrane potential changes more rapidly in the early state than in the 

exponential function. Thus applying the traditional time constant defined in the exponential 

function makes significant error in obtaining the membrane time constant of neurons with the 

dendrites. 
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Based on the core conductor theory, Rall established several key concepts on the 

signal propagation of the dendrites particularly utilizing λ that was derived from 

the infinite cable model with steady-state condition. λ is the physical distance 

from the site of current injection at which the membrane potential at the current 

injection site decays to 37 % of the initial value. Functionally λ indicates the 

ability of the dendrites to transfer the steady membrane potential i.e. the larger λ 

the less membrane potential attenuation when propagating along the path of the 

dendrites. The electrotonic structure of the branching dendritic trees in the cable 

modeling approach was represented by one system parameter of the electrotonic 

length (L) that is the cable length (l) relative to its space constant (λ). The longer 

L indicates the more signal attenuation at the other end of the cable. 

 

One of Rall’s important contributions was to develop the theoretical framework to 

deal with the complex dendrtitic trees. He showed that the dendrites may be 

collapsed into a single cable model with some appropriate assumptions: spatial 

uniformity of membrane properties, voltage independent Rm, the 3/2 power rule 

for branch points, and all dendrites terminating with the same eletrotonic length 

(L).  The Rall model (i.e. finite length cable with a somatic compartment) has 

been applied to the quantitative investigation of how local synaptic effects (i.e. 

excitatory or inhibitory postsynaptic potential at synaptic site) are distorted when 

transmitted to the soma from the synaptic sites over the passive dendrites. The 

synaptic inputs to the terminal of the dendrites turned out to make a significant 

contribution to depolarizing the membrane for the initiation of an action potential 

at the soma, which strongly implies that the influence of dendrites should be 

considered in investigating electrical properties of neurons. However, it should be 

realized that the extent of dendrites in terms of space constant (i.e. electrotonic 

distance, X=x/ λ where x is the physical distance from the origin of the cable) in 

the cable modeling framework is an electrical parameter which does not provide 

any information about how many millimeters the dendrites actually reach from 

the soma. It should be also noted that a synaptic input to the single point over the 
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cable model corresponds to the synaptic inputs to all points over the dendrites that 

are equally away from the soma by the same electrotonic distance (X). 

 

The analysis of the neuron model with ideally branching dendrites have shown 

more details of signal propagation properties (Rall and Rinzel, 1973; Rinzel and 

Rall, 1974). The degree of the signal attenuation over the dendrites was different 

according to the propagation direction, which has been called direction-dependant 

voltage attenuation (DDVA) phenomenon. For example, the membrane potential 

(or voltage) attenuates more severely when transmitted centrally into the soma 

than peripherally out to the dendrites.  

 

Two–port theory: The Rall’s cable model of the complex dendrites requires 

assumptions among which the termination of all dendrites at the same L, 

invariable diameter of individual branches and 3/2 power rule at all branching 

points are particularly restrictive assumptions that are likely to be true only for a 

few types of neurons. For the same purpose for analyzing dendritic signaling of 

synaptic inputs, an alternative approach (Fig 1-5) was suggested based on two-

port theory
5
 in the early 1980s (Carnevale and Johnston, 1982). Analyzing the 

two-port network representing single dendritic neurons, the DDVA property was 

generalized in the more simplified form of equations compared to the cable model. 

Two more signal propagation properties between the soma and dendrites were 

identified: 1) the current attenuation (e.g. I2/I1 only with I1) was identical to the 

voltage attenuation (e.g. V1/V2 only with I2) in the opposite direction of current 

propagation and 2) the transfer resistance
6
 (i.e. V2/I1 only with I1 and V1/I2 only 

with I2) was same for both directions between the soma and dendrites. Another 

interesting property induced from the two-port theory is that the logarithm of 

voltage attenuation (V2/V1 with I1 or V1/V2 with I2) corresponds to the 

                                                           

5
 Any passive electric circuit with two pairs of terminals (or ports) can be transformed into a 

simple two-port network consisting of three characteristic parameters, simplifying analysis. 
6
 The transfer resistance in the two-port network is defined as the ratio of the voltage evoked at 

one port to the current intensity injected at the other port. 
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electrotonic distance (X) in an infinite cable model (Zador et al., 1995). This 

property further allowed to transform the morphology of the passive dendrites 

into electrotonic domain (Carnevale and Johnston, 1982; Carnevale et al., 1995; 

Carnevale et al., 1997). The resulting morphoelectrotonic structure of the 

dendrites turned out to be significantly varied according to the input signal type 

(i.e. DC or AC) and propagation directions (i.e. soma-to-dendrite or vice versa). 

In particular, the two-port theory allowed us to develop the novel reduced 

modeling framework without any restrictive assumptions to handle with the 

branching dendritic trees while retaining essential dendritic signaling properties 

that have been identified. 
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Figure 1-5. Schematic reduction of a neuron with synaptic inputs into a two-port 

network. In the typical recording situation (top figure) where one electrode is 

placed at the soma to measure the synaptic effects originated from the dendrites, 

the soma and synaptic sites can be considered as electrical ports. Applying two-

port theory, the cell (middle figure) between two ports can be represented by a 

three-resistor network (bottom figure) without any assumptions except for the 

passive dendrites. All figures were adopted from Canavale and Johnston 1982. 
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1.4.5 Active properties: Bistable firing behaviour 

 

The bifurcation mechanisms underlying the MN bistability became more complex 

when considering the interaction between spiking behaviour at the soma and 

plateau potentials at the dendrites. Booth and Rinzel (1995) have fully 

characterized the dynamics of MNs with the bistable dendrites using bifurcation 

analysis of a conductance based two-compartment model
7
 (refer to Fig. 1-6), 

where Morris-Lecar membrane excitability was used to produce sustained spiking 

behaviour (i.e. Class II excitability) via Hopf bifurcation at the soma-like 

compartment and plateau potentials via saddle-node bifurcation at the dendrite-

like compartment. Varying the electrical conductance coupling two compartments, 

they demonstrated the systematic changes in the bifurcation structure describing 

the bistable firing patterns of the reduced model. However the manipulation of a 

single coupling conductance might not be sufficient to represent the physiological 

signal propagation properties (i.e. signal direction and type dependent voltage 

attenuations) of the complex dendritic systems. The bifurcation analysis was 

conducted for the new reduced neuron model developed in this thesis to 

investigate whether the bifurcation mechanisms for generating the MN bistability 

were conserved as the dendritic signaling properties changes. 

 

 

1.5 COMPUTATIONAL MODELS FOR MOTOR NEURONS 

 

Various types of modeling approaches shown in Fig. 1-6 have been used to 

investigate firing behaviour of neurons. The one-compartment modeling is one of 

the simplest approaches, which is comparable with electrical circuit model (i.e. Eq. 

1-2) equivalent to the biological membrane patch. Electrically coupling the 

additional compartment representing the dendrites to the one-compartment model, 

the two-compartment modeling has been employed to particularly show the 

                                                           
7
 The two-compartment model consists of two soma- and dendrite-like compartments coupled by 

electrical conductance. Dynamics of each homogeneous compartment can be formulated using 

equivalent circuit of biological membrane patch.  
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general roles of complex dendritic systems. Because of the simplifying 

assumption in the two-compartment model that all dendritic branches are 

collapsed into one homogeneous compartment, the multi-compartment models 

retaining only key morphological properties of the dendrites and axon have been 

used in considering the spatial distribution of active membrane properties or 

synaptic inputs. In all reduced neuron models reflecting the dendritic influence, 

the electrical coupling between the soma and dendrites has been represented by  

mathematical parameters or electrotonic distance. To improve the link between 

the neuron model and real neuron, the anatomically-reconstructed compartmental 

models have been used mainly for the studies where the individual dendritic 

branches are of particular interest.   
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Figure 1-6. Computational neuron modeling frameworks. (a). One-compartment 

model (Baldissera and Gustafsson, 1974; Matthews, 1996; Powers, 1993; Prinz et 

al., 2003). (b). Two-compartment model (Booth and Rinzel, 1995; Booth et al., 

1997; Mainen and Sejnowski, 1996; Pinsky and Rinzel, 1994). (c). Continuous 

cable model (Gutman, 1991). (d). Multi-compartment model (Dai et al., 1998; 

Dodge and Cooley, 1973; Jones and Bawa, 1997; Traub, 1977). (e). Anatomically 

reconstructed model (Carlin et al., 2000b; Elbasiouny et al., 2005; Grande et al., 

2007). 
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For mammalian MNs, combining Rall’s dendrites modeling with Hodgkin-

Huxley excitability, action potentials have been quantitatively investigated 

considering both the geometry and distribution of voltage-gated ion channel 

densities in the dendritic, somatic and axonal regions (Dodge and Cooley, 1973; 

Traub, 1977). However, these MN models have not reflected any active 

membrane mechanisms (i.e. PIC channels) in the dendrites that are responsible for 

generating bistable firing behaviour of the MNs in vivo. After the experimental 

identification of the PICs, several types of modeling approaches have been 

developed to investigate the associated bistable firing behaviour of the MNs. The 

ideal cable model was the first bistable MN model that have used to emphasize 

the dendritic localization of the active current sources that give rise to the 

hysteretic current-voltage relationship measured at the soma (Gutman, 1991). The 

one-compartment modeling approach has been suggested showing that the 

bistable firing behaviour of MNs might also be induced only by the combinations 

of different types of active membrane conductances (Powers, 1993). For the 

systematic analysis of the influence of spatially distributed PIC channels, two-

compartment modeling framework have been suggested in which the bifurcation 

mechanisms underlying the bistable firing behaviour were identified and 

furthermore the overall variations of firing output behaviour were first 

demonstrated while varying the electric coupling relation between the soma and 

PIC channels over the dendrites (Booth and Rinzel, 1995). Although Booth and 

Rinzel model has been accepted as a minimal model to generate bistable firing 

patterns, the signal propagations between the soma and dendrites including PIC 

channels were manipulated by varying the abstract model parameters which can 

not give any physical distance information. The physical distribution of PIC 

channels for the bistable firing behaviour of MNs have been studied particularly 

using anatomically reconstructed models of cat spinal motor neurons (Bui et al., 

2006; Carlin et al., 2000b; Elbasiouny et al., 2005). In their studies, however, the 

distribution of PIC channels was investigated over only a few types of dendritic 

geometry which does not seem to be sufficient to extract the general insights into 

the influence of complex dendritic systems. 
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Modeling approaches that use anatomically reconstructed dendrites implicitly 

include physiological dendritic signaling properties. However, to determine the 

implications of dendritic signaling properties (i.e. signal direction and type 

dependent propagations) for bistability and establish mathematical generalizations 

using analysis, the dendritic signaling parameters must be amenable to the explicit 

manipulation that is typical of reduced modeling approaches. Two-compartment 

modeling approaches have discovered many fundamental insights about the 

dynamical behaviour of neurons and the influence of coupling parameters 

between the soma and dendrites. These models however, did not explicitly derive 

their coupling parameters from the anatomy and biophysical properties of 

reconstructed dendrites, instead choosing specific mathematical parameters from 

their system equations that could best represent physiological coupling properties. 

 

Probably due to the lack of a suitable theoretical framework to deal with the 

complex geometry of the dendrites along with the cable properties (Cullheim et 

al., 1987a; Cullheim et al., 1987b; Donohue and Ascoli, 2008), little has been 

known how the physiological signal propagation properties of the dendrites 

impact the generation of bistable firing patterns in MNs. 

 

  

1.6 THESIS OUTLINES 

 

In order to derive general principles describing the roles of dendrites in the MN 

bistability, the biophysically realistic, physiologically plausible reduced modeling 

framework is developed that satisfies the following three system requirements: 

1) The dendritic signaling properties should be parameterized within the 

modeling framework as a function of the physical distance. In other words, 

the model parameter values must analytically be determined to retain all 

electric properties of the MNs that are essential to produce the 

physiological bistable firing behaviour.  
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2) The reduction procedure should not include any restrictive assumptions to 

handle with the complex morphology of the dendrites.  

3) The dimension of the system equations should be low enough not only to 

apply theoretical analysis (i.e. dynamical systems theory) for the 

mechanistic investigation of model behaviour, but also to be used as a 

‘building-block’ for the population simulation of the MN pool.  

Anatomically reconstructed models are typically hard to satisfy the first and 

second requirement due to too many geometric parameters representing the 

complex dendritic trees, whereas the reduced modeling such as cable and two-

compartment modeling has not explicitly considered the physiological signal 

propagation properties of the dendrites. Developing the new reduced modeling 

framework satisfying above three requirements, I identify the essential 

biophysical properties for the nonlinear dynamics of the MNs and show how 

those properties affect the bistability of a single MN. 

   

1.6.1 Chapter 2: Formulation of a new reduced model for single MNs 

 

The goal of this chapter is to derive a reduced model that matches steady-state DC 

signal propagation of the complex dendritic systems. I begin with characterizing 

asymmetric coupling between the dendrites and soma measuring the voltage 

attenuation properties in six anatomically reconstructed and type-identified cat 

spinal motor neurons. This characterization shows that the voltage attenuation at 

any distance from the soma depends on the propagation direction of input signal  

(called direction-dependent voltage attenuation, DDVA) and may be described as 

a function of the input resistance at the soma. The first analytical solution for the 

lumped cable parameters in a two-compartment model is derived based on this 

finding. 

 

1.6.2 Chapter 3: Roles of asymmetric dendritic signaling in the bistability of 

MN models 
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This chapter is dedicated to verify that the explicit representation of DDVA in 

two-compartment model is beneficial to capture dynamical properties of a single 

MN. Using the new two-compartment modeling framework (Chapter 2), the 

passive input-output relationship of the asymmetrically coupled model with 

DDVA is analytically compared to the symmetrically coupled case without 

DDVA. Predictions based on the analytic comparison were tested using numerical 

simulations. The simulations evaluate the nonlinear dynamics of the models as a 

function of coupling parameters. It is proposed that the physiological property of 

asymmetric coupling plays an important role in generating and stabilizing the 

bistability of motor neurons by interacting with the excitability of dendritic 

branches. 

 

1.6.3 Chapter 4: Influence of back-propagating APs on model bistability 

 

In this chapter, I investigate how the propagation of alternating signals (i.e. AC), 

like action potentials, into the dendrites influence bistable firing behaviour of a 

two-compartment model. The frequency response of the passive dendrites is first 

characterized along the path of dendritic trees in anatomically reconstructed type-

identified motor neuron models. Then the previous reduced modeling approach is 

expanded to retain the AC signal propagation property of the dendrites in the 

anatomical models. The nonlinear dynamics of the expanded reduced model are 

numerically evaluated while varying the degree of the AC signal attenuation. The 

simulations show a positive correlation between AC signal attenuation and 

dendritic excitability indicated by changes in current threshold for activation of 

the plateau potential. This result suggests that the attenuation of back-propagating 

action potentials, determined by the geometry of the dendrites along with the 

cable properties, might be crucial to determine the bistable firing behaviour of 

motor neurons in vivo. 

 

1.6.4 Chapter 5 
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In this chapter, the modeling procedure for a single neuron with the dendrites is 

summarized and results from the mathematical analysis and computer simulations 

are discussed. The future works for modeling the MN population are also 

presented based on our findings.  
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CHAPTER 2: Derivation of cable parameters for a reduced 

model that retains asymmetric voltage 

attenuation of reconstructed spinal motor 

neuron dendrites 
§
 

 

 

Abbreviations and symbols 

 

RN input resistance at soma (MΩ) 

ASD(D) = VD/VS voltage attenuation factor from soma to dendrites at 

distance, D, from soma 

ADS(D) = VS/VD voltage attenuation factor from dendrites to soma at 

distance, D, from soma 

ηSD decay constant for voltage attenuation in the soma 

to dendrites direction (µm) 

ηDS decay constant for voltage attenuation in the 

dendrites to soma direction (µm) 

P(D) = SAsoma/SAtotal morphological factor for two-compartment model; 

the ratio of somatic surface area to total surface area 

at distance, D, from soma 

VS = Vm,S - Eleak deviation of somatic membrane potential from 

reversal potential of leak ion channel in soma of 

two-compartment models (mV) 

                                                           
§
 A version of this chapter has been published. 

Kim H, Major LA and Jones KE, J Comput Neurosci 27: 321-336, 2009. 
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VD = Vm,D - Eleak deviation of dendritic membrane potential from 

reversal potential of leak ion channels in dendrite of 

two-compartment models (mV) 

IS injected current density at soma in two-

compartment models, normalized by somatic 

surface area (µA/cm
2
) 

ID injected current density at dendrite in two-

compartment models, normalized by dendritic 

surface area (µA/cm
2
) 

GC,S direction-dependent passive coupling conductance 

from soma to dendrite in explicit two-compartment 

model (µS/cm
2
) 

GC,D direction-dependent  passive coupling conductance 

from dendrite to soma in explicit two-compartment 

model (µS/cm
2
) 

Gm uniform passive membrane conductance in explicit 

two-compartment model (µS/cm
2
) 

GC directionless passive coupling conductance in 

implicit two-compartment model (µS/cm
2
) 

Gm,S passive membrane conductance of soma in implicit 

two-compartment model (µS/cm
2
) 

Gm,D passive membrane conductance of dendrite in 

implicit two-compartment model (µS/cm
2
) 

Cm uniform passive membrane capacitance for two-

compartment models (µF/cm
2
) 

τ0 = τm passive membrane time constant for all models (ms) 

τ1 equalizing time constant for all models (ms) 

C0, C1 coefficients used to form linearly independent 

combination of exponential decays (mV) 
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rN,implicit, rN,explicit input resistance at somatic part in implicit and 

explicit models respectively, normalized by somatic 

surface area (MΩ-cm
2
) 

ASD,implicit

V D( ),ASD,explicit

V D( ) voltage attenuation factor for soma to dendrite 

direction at distance, D, from soma; used in implicit 

and explicit models 

ADS,implicit

V D( ),ADS,explicit

V D( ) voltage attenuation factor for dendrite to soma 

direction at distance, D, from soma; used in implicit 

and explicit models 

Reff effective membrane resistivity for calculating 

passive membrane time constant in two-

compartment models (MΩ-cm
2
) 

ASD,implicit

I D( ),ASD,explicit

I D( ) current attenuation factor for soma to dendrite 

direction at distance, D, from soma; used in implicit 

and explicit models 

ADS,implicit

I D( ),ADS,explicit

I D( ) current attenuation factor for dendrite to soma 

direction at distance, D, from soma; used in implicit 

and explicit models 

 

 

2.1 INTRODUCTION 

 

Motor neurons of the adult cat spinal cord were among the first central 

mammalian neurons to be studied with intracellular stimulating and recording 

electrodes (Coombs et al., 1955; Frank and Fuortes, 1955). Motor neurons were 

also the first to be analyzed by the rigorous mathematical and biophysical 

approach of Wilfrid Rall (Rall, 1957). Rall’s analytical solutions of the passive 

cable equation and his development of the equivalent cylinder reduction of 

dendritic trees, demonstrated that significant biophysical insights could be learned 

using reduced models (Rall et al., 1995). In addition to the approximation of 
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dendritic geometry with reduced models, Rall together with Rinzel showed that 

the geometry of the dendrites had a significant impact on the electrotonic 

properties (Rall and Rinzel, 1973; Rinzel and Rall, 1974). Of particular relevance 

to this study, they showed that the voltage attenuation depended on the direction 

of propagation; there is a steep attenuation when potentials propagate centrally 

(from the dendrites to the soma) and a more gradual attenuation in the opposite 

direction. We will refer to this phenomenon as direction dependent voltage 

attenuation (DDVA). 

 

Until the mid-1980s neurophysiologists were confident that motor neuron 

dendrites were passive. However, it is now known that in the presence of 

monoamines, motor neuron dendrites have persistent inward currents (PICs) that 

generate plateau potentials and amplify synaptic inputs (Carlin et al., 2000a; 

Heckmann et al., 2005; Hounsgaard et al., 1984; Lee and Heckman, 1996; Lee 

and Heckman, 1998a; Lee and Heckman, 1998b; Lee and Heckman, 1999a). One 

channel that contributes to the PICs is the CaV1.3, an L-type calcium channel 

(Carlin et al., 2000b). The full details of the location of these channels on the 

dendrites is unknown because there are no recordings from motor neuron 

dendrites and definitive immunohistochemical data is still being generated 

(Ballou et al., 2006). However, experimental data and mathematical modelling 

results agree on a number of important points: the PIC channels are not 

distributed uniformly over the dendrites, the PIC channels tend to occur in 

restricted regions with high density (i.e. clusters), and these clusters of PIC 

channels are physically separated from the soma by distances of at least 300 - 500 

microns (Ballou et al., 2006; Heckman et al., 2003). The most recent modelling 

studies have used anatomically reconstructed motor neurons and varied the 

location of the PIC channels to reproduce electrophysiological data recorded from 

the soma (Bui et al., 2006; Carlin et al., 2000b; Elbasiouny et al., 2005; Grande et 

al., 2007). In these anatomically detailed models the DDVA phenomenon is 

implicit, a result of the geometry and passive properties of the reconstructed 

dendrites. One intriguing prediction from these studies is that the clusters of PIC 
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channels are located further from the soma in neurons with a large dendritic tree 

(Grande et al., 2007). Since the size of the dendritic tree is often interpreted as an 

indicator of motor neuron type, fast motor neurons with smaller input resistance 

relative to slow motor neurons tend to have larger dendritic trees, this prediction 

suggests that PIC channels will be located in a restricted region related to their 

motor neuron type. The combination of type-specific localization of PIC channels 

with the DDVA phenomena could have a significant impact on the nonlinear 

dynamical behaviour of motor neurons. However, to date there has been no 

explicit analysis of the effect of DDVA on nonlinear phenomena related to 

bistability in type-identified motor neurons. 

 

One reason for the lack of analysis of DDVA on motor neuron input-output is that 

anatomically complex models preclude meaningful mathematical analysis. As 

elegantly shown by Rall, analysis requires using reduced models and assumptions 

in order to find closed form solutions. One popular reduction for single neuron 

models is the two-compartment model (Booth and Rinzel, 1995; Booth et al., 

1997; Jones KE, 2000; Mainen and Sejnowski, 1996; Pinsky and Rinzel, 1994). 

The two-compartment approach is well suited to the case where ion channels for 

spiking are physically separated from ion channels that generate plateau potentials. 

A simplified two-compartment model could be used to explore the question: does 

DDVA in complex, biophysically realistic motor neuron models influence the 

nonlinear phenomena related to bistability? A prerequisite to resolving that 

question is the development of a method for directly deriving the lumped cable 

parameters for a reduced model from the geometrical and passive electrical 

properties of realistic motor neurons. This is the fundamental goal of the present 

manuscript. We first characterize the DDVA phenomena in anatomically 

reconstructed motor neuron models. Then determine if DDVA is related to the 

type of motor neuron (fast – slow). Finally, we develop two analytical methods 

for directly deriving the lumped cable parameters and demonstrate the superior 

results obtained with one of the methods. We show that an analytical solution 
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exists for the full range of passive membrane values of the heterogeneous cat 

spinal motor neuron pool. 

 

 

2.2 METHODS 

 

2.2.1 Preparation of motor neuron anatomy  

 

The morphologies of six adult cat spinal cord α-motor neurons (MNs), 

contributed by Robert Burke’s lab, were downloaded from 

http://NeuroMorpho.Org (Ascoli, 2006). Among the data formats available in 

NeuroMorpho.org, the standardized files (*.CNG.SWC) were selected. All six 

MNs were type-identified using mechanical criteria as FF, FR, or S (Burke et al., 

1973) and have been the subject of extensive anatomical investigation (Cullheim 

et al., 1987a; Cullheim et al., 1987b). The anatomical data of the individual MNs 

were translated into the NEURON simulation environment v 5.9.9 (Carnevale and 

Hines, 2005) using the Import3D tool. The size of the soma was corrected after 

importing the anatomical data to correspond to the dimensions previously 

reported. 

 

2.2.2  Assignment of passive membrane properties 

 

The electrotonic properties for five of the six MNs were previously published and 

used in computer simulations (Fleshman et al., 1988; Segev et al., 1990). In these 

simulations, the cable parameters were determined by matching the response of 

computer models to intracellular voltage from the same cells during 

measurements of input resistance, time constant (τ0) and electrotonic length (Lpeel). 

The value of specific membrane resistivity (Rm) that matched the experimental 

measurements was determined assuming a cytoplasmic resistivity (Ra) of 70 

Ω•cm and a specific membrane capacitance (Cm) of 1µF/cm
2
. The values for Rm 

of the five models are given in Table 2-1 along with the names of the cells as they 
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appear in NeuroMorpho.org and in previous publications. The sixth MN 

downloaded from NeuroMorpho.org, V5, is an S-type soleus MN (M36/1 in 

(Cullheim et al., 1987a; Cullheim et al., 1987b)) that was not part of the 

electrotonic study (Fleshman et al., 1988). 

 

 

 

 

 

 

 

Table 2-1. Passive membrane properties and electrotonic properties 

 Cells  Rm  Electrotonic property  

 
Motor Neuron 

(MN) 
Type  soma dendrite  τ0 Lpeel RN ηSD ηDS  

 V1 (36/4) S  455 15,500  10.4 (9.9) 1.3 (1.3) 1.9 (2.0) 2680.6 224.2  

 V2 (38/2) FF  66 17,000  6.9 (7.1) 1.6 (1.6) 0.7 (0.7) 3059.5 144.7  

 V3 (41/2) FF  70 20,000  7.0 (6.9) 1.7 (1.6) 0.8 (0.7) 2758 119.5  

 V4 (42/4) FR  120 17,000  7.7 (8.2) 1.5 (1.6) 0.97 (1.1) 1941 143.9  

 V6 (43/5) FR  225 11,000  7.1 (6.8) 1.6 (1.7) 1.25 (1.4) 2145.8 190.8  

 

Cell numbers in the first column matched with those in Fleshman et al, 1988; Rm, 

was non-uniform with lower value in the soma compared to dendrites; Simulated 

values (experimental estimate values) of electrotonic properties, τ0 [ms],  Lpeel 

fitted at 10-15 ms, RN [МΩ], ηSD and ηDS [µm] of voltage decay constants 

measured for both directions in Fig. 2-1. 
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We assigned the same values for the specific cable parameters as previously 

reported and simulated the original electrophysiological experiments to estimate 

RN, τ0, and Lpeel. The last three columns of Table 2-1 give the values for our 

simulations and the original experimental values in parentheses. The 

discrepancies were within measurement error; therefore we considered our 

models to be valid electrotonic models of Burke’s type-identified MNs. 

 

Our initial simulations with the anatomically reconstructed models used non-

uniform specific membrane resistivity that included a significantly smaller 

resistivity in the soma compared to the dendrites, i.e. a somatic shunt. The 

somatic shunt is an artifact resulting from the use of sharp electrodes (Holmes and 

Rall, 1992a; Major et al., 1993; Thurbon et al., 1998). To approximate the 

presumed non-impaled in vivo condition, in later simulations we used a uniform 

Rm chosen to give a desired value of input resistance. 

 

2.2.3  Generation of attenuation curves and voltage decay constant  

 

The steady-state voltage attenuation factor (Vmeasure/Vinject) in the passive models 

was calculated between the soma and all sites on the dendrites for current moving 

both toward (central) and away from (peripheral) the soma. The direction 

dependent voltage attenuation (DDVA) was calculated using the Impedance class 

tools in NEURON. This analysis is based on two-port reciprocal network theory 

(Carnevale and Johnston, 1982). First, the input impedances at the two locations 

of interest are determined (ZNs, soma and ZNd dendrite) and then the transfer 

impedance (ZT) between the two locations is measured. The voltage attenuation 

factor in the central direction is 

 

 
Nd

T

dendrite

soma

Z

Z

V

V
=                                                  (2-1) 

 

and in the peripheral direction is 
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Ns

T

soma

dendrite

Z

Z

V

V
=                                                    (2-2) 

 

The branching and geometry of dendrites generates large input impedance. This 

results in a central attenuation factor that is less than the peripheral attenuation 

factor, i.e. voltage attenuates more in the central direction. 

 

The voltage attenuation was plotted as a function of distance from the soma. To 

quantify the rate of attenuation with distance, the data were fit to a single 

exponential function. 

 

η
x

inject

measure ex
V

V −

=)(                                               (2-3) 

 

The voltage decay constant (η) was determined using a least square estimation 

algorithm in MATLAB. A double exponential fit was also tried but did not 

produce significantly better fits to the data. A decay constant was determined for 

both the dendrite-to-soma (ηDS) and the soma-to-dendrite directions (ηSD). 

We compared the measured voltage attenuation to idealized cable models of the 

same cells (Fleshman et al., 1988; Jack et al., 1975; Rall, 1959). The analytical 

expression of the voltage attenuation factor derived from finite cable model with 

sealed end conditions was used (Carnevale and Johnston, 1982). The voltage 

attenuation in the central direction is, 

 

ρ
XL

X
V

V

dendrite

soma

sinhtanh
cosh

1

⋅
+

=                                  (2-4) 

 

and in the peripheral direction is 

 



 

50 

( )
L

XL

V

V

soma

dendrite

cosh

cosh −
=                                          (2-5) 

Where X is the electrotonic distance (X=x/λ, x is a physical distance from the 

soma and λ is space constant), L is the electrotonic length, and ρ  is the ratio of 

the dendritic-to somatic conductance of the cable. 

 

 

2.3 RESULTS 

 

We investigated the phenomena of direction-dependent voltage attenuation 

(DDVA) in type-identified cat spinal motor neurons. Our initial results of DDVA 

built on previous electrotonic studies of these cells using a non-uniform 

membrane resistivity (Rm), where Rm is different for the somatic and dendritic 

membrane. The question asked in these simulations was whether geometrical 

differences in the dendritic branching patterns of type-identified motor neurons 

resulted in qualitatively different DDVA? DDVA was strongly correlated with 

input resistance with little or no correlation to type-specific geometry of motor 

neuron dendrites. We then derived an analytic solution for the lumped cable 

parameters of alternative two-compartment models using the DDVA results from 

the anatomically realistic models. 

 

2.3.1 Voltage attenuation in realistic motor neuron models 

 

To investigate whether the dendritic geometry and passive parameters for type-

identified motor neurons resulted in type-specific differences in DDVA, we 

calculated voltage attenuation factors in the central and peripheral direction as a 

function of distance from the soma. Figure 2-1 shows the anatomy of the five 

reconstructed motor neurons and the voltage attenuation factors. The grey dots 

represent the attenuation factor calculated for each dendritic segment. As 

predicted, there was a steep decline in attenuation with distance from the soma for 

the central direction and a modest decline for the peripheral direction. There were 
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no qualitative differences in DDVA between the different motor neuron types. 

The attenuation data was fit with a single exponential (solid line) to quantitatively 

estimate the voltage decay constant (η). There was no obvious difference in the 

voltage decay constants for the different types of motor neurons. The dashed lines 

illustrate the voltage attenuation predicted by finite cable models (with sealed end 

conditions) of the same cells using Equation (2-4) and (2-5). It is clear that the 

continuous cable models are a poor fit to the DDVA data. 
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Figure 2-1. Morphology of MNs and DDVA with curve fitting. The voltage 

attenuation data between current injection site (Vi) and measurement site (Vm) on 
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the morphology of MNs for both directions from soma to dendrites and from 

dendrites to soma were plotted in gray along the path length (D), fitting with 

single exponential function (solid lines). The results from continuous cable model 

were displayed as dashed lines. ηSD from soma to dendrite and ηDS from dendrite 

to soma were determined at D where attenuation is 0.37 (e
-1

) for each direction. 
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2.3.2 Voltage attenuation, motor neuron type and input resistance 

 

While we found no obvious differences in DDVA for different motor neuron 

types in Fig. 2-1, a possible confounding factor was that the cells had different 

values of input resistance. To examine the influence of RN we changed the 

specific membrane resistivity so that the anatomical models all had the same RN 

and recalculated the voltage decay constant (η). This allowed comparison of 

different type-identified motor neuron morphologies at the same RN. An example 

of the influence of RN on the DDVA curves for the V1 motor neuron is shown in 

Fig. 2-2. 
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Figure 2-2. Relationship between η and RN for V1 (Case I and II). (a) DDVA 

along the path of dendrites for RN = 1.4 and 2.8 МΩ. (b) η in log scale computed 

based on (a) was plotted on RN values ranged from 0.7 to 3.5 МΩ. 
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Two cases were considered: I) Non-uniform Rm, constant in the dendrites (30 

kΩ⋅cm
2
) and less than or equal to this value at the soma; and II) Uniform Rm 

across soma and dendrites. Case I is similar to the non-uniform membrane 

resistivity originally examined (Fleshman et al., 1988) and reproduced in the 

models of Fig. 2-1. In the non-uniform condition there was no change of the 

voltage decay constant in the peripheral direction when the input resistance was 

doubled from 1.4 to 2.8 MΩ. This is shown by the overlap of the two lines in Fig. 

2-2A (□, soma → dendrites). In the central direction, the voltage decay constant 

was increased from 194.6 to 278.6 µm. 

 

In case II, uniform Rm, the voltage decay constant in the central direction was the 

same as case I. However, the voltage decay constant in the peripheral direction 

increased from 1299 to 3881 µm when RN was increased from 1.4 to 2.8 MΩ. 

DDVA in the V1 motor neuron was calculated for five values of RN between 0.7 – 

3.5 MΩ using both uniform and non-uniform Rm (Fig. 2-2B). There was a 

monotonic relationship between RN and the voltage decay constant (η) in the 

central direction for the two Rm conditions. However in the peripheral direction 

the voltage decay constant was independent of RN for the non-uniform case, and 

increased monotonically with RN for the uniform case. These results confirm that 

a reduced Rm at the soma (somatic shunt) has a significant effect on the 

attenuation of somatic voltage back into the dendrites. 

 

To determine if the morphology of type-identified motor neurons influenced the 

relationship between DDVA and RN, we calculated the voltage decay constant (η) 

for six reconstructed motor neurons over a range of 0.4 – 4.0 MΩ (Fig. 2-3 (a)). 

These calculations were done with a uniform Rm. 
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Figure 2-3. Relationship between η and RN, and between P and D for all six 

models. (a) η was plotted on RN values ranged from 0.4 to 4.0 МΩ for both 

directions. The different order of arrows for both current flow directions indicates 

the different pattern of voltage attenuation and no clustering by MN types. (b) P 

was plotted on D values along the dendrite from soma. P is the ratio of the surface 

area of soma to the total surface area.
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All six motor neuron morphologies had similar relationships between RN and η. 

At the same value of RN motor neuron dendrites of different types had a range of 

η values; there was no evidence for a systematic difference in η for type-specific 

motor neuron morphology. From the limited data available, we conclude that 

DDVA varies as a function of RN and the morphological characteristics of motor 

neuron dendrites, that give rise to asymmetric voltage attenuation, are a generic 

feature, not type-specific. Therefore, we decided to use the traces of η = ƒ(RN) in 

Figure 2-3a to characterise all motor neurons in our reduced models. 

 

2.3.3 Development of two-compartment motor neuron models 

 

Having characterized DDVA, we derived the lumped cable parameters for a two-

compartment model using the passive properties of the anatomically complex 

models. Five parameters were defined from the complex anatomical models: input 

resistance (RN), membrane time constant (τm), central and peripheral attenuation 

factors (ADS and ASD) and the ratio between the somatic membrane area and the 

area of the whole neuron, P(D). The attenuation factors and membrane ratio were 

calculated after choosing a physical distance, D, to separate the somatic from 

dendritic membrane areas. Values for the free parameter D can be chosen from 

the open interval (0, total dendrite length). Since this value is free, i.e. not 

definitively or precisely determined, the derivation holds for all possible values of 

D. In the specific application of the two-compartment model to spinal motor 

neurons we will show that the interval of appropriate values for D may be 

constrained with additional experimental data. The calculation of P(D) was 

empirically derived from the anatomical data and is shown in Figure 2-3b. The 

ratio P as a function of distance between the soma and dendritic site overlapped 

for fast and slow motor neurons. Therefore, after choosing a value of D, a value 

for P was determined by random selection from the range of values determined by 

the empirical data. 
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The two-compartment models consisted of a somatic and dendritic part with four 

unknown cable parameters as shown in the equivalent circuits of Figure 2-4. Both 

implicit and explicit approaches were considered. The rationale for including two 

approaches was to determine if numerical simulations of the passive properties of 

the two models, following analytical derivation, would be equivalent. The explicit 

approach has been used before (MacGregor, 1987), however to our knowledge, 

this is the first use of the implicit approach for two-compartment neural models. 

The electrotonic properties of the implicit model included different passive 

membrane conductances in each compartment (Gm,S and Gm,D) , with spatially 

uniform membrane capacitance and coupling conductance. The explicit model 

used two coupling conductances (GC,S and GC,D) and uniform membrane 

conductance and capacitance. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

59 

 

Extracellular

GC

Gm,D

Cm

Eleak

Gm,S

Cm

Intracellular

Eleak

(a) Implicit

GC,S
GC,

D

Extracellular

Gm

Cm

Eleak

Gm

Cm

Intracellular

Eleak

(b) Explicit

 

 

Figure 2-4. Implicit and explicit models. (a) GC: specific coupling conductance, 

Gm,S: specific passive membrane conductance at soma part, Cm: specific passive 

membrane capacitance, Gm,D: specific passive membrane conductance of dendrite 

part. (b) GC,S and GC,D: specific coupling conductance between two compartments, 

Gm: specific passive membrane conductance, Cm: specific passive membrane 

capacitance. Eleak: reversal potential for ionic leak channels. The surface area of 

each part can be adjusted through calculating surface area within (soma part) and 

outside (dendrites part) a certain distance along the dendrites. 
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The two models in Figure 2-4 have different system equations governing the 

electrotonic characteristics. The system equations for each model were derived 

and analyzed using two forms of current normalization: I) injected current is 

normalized by the surface area of each compartment (Booth and Rinzel, 1995) 

and II) injected current is normalized by the entire surface area of cell (Pinsky and 

Rinzel, 1994). We describe all equations needed for the implicit and explicit 

models in condition I, and attach complementary equations for condition II in the 

Appendix. The outline for the following section is to first develop the forward 

equations for the four biophysical input parameters that are defined from the 

complex anatomical models: RN, ADS, ASD and τm. We then use these four 

equations to solve the inverse equations for the four unknown parameters in the 

two-compartment models: GC, Gm,S, Gm,D and Cm in the implicit models, and GCS, 

GCD, Gm and Cm in the explicit models. We will adopt the convention of adding 

the letter (a) to equations for the implicit approach and letter (b) for the explicit 

approach. 

 

To derive the electrotonic properties we start with an algebraic expression for 

Ohm’s law in steady-state conditions that states the current in the circuit is 

proportional to the voltage multiplied by an admittance matrix, 

 

I = BV                                                            (2-6) 
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 whose rows represent the soma 

and dendritic compartments. The admittance matrix B for the implicit and explicit 

models is, 
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where ω is the angular frequency of injected current (radians per second) and j is 

the square-root of -1. As an example, by carrying through the matrix 

multiplication for current in the soma compartment in the implicit case we get, 
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that shows the somatic current is simply the sum of current across the membrane, 

the current resulting from the susceptance of the capacitive element and the 

current through the coupling conductance driven by the voltage difference 

between the soma and dendrite. In cases where we solve for DC input, ω = 0, the 

current from the capacitive element drops out of the equation leaving just the real 

components. 

 

The next step is to rearrange the basic matix equation so that we can write an 

expression for the four parameters defined by the complex anatomical models. 

We start by deriving the forward equations for the three steady-state parameters: 

RN, ASD and ADS. Firstly rearranging Equation (2-6), 
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and setting ID = 0 in Equation (2-8), we can write the expression for input 

resistance as, 
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To solve for voltage attenuation in the soma to dendrite direction with DC input, 

we set ID = 0 and rearrange the equation to get, 
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In a similar fashion, we set IS = 0 and rearrange the equation to derive an 

expression for the voltage attenuation from dendrites to soma with DC input, 
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Thus, we have written the forward equations for the three steady-state parameters 

that are determined by the complex anatomical models. The final parameter to 

derive an expression for is the membrane time constant that was also established 

by the complex models. The time constant was derived from the system equations 

for the equivalent circuits shown in Figure 2-4 by applying Kirchhoff’s current 

law to each compartment to get, 
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where IS and ID  are current density injected at soma and dendrite, VS and VD are 

potential differences from resting membrane potential and P is the ratio of soma 

area to total surface area. In two-compartment models, there are two passive 

membrane time constants which can be calculated analytically by finding the 

eigenvalues of the system matrix A, and confirmed by the peeling technique (Rall, 

1969). The passive voltage transient at the soma can be expressed as a sum of two 

exponential decays,  
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 and the membrane time constant is, 

 

meffm CR=≡ 0ττ                                                 (2-14) 

where τ0 represents the passive membrane time constant (τm) and τ1 is an 

equalizing time constant, less than τ0; τ0 is the reciprocal of the smaller eigenvalue 

for A in Equation (2-12). Reff, which combines the membrane resistance of the 

soma and dendrites, is the equivalent membrane resistance needed to calculate τm 

and can be derived through solving the characteristic equation from A for all 

conditions. Equation (2-13) and (2-14) have the same form for the implicit and 

explicit models. 

 

The left-hand sides of Equations (2-9), (2-10), (2-11) & (2-14) are known from 

motor neuron electrophysiology and our complex anatomical models. Since we 

have four equations whose LHS are known, and four unknown parameters in the 

two-compartment models: we can solve for the unknowns by inverting these 

equations. The analytical solutions for GC, Gm,S and Gm,D in the implicit models 

are first derived from Equations (2-9) – (2-11),  
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Then the Cm can be obtained from Equation (2-14) using the conductances in 

Equations (2-15)a-c, 

 

impliciteff,/ RC mm τ=                                           (2-15)d 

where the effective resistance of the implicit model is given by, 
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In the same way the analytic solutions of the cable parameters in the explicit 

model are, 
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The Cm in the explicit models is solved using Equation (2-14) and uses the 

conductances in Equations (2-16)a-c,
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expliciteff,/ RC mm τ=                                             (2-16)d 

where the effective resistance of the explicit model is given by,
 

 

m

liciteff
G

R
1

exp, =                                              (2-16)e 

 

This completes the derivation of the lumped cable parameters for our two-

compartment reduction using the passive properties of the anatomically complex 

models. Equations (2-15) a-e can be used to solve for all the cable parameters of 

the implicit model and equations (2-16) a-e for the parameters of the explicit 

model starting from well-defined biophysical input parameters of spinal motor 

neurons and choosing a distance for separating the soma and dendritic 

compartments. The value for the separation distance is not free because 

experimental and theoretical results provide evidence that the plateau generating 

channels are localized in a cluster on restricted regions of the dendrites (Ballou et 

al., 2006; Bui et al., 2006; Carlin et al., 2000b; Elbasiouny et al., 2005; Grande et 

al., 2007). We remind the reader that these inverse equations are for the condition 

where injected current is normalized by the surface area of each compartment 

(Booth and Rinzel, 1995). The complimentary equations for the condition where 

injected current is normalized to the total surface area (Pinsky and Rinzel, 1994) 

are in the Appendix. 

 

The analytical derivation of the two sets of equations for the implicit and explicit 

approaches did not reveal any strengths or weaknesses that would favour using 

one approach over the other. To determine which approach is better, we evaluated 

the equations on three measures: 1) do they analytically satisfy the requirement of 

direction-dependent current attenuation; 2) do they exhibit differences in global 

sensitivity of their four output parameters; and 3) do simulations with the implicit 

and explicit equations accurately predict changes in local dendritic input 

resistance as a function of distance from the soma? 
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2.3.4 Direction-dependent current attenuation 

 

In order to determine if the current attenuation satisfied established biophysical 

principles, we derived the direction-dependent current attenuation (DDCA) using 

the voltage clamp method suggested by (Carnevale and Johnston, 1982). 

Clamping the soma at resting potential, VS is set to 0 mV in Equation (2-6). 

Multiplying the current density in each compartment by the surface area of each 

compartment, the steady-state current attenuation from soma to dendrites is 
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Clamping the dendrite compartment at resting potential, VD is set to 0 mV in 

Equation (2-6). Multiplying the current density in each compartment by the 

surface area of each compartment, the steady-state current attenuation from 

dendrite to soma is 
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where SASoma and SADendrite are the surface area of the soma and dendrite 

compartments. 

 

One of the conclusions of two-port analysis applied to dendritic neurons is that 

voltage attenuation in one direction is equal to current attenuation in the opposite 

direction (Carnevale and Johnston, 1982). The derivations above show that this 

equality is true only for the implicit case: Eq 2-10(a) = Eq 2-18(a) & Eq 2-11(a) = 



 

67 

Eq 2-17(a). For the explicit model the direction specific coupling conductances 

create an inequality: Eq 2-10(b) ≠ Eq 2-18(b) & Eq 2-11(b) ≠ Eq 2-17(b). The 

outcome of this test showed that the implicit was better than the explicit approach. 

 

2.3.5 Global sensitivity analysis 

 

Another way to evaluate the implicit and explicit modelling approaches was to 

determine the range and variation of the four output parameters in Equations (2-

15)a-d and (2-16)a-d to the full breadth of input parameters: RN, D and τm. This 

type of study is also known as global sensitivity analysis (Saltelli, 2004). We 

assumed the three input parameters were independent and chose values for the 

input parameters from the literature (RN values 0.4 – 4.0 MΩ, τm values 3 – 15 ms 

(Zengel et al., 1985)) and the anatomy of the reconstructed cells (D values 58 – 

1750 µm). The values for the ADS and ASD inputs to the models were determined 

from the analysis in Figure 2-3a, and so were dependent on the value of RN. 

Figure 2-5 illustrates this analysis for a membrane time constant of 7.1 ms. The 

key result of this analysis was evidence that the two-compartment reductions 

could be solved for all combinations of input parameters tested. No differences 

between the implicit and explicit approaches were found to prefer one approach to 

the other. 
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Figure 2-5. Distribution of passive membrane parameters according to RN and D 

with τm = 7.1 ms. The sampling grid was uniformly spaced between RN = 0.4 – 

4.0 MΩ with a resolution of 0.1 MΩ and D = 58 – 1750 µm with a resolution of 
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47 µm. The colour bar in each graph indicates the value of each passive 

membrane property in logarithmic scale. Gray dots are overlayed on the colour 

plot where the value of the passive parameter falls within the interquartile range 

for that parameter. (a) For implicit model I: 1) GC [µS/cm
2
], 2) Gm,S [µS/cm

2
], 3) 

Gm,D [µS/cm
2
], 4) Cm [µF/cm

2
] and (a)’ Box and whisker plots of all parameter 

values. The interquartile range of each parameter: 0.14 < GC < 8.75 µS/cm
2
, 69.9 

< Gm,S < 321.5 [µS/cm
2
], 2.24 < Gm,D < 6.82 [µS/cm

2
], 0.04 < Cm < 0.14 µF/cm

2
. 

(b) For explicit model I: 1) GC,S [µS/cm
2
], 2) GC,D [µS/cm

2
], 3) Gm [µS/cm

2
], 4) 

Cm [µF/cm
2
] and (b)’ Box and whisker plots of all parameter values. The 

interquartile range of each parameter: 0.15 < GC,S < 8.85 µS/cm
2
, 2.54 < GC,D < 

451.5 µS/cm
2
, 70.6 < Gm < 324.5 [µS/cm

2
], 0.49 < Cm < 2.27 µF/cm

2
. 
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The colour gradient in Figure 2-5 represents the logarithm of the value for a 

particular cable parameter output. The grey dots overlaid on the gradient indicate 

parameter values within the interquartile range. The coupling conductance (GC) of 

the implicit model had a median value of 1.1 µS/cm
2
 and was more sensitive to 

changes in D than RN. This is shown by the orientation of the colour gradient that 

changed primarily along the horizontal axis (Fig. 2-5(a) Implicit, GC). In contrast, 

the membrane conductance of the soma varied as a function of both D and RN, i.e. 

the colour gradient changed along a diagonal of the plot (Fig. 2-5(a) Implicit, 

Gm,S). The correlation of Gm,S with D and RN is also apparent in the non-linear 

distribution of the interquartile range. The solutions for the implicit model 

resulted in much higher conductance per unit area for the soma, median value 

135.4, compared to 3.9 µS/cm
2
 in the dendrite (Gm,D). Membrane conductance of 

the dendrite as a function of D and RN was qualitatively different from the soma. 

The interquartile range of the solutions (grey dots) was more diffuse compared to 

the soma and the colour gradient had two regions of high values, bottom left and 

along the far right edge. Perhaps most surprising was the low median values of 

specific membrane capacitance in the implicit model, 0.07 µF/cm
2
. Cm in the 

implicit model was more sensitive to D with highest levels at short and long 

distances from the soma. 

 

The distribution of values for the two coupling conductances in the explicit model 

were similar to coupling conductance in the implicit model, being more sensitive 

to changes in D compared to RN (Fig. 2-5(b) Explicit, GC,S & GC,D). The median 

value for GC,S was the same as GC, 1.1 µS/cm
2
, while the median value for GC,D 

was much greater, 38.3 µS/cm
2
. The uniform membrane conductance of the 

explicit model had a similar distribution and median value (135.8 µS/cm
2
) 

compared to Gm,S in the implicit model. The median value of Cm was 0.9 µF/cm
2
 

and had a nonlinear sensitivity to both RN and D (Fig. 2-5(b) Explicit, Cm). 

 

Overall Figure 2-5 illustrates that by using experimental measurements of RN, τm 

and distance from the soma at which to segregate the compartments, the lumped 
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cable parameters of the two-compartment models can be solved. Since the main 

coupling parameters: GC, GC,S, GC,D and P are constrained by the anatomy and 

passive electrical properties of reconstructed spinal motor neurons, these models 

provide a biologically realistic reduction compared to models that do not 

constrain the coupling parameters. This analysis provided no evidence to choose 

between the implicit and explicit as the better approach. 

 

2.3.6 Input resistance in the dendritic compartment 

 

The last evaluation of the implicit versus explicit modelling approaches calculated 

the input resistance of the dendritic compartment and compared that with results 

from the anatomically complex models. The results of comparison with 

anatomical model V1 are shown in Figure 2-6.  The local input resistance in the 

anatomical model increased with distance from the soma as expected. The input 

resistance calculated using the implicit approach was a good representation of the 

data calculated from the anatomically complex model. The explicit model failed 

at predicting the input resistance of the anatomically complex model at distances 

less than about 1500 microns. The closest distance to the soma that was evaluated 

was 50 µm. At this distance the implicit model had a value of 2.3 MΩ (just 

slightly higher than the value of 1.9 MΩ in the adjacent soma compartment); the 

value for the explicit model was 0.004 MΩ (drastically reduced from the value of 

1.9 MΩ in the adjacent soma compartment). The outcome of this test showed that 

the implicit was better than the explicit approach. 
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Figure 2-6. Input resistance of two-compartment models. The local input 

resistance (RN) of the realistic model was measured on the V1 in Table 2-1 and 

plotted along the distance (D) from the soma (grey cross). The input resistance of 

V1 was fit by a single exponential function (black dashed line). The input 

resistance of the implicit model (black filled circle) was well fit to that of V1, but 

the explicit model showed unrealistically lower values at the dendritic 

compartment than those of V1, especially as D → 0. 
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2.4 DISCUSSION 

 

Our results support the hypothesis that the major determinants of DDVA in motor 

neurons are Rm and a generic dendritic morphology. There was no evidence for a 

type-specific dendrite morphological effect on DDVA. DDVA in a motor neuron 

could be captured by two single-exponential functions with separate voltage 

decay constants for the central and peripheral directions: ηSD and ηDS. We then 

showed that this result could be used to derive the parameters for electrotonic 

coupling in lumped two-compartment approximations of motor neurons. The 

unique contribution of this result was that we directly derived values for the 

lumped cable parameters from the known passive parameters and anatomy of our 

realistic models. We showed that solutions for the cable parameters in the lumped 

two-compartment models exist over the full range of passive properties that 

characterise the heterogeneous spinal motor neuron pool. We then determined, 

using a variety of measures, that the implicit two-compartment reduction was 

superior to the explicit approach. 

 

2.4.1 Critical assessment of the models and results 

 

The conclusion that the morphological features of dendrites that contribute to 

DDVA are generic, rather than unique for slow (S) and fast (FR, FF) motor 

neurons, must be qualified as tentative given the small data set. The six motor 

neurons used in this study are the only type-identified reconstructions that are 

publicly available. The anatomy for an additional eight alpha motor neurons 

innervating the hindlimb muscles of the cat have been deposited to the 

NeuroMorpho.org database by the Fyffe laboratory (Alvarez et al., 1998). These 

motor neurons were type-identified on the basis of electrophysiology, however 

there are no identifiers in the NeuroMorpho.org database or published literature 

that permitted linking anatomy to measured electrophysiology and motor neuron 

type. Additional data that includes anatomy and electrophysiology from the same 
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type-identified motor neurons is needed to determine if the lack of evidence for 

type-specific morphological effects on DDVA is a consistent finding. 

 

Our results are not general for all mammalian motor neurons or even all cat motor 

neurons. The six motor neurons in our study innervated the calf muscles that are 

located in a certain column of the ventral horn in the lumbar spinal cord 

(Yakovenko et al., 2002). The dendritic organization of motor neurons changes 

with location of the cell bodies and local space limitations (Schoenen, 1982). For 

example researchers studying electrotonic properties of motor neurons innervating 

the neck and eye muscles have found evidence for functional subunits (Bras et al., 

1993; Korogod et al., 1994; Rose and Cushing, 2004). If there were evidence for 

functional subunits in our DDVA analysis, we were prepared to lump the reduced 

models into more than two-compartments. For example, had there been two 

clusters of peripheral voltage attenuation data in Figure 2-1, we could have treated 

each cluster as a separate compartment and proceeded to derive a three-

compartment reduction. This solution may be needed for motor neurons that have 

dendrites that are preferentially oriented along different axes such as neck (Rose 

and Cushing, 2004), vagal (Nitzan et al., 1990) or phrenic motor neurons 

(Cameron et al., 1991). We suggest that where adequate anatomy and 

electrophysiology from the same neurons exist, an analysis of the DDVA features 

be used to determine if a two-compartment reduction is appropriate. 

 

By choosing to lump the soma and proximal dendritic membrane into one 

compartment and the remaining dendritic membrane into another we are making 

some implicit assumptions about the phenomenon of interest and scope of the 

model. For example, the detailed distribution of synaptic inputs to the dendritic 

tree is lost. This sacrifice in detail was made because the ultimate goal for the 

two-compartment model was to understand how the non-uniform distribution of 

spiking and plateau potential currents, interact in a structure that has asymmetric 

coupling. The type of analysis needed to determine the effect of asymmetric 

coupling on the dynamical behaviour is best pursued using reduced models 
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(Rinzel and Ermentrout, 1998). The reduced model will also facilitate the 

construction and analysis of a pool of motor neurons that include a realistic 

distribution of passive and active parameters. 

 

The other limitation of our derivation is that the DDVA analysis used to derive 

the cable parameters has been limited to DC. This decision was made because the 

phenomenon of interest was the coupling of plateau potential currents in the 

dendritic region that are relatively low frequency. Were we interested in back 

propagation of action potentials, it would have been appropriate to derive the 

cable parameters for the lumped two-compartment models using AC impedance 

analysis of DDVA. Though not shown we did compare the voltage attenuation at 

250 Hz for the realistic, explicit and implicit reduced models. This frequency was 

chosen because the average spike width for these motor neurons is about 2 ms and 

assuming the spike represents half a period of a sinusoidal input, i.e. 4 ms period 

is equivalent to 250 Hz. For the realistic models, voltage attenuation at 250 Hz in 

the peripheral direction was greater than at DC, yet there remained a strong 

asymmetry when compared to central DC attenuation. This asymmetry in 

comparing peripheral DDVA at 250 Hz and central DDVA at DC should be 

examined in more detail. 

 

The derivation of the implicit and explicit two-compartment reductions included 

input resistance at the soma however; input resistance in the dendritic 

compartment was not part of the analytical derivation. When the implicit and 

explicit approaches were compared on this measure, the implicit model fit the 

data from the anatomically complex model but the explicit model did not. The 

reason the explicit model did not predict realistic dendritic input resistance was 

the relative difference in the two coupling conductances (GCS << GCD). Therefore 

the implicit model is the best approach for analysis of coupling at low frequencies 

since it satisfied direction dependant voltage attenuation, direction dependant 

current attenuation, and input resistance in both compartments over the full range 

of distances between the soma and dendrites.  
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2.4.2 Comparison with other studies 

 

The impetus for this study was the use of two-compartment models to capture the 

output firing patterns of a wide range of neurons, including turtle motor neurons 

(Booth and Rinzel, 1995; Booth et al., 1997; Mainen and Sejnowski, 1996; Pinsky 

and Rinzel, 1994). These previous models treated the electrotonic coupling 

parameters: coupling conductance gc and relative surface area p, as independent 

and free parameters that could be adjusted to produce different output firing 

patterns. We chose to remove the independence of these two parameters and make 

them dependent on the anatomy and passive electrotonic properties of the neurons 

of interest. By specifying a separation distance in micrometers for the soma and 

dendritic compartments and assigning a realistic RN and τm, the electrotonic 

coupling parameters are constrained to the neurons of interest. We think that this 

constraint and retaining the asymmetry in voltage attenuation could be important 

for realistic analysis of excitable dendrites in motor neurons. 

 

For example, it is well accepted that persistent inward currents exist on motor 

neuron dendrites and these currents can generate plateau potentials and persistent 

firing (Heckman and Lee, 1999a; Heckman and Lee, 1999b; Heckmann et al., 

2005). How far does a dendritic plateau potential propagate? Is there a 

relationship between location of the persistent inward currents and measurements 

such as input resistance that varies widely across a pool of motor neurons? Since 

the distribution and kinetics of the ion channels underlying the plateau potentials 

remain unknown and voltage clamp protocols at the soma preclude definitive 

experimental measurement of these channels (Williams and Mitchell, 2008), 

modelling could help answer these questions. Asymmetry of passive electrotonic 

spread in dendrites is inherent to these questions; therefore we sought to develop a 

reduced model that retained this feature. In previous reduced models of motor 

neurons the DC coupling between the soma and dendrite was either symmetric 

(Booth and Rinzel, 1995) or asymmetric but in the opposite direction (Booth et al., 

1997). Our early results suggest that the parameter space exhibiting stable 
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dynamic features such as bistability, are strongly affected by the asymmetric 

coupling of two-compartment models (Kim et al., 2008). 

 

 

2.5 CONCLUSION 

 

Fundamental insights about single neuron computation have emerged from 

simplified two-compartment models. We have provided an analytical solution for 

the lumped cable parameters in two-compartment models of motor neurons with 

asymmetric coupling between dendrites and soma. Studies are now needed to 

determine the effect of this asymmetry on the nonlinear dynamics of two-

compartment models. These future studies should use the implicit modelling 

approach developed here instead of the explicit approach that has been used in the 

past. 

 

 

2.6 APPENDIX FOR CHAPTER 2 

 

Equations for implicit and explicit models in the case II 

The system equations for the case II with inject current normalized by the entire 

surface area of cell can be derived by replacing current density injected at soma 

and dendrite in Equations (2-6) and (2-12) with 
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To obtain an expression for the electrotonic properties for case II, we need to 

multiply the matrix B in Equation (2-6) by P and apply ID=0 to Equation (2-8) 

derived for the case II under steady-state conditions: the specific input resistance 

is, 
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the voltage attenuation for both directions with DC input is, 
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The passive membrane time constant for implicit and explicit models is consistent 

with Equations (2-13) and (2-14) in the case I because the system matrix A in 

Equation (2-12) is not affected by the replacement with Equation (2-A1), thereby 

Reff of case II is identical to those of case I. 

 

mimplicitm CR ⋅= impliciteff,,τ                                        (2-A4)a
 

meffm CR ⋅= explicit,explicit,τ                                        
(2-A4)b 

 

All passive membrane parameters can be derived analytically as in the case I: GC, 

Gm,S, Gm,D in implicit 
models and GC,S, GC,D, Gm in explicit models from 

Equations (2-A2) and (2-A3) are 
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Then Cm in implicit and explicit models from Equation (2-A4) based on 

previously determined parameter values are 

 

impliciteff,/ RC mm τ=                                             (2-A5)d 

expliciteff,/ RC mm τ=                                            (2-A6)d 

 

 

2.7 BIBLIOGRAPHY FOR CHAPTER 2 

 

Alvarez, F. J., Pearson, J. C., Harrington, D., Dewey, D., Torbeck, L., and Fyffe, 

R. E. (1998). Distribution of 5-hydroxytryptamine-immunoreactive boutons on 

alpha-motoneurons in the lumbar spinal cord of adult cats. J Comp Neurol 393, 

69-83. 

Ascoli, G. A. (2006). Mobilizing the base of neuroscience data: the case of 

neuronal morphologies. Nat Rev Neurosci 7, 318-324. 

Ballou, E. W., Smith, W. B., Anelli, R., and Heckman, C. J. (2006). Measuring 

dendritic distribution of membrane proteins. J Neurosci Methods 156, 257-266. 

Booth, V., and Rinzel, J. (1995). A minimal, compartmental model for a dendritic 

origin of bistability of motoneuron firing patterns. J Comput Neurosci 2, 299-312. 



 

80 

Booth, V., Rinzel, J., and Kiehn, O. (1997). Compartmental model of vertebrate 

motoneurons for Ca2+-dependent spiking and plateau potentials under 

pharmacological treatment. J Neurophysiol 78, 3371-3385. 

Bras, H., Korogod, S., Driencourt, Y., Gogan, P., and Tyc-Dumont, S. (1993). 

Stochastic geometry and electronic architecture of dendritic arborization of brain 

stem motoneuron. Eur J Neurosci 5, 1485-1493. 

Bui, T. V., Ter-Mikaelian, M., Bedrossian, D., and Rose, P. K. (2006). 

Computational estimation of the distribution of L-type Ca(2+) channels in 

motoneurons based on variable threshold of activation of persistent inward 

currents. J Neurophysiol 95, 225-241. 

Burke, R. E., Levine, D. N., Tsairis, P., and Zajac, F. E., 3rd (1973). Physiological 

types and histochemical profiles in motor units of the cat gastrocnemius. J Physiol 

234, 723-748. 

Cameron, W. E., He, F., Kalipatnapu, P., Jodkowski, J. S., and Guthrie, R. D. 

(1991). Morphometric analysis of phrenic motoneurons in the cat during postnatal 

development. J Comp Neurol 314, 763-776. 

Carlin, K. P., Jiang, Z., and Brownstone, R. M. (2000a). Characterization of 

calcium currents in functionally mature mouse spinal motoneurons. Eur J 

Neurosci 12, 1624-1634. 

Carlin, K. P., Jones, K. E., Jiang, Z., Jordan, L. M., and Brownstone, R. M. 

(2000b). Dendritic L-type calcium currents in mouse spinal motoneurons: 

implications for bistability. Eur J Neurosci 12, 1635-1646. 

Carnevale, N. T., and Hines, M. L. (2005). The NEURON book (Cambridge ; 

New York: Cambridge University Press). 

Carnevale, N. T., and Johnston, D. (1982). Electrophysiological characterization 

of remote chemical synapses. J Neurophysiol 47, 606-621. 



 

81 

Coombs, J. S., Eccles, J. C., and Fatt, P. (1955). The electrical properties of the 

motoneurone membrane. J Physiol 130, 291-325. 

Cullheim, S., Fleshman, J. W., Glenn, L. L., and Burke, R. E. (1987a). Membrane 

area and dendritic structure in type-identified triceps surae alpha motoneurons. J 

Comp Neurol 255, 68-81. 

Cullheim, S., Fleshman, J. W., Glenn, L. L., and Burke, R. E. (1987b). Three-

dimensional architecture of dendritic trees in type-identified alpha-motoneurons. J 

Comp Neurol 255, 82-96. 

Elbasiouny, S. M., Bennett, D. J., and Mushahwar, V. K. (2005). Simulation of 

dendritic CaV1.3 channels in cat lumbar motoneurons: spatial distribution. J 

Neurophysiol 94, 3961-3974. 

Fleshman, J. W., Segev, I., and Burke, R. B. (1988). Electrotonic architecture of 

type-identified alpha-motoneurons in the cat spinal cord. J Neurophysiol 60, 60-

85. 

Frank, K., and Fuortes, M. G. (1955). Potentials recorded from the spinal cord 

with microelectrodes. J Physiol 130, 625-654. 

Grande, G., Bui, T. V., and Rose, P. K. (2007). Estimates of the location of L-type 

Ca2+ channels in motoneurons of different size: a computational study. J 

Neurophysiol 97, 4023-4035. 

Heckman, C. J., and Lee, R. H. (1999a). The role of voltage-sensitive dendritic 

conductances in generating bistable firing patterns in motoneurons. J Physiol 

Paris 93, 97-100. 

Heckman, C. J., and Lee, R. H. (1999b). Synaptic integration in bistable 

motoneurons. Prog Brain Res 123, 49-56. 



 

82 

Heckman, C. J., Lee, R. H., and Brownstone, R. M. (2003). Hyperexcitable 

dendrites in motoneurons and their neuromodulatory control during motor 

behavior. Trends Neurosci 26, 688-695. 

Heckmann, C. J., Gorassini, M. A., and Bennett, D. J. (2005). Persistent inward 

currents in motoneuron dendrites: implications for motor output. Muscle Nerve 31, 

135-156. 

Holmes, W. R., and Rall, W. (1992). Electrotonic length estimates in neurons 

with dendritic tapering or somatic shunt. J Neurophysiol 68, 1421-1437. 

Hounsgaard, J., Hultborn, H., Jespersen, B., and Kiehn, O. (1984). Intrinsic 

membrane properties causing a bistable behaviour of alpha-motoneurones. Exp 

Brain Res 55, 391-394. 

Jack, J. J. B., Noble, D., and Tsien, R. W. (1975). Electric current flow in 

excitable cells (Oxford: Clarendon Press). 

Jones KE, C. K., J. R, et al. (2000). Simulation techniques for localising and 

identifying the kinetics of calcium channels in dendritic neurons. Neurocomputing 

32, 173-180. 

Kim, H., Major, L. A., and Jones, K. E. (2008). Voltage attenuation in 

reconstructed type-identified motor neurons as a constraint for reduced models. 

BMC Neuroscience 9(Suppl 1), P55. 

Korogod, S., Bras, H., Sarana, V. N., Gogan, P., and Tyc-Dumont, S. (1994). 

Electrotonic clusters in the dendritic arborization of abducens motoneurons of the 

rat. Eur J Neurosci 6, 1517-1527. 

Lee, R. H., and Heckman, C. J. (1996). Influence of voltage-sensitive dendritic 

conductances on bistable firing and effective synaptic current in cat spinal 

motoneurons in vivo. J Neurophysiol 76, 2107-2110. 



 

83 

Lee, R. H., and Heckman, C. J. (1998a). Bistability in spinal motoneurons in vivo: 

systematic variations in persistent inward currents. J Neurophysiol 80, 583-593. 

Lee, R. H., and Heckman, C. J. (1998b). Bistability in spinal motoneurons in 

vivo: systematic variations in rhythmic firing patterns. J Neurophysiol 80, 572-

582. 

Lee, R. H., and Heckman, C. J. (1999). Enhancement of bistability in spinal 

motoneurons in vivo by the noradrenergic alpha1 agonist methoxamine. J 

Neurophysiol 81, 2164-2174. 

MacGregor, R. J. (1987). Neural and brain modeling (San Diego, Calif.: 

Academic Press). 

Mainen, Z. F., and Sejnowski, T. J. (1996). Influence of dendritic structure on 

firing pattern in model neocortical neurons. Nature 382, 363-366. 

Major, G., Evans, J. D., and Jack, J. J. (1993). Solutions for transients in 

arbitrarily branching cables: I. Voltage recording with a somatic shunt. Biophys J 

65, 423-449. 

Nitzan, R., Segev, I., and Yarom, Y. (1990). Voltage behavior along the irregular 

dendritic structure of morphologically and physiologically characterized vagal 

motoneurons in the guinea pig. J Neurophysiol 63, 333-346. 

Pinsky, P. F., and Rinzel, J. (1994). Intrinsic and network rhythmogenesis in a 

reduced Traub model for CA3 neurons. J Comput Neurosci 1, 39-60. 

Rall, W. (1957). Membrane time constant of motoneurons. Science 126, 454. 

Rall, W. (1959). Branching dendritic trees and motoneuron membrane resistivity. 

Exp Neurol 1, 491-527. 

Rall, W. (1969). Time constants and electrotonic length of membrane cylinders 

and neurons. Biophys J 9, 1483-1508. 



 

84 

Rall, W., and Rinzel, J. (1973). Branch input resistance and steady attenuation for 

input to one branch of a dendritic neuron model. Biophys J 13, 648-687. 

Rall, W., Segev, I., Rinzel, J., and Shepherd, G. M. (1995). The theoretical 

foundation of dendritic function : selected papers of Wilfrid Rall with 

commentaries (Cambridge, Mass. ; London: MIT Press). 

Rinzel, J., and Ermentrout, B. (1998). Analysis of neural excitability and 

oscillations, In Methods in neuronal modeling : from ions to networks, C. Koch, 

and I. Segev, eds. (Cambridge, Mass.: MIT Press), pp. 251-291. 

Rinzel, J., and Rall, W. (1974). Transient response in a dendritic neuron model for 

current injected at one branch. Biophys J 14, 759-790. 

Rose, P. K., and Cushing, S. (2004). Relationship between morphoelectrotonic 

properties of motoneuron dendrites and their trajectory. J Comp Neurol 473, 562-

581. 

Saltelli, A. (2004). Sensitivity analysis in practice : a guide to assessing scientific 

models (Hoboken, NJ: Wiley). 

Schoenen, J. (1982). Dendritic organization of the human spinal cord: the 

motoneurons. J Comp Neurol 211, 226-247. 

Segev, I., Fleshman, J. W., Jr., and Burke, R. E. (1990). Computer simulation of 

group Ia EPSPs using morphologically realistic models of cat alpha-motoneurons. 

J Neurophysiol 64, 648-660. 

Thurbon, D., Luscher, H. R., Hofstetter, T., and Redman, S. J. (1998). Passive 

electrical properties of ventral horn neurons in rat spinal cord slices. J 

Neurophysiol 80, 2485-2502. 

Williams, S. R., and Mitchell, S. J. (2008). Direct measurement of somatic 

voltage clamp errors in central neurons. Nat Neurosci 11, 790-798. 



 

85 

Yakovenko, S., Mushahwar, V., VanderHorst, V., Holstege, G., and Prochazka, A. 

(2002). Spatiotemporal activation of lumbosacral motoneurons in the locomotor 

step cycle. J Neurophysiol 87, 1542-1553. 

Zengel, J. E., Reid, S. A., Sypert, G. W., and Munson, J. B. (1985). Membrane 

electrical properties and prediction of motor-unit type of medial gastrocnemius 

motoneurons in the cat. J Neurophysiol 53, 1323-1344. 

 



 

86 

CHAPTER 3: Asymmetric electrotonic coupling between the 

soma and dendrites alters the bistable firing 

behaviour of reduced models 
§
 

 

Glossary 

 

DDVA  Direction Dependant Voltage Attenuation 

ASD  voltage Attenuation factor from Soma to Dendrites 

ADS  voltage Attenuation factor from Dendrites to Soma  

PIC  Persistent Inward Current 

CI  Characteristic Index 

TTP  Time To onset of Plateau potential 

TES  Time to End of Somatic spiking 

DSF  Difference in Spiking Frequency 

 

 

3.1 INTRODUCTION 

 

The coexistence of two stable states for a given stimulus (i.e. bistable behaviour) 

has been described in many areas of the central nervous system as a fundamental 

neuronal process for sustaining persistent activity or phasic rhythmic firing 

(Brunel, 2003; Egorov et al., 2002; Hounsgaard and Kiehn, 1989; Li et al., 2006; 

Llinas and Sugimori, 1980; Steriade, 1999). For example, in motor neurons 

bistable behaviour has been implicated in control of posture (Eken and Kiehn, 

                                                           
§
 A version of this chapter has been published online. 

Kim H and Jones KE, J Comput Neurosci DOI 10.1007/s10827-10010-10284-x, 

2010. 
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1989; Kiehn and Eken, 1997), gain control of firing rate (Kiehn, 1991; Lee and 

Heckman, 2000), and involuntary muscle contraction after spinal cord injury 

(Bennett et al., 2001; Li and Bennett, 2003). The bistable firing pattern has been 

identified in various species using ascending and descending ramp (also called 

triangular) current stimulation and measuring: 1) the counter-clockwise hysteresis 

in the frequency-current relationship and 2) sustained spiking below the current 

threshold on the downward-phase of the stimulus waveform (Bennett et al., 2001; 

Hounsgaard et al., 1988a; Lee and Heckman, 1998a; Lee and Heckman, 1998b). 

Using these criteria, several different types of firing patterns have been observed 

in sacral (Type I-IV in Bennett et al., 2001) and lumbar spinal motor neurons 

(partially and fully bistable in Lee and Heckman, 1998b). 

 

These firing patterns of motor neurons depend on the density, type and location of 

voltage-gated ion channels that generate persistent inward current (PIC) (Lee and 

Heckman, 1996; Li and Bennett, 2003; Schwindt and Crill, 1980c). Although the 

full details of the location of PIC channels are still emerging (Ballou et al., 2006), 

it has been suggested that the calcium conducting channels are non-uniformly 

distributed and concentrated in the dendrites. The evidence for this assertion 

includes experimental (Ballou et al., 2006; Bennett et al., 1998; Carlin et al., 

2000a; Hounsgaard and Kiehn, 1993; Lee and Heckman, 1996; Simon et al., 

2003), and computational studies (Booth and Rinzel, 1995; Booth et al., 1997; 

Carlin et al., 2000b; Elbasiouny et al., 2005; Grande et al., 2007; Gutman, 1991; 

Jones KE, 2000). 

 

To understand how the calcium dependent PICs interact with the firing behaviour 

in a complex dendritic system, it is first necessary to characterize signal 

propagation properties between the soma and the dendrites (Rall and Rinzel, 

1973; Rinzel and Rall, 1974). After this characterization is complete, the 

influence of signal propagation on neuronal output behaviour can be evaluated. 

We recently investigated the first issue using anatomically reconstructed motor 

neuron models (Kim et al., 2009). In that study, we characterized steady-state 
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electrotonic coupling between the soma and a specific dendritic location using the 

empirically determined direction-dependant voltage attenuation (DDVA). We 

derived an analytical solution using DDVA to create reduced models that retained 

signal propagation properties of the anatomically reconstructed models. We 

hypothesized that the asymmetric coupling responsible for DDVA would change 

the bistable firing dynamics of reduced models that separate PIC channels for 

generating plateau potentials in the dendrite from ion channels for spiking in the 

soma. 

 

The second issue, the influence of asymmetric coupling (i.e. DDVA) on motor 

neuron bistability, has not been explicitly investigated, probably due to the lack of 

a suitable theoretical framework to deal with the complex geometry of the 

dendrites along with the cable properties (Cullheim et al., 1987a; Cullheim et al., 

1987b; Donohue and Ascoli, 2008). Modeling approaches that use anatomically 

reconstructed dendrites implicitly include physiological asymmetric coupling 

properties (Bui et al., 2006; Elbasiouny et al., 2005; Mainen and Sejnowski, 1996). 

However, to determine the implications of asymmetric coupling for bistability and 

establish mathematical generalizations using analysis, the coupling parameters 

must be amenable to the explicit manipulation that is typical of reduced modeling 

approaches. Current reduced modeling approaches have discovered many 

fundamental insights about the dynamical behaviour of neurons and the influence 

of coupling parameters (Booth and Rinzel, 1995; Doiron et al., 2002; Mainen and 

Sejnowski, 1996; Pinsky and Rinzel, 1994). These models however, did not 

explicitly derive their coupling parameters from the anatomy and biophysical 

properties of reconstructed dendrites, instead choosing specific mathematical 

parameters from their system equations that could best represent physiological 

coupling properties. 

 

In this study, we evaluated the influence of asymmetric coupling using our new 

reduced modeling approach. Active membrane mechanisms were added to our 

passive reduced model using the Morris-Lecar equations (equation (1-7)) from a 
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previous two-compartment motor neuron model (Booth and Rinzel, 1995). By 

comparing our results with asymmetric coupling to the previous model with 

symmetric coupling we demonstrated the influence of the DDVA parameters on 

the nonlinear dynamical behaviour. We first used engineering control theory to do 

input/output analysis of the passive models. This analysis laid the groundwork for 

insights into the correlation of DDVA properties to dendritic input resistance and 

predictions for subsequent numerical simulations that explored bistable firing 

behaviour. We showed how asymmetric coupling of the soma and the dendrites 

affected key parameters like input resistance that have significant effects on the 

excitability of the active system. Finally, we assessed how bistable behaviour of 

the new reduced model compared with physiological DDVA properties of 

anatomically-reconstructed motor neuron models. 

 

 

3.2 METHODS 

 

3.2.1 Symmetric and asymmetric reduced models 

 

The reduced model used in the study was based on the physiological two-

compartment framework that captures direction-dependant voltage attenuation 

(DDVA) properties and includes the minimum essential biophysical properties of 

input resistance and time constant in Chapter 2 (Kim et al., 2009). Figure 3-1 

shows the schematic diagram of the physiological two-compartment model. 

Applying Kirchhoff’s current law to Figure 3-1 with steady-state conditions, the 

system equations of the passive two-compartment models are,  
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where IS and ID are current inputs to somatic and dendritic compartment 

normalized by the corresponding compartment surface area. VS and VD are 

membrane potential deviations from the resting potential in somatic and dendritic 

compartment. Gm,S and Gm,D are specific membrane conductances at the soma and 

dendrite. GC is the coupling conductance normalized by the total surface area of 

the cell. p is the morphological factor defined by the ratio of the somatic surface 

area to the total surface area at the specific path length from the soma. These 

parameters are dimensionless.
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Figure 3-1. Schematic diagram of the asymmetrically coupled models. The 

somatic (left) and dendritic (right) compartments are connected by a coupling 

conductance, GC. A key difference between previous and our model is that GC is 

determined analytically and is not a free parameter. Active membrane properties, 

based on the dimensionless Morris-Lecar equations, are embedded in both 

compartments. Maximum conductance densities: GNa for sodium current, GK,S for 

somatic potassium current, GCa for calcium current and GK,D for dendritic 

potassium current. Reversal potentials: ENa, ECa, EK, and ELeak. Passive membrane 

properties: Cm specific membrane capacitance, GC specific coupling conductance, 

Gm,S specific membrane conductance in the soma, and Gm,D specific membrane 

conductance in the dendrite. VS and VD are membrane potentials in the somatic 

and dendritic compartments, respectively.
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Electrotonic coupling structure between the soma and dendrites was 

parameterized with two DDVA properties: voltage attenuation from the soma to a 

specified location on a dendrite (ASD) and from a specified location on a dendrite 

to the soma (ADS). Two types of passive reduced model are generated by this two-

compartment framework: symmetric (ASD=ADS) vs. asymmetric (ASD≠ADS) models.  

 

To generate a symmetric model it is sufficient to specify uniform membrane 

conductance (i.e. Gm=Gm,D=Gm,S) and equal surface area for both compartments 

(i.e. p=0.5). This becomes obvious if Gm and p are substituted into the following 

equations for the DDVA parameters derived from system equations (3-1) and (3-

2). Note that coupling symmetry is maintained regardless of GC. 
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The details of the derivation for equations (3-3) & (3-4) are in Chapter 2 (Kim et 

al., 2009). The nonlinear dynamics of the symmetric model with Morris-Lecar 

dynamics has been fully characterized as a function of the coupling parameter 

(GC) (Booth and Rinzel, 1995). 

 

To generate an asymmetric model we follow the procedures outlined in Chapter 2 

(Kim et al., 2009). First an anatomically reconstructed neuron with measured 

values of input resistance (RN) and membrane time constant (τm) is chosen. Next, 

a distance of separation between the soma and a location on the dendrites is 

chosen, Dpath. The choice of Dpath determines the values for ASD, ADS and p for an 

anatomically reconstructed cat spinal motor neuron. For example, by choosing 

Dpath = 300 µm the default values were ASD = 0.89, ADS = 0.26 and p = 0.168. 

Using these values for ASD, ADS and p together with RN and τm we solve for the 

unknown cable parameters in equations (3-1) & (3-2), i.e. Gm,D, Gm,S, and GC. 
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Table 3-1 shows the details of biophysical properties and standard parameter 

values assigned to the default asymmetric model.   Note that the resulting non-

uniform passive properties in the soma and dendrites should not be interpreted in 

the same way as the specific resistivity of a patch of membrane in the 

anatomically reconstructed motor neuron models. 

 

After including Morris-Lecar dynamics in the asymmetric model, the nonlinear 

dynamics was investigated as a function of the DDVA parameters ASD and ADS. 

The effects of variations in DDVA parameters were evaluated on the DDVA 

parameter space (0.01≤ASD≤0.99, 0.01≤ADS≤0.99). 
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Table 3-1. Standard parameter values for the asymmetric model 

Membrane parameters 

Passive  Active Morphology Electrotonics 

  Soma Dendrites 

       p = 0.168       rN,S = 0.19 

      τm = 10.4 

      ASD = 0.89 

      ADS = 0.26 

       Gm,S = 5.1 

       Gm,D = 0.04 

       GC = 0.3 

       Cm = 3.2 

       ELeak = – 0.5 

           GNa = 11.0 

           ENa = 1.0 

           GK,S = 14.0 

           EK = – 0.7 

           v1S = – 0.01 

           v2S = 0.15 

           v3S = – 0.04 

           v4S = 0.1 

           φ S = 0.2 

      GCa = 0.89 

      ECa = 1.0 

      GK,D = 0.44 

      EK = – 0.7 

      v1D = 0.05 

      v2D = 0.1 

      v3D = 0 

      v4D = 0.1 

      φ D = 0.2 

 

Morphological factor, p for the ratio of somatic to total surface area; Electrotonics, 

rN,S for input resistance normalized with somatic surface area, τm for system time 

constant, ASD and ADS for direction-dependant voltage attenuation properties;  

Passive membrane parameters, Gm,S, Gm,D, GC and Cm in Fig. 3-1; Active 

membrane parameters defined based on Morris-Lecar model as in Appendix; p 

and electrotoics of the asymmetric model was measured from an anatomically 

reconstructed motor neuron (V1 in Table 2-1 in Chapter 2 (Kim et al., 2009)), in 

turn passive membrane properties were calculated using inverse  equations 

(Equation (2-15)a-d in Chapter 2 (Kim et al., 2009)).
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3.2.2 Active dynamics of models: bistability 

 

Active membrane properties, based on the Morris-Lecar model (Morris and Lecar, 

1981), were added to each compartment as in a previous study (Booth and Rinzel, 

1995). The default parameters for the Morris-Lecar ion channel models 

established by Booth and Rinzel did not generate bistable firing behaviour in the 

default asymmetric model, due to the discrepancy in electrotonical (rN,S, τm, ASD 

and ADS in Table 3-1) and morphological (p in Table 3-1) properties. To generate 

bistable firing behaviour in the asymmetric model, the maximum conductance of 

all ion channels was changed as well as the parameter related to the slope of the 

steady-state activation variable of the dendritic calcium channel (V2D in Table 3-

1). The changes in the parameters of the Morris-Lecar equations for the 

asymmetric model were uniquely determined by fitting to the nonlinear phase-

nullclines of the symmetric model. This method of fitting results in the same 

mechanisms underlying the nonlinear dynamics of the symmetric and asymmetric 

model: a Hopf bifurcation at the onset of somatic spiking and a saddle-node 

bifurcation at the onset of the dendritic plateau potential. Bifurcation analysis 

demonstrating these dynamics is presented in Results (see (a1) & (b1) in Figure 3-

3). 

 

We used triangular current stimulation to the soma as the bifurcation parameter to 

determine if bistable firing patterns resulted as the DDVA parameters (ASD and 

ADS) were changed from the default values. We defined three characteristic 

indexes (CIs) to determine the presence of bistability: 

• Time To onset of Plateau potential (TTP): This index measures the 

latency between the first somatic action potential and the onset of 

the dendritic plateau potential. If this value is positive, the onset of 

the plateau potential follows the first somatic spike. If the value is 

negative, the plateau potential precedes somatic spiking.  

• Time to End of somatic Spiking (TES): This index measures the 

duration of spiking during the downward phase of current 
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stimulation relative to the current threshold from the upward phase. 

If this value is positive, somatic spiking persists past the spiking 

threshold on the upward phase. If the value is negative, spiking 

stops before reaching the threshold determined on the upward 

phase of stimulation.  

• Difference in Spiking Frequency (DSF): This index measures the 

difference in instantaneous spiking frequency at the current 

threshold determined on the upward phase of stimulation. If this 

value is positive, the firing frequency is greater on the downward 

phase and indicates counter-clockwise frequency hysteresis. If this 

value is negative, spiking frequency on the downward phase is less 

or repetitive spiking has ceased.   

 

All three indexes are illustrated in Figure 3-2. Bistable firing behaviour was 

operationally defined when all three indexes had positive values. Typically, a 

positive value of TTP was associated with the concurrent existence of dendritic 

plateau-off and -on states at a particular steady-state current. This is a criterion 

used in a previous theoretical study (Booth and Rinzel, 1995). Experimental 

studies of bistability in vertebrate motor neurons have classified responses during 

triangular current clamp conditions as fully/partially bistable (Lee and Heckman, 

1998b) or as Types I-IV (Cotel et al., 2009; Li and Bennett, 2003). A fully 

bistable neuron has a positive TES and DSF while a partially bistable neuron has 

a TES close to zero and a small negative DSF. A Type I neuron would have a 

TES and DSF close to zero. A Type II neuron exhibits adaptation of firing rate 

that would result in a negative TES and DSF. A Type III neuron would exhibit a 

positive TES but minimal DSF. The Type IV neuron, which is equivalent to the 

fully bistable cell, would have a positive TES and DSF. Therefore our definition 

of bistable behaviour identified instances of the model where the behaviour was 

fully bistable or Type IV and the onset of the plateau follows initiation of somatic 

spiking. 
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Numerical bifurcation analysis
8
 of the asymmetric model was first conducted for 

three representative coupling structures: physiological (ASD>>ADS), symmetric 

(ASD=ADS), and non-physiological (ASD<<ADS). Then simulations
9
 were done 

with the asymmetric model keeping the active properties constant and varying the 

manipulated parameters (ASD and ADS). We evaluated the three characteristic 

indexes at each location of the DDVA plane, where the location (x, y) is defined 

by the value (ADS, ASD). The values of individual characteristic indexes were 

calculated to determine areas on the DDVA plane where the values switched signs 

(i.e. from positive to negative) and the magnitude of the values. The solution 

space for bistability on the DDVA domain was defined as the area of intersection 

where all three characteristic indexes were positive. This analysis is commonly 

referred to as the constraints inference method with three constraints (TTP > 0, 

TES > 0 and DSF > 0) (Dechter, 2003). 

 

3.2.3 Comparison to anatomical models 

 

While the full DDVA domain is of theoretical interest for evaluating the effects of 

asymmetric coupling between the two compartments, the anatomy of motor 

neuron dendrites restrict possible values of ASD and ADS to a sub region of the 

DDVA domain. To determine the anatomically relevant area of the DDVA 

domain the values of ASD and ADS were calculated at different distances (i.e. Dpath) 

from the soma as previously reported in Chapter 2 (Kim et al., 2009). The region 

of the DDVA domain defined by motor neuron anatomy and passive properties 

was superimposed on the solution space defined by the three characteristic 

indexes. 

 

 

3.3 RESULTS 

 

                                                           
8
 The bifurcation analysis was conducted using XPPAUTO software (Ermentrout, 2002). 

9
 Gear method was used for solving differential equations governing nonlinear dynamics of 

reduced models (Appendix for chapter 3). 
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To determine the effect of DDVA on the nonlinear firing patterns of the reduced 

models we combined a theoretical approach, with numerical simulations. The goal 

of the theoretical analysis was to develop analytical equations for indirect 

measures of excitability, such as input resistance, and the relationship to the 

passive steady-state attenuation properties ASD and ADS. The analytical predictions 

were used to interpret the later numerical simulations. The goal of the numerical 

simulations was to determine how the passive electrotonic nature of DDVA 

influenced the highly nonlinear properties of the active two-compartment models. 

The results showed that DDVA has a strong influence on the nonlinear firing 

behaviour. 

 

3.3.1 Theory: passive input-output properties with respect to DDVA 

 

Input resistances at both compartments, and a multiple current-input and voltage-

output relationship were formulated as a function of DDVA for symmetric and 

asymmetric coupling between points localized on the soma and dendrite. Changes 

of electrotonic structure by varying DDVA properties lead to significant effects 

on passive dynamics and thereby changed the excitability of the dendritic 

compartment. This showed that dendritic excitability was affected by DDVA and 

therefore might have a significant influence on the activation of the plateau 

potential in numerical simulations. The major difference between symmetric and 

asymmetric coupling of the soma and dendrite was that input resistance was the 

same for both compartments in the symmetric case but could have different values 

in the asymmetric case. 

 

3.3.1.1 Input resistance at dendrites 

It is well known that input resistance in dendrites increases as a function of 

distance from the soma (Jaffe and Carnevale, 1999; Rall and Rinzel, 1973). We 

have shown in Chapter 2 that a two-compartment model based on an implicit 

approach captures changes in dendritic input resistance with distance from the 

soma when compared to the physiological properties of motor neuron dendrites 
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(Kim et al., 2009). It is not known how DDVA in general is related to changes in 

dendritic input resistance and whether dendritic input resistance is different for 

symmetric versus asymmetric coupled models.  

 

From the governing equations (3-1) & (3-2), the input resistance (VD/ID) as a 

function of the passive cable properties of the model (Figure 3-1) is, 
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where rN,D is the input resistance at dendritic compartment normalized by 

dendritic surface area. 

 

By substituting the inverse equations for cable properties (Gm,D, Gm,S and GC from 

Kim et al. 2009) into Equation (3-5), we rearranged the equation to give the ratio 

between somatic and dendritic input resistance, 
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where rN,S is the input resistance at somatic compartment normalized by somatic 

surface area and ASD and ADS are the DDVA properties in peripheral and central 

directions, respectively.  

 

To get the expression for the absolute value of input resistance in the dendrite as a 

function of the DDVA properties we divided by the corresponding surface area to 

get, 
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where RN,D and RN,S are the absolute values for dendritic and somatic input 

resistance. Equation (3-7) shows that dendritic input resistance is directly related 

to DDVA by the ratio of asymmetry in the coupling of the two compartments. 

 

For the special case of symmetric coupling, i.e. when voltage attenuation is the 

same for both directions (ASD=ADS), Equation (3-7) simplifies to, 

 

SNDN RR ,, =                                                    (3-8) 

 

These results showed that when two compartment models are coupled 

asymmetrically the dendritic input resistance increases in proportion to ASD and 

inversely to ADS. In our previous method for calculating a reduced two-

compartment model from anatomically reconstructed dendrites, the input 

resistance of the soma remains constant and the DDVA properties vary as a 

function of distance from the soma (Kim et al., 2009). We confirmed that RN,D 

calculated by Equation (3-8), as a function of distance from the soma, matched 

the physiological values for reconstructed motor neuron dendrites (not shown). 

The striking difference between asymmetric and symmetric coupling was that in 

the latter case, RN,D  is identical to RN,S. Furthermore RN,S in symmetric coupling is 

not constant but varies according to the degree of voltage attenuation that is 

manipulated by GC; decrease in RN,S as GC increases (see Equation (2-9)a in 

Chapter 2 (Kim et al., 2009) with standard parameters of symmetric coupling, 

Gm=Gm,S=Gm,D=0.5 and p=0.5). The input resistance of the dendritic compartment 

is an important determinant of excitability because the greater the resistance the 

less current needed to activate the voltage-dependent plateau generating channels. 

This result implies that dendritic excitability in simulations with the active 

asymmetric model will be strongly affected by the DDVA properties and may 

have a significant influence on firing behaviour.  
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3.3.1.2 Multiple inputs and single output relationship  

(IS + ID→□→VD): To determine the influence of DDVA properties on changes in 

dendritic membrane potential as a function of both a somatic (IS) and dendritic 

(ID) current source we derived a function for V/ΣI from the linear system 

equations. This analysis approximates the experimental conditions with an 

electrode in the soma and net dendritic current from intrinsic and/or synaptic 

sources. 

 

According to the superposition principle, the total deviation of dendritic 

membrane potential (VD) from the resting state by two current sources (IS and ID) 

is equal to the sum of the dendritic voltage changes contributed by each IS and ID 

respectively. Using the definitions of DDVA and input resistance, the transfer 

resistance representing the dendritic voltage change (VD(IS)) by IS is first derived, 
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The second relation of the dendritic voltage change (VD(ID)) to ID is equal to 

Equation (3-5), 
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Dividing Equation (3-9) & (3-10) by the corresponding surface area to convert 

normalized input resistances (rN,D and rN,S) to absolute values and summing, the 

combined relationship (IS + ID→□→VD) is, 

 

DDNSSDSND IRIARV ⋅+⋅⋅= ,,
                                     (3-11) 

 

In the symmetric case, the equation can be further simplified because input 

resistance is the same for both compartments (i.e. RN=RN,S=RN,D in Equation (3-8)) 
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and the voltage attenuation is the same for both directions (i.e. VA=ASD=ADS). 

Similar to the asymmetric coupling, potential deviation from resting membrane 

potential for symmetric coupling case is, 

 

( )DSND IIVARV +⋅=                                            (3-12) 

where ID and IS in Equation (3-11) and (3-12) are absolute current stimulation to 

the dendritic and somatic compartments. 

 

Since RN,D depends on RN,S and DDVA parameters (Equation (3-7)), Equation (3-

11) should be rearranged as a function of independent variables, 
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While membrane potential at dendrites (VD) can be influenced by both DDVA 

properties for asymmetric coupling, VD for symmetric coupling in Equation (3-12) 

varies depending on a single voltage attenuation properties (VA in Equation (3-

12)) for both directions as expected.  

 

In the context of experimental conditions for investigating the bistability of motor 

neurons, the depolarization of dendritic membrane potential is caused by 

excitatory current stimulation at the soma (IS) as well as net inward current from 

membrane mechanisms including voltage- and ligand-dependant conductances in 

the dendrites (ID). Equation (3-13) supports our prediction that the larger ASD the 

faster onset of the plateau potential because VD depolarization increases in 

proportion with contributions from both currents (IS and ID), whereas the larger 

ADS the slower onset of the plateau potential by inversely weighting the 

contribution of only one current (ID). It is worth noting that the bistable firing 

behaviour associated with the late onset of plateau potential may be more 

sensitive to changes in ASD than ADS. 
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3.3.2 Bistability of asymmetric model 

 

To determine if the asymmetric model produced bistable firing similar to the 

symmetric model we evaluated the response to triangular and current pulse inputs 

(Figure 3-2). Both current input protocols have been used extensively in 

experimental and computational studies of motor neuron bistability (Booth and 

Rinzel, 1995; Hounsgaard et al., 1988a; Hounsgaard and Kiehn, 1989).  

 

Figure 3-2(a) illustrates the response of the asymmetric model to triangular 

current injection. As the current stimulation increased, VS transitioned from a 

depolarized stable state to a regular firing state at the current threshold followed 

by a jump to a higher firing frequency. The jump to the higher firing frequency 

coincided with the transition of VD to a plateau potential. All three characteristic 

indexes (CIs) used to define bistable firing were measured from the response to 

triangular current injection. Since somatic spiking preceded the dendritic plateau 

onset, TTP had a positive value. As the stimulation decreased toward the value of 

current threshold determined on the upward phase, the firing frequency remained 

elevated resulting in a positive DSF. As the current stimulation continued to 

decrease, the model continued to fire well past the current threshold resulting in a 

positive value for TES. Since all three CIs have positive values, by definition the 

response was considered bistable. The inset shows the frequency-current (f-I) 

relationship in response to the triangular current injection. This figure illustrates 

the hysteresis in firing frequency that characterizes bistable firing in motor 

neurons. 

 

Figure 3-2(b) shows the switching behavior of the asymmetric model in response 

to short current pulse inputs to the soma. The model showed two types of bistable 

behavior: 1) between stable resting and repetitive firing (or stable limit cycle), 2) 

between two states of repetitive firing of different frequencies. The first bistable 

behaviour occurs at the points labeled b1-b2-b3. At the same current level (b1 = 

b3) the model can be switched between two states by short depolarizing (b2) and 
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hyperpolarizing current pulses. These values of current are superimposed on the f-

I relationship from Figure 3-2(a) in the inset to show the correspondence in 

behaviour with the two current input protocols. The second bistable firing 

behaviour occurs at the points labeled b1’-b2’-b3’.  
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Figure 3-2. Bistable firing patterns of the asymmetric model. (a). Instantaneous 

firing frequency (F; top graph), time courses of the somatic (gray) and dendritic 

(black) membrane potentials (Vm; middle graph), and triangular current injection 

(I; bottom graph) are plotted. F was measured as the reciprocal of somatic 

interspike interval. The inset shows counter-clockwise frequency hysteresis (F-I 

curve) indicated by the black arrows. The three characteristic indexes are marked 

directly on the graph and are as follows: Time To onset of Plateau potential (TTP), 

Difference in Spiking Frequency (DSF) and Time to End of somatic Spiking 
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(TES). (b). Time courses of membrane potential at the somatic (gray) and 

dendritic (black) compartment were plotted over brief depolarizing and 

hyperpolarizing current stimuli in the bottom. Small letters over the current 

stimulation profile are mapped to corresponding values in the inset, where 

transitions in frequency state were indicated by gray arrows. Bistability is present 

between points (b1, b3) and (b1’, b3’). T is simulation time. Note that scale bars 

for F, Vm, I and T have different ranges.
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3.3.3 DDVA dependency of firing patterns and bistability 

 

3.3.3.1 Insights from bifurcation analysis 

Figure 3-3 shows bifurcation diagrams of the asymmetric model for three 

representative coupling structures. Bistable firing of the asymmetric model was 

not present when physiological coupling (ASD>>ADS) was changed either to the 

symmetric (ASD=ADS) or non-physiological (ASD<<ADS) condition. This can be 

explained by the relationship between DDVA parameters and dendritic input 

resistance (Equation (3-7)). Dendritic input resistance can be visually estimated in 

Figure 3-3 (b1)-(b3) by slope of the stable fixed points starting from ISoma=-3. The 

slope is greatest for the physiologic case (b1) and least for the non-physiologic 

case (b3). Subthreshold dendritic excitability, estimated by input resistance, of 

both symmetric and non-physiological cases was too low to activate the saddle-

node bifurcations in the dendritic compartment. 

 

In contrast to dendritic input resistance, somatic input resistance and rheobase (IS 

at the Hopf bifurcation point in Fig. 3-3 a1-a3) were constant for the different 

DDVA values. Since somatic input resistance is an input parameter to the 

equations that solve for the cable parameters of the model, it is expected to be 

constant. However rheobase is not specified, so its stability indicated that this 

parameter might be independent of DDVA values. The results of this analysis 

indicate that the solution space for bistable firing behavior will be constrained to a 

range of DDVA values that give rise to sufficient input resistance at the dendritic 

compartment. 
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Figure 3-3. Bifurcation diagrams in the asymmetric model with physiological (a1 

& b1, ASD(0.89) >> ADS(0.26)), symmetric (a2 & b2, ASD(0.5) = ADS(0.5)), and 

non-physiological (a3 & b3, ASD(0.26) << ADS(0.89)) coupling. The left and right 

columns show changes of the membrane potential induced by the somatic current 

injection (ISoma) in the somatic (Vm,Soma) and dendritic (Vm,Dendrites) compartment. 

For all figures, the stability of fixed points was indicated by black solid line for 

the stable state and black dashed line for the unstable state. Both stable (black 

filled circles) and unstable (gray filled circles) limit cycles were outlined with 

maximum and minimum amplitudes of membrane potential oscillation. Note that 

somatic spiking (indicated by arrows) was initiated at the same bifurcation point 

for all coupling structures, and the slope of the Vm,Soma−ISoma curve in the 

subthreshold region was constant, whereas the slope of the Vm,Dendrites−ISoma curve 

was decreased (i.e. b1>b2>b3), leading to the disappearance of saddle-node 

bifurcations in (b2) and (b3). Active membrane parameters in Table 3-1 were held 
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constant, but passive membrane parameters were systematically changed 

according to coupling structures: GmS={5.1, 3.5, 0.8}, GmD={0.04, 0.7, 3.5}, 

Cm={3.2, 10.4, 29.7}, and GC={0.3, 0.59, 1.0}, where values in curly braces are in 

the order of physiological, symmetric and non-physiological case. 
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3.3.3.2 Characteristic index space 

Figure 3-2 showed that all three CIs were positive in the asymmetric model at the 

default DDVA values of ASD = 0.89 and ADS = 0.26. To determine the relationship 

between DDVA and the three CIs, we systematically varied the DDVA values of 

the model. The resulting values for the three CIs across the full DDVA domain 

are shown in Figure 3-4. 

 

The first row of Figure 3-4 shows the values of the TTP index, i.e. Time To onset 

of Plateau potential. There are distinct areas where TTP had positive values 

between about 50 and 250 (light areas). Across the full DDVA domain the largest 

area had TTP values of zero. This result is ambiguous as it could mean no plateau 

potential was generated or that the plateau potential occurred simultaneously with 

the onset of somatic spiking. The last column shows a cross section of TTP values 

along the ASD axis. The cross section was chosen in this direction as it produced 

the highest gradient of change in TTP. TTP had a value of 0 for small ASD, then 

abruptly increased to a peak value and then decreased with further increases in 

ASD. The second row of Figure 3-4 shows the values of DSF, i.e. Difference in 

Spiking Frequency. The model had positive and negative values for DSF and 

distinct areas of positive values that were close to those associated with positive 

TTP values. In the case of DSF, the cross section with the largest gradient was 

along the ADS axis. The third row of Figure 3-4 shows the distribution of values 

for TES, i.e. Time to End of somatic Spiking. The cross section along the highest 

gradient showed that TES increased linearly for a range of ADS values then 

quickly decreased back towards zero. 

 

Positive values for the three CIs are associated with bistable firing behaviour but 

the areas of positive values were different across the DDVA domain. No single CI 

was sufficient to distinguish the region of bistable solutions. Therefore the 

solution space for bistability on the DDVA domain was defined as the area of 

intersection where all three characteristic indexes were positive. 
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Figure 3-4. Distribution of characteristic indexes (CIs) for the asymmetric model 

on DDVA domain. (a1), (a2), and (a3) show the distribution of TTP, DSF, and 

TES respectively in gray scale, where higher values are white and lower values 

are black. Black arrows indicate the direction of the highest gradient in changes of 

each CI. (b). Cross section of CI values in column (a) along the gradient arrow 

passing to default DDVA values in Table 3-1: (b1) shows TTP values along the 

ASD axis, (b2) shows DSF values along ADS axis, and (b3) shows TES values 
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along the ADS axis. The range of DDVA values producing positive CI values was 

indicated by black dashed lines in each panel of (b) column.



 

113 

3.3.3.3 Firing patterns on DDVA domain 

Having determined the changes in the CIs as a function of the DDVA properties 

we could unequivocally identify the bistable solution space. However, the firing 

patterns of the asymmetric model showed considerable variability within and 

outside the bistable solution space defined by the CIs. The differences in firing 

patterns across the DDVA domain are illustrated in Figures 3-5. 

 

Four types of firing patterns were identified outside the bistable solution space, 

outlined by black dots at the upper left of the DDVA domain. One region of the 

DDVA domain was characterized by a lack of a plateau potential (Fig. 3-5 a1). In 

the model this region occupied the greatest area and extended to ASD values of 0.8 

and greater. A second region of the DDVA domain was characterized by plateau 

potentials that occurred before or simultaneously with the onset of somatic 

spiking (Fig. 3-5 a4).  The borders of the remaining region are outlined in grey in 

Figure 3-5. This region had a variety of firing patterns including simultaneous 

spiking oscillations in both the soma and dendritic compartments (Fig. 3-5 a3). 

Another firing pattern within the grey bounded region showed plateau potentials 

that ended before somatic spiking stopped (Fig. 3-5 a2).  

 

Firing patterns showed systematic changes within the bistable solutions space. 

Representative firing patterns along the boundary of the bistable solution space 

are shown at the bottom of Figure 3-5 (b1-b4). The TTP index increased as ASD 

decreased between points b1 and b2. This is evident by a later acceleration of 

spiking frequency to the triangular current injection. Changes along the ADS axis 

primarily effected frequency hysteresis characterized by DSF. This effect was 

clear in the model where a change of ADS from 0.03 to 0.46 resulted in a doubling 

of DSF and greater hysteresis in the F-I curve (points b3 to b4). 
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Figure 3-5. Firing patterns of the asymmetric model on DDVA domain. The 

DDVA plane is divided into four sub-regions for demonstrating the variety of 

firing patterns. The fully bistable firing patterns (i.e. TTP>0, DSF>0, TES>0) 

occurred in the space outlined with black dots. The different types of non-bistable 

firing patterns were uncovered in three other sub-regions outside the bistable 

space: the upper-right space outlined with gray dots, the upper-left corner, and the 

lower-rest space. Representative firing behaviours on each sub-region were 

simulated with triangular current stimulation (I). a1 to a4 show the non-bistable 

firing patterns. b1 to b4 characterize the fully bistable firing patterns on the 

boundary of the bistable solution space: b1 & b2 for time courses of membrane 

potentials (Vm) and b3 & b4 for the frequency-current (F-I) relationship. The 

somatic and dendritic membrane potentials are indicated by the gray and black 

colors. Circled letters indicate the corresponding location on the DDVA plane. T 

is simulation time. Note that scale bars for Vm, I (i.e. Ia and Ib) and T have 

different ranges. 
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3.3.4 Distribution of physiological DDVA values 

 

The results from Figure 3-5 showed that the asymmetric model had a large 

bistable solution space that extended well beyond the default values for DDVA 

(ASD = 0.89 and ADS = 0.26). The numerical simulations treated the two DDVA 

properties as independent, however in physiologically based models the DDVA 

properties are a function of distance from the soma, Dpath in Chapter 2 (Kim et al., 

2009). To determine the spatial relationship between bistable solutions of the two-

compartment model and anatomically determined DDVA properties, we 

calculated DDVA as a function of distance from five reconstructed motor neurons. 

Figure 3-6 shows that the physiological DDVA values existed within the solution 

space of the asymmetric model. The distances where physiological DDVA values 

were within the bistable solution space ranged from Dpath=128 µm at ADS=0.46 to 

Dpath=577 µm at ADS=0.03. This range of distances matches the hypothesized 

location of calcium PIC channels (at least 300 − 500 µm away from the soma) 

estimated in experimental (Ballou et al., 2006; Heckman et al., 2003) and 

theoretical studies (Carlin et al., 2000b; Elbasiouny et al., 2005; Grande et al., 

2007). The starting point for the DDVA properties of the asymmetric model was 

determined from anatomical model V1 at a distance of 300 µm from the soma. 

The DDVA values for all five anatomical models at Dpath = 300 µm are shown in 

Figure 3-6 (black dots within the solution space). All of these points were located 

inside the solution space of the reduced model.  

 

The coincident spatial relationship between DDVA derived from anatomical 

models and bistable solutions of the asymmetric model suggests that the ability of 

the reduced models to retain physiological DDVA properties may be important 

for modeling nonlinear dynamical behaviour of motor neurons. 
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Figure 3-6. Coincidence of bistable solution space with physiological DDVA 

properties on DDVA domain. The bistable solution space of the asymmetric 

model is outlined by black dots on the DDVA plane. Physiological DDVA 

properties characterized from anatomically reconstructed motor neurons (V1-V4, 

V6 from Chapter 2 (Kim et al., 2009)) were distributed along the various types of 

lines on the same DDVA plane for determining the interception area. The lines of 

physiological DDVA values started from the point of (ASD=1, ADS=1) and ended 

at the point of (ASD=0.33, ADS=0) as a function of the distance from the soma up to 

maximum dendritic terminal. Black solid circles on the DDVA lines indicate 

default DDVA values calculated at the distance of 300 µm for different 

anatomical models, e.g. default DDVA properties for V1 are ASD=0.89 and 

ADS=0.26, which is also used for the default DDVA for the asymmetric model. 
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3.4 DISCUSSION 

 

Our analytical and numerical results supported the hypothesis that asymmetric 

coupling between the soma and dendrites significantly influences the nonlinear 

dynamics of reduced two-compartment models. Furthermore the four 

physiological firing patterns reported for rat motor neurons (Bennett et al., 2001) 

were observed in the model as a function of coupling asymmetry. The results 

suggest that asymmetric coupling is an important concept in producing 

physiological firing patterns. 

  

3.4.1 Interaction of coupling parameters with firing patterns  

 

Input resistance of the soma and dendritic compartments was a major difference 

between symmetric and asymmetrically coupled models. Input resistance in the 

symmetric model was identical for both compartments and changed as a function 

of the coupling parameter (GC). In contrast, input resistances of the two 

compartments in the asymmetric model were independent. The input resistance of 

the soma was constant while the dendritic input resistance changed as a function 

of the coupling parameters (ASD, ADS). The relative difference in input resistance 

between the soma and dendrites can be quantified by calculating the coupling 

index, the ratio of ASD to ADS in Equation (3-7). The coupling index equal to 1.0 

(i.e. ASD=ADS) indicates that the input resistances of the soma and dendrites are 

identical. When the coupling index is greater than 1.0 (i.e. ASD>ADS) the input 

resistance in the dendrites is larger than in the soma, and vice versa (i.e. ASD <ADS). 

The differences in input resistance as a function of the coupling coefficient were 

associated with differences in the variety of firing patterns produced by the 

asymmetric model. Experimental observations have classified four types of firing 

behaviour in motor neurons based on frequency-current (F-I) relationship during 

triangular current stimulation (Bennett et al., 2001): Type I (linearly overlapping 

F-I relationship without self-sustained firing), Type II (clockwise F-I relationship 

with firing rate adaptation), Type III (linearly overlapping F-I relationship with 
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self-sustained firing), and Type IV (counterclockwise F-I relationship with self-

sustained firing). The asymmetric model showed all four types of firing patterns 

(Figure 3-5). Type I and II firing patterns were present when the coupling index 

(or the difference in input resistances) was relatively small, e.g. ASD/ADS = 1 at a1 

in Figure 3-5. Type III firing patterns occurred when the coupling index (or the 

difference in input resistances) was relatively large, e.g. ASD/ADS = 95 at a4 in 

Figure 3-5. Type IV firing patterns were generated when the coupling index (or 

the difference in input resistances) was moderate between above two firing cases, 

e.g. ASD/ADS = 3.4 at the default coupling parameter values (ASD=0.89, ADS=0.26). 

 

3.4.2 Importance of initial values of coupling parameters for bistable firing  

behaviour 

 

The coupling parameters in the asymmetric model were initialized with values 

within the physiological range (ASD=0.89, ADS=0.26), which are different from 

those in the symmetric model (ASD=ADS=0.5 in Booth & Rinzel 1995). By 

releasing the uniformity condition of the specific membrane resistivity in the 

symmetric model, we compared the bistable solutions between two models while 

varying coupling parameters (i.e. ASD and ADS for both models) on the DDVA 

domain. Our numerical results showed that fully bistable firing, i.e. type IV 

behaviour, in the asymmetric model occurred over a much larger area than in the 

symmetric model (Figure 3-7). Although this comparison is not without 

limitations, since the active membrane parameters and system properties of the 

two models were not identical, the difference in the solutions may in part be due 

to the fact that the asymmetric model had a larger dendritic input resistance when 

compared to the symmetric model with the same total surface area. Using 

Equation (3-7) and the initial values for the coupling parameters the input 

resistance for the dendrite was (0.89/0.26)*1.9 = 6.5 for the asymmetric and 

(0.5/0.5)*4.3 = 4.3 for the symmetric model. This result implies that the size of 

bistable solutions (i.e. robustness of bistability) for the asymmetric model may be 
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significantly influenced by the initial coupling values, which are directly 

associated with the excitability of the dendritic compartment (Equation (3-7)). 

 

 

 

 

 

 

 

Figure 3-7. Variability of bistable solution space on DDVA domain. The size of 

the bistable solution space was different in the reduced models with different 

initial DDVA values. The lower outline of black dots shows the bistable solution 

space for the symmetric model with the default value of ASD=ADS=0.5. The upper 

outline of black dots shows the bistable solution space for the asymmetric model 

with the default value of ASD=0.89 and ADS=0.26.
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3.4.3 Comparison with other studies 

 

The relationship between input resistance at the dendrites and attenuation of 

synaptic potentials as they propagate toward the soma has been of interest because 

of the influence on spatial and temporal integration (Katz and Miledi, 1963; Rall 

and Rinzel, 1973; Rinzel and Rall, 1974). The nonlinear dynamic behavior driven 

by the activation of voltage-dependant membrane mechanisms in the dendrites is 

likely to be influenced by both directions of voltage attenuation (i.e. DDVA). Our 

analytical results showed that subthreshold depolarization of the dendritic 

membrane potential was a function of both DDVA properties (Equation (3-13)). 

 

The practical insights into electrophysiological coupling between the soma and 

the dendrites have been previously reported using single input-single output 

(SISO) analysis and reduced abstract models  based on two-port theory (i.e. π- 

and equivalent T-network) (Carnevale and Johnston, 1982; Jaffe and Carnevale, 

1999). This analysis showed that electrophysiological coupling could be 

characterized by direction-dependant voltage/current attenuation and the 

direction-independent transfer resistance phenomenon. Given the relationship 

between input resistance and DDVA properties in Equation (3-7), the transfer 

resistances of the asymmetric model (VS/ID =RN,S ·ASD and VD/IS = RN,D ·ADS for 

each direction) were symmetric and the same as those derived for the T-network 

model (Jaffe and Carnevale, 1999). While the final form of the equations that we 

derived was not novel, this is the first analysis to derive these equations from a 

conductance based compartmental approach that is grounded in biophysical 

reality. Our result demonstrated the validity of the new modeling approach 

starting from fully reconstructed anatomical models in Chapter 2 (Kim et al., 

2009) and being able to write the system of equations to retain both DDVA and 

transfer resistance coupling characteristics. 

 

Gutmann (1991) used an ideal cable formalism to emphasize that electrotonic 

separation between the soma and current source was responsible for the N-shaped 
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current-voltage curve required to generate bistable behaviour of motor neurons. 

Booth and Rinzel (1995) used a theoretical coupling property (i.e. coupling 

conductance, GC) to manipulate electrotonic separation in a two-compartment 

modeling framework. Using dynamic systems theory, they showed that bistable 

firing behaviour resulted when there was a simultaneous saddle-node bifurcation 

in the dendritic compartment and a stable limit cycle in the somatic compartment. 

They found that these necessary conditions for bistable firing happened for a 

small range of intermediate GC values. Their results reinforced the conclusion that 

the ionic current underlying spiking in the soma and currents generating plateau 

potentials in the dendrites needed to be electrotonically separated. However 

neither of these two reduced modeling approaches provided a precise quantitative 

prediction about the physical distance of separation needed for bistable firing 

behaviour. Our two-compartment modeling framework provides this prediction, 

Dpath. We used the physiological property of DDVA as the coupling parameters in 

the new reduced model. We found that bistable firing behaviour happened in a 

circumscribed region of the DDVA domain. Since Dpath determines the DDVA 

parameters, we checked to see if this area was intersected by the DDVA values 

calculated across the range of Dpath for five reconstructed motor neuron models 

(Fig. 3-6). The values of Dpath at the boundaries of the intersection with the 

bistable area provided a quantitative prediction of the physical location of 

dendritic ion channels that generate plateau potentials. Our predictions that the 

separation distance is between 128 – 577 um matches with theoretical estimates 

based on multicompartment anatomical models (Bui et al., 2006; Carlin et al., 

2000b; Elbasiouny et al., 2005) and experimental measures (Ballou et al., 2006; 

Heckman et al., 2003). This result supports the conclusion that our reduced 

modeling approach provides valid predictions. 

 

Similar to the conclusion of Booth and Rinzel (1995), bistable firing behaviour 

(i.e. Type IV) in our two-compartment model required the simultaneous presence 

of a stable limit cycle originating in the soma and a saddle-node bifurcation in the 

dendrite. The reason Type IV firing was restricted to a small area of the DDVA 
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domain was the influence of the ratio of DDVA parameters on input resistance of 

the dendrite (Equation (3-7)). In our modeling framework, the input resistance of 

the soma is controlled while the input resistance of the dendrite is a function of 

Dpath and its relationship to ASD and ADS. Thus in our framework we can explore 

the role of electrotonic separation while maintaining somatic input resistance and 

allowing dendritic input resistance to change as a function of Dpath in the same 

fashion as anatomically based multicompartment models (see Fig. 2-6 in Chapter 

2 (Kim et al., 2009)). This is not possible in symmetrically coupled two-

compartment models that use a theoretical coupling property like GC to 

manipulate electrotonic separation because the input resistance of both 

compartments is the same and changes as a function GC. The independent input 

resistances in the asymmetric model also played a role in generating other 

physiological firing patterns (i.e. Type I-III). Unlike Type IV firing patterns, Type 

I or II firing patterns occurred only when saddle node bifurcations at the dendritic 

compartment were absent during somatic spiking (see Fig. 3-3(b2) and 3-3(b3)). 

The absence of the saddle node bifircation resulted because of the reduced input 

resistance of the dendrite with these DDVA parameters. 

 

3.4.4 Limitations in current modeling approach 

 

A fundamental assumption of two-compartment modeling approaches is that the 

complex anatomy of a single neuron can be lumped into two compartments. Our 

approach treats the dendritic compartment as a point over the dendrites at a 

specified distance from the soma. By choosing this modeling approach, the 

potential influence of individual dendrite properties on the dynamical behavior is 

lost. We chose this approximation to get a general understanding of how 

electrotonic coupling affected the nonlinear dynamics of reduced models. An 

advantage is that the relatively low dimension of the system equations facilitates 

mathematical analysis (Rinzel and Ermentrout, 1998). The dendritic compartment 

in the new reduced modeling could be extended to represent the multiple 

dendrites by applying the new DDVA properties measured between the soma and 
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the multiple dendritic points at the same distance from the soma, but for the 

general analysis as in this study it should be first clear whether the new DDVA 

properties systematically change for specific neuron morphology (Kim et al., 

2009). In the case where individual dendrite properties might be more important, 

such as the staircase-like multiple inward currents observed in motor neurons 

(Carlin et al., 2009), the new reduced modeling would not be appropriate.  

 

Our analysis of the effects of DDVA was restricted to the steady-state condition 

(i.e. DC input). This choice was made because of our interest in the plateau 

potential produced in the dendrites, which is well approximated by a DC signal. 

Voltage attenuation of transient signals (i.e. AC input), such as back-propagating 

action potentials, might be another intrinsic factor that affects the activation of 

voltage-gated ion channels in the dendrites (Hausser et al., 2000; Larkum et al., 

1996; Larkum et al., 1999; Stuart et al., 1997). The DDVA analysis including AC 

signals is more complex: voltage attenuation is larger for AC than for DC signals 

(Tsai et al., 1994). The incorporation of DDVA with AC input into analytical 

solutions for reduced two-compartment models and the resulting effect on 

nonlinear dynamics remains to be done. 

 

The system parameters of our reduced modeling approach are determined based 

on data measured from single neurons: input resistance and time constant as well 

the DDVA properties estimated from anatomical reconstructions. Measurement 

errors would be expected to generate disagreement in nonlinear dynamics 

between the reduced model and in vivo motor neuron behaviour. One potential 

experimental error results from the impalement of cytoplasmic membrane by a 

sharp microelectrode, resulting in a decrease in the estimated specific membrane 

resistivity of the soma (Holmes and Rall, 1992b; Major et al., 1993; Thurbon et al., 

1998; Zengel et al., 1985). The presence of a somatic shunt has a significant effect 

on the DDVA properties (Kim et al., 2009). Dendritic input resistance of the 

reduced models, as a function of distance from the soma, does not match 

anatomical models that include a shunt (not published). If we assume that motor 
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neurons in vivo do not have a somatic shunt, then our reduced model is well 

suited to modeling their behaviour. 

 

The Morris-Lecar formulation of active membrane mechanisms, while convenient 

for qualitative analysis of dynamics, is too simplified to allow comparison with 

specific motor neuron ion channel physiology (Carlin et al., 2000b; Hounsgaard 

and Mintz, 1988; Lee and Heckman, 1999b; Li and Bennett, 2003; Schwindt and 

Crill, 1980c). However, lumped description of inward and outward currents was 

sufficient for the purpose of the present theoretical study: to determine if DDVA 

alters nonlinear dynamics of model neurons. The simplicity of Morris-Lecar 

mechanisms allowed us to find a unique set of parameters (Table 3-1) for the 

asymmetric model that generated qualitatively similar bistable firing behaviour as 

the original symmetric model (Booth & Rinzel, 1995). It is unknown if a single 

set of standard parameters will be found when a full complement of physiological 

ion channels are included in our reduced modeling framework. 

 

 

3.5 CONCLUSION 

 

As far as we know, the current study is the first to show the direct interaction 

between physiological coupling properties (i.e. DDVA) and nonlinear dynamics 

of reduced two-compartment models. Asymmetric coupling between the soma 

and dendrites is a fundamental property that influences firing patterns and the area 

of the bistable solutions in the reduced models. 

 

 

3.6 APPENDIX FOR CHAPTUER 3 

 

The system equations of the asymmetric two-compartment model in Figure 3-1 

were derived based on the previous dimensionless reduced model (Booth and 
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Rinzel, 1995), in which Morris-Lecar membrane excitability (Morris and Lecar, 

1981) was employed to produce bistable firing patterns.  

 

The membrane potential at the somatic compartment, VS(t):  
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The membrane potential at the dendritic compartment, VD(t): 
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Regular firing was mediated by lumped inward (GNa·mS∞) and outward (GK,S·nS) 

conductances at the somatic compartment. Similarly the activation of plateau 

potential was regulated by lumped inward (GCa·mD∞) and outward (GK,D·nD) 

conductances at the dendritic compartment. Definitions and standard values of 

membrane parameters in the system equations were provided in Table 3-1. 
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CHAPTER 4: Frequency response of the passive dendritic 

trees that constrains the bistable firing 

behaviour of a reduced neuron model 

 

 

Glossary 

 

VGIC  Voltage Gated Ion Channel 

PIC  Persistent Inward Current 

DDVA  Direction Dependant Voltage Attenuation 

AC  Alternating Current 

DC  Direct Current 

VASD
DC

 Voltage Attenuation factor from Soma to Dendrites with DC input 

VADS
DC

 Voltage Attenuation factor from Dendrites to Soma with DC input 

VASD
AC

  Voltage Attenuation factor from Soma to Dendrites with AC input 

CI  Characteristic Index 

TTP  Time To onset of Plateau potential 

TES  Time to End of Somatic spiking 

DSF  Difference in Spiking Frequency 

 

 

4.1 INTRODUCTION 

 

Transient electrical signals generated at the cell body such as action potentials 

propagate down to the axonal terminals and also backward into the dendritic trees 

to interact with a number of voltage-gated ion channels (VGICs). The physical 

separation of the VGICs responsible for plateau potentials, in the dendrites, from 
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the spiking generating mechanisms, in the soma, facilitates bistable firing 

behaviour observed in many neurons: the coexistence of two stable states given 

the same current input (Brunel, 2003; Egorov et al., 2002; Hounsgaard and Kiehn, 

1989; Li et al., 2006; Llinas and Sugimori, 1980; Steriade, 1999). The bistable 

firing patterns have been extensively investigated in motor neurons (Lee and 

Heckman, 1996; Li and Bennett, 2003; Schwindt and Crill, 1980c), showing the 

experimental characteristics under triangular current stimulation protocol: 1) the 

higher firing frequency during the descending phase of current stimulation than 

the ascending phase, leading to the counter-clockwise frequency hysteresis in the 

frequency-current relationship (Lee and Heckman, 1998a; Lee and Heckman, 

1998b) and 2) the sustained firing at the lower current intensity during the 

descending phase of current stimulation than the current threshold for the spiking 

during the ascending phase (Bennett et al., 2001). L-type Ca
2+

 channels slowly 

activated at low voltage and generating persistent inward currents (PICs), have 

been suggested to be responsible for plateau potentials that give rise to bistable 

firing behaviour (Booth et al., 1997; Carlin et al., 2000a; Hounsgaard and Mintz, 

1988; Li and Bennett, 2003; Schwindt and Crill, 1980c; Svirskis and Hounsgaard, 

1997). Anatomically, the calcium mediated PIC channels have been shown to be 

concentrated on the dendritic branches physically distal to the soma i.e. 300-500 

µm (Ballou et al., 2006; Carlin et al., 2000b; Elbasiouny et al., 2005; Grande et al., 

2007; Heckman et al., 2003). 

 

The nonlinear (i.e. bistable) dynamics of motor neurons is governed by the spatio-

temporal interaction between different types of somatic and dendritic VGICs. 

This interaction has been shown to be significantly influenced by signal 

propagations of the complex dendritic systems in our previous study (Kim and 

Jones, 2010). The dendritic signaling properties were characterized there by 

measuring voltage attenuations from the soma to all single points over 

anatomically reconstructed dendrites and vice versa, with direct-current (DC) 

inputs which corresponed to the somatic excitatory current stimulation and 

dendritic plateau potential generating currents in the experimental context. For a 
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analytical and numerical investigation, we have developed a biophysically deriven 

two-compartment modeling framework where all passive membrane parameters 

were analytically determined to retain direction-dependent voltage attenuations 

(DDVAs) for the dendritic DC-signaling, as well as essential biophysical 

properties including input resistance and time constant (Kim et al., 2009). 

Analytically manipulating DDVA properties in this reduced modeling framework, 

it was found that the DDVAs were tightly correlated to the input resistance in the 

dendrites and thus variations of DDVA property profoundly altered the firing 

output behaviour of the reduced MN model showing all types of firing patterns 

observed experimentally: Type I-IV (Bennett et al., 2001), and fully and partially 

bistable firing (Lee and Heckman, 1998b). 

 

In addition to the DC signals over the dendrites, the alternating-current (AC) 

signaling has also been observed to be essentially involved in bistable firing of 

motor neurons. To generate fully bistable or Type IV firing (i.e. counter-

clockwise frequency hysteresis with sustained firing) using triangular current 

stimulation at the soma, the current threshold for generating action potentials must 

be lower than the threshold for plateau potentials. Thus action potentials may 

propagate back into the dendrites and play an important role in the activation of 

dendritic VGICs (Larkum et al., 1996), that generate the plateau potential and 

associated bistable firing patterns in experimental data.   

 

In this study, we presented the importance of dendritic AC signaling property in 

understanding the potential impact of back-propagating action potentials on 

bistable firing patterns. The spatial frequency-response of the passive dendrites in 

anatomically reconstructed motor neurons was first characterized for the AC 

signal with a fixed frequency (i.e. 250 Hz corresponding to a action potential 

width of about 2 milliseconds). We expanded our previous reduced modeling 

framework reflecting only dendritic DC-signaling (hereafter referred to as a DC-

RM) to incorporate the characterized AC signaling property of the dendrites (the 

expanded reduced modeling was referred to as a DC/AC-RM). Then active 
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membrane mechanisms were added to the passive DC/AC-RM modifying Morris-

Lecar formulation. Evaluating the nonlinear dynamics (i.e. bistable firing) of the 

new reduced motor neuron model over the whole range of the AC signal 

attenuation along with the DC signaling properties (i.e. DDVA), we demonstrated 

how the dendritic AC signaling influenced the interaction of the back-propagating 

action potentials on the model bistability. Finally, we assessed how bistable 

behaviour of the new reduced model compared with the physiological dendritic 

signaling properties directly measured from anatomically-reconstructed motor 

neuron models for both DC and AC signals. 

 

 

4.2 METHODS 

 

4.2.1  Anatomical neuron models 

 

The anatomical data of five type-identified cat α–motor neurons, contributed by 

Robert Burke’s lab, were downloaded from http://NeuroMorpho.Org (Ascoli, 

2006) The individual anatomical data was translated into the NEURON 

simulation environment (Carnevale and Hines, 2005) using the Import3D tool and 

were corrected to match the soma geometry to the dimensions previously reported 

(Cullheim et al., 1987a). We used the non-uniform specific membrane resistivity 

(Rm Ω·cm
2
) with the same values as previously reported (Table 4-1), assuming a 

cytoplasmic resistivity (Ra) of 70 Ω·cm and a specific membrane capacitance (Cm) 

of 1µF/cm
2
. The electrotonics (i.e. input resistance and system time constant) of 

all passive anatomical models were well matched to those measured 

experimentally. 
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Table 4-1. Passive membrane properties of the type-identified anatomical motor 

neuron models  

 Cells  Rm  

 Motor Neuron Type  Soma Dendrite  

 V1 (36/4) S  455 15,500  

 V2 (38/2) FF  66 17,000  

 V3 (41/2) FF  70 20,000  

 V4 (42/4) FR  120 17,000  

 V6 (43/5) FR  225 11,000  

 

Cell numbers and unit types in the first column matched with those in (Fleshman et 

al., 1988); Specific membrane resistivity, Rm, was non-uniformly assigned with 

lower value in the soma compared to dendrites.
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4.2.2 Frequency response analysis 

 

Because of its spatial geometry, the frequency response (i.e. amplitude ratio and 

phase shift) (Phillips and Harbor, 2000) of the passive dendritic system was 

determined as a function of both signal frequency (ωf) and path length (Dpath) 

from the soma. The spatial variations of frequency response over the dendrites 

were first characterized with the constant ωf, then the dendritic response to the AC 

signals with various ωf (i.e. frequency vector) was evaluated at the fixed Dpath 

where the PIC channels are believed to be clustered on the dendrites. For the 

spatial frequency response analysis, action potentials propagating into the 

dendrites were represented with a sinusoidal wave (i.e. AC) with the characteristic 

frequency (ωf,C) of 250 Hz. The frequency was selected because the average spike 

width for motor neurons is about 2 ms (Coombs et al., 1955) and assuming the 

spike represents half a period of a sinusoidal input, i.e. 4 ms period is equivalent 

to 250 Hz. Applying this AC signal to the soma of the anatomical models in Table 

4-1, the characteristic frequency response was calculated between the soma and 

all individual points over the dendritic trees as a function of Dpath using the 

Impedance class of NEURON software. The amplitude ratio and phase shift data 

were separately plotted like a Bode plot with respect to Dpath and fit with a single 

function to represent the overall response trend. For the comparison of the 

characteristic frequency response in different types of anatomical motor neuron 

models, the amplitude (VA) and phase (Φ) response at the particular distance 

from the soma were represented in a plane vector and plotted by a graph such as a 

Nyquist plot with respect to Dpath in a complex domain consisting of Imaginary 

(Im) and Real (Re) axis. The real (x) and imaginary (y) component of the 

frequency-response vector can be formulated in the general form, 

 

( ) ( )( )
PathfPathf DDVAx ,cos, ωω Φ⋅=                                        (4-1) 

( ) ( )( )PathfPathf DDVAy ,sin, ωω Φ⋅=                                         (4-2) 
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The distance and angle of the individual points from the origin in the complex 

plane correspond to the amplitude and phase response of the dendrites measured 

at the specific Dpath (refer to Fig. 4-1(d) for details).  

Over the wide range of ωf, the new reduced modeling approach for the dendritic 

AC signaling was validated by comparing the frequency response between the 

reduced and anatomically reconstructed models at the fixed Dpath (i.e. 300 µm).   

 

4.2.3 Reduced neuronal modeling 

 

The analytical expansion of the previous conductance based two-compartment 

modeling framework (i.e. DC-RM) to retain the dendritic AC signaling property 

was possible by allowing the membrane capacitance in individual compartments 

to be independent. 

 

4.2.3.1 Passive electrical properties      

Under the Kirchhoff’s current law, the passive dynamics of the DC/AC-RM was 

governed by the following current-balance equations for each compartment, 

 

SDS
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•
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                             (4-3) 

DSD
C

LeakDDmDm,D IVV
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•
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1

)(,
                         (4-4) 

 

where VS and VD are membrane potentials in the somatic and dendritic 

compartment. Cm,S=53.103 and Cm,D=0.39 are membrane capacitances normalized 

by somatic and dendritic surface area. Gm,S=5.067 and Gm,D=0.044 are membrane 

conductances normalized with somatic and dendritic surface area. GC=0.299 is 

coupling conductance normalized with total surface area. ELeak= – 0.7 is reversal 

potential for leak current. IS and ID are the current density injected at the soma and 

dendritic compartment. All passive model parameters in Equation (4-3) & (4-4) 

were analytically determined by solving the inverse equations (refer to Results 3.2 
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and Appendix A) for the essential biophysical properties directly measured from 

the anatomical model (i.e. V1 in Table 4-1): input resistance (RN=1.9 MΩ), 

system time constant (τm=10.4 ms), and the distance-dependent signal 

propagation properties between the soma and dendrites; the soma-to-dendrite 

voltage attenuations with DC (VASD
DC

(Dpath=300µm)=0.89) and AC 

(VASD
AC

(Dpath=300µm)=0.49) input, the dendrite-to-soma voltage attenuation 

with DC input (VADS
DC

 (Dpath=300µm)=0.26), and the morphological factor 

(p=0.168) defined by the ratio of somatic to total surface area. The values of three 

soma-dendrite signaling properties and p were determined when Dpath was 

specified to separate two compartments. All units are dimensionless unless 

specifically stated (Booth and Rinzel, 1995). 

 

4.2.3.2 Active electrical properties      

The bistable firing behaviour of the DC/AC-RM was generated by the interaction 

between action potential and plateau potential generating membrane mechanisms. 

The spiking at the soma was mediated by fast Na
+
 and delayed-rectified K

+
 

currents (∑IA,S) formulated on the Morris-Lecar model (Morris and Lecar, 1981), 

whereas the plateau potentials at the dendrites were evoked by voltage- and time-

dependent L-type Ca
2+

 and delayed-rectified K
+
 currents (∑IA,D) modifying the 

Morris-Lecar membrane excitability where the inward current mediated by Ca
2+

 

was instantaneously activated. After the passive membrane properties were 

specified in the section 2.3.1, the active currents ∑IA,S and ∑IA,D were added to 

the soma corresponding to the right-hand side of the system equation (4-3) and 

the dendrite corresponding to the right hand side of the equation (4-4). The 

dynamics of individual active currents were governed by following conductance 

based equations, 

 

)()( ,, KSSSKNaSSNaSA EVnGEVmGI −−−−= ∞∑                                                 (4-5) 
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All maximum conductance and equilibrium potential values in Equation (4-5) and 

(4-6) were adopted from bistable DC-RM, so that the bifurcation structure for the 

bistable firing behaviour was conserved in the DC/AC-RM: a Hopf bifurcation at 

the onset of somatic spiking and a saddle-node bifurcation at the onset of the 

dendritic plateau potential. Bifurcation analysis demonstrating these dynamics is 

presented in Results (see (a2) & (b2) in Fig. 4-4). GNa=11.0 and GK,S=14.0 are 

maximum conductances for voltage-gated Na
+
 and K

+
 currents in the soma. 

GCa=0.89 and GK,D=0.44 are maximum conductances for voltage-gated Ca
2+

 and 

K
+
 current in the dendrite. ENa=1.0, ECa=1.0 and EK= – 0.7 are reversal potentials 

for Na
+
, Ca

2+
 and K

+
 respectively. All units are dimensionless unless specifically 

stated. 

 

4.2.4 Simulation 
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We evoked the bistable firing patterns using triangular current stimulation to the 

somatic compartment. Based on the time courses of somatic and dendritic 

membrane potentials and their instantaneous firing frequencies, three 

characteristic indexes were identified to evaluate the presence of the bistable 

firing patterns (Kim and Jones, 2010): Time To onset of Plateau potential (TTP), 

Time to End of somatic Spiking (TES) and Difference in Spiking Frequency 

(DSF). Briefly, the positive TTP, TES and DSF represent the delayed onset of the 

plateau potential in the dendrites, the sustained firing during the down phase of 

current stimulation and counter-clockwise frequency hysteresis respectively. The 

details of all three characteristic indexes are illustrated in Fig. 4-3. Bistable firing 

behaviour was operationally determined when all three indexes had positive 

values. This analysis is commonly referred to as the constraints inference method 

with three constraints (TTP>0, TES>0, and DSF>0) (Dechter, 2003). Numerical 

bifurcation analysis of the DC/AC-RM was first conducted for three 

representative AC signal attenuations. Then the simulations were done with the 

DC/AC-RM keeping the active properties constant and independently varying 

three biophysical signaling parameters (i.e. VASD
DC

, VADS
DC

 and VASD
AC

) from 

the default value. We evaluated the three characteristic indexes at each location of 

the three dimensional parameter space, where the location (x, y, z) is defined by 

the value (VASD
DC

, VADS
DC

, VASD
AC

). The solution parameter space for the 

model bistability was defined as a volume where all three characteristic indexes 

were positive. If the dendritic signaling only for DC components is predominant 

in determining the bistable firing behaviour of the reduced model, the volume of 

solution space will not change as a function of VASD
AC

. Then the bistable solution 

space would be completely defined by the DC signaling parameters (VASD
DC

 and 

VADS
DC

) and the DC/AC-RM would not be needed. 

 

 

4.3 RESULTS 
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4.3.1 Frequency response of the anatomically reconstructed models 

 

Applying the AC signal with the fixed frequency of 250 Hz to the soma, the 

distributed frequency response (amplitude and phase) of the anatomically 

reconstructed motor neuron models was characterized along the path length 

(Dpath) of their dendrites from the soma. Figure 4-1a and 4-1b shows the anatomy 

of one of the anatomical models (V1 in Table 4-1) and the amplitude (or voltage) 

attenuation of the input signal that is caused by low pass filtering effects of the 

passive dendrites. The amplitude of the AC signal decayed exponentially with the 

increasing distance from the soma. The degree of amplitude attenuation was more 

severe for the AC (ωf = 250 Hz) than DC (ωf = 0 Hz) signal injected to the soma. 

Whereas the soma-to-dendrite AC amplitude attenuation was less than the 

dendrite-to-soma DC amplitude attenuation at most values of Dpath. The amplitude 

response data (filled black circles) was fit with a single exponential function 

(solid black line) to quantify the rate of amplitude attenuation with a voltage (or 

exponential) decay constant (η). The η was also used in our reduced modeling 

approach to estimate the degree of signal attenuation at the specific Dpath from the 

soma. 

 

Figure 4-1c shows the phase lag behind the AC input signal along the path of the 

dendrites. As Dpath approached the dendritic terminals, the phase lag was 

increased from 0 to –2π radians. The distance at which the signal became out-of-

phase (i.e. –π or 2 ms lag with 250 Hz signal) was relatively far from the soma (i.e. 

Dpath=1200 µm). Even at the most distal branch terminal of the dendritic trees (i.e. 

Dpath = 1854 µm), the signal phase was delayed only by approximately –2π 

radians or 4 ms. The overall phase response data (filled black circles) decayed not 

exponentially, but rather slowly fitting to a cubic polynomial function (solid black 

line) as a function of Dpath. 

 

Figure 4-1d demonstrates the overall frequency response including both the 

amplitude ratio and phase shift in a complex domain as the Dpath appears as a 
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parameter. It was clear in Fig. 4-1(b) & 4-1(c) that the amplitude of the AC signal 

more rapidly decreased than the phase response as Dpath increased from 0 to 

infinity. Resultantly the overall shape of the spatial frequency response (solid gray 

line in Fig. 4-1(d)) was similar to that of a first-order system response (compare 

the solid gray line in Fig. 4-2(b)) with respect to the distance instead of the signal 

frequency. The voltage-gated ion channels responsible for the bistable firing 

behaviour have been suggested to be distributed at least Dpath = 300 – 500 µm 

away from the soma, based on experimental (Ballou et al., 2006; Heckman et al., 

2003) and theoretical studies (Carlin et al., 2000b; Elbasiouny et al., 2005; Grande 

et al., 2007). At the average over this range, the amplitude of the AC signal 

attenuated by 71 % compared to the input signal, whereas the phase was lagged 

only by 13 % (i.e. 0.26π or 0.52 ms lag) of −2π radians that is the phase lag at the 

most end of the dendrites (i.e. Dpath = 1854 µm). At Dpath = 666.1 µm where the 

phase (delay time) was delayed by 25 % (i.e. –π/2 or 1 ms lag) of – 2π radians, the 

signal amplitude decayed by almost 80 % of the input amplitude. Furthermore the 

time scale of signal delay (i.e. maximum 4 ms at the dendritic terminal with 

250Hz signal) was much faster compared to the activation time constant (at least 

30 ms) of the PICs originated in the dendrites (Booth et al., 1997; Carlin et al., 

2000b; Powers, 1993). These results indicate that the changes in the signal delay 

within 2π radians or 4 ms may not make significant effects on the onset timing of 

the PIC channels which has been shown to be critical to determine the type of 

firing patterns in motor neurons (Bennett et al., 2001). 

 

Figure 4-1 illustrates a representative frequency response of the type-identified 

anatomical motor neuron models in Table 4-1. The four other types of motor 

neuron models showed qualitatively similar results (Appendix B).
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Figure 4-1. Spatial frequency response of an anatomically reconstructed motor 

neuron model. (a). Morphology of a representative motor neuron (V1 in Table 4-

1). (b). Amplitude response (VA): the voltage attenuation data (VASD
AC

(250Hz) 

in the middle black dots) for the soma-to-dendrite AC signal with the fixed 

frequency, ωf=250 Hz, was superimposed on that for the DC signals in the same 

direction (VASD
DC

(0) in the top gray dots) and in the opposite direction 

(VADS
DC

(0) in the bottom gray dots) as a function of the path length (Dpath) from 

the soma. Each data set was fitted with a single exponential function: 

exp(−Dpath/2678.7) for the VASD
DC

(0) (upper black line), exp(−Dpath/420.1) for the 

VASD
AC

(250 Hz) (middle gray line) and exp(−Dpath/225) for the VADS
DC

(0) 

(bottom black line). (c). Phase response (Φ): the phase delay data (black dots) was 

presented in radian as a function of Dpath, fitting with a cubic polynomial function 

(6.8*10
-11

*Dpath
3
–9.2*10

-7
 *Dpath

2
–0.0018*Dpath for gray line). The minus radians 

indicate the phase lag behind the input signal. (d). The vector representation of 

distance dependent frequency response in the complex plane consisting of 
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Imaginary (Im in the ordinate) and Real (Re in the abscissa) axis. The imaginary 

and real component of a vector pointing to the individual data points (black dots) 

were calculated using Equation (4-1) & (4-2). The distance and angle of the 

individual vectors from the origin correspond to the amplitude and phase response 

of the dendrites measured at the specific Dpath in (b) and (c). Fitting curve (gray 

line) was also determined from (b) and (c). 
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4.3.2 Expansion of two-compartment modeling framework 

 

Having characterized the spatial frequency response of the complex dendrites, the 

amplitude attenuation of the AC signal turned out to be much more sensitive to 

the distance form the soma than the phase lag. To retain the AC signal amplitude 

attenuation, we released the uniformity of the membrane capacitance in the DC-

RM and derived inverse equations for five unknown cable parameters (i.e. Gm,S, 

Gm,D, Cm,S, Cm,D, GC in Methods) from forward equations for five biophysical 

properties of complex anatomical models (i.e. RN, τm, VASD
DC

, VADS
DC

 and 

VASD
AC

). 

 

The inverse equations for Gm,D, Gm,D and GC were identical to those derived for 

the DC-RM since Gm,D, Gm,D and GC were perfectly constrained by RN and DC 

signaling properties (VASD
DC

 and VADS
DC

). Thus we derived here the inverse 

equations of Cm,D and Cm,S, first for Cm,D from the forward equation of VASD
AC

 

and then for Cm,s from the forward equation of τm. The inverse equations for DC 

model parameters (i.e. Gm,D, Gm,D and GC) were presented in Appendix A 

containing all forward and inverse equations for the DC-RM. 

 Defining VS and VD to be the voltage deviation from resting membrane potential 

in the soma and dendrites, Equation (4-4) can be rewritten in the form of, 
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Applying Laplace transform 
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to the equation (4-7) with ID=0, the equation (4-7) is transformed into a function 

of a parameter s, 
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Then the transfer function from the soma to the dendrites is given in the s-domain, 

 

( ) ( )
( ) ( ) ( )psCpGGsV

sV
sVA

DmDmCS

D
SD −+−+

==
11

G

,,

C                      (4-10) 

where VASD represents the amplitude attenuation of the AC input signal 

propagating from the soma and dendrites.    

 

Mathematically mapping the s-domain to the complex domain by inserting jω, the 

frequency-response function of the DC/AC-RM is, 
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The amplitude response corresponds to the magnitude of the complex number in 

Equation (4-11) given a particular input signal frequency (ωf), 
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When ωf is zero the equation (4-12) becomes identical to the soma-to-dendritic 

voltage attenuation (i.e. VASD
DC

) for DC input (Appendix A).  

 

Rearranging equation (4-12) to get the inverse equation for the dendritic 

membrane capacitance (Cm,D), 
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Cm,D has been analytically determined from the forward equation of the VASD
AC

 

given ωf and Dpath. Note that other passive membrane parameters (i.e. Gm,D and GC 

in Equation (4-13)) are predetermined given RN and dendritic DC signal 

attenuations (VASD
DC

 and VADS
DC

) measured at the specific Dpath from the soma. 

 

The inverse equation for the membrane capacitance in the soma (Cm,S) was 

derived from the forward equation for the system time constant (τm). Starting with 

VS and VD, the system equations (4-3) & (4-4) can be rearranged into the matrix 

form to get the system matrix, 
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The characteristic equation for the system matrix A is quadratic in a single scalar 

variable λ (i.e. the eigenvalue), 
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Since Equation (4-15) is a second-order polynomial function, it has two solutions 

or eigenvalues (i.e. λ1 < λ2). The system time constant (τm) corresponds to the 

reciprocal of the smaller eigenvalue, 
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Given that the system time constant is a predetermined passive system property, 

the inverse equation for the Cm,S was derived from Equation (4-15) in the form of, 
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It should be noted that the Cm,s must be lastly determined in the DC/AC-RM 

because it includes all passive membrane parameters (Gm,S, Gm,D, GC and Cm,D). 

 

4.3.3 Frequency response of reduced neuron models 

 

To validate the new reduced modeling approach and determine if explicitly 

adding AC frequency response added features compared to the DC-RM, the 

frequency response of the DC/AC-RM was compared to the corresponding 

anatomical motor neuron model (V1 in Table 4-1) and DC-RM at the same 

distance from the soma (Dpath = 300 µm), for signal frequencies that were not used 

in developing the new modeling framework. 

Starting with equation (4-10) and adding the passive electrotonic properties we 

rewrite the equation as a general first-order transfer function, 
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Evaluating equation (4-18) at s=jωf, the frequency response of the first-order 

system is described by the well known amplitude and phase equations,  
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. 

As ωf in Equation (4-19) increases from zero to infinity, the magnitude of 

VASD(jωf) decreases from a value of K=1 to zero and the phase lag increases from 

0 to – π /2 radians. This analytical estimation of the frequency-response was 

simulated for both DC-RM (Cm,S=Cm,D=Cm) and DC/AC-RM (Cm,S≠Cm,D), and 

compared to their corresponding anatomical model (V1 in Table 4-1) at different 

input signal frequencies (ωf). 

 

Figure 4-2a clearly shows that the frequency response of the DC/AC-RM is much 

closer to the physiological response directly measured from the anatomical model, 

compared to the DC-RM. At the frequencies used to characterize the DC/AC-RM 

(ωf  = 0 and 250 Hz), the amplitude attenuation was the same in the DC/AC-RM 

and anatomical model as expected. However the phase lag, which was not 

included in the development of the DC/AC-RM, was different. The DC/AC-RM 

had a phase delay that was 0.11π radians greater than in the anatomical case. 

Amplitude was more attenuated in the anatomical model for frequencies less than 

250 Hz but less attenuated above this frequency. The differences in attenuation 

were greatest at 100 and 700 Hz (not shown). Similarly the phase lag between the 

DC/AC-RM and anatomical model was same at 75 Hz. Phase was more delayed 

in the anatomical model for frequencies less than 75Hz but less delayed above 

this frequency. The differences in phase were maximized at 30 and 500 Hz by 

0.04π and 0.12π radians. The frequencies maximizing the differences in frequency 

response were at least two times bigger or less than the characteristic frequency 

(i.e. 250 Hz).  

 

Figure 4-2a also shows that the DC/AC-RM retaining the physiological AC 

signaling property transfers much larger amplitude of action potentials than the 

DC-RM. At ωf = 250 Hz, the amplitude attenuation was seven times less in the 

DC/AC-RM (VA=0.49) than the DC-RM (VA=0.07). This result gave us a 
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critical prediction that the dendrite of the DC/AC-RM might become more 

excitable due to its better transmission of AC signal amplitude than the DC-RM, 

leading to the more facilitation of the PIC channel activation in the dendrite. 

 

In Figure 4-2b, the overall trend of frequency response (i.e. Nyquist plot) of the 

DC/AC-RM was compared to that of the complex anatomical model over the 

broad frequency range between 0 to infinity. The similarity in the shape of vector 

curve and the location of data points between two models supports that the 

physiological frequency response at particular distance from the soma may be 

represented by the first-order reduced dendritic system (indicated by gray graph).  



 

152 

ωf18

ωf=0ωf=∞

ωf1

ωf2

ωf3

ωf4

ωf5ωf6
ωf7

ωf8

ωf9

ωf10

ωf11

ωf12

ωf13

ωf14

ωf15
ωf16
ωf17

1

2

34568910
11

13
14

15

12

16

17

18

7

-0.2 0 0.2 0.6 1

-0.5

-0.3

-0.1

0

0.1

(a)

(b)

100 200 300 400 500

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

-π/2

-3π/8

-π/4

-π/8

0

0

ωf (Hz)

V
A

ωf (Hz)

Φ

Im

Re

Anatomical model
DC/AC-RM
DC-RM

 

 

Figure 4-2. Comparison of the frequency response between the DC/AC-RM, DC-

RM and anatomical motor neuron model. (a) Bode plot: amplitude (VA) and 

phase (Φ) response as a function of input signal frequency (ωf). (b) Nyquist plot:  

integrated representation of frequency response in the complex domain consisting 

of Imaginary (Im) and Real (Re) axis. The overall frequency response of the 

DC/AC-RM and anatomical model is outlined with blank and filled black circles. 

The positions of the individual data points (i.e. both black circles) in the complex 

domain were calculated for the eighteen frequencies sampled between ωf=0 to 

infinity: ωfi = {10, 30, 50, 100, 150, 200, 250, 300, 400, 500, 700, 800, 1000, 

1500, 2000, 3000, 4000, 5000}, where i=1 to 18. The frequencies for the 

anatomical case were indicated only by i. The gray graph represents the frequency 

response of the DC/AC-RM for the continuous frequency vector. The frequencies 
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for DC (ωf=0) and characteristic AC (ωf=250Hz) signals are highlighted with 

squares.
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4.3.4 Bistability of the reduced model with AC signaling property of the 

dendrites 

 

To determine if the DC/AC-RM produced the bistable firing patterns similar to 

the DC-RM we evaluated the firing response to triangular and current pulse inputs. 

Both current input protocols have been used extensively in experimental and 

computational studies on motor neuron bistability (Booth and Rinzel, 1995; 

Hounsgaard and Kiehn, 1989; Hounsgaard et al., 1988b). The triangular current 

stimulation has been used to demonstrate the counterclockwise frequency-current 

hysteresis as well as the sustained firing behaviour in the bistable motor neurons, 

whereas the alternating current pulses have been used to show the bistable state 

transitions in the steady-state condition. 

 

4.3.4.1 Hyperexcitable dendrite in the DC/AC-RM 

Having compared the frequency response between the DC/AC-RM, DC-RM and 

anatomical model with the fixed distance (i.e. Dpath=300), we showed that the AC 

signal attenuation factor (i.e. VASD
AC

) was seven times larger in the DC/AC- than 

DC-RM. To produce bistable firing patterns, we first assigned same kinetics and 

values of all active membrane parameters used in the DC-RM to the DC/AC-RM. 

However the PIC channels in the dendrite were simultaneously activated with 

firing at the soma, leading to the Type III firing (i.e. no frequency hysteresis with 

sustained firing behaviour). There was no way but to add the time constant to the 

activation kinetics of PIC channels in the dendrite to delay the onset timing of 

plateau potentials for the fully bistable firing pattern (or Type IV). Otherwise net 

inward current in the subthreshold region for the dendritic plateau potential had to 

be vanished, which is not physiologically plausible (Schwindt and Crill, 1980b; 

Schwindt and Crill, 1980c). This result indicates that the variations of AC signal 

attenuation may affect the dendritic excitability resulting in the changes in current 

threshold and onset timing of the plateau potential.    
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4.3.4.2 Bistable firing patterns 

Figure 4-3(a) illustrates the firing response of the DC/AC-RM to triangular 

current injection. As the current stimulation to the soma increased, the somatic 

membrane potential (VS) depolarized and then initiated a repetitive spikes 

followed by a jump to a higher firing frequency. This frequency jump was 

attributed to the activation of the plateau potential mediated by the PIC channels 

in the dendrite. The higher firing frequency associated with the PICs sustained 

during the descending phase of current stimulation. This nonlinear firing 

behaviour clearly appeared as the counter-clockwise frequency hysteresis in the 

frequency-current domain (Figure 4-3(b)), which has been considered as an 

indicator for the bistability of the motor neurons. For the fully bistable firing (or 

Type IV firing) as shown in Fig. 4-3(a), three characteristic indexes (CIs) 

indicating the presence of the model bistability were all positive: Time To onset of 

Plateau potential (TTP) had a positive value since somatic spiking preceded the 

dendritic plateau onset. As the stimulation decreased toward the value of current 

threshold determined on the upward phase, the firing frequency remained elevated 

resulting in a positive Difference in Spiking Frequency (DSF). As the current 

stimulation continued to decrease, the model continued to fire well past the 

current threshold resulting in a positive value for Time to End of somatic Spiking 

(TES). 

 

Figure 4-3(c) demonstrates that the model can produce two types of the bistable 

switching behaviour at the same level of steady current stimulation to the soma. 

At the default steady current level, the transition between the resting state (or 

stable equilibrium point) and repetitive firing state (or stable limit cycle) was 

induced by applying brief depolarizing and hyperpolarizing current pulses. 

Likewise, the switch-on and -off of the higher frequency firing state from the 

lower frequency firing state were evoked by short depolarizing and 

hyperpolarizing current pulses over the depolarized steady current level. 
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Figure 4-3. Bistable firing behaviour of the DC/AC-RM. (a). Time course of 

membrane potentials (gray line for somatic and black line for dendritic 

compartment in the middle) during the triangular current stimulation to the soma 

(bottom) and their instantaneous frequencies (top). Three characteristic indexes 

for detecting the model bistability: Time To onset of Plateau potential (TTP), 

Time to End of somatic Spiking (TES) and Difference in Spiking Frequency 

(DSF). (b) The hysteretic relationship of the frequency responses to current 

stimuli for the case of (a). (c). Switching behaviour of membrane potentials (solid 

gray line for somatic and solid black line for dendritic compartment) under the 

briefly depolarizing and hyperpolarizing current stimulation protocol (bottom).
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4.3.5 Dependence of the reduced model dynamics on dendritic AC signaling 

property 

  

4.3.5.1 Insights from bifurcation analysis 

Figure 4-4 shows the positive correlation of the AC signal attenuation (i.e. 

VASD
AC

) to the dendritic excitability which was indirectly evaluated by the 

current threshold in the soma (IS,TH indicated by gray line with arrow) for the 

plateau potential in the dendrite. When VASD
AC

 decreased by six times less than 

the default value (i.e. VASD
AC

=0.49), the IS,TH increased by about 1.8 times larger 

than the initial IS, TH (i.e. IS=2). In contrast, when VASD
AC

 increased by 1.7 times 

larger than the default VASD
AC

, the IS,TH decreased by about 0.8 times less than 

the initial IS, TH. Since the input resistance in the soma (RN,S) was a constraint to 

the DC/AC-RM, the constant slope of VS-IS line in the subthreshold region in Fig. 

4-(a1) to 4-(a3) was expected. Similarly the input resistance in the dendrite (RN,D, 

indicated by the slope of VD-ID line in Fig. 4-(b1) to 4-(b3)) could be expected to 

be constant in the subthreshold region by the relationship derived by Kim and 

Jones (2010) (i.e. RN,D=RN,S*VASD
DC

/ VADS
DC

). However the current threshold 

(i.e. rheobase) for the spiking at the soma was insensitive to changes in the AC 

signaling properties, which indicates that the rheobase might be independent of 

dendritic signaling properties (i.e. VASD
DC

,  VADS
DC

 and VASD
AC

) in the DC/AC-

RM.  The results of bifurcation analysis gave us the critical prediction that the 

solution space for the bistable firing behaviour of the DC/AC-RM will be 

constrained by all three signal propagation properties of the dendrites that give 

rise to appropriate dendritic excitability for plateau potentials in the dendritic 

compartment.
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Figure 4-4. Bifurcation structures at the soma (left column) and dendrite (right 

column) of the DC/AC-RM with increasing AC signal attenuations (VASDAC = 

0.08, 0.49 and 0.88) and constant DC signal attenuations (VASDDC=0.89 and 

VADSDC=0.26). The left and right columns show changes of the membrane 

potential in the somatic (VS) and dendritic (VD) compartment, with the steady 

current injection to the soma (IS). For all figures, the stability of fixed points was 

indicated by black solid line for the stable state and black dashed line for the 

unstable state. Both stable (black filled circles) and unstable (gray filled circles) 

limit cycles were outlined with maximum and minimum amplitudes of membrane 
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potential oscillation. The gray solid lines with arrows indicate the current intensity 

at which the plateau potential is evoked. Note that somatic spiking is initiated at 

the same bifurcation point regardless of changes in VASD
AC

, and the slope of the 

VS-IS and VD-IS curves in the subthreshold region are constant. All model 

parameters (refer to Method) were held constant, but membrane capacitances 

were systematically changed according to VASD
AC

 values: Cm,S={19.944, 53.103, 

54.583} and Cm,D={2.851, 0.39, 0.039}, where values in curly braces are in the 

increasing order of VASD
AC

. 
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4.3.5.2 Bistable solution space 

Figure 4-3 showed that all CIs were positive in the DC/AC-RM at the default 

values of three dendritic signaling properties (VASD
DC

=0.89, VADS
DC

=0.26, 

VASD
AC

=0.49)..To investigate the influence of the dendritic AC signaling on the 

model bistability, we systematically varied three voltage attenuation values that 

were independently parameterized in the DC/AC-RM. Evaluating the CIs as a 

function of the three voltage attenuations, we identified the solution parameter 

space where the model produced the fully-bistable firing behaviour. The firing 

patterns outside the bistable solution space were qualitatively similar to the DC-

RM dynamics. 

 

Figure 4-5(a) shows the distribution of bistable solution points in the three-

dimensional voltage attenuation parameter space. The overall solution parameter 

sets were rather one-sided to the region in the upper left corner of the VASD
DC

– 

VASD
DC

 plane where VASD
DC

 is lager than VADS
DC

. This result was attributed to 

the dependency of the dendritic input resistance on DC signaling properties: 

RN,D=RN,S*VASD
DC

/VADS
DC

. To generate bistable firing the DC/AC-RM must 

have sufficiently large input resistance in the dendrite that is directly proportional 

to VASD
DC

 and inversely to VADS
DC

.  

 

However the horizontal cross-section areas of the solution volume dramatically 

changed as a function of VASD
AC

. Fig. 4-5(b) illustrates the variations of location 

and size of horizontal solution space at three representative values of VASD
AC

 (i.e. 

0.07, 0.21 and 0.73). The cross-section area was maximized at around VASD
AC 

= 

0.73 and minimized at both vertical ends of the solution volume (VASD
AC

=0.01 

for the lower and 0.99 for the upper). The shift in the location of horizontal 

solution spaces indicates that the dendritic AC signaling property (i.e. VASD
AC

) is 

tightly correlated to the dendritic excitability that determines the activation of 

plateau potentials responsible for the bistable firing behaviour. In addition, the 

exponential increase of the horizontal cross-section areas as a function of VASD
AC
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indicates that the VASD
AC

 is also crucial to stabilize the model bistability against 

changes in DC signal propagation properties (i.e. VASD
DC

 and VADS
DC

). 

 

The insets of Fig. 4-5(a) in the right of Fig. 4-5(b) show the systematic changes in 

the bistable firing patterns within the bistable solutions space. Six representative 

firing patterns were sampled along the boundary of the bistable solution volume. 

As VASD
AC

 increased from point a1 (VASD
AC

 = 0.21) to a2 (VASD
AC

 = 0.87), the 

frequency hysteresis significantly decreased due to the early onset of plateau 

potential indicated by the arrow in the inset of a2. Similarly, the increase of 

VASD
DC

 from b1 (0.85) to b2 (0.95) and the decrease of VADS
DC

 from c2 (0.39) 

and c1 (0.11) resulted in the almost simultaneous activation of somatic spiking 

with dendritic VGICs responsible for the plateau potential. These results show 

that all parameter sets within the solution volume in Fig. 4-5(a) can produce the 

fully-bistable firing behaviour as shown in Fig. 4-3. However the current 

threshold (i.e. rheobase indicated by arrows) for the spike initiation was constant 

in all six frequency (F)–current (I) relationships ((a1)−(c2) of Fig. 4-5(a)), which 

indicates that the rheobase in the DC/AC-RM might be independent of all voltage 

attenuation parameters (i.e. VASD
AC

, VASD
DC

 and VADS
DC

). 

 

Similar to the DC-RM (see Fig. 3-5 in Chapter 3), three types of firing behaviours 

were identified outside the solution space based on F-I curve during triangular 

current stimulation (Bennett et al., 2001): 1) Type I (linearly overlapping F-I 

relationship without sustained firing) or II (clockwise F-I relationship with firing 

rate adaptation) firing in the space below a1 and b1 without the activation of 

plateau potentials, 2) Type III firing (linearly overlapping F-I relationship with 

sustained firing) in the space left of c2 and upper of b2 with simultaneous 

activation of plateau potentials with firing, and 3) the synchronized firing between 

the somatic and dendritic compartments in the space right of c1 including partially 

bistable firing with the activation of plateau potential that was turned off in the 

descending phase of current stimulation prior to approaching the current threshold 

for the firing in the ascending phase. 
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Figure 4-5. Bistable solution space of the DC/AC-RM. (a). The solution 

parameter sets for the fully bistable firing behaviour of the DC/AC-RM were 

volumized with gray patches in the three–dimensional parameter space (VASD
DC

, 

VADS
DC

 and VASD
AC

). Two representative cross section areas of the solution 

volume at VASD
DC

=0.89 (for left gray dots) and VADS
DC

=0.26 (for right gray 

dots) were plotted in separate insets indicated by gray dashed arrows. Six 

representative solution points (a1–a2, b1–b2 and c1–c2) were selected along the 

boundary of two cross section areas for showing the fully bistable firing patterns. 

Circled numbers in six frequency (F)–somatic current (IS) relationships 

correspond to the boundary points at each cross section of the solution volume. 

Black arrows indicate the current threshold for initiating the spike. (b). Cross 

sectional areas at different levels of amplitude attenuation of the AC signal 

(VASD
AC

) on the VASD
DC

–VADS
DC

 plane. 
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4.3.6 Spatial relationship of the bistable solution space 

 

The results from Fig. 4-5 showed that the DC/AC-RM had a large bistable 

solution space that expanded well beyond the default values for voltage 

attenuation (VASD
DC

=0.89, VADS
DC

=0.26 and VASD
DC

=0.49). The numerical 

simulations treated the three voltage attenuation properties as independent, 

however in physiologically based models the voltage attenuation properties are a 

function of distance from the soma, Dpath in Fig. 4-1. To determine the spatial 

relationship between bistable solutions of the two-compartment model and 

anatomically determined voltage attenuation properties, we calculated voltage 

attenuation properties as a function of distance from five reconstructed motor 

neurons in Table 4-1. Figure 4-6 shows that the physiological voltage attenuation 

values of V1 existed within the solution space of corresponding DC/AC-RM. The 

distance where physiological voltage attenuation values for the anatomical model 

V1 was within the bistable solution space ranged from Dpath= 125 µm at 

VASD
AC

=0.74 to Dpath=630 µm at VASD
AC

=0.22. This range of distances matches 

the hypothesized location of calcium PIC channels (at least 300–500 µm away 

from the soma) estimated in experimental (Ballou et al., 2006; Heckman et al., 

2003) and theoretical studies (Carlin et al., 2000b; Elbasiouny et al., 2005; Grande 

et al., 2007). The starting point for the voltage attenuation properties of the 

DC/AC-RM was determined from anatomical model V1 at a distance of 300 µm 

from the soma. It should be noted that the physiological voltage attenuation 

values for V1 (S), V4 (FR) and V5 (FR) fully went through the solution space, but 

V2 (FF) and V3 (FF) were partially intercepted. This might imply the type 

dependency of the bistable firing behaviour of motor neurons (Lee and Heckman, 

1998b). The coincident spatial relationship between voltage attenuation values 

derived from anatomical models and bistable solutions of the DC/AC-RM 

suggests that the ability of the reduced models to retain physiological AC signal 

propagation property (VASD
DC

) may be important for modeling nonlinear 

dynamical behaviour of motor neurons.
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Figure 4-6. Coincidence of bistable solution space with physiological voltage 

attenuation properties. The bistable solution space of the DC/AC-RM is outlined 

by gray patches in the three dimensional parameter space consisting of VASD
DC

, 

VADS
DC

 and VADS
AC

. To determine the interception area, physiological voltage 

attenuation values calculated from anatomically reconstructed motor neurons 

(V1–V4, V6 in Table 4-1) were superimposed on the same solution space using 

the various types of lines with different colors. The lines of physiological voltage 

attenuation values started from the point of (VASD
DC

=1, VADS
DC

=1, VADS
AC

=1) 

and ended at the point of (VASD
DC

=0.6, VADS
DC

=0, VADS
AC

=0.04) as a function 

of the distance from the soma up to maximum dendritic terminal. The arrows 

indicate the boundary points of intersection between the solution space and 

physiological voltage attenuations of the anatomical model V1.
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4.4 DISCUSSION 

 

We demonstrated how the AC signals like action potentials propagating into the 

dendrites influence the bistable firing output of reduced motor neuron models. 

The AC signaling property characterized from the frequency response analysis of 

the dendrites was found to be an essential biophysical parameter to determine the 

dendritic excitability for generating plateau potentials. The onset timing of the 

plateau potentials and the solution space (i.e. robustness) for the model bistability 

were tightly correlated to the degree of the AC signal attenuation, as well as DC 

signaling. This result supports that at least three dendritic signaling properties (i.e. 

VASD
DC

, VADS
DC

 and VADS
AC

) should be considered in reduced neuron modeling 

to produce the physiological neuron bistability.  

 

4.4.1 Passive versus active propagation of action potentials in motor neurons 

 

To our knowledge, it is not still clear whether the action potentials propagate 

passively or actively into the dendrites of spinal motor neurons in adult 

mammalian animals. But using the organotypic preparation of rat spinal cord 

neurons, Larkum and his colleagues (1999) have suggested that some of dendritic 

trees of ventral horn neurons may have voltage-gated Na
+
 channels that may 

mediate the active back-propagation of action potentials and the activation of Ca
2+

 

influx. However, their spinal neurons seem to be very different from those of the 

adult motor neurons in vivo in terms of the signal propagation properties between 

the soma and dendrites. The amplitude attenuation of the AC signal propagating 

anatomically reconstructed passive dendrites of cat motor neurons (Fig. 4-1) 

turned out to be similar to that of actively propagating action potentials 

experimentally observed from the rat ventral horn neurons up to the distance of 

450 µm from the soma. Furthermore the voltage attenuations of anatomically 

reconstructed motor neurons have been shown to be different from those of ideal 

passive cable models that they used to estimate passive back-propagation of 

action potentials (Kim et al., 2009). Thus it might be possible that the action 
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potentials passively propagate until interacting with PIC channels concentrated on 

the dendrites away from the soma by about 300–500 µm. Alternatively, if adult 

motor neurons propagate action potentials actively (i.e. larger VASD
AC

), the 

robustness of the bistable firing behaviour (defined by the size of solution space 

in Fig. 4-5(b)) might become significantly improved. Further experimental 

measurements are required for the clarification of this issue in mammalian motor 

neurons in the spinal cord. The physiological effects of the back-propagating 

action potentials on the activation of dendritic VGIC channels may be indirectly 

measured by comparing the current threshold for the plateau potentials with to 

without spike blockers (e.g. TTX or QX314) in the same cell. 

 

4.4.2 Retrograde signaling of action potentials for short-term plasticity 

 

It has been suggested that the facilitation of L-type Ca
2+

 channels generating 

plateau potentials is essential to evoke the use-dependant plasticity in the 

dendritic integration of synaptic inputs in the turtle motor neurons (Svirskis and 

Hounsgaard, 1997). In their experiments using current pulses to the soma, the 

voltage threshold for the spike was typically lower than that for the plateau 

potentials. Thus the action potentials generated at the soma were likely to 

propagate into the dendrites and interact with L-type Ca
2+

 channels, which implies 

that the facilitation of Ca
2+

 channels underlying dendritic short-term plasticity 

might be significantly influenced by the dendritic signaling properties for the 

back-propagating action potentials. This inference supports that the dendritic 

propagation property for both DC and AC signals is a critical factor influencing 

not only the bistable firing outputs but also the dendritic processing of various 

synaptic inputs, based on the same mechanism of varying the facilitation effects 

(also called ‘warming up’) on the L-type Ca
2+

 channel in the dendrites. 

 

4.4.3 Type–dependency of AC signal attenuation property 

 



 

167 

Motor neurons have been classified into three groups based on mechanical 

properties of muscle fibers that they innervate: Slow-twitch (S)-, Fast-twitch 

fatigue-resistant (FR)- and Fast-twitch fatigable (FF)-type. It  has been suggested 

that the morphological properties of the dendrites may be related to the motor 

neuron types (Cullheim et al., 1987a; Cullheim et al., 1987b). Thus the dendritic 

AC signaling property might depend on the motor neuron type-related 

morphology. In order to resolve this issue, we reconstructed six type-identified 

anatomical dendrites. For each type-specific morphology, voltage decay 

coefficient (η) was calculated fitting the amplitude response of the dendrites (Fig. 

4-1(b)) to a single exponential function while varying the cell input resistance 

from 0.4 to 4.0 МΩ. Figure 4-7 showed that η values were not clustered into a 

specific motor neuron type at the same input resistance, suggesting that the AC 

signal attenuation might not be type-specific, rather genetic. However more 

samples of type-identified motor neuron models might be needed to clarify the 

inconclusive result.
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Figure 4-7. Relationship between the exponential decay coefficient (η) of the 

amplitude attenuation and input resistance (RN) for six type-identified anatomical 

motor neuron models. η for the AC signal was plotted in the middle on RN values 

ranged from 0.4 to 4.0 МΩ for the soma-to-dendrite direction. The scattered 

distribution of different line types indicates no clustering by motor neuron types. 

Note that the relationship between η and RN is significantly between transient and 

steady-state signal cases for both directions.
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4.4.4 Comparison with other studies 

 

Previous computational studies on the signal propagation properties of the 

dendrites have been focused on understanding how effectively the synaptic effects 

evoked in the dendritic branches contribute to the generation of action potentials 

in the soma (Jaffe and Carnevale, 1999; Rall and Rinzel, 1973; Rinzel and Rall, 

1974). Many efforts have been made on showing the functional roles of 

retrograde signaling of action potentials that actively propagate by the various 

voltage-gated channels over the dendritic trees of pyramidal neurons in the brain 

(Hausser et al., 2000; Larkum et al., 1999; Stuart et al., 1997). However the 

dendritic AC signaling properties have not been explicitly investigated in the 

spinal motor neurons. As far as we know, we are the first to characterize the 

frequency response of the fully reconstructed motor neuron dendrites with 

empirically determined cable properties and developed the analytical method to 

map both DC and AC signaling properties of the anatomically reconstructed 

dendrites into the two-compartment modeling domain. 

 

The new reduced modeling framework (i.e. DC/AC-RM) was directly expanded 

from the previous physiological two-compartment modeling (i.e. DC-RM) that 

can capture the DC signal propagation properties for both directions (i.e. from the 

soma to dendrites and vice versa). The main difference in system equations was 

the non-uniform membrane capacitances (Equation (4-3) & (4-4)) in the new 

model. The membrane capacitance at the dendrite in the new modeling framework 

turned out to influence not only the AC signal attenuation (Equation (4-12)), but 

also the membrane capacitance at the soma (Equation (4-17)). Thus the membrane 

capacitance at the soma was ten times larger in the DC/AC-RM than in the DC-

RM, resulting in three times less in the initial firing rate in the DC/AC-RM case 

where the dendritic AC signaling was specifically reflected. If considering 

appropriate units (e.g. ms for time in Figure 4-3), the initial firing rate (i.e. 20 Hz) 

of the expanded model was more close to the physiological range. This result 
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supports that reflecting the dendritic AC signaling property is also essential to 

constrain the shape of the action potentials in the reduced modeling framework. 

 

In order to produce bistable firing patterns in the new reduced modeling 

framework, we first applied Morris-Lecarr membrane excitability that are 

mediated by instantaneously activated inward currents and slowly activated 

outward currents. Unlike in the DC-RM the instantaneous activation of L-type 

Ca
2+

 channels in the dendrites could not generate the delayed onset of plateau 

potential which is essential for the fully bistable firing, without adding the time 

constant to the activation kinetics of dendritic L-type Ca
2+

 channels. In fact, the 

experimental and computational studies have suggested the slow kinetics of 

persistent inward currents mediated by L-type Ca2+ channels in the dendrites for 

the motor neuron bistability (Carlin et al., 2000a; Carlin et al., 2000b; Li and 

Bennett, 2003; Powers, 1993; Svirskis and Hounsgaard, 1997). Thus reflecting the 

dendritic AC signaling properties in the reduced modeling framework resulted in 

realistically constraining the kinetics of L-type Ca
2+

 channels, leading to the 

generation of the physiological bistable firing behaviour. 

 

Owing to the uniformity of membrane capacitance (i.e. Cm = Cm,S = Cm,D) in the 

DC-RM, the soma-to-dendrite AC voltage attenuation was arbitrarily determined 

depending on passive membrane parameters (GC, Gm,S and Gm,D). It turned out 

that the default value of soma-to-dendrite AC voltage attenuation (VA in Fig. 4-

2(a)) in the DC/AC-RM was seven times larger than in the DC-RM case. 

Although the direct comparison of the solution space between two cases is 

difficult, it was obvious that the size of solution space in the DC/AC-RM 

significantly varied according to the level of the AC amplitude attenuation. In 

Figure 4-5(b), the solution space size at VASD
AC

=0.07 (initial value in the DC-

RM) was almost ten times less than at ASD
AC

=0.49 (initial value in the DC/AC-

RM). The physiological value of the dendritic AC signal property significantly 

improved the robustness of the model bistability. This result implies that the 

actively back-propagating action potentials might further contribute to stabilize 
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the bistable firing behaviour of motor neurons against changes in electrical 

structure of the dendrites. 

 

4.4.5 Limitations in current modeling approach 

 

The biophysical parameters of dendritic signaling properties (Fig. 4-1(b)) for the 

realistic two-compartment modeling were measured as a function of the path 

length (i.e. Dpath) between the soma and individual points over the dendrites where 

VGICs were assumed to be placed. However the VGICs could be uniformly 

distributed over all points of the dendrites that are separated by the same distance 

from the soma, then might differently alter the bistable firing patterns. The main 

difference between two distribution conditions, one and all dendritic points, is the 

amount of effective PIC currents approaching the soma that are mediated by 

dendritic VGICs. Due to the parallel structure of the dendritiec trees, the influence 

of back-propagation action potentials on the activation of dendritic VGICs can be 

identical regardless of the between two cases. Therefore this assumption seems to 

be reasonable for the theoretical purpose of this study in terms of the bistability of 

the reduced model. 

 

The specific membrane capacitance at the dendrite (Cm,D) was determined as a 

function of the coupling conductance (GC), dendritic membrane conductance 

(Gm,D), morphological factor (p), and soma-to-dendrite AC voltage attenuation 

(VASD
AC

) in the DC/AC-RM (Equation (4-13)). In order to get real values of Cm,D, 

the inside of the square root in Equation (4-13)  should be positive and thus the 

necessary and sufficient condition is, 

 

AC

SD

DC

SD

DmC

C VAVA
pGG

G
>=

−+ )1(,

                             (4-20) 

 

Although this condition may limit the robustness of our inverse methods, it 

appears to be the intrinsic property of the complex dendritic systems: the soma-to-
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dendrite DC voltage attenuation is less than the AC case (Fig. 4-1(b)). This 

signal-dependant inequality of signal propagation from the soma to dendrites has 

been graphically demonstrated in the electrotonic space where the length of the 

dendritic branches representing the signal attenuation was longer for AC than for 

DC signal (Carnevale et al., 1997). Thus the new reduced modeling would not be 

appropriate when the AC signals actively propagate into the dendrites so that 

VASD
DC

 is less than VADS
AC

. In this case, the associated active membrane 

mechanisms should be considered additionally. 

 

While the Morris-Lecar formulation of active membrane mechanisms is 

convenient for qualitative analysis of dynamics, it is too simplified to capture all 

aspects of physiological spike shape mediated by specific motor neuron ion 

channel physiology (Carlin et al., 2000b; Hounsgaard and Mintz, 1988; Lee and 

Heckman, 1999b; Li and Bennett, 2003; Schwindt and Crill, 1980c). However 

lumped description of inward and outward currents was sufficient for the purpose 

of the present theoretical study: to determine if the dendritic AC signaling 

property is important in generating nonlinear dynamics of motor neurons. 

 

 

4.5 CONCLUSION 

 

To our knowledge, this is the first frequency response analysis of the passive 

dendritic trees in spinal motor neurons. The degree of the amplitude attenuation of 

the AC signals (i.e. action potentials) is a critical factor in forming and stabilizing 

the physiological bistable firing behaviour in the reduced neuron models. 

 

 

4.6 APPENDIX A FOR CHAPTER 4 

 

Forward and inverse equations for the DC-RM (Kim et al., 2009). The system 

equations are identical to the DC/AC-RM except for the uniform membrane 
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capacitance (i.e. Cm=Cm,S=Cm,D). Essential electrotonic properties that constrain 

the model parameters (i.e. Gm,S, Gm,D, Cm, GC) are input resistance (rN,S), system 

time constant (τm), and directional voltage attenuations (i.e. VASD
DC

 and VADS
DC

) 

with the DC input. Note that forward equations for rN,S, τm, VASD
DC

 and VADS
DC

, 

and inverse equations for Gm,S, Gm,D and GC are not influenced in the DC/AC-RM 

to retain the amplitude attenuation of the AC signals (i.e. VASD
AC

). 

 

► Forward equations: 
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► Inverse equations:   
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4.7 APPENDIX B FOR CHAPTER 4 

 

Morphology and frequency response of four type-identified anatomically 

reconstructed motor neuron models in Table 4-1.  
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CHAPTER 5: GENERAL DISCUSSION 

 

 

5.1 THESIS SUMMARY 

 

The main goal of this thesis research was to investigate the roles of the dendrites 

in the input-output properties of MNs that retain active membrane mechanisms 

responsible for generating bistable firing behaviour. To derive biophysical 

principles underlying the MN bistability, the reverse-engineering approach was 

employed to directly map the essential biophysical parameters empirically 

measurable from the MNs into the reduced modeling framework, maintaining the 

traceability between the target MN and its corresponding reduced model based on 

the physical distance from the soma. As a result, the novel reduced modeling 

approach that retains the physiological signal propagation properties of the 

dendrites with DC input was developed in Chapter 2. Analyzing this modeling 

approach in Chapter 3, it was revealed that the dendritic excitability resulting 

from the directional signaling properties of the dendrites is a critical factor 

determining the bistable firing behaviour of the reduced MN model. Through the 

frequency response analysis of the dendrites in Chapter 4, the steady-state AC 

signaling like the action potentials propagating into the dendrites turned out to 

significantly facilitate the activation of the PIC channels, leading to changes in 

not only bistable firing patterns but also the robustness of the model bistability. 

All these results support that the complex dendritic signaling properties between 

the soma and dendrites play an essential role in determining and stabilizing the 

bistable firing behaviour of the MNs in vivo. 
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5.2 ASYMMETRIC SIGNALING IN DENDRITIC NEURONS 

 

Since the concept of electrotonic distance (X=x/λ, x is a physical distance from 

the soma and λ is space constant) was first introduced in Rall’s modeling 

framework (i.e. infinite cable modeling), X has been used in many literature as a 

convenient measure to represent how far one point on the dendritic branches is 

electrically separated away from the soma. However the degree of electrotonical 

separation between the soma and dendrites depends on the direction and type of 

the propagating signals. For instance, the electrotonic distance from the dendrites 

to soma was much longer than from the soma to dendrites. The electrotonic 

distance was more extended with the AC than DC inputs regardless of 

propagation direction. Thus the single variable X is not sufficient to represent the 

complex electrotonic structure of the complex dendritic systems. This issue is not 

new, but has been graphically emphasized by highlighting the signal−dependent 

electromorphology of the dendrites only in the electrotonic domain (Carnevale et 

al., 1995; Tsai et al., 1994). In this thesis, I demonstrated that the complex 

signaling properties of the anatomically reconstructed motor neurons 

systematically vary as a function of the physical distance from the soma and fit 

well to a single exponential function for each propagation direction. The usage of 

the physical distance instead of abstract variable X would be very useful in 

interpreting the results from the computational modeling framework in the context 

of the target neuron in vivo. I believe that the physical distance based 

representation of the dendritic signaling will benefit to reducing the gap between 

computational and experimental studies on the dendritic computations. 

 

 

5.3 PHYSIOLOGICAL REDUCED MODELING FRAMEWORK 

 

The distance−based characterization of the dendritic signaling properties allowed 

us to develop the physiological reduced modeling framework, where the model 

parameters are analytically determined to retain the essential electric properties of 
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the MNs in vivo. The reduced MN model used in this thesis was specified directly 

from anatomically reconstructed MN models following seven modeling steps: 

1) Import the anatomical MN data downloaded from www.neuromorpho.org 

into NEURON software environment. 

2) Assign the empirically estimated passive membrane properties (i.e. Rm, Ri 

and Cm) to the anatomical MNs. 

3) Conduct electrotonic analysis using Impedance class in NEURON 

(Chapter 2 & 4): the input resistance (RN) and time constant (τm) at the 

soma, and three signal propagation properties (ASD
DC

, ASD
AC

 and ADS
DC

) 

of the dendrites and morphological factor (p) as a function of the distance 

from the soma (i.e. Dpath). 

4) Determine the location of PIC channels away from the soma to specify 

Dpath.  

5) Choose ASD
DC

, ASD
AC

, ADS
DC

 and p at the specified Dpath from the 

electrotonic data in the step 3.   

6) Solve inverse equations (Chapter 4) for the passive membrane parameters 

(Gm,S, Gm,D, Cm,S, Cm,D and GC) of the reduced model given essential 

electric properties (RN, τm, ASD
DC

, ASD
AC

, ADS
DC

 and p) of the anatomical 

MNs.  

7) Assign active membrane mechanisms (i.e. modified Morris-Lecar 

membrane excitability) to the somatic and dendritic compartment, and 

adjust maximum conductance density values to generate action and 

plateau potentials observed experimentally. 

 

It is worth noting that the essential electric properties for the step 5 may also be 

directly measured from the real MNs using simultaneous whole-cell recordings 

from the soma and dendrites (Larkum et al., 1996; Stuart et al., 1993). 

Alternatively, Hodgkin and Huxley type of membrane mechanisms may also be 

employed in the step 7 matching the voltage−clamping data for the excitable 

membrane or voltage-gated ion channels. In this case, the further measurement of 

the MN properties such as rheobase, AHP properties and effective PIC currents at 
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the soma might be required to constrain the maximum conductance values of the 

various types of voltage-gated channels in both somatic and dendritic 

compartments. 

  

Although the reduced modeling approach has been extensively used to investigate 

the neuronal dynamics using mathematical analysis, the uniqueness of the model 

parameter values and the suitability of reduction assumptions have been pointed 

out. The new reduction method has effectively resolved these issues by 

analytically solving the inverse problems for the model parameters given essential 

biophysical properties of single neuron, and by applying two-port theory that 

allowed us to reflect the electrical structure of the whole dendritic trees. Since the 

new reduction methodology we have developed is general, I believe that this 

approach may significantly facilitate the realistic construction and computational 

exploration of complex neural networks for both physiological and artificial 

neural systems. 

 

 

5.4 BIOPHYSICAL PRINCIPLE UNDERLYING MOTOR NEURON 

BISTABILITY 

 

The nonlinear (i.e. bistable) firing behaviour observed at the soma of the spinal 

MNs has been clearly shown to be mediated by plateau potentials that are 

generated by the activation of persistent inward current (PIC) channels in the 

dendrites. The analysis of the reduced modeling framework reflecting the 

physiological signaling properties of the dendrites gave us an insight into the 

underlying biophysical principle of the MN bistability. The critical factor to 

determine the bistability turned out to be the local excitability over the passive 

dendrites, that could be modulated by the complex signaling properties between 

the soma and dendrites. For instance, the local input resistance in the dendrites 

was tightly correlated to the asymmetric DC signaling as well as the input 

resistance at the soma. The frequency response of the dendrites was also 

significant in determining the dendritic impedance level. Thus in order to get the 
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reduced MN model fully bistable, the values of the three dendritic signaling 

parameters (i.e. VSD
DC

, VSD
AC

 and VDS
DC

) must be confined in the isolated 

parameter space that could hold the local excitability of the dendrites in an 

appropriate level (i.e. not too low and high for the delayed onset of plateau 

potentials). This was why to generate bistable firing behaviour the PIC channels 

should be distributed over the intermediate distance range (e.g. 300-850 µm) 

away from the soma in the anatomically reconstructed MN model (Elbasiouny et 

al., 2005). Hence the spatially distributed and passively manageable excitability 

over the complex dendritic trees seems to be an optimal design principle to 

minimize the energy expenditure for maintaining variety in active membrane 

mechanisms in neurons. I propose that all three dendritic signaling properties 

determining the excitability of the dendrites should be considered in the 

physiological reduced modeling. The new reduced modeling may be used as a 

minimal neuron model for the neural network software or hardware. 

 

 

5.5 FUTURE WORKS: REALISTIC MOTOR UNIT POOL 

MODELING 

 

The theoretical reduced modeling framework developed in this thesis may provide 

a kind of abstract template that can be instantiated to several hundreds of 

individual motor neurons with different membrane properties that consist of a 

heterogeneous motor neuron pool in the spinal cord. 

  

Realization of theoretical MN model: For the realistic instantiation, it is first 

necessary to know how significantly the input-output properties of the reduced 

model are different from its corresponding complex MN. Recently, this issue has 

been investigated comparing the physiological bistable firing behaviour of an 

anatomically reconstructed MN (Elbasiouny et al., 2005) to the reduced case. The 

types and kinetics of all voltage-gated ion channels used in the anatomical model 

were applied identically to the reduced model, except the maximum conductances 
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that were adjusted to match the whole-cell properties such as rheobase (Irheo), 

afterhyperpolarization (AHP) and effective PIC (IN,PIC). The distance (Dpath) for 

the separation of two compartments was chosen to the location (in average 600 

µm from the soma) of PIC channels that was used to produce bistable firing 

behaviour in the anatomical case. The cable parameters of the reduced model 

were analytically determined using inverse equations to retain RN, τm, VASD
DC

, 

VASD
AC

 and VADS
DC

 of the original cell, where three dendritic signaling factors 

were measured directly from the anatomical model at Dpath = 600 µm from the 

soma. The maximum conductances for spiking at the soma were first numerically 

determined to match Irheo and AHP of the anatomical model, and then IN,PIC 

constrained the maximum conductance of L-type Cav1.3 channels for plateau 

potentials at the dendrites. The firing output pattern (e.g. initial firing rates, 

primary and secondary slope, and overall shape of frequency hysteresis) of the 

reduced model to the same triangular current stimulation was amazingly similar to 

that of the anatomical model. This result showed not only the possible realization 

of the theoretical modeling framework, but also that the dendritic signaling 

properties identified in this thesis are essential to determine the bistable firing 

output in MNs. This study was presented in the Motoneuron Meeting in Paris 

(Kim and Jones, 2010).      

 

Assignment of type−related electrical properties to the realistic reduced MNs: In 

the spinal cord of mammalian animals, electrical properties of MNs are not 

discrete but continuously change over different motor unit types (i.e. S-, FR- and 

FF types). Some electrical properties such as RN, τm and Irheo have been reported 

to be strongly correlated with MN types in a broad range of values: 0.4< RN <4.0 

MΩ, 5< τm <17 ms and 3< Irheo <40 nA (Zengel et al., 1985). In particular, RN has 

been shown to be proportionally related to τm whereas inversely to Irheo. In 

addition, VASD
DC

, VASD
AC

 and VADS
DC

 at a particular Dpath have been shown to 

vary as a function of RN that determined the voltage decay coefficient (η) for each 

signaling property. This dependency on RN has facilitated the automation of 

realistic MN pool modeling, by allowing to formulate all essential biophysical 
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properties as a function of two variables (RN and Dpath) with a noise factor (e.g. 

zero mean Gaussian randomness) that represents the variance of values at a 

particular RN and Dpath. However little has been known about the distribution of 

Dpath over the MN pool that indicates the location of plateau potential generating 

PIC channels in the dendrites. Our preliminary result using the unified 

formulation scheme has suggested that there were strong interactions between the 

biophysical parameters that distinguish motor neurons of different types, the 

localization of PICs and nonlinear firing patterns (Kim and Jones, 2010). 

 

Construction of a motor unit pool model: In order to complete modeling of a 

single MN pool, the distribution of the number of MNs over the range of RN must 

be specified to control the composition of MN types in the pool (e.g. the number 

of S-type MNs >> FR-type > FF-type). Then incorporating the type specific 

firing-force muscle models including nonlinearities in muscle force output 

(Sandercock and Heckman, 2001), the motor unit pool model may be efficiently 

implemented under the object-oriented, distributed-computing software design 

paradigm with a database application. The global pattern of the motor unit pool 

dynamics may be characterized while varying key bifurcation parameters (e.g. 

excitatory and inhibitory synaptic inputs, spatiotemporal properties of voltage-

gated ion channels and level of neuromodulation) based on the nonlinear 

dynamical systems theory (Siegel, 1990).   

 

Importance of the realistic motor unit pool model: The bistable firing behaviour 

has been suggested to systematically vary over the different types of MNs within 

the MN pool (Lee and Heckman, 1998a; Lee and Heckman, 1998b). Furthermore 

it has become clear that neuromodulatory control of voltage gated channels in MN 

dendrites is essential in specifying both their basic electrical properties and their 

nonlinear dynamics. However these physiological properties influencing the MN 

dynamics has been ignored in models of the pool of motor units forming a single 

muscle to investigate motor control mechanisms in the spinal cord (Fuglevand et 

al., 1993; Heckman and Binder, 1991). The biophysically−plausible, 
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physiologically−realistic motor unit pool model seems to be essential to 

investigate the fundamental issue in movement science: how MNs convert 

synaptic inputs to action potentials that generate excitation and contraction in 

skeletal muscle fibers. The realistic modeling of the motor units is a critical step 

for reverse–engineering the structure and organization of motor commands in 

normal and pathological states. This has also implications for the field of 

biomimetic robotics with multi-body dynamics and brain-machine interfaces. 
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