INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9° black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

University of Alberta

A MEASUREMENT STUDY ON SCHEDULING LATENCY-CRITICAL TRAFFIC
by

Chong Zhang

©

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Fall 2001

vl

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale

du Canada

Acquisitions et .
services bibliographiques

395, rus Wellington
Ottawa ON K1A ON4

Canada Canada
Your fils Votre rdédrence
Our e Notre réédrance
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-69625-1

University of Alberta

Library Release Form

Name of Author: Chong Zhang

Title of Thesis: A Measurement Study on Scheduling Latency-Critical Traf-
fic

Degree: Mlaster of Science

Year this Degree Granted: 2001

Permission is hereby granted to the University of Alberta Library to reproduce
single copies of this thesis and to lend or sell such copies for private, scholarly
or scientific research purposes only.

The author reserves all other publication and other rights in association with
the copyright in the thesis. and except as herein before provided. neither the
thesis nor any substantial portion thereof may be printed or otherwise re-
produced in any material form whatever without the author’s prior written
permission.

Chong Zhang

Department of Computing Science
232 Athabasca Hall

University of Alberta

Edmonton. AB

Canada, T6G 2ES8

Date: > 1.200)

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certifv that they have read. and recommend to the Faculty of
Graduate Studies and Research for acceptance. a thesis entitled A Measure-
ment Study on Scheduling Latency-Critical Traffic submitted by Chong
Zhang in partial fulfillment of the requirements for the degree of Master of
Science.

Gl §le

Dr. Mike MacGregor

~Qeale Hom .

Dr. .Janelle Harms

e em

Dr. Ivan Fair

Date: S l%,lao,

Abstract

In recent vears. many packet scheduling algorithms have been proposed to
provide a low end-to-end delay bound. Simplicity is one significant issue in high
speed networks. For example. a sorted list is used in some algorithms but it
requires O(log:V) time to process a packet. where .V is the number of the active
flows at the router. Deficit Round Robin (DRR). proposed by Shreedhar and
Varghese [MG96] is a low-complexity packet scheduler which requires only O(1)
work to process a packet and is simple enough to be implemented in hardware.
DRR was extended to DRR+ to accommodate latency-critical flows. This
extension. however. constrains a latency-critical (LC) flow to generate very
smooth arrivals. By using the original concept of deficit to enforce each flow's
commitment to its contract. the scheduler DRR++ has much lower delay and
delay jitter than DRR+. The resulting scheduler is still of low complexity,
and is capable of handling bursty arrivals. This thesis presents the results of a

measurement study that examines these issues. We also present a lower bound

for the delay of DRR++.

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Professor Mike
MacGregor. who has provided me with invaluable advice and generous help
in many aspects since [started to take courses two vears ago. Thanks to
the excellent experimental environment and the inspiring talks from him, my
work became much easier. [consider myself fortunate to have Mike as my
supervisor. If it were not for him, my thesis would not have been possible.

[am very thankful for the committee members for their reviewing my
thesis.

Special thanks go to my wife. Without her love. understanding, and en-
couragement. my life would not have been so brilliant.

I am grateful to my parents. who are always proud of me and offer me
endless love and support.

Many thanks to my group mates for making such a warm and friendly
environment. for raising those interesting and insightful questions, and for the
badminton games we played together. Thanks are due to all my other friends.
Their friendship supported me throughout the two vears.

Finally I would like to thank the Department of Computing Science, for

giving me the opportunity to enrich my knowledge and experience here.

Contents

1 Introduction 1
1.1 Router Architecture and Scheduling 1
1.2 Problem Statement 7
1.3 Contribution of the Thesis 10
1.4 ThesisOutline. 10

2 Related Work 11
2.1 Scheduler Classification 11

2.1.1 Work-Conserving vs. Non-Work-Conserving Scheduling 11
2.1.2 Rate-based vs. Round Robin-based Scheduling 12
22 GPSand PGPS o 12
2.3 Rate-Based Scheduling, 13
2.3.1 The Latencyv-Rate server (LR server) 13
232 VirtualClock (NC), 14
2.3.3 Self-Clocked Fair Queueing (SCFQ) 14
2.3.4 Rate-Proportional Servers (RPS) 17
2.3.5 Rate-Controlled Static-Priority Queueing (RCSP) . .. 18
2.4 Round Robin-Based Scheduling 19
2.4.1 Weighted Round Robin (WRR) 20
2.4.2 Hierarchical Round Robin (HRR) 20
2.4.3 Carry-Over Round Robin (CORR) 20
2.4.4 Deficit Round Robin (DRR) 21
2.5 Scheduling Real-Time Traffic. 22
2.5.1 Service Curve based Earliest Deadline first (SCED) and
Hierarchical Fair Service Curve (H-FSC) 22

2.53.2 Multilayer Gated Frame Queueing (MGFQ) 24

2.6

2.5.3 RCSP and DynamicR&S
254 DRR+and DRR++

Summary e e e

Delay Analysis of DRR++

3.1

3.2
3.3
3.4
3.5

The Algorithms
31.1 DRR
312 DRR++o oo o
Definitions oL
Mean Delay
Delay Bound of the LCflow

Summary e e e e e e e

Measurement Study of DRR+ and DRR++

4.1
4.2
4.3
4.4

Syvstem Implementation.
Measurement Topology L.
Methodology o
Traffic Generation
4.4.1 Why UDP is more appropriate than TCP
4.4.2 Smooth Traffic
4.4.3 Latency-Critical Traffic and Burstiness
444 TrafficModels
Measuring Delays Accurately

Summary e e e e e e e e e e e

Measurement Results

3.1

(3]
~

Exponential LC Traffic
5.1.1 Effect of background traffic intensity
5.1.2 Effect of quantum, Q.c, under low utilization
5.1.3 Effect of quantum, Q.. under high utilization
Bursty MPEG LC Traffic
5.2.1 Effect of background traffic intensity
5.2.2 Effect of quantum, Qc, under low utilization
5.2.3 Effect of quantum, Qc. under high utilization

Summary e e e e e e

25

25
26

28
28
28
29
35
38
40

43
13
44
17

48
19
30
50
32

36

6 Conclusions and Future Work
6.1 Conclusions
6.2 Future Work

Bibliography

List of Figures

1.1 Delay components. 2
1.2 Shared Memory Router Architecture. 4
1.3 Shared Bus Router Architecture. 4
1.4 Four Shared Fabric Technologies. 6
1.5 Shared Fabric Router Architecture. T
1.6 Scheduler function on one output port. 8
2.1 Service Order of VC and SCFQ. 15
2.2 Delay-Jitter Control in RCSP. 19
3.1 Example of arrival behavior and service behavior. 36
3.2 A state transmission diagram in DRR++. 37
4.1 DRR+/DRR++ Processes. 45
4.2 Two Common Topologies: Single node and Multiple nodes. . . 46
4.3 Measurement Topology. 47
4.4 LC Seeds Offset Measurement. 54
1.5 BE Seeds Offset Measurement. 33
4.6 Self Clock Drift Measurement. 55
5.1 DRR++. varving background load. 68
5.2 DRR+. varyving background load. 68
5.3 DRR-++/DRR+, low bottleneck utilization, varving Q;c.. . . 69
5.4 DRR++. low bottleneck utilization, varving Qrc. . . - 69
5.3 DRR+. low bottleneck utilization. varving Qzc. 7

5.6 DRR++, high bottleneck utilization. varving Q;c. 70
3.7 DRR+. high bottleneck utilization, varving Q;c. 71
5.8 DRR++. high bottleneck utilization, varving Q;c. 71

DRR+. high bottleneck utilization, varying Q;c.
DRR++ carrving MPEG, varving background load.
DRR+ carryving MPEG. varying background load.
DRR++/DRR+ carrving MPEG. low bottleneck utilization.
Varving Qre. - - - - e e e e e e e e e e e e e e
DRR++ carryving MPEG. high bottleneck utilization. varving
QLC o e e e e e e

DRR+ carrving MPEG. high bottleneck utilization. varying
QLC.

2
T2

{

3

4

4

List of Tables

3.1
3.2
3.3
3.4
3.9

[S1 el
o -

Modified DRR++ Algorithm. 31
Modified DRR++ Algorithm (Continued). 32
DRR++ Algorithm in [MWO00]. 33
DRR++ Algorithm in [MWOO|(Continued). 34
Comparison of the execution sequence of the DRR++ in [MWO00]

and the modified DRR++. 34
Traffic rate and burstiness for exponential traffic. 38
LC delay in DRR+and DRR++. 61

Chapter 1

Introduction

The work described in this thesis relates to packet scheduling, which is one of
the main functions of a router. In this chapter. we will give an overview of
router architecture and some techniques related to scheduling algorithms. The
general functions of a router are briefly introduced for a better understanding

of the importance of scheduling.

1.1 Router Architecture and Scheduling

Because the Internet is evolving rapidly. more and more applications with di-
verse requirements are driving the need for substantial changes in the Internet
infrastructure. Currently. the majority of networks provide a uniform “best-
effort™ level of service where packets are processed as quickly as possible but
there is no service guarantee. An alternative approach is to offer Quality of
Service (QoS). to reliably provide a guaranteed level of service to the user.
One of main attributes considered in QoS performance is latency. which is the
delay that the data will experience through the network. End-to-end delay
is composed of several factors. Figure 1.1 illustrates these factors in a simple

two node network.

e Propagation Delay is the delay incurred in the transmission channel. It

depends on the distance between the two nodes. so it is predictable.

Node 1 Node 2
[} A {]

A A ! A A

Queueirfg Delay : Propagation Delay Queueing Delay%
Switching Delay Switching Delay

Figure 1.1: Delay components.

e Switching Delay is determined by the type of operations in the network

node and is predictable too.

e Queueing Delay is the time period during which the data waits in the
network node queue. It relates to the intensity of traffic and the data

processing scheme in the node.

Although one method to decrease delay is to increase link bandwidth and
processing speed of the intermediate nodes in the network. many researchers
have concentrated on decreasing queueing delay in the nodes.

In the current Internet. the main device that we rely on to satisfy changing
requirements is the router. The primary role of a router, which works in the
network laver of the OSI model [AT96], is to forward packets from input links

to output links. A router has two main functions:

e Determining the path or route that packets are to follow. This function,
called routing, concerns the routing protocols or algorithms. such as RIP
(Routing Information Protocol). OSPF (Open Shortest Path First) and
BGP (Border Gateway Protocol). This requires inter-router communi-
cation in order to exchange routing data and determine the best path to

a given destination.

e Actually transmitting packets from the incoming links to the appropri-

~

ate outgoing. This function is called forwarding, and concerns several

processes inside the router.

Forwarding uses one of several technologies: shared memory, shared bus or
shared fabric [SK96] [UB98].

Shared memory forwarding . as its name implies. uses a common mem-
ory for both input and output ports (Figure 1.2). The centralized processor
reads the packets and forwards them based on the routing table in the shared
memory.

In shared bus forwarding . the input and output links may have their own
memories or caches but use a common bus to forward the packets between
them (Figure 1.3). This scheme uses distributed control on the links. The
forwarding function is implemented by the [/O card. The central CPU is only
used to update the routing tables on the [/O cards.

In a shared fabric architecture. multiple parallel paths are provided between
input and output links. Figure 1.4 gives some example switching fabrics:
crossbar. knockout. multistage and Banyan [SK96] [UB98]. A combination of
these technologies may be used to create more complex architectures.

Figure 1.5 briefly shows the architecture of a shared fabric router. There

are three sub-functions: input. a general switching fabric and output.

e The input function reads packets from the physical laver and applies a
routing table lookup algorithm to determine the output link. It is also
responsible for classifving and marking user packets so that they are
inserted into their intended service class or queue. The arbiter decides
when to release packets from input queues in cases where packets from

different input ports are destined to the same output port.

e The switching function moves the packets from an input port to an

output port through a switch fabric [SK96].

e The output function transmits the packets that are queued in the buffers

Centralized

(VO
e F- Shared ---= Data Flow
o vemy

/O Memory

Figure 1.2: Shared Memory Router Architecture.

............ (") ‘) d |
' or routing updates only,
[I/O CPU | : - no forwarding.
(/O CPUJ EShared
 BUS CPU
€ e e e e e = -E ---= Data Flow
[/O CPU l o

Figure 1.3: Shared Bus Router Architecture.

of an output link and controls the network resources that each service

class or queue can consume.

Figure 1.5 shows only one queue for each input or output link, but in real
routers there may be multiple queues managed according to different mech-
anisms, such as flow-based and class-based scheduling. Figure 1.6 depicts a
more detailed view of one output link. The scheduler takes packets from mul-
tiple output queues and forwards them to the data link layer for transmission.
Note that the sequence. (pl.p2.p3.pd. p5.---) in which packets are forwarded
is decided by the scheduler.

All of the packets share resources, including buffers and bandwidth. Buffers
at input ports are used to avoid dropping packets due to burst arrivals, which
may happen even if sources agree to control their behavior. One of the causes
of burstiness in a short time scale is that if a flow specifies an average rate,
there will be periods during which the source generates data above the average
rate. as well as periods below the average. Buffers at output ports store the
packets which have been forwarded from the input ports.

A router needs to manage these resources in order to support different ser-
vice requirements in the new Internet. The mechanisms required consist of
buffer management algorithms and scheduling algorithms respectively. Buffer
management algorithms decide whether packets can be accommodated for
transmission and drop packets if congestion occurs. Scheduling algorithms
control the actual transmission of packets stored in output buffers.

The topic of this thesis is the relationship between the scheduling algorithm
and the queueing behavior on an output link of a router. The scheduling al-
gorithm is also called a “service discipline” or “queueing algorithm™ [HD93],
[HD94]. [DV98]. A scheduler distributes bandwidth for connections sharing
the same port by determining the transmission order of the packets. Dif-
ferent scheduling algorithms propose different orders. For example, simple
First-Come-First-Served (FCFS) uses only one queue on each output port and

transmits packets in their order of arrival. More complex algorithms such as

5

R & SR ¥ (R N B
- I N 0L B I)
R § I I L) A A
:x- I _\IJ]l
o0 T —— T —"~ U —ur
SISSAIPpY souly ;.
inding inding induy
admsninAl (@)
4 H N/ j)
xX¢
swog EXC— i
nding ~ N/ A
oXe
R N——

£X¢

SHO(]
induj

mnoyoouy (9)

suod indinQ

) COCD)

T T0

—® ® o SHOJ
k induj

Jeqssor)) (v)

suod inding

H !
€104

nduyj

Figure 1.4: Four Shared Fabric Technologies.

INPUT SWITCHING OUTPUT
(" 4 ™ 3
""""""""" Q;SI.EHJQJ&"; Output queue ————— |
' RISy o CTUT R
7] processing ” ' ;
............................ N
A Input queue Si“" cit ! Output queue
- . WIT : data link | .
. data link A » : ;
T processing 1111 FABRIC’ : | h”::processmg :
""""""""" 65&11{&'&{‘;
processmg ------------ -
............................)
| arouer | Processor |

Output queues

EPR
— 6|54
. |o|s|7

data link :
processing :
P3| p4 P3| p2| pl ;

Figure 1.6: Scheduler function on one output port.

|

Weighted Fair Queueing (WFQ) use multiple output queues and may transmit

packets in a different order (see Chapter 2).

1.2 Problem Statement

Network scheduling is an important part of router architecture. It decides the
forwarding order of packets waiting in the output queue. Different orderings
may contribute different queueing delays to the end-to-end delay of packets. It
also determines how the output bandwidth is distributed over the active flows.
and may or may not allow for the behavior of one flow to affect another. The
metrics for evaluating a scheduling algorithm include delay. implementation
complexity and fairness. In a real system. the primary objective is to provide
a bound on delay with an implementation of minimum complexity per packet

with the system control overhead.

e Delay: The main goal for a scheduler is to guarantee QoS performance

for sessions in terms of queueing delay (refer to section 1.1).

e Time Complexity: The low time complexity is important because in a
high speed network. the packet transmission time is smaller. so the time
for the scheduler to choose the packets to forward should be inexpensive

in terms of hardware implementation.

e Fairness: Fairness concerns how the scheduler allocates the link capacity
to the sessions. Although it is a desirable feature of a scheduler serving
best effort sessions. it is not an important concern when the high priority
sessions are considered because thev may pay an appropriate fee for the

resource while the best effort sessions do not.

“Latency-critical™ applications in QoS networks require more predictable
and stringent performance in terms of delay. Some examples of latency-critical

applications are: voice, video. interactive communication and virtual remote

terminal etc. In order to provide guarantees to the latency-critical flows, two

other performance metrics must be added: these are robustness and isolation.

e Robustness: A robust scheduler ensures distribution of output link band-
width, so that a stream is not altered dramatically on its way to the
downstream nodes. Robustness is desirable because no source can guar-
antee the behavior of the network. First, the statistical characteristics of
a stream can be altered during its transit through the network to such an
extent that intermediate or terminal nodes view the stream as breaking
any agreed contract. [HZ93] gives an example of how a smooth traffic
becomes bursty after several intermediate nodes. Second, a bursty flow
may also be seen by a node if a badly behaving client does not obey its

contract.

e Isolation: Isolation between streams is a much stronger feature. and
guarantees that changes in one stream cannot affect the behavior of
other streams traversing the same interface. This allows latency-critical

(LC) flows to obtain guaranteed service.

There have been many research studies of scheduling algorithms. Briefly,
there are two main approaches: timestamp-based and round robin-based.
which will be discussed in Chapter 2. One of the algorithms is Deficit Round
Robin (DRR) [MG96]. which provides low complexity and fairness while al-
lowing variable packet length. DRR+ in [MG96] extends DRR to get better
performance for latencv-critical flows by allocating more service time to the
LC flow. In DRR+. the LC flow may be punished if it breaks its contract.

DRR++ [MWOO] is more robust because it allows short bursts in the LC flow.

1.3 Contribution of the Thesis

The timestamp-based scheduling algorithms require a calculation of a times-
tamp or other similar parameters. Most of these algorithms need a sorted list,

so they are more complex than the round robin-based algorithms. Much of the

9

existing work focuses only on analysis or simulation. Some studies offer only
analytical results which are not verified by either simulation or measurement.

The contributions of this thesis include:

e An analysis of DRR++ in terms of both mean delay and delay bound.
The DRR++ algorithm in [MWOO] is modified in order to simplify both

the analysis and the implementation (See Chapter 3).

e \leasurement of the DRR+ and DRR++ algorithms in a real network
environment to determine whether the analyses match the measurement
results. We created a test-bed. characterized the behavior of unsynchro-

nized clocks. and found a practical solution to the problem (see Chapter

1).

e An investigation of the effects of background traffic intensity and the
quantum value assigned to the LC flow. Two different types of burst
traffic are used to test the performance of DRR+ and DRR++. We find
that DRR++ offers a much better delay guarantee for MPEG traffic
than DRR+ (see Chapter 3).

1.4 Thesis Outline

In Chapter 2 we provide an overview and discussion of some existing schedul-
ing algorithms. In Chapter 3, we present an analysis of the delay of DRR++.
The system architecture as well as the measurement environment and method-
ology are discussed in Chapter 4. In Chapter 3. we discuss the results of our

measurements. Chapter 6 provides conclusions and ideas for future work.

10

Chapter 2
Related Work

Many scheduling algorithms have been developed to provide quality of service
guarantees in high-speed networks. Naturallv, each method has particular
strengths and shortcomings. In this chapter. we first discuss the scheduler
classification and then introduce some previous work on scheduler for both

best effort and real time applications.

2.1 Scheduler Classification

Schedulers can be classified, firstly. on the basis of whether they are work-
conserving or not. and secondly on the basis of whether they attempt to use

a round robin policy or not.

2.1.1 Work-Conserving vs. Non-Work-Conserving Schedul-
ing

A work-conserving scheduler is never idle when there is a packet to serve, while
a non-work-conserving scheduler may be idle even when there are packets wait-
ing to be served. Though a non-work-conserving scheduler wastes bandwidth,
“it makes the traffic arriving at downstream switches more predictable, thus
reducing both the buffer size necessary at output queues and the delay jitter
experienced by a connection” [SK96]. An example of the non-work-conserving
scheduler, Rate-Controlled Static-Priority Queueing (RCSP), will be discussed

in section 2.3.5.

11

2.1.2 Rate-based vs. Round Robin-based Scheduling

A rate-based scheduler keeps some state information about packets, sessions
or the whole system. The state information can take a variety of forms: vir-
tual time in Virtual Clock [LZ90], eligibility time in Rate-Controlled Static-
Priority Queueing[HD93] or the potential functions in Self-Clocked Fair Queue-
ing [SG94]. Based on the state information, a sorted list is used to decide the
forwarding order of the packets. In this kind of policy, the insert and delete
operations on the sorted list require O(log(.V)) time, where .V is the maximum
number of sessions or packets according to the definition of the sorted list.
Round robin-based schedulers all have the same basic operation: they scan
the active sessions one by one. This operation is much simpler than keeping
a sorted list. Round robin algorithms differ according to how they scan the

sessions and what information is kept.

2.2 GPS and PGPS

One ideal. though impractical. network scheduling algorithm is Generalized
Processor Sharing (GPS). It is ideal because it is a bit-by-bit round robin
method. GPS is characterized by .V positive real numbers. 0,.6,,--- , d,.
each representing the share of bandwidth reserved by session i.i =1,2.--- . n.
At any time 7. session i receives the service rate IVi(7) = Te‘;lm—o.JC , where
B(7) is the set of connections for which there are packets waiting in the queue
at time 7 and C is the link speed. “GPS is impractical as it assumes that the
server can serve all connections with non-empty queues simultaneously and
that the traffic is infinitely divisible. In a more realistic packet system, only
one connection can recelve service at a time and an entire packet must be
served before another packet can be served.”[HZ93]

A more practical algorithm is packet-by-packet GPS (PGPS) or Weighted
Fair Queueing (WFQ)[AS89], which is widely used in current products. WFQ

calculates the finish time of each packet in the corresponding ideal GPS system

12

and sends the packet with the smallest value of finish time. It is practical
because it considers packet size when computing the finish time and does
not consider traffic as infinitely divisible. If S;, F; denote the start and finish
time of packet i in a GPS system. and P, denotes the packet length. we have
F; =5,+ P, and S; = max(F;_,, R(t)), where R(t) is the number of bit rounds
in the bit-by-bit round robin service discipline up to time ¢t [WFQ].

“The GPS and PGPS schemes have drawn a lot of interest because they
have a simple fluid-flow interpretation and are some of the first methods which
have been rigorously analyzed and shown to have tight end-to-end performance
bounds. However. this kind of method has one main drawback: the algorithm
for calculating the finishing times is computationally intensive, rendering it

rather difficult to implement for high speed networks™.[HR99]

2.3 Rate-Based Scheduling
2.3.1 The Latency-Rate server (LR server)

In [DA95] and [DA98]. D. Stiliadis et al propose the LR server which is a
general class of scheduling algorithms. An LR server has two parameters - the
latency and the allocated rate. If we define a busy period for session i as any
period of time during which session i alwavs has packets to send, a scheduler

S is an LR server if and only if
S -)
Hfj(;.t) < maz(0, p;(t — 7 — ©7))

where 7 is the starting time of the jth busy period. I'l",i(‘r, t) is the amount of
service received by session : during the interval (7.t) and ©5 and p; are the
latency and rate. respectively.

Given the latency and rate. the LR server gives an upper bound on both
the session backlog and the delay. The authors give different latency values
for different scheduling algorithms, such as GPS. PGPS, Self-Clocked Fair
Queueing. Virtual Clock and Deficit Round Robin. We will use the results of

the LR server to analyze the delay bound of our new algorithm.

13

2.3.2 Virtual Clock (VC)

The Virtual Clock [LZ90] algorithm uses a time-division multiplexing (TDM)
approach to allocate a virtual transmission time for each newly arriving packet.
It needs to know the arrival rate, AR;, of flow { and computes the value
Vitick; = 1/AR;. When a packet is received at time AT;, the transmission time

of this flow. auzV'C,, is updated based on its previous value:
aurV'C; = maz{AT;, auzV'C;} + Vtick; (2.1)

The system forwards all packets according to their transmission time auzV'C;.
One of the main features of Virtual Clock is that it creates a firewall between
the flows: bad behavior of one flow cannot disturb network service to other
flows because the offending behavior increases the auzV'C of the offending flow
very quickly [LZ90].

Virtual Clock is different from the traditional TDM because Virtual Clock
is a work-conserving algorithm. It doesn’t waste bandwidth if there are packets
waiting in the queues. But since Virtual Clock only keeps track of the state on
per session through 1 tick;, the status of system load is not considered. [HZ95,
Figd] gives an example showing that Virtual Clock punishes a bursty session
even if there are no other sessions affected by the faster transmission during

the bursty period.

2.3.3 Self-Clocked Fair Queueing (SCFQ)

GPS. PGPS and Virtual Clock all use a hypothetical queueing model to cal-
culate the virtual time, which leads to considerable computational complexity.
SCFQ [SG94] uses another approach in which the virtual time is obtained nat-
urally from an actual packet-based queueing system. In the SCFQ algorithm,
the packets in the queue are serviced in increasing order of the associated
service tag. I-:’,:, for packet 7 in session k:

2 Lo friel o i
FZ—E ,c-+-ma:z:(I-",c ,'L(ak))

14

e .-~ packet number

11898LL Tl ?L ?TL 1 , Tl ITL Connection 1

o
-

898 900 902 time
l 2 3 4
AbA A A A A A c o
RN R R I R onnection 2
898 900 902 904 time
898
AAAAAAAAAAAA
th : IR Virwal Clock
> Service Order
898 900 90’ time

898 900 901 902 903

IR rmir[it,amh

N Service Order
898 900 902 904 time

Figure 2.1: Service Order of VC and SCFQ.

where r; is the service rate for session k. Li is the length of the packet, a} is
the arrival time of the packet and ¢(t) is the system’s virtual time at time ¢.
¢(t) is defined as being equal to the service tag of the packet receiving service
at time ¢t [SG94].

SCFQ overcomes the unfairness of Virtual Clock caused by sudden bursts.
SCFQ uses mazx (13',:“1, if(afc)) to circumvent this problem by replacing £}
with the service tag of the packet in service, if the latter is larger. We use
Figure 2.1, which is similar to [HZ95 Figure 6], to show that SCFQ has a
fairer bandwidth distribution than Virtual Clock. Assume that two connec-
tions specify the same average rate of 0.5 packet/sec, and all packets have a
constant size and can be served in exactly one second. Starting at time zero,

there are 1000 packets from connection 1 that arrive at a rate of 1 packet/sec

15

and at a rate of 0.5 packets/sec from time 900. The packets from connection
2 arrive starting at time 901 at a rate of 0.5 packets/sec. If Virtual Clock is

used and we define aua:I'Cfc as the transmission time for packet & in flow ¢,

we have

auzrV 'C}® = 1800.

aurV C+* = 1800 + 2k, k = 1,2, ,
aurV'C} = max(900,0) = 900,

aurV’C5 =900+ 2(k—1).k=1,2.---,

So the 901st packet of connection 1 will be served after 430 packets of connec-
tion 2 are serviced.

If SCFQ is used. we have

[F990 = 1800 = #(900).

F} =2+ #(900) = 1802 = (901),

8 FU =2 4 mazr(F2, $(901)) = 2 + 1802 = 1804 = #(902),
F} =2+ max(F}. £(902)) = 2 + 1804 = 1806.

So we can get the service order shown in Figure 2.1. We also find that WFQ
has the same order as SCFQ.

SCFQ reduces the complexity of the algorithm compared to PGPS from
O(.N) to O(logN), where N is the maximum number of sessions sharing the
same output link. However, the delay bound of SCFQ is a linear function of

N. so the delay bound grows linearly while .V increases [DV'98].

2.3.4 Rate-Proportional Servers (RPS)

RPS [DV98] uses an analytical model for the design of scheduling algorithms
and the analysis of their properties. There are two kinds of RPS: one uses
an ideal fluid model while the other is Packet-by-Packet RPS (PRPS). RPS

uses two non-decreasing potential functions to reflect the state of the sessions

16

and the whole system. These are the session potential P;(t) and the system
potential P(t). respectively.

According to [DV98], in the fluid RPS server, the session potential P;(t)
for session 1 is initialized as P,(t') = maz(P,(t'-), P(t'—)) at the beginning of

a busy period t’. At each timepoint ¢t > t’ of the busy period,
P.(t) = P(t) + Wi(t'.t)/ pi.

where 117(#'. ¢) is the amount of service received by session ¢ during the period
(t'.t] and p; is the service rate allocated to session i.

The calculation of a session’s potential is similar to the calculation of the
session service tags in SCFQ because both of them consider the status of whoie
system rather than an individual session. The system state is reflected by the
system potential P(¢) in RPS and the system virtual time ¢(¢) in SCFQ. In
SCFQ. ¢(t) is equal to the service tag of the packet receiving service at that
time and is reset to zero when the busy period is over [SG94 pp25]. while P(t)
in RPS is always less than or equal to the potentials of all backlogged sessions
[DV'98 3.3]. P(t) is a non-decreasing function that protects the sessions with
lower session potential since those sessions will get service earlier. But #(t)
only reflects the state of the session receiving service. which may serve the
session with a large service tag value.

[DV98] gives only the analysis of the RPS policy, without any experimental
results. The authors do not make any suggestions about the frequency with
which the system/session potentials are updated. There are two issues which
need to be further considered: how to keep consistency between the session
and system potentials and how to keep the system potential under the specified

conditions specified in [D\V'98 section 3.1].

2.3.5 Rate-Controlled Static-Priority Queueing (RCSP)

RCSP [HD93] [HD94] uses a different model to do the scheduling work. First,
it introduces a two-component model including a Rate Controller and a Sched-

uler. The Scheduler is a simple FIFO or static priority queue for forwarding

17

the packets. The Rate Controller calculates the eligibility time, ET;‘, of packet
k in switch j. There are two kinds of controllers - rate-jitter regulators and
delay-jitter regulators - with different computation methods. The rate-jitter
regulator is based on the arrival time, .—1.’1’}c ., and the eligibility time of the last
packet in the same session ET;‘". while the delay-jitter regulator is mainly
based on the .-le‘I and the eligibility time of the same packet in the last
switch E Tf_l. The main idea behind a delay-jitter regulator is to hold the
packet in the regulator if the packet arrives earlier than expected. The period
of time during which a packet stays in the regulator is the holding time. while
the period of time during which a packet waits in the scheduler is the waiting
time. In this way. the packets will not be serviced immediately and the bursty
traffic is passed to the next switch. Thus, RCSP is a non-work-conserving
scheduling algorithm. [HD94] defines d% and h¥ as the waiting time and hold-
ing time of the kth packet in switch j. pf is the link delay from the (j — 1)
to j** switch. and DT]" is the departure time of the k** packet at switch j. A

delay-jitter regulator has the following property:

ETk = AT¢

ETf = ET) , +d5_ +h% +p;_1.7 > 0.

The summation of d;_; + h¥ is the delay bound of the packet. Figure 2.2
describes the parameters related to different time-points. Through the use of
d;_.. the delay variance caused at different nodes is transparent to the next
switch. That is. if the packet is delayed more at a previous switch, it gets a
smaller holding time in the regulator at the current switch and vice versa.

Although this method may increase the end-to-end delay of the packets,
it is a common method to control delay jitter if the jitter is more important
than delay. such as for real-time streaming applications.

In order to decrease the complexity of the regulator, RCSP uses a modified

18

Switch i—-1 Switch i

Regulator Scheduler

! A A

A <--IL-> hki-—:rs E
'k [}

ATY ET; DT

Figure 2.2: Delay-Jitter Control in RCSP.

calendar queue. But from the above formula, we can see that the switch needs
to stamp the packet with the eligibility time for use at the downstream switch.

and each switch needs to know the delay bound of the session.

2.4 Round Robin-Based Scheduling

One of the differences between rate-based scheduling and round robin-based
scheduling is that the latter does not need a value to decide the transmission
order of the packets. such as the timestamp of the packets or the potential of

the sessions.

2.4.1 Weighted Round Robin (WRR)

In Weighted Round Robin (\WRR) [BB94], packets receive service according
to the priority queue to which they belong. Each queue has an associated
weight. In every round of service, the number of packets served from a queue is
proportional to its associated weight. One common method to find the queue
number of a packet is to use the precedence bits in the I[P packet header.
Different weights are specified for the queues. WRR can assign higher weight

to high priority sessions so they get more service. WRR also avoids starvation

19

for low priority sessions because they still get minimum service guarantees.
However. WRR is only good for the networks with fixed packet size, such as
ATM networks. The reason is that the weight assigned to a session is the
number of packets, so if a low priority session has a large packet size, it still
consumes more bandwidth. In this case, the weights are irrelevant to the
session priorities. WRR also needs to know the mean packet size to achieve

results fairly close to the ideal GPS scheduler.

2.4.2 Hierarchical Round Robin (HRR)

Hierarchical Round Robin (HRR) [IHO00] defines a hierarchy of service lists,
each of which corresponds to different service rates. The topmost list has the
highest service rate. while the bottom list has the lowest service rate and is
used to forward the best effort traffic. HRR services packets from the top of
the list to the bottom. Simulation results show that both the inter-packet
spacing and end-to-end delay are independent of load. which means that HRR

provides good delay and jitter bounds.

2.4.3 Carry-Over Round Robin (CORR)

Carry-Over Round Robin (CORR) [DS96] allocates a rate R; to each session i.
expressed as the numbers of cells served per round. The key point in CORR is
that R; can be a real number rather than an integer as in simple round robin
schemes. CORR has two sub-cycles in each cycle. a major cycle and a minor
cycle. All sessions are allocated their integral requirement in the major cycle.
and unfulfilled connections are allocated the slots left over from the major
cyvcle. In each service cycle. the actual number of cells allocated to a session
is an integer close to R;, and the debits or credits are carried over into the
next service cycle. The authors argue that each session receives exactly R;
services per cycle over a long time scale. However, CORR only works in ATM
networks with a fixed cell length, which is reflected by the constant time unit

used in the algorithm.

2.4.4 Deficit Round Robin (DRR)

WRR. HRR and CORR are designed for use in the ATM environment. WRR
may fail to adjust its weight if the mean packet size changes. WRR works well
in ATM networks because of the constant cell size. Both HRR and CORR use
the cell unit to define the parameters in the algorithms.

Deficit Round Robin (DRR) [MG96] proposes a solution for packet-switched
networks with variable packet length and requires only O(1) work to process
a packet. Moreover. since there are only three lists used in the DRR algo-
rithm: the active flow list. deficit flow list and quantum list, the algorithm
requires small control overhead. The low complexity of DRR makes it possible
to implement DRR in high speed networks !. DRR maintains the quantum
value and the deficit value for each session. In each round. one session cannot
forward packets with a length larger than the sum of the predefined quantum
and the deficit left from the last round. A sorted list of the sessions is not
required. Similar to CORR. each session in DRR receives the service with a
quantum value during each round in a long time scale. Unlike CORR. which
uses two cycles in each round in order to process the debit and credit. DRR

only scans all the active sessions once in each round.

2.5 Scheduling Real-Time Traffic

Real-time or multimedia applications require much more stringent perfor-
mance than best-effort applications. The network needs to provide this type
of application a guaranteed service in terms of delay, delay jitter. throughput
and loss rate. Much work has been done on scheduling real-time or multime-
dia traffic. There is also much work concerning CPU and operating system
scheduling algorithms using similar approaches.

For example. MTRLS in [JE97] introduces a process sharing model in which

any number of processes can be served simultaneously as long as the sum of

1Cisco 12000GSR. Microsoft Windows 2000 Server and Linux RedHat have implemented
various modified DRR algorithms.

their service fractions does not exceed one. It uses a virtual time quantum
to allocate the time slot of a process. The idea is similar to DRR but since
the time tick is verv small. there is no credit which can be used in the next
slot. A process will consume all of its time quantum unless it is terminated or
preempted by another process.

A rate-controlled scheduler is presented in [DS96]. It uses expected fin-
ishing time and other time-stamps to calculate the RC value (rate-controlled
priority value) of different processes and then uses this value to decide the
running order. In addition to the admission control. the algorithm in [DS96]
adds another component. a rate adaptation mechanism. to adjust a flow’s rate
based on the feedback information provided by the use process during the

process life cycle.

2.5.1 Service Curve based Earliest Deadline first (SCED)
and Hierarchical Fair Service Curve (H-FSC)

Service Curve based Earliest Deadline first (SCED) [HR95] [HR99] tries to
guarantee the service curve rather than a specific measure. such as a delay
bound. for each session. This scheme introduces the notion of a service curve
as a measure of service provided for a session. A service curve function S;(-)
is a non-decreasing function which specifies the minimum number of packets
served in a period. For each connection. if time ¢, is in a backlogged period,
to represents the beginning of one of the busy periods, such that S;(¢; — t) <
R%%(to.t,). where R (ty.t,) is the number of packets served by session i
during the interval [to.¢;] [HR93].

In SCED. if all the sessions have service curve guarantees, the packet with
the earliest deadline is transformed first. [HR99] provides the algorithm for
computing the deadline and proves that if each packet receives service before
its deadline, then the session is guaranteed the service curve it requires. SCED
defines a traffic as (0. p) — smooth if during any interval z. the arrival curve,

b(-). is less than o + pz. One feature of SCED is that if the input traffic is

[
~

(o, p) — smooth, SCED gives the upper bound on delay and backlog [HR95).
SCED can be reduced to other schedulers, such as Virtual Clock or Earliest
Deadline First [HR99]. For each generalized scheduler, SCED uses different
service curve functions. For example, if service curve S;(z) satisfies S;(z) =
maz{0, (a; + 3;x)}. where a; and 3; are two parameters, the deadline of a
packet arriving at time slot u is calculated as follows:
0; = mazx{d;,u — 1}

0 =0, +1/3; (:

o
N
S

deadline = max{u.d;}

If we set S;(z) = p;z. i.e. a; =0, 3; = p;, so the equation (2.2) is reduced
to deadline = mazx{u.d; +1/p;}, which is equivalent to the auzV’C; computed
in Virtual Clock.

The authors of Hierarchical Fair Service Curve (H-FSC) [IH00] state that
SCED sometimes does not have the fairness property because SCED may
punish a session for receiving excess service during a period by keeping it
from receiving service during a later period. This feature also makes SCED
unsuitable for a hierarchical scheme. H-FSC defines two criteria, the real-time
criterion and the link-sharing criterion. The former is used to ensure the real-
time requirement. while the latter is used to fairly distribute excess service.
Several parameters are used in H-FSC. e; and d; denote the eligible time and
the deadline of the first packet in session i respectively and v; denotes the

irtual time of session i. The virtual time can also be seen as the normalized
amount of service that has been received by the class{H-FSC].

In order to achieve fairness, H-FSC tries to minimize the discrepancies
between virtual times of sibling classes. H-FSC gives high priority to sessions
with real-time requirements since doing so is more important. After serving
real-time packets. H-FSC serves the sessions with the smallest virtual time
in the link-sharing requirement class. The results show that H-FSC achieves
much lower delays for real-time sessions and the link-sharing sessions get fairly

distributed bandwidth. But since H-FSC is a deadline-based algorithm which

23

needs to sort the deadline time for all the packets, the complexity for processing

a packet is O(log(\V)) where N is the number of active sessions.

2.5.2 Multilayer Gated Frame Queueing (MGFQ)

Multilayer Gated Frame Queueing (MGFQ) [FHOO0] is also a time-based sched-
uler used to deal with real-time traffic in ATM networks. It uses the RTP/UDP/
IP/AALS protocol stack and uses a DD (due-date) field in the AAL3 overhead.
MGFQ uses two different schemes for voice traffic and video traffic. The DD
field used in calculating the due date of the cell is carried in each voice cell,
while for video traffic this field only shows up in the BOM (Beginning Of Mes-
sage) cell. Both the cell format design and the due-date computing methods
are different for voice and video traffic. Based on the due-date. a cell can be
served without violating either the delay bound or the jitter bound. The com-
plexity of MGFQ is also O(log(.V)), and it involves five (or seven) additions
per cell for voice traffic (or video) [FHO0O).

The jitter bound in MGFQ is affected by a parameter T, which represents
the refreshing period in which the operations are updated. The simulation
results show that the traffic gets a pre-defined jitter bound, which can be tight
or smooth. But the results also show that the delay doesn’t decrease if a tight
jitter bound is used. so the jitter bound in MGFQ is actually a jitter bound
with maximum delay value. Another issue is that the authors do not give
results on the effect of parameter T. So we do not know the effects on delay
or jitter if other refreshing periods are used. MGFQ also has a compatibility

problem since it requires one additional field in the ATM cell header.

2.5.3 RCSP and Dynamic R&S

We have discussed the RCSP proposed by H. Zhang et al in section 2.3.5.
RCSP uses two separate components, a rate controller and a scheduler, to
provide delay, jitter and throughput guarantees. One of the drawbacks of

this scheme is that two separate functions may compromise the effectiveness

24

of regulation and scheduling (R&S) [SI00]. One consequence is that if there
is more than one regulated traffic at a scheduler, the conflicts will result in
a distorted stream at the output of the scheduler. In order to address this
problem. {SI00] proposes dynamic R&S and tries to use some scheduler status
information which is fed back from the scheduler to the regulator to accelerate
packet releases from the system. It monitors the scheduler and allows the
release of some packets before their eligibility time ET;, which will impact

positively on the cell delay and the available bandwidth.

2.5.4 DRR+ and DRR++

DRR has several desirable features: it provides fairness amongst the connec-
tions. allows for varving packet sizes and has O(1) time complexity per packet.
A modification called DRR+ is proposed in [MG96] to provide a latency bound
for real time traffic because the delay bound for DRR increases as the number
of flows increases. This is unacceptable for latency-critical flows. One pos-
sibility is to have both a best-effort transmit queue and a priority queue for
latency-critical traffic. DRR+ uses the policy that the source should not send
more than r byvtes of data in some period T. This is policed by starting a
timer whenever a packet from a particular flow arrives. If another packet from
the same flow arrives before the timer expires, the flow is said to have violated
its contract. and the flow is moved into the best-effort class. In DRR+. once
a latency-critical flow has been moved into the best-effort class, there is no
provision for it to graduate back to priority treatment.

DRR++ [MWOO] uses the deficit approach of DRR for servicing latency-
critical flows. along with priority transmit queueing. Doing so ensures that the
available bandwidth is shared between flows. while giving priority to latency-
critical flows. Most importantly, this approach allows latency-critical flows to
burst occasionally without losing their preferred status.

A latency-critical flow scheduled by DRR++ is constrained to send less

than one quantum between best-effort service intervals. If the latency-critical

[A¥)
(1]

flow exceeds this rate, the excess traffic simply remains backlogged. This
method overcomes the weakness of DRR+ while still preserving fairness.

DRR++ is a non-work-conserving scheduler that can be used to provide
robust service: in particular, it can provide robust service for latency-critical
traffic. DRR++ is robust and is suitable for packet scheduling in the network
core because. as long as a stream obeys its contract at the admission point, it
will not be penalized for burst behavior impressed on the stream as it trans-
mits the network. DRR++ is also suitable for use in the core because of its
extremely low per-packet complexity inherited from DRR.

DRR++ is very effective in isolating latency-critical (LC) and best-effort
(BE) traffic from each other so that misbehaving sources of one type cannot
affect traffic from sources of the other tvpe. DRR++ provides protection so
that one flow is not able to steal bandwidth from others. DRR++ also exhibits
fairness for BE traffic with variable length packets. while the normal round

robin method provides fairness only with fixed-size packets.

2.6 Summary

In this chapter. we discussed several scheduling algorithms. We introduced
algorithms in two categories: rate-based and round robin-based. Most of rate-
based algorithms are required to keep a sorted list, so that they have O(log.V)
complexity. We also described several scheduling algorithms for real-time ap-
plications. Our work on DRR++ is proposed to provide low delay for latency-
critical traffic along with the low O(1) complexity inherited from DRR. The

detailed algorithm and an analysis will be given in Chapter 3.

Chapter 3
Delay Analysis of DRR++

In this chapter. we discuss the performance analysis of DRR++ in terms of
mean delay and delay bound for the LC flow. We provide a good approximation
for the mean delay for the LC flow under conditions of high utilization and
give the delay bound for the LC flow based on the DRR++ algorithm and the
analysis of the LR server in [DA98]. These analyses will be compared with our

measurement results in Chapter 3.

3.1 The Algorithms
3.1.1 DRR

First, we briefly review the idea of DRR as proposed in [MG96]. Normal round
robin algorithms service the queues in a constant time. which is an important
attribute for a scheduling algorithm. The major problems, as stated in Chapter
2. are that most schedulers only deal with constant packet size and even if they
allow different packet sizes. there is unfairness between different connections.
DRR solves this problem while still keeping the low complexity feature. The
main idea behind DRR is that a connection is allowed to transmit at an average
rate. The scheduler works in rounds. with each queue being credited a new
quantum in each round. The amount of service a queue can receive is limited
by its current amount of credit. The credit is decremented for every byte

transmitted. If a queue cannot be emptied in a given round because the

N~
-l

next packet requires more credit than available, the credit is preserved and
incremented by the quantum at the beginning of the next round. Otherwise,
if the queue is empty at the end of the round the credit is zeroed.

The quantum values play an important role in DRR. There are two obser-

vations on the quantum configuration in DRR:

e [MG96] points out that the quantum value for a flow can be at least
as large as the maximum packet size within the flow so the system will
serve at least one packet in the backlogged flow. However, since some
traffic. such as those with an exponential distribution have large variance
of packet size. it is difficult to decide the largest packet size in advance.
In the case that the quantum value is less than the largest packet size, a
flow is still not allowed to run a deficit, but can transmit large packets

by accumulating credit.

e Because the scheduler will keep the states of multiple flows. the relation-

ship of the quantum values among the flows is:

m_ _ n
Q" = BNEW ZE;Q

m rm
Qe _ L heB,
o

where Q" and r* are the quantum value and the service rate of flow m
at node { respectively. B is the set of active flows. the BNBW is the

bottleneck bandwidth of the outgoing link.

As a result. one flow with a large arrival rate and small packet size can
also have a large quantum size compared to the maximum packet size.

This flow will not be heavily backlogged because of the large quantum.

3.1.2 DRR++

The motivation and the difference between DRR+ and DRR++ have been
discussed in Chapter 2. Tables 3.1 and 3.2 describe DRR++ in detail. This

28

version has some modifications from that in [MWO0] in order to simplify its

implementation and analysis. If we define n as the number of BE (Best Effort)

flows, the DRR++ algorithm in [MWO0O] increases the quantum value, n-Q;c,

of the LC (Latency Critical) flow before serving it and all the other BE flows.

In the modified DRR++, the quantum value, Q.¢, is increased before serving

it and one of the other BE flows.

For example, assume that all the flows are backlogged. Table 3.5 provides

a comparison of the simplified execution sequence of the DRR++ in [MWOQO0]

and the modified DRR++. The effects of the modification include:

1.

[A¥]

The service intervals for LC packets under the modified DRR++ are
much more evenly distributed than those under the DRR++ in [MWO00].
Consider a boundary condition such that there are more than n - Q¢
packets waiting in the LC queue. Under the DRR++ in [MWOO] at
most n - Q. c packets may be served before the system serves the first
BE flow. so the LC flow does not have enough credit to forward packets
in the following service interval until all the BE flows are served when
the deficit value is updated again (step 1). In the modified DRR++, the

svstem serves n - Qrc LC packets in the n rounds.

It is much easier to analvze the modified DRR++ than the DRR++ in
[MWO00]. In the following section on the analysis of performance, we have
a very simple definition of a round and the state transmission diagram
is straightforward. It is much more complex to analyze the DRR++ in
[MWO0O0] because it is difficult to decide how many LC packets are served

during different periods when serving the BE flows.

In the following discussion, we use the term DRR++ to refer to the mod-

ified DRR++ algorithm instead of the DRR++ in [MWO00].

Initialization:
ActiveList = NULL
TxQueue = NULL
PrioTxQueue = NULL

Enqueuing module: on arrival of packet p

i = ExtractFlow(p)

If (ExistsInActiveList(i) == FALSE) Then
Create scheduler queue for flow i
AppendToActiveList(i)
DC,’ =0

If (IsLatencyCritical(i) == TRUE) Then
AppendToLClList(p)

Else
AppendToBestEfortList(i. p)

Dequeuing module: manage deficit values and move LC and BE packets to
transmit queue
While (TRUE)

If Not Empty(LCList) Then
q = Dequeue(Head(LCList))
I = ExtractFlow(Head(q))

Else
q = Dequeue(Head(BestEffortList))
i = ExtractFlow(Head(q))

Add a quantum
DC; = quantum(i) + DC;

Process a latency-critical queue
If (IsLatencyCritical(i) == TRUE) Then
While ((DC; > 0) And Not Empty(q))
PacketSize = Size(Head(q))
If (PacketSize < DC;) Then
p = Dequeue(q)
AppendToPrioTxQueue(p)
DCi = DC; - PacketSize
Else
break
If (Empty(q)) Then
No Backlog - reset quantum
DC,' =0

Table 3.1: Modified DRR++ Algorithm.
30

Process a best-effort queue
If (IsLatencyCritical(i) == FALSE) Then
While ((DC; > 0) And Not Empty(q))
PacketSize = Size(Head(q))
If (PacketSize < DC;) Then
p = Dequeue(q)
AppendToTxQueue(p)
DC; = DC; - PacketSize

Else
break
If { Empty(q)) Then
DC;‘ =0

AppendToBestEffortList(i)

Transmit module: put the next packet into service
While (TRUE)
If Not Empty(PrioTxQueue) Then
p = Dequeue(Head(PrioTxQueue))
Else
p = Dequeue(Head(TxQueue))
Send(p)

Table 3.2: Modified DRR++ Algorithm (Continued).

31

Initialization:
ActiveList = NULL
TxQueue = NULL
PrioTxQueue = NULL

Enqueuing module: on arrival of packet p

i = ExtractFlow(p)

If (ExistsInActiveList(i) == FALSE) Then
Create scheduler queue for flow i
AppendToActiveList(i)
DC,’ =0

If no free buffers left Then
FreeBuffer()

If (IsLatencyCritical(i) == TRUE) Then
Move directly to priority Tx queue
AppendToPrioTxQueue(p)

Else
Append to scheduler queue for flow
AppendToBestEffortList(i. p)

Dequeuing module: manage deficit values and move best-effort packets to
transmit queue
While (TRUE)
If Not Empty(ActiveList) Then
q = Dequeue(Head(ActiveList))
i = ExtractFlow(Head(q))

Add a quantum
DC; = quantum(i) + DC;

Process a latency-critical queue
If (IsLatencyCritical(i) == TRUE) Then
Is there a backlog?
If (NotInQueue(i, PrioTxQueue)) Then
No backlog - reset quantum
DC; = quantum(i)
AppendToActiveList(i)

Table 3.3: DRR++ Algorithm in [MW00].

Process a best-effort queue
If (IsLatencyCritical(i) == FALSE) Then
While ((DC; > 0) And Not Emptyv(q))
PacketSize = Size(Head(q))
If (PacketSize < DC;) Then
p = Dequeue(q)

AppendToTxQueue(p)
DC; = DC; - PacketSize
Else
break
If (Empty(q)) Then
DC,’ =0

AppendToActiveList(i)

Transmit module: put the next packet into service
While (TRUE)
If Not Empty(PrioTxQueue) Then
p = Head(PrioTxQueue)
i = ExtractFlow(p)
If DC, > Size(p) Then
p = Dequeue(Head(PrioTxQueue))
DC; = DC; - Size(p)
Else
p = Dequeue(Head(TxQueue))
Send(p)

Table 3.4: DRR++ Algorithm in [MW00](Continued).

the DRR++ in [MWOO] modified DRR++
l. DCic = DCpre +n-Qrc: 1. for(i=0;i < n;i+ +)
2. for(t =0;i < n:i + +) 2. DCic = DCrc + Qrc:

Senje the LC'ﬂow: _
DChe = DChe + Qs
Serve the BE; flow:

Serv_e the LC_ﬂow; _
DChe = DChe + Qs
Serve the BE; flow:

O
o1 g &0

Table 3.5: Comparison of the execution sequence of the DRR++ in [MWOO0]
and the modified DRR++.

33

3.2 Definitions

In this section, we give some commonly used definitions in scheduling algo-
rithms and specific definitions used in our work.

In order to provide advanced Quality of Service (QoS) architectures in high
speed networks, per-flow queueing is commonly used in Integrated Service
(IntServ) architectures and per-class queueing is used in Differentiated Service
(DiffServ) architectures [RV99]. These two have different service granulari-
ties and classification methods. In our work, we use per-flow based network
scheduling which keeps state information on each flow and applies a scheduling
algorithm to decide the service order.

In TCP/IP networks. a flow is defined as a sequence of packets matching
some criterion. which can be the same source/destination IP address and port
number. the same route or the same class of service requirement. We use the

following definition:

Definition 1. 4 flow is a sequence of packets with the same source/destination
[P address and port number. both of which can be obtained from the TCP/IP

packet header.

In order to analvze the performance of flows in different network scheduling
algorithms. either the busy period or backlogged period are often used because
the algorithm may take effect during a busy period but not during a non-busy
period. The performance of the algorithm during the busy period is also much

more realistic.
Definition 2. A backlog period for session i is any period of time during

which session i is continually backlogged in the system. i.e., packets belonging

to session i are continually queued in the system.

34

Bits

Arrivals .

o Delay encountered by a packet

') € : maximum service rate

Time

Ny
v

Busy Period

Figure 3.1: Example of arrival behavior and service behavior.

Definition 3. A busy period for session i is a any period of time during which

session ¢ always has packets to send.

A busy period can be longer than a related backlogged period. That is, it
is possible that there are several backlogged periods during a busy period and
also that a busy period may contain zero backlogged intervals. In addition.
the start of a busy period always marks the start of a backlogged period. but
the converse is not always true.

Figure 3.1 depicts an example of arrival and service behavior. The figure
is similar to the graphs in [DA98] and [HZ95]. The upper curve shows the
number of arriving bits and the lower curve shows the number of bits served.
These two curves are not smooth because we consider packet-switched net-
works rather than the ideal fluid model. From the figure, the busy period ends

when the service curve finishes all the arrival bits.

Serving the LC flow Serving one BE flow

Deficit += Quantum Deficit += Quantum

Service Packets
Update Deficit

Service Packets
Update Deficit

Figure 3.2: A state transmission diagram in DRR++.

Definition 4. One round in DRR++ is any period of time during which
the LC session and another BE session are serviced.

Figure 3.2 shows that the DRR++ system alternates serving the LC session
and one BE session. The definition of a round in DRR++ is different from
that in DRR. One round in DRR is any period of time during which all the

sessions are served once.

The following notation is used:

vie: the average number of LC packets served in one interval.

BNBW = bottleneck bandwidth.

D;: the mean delay for the LC flow.

nge.npc: average packet length for the best-effort and latency-critical flows
respectively.

Qse-Qrc: quantum for the best-effort and latencv-critical flows respectively.
We assume that all the BE flows have the same quantum values.

Q;: total quantum to serve one BE flow / LC flow pair (one round) at node i.
Qi = Qe +Qrc-

ric: the service rate of the LC flow:

rec = Q—QL_EBNBW

36

3.3 Mean Delay

In this section. we assume that the queue is always backlogged for both BE
and LC traffic, a situation which will occur under conditions of high traffic
intensity. We then analyze the mean delay of packets which arrive and are

served during a backlogged period.

Theorem 1 In a high intensity situation, if D;c is the mean delay of

all the packets of the LC flow in DRR++. then

0.53Q;]
BNBW —(Qi - Ac)/vee

DLC::[

where \;c is the arrival rate of LC traffic.

Proof. The DRR++ system alternates between serving the latency-critical
flow and one of the best-effort flows. The first packet arrival for the LC
flow that begins a backlogged period is defined as packet number zero. Now
consider the k** packet arrival for the LC flow. Assuming that the server is
sufficiently backlogged so that this packet is not served until the next LC ser-

vice interval. the expected delay consists of two terms:

e IV7,: the residual service time for the current service interval. consisting

of the LC service and one BE service.
e [f}: the time before the beginning of the service interval in which the
packet is served.

117, is simply the mean residual service time of the interval during which the

packet arrives:

W, = /2
* = BNBW

37

Since vy ¢ is the average number of LC packets served in one interval, then:

vic = |qre/nec)

From Little’s law [RJ91] !. we know the mean length of the latency-critical

queue Is:

Nee = AeDie

so that the number of rounds before we serve the k" arrival. 57¢, will be

AreDice

-1
Ve]

Sce=1

The total amount of time required for this is:

Qz *SLe
BNBW
Little’s law is one of the most commonly used theorems in queueing theory. If .V is

the mean number in the system. A is the arrival rate and T is the mean reponse time, then
Little’s law can be presented as:

Wy, =

N=A-T

In this thesis. we apply Little’s law to the output queue. If NV is the mean number in the
queue. A is the arrival rate and " is the mean waiting time. then we have:

Ny=A-W

38

Thus. assuming that the arrival is served in a future round, the mean delay is:

Dic=W,+W,

_0.5Q:+Q;-51¢c
o BNBW’

_05Q; +Q; - ([2eclec] — 1)

vLe

BN BV

then we have:

= ArcD
0.5Q; + Q, - ducluc

Dre= BNBW

AeD
Drc- BNBW = 0.5Q: + Qi —=—=
LC

Q.- Ac

Dic- (B.\«’BII’ —
Vic

0.5Q;
~ a
Dic > g¥Bw =0, 2eci/iie’

This assumption should be a good approximation to the conditions at high
LC arrival intensity. We will compare this analysis with our measurement

results in Chapter 3.

3.4 Delay Bound of the LC flow

The state diagram of the DRR++ algorithm is displayed in Figure 3.2. In order
to analyze the delay bound of the LC flow. we add the following definitions:

to: the beginning time of a backlogged period, i.e. the beginning of the
first round.

tr: the time of the end of the kth round,

D¥%: the deficit value of the LC flow at the end of the kth round.

39

Wirc(to.t): the service offered to the LC flow during the interval (t,,t).

Lemma 1. In DRR++, if the LC flow is continuously backlogged during

the interval (to.tx). then at the end of the kth round,
Wec(to te) > kQre — Die

Proof. Though DRR and DRR++ have a different definition of round, there
is no difference between the service assigned to a normal flow in DRR. or the
LC flow in DRR++. Thus DRR++ inherits this property from DRR [MG96,

Lemma2]. o

Lemma 2. In DRR++. at any point t such that (ty.t) is a backlogged period,

_ Qi+ 3QBE>)

. S ' . _
§) Lclto. ty) 2 mar (0 rLe (t to BNBIT

Proof. From Lemma 1 and the analysis of DRR based on the LR server

[DA98. Lemma 11]. we have:

R |
Wic(to.tk) > mazx (O.r[_c (t —tg - M))

BNBW

so we can get Lemma 2 from the definition of Q; in DRR++: Q; = Qrc+Q@BE-
a

Lemma 3. DRR++ is an LR server with latency ©@°%"** and

it +3
e,DRR' ; S QLC QBE

2
BNBW (3:2)

Proof. The proof is straightforward from Lemma 2 and the analysis of the

LR server [DA9S]. O

Theorem 2 In DRR++, if it is assumed that the arrivals of the LC flow
satisfy the (orc.prc) model, where cpc and prc denote the burstiness and

the average rate of the LC flow respectively, we can bound delay of any packet

40

belonging to the LC flow, Dic, as

- orc Qrec +3Qse
D;r <
€= e T T BNBW

Proof. The proof is straightforward from Lemma 2 and the analysis of the

LR server [DA9S]. a

Theorem 2 shows that DRR++ provides a lower delay bound for the LC
flow than DRR+. which has latency,

. 3F - 2Q.c
DRR+
o — BNBW (3.3)
where
F=Quc+ Y Q,
JEBE

From (3.2) and (3.3). we have another observation on the improvement of
DRR++: the delay bound of an LC flow in DRR++ is independent of the
number of active flows. .V. in the system. While in DRR+, ©PFF* increases

as .\ increases.

3.5 Summary

In this chapter. we have presented the DRR++ algorithm along with a mod-
ified version for straightforward implementation and analysis. We also have

given the delay analysis of DRR++ in terms of average delay and delay bound.

41

Chapter 4

Measurement Study of DRR+
and DRR++

The goal of our measurement study is to apply the DRR++ and DRR+ al-
gorithms in a practical network rather than in a simulation environment and
find out whether the theoretical analysis matches the practical results. Al-
though measurement is more difficult than simulation. it is more convincing
since the results in such a study may be affected by factors which may not be
accounted for in a simulation. such as operating system effects. In this chapter.
we will discuss a scheduler implementation. measurement environment. traffic

generation methodology. and issues concerning accuracy of measurements.

4.1 System Implementation

Both DRR+ and DRR++ have two modules - Enqueueing and Dequeue-
ing ([MG96]. [MWO00]) - which deal with the input and output functions
respectively. We implemented an application level scheduler on a Linux plat-
form. That is, as opposed to adding the scheduling algorithms to the Linux
kernel. an upper level application was implemented.

In our implementation of Enqueueing, we keep a list of active flows with
operations such as AddFlow. When a new packet arrives, the system deter-
mines the flow of the packet based on the information in the packet header.

If it is a new flow. the flow identification is added to the flow list by calling

42

AddFlow. After create a new identifier for the flow or if the flow identifier
already exists in the flow list, the packet is added to the back of the queue.

In the Dequeueing implementation. we scan the active flow list and check if
there are packets waiting in the input queues. If there are, we take the packets
from the head of the queue if the credit is large enough and put them in the
appropriate output queues.

Because both modules access the flow list, we designed two threads. each
of which performs one function. The flow list is defined as a variable which
can be accessed by both threads (See Figure 4.1). Through this method. the
enqueue thread function can be executed as long as the flow list is not in use by
the dequeue thread function and vice versa. Another implementation method
involves two processes which share a block of memory and deal with the input
and output separately. The active flow list and other shared variables are then
shared by these two processes. However. in the thread implementation, since
the data is inherently shared. context switches between the threads do not
have to flush all the memory management buffers. so it requires less system

overhead than the two process implementation.

4.2 Measurement Topology

There are two common topologies that have been used in previous research
work (see [AS89]. [LZ90]. [MG96]. [FHOO0] and {IHOQ] etc.). One is the single
node or single congested link topology (Figure 4.2 (a)). and the other is a mul-
tiple node topology. which is also called the “parking lot topology” (Figure
4.2 (b)). In either case. the scheduling aigorithm runs on the gateway (GW)
nodes. and each source may generate multiple connections as background traf-
fic or measured traffic. The first topology is often used to test a scheduling
algorithm on the congested link. The performance of the algorithm in terms of
delay and throughput are tested under the condition that multiple connections
share the same outgoing link. The parking lot topology is often used to test

the fairness of a scheduler because the traffic from different sources may have

43

' N

EnQueue Thread DeQueue Thread

(Active Flow ListJ PrioQueue

— Outgoing Link
BEflow2 .| T [[] (Deficit List) __uieome in

TxQueue

------------ ' Quantum List ' I

DRR+/DRR++ Process

Figure 4.1: DRR+/DRR++ Processes.

different path lengths and these paths share links. The scheduler must decide
how to distribute the bandwidth among the connections sharing the same link.
For per-flow scheduling, the parking lot topology can be considered as a more
complex version of the single congested link topology because of the finer gran-
ularity of the flow. The measurements in this study were made on the single
congested link topology shown in Figure 4.3. The traffic route is indicated by
the arrows from node S1 and S2 via the gateway G1 to node D1. The link
between G1 and D1 was the congested link. Nodes S1 and S2 each hosted a
DRRClient and generated a total of four flows. The nodes were both 400MHz
Celeron CPUs with 64 MB of memory running Red Hat Linux 6.1. Both had
multiple Ethernet NICs to generate the multiple flows to the DRRGateway.
Node G1 acted as DRRGateway. and node D1 acted as DRRServer. The DR-
RGateway received packets from each DRRClient and forwarded them to the
DRRServer after applying the scheduling algorithm under test.

We used two Cisco 2508 routers to connect the DRRGateway and the

DRRServer. In order to keep the packets in the output queues before they are

44

congested link

(@)

(owir—{aw2}—{cw3}~ ..
®)

Figure 4.2: Two Common Topologies: Single node and Multiple nodes.

transmitted by the scheduling algorithm in the DRRGateway, the bandwidth
of the output link of DRRGateway is always lower than that of the input link.
In our topology. the WAN link bandwidth was varied from 2400 bps to 4Mbps.
much less than the 10Mbps Ethernet bandwidth between the DRRClient and
DRRGateway.

In the topology. there are two NAS (Network Analysis Server) for the

accurate measurement. which will be discussed in section 4.3.

Ethemet

S1 g p— < Gl D1
—— -
DRRClient m
DRRSe
S2 Q — DRRGW rver
DRRClient

v v
== SRR >z
NASI NAS2

Figure 4.3: Measurement Topology.

4.3 Methodology

The scheduling algorithms reside at node G1. on the upstream side of the
congested link. and take effect after the packets arrive at node G1 and are
waiting to be forwarded to D1. We define TP and TP as the time-stamps
before the last bit of a packet p reaches node G1 and after the last bit of it
leaves node G1 respectively. The metric we use to evaluate the algorithms is
the mean delay for each flow j:
Dj=(I3-T7). p€j
The maximum delay for flow j is:

D, = maz{(T7 - T?). p € j}.

The parameters used in the study are the packet arrival rate, A, for the

best-effort flow and the quantum value, Q.c, for the LC flow.

4.4 Traffic Generation

Both the protocol type and the burstiness of the traffic need to be resolved.
For the former. both UDP and TCP were considered. For the latter, there are

two kinds of burstiness that must be considered.

46

4.4.1 Why UDP is more appropriate than TCP

There are two different protocols available to us: TCP and UDP. In our initial
tests, we found that it was difficult to obtain accurate timestamps for the cal-
culation of the delay if TCP traffic was generated. First, TCP is much more
complex than UDP because TCP uses error correction, flow control, sequenc-
ing and retransmission mechanisms. The TCP protocol dynamically adjusts
the sending rate based on acknowledgements (ACK) information coming back
from the receiver. If the delayv between sender and receiver is large. the TCP
protocol becomes insensitive to short term network load changes because a
large delay increases the response time of the feedback loop. Second. TCP is
a stream protocol rather than a packet protocol. Consider these two issues in

an Ethernet environment with an MTU of value 1500 bytes:

e Consider a large packet with length of 15000 byvtes, which may be an
I frame in MPEG traffic (see section 4.4.3). It will be segmented into
10 frames in the DRRClient and each fragment will be sent out as one
packet. They are re-assembled by the [P layer in the DRRServer. If one
fragment is lost. it is retransmitted according to the TCP protocol. which
results in an increased delay for the whole packet. There are several
reasons for this increased delay, such as congestion or a transmission
error. Because we only care about the performance of the scheduler,
it is difficult to obtain correct measurements. In contrast, UDP does
not retransmit a lost fragment because the UDP protocol does not use
acknowledgements for each packet to confirm reception. In some real
time applications. e.g. voice and video, a small degree of loss is much

more tolerable than increased delay.

e Assume that two packets, p! and p?, with a length of 100 bytes and
200 bytes respectively are sent from the DRRClient to the DRRServer.
If the interval (7,) between these two packets is small enough, when

using TCP, the DRRClient sends them together as one packet to the

47

DRRServer. Consequently, the DRRServer records only one arrival time
(T,) for the combined packet rather than times for two separate packets.
Although we can calculate the arrival time for these two packets, T} and
T2 as

200Bytes
BNBW

T) =T, -
doing so is not accurate because we do not know how much delay there
has been for the first packet in the DRRClient. In our tests, we found
that the TCP layer in the DRRClient may bind several packets together
before sending them out. When using UDP, this will not happen because

UDP sends packets separately.

By relving on UDP. the delay values in our tests reflect results from the
scheduling algorithm rather than being a combined value of both the schedul-
ing algorithm and the TCP protocol. Moreover. with the topology selected. we
can always get packets belonging to one connection to arrive in order, which

is otherwise not guaranteed by UDP.

4.4.2 Smooth Traffic

We use exponentially distributed traffic as the source type for BE traffic under
both DRR++/DRR+. The BE traffic is intended mostly to provide a back-
ground load for our study of the service received by the LC flow. The BE
traffic had a packet length with a mean of 410 bytes, consisting of a 40 byte
header plus a data portion with a length uniformly distributed in the range of

[40. 700] bytes.

4.4.3 Latency-Critical Traffic and Burstiness

The LC flow is meant to represent a bursty. real-time flow. In [KC94]. two
categories of burstiness are distinguished - one is the burstiness of inter-arrival

times. and the other is the burstiness of packet length. For the former, in

48

this study we use an exponential distribution because it exhibits significant
short term variance. For the latter, we use MPEG traffic because it exhibits
significant variation in packet length.

MPEG video is encoded into three kinds of frames. designated I (intra-
coded). P (predicted) and B (bidirectional). We use the MPEG traffic model
from [SK98] with 10 frames per group of pictures (GOP). The sequence of
frame types used to transmit one GOP is IPBBPBBPBB, and pictures are
sent at a rate of 3 GOPs per second. so that there will be 3 /-frames/sec, 9
P-frames/sec and 18 B-frames/sec. The different frame types also have dif-
ferent mean lengths and distributions. /-frames have a mean length of 16000
bytes. uniformly distributed between 15000 and 17000 bytes. P-frames have a
truncated exponential distribution with a mean of 2100 bytes. and minimum
and maximum values of 512 and 17000 bytes. B-frames also have a truncated
exponential distribution. with a mean of only 550 bytes. and minimum and
maximum values of 256 and 17000 bytes. The overall mean rate is 615Kbps, to
which /-frames contribute about 50% of the bytes with only 10% of the total
frames. Thus. while the frame inter-arrival times are predictable (at least at
the source). the observed distribution of frame lengths for the aggregate traffic

is quite bursty.

4.4.4 Traffic Models

Different traffic models can be used to characterize traffic [AA97][MS96]. Some

popular models for different kinds of traffics are:

e Poisson: Poisson traffic is used for normal data traffic. Given an average

arrival rate A. the average inter-arrival time between two packets is 1/\.

e On-Off: The On-Off model is mostly commonly used for single voice
source. In this model. packets are generated during the On state (talk
spurts) and there is no packet during the Off state (silence). The pa-

rameters in the On-Off model are: the mean length of time in the On

49

state, the mean length of time in the Off state and packet arrival rate
in the On state. The first two parameters are specified as exponential
distributions with mean 1/A and 1/3 respectively. The packet arrival
rate in the On state is a fixed value, corresponding to the voice sampling

rate.

e Markov-Modulated Poisson Process (MMPP): MMPP is used to rep-
resent a variety of traffic types. such as voice, video or the mixture of
several traffics [AA97] [MS96]. It defines n states, s;,1 < i < n. and in

any state the arrivals occur according to a Poisson process with rate \;.

e MPEG: MPEG can be modeled as discussed in Section 4.4.3. Many
studies have been done on the distribution of the I, P and B frame
sizes. For example. [SK98] uses a uniform distribution for I frames
and exponential distributions for both P and B frames. [MH93] uses
lognormal distributions for all the three frame types but with different

parameters.

Another kind of traffic model is traffic shaping (or regulating), which con-
trols the output of packets in a specified rate. The main reason for using
traffic shaping is to ensure that traffic conforms to the contracts established
for it. and to regulate the flow of traffic in order to avoid congestion that can
occur when the transmitted traffic exceeds the access speed of remote nodes.
Another reason is that it is easier to analyze the scheduling algorithm if the
input traffic is shaped before entering the link. Note that traffic shaping is
different from traffic policing because a policer typically drops traffic while a
shaper typically delayvs excess traffic using a buffer to hold packets.

[HZ95] summarizes several traffic shaping models : (X'min, Xave, I, Smaz),
(0.p) and (r.T). “A traffic stream satisfies the (Xmin, Xave, [, Smaz) model
if the inter-arrival time between any two packets in the stream is more than
.X'min. the average packet inter-arrival time during any interval of length [is

more than Xave, and the maximum packet size is less than Smaz”. “A traffic

30

stream satisfies the (0. p) model if during any interval of length u, the number
of bits in that interval is less than o + pu. In the (o, p) model, o and p can
be viewed as the maximum burst size and the long term bounding rate of the
source respectively”. “Similarly, a traffic satisfies (r, T) model if no more than
r - T bits are transmitted during any interval of length T [HZ95].

We use an (r,T) model in our work because its definition is similar to the
definition of the contract used in DRR+ and DRR++. The contract, C;. is
defined as the number of bytes that can be sent on connection j during an
interval of length At. Formally, if .V; is defined as the total number of bytes
that arrive at the DRRGateway on connection j during the interval (t.t+ At),
then the flow is considered to obey its contract only if .NV; < C;.Vt, At > 0. In

the tests of DRR+. the contract. Cj., was set to 135% of the average rate.

4.5 Measuring Delays Accurately

To quote RFC-2330 [VG98] “time lies at the heart of many Internet metrics.”
This is certainly an issue in this study, especially because we need to use the
times at which events occur at various points in a spatially-distributed system.

A few definitions are useful when discussing the use of clock values in mea-
surements [VG98]. [VP98]. Consider two clocks generated from two different
machines. The offset at a particular moment is the difference between the val-
ues of the two clocks. The skew at a particular moment is the first derivative
of offset: this is the rate at which one clock value is approaching or moving
away from the other. The drift at a particular moment is the second derivative
of offset — the acceleration of one clock value toward or away from the other.
The two clocks are synchronized if their relative offset is zero.

Calculating packet delays requires using the clock values from more than
one machine. so synchronization between multiple clocks is as important as
their accuracy. In [VG98|, some drawbacks of the Network Time Protocol
(NTP) as a long term solution are noted. One of its assumptions in NTP

is that timestamps are monotone increasing, which is reflected as constant

a1

skew and zero drift. But the results in [VP98] show that clock offsets can
jump randomly at times. While conducting this study, we found nonzero drift
between the clocks in our workstations., and we also found offset jumps at
random times.

For example. Figure 4.4 and Figure 4.5 show the delay of one LC flow from
DRRClient1 and one BE flow from DRRClient2 over five runs of approximately
25 minutes each: different runs show the same trend and have nearly constant
drift over the course of the run. Figure 4.5 shows that the delay decreases
when the arrival rate is between 10 and 20 packets/sec and increases when the
arrival rate is larger than 20 packets/sec. This result is difficult to explain if
we do not consider the clock synchronization. These two figures also depict
the opposite offset behavior between the LC flow and the BE flow: given a
BE traffic rate. the five seeds generate an increased offset value of about 130
millisec ! for the LC flow. but a decreased offset value of about 160 millisec
for the BE flow. This result shows that the two DRRClients have a different
rate of change of offset compared with that of the DRRServer.

In another experimental run, we looked at the evolution of clock skew.
At the DRRServer. we sampled the timestamps of arriving packets every 200
seconds. We then calculated the relative offset based on the first sample. If we
define t, as the timestamp of the nth sample. the relative offset of this sample
is calculated as (¢, — to — 200 % n). which is the offset between the current
clock value and the predicted value based on the clock time at the arrival of
the first sample. In an ideal situation. the relative offset will not change for
a clock with zero drift, which satisfies the adjustment assumption of NTP.
But Figure 4.6 shows increasing clock offset. as well as offset jumps at some
random times. Thus, the use of NTP is precluded as an accurate method for
clock synchronization in these experiments.

As a result of these observations we decided to obtain delay measurements

through the use of two accurately svnchronized clocks. These were available as
!millisecond = 0.001 (1e-3) sec

(]
(%]

LC: Lambda=10 Pkt/sec , AvglL.en=340Bytes, BNBW=125Kbps

10m ¥ L T 3 T
seed! LC ——
seed2 LC ---x---
seed3 LC ---=---
seedd LC —a--

AvgDelay {msec)

0 5 10 15 20 25 30
BE traffic rate (pkVsec)

Figure 4.4: LC Seeds Offset Measurement.

two DominoPLUS NAS (Network Analysis Server) from \Wandel & Goltermann
Technologies. Inc. A TTL pulse from one analyzer is used to trigger the clock
of the other (See Figure 4.3). All of the following results are based on the

timestamps captured from the two network analyzers.

4.6 Summary

This chapter begins by describing a thread-based application level implemen-
tation of the DRR+ and DRR++ algorithms. Then we discuss several issues
about the measurement environment: topology, methodology, traffic genera-
tion of both smooth and bursty sources. Finally, we present the results of an
investigation of the problem of measuring delays. and give a practical solution

to this problem.

AvgDelay (msec)

seed! BE ——— ' ’ j ’
seed2 BE ---x---
1400 - seed3 BE ---#--- <
seedd BE -&-
seedS BE --® —
1200 1
A
1000 oo - Ratmales et St ol :: " b
A
. '.'.' ‘I
o LA W [CITeen [PRore - .
800 :1: J
g .8 !
e e - S - ..
600 - - &
"
. ? T [P -a” .
0 S 10 15 20 25 30
BE traffic rate (pkUsec}
Figure 4.5: BE Seeds Offset Measurement.
Sample rate: 200 second. With Background Traffic
4 L] T 1
DRRServer clock skew with the 1st sample ~
3.5+
3 R ”w
-
":'.
25 F -
— R
3 —"
; 2F -
2 S~
] Rl
s M“’”
15 F
é ‘v"’
1k -
m’“
0.5 —
L
w"
0 "”«»
L —). s
0 50 100 150 200
Sampie number

LC: Lambda=10 Pkt/sec . AvglLen=340Bytes. BNBW=125Kbps

Figure 1.6: Self Clock Drift Measurement.

Chapter 5

Measurement Results

In this chapter, we report measurement results for both exponential and
MPEG LC sources. Under these two different kinds of bursty traffic sources,
we investigated the performance of DRR+ and DRR++ in terms of mean

delay. isolation and fairness:

e e tested the mean delay of the LC flow under various environments

and took it as the main metric to compare DRR+ and DRR++.

e In order to test the isolation feature, the behaviors of the background
BE flows were changed to measure the effect on the performance of LC

flow.

e For fairness. we did not give a comprehensive investigation but tested

the mean delays for three BE flows with the same parameters.

For both types of bursty sources, we looked at the effects of varying the
intensity of the background best-effort flows. and the effects of changing the
quantum allocated to the LC traffic. In all the tests, we generated one LC
flow and three BE flows and calculated the mean delay of each flow. We used
one LC flow rather than multiple LC flows in order to eliminate the intra-class
effect between several LC flows and to make sure that the performance of the
LC flow is only affected by the BE flows. The number of BE flows was limited

by the available memory in the Domino PLUS.

Age | Traffic rate (bytes/sec) | Burstiness (bytes)
3 1850 8983

T 2590 7894

10 3700 12141

11 4070 10270

13 4810 5810

15 3350 4179

16 5920 4146

18 6660 3717

20 7400 357

Table 5.1: Traffic rate and burstiness for exponential traffic.

5.1 Exponential LC Traffic

During the tests. the capacity of the bottleneck link was 125Kbps. Each
measurement test took 100 seconds. and five delay results. r;.7 = {1.2,3. 4.5},
were gathered using five different groups of seeds for random generation in

order to compute the 95% confidence interval of the mean delay as [RJ91]:

95%C I = 1.96 - %

The behavior of exponential LC traffic was investigated because this rep-
resents a type of traffic whose interarrival times can be very bursty. Table
5.1 gives the arrival rate and the burstiness of the exponential traffic. The

burstiness. o. is calculated as:
o> A(r.t) — p(t — 7).

where A(7.t) is the total number of arrivals during (7.t) and p is the ser-
vice rate allocated to the flow. This formula can be derived by rearranging

inequality 3.1 in [DA95].

5.1.1 Effect of background traffic intensity

In the first series of measurements we observed the mean delay of the expo-
nential LC flow as a function of the intensity of best effort traffic. Because of
the isolation of DRR++. the behavior of the LC flow should not be affected
by the behavior of the BE flows. The mean delay of the LC flow should be
bounded when the intensity of the BE traffic increases.

In the tests. the value of Agg was varied while keeping A.¢ at 15 packets/sec
and Q¢ at 2000 bytes. The three BE flows had the same arrival rate, ranging
from 3 to 20 packets/sec. The quantum of the best effort flows, Qgg, was
increased in proportion to the changes in Agg. Specifically, we fixed the ratio

of quantum to arrival rate to be the same as for the latency critical traffic:

Qse _ Quc

Ase ALc

The algorithms we are studving, DRR+ and DRR++. can be modeled as
an M/G/1 queue with vacations if we want to examine only the performance
of the LC flow. In this model. when each busy period ends, the system spends
some interval of “vacation™ time. If a new packet arrives during the vacation
period, it cannot be served until the end of the vacation period. If there is no
new packet awaiting service when the vacation ends. another vacation starts
again.

If we define 17 as the average vacation time of the LC flow, then V¢
is the average service time of the BE flows before the next LC service. In
DRR++. Vi¢c < Qgg/BNBW because the LC flow is served only after one
BE traffic has been forwarded. In DRR+. V¢ < 3, Q%e/BNBW at any
point in time after the LC flow breaks the contract. In DRR++, consider the

points in Figure 5.1 at which Agg = 0 and Agg = 20 packets/sec. When

(S]]
-~

Age =0. Vo =0, and at Agg = 20:

QBE
BNBW
(2666 * 8)bits

250K bps

= 85.3 millisec.

maz(Vyc)

In our experiment, D;¢ increases by 106 — 15.5 = 90.5 millisec. This
is a little bit larger than the max(V;c) because the queueing delay of the
DRRGateway is included in our measurements.

Under DRR++. D¢ increases up to an asymptote, while Dgg increases
dramatically when the link nears saturation at a utilization of 98.4% for A\gg =
20 packets/sec (See Figure 5.1). The asymptote occurs where the vacation
time of the LC flow is bounded by the quantum value of one BE flow. At high
intensity the quantum of the BE flow can always be consumed due to the high
arrival rate. As a result , the delay of the LC flow increases up to this value
as the arrival rate of the BE flows increases.

When using DRR+, D;¢ increases quickly in the same manner as Dgg
(See Figure 5.2). This is because once the LC flow breaks its contract, it is
put back into the BE flow list and gets the same service as the other BE flows.
In addition. because the behavior of an exponential distribution depends on
the value of seed. we observe that under different seeds the LC flow breaks its
contract at different timepoints. The result is that the 95% CI of D¢ is much
larger under DRR+ than when using DRR++ (Table 5.2).

The bounded delay value that the DRR++ offers to the LC flow is impor-
tant because the behavior of other BE flows does not affect the performance
of the LC flow. This isolation feature protects the LC flow if there are some
badly behaved BE flows.

Figure 5.1 also shows the mean delay of the LC flow based on the analysis
in Chapter 3. This analysis approximates the high utilization condition. When
Agg is small, the BE flow usually has a much shorter busy period than when

Agg is large. so the vacation time of the LC flow is decreased and the values

38

Age | 95% CI in DRR+ | 95% CI in DRR++
3 0.668 0.910

7 0.782 0.772

10 2.172 1.152

11 4.176 2.053

13 7.339 2.402

16 193.893 4.386

18 970.229 2.942

20 1743.618 2.689

Table 5.2: LC delay in DRR+ and DRR++.

of both parts of the delay in the measurement, ¥, and IV}, are lower than in
the analysis.

Figures 5.1 and 5.2 show that the three BE flows have very similar delay
values under different utilizations. which demonstrates that both DRR+ and

DRR++ are fair to the BE flows.

5.1.2 Effect of quantum, Q;c, under low utilization

In DRR+ and DRR++, the quantum assigned to each flow plays an important
role because it decides how many times a connection is served in each round.
Moreover. the quantum is the only configurable parameter in the algorithm.
There are two issues related to the quantum: how to choose the quantum value
and the effect of the quantum on performance. We have discussed selecting
the quantum value in Section 3.1.1. In this chapter we focus on the effect of
the quantum on performance. There are two possibilities in a round: either
the quantum is consumed partially or fully. These two cases occur under low
and high utilization respectively. We investigate the performance of LC flow
under low utilization in this section and high utilization in the next section.
Intuitively, under low utilization of the congested link, the flow has a short
busy period because of the short queue length, so the waiting time of a packet
should decrease according to Little’s law. In order to test the effect of this pa-

rameter on the LC flow, we keep Agg, Arc and @ gg constant while increasing

39

only Q. Figure 3.3 shows the behavior of DRR+ and DRR++ under low
utilization (78.72%) when the arrival rates of all the flows are 15 packets/sec.
When Q¢ is low. packets wait more rounds to be served in both DRR+ and
DRR++ because they must accumulate enough of a balance to be forwarded.
In addition. D;¢ only changes a little in DRR++, while it changes signifi-
cantly and quickly in DRR+. This is because with low utilization and a given
Qrc. DRR++ can finish servicing more LC packets in one round than DRR+,
which results in lower delay.

Using Figures 5.4 and 3.5 we can compare the number of TotalRounds.
LCService and LCBacklog of DRR+ and DRR++. In order to compare the
number of rounds between DRR+ and DRR++. we define one round as a pe-
riod in which there is at least one queue to be served when the scheduler scans
all the queues. The TotalRounds increases in DRR+ as Q¢ decreases because
DRR+ only serves the LC queue once per round after the LC flow breaks its
contract. The total number of rounds is virtually constant in DRR++. which
means that a change in Q¢ does not affect the TotalRounds under low uti-
lization.

The number of LCService is how many times the LC queue is served during
the experimental run. In DRR++. this value is larger than the TotalRounds
because DRR++ may serve the LC queue more than once per round. The
number of LCService decreases as Q. increases because with a larger Q. c.
DRR++ can send more packets in each service interval. The number of LC-
Service is a little bit lower in DRR+ than in DRR++ because more packets
arrive during two successive LC services.

The LCBacklog is how many times the LC queue is still backlogged after
exhausting the quantum in the current round. In DRR++ this value decreases
dramatically with increasing Q¢ because then most of the packets in the LC
queue don't need to wait to be served. The number of LCBacklog in DRR++
is about half that in DRR+, probably because the increase in LCService helps

keep the LC queue short. From Little’s law, the shorter queue length generates

60

lower waiting time for the packets, so the difference in LCBacklog also explains
why D;c in DRR++ is lower than in DRR+.

In our experimental runs. we used three BE flows as the background traffic.
QLc was varied from 11.8% to 40% of the total quantum. In the real world.
there may be more BE flows passing through the router, so the delay D;c¢
with low Q¢ is perhaps of more interest than that with large Q,;c. Figure
5.3 shows that DRR++ has a much lower D;- than DRR+, and it changes

much more smoothly.

5.1.3 Effect of quantum, @;c, under high utilization

If the congested link is heavily utilized. the performance of a flow is different
than in low utilization because the queue may build up which results in a
larger waiting time. The following tests show that DRR++ still provides a
bounded delay for the LC flow while DRR+ fails to guarantee the delay bound
of the LC flow once it breaks the contract.

Figures 5.6 and 5.7 present D;c in DRR+ and DRR++ under high uti-
lization of the bottleneck link (94.45%) when the arrival rates of all the flows
are 18 packets/sec. Note that these two figures use veryv different scales for
the LC delay: the values in the scale of Figure 5.7 for DRR+ are 100 times
those in Figure 5.6 for DRR++. Under low values of Qrc. the value of Dy
for DRR+ changes dramatically compared to DRR++.

Figures 5.8 and 5.9 present the number of TotalRounds, LCService and
LCBacklog of DRR+ and DRR++ in high utilization.

Although when the Q¢ is small the backlog number in DRR++ is a little
smaller than that in DRR+, it decreases more quickly in DRR+: it drops to
about 100 when Q¢ = 1200 in DRR++ while it reaches 100 when Q¢ = 2000
in DRR+. As discussed above. less backlog decreases packet delay because of
the short queue length.

We omit the 95% confidence intervals for Dy in DRR+ in both the low

and high utilization cases because the values are very large and similar to those

61

in Table 1.

5.2 Bursty MPEG LC Traffic

MPEG is a typical real time multimedia traffic requiring low delay. It is verv
challenging for the scheduler because of the large variations in frame length
and has a nearly constant frame interarrival time, for example, 1/30 sec if
the MPEG is coded as 3 GOP/sec and 1GOP = {IPBBPBBPBB}. If a
scheduler only considers the bursty interarrival time but does not consider
the packet length burstiness. it may fail to guarantee the performance of the
MPEG flow because the scheduler treats the MPEG stream as normal traffic.
Our tests shows that DRR++ provides a delay bound for the MPEG LC flow
by allowing burstiness of the packet length.

Using the same definition as previously. the burstiness. o, of the MPEG
traffic is 45560 bytes if we calculate the frame-burstiness by checking the bursti-
ness frame by frame. and 31436 bytes if we calculate the group-burstiness by
checking the burstiness group by group. The reason for the difference is be-
cause of the large variance in length of the different frame types.

In this section. we compare the behavior of DRR+ and DRR++ for MPEG
traffic while changing A\geg and Q.c. In DRR+. the contract of the MPEG
LC flow. Cyc. is set to 1.35 MPEG. where MPEG = (I + 3P +6B)/10 =
25600 bytes.

In the following tests. we also discuss the performance effects of both the
background traffic intensity and the quantum assigned to the MPEG LC flow.
At the same time, we increase the capacity of the bottleneck link to 1.2Mbps
because of the larger traffic rate of the MPEG source. Consequently, the

arrival rates of the background flows are also increased in order to compete
for the link with the MPEG flow.

5.2.1 Effect of background traffic intensity

Figures 5.10 and 3.11 show the effects of varving the rates of the three BE
flows from 0 to 30 packets per second. Figure 5.10 shows that under DRR++
the delay of the MPEG LC flow approaches an asvmptote. as it did with
exponential traffic. At the same time, the delay of the BE flows increases
dramatically once their arrival rates are larger than 13 packets per second.
This result can prove the robustness of DRR++: the delay of the LC flow
is predictable given the quantum value of the BE flow. From the point of view
of the receiver node. one of the results is to decrease the buffer spaces required
for the stream playback. DRR++ provides better performance on the buffer
storage requirement for the MPEG traffic because of the bounded delay value.
Figure 5.11 shows the results for DRR+. where the MPEG LC flow has
a larger delay than the BE flows because it has been demoted to best-effort
service. and is being served once in every round. At the same time. the large
variance in packet length of the MPEG LC flow results in even larger delay
than for the BE flows because the I frames must wait multiple rounds for
transmission. The P and B frames in each group also have to wait until
the I frame completes service. Although we can use multiple connections to
transform the different types of frame. the receiver needs more space to buffer
the arriving frames. The delay for all flows reaches more than one hundred

times the delay under DRR++.

5.2.2 Effect of quantum, Q;c, under low utilization

We also tested the effect of Q¢ on the MPEG LC traffic for two different
values of utilization of the bottleneck link. In these two tests. we only changed
the arrival rates of background BE traffic and kept the MPEG traffic constant
as above. Figure 5.12 presents the delay of the MPEG LC flow in both DRR++
and DRR+ with low utilization of the bottleneck link (56%) when the arrival
rates of the BE flows were 12 packets/sec. Neither values changed much when

the Q¢ changed because at low utilization not many BE packets arrive during

63

one round. So Qg isn’t fully used, which results in a bounded value of service
time for the LC flow. The reason that DRR++ has lower delay than DRR+

is that the MIPEG LC packets have more chances to be served.

5.2.3 Effect of quantum, Q;¢, under high utilization

Figures 5.13 and 3.14 show two totally different delay trends of MPEG LC and
BE flows in DRR++ and DRR+ under a little higher utilization (60%) when
the arrival rates of the BE flows are 18 packets/sec. In DRR++. the MPEG
LC flow reaches verv low delay when Q¢ equals 9000 bytes, which is 60%
of the total quantum. In DRR+, the delay of the MPEG LC flow decreases
from a veryv large value until Q¢ equals 21000 bytes, which is 78% of total
quantum. When Q¢ is 27000 bytes (82% of the total quantum), the delay is
still much larger than in DRR++. Although the MPEG LC flow has a large
delay in DRR++ when Q¢ is less than 6000 bytes. this value is only about
35% of the maximum packet length of 17000 bytes. which is the maximum
packet size of the MPEG traffic. Figure 5.13 shows that the delay of MPEG
traffic decreases to a nearly constant low value if Q. = 9000 bytes. where the
scheduler takes a small number of rounds (< 2) for the LC flow to accumulate
enough credit to forward the I frame.

The behaviors of the BE flows are also different under DRR+ and DRR++.
In DRR++. the BE flows exhibit small delays when Q;c = 3000 bytes. Their
delay increases dramatically approaching Q.c = 9000 bytes. When the system
services the LC packets. the BE packets which are queued have to wait a long
time while the [frame is served. In DRR+, the delay of the BE flows decreases
when Q. ¢ > 21000 bytes. This is because after the LC flow breaks its contract
and is demoted to BE service, all flows have the same opportunity to get served.
Only when Q¢ is large enough can the MPEG flow be served quickly. This

results in the long waiting time of the BE flows.

64

5.3 Summary

In this chapter, we presented measurement results for DRR+ and DRR++
under two different types of bursty traffic: exponentially distributed traffic
and MPEG traffic. Under both types of traffic, we investigated the effects
of the intensity traffic and the quantum value of LC flow respectively. The
empirical results show that the DRR++ can significantly decrease the delay
value and provide a bounded delay value for the LC flow under both kinds of

bursty traffic.

AvgDelay (msec)

1 LC vs. 3 BE, Exponential Distribution, Lambdal.C=15 Pktsec , BNBW=250Kbps

500 - v T
LC Analysis —— Y
LC Measurement ---x--- 1
450 I BE1 Measurement ---u--- M
BE2 Measurement —-&-— I
BE3 Measurement --@-- b
400 a
k]
aso b G
2
b
H
300 ’
!
1]
250 ,l
;',v
200 4
¢

AvgDelay (msec)

DRR++: LambdaBE (pkt/sec)

Figure 5.1: DRR++, varying background load.

1 LC vs. 3 BE. Exponential Distribution, Lambdal.C=15 Pk¥/sec, BNBW=250Kbps

T

g2 8 B 8 8 8

8

&

+

L

10
DRR+: LambdaBE (pkt/sec)

Figure 5.2: DRR+, varving background load.

66

LC AvgDelay {msec)

1 LC vs. 3 BE. Exponential Distribution, BNBW=250Kbps. QuantumBE=10008Bytes
300 T T

DRR++, %78.72 Utilization, Lambdal C/BE=15pkt/seC ——

280 b DRR+, %78.72 Utilization, LambdaLC/BE=15pkt/sec ---=---

o
260 - . 4
240 u 4
220 - A b
200 B
180 b
160 | - .
140 ~
120 . .
100 - s 4
80 - W e B

LT 1
60 . -
40 o * —— —— - ﬂ
20 1 L L L 1 1 L

400 600 800 1000 1200 1400 1600 1800 2000

QuantumLC (Bytes)

Figure 5.3: DRR++/DRR+. low bottleneck utilization. varying Qrc.

1 LC vs. 3 BE, Exponential Distribution, BNBW=250Kbps, QuantumBE=1000Bytes

T 14 L AN RJ T T
2250 %78.72 Utilization, TotalRounds ——]
%78.72 Utilization, LC Services ---x---
%78.72 Utilization, LC Backlog ---s---
2000 <
1750 rC -
—.—_'__./\‘
1500 h
R S —— e
1250 b TR -
1000 = B
750 ~ -
500 -
L'.
250 - .. -
___________ —
0 i 1 ey ST & & i
400 600 800 1000 1200 1400 1600 1800 2000

DRAR++: QuantumLC (Bytes)

Figure 5.4: DRR++, low bottleneck utilization. varying Q.c.

67

Number

L.C AvgDelay (msec)

1 LC vs. 3 BE, Exponential Distribution, BNBW=250Kbps, QuantumBE=10008ytes

2250 | - j ; i %78.72 Utilization, TotalRounds —— 1
%78.72 Utilization, LC Services ---x-—--
%78.72 Utilization, LC Backlog ---«---
2000 + -
1750 + .
1500 ~
1250 $--.. -
fad e
e
______ —
1000 RS ST o » ;
750 b :
-
500 - .
..
250 — .
....... -“""”--..
0 L 1 L 1 TR b SR Qoo
400 600 800 1000 1200 1400 1600 1800 2000

DRR+: QuantumLC (Bytes)

Figure 5.5: DRR+. low bottleneck utilization. varyving Q¢

1 LC vs. 3 BE. Exponential Distnibution, BNBW=250Kbps. QuantumBE=10008ytes

T T T

DRR++, %94 45 Utilization, LambdaL C/BE=18pkt/sec ——
180 .

w

w b i 1 b b 1 A i
400 600 800 1000 1200 1400 1600 1800 2000

DRR++: QuantumLC (Bytes)

Figure 5.6: DRR++. high bottleneck utilization. varving Q.c.

68

LC AvgDelay (msec)

Number

18000

15000

:

:

g

Figure 5.7: DRR+. high bottleneck utilization, varving Qc.

1 LC vs. 3 BE, Exponentiat Distribution, BNBW=250Kbps, QuantumBE=1000Bytes

T T

I 1

1

DRR+, %94.45 Utilization, Lambdal C/BE=18pkt/sac ——

3

400 600

1 LC vs. 3 BE, Exponential Distribution, BNBW=250Kbps, QuantumBE=1000Bytes

800

1000
DRR+: QuantumlLC (Bytes)

1200

1400

1600

1800

2000

T

T

L)

L3

2250 [%34 45 Utilization, TotalRounds —— 7
%94.45 Utilization, LC Services ---x---
%94 45 Utilization, LC Backlog ---a---
2000 -
1750 |- -
1500 - b
_____ e
e
1250 R ek =
1000 & .
750 F .
500 - .. .
T
250 <
—_—
"""" -
0 i L 1 i ki LSOO SO {
400 600 800 1000 1200 1400 1600 1800 2000

DRR++: QuantumLC (Bytes)

Figure 5.8: DRR++, high bottleneck utilization, varyving Q¢

69

1 LC vs. 3 BE, Exponential Distribution, BENBW=250Kbps, QuantumBE=1000Bytes

2250 F T T T T T - L T
%94.45 Utilization, TotalRounds —+~——
%94.45 Utilization, LC ices ---x---
2000 %94.45 Utilization, LC Backlog ---=---
1750 - 1

sw I - ceu, |
""""" /..
250 - L LT]
"""" -w-.»--...-----.-
.............. o
° ‘l 1) . N L 1 L
400 600 800 1000 1200 1400 60 -

DARR+: QuantumLC (Bytes)

Figure 5.9: DRR+, high bottleneck utilization. varying Q_c.

1 MPEG vs. 3 BE Exponential Distribution, BNBW=1.3Mbps

500 LC T T T T T T

L R i 4
4s0 [BE2 —a- :
a0 :
350 b 4

AvgDelay (msec)
¥

200 <
180
100 |
50
L e -4 . 3
2} S 10 18 20 25 30

DRRA++ LambdaBE (pkt/sec)

Figure 5.10: DRR++ carrving MPEG, varying background load.

1 MPEG vs. 3 BE Exponential Distribution, BNBW=1.3Mbps

]
17500 - :
- []
§ 15000 :’4)
E
Z 12500 + B
g
2 10000 | .
7500 .
5000 .
2500 :
0 - .
0 5 10 30
DRR+. LambdaBE (pkvsec)
Figure 5.11: DRR+ carrving MPEG, varying background load.
1 MPEG vs 3 BE Exp Distnbution, LambdaBE=12pkt/sec, QuantumBE=20008
1“ A T L] ¥ L] T T T T T
DAR++, MPEG LC ——
DRR+, MPEG LC -
120 b .
_. 100 | .
g
2
8 80§ . ; ; ; _ - -]
2 - LAt TELTERRR . 8- §onaneee | JERRRASIES | IEEETSIRES 8 PSR ']
6o 3
M P
10 f ;

4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000
QuantumlLC (Bytes)

Figure 5.12: DRR++/DRR+ carrving MPEG, low bottleneck utilization,
varying Qcrc.

1 MPEG vs. 3 BE Exp Distribution, LambdaBE=18pkt/sec, QuantumBE=20008
11000 T

10000 +~

AvgDelay (msec)

1000 1
4
o . y s .
3000 6000 9000 12000 15000 18000 21000 24000

DRR++: QuantumLC (Bytes)

Figure 3.13: DRR++ carrving MPEG. high bottleneck utilization. varving

Qrc-

1 MPEG vs. 3 BE Exp Distribution, LambdaBE=18pkt/sec, QuantumBE=20008
8000 T T T Lg k] L]

T e -—.'_5
7000 . ¥

6000 ¢

AvgDelay (msec)
T

3000

2000

1000 +

0 &=
3000 6000 9000 12000 15000 18000 21000 24000 27000
DRR+: QuantumLC (Bytes) with SmallWindow

Figure 5.14: DRR+ carrving MPEG, high bottleneck utilization. varying Qrc.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis. we report the results of a measurement-based evaluation of two
packet scheduling algorithms. DRR+ and DRR++. Although both DRR+
and DRR++ work in packet switched networks and have low complexity O(1)
inherited from DRR. DRR++ is a more ideal scheduler for latency critical
traffic because it allows short term burstiness of latency critical traffic while
DRR+ does not have this feature. Our experiments used two types of bursty
traffic — one with bursty interarrival time. and the other with bursty packet
length. The traffic models used in our measurements for these two burstiness
are exponential distribution and MPEG traffic respectively. We investigated
the impact of background traffic and the quantum value of the latency-critical
flow on both algorithms with these two types of bursty traffic sources. We also
discussed the issues of network topology and protocol type as applied to our
tests. In order to overcome clock inaccuracy caused by clock skew and random
jumps. we used two network analvzers with precisely svnchronized clocks.

DRR++ offers delays for latency critical traffic that are two orders of mag-
nitude less than those in DRR+. Our measurements also show that DRR++
performs much better in terms of isolating latency-critical and best-effort traf-
fic from each other.

Under both tyvpes of bursty traffic. as the background traffic intensity

increases, the effects on the latency critical traffic are quite different under
DRR+ and DRR++. The delay of latency critical traffic has small increases
in DRR++ but large increases in DRR+. As a result, the delay bound of
the latency critical traffic in DRK++ is much smaller than that in DRR+.
Moreover. DRR++ offers much lower delay variation for the latency critical
flow when the intensity of background traffic increases. Because high link uti-
lization is much more challenging for the scheduler, DRR++ provides latency
critical traffic with a much better delay guarantee than DRR+.

Since the quantum is an important parameter in both the DRR+ and
DRR++ algorithms. we have investigated the behavior of the algorithms with
various quantum values. Our results show that the quantum value of the
latency critical flow has different effects on performance. In DRR++, the
latency critical flow has low delay even when the value of the quantum is
relatively small because the latency critical low has more service opportunities
and is allowed to transmit short term burstiness without being punished.

We have also analyvzed the mean delay of the latency-critical flow in DRR++
under backlog and compared the analyvtical results with our measurements.
The comparison shows that the analysis provides a good bound for the delay.
and that the accuracy of the estimate improves as traffic intensity and link

utilization increase.

6.2 Future Work

There are several related areas to be explored in the future:

e more complex topologies and traffic loads could be used to evaluate the

performance of DRR++.

e buffer management mechanisms which work well with DRR++ need to

be explored.

¢ DRR++ could be implemented within the Linux kernel.

74

Bibliography

[AA97]

[AS89]

[AT96]

[BBY4]

[DA93)

[DA9S]

[DR92]

[DS96]

[DS98]

A. Adas, “Traffic Models in Broadband Networks”, IEEE Commu-
nications Magazine, July 1997, pages 82-89.

A. Demers, S. Keshav, S. Shenker, “Analysis and simulation of a
fair queueing algorithm”, Proc. of ACM SIGCOMNMI'89, September
1989. pages 1-12.

A. S. Tanenbaum, Compurer Networks, 3rd edition, Prentice Hall,
Inc., 1996.

B. Kim. B.-Y. Kim. “Simulation Study of Weighted Round-Robin
Queueing Policy”. Proc. Tech. Conf. on Telecommunications R&D,
Massachusetts, 1994.

D. Stiliadis. A. Varma, “Latency-Rate Servers: A General Model
For Analysis of Traffic Scheduling Algorithms”, Technical Report
UCSC-CRL-95-38, University of California, Santa Cruz, July 1995.

D. Stiliadis, A. Varma, “Latency-Rate Servers: A General Model
For Analysis of Traffic Scheduling Algorithms™, IEEE/ACM Trans-
actions on Networking, Vol 6. No.5, October 1998, pages 611-624.

D. Bertsekas, R. Gallager, Data Networks, 2nd edition, Prentice-
Hall. Inc., 1992.

D.K.Y. Yau, S. S. Lam, “Adaptive Rate-Controlled Scheduling for
Multimedia Applications”, Proc. of ACM Multimedia ‘96, Novem-
ber 1996, pages 129-140.

D. Saha, S. Mukherjee, S. K. Tripathi, “Carry-Over Round
Robin: A Simple Cell Scheduling Mechanism for ATM Networks”,

5]

[DVog]

[FHOO|

[HD93]

[HDOA|

[HF94]

[HR93)

[HR99]

[HS91]

IEEE/ACM Transactions on Networking, Vol. 6, No.6, December
1998, pages 779-796.

D. Stiliadis, A. Varma, “Rate Proportional Servers: A Design
Methodology for Fair Queueing Algorithms”, I[EEE/ACM Trans-
actions on Networking, Vol. 6, No. 2, April 1998, pages 164-174.

F. Tsou. H. Chiou, Z. Tsai, “Design and Simulation of an Efficient
Real-Time Traffic Scheduler with Jitter and Delay Guarantees”,
IEEE/ACM Transactions on Networking, Vol. 2, No. 4, December
2000. pages 253-266.

H. Zhang, D. Ferrari, “Rate-Controlled Static-Priority Queueing”,
Proc. of IEEE INFOCOM 93, April 1993, pages 227-236.

H. Zhang, D. Ferrari, “Rate-Controlled Service Disciplines”, Jour-
nal of High Speed Networks, 3(4):389-412, 1994.

H. Zhang, D. Ferrari. “Improving Utilization for Deterministic Ser-
vice In Multimedia Communication”, IEEE International Confer-
ence on Multimedia Computing and Systems, May 1994, pages
293-304.

H. Sariowan, R. L. Cruz. G. C. Polyzos. “Scheduling for Quality of
Service Guarantees via Service Curves”, Proc. Int. Conf. on Com-
puter Communications and Networks (ICCCN) 19935, September
1995, pages 512-520.

H. Sariowan, R. L. Cruz., G. C. Polyzos, “SCED: A Gener-
alized Scheduling Policy for Guaranteeing Quality of Service”,
IEEE/ACM Transaction on Networking, Vol. 7, No. 3, October
1999, pages 669-684.

H. Zhang, S. Keshav, “Comparison of Rate-Based Service Dis-
ciplines”, Proc. of ACM SIGCOMM’91, September 1991, pages
113-121.

[HZ93]

[THOO]

[JE97]

[TKO00]

[KC94]

[KH94|

[LZ90]

[MH93]

[MG96]

[MS96]

H. Zhang, “Service Disciplines For Guaranteed Performance Ser-
vice in Packet-Switching Networks”. Proc. IEEE. Vol. 83, Oct.
1995, pages 1374-1396.

I. Stoica, H. Zhang, T.S.E. Ng. “A Hierarchical Fair Service Ser-
vice Curve Algorithm for Link-Sharing, Real-Time. and Priority
Services”, IEEE/ACM Transaction on Networking, Vol. 8. No. 2,
April 2000. pages 185-199.

J. Bruno. E. Gabber. B. Ozden. A. Silberschatz. “Move-To-Rear
List Scheduling: a new scheduling algorithm for providing QoS

guarantees” Proc. of ACM Multimedia ‘97, November 1997. pages
63-73.

J. F. Kurose, K. W. Ross, Computer Networking: A Top-Down
Approach Featuring the Internet. Addison Weslev Longman. 2000.

K. C. Clafly. Internet Traffic Characterization, Ph.D thesis. Uni-

versity of California. San Diego. 1994

M. Krunz. H. Hughes. "A Traffic Model for MPEG-Coded VBR
Streams”. Proc. of ACM SIGMETRICS "95. May 1995. pages 47-

35.

L. Zhang. “Virtual Clock: A new traffic control algorithm for
packet switching networks™. Proc. of ACM SIGCOMNM'90, Septem-
ber 1990. pages 19-29.

M. Krunz. H. Hughes. “A Traffic Model for MPEG-Coded VBR
Streams™. ACM SIGMETRICS’95. May 1995, pages 47-35.

M. Shreedhar. G. Varghese. “Efficient Fair Queueing Using Deficit
Round-Robin™, IEEE/ACM Transactions on Networking, Vol 4.
NO. 3. July 1996. pages 375-383.

M. Schwartz. “Broadband Integrated Networks™. Prentice Hall,
Inc.. 1996.

[MWO00]

[RJ91]

[RVO9]

[SG94]

[S100]

[SK96]

[SK98)

[SYO1]

[UB9S

[VGog]

[VP98]

M. H. MacGregor, W. Shi, “Deficits for Bursty Latency-Critical
Flows: DRR++", Proc. of IEEE ICON °00, Singapore, 2000, pages
287-293.

R. Jain, The Art of Computer Svstems Performance Analysis:
Techniques for Experimental Design, Measurement, Simulation,
and Modeling. Wilev-Interscience, New York, NY, April 1991.

R. Guérin, V. Peris. “Quality-of-service in packet networks: Basic
mechanisms and directions”. Computer Networks. Vol. 31, Issue 3.
February 1999. pages 169-189.

S. Golestani. “A self-clocked fair queueing scheme for broadband
applications™. Proc. of IEEE INFOCOAM'94, June 1994, pages 636-
646.

S. Iatrou. I. Stavrakakis. “A Dvnamic Regulation and Scheduling
Scheme for Real-Time Traffic Management”. I[EEE/ACM Trans-
actions on Networking. Vol. 8. No. 1, February 2000. pages 60-70.

S. Keshav, An Engineering Approach to Computer Networking,
Addison-Wesley Inc.. 1996.

S. Bhattacharjee. K. L. Calvert. E. W. Zegura, Network Support
for Multicast Video Distribution. Technical Report 98-16. Georgia
Inst. of Tech.. 1998.

S.-C. Tsao. Y.-D. Lin, “Pre-order Deficit Round Robin: A new
scheduling algorithm for packet-switched networks”. Computer

Networks. Vol. 35. Issue 2-3. February 2001, pages 287-305.

U. Black. ATM:Foundation for Broadband Networks, Prentice
Hall. Inc.. 1998.

V. Paxson, G. Almes. J. Mahdavi, M. Mathis, RFC2330: Frame-
work for IP Performance Metrics, May 1998.

V. Paxson., “On Calibrating Measurements of Packet Transit
Times”. Proc. of ACM SIGMETRICS °98, June 1998, pages 11-21.

78

