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Abstract

Multiple-Input Multiple-Output (MIMO) systems with appropriate space-time (ST) 

codes can significantly improve the signal transmission’s reliability and data rate 

without power or bandwidth increase. Most ST codes have been designed by as

suming that the receiver knows the channel state information (CSI). However, ob

taining up-to-date and accurate CSI is not always possible, especially in fast-fading 

MIMO channels. In this case, unitary space-time modulation (USTM) and differen

tial USTM (DUSTM) can be employed to exploit the benefits of the MIMO. These 

techniques require a fixed codebook of unitary matrices known a priori to both 

the receiver and transmitter. The design measure and optimum codebook, which 

may vary with the MIMO system characteristics, are of interest in this disserta

tion which introduces two new unitary constellations and proposes a general design 

criterion applicable to any MIMO characteristic. Genetic-algorithm search and ex

haustive search are used to find the optimum codebooks since analytic solutions 

are intractable. The performance of the Maximum Likelihood (ML) and Non-ML 

receivers is investigated for all types of MIMO channels. Due to the benefits of 

antenna selection in terms of reducing the number of RF chains, the performance 

of the USTM with antenna selection over a correlated Rayleigh channel is studied. 

The influence of the correlation coefficient and Ricean K-factor on the system bit 

error rate (BER) performance is quantified.
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Chapter 1 

Introduction

1.1 Motivation

Wireless networks and devices are ubiquitous and the ultimate goal of wireless 

communication is to facilitate any-place any-time communications. To achieve this 

desired goal, future wireless systems must provide higher bandwidth efficiency and 

data rates. This requirement is particularly challenging for systems that are power, 

bandwidth and complexity limited.

In 1999, the use of multiple transmit and/or receive antenna was proposed and 

shown to be very effective in reaching to the upper bound of the achievable data rate 

(Shanon capacity). Previously, wireless engineers treated multipath propagation as 

a problem to be mitigated whereas MIMO wireless technology exploits multipath 

propagation to improve the quality of service measures such as the bit error rate 

(BER) or the data rate (bits/sec). In other words, MIMO effectively takes advantage 

of random fading and multipath delay spread to increase the data transfer rate [5].

Exploiting the benefits of MIMO channels requires the use of Space-Time (ST) 

codes. The ST code design, a major challenge in MIMO systems, involves finding 

an optimal way of encoding and transmitting multiple copies of a data stream across 

multiple antennas to improve the rate and reliability of data transfer.

Fig. 1.1 shows a MIMO system model. A binary data stream after tradi

tional operations such as error-control coding and interleaving are mapped to com

plex modulation symbols (for instance, quaternary phase-shift keying [QPSK]), and 

these symbols are transmitted over multiple antennas. The receiver captures the

1
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Figure 1.1: A MIMO wireless system with multiple TX and RX antennas.

multiple received antenna signals and extracts the transmitted data by using ST de

coding techniques.

The theoretical analysis in [5] shows that the capacity of a MIMO system in

creases linearly with the minimum number of transmitter and receiver antennas. 

Fig. 1.2 depicts how the capacity of a MIMO system varies with a minimum of M  

transmit and N  receive antennas for different values of SNR(p).

Figure 1.2: Capacity (in normalized Shannon capacity) vs. r =  min ( M , N )  for 
OdB < p < 35dB in 5dB increments, Source: [3]

The initial work on ST code design has studied the case where the receiver 

knows the channel state information (CSI) between each transmit and receive an

tenna. If an accurate and up-to-date CSI is not available, unitary space time mod- 

ulation(USTM) and differential USTM (DUSTM) [introduced by Hochwald et. al 

in [6 ] and [7]] can be employed to exploit the benefits of the MIMO systems’ prop-

2
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erties.

1.2 Contributions

In this thesis, we provide a coherent analysis of USTM and DUSTM and examine 

their performance with respect to the data rate and error probability under different 

practical assumptions. The contributions of this thesis can be divided into three 

main parts:

•  A new structure of unitary matrices is introduced, and the optimal codebook 

of DUSTM is searched based on minimizing union bound for the case of 

the Rayleigh fading channel. A good and easy-to-compute approximation of 

union bound on symbol error probability is derived that can be applied to any 

unitary constellation of any size. By introducing a genetic algorithm (GA), 

the design parameters, which used to be integers in the case of an exhaustive 

search, can be relaxed to real parameters. The simulation results show that 

this relaxation result in a better performance.

•  The performance analysis of a MIMO system employing differential USTM 

is carried out under the assumption of a spatially correlate-fading channel, 

and a design criterion to construct the differential codebook of unitary ma

trices is presented. Based on minimizing union bound, we search for the 

optimum constellation parameters. In simulation section, the performances 

of the ML and and Non-ML decoders for this case are investigated.

• Antenna selection and USTM are extended into correlated Rayleigh or Ricean 

fading channels. Antenna selection in the USTM case is performed based on 

the maximum norm criterion. The Chemoff bound on PEP is derived for the 

selection of a single antenna. The analytical results as well as simulation 

results indicate that the full diversity is preserved for both correlated and 

Ricean channels. However, in the correlated channel case, there is a loss 

in the coding gain.

3
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1.3 Thesis Outline

This thesis is organized as follows:

• Chapter 2 briefly reviews different mathematical models of a MIMO system 

and introduces some required concepts in MIMO such as diversity, pairwise 

error probability, ST code design and antenna selection.

•  Chapter 3 introduces the two new constellations of unitary matrices and presents 

an accurate and easy-to-compute approximation of union bound on the sym

bol error probability (SEP) as the ST design criterion. By using an exhaustive 

search and a genetic search, the optimum codes with integer and real param

eters are found, and their performance are examined and compared through 

the simulations.

•  In Chapter 4, the DUSTM design criterion under the assumption of a trans

mit correlated-fading channel is presented. Considering the unitary matrix 

constellations introduced in Chapter

3 , we search for the constellation parameters to minimize the union bound on 

SEP by taking into account the number of receive and transmit antenna.

• Chapter 5 investigates the performance of the USTM by employing single 

antennas selection in the non-independent fading channels. The Chemoff 

bound on the PEP is derived for the case selecting the ’best’ single antenna, 

and the diversity order and coding gain are obtained for the both correlated 

and Ricean channel cases.
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Chapter 2 

Preliminaries and Background

This chapter provides a general introduction to multiple-input multiple-output (MIMO) 

systems and space time coding. Important MIMO concepts and definitions, such as 

space time (ST) codes, spatial rate, diversity order and coding gain, are presented 

in Section 2.1. The MIMO system model, design criteria and ST codes are dis

cussed in Section 2.2.1. MIMO channel models are described in Section 2.3. Uni

tary space time modulation (USTM) and differential unitary space time modulation 

(DUSTM) schemes are briefly reviewed in Section 2.4. Antenna selection tech

niques along with different decoding techniques are presented in Sections 2.5 and 

2 .6 , respectively.

2.1 Space Time Code, Spatial rate and Diversity

The general structure of an ST code can be represented by an M  x T  matrix:

Sl,l  • • • Sl,T

i , (2.1)

S m , 1  : S M,T.

where sitj is the modulation symbol transmitted in time slot j  from antenna i, T  is 

the number of time slots, and M  is the number of transmit antennas. Each column 

represents a time slot, and each row stands for one antennas’s transmissions over 

T  time slots. The number of independent symbols in S divided by T  is called the 

spatial rate.

In wireless channels, the probability of signal fading decreases when the num

ber of independent antenna elements is increased. The diversity order relates to
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the number of uncorrelated spatial branches available at the transmitter or receiver. 

The diversity order is mathematically defined as follows: at asymptotically high 

signal-to-noise ratio (SNR) denoted by p, if the symbol error rate (SER) Pe can be 

approximated as

then Gc and Gd represent the diversity order and diversity gain, respectively. That 

is, the diversity order is defined as the magnitude of the slope of the SER vs. the 

SNR graph on a log-log scale. MIMO systems should be designed to achieve the 

maximum diversity order. Since the diversity order of a MIMO system depends on 

the type of coding and modulation scheme as well as the number of transmit and 

receive antennas, diversity issues have been widely investigated [8 ], [1]. Besides 

improving error performance by maximizing the diversity order, the coding gain, 

which depends on the minimum distance of the ST code, should also be improved.

In the literature, a variety of ST coding schemes support different tradeoffs be

tween rate, diversity order and coding/array gain. The details of ST code designs 

and MIMO model are described next.

Consider a MIMO system with M  transmit and N  receive antennas operating over 

a frequency-flat channel that remains constant for at least T  signaling intervals. 

From (2.1), the information bit stream is encoded into a ST codeword of dimension 

T  x M .  The ST codeword is defined by S =  [si, S2 , . . . ,  st }t , where s( is the 

transmitted vector symbol over the tth time slot. In this time slot, the complex 

symbols are transmitted over antennas i — 1, , M,  and y tj  is received on 

receiver antennas j  =  1, . . . ,  IV. As well, hitj is denoted as the fading coefficient 

from the zth transmit antenna to the j th receive antenna. The input-output relation 

is given by

Pe ~  (GcPy Gd, (2 .2)

2.2 MIMO Systems

2.2.1 MIMO System Model

M

Y ^ h i j S tti + wtij t =  1, . . .  ,T , j  = 1 , . . . , N, (2.3)
i= 1

6
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where the additive noise at time t in the receive antenna j  denoted by vtJ is in

dependently, identically distributed (i.i.d.) C N {0,1). The average signal-to-noise 

ratio (SNR) per receive antenna is p. Eq. (2.3) can be written in a matrix form as

where Y t is the T  x iV complex received signal matrix, and St is the T  x M  

complex transmitted signal matrix at the time index t. H t is the M  x N  channel 

transfer function, and W t denotes a T x N  additive noise matrix with i.i.d. CJ\f(0,1) 

elements.

2.2.2 Maximum Likelihood (ML) Detection

Different detection techniques are available to recover the transmitted data. In 

Maximum Likelihood (ML) detection, the receiver uses perfect CSI to estimate 

the transmitted signal matrix. The ML detection rule can be expressed as

where the minimization is performed over all admissible codewords S. An error 

occurs when the detector output (2.5) is not the same as the transmitted matrix. In 

this case, the receiver mistakes a transmitted codeword for another codeword from 

the set of possible codewords.

ST code design is an active area of research in MIMO systems. Design may depend 

on many parameters such as the signaling scheme, the availability of the CSI at 

the receiver, the rate of data transmission and the method of detection. However, a 

general formula to derive ST code design criteria has been proposed by Tarokh et 

al. in [9]. They showed that in the high SNR regime (p »  1), the upper bound on 

pairwise error probability of mistaking transmitted codeword S< for another code

word Sj is expressed as

(2.4)

.t \\F =  argm in
T

S m l  =  argm in IIYj -o

2.2.3 ST Code Design

(2 .6)

7
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where Gj j  =  (Sj — Sj)(Sj — Sj )H.  From (2.6), two important criteria can be derived 

for ST code construction. First, the rank criterion aims to maximize the diversity 

order, i.e. to maximize r (G it])N. Hence, to extract the maximum diversity, one 

should maximize the minimum rank of the difference matrix between any pair of 

codewords S, and Sj and possibly make it full rank ( r (G (J) =  M ) by designing a 

proper ST codebook. Second, the determinant criterion deals with the optimization 

of the coding gain for the ST code. To obtain a high coding gain, one should max

imize the minimum of the determinant of G y  over all possible codewords S* and 

Sj. Both these criteria lead ultimately to the minimization of the error probability.

In the literature, a variety of ST codes support different tradeoffs among the rate, 

diversity order and coding gain. Orthogonal space time block code (OSTBC) is one 

of the well-known classes of ST codes with spatial rate rs < 1 because it not only 

provides a full diversity order, but also leads to very simple and low-complexity 

ML receiver. OSTBC’s are based on orthogonal design. A simple form of OSTBC 

is the Alamouti code with spacial rate rs =  1, which can be expressed as [10]

s = f c  ~S-51 - (Z7)■52

The codeword difference matrix between any pair of codewords S, and Sj in this 

case is an orthogonal matrix with two non-zero eigenvalues, leading to full 2 N  order 

diversity. Due to the orthogonal structure of OSTBC’s, the complex vector ML 

detection problem in (2.5) decouples into a set of simpler scalar detection problems 

with significantly less computational complexity. A question may arise: Whether 

an Orthogonal ST code necessarily exists for any number of transmit antennas with 

spatial rate 1? In fact, it has been shown at least one orthogonal ST codeword 

can be found to transmit real symbols for a system with any number of transmit 

antenna [11]. For instance, one orthogonal design for M  =  4 with spatial rate 1 is 

given by
Si — S2 - S 3 s 4

S2 S i s 4 S3

S3 s 4 Si S2
s 4 S3 - S 2 S i

where symbols sj, s2, S3 and s4 are drawn from a real constellation. In the complex- 

symbol case, it has been proved that no orthogonal ST code exists with spatial rate

8
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1 for systems with more than two transmit antenna [9]. However, it has been shown 

that at least one orthogonal design exists for rates equal or less than \  [11]. For 

instance, when M  ~  3, a rate \  orthogonal design is:

■si
52
53

- s 2

- s 4

- S 3

S4
Si

—54 s 
- S 3  s  
S2 S

-sZ (2,9)
34 al °2

So far, ST codes with spatial rate rs < 1 with full diversity order M N  have 

been discussed. Notice that in order to decode this class of ST codes, the CSI is 

required by the receiver. We will later consider USTM that enables the decoding 

without having CSI at the receiver. Different types of wireless channel models are 

described next.

2.3 Communication Channel Models

In the classical Rayleigh fading channel, all entries of channel matrix H  in (2.4) 

are assumed to be i.i.d. complex Gaussian RV CM(0,1). In reality, however, in

sufficient antenna spacing, angle spread or the lack of rich scattering may cause 

spatial correlation among antennas, particularly at the transmit side [1 2 ] (because 

the transmitter usually has more antennas than the receiver). Moreover, channel 

measurements reveal that propagation environment have a fixed [possibly line of 

sight(LoS)] component. Those cases are modeled as the Ricean channel, in which 

the mean of the elements in the channel matrix model is not zero. In the following, 

we present the mathematical models of spatially correlated and Ricean channels.

2.3.1 Spatially fading correlation

The effects of spatial fading correlation for a Rayleigh flat fading channel can be 

modeled as

H  =  (2.10)

where the matrices and R #  denote the transmit and receive correlation matri

ces, respectively. R7 and Rfi, which are positive-definite Hermitian matrices, are 

normalized so that [Rr]i,i =  l( i  =  1, • • • , M ), and [Rh]*,* =  1 (i =  1, ■ • • , N),

9
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resulting in E {\h itj\2} =  1. H„, is the M  x N  matrix with i.i.d. C M (0 ,1) RVs 

entries.

Several transmit/receive correlation models are available in the literature. The 

first model is the exponential correlation model [13]. This model may hold for the 

practical case of the equispaced linear array of antennas. The correlation matrix 

and corresponding eigenvalues of this model are given by [13]

and

A,:

1 7

Rj1 = 7 1

yw -i 7 M-2

1 - 7 2

M —l 

M — 2

(2 . 11)

* =  1, 2, . . . ,  M,
1 — 2 7 cos(0 j) +  7 2 

where 0 , are the values of 0  which satisfy one or the other of the equations:

sin(;̂ A 0 ) =  7  sin 
cos =  7 COs(~A 0 ).

The constant correlation matrix is another practical model frequently used for 

an array of three antennas placed on an equilateral triangle or closely spaced anten

nas [14]. The correlation matrix in this case is written as

(2 .12)

In this case, R 7 has only two eigenvalues Ai =  1 + - f (M — 1) of order one and 

A2 =  1 — 7  of order M  — l.

Similarly, these models can also be applied to model the receive correlation 

matrix. The correlation matrices have a degradation effect on the capacity of the 

MIMO channel [15]. This issue is explored in Chapter 4.

2.3.2 Ricean Channel

The M  x N  random channel matrix H  in this case is decomposed into the sum of 

a fixed component and a variable component. The channel realization would be

1 7 ’ ’ 7

R t
7 1 ■ • 7

7 7 • • 1

H
K  

K  + l
H  +

1

K  + l
Hty, (2.13)

10
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where the first and second term in (2.13) represent the mean value (called the line 

of sight component) and the variable part (called the diffuse component) of the 

communication channel, respectively. The Ricean factor K  measures the relative 

strength of the LOS component, a link-quality indicator ([16]). The elements of H w 

are i.i.d. complex Gaussian random variables, i.e., CA/"(0,1). K  =  0 corresponds to 

the pure Rayleigh fading case while K  =  oo indicates a non-fading channel. As an 

example for a typical matrix of H , we can use the following matrices for a MIMO 

channel with M  =  N  =  2  [11]:

H 1 =

H 2 =

'ej e 1 0 "1 1 ' V 03

i---o

.  0  ej9\ 1 1

o

ej9i

0  ' 1 - 1"

CO05’<•*» 0  '(N•«-»o

1 1 O

■3*o> (2.14)

where &i s are phase factors determined by the array geometry model and orienta

tion. Note that the fixed component of the channel matrix plays a critical role in 

channel capacity at a high K-factor. For instance, at an SNR of lOdB and K  — 20, 

the outage capacity of H 2 is almost twice the outage capacity of H i due to the 

orthogonal property of H 2. The Ricean channel is treated in Chapter 5

2.4 USTM and DUSTM

As mentioned before, USTM is an important technique for transmitting data and 

achieving capacity in a MIMO system at high SNR when the CSI is unavailable. 

This technique can be seen as a multiple antenna extension of phase-shift keying 

(PSK) for scalar channels. Similarly, the differential USTM is also a generalization 

of differential PSK in a MIMO system [17], [6 ], The rest of this section explains 

exactly how this modulation technique operates and examines its performance in 

terms of the pairwise error probability (PEP) and data rate.

2.4.1 USTM

Assume that a data sequence of integers d\, d2, . . .  with dt €  {0, . . . ,  L  — 1} is to 

be transmitted. Each dt is mapped to a matrix drawn from a codebook, say

11
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V =  {&i\l =  0, . . . ,  L — 1}, where each T x M  matrix satisfies =  I m

(unitary property). The positive integer L  > 2, which denotes the constellation 

size, should be L — 2RM in order to reach to the data rate R  [bits/channel]. In the 

USTM scheme, to send data dZt, the associated transmitted signal St =  V T Q Zt is 

transmitted over multiple antennas. The scaling factor \ / T  ensures that the signals 

satisfy the energy constraint.

We consider the ML reception of this scheme, and its performance is presented 

when H  is unknown to the receiver. Due to the unitary property of the transmitted 

signal, the received signal is complex Gaussian. As a result, conditioned on S/, the 

conditional probability density of Y  is obtained as [6 ]

. . , exp (— tr[YR,_1Y])
* Y 'S '> =  ^ d e t ( R , )  ' (2' 15)

where R; =  (p T /M )T>(T>^ is the T  x  T  received covariance matrix. According 

to [6 ], by using matrix inversion lemma and showing that the denominator of (2.15) 

is independent of Tv the ML decoding rule becomes

=  argm axp(Y |$;) =  argmaxtr{Y//T>/T>fY}. (2.16)
4>l£V <t>i€V

Since the receiver is aware of the codebook V, it performs ML detection of (2.16) 

over all unitary matrices <f>; and extracts the most likely transmitted signal. Note that 

in (2.16), no CSI is needed to detect the transmitted matrix. Assuming a Rayleigh 

fading channel remains constant during T  consecutive symbol periods, the PEP of 

mistaking Tv for T>; or vice versa is derived in [6 ]

(pTjM)2{\ — dftm)(u)2 +  1/ 4)'l  lPut =  —  /  d u — ------ — x TT
’ Joo  +  1/4

1 +
1 +  p T /M

(2.17)

where 1 >  dun > • >  dwM >  0 are the singular value of the M  x M  correlation

matrix Further results for USTM will be presented later.

2.4.2 DUSTM

In DUSTM [2], dzt is mapped to an M  x M  distinct unitary matrix &Zt. As a result, 

the transmitted signal St at time t is given by

s > = { f ; s ‘" ‘ =i = 2o ' : "  (2-i8>

12
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We combine two consecutive received signal matrices by using (2.18) and (2.3) 

and assume that the channel coefficients are almost constant for two signaling 

blocks; i.e., H t ~  H (_!. As a result, the fundamental differential system relation is 

given by

Y ( -  +  x/2W{, (2.19)

where W [ =  ( l / \ /2 ) ( W t — # ZtW t_i) is an M  x N  additive independent noise 

matrix with CJ\f(0,1). It is shown in [6] that the ML detection rule would be

dt =  argm in ||Y t -  $ jY t- i | |,  (2.20)

and the exact PEP for a Rayleigh fading channel may be expressed as

i r~ M \
p „, .  _  , r ) = _ y o - n  a + (2 .2 D

2
where 7  =  and {A J is the zth eigenvalue of the matrix Au> =  —

% ' ) H.

As described in [2], the DUSTM scheme can be viewed as a special case of the 

general USTM scheme by defining an equivalent T  x M  unitary matrix $ Z( of the 

form =  1/\/2[Im> In this case, T  =  2M .

The antenna selection technique and its performance in a MIMO system will be 

briefly investigated in the next section.

2.5 Antenna Selection

The main drawback of any MIMO system with M  transmit and N  receive antennas 

is the increased complexity and cost since this system requires complete transceiver 

hardware such as transmit amplifiers and D/A converters for each antenna. A 

promising strategy that can significantly reduce this complexity and simultaneously 

keep almost all the benefits of a MIMO system is to select a subset of antennas at the 

transmitter and/or receiver. This strategy has been considered by many researchers 

during the past five years, and different criteria and effective algorithms to select 

the best antennas have been proposed as well [18], [19] and [20].

13
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Figure 2.1: Transmit/Receive antenna switching schematic

Fig. 2.1 depicts a system with antenna selection at the transmitter and receivers 

sides. Assuming we want to choose P  transmit and L  receive antennas, there are 

( p )  x  ( i )  distinct sub-channel choices where the channel corresponding to the ith 

choice is denoted by H*. T the dimension of H; for any i is P  x L  comprising the 

P  selected columns and L  selected rows of H.

Depending on the signaling schemes and the availability of the CSI at the trans

mit and receiver sides, several different optimization criteria for antenna selection 

may be present. However, two main approaches for antenna selection are available: 

( 1) maximizing the mutual information rate (capacity) and (2 ) minimizing the error 

rate. A detailed discussion of these criteria is beyond the scope of this thesis. How

ever, a brief explanation is provided here, since they will later be used in Chapter 

5.

2.5.1 Maximizing information rate criterion

The capacity (maximum data rate) of a MIMO system employing all antenna ele

ments is given by [3]

PC  =  log2 [det {IM + § H H h ) (2 .22)

where p is the average SNR per receiver. If both the transmitter and receiver have 

CSI, they select those antennas that allow a maximization of the capacity. That is,

Csei =  max log2 det ( lL +  —F ^ H /7) (2.23)

where HjS are created by deleting M  — P  columns and N  — L  rows from H. 

The optimal algorithms involve an exhaustive search over all possible combinations

14
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S(H ).  Due to the difficulty of providing CSI to the transmitter, antenna selection is 

done in the receiver side. It is shown in [20] that the upper bounds on the capacity 

of a system with receive antenna selection approach the full-complexity system’s 

capacity if the number of selected antennas is equal to or greater than M .  The 

search space grows exponentially with N  even if antennas selection is employed 

in the receiver side. Consequently, Gorokhov [21] proposed a suboptimal selection 

algorithm that a significantly decreases of the computational complexity.

2.5.2 Minimizing Error rate approach

Assuming OSTBC transmission over the antennas, Gore et al. [19] have shown 

that the SER depends on the received SNR. Since the received SNR relates to the 

normal Frobenious norm of the selected sub-channel matrix, the optimal antenna 

sub-set would be

H  opt =  argmax IIHjĤ . (2.24)
i

Note that in this case, exact CSI or statistical channel knowledge is available at 

the transmitter or receiver. In [22] and [23], the authors extended this work to any 

type of space time codes and presented an approximate analysis of the PEP for 

antenna selection. These authors showed that by selecting an antenna sub-set based 

on (2.24), the diversity order is maintained whereas the coding gain is reduced.

In some specific cases where the channel rapidly varies, estimation of the chan

nel is either too costly or almost impossible. Therefore, a technique that does not 

require the CSI either at the receiver or at the transmitter is needed for selecting 

antennas. Without CSI, the authors of [24] proposed an interesting technique for 

antenna selection at the receiver. Based on this technique, a subset of receive anten

nas with the largest received signal powers are chosen. For single antenna selection, 

the rule is given by

riopt =  arg max zn, (2.25)
71= 1,••• ,N

where zn =  y fnry n is the norm of the received signal at the nth receive antenna 

(y„). The authors of [24] further applied this rule to USTM and proved the full 

diversity order can be achieved by this selection criterion. In Chapter 5, this scheme 

is comprehensively reviewed, and several extensions are provided.

15
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2.6 Decoding Techniques

Along with designing ST codes and analyzing MIMO system capacity, decoding 

techniques for ST codes have received much attention. As mentioned in (2.5), when 

the channel matrix H  is known to the receiver, S  is the ML solution if it minimizes 

A(S) =  ||Y  — H Sj|^  (Y  is the received matrix) over all possible transmitted code

words. Since no explicit analytic solution exists for this problem, an exhaustive 

search is required on all possible transmitted matrices. Nevertheless, because of its 

computational complexity, an exhaustive search is computationally prohibitive in 

most cases.

Fast decoding is another possible way to find transmitted codeword by relaxing 

the entries of S and first using the inverse (or pseudo inverse) of the channel matrix 

H  to calculate S =  H _ 1  Y  and then mapping each entry of S to the nearest point in 

the signal constellation [25], [26]. This method leads to a sub-optimum decoding 

technique called the Zero-Forcing (ZF) decoder or Decorrelator. Although the ZF 

decoder is much less complex than the ML decoder and can be implemented easily, 

it suffers from weak performance. The ZF decoder can be modified to find the 

inverse channel matrix by using more reliable and stable numerical methods and 

also to improve the system performance [27], [28]. For OSTBCs [29], ML decoding 

can be decoupled into an individual search on each element of S.

Another popular decoding strategy proposed along with V-BLAST is known as 

nulling and canceling, which gives a reasonable tradeoff between complexity and 

performance. The matrix inversion process in nulling and canceling is performed 

in layers: one estimates a row from S, subtracts the symbol estimates from Y ,  and 

keeps on decoding successively [25], Full details and analysis of this approach are 

provided in [30].

Instead of exhaustive search on all possible transmitted matrices, ML decod

ing can be implemented by efficiently searching the solution space. This method 

is called sphere decoding and has recently been discussed extensively in the litera

ture [31] and [32]. Sphere decoding is based on the enumeration of the lattice points 

located within a hypersphere of some radius centered at a target, e.g., the received
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signal point. This methods’ complexity depends on the method used for determin

ing the subset of the signal matrices in particular and the SNR of the system in 

general.

2.7 Summary

This chapter defined some important concepts of a MIMO system such as space 

time codes, diversity order, coding gain and spatial rate. Three different channel 

models that are frequently assumed in the literature were presented along with an 

introduction to USTM and DUSTM. Antenna-selection techniques and selection 

rules for different transmission schemes were briefly reviewed. Finally, some well- 

known decoding techniques including ML and Non-ML techniques for ST codes 

were discussed.

17
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Chapter 3 

Differential Unitary Space-Time 
Code design

This chapter begins with a brief introduction to unitary ST code design. Two new 

constellations of unitary matrices and an approximation of union bound on the sym

bol error probability (SEP) as a design criterion are introduced in Section 3.2. By 

using an exhaustive search, the optimum codes with integer parameters are found 

and in Section 3.4 their performance is examined in terms of the SER. By using the 

Genetic Algorithm technique, a powerful global optimization method, the optimum 

codes with real parameters are found. The simulation results for these codes’ error 

rate performance are presented in Section 3.5.

3.1 Introduction

As mentioned before, DUSTM has been proposed for use with an unknown, slow, 

flat-fading MIMO channel [7], [17]. The signal constellation consists of a set of uni

tary matrices, and the design objective is to maximize the diversity product among 

all the members of the unitary constellation. Achieving this design goal leads to the 

minimization of the block error probability in the high signal-to-noise ratio (SNR) 

region.

Based on maximizing the diversity product, several unitary constellations have 

been proposed [2], [33], [34], The design in [2] results in cyclic diagonal matrices 

with M  parameters, where M  is the number of transmit antennas. The parameters 

are numerically optimized to maximize the diversity product. In [33] and [34], the
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cyclic design is augmented with additional multiplying matrices and the design of

[33] is limited to three to six transmit antennas. Instead of maximizing the diversity 

product, Wang et al. [35] minimized the union bound on the block error probability 

by taking into consideration the number of receive and transmit antennas and the 

operating SNR.

In Section 3.2, two new unitary signal constellations are derived: a simple gen

eralization of [33] and a constellation based on [36]. When M is even, the first is 

a special case of the second. An approximate union bound on PEP is derived. Op

timal codes with integer parameters are searched and found to minimize the union 

bound. For larger MIMO dimensions or higher data rate, finding the optimum code 

by exhaustive search over all possible integer design-parameters might be almost 

impossible. In Section 3.5, the relaxation of the design parameters to the real num

bers is investigated and the genetic algorithm method is used to solve the resulting 

optimization problem. The simulation results show that by relaxing the design pa

rameters, better codes for DUSTM are found.

3.2 Code Design Criteria and Approximate Union Bound

In Section 2.2.1 and 2.4, the system model and the DUSTM scheme are described.

To transmit a data sequence of integers di, d2, . . .  with dt E { 0 , . . . ,  L  — 1}, each

dt is mapped to a distinct unitary matrix signal &dt drawn from a unitary space

time matrix constellation V; i.e., V =  {<&i, 4>2, • • • , $£,}■ The data rate is given by

R  =  log2 L /M .

Assuming that the channel remains constant for at least two block intervals (i.e.,

Hi =  H t_i), the pairwise error probability (PEP) is given by [35]

.. pH M , \ \  ~N

n o + i s b )  M ' (3l)% ——1

2
where 7  =  and {\ i:} is the z-th eigenvalue of the matrix Au> = (<&; —

For asymptotically high SNR, [7] and [37] show that the design criterion is to
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maximize the diversity product £ to minimize PEP; i.e.,

C(V) =  \  min | det(®i -  3ty)| m (3.2)

On the other hand, for low SNR, the design criterion is to maximize the trace 

product, which is called diversity sum [35] which is defined as

In [35], instead of the diversity product, the union bound on the block error prob

ability is the design objective. To help achieve this objective, an easy-to-compute 

approximation of the PEP is derived for the rapid evaluation of the union bound.

By substituting sin 9 = t in (3.1) and using the Gaussian quadrature rules [38], 

the PEP (3.1) may be expressed as

where x t = cos(2z — l ) 7r / 2 n  and Iln is a reminder term. Our numerical experiments 

showed that the choice of about 9 terms (n =  9) is sufficient for the remainder term 

to be negligible. Since the above PEP is very accurate, it can be combined with the 

union bound on the overall block error probability. For all equally-likely <£/, the 

union bound becomes

Unlike the diversity product, which ignores the SNR, (3.5) takes into account 

the operational SNR and the number of receive antennas. Thus, minimizing the 

union bound (3.5) may be a useful design objective.

3.3 Unitary Constellation Design

The two new signal constellations are developed next, and several of their properties 

are described. Consider the rotation matrix given by

(3.3)

(3.4)

L - 1 L —l  9

(3.5)

/ R F 2( h d ) . . .  0 \
R F M(k6) = (3.6)
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where

R F 2{kid) =  ^
cos kid sin kid 

— sin kid cos kid

and k  =  {fcj, fc2, . . . ,  k u }  is a set of different rotation factors. Our proposed 

DUSTM constellation V =  {$/|£ =  0 , . . . ,  L  -  1} consists of the following unitary 

matrices:

where I = 0 , . . . ,  L  — 1, and dL — Clearly, a M  x M  unitary matrix can be 

parameterized by ~  parameters. When all /c,s are the same, our proposed constel

lation reduces to the cyclic rotated design, which was proposed in [34]. When all k{s 

are set to zero, (3.7) reduces to the cyclic diagonal design in [2]. Since our constel

lation has more parameters, a better performance than that of the previous designs 

is expected. For example, our constellation outperforms those in [34] and [2] in 

terms of the maximum diversity product. In comparison to [33], our constellation 

is simple and is available for any even number of transmit antennas M (not limited 

to M  < 6 ). However, like the constellation in [34], it is restricted to the MIMO 

systems with an even number of transmit antennas.

In our proposed designs, we need to find the optimum set of parameters fj, =  

{^i, • • • , h m } and k =  {/c1; • • ■ , k u .} that yield the largest diversity product (3.2) 

or the smallest union bound (3.5), depending on the case. Since analytical determi

nation of the optimums appears intractable, either an exhaustive computer search 

or genetic algorithms are used to find the optimum parameters. We first introduce 

a general unitary matrix constellation based on [36] that can successfully handle 

both an even or odd number of transmit antennas, and also include (3.7) as a special 

case. Note that the unitary signals in (3.7) and the proposed constellation in [34] 

are limited to an even number of transmit antennas. This constellation has M  phase 

angles /j,i ,  • • • , /jlm  and M  — 1 rotation angles ki, ■ • ■ , k ^ ~ i  and is given by

o \
■ [RFM(kdL)}1, (3.7)

ej8LVM/

( e j0L^  . . .  0  \

= .[Ji ,2(kidL)}1 (3.8)
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, where

( it-1  0
0  cos (ki0L) — sin ( M l)

! sin (ki9L) cos(ki0L)

0 \
0

(3.9)

0L = ^~, and l = 0 , . . . , L  — l. When all ki are set to zero, (3.8) is exactly the same 

as the diagonal cyclic constellation of [2 ], and in the case of even transmit antenna, 

if all k2j, j  — 1, ■ • •, are set to zero, (3.9) is an extension of the constellation

Here, an exhaustive computer search is employed to find the optimum parame

ters. To reduce the computational complexity, all design parameters are restricted 

to integer numbers. Thus, candidates for the best set of p and k  are exhaustively 

generated and examined for performance ( maximum (  or minimum Pub) and hold 

if they act better than the previous best candidate set. Since the computational com

plexity grows exponentially with M  and L, one can reduce the search complexity 

by applying the following theorems.

Theorem 3.4.1 For an even number o f transmit antennas, the diversity product 

between the Ith and I'th unitary matrices in (3.7) depends only on (I' — I) mod L.

Proof 3.4.1 By substituting constellation (3.7) in formula (3.2), the diversity prod

uct can be written as

where 1 <  i < M  — 1, i is odd, and A; =  I' — I. It is clear, therefore, that

consider Cor fo r  I' =  1, 2, • • • , L — 1 to find the diversity product fo r  a particular 

sets o f parameter p  and k.

(3.7).

3.4 Exhaustive Computer Search

Or =  det(<&( -  $ , , ) |m

= \ II I1 “  (ejAl9^*  + ejAl@L^+l ) cos(A;iAi0 L), (3.10)
i

C depends only on the difference between I and I'. As a result, it is sufficient to
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Theorem 3.4.2 Assume all the conditions o f theorem 3.4.1, p  and k should be in 

either o f the following forms:

1. All p, ’s are even numbers, while all ki 's are odd numbers.

2. All fj,i’s are odd integers number, and all k i’s are even integer numbers.

Proof 3.4.2 See [34], The same argument is applied here by taking into account 

the different rotation angles instead o f just one rotation angle.

Note that the above theorems cannot be extended to the constellation (3.8). 

However, by invoking the following theorem, the search complexity can be reduced.

Theorem 3.4.3 For a proposed unitary matrix in (3.8), i f  L  is an even num

ber, at least one parameter must be an odd number among all parameters p  =  

(a*i, • • • , Pm } a n d k  = { h , - - -  , k M- 1}-

Proof 3.4.3 Suppose that all parameters k and p  are even integer numbers. Thus,

we observe that 3>o and Q l are viewed as the same at the receiver and, consequently,
2

the receiver will not be able to identify whether 3>0 or <&£ was transmitted. Conse

quently, this set o f parameters does not result in the minimum upper bound on PEP 

or the maximum diversity product.

In order to further reduce the search space, one can decrease the number of in

dependent parameters in the constellation (3.8). Of course, the achievable diversity 

product may decrease as well. Following an idea from [34], if M  is even,

_  U  +  2 ( * - l )
Fk — \  „ m _ , . . ,  (3-11)p 2 + 2k — M  — 2 f  < k < M

and when M  is odd,

Pi +  2 (k — 1 ) 1 <  k < M- 1 
2  >

J .
2

I .
2

P k = { p 2  k = ^ ± l ,  (3.12)
p3 +  2k -  M  -  1 ^ ± l < k < M .

The maximum diversity products of our proposed codes in (3.8), the codes in

[34], and the cyclic diagonal codes in [2] are presented in Table 3.1 for a system
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M L ( (proposed) C(in [34]) cyclic

6

16 0.5946 0.5946 0.5066
32 .5577 .5069 0.448

1 0

16 0.5946 0.5946 0.5623
32 .5655 .5137 0.5131

Table 3.1: Diversity Product of the optimum codes with different constellation 
scheme M  = 6 , N  ■= 1, L — 16,32

Scheme/criterion k Pub
Diag./ min Pub [1,3,7] [ - , - ] 5.746e—4

Rot./ max ( [10,10,9] [3,12] 2.310e—4
Rot./ min PUB [7,7,10] [12,4] 1.799e—4

Table 3.2: Comparison of constellation parameters and Union bound for rotated and 
diagonal signal, M  — 3, N  =  2, L  =  16

with 6  or 1 0  transmit and single receive antennas, and a constellation size of 16 

and 32. As we expected, our proposed constellation has an equal or higher diversity 

product relative to the other constellations.

Table 3.2 presents the optimum codes found the from search based on optimiz

ing the diversity product and minimizing the upper bound for our proposed con

stellation (3.8) and the diagonal cyclic scheme in [2]. The system parameters are 

M  =  3 transmit antennas and N  =  2 receive antennas and the operating SNR= 12. 

Note that reference [34] does not provide any code for 3 transmit antenna systems. 

Due to continuity, the optimum code in a particular SNR is either optimum or near 

optimum code within a range of SNR. To show the coding advantage of our design, 

we list the Pub of the all the optimum codes. We observe that the union bound of 

our proposed constellation is less than that of the original designs.

3.4.1 Simulation Results and Discussion

Codes in Table 3.2 and optimum codes for constellation size L  =  8  are simulated. 

The proposed constellation in (3.7) with different rotation angles (2 rotation angles 

for M  =  3) performs better than the previously proposed constellations. Fig 3.1 

shows that by applying new constellation and union-bound criteria, a coding gain
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- o - Diag UB code L=16
- i  - Rot Div-Prod code L=16,
- * -Rot UB code L =16 
 o— diag UB code L=8
—1v- Rot Div-Prod code L=8 
— Rot UB code L=8

4 6 8 10 1 2 14
SNR[dB]

Figure 3.1: Symbol Error Rate of two different constellation with M  = 3, N  =  2 
for Differential receiver.

about 1.5 dB is achieved over the code designed in [2] at an SER of 10-4 . A slow 

fading channel with Jakes’ fading model is assumed in which normalized fading 

parameters fdTs — 1.5 x 10“3. f d is the Doppler frequency and Ts is the sampling 

period. The union-bound based design generally has better performance than the 

design based on the diversity product in both constellations.

3.5 Genetic Algorithm Search method

The design parameters /x and k  are obtained based on the criteria mentioned in Sec

tion 3.2. Without loss of generality, we assume that a set of parameters should be 

optimized by minimization of a cost function. Previously, when the design param

eters were restricted to integers, an exhaustive computer search or random search 

for optimum parameters was employed since analytical determination of the opti

mum appeared to be intractable. Moreover, because the computational complexity 

increases exponentially with M  and L, using an exhaustive search to find the opti

mum parameters for large L  and M  is difficult. A random search, does not guar

antee that the final outputs are close to an acceptable neighborhood of the optimum 

parameters.

To handle these problems, we employ a genetic algorithm to extract the optimal 

parameters. Although it does not guarantee the global optimality of its answers,
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the cost of genetic solutions are better than the optimum values from an exhaus

tive search. This seemingly contradictory result is obtained by relaxing the design 

parameters to be real in the genetic search rather than to be integer parameters as

sumed in the exhaustive search. This extension embeds the integer parameter space 

in a much larger real parameter space, improving the likelihood of finding better 

codes. In the following sections, the genetic algorithm is described and the experi

mental results are provided.

3.5.1 Genetic Algorithms

The genetic algorithm [39] is an exceptional search technique for finding approxi

mate solutions to optimization and search problems based on natural selection, the 

process that drives biological evolution. To use a genetic algorithm, a method of 

representing a solution (encoding the solution) is required such that it can be ma

nipulated by the algorithm. Usually, solutions are represented as binary strings of 

Os and Is, but different encodings are also possible. Additionally, we require the 

fitness function (cost function) to measure the quality of any solution.

The algorithm begins by creating a random initial population and then making 

a sequence of new populations/generations. In each generation, the fitness of the 

whole population is evaluated, and a score is assigned to each member of the current 

population. Each member with higher associated fitness value is given a higher 

score. A selection mechanism based on the given scores is applied to the population 

and the individuals strive for survival. The fitter individuals have more chance to be 

selected to produce the next generation by means of genetic transformations such as 

crossover and mutation. Because the entire population participates in the search, the 

genetic algorithm is less likely than many search procedures to get stuck at a local 

minimum. As the algorithm continues, and newer and newer generations evolve, 

the quality of solutions improves.

In general, the next generation is composed of three types of children as follows:

Elite Children: Children in the current generation are selected for the next gen

eration based on their fitness values. Since the selection rule here is probabilistic, 

not deterministic, fitter solutions (measured by a fitness function) are typically more
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Figure 3.2: one-point crossover technique

Parents:

Figure 3.3: two-points crossover technique

likely to be selected. The non-determined rule helps to keep the diversity of the 

population large and also avoids convergence to a poor solution as well.

M L (  (genetic) ("(exhaustive) cyclic

6

16 0.6602 0.6083 0.5066
32 0.5678 0.5069 0.448

8

16 0.6601 0.6153 0.5623
32 0.5827 0.5453 0.5221

Table 3.3: Diversity products of DUST codes obtained by genetic algorithm and 
exhaustive search.

Crossover Children: These are created by combining pairs of parents in the 

current population. Typically, the new solution shares many characteristics of the 

’parents.’ Generally, the crossover operation recombines the selected solutions (par

ents), by swapping part of them, producing divergent solutions to explore the search 

space. Many crossover techniques exist to produce a child of a pair of parents [40]. 

However, all of them are surprisingly simple to implement, involving random num

ber generation and partial string exchanges. Figures 3.2 and 3.3 illustrate the two 

different techniques used in crossover generation.

The scattered crossover function is another technique usually used in crossover 

generation. This method first creates a random binary vector with the same size of 

parents. Then if the ith bit is 0, the corresponding gene is selected from the first 

parent; otherwise, this gene is selected from the second parent. Ultimately, all the 

selected genes are combined to form the child. For example, if pi and p2 are the
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Table 3.4: Implementation parameters for GA

Population size(p) 700 Stall generation limit 2 0 0

Time Limit 5 hours Crossover fraction 0 .8

Mutation type Uniform Crossover type Scattered
N g le5 Parameters bound LB=0, UB=2?r

parents, pi =  [a, b, c, d, e, / ,  g, h], p2 -  [1 ,2 ,3 ,4 ,5 ,6 ,7 , 8 ], and the binary vector is 

[1 , 1 , 0 , 0 , 1 , 0 , 0 , 0 ], the function returns the following child:

child  =  [a, b, 3,4, e, 6 , 7 ,8 ].

Mutation Children: The algorithm generates mutation children by randomly 

changing the bits (genes) of an individual parent in the current generation. This 

process can be carried out by adding a random vector from a Gaussian distribution 

to the parent. The aim of mutation is to allow the algorithm to avoid local optima 

by preventing the population from becoming too similar to each other, thus slowing 

or even stopping evolution.

As a result, new mutated members along with new crossover members and the 

rest of those selected from the previous population form the new generation. The 

genetic algorithm uses the following conditions to terminate:

•  A solution is found that satisfies the criteria(Fitness limit).

•  Allocated time is reached (Time limit).

•  The specified number of generations is reached.

•  No improvement occurs in the objective function for a specific number of 

successive iterations.

The GA implementation parameters, which were used in our program, have been 

presented in Table 3.4. For more details, refer to [41]. Table 3.3 shows the parame

ter search results and their corresponding diversity product for the signal constella

tion in [34] for L = 16 and 32, and M  =  6  and 8 , obtained from the genetic algo

rithm. For comparison, the diversity product of the obtained codes in [34] and [2],
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obtained from the exhaustive integer search, are included in Table 3.3. With the 

use of parameter relaxation and genetic search, almost all results are better than 

those from the exhaustive search. Clearly, to find the optimum parameters in our 

proposed constellations in (3.7) and (3.8), the genetic algorithm can be used as well.

Remark: In some cases, the extracted parameters from the exhaustive search 

seem to be the global optimum answer. However, to our knowledge, the literature 

provides no proof for this conclusion.

3.5.2 Simulation Results and Discussion

For comparison, the performance results for DUSTM codes from genetic algo

rithms and the exhaustive integer search are given.

Fig. 3.4 displays the SEP for the proposed constellations in [2] and [34] with the 

integer parameters obtained from the exhaustive search along with the real parame

ters obtained from the genetic search. In our simulations, the Rayleigh fading chan

nel was used with Jakes’ model with a normalized fade rate of fdTs =  2.5 x 10~3. 

The performance was for a MIMO system with M  — 6  and N  =  1 for L =  16 

and 32. Fig. 3.4 clearly shows that the codes extracted by the genetic search out

performed the previous results obtained by an exhaustive search. The performance 

improvement is about 0.4 dB for the cyclic group design and 0.6 dB for the cyclic - 

rotated design, at a 1 0 ~ 5 error rate.

3.6 Summary

This chapter introduced the two new constellations of unitary matrices for DUSTM 

and searched for the optimum parameters based on minimizing the union bound on 

the SEP. A closed-form approximation of the union bound which is much easier to 

compute was derived. Although the number of independent parameters involved in 

our proposed constellation (3.8) is more than those of cyclic rotated and diagonal 

constellations, its error performance is considerably better. In addition, our pro

posed unitary constellation, unlike cyclic rotation, can be employed in any MIMO 

system with an arbitrary number of transmit antennas. In Section 3.5, by using
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Figure 3.4: Symbol Error Rate performance of cyclic and cyclic rotated design 
when L  =  16, M  =  6  and N  = 1. The dashed line curves are for exhaustive search 
and solid lines are for genetic search.

the Genetic algorithm and relaxing the parameters to the real numbers rather than 

integers, the performance of the cyclic rotated and diagonal codes in terms of max

imizing the diversity product or minimizing the union bound was improved.
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Chapter 4

Optimum Design DUSTM for 
Transmit-Correlated Channel

In this chapter, a DUSTM design criterion for the transmit-correlated Rayleigh fad

ing channel is presented. Using the unitary matrix constellations introduced in Sec

tion 3.3, in Section 4.3 we search for the constellation parameters to minimize the 

union bound on SEP by taking into account the number of receive and transmit 

antennas, the operational SNR, and the correlation matrix. Section 4.4 examines 

the performance of the ML (optimal) receiver and differential (suboptimal) receiver 

and quantifies the influence of the correlation coefficient on the coding gain.

4.1 Introduction

As mentioned before DUSTM is suitable for use where neither the transmitter 

nor the receiver knows the wireless channel [6 ]. The design criteria and perfor

mance analysis in terms of symbol error rate (SER) for DUSTM scheme over 

the independent-fading channels have been extensively investigated in the litera

ture [2], [34], [35]. However, a few works address the performance analysis of uni

tary space time modulation (USTM) scheme in general and the DUSTM scheme 

in particular, operating over spatially correlated channels. The error performance 

of USTM has been derived for correlated channels [42], In this present work, we 

assume that a correlation exists between any pairs of only transmit antennas. This 

assumption is realistic since in many practical multiantenna system with sufficient 

antenna spacing, the channel gain associated with different transmit antennas ex-
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hibit strong correlations whereas correlation between receive antennas is negligi

ble [12]. Reference [43] shows that the channel correlation matrix is independent 

of the operation environment and is just a function of the mobile angular position 

with respect to the transmitter. As a result, the knowledge of the correlation matrix 

can be estimated at the receiver even though the channel coefficients vary rapidly.

In this chapter, a design criterion to construct the differential codebook of uni

tary matrices is presented for the spatially-correlated channel case. Using the unitary- 

matrix constellations introduced in the previous chapter, we search for the optimum 

constellation parameters that minimize the union bound on SEP by taking into ac

count the number of receive and transmit antenna, the operational SNR, and the 

correlation matrix. In the simulation section, the performance of the ML (optimal) 

decoder and differential (suboptimal) decoder is investigated. The simulation re

sults show that the suboptimal decoders’s performance approaches the optimal’s 

performance at the high region of SNRs. Because of the availability of the corre

lation knowledge at the receiver, both optimal and suboptimal decoders can be im

plemented. However, due to the lower complexity of the differential (suboptimal) 

decoder, this decoder is more desirable for use than the optimal decoder, especially 

at medium or high SNRs.

4.2 DUSTM over Transmit Correlation

Consider a MIMO system introduced in Section 2.2.1 with M  transmit and N  re

ceive antennas signaling over a correlated flat-fading channel. As described in Sec

tion 2.4, DUSTM is a special case of unitary modulation obtained by rewriting 

Y  =  [Y f^ Y f], =  1/V 2[Im , * l ] T and W  -  Hence, the input-

output relationship in this case reduces to

Y  = y / ty & H  + W .  (4.1)

Note that T  =  2M  is chosen to derive the equation (4.1). To model the cor

relation between antennas, the spatially transmit-correlation model is employed, 

H  =  where H w is an M  x N  matrix composed of i.i.d. C A f(0 ,1) RVs,

and the matrix R T specifies transmit correlation matrix (2.3.1). The ML decoder in
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this case would be

zt =  arg max tr  j Y ^ ^ - ^ R ^ 1 +  I M)_ 1# f Y | . (4.2)

On the other hand, by using the fundamental differential receiver equation given 

in [2 ], the differential estimator regardless of the channel type would be

zt =  arg min ||Y t -  $ ,Y (_ i||^ . (4.3)
0 <1<C.L

Neither estimator (4.2) nor estimator (4.3) requires the CSI. However, the former 

estimator, which needs the correlation matrix R T to extract the data, is actually a 

ML decoder while the latter decoder is not. We will investigate the performance of 

these two estimators in terms of the SEP and the system complexity.

4.2.1 Pairwise Error Probability in case of DUST Code

The exact pairwise error probability of USTM under the correlated fading channel 

assumption has been derived in [42], Generally, the PEP is a function of the oper

ational SNR, N , M  and the channel correlation matrix R T in a very complicated 

manner. By using R #  =  I N <8 > Rt> the PEP of DUSTM may be expressed as

P{&1 —>$( /}  =  — R'esa=l/rfc j j-|.2M ZZ l  ’ (4-4)
Mrk)<0 j. S Ilfc=l (1 — r kS) J

where r \ , . . . ,  r 2M are the eigenvalues of

- l

2  p (4.5)

In (4.5), =  ^=[1M, ®J]T and — ^=[1M, $ J ] T. Note that the probability of

mistaking for <fv is not necessarily equal to the probability of mistaking for 

in a correlated channel.

4.3 Code Design

Reference [44] argues the optimum DUST codes for the Rayleigh channel case must 

yield the minimization of the union bound on PEP. Similarly, the same approach can

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



be drawn and applied to the correlated channel case. Hence, if <f>/S are equally likely 

to be transmitted, a good criterion for a code design is to minimize the union bound

which is obtained by summing the Chernoff bounds of all the PEPs divided by L.

In order to construct the unitary codebook, along with a design measure, an uni

tary constellation is required. An elegant constellation of unitary matrices for the 

DUSTM systems was proposed in Section 3.3. These codes not only yield better 

performance than other codes in terms of lower SEP but also can be applied to a 

MIMO system with an arbitrary number of transmit antennas. For the given code

book size L > 2, M,  N  and the operational SNR, an exhaustive search is performed 

to obtain the best set of integer parameters /x =  /Ui, ■ • - , p M £ {0 , . . . ,  L — 1 } and 

k = k i , . . . ,  kM—i e  {0 , . . . ,  L  — 1} that minimizes the Pu b■ Since to the best of 

our knowledge, no explicit solution exists for this problem, an exhaustive computer 

search is employed. Candidates for the best set of p  and k are exhaustively gener

ated and tested in a performance measure (4.6) and kept if they are better than the 

previously best candidate set. Below, it is shown that by using the following the

orems, the search-space complexity of our proposed constellation as well as some 

other constellations can be significantly reduced. We then compare the error per

formance of the optimum codes obtained from our proposed scheme with the codes 

resulting from other available constellations in the literature.

Theorem 4.3.1 Considering the diagonal constellation in [2], the eigenvalues o f 

matrix Q ,// are the same as the eigenvalues o f  Co,e where k —  (V —  I) mod L. As 

a result, it is sufficient to compute Cqj and C/,0 /o r  Z =  1, 2, • • • , L — 1 to calculate 

the union bound in (4.6).

Proof 4.3.1 Let’s define eig(C/,/') as the set o f eigenvalues o f the matrix C From

(4.5), we have

L —l

(4.6)
1=0 I'^l

l]r +eig (I2m +  2 /9$ /R T4> f) J( l2M +  2 /? i> /'R r4^)

(4.7)
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By using the matrix inversion and determinant Lemmas, i.e., (A  4- B C D ) - 1  =

A - 1  — A _1B (C _1  +  D A - 1B )- 1D A - 1  and eig(A B) =  eig(BA), equation (4.7) 

can be rewritten as

eig(C V ) -  ~  ( [ - 1 ,  • • • , — l]r +eig [(I2M -  2p(A 7x +  2pI2M) ) - 1(I2M -  2 p P A P ")]  

P (4.8)

where P  =  U y/(IM +  4>7/<F;), and U  and A result from the SVD decomposition 

o f R-7- =  U A U 77. Due to the orthogonal structure o f and we have P  =  

U h (Im +  ^o)» where k = (I' -  I) mod L. Therefore, eig(C;)(/) =  eig(C 0,fc).

Theorem 4.3.2 For the general unitary matrix in (3.8), i f  L  is an even number, 

among all parameters p  = {pi ,  • • • , Pm } rind K_ — {ki,  ■ • • , k iu -1}» at least one 

parameter must be an odd number.

Proof 4.3.2 Proof by contradiction; Consider C 0 l ,  when ki =  even fo r  i =

1, ■ • • , M  and pj == even fo r  j  =  1, ■ • • , M  — 1, then C 0 ^ = 02m x 2M■ In this

case, $o  and 4>l are viewed as the same at the receiver, and, consequently, the
2

receiver will not be able to identify whether 4>0 or was transmitted. This set o f 

parameters definitely does not result in the minimum upper bound on SEP.

In constellation (3.8), 2M  — 1 parameters should be determined. The computational 

complexity and, accordingly, the time needed for finding the optimum parameters 

grows exponentially with the increase of M  and L. Following an idea from [34], 

we further reduce (he search space by decreasing the number of independent pa

rameters in the diagonal matrix of (3.8), if M  is even:

, » + 2 ( * - l )  ! < * < ? ,

and when M  is odd,

pk

M - 1 
2 ’Pi +  2(k — 1 ) 1 <  k <

p 2 k  = ^ ,  (4.10)
<P z  + 2 k - M - l  ^ < k < M .

In the next section, the performances of some optimized DUST codes based 

on different constellations for a spatial correlated channel are presented. We also
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L Our code Pub Cyclic group code Pub
8 At =  [2,2 ,2],*  =  [4,5] 0.02027 A1 =  [2,7,3] 0.02247
16 f i = [  7 ,7 ,10],fc =  [4,5] 0.0607 H=  [1,12,9] 0.0625

Table 4.1: Optimum codes and their corresponding union upper bound based on 
proposed constellation in (3.8) and diagonal (cyclic) constellation in [2], M  =
3 ,N  = I, S N R  =  14dB

investigate how the correlation coefficient between each two antennas affects the 

coding gain. The correlation model considered in this section is the exponential 

correlation model introduced in Section 2.3.1.

For illustration purposes, we present an example of a MIMO system with M  — 

3 N  =  1 7  =  .9 and then construct the different unitary codebooks associated with 

each unitary constellations. Note that, R t  should be normalized so that E{ \ h itj \2} = 

1. Table 4.1 shows the obtained parameters of the proposed unitary constellation 

in (2.3.1) along with the optimum parameters of the diagonal unitary constellation 

for codebook size L = 8,16. Their corresponding union bounds for each group of 

codes are also presented for comparison purpose.

Note that the optimum codes which lead to the minimum upper bound might 

change for different SNRs. However, due to continuity, we expect that a code with 

minimum PUB in a particular SNR is still the optimum code or very close to the 

optimum code within a range of SNR.

4.4 Simulation Results

By using the obtained codes in Table 4.1, the symbol error rate (SER) performance 

of the ML receiver (4.2) and Non-ML (Differential) receiver is shown in Fig. 4.1 

as a function of the received SNR. Moreover, this figure depicts the performance of 

the proposed codes in (2.3.1), the diagonal codes that optimized the union bound in

(4.6) and the diagonal code in [2] designed for the Rayleigh-fading channel when 

M  =  3, N  =  1, L  =  16. By taking into account the channel correlation model, 

we observe that the new design of the diagonal constellation achieves a coding 

advantage of about .4 dB at the SER range 10- 2  —10- 3  over the code designed in [2]
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Figure 4.1: Symbol Error Rate of two different constellation with M  = 3, N  — 1 
for ML receiver and Non-ML(Differential) receiver.

where the correlation was not considered . By using our proposed constellation 

in (3.3) to construct the codebook, a better performance compared to the others 

is obtained such that, for instance, this improvement is approximately 1 dB at an 

SER of 2 x 10~3. As SNR increases, the performance of the differential (Non- 

ML) decoder approaches the performance of the ML decoder. This point is more 

obvious in Fig. 4.2, which depicts the SER performance of the optimum codes 

with a different correlation matrix assumption for M  =  2, N  =  2, L =  8  and 

R t = \ 1 ]  ■
[ 7  1 _

Fig. 4.2 illustrates the SER performance of the optimum codes for different 

values of the correlation coefficient (7 ), assuming M  =  2, N  =  2, L = 8 .

Both ML and Non-ML detectors perform identically when no correlation exist 

between the transmit antennas ( 7  =  0). This result was expected because in [2], it 

is proved that in the case of the Rayleigh-fading channel ( no spatially correlation), 

differential detection is actually equivalent to ML detection. We notice that even 

though the correlation coefficient is not zero, e.g., 7 =  0.5, the performances of 

the ML and differential decoders are very similar. This fact implies that a differ

ential decoder with so much less complexity can be used instead of a ML decoder 

in a practical system and that a differential decoder exhibits the same error rate 

performance.
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Figure 4.2: Performance comparison of ML and Non-ML receivers on the optimum 
code in constellation (2.3.1) when M  = 2, N  =  2 and L — 8 .

4.5 Summary

In this chapter, we investigated the error rate performance of the DUSTM scheme 

operating over a transmit-correlated fading channel. In such a system, to construct 

the best unitary codebook, we introduced a design measure that minimizes the union 

bound. As expected, our optimum codes showed a better performance than those 

of the existing codes for the correlated channel case. In the simulation section, the 

performance of ML and differential decoders was studied, and it was observed that 

the differential decoder’s performance approaches the ML’s performance at high 

SNR.
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Chapter 5 

Antenna Selection for USTM over 
Correlated and Ricean Channels

Section 5.2 describes the system model and presents a brief overview of USTM 

and DUSTM. In Section 5.3, the ML decoder and Chernoff bound on PEP are de

rived for antenna selection and USTM over the correlated fading channel. For two 

transmit correlation models, the diversity order and coding gain are derived. The 

extension of our performance analysis to the Ricean channel is presented in Sec

tion 5.4. The numerical results are shown in Section 5.5, and concluding remarks 

are given Section 5.6. Lastly, in Appendix A.3, we investigate the convergence be

havior of some available CDFs of the quadratic forms and compare them with our 

derived formula in terms of the Minimum Square Error (MSE).

5.1 Introduction

Most previous USTM studies assumed that all the available antennas are utilized 

for signal transmission and reception [35], [18], [45]. However, each active trans

mit/receive antenna pair requires an RF (radio frequency) chain, which is expen

sive. Consequently, antenna selection, where a subset of all available antennas are 

selected at the transmitter and/or receiver, has been extensively studied [20], [46], 

[47], However, most previous research on antenna selection considers coherent 

multi-antenna systems in which perfect CSI is available at the receiver [48,49].

The only study that deals with USTM and receive antenna selection (RAS) with

out CSI is [24], Its main contribution is the derivation of the diversity order and
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coding gain via the Chernoff bound on the PEP for USTM and RAS. It is shown 

that a MIMO system employing USTM and RAS achieves full spatial diversity. 

However, [24] considers only independent Rayleigh fading MIMO channels. In re

ality, insufficient antenna spacing, angle spread or the lack of rich scattering may 

cause spatial correlation among antennas, particularly at the transmit side [12], [50]. 

Moreover, channel measurements reveal that in some propagation environments, a 

fixed (possibly line of sight (LoS)) component [11] is present. In this case, the mean 

of the channel matrix is not zero, and the channel is modeled by the Rician fading 

channel.

In this chapter, the analysis of [24] is extended to independent Ricean and cor

related fading channels. RAS is based on the instantaneous received signal power. 

The optimal decoders for both channel assumptions are presented, and then the as

sociated Chernoff bounds on the PEP are derived based on the optimal decoders 

when a single antenna is selected. Both the exponential and constant correlation 

models are considered in our work. Since our performance analysis is for the high- 

SNR region, the most important contribution in this work is to derive the most 

dominant term of the CDF’s power series of the received signal power at any re

ceiver with respect to SNR. We further show that the convergence behavior of our 

CDF expression is much better than that of the other CDF expressions available in 

other studies such as [1] or [51], [52],

Our analytical results indicate that the full diversity is preserved in both corre

lated and Ricean fading channels for USTM and RAS. However, the correlations 

result in a loss in the coding gain while a higher K-factor improves the performance.

Consider a MIMO system with M  transmit and N  receive antennas signaling over a 

frequency flat-fading channel. As described in Section (2.2.1), the received matrix 

signal is written as [6 ]

5.2 System Model and USTM Scheme

(5.1)
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where Y T =  [yi, • ■ ■, Y n ] is a T  x N  complex received signal matrix, Sr is a T  x M  

complex transmitted signal matrix, and W r denotes a T  x N  additive noise matrix 

with i.i.d. CAr(0 ,1) elements, and the block-time index is r . Moreover, the M  x N  

random channel matrix H  consists of a fixed (line of sight [LOS]) component and 

a random (diffuse) component. The channel may be represented as

The Ricean factor K  indicates the relative strength of the LoS component over the 

diffuse component, providing an indication of link quality [16].

Two special cases of (5.2) are investigated below. The correlated channel model 

without a LOS component ( K  — 0 and R t  /  Im) is considered next, and the 

Ricean channel model without a correlation ( K  ^  0 and R t  =  Im) will be treated 

in Section 5.4.

5.3 Error Probability of USTM RAS in Correlated 
Fading

In this section, the performance of the USTM RAS in a correlated channel is ana

lyzed. The antenna selection rule and the decoding algorithm are described. The 

Chernoff bound on the PEP is derived for the case selecting the ’best’ single an

tenna.

The selection rule here is a commonly used way of selecting a receive antenna 

by using a simple maximum-norm detection circuit. This rule does not require 

the receiver to know the the CSI or even the correlation matrix. The rule is that 

an antenna whose received signal norm is the largest among all the antennas is 

selected [24]; i.e,

where zn =  ||y„ ||2.

For this selection rule, the Chernoff bound on the PEP of mistaking d>/ for 

is expressed as [24]

(5.2)

n =  arg max zn,
n = l ,2 , . . . ,N

(5.3)
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where 0  <  p, < 1 is a free parameter that is chosen to minimize P M -  Fz(.) 

denotes the cumulative density function (CDF) of ||y ||2, and R / and R;/ are the 

T  x  T  covariance matrices conditioned on and <Ev transmitted, respectively. 

The covariance matrix R ( can be written as

R/ =  E(yiy f ) =  It +  • (5.4)

Note that each antenna at the receiver observes independently correlated-fading 

gains from the transmitter antennas provided that no correlation between the receive 

antennas exists. As a result, all the columns of the received signal Y  are i.i.d.. By 

using the matrix inversion and determinant lemmas in [6 ], one can derive

R f 1 =  I t  -  +  ( ^ R t ) - 1) "  V  (5.5)

and

d e t(R () =  d e t(IM +  ^ D ) ,  (5.6)

where the diagonal matrix D  =  diag{Ai, . . . ,  Am } is obtained from the singular 

value decomposition of R r-

Let us define py. (yr-t|$ () as the probability density function (PDF) of the signal 

in selected antenna n .  By considering the selection rule , the ML detection rule is 

given by

$ M L  =  arg max pyii (yft| $ ()- (5.7)

Using the theory of order statics in [53] and considering the fact that ( I! y  112) is

independent of the transmitted signal <&/ (this independence will be proven shortly), 

the decision rule (5.7) can be simplified as

$ ML =  arg max j y H* , ( l M  +  ( ^ D ) - lN) $ f y l .  (5.8)

If we assume that the receiver knows the correlation matrix, ML detection re

quires searching over the codebook V in order to choose the optimum signal by 

maximizing (5.8). Note that although the RAS criterion in (5.7) does not require 

the correlation matrix R T, the optimal detection rule in (5.8) requires R r  in order 

to extract the most likely transmitted signal.
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To compute PCB in (5.4), i^ ( ||y j |2) is required. This CDF can be obtained by 

the Laplace-transform inversion of the moment generating function (MGF) of ||y  | | 2 

given by [54, page 595]:

° ^  =  det(Ir  +  s R F ) ’ (5'9)

where F  =  IT and R  =  1T +  ^ 4 > R r $ w is the receive covariance matrix. The 

transmit correlation matrix can take several forms. Two popular correlation models 

for R t  are considered in Section 2.3.1. Extensive use is made of the eigenvalues of 

the correlation matrices in (2 .1 1 ) and (2 .1 2 ) in the following.

5.3.1 Exponential Correlation Case

For the exponential correlation model, the CDF of zn =  ||y„ ||2, denoted by Fz(a) 

throughout the paper, is derived here. The CDF is used to derive the performance 

of USTM and RAS in terms of the diversity order and coding gain. We will use 

some of the results in [24], [6 ], and the rotational property of the Vandermonde 

matrix [55].

First, we will briefly outline the derivation procedure. The diversity order and 

coding gain are meaningful only in the asymptotically high SNR region. Typically, 

to find these, the Chernoff bound on the error probability is derived as a power series 

of the SNR. The diversity order and coding gain are then extracted from this power 

series. For example, at asymptotically high SNRs, if the following relation [56],

Pcb — (Gcp)~Gd + o(p~°d), (5.10)

holds for the error probability or the Chernoff bound, then Gd and Gc represent the 

diversity order and coding gain, respectively. In order to evaluate Pcb at high SNR 

(p —* oo), the dominant term in the power series expansion of Fz(a) in terms of p 

is required.
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With the use of partial fractions, one can expand (5.9) to

1
G(s)

( i + ^ r n ^

T - M M

= E +E
fe=i

Bu
(5.11)

rk

where

A T - M - k  —
1 d*_ 
k\ d s k

M

1
vi=l

Bb
1

T - M M

1 - i n i
S =  — 1 

- 1

Tk

(5.12a)

(5.12b)
i=l,i^k

The PDF of zn can be obtained by taking the inverse Laplace transform of (5.11) as 

follows:

f z ( u ) = C - 1{G(s)}
T - M  1 M

=  E V n r/-e-*+Ek=  1 v ~ _ / ' fc=l

By integrating (5.13), the CDF of zn is obtained as

T - M  /  / f - 1  A  M

(5.13)

F,(a) =  E i -  e-“ E |  + E f1 ~  <r“/r‘)- <514)
fc==l \  1=0 /  fc=l

Notice that the CDF expression of Fz(a) in (5.14) is independent of the transmitted 

signal <&/. By inserting (5.12b) into (5.14) and after some manipulations, the second 

term of the right side of (5.14) approaches to

M

E a t 1 - a / r k H -E ( - a M Y
x

k=  1

M  M  ,  \  \  - 1n K  ■
k — 1 N

(5.15)

when p —► oo. Upon cursory examination of (5.15), one might conclude that

the dominant term occurs at j  =  1 as p —> oo. However, the most dominant term

in the power series of Fz(a) is the term p~M because the coefficient of any power

term pP, j  < M,  is zero.

oo.
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Theorem 5.3.1 For any M  distinct eigenvalues A i,. . . ,  Am and 0 < j  < M , the 

following holds:
M  M

~    ”  ’ (5-16)
M  M

n  ( A . - A , ) " 1 = 0 .

Proof 5.3.1 With the common denominator rii<t<j<A./(^* — Aj), the numerator o f 

the left side o f (5.16) would be

M

k = 1 1 < i < j < M

det

~ ^ - j + M - 1 \ - j + M - 1 
A 2

1"
■ a M

1 1 1

A i A 2 A M

A ? A 22 • A M

i.. -S
;.

.
i to \ M —2

*2
\ M - 2

a m

(5.17)

77ze right side o f (5.17) arises from the use o f the rotational properties o f the Vander- 

monde Matrix (see Section 6.1 [55]) and the general definition o f the determinant 

as well. The left side o f (5.17) is now equal to zero fo r  all integers 1 <  j  < M  — 1 

because i f  j  is in this interval, the introduced matrix (5.17) has two equal rows, so 

its determinant clearly must be zero.

Thus, the second term of (5.14) is expanded as

M M M M

k=  1 i = li^k

(■- a M )
p M T M M \ £ ^ - ' k  " l i t *  Afc 

k = l  1 v

Similarly, the dominant term of the first term of (5.14) is p M as p —> oo. 

Theorem 5.3.2 For any integer k, and fo r  large p, the following holds:

0k
d sk

M

SVi 1 - 1

V 1 = 1

= Ct p - M +  o(p~ "), (5.19)
$ =  —  1

where Ck is a constant value, independent o f p, and uniquely determined fo r  each 

k. In other words, the left side o f (5.19) behaves as CkP~M when p is sufficiently 

large.
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Proof 5.3.2 See Appendix A. 2.

In the high-SNR regime, Fz(a) N "~1 can be approximated by retaining the first term 

in the power series expansion of Fz(a)\ thus,

Fz(a)N~l = p M ( N - 1)

T - M K - 1

L k=  1 i= 0

N - 1

+ o (p -M N̂- %  

(5.20)

where
 T - M - k

Vk = CT- M- k\ r  -  m  -  k)\
( - i )

/
5  =

M

D - d
M +l M m

M

k=  1
T MM \ \ ¥  - -K i—i i^k

n  i -
A. - i

(5.21)

Therefore, by substituting (5.6) and (5.20) in (5.4), we obtain

P M  =  o
N

x
T - M

i = 0

pM(JV-l)

dy +  o f p - " " ) .

E
fc=i

(5.22)

From (5.5), £l(p) may be rewritten as

(100 =  IT -  ^ , , ( 1  m +  ( ^ R r ) ’ 1) - 1* ?  -  (1 -  +  ( ^ R t ) - 1) - 1#,",

which reduces to

lim O(yu) =  IT -  -  (1 -  (5.23)
p - ~ *  OO

For all <f>( and <F(/ drawn from the unitary constellation V, ran k (f l(p))  =  T  

for all I 7  ̂ I' (i.e. the full diversity constellation). By using the singular value de

composition n (p )  == Q d ia g { a i , . . . ,  a r ) Q H in (5.23) and changing the variables 

x t = \yt \2, where yt is the t-th element of vector Q Hy,  the Chernoff bound on PEP 

(5.22) is obtained. Therefore, the diversity and coding gain of USTM and RAS are

Gd =  M N  (5.24)

Gr
N M m

2T M det (R t )

poo pc

J o  J o

+  ( X > ) " £
t=  1

N - l

e

1 / ( M N )

E tt=i atxt
T - M

E M 1
k=  1

d x \ ■■ ■ dxj

E
=o

(5.25)

i\
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As the final result of Pqb implies, for high SNR and full rank space-time codes, the 

diversity order remains the same as that of the full complexity system. However, 

some loss in the coding gain occurs, depending on the determinant of H T.

5.3.2 Constant Correlation Case

The analysis here is similar to that in the rest of the the exponential correlation case. 

G(s) and F(-) will be calculated as follows:

T - M

G(s) =  £
A k _______________B _______________

^  (i +  s )k 1 + s | pT / M [(M -  1 ) 7  +  1] +  l }

M - 1

+ E
k=  1

r  1

ck

1 +  3 (p T /M (  1 -  7 ) +  1)
"V"
T2

(5.26)

where

i  T - M - k
11 &<_

k \d s k \ ^ ( 1  +  s r i ) ( l  +  sr2)M~1

\ —M
=  A ± - ~ r t ,  X

1 ( n  - 1 )‘
k /  \  /  \  i / 1  \  *—1

M + i - 2 \  (  r 2 \  /  1 — r iE
i= 0

n )  V 1 -  r 2
(5.27a)

5 = 1 -
r 1

1 - M

(5.27b)

Ck =

M —l —k

E
i= 0

M — l —k
I II  
r2

T - M + i - l  

T - M - 1

n
r2

1 - ^
r2

k - M

1 -  -  
r2

1 -  — ) r i
r2

M - T

X

(5.27c)

By taking the inverse Laplace transform of (5.26) and then integrating it with re

spect to u over [0, a], the final CDF will be given by

T - M  f  k - 1  i 'I M —1 f  k - 1  (

F,(a) = £ 4  1 + B  (1 - e ^ )  +  £  C* 1 - ^ E -
k= 1 k. i=0 )  k = 1 (  i = 0

(5.28)
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Notice that as we expected before both (5.14) and (5.28) are independent of the 

transmitted signal $(. This condition was necessary to derive the ML decoder in

troduced in (5.8). As we claimed in exponential correlation case, we first claim 

here that the dominant term in the power series expansion of Fz(a) shown in (5.28) 

occurs at the p~M term.

Theorem 5.3.3 For a characteristic function Fx(a) in (5.28), the asymptotic/dominant 

term in the power series expansion occurs at order o f p~M; i.e., the first M  — 1 terms 

o f the asymptotic series fo r  Fz(a) are zero.

Proof 5.3.3 The argument in the previous correlation matrix case is applied herein 

as well. The alternative proof fo r  this theorem can be drawn from Eq.(24) o f Refer

ence [1 ].

What remains is to determine the coefficient of p~M in the asymptotic series of 

Fz(a) in order to present the best approximation of it. As p asymptotically goes 

to infinity and if we substitute (5.27a) in (5.28), the first term in the right side of 

equation (5.28) reduces to

i\ j  r  T M[ ( M -  1 ) t +  1]
i — m i — M - t e  /  \  (  k — 1 ^

E E (5.29)

fc=l v. i =0
T - M  T - M - k  /  \  (  k — 1

X

k = 1 i = 0 v /  t. i= 0

which indicates that the power series of the left side of formula (5.29) starts with 

the p~M term. This statement does not apply to the other expressions left in equa

tion (5.28). The second and third terms of Fz(a) might apear to contain M  — 1 

first terms in the power series as well such as p ~ \ i =  1 ,2 , . . . ,  M  — 1. In fact, 

from Theorem 5.3.3, we know in advance that the significant term in Fz(a) is p~M\ 

therefore, all p~l , i. = 1 ,2 , . . . .  M  — 1 disappear in the power series.

By using the two following identities (5.30) and (5.31),

E  ̂  E  |  = i - E  ( t  < ^ )  ^  <*•*>
j=0 i=0 j=0 \  1=0 ' ' ' /

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



E a+i
X  — 0  < x  < 1 ,

i= 0  N • /  ( l - ^ ) a + 1

in (5.27c) and (5.28), respectively, it can be shown that Ck goes to

(5.31)

lim Ckp—>00

~T\
r2

M —l —k

1 - ^
r2

k - M
T - k - 1  

T - M - 1

, M —k /  t \  M - k 'n \  ( l

n ,  
(5.32)

If we insert C* of (5.32) into (5.28) and consider only the term p~M, and given 

that this term is the dominant term, the asymptotic Fz(a) in the constant correlation 

case is given by (5.33), which appears at the bottom of this page.

In order to verify (5.33), Fig. 5.1 shows the empirically obtained CDF of ||y2|| 

along with the first term in the power series expansion of zn’s CDF presented in

(5.33). Clearly, we are looking for Fz(a) as a function of p and a in order to calcu

late PCb- As Fig. 5.1 depicts, the difference between the approximation and empir

ical value exponentially approaches zero as SNR gets sufficiently large. The rest of 

the procedure to obtain the diversity order and coding gain is the same procedure 

we carried out in exponential correlated case; By setting Fz(a) from (5.33) in (5.22) 

accordingly, Gc and Gd can be achieved. In general, the error performance depends 

on the SNR, the signal constellation and the correlation matrix in a complicated 

manner. However, it is noted USTM and RAS achieve full spatial diversity (i.e., 

Gd = M N )  even with the existence of transmit correlations.

Fz{a) =
i-M
nM

(1  ~ 7 )~m+1 ( - M ) m

M - 1

[ ( M - 1)7 +  1] 

1 -  7

T - M  T - M - k

E E
k = 1 *=0 

M- 1

M + i - 2
k - 1

1 — e
i=0

M \[l +  (M  — 1)7] ( M -  1 ) 7  + t * E
fc=i

(M  — 1 ) 7  +  1

(  M - l

£> ;=n

M  7  

- M 7

1 - 7

M_1 aM( - l ) i+M~k (  T - k - i

^  (K  +  i)\(M  — k — i)\ \ t —M —i )  (M  — 1 ) 7  +  1

M - k

+  o(p~M) 

(5.33)
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II

■ ■ O ' ■ Emprical CDF,M=3,T=6,a=5 
♦  Emprical CDF,M=3,T=6,a= 15 

■■■+■■ Emprical CDF, M=4,T=8,a=l5 
- O -  Approx CDF, M=3,T=6,a=5
 Approx CDF, M=3,T=6,a=15
 I   Approx CDF, M=4,T=8,a=:l 5

SNR[dB]

Figure 5.1: Comparison of the approximation and exact curve of Fz(a) assuming 
constant correlation matrix with 7  =  0.5

5.4 Extension to Ricean-Fading Channels

The performance analysis of USTM and RAS is now extended to Ricean fading 

channels. Here, spatial correlation is ignored and, the elements of H w are assumed 

to be i.i.d. circularly symmetric complex Gaussian random variables, i.e., CJ\f(0,1). 

If the received signal Y  is formulated again as (5.1), and the LOS component has 

equal effect on each receive antenna, Y  consists of N  i.i.d. columns with the T  x T  

covariance matrix R ( as

Rz -  Ir + pT (5.34)
M ( K + 1) 1 1

Therefore, the likelihood function of the received signal at the nth antenna, i.e., y n, 

can be written as

exp { —(y — yt)gR/ H y - y <)}
7rr det(R;) : (5.35)

where
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_ _ I  p T K  -  
y * ] J m ( K  + 1) l n

n r 1 =  r r  -  (5-36)x  + 1

where x = M^ +l  ̂ hereafter. After some manipulations of the exponent term of 

(5.35), similar to what we did in the correlated channel case, the ML decoding rule 

becomes

#m l =  arg max, | ^ | | Y » # , | | ^  +  2 ^ K ( K  + l ) t i  (!ft(Y H$ /H )}  j  .

(5.37)

By using the same argument used in [24], it is proved that instead of Y  and H  which 

are, respectively, the received block matrix and the channel fixed component. Thus, 

we can substitute y n and h„ accordingly in (5.37) as the received and LOS vector 

at the selected antenna whose signal norm is the highest.

5.4.1 Chernoff Bound and Performance Analysis

In this section, the Chernoff bound on PEP is derived for the Ricean channel. The 

Chernoff bound of mistaking d>; for is given by

P c M  =  5 1  d e t & y ^ R eXpK(" ly)l<iy- (5'38)

where

M\y)  = -M y -  y V ^ R ^ y  -  7i>) -  (i -  M(y -  y ^ R f ^ y  -  fi)-

By using the distributive property of matrix algebra, £(£t|y) can be rewritten as

M \ y ) == - y H [MV1 + (l -  M R f^y  + 2R{yH[AiRj71y,/
S V y

n(ix)

+  ( i  -  M R f 1̂ ] }  -  [wv’Rj'yv +  U  -  M y f R r 1̂ ]  • (5 -3 9 >
"V "

A(fi)
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By using (5.36) in (5.39), at high SNR region (x  —* oo) which is of interest herein, 

the second term of £(/u|y) becomes

In order to calculate Pcb in (5.38), as we did in the correlated channel case, we need 

to find the CDF of z = ||y ||2, i.e., Fz(a), knowing that the mean value of y  is not 

zero any more. The dominant term of CDF respect to p will be inserted into (5.38), 

so that we can obtain coding gain and diversity order.

Different methods can be used to derive the CDF of a non-central quadratic 

form over circularly symmetric Gaussian vectors. Since we have to integrate such 

CDF’s over TZ+, a fast convergent series is needed. In [1] and [51], three infinite 

series for the CDF of non-central quadratic forms in complex normal variables have 

been presented. These series are either hard to find a closed form or very poor in 

convergence. Below, we propose a new method for calculating the first term in 

the power extension series of such a CDF and then show that it converges much 

faster than the other series discussed in the literature and is appropriate for our 

performance analysis. The convergence properties of these series will be discussed 

in Appendix A. 3.

In the sequel we invoke two commonly used functions in our derivation, which 

are respectively defined as The incomplete Gamma function, i.e., the CDF of the 

X 2 ( 2 n) distribution defined as

and the Pochhammer function for any integer i, defined as

^ { y ^ f /x R /y ,,  +  (1  -  p )R t V ;]} =  +  (1  “  ^ )$* )h n]} -♦ 0 .

Furthermore, f l(p)  and A(/x) are given by

n ( p )  -  i T -  +  (i -

= K \\h n \\2. (5.41b)

(5.41a)

i S 1 = p ( p + l ) - - - ( p  + i -  1 ) L ^  W,

i =  0, (5.43){p)i =  1

, r(p+i+i)S z S y  =  pip ~  1) • • • (P + i +  1) i < 0.
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Proof 5.4.1 See our paper in [57],

We now state the CDF and its associated power series for the squared norm of y.

Theorem 5.4.1 The PDF and CDF o f the quadratic form  z  =  ||yn | |2 over a non

central circularly symmetric Gaussian vector y n with the covariance matrix o f

(5.34) are

_°° ( n \k ( k+M nr-l„-0a T~M „ r - l „ - o

(5.44)

and

oo / \ l, s  k f - M  y-,/ yj \ T —M  n

F ,(a )  -  (1 + * ) '"£  C2>- >< { E  + Y .  a,r(r,«)j,
k = 0 ' r = l  P  r = 1 '

(5.45)

where a  — Y f^i^ ||hn||2, j3 — j4_, and the coefficients A k r̂ and B k<r result from

Ak,r =  -  M,(3) r  =  1,2, . . . , k  +  M,  (5.46a)

B k,r =  i f a - M - r M k  +  M , l )  r  =  1 , 2 , . . . ,  T - M .  (5.46b)

Proof 5.4.2 See our proof in [57].

Theorem 5.4.2 The most dominant term in the CDF o f Theorem 5.4.1 is p~M, i.e.

= x  ( m ± 2 i f  v  ( - * i w x
T  , !

fc=0
M  r  T - M  ^

B krT (T y ) \  +  o ( p - M). (5.47)

where

r\
r = 1 r = 1

B k,r = f>T-M-r,k(0, k + M , 1)
=  ( —1 )M—T(T — r)

l r  ( M - r ) ' . x r ( T - M ) '  '

P roof 5.4.3 See our proof in [57].
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If (5.39), (5.41a) and (5.41b) are substituted into the PCb expression in (5.38), we 

arrive at

e-K||hn ||2 r  iVF (llvll2 ) ^ - 1  HnM
PCB(u) =  ----------  /  f z l l | y | 1  > e- y UMydv

C W )  2irT Jct {l + x )M y ’

Therefore, by using the results of Theorem 5.4.2 and the Lebesgue’s dominated 

convergence theorem, the Chernoff bound at the high SNR region is

^  ™ \\u  I l 2 \ f c» ^ ( ^ + i y v K 6 ..ll> r . . .  r e- a , * /  f *  ( - * i i m 2)
2 T  Jo Jo V M k '

M  / ^ - ^ T  w  T —M  T  \  N —1

{ ^ 2 A ’k,r tf r L ~ + S  W Z * ) } )  dx1 - - -dxT + o{p~MN),
r = l  ' r = 1 4=1 '

(5.49)

where a i , . . . ,  a T aire all eigenvalues of the matrix f 2 (/i), assuming rank(f2 (//)) =

T.  Note that equation (5.49) is obtained by changing the variable x t = \zt \2 where 

Zt is the tth element of vector Q Hy,  similar to what occurs in the correlated case.

The diversity gain and coding gain are

Gd = M N ,

■n ,m (k + i w . _ WIe.» r  r , -TZ ,o ,„ f^- ( -K \ \K \ \2)t
k\

k = 0

M  , ^ T  s r  T - M  T  x N - l  \  - 1  / ( M N )

x { ^ 2 A 'k,r— ^  g f c , r r ( r . ^ S « ) } )  d X i - ' - d X T )
r = 1 ' r = 1 4=1 '  '

(5.50)

respectively.

Since gaining an insight into the obtained coding gain expression (5.25) is inter

esting, let us consider a simple 2 by 2 differential unitary space-time case (T =  4)
’ 1 l )for the transmit correlation matrix R T
7 1

and the Ricean channel with
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K  =  2  and H  =
1 1 

1 1
. The direct calculation of (5.12a) and (5.12b) yields

A\  —

Ai  =  

Bi  = 

Bo =

r2
(1 - r i ) 2(l - r 2) ( 1 - r 2)2( l - n )  n r 2

1 1
p —> oo

( l - r ! ) ( l - r 2) r j r 2’
 1__________
(1 -  l / r 1)2(l -  r2/ n )

1
(5.51)

2 (1  -  l / r 2)2(l - n / r 2y

where 77 =  1 +  2(1 +  7 )p, and 77 =  1 +  2(1 -  7 )p. By using the final result of 

Theorem 5.3.1 and replacing (5.51) and (5.15) into (5.14), Fz(a) in our simple case 

will be

F^ a) =  4p2 ^  7 2 ) { 2(* ~  e_“) +  t1 “  (! +  a )e~“] +  ~2 +  2 a} +

(5.52)

and eventually from (5.25) and after some simplification, Pcb is obtained as

CB
1 1 e-Z t= iatxt

16 p‘:(l -  7'r2
j  0

2(1  -

+  1 — ( 1 +  ^  27 ) e 
V t=i )

1

, ( E t i ^ ) 2
27

t=i

x c/2 7 •• • c/ 2 7  =  

1
+

m = i k )

16p4
4

(1  -  7 )
2 \ —2

e u k + 1 )

K—' 1 x—' 1 x—'  2
3 +  /  — 2  ”1" ^ ---------- ^ --1i a i { a ta v a t

1 l < « p <  4  c p  r

+ o(p"4) (5.53)
t = l  1 l < « p < 4  1 ^  t = l

As mentioned earlier, a / s  are the eigenvalues of Pl(p) defined in (5.23). To deter

mine the optimum p  to minimize Pqb, one can use a computer search to find p 0pt 

over interval [0,1], Note that with transmit correlation, the probability of mistaking 

for is not necessarily equal to the reverse probability. If they are equal, p  

must be 1/2 in (5.23).
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For the 2 x 2  Ricean channel, the Chernoff bound in (5.49) is reduced to

Akr  E  I K 0" ’
£=1

T,t=lli=r

+ J 2 B 'k A Y l a ^  ~ Y 1  Y 1  (5 .5 4 )
r = 1 t== 1 j = 0 Zi , . . . , ( 4 , f = l

E t i

Proof 5.4.4 See our proof in [57]

5.5 Simulation Results

In this section, we examine the correctness of our theoretical analysis by using com

puter simulation and study the influence of the transmit correlation and K-factor on 

the error performance of USTM and RAS. To exploit the benefits of differential 

USTM, the optimized parametric codes in [24] are used in our simulations. Al

though these codes have been designed for the independent fading channels, numer

ical experiments show that they are either optimum or near to optimum codes for 

the correlated/Ricean channel as well. For the sake of simplicity, in our simulation 

examples we consider a system with two transmit and one or two receive antennas. 

For antenna selection, we select the best receive antenna based on the maximum
1  7

received norm. The assumed correlation matrix in our simulation is R t  = 1 ,
U

and the fixed channel component in Ricean model is given by H  = j j .
In Fig. 5.2, we compare the Chernoff bound on PEP presented in (5.53) with 

simulated PEP for a differential USTM system with M  =  2, N  — 2 when a single 

antenna is selected, J  =  1. Our theoretical bound is almost 1.5dB away from the 

exact PEP at PEP equal to 10~ 5 for both the 7  =  0.3 and 7  =  0.9 cases, and it 

gets tighter at higher SNR. From Fig. 5.3, even for a high level of correlation, e.g. 

7 =  0.9. Although some loss occurs in the coding gain, both the full-complexity 

system and a system employing antenna selection exhibit the same diversity order 

(Gd =  4). To illustrate the advantage of RAS over no antenna selection subject to 

the same power consumption, we plot the performance of a system with a single 

receive antenna. As expected, its diversity order is equal to 2. Now, we evaluate the
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O  " Simulated PEP 7= 3 
- 0 “  Chernoff PEP bound 7 = 3 
' ■ ♦  " Simulated PEP 7= 9

Chernoff PEP bound 7= 9

SNR[dB]

Figure 5.2: Comparison of the Chernoff bound and the simulated PEP with M  = 2,
N  =  2 J  = 1

formulation of our performance analysis in the case of a Ricean channel. The exact 

PEP for K  =  1, K  =  2 and A  =  3 are plotted in Fig. 5.4 along with their associated 

Chernoff bounds calculated from (5.54). As Fig. 5.4 shows, the higher values of K- 

factor result in a better system performance. Furthermore, the presented Chernoff 

bounds get tighter as K  increases, such that, for instance, the Chernoff bound is 

around 1.5dB away from the exact PEP for K  = 0, and this difference reduces to 

0.7dB for A  =  2 at PEP ICC6. As occurred in the correlation case, as Fig. 5.5 

depicts, the USTM scheme with the use of antenna selection operating on a Ricean 

channel exhibits the maximum attainable diversity order (Gd =  4) and significantly 

outperforms a system without antenna selection.

5.6 Summary

This chapter analyzed the performance of USTM and RAS over the spatially-correlated 

or Ricean fading channels. Two popular correlation models, exponential and con

stant models were considered. A good approximation to the CDF of a noncentral 

quadratic form in complex RV as a function of SNR was provided. Antenna selec

tion was performed at the receiver, and the selection was based on the instantaneous 

received signal power. Our analysis was based on Chernoff bound. The simulations
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53 10'

O  N=2, J=1 7=3 
- 0 -  N=2 t=.3

10 12 14 16 18 20 228
SNR[dB]

Figure 5.3: Performance comparison of parametric codes for the system with or 
without antenna selection and M  =  2, L =  16 over spatially correlated channel

showed that although the antenna correlation degraded the coding gain of the sys

tem, the diversity order remained the same as that of a full-complex system as long 

as the unitary signals were full rank. The same held for the Ricean channel case 

with any K-factor. For a simple 2 x 2  differential USTM system with single receive 

antenna selection, the Chernoff bound expression was simplified and the simulation 

results for for both correlated and Ricean cases were presented.
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■ A  Simulated PEP K=0 
'-A -' Chernoff PEP bound K=0 

O Simulated PEPK^l
 O-1 Chernoff PEP bound K-1

Simulated PEP K-2  
 •  Chernoff PEP bound K=2

SNR[dB]

Figure 5.4: Comparison of the Chernoff bound and the simulated PEP for different 
K-factor M  = 2 ,N  = 2 J = 1

J=l, K=2 
■ a N=2, J=l, K-2 

——- ‘N=2, J-2, K=2

20 22
SNR[dB]

Figure 5.5: Performance comparison of parametric codes for the system with or 
without antenna selection and M=2, L=16 over a Ricean channel K=2
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Chapter 6 

Conclusion and Future Research

This thesis first provided a brief introduction to the MIMO systems and space time 

codes in Chapter 2. In Chapters 3, two new structures of unitary matrices were 

introduced, a closed-form approximation of union bound on SEP was derived, and 

genetic algorithms to find the optimal solution were presented. In Chapter 4, to con

struct the best unitary codebook for DUSTM over a transmit-correlated channel, a 

design measure was introduced that minimizes the Union bound. As expected, 

over the correlated channel, our proposed optimum codes showed a better perfor

mance than those of the previously existing codes. The performances of ML and 

differential(Non-ML) decoders were studied. The simulation results confirmed that 

both these decoders performed approximately the same at high SNR.

For future research, USTM and DUSTM may be exploited in cooperative net

works to develop a cooperative diversity scheme which bypasses the need for CSI. 

In fact, the sources and relays in such a system form a distributed (virtual) antenna 

array to effect spatial diversity gains. Therefore, distributed versions of USTM 

and DUSTM should be designed for this scenario. To the best of our knowledge, 

only a few works (such as [58]) have recently addressed this issue; however, many 

important issues remain relatively unexplored and worthy of future research.

In Chapter 5, the performances of the USTM with single antenna selection was 

investigated for the spatially correlated channel, where the single antenna selec

tion is performed at the receiver, and the selection is based on the instantaneous- 

received-signal power. To model the correlation between each pair of transmit an

tennas, two popular matrix models were used. Our analysis was extended for the
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Ricean channel by providing a good approximation of the CDF of the noncentral 

quadratic form (QF) of the complex Gaussian RVs as a function of SNR. Our anal

ysis as well as our simulations showed that the correlation degraded the coding gain 

of the system while the diversity order remained unaffected. Since the derived CDF 

expression for the non-central QF of Gaussian RV converged better than existing 

CDF expressions, that CDF expression may also have other applications. For in

stance, to calculate the BER of a differential or non-coherent decode-and-froward 

scheme, the distribution of a Gaussian QF is required [59],

Finally, this thesis considered only the case of single antenna selection. Per

formance analysis for USTM with multiple antenna selection is a possible future 

research topic.
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Appendix A 

Appendices

A.l Proof of Theorem 5.3.2

A.2 Proof of Theorem 5.3.2

By Induction theorem, let f ( s )  =  [1 +  srt\ *) • F°r & =  0, it is clear that

/(«) CoP- M + o(p-M),M \ (A .l)
s = —1

where Co = (—M / T ) m det (R t)- Similarly, for k =  1 ,2 , we find

M

/'(« ) =  5 3  + r iS ) ' f w
a = -1 i=l

C1P- M +  0 (p -M)
s = —1

(A.2)

/ »
M  M

=  U +  riS)~2f ( s ) +  J 3  - r i( ! +  r is )_ 1/ '( s )
s= -l i=l s= - l j=x

=  C2p - «  +  o(p~u ),
s = —1

(A.3)

where C’i =  MCq, and C2 =  M (M  +  l)Co- Assuming that for all k < n 

/ (fe)(s ) | s = _ 1 =  CkP~M +  o{p~M), we show that for k = n  the same relation is 

held. i.e. / ^ ( s )  | _ =  Cnp~M +  o(p~M). By using the same extension proce

dure used in (A.3), the nth derivative of f ( s )  is expressed as a series of lower order 

derivatives:

M  M

f [n\ s )  =  +  ris)~nf ( s )  +  b/3i 5 3 ri(l  +  ris )~1f {n~1){s),

(A.4)
i—1 i=l
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where/?i, /?n are independent of p and can be obtained from: /?* =  (—l)*(n — l) ! /(n  

In fact, presenting a general-closed form for Ck seems to be difficult; however for 

a small k, Ck is very easy to calculate.

A.3 Demonstration of Convergence Properties of Pro
posed Series and [1]

Due to the many application in statistics and communication theory, the CDF and 

PDF of quadratic forms have received much attention. Various series expansions 

and approximations have been developed [51] and [1]. Most of them except the 

power series in [1] are complicated and hard to use in practice. In order to obtain 

the most dominant term in the power series, we could rely on and adapt the nu

merical techniques presented in [1] for either the Ricean or correlated channel case. 

Although the obtained formulas for CDFs for both cases seem to be much more 

simplified than those we derived in our paper, the radius of convergence for these 

series totally depends on the value of y. We will make this point clear shortly. For 

comparison, we apply our case to the power series in [1 ], but first, we give a quick 

summary of the approach in [1]. Consider a simplified quadratic form 2  =  y Hy,  

where y  is a T  x 1 Gaussian random vector with mean y. The covariance ma

trix R  is assumed to be full rank and to have a factorization R  =  U £ U H where 

£  =  diag{cTji,. . . ,  0 -7’}, and U  is a unitary matrix. Since R  is assumed to be full 

rank (i.e., (5 =  0 c.f. [1]), the CDF function of 2  for a >  0 is given by [1]

(A.5)

where

(A.6 )

k-1

(A.7)
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Moreover, vector b  is defined as b  =  [6 1 , ,  bT]J =  S ^ U ^ y . By carefully set

ting up matrix R  and vector y  from equations (5.34) and (5.36), respectively, we 

can evaluate the CDF for the Ricean fading scenario. This formula is applied to 

the correlated channel as well considering that y  =  0. As mentioned earlier, our 

ultimate aim for deriving the CDF function is to determine the first term in (A.5) 

with respect to p. The exponential term in the right side of (A.6 ) can be rewritten as

J 2  = b ^ s ~2b =  k \ \ W f i  x - > o o
U A 1 T" X

3 = 1  3

(A.8 )

where x = M(p̂ +Vj • Therefore, (A.6 ) reduces to

C0 =  X- Me- K \ m  +  0 (X-W). (A.9)

Notice that factor p~M has appeared in (A.9), and that since the coefficient ck is 

calculated recursively from cQ, . .. ,ck- 1, only the constant term with respect to p is 

taken into account in dk (A.7); i.e.,

dk =  (—l ) fe[tr(E ~fc) -  lfcb"E-(fc+2)b]

=  (—l ) fc[T -  M  +  M (1 +  x)~k -  fcy"R “ (fc+1)y]

=  ( - l ) fc[ r  ~ M  + M (  1 +  x ) - k -  kx(  1 +  x ) - (fc+1)AT||h|||,]

=  ( - 1  )k{T -  M ) + o ( x ~ k) V k >  1, (A. 10)

where (a) results from the following lemma:

Lem ma 1 For the covariance matrix o f (5.34) and positive integer m, we have 

R ~ m =  I r  +  +  x ) - m -  1 )].

Proof A.3.1 Using the binomial expansion, we obtain

m / \

R_m  =  ( I r  “  = 1 t ~  +  £

=  i T + ^ [ ( i - T^ - r - i ] ,  (A.i i)
X I CC

which completes the proof.
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The first term in the power series of CDF with respect to p is stated as

K + T
(A. 12)

where

dk = ( - l ) k( T - M )

k
(A. 13)

r = 0

The formula in (A. 12) is much more simplified than (5.47). Hence, one may ask 

why we did not use this formula in (5.49) to compute the Chernoff bound. Although 

this formula seems to be less complex than (5.4.2), formula (A. 12), on the other 

hand, shows significantly poorer convergence over wider range of a. To clarify the 

difference in the convergence behavior, we compare our obtained CDF formulas 

and the CDF power series in [1] in terms of the mean square error (MSE1) for 

both the correlated and Ricean channel cases. Note that (5.4.2) has been derived 

for the Ricean channel case; however, with a small change, it can be applied to 

the correlation channel case as well. For 180 uniformly spaced data points in the 

interval 2 <  a < 20, Fig. A .l shows that the MSE of F j a )  as a function of the 

number of terms adds up in (5.4.2). As we observe for a particular MSE, (5.4.2) 

needs significantly more terms than formula (5,33), which is actually independent 

of the number of terms. The convergence behavior of (A.12) even becomes worse 

at a higher value of a, such that if we insert it into the PCB expression in (5.38), 

computing Pcb becomes numerically impossible . Because we are required to take 

the integral of Fz{a) over all values of a in (5.38) while the radius of convergence 

of the power series is highly dependent on a. We therefore resort to our formulas 

for calculating Chernoff bounds.

'See [1] for the definition of MSE
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