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Abstract

It is well known that most information of an image is contained in its edges. Therefore

capturing edges in an image is of fundamental importance in image processing. Tensor

product real-valued wavelets only capture edges along the horizontal and vertical direc-

tions. Hence they are only suboptimal for handling high-dimensional problems. In this

thesis we use a framelet-based approach to enhance the performance of tensor product

real-valued wavelets. By employing an additional high-pass filter, we construct finitely

supported complex-valued tight framelet filter banks {a; b1, b2} such that their tensor

products in dimension two offer four directions along 0◦ (horizontal), 45◦, 90◦ (vertical)

and 135◦. We propose a simple and effective algorithm to construct such directional

tight framelet filter banks, and provide a necessary and sufficient condition for their

existence. Finally, several concrete examples of such directional tight framelet filter

banks are given.
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Chapter 1

Background and Motivation

Since the introduction of wavelets by Croisier et. al. [4] in 1976, wavelet-based meth-

ods have been widely used in various fields such as image processing, scientific comput-

ing, differential equations and so on. Benefiting from the multi-resolution structure,

wavelet-based tools for processing 2-dimensional signals, such as images, have been

considerably developed in the last two decades. Several algorithms were developed for

image denoising, feature extraction, segmentation, etc. These processings require us

to capture certain features in the time domain, such as edges in images. In this thesis

we deal with the tight framelet filter bank design problem with particular interest in

directional singularities. To be more specific, we are aiming at the construction of

finitely supported directional tight framelet filter banks through tensor product. In

this chapter, we give a short introduction to wavelet analysis and existing approaches

for the detection of directional singularities. The motivation for our research work is

summarized in the last section.

1.1 The Problem: Directional Singularities

Usually, a digital image is represented by a 2-dimensional array, or to say, a matrix

with its entries indicating the level of brightness. By a contrast of different levels of

brightness, the edges or dots in images are then indicated by a large jump or drop of

coefficients within a certain small area. In the image itself, which is usually referred as

the “time domain”, they are often called singularities since the derivative (difference)

will be quite large within these areas. The shapes of these singularities vary but
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dot−shaped singularity line−shaped singularity

Figure 1: A trivial example of dot-shaped and line-shaped singularities

can be generally classified as dot-shaped singularities and line-shaped singularities, as

shown in Fig 1. Detecting these singularities is of extreme importance. For example,

denoising is usually performed within the relatively smooth areas. If an edge is located,

one naturally wants to preserve it because denoising in this area will make the edge

blurred or smoothed. In medical imaging, the edges show the boundaries of different

organs, and help to find irregular shapes, such as tumors.

Classic 2-D wavelet transform obtained from tensor product of 1-D wavelets handles

point-shape singularities well, because the multi-resolution property will approximate

the local jumps very well on fine scales. However, due to the symmetry property of

wavelet filter banks, it hardly has any directions other than the vertical and horizontal

ones. This makes it difficult to detect directional line-shape singularities in images

by classic wavelets. To remedy the missing directions, mathematicians and engineers

came up with diverse tools. With different characteristics, they are named “X-lets”

uniformly. Let us first review the classic wavelet analysis, the origin of all these “X-lets”

methods.
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1.2 Wavelet Transform-Continuous Setting

1.2.1 Basics in Wavelets

The most classic wavelet transform is based on a wavelet function and a Multi-Resolution

Analysis (MRA) associated with it. With this MRA system any signal in L2(R) can

be represented.

A mother wavelet, or simply a wavelet ψ(t) is a square (Lebesgue-)integrable func-

tion which has a zero mean: ∫

R

ψ(t)dt = 0.

This wavelet function can be dilated with a scale parameter a−1, translated with a

location parameter b as

ψa,b(t) = a−1/2ψ(
t− ab

a
),

which gives a wavelet transform of any L2 function f at the scale a and position b as

follows

Wf(a, b) =

∫

R

f(t)a−1/2ψ(
t− ab

a
)dt.

We are particularly interested in such wavelet functions: when we take a countable

subset {(a, b) : a = 2j, b = k, (j, k) ∈ Z2}, the collection of all ψj,k = 2−j/2ψ( t−2jk
2j

)

generates a basis of L2(R), i.e, the wavelet basis. The existence of such wavelet func-

tions has been proved by Meyer in 1985 [12]. Any function f ∈ L2(R) can be expressed

as a linear combination of such basis functions in L2 sense. As L2(R) is an infinite-

dimensional space, the linear combination can be an infinite sum.

If the basis is an orthonormal one, the linear combination can be directly written

as

f =
∑

j,k∈Z
〈f, ψj,k〉ψj,k (1.2.1)

3



in the L2(R) sense, where the inner product 〈·, ·〉 is that usually defined in L2(R) space:

〈f, g〉 =
∫

R

f(t)g(t)dt, f, g ∈ L2(R).

But when the basis is not orthogonal, the coefficients in the linear combination

are not so easy to compute. We make a concession to ask for a biorthogonal pair

({ψj,k}, {ψ̃j,k}) where {ψj,k} and {ψ̃j,k} are both bases of L2(R) (not necessarily or-

thogonal), and satisfy

〈ψj1,k1, ψ̃j2,k2〉 =





1, when (j1, k1) = (j2, k2);

0, otherwise.
(1.2.2)

Then any f ∈ L2(R) has expressions:

f =
∑

j,k∈Z
〈f, ψ̃j,k〉ψj,k =

∑

j,k∈Z
W̃f(j, k)ψj,k, (1.2.3)

and

f =
∑

j,k∈Z
〈f, ψj,k〉ψ̃j,k =

∑

j,k∈Z
Wf(j, k)ψ̃j,k, (1.2.4)

In particular, if the basis is orthonormal, then ψj,k = ψ̃j,k.

All the expressions above are referred as homogeneous representations of f . The

index j represents different scales (resolutions), and the index k is a shift (translation)

index. Then this wavelet basis usually (but not always) leads to a “multi-resolution

approximation” of a certain function f ∈ L2(R). The partial sum

fj =

j∑

i=−∞

∞∑

k=−∞
〈f, ψi,k〉ψi,k (1.2.5)

is the projection of f onto the subspace Vj := span{ψi,k : i ≤ j − 1, k ∈ Z}. As the

index j goes larger, the space will be expanded larger, too. The partial sum in (1.2.5)

can be interpreted as the approximation of f at the resolution 2j , and Vj can be

4



interpreted as the set of all possible approximations at resolution 2j. Obviously, as j

goes to ∞, fj can be as close to f as we want.

The projection motivates the definition MRA. The concept of MRA was introduced

by S. Mallat in 1989 [12]. MRA gives the approximation of a function to any resolution.

An approximation at a lower resolution is contained in a high resolution, and as the

resolution goes finer and finer, we can approximate the original function as close as we

want. The following definition is adapted from [13].

Definition 1.2.1. A sequence {Vj}j∈Z of closed subspaces of L2(R) is a multi-resolution

analysis if the following 6 properties are satisfied:

(1) f(t) ∈ Vj ⇔ f(t− 2jk) ∈ Vj for any j, k ∈ Z;

(2) Vj+1 ⊆ Vj for any j ∈ Z;

(3) f(t) ∈ Vj ⇔ f(t/2) ∈ Vj for any j ∈ Z;

(4) limj→−∞ Vj = ∩+∞
j=−∞Vj = {0};

(5) limj→+∞ Vj = ∪+∞
j=−∞Vj = L2(R);

(6) ∃ θ such that {θ(t− k)}k∈Z is a Riesz basis of V0.

By this nested sequence, we can project any L2 function onto a space Vj , which leads

to an approximation at a certain resolution or scale. To compute the projection, we

need an orthonormal basis for each Vj . Orthogonalizing the Riesz basis {θ(t− k)}k∈Z
of V0, we get an orthonormal basis for V0. Then an orthogonal basis of each Vj is

constructed by dilating and translating a single function φ(t) ∈ V0 in [13]. The family

{
φj,k(t) = 2−j/2φ

(
t− 2jk

2j

)}

k∈Z
(1.2.6)

forms an orthonormal basis of Vj for any j ∈ Z. Larger j is corresponding to smaller

scaling factor 2−j in its basis function φj,k = 2−j/2φ(2−jt − k), and thus represents a

finer scale. Vice versa, smaller j represents a coarser scale.

Now, the difference between two approximations of f at the resolution 2j+1 and 2j

5



is the orthogonal complement of Vj in Vj+1:

Wj = Vj+1 ⊖ Vj , (1.2.7)

hence we have

Vj ⊕Wj = Vj+1, (1.2.8)

L2(R) = . . .⊕W−j ⊕ . . .⊕W0 ⊕ . . .⊕Wj ⊕ . . . (1.2.9)

= V0 ⊕W0 ⊕ . . .⊕Wj ⊕ . . . . (1.2.10)

We can actually find a function ψ(t) ∈ W0 such that

{
ψj,k(t) = 2−j/2ψ

(
t− 2jk

2j

)}

k∈Z
(1.2.11)

is an orthonormal basis ofWj for any j ∈ Z [13]. So MRA can yield a wavelet function.

The scaling function, which sometimes is also referred as father wavelet. From both

mother and father wavelet, we get the decomposition of L2(R):

L2(R) = VJ ⊕WJ ⊕WJ+1 ⊕ · · · ⊕WJ+j ⊕ · · · (1.2.12)

= span{φJ,k}k∈Z ⊕ span{ψj,k}j≥J,k∈Z. (1.2.13)

Usually we take J = 0, then any signal f(t) with finite energy (f ∈ L2(R)) can be

written in L2(R) as

f(t) =
∑

k∈Z
〈f, φ0,k〉φ0,k(t) +

∑

j≥0,n∈Z
〈f, ψj,n〉ψj,n(t). (1.2.14)

It is often called the nonhomogeneous wavelet representation of f(t). The first portion
∑

k∈Z〈f, φ0,k〉φ0,k(t) is the projection of f(t) onto V0, which is the part in the coarsest

scale. Vice versa, the second part
∑

j≥0,n〈f, ψj,n〉ψj,n(t) is the projection on to ⊕∞
j=1Wj ,

6



which is the finer scales. So that we can see the low-pass nature of the scaling function

(father wavelet), and the high-pass nature of the wavelet function (mother wavelet).

The wavelet function is also called an MRA wavelet associated with φ. Most but

not all wavelet functions are associated with the MRA structure. (J.L. Journé first

gave a wavelet example that has no associated MRA [11].) By the homogeneous and

nonhomogeneous representation, we further denote the set of all the basis vectors as

affine systems in L2(R). For every integer J ∈ Z, a (nonhomogeneous) affine system

ASJ(φ;ψ) is defined to be

ASJ(φ;ψ) := {φJ ;k : k ∈ Z} ∪ {ψj,k : j ≥ J, k ∈ Z}, (1.2.15)

and the homogeneous affine system AS(ψ) is

AS(ψ) := {ψj;k : j, k ∈ Z}. (1.2.16)

In higher dimensions (usually 2 dimensions, which is the typical case for image process-

ing), we need to generalize the wavelet theory to L2(R
2). We generalize the wavelet to

2-D by tensor product. The tensor product of two 1-D functions f, g is a 2-D function

(f ⊗ g)(t1, t2) = f(t1)g(t2). (1.2.17)

There are two routes to construct 2-D wavelets by tensor product [14]. We can either

construct a 2-D wavelet basis from 1-D wavelets by choosing multi-resolution approxi-

mations given by tensor products, or start with an arbitrary 2-D MRA and apply the

same analogue as we did in 1-D case. From the 1-D scaling function φ and wavelet

function ψ, we have in total 4 combinations: φ ⊗ φ, φ ⊗ ψ, ψ ⊗ φ and ψ ⊗ ψ. Usu-

ally the space generated by the translations and dilations of these four functions are

7



respectively denoted as V0 ⊗ V0, W
0,1, W 1,0, W 1,1, and it is clear that

V1 ⊗ V1 = V0 ⊗ V0 ⊕W 0,1 ⊕W 1,0 ⊕W 1,1. (1.2.18)

Utilizing the wavelet coefficients, namely, processing in the frequency domain, we

can conduct various signal processings on different scales in 2-D. We will now discuss

the advantages of wavelet transform.

1.2.2 Localization of Wavelet Transform

As mentioned in the previous section, a singularity in an image is a big jump or drop

of coefficients’ values within a relatively small area. To obtain wavelet coefficients

indicating such singularities requires the wavelet function to be localized with respect

to the shape of the singularity.

Fortunately, the wavelet transform is a localized transform. It enables us to do

local image processing. By the 2 parameters j and k indicating the scale and loca-

tion respectively, we have 2 degrees of freedoms which make it possible to give specific

processing to different scales, and different segments of the image. When conducting

inner product with compactly supported wavelets, a large increment in the time do-

main results in a large coefficient in the wavelet domain, and any singularity can be

approximated, as long as we reach a sufficiently fine scale. This is one of the essential

advantages of wavelets when compared with the more classic Fourier transform. It is

difficult to use Fourier transform to detect the location of any singularities.

If it is a dot-shaped singularity, a compactly supported wavelet always achieves

this by dilation and translation to match the position of the singularity. But when it

comes to line-shaped singularities, the strategy of tensor product becomes incapable

to tackle with them. Let us take a look at a classical example of wavelet system, the

8



Haar wavelet:

φ(t) =





1, for t ∈ [0, 1];

0, otherwise;
(1.2.19)

ψ(t) =





1, for t ∈ [0, 1/2);

−1, for t ∈ [1/2, 1);

0, otherwise.

(1.2.20)

After tensor product, on the unit square [0, 1)× [0, 1),

φ⊗ φ(t1, t2) = 1; (1.2.21)

φ⊗ ψ(t1, t2) =





1, for t2 ∈ [0, 1/2);

−1, for t2 ∈ [1/2, 1);
(1.2.22)

ψ ⊗ ψ(t1, t2) =





1, for (t1, t2) ∈ [0, 1/2)2 ∪ [1/2, 1)2;

−1, otherwise;
(1.2.23)

which has only block-shaped singularities. It is difficult to detect line-shaped singular-

ities from the wavelet transform.

But line-shaped singularities have a special property: after Fourier transform, they

are somewhat preserved in the frequency domain, just with a different direction. We

give a simple example in Fig 2. The image on the left is the original image (time

domain) with a diagonal singularity. Its Fourier transform (frequency domain) presents

also a diagonal singularity, but with a rotation of π/2.

This property indicates that, if we want to catch the line-shaped singularities as

well as we can, we must find a wavelet function which has good localization in both

the time and frequency domain. This is the motivation for most research work and

upcoming methods for directional image processing. It also inspires a natural idea to

make a frequency design: when we focus on the directionality in the frequency domain,

the filter bank still preserves the directionality when we get back to the time domain.
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Figure 2: An example of directional singularity and its Fourier transform
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Curvelets is one of the most successful frequency-design methods, which we are going

to talk about in the coming section.

1.3 Curvelets Transform

Among all the “X-lets” methods, the curvelets method is a transform which can be

performed in any direction, and thus makes a good extraction of directional singu-

larities. Based on multi-scale ridgelets and a spatial bandpass filtering operation to

isolate different scales, curvelets occur at all scales, locations, and directions. The 2-D

continuous ridgelets are defined as

ψa,b,θ(t) = a−1/2ψ((t1 cos θ + t2 sin θ − b)/a).

This function is constant along lines t1cosθ + t2 sin θ = const. And it has 3 pa-

rameters a, b, θ corresponding to the scale, location and direction(angle) respectively,

which makes the directional processing possible. The first-generation curvelets trans-

form was introduced by Starck et al. in 2000 [16]. Its limitation is that the geometry of

the ridgelet is unclear itself, because they are not true ridge functions in digital images.

Therefore Candés and Donoho proposed a simpler version based on the frequency parti-

tion techniques, which is usually referred to as the second-generation curvelet transform

[1, 2]. It has been shown to be very effective in image processing [10].

The curvelet construction is based on polar coordinates in the frequency domain.

We partition the frequency domain into circles centered at the origin, and then they

are cut into wedges as shown in Fig 3. With frequency functions almost disjointly

supported on each wedges, theoretically we can get as many orientations as we want.

Using the ansatz

φ̂j,0,0(r, ω) := 2−3j/4W (2−jr)ṼNj
(ω), r ≥ 0, ω ∈ [0, 2π), j ∈ N0,

11



Figure 3: Frequency partition for curvelet transform

where W and ṼNj
are suitable window functions for the radius and angle respectively,

we get the “dilated basic curvelets”. This is the fundamental element in the curvelet

transform. If we partition the whole frequency plane into circular rings, and continue

to partition a particular ring with a number of wedges, we can use a tiling method

to cover the frequency domain. We denote the number of wedges in the circular ring

at scale 2j as Nj . Then under polar coordinates, we just need to construct curvelet

elements near the wedges with compact support inside [−2π/Nj , 2π/Nj]. By rotations,

it can cover the whole ring of a certain scale.

This polar coordinate system, however, is not possible to implement exactly in

time-domain. Usually an image is in a rectangle or square domain, with discrete

points/pixels, and can be treated as a function defined on a bounded integer grid in

R2. It is natural to consider the signal in Cartesian coordinates, by using Cartesian

arrays. Based on concentric squares and shears,one makes a discrete curvelet transform.

The wedges are replaced with trapezoids. The ansatz is correspondingly

ˆ̃
φj,0,0 := 2−3j/4W (2−jξ1)V

(
2⌊j/2⌋ξ2
ξ1

)
,

which plays the same role as the dilated basic curvelets in continuous setting. Then
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the curvelet transform is given as

c̃j,k,l(f) = 〈f, φ̃j,k,l〉 =
∫

R2

f̂(Sθj,lξ)
ˆ̃φj,0,0(ξ)e

i〈kj ,ξ〉dξ,

with kj = (k12
−j, k22

−⌊j/2⌋)T , (k1, k2)T ∈ Z2. And Sθj,l is the shear matrix

Sθj,l =


 1 0

− tan(θ) 1


 .

This is the forward discrete curvelet transform with a computational cost ofO(N2 logN)

for an N ×N image.

Curvlets method is a very natural and nice attempt to obtain directionality. It can

give as many directions as we want, and is very successful in image processing. Espe-

cially the second-generation curvelets, since proposed in 2004, have been extensively

used in denoising, classification, and feature extraction. However, there are several ma-

jor drawbacks which make it imperfect: the first one is the design in continuous setting

makes it difficult to implement with practical discrete signals. In practice, we can only

perform discrete Fourier transform on a discrete image. The frequency domain is then

still discrete. But the segmentation designed in curvelets can result in a non-integer

index, which makes it difficult to implement. The second one is the high redundancy

for discrete curvelet transform. Although the theory about it has been very successful,

discrete curvelet transform is not appropriate for image compression. As mentioned

above, the computational cost is O(N2 logN) to perform the forward curvelet trans-

form. Compared with common wavelet transform with finite support, (computational

complexity O(N ×N)) for an N ×N image, this is rather low efficiency. Curvelets are

also restricted to cope with only C2-singularities. When the singularity is beyond C2,

it will be difficult to extract the feature by curvelets.

From curvelets, we can see that a continuous design is not optimal for signal process-

ing. We need an exact and efficient transform on discrete signals (images) to conduct
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time-frequency analysis. In this setting,the Discrete Wavelet Transform(DWT) was

introduced. We will not go into the detail of this subject here, as decomposition and

reconstruction through filter banks are much more commonly used. The concept of

filter banks was introduced by Croisier et. al. [6] in 1976. Through a collection of

filters consisted of just number arrays and the discrete convolution operation, a filter

bank decomposes a signal f [n] into two signals of half its size by a filtering and subsam-

pling procedure. It provides a convenient, fast approach to decompose and reconstruct

discrete signals. Closely related to continuous wavelets, they asymptotically approach

continuous functions. This makes it possible to obtain stability of the algorithm, and

enable us to give the multi-scale analysis in discrete settings. Details are given in the

next section.

1.4 Filter Bank Perspective-Discrete Setting

1.4.1 Decomposition and Reconstruction

When we deal with a discrete sequence {v(n)}n∈Z instead of a continuous function, the

decomposition of this sequence will be different from the decomposition of functions.

Using a dyadic decomposition, we need to map the sequence into a coarse half-resolution

approximation. This can be done by filtering with a halfband low-pass filter followed

by a downsampling [17].

Let us denote the set of all complex-valued sequences on the integer grid as l(Z),

then in wavelet analysis or signal processing, a filter is a sequence {u(k)}k∈Z ∈ l(Z).

It can be finite or infinite. If the support of the filter, defined as fsupp(u) := {k ∈ Z :

u(k) 6= 0} is a finite set, the filter is said to be finitely or compactly supported.

In MRA, the integer translations of the scaling function φ generates V0, and by

14



definition, V0 ⊆ V1 = span{φ(2t− k)}k∈Z, so we can see that

φ(t) = 2
∑

k∈Z
a(k)φ(2t− k) in L2(R), (1.4.1)

where a ∈ l(Z) is a sequence. (1.4.1) called the refinement equation, which is one of

the most important topics in MRA. Any scaling function should satisfy this equation.

By this equation, we can define a low-pass filter sequence {a(k)}k∈Z.
Cavaretta et al. showed in [3] that for a normalized mask a such that â(0) = 1,

there is a unique solution φ up to a multiplicative factor.

Similarly, by W0 ⊆ V1 = span{φ(2t− k)}k∈Z, we can express ψ ∈ W0 as

ψ(t) = 2
∑

k∈Z
b(k)φ(2t− k) (1.4.2)

and b is the high-pass filter for ψ. The two filters a and b together constitute a wavelet

filter bank. We will discuss further about relation between the filters and the scaling

and wavelet functions.

Now associated with the filter, we need to decompose the signal for processing and

then reconstruct it. We define the subdivision and transition operator Su and Tu based

on the filter u to process a signal v ∈ l(Z):

[Suv](n) := 2
∑

k∈Z
v(k)u(n− 2k), n ∈ Z, (1.4.3)

[Tuv](n) := 2
∑

k∈Z
v(k)u(k − 2n), n ∈ Z. (1.4.4)

It is quite similar to the convolution widely used in signal processing:

[u ∗ v](n) :=
∑

k∈Z
u(k)v(n− k), n ∈ Z. (1.4.5)

But with the dyadic dilation factor 2, the subdivision operator makes the support
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extended, whereas the transition operator will shorten the support of the resulted se-

quence, corresponding to the reconstruction and decomposition process. We want to

write these 2 operators using the notation of convolution, so the upsampling operator

↑ d and downsampling operator ↓ d are needed to account for the factor 2, and an-

other filter to account for the complex conjugate. The upsampling operator ↑ d and

downsampling operator ↓ d are

v ↑ d(n) :=





v(n/d), when d divides n;

0, otherwise;
(1.4.6)

v ↓ d(n) := v(dn), (1.4.7)

and for a filter u, its conjugate u⋆ is defined as

u⋆(k) = u(−k). (1.4.8)

Then, by these notations we can conveniently write the subdivision and transition

operator as

Suv = 2u ∗ (v ↑ 2) and Tuv = 2(u⋆ ∗ v) ↓ 2. (1.4.9)

For time-frequency analysis, we shall define the Fourier transform of a filter u(k),

at least formally:

û(ξ) :=
∑

k∈Z
u(k)e−ikξ. (1.4.10)

Here i is the imaginary unit satisfying i2 = −1. The Fourier transform of a filter is a

2π-periodic trigonometric polynomial. From this formal definition, we can equivalently

write all the operations above in the frequency domain as

û ∗ v(ξ) = û(ξ)v̂(ξ); (1.4.11)

û⋆(ξ) = û(ξ); (1.4.12)
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v̂ ↑ d(ξ) = v̂(dξ); (1.4.13)

v̂ ↓ d(ξ) = d−1

[
v̂

(
ξ

d

)
+ v̂

(
ξ + 2π

d

)
+ . . .+ v̂

(
ξ + 2π(d− 1)

d

)]
. (1.4.14)

From (1.4.6) and (1.4.7) we can see that, the downsampling operator extracts a

sub-sequence of the signal, whereas the upsampling operator is interpolatory. So the

transition operator embedded with a downsampling operator can be used as a de-

composition, with different filter u’s, and the corresponding “Tu” operators cut the

signal into different subbands, hence make a decomposition operator. Then utilizing

the property, the decomposition operator with respect to a wavelet filter bank {a; b}
is defined as

Wv :=

√
2

2
(Tav, Tbv) =: (ω0, ω1), v ∈ l(Z). (1.4.15)

Note that W is a mapping from l(Z) to l(Z)2. The reconstruction operator V is dually

defined from l(Z)2 to l(Z) by usage of the subdivision operator with a upsampling:

V(ω0, ω1) :=

√
2

2

∑

l=0,1

Saωl, ω0, ω1 ∈ l(Z). (1.4.16)

The coefficient
√
2
2

is for the preservation of energy.

For the convenient implementation of these operations, in practice, we are partic-

ularly interested of those finitely supported filters

u = {u(k)}k∈Z : Z → C

such that {k ∈ Z : u(k) 6= 0} is finite set, which make the subdivision and transition

operator well defined and easy to compute.

Corresponding to the orthogonal wavelet basis in (1.2.1), where we compute the

wavelet coefficients and express the function using the same basis, the filter banks for

decomposition and reconstruction are the same. But they may be different if we use a

biorthogonal wavelet basis as in (1.2.3). Whichever the case, a natural desire is that
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we want a signal to be identically the same after a decomposition and reconstruction

procedure. If we use {ã, b̃} for decomposition and {a, b} for reconstruction, the filter

banks are said to have the perfect reconstruction (PR) property if for all signals v ∈
l(Z),

v = VW̃v =
1

2

1∑

l=0

Sul
Tũl
v or WṼ = Id(l(Z)). (1.4.17)

where u0 stands for the low-pass filter a, and u1 stands for the high-pass filter b, “Id”

is the identity map on l(Z). This pair of filter banks {ã, b̃} and {a, b}, is called a pair

of biorthogonal wavelet filter bank. In particular, if a = ã, b = b̃, the filter bank is

called an orthogonal wavelet filter bank.

In the frequency domain, (1.4.17) can be written as

v̂(ξ) =
1

2

2∑

l=1

[Ŝul
Tũl
v] =

2∑

l=1

T̂ũl
v(2ξ)ûl(ξ) =

2∑

l=1

v̂(ξ) ̂̃ul(ξ)ûl(ξ)+
2∑

l=1

v̂(ξ+π)̂̃ul(ξ + π)ûl(ξ).

(1.4.18)

Comparing the two sides, it is equivalent to

2∑

l=1

̂̃ul(ξ)ûl(ξ) = 1, (1.4.19)

2∑

l=1

̂̃ul(ξ + π)ûl(ξ) = 0. (1.4.20)

We can also write it in a matrix form




̂̃a(ξ) ̂̃b(ξ)
̂̃a(ξ + π)

̂̃
b(ξ + π)




 â(ξ) b̂(ξ)

â(ξ + π) b̂(ξ + π)



⋆

= I2. (1.4.21)

whereM⋆ is the Hermite conjugate of the matrixM , and I2 is the 2×2 identity matrix.

With these 2 filter banks, one can define a scheme of decomposition and reconstruc-

tion through the subdivision and transition operators. For a certain signal v, after the

1-level decomposition, the signal is filtered into 2 bands (ω1,0, ω1,1) by the low-pass
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input
√
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↓ 2
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processing

↑ 2
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√
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+ output

Figure 4: Diagram for 1-level wavelet transform

and high-pass filter respectively. Then after processing in different bands, the recon-

struction follows dually: using the transition operator combining (ωN,0, ωN,1) to get

ωN−1,0, then get ωN−2,0 with ωN−1,1, and finally reconstructs to the original level v0.

The procedure can be conveniently understood in Fig 4 adapted from [6].

For the generalization to 2 dimensions, we still utilize the tensor product. The

tensor products of filters are defined as

a⊗ a(k, l) = A1(k, l) = a(k)a(l); a⊗ b(k, l) = A2(k, l) = a(k)b(l). (1.4.22)

From the 2-D tensor product of scaling and wavelet functions, we can see that

φ(t)⊗ φ(s) =
∑

k∈Z
a(k)φ(2t− k)

∑

l∈Z
a(l)φ(2s− l) (1.4.23)

=
∑

(k,l)∈Z2

a(k)a(l)φ(2t− k)φ(2s− l) (1.4.24)

=
∑

(k,l)∈Z2

[a⊗ a](k, l)[φ⊗ φ](2(t, s)− (k, l)). (1.4.25)

So the tensor products of functions also satisfy the refinement equations.

The subdivision and transition operator in 2-D is similarly defined, which can be

implemented either row by row or column by column.
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1.4.2 A Summary of Traditional Wavelet Method

As mentioned before, traditional wavelets only do well in detecting point-shape singu-

larities. Classic wavelet filters are symmetric in both the time and frequency domains,

i.e, they have symmetric refinable functions as well as symmetric fourier transforms.

The 2-D tensor products of these functions are symmetric in 2 dimensions. If we denote

the refinable function of the high-pass filter as ψ, and of the low-pass as φ, then in the

time domain, the separable implementation of the 2-D DWT is characterized by four

wavelets:

φ1(t1, t2) = φ(t1)φ(t2), LL wavelet, (1.4.26)

ψ2(t1, t2) = ψ(t1)φ(t2), HL wavelet, (1.4.27)

ψ3(t1, t2) = φ(t1)ψ(t2), LH wavelet, (1.4.28)

ψ4(t1, t2) = ψ(t1)ψ(t2), HH wavelet. (1.4.29)

Any real function f(t), t ∈ R always has a 2-sided spectrum , that is,

|f̂(ξ)| = |f̂(−ξ)|.

Due to the fact, any 2-D tensor product is symmetric in the four quadrants. Thus they

only provide two directions-the horizontal and vertical, to help detect the edges in the

images. But edges occur in all directions. It is not ideal to restrict our processing only

in these two basic directions.

The favorable property of wavelets is that it has a filter bank implementation. This

makes it attractive when dealing with discrete signals in practice. This motivates

the development of many other wavelet-based image processing methods, utilizing a

filter bank in the time domain. Dual tree complex wavelet transform is an excellent

example. It is easy to implement, but also with orientations in both the time and

frequency domain.
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1.4.3 Dual Tree Complex Wavelet Transform

Traditional wavelets are fast and convenient enough to implement, but it is not possible

to perform oriental processing with them. Curvelets can cope with any orientation,

nonetheless are highly redundant for practical applications. First introduced by Kings-

bury et al. in 1998 [9], the Dual-tree Complex Wavelet Transform (dual tree CWT)

is a smart compromise approach which achieved great success. It contains several

directions to perform directional transform, yet is still computationally economic.

The dual tree complex wavelet transform starts with a tree structure with two

discrete wavelet decomposition and reconstruction processes. The two branches are

respectively independent wavelet decomposition with two different wavelet filter banks.

So the matrix of dual tree complex wavelet transform is given as

F =


 Fh

Fg


 ,

where Fh and Fg are the DWT matrices.

For a real signal x, we denote wh := Fhx, wg := Fgx, and define the complex

coefficients of dual tree CWT as 1√
2
(wh + iwg). If we want the corresponding wavelet

function (denoting as ψ(x) = ψh(x) + iψg(x)) to be analytic, we need

ψg(x) = Hψh(x),

where H is the Hilbert transform [15]. This relation may hold only approximately for

practice.

Based on 1-D dual tree CWT , by tensor product we obtain 2-D dual tree CWT

which produces oriented wavelets. Consider the 2-D wavelet ψ(x1, x2) = ψ(x1)ψ(x2),

where ψ is a complex (approximately analytic) wavelet just given in the form ψ(x) =
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ψh(x) + iψg(x). We obtain

ψ1(x1, x2) = [ψh(x1) + iψg(x1)][ψh(x1) + iψg(x2)].

The spectrum of complex analytic wavelet is supported on only one side, hence the

tensor product can be supported in one quadrant of the frequency plane. And the

real/complex part of the complex wavelet above has directionality at +45 degree. In

the time domain, it is +135/− 45 degree. The other 2-D complex wavelet is given as

ψ1(x1, x2) = [ψh(x1) + iψg(x1)][ψh(x1) + iψg(x2)].

This one has a −45 degree directionality in the frequency domain and a +45 degree

directionality in the time domain. In total, the combination of LL, LH, HL, HH will

result in six directions.

Dual tree complex wavelet transform has some nice properties, too, such as near

shift-invariance, near rotation invariance. Its advantages to select directions make it

very powerful for image processing, like image rotation, estimating geometric struc-

tures, and denoising, etc. Its computational cost, is only double of traditional DWT,

which is much less than curvelets, shearlets. Since both branches of the dual tree

structure are just traditional wavelet transform, it benefits from the vast resources of

traditional wavelets in both theory and computation [15].

There is still a problem for dual tree CWT. The 1-sided support of the wavelets in

the frequency domain makes it impossible to have any vertical or horizontal directions.

But these are the two most natural directions for images. It is also restricted to 2

branches. This lack of flexibility makes it difficult to have more directions.
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1.5 Framelet Approach

1.5.1 Framelets and Affine Systems in L2(R)

In Section 1.2, for an integer J ∈ Z, we define the nonhomogeneous and homogeneous

affine systems with respect to the scaling function φ and wavelet function ψ as

ASJ(φ;ψ) := {ψJ ;k : k ∈ Z} ∪ {ψj,k : j ≥ J, k ∈ Z}, (1.5.1)

and the homogeneous affine system AS(φ;ψ) is

AS(ψ) := {ψj;k : j, k ∈ Z}. (1.5.2)

If we generalize the generator(s) of the affine systems from two functions φ and ψ to

two subsets (allow multiplicity) Φ and Ψ of L2(R), we can define the affine systems as

below:

ASJ(Φ;Ψ) := {φJ ;k : k ∈ Z, φ ∈ Φ} ∪ {ψj,k : j ≥ J, k ∈ Z, ψ ∈ Ψ}, (1.5.3)

AS(Ψ) := {ψj;k : j, k ∈ Z, ψ ∈ Ψ}. (1.5.4)

When AS0(Φ;Ψ) is a frame for L2(R) we say that {Φ;Ψ} is a framelet in L2(R).

If another affine system AS0(Φ̃; Ψ̃) is the dual frame of it, the pair ({Φ;Ψ}; {Φ̃; Ψ̃})
is called a dual framelet in L2(R). In particular, if it is a (normalized) tight frame,

meaning its dual frame is just itself, {Φ;Ψ} is a tight framelet. More explicitly, {Φ;Ψ}
is a tight framelet in L2(R) if

‖f‖2L2(R) =
∑

h∈AS(Φ;Ψ)

|〈f, h〉|2. (1.5.5)
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1.5.2 Framelet Filter Banks and Discrete Framelet Transform

(DFrT)

For a framelet {Φ;Ψ} if we consider in the frequency domain,

Φ̂ = {φ̂ : φ ∈ Φ}, Ψ̂ = {ψ̂ : ψ ∈ Ψ}, (1.5.6)

then ̂ASJ({Φ;Ψ}) is called a frequency-based affine system in L2(R), and ({Φ̂; Ψ̂}) is
a frequency-based framelet.

Note the refinement equations (1.4.1) and (1.4.2) can be written equivalently in the

frequency domain as

φ̂(ξ) = â(ξ/2)φ̂(ξ/2); (1.5.7)

ψ̂(ξ) = b̂(ξ/2)φ̂(ξ/2). (1.5.8)

We generalize these refinement relation to framelets. For convenience, we shall consider

Φ to be a singleton {φ} and Ψ to be a finite set {ψ1, . . . , ψs} for some positive integer s.

Then the filter bank associated to this framelet can be similarly defined. It is written

as {a; b1, . . . , bs}, where a, b1, . . . , bs are sequences in l2(Z) with the Fourier transform

defined in (1.4.10) satisfying (1.5.7) and

ψ̂l(ξ) = b̂l(ξ/2)φ̂(ξ/2), for l = 1, . . . , s. (1.5.9)

There can be a dual framelet filter bank {ã; b̃1, . . . , b̃s} satisfying refinement equa-

tions for the dual frame {Φ̃; Ψ̃}. The two filter banks are called a pair of dual framelet

filter banks.

Similar to wavelet filter banks, we use this filter bank to find a representation of
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Figure 5: Diagram for 1-level discrete framelet transform

discrete signals. The decomposition and reconstruction procedure and perfect recon-

struction property are very much like defined above in (1.4.15) and (1.4.16):

Wv :=

√
2

2
(Tu0v, Tu1v, ..., Tus

v) =: (ω0, ω1, ..., ωs), v ∈ l(Z); (1.5.10)

V(ω0, ω1, ..., ωs) :=

√
2

2

s∑

l=1

Tul
ωl. (1.5.11)

This is called discrete framelet transform (DFrT). It can be regarded as increasing the

number of high-pass filters in a wavelet filter bank. The diagram in Fig 5 (adapted

from [6]) shows the procedure.

The perfect reconstruction(PR) property is desirable for the DFrT, too. We say

the filter bank ({u0, ..., us},
{ũ0, ..., ũs}) has the PR property if for all signals v ∈ l(Z),

v = VWv =
1

2

s∑

l=0

Sul
Tũl
v. (1.5.12)
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The PR condition can be equivalently expressed in the matrix form




̂̃a(ξ) ̂̃b1(ξ) . . . ̂̃bs(ξ)
̂̃a(ξ + π)

̂̃
b1(ξ + π) . . .

̂̃
bs(ξ + π)




 â(ξ) b̂1(ξ) . . . b̂s(ξ)

â(ξ + π) b̂1(ξ + π) . . . b̂s(ξ + π)



⋆

= I2.

(1.5.13)

Note that a dual framelet filter bank with s = 1 is a biorthogonal wavelet filter

bank, and a tight framelet filter bank with s = 1 is an orthogonal wavelet filter bank.

If s > 1, the framelet is actually redundant for representing a signal: the length of

each subsignal is half of the original one due to the dyadic downsampling, but we have

s+1 > 2 subsignals, whose sum exceeds the size of the input. This redundancy makes

DFrT not appropriate for data compression, however, it provides possibility to obtain

more features by designing different high-pass filters.

For the 2-D case (image processing), we still use the trick of tensor product. More

details about the properties of the filter bank’s tensor product are given in Chapter 3.

Provided that the refinable functions of the high-pass filters are concentrated on a

single side, we can get a directional refinable function in 2-D by tensor product. We

deal with the tight framelet filter banks with 2 generators, that is, 2 high-pass filters.

Inheriting the notations as in (1.4.26) to (1.4.29), we denote the tensor products of

filters as L-L, L-H1, L-H2, H1-L, H1-H1, H1-H2, H2-L, H2-H1, H2-H2. Provided that

the 1-D filter has an asymmetric refinable function, the tensor products will obtain

orientations. It can be shown that tight framelet filter banks with all real coefficients

are always symmetric (i.e., 2-sided) in the frequency domain. So we are interested in

complex-valued filter banks. By the tensor product of complex values, the 2-D filter

bank can have orientations in both time and frequency domain when we take the real

or imaginary part. In 2-D the real and imaginary parts of L-H1, L-H2, H1-L, H1-H1,

H1-H2, H2-L, H2-H1, H2-H2 will have 4 directions in total: horizontal, vertical, +45◦,

−45◦.
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1.5.3 Vanishing Moments and Sum Rules of Filters

Besides the PR condition, vanishing moment or sum rule of a filter is also desirable

property. They are relevant to the sparse representation of a signal after DFrT. Nat-

urally, when a smooth signal is input, we want most of the framelet coefficients to

be zero so that we can use only a few coefficients to represent the signal. It actually

requires the smoothness of the filter in the frequency domain. Any analytic functions

can be approximated by polynomials (Taylor expansion) so we use polynomials as a

model for smooth signals. But polynomials are defined in the continuous setting. How

can a discrete signal be described as a polynomial? Notice that sampling a polynomial

p on integers will give us a sequence {pk = p(k)}k∈Z, conversely, given such a sequence,

a polynomial p is uniquely determined. So we use the sequence, which is just sampling

the polynomial on integers, to represent the smooth polynomial signal.

Denote the set of all polynomial sequences with highest degree no greater than p as

Πp, and the set of all polynomials sequences as Π . A filter u (or its Fourier transform

û) is said to have m vanishing moments if û(ξ) = (1− e−iξ)mQ(ξ) for some 2π-periodic

trigonometric polynomial Q(ξ). We denote the vanishing moment of a filter u as vm(u).

Obviously this is a property for high-pass filters as û(0) = 0. For low-pass filters we

have a corresponding concept, sum rule, which is defined as û(ξ) = (1+ e−iξ)mQ(ξ) for

some 2π−periodic trigonometric polynomial Q(ξ). The sum rule of a filter u is denoted

as sr(u).

With these two properties, a framelet filter bank has a sparse representation for

smooth input signals, thus makes the processing for smooth signals quite convenient

and fast. Moreover, this gives information of the smoothness of input in coefficients.

Back to our ultimate aim, the singularities can be approximated by only high order

polynomials thus made the coefficients large at the corresponding area. This is very

important for directional image processing.

DFrT is a filter bank-based method. It is easy and economic to implement, with

compactly supported filters the time complexity to perform a 1-level DFrT is O(N).
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When it has certain vanishing moments and sum rules, coefficients reflect the existence

of singularities with large framelet coefficients. Besides the 4 directions given above,

it is also flexible to extend, just by increasing the number of high-pass filters, we can

theoretically obtain more combinations of tensor products and of course provide more

directions. All of these are the reasons that we choose this approach.

1.6 Motivation

To capture directional singularities, we need a filter bank which is directional in the

time domain. Complex-valued 2-D filter banks with 4 directions obtained by tensor

product have been initially introduced in [7]. However the construction is done in

the frequency domain, and the tight framelet filter banks obtained there have infinite

supports. To minimized the computational cost, we want the transform associated

with this filter bank to be easy to perform. Usually, this means a compactly supported

filter bank. Therefore, the major task of this thesis is to construct finitely supported

complex tight framelet filter banks with 4 directions in 2-D.

An image with a directional singularity in the time domain has a similar directional

singularity in the frequency domain, just with an angle of π/2. Fig 2 shows the relation

between the directional singularities. So we base our construction on a frequency

separation. We want to find 1-D filters that concentrate on one side. Then the tensor

product is concentrated in one certain quadrant in the frequency domain, so when we

go back to the time domain, they have diagonal directions. The low-pass nature of

the mask makes it peak at the origin in the frequency domain, and thus it is difficult

to have a frequency separation. So we turn to working on the high-pass filters. To

be more specific, we are given a symmetric low-pass filter, how can we construct 2

high-pass filters so that they form a tight framelet filter bank, and the tensor products

of these 2 high-pass filters have directions in 2-D.

In Chapter 2, we give a quite trivial proof to show that, a filter bank with real
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coefficients is always symmetric. There is no possibility of having any directionality

in 2-D using the tensor product. So the problem is therefore about complex-valued

framelet filter banks.

We are focused to study compactly supported tight framelet filter banks with 2

generators, i.e., 2 high-pass filters with compact support in the time domain. This

makes us benefit from a series of existing theoretical results of construction. On taking

the tensor product, we can obtain 4 directions in total. These four directions are much

more natural than the directions given by Dual-Tree CWT. And the work flow follows

the tree-structure of framelet transforms. With the compact support of the filters in

the time domain, we can get rid of heavy computational burden.

We shall first theoretically solve this problem in Chapter 2, where a necessary

and sufficient condition for the existence of such tight framelet filter banks is given.

Since the nonuniqueness of these filter banks, we derive its optimization explicitly.

In Chapter 3, we talk about the relation between the wavelet function and discrete

systems in 2-D, as it is the foundation for the search of an optimized filter bank.

Chapter 4 follows with the specific algorithm and several interesting examples with

clear directionality. At last, concluding remarks will be given in Chapter 5.
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Chapter 2

Existence and Optimization of

Directional Framelet Filter Banks

2.1 Background

As mentioned in Chapter 1, to obtain directions in the time domain, we focus on a

related aspect, the orientations in the frequency domain. We wish to construct such a

2-D filter bank: it is a tensor product of a 1-D filter bank {a; b1, b2} with itself, and has

more directional features other than the vertical and horizontal ones. This requires

the 1-D filter bank {a; b1, b2} to be asymmetric, or with concentration (unbalance)

in frequency domain. In terms of the 2π-periodic function b̂l(ξ), we are aiming to

make the energy on one side
∫ π

0
|̂bl(ξ)|2dξ or

∫ 0

−π
|̂bl(ξ)|2dξ maximized (or equivalently,

minimized).

Considering the magnitude of the Fourier transform, it can be easily shown that a

filter u with real coefficients will always have a 2-sided spectrum, or to be symmetric

in the frequency domain. That is, |û(ξ)| = |û(−ξ)| for any ξ ∈ R:

|û(ξ)| = |
∑

k∈Z
u(k)e−ikξ| = |

∑

k∈Z
u(k)e−ikξ| (2.1.1)

= |
∑

u(k)eikξ| = |
∑

u(k)eikξ| (2.1.2)

= |û(−ξ)|. (2.1.3)

This filter is extended to 2 dimensions by tensor product. But due to its symmetry, it

cannot have any orientations other than the horizontal and vertical ones. Hence we need

30



−3 −2 −1 0 1 2 3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

phase parameter ξ

m
ag

ni
tu

de
 o

f t
he

 h
ig

h−
pa

ss
 fi

lte
r 

in
 th

e 
fr

eq
ue

nc
y 

do
m

ai
n

 

 
The ideal high−pass filter

Figure 6: An ideal high-pass filter in the frequency domain (magnitude).

complex-valued coefficients, leading to asymmetry in the frequency domain. Actually,

we want a frequency separation. The better the frequency domain is separated, the

better directionality we can possibly get in 2-D. An ideal high-pass filter which is

supported entirely on [−π, π] is shown in Fig 6.

When the low-pass filter a has symmetry in the frequency domain, we naturally

want to make the magnitude of the 2 high-pass filters in frequency domain mutually

symmetric, say, |̂b1(ξ)| = |̂b2(−ξ)|, ξ ∈ [−π, π]. That is why we can benefit from the

results known for construction of symmetric framelet filter banks.

The construction of directional tight framelet filter banks is based on the asymmetry

of the high-pass filters. To put it ideally and simply, we consider the situation of a

high-pass filter b with spectrum b̂ completely supported on one side, [0, π], (as in Fig 6).

The tensor product b⊗ b will then have a spectrum b̂⊗ b̂ supported inside [0, π]× [0, π],

which is the first quadrant (as in Fig 2.1). Then since a real function always has

a spectrum symmetric about the origin, the real part of the wavelet function in the

frequency domain is supported within the first and third quadrant, making an angle

of 45◦. By the property of the Fourier transform, in the time domain we will get a
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Figure 7: Tensor product of the ideal high-pass filter with itself in frequency domain
(magnitude)

Figure 8: Tensor product of the ideal high-pass filter with itself in frequency domain
(real part)
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direction along the angle of −45◦.

In this chapter, we shall first introduce some definitions and notations for the sake

of convenience for theoretical study. Then a necessary and sufficient condition is given

for the existence of a mutually symmetric tight framelet filter bank with 2 generators.

This theory guarantees an infinite number of such filter banks, so we shall also talk

about the optimization of these filters in the last section.

2.1.1 Laurent Polynomials and Matrix Splitting

Let us begin with several important notations about Laurent polynomials, which are

significant in our theoretical study. It is actually the so-called Z-transform of the

filter, and can be regarded as a generalization of the Fourier transform. The Laurent

polynomial notations can be used towards any description of the Fourier transform,

and giving convenient definition of the symmetry of filters. More importantly, we then

transfer the construction problem of filter bank into a matrix splitting problem, making

us benefit from known results such as Fejér-Riesz lemma.

For a filter u ∈ l(Z), its corresponding Laurent polynomial is defined as a function,

indeed, a polynomial from C\{0} to C:

u(z) =
∑

k∈Z
u(k)zk. (2.1.4)

And the complex conjugate polynomial follows right away:

u⋆(z) =
∑

k∈Z
u(−k)zk =

∑

k∈Z
u(−k)z−k = u(z−1). (2.1.5)

From this definition we can directly see that

û(ξ) = u(e−iξ), (2.1.6)

û(ξ + π) = u(−e−iξ), (2.1.7)
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so that the perfect reconstruction property of tight framelet filter banks can be written

as


 ũ0(z) . . . ũs(z)

ũ0(−z) . . . ũs(−z)




 u0(z) . . . us(z)

u0(−z) . . . us(−z)



⋆

= I2, z ∈ C\{0}. (2.1.8)

A filter with m sum rules has a Laurent polynomial u(z) satisifying

u(z) = (1 + z)mu0(z) (2.1.9)

for some Laurent polynomial u0; a filter with m vanishing moments has a Laurent

polynomial u(z) with

u(z) = (1− z)mu1(z) (2.1.10)

for some Laurent polynomial u1.

Now for a specific tight framelet filter bank {a; b1, b2} with 1 low-pass filter and 2

high-pass filters, the PR condition is


 a(z) b1(z) b2(z)

a(−z) b1(−z) b2(−z)




 a(z) b1(z) b2(z)

a(−z) b1(−z) b2(−z)



⋆

= I2, z ∈ C\{0}.

(2.1.11)

If we are given the low-pass filter a, the condition in (2.1.11) can be equivalently

written as 
 b1(z) b2(z)

b1(−z) b2(−z)




 b1(z) b2(z)

b1(−z) b2(−z)




⋆

= Ma(z) (2.1.12)

where Ma is

Ma(z) :=


 1− a(z)a⋆(z) a(z)a⋆(−z)

a(−z)a⋆(z) a(−z)a⋆(−z)


 . (2.1.13)

The form of (2.1.12) is almost what we desire, but bl(−z) (l = 1, 2) is completely

determined by bl(z). The relation between the entries of the same matrix makes the

34



splitting difficult. It gets much simpler if we assume the entries within the matrix are

independent. A convenient way to get rid of the negative sign is through the coset

sequence.

For any integer γ we define the coset polynomial u[γ] of a polynomial u as

u[γ] =
∑

k∈Z
u(γ + 2k)zk, (2.1.14)

then we have u(z) = u[0](z2) + zu[1](z2), and more specific,


 u(z)

u(−z)


 =


 1 z

1 −z




 u[0](z2)

u[1](z2)


 , (2.1.15)


 u[0](z2)

u[1](z2)


 =

1

2


 1 1

z−1 −z−1




 u(z)

u(−z)


 . (2.1.16)

Then the identity in (2.1.12) can be further written as


 b

[0]
1 (z) b

[0]
2 (z)

b
[1]
1 (z) b

[1]
2 (z)




 b

[0]
1 (z) b

[0]
2 (z)

b
[1]
1 (z) b

[1]
2 (z)



⋆

= Na(z), (2.1.17)

where the right hand size

Na =
1

2
I2 −


 ã[0](z)

ã[1](z)



[
a[0](z)⋆ a[1](z)⋆

]
(2.1.18)

is uniquely determined by a.

Denoting 
 b

[0]
1 (z) b

[0]
2 (z)

b
[1]
1 (z) b

[1]
2 (z)


 = U(z), (2.1.19)

if we are given such a matrix of polynomials, then the filter b1 and b2 are completely

determined. Because a filter u is uniquely determined if and only if its cosets b[0] and
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b[1] are given, and the matrix U(z) contains all information about the coset sequences.

This matrix is called the polyphase matrix. Therefore, with a low-pass filter a, the

construction of a tight framelet filter bank is transferred into a matrix splitting problem.

That is, finding a polyphase matrix U such that UU⋆ = Na.

2.1.2 Symmetry of Filters

Since we are aiming to find high-pass filters mutually symmetric in the frequency

domain, we naturally think of the symmetry in the time domain. As mentioned above,

Laurent polynomials provide a convenient definition for the symmetry of filters.

We say that a filter u has (real) symmetry if its corresponding Laurent polynomial

u(z) satisfies

Su(z) :=
u(z)

u(z−1)
= ǫzc, ∀z ∈ C\{0} with ǫ ∈ {−1, 1}, c ∈ Z, (2.1.20)

and complex symmetry if

Su(z) :=
u(z)

u⋆(z)
= ǫzc ∀z ∈ C\{0} with ǫ ∈ {−1, 1}, c ∈ Z, (2.1.21)

and we call ǫzc the (complex) symmetry type of the Laurent polynomial, or simply of

the filter. S or S is called the symmetry operator.

From (2.1.16), given the symmetry type of a filter u as Su = ǫzc the symmetry type

of its coset sequences is automatically determined:

(1) If c is even,

u[0](z) = ǫzc/2u[0](z−1), u[1](z) = ǫzc/2−1u[1](z−1); (2.1.22)

(2) If c is odd,

u[1](z) = ǫz(c−1)/2u[0](z−1). (2.1.23)
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Within a tight framelet filter bank, the symmetry types, in particular, the symmetry

center obey certain rules [6].

Lemma 2.1.1. Let {a; b1, b2} be a tight framelet filter bank with each filter not identi-

cally zero and having symmetry:

Sa(z) = ǫzc, Sb1(z) = ǫ1z
c1 , Sb2(z) = ǫ2z

c2 , (2.1.24)

for ǫ, ǫ1, ǫ2 ∈ {1,−1} and c, c1, c2 ∈ Z. Then

c1 − c, c2 − c ∈ 2Z. (2.1.25)

Proof. As part of the PR condition, we have

a(z)a⋆(−z) + b1(z)b
⋆
1(−z) + b2(z)b

⋆
2(−z) = 0. (2.1.26)

Consider the symmetry types:

Sa(z)a⋆(−z) = Sa(z)Sa⋆(−z) = zc(−1)czcz−c = (−1)c; (2.1.27)

Sb1(z)b
⋆
1(−z) = (−1)c1 (2.1.28)

Sb2(z)b
⋆
2(−z) = (−1)c2 (2.1.29)

we have c and c1, c2 are all integers so the symmetry types can only be 1 or −1, so 2

of the three must be the same. If another one is not identical to them, then the sum

cannot be zero. So

(−1)c = (−1)c1 = (−1)c2 , (2.1.30)

which implies

c− c1 ∈ 2Z, c− c2 ∈ 2Z. (2.1.31)
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2.2 Construction of Tight Framelet Filter Banks

with Mutual Symmetry Between High-pass Fil-

ters

Due to the desire of the interesting features of framelet filter banks with symmetry,

B. Han and Q. Mo proposed in [8] a necessary and sufficient condition for the existence

of such framelet filter banks with 2 generators. Further description of the construction

of tight framelet filter banks with or without symmetry in [6].

Based on the construction of symmetric filter banks, we use a simple but smart

transform to transform the symmetric ones into mutually symmetric. Of course, not

all symmetric filter banks can be transformed into such mutually symmetric ones. The

lemma below specifies the transform.

Lemma 2.2.1. For a low-pass filter a, there exists a tight framelet filter bank {a; b1, b2}
for some b1, b2 ∈ l0(Z) with mutual symmetry, namely, the corresponding Laurent

polynomials satisfying b2(z) = zkb1(z
−1) for some integer k if and only if there exists a

tight framelet filter bank {a; b̃1, b̃2} such that b̃1, b̃2 both have symmetry, with symmetry

type respectively ǫ1z
c1 and ǫ2z

c2 , satisfying

ǫ1ǫ2 = −1; c1 − c2 ∈ 4Z. (2.2.1)

Proof. ⇒: Define b̃1 =
1√
2
(b1 + b2) and b̃2 =

1√
2
(b1 − b2). In terms of Laurent polyno-

mials, the transform can be written as


 b̃1(z)

b̃2(z)


 =

1√
2


 1 1

1 −1




 b1(z)

b2(z)


 . (2.2.2)
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Therefore we have


 b̃1(z) b̃2(z)

b̃1(−z) b̃2(−z)


 =


 b1(z) b2(z)

b1(−z) b2(−z)


 1√

2


 1 1

1 −1


 . (2.2.3)

and


 b̃1(z) b̃2(z)

b̃1(−z) b̃2(−z)




 b̃1(z) b̃2(z)

b̃1(−z) b̃2(−z)



⋆

=


 b1(z) b2(z)

b1(−z) b2(−z)






1√
2

1√
2

1√
2

− 1√
2



2 
 b1(z) b2(z)

b1(−z) b2(−z)




⋆

(2.2.4)

=


 b1(z) b2(z)

b1(−z) b2(−z)




 b1(z) b2(z)

b1(−z) b2(−z)



⋆

= Ma(z). (2.2.5)

So that {a; b̃1, b̃2} is still a tight framelet filter bank and we can calculate

ǫ1z
c1 = Sb̃1(z) =

b̃1(z)

b̃1(z−1)
=

b1(z) + b2(z)

b1(z−1) + b2(z−1)
=

b1(z) + zkb1(z
−1)

b1(z−1) + z−kb1(z)
= zk (2.2.6)

ǫ2z
c2 = Sb̃2(z) =

b̃2(z)

b̃2(z−1)
=

b1(z)− b2(z)

b1(z−1)− b2(z−1)
=

b1(z)− zkb1(z
−1)

b1(z−1)− z−kb1(z)
= −zk (2.2.7)

hence ǫ1 = −1 = −ǫ2 and c1 − c2 = k − k = 0 ∈ 4Z.

⇐: Similarly if we have b̃1 and b̃2 with symmetry type respectively ǫ1z
c
1 and ǫ2z

c
2,

satisfying

ǫ1 = −ǫ2; c1 − c2 ∈ 4Z,

first we shift b̃2(z) by 2k and get b̃
′
2 = z2kb̃2 for some integer k to make b̃1 and b̃′2 have

the same symmetry center. Then {a; b̃1, b̃′2} remains as a tight framelet filter bank.

Then we define b1 = 1√
2
(̃b1 + b̃′2) and b2 = 1√

2
(̃b1 − b̃′2), and it’s easy to see that

{a; b1, b2} satisfies

b2(z) = zc1b1(z
−1).
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Now the construction of a tight framelet filter bank {a; b1, b2} with b1, b2 having

mutual symmetry can be done by constructing a tight framelet filter bank {a; b1, b2}
with symmetry. In particular, we need the symmetry type of two high-pass filters

having different signs and their symmetry center difference can be divided by 4. And

we can thereon derive the main theorem for the existence. For the sake of convenience

we define the odd indicator function

odd(k) :=





1, when k is odd;

0, otherwise;
(2.2.8)

for any integer k.

Theorem 2.2.2. Let a ∈ l0(Z) be a filter with real coefficients and have real sym-

metry such that Sa = ǫzc. Let nb be a nonnegative integer satisfying 0 6 nb 6

min(sr(a), 1
2
vm(−a(z)a⋆(z)). Then there exists a tight framelet filter bank {a; b1, b2}

for some b1, b2 ∈ l0(Z) such that the corresponding Laurent polynomials satisfy

b2(z) = zkb1(1/z) (2.2.9)

if and only if

(i) Na|nb
(z) ≥ 0 for any z ∈ T := {ξ : |ξ| = 1}, where Na|nb

is defined as

Na|nb
(z) =

1

2


 A[0](z) + B[0](z) z(A[1](z) + B[1](z))

A[1](z)− B[1](z) A[0](z)− B[0](z)


 (2.2.10)

with

A(z) :=
Θ(z)−Θ(z2)a(z)a⋆(z)

(1− z)nb(1− z−1)nb
, B(z) := −Θ(z2)

a(−z)a⋆(z)
(1− z)nb(1 + z−1)nb

; (2.2.11)
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(ii) there exists a Laurent polynomial d(z) with symmetry type ǫdz
cd such that

d(z)d⋆(z) = det(Na|nb
(z)), (2.2.12)

and

ǫd = (−1)odd(c+nb)+1; (2.2.13)

odd(cd) = 1− odd(c+ nb). (2.2.14)

Proof. ⇒: If there exist b1, b2 satisfying (2.2.9), with vanishing moment nb, i.e., we can

write them as

b1(z) = (1− z−1)nb b̊1(z), (2.2.15)

b2(z) = (1− z−1)nb b̊2(z) (2.2.16)

for some Laurent polynomials b̊2 and b̊1. By Lemma 2.2.1, there exist b̃1 and b̃2 with

ǫ1z
c1 = Sb̃1(z) = zk, (2.2.17)

ǫ2z
c2 = Sb̃2(z) = −zk (2.2.18)

such that {a; b̃1, b̃2} is a tight framelet filterbank. By Lemma 2.1.1, the symmetry

centers satisfy c− k ∈ 2Z. The transform keeps the polynomial factors, so b̃1, b̃2 have

also vanishing moments at least nb, hence can be written as

b̃1(z) = (1− z−1)nb˚̃b1, (2.2.19)

b̃2(z) = (1− z−1)nb˚̃b2. (2.2.20)

Then we have

S̊b̃1(z) = zk−nb,
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S̊b̃2(z) = −zk−nb .

Define

U =



˚̃
b
[0]
1

˚̃
b
[0]
2

˚̃b
[1]
1

˚̃b
[1]
2


 ,

then U satisfies UU⋆ = Na|nb
.

Then define

N =





Na|nb
if c + nb is even;

PkaNa|nb
P ⋆
ka if c + nb is odd,

(2.2.21)

where

P =
1√
2


 1 zka

1 −zka


 , (2.2.22)

with ka=0. It is easy to see that det(N (z)) = det(Na|nb
(z)) = d(z)d⋆(z).

1) When c + nb is even, by Lemma 2.1.1, UU⋆ = N , k − nb = k − c + (c − nb) is

also even. Then by (2.1.22),

S̊b̃
[0]
1 (z) = z

k−nb
2 ,

S
˚̃
b
[1]
2 (z) = −z

k−nb
2

−1.

Hence

Sd(z) = S̊b̃
[0]
1 (z)S̊b̃

[1]
2 (z) = −zk−nb−1 = (−1)odd(c+nb+1)zc+nb+2j+1. (2.2.23)

for some integer j.

2) When c+ nb is odd, set

U ′ := PkaU ,

then

U ′U ′⋆ = N , and det(U) = det(U ′),

and we can verify that all entries in U ′ has symmetry. In particular,
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SU ′
11(z) = (−1)nbz

k+nb−1

2 , SU ′
22(z) = −(−1)nb+1z

k+nb−1

2 , therefore

Sd(z) = S(z)(det(N (z))) = SU ′
11(z)SU ′

22(z) = zk+nb−1 = (−1)odd(c+nb+1)z2j+c+nb+1

(2.2.24)

for some integer j.

⇐: We just claim that if d(z) satisfies the condition we stated above, then the filter

bank obtained through the algorithm in Chapter 4 (also see [6]) is just the type in

Lemma 2.2.1. That is, denoting the symmetry types as Sb1(z) = ǫ1z
c1 and Sb2(z) =

ǫ2z
c2 , then ǫ1ǫ2 = −1, c1 − c2 ∈ 4Z.

Let N be defined as in (2.2.21). By the algorithm, we can construct


 b̊

[0]

1 b̊
[0]

2

b̊
[1]

1 b̊
[1]

2


 = U =


 q(z)

1




 Ů11 Ů12

Ů21 Ů22


 ,

where q is such that qq⋆ = gcd(Nij).

1) When c+ nb is even, we have Sd(z) = −z2k+1 for some integer k.

The symmetry types of each entry in N = Na|nb
are SN11(z) = SN22(z) = 1, SN21(z) =

z−1.

b1, b2 are defined as

bi(z) = (1− z−1)nb b̊i(z), i = 1, 2, (2.2.25)

therefore S̊bi(z) =
Sbi(z)
(−z)nb

= (−1)nbǫiz
ci−nb. Since c+ nb is even, ci − nb(i = 1, 2) is also

even. By (2.1.23),

S̊b
[0]

i = (−1)nbǫiz
ci−nb

2 ,

Sb1

Sb2
=

S̊b1

S̊b2
=

S̊b
[0]

1

S̊b
[0]

2

=
SU11

SU22

=
SqSŮ11

SqSŮ12

=
SŮ11

SŮ12

.
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In the algorithm we have the symmetry types

SŮ11(z) = ǫǫN̊21
zn−codd , (2.2.26)

SŮ11(z) = ǫ̊ǫzn,

hence
SŮ11(z)

SŮ12(z)
=
ǫN̊21

ǫ̊
zcodd .

While

ǫ̊zc̊ = Sd̃(z) =
Sd(z)

Sq(z)
=

−z2j+1

Sq(z)
, (2.2.27)

ǫN̊21
z
c
N̊21 = SN̊21(z) =

SN21(z)

Sq(z)
=

z−1

Sq(z)
, (2.2.28)

(2.2.29)

so we get

ǫN̊21
/̊ǫ = −1, (2.2.30)

codd = odd(2j + 1 + 1 + 2cq) = 0, (2.2.31)

where cq is the symmetry center of q. Finally we have

Sb1

Sb2
= −1.

2) When c + nb is odd, we have Sd(z) = z2k for some integer k. The matrix is

defined as N = PkaNa|nb
P ⋆
ka

.
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b1(z) :=
(1− z−1)nb

√
2

[(1 + z1−2ka)U11(z
2) + (1− z1−2ka)U21(z

2)], (2.2.32)

b2(z) :=
(1− z−1)nb

√
2

[(1 + z1−2ka)U12(z
2) + (1− z1−2ka)U22(z

2)]. (2.2.33)

So we can calculate

Sb1(z)

Sb2(z)
=

S(1 + z1−2ka)

S(1− z1−2ka)

SU11(z
2)

SU22(z2)
= (−1)1−2ka

SU11(z
2)

SU22(z2)
= −SU11(z

2)

SU22(z2)
(2.2.34)

Denoting SU11(z) = ǫ11z
c11 , SU22(z) = ǫ22z

c22 , we have Sd(z) = ǫ11ǫ22z
c11+c22 = z2k for

some integer k.

Then
Sb1(z)

Sb2(z)
= −SU11(z

2)

SU22(z2)
=
ǫ11z

2c11

ǫ22z2c22
= −ǫ11ǫ22z2(c11+c22) = −z4k

for some integer k.

To conclude, both cases will construct a tight framelet filterbank with

Sb1(z)

Sb2(z)
= −z4k,

and by Lemma 2.2.1, this is equivalent to a tight framelet filterbank with 2 mutually

symmetric high-pass filters.

2.3 Directional Tight Framelet Filter Bank

We now go back to the Lemma 2.2.1. It can be further generalized. Actually, in the

transform 
 b̃1(z)

b̃2(z)


 = A


 b1(z)

b2(z)


 , (2.3.1)
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any 2 × 2 unitary matrix A with make the image {b̃1, b̃2} form a tight framelet filter

bank with the original mask a .

In general, a series of complex unitary matrices are in the form of

A =
1√
2


 1 −eiθ

1 eiθ


 (2.3.2)

up to a scaling factor eiu, where θ, u are both real parameters. But this factor does not

influence the magnitude in the frequency domain. Therefore, we can get the optimized

fiter bank by optimizing on the parameter θ ∈ [−π, π].
There are several different strategies to evaluate the directionality. One is to mea-

sure the energy concentration in the frequency domain, to be more specific, we measure

the high-pass filters b1 and b2 using

Ei =

∫ π

0

|b̂i(ξ)|2dξ, i = 1, 2. (2.3.3)

When E1 is large, we conclude that the filter b̂1 is concentrated on [0, π] thus makes

a good separation in the frequency domain. Actually, in this sense, we can prove that

when the parameter θ in the unitary matrix A is equal to ±π
2
, E1 can reach its extreme

values (maximum or minimum).

Proof. Denoting the original real-valued filter as b̊1 and b̊2, then the new filters are

b1 =
1√
2
(̊b1 + eiθ̊b2), b2 =

1√
2
(̊b1 − eiθ̊b2).

The energy can be therefore calculated:

E1 =

∫ π

0

(̂b1(ξ)̂b1(ξ))dξ =

∫ π

0

(̂̊b1(ξ) + eiθ
̂̊
b2(ξ))(̂̊b1(ξ) + eiθ

̂̊
b2(ξ))dξ

=

∫ π

0

(|̂̊b1(ξ)|2 + |̂̊b2(ξ)|2 + eiθ
̂̊
b1(ξ )̂̊b2(ξ) + eiθ

̂̊
b1(ξ )̂̊b2(ξ))dξ.
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∂E1

∂θ
= ieiθ

∫ π

0

(̂̊b1(ξ )̂̊b2(ξ))dξ − ie−iθ

∫ π

0

(̂̊b2(ξ )̂̊b1(ξ))dξ.

Since the original b̊1 and b̊2 are both real-valued filters, so

ˆ̊
bi(ξ) =

∑

k

b̊i(k)e−ikξ =
∑

k

b̊i(k)e
ikξ =

ˆ̊
bi(−ξ), i = 1, 2. (2.3.4)

Their symmetry types are respectively ǫ1z
c1 and ǫ2z

c2 with ǫ1 = −ǫ2, c1 = c2 so we

have

b̂i(−ξ) = ǫie
iciξ b̂i(ξ), i = 1, 2. (2.3.5)

Hence

∫ π

0

ˆ̊
b1(ξ)

ˆ̊
b2(ξ)dξ =

∫ π

0

ˆ̊
b1(−ξ)ˆ̊b2(ξ)dξ (2.3.6)

=

∫ π

0

ǫ1e
ic1ξˆ̊b1(ξ)

ˆ̊
b2(ξ)dξ = −

∫ π

0

ǫ2e
ic2ξˆ̊b1(ξ)

ˆ̊
b2(ξ)dξ (2.3.7)

= −
∫ π

0

ˆ̊
b2(ξ)

ˆ̊
b1(ξ)dξ, (2.3.8)

and then
∂E1

∂θ
= (ieiθ + ie−iθ)

∫ π

0

ˆ̊
b1(ξ)

ˆ̊
b2(ξ)dξ. (2.3.9)

It equals 0 when θ = ±π/2.

But only considering the concentration in the frequency domain is not the best

approximation in the time domain. In contrast, maximizing

Fi =

∫ π

0

|b̂i(ξ)â(ξ/2)|2dξ, i = 1, 2 (2.3.10)

may be a better choice, since it is more close to the wavelet function ψi in the time

domain whose Fourier transform satisfies

ψ̂i(t) = b̂i(t/2)
∞∏

j=1

â(2−1−jt).
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And this will be our topic in the next chapter, the wavelet functions and the discrete

affine system (DAS). Through tensor product we shall talk about the 2-D DAS.

48



Chapter 3

Wavelet Functions and 2-D

Discrete Affine Systems

Following the topic that we proposed in Chapter 2, when optimizing the filter bank,

we need to evaluate and visualize its directionality in a more direct way besides the

directions in the frequency domain. In image processing practice, after the 1-level

Discrete Framelet Transform, we usually continue the decomposition to the low-pass

sub-band and the transform is performed over and over again on a signal. The signal

is then decomposed into numerous bands for processing. The directions actually lie in

these sub-bands. Nonetheless, we have not investigated the behavior of the multi-level

DFrT, nor do we know the information contained in each sub-band. It is actually an

asymptotic process, closely related to the wavelet function in continuous setting. More

importantly, for an input image, the first 1 or 2 level DFrT actually can hardly catch

the directional features. The evaluation of good directionality of a filter bank therefore

locates at the higher levels. In this chapter, we shall investigate the relation between a

framelet filter bank and its corresponding wavelet functions. To achieve this, we start

from the continuous wavelets again, and use the concept of discrete affine systems to

explain.

3.1 Discrete Affine System in 1-D

In DFrT, the signal is decomposed through a filter bank and a downsampling process.

In the usual dyadic decomposition, each sub-band contains half information of the
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input. If we continue the decomposition (usually just for the low-pass band), the

subsequence we get is much related to the Discrete Affine System (DAS). In this section

we first investigate the DAS in 1-dimension, then generalize it to the 2-D setting in the

next section. The key is that, after multi-level DFrT, the sequence in each sub-band

can be actually obtained by a single transition operator. So that we can just use more

filters to illustrate the information contained in each band.

3.1.1 Multilevel Discrete Framelet Transform

We have introduced in Chapter 1 the 1-level discrete framelet transform with respect

to a dual framelet filter bank ({ã; b̃1, ..., b̃s}, {a; b1, ..., bs}):

Wv = (ω0, ω1, ..., ωs) =

√
2

2
(Tãv, Tb̃1

v, ..., Tb̃s
v), (3.1.1)

V(ω0, ω1, ..., ωs) =

√
2

2

s∑

l=0

Sul
ωl. (3.1.2)

If we go further to decompose ω0, we can get the multi-level framelet decomposition.

For example, the 2-level DFrT is illustrated in Fig 9 (adapted form [6]). Using the

same dual framelet filter bank ({ã; b̃1, ..., b̃s}, {a; b1, ..., bs}), a J-level discrete framelet

decomposition is defined as

vj−1 :=

√
2

2
Tavj, (3.1.3)

ωj−1;l :=

√
2

2
Tblvj , l = 1, ...s; j = J, ..., 1. (3.1.4)

The corresponding J-level discrete framelet reconstruction is given by

v̊j :=

√
2

2
Sãv̊j−1 +

√
2

2

s∑

l=1

Sb̃l
ω̊, j = 1, ..., J. (3.1.5)
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input

√
2ã⋆

√
2b̃⋆

1

...

√
2b̃⋆

s

...

↓ 2

↓ 2

↓ 2

√
2ã⋆

√
2b̃⋆

1

√
2b̃⋆

s

...

↓ 2

↓ 2

↓ 2

processing

processing

processing

processing

processing

↑ 2

↑ 2

↑ 2

↑ 2

...

√
2a

√
2b1

√
2bs

...

⊕
↑ 2

↑ 2

↑ 2

√
2a

√
2b1

√
2bs

...

⊕
output

Figure 9: Diagram for 2-level DFrT

For convenience, we write the J-level analysis operator and J-level synthesis oper-

ator as

WJvj := (ωJ−1;1, ..., ωJ−1;s, ..., ω0;1, ..., ω0;s, v0), (3.1.6)

VJ(ωJ−1;1, ..., ωJ−1;s, ..., ω0;1, ..., ω0;s, v0) = vj. (3.1.7)

To study the behavior of multi-level DFrT, let us first take a look at 2-level DFrT.

For a signal v ∈ l(Z), the subdivision operator associated with the a filter u will map

it to

v′ = [Suv](n) = 2
∑

k

v(k)u(n− 2k) = 2u ∗ (v ↑ 2), (3.1.8)

which is just another sequence in l(Z), and in frequency domain it satisfies

v̂′ = Ŝu(ξ) = 2û(ξ)v̂(2ξ). (3.1.9)
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If the subdivision is done twice, the signal is mapped to

v′′ = Su[Suv0] (3.1.10)

which is

v̂′′ = 4û(ξ)û(2ξ)v̂(4ξ) (3.1.11)

in frequency domain. From (3.1.11), if we define another filter u1 := u ∗ (u ↑ 2) so that

û1(ξ) = û(ξ)û(2ξ), in the frequency and time domain we can alternatively write

v̂′′(ξ) = 4û1(ξ)v̂(4ξ), (3.1.12)

v′′(n) = 4u1 ∗ (v ↑ 4). (3.1.13)

This motivates us to generalize the dyadic subdivision operator to a more general one

Su,d : l(Z) → l(Z):

[Su,dv](n) := |d|
∑

k

v(k)u(n− dk) = |d|u ∗ (v ↑ d), d ∈ Z. (3.1.14)

Correspondingly the transition operator is defined as

[Tu,dv](n) := |d|
∑

k

v(k)u(k − dn) = |d|(u⋆ ∗ v) ↓ d. (3.1.15)

From this definition we can write

v′′ = Su1,4v = Su∗(u↑2),4v, (3.1.16)

so that the iterative subdivision or transition operations will still be subdivision or

transition, but generalized ones. In particular, a 2-level dyadic DFrT with respect to

tight framelet filter bank {a; b1, ..., bs} is
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Analysis operator:

W2v2 = (ω1,1, , ..., ω1,s, ω0,1, ..., ω0,s, v0) (3.1.17)

where

ω1,l =

√
2

2
Tbl,2v2, for l = 1, ..., s; (3.1.18)

ω0,l =

(√
2

2

)2

Tbl∗(a↑2),4v2, for l = 1, ..., s; (3.1.19)

v0 =

(√
2

2

)2

Ta∗(a↑2),4v2; (3.1.20)

Synthesis operator:

V2(ω1,1, , ..., ω1,s, ω0,1, ..., ω0,s, v0)

=

√
2

2

s∑

l=1

Sbl,2ω1,l +
1

2
(

s∑

l=1

Sbl∗(a↑2),4ω0,l + Sa∗(a↑2),4v0) (3.1.21)

=

√
2

2

s∑

l=1

(2
∑

k

ω1,l(k)bl(· − 2k)) (3.1.22)

+
1

2

s∑

l=1

(4
∑

k

ω0,l(k)(bl ∗ (a ↑ 2))(· − 4k))

+2
∑

k

v0(k)(a ∗ (a ↑ 2))(· − 4k).

The sequences ωj,l are generally called high-pass sub-bands, and v0 is the low-pass

sub-band. If the filter bank we employ satisfies PR condition, then the reconstructed

V2(ω1,1, , ..., ω1,s, ω0,1, ..., ω0,s, v0) is exactly the original input, and we can express the

input as linear combinations of (a ∗ (a ↑ 2))(· − 4k), (bl ∗ (a ↑ 2))(· − 4k) and bl(· − 2k),

which inspires us to define an affine system as (1.5.1), but in a discrete setting.
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3.1.2 Discrete Affine System

From (3.1.19) and (3.1.20) we can see that after J-level framelet decomposition, the

sequence in each high-pass subband is just the transition operator

(√
2

2

)J−j

Tbl∗(a↑2)∗...∗(a↑2j ),2J−j , , 0 < j ≤ J (3.1.23)

acting on the input vJ . So they are closely related to the filters a∗ (a ↑ 2)∗ ...∗ (bl ↑ 2j)

and a ∗ (a ↑ 2) ∗ ... ∗ (a ↑ 2J) .

Now we define new filters

aj := a ∗ (a ↑ 2) ∗ . . . ∗ (a ↑ 2j−1); (3.1.24)

a[j;k] := 2j/2aj(· − 2jk); (3.1.25)

bl,[j;k] := 2j/2[aj ∗ (bl ↑ 2j−1)](· − 2jk). (3.1.26)

Then the framelet coefficients in any band are just linear combinations of the sequence

after transitions Ta[j;k],2j and Tbl,[j;k],2j . It is also easy to see that, different indices j

represent different scales of the input signal. The DFrT gives a multi-scale structure

of a signal. Given a tight framelet filter banks {a; b1, ..., bs}, we define the J-level DAS

as follows:

DASJ({a; b1, ..., bs}) := {a[J ;k], k ∈ Z} ∪ {bl,[J−j;k] : l = 1, ..., s, j = 0, ..., J, k ∈ Z}.
(3.1.27)

If {a; b1, . . . , b2} is a tight framelet filter bank, then this system gives any signal
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v ∈ l2(Z) a nonhomogeneous representation

v =
∑

k∈Z
〈v, a[J ;k]〉a[J ;k] +

J∑

j=1

s∑

l=1

∑

k∈Z
〈v, bl,[j;k]〉bl,[j;k] (3.1.28)

=
∑

u∈DASJ ({a;b1,...,bs})
〈v, u〉u, J ∈ N. (3.1.29)

Similar to the affine systems in continuous setting, the DAS gives a multi-resolution

representation of elements in l2(Z). Actually the filter bank {a; b1, . . . , bs} is a tight

framelet filter bank if and only if the DASJ({a; b1, . . . , bs}) is a tight frame of l2(Z) for

any J , and a wavelet filter bank {a; b} is orthogonal if and only if DASJ{a; b} is an

orthonormal basis of l2(Z).

Now it is obvious to see that, for a J-level DFrT, the sequence in each sub band

is determined by the generators in DASJ . By investigating the properties of these

generators we can derive the features contained in the framelet coefficients, and hence

infer the feature of the input signal. The stability, or asymptotic behavior of multi-level

DFrT relies on the asymptotic behavior of aJ .

We now show a simple example of the generators of a DAS. Namely, they are filters

defined in (3.1.25) and (3.1.26).

Example 3.1.1. Let {a; b} be a wavelet filter bank obtained by Daubechies [5]:

a =
1

8

{
1 +

√
3, 3 +

√
3, 3−

√
3, 1−

√
3
}

[−1,2]
;

b =
1

8

{
1−

√
3,
√
3− 3, 3 +

√
3, 1 +

√
3
}
[−1,2]

.

The generators for the first 3 levels are shown in Fig 10.

55



−2 −1 0 1 2 3
−0.2

0

0.2

0.4

0.6

a
[1;0]

−4 −2 0 2 4 6
−0.2

0

0.2

0.4

a
[2;0]

−5 0 5 10 15
−0.1

0

0.1

0.2

0.3

a
[3;0]

−2 −1 0 1 2 3

−0.5

0

0.5

b
[1;0]

−4 −2 0 2 4 6
−0.4

−0.2

0

0.2

0.4

b
[2;0]

−5 0 5 10 15
−0.4

−0.2

0

0.2

0.4

b
[3;0]

Figure 10: Stem plot of the generators in Example 3.1.1 for the first 3 levels

3.2 Wavelet Functions

We introduced the wavelet and scaling functions in Chapter 1. They are refinement

functions corresponding to the high-pass and low-pass filters respectively. From the

refinable equation, we establish the relation between a filter (or, a sequence in l2(Z))

and the continuous wavelet or scaling functions. If we know the refinable function

explicitly, it is easy to find out the sequence. In this section, we shall investigate their

relations in a reversed direction: we show that under a stability condition, the refinable

function is actually determined by the sequence uniquely, and can be approximated by

a sequence obtained by iterative convolutions.

3.2.1 Frequency Domain Analysis

The refinable equation

φ(t) = 2
∑

k∈Z
a(k)φ(2t− k) (3.2.1)
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can be equivalently written in the frequency domain as

φ̂(2ξ) =
∑

k∈Z
a(k)e−ikξφ̂(ξ), (3.2.2)

which is just

φ̂(2ξ) = â(ξ)φ̂(ξ). (3.2.3)

Based on this relation, we are inspired to define a formal function

ϕa(ξ) :=
∞∏

j=1

â(2−jξ). (3.2.4)

ϕa(ξ) can be easily checked to satisfy

ϕa(2ξ) =

∞∏

j=1

â(2−j+1ξ) =

∞∏

j=0

â(2−jξ) = â(ξ)ϕ(ξ) (3.2.5)

if it is well-defined. It is then called a frequency-based refinable function.

It is well known that, if {a; b1, b2} is a tight framelet filter bank, then |â(ξ)|2+ |â(ξ+
π)|2 ≤ 1 for all ξ ∈ R. If a satisfies â(0) = 1 and

‖WJv‖2(l2(Z)1×(sJ+1)) ≤ C‖v‖2l2(Z), ∀v ∈ l2(Z), J ∈ N, (3.2.6)

then it is shown in [6] that ϕa is then a well-defined L2 function. We define

φa(t) = F−1ϕa =
1

2π

∫

R

ϕa(ξ)eiξtdξ, (3.2.7)

where F−1 is the inverse Fourier transform which is a 1-1, onto mapping in L2(R).

Then φa(t) also belongs to L2(R) and satisfies the refinement equation in (3.2.1).
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3.2.2 Time Domain Approximation

The formal function defined in (3.2.4), even though well-defined, is not easy to compute

in practice. However, noticing that for a low-pass filter a, its Fourier transform always

satisfies â(0) = 1 and as long as it sufficiently smooth at the origin, for sufficiently

large J , 2−J is sufficiently small, we have

â(2−jξ) ≈ 1, (3.2.8)

and hence

ϕa(ξ) ≈
J∏

j=1

â(2−jξ) = âJ(2
−Jξ). (3.2.9)

This approximation in frequency domain can be transferred into the time domain

by Fourier inverse transform:

φa(2−Jk) =
1

2π

∫

R

ϕa(ξ)eiξ·2
−Jkdξ ≈ 1

2π

∫

R

âJ(2
−Jξ)eiξ·2

−Jkdξ = 2JaJ(k) (3.2.10)

for any integer k.

So the values of φa on a fine grid 2−JZ can be approximated by the dilation of the

filter aJ . For practical use, we only need to address the features in aJ for large J to

roughly investigate the properties of φa in the time domain.

3.3 Discrete Affine System in 2-D

Now that we have defined the DAS in 1-D, the 2-D DAS just consists of the tensor

products. We shall first define the tensor product in the continuous framelet setting,

then give the DAS in 2-D.

As mentioned above, the framelet filter bank {a; b1, b2} is corresponding to the
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scaling and framelet functions {φ;ψ1, ψ2} which satisfies

φ(t) = 2
∑

k∈Z
a(k)φ(2t− k); (3.3.1)

ψ1(t) = 2
∑

k∈Z
b1(k)φ(2t− k); (3.3.2)

ψ2(t) = 2
∑

k∈Z
b2(k)φ(2t− k). (3.3.3)

After tensor products of these functions, there are 9 combinations φ⊗φ, φ⊗ψ1, φ⊗
ψ2, ψ1 ⊗ φ, ψ1 ⊗ ψ1, ψ1 ⊗ ψ2, ψ2 ⊗ φ, ψ2 ⊗ ψ1, ψ2 ⊗ ψ2. Since φ corresponds to the

low-pass filter and ψi corresponds to the high-pass filters, we name them L-L (φ⊗ φ),

L-H1 (φ⊗ ψ1), L-H2 (φ⊗ ψ2) respectively. We can see that

φ(t)⊗ φ(s) = 4
∑

k∈Z
a(k)φ(2t− k)

∑

l∈Z
a(l)φ(2s− l) (3.3.4)

= 4
∑

(k,l)∈Z2

a(k)a(l)φ(2t− k)φ(2s− l) (3.3.5)

= 4
∑

(k,l)∈Z2

[a⊗ a](k, l)[φ⊗ φ](2(t, s)− (k, l)). (3.3.6)

So the filter bank in 2-D is just defined as {a⊗ a; a⊗ b1, a⊗ b2, b1 ⊗ a, ..., b2 ⊗ b2},
where a⊗ a is the L-L band, a⊗ b1 is the L-H1 band, etc.

Based on the filters

[a⊗ a]j(k, l) = aj ⊗ aj , (3.3.7)

where aj is defined in (3.1.24),

[a⊗ a][j,(k,l)] := 4j/2[a⊗ a]j(· − 2j(k, l)); (3.3.8)

[a⊗ bi][j,(k,l)] := 4j/2{[a⊗ a]j ∗ [a⊗ bi] ↑ 2j−1}(· − 2j(k, l)); i ∈ {1, 2}; (3.3.9)

[bi ⊗ bj ][j,(k,l)] := 4j/2{[a⊗ a]j ∗ [bi ⊗ bj ] ↑ 2j−1}(· − 2j(k, l)); i, j ∈ {1, 2}. (3.3.10)
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The 2-D DASJ is defined as

DASJ({a⊗ a; a⊗ b1, ..., bs ⊗ bs})

:= {[a⊗ a][J ;k], k ∈ Z}

∪ {[a⊗ bi][J−j;k]|i = 1, ..., s, j = 0, ..., J, k ∈ Z}

∪ {[bi ⊗ bj ][J−j;k]|i, j = 1, ..., s, j = 0, ..., J, k ∈ Z}.

(3.3.11)

It gives any signal v ∈ (l2(Z))
2 a representation

v =
∑

u∈DASJ ({a⊗a,...,bs⊗bs})
〈v, u〉u, J ∈ N. (3.3.12)

Therefore, similar to 1-D case, the sub-signals in 2-D is also determined completely

by the generators of the 2-D DAS. Through similar derivation, in 2-D case the refinable

functions can also be approximated by the generators of 2-D DASJ for large J . Hence to

evaluate the directionality of a filter bank, except for the scaling and wavelet functions,

we can also investigate the generators in the 2-D DAS.

Because we are interested in the directional features of images, now it comes to

the problem to see the directional properties of the generators of the 2-D DAS. In

Chapter 4, we will give examples of directional filter banks, and plot the generators to

a certain level. It is clear that the filter banks process good directionality.
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Chapter 4

Construction Algorithm and

Examples

In this chapter, we shall give the algebraic algorithm to construct directional tight

framelet filter banks, and provide several examples with relatively short support yet

good directionality.

4.1 Algorithm

Our algorithm is based on the construction of symmetric tight framelet filter banks with

2 generators in [8] and [6]. In Chapter 2, we have stated the necessary and sufficient con-

dition to construct a tight framelet filter bank {a; b1, b2} given the symmetric low-pass

filter a with Sa(z) = ǫzc, and a nonnegative integer nb ∈ [0,min(sr(a), 1
2
vm(−a(z)a⋆(z)))]:

(i) Na|nb
(z) =




1
2
− a[0](z)(a[0](z))⋆ −a[0](z)(a[1](z))⋆

−a[1](z)(a[0](z))⋆ 1
2
− a[1](z)(a[1](z))⋆


 is semi-positive defi-

nite for any z;

(ii) there exists a Laurent polynomial d with symmetry type ǫdz
cd such that

d(z)d⋆(z) = det(Na|nb
)(z) (4.1.1)

and

ǫd = (−1)odd(c+nb)+1, (4.1.2)

cd = 2j + c + nb + 1 (4.1.3)
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for some integer j.

Now, based on the algorithm to construct symmetric tight framelet filter banks

with 2 generators in [6], we give the detailed algorithm.

(1) Matrix construction

Denote the filter support of [Na|nb
]1,2 as [n−, n+]. Calculate a 2× 2 matrix N as

N =


 N1,1 N1,2

N2,1 N2,2


 =





Na|nb
if c+ nb is even;

PkaNa|nb
P ⋆
ka

if c+ nb is odd,
(4.1.4)

where

P =
1√
2


 1 zka

1 −zka


 , (4.1.5)

with ka = ⌊n−+n+

2
⌋.

(2) Define p(z) = gcd(N1,1,N1,2,N2,1,N2,2), and

N̆ (z) :=
1

p(z)
N (z), (4.1.6)

then calculate p̆(z) = gcd(N̆1,1(z), N̆1,2(z)N̆2,1(z)).

(3) Because N is semi-positive definite and each entry of it is symmetric, so is p(z)

and N̆ (z), and therefore p̆(z). So we can find a Laurent polynomial q(z) ≥ 0 for any

z ∈ T with symmetry such that

q(z)q⋆(z) = p̆(z), q(z) |N̆1,2(z). (4.1.7)

The construction of q is as follow:

(i)Compute q1 = gcd(p̆, N̆1,2) with symmetry;

(ii) Compute p̃ =
q1q

⋆
1

p̆
then it is a well-defined Laurent polynomial s.t. p̃(z) ≥ 0 for all

z ∈ T; so that roots of p̃ can be all collected as {z, 1/z.
(iii) Compute q2 such that q2q

⋆
2 = p̃ with symmetry, in particular we can pick q2 =

62



∏
i(z − zi) such that {zi, 1/zi are distinct sets of p̃’s roots.

(iv) Define q = q1
q2
. Then q also has symmetry.

(4) Then define

N̊ (z) :=




N̆1,1(z)

q(z)q⋆(z)

N̆1,2(z)

q(z)

N̆2,1(z)

q⋆(z)
N̆2,2


 (4.1.8)

so that every entry has symmetry, and N̊1,1 ,N̊1,2 has no common zeros.

(5) Define [−n, n] = fsupp(N̊1,1), ǫN̊2,1
z
c
N̊2,1 = SN̊2,1, ǫ̊z

c̊ = Sd̃, codd = odd(cN̊2,1
) and

d̊(z) = zn+
c
N̊2,1

−c̊−codd

2 (4.1.9)

with S̊d(z) = ǫ̊z
2n+c

N̊2,1
−codd.

(6) Write Ů1,1(z) =
∑n−codd

j=0 tjz
j and Ů1,2(z) =

∑n
j=0 t̃jz

j , then solve for

{t0, ..., tn−codd, t̃0, ..., t̃n} with the equation

N̊2,1(z)Ů1,1(z)− d̊(z)Ů⋆
1,2(z) = N̊1,1(z)Ů2,1(z). (4.1.10)

This equation has solution space with dimension at least 1, because by Euclidean

division, we can always write

N̊2,1(z)Ů1,1(z)− d̊(z)Ů⋆
1,2(z) = N̊1,1(z)Ů2,1(z) +R (4.1.11)

with fsupp(R) ⊆ [−n, n − 1], set R = 0, we have 2n equations but at leat 2n + 1

variables.

(7) Update Ů1,1(z) = [Ů1,1(z) + ǫǫN̊2,1
zn−coddŮ1,1(z

−1)]/2, and Ů1,2(z) = [Ů1,2(z) +

ǫ̊ǫznŮ1,2(z
−1)]/2, choosing ǫ = 1 or −1 such that the two are not zero at the same time.

(8) Update [Ů1,1(z), Ů1,2(z)] = λ[Ů1,1(z), Ů1,2(z)] where λ =

√
N̊1,1(1)

|Ů1,1(1)|2+|Ů1,2(1)|2
, and

define

Ů2,1(z) =
N̊2,1(z)Ů1,1(z)− d̊(z)Ů⋆

1,2(z)

N̊1,1(z)
, (4.1.12)
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Ů2,2(z) =
N̊2,1(z)Ů1,2(z) + d̊(z)Ů⋆

1,1(z)

N̊1,1(z)
. (4.1.13)

(9) Set

U =


 U1,1 U1,2

U2,1 U2,2


 =


 q(z)

1




 Ů1,1 Ů1,2

Ů2,1 Ů2,2


 (4.1.14)

where q is such that qq⋆ = gcd(Nij).

(10) If c+ nb is even,

b1(z) = (1− z−1)nb[U1,1(z
2) + zU2,1(z

2)], (4.1.15)

b1(z) = (1− z−1)nb[U1,2(z
2) + zU2,2(z

2)]; (4.1.16)

If c+ nb is odd,

b1(z) = (1− z−1)nb[
1 + z1−2ka

√
2

U1,1(z
2) +

1− z1−2ka

√
2

U2,1(z
2)], (4.1.17)

b2(z) = (1− z−1)nb[
1 + z1−2ka

√
2

U1,2(z
2) +

1− z1−2ka

√
2

U2,2(z
2)]. (4.1.18)

(11) Replace b1 and b2 by b1 + eiθb2 and b1 − eiθb2 respectively. Optimize with

respect to θ ∈ [−π, π), numerically or algebraicly, with the target function

argminθEi =

∫ π

0

|b̂i(ξ)|2dξ, i = 1, 2; (4.1.19)

or

argminθFi =

∫ π

0

|b̂i(ξ)â(ξ/2)|2dξ, i = 1, 2, (4.1.20)

where Ei and Fi are defined in (2.3.3) and (2.3.10). Then we finish the construction of

a tight framelet filter bank {a; b1, b2}.
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4.2 Examples

We now show some calculations and figures of directional tight framelet filter banks.

Example 4.2.1. The second order B-spline low pass filter is a = {1/4, 1/2, 1/4}[0,2],
c = 2, nb = 1, so c+ nb is odd.

N = PkaNa|1P
⋆
ka =




1
4

0

0 1
8


 , (4.2.1)

U =




1
2

0

0 1
2
√
2


 . (4.2.2)

b̊1 =

√
2

4
(z2 − 1); b̊2 = −1

4
(z2 − 2z + 1). (4.2.3)

Numerically seeking for least Ei, we find the high-pass filters

b1 = −0.1082532 + 0.3040525i+ (−0.1804220− 0.3040525i)z + 0.2886751z2; (4.2.4)

b2 = 0.2886751+ (−0.1804220− 0.3040525i)z+ (−0.1082532+ 0.3040525i)z2. (4.2.5)

We plot the graphs of the filters’ absolute values in the frequency domain in Fig 11.

In the time domain, the real and imaginary parts of the scaling function (corresponding

to the low-pass filter) and wavelet functions (corresponding to the high-pass filters) are

shown in Fig 12. The generators of the 1-D DAS up to level 3 are shown in Fig 13.

Since the 2 high-pass filters have a relative symmetry, we shall only give the generators

of b1 in other examples.
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Figure 11: Magnitudes of the B2 spline low-pass filter (left) and B2 spline high-pass
filter (right) in the frequency domain.
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Figure 12: The scaling function φ and wavelet functions ψ1 and ψ2 of the directional
B2 spline tight framelet filter bank.
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Figure 13: Stem plot of the generators of the 1-D DAS of the directional B2 spline tight
framelet filter bank.
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(a) â⊗ â = â⊗ a (b) â⊗ b1 (c) â⊗ b2

(d) b̂1 ⊗ a (e) b̂1 ⊗ b1 (f) b̂1 ⊗ b2

(g) b̂2 ⊗ a (h) b̂2 ⊗ b1 (i) b̂2 ⊗ b2

Figure 14: Grey-scale plot of the 2-D directional filter bank in frequency domain (Ex-
ample 4.3.1), obtained from tensor product.

In 2 dimensions, both the time domain and frequency domain are just tensor prod-

ucts of 1-D objects, including the bands L-L, L-H1, L-H2, H1-L, H1-H1, H1-H2, H2-L,

H2-H1, H2-H2. The plots of the filters in the frequency domain are in Fig 14. Here we

plot the absolute value to illustrate the concentration. The generators of 2-D DAS are

shown in Fig 15 and Fig 16. From the generators we can see the apparent directionality

covering 4 directions in total : the vertical, horizontal, and 2 diagonals.

However, the filter bank has a very short support (the length of each filter’s support
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equals 3), the time domain functions φ, ψ1 and ψ2 are not very smooth. the frequency

separation is not quite ideal actually. For example, the (h) and (i) in Fig 14 have

several lighted areas. This explains that the directionality in the time domain is not

always good, like in the [b1 ⊗ b2][3,0] band in Fig 15 is relatively difficult to tell the

diagonal direction.
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Figure 15: The generators of 2-D DAS for the directional B2 spline tight framelet filter
bank on Z2, real part (level=3).

Example 4.2.2. Let a = {−0.051777, 0.301777, 0.25, 0.25, 0.301777,−0.051777}[0,5],
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Figure 16: The generators of 2-D DAS for the directional B2 spline tight framelet filter
bank on Z2, imaginary part (level=3).

71



k a(k) b1(k)
0 -0.051777 0.051776479838823 + 0.036611867809496i
1 0.301777 -0.301776203647670 - 0.213388563106133i
2 0.25 0 + 0.176776695296637i
3 0.25 0 + 0.176776695296637i
4 0.301777 0.301776203647670 - 0.213388563106133i
5 -0.051777 -0.051776479838823 + 0.036611867809496i

Table 1: Coefficients of the directional tight framelet filter bank in Example 4.3.2

then sr(a) = 1, c = 5. We take nb = 0, then detNa|nb
= 0.9375 − 0.625(z + z−1) +

0.15625(z2 + z−2). There exists d = 0.25 + 0.125(z + z−1) such that dd⋆ = detNa|nb
.

The conditions in Theorem 2.2.2.

The coefficients of the directional tight framelet filter bank are given as in Table 1.

and b2(k) = b1(5− k).

The low-pass filter has sum rule sr(a) = 1, which means relatively less smoothness.

The scaling function φ and wavelet functions ψ1 and ψ2 are given in Fig 4.2. Fig 18

shows the generators of the 1-D DAS. For 2-D, the frequency domain of the filters are

shown in Fig 19. Generators of the 2-D DAS are given in Fig 20 and 21.

This example has clear diagonal directions in the real part of the 2-D DAS gener-

ators. But from the frequency domain we can see the frequency separation is still not

good enough, leading to the non-satisfactory directionality in the imaginary part of

the 2-D DAS generators (see Fig 21). It also has obvious block-like effect. This can be

explained easily by the 1-D generators. From Fig 18 we can see the apparent jumps in

the 1-D generators, which leads to this block-like effect.

Example 4.2.3. Let a be the interpolatory low-pass filter

aI6 = { 3

512
, 0,− 25

512
, 0,

75

256
,
1

2
,
75

256
, 0,− 25

512
, 0,

3

512
}[−5,5],

then sr a = 6, c = 0. Take nb = 3, then there exists d(z) =
√
2

1024
z2(3−(16−6

√
15i)z+3z2)

such that dd⋆ = detNa|nb
.

The coefficients of the directional tight filter bank are given in Table 2.
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Figure 17: The scaling function φ and wavelet functions ψ1 and ψ2 of the directional
tight framelet filter bank in Example 4.3.2.
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Figure 18: Stem plot of the generators of the 1-D DAS of the directional tight framelet
filter bank in Example 4.3.2.
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Figure 19: Grey-scale plot of the 2-D directional filter bank in frequency domain (Ex-
ample 4.3.2), obtained from tensor product.

and b2(k) = b1(10− k).

Note that sr(a) = 6, The 1-D functions φ,ψ1 and ψ2 are given in Fig 4.2. The stem

figures in 1-D are given in Fig 23. In 2-D, the figures in the frequency domain are

shown in Fig 24. Generators of 2-D DAS are given in Fig 25 and 26.

This filter bank has a very nice directionality for the real parts of 2-D DAS gen-

erators. From the 2-D frequency domain, it has a relatively good separation but still

not perfect. In the H1H1, H1H2, H2H1 and H2H2 bands, besides the lighted corners,
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Figure 20: The generators of 2-D DAS for the directional tight framelet filter bank in
Example 4.3.2 on Z2, real part (level=3).
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Figure 21: The generators of 2-D DAS for the directional tight framelet filter bank in
Example 4.3.2 on Z2, imaginary part (level=3).
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k a(k) b1(k)
0 0.005859375 0.000634295950037 + 0.002825770851695i
1 0 0
2 -0.048828125 0.100326740979554 - 0.002508343205915i
3 0 0
4 0.29296875 -0.379695998223867 + 0.008967964875470i
5 0.5 0.349385621484342 + 0.054126587736527i
6 0.29296875 -0.029740276953096 - 0.072397559879213i
7 0 0
8 -0.048828125 -0.032087361783393 + 0.013079942373205i
9 0 0
10 0.005859375 0.000634295950037 + 0.002825770851695i

Table 2: Coefficients of the directional tight framelet filter bank in Example 4.3.3

there is still energy left elsewhere. This makes its directionality in the imaginary parts

worse than real parts.

Example 4.2.4. Let

a ={0.00069616789827,−0.02692519074183,−0.04145457368921, 0.19056483888762,

0.58422553883170, 0.58422553883170, 0.19056483888762,−0.04145457368921,

− 0.02692519074183, 0.00069616789827}[0,9].

We have sr(a) = 5, c = 9. Take nb = 2, then there exists d(z) := −0.00612281849z4 +

0.1917188309z3 − 0.00612281849z2 such that dd⋆ = detNa|nb
.

The coefficients of the directional tight filter bank are given as in Table 3. and

b2(k) = b1(9− k).

The 1-D refinable functions (φ,ψ1 and ψ2) are given in Fig 27. The stem figure in

1-D are given in Fig 28. In 2-D, the frequency domain are shown in Fig 29. Generators

of 2-D DAS are given in Fig 30 and 31.

This example has much smoother generators and shows perfectly the directions in

both real and imaginary part. This is due to a relatively longer support and a smoother

scaling function (as shown in Fig 27).
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Figure 22: The scaling function φ and wavelet functions ψ1 and ψ2 of the directional
tight framelet filter bank in Example 4.3.3.
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Figure 23: Stem plot of the generators of the 1-D DAS of the directional tight framelet
filter bank in Example 4.3.3.
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Figure 24: Grey-scale plot of the 2-D directional filter bank in frequency domain (Ex-
ample 4.3.3), obtained from tensor product.
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Figure 25: The generators of 2-D DAS for the directional tight framelet filter bank in
Example 4.3.3 on Z2, real part (level=3).
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Figure 26: The generators of 2-D DAS for the directional tight framelet filter bank in
Example 4.3.3 on Z2, imaginary part (level=3).
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k a(k) b1(k)
0 0.00069616789827 0.000703645838835 + 0.000502784839885i
1 -0.02692519074183 -0.027214409731390 - 0.019445851711510i
2 -0.04145457368921 -0.035989236107445 - 0.021667328937135i
3 0.19056483888762 -0.035989236107445 - 0.182297139143435i
4 0.58422553883170 0.472081944429775 + 0.222907534952195i
5 0.58422553883170 -0.472081944429775 + 0.222907534952195i
6 0.19056483888762 0.035989236107445 - 0.182297139143435i
7 -0.04145457368921 0.035989236107445 - 0.021667328937135i
8 -0.02692519074183 0.027214409731390 - 0.019445851711510i
9 0.00069616789827 -0.000703645838835 + 0.000502784839885i

Table 3: Coefficients of the directional tight framelet filter bank in Example 4.3.4
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Figure 27: The scaling function φ and wavelet functions ψ1 and ψ2 of the directional
tight framelet filter bank in Example 4.3.4.
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Figure 28: Stem plot of the generators of the 1-D DAS of the directional tight framelet
filter bank in Example 4.3.4.
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Figure 29: Grey-scale plot of the 2-D directional filter bank in frequency domain (Ex-
ample 4.3.4), obtained from tensor product.
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Figure 30: The generators of 2-D DAS for the directional tight framelet filter bank in
Example 4.3.4 on Z2, real part (level=3).
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Figure 31: The generators of 2-D DAS for the directional tight framelet filter bank in
Example 4.3.4 on Z2, imaginary part (level=3).
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Chapter 5

Summary and Future Work

To capture line-shaped singularities in images, the discrete framelet transform has

many preferred properties compared to other wavelet-based image processing tools. It-

s filter bank structure makes it easy to implement and also computationally economic.

Meanwhile, the redundancy of high-pass filters provides possibility to obtain direction-

ality. In this thesis, we study the construction of finitely supported directional tight

framelet filter banks.

We use a frequency-design strategy to construct 2-D directional framelet filter banks

via tensor product. Because 2-D Fourier transform has a nice property, that is, a

directional singularity is kept through this transform, only rotated by an angle of 90◦,

we look for a filter bank which has a good frequency separation, so that each of the

tensor products is concentrated at a certain quadrant in the frequency domain, thus

result in diagonal directions in time domain.

Given a symmetric low-pass filter, we get directional tight framelet filter banks from

symmetric ones through a unitary transform. Theoretically, we give a necessary and

sufficient condition for the existence of such filter banks. The explicit expression of

a constant unitary transform is provided, which makes the best frequency separation

and yields good directionality.

We then give a specific algorithm to construct such tight framelet filter banks with

finite support. Examples with 4 directions (0◦, 45◦, 90◦, 135◦) are provided. Some of

them have very clear directionality (Figure 20, Figure 31), while some are not so good.

The main defect of our results is that the directionality of some filter banks is not

satisfactory. There are several reasons possibly explaining for this problem. One is
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the length of filter support. In our algorithm we seek for filters with shortest support.

This reduces the freedom hence even we get the optimal frequency separation, it is

still not quite ideal (see Figure 14). Finally the refinable functions in time domain do

not have a perfect directionality. The other one is the essence of the low-pass filter.

If the low-pass filter itself is not smooth enough, the high-pass filters can never have

smoothness (Figure 4.2).

The tensor product strategy has its own advantages as well as drawbacks. Com-

pared to the direct construction of 2-D (tight) framelet filter banks, construction via

tensor product reduces the problem into 1-D case, which is the most studied. This

enables us benefit from a lot of known theoretical results, for example, [8] and [6].

However its limitation is also clear: it is only feasible for relatively less directions. In

this thesis, we deal with the tensor product of framelet filter banks with 2 high-pass fil-

ters. The tensor products have 4 different directions in 2-D. If we want more directions

for better image processing performance, we naturally need more generators. It is an

advantage of tensor product strategy, meaning that we have more flexibility to choose

freely how many directions we need. But at the same time, the more generators we

have, the higher complexity we will encounter. If we want more than 100 directions,

the complexity can be astonishing.

We hereby give some future directions we shall work on.

The first is to extend the support of the filters. In our algorithm we calculate the

high-pass filter with the shortest support, but indeed we can have longer supports. In

Chapter 2 we used a constant matrix A for the construction. However, if A is not a

constant, i.e., a unitary matrix of polynomials then we have more degrees of freedom

and could promisingly get better directionality.

The second possibility is to construct ”better” low-pass filters. In this thesis we

always presume that we have known the low-pass filter. Nonetheless we can see that

the low-pass filter plays a fatal role as the properties of high-pass filters highly rely on

it. For example, the vanishing moments of high-pass filters are restricted by the sum
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rule of a. So we can focus on finding better low-pass filters. It can also be seen from

our examples. In Example 2, because the low-pass filter has jumps in the time domain,

the high-pass then always have block-like effects. So if we can find a smooth enough

symmetric filter, we are more likely to find a filter bank with better directionality.

For a more general topic, the construction of directional tight framelets, we have

more strategies to get better directionality. A possible future work is to increase the

number of generators. We only deal with filter banks with 2 generators here. But

in fact framelet filter banks are quite flexible with the number of high-pass filters. It

can be modified to satisfy different demands. When we pursue for less computational

cost, we can have less generators to make less redundancy. But when we need better

performance and pay more attention to effectiveness, we can have more generators, or

redundancy to help get more directions and therefore improve the accuracy.
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