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Abstract 

Reservoir simulation models play an important role in the production forecasting 

and field development planning. To enhance their predictive capabilities and 

capture the uncertainties in model parameters, stochastic reservoir models should 

be calibrated to both geologic and flow observations. The relationship between 

production performance and model parameters is vastly non-linear, rendering 

history matching process a challenging task. 

The Ensemble Kalman Filter (EnKF) is a Monte-Carlo based technique for 

assisted history matching and real-time updating of reservoir models. EnKF 

works efficiently with Gaussian variables, but it often fails to honor the reference 

probability distribution of the model parameters where the distribution of model 

parameters are non-Gaussian and the system dynamics are strongly nonlinear.  

In this thesis, novel sampling procedures are proposed to honor geologic 

information in reservoirs with non-Gaussian model parameters. The 

methodologies include generating multiple geological models and updating the 

uncertain parameters using dynamic flow responses using iterative EnKF 

technique.  

Two new re-sampling steps are presented for characterization of multiple facies 

reservoirs. After certain number of assimilation steps, the updated ensemble is 

used to generate a new ensemble that is conditional to both the geological 

information and the early production data. Probability field simulation and a 

novel probability weighted re-sampling scheme are introduce to re-sample a new 
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ensemble. After the re-sampling step, iterative EnKF is again applied on the 

ensemble members to assimilate the remaining production history. 

A new automated dynamic data integration workflow is implemented for 

characterization and uncertainty assessment of fracture reservoir models. This 

new methodology includes generating multiple discrete fracture network (DFN) 

models, upscaling the models for flow simulation, and updating the DFN model 

parameters using dynamic flow responses. The assisted history matching 

algorithm entails combining a probability weighted sampling with iterative 

EnKF. 

The performances of the introduced methodologies are evaluated by performing 

various simulation studies for different synthetic and field case studies. The 

qualities of the final matching results are assessed by examining the geological 

realism of the updated ensemble using the reference probability distribution of 

the model parameters and computing the predicted dynamic data mismatch. 
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Chapter 1: General Introduction 

1.1 Dynamic Data Integration and History Matching 

Reservoir simulation models play an important role in the production forecasting 

and field development planning. To enhance their predictive capabilities and 

capture the uncertainties in model parameters, stochastic reservoir models should 

be calibrated to both geologic and flow observations. Development of a 

practical, robust and efficient technique for dynamic data integration and history 

matching petroleum reservoirs is a problem of great interest. The knowledge of 

the parameters of the reservoir is limited to the observations at the well 

locations. Such data are sparsely distributed in the reservoir and data from other 

resources such as seismic that might be available for the whole reservoir lack 

precision and are indirectly related to some model parameter. Generally, lack of 

information casts uncertainty into the problem of reservoir characterization.  

History matching is a non-linear inverse problem involving multivariate 

probability distributions of the reservoir model properties. The main objective of 

history matching is to optimize the value of uncertain static model parameters 

based on the dynamic observed data. History matching of continuous rock 

properties such as porosity and permeability distributions in heterogeneous 

formations can be achieved using various data assimilation techniques. An 

increasing effort is being made to develop organized methodologies for 

assessing the uncertainties in the models parameters and their conditional 

distributions. Advances in computer technology and the availability of low cost 
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and high speed computers have also generated an interest in the application of 

automated optimization techniques. Many authors such as Oliver and Chen 

(2011) have presented thorough reviews of different available techniques in 

recent years. 

1.1.1 Gradient based method 

In history matching the unknown model parameters can be estimated by 

minimizing an expression called the objective function. The objective function is 

normally based on the square difference of the predictions as compared to the 

observed data. 

2

),(),()( tXftXfXL history 
, ‎1-1 

where ),( tXfhistory is the historical observation and ),( tXf is the response of the 

model parameter state vector X.  

Algorithms‎similar‎to‎Newton’s‎method‎are‎applied‎further to update the vector 

of the unknown model parameters. 

kkkk PXX 1 , ‎1-2 

where k is the iteration step, k is the step size and kP is the search direction. 

Several optimization techniques rely on the aforementioned procedure. These 

methods fall into the category of Gradient-Based methods. In order to find the 

minimum of the objective function L, its gradient with respect to X should be 

zero. 
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0 LX . ‎1-3 

In other words, the derivative of L with respect to all elements of the model 

parameter vector X should be zero. Using the Taylor Series expansion, the 

following expression is derived: 

)().(1

1 kkkk XLXHXX  

 , ‎1-4 

where )( kXH is the Newton Hessian matrix, described by   T

kXL )( . One 

difficulty with solving reservoir history matching problems using gradient based 

methods is the computation of the Hessian matrix.  

A major drawback of the gradient based approaches is the fact that the reference 

statistics of the model parameters are not taken into account. The initial guess is 

normally generated based on the reference statistics such as a reference 

distribution and a variogram (describing the spatial correlation). During the 

successive updates of the model parameter, the term which is added to the first 

guess, destructs the reference statistics.  

Besides, the technique by definition, searches in the neighbourhood of the initial 

guess for the optimal solution. As a result, the solution is a local minimum which 

may be far away from the global optimum that is the scope of the history 

matching of petroleum reservoirs. 

1.1.2 Adjoint method 

As mentioned earlier, one of the drawbacks of the gradient based techniques is 

the difficulty in the calculation of the gradients and the Hessian matrix. In other 
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words, the sensitivity of the model variables such as pressure and saturation to 

the changes in the model parameters should be known. The gradients needed in 

the gradient based optimization techniques can be efficiently calculated by 

solving the adjoint system of equations.  

The adjoint method is a well-known approach for history matching where the 

gradient of the loss function (squared data mismatch) and in particular the 

direction of the change is calculated by the adjoint method. The adjoint equation 

provides the sensitivity coefficients. Oliver et al. (2008) have presented some 

simple examples for the application of adjoint method for the history matching 

of a one dimensional problem. They have further described the technique in 

detail for complicated problems.  

1.1.3 Markov Chain Monte Carlo  

Markov Chain Monte Carlo has been extensively implemented in different fields 

to construct models of uncertain events. Its applications vary from financial and 

business applications to optimization problems. Markov Chain Monte Carlo is an 

iterative method which is based on the Markov chain that eventually converges 

to a fixed probability distribution. Model parameters can be considered as a 

Markov chain if the probability of the posteriors depends on the priors. 

Each iterative step of this method consists of a proposal and an acceptance step. 

The model parameters of the simulation model are considered as a Markov 

chain. The probability of generating a realization only depends on the preceding 

realization (Oliver et al. 2008). Consider a realization of model parameter to be
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)(uX i
, where i represents the step of the Markov chain, then each possible 

model realization has a probability i with )(uX i
. It is desired to proceed with 

the steps in the chain towards a realization that matches the observations with a 

root mean square error which is less than the previous realization. The 

successive update of the model parameter is carried on until an acceptable match 

of observed data is achieved. The method defines a transition probability Pij that 

should be cautiously specified for the changes from state i to state j. The 

probability associated with state j ( j ) is defined as the sum of the products of 

transition probability Pij and the probability of state i ( i ). 

 Pijij 
. ‎1-5 

An acceptable transition matrix is determined based on several conditions. The 

conditions must be satisfied to make the Markov chain stationary (Goodman 

1999).  

Transition matrix should satisfy a reversibility condition: 

ji

j

ij

i PP  
. ‎1-6 

The transition matrix is written as a product of two components: 

ijijij qP 
, ‎1-7 

where ijq , is the probability of proposing a transition state, and ij , is the 

acceptance probability. 

Hasting proposed an acceptance probability in the following form: 
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












ji

j

ij

i

ij
q

q




 ,1min

. ‎1-8 

If the proposed transitions are symmetric, accepting a proposal is conditioned to 

the ratio of the probability of being in the two states. If the proposed transition is 

rejected, the old state is repeated in the chain. 

The prescribed technique has the capability to generate realizations that are 

conditioned to the hard data and at the same time honor the reference statistics. 

In order to condition the data to the observed production history, the acceptance 

probability should account for the conditional probability based on the 

observations. The acceptance probability ratio is expressed by means of the 

Bayes rule that incorporates the likelihood function that is the probability of 

observing the dynamic data given a particular model parameter vector. After 

changing the model parameters, the reservoir model should be ran from the 

beginning to account for the state variables and estimate the likelihood. 

Srinivasan et al. (2000) used proxy functions to reduce the excessive 

computations for the evaluation of the likelihood functions. This multipoint 

proxy captures the underlying non-linear relationship between the input 

permeability field and the output response variables using neural network theory. 

The multipoint proxy function significantly reduces the computational costs. 

However the Markov Chain Monte Carlo method itself requires large number of 

iterations to converge to a stationary distribution. This is mainly because of low 

acceptance ratios for transitions to a new state when the number of parameters in 

a model is large. 
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1.1.4 Simulated annealing 

Annealing is a heat treatment process in which a solid material is heated above a 

critical temperature, and then cooled. The slow cooling schedule of the process 

causes the solid material to form a new homogeneous crystalline structure with a 

minimal energy. As a result of new crystalline structure the solid will have 

altered properties such as hardness and strength. By analogy, simulated 

annealing is a probabilistic method which searches for a global minimum 

implementing certain cooling schedules.  

The idea of simulated annealing comes from Metropolis et al. (1953), where they 

numerically simulated the molecular behaviour when the energy level of the 

system is altered. Kirkpatrick et al. (1983) implemented the idea of the 

Metropolis algorithm and applied it to optimization problems. The idea is to use 

a control parameter, like temperature, to search for feasible solutions and find 

the global minimum of the objective function. 

Simulated annealing algorithm has been applied to find the global minimum in a 

number of engineering problems; namely, statistical mechanics, image 

processing, hydrology, seismic inversion and history matching of petroleum 

reservoirs. It has shown potential as a global optimization technique for history 

matching of petroleum reservoirs. Besides, simulated annealing has the 

capability to generate geologically realistic model parameters using data from 

various resources. Hard and soft reservoir data are utilized within the algorithm 

to prepare solution proposals. 
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Despite the aforementioned statements, application of simulated annealing to 

petroleum reservoir characterization is too expensive. Actual reservoir models 

are composed of thousands of grid blocks, and the parameters of each and every 

grid block has to be optimized. History matching and finding the global optimum 

of such large model parameter space through simulated annealing requires many 

iterations and lots of computational efforts (e.g. Gomez et al. 2001). 

Acceptance criteria 

An essential part of the simulated annealing is the regulation for accepting and 

rejecting a certain perturbation. The acceptance criteria in simulated annealing 

have its route back into thermodynamics, where the probability of an increase in 

energy (δE) of a substance at temperature, T, is described by: 








 


kT

E
EP


 exp)(

, ‎1-9 

where k is‎ the‎ Boltzmann’s‎ constant.‎ By‎ analogy‎ in‎ simulated‎ annealing‎ the‎

probability for the acceptance criteria is described by: 













 




j

jj

T

ee
P

)(
exp

1

, ‎1-10 

where Tn is a monotonically decreasing positive number derived from the 

cooling schedule and ej is the magnitude of the objective function at step j. 

Cooling schedule 

Based on equation ‎1-10, at high temperatures many solutions are accepted, and 

as the system cools down, very few bad guesses are accepted. Initially a high 

temperature is used to permit movements to any neighbourhood state. However, 
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if the starting temperature is too high, it allows any movement and will become a 

random search. As the data are matched the temperature is reduced to admit 

good model proposals. The temperature can decrease until it reaches zero, or a 

suitably low temperature or when the system is unchanging at the any 

temperature. 

Discretized space 

While implementing simulated annealing algorithm, same as other global 

optimizations techniques, the space of the estimation parameters should be 

discretized. In different problems the model parameters might take value from 

continues distribution. However, practically it requires excessively large 

computational time to optimize a value from a continuous space. As a result the 

parameter estimation space is discretized into finite number of discrete values. 

N

UU
U ii

i

minmax 


, ‎1-11 

1.1.5 Kalman filter algorithms 

Kalman filter  

The Kalman filter (Kalman 1960) is a set of mathematical equations which uses 

a series of measurements observed over time to estimate the state of a process. It 

is a predictor corrector (recursive) algorithm which minimizes the mean square 

error. An underlying assumption of the Kalman filter is that the system dynamics 

are linear and the errors and measurements follow a Gaussian distribution.  

The Kalman filter deals with the problem of estimating the current state of a 

process that is described by the following stochastic differential equation: 
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11   kkkkkk wuBxAx
, ‎1-12 

where, kA  is the state transition model, kB is the control input model that is 

applied to the control vector ku and 1kw is the process noise with a mean of zero 

and a covariance of Q : 

),0(~)( QNwP . ‎1-13 

The measurement z is defined as: 

kkkk vxHz 
. ‎1-14 

where, kH is the observation model and kv is the measurement noise with a 

mean of zero and a covariance of R : 

),0(~)( RNvP . ‎1-15 

The priori state estimate, which is based on the knowledge of the system at step 

k, is defined as 

kx̂ . The posterior state estimate at step k, using the measurements

kz is defined as kx̂ . The prior estimate error is defined as   kkk xxe ˆ  and the 

posterior error is kkk xxe ˆ . 

The correctness of the state estimates is measured by means of error covariance 

matrices. The priori estimate error covariance is defined as: 

 T

kkk eeEP  
. ‎1-16 

The posteriori estimate error covariance is defined as: 
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 T

kkk eeEP 
. ‎1-17 

The posteriori state estimation kx̂  is defined as a linear combination of the priori 

estimate 

kx̂  and a weighted difference between an actual measurement and the 

predicted measurement: 

   kkkk xHzKxx ˆˆˆ
, ‎1-18 

where K is the Kalman gain and minimizes the posteriori noise covariance: 

    1  RHHPHPK T

k

T

k . ‎1-19 

The Kalman filter can be described as two different steps, predict and update. 

The prediction phase uses the current state to estimate the state at the next step. 

In the update phase, the priori estimates and the current observations are used to 

improve the state estimate. 

As mentioned earlier, Kalman filter minimizes the mean square error. The 

expected value of the square error in the posteriori estimate error is:  

  2
ˆ

kk xxE 
. ‎1-20 

Minimizing the expected value of the square error is the same to, minimizing the 

trace of the posteriori estimate error covariance matrix, which is Pk. The trace is 

minimized when its derivative with respect to the gain is set to zero. This leads 

to the Kalman gain which minimizes the mean square error. 
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Extended Kalman filter 

The extended Kalman filter is an extension of the Kalman filter, to address the 

filtering problem when the system dynamics are nonlinear. For nonlinear 

problems, the relationship of the state and observations can be written as: 

  11,   kkkk wuxfx
. ‎1-21 

The data relationships are also defined as: 

  kkkk vxgz 
. ‎1-22 

Predict and update steps of the extended Kalman filter are similar to Kalman 

filter. The terms in the formulations are defined as follows: 

11 ,ˆ 





kk wx

k
x

f
A

. ‎1-23 

kx

k
x

g
H

ˆ




. ‎1-24 

The formulation means that the nonlinear relationships are approximated by 

linearized relations. In other words, extended Kalman filter linearizes about the 

mean and the covariance. As a result, if the predict and the update functions are 

highly nonlinear, application of the extended Kalman filter will result in poor 

estimates. Furthermore, it is noteworthy that, application of extended Kalman 

filter requires computation of the kH , which is cumbersome and computationally 

expensive. 
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Unscented Kalman filter  

The Unscented Kalman filter is used to address the approximation issues of the 

extended Kalman filter. It uses unscented transform to pick a set of sample 

points around the mean. As a result it is a derivative free technique and also 

provides superior estimates with a same computational efficiency as extended 

Kalman filter. Unscented transform gives correct mean up to third order and 

covariance up to the second order for any function. Linearized mean is correct 

only up to first order. Covariance in unscented transform and linearization has 

the same order of accuracy. However, the magnitude of the error is smaller in 

unscented transform. 

1.2 Ensemble Kalman Filter 

The Ensemble Kalman Filter (EnKF) has gained popularity over recent years as 

a Monte-Carlo based technique for assisted history matching and real time 

updating of reservoir models (Lorentzen et al. 2001; Aanonsen et al. 2009). The 

EnKF procedure utilizes an ensemble of model states (e.g. realizations of 

reservoir properties such as porosity and permeability) to approximate the 

covariance matrices used in the updating process. The initial ensembles are 

generated based on prior knowledge of the reservoir, while the sequential 

updates lead to a sampling of the posterior probability function.  

Recently, EnKF has been successfully used for history matching of simple 

conventional reservoirs (a complete list is available in Oliver et al. 2011). 

However, it has the potential to be implemented for history matching and 

characterization of unconventional reservoirs with complex processes. Such 
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applications range from reservoir characterization of heavy oil reservoirs that 

undergo thermal recovery processes such as SAGD, to fractured reservoirs with 

complex geology and fluid flow patterns (Gul et al. 2011, Nejadi et al. 2012a). 

EnKF propagates an ensemble of initial reservoir realizations along time to 

assimilate data.  

The main procedure for EnKF contains two parts. Firstly, in the forecast step, the 

forecast model is applied to each ensemble separately, using the reservoir 

simulator: 

, ,

1

, ,

1

, 1,...,

p j a j

k k

ep j a j

k k

u m
g j N

d u





   
    

   
, 

‎1-25 

In the above equation, m and u denote the model and state variables, 

respectively, and dk represents the predicted production data at k
th

 step. The 

superscripts, p and a, specify the predicted and analyzed states, respectively.  

Fluid flow in porous media is governed by the law of conservation of mass and 

Darcy’s‎equation.‎Multiphase‎fluid‎flow‎in‎a‎reservoir‎with‎no‎flow‎boundary‎is‎

described by the following partial differential equation: 

 
 

.
l l

l l l l

s
v q

t

 
  


  


. 

‎1-26 

In the above equation l represents the fluid phase that is oil and water  ,l o w . 

The velocity term lv of phase l is‎calculated‎from‎Darcy’s‎law 

 rl
l l l

l

Kk
v p g d


     , 

‎1-27 
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where pl and 
l denote the pressure and  viscosity of phase l respectively. g is 

the gravitational acceleration and K is the permeability tensor.  

The permeability tensor, K, is in the following form:  

xx xy xz

yx yy yz

zx zy zz

k k k

K k k k

k k k

 
 

  
 
 

 

In conventional homogenous reservoirs, the grid blocks of the reservoir 

simulation model are defined along three directions that transform the 

permeability tensor into a diagonal matrix. Specifically, a pressure drop along 

the coordinate directions would only yield to fluid flow in same path. 

0 0

0 0

0 0
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z

k

K k

k

 
 


 
  

 

Assuming an isotropic permeability and substituting Darcy velocity from 

equation ‎1-27 into equation ‎1-26 the following partial differential equation is 

obtained: 

 
 

l. g
l lrl

l l l l

l

skk
p d q

t

 
   



 
       

 
. 

‎1-28 

Considering the following relations 

1o ws s  . ‎1-29 

( )o w ow wp p pc s  . ‎1-30 
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where  pc denotes capillary pressure. Assuming that density depends only on 

pressure, the second term in equation ‎1-26 can be written as 

 l l l l l l
l l l l

l l

s p p s
s s

t p t p t t

   
   

    
  

     
. 

‎1-31 

Assuming that oil and water density depends on the pressure, the compressibility 

terms are defined as 

1 l
l

l l

c
p









. 

‎1-32 

The rock compressibility is also defined as 

1
r

l

c
p









. 

‎1-33 

Substituting equation ‎1-29 and the compressibility terms (equations ‎1-32 and ‎1-

33) in equation ‎1-38, the following equations are obtained for oil and water 

phases: 
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 .
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‎1-35 

The above equations are discretized in the grid system of the reservoir and 

considering phase behavior equations of the reservoir fluids, and the relative 

permeability correlations, reservoir simulation software are used to solve the 



17 

 

fluid flow equations which are considered as forecast model. In this study the 

commercial reservoir simulation software Eclipse black-oil (2011) and CMG 

(2013) are used as the forecast model. 

In the second step of EnKF, update step is applied using the observation data 

(  ) for all ensemble members. The ensemble of vectors is denoted by: 

 eN
kkkk yyy ,...,, 21 , ‎1-36 

where    is the total number of realizations and             are state 

vectors. State vector consist of model parameters (m), such as porosity and 

permeability, state variables (u), such as pressure and saturation, which are time 

dependent variables, and observations (d), such as production and pressure 

records. 



















k

k

k

k

d

u

m

y , 

‎1-37 

where k denotes the time step in which data are assimilated.  

In the second (analysis) step, the state vectors are updated with the observation 

data dk
j
 using following equation  

 jp

k

j

kk

jp

k

ja

k HydKyy ,,,  , ‎1-38 

The forecast and analysis steps are repeated sequentially in time whenever new 

observations are available. H is the observation operator, which represents the 

relationship between the state vector and the observation vector 
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 IH |0 , ‎1-39 

where j

kd  is the summation of the observed production data at the thk  

assimilation step ( ,obs kd ) and εk
j
, a vector of measurement errors such that 

  D

T CE   

j

kkobs

j

k dd  , , ‎1-40 

Kalman gain    is defined as: 

  1
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p
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, 
‎1-41 

where p
ky

C  is the state cross covariance matrix and DkC  is the measurement error 

covariance matrix. The cross covariance matrix is estimated from the ensemble 

of state vectors as  
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‎1-42 

where T indicates matrix transpose, and p

ky is the average of all posterior state 

vectors. The forecast and update steps are repeated as new observations become 

available. 

Storing large covariance matrices requires lots of memory and calculating the 

inverse of the covariance matrices requires large computational effort, especially 

when a reservoir with large number of grid block and large number of wells is 

tackled. While applying EnKF, in order to estimate the Kalman gain, the inverse 

of a matrix with a size of n by n (n=total number of observations) should be 

calculated. Number of observations is normally very small as compared to the 
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number of grid blocks, as a result, calculating the inverse matrix is fast and does 

not require large computational effort. The   
  
    matrix is fairly large (m+n by 

m+n, where m is the total number of unknown model parameters and n is the 

total number of observations). However, this matrix is not directly used in the 

computations (compare with other history matching algorithms, such as gradient 

based technique, where, it is required to calculate the Hessian matrix and its 

inverse). Using simple mathematical simplifications, calculation and storing this 

large matrix can be avoided. 

1.2.1 Ensemble size  

The Ensemble Kalman filter is highly dependent on the size and the 

characteristics of the initial ensemble (Houtekamer and Mitchell 2000).  The 

ensemble should be statistically representative of the problem. In other words the 

ensemble should provide sufficient information to map the uncertainties 

associated with the model. The ensemble size is normally smaller than the size 

of state in EnKF. If the ensemble size is so small, it is not representative of the 

model and the problem is under sampled. 

Practically it is not possible to include very large number of realizations. 

Considering the computational costs, the ensemble size should be limited for 

practical applications. This is of high importance for petroleum reservoir history 

matching problems, where simulation of each ensemble member would take 

several hours or days. Generally, realizations should be conditioned to the hard 

data and follow the reference distributions and the ensemble should be large 
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enough to incorporate the noise and the uncertainties in distribution and spatial 

correlation of the data. The ensembles having on the order of 100 realizations are 

considered to be large enough for practical applications (Houtekamer and 

Mitchell 2000). 

Spurious correlation and non-physical updates 

EnKF analysis can result in updated variables that exceed certain bounds. The 

issue has been reported by several authors while applying EnKF for assimilation 

of different physical models. Several authors have reported and discussed non-

physical saturation and pressure values in application of EnKF for petroleum 

reservoir history matching problems (Zafari and Reynolds 2007). The saturation 

values should lie in the range of irreducible water saturation (Swi) and 1-Sor in 

waterflooding models. However, close to the displacement front of 

waterflooding problems, saturation data are non-Gaussian (bimodal) and cannot 

be accurately approximated by a Gaussian distribution. As a result, non-physical 

saturation values are obtained. Normally, the saturation values beyond the 

physical bounds are truncated before advancing the simulator to the next time 

step. Even with truncation, the values are not consistent with the model 

variables. Lorentzen et al. (2012) have rerun the models from the initial 

condition at each assimilation time step to calculate the dynamic variables. They 

have mentioned that for their synthetic two dimensional models there is no major 

change in computational time. Gu and Oliver (2006) have proposed different 

methods (normal score transform of saturation, use of the location of water 
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shock front instead of saturations and iterative schemes) to prevent non-physical 

water saturations. 

The limited ensemble size can also cause spurious correlations. Naturally 

parameters of the grid blocks which are located far from a specific observation 

are not correlated. However, it can introduce noise in the analysis. A common 

approach is to use localization techniques to prevent spurious long distance 

correlations and limit the influence of observed data. The technique modifies the 

error covariance matrices and suppresses the effect of far observations. It 

increases the degrees of freedom of the problem and it prevents or at least delays 

filter divergence (Emerick and Reynolds 2010). 

Ensemble collapse and loss of ensemble variance  

EnKF relies on statistical measures of the ensemble when computing the 

updates. If the ensemble size is not sufficiently large, sampling errors affect 

statistical measures and results in poor approximation to the cross covariance 

matrix. This leads to unphysical updates of reservoir properties and loss of 

ensemble variability.  

For field case applications, the size of the ensemble should be kept small for 

computational efficiency. In such applications, poor cross covariance 

approximation results in very large Kalman gain values and unrealistic updates, 

as a result ensemble variance would diminish after several assimilation steps. 

The updated models collapse toward a particular response which does not honor 

static information and reference statistics (e.g. histogram and semi-variogram or 

covariance) inferred from the reference geologic information. This problem is 
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referred to as ensemble collapse and is resolved by implementing covariance 

localization (Zhang and Oliver 2010) and re-sampling (Emerick and Reynolds 

2012, Nejadi et al. 2014 a,b). 

1.2.2 EnKF for non-Gaussian reservoir model parameters 

As mentioned earlier, the underlying assumption of Ensemble Kalman filter is 

that the prior joint pdf is Gaussian when computing the updates and EnKF will 

not converge to the correct distribution, identified by geological studies, if the 

prior joint pdf has non-Gaussian contributions (e.g., multimodal distribution, 

curvilinear, and channelized features). In many cases, statistics of the final 

updated model variables would deviate significantly from the non-Gaussian 

distribution exhibited by the initial model states. In other words the estimated 

posterior pdf is not consistent with the prior distribution (Zafari and Reynolds 

2007). 

This assumption of Gaussianity implies that the conventional EnKF method 

must be modified such that it can be applied for models whose petrophysical 

properties are not characterized by multivariate Gaussian distributions (Evensen 

2007, Aanonsen et al. 2009).  

1.2.3 Parameterization techniques 

It is well-known that large scale inverse problems such as history matching of 

petroleum reservoirs are ill-posed and the problem does not have a unique 

solution. Conceptually there exists infinite number of models that match the 
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observed data. Parameterization techniques are applied in order to reduce the 

number of unknown model parameters and make the problem better-posed.  

Parameterization techniques have been introduced to reduce the number of 

model parameters and the associated computational cost to calculate the 

sensitivity coefficients at every location in the reservoir. A small set of critical 

model parameters or the basis functions of the transformed model parameters 

that incorporate the main portion of the model variance are retained and adjusted 

to history match the model. Furthermore, regularization by parameterization is 

implemented to transform the non-Gaussian model parameters into one or a 

combination of Gaussian variables.  

Discrete Cosine transform 

Discrete Cosine Transform (DCT) has its roots in image processing (Jain 1988, 

Rao and Yip 1990). It is a Fourier-based transform that is applied to decompose 

the model parameters into a set of orthonormal cosine functions. The coefficients 

of the retained cosine functions are used instead of the actual model parameters. 

In order to reduce the size of parameter space, largest DCT coefficients are 

selected and used. DCT is widely used in signal and image processing for data 

compression. The one-dimensional DCT ( kX ) of a signal nx  of length N is 

defined as: 
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The inverse DCT is defined as: 
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From the equations, it can be seen that both transformation and the inverse are 

separable. In other words, a multidimensional transformation can be performed 

by several one dimensional transforms. 

DCT is implemented to parameterize the non-Gaussian model parameters into 

coefficients of the retained cosine basis functions. These coefficients are 

incorporated into the state vector and updated in the EnKF procedure. Jafarpour 

et al. (2008) have introduced a DCT-EnKF procedure, where, the coefficients of 

the retained cosine functions were included in the state vector instead of actual 

model parameters. In order to reduce the size of the model parameter space and 

capture the spatial continuity of different facies, few DCT coefficients are 

included in the state vectors. If the history-matched models contain artificial 

short-scale variability, smoothing algorithms should be implemented (Nejadi et 

al. 2012b). 

Wavelet transform 

Similar to discrete cosine transform, wavelet transform has been extensively 

used in image processing algorithms. Wavelet transform provides a time 

frequency version of the signal (data). Wavelet transform has an advantage over 

the Fourier transform. Wavelet Transform implements a multi resolution 

technique by which different frequencies are analyzed with different resolutions. 

While Fourier transform gives a constant resolution at all frequencies. 
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where x(t) is the signal to be analyzed,  is the basis function and  is the 

translation parameter.  

Sahni and Horne (2005) have proposed a multi-resolution wavelet analysis to 

integrate history data together with the geostatistical information. They have 

used Haar wavelets to parameterize permeability and included both dynamic 

data and variogram of spatial permeability distribution in the objective function. 

Discrete wavelet transform is a wavelet transform of discrete wavelets. Same as 

DCT, the main coefficients of the data are retained and the rest are set to zero. 

The updated (optimized) coefficients are further used to reconstruct the data 

(model parameters). The transformed variables of DWT incorporate the spatial 

distribution, while DCT parameters have no specific spatial relationship. 

Retained DWT parameters follow a distribution which is close to the original 

distribution, while DCT parameters are nearly Gaussian. 

Pilot point method 

The use of pilot points has been proposed by de Marsily et al. (1984) as a re-

parameterization technique in traditional history matching to reduce the size of 

the parameter space (and the associated computational costs) during model 

updating. In this method, the initial realizations of model parameter distributions 

(K(u)|, for all u є‎ reservoir)‎ are‎ generated‎ through‎ stochastic‎ simulation‎

conditioned to the hard data at well locations. Other reservoir information such 
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as soft data (seismic), geological properties and geostatistical parameters 

(variogram model γ(h)) are also utilized in the stochastic simulation.  

The parameter estimations at the specific pilot point locations are perturbed and 

optimized within optimization algorithms. The changes made at the pilot points 

are propagated to other locations by performing conditional simulation using 

model values at pilot points as part of the conditioning data, together with 

geostatistical parameters (e.g. reference distribution and semi-variogram 

models), to preserve the spatial correlation of the model parameters. 

A practical consideration is the specification of the location and number of the 

pilot points, which can be specified in advance. RamaRoa et al. (1995) proposed 

placing the pilot points in high sensitivity zones where they have the highest 

potential to reduce the objective function and correctly locate the 

heterogeneities. Unfortunately, the number of pilot points is inherently 

empirical. 

The number of pilot points should be selected depending on the nature of the 

problem. Factors such as reservoir model, well pattern, production mechanism 

and reservoir heterogeneity in both vertical and horizontal directions should be 

taken into consideration to determine the number of pilot points. The number of 

pilot points may be optimized such that they are large enough to capture the 

adjustments made to model parameters during the optimization steps while being 

small enough to ensure that the entire model parameter space is sufficiently 

sampled.  
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In the pilot point formulations, the locations are selected in prior. All locations in 

the reservoir are sorted, based the impact of the model parameter at that specific 

location on the objective function. The pilot points are located in the high 

sensitivity zones and the estimated values at these locations are propagated to 

other locations, by means of conditional simulation.  

1.2.4 Ensemble Kalman filter for highly non-linear history 

matching problems 

EnKF is sequential updating data assimilation technique. The observed data are 

implemented to update the model parameters as they become available, without 

re-running the simulator from the beginning. Other history matching techniques 

require re-running the simulator from the initial reservoir conditions, as soon as 

the model parameters are updated. EnKF provides estimations of state variables, 

as well as the updated model parameters, at each assimilation step. Burgers et al. 

(1998) have shown that the updated ensemble obtained with EnKF approximates 

the theoretical posterior distribution for large ensemble size for (1) linear 

dynamics and measurements and (2) Gaussian prior and likelihood.  

Applying the updating schemes iteratively during each assimilation step has 

been proposed to address the issues related to non-linearity (Chen and Oliver 

2012; Li and Reynolds 2009). The highly nonlinear relationship between the 

model parameters and the simulation model production data implies that 

assimilating state variables (e.g. pressure and saturation) is not practical and each 
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proposed state requires a run of forward model after every update step to ensure 

consistency among state and model variables.  

1.2.5 Characterization and history matching of multiple facies 

reservoirs 

Facies modeling is a crucial component of geostatistical reservoir 

characterization which facilitates construction of models for complex reservoirs. 

Facies are commonly represented by indicators, which are intrinsically non-

Gaussian. It is important to condition models to reference geologic information 

and dynamic flow data in reservoir characterization. In many cases, static data 

(e.g. conceptual models, log, core, seismic interpretations, and statistics from 

similar fields) are available for reservoir modeling. Therefore, characterization 

of a robust description of geological features such as facies distributions 

(proportions and spatial patterns) and channel properties (e.g. orientation, widths 

and amplitudes) should incorporate all the static information and honor the 

reference statistics (e.g. histogram and semi-variogram or covariance) inferred 

from the reference geologic information. 

Different parameterization approaches can also be found in the literature, which 

are combined with EnKF for history matching of non-Gaussian reservoir model 

parameters. Truncated Pluri-Gaussian (Liu and Oliver 2005, Agbalaka and 

Oliver 2008), Level Set Method (Moreno and Aanonsen 2011), Gaussian 

Mixture Models (Dovera and Della Rossa 2010) and Discrete Cosine Transform 

(Jafarpour et al. 2008 and Nejadi et al. 2014a, b) are some of these 



29 

 

methodologies. Gu and Oliver (2007) implemented Normal Score transform to 

avoid nonphysical saturation values while updating the saturation values by 

means of EnKF. Li et al. (2012) and Nejadi et al. (2012a) have applied normal 

score transform to estimate bimodal distributions of aquifer model parameters 

and permeability tensors in fractured reservoirs, respectively. 

1.2.6 Characterization and history matching of naturally 

fracture and hydraulic fractured reservoirs 

Reservoir simulation models play an important role in the production forecasting 

and field development planning. To enhance their predictive capabilities and 

capture the uncertainties in model parameters, stochastic reservoir models should 

be calibrated to both geologic and flow observations.  

Fluid flow in fractured reservoirs mainly takes place through the network of 

interconnected fractures surrounding matrix blocks. Proper characterization of 

the fracture system is of outmost importance while making a robust model for 

simulation of the multiphase fluid flow in fractured reservoirs. The fracture 

system can be characterized by probability distributions of fracture properties in 

a discrete fracture network model. The relationship between production 

performance and the fracture parameters is vastly non-linear, rendering the 

process of adjusting model parameters to match both static geologic and the 

dynamic production data challenging. 

Traditionally, fractured reservoirs have been treated the same as conventional 

reservoirs, and dynamic model parameters such as permeability, porosity and 
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matrix fracture interaction coefficient are adjusted to match the field production 

performance.  

Several authors have used the parameters of a volumetric grid, which is derived 

from continuous fracture models, as a tuning parameter. Ouenes et al. (1995) 

implemented a neural network to correlate geological information and well 

performance to the reservoir fracture intensity. Ouenes (2000) implemented a 

fuzzy neural network to evaluate the effect of different fracture drivers, such as 

structure, lithology and bed thickness on fractures and develop correlations 

between geological drivers and fracture intensity. The optimized fracture 

intensity map is used for selecting potential infill drilling well locations with 

estimated ultimate recovery higher than certain economic limits. Sezuki et al. 

(2007) have used probability perturbation methods to adjust fracture intensity 

and large-scale fracture trend. They have calculated directional effective 

permeability of the single porosity reservoir simulation model from matrix 

permeability and fracture intensity. Cui and Kelkar (2005) have used a gradient 

simulator and adjoint method for conditioning the fracture intensity to the 

production data. They have used the fracture intensity map to estimate 

directional fracture permeability and matrix fracture interaction coefficient. 

Few authors have focused on characterizing parameters of discrete fractures 

integrating dynamic production data. Gang and Kelkar (2008) have used the 

adjoint method to calibrate permeability of individual fractures as well as the 

capillary pressure curves. They have assumed that the relationship between the 
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grid block effective permeability and fracture permeability is known. Hu and 

Jenni (2005) have used object-based Boolean simulation to define faults and 

fractures in the model. They have implemented the gradual deformation method 

to calibrate the object based model (location, shape and size of the objects) to 

dynamic data. De Lima et al. (2012) have used gradual deformation to 

characterize fault density, fault position and length of a fractal fault model. 

1.3 Problem Statement 

Developing an efficient reservoir characterization, history matching and 

uncertainty assessment technique is a problem of great interest.  

 Ensemble Kalman filter is a Monte-Carlo based technique for assisted 

history matching and real time updating of reservoir models. EnKF 

works efficiently with multivariate Gaussian variables and linear 

dynamics, but it often fails to honor the reference probability distribution 

of the model parameters and to achieve an acceptable production data 

match where the system dynamics are strongly nonlinear, especially of 

the type related to multiphase flow, or if non-Gaussian prior models are 

used.  

 History matching of non-Gaussian multiple facies reservoirs fails to 

honor the reference probability distribution of the model parameters 

inferred from geologic information. This increases the prediction errors 

of the history matched models. 
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Estimation of fracture parameters is often challenging because reservoir 

characterization based on both static and dynamic data is an inverse problem that 

is highly nonlinear and the solutions are not unique. 

 A robust, practical technique that assimilates fracture parameters and 

generates multiple history matched models has not been developed for 

history matching and characterization of fractured reservoirs. 

1.4 Research Objectives 

In this research, dynamic production data and geologic information are 

integrated in an ensemble-based history matching technique to assimilate various 

model parameters of the reservoir model. The principal objective of this work is 

to develop practical ensemble based history matching methodologies that update 

reservoir models honoring both static geological data and dynamic information. 

 Two new re-sampling techniques are proposed for inclusion in the 

conventional EnKF algorithm for characterization and history matching 

of non-Gaussian multiple facies reservoirs. The objectives are to (1) 

preserve facies proportions, (2) preserve spatial pattern and distribution 

of different facies, (3) maintain diversity among realizations during 

updating and avoid ensemble collapse. 

 A novel methodology is proposed for characterization and history 

matching of natural fracture reservoirs and hydraulic fractured wells. 

Dynamic data are integrated to characterize fractures and reduce 

uncertainties in fracture parameters and their spatial distribution. 
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Multiple discrete fracture network models and their equivalent upscaled 

flow simulation models are generated.  The models honor geological data 

and match the dynamic production history. 

 Implementing the methodology for real history matching problems is not 

overlooked in this study. The new methodology is applied for 

characterization and history matching of a multi-stage hydraulic fractured 

shale gas well in the Horn River basin to show that the method can be 

applied to real field applications. 

1.5 Thesis Layout 

The rest of this thesis is organized as follows. Chapter 2 introduces a new step 

for inclusion in the history matching of multiple facies reservoir models using 

EnKF. The new step consists of constructing a facies probability map and 

application of probability field (P-Field) simulation to re-sample a new 

ensemble. Chapter 3 presents a novel probability weighted re-sampling scheme 

within the conventional framework of EnKF. The assimilated ensemble 

members are implemented to sample an improved ensemble, which incorporates 

the dynamic model-updating information of the initial steps and is consistent 

with the static geological data. In Chapter 4, an integrated approach for history 

matching and characterization of natural fractures is presented. This new 

methodology includes generating multiple discrete fracture models, upscaling 

them for numerical multiphase flow simulation, and updating the fracture 

properties using dynamic flow responses such as continuous rate and pressure 

measurements. Chapter 5 implements the methodology discussed in chapter 4, 
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for characterization of a hydraulically-fractured shale gas well in the Horn River 

basin. It demonstrates the applicability of the proposed framework for 

uncertainty quantification of hydraulic fracture parameters for shale gas 

reservoirs. Chapter 6 summarizes the ideas presented in this thesis along with 

suggestions for future research on this topic. 
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Chapter 2: Estimation of Facies Boundaries Using 

Categorical Indicators with P-Field Simulation and 

Ensemble Kalman Filter
1 

2.1 Introduction 

The Ensemble Kalman Filter (EnKF) is a Bayesian updating scheme that 

implements the Monte-Carlo technique for data assimilation. It has been 

introduced to the petroleum engineering industry by Lorentzen et al. (2001) as a 

promising approach for solving high-dimensional history matching problems 

(Aanonsen et al. 2009). The EnKF estimates an ensemble of model states by 

approximating the covariance matrices sequentially in time as new observations 

become available. Each member of the ensemble is updated using an ensemble 

approximation to the Kalman gain, which is approximated from the mean and 

covariance of the prior joint probability density function (pdf). The updated 

ensemble provides an empirical estimate of the posterior joint probability 

distribution. The Kalman filter performs well when there is a linear relationship 

between state variables, model parameters, and the data, with the underlying 

assumption that the prior joint pdf being Gaussian. In theory, the EnKF does not 

converge to the correct distribution, identified by geological studies, if the prior 

joint pdf has non-Gaussian contributions. This could create inconsistencies 

                                                 

1
 A version of this chapter has been published 

Nejadi, S., Trivedi, J., Leung, J., 2014. Natural Resources Research. doi: 10.1007/s11053-014-
9233-0 
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between the estimated posterior pdf and the prior distribution (Zafari and 

Reynolds 2007). 

The conventional EnKF method must be modified such that it can be applied for 

models whose petrophysical properties are not characterized by multivariate 

Gaussian distributions (Evensen 2007; Aanonsen et al. 2009). For instance, 

facies modeling is a crucial component of geostatistical reservoir 

characterization, which facilitates the construction of models for complex 

reservoirs. Facies are commonly represented by categorical data, which are 

intrinsically non-Gaussian. Geostatistical modeling techniques have been 

implemented by various authors to build detailed geological models integrating 

static data (e.g. logs, core, seismic interpretations and statistics from similar 

fields). Modis and Sideri (2013), Yamamoto et al. (2012) and Teng and Koike 

(2007) are some of the recent studies that have demonstrated successful 

applications of the Truncated Gaussian and spline-based interpolation 

techniques. Different parameterization approaches can also be found in the 

literature, which are combined with EnKF for history matching of non-Gaussian 

reservoir model parameters. Truncated Pluri-Gaussian (Liu and Oliver 2005; 

Agbalaka and Oliver 2008), Level Set Method (Moreno and Aanonsen 2011), 

Gaussian Mixture Models (Dovera and Della Rossa 2010) and Discrete Cosine 

Transform (DCT-EnKF) (Jafarpour et al. 2008) are some of these methodologies 

in which the model parameters are transformed into other Gaussian variables, 

which can be assimilated within the EnKF framework. 
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Aside from matching the dynamic flow observations, in order to successfully 

characterize a complex reservoir, it is important to condition the predicted 

models to reference geologic information such as conceptual models, log, core, 

seismic interpretations, and statistics from similar fields. Such data are generally 

available for reservoir modeling and should be incorporated in the studies. 

Therefore, characterization of a robust description of geological features such as 

facies distributions (proportions and spatial patterns) and channel properties (e.g. 

orientation, widths, and amplitudes) should incorporate all the static information 

and honor the reference statistics (e.g. histogram, spatial pattern and variogram 

or covariance) inferred from the reference geologic information. 

While predicting model parameters using EnKF, the initial ensemble is designed 

to account for all uncertainties in the reservoir model. A major portion of the 

ensemble uncertainty will be diminished after a few EnKF update steps 

(Jafarpour et al. 2011), and realizations with poor initial estimates undertake 

major changes to match early production history. As a result of this early update, 

the spatial relation of the properties is destructed, and the model parameter 

variogram will not follow the geological properties of the formation, on which 

the initial ensemble was generated. The calculated experimental variogram along 

different azimuths would deviate from the reference benchmark variogram 

(inferred from static geologic information), and the short-scale variability was 

systematically larger for all the updated realizations.  

The motivation of this chapter is to present a modified approach to honor the 

reference statistics (i.e. histogram, spatial pattern and variogram) within the 
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conventional framework of EnKF using DCT parameterization and by 

incorporating a re-sampling step. After the initial EnKF assimilation steps, the 

updated ensemble members are more consistent with the early production 

history. A re-sampling‎ procedure‎ is‎ implemented‎ to‎ generate‎ an‎ “improved”‎

ensemble of model parameters by P-Field (Srivastava 1992) simulation. The 

probability distributions at all grid block locations and the spatial correlation of 

the probability fields are used in P-Field simulation. The new ensemble 

incorporates the updated model information from the initial steps and consists of 

realizations that are more consistent with both the dynamic and static data. 

2.2 Methodology  

In this section, various components of the implementation are discussed in detail. 

Specific modifications to the conventional EnKF procedure are highlighted. 

2.2.1 Generation of an initial ensemble of facies indicators 

The conditional Sequential Indicator Simulation (SIS) (Deutsch and Journel 

1997) is implemented to generate an initial ensemble of facies distribution. 

Facies observations at the well locations are used as the conditioning data, and 

geostatistical parameters (histogram and variogram model) are typically inferred 

from other regional geologic information 
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Consider the random function )(uZ , nRu in a discretized grid system with N 

grids. A set of conditioning data  hjudd jh ,...,1),(   represents the hard data 

available from well information. The set of data for conditional simulation 

including the previously simulated nodes is represented by i for every location 

ju and  hd0 . The conditional simulation in the grid system with N grids is 

based on sampling from the N-variate distribution conditioned on the set 0  

   011011 )(,...,)(,...,;,...,  NNNN zuZzuZPzzuuF
. ‎2-2 

In this study, it has been assumed that the domain is stationary. Facies 

proportions are assumed to be known, and the same proportions are used to 

generate all ensemble members of the case studies. Furthermore, the spatial 

pattern and continuity of the facies are defined by two-point covariance model 

(or variogram) and multiple-point statistics extracted from a training image in 

the case studies. 

2.2.2 Forecast model 

The forecast model is separately applied to each ensemble member. The 

multiphase fluid flow in petroleum reservoirs is described by material balance, 

momentum balance, phase behaviour descriptions and numerous auxiliary 

equations. This system of non-linear differential equations is solved numerically 

using methods such as finite difference 



40 

 

1

1

p a

k k

p a

k k

u m
g

d u





   
   

   
, ‎2-3 

In the above equation, m and u denote the model and state variables, 

respectively, and dk represents the predicted production data at k
th

 step. The 

superscripts, p and a, specify the predicted and analyzed states, respectively. In 

this study the commercial reservoir simulation software Eclipse black-oil (2011) 

was used as the forecast model. 

2.2.3 DCT parameterization of non-Gaussian facies indicators 

for continuous reservoir model updating in EnKF (DCT-

EnKF) 

The Discrete Cosine Transform (DCT) has its roots in image processing (Jain 

1988; Rao and Yip 1990). It is widely used in signal and image processing for 

data compression. The one-dimensional DCT ( kX ) of a signal nx  of length N is 

defined as 
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The inverse DCT is defined as 
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In our studies, DCT is implemented to parameterize the facies indicators into 

coefficients of the retained cosine basis functions. These coefficients are 

incorporated into the state vector and updated in the EnKF procedure. At the 
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end, they are transformed back into facies indicator values by means of inverse 

DCT transform (Jafarpour et al. 2008). In order to reduce the size of the model 

parameter space and capture the spatial continuity of different facies, few DCT 

coefficients are included in the state vectors. For practical applications, other 

parameterization techniques, which were mentioned earlier, can be applied 

instead of DCT. If the history-matched models contain artificial short-scale 

variability, smoothing algorithms should be implemented (Nejadi et al. 2012a, 

b). 

2.2.4 Implementation of the analysis step  

The analysis step is carried out using the observation data (dk) for all ensemble 

members 
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where ja

ky ,  represents the analyzed state vector, jp

ky ,  is the posterior state vector, 

Kk is the Kalman Gain at k
th

 step, and H is the observation operator, which 

represents the relationship between the state vector and the observation vector: 

 I  0H
, ‎2-7 

ikd is the observation data at the thk  step (dobs,k) plus observation noises (εk) for 

ensemble member i 

kkobsik dd  , , ‎2-8 

Kalman gain Kk is defined as 
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where jp
ky

C ,  is the state cross covariance matrix, and 
kdC  is the error covariance 

matrix.  

The cross covariance matrix is approximated as 
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in which T indicates matrix transpose, and 
p

ky is the average of all posterior state 

vectors. 

The forecast and update steps are repeated as new observations become 

available. 

2.2.5 Re-sampling of the ensemble with probability maps 

In this section, a novel re-sampling procedure is proposed to address two 

common issues associated with conventional EnKF implementation: (1) 

honoring of reference statistics of the model parameters during model updates 

and (2) improving ensemble variability. In this approach, after certain number of 

EnKF‎ assimilation‎ steps,‎ an‎ “improved”‎ ensemble‎ is‎ generated.‎ In‎ order‎ to‎

maintain the diversity among ensemble members, a re-sampling procedure is 

needed to generate a new ensemble stochastically from assimilated members. In 

this new approach, a probability distribution map is derived from the assimilated 

ensemble and is further implemented in probability field simulation. Performing 
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probability field sequential simulation ensures that model parameter statistics 

and the corresponding spatial relationship are captured. Following the re-

sampling procedure allows that the new ensemble incorporates the updated 

model information from the initial EnKF assimilation steps and that the re-

generated ensemble is consistent with the static geological data. In order to 

warrant that the rest of the model state states (i.e., fluid saturations and pressure) 

are consistent with the hydraulic conductivity of the re-sampled ensemble, the 

new members are then subjected to the forward model (reservoir simulator) from 

the beginning (initial conditions) to the last update step prior to re-sampling. 

After that, updating would resume for the remaining production history using 

EnKF.  

The probability or P-Field simulation introduced by Srivastava (1992) has 

gained popularity because of its simplicity, its capability in accounting for 

secondary information and its computational efficiency (Froidevaux 1993; Pyrcz 

and Deutsch 2001). P-Field simulation involves two separate steps. Firstly, local 

probability density function is defined for all grid block location to be simulated. 

The probability distributions are a step function at the well locations or at the 

locations where hard data is available. In this study, facies indicators (categorical 

variables) are modeled, and the local probabilities (pdf) of model parameters are 

constructed from the assimilated ensemble after certain steps. In the next step of 

P-Field simulation algorithm, a set of spatially correlated probability values is 

generated by Monte Carlo simulation (in the interval [0, 1]) and used to sample 

simulated values from those local probability distributions. The probability 



44 

 

values have a uniform distribution and should not honor any conditioning hard 

data. 

A drawback of the P-Field simulation is that the simulated models have greater 

continuity than expected, resulting in less accurate production performance than 

expected. However, further data assimilation using EnKF would remedy this 

excessive continuity. An alternative methodology would be to model the 

probability distributions as a trend. In that case, both the trend and the residual 

should be modeled; however trend modeling would not reproduce the expected 

spatial continuity for some specific complex reservoir models such as 

channelized formations. 

2.2.6 Choice of re-sampling time  

The proper selection of the number of assimilation step(s) or time at which re-

sampling is performed is discussed here. As the number of EnKF assimilation 

steps increases, the root mean square error (RMSE) of the predicted data 

mismatch (objective function) decreases. A new ensemble is re-sampled from 

assimilated ensemble members that are updated in accordance with the early 

production data; therefore, the probability map used for re-sampling should be 

calculated after the objective function has experienced a moderate decline. The 

objective function is defined as the dynamic data mismatch. 
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where the simulation results (data predictions) )(mg  are compared with 

observed data ( obsd ), and DC  is the error covariance matrix.  

The ensemble variance would diminish after several assimilation steps. In order 

to avoid ensemble collapse and maintain diversity among the re-sampled 

ensemble members, this re-sampling should be performed while the ensemble 

variance is still high. At the beginning of the assimilation procedure, the 

mismatch is high, reflecting the uncertainty in the initial ensemble and the 

respective proximity of each member to the true dynamic responses. As the 

assimilation procedure continues, the objective function )(mO (or RMSE) 

decreases. A major portion of the ensemble uncertainty is corrected after the first 

few assimilation steps (Jafarpour et al. 2011). 

After several update steps, model parameter distribution of the members with 

poor initial estimations cannot be further improved to reduce the objective 

function )(mO . In contrast, the ensemble member diversity incessantly decreases 

after each and every update step, further reducing the ensemble variance. Re-

sampling carried out at that point would yield an underestimation of the posterior 

pdf of the model parameters (Emerick and Reynolds 2012). As a result, the 

proper re-sampling step is where the objective function has reasonably decreased 

and, at the same time, the ensemble members reflect sensible diversity. 
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2.3 Implementation of P-Field Simulation 

The proposed methodology has been implemented for the history matching of 

two synthetic reservoir models: one with three facies and another channelized 

model with two facies. The objective is to characterize the facies distributions by 

conditioning to both observed production data and static measurements at the 

wells, in addition to maintaining the spatial correlation of model parameters and 

reproducing the reference histogram and spatial continuity of model parameters.  

2.3.1 Model description – Example A 

The numerical model for this case study consists of a 21 × 21 grid in the x-y 

direction. The dimensions of the model are 1600 m × 1600 m × 6 m. Nine 

vertical wells are located in the reservoir with one oil producer, four water 

injectors, and four pressure observations wells (Figure ‎2-1).  

Three distinct facies, namely sand (S), fine sand (FS) and shale, are present in 

the model. Facies distribution for the reference model is generated using 

unconditional sequential indicator simulation (SIS), as implemented in GSLib 

(Deutsch and Journel 1997). The reference facies proportions are 45% S, 37% 

FS and 18% shale. Based on the geological properties of the reservoir obtained 

from regional studies, an experimental variogram is inferred as an exponential 

variogram model with maximum and minimum correlation lengths of 1370 m 

and 518 m, respectively, along an azimuth angle of 135
o
. Permeability within 

each facies was assumed to be uniform with an average value (2000 md, 500 md, 

and 50 md for S, FS, and shale, respectively), and rock porosity of different 
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facies were assumed to be constant (0.3) throughout the model. Areal facies 

distribution of the reference model is depicted in Figure ‎2-2a. 

The production schedule is defined for 32 years. The first 10 years of production 

data are used for history matching, and the complete production history (32 

years) is used to evaluate the predictions and calculate the RMSE. The 

production and injection wells are operated at constant bottom-hole pressure. 

The synthetic field-observed data set, which consists of oil production rate, gas 

oil ratio, and water cut of the producer, water injection rates, and bottom-hole 

pressure of the observation wells, is obtained by subjecting the reference model 

to a reservoir simulator. Table ‎2-1 presents the important model parameters of 

the reference model. 

2.3.2 Base case – Example A 

This case is intended to examine the performance of the DCT-EnKF method for 

assimilating model parameters of a multiple facies model. Initially, 100 

ensemble members are generated using conditional SIS. The map of average 

permeability of the initial ensemble is depicted in Figure ‎2-3a. The facies 

observations at all 9 well locations are used as the conditioning data. The 

variogram parameters and the reference distribution are the same as the 

benchmark case. Facies proportions of the simulated realizations were within a 

range of 5% of the benchmark case.  

History matching was performed for 20 steps. Assimilation steps are every six 

months. The map of average permeability of the updated ensemble (after 20 

assimilation steps) is shown in Figure ‎2-3b. Permeability map of a randomly 
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selected ensemble member is also shown in Figure ‎2-4, before and after 

assimilation. It is apparent that despite the production history being matched, the 

spatial continuity of facies distribution in the updated ensemble deviates 

significantly from the benchmark case. The production and injection profiles 

before and after history matching are shown in Figure ‎2-5, while summaries the 

RMSE of the production match on a 0 to 1 scale are given in Table ‎2-2. 

2.3.3 Probability re-sampling – Example A 

In this case study, the DCT-EnKF updated facies realizations obtained after 

certain assimilation steps of the base case are used in the P-Field simulation to 

generate a new ensemble of facies realizations. In particular, after three 

assimilation steps (18 months), the ensemble members are used to calculate the 

pdf of facies indicators, which are subsequently used to generate new ensemble 

members in P-Field simulation. 

The re-sampled ensemble is subjected to the forward model (reservoir simulator) 

from the beginning to the last update step prior to re-sampling (18 months). The 

DCT-EnKF is applied for the remaining production history (17 assimilation 

steps, 8.5 years of production history). The map of average permeability (before 

and after the update) shows significant improvement (Figure ‎2-6), as compared 

to the base case (Figure ‎2-3), in terms of exhibiting similar spatial characteristics 

as depicted by the reference distribution and the benchmark case. The 

permeability map of a randomly selected ensemble member is shown in 

Figure ‎2-7 for before and after the update. The production and injection profiles 
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before and after history matching are compared in Figure ‎2-8. The corresponding 

RMSE values of the history-match results are summarized in Table ‎2-2.  

The semi-variograms of the base case, P-Field re-sampling, and the true model 

along minor and major directions of continuity (the horizontal azimuths of 45
o
 

(a) and 135
o
 (b)) are presented in Figure ‎2-9. Facies histograms for different 

cases are also compared in Figure ‎2-10. 

2.3.4 Choice of re-sampling time – Example A 

Results of the objective function (from Equation ‎2-11) in terms of production 

data match at different assimilation steps are shown in Figure ‎2-11. The value is 

high at the beginning, illustrating the uncertainty in the initial ensemble. After a 

few assimilation steps, the value decreases but remains relatively constant until 

water breakthrough. As discussed previously, a major portion of the ensemble 

uncertainty has been corrected after the few initial assimilation steps, which is in 

agreement with observations made by Jafarpour et al. (2011). Also shown in 

Figure ‎2-11 is the normalized ensemble variance of model parameters at a few 

selected assimilation steps. In between the third and thirteenth step, the value is 

constant (Figure ‎2-11), implying that EnKF assimilation has not improved the 

quality of the history match; however, the ensemble variance continues to 

diminish. Given that the proper re-sampling step is where the objective function 

(RMSE) has decreased substantially without compromising the ensemble 

variability, it is concluded that for this example, re-sampling should be carried 

out after the third assimilation step. 
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2.3.5 Model description – Example B 

The numerical model for this case study consists of a 100 × 80 grid in the x-y 

direction. The dimensions of the model are 1000 m × 800 m × 10 m. Two 

horizontal line injectors and producers equipped with inflow control valves are 

located in the reservoir. Well locations are shown in Figure ‎2-1.  

Two distinct facies, namely sand (S) and shale, are present in the model. Facies 

distribution for the reference model is adapted from the channelized model 

presented in Li et al. (2012). The reference facies proportions were 30% S and 

70% shale. Permeability within each facies was assumed to be uniform with an 

average value (1000 md and 50 md for sand and shale, respectively), and 

porosityis assumed to be constant (0.2) throughout the model. Spatial facies 

distribution of the reference model is depicted in Figure ‎2-2b. 

The production schedule is defined for 16 months. The production and injection 

wells are operated at constant bottom-hole pressure. A synthetic production data 

set, which consists of oil production rate and water injection rates, is obtained by 

subjecting the reference model to reservoir simulator. The Eclipse black-oil 

simulator is used as the reservoir simulator (forward model). The important 

model parameters of the reference model are presented in Table ‎2-1. 

2.3.6 Base case – Example B 

The DCT-EnKF method is applied for data assimilation of this two-facies 

channelized reservoir model. Initially, 100 ensemble members are generated by 

multiple-point Single Normal Equation Simulation (SNESim), as implemented 
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in SGeMS (Remy et al. 2009). Facies classifications at the horizontal well 

locations are used as the conditioning data, and Figure ‎2-12 shows the training 

image implemented in SNESim. The map of average permeability of the initial 

ensemble is depicted in Figure ‎2-13a. 

Five months of production data are used for history matching with an 

assimilation step of one month. The map of average permeability of the updated 

ensemble (after five assimilation steps) is shown in Figure ‎2-13b. Permeability 

map of a randomly selected ensemble member before and after update is shown 

in Figure ‎2-14. The RMSEs of the production match are summarized in 

Table ‎2-2. It is apparent that despite the production history being matched, the 

spatial continuity of facies distribution in the updated realizations is different 

from the reference model and the training image. 

2.3.7 Probability re-sampling – Example B 

The re-sampling scheme is applied after the fifth assimilation step. Same as 

Example A, the ensemble members are used to calculate the pdf of the facies 

indicators. The approximated local pdf is used subsequently to generate a new 

ensemble using SNESim. The new ensemble (100 members in total) is subjected 

to the forward modeling (for five months) and is further assimilated within the 

DCT-EnKF framework to match the remaining 11 months of production history. 

The RMSE values of the history-match results are summarized in Table ‎2-2. 

Average permeability distributions of the initial and final updated ensemble are 

shown in Figure ‎2-15. The updated ensemble is acceptable in terms of RMSE 

values, and the resulting permeability map has shown significant improvement, 
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as compared to the base case (Figure ‎2-13), in terms of exhibiting similar spatial 

characteristics as depicted in the training image (Figure ‎2-12) and the true case 

(Figure ‎2-2b). Permeability map of a randomly selected ensemble member is 

shown in Figure ‎2-16 for before and after the update. 

2.3.8 Choice of re-sampling time – Example B 

The calculated objective function (from Equation ‎2-11) in terms of production 

data match at different assimilation steps is presented in Figure ‎2-17. In a 

fashion similar to the previous case study – Example A, its value is high at the 

beginning due to uncertainty in the initial ensemble). After a few assimilation 

steps, the value decreases to a stabilized value and increases again at water 

breakthrough. Also shown in Figure ‎2-17 is the normalized ensemble variance of 

model parameters at a few selected assimilation steps. This value remains 

primarily constant between the fifth and eighth step (Figure ‎2-17), implying that 

EnKF assimilation has not improved the quality of the history match; however, 

the variability among ensemble members continues to diminish. It is concluded 

that, for this example, re-sampling should be carried out after the fifth 

assimilation step. 

2.4 Results and Discussion 

Different parameters are considered and taken into account in our studies in 

order to evaluate the performance of the methodology. First, the RMSE values 

are used in all case studies to measure the quality of the observed data match. 

Second, in Example A, experimental variogram of the benchmark and the 
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updated realizations are calculated along the minor and major directions of 

continuity. The calculated values for the small lag distances and the variogram 

range in minor and major directions of continuity are compared. It is noteworthy 

that all variogram data are standardized to a sill of one for our studies. For the 

second model (Example B), the continuity of the sand facies and reproduction of 

the correct spatial pattern (same as the training image shown in Figure ‎2-12) are 

taken into account. Finally, the facies proportions of the updated realizations and 

the true model are compared for different case studies to verify that the correct 

proportions have been maintained in the posterior ensemble. 

The RMSE values are calculated for all cases, and the averages of the calculated 

RMSE values for all realizations are presented in Table ‎2-2. The results clearly 

demonstrate that an acceptable production history match is achieved for the re-

sampling case, and the results are greatly improved as compared to the base 

cases. 

In each of the examples, it is illustrated through the comparison with the base 

case that, although production history matching was achieved after several 

assimilation steps, the spatial continuity of geologic features were no longer 

preserved with conventional EnKF. This is evident as we compare Figure ‎2-3b 

and Figure ‎2-4b with Figure ‎2-6b and Figure ‎2-7b. It is observed that spatial 

continuity in the model parameters is more accurately reproduced in the updated 

ensemble of the P-Field case when compared against the base case. The same 

conclusion can be deduced in the channelized example, where facies continuity 

is destroyed after several update steps (Figure ‎2-13 and Figure ‎2-14). 
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Figure ‎2-15b illustrates how the re-sampling scheme has successfully re-

established this spatial continuity in the final updated ensemble. Nonetheless, the 

obtained results clearly demonstrate the importance and performance of the 

proposed re-sampling technique and its potential in modeling the non-Gaussian 

geological features in reservoirs. 

Prior to any dynamic updating, few hard data are typically available to generate 

the initial ensemble. Many researchers have reported the issue of ensemble 

collapse due to a poor initial ensemble. The ensemble typically experiences 

major updates during the first few steps and immediately after a new type of data 

becomes available, as illustrated in Figure ‎2-11 and Figure ‎2-17, which show the 

objective function (Equation ‎2-11) value decreases with successive update steps 

up to the thirteenth step in Example A and ninth step in Example B. The varying 

breakthrough characteristics among different ensemble members cause the 

objective function to increase sharply. Thereafter the model parameters are 

updated in accordance to the water cut measurements, and the objective function 

starts to decline once again. 

2.5 Conclusion 

A novel re-sampling procedure was proposed to (1) correct for the loss of non-

Gaussian contributions in model parameters after the ensemble Kalman filter 

update and to (2) honor the reference distribution obtained from static geologic 

information. The method entails combining probability field re-sampling with 

the discrete cosine transform - ensemble Kalman filter approach. The results 

have shown the success of the re-sampling technique in model characterization 
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of multiple (up to three) facies. The observed dynamic data were matched, and 

the geological feature of the reservoir in terms of reference facies proportions 

and spatial distribution of model parameters (variogram, training image) were 

honored. In order to ensure consistency, after every re-sampling, the forward 

model (reservoir simulation model) should be applied from the beginning (zero 

time step). This would certainly incur additional computational efforts. 

However, the proposed re-sampling procedure presents a promising potential to 

model non-Gaussian model parameters. It is also important to note that the 

proposed re-sampling is carried out after the first few assimilation steps, in 

contrast to most iterative ensemble Kalman filter formulations proposed by other 

researchers in the past. 

 

 

 

 

Table ‎2-1 Synthetic reservoir model parameters. 

Example A  

Model Dimensions  21 × 21 × 1 grids in the X, Y and Z directions 

Grid Dimensions 76 m × 76 m × 6 m (250 ft × 250 ft × 20 ft) 

Reservoir Depth 914 m (3000 ft) 

Porosity 30% constant 

Permeability Range 50 md, 500 md and 2000 md 

Operating Bottom-hole Pressure Producer:         15.8579 MPa         (2300 psi) 

Injectors:         17.2369 MPa         (2500 psi) 

Noise Standard Deviation Producer:         7.94937 m3         (50 STBPD2) 

Injectors:          3.17975 m3         (20 STBPD) 

Initial Reservoir Pressure 17.2369 MPa         (2500 psi) 

Total Generated History 32 years (10 years was used for history matching) 

Example B  

                                                 

2
 Stock Tank Barrel Per Day 



56 

 

Model Dimensions  100 × 80 × 1 grids in the X, Y and Z directions 

Grid Dimensions 10 m × 10 m × 10 m (33 ft × 33 ft × 33 ft) 

Reservoir Depth 914 m (3000 ft) 

Porosity 20% constant 

Permeability Range 50 md and 1000 md 

Operating Conditions  

Producers BHP3=         19.3053 MPa         (2800 psi) 

Injectors BHP =         22.0632 MPa         (3200 psi) 

Noise Standard Deviation Producers:       3.17975 m3        (20 STBPD) 

Injectors:         3.17975 m3        (20 STBPD) 

Initial Reservoir Pressure 20.6843 MPa         (3000 psi) 

Total Generated History 16 months 

Relative Permeability and Capillary Pressure Curves 

Sw Krw Kro Pcow 

0.2 0 1 7 

0.3 0.07 0.4 4 

0.4 0.15 0.125 3 

0.5 0.24 0.649 2.5 

0.6 0.33 0.0048 2 

0.8 1 0 0 

 

Table ‎2-2 Root mean square values (on a 0 to 1 scale, where 1 represents a perfect match) 

of observations after history matching for different cases. 

Example-A 
Producer  

(Oil production rate) 

Injector  

(Water injection rate) 

Pressure Observation 

(BHP) 

Well No. 1 1 2 3 4 1 2 3 4 

Base Case 0.991 0.788 0.983 0.938 0.972 0.874 0.978 0.952 0.928 

P-Field 0.995 0.997 0.872 0.965 0.982 0.943 0.977 0.971 0.951 

Example-B    

Wells Producers (Oil production rate) Injectors (Water injection rate) 

Base Case 0.867 0.749 

P-Field 0.971 0.987 

 

 

 

  

                                                 

3
 Well Bottom Hole Pressure 
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Figure ‎2-1 Well locations. 

 

 

Figure ‎2-2 Facies distribution of the true model for: (a) Example A and (b) Example B. The 

units for X-axis (East) and Y-Axis (North) are in meters. 
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Figure ‎2-3 Average permeability map of the (a) initial and (b) updated realizations (20 

update steps, 10 years of production history). The initial realizations were generated using 

conditional Sequential Indicator Simulation. The units for X-axis (East) and Y-axis (North) 

are in meters. 

 

 

Figure ‎2-4 Permeability map of the (a) initial and (b) updated model for a single 

realization. The initial realization was generated using conditional Sequential Indicator 

Simulation. The units for X-axis (East) and Y-Axis (North) are in meters. 
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Figure ‎2-5 Oil production rate and water injection rates in stock tank barrel per day 

(STBPD) before (left column) and after (right column) history matching for the base case, 

Example-A. The red line represents the production history, and the grey lines show the 

behavior of different realizations. 

 

 

Figure ‎2-6 Average permeability map of the (a) initial and (b) updated realizations (17 

update steps, 8.5 years of remaining production history). The initial ensemble was 

generated using the P-Field re-sampling method (based on the results of the base case after 
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three update steps, 1.5 years of production history). The units for X-axis (East) and Y-Axis 

(North) are in meters. 

 

 

Figure ‎2-7 Permeability map of the (a) initial and (b) updated model for a single 

realization. The initial realization was generated using the P-Field re-sampling method. 

The units for X-axis (East) and Y-Axis (North) are in meters. 
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Figure ‎2-8 Oil production rate and water injection rates in stock tank barrel per day 

(STBPD) before (left column) and after (right column) history matching for P-Field re-

sampling, Example-A. The red line represents the production history, and the grey lines 

show the behavior of different realizations. The initial ensemble was generated using the  

P-Field re-sampling method. 

 

 

 

Figure ‎2-9 Experimental variograms of the top updated ensemble member (smallest 

RMSE) for the base case and re-sampling with P-Field compared with the true model, 

along the horizontal azimuths of (a) 45
o
 and (b) 135

o
 (counter clockwise from east). The 

unit for X-axis (Separation Distance) is in meters. 

 

 

Figure ‎2-10 Facies histogram for different cases of Example A compared to the true 

model’s‎facies‎proportions. 
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Figure ‎2-11 Objective function defined by Equation ‎2-11 (red line) and the true production 

water cut (water cut) at successive assimilation steps. The inset figures show the ensemble 

variances of model parameters at various assimilation steps: t = 0, 12, 18 and 78 months. 
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Figure ‎2-12 The training image implemented in Single Normal Equation Simulation. 

Dimension of the training was 250 by 250 grids. 

 

 

Figure ‎2-13 Average permeability map of the (a) initial and (b) updated realizations (five 

update steps, five months of production history). The initial realizations were generated 

using Single Normal Equation Simulation. The units for X-axis (East) and Y-Axis (North) 

are in meters. 
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Figure ‎2-14 Permeability map of the (a) initial and (b) updated model. The initial 

realization was generated using Single Normal Equation Simulation. The units for X-axis 

(East) and Y-Axis (North) are in meters. 

 

 

Figure ‎2-15 Average permeability map of the (a) initial and (b) updated realizations (11 

update steps, 11 months of remaining production history). The initial ensemble was 

generated by the P-Field re-sampling method implemented in Single Normal Equation 

Simulation (based on the results of the base case after five update steps, five months of 

production history). The units for X-axis (East) and Y-Axis (North) are in meters. 
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Figure ‎2-16 Permeability map of the (a) initial and (b) updated model. The initial 

realization was generated by the P-Field re-sampling method implemented in Single 

Normal Equation Simulation. The units for X-axis (East) and Y-Axis (North) are in meters. 

 

 

Figure ‎2-17 Objective function defined by Equation ‎2-11 (red line) and the true production 

water cut (blue line) at successive assimilation steps. The inset figures show the ensemble 

variances of model parameters at assimilation steps: t = 1, 3, 5 and 8 months. 
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Chapter 3: Characterization of Non-Gaussian Geologic Facies 

Distribution Using Ensemble Kalman Filter with 

Probability Re-Sampling
4
 

3.1 Introduction and Background 

Geostatistical methods have been commonly used to construct reservoir models 

by integrating data from diverse sources (Deutsch and Journel 1997). Many 

traditional methods rely primarily on static data (e.g., seismic, geological, well-

log, and core data), which are sparsely located. Dynamic data (e.g., production 

rates, saturation, and pressure data), on the other hand, are abundantly available 

at well locations and could provide valuable information regarding the model 

parameters. The challenge of integrating such information, though, is that 

dynamic data is typically non-linearly related to the model parameters. The 

process of integrating all available data (both dynamic and static information) is 

referred to as history matching, with the objectives of quantifying 

heterogeneities and uncertainties in reservoir models, which would be used to 

obtain reliable production forecasts.  

History matching of continuous rock properties such as porosity and 

permeability distributions in heterogeneous formations can be achieved using 

various data assimilation techniques. Many authors such as Oliver and Chen 

(2011) have presented thorough reviews of different available techniques in 

                                                 

4
 A version of this chapter has been published 

Nejadi, S., Leung, J., Trivedi, J., 2014. Mathematical Geosciences. doi: 10.1007/s11004-014-
9548-8 
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recent years. However, as suggested by Saleri et al. (1992), for reservoirs 

exhibiting distinct facies distributions, a better approach is to parameterize the 

facies indicators (or rock types) directly as model parameters. The authors 

illustrated that given each facies represents a geologic unit with distinct flow 

behavior, fluid flow response is much more sensitive to perturbations in spatial 

arrangement and global proportions of discrete facies indicators than adjustment 

in spatial distribution of continuous model parameters such as porosity and 

permeability.   

Numerous ensemble-based history matching techniques can be applied for 

updating realizations of facies indicators (Emerick and Reynolds 2013). These 

methods‎ adopt‎ an‎ updating‎ framework‎ based‎ on‎ Bayes’‎ theorem,‎ where‎

conditional (posterior) probability density function (pdf) of model and state 

parameters is constructed by updating the prior probability with a data likelihood 

function, allowing noisy dynamic observations to be integrated. However, 

computing the covariance matrices and the resulting probability distribution with 

large number of ensemble members can be computationally expensive; hence, 

these methods provide a practical means of sampling this probability distribution 

approximately with a finite number of ensemble members. If data are assimilated 

sequentially, the methods are referred to as ensemble filters, while in other cases, 

all data are assimilated simultaneously, and those methods are considered as 

ensemble smoothers (Chen and Oliver 2012). To further improve the 

convergence behavior, techniques such as ensemble randomized maximized 

likelihood (EnRML) have been proposed where gradients, calculated using an 
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adjoint system, are integrated (Oliver et al. 1996; Chen and Oliver 2012). Since 

the relationship between model parameters and data observations is highly non-

linear, applying the updating schemes iteratively during each assimilation step 

has been proposed (Chen and Oliver 2012; Li and Reynolds 2009). 

Ensemble Kalman filter (EnKF) is a Monte-Carlo based technique that 

assimilates data sequentially following the Bayesian updating framework 

(Evensen 2003). This technique was first proposed by Evensen (1994) and was 

later introduced  to the petroleum engineering industry as a promising approach 

for handling high-dimensional history matching problems (Lorentzen et al. 2001; 

Aanonsen et al. 2009). The algorithm begins with generation of an ensemble of 

initial models (typically 40-100) that is consistent with prior knowledge of the 

initial state and its probability distribution (Liu and Oliver 2005). Each initial 

model or ensemble member is advanced to the time of the next observation using 

a forward model (e.g., numerical reservoir simulation), covariance and mean of 

model states (prior joint probability distribution) are approximated directly from 

the ensemble of states and used to compute the Kalman gain, which is applied to 

update each ensemble member. The updated ensemble provides an empirical 

estimate of the posterior joint probability distribution of the model states. 

Burgers et al. (1998) have shown that the updated ensemble obtained with EnKF 

approximates the theoretical posterior distribution for large ensemble size for (1) 

linear dynamics and measurements and (2) Gaussian prior and likelihood. 

Therefore, under the assumption of Gaussian statistics, EnKF updating of 

variables characterized by non-Gaussian statistics (e.g., multimodal distribution, 
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curvilinear, and channelized features) may introduce certain problems (Dovera 

and Della Rossa 2010). In many cases, statistics of the final updated model 

variables would deviate significantly from the non-Gaussian distribution 

exhibited by the initial model states (Zafari and Reynolds 2007). 

The Gaussian statistics assumption presents an important challenge for applying 

EnKF to estimate facies distributions, which are commonly multimodal and 

spatially correlated with the underlying non-Gaussian geological features. A 

common strategy for working with non-Gaussian model parameters is to 

transform them from the original space to other space(s) in which they follow a 

nearly Gaussian distribution, such that EnKF can be applied in the transformed 

space. Different parameterization schemes such as truncated pluri-Gaussian, 

level set method, Gaussian mixture models (GMM), kernel principal component 

analysis (PCA), normal score transform, and discrete cosine transform (DCT) 

have been proposed in the literature with varying degrees of success (Evensen 

2007; Aanonsen et al. 2009). Satisfactory results have been demonstrated with 

the truncated pluri-Gaussian parameterization technique for history matching of 

facies distribution using EnKF (Agbalaka and Oliver 2008; Liu and Oliver 

2005). Agbalaka and Oliver (2008) have presented a detailed analysis of the 

facies proportions characterization in a three dimensional synthetic model 

consists of three facies. A number of researchers have implemented the level set 

method to update facies distribution in a channelized synthetic reservoir model 

with two distinct facies (Chang et al. 2010; Lorentzen et al. 2012; Moreno and 

Aanonsen 2011). Dovera and Della Rossa (2010) have implemented the GMM 
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to update a bimodal distribution of log-permeability values using EnKF. Kernel 

PCA has been used by Sarma et al. (2007, 2008) for data assimilation in a 

channelized reservoir model. Li et al. (2012) and Nejadi et al. (2012b) have 

applied normal score transform to estimate bimodal distributions of aquifer 

model parameters and permeability tensors in fractured reservoirs, respectively. 

Discrete cosine transform (DCT), which has its roots in image processing (Jain 

1988; Rao and Yip 1990), has been proposed by Jafarpour et al. (2008) to 

parameterize non-Gaussian distributions. They showed that spatial continuity of 

the channelized features can be captured effectively with a reduced set of DCT 

coefficients (i.e., a reduced parameter space). Although the spatial arrangement 

of high and low permeability regions is captured, porosity and permeability 

values, instead of facies indicators, were updated directly; hence, 

characterization of distinct facies boundaries was not addressed. Nejadi et al. 

(2011) introduced DCT-EWEnKF where the mean model state is calculated 

using a weighted scheme instead of arithmetic averaging. The updated models 

exhibit the correct facies boundaries, while preserving the facies proportions 

exhibited by the initial model states.  

This chapter attempts to address two particular issues pertinent to applying 

EnKF for history matching of facies distributions. The first issue is the capability 

of the algorithm to represent the non-Gaussian statistics exhibited by the initial 

model states. Prior to the data assimilation stage, an ensemble of initial models 

that is consistent with prior knowledge of the initial state and its probability 

distribution inferred from static geological data is generated. Although 
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description of geological features such as facies distributions (proportions and 

spatial patterns) and channel properties (e.g., orientation, widths, and 

amplitudes) can be derived from various sources of static geologic information, 

there is no mechanism within EnKF that would allow explicit conditioning of the 

posterior distribution, during the calculation of  Kalman gain or the updating 

step, to the reference statistics (e.g., histogram and semi-variogram or 

covariance) inferred from this static information.  

The second issue is the ability to maintain diversity within ensemble during 

updating. Limited data observability and finite ensemble size often result in a 

corrupted estimate of the cross covariance. Due to limitation in data 

observability and insufficient degrees of freedom, production history, 

particularly at the early stages, contains inadequate information to properly 

characterize the probability distribution of all model parameters. As a result, the 

variability across the ensemble would diminish substantially after a few EnKF 

assimilation steps (Jafarpour et al. 2011); realizations with poor initial estimates 

would converge towards a single ensemble member after major updating to 

match the early production history. In addition, an ensemble of finite size is 

typically implemented in most practical applications of EnKF; the Kalman gain 

calculated from an ensemble of reduced variability could cause the ensemble to 

collapse after successive updates (Furrer and Bengtsson 2007; Myrseth et al. 

2012). In order to avoid the spurious and unrealistic correlations between the 

state vector and predictions, localization techniques have been introduced to 

constrain the updates of observations (Chen and Oliver 2009, 2011; Emerick and 
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Reynolds 2010). Ensemble adjustment, by means of covariance inflation, has 

also been introduced by Anderson (2001) to maintain the ensemble variability. 

These authors have implemented various distance-based functions for covariance 

localization. Arroyo et al. (2008) described a flow-based localization method of 

conditioning the covariance matrix using information derived from streamline 

trajectories. Only grid blocks that are sensitive to production response are used 

in the covariance calculation, eliminating the influences of spurious correlations. 

The authors demonstrated that spatial continuity can be maintained. In all these 

approaches, the ensemble is advanced along the assimilation process without re-

sampling. Other authors such as Emerick and Reynolds (2012), however, have 

proposed repeating the history matching procedure by integrating the Markov 

Chain Monte Carlo algorithm along with EnKF to generate an accurate sampling 

of the posterior distribution. In their work, EnKF is applied multiple times, and a 

number of Markov chains are generated from the final ensembles. 

The motivation of this chapter is to present a modified approach to Nejadi et al. 

(2012a, 2014) and propose improvement on the two aforementioned deficiencies 

when applying EnKF for facies distribution modeling: to maintain the reference 

statistics of the model parameters and to improve ensemble variability. This is 

achieved within the conventional framework of EnKF using a re-sampling step. 

The assimilated ensemble members are used to sample an improved ensemble 

that also enhances the diversity among ensemble members at an intermediate 

stage during the assimilation process when data mismatch have reduced 

substantially but the ensemble variance is still high. The new improved ensemble 
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incorporates the dynamic model-updating information of the initial steps and is 

consistent with the static geological data; it is then subjected to the forecast 

model (i.e., reservoir flow modeling) from the beginning to the last update step 

prior to re-sampling, and updating would resume for the remaining production 

history using EnKF. If necessary, covariance regularization techniques such as 

localization and inflation can also be implemented at each subsequent EnKF 

update step. 

In the examples presented in this chapter, the re-sampling is performed only 

once. The selection criteria based on data mismatch and ensemble variance for 

when re-sampling should be performed is discussed. Although performing flow 

simulations over the re-sampled ensemble from the beginning reduces 

computational efficiency, the additional cost could be easily justified by the 

important potential for applying the Kalman filter to non-Gaussian model 

parameters with non-linear process dynamics (Gu and Oliver 2007; Li and 

Reynolds 2009). In the proposed procedure, the re-sampling step allows the 

reference histogram and spatial correlation of the model parameters derived from 

static geologic information to be re-established in the updating process. 

Conventional implementation of EnKF continues to update this re-sampled 

ensemble based on the dynamic information available, without altering the 

posterior probability distribution of the model states through any other explicit 

conditioning. 

This chapter is organized as follows: first, the formulation of the re-sampling 

procedure to generate new ensemble members is detailed. Next, results obtained 
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from the application of the proposed methodologies in two synthetic reservoir 

models are presented. The first model has three facies and the second model is a 

channelized reservoir with two facies. At the end, conclusions and remarks 

drawn from the case studies are discussed.  

3.2 Methodology 

In this section, various components of the implementation are discussed in detail. 

Specific modifications to the conventional EnKF procedure are highlighted. 

3.2.1 Forecast step 

The forecast model (g) is separately applied to each ensemble member, 

advancing the model and state variables to the next time step. Model equations 

pertinent to the multiphase fluid flow in petroleum reservoirs are described by 

material balance, momentum balance, phase behavior descriptions, and 

numerous auxiliary relations (Oliver et al. 2008). This non-linear system of 

differential equations is solved numerically using methods such as finite 

difference or finite element 

1
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    . ‎3-1 

 In the above equation, m and u denote the model and state variables, 

respectively, and dk represents the predicted production data at k
th

 step. The 

superscripts, p and a, specify the predicted and analyzed states, respectively. In 

this study the commercial reservoir simulation software Eclipse black-oil (2011) 

was used as the forecast model. 
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3.2.2 Analysis step 

Prior to any updating, an initial ensemble of realizations is generated using 

Monte Carlo simulation. These realizations or ensemble members are created 

based on the available geological data, capturing the uncertainty inferred from 

static geologic information or a priori knowledge about the model variables. The 

ensemble of state vectors is denoted in vector form as 

 eN
kkkk yyy ,...,, 21

, ‎3-2 

where eN  is the total number of ensemble members and 
e

j

k Njy ,...,1,   is state 

vector corresponding to the j
th

 ensemble member at k
th

 assimilation step. State 

vector should consist of model parameters (m), such as porosity, permeability, or 

transformed variables of facies indicators at all grid locations; time-dependent 

state variables (u), such as pressure and saturations at all grid locations; and 

observed production data (d) including production and pressure measurements 

recorded at well locations as a function of time 
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EnKF propagates the ensemble of initial state vectors along time to assimilate 

data in a two-step approach. As discussed in the previous section, in the first 

(forecast) step, each ensemble member is subjected to the forward model g 
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In the second (analysis) step, the state vectors are updated with the observation 

data dk
j
 using following equation 
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The forecast and analysis steps are repeated sequentially in time whenever new 

observations are available. In Equation ‎3-5, H is the observation operator, which 

represents the relationship between the state vector and the observation vector 

 IH |0 , ‎3-6 

where j

kd  is the summation of the observed production data at the thk  

assimilation step (
,obs kd ) and εk

j
, a vector of measurement errors such that 

  D

T CE   

j
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Kk is the Kalman gain at the thk  assimilation step 
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k

p
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where p
ky

C  is the state cross covariance matrix and DkC  is the measurement error 

covariance matrix. The cross covariance matrix is estimated from the ensemble 

of state vectors as  
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where p

ky  is the mean state vector. 

3.2.3 Discrete Cosine parameterization of non-Gaussian facies 

indicators for continuous reservoir model updating in 

ensemble Kalman filter 

In history matching with Ensemble Kalman filter and discrete cosine 

parameterization (DCT-EnKF), DCT is performed to parameterize the non-

Gaussian facies indicators into coefficients of the retained cosine basis functions. 

These coefficients are incorporated into the state vector as model parameters 

(mk) in Equation ‎3-3, and they are updated subsequently in the EnKF procedure. 

At the end of the analysis step, they are transformed back into facies indicator 

values via inverse DCT (Jafarpour et al. 2008). In order to reduce the size of 

model parameter space and retain the ability to capture the large-scale spatial 

continuity of different facies, a reduced set of DCT coefficients, which 

comprises 20% of all coefficients with the highest absolute values, are included 

in the state vectors. Jafarpour et al. (2008) discussed a number of approaches for 

selecting a reduced set of coefficients. This work adopted one of their 

approaches and performed a sensitivity analysis to determine the optimal size of 

the reduced parameter set. It is observed that when too few coefficients are used, 

correct spatial continuity cannot be captured satisfactorily; while if all 

coefficients are used, the resultant facies distribution exhibits unphysical short-
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scale variability, requiring implementation of smoothing algorithms for post-

processing (Nejadi et al. 2012a). As a result, it is concluded that 20% of all 

coefficients would be the optimal choice. 

3.2.4 Generation of initial ensemble 

Initial ensemble of facies distribution is generated by Sequential Indicator 

Simulation (SIS) (Deutsch and Journel 1997), conditioned to facies observations 

at the well locations. Spatial statistics including histogram and semi-variogram 

model γ(l) are inferred from well or other geologic information. Considering a 

random function ( ), bN
Z x x R in a discretized system with Nb grid cells, the 

cumulative probability distribution of Z(x) together with the indicator transform 

of I(Z(x);z) are given by Equation ‎3-10 
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A set of conditioning hard data 0 :  wwN Nwhh
w

,...,1,   represents the 

measurement available at Nw well locations. The conditional simulation in the 

grid system with Nb grid cells is based on sampling from the N-variate 

distribution that is conditioned upon 0  

   01101)(),...,( )(,...,)(,...,
1


bbbbN NNNxZxZ zxZzxZPzzF

. ‎3-11 
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3.2.5 Ensemble re-sampling with probability weighting 

In this section, a novel re-sampling procedure is proposed to address two 

common issues associated with conventional EnKF implementation: (1) 

incorporating the non-Gaussian statistics inferred from static geologic 

information, as exhibited by the initial model states and (2) maintaining diversity 

among ensemble members during updating. In this approach, at an intermediate 

stage during the assimilation process when data mismatch have reduced 

substantially but the ensemble variance is still high, an improved ensemble is 

generated following a re-sampling procedure. A set of re-sampling points are 

selected from among the model parameters (facies indicators at all grid blocks) 

where variance reduction is most significant after the initial updating. Details of 

this selection criterion will be discussed in next section. Individual values of the 

model parameters at these re-sampling points are obtained by sampling from the 

corresponding probability distributions calculated using the updated ensemble 

just prior to re-sampling. Along with the hard data, they are regarded as 

conditioning data for generating a new ensemble via conditional sequential 

simulation. The new ensemble incorporates the model-updating information of 

the initial steps and is consistent with the static geological data; it is then 

subjected to the forward model from the beginning to the last update step prior to 

re-sampling, and updating would resume for the remaining production history 

using EnKF. 

New ensemble members are again generated by performing SIS, but in contrast 

to the initial ensemble, they are conditioned to both hard data hNw available at the 
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well locations and facies indicator values hrp sampled from probability 

distributions derived from the updated ensemble members at selected re-

sampling points. The set of conditioning data for the simulation is represented by

 
rpNwrp hh ,: , and the corresponding multivariate probability distribution is 

defined as  

   rpNNrpNxZxZ bbbbN
zxZzxZPzzF  )(,...,)(,..., 111)(),...,( 1 . ‎3-12 

The resulting realizations will be consistent with both the initial dynamic data 

obtained from the previous EnKF assimilation steps. Statistics from static 

geologic information, which is difficult to retain during traditional EnKF update, 

would be re-established in the new or re-sampled ensemble. 

A practical consideration is the specification of the location and number of re-

sampling points. RamaRoa et al. (1995) proposed placing the conditioning points 

(referred as pilot points in their studies) in high sensitivity zones where they 

have the highest potential to elicit a reduction in the objective function and 

correctly infer the underlying heterogeneities. In the next section, details 

regarding the selection and number of re-sampling point selection are presented. 

At the end of this methodology section, the criterion for when re-sampling 

should be carried out will also be discussed. 

Selection of re-sampling points and generation of new ensemble members 

This work proposes a procedure by which the re-sampling points are selected 

dynamically (instead of being determined a priori) among the model parameters 

that have experienced the largest reduction in ensemble variance. Given that 
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EnKF is a variance minimizing technique, model parameters that exhibit a 

multivariate link with the observations would undergo a variance reduction (van 

Leeuwen 2003). This observation implies that maximum reduction in the 

ensemble spread of model parameters is realized where the coefficients of the 

sensitivity matrix g(m)/m are the greatest. In other words, these model 

parameters have high impact on the production performance of the reservoir and 

should be selected as potential re-sampling points. As discussed in the previous 

section, approximation with an ensemble of finite size and limited data 

observability necessitate covariance localization to mitigate issues arising from 

spurious correlation and to maintain ensemble diversity. In a simple univariate 

sense, the ensemble variance is defined as 
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where 
p

kz is the ensemble average of ,j p

kz . For multiple facies models 

(multinomial distribution) variance is defined as Var(zi)=npi(1-pi), where n is the 

number of ensemble members (Ne) and pi is the probability of a specific facies at 

grid block location k.  

The idea is to limit the parameter updating to specific regions of the model that 

are most sensitivity to the observation data. As discussed in the literature review, 

techniques of flow-based localization and re-sampling are useful to alleviate 

issues related to spurious correlation. Re-sampling is particularly useful for re-

establishing in the ensemble the reference histogram and variogram statistics 

inferred from the original static data.  
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Denoting fZ(x)(zi) as the probability of occurrence of a particular facies zi at a 

location x and the total number of distinct facies as nf, at the end of each 

assimilation step, the cumulative density function FZ(x)(zi) at x can be constructed 

by  

( ) ( ) 1 2( ) ( ) , ,...,
fZ x i Z x t i n

t i

F z f z z z z z


 
. ‎3-14 

Re-sampling points are selected where the uncertainty in facies distribution has 

been reduced significantly and the probability of the occurrence of the most 

probable facies is high. This criterion is equivalent to assessing whether the 

cumulative probability distribution calculated with Equation ‎3-14 would 

resemble that of a Heaviside step function. It could be implemented by assigning 

to each location a sampling weight, whose value reflects the similarity of the 

probability function to that of a Heaviside step function. The sampling weight is 

assigned following the concept of importance weights in particle filtering 

techniques, where ensemble members (particles) are weighted on the basis of 

likelihood function. Emerick and Reynolds (2012) suggested a weighting 

function that is proportional to exp(-O(m)), where O(m) is a user-defined 

objective function. In this work, the objective function at each location is 

formulated as 



fn

i

ixZ zFzH
1

)(

* )()( , where H(z
*
) represents the Heaviside step 

function: its value is zero if zi < z
*
 (where z

*
 is the most probable facies) and its 

value equals one if zi ≥‎ z
*
. Locations with high weights will be selected 

preferentially as re-sampling points.  
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Specific values of model parameters (i.e., facies indicators) at the re-sampling 

points are sampled from the probability distributions ( ) ( ), ...
rpZ x i fF z i 1 n , 

where xrp is the location x of a certain re-sampling point denoted by the subscript 

rp. In order to ensure consistency with conditioning data observed at the well 

locations, the hard data (hNw) is also included in the set of re-sampling points. 

These data are used in a sequential simulation algorithm to generate a new 

ensemble of model parameters.  

To ensure the aforementioned sampling procedure is capturing the uncertainty 

represented by ( ) ( ), ...
rpZ x i fF z i 1 n , several sets of re-sampling points are 

selected as conditioning data and different sets of model parameters are 

generated. The new sets of model parameters are combined, and they constitute 

the re-sampled ensemble. This avoids introducing artificial bias in the 

conditioning data and under-representing the variability among members of the 

ensuing re-sampled ensemble. Ensemble spread, which quantifies the uncertainty 

of the parameter space (Chen and Zhang 2006), can be used to determine the 

optimum number of sets of re-sampling points  
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where 
2

zi  is the value of 
2

z
 
in Equation ‎3-13, at grid block i. As the number of 

sets increases, the ensemble spread gradually increases to a maximum value and 

stabilizes thereafter. Figure ‎3-1(a) shows the ensemble spread as a function of 

the number of re-sampling sets for Example A in the next section. Following the 
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previous notation, value of the ensemble spread represents the global expectation 

of the variance of ( ) ( )Z xF z evaluated over all locations of x. The ensemble 

spread should also be interpreted as a measure of variability exhibited by 

members of the re-sampled ensemble.  Therefore, by utilizing several sets of re-

sampling points and constructing multiple realizations corresponding to each set, 

the uncertainty associated with the model parameter space can be assessed. 

According to Figure ‎3-1(a), improvement in ensemble variance with more than 5 

sets of re-sampling points is inconspicuous; hence, the optimal number of sets of 

re-sampling points should be 5.  

The forecast model is applied to the re-sampled ensemble from beginning to the 

last update step prior to re-sampling to generate consistent state variables u
r
 and 

the predictions of production data d
r
. The new ensemble of state vectors is 

constructed 

 r
erNrrr yyy ,....,, 21 , ‎3-16 

where 
r is the ensemble of new (re-sampled) state vectors. The superscript r 

denotes the new vector after re-sampling and 
r

eN  is the number of members in 

the re-sampled ensemble. 

Number of re-sampling points 

The number of re-sampling points should be selected depending on the nature of 

the problem. Factors such as size of reservoir model, well pattern, production 

mechanism, reservoir heterogeneity and other parameters should be taken into 

consideration to determine the number of re-sampling points. The number of re-
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sampling points may be optimized such that they are large enough to capture the 

adjustments made to model parameters during the early production data 

assimilation. On the other hand, if all model parameters are selected as re-

sampling points and used as conditioning data for constructing the re-sampled 

ensemble, uncertainty in the model parameters would be under-represented, 

causing an early ensemble collapse. This also implies that the statistics (i.e., 

experimental semi-variogram or average channel width) computed for the re-

sampled ensemble members would not maintain those of the reference statistics. 

As a result, the number of re-sampling points should also be small enough to 

maintain variability among re-sampled ensemble members and allow spatial 

uncertainty to be captured adequately.  

A sensitivity analysis was performed to estimate the optimum number of re-

sampling points, where ensembles with different number of re-sampling points 

were generated, and the experimental semi-variogram of all ensemble members 

were calculated. It is anticipated that with more re-sampling points, deviation of 

the experimental semi-variogram from the reference semi-variogram would 

increase. Therefore, one should select as many re-sampling points as possible, 

while minimizing the mismatch between the experimental semi-variogram of the 

re-sampled ensemble members and the reference variogram. This mismatch can 

be quantified as a weighted nonlinear least squares error (Cressie 1985)  
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where )(2 il is the experimental variogram at lag distance li evaluated for a 

particular re-sampled ensemble member, and 
*  represents the reference 

variogram. Equation ‎3-17 is used to calculate the mismatch exhibited by an 

individual member, and Figure ‎3-1(b) depicts its average value over all re-

sampled ensemble members as a function of the number of re-sampling points. 

This average error begins to rise as the number of re-sampling points increases 

beyond 20 percent. Therefore, the optimum number of re-sampling points has 

been estimated to be 20 percent of the total number of grid blocks in the cases 

studies.  

To validate the reproduction of curvilinear geological patterns between multiple 

facies based on multiple point statistics, the concept of distribution of runs 

(Mood 1940) is implemented. Consecutive sequences of a specific category are 

counted. The difference in distribution of runs between the re-sampled 

realizations and the training image is calculated according to Boisvert et al. 

(2008) 
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where fl is the cumulative frequency of facies indicators for a run of length l in a 

specific direction for a particular re-sampled ensemble member, fl
*
 is the 

corresponding cumulative frequency from the training image, n is the maximum 

length of runs. Equation ‎3-18 is used to calculate the mismatch exhibited by an 
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individual member. As in the variogram case, the average error computed over 

all re-sampled ensemble members is plotted against the number of re-sampling 

points; approximately 20 percent of the total number of grid blocks is 

determined to be the optimal number of re-sampling points in the cases studies. 

Re-sampling step 

The proper choice of number of assimilation step(s) or time at which to perform 

re-sampling is discussed here. As the number of assimilation steps increases, 

both the objective function and ensemble variance would diminish. Since re-

sampling points are chosen at locations that are most sensitive to the observation 

data, it implies that re-sampling should take place after the objective function has 

experienced a moderate decline. However, to avoid ensemble collapse and 

maintain diversity among the re-sampled ensemble members, this re-sampling 

should be performed while the ensemble variance is still high. The objective 

function is defined as the dynamic data mismatch 
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At the beginning of the assimilation procedure, the mismatch is high, reflecting 

the uncertainty in the initial ensemble and the respective proximity of each 

member to the true dynamic responses. As the assimilation procedure continues, 

the objective function )(mO decreases. A major portion of the ensemble 

uncertainty is corrected after the first few assimilation steps (Jafarpour et al. 

2011). 



88 

 

As the updating continues, ensemble members with poorly estimated initial 

model states would not experience further reduction in the objective function, 

while the overall ensemble diversity incessantly decreases after each and every 

update step. Re-sampling carried out at that point would yield an 

underestimation of the variance of the posterior probability distribution of the 

model parameters (Emerick and Reynolds 2012). The proper re-sampling step 

can be quantitatively determined by plotting the normalized ensemble variance 

of model states and the data mismatch (O(m)) simultaneously as a function of 

assimilation steps. In the case studies, the re-sampling was carried out when the 

ensemble variance had decreased substantially and stabilized thereafter; this 

point typically coincides with a significant reduction in data mismatch after the 

first few updating steps. Further details are provided in the next section, where 

two examples are presented. Figure ‎3-2 summarizes all the prescribed steps. 

3.3 Implementation of Ensemble Kalman Filter with Re-

sampling 

The proposed re-sampling point simulation technique has been implemented for 

history matching of two synthetic reservoir models: one with three distinct facies 

and another channelized model with two facies. Facies distribution in space is 

the unknown model parameter in both examples. The objective is to update the 

facies indicators by means of integrating observed data, while honoring 

conditioning data at well locations and preserving the reference statistics (facies 

proportions and spatial relation) derived from static geologic information. As 
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described in the previous section, the proposed approach incorporates into the 

conventional EnKF framework a new re-sampling step that consists of (1) 

selection of re-sampling points, (2) generation of new ensemble members, and 

(3) updating of state vectors by applying the forecast model from the beginning. 

3.3.1 Model Description – Example A 

A synthetic two-dimensional reservoir model was considered. The model has 

three distinct facies namely sand (S), fine sand (FS) and shale. The reference 

facies proportions were 45% S, 37% FS, and 18% shale. Permeability within 

each facies is assumed to be uniform with constant porosity throughout the 

model. 
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Facies distribution for the reference (benchmark) model was generated via 

unconditional SIS, as implemented in the GSLib (Deutsch and Journel 1997). An 

exponential variogram model with the maximum and minimum correlation 

lengths of 1370 m and 518 m, respectively, along an azimuth angle of 135
o
 

(counter clockwise from east) is used. Model contained 21×21 grid blocks along 

the x- and y- directions. The dimensions of the model are 1600 m × 1600 m × 6 

m. The production mechanism was waterflooding; four injectors and one 

producer operating at constant bottom-hole pressures, were placed in a five spot 

pattern, along with four additional observation wells, as shown in Figure ‎3-3(a). 
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Figure ‎3-4(a) shows the facies distribution of the reference model and Table ‎3-1 

summarizes the parameters of the dynamic model. 

Hard data was collected at all 9 well locations, which include facies 

classifications. Observation measurements (collected on a monthly basis) consist 

of oil rate and water cut at the producer, water injection rate of the injectors, and 

bottom-hole pressure of the observation wells, were obtained by subjecting the 

reference model to the forward model (reservoir simulator). 

3.3.2 Base case – Example A 

A case was set up to establish a basis for comparison by examining the 

conventional DCT-EnKF method and its performance for updating multiple 

facies distributions. An initial ensemble of 100 facies distribution was generated 

via conditional SIS. Facies observations at the well locations (producer, 

injectors, and observation wells – 9 hard data) were used as the conditioning 

data. The variogram parameters were same as the true case. Facies proportions 

of the initial ensemble members were within the range of 5% of the reference 

distribution. The production schedule is defined for 32 years. The first 10 years 

of production data were used for history matching (20 assimilation steps of every 

6 months). Forward modeling with the history-matched ensemble was carried 

out for the remaining 22 years to evaluate the prediction capability. In 

Figure ‎3-5, the production and injection data before and after history match are 

shown, while Table ‎3-2 summarizes the root mean square error (RMSE) of the 

production match for the entire period of 32 years based on the Nash-Sutcliffe 

model efficiency (Nash and Sutcliffe 1970) 
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where kobsd , is observed values; the modeled values for ensemble member j at 

time step k is denoted by 
,p j

kd , and Nk is the total number measurement time 

steps. The RMSE value derived from this formula can range from - to 1, where 

a value of 1 (RMSE = 1) corresponds to a perfect match. RSME values of oil 

production rate, produced water cut, water injection rate, and bottom hole 

pressures at observation wells are computed using Equation ‎3-20 and 

Equation ‎3-21. 

Figure ‎3-6 compares the average permeability map of the initial and assimilated 

ensemble. Figure ‎3-7 shows the permeability map of a randomly selected 

ensemble member before and after update. It is apparent that despite production 

history has been matched; spatial continuity of facies distribution in the updated 

ensemble is different from the reference case. 

3.3.3 Re-Sampling – Example A  

In this example, the proposed re-sampling scheme was applied after eighteen 

months of production history matching (i.e., 3
rd

 assimilation step of Base Case). 

Figure ‎3-8 depicts the calculated objective function, Equation ‎3-19, after 

different assimilation steps for the Base Case (Example A). After a few 
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assimilation steps, the value has decreased from its initial value but remains 

relatively constant until water breakthrough. As discussed previously, major 

portion of the ensemble uncertainty has been corrected after the few initial 

assimilation steps, which is in agreement with observations made by Jafarpour et 

al. (2011). Also shown in Figure ‎3-8 is the normalized ensemble variance of 

model parameters at a few selected assimilation steps. Between the 3
rd

 and 13
th

 

step, there is no observable decrease in the value of the objective function, 

indicating that EnKF assimilation has not improved the quality of the history 

match; however, the ensemble variance continues to diminish. Given that the 

proper re-sampling step is where a substantial decrease in the objective function 

is observed, without compromising the ensemble variability, it is concluded that 

for this example, re-sampling should be carried out after the 3
rd

 assimilation step. 

Using the updated ensemble members after three assimilation steps, five 

different sets of re-sampling points were selected. Each set of re-sampling 

points, along with the observed facies classifications at the well locations, were 

used to generate a new re-sampled ensemble with 20 members. A total of 100 re-

sampled ensemble members were further assimilated with DCT-EnKF. 

Figure ‎3-9 shows the average permeability map of the five re-sampled ensembles 

along with the corresponding re-sampling point locations. This new ensemble of 

100 members is then subjected to the forward model from the beginning to the 

last update step prior to re-sampling (i.e., 3
rd

 assimilation step). EnKF updating 

is resumed to assimilate the rest of production history. 
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Figure ‎3-10 compares the production and injection profiles of the re-sampled 

ensemble before and after resuming EnKF updating. The corresponding RMSE 

values of history match results as summarized in Table ‎3-2 are much closer to 

unity than the Base Case. Average maps of permeability distribution before and 

after update are shown in Figure ‎3-11. As compared to the Base Case 

(Figure ‎3-6), the resulting permeability map has shown significant improvement 

in terms of exhibiting similar spatial characteristics as depicted by the reference 

distribution. As an example, Figure ‎3-12 also shows the permeability map of a 

randomly selected ensemble member before and after update.  

For the same randomly selected ensemble member, Figure ‎3-13 compares the 

normalized experimental semi-variogram calculated along the minor and major 

directions of anisotropy for the reference model, base case and the re-sampling 

case. It is clear that only the re-sampling scheme could ensure reproduction of 

the reference variogram. Similar improvement is observed for other ensemble 

members. Figure ‎3-14 compares the average facies proportions of the updated 

ensemble for different cases. For the base case, where re-sampling was not 

performed, the reference facies proportions could not be reproduced. On the 

other hand, the facies proportions with the re-sampling scheme resemble much 

closely to the reference statistics. The obtained results clearly demonstrate the 

improved performance of the proposed re-sampling technique.  

Value of the ensemble spread calculated using Equation ‎3-15, decreases from 

1.57 for the initial ensemble to 1.05 at the 3
rd

 assimilation step prior to re-

sampling. This value rises to 1.20 immediately after re-sampling and decreases 
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again to a final value of 0.45 at the last assimilation step (end of history 

matching period). It is interesting to note that this final value would be 0.39 for 

the Base Case. This observation indicates that re-sampling has improved the 

ensemble variability, as evidenced by the increase in ensemble spread. 

3.3.4 Model Description – Example B 

In this example, a synthetic model (100×80 grid blocks along the x- and y- 

directions) with a low permeability background (Fine Sand) and high 

permeability channels (Sand) was considered. The dimensions of the model are 

1000 m × 800 m × 10 m. The reference facies proportions were 69% FS and 

31% S. Permeability within each facies is assumed to be uniform with constant 

porosity throughout the model.  









Sand Finefor          50

Sandfor        1000
)md(

facies all              %20
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Facies distribution for the reference model was reconstructed from the 

channelized model permeability distribution as presented in Li et al. 2012.  

A horizontal water injector and a horizontal oil producer, both equipped with 

inflow control valves (ICV) and operated at constant bottom-hole pressure, were 

placed in the model. Figure ‎3-3(b) depicts the well configurations. Figure ‎3-4(b) 

shows the facies distribution of the reference model and Table ‎3-1 summarizes 

the parameters of the dynamic models.  

Hard data was collected at well locations, which include facies classification, 

porosity, and permeability values. Observation measurements (collected on a 
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monthly basis over a period of 18 months) consist of water injection rate of the 

injector, oil rate and water cut at the producer were obtained by subjecting the 

reference model to the forward model (reservoir simulator). 

3.3.5 Base case – Example B 

The initial ensemble was generated by Single Normal Equation Simulation 

(SNESim), as implemented in SGeMS (Remy et al. 2009), using the training 

image shown in Figure ‎3-15. Figure ‎3-16 compares the production and injection 

profiles before and after history match, and the corresponding RMSE values of 

history match results are summarized in Table ‎3-2. RMSE values of oil 

production rate, production water cut, and water injection rate data of the 

injectors are computed using Equation ‎3-20 and Equation ‎3-21. 

Figure ‎3-17 compares the average permeability maps of the initial ensemble and 

the updated ensemble after 9 assimilation steps. Nine months of production data 

were used for history matching (9 assimilation steps, every month). Figure ‎3-18 

shows the permeability map of a randomly selected ensemble member before 

and after update. It is apparent that despite production history has been matched, 

spatial continuity of facies distribution in the updated realizations are different 

from the reference case. 

3.3.6 Re-Sampling – Example B 

Similar to Figure ‎3-8, the calculated objective function and normalized ensemble 

variance of model parameters are plotted in Figure ‎3-19. Between the 5
th

 and 9
th

 

step, the value of the objective function remains constant, implying that EnKF 
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assimilation has not improved the quality of the history match; however, the 

ensemble variance continues to diminish. Therefore, it is concluded that for 

Example B, re-sampling should be carried out after the 5
th

 assimilation step.  

Ensemble spread was calculated using Equation ‎3-15, and the optimum number 

of re-sampled ensemble sets was estimated to be five. Each set of re-sampling 

points, along with the observed petrophysical properties along the horizontal 

wells, were used to generate 20 new ensemble members. The combined 

ensemble (a total of 100 members) was further assimilated with EnKF.  

Figure ‎3-20 compares the production and injection profiles of the re-sampled 

ensemble before and after resuming EnKF updating. The corresponding RMSE 

values of history match results are summarized in Table ‎3-2. Average 

permeability distributions of the initial and final updated ensemble are shown in 

Figure ‎3-21. Figure ‎3-22 shows the permeability map of a randomly selected 

ensemble member before and after update. The updated ensemble is acceptable 

in terms of RMSE values and the resulting permeability map has shown 

significant improvement, as compared to the Base Case (Figure ‎3-17), in terms 

of exhibiting similar spatial characteristics as depicted in the training image and 

the reference case. Figure ‎3-23 compares the average facies proportions of the 

updated ensemble for different cases of Example B; the re-sampling scheme is, 

again, performing better than the Base Case in reproduction of reference 

histogram. 
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3.4 Results and Discussion 

Different parameters were considered in the examples to assess the performance 

of the methodologies. Firstly, the RMSE value was used to measure the quality 

of the observed data match. Secondly, experimental semi-variogram of the 

reference case and the updated ensembles were compared. Finally, the facies 

proportions of the history matched models and the reference model were 

compared to verify if the correct proportions were maintained in the posterior 

ensemble. 

In each of the examples, it is illustrated through the comparison with the base 

cases that although production history match has been achieved after several 

assimilation steps, spatial continuity of geologic features are no longer 

maintained with conventional EnKF. This is evident by comparing Figure ‎3-6(b) 

and Figure ‎3-7(b) with Figure ‎3-11(b) and Figure ‎3-12(b). The same observation 

can be made in the channelized model, where facies continuity is lost after 

several update steps, as evidenced in Figure ‎3-17(b) and Figure ‎3-18(b). 

Figure ‎3-21(b) illustrates how the re-sampling scheme has successfully re-

established this spatial continuity in the final updated ensemble.  

Prior to any updating, few hard data are typically available to generate the initial 

ensemble. Many researchers have reported the issue of ensemble collapse due to 

a poor initial ensemble. The ensemble typically experiences major updates 

during the first few steps as well as right after an additional observation data 

type (e.g., water cut) becomes available. This comment is illustrated in 

Figure ‎3-8 and Figure ‎3-19, which show the objective function (Equation ‎3-19) 
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value decreases with successive update steps up to the 13
th

 update step in 

example A and 9
th

 update step in example B.  Difference in breakthrough 

behavior among different ensemble members causes the objective function to 

increase sharply. Thereafter the model parameters are updated in accordance to 

the water cut measurements. 

3.5 Conclusion 

The new re-sampling-point formulation re-samples a new ensemble of model 

parameters, which has incorporated important model updating information 

derived from early production data. Model parameters having the highest impact 

on the production performance are selected as re-sampling points, which capture 

updating information derived from previous assimilation steps to be incorporated 

in the new ensemble. Besides, the re-sampled members reproduce the reference 

statistics regarding the proportions and spatial continuity of different facies. The 

re-sampling aids the filter to maintain the diversity among ensemble members 

and avoid underestimation of the uncertainty in the posterior probability 

distribution.   

In order to ensure consistency among state and model variables, after every re-

sampling, the entire ensemble is subject to the forward model from the beginning 

until the last EnKF update step. This will certainly incur additional 

computational efforts. However, the additional costs can be justified by the 

improvement in terms of reference statistics reproduction and uncertainty 

estimation in the posterior probability distribution.  
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The proposed re-sampling procedure results in lower root mean square error of 

production data match. At the same time, the facies proportion and variogram of 

the assimilated models are more consistent with the reference distribution. The 

technique presents a promising potential in characterization of non-Gaussian 

model parameters using diverse data sources.  

 

Table ‎3-1 Parameters of the dynamic model for case studies. 

Example-A  

Model Dimensions  21×21×1 grids in X, Y and Z directions 

Grid Dimensions 76 × 76 × 6 m (250 × 250 × 20 ft) 

Reservoir Depth 914 m (3000 ft) 

Porosity 30% constant 

Permeability Range 50, 500 and 2000 md 

Operating Bottom-hole Pressure Producer:         2300 psi 

Injectors:         2500 psi 

Noise Standard Deviation Producer:         50 STBPD 

Injectors:         20 STBPD 

Initial Reservoir Pressure 2500 psi 

Total Generated History 32 years (10 years was used for history matching) 

Example-B  

Model Dimensions  100×80×1 grids in X, Y and Z directions 

Grid Dimensions 10 × 10 × 10 m (33 × 33 × 33 ft) 

Reservoir Depth 914 m (3000 ft) 

Porosity 20% constant 

Permeability Range 50 and 1000 md 

Operating Conditions  

Producers BHP=         2800 psi 

Injectors BHP=         3200 psi 

Noise Standard Deviation Producers:       20 STBPD 

Injectors:         20 STBPD 

Initial Reservoir Pressure 3000 psi 

Total Generated History 18 months (9 months was used for history matching) 

Relative Permeability and Capillary Pressure Curves 

Sw Krw Kro Pcow 

0.2 0 1 7 

0.3 0.07 0.4 4 

0.4 0.15 0.125 3 

0.5 0.24 0.649 2.5 

0.6 0.33 0.0048 2 

0.8 1 0 0 
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Table ‎3-2 Average RMSE values for the entire production period calculated using 

Equation ‎3-20 and Equation ‎3-21, for the initial and history-matched ensemble. For both 

examples, the initial ensemble for the Base Case was generated using only conditioning 

data at the well locations, whereas for Case-RP, the initial ensemble refers to the re-

sampled ensemble generated using the proposed re-sampling technique. A value of 1 

(RMSE = 1) corresponds to a perfect match. 

Example-A Producer Injector Observation 

 Oil rate Water cut Water injection rate Pressure 

Well NO. 1 1 1 2 3 4 1 2 3 4 

Base Case - Initial 

Ensemble 
0.4974 0.3821 0.3652 0.4112 0.552 0.3971 0.2986 0.2853 0.3689 0.2988 

Base Case - After History 

Matching 
0.8267 0.8563 0.7410 0.8138 0.7724 0.7958 0.7222 0.799 0.7798 0.7460 

Case-RP - Initial Re-

sampled Ensemble 
0.6025 0.6780 0.6325 0.7122 0.6560 0.7076 0.6023 0.6566 0.6750 0.6433 

Case-RP - After History-

Matching 
0.9145 0.8672 0.9381 0.9762 0.9426 0.9565 0.8948 0.9622 0.9463 0.8797 

Example-B Producers Injectors 

Wells Oil rate Water cut Water injection rate 

Base Case - Initial 

Ensemble 
0.6432 0.3025 0.4129 

Base Case - After History 

Matching 
0.9167 0.5041 0.7489 

Case-RP - Initial Re-

sampled Ensemble 
0.8106 5712 0.6550 

Case-RP - After History-

Matching 
0.9715 9812 0.9869 
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Figure ‎3-1 (a) Ensemble spread as a function of the number of re-sampling sets. (b) 

Weighted root mean square error of semi-variogram mismatch versus number of re-

sampling locations. These plots are used to determine the optimum number of (a) re-

sampling point sets and (b) total number of re-sampling points for Example A. 
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Figure ‎3-2 Diagram representing the workflow of Ensemble Kalman Filter with re-

sampling and DCT parameterization. 
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Figure ‎3-3 Well locations for both examples. 

 

 

 

Figure ‎3-4 True Model for Example A (a) and Example B (b). 
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Figure ‎3-5 Oil production rate, water cut, and water injection rates before (left column) 

and after (right column) history match for Base Case. An acceptable match of observed 

data was achieved. 
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Figure ‎3-6 Average permeability map of the initial (a) and updated (b) ensemble (20 update 

steps, 10 years of production history). 

  

 

Figure ‎3-7 Permeability map of a randomly-selected ensemble member: initial (a) and final 

updated (b) model. 
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Figure ‎3-8 Objective function (Equation ‎3-19) and the actual production water cut history 

at successive assimilation steps. The inset figures show the ensemble variances of model 

parameters at various assimilation steps: 0, 2, 3, and 13 (t = 0, 12, 18, and 78 months). 

 

 

Figure ‎3-9 Comparison of the average permeability map of the five re-sampled ensembles 

to the true model as shown in Figure 3-4. Circles denote the locations of selected re-

sampling points. 
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Figure ‎3-10 Oil production rate, water cut, and water injection rates of the re-sampled 

ensemble before (left column) and after (right column) resuming EnKF updating for Case-

RP. Ensemble shown on the left was generated using probability weighted re-sampling (i.e., 

based on the results of Base Case after 3 update steps, 18 months of production history). 
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Figure ‎3-11 Average permeability map of the initial (a) and updated (b) ensemble (14 

update steps, 7 years of remaining production history). Initial ensemble was generated by 

probability weighted re-sampling. 

 

 

Figure ‎3-12 Permeability map of a randomly-selected ensemble member: initial (a) and the 

updated (b) model. Initial ensemble was generated using probability weighted re-sampling. 
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Figure ‎3-13 Comparison of experimental variogram values of a randomly-selected 

ensemble member for true model, base case, and re-sampling case, along the horizontal 

azimuths of 45 (a) and 135 (b) degrees. 

 

 

 

Figure ‎3-14 Comparison of experimental histogram of the average ensemble facies 

proportions in Example A. 
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Figure ‎3-15 Training image for the channelized model in Example B. 
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Figure ‎3-16 Oil production rates, water cut, and water injection rates before (left column) 

and after (right column) history match for Base Case. An acceptable match of observed 

data was achieved. 
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Figure ‎3-17 Average permeability map of the initial (a) and updated (b) ensemble (9 update 

steps, 9 months of production history). 

 

Figure ‎3-18 Permeability map of a randomly-selected ensemble member: initial (a) and 

final updated (b) model. 
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Figure ‎3-19 Objective function (Equation ‎3-19) and the actual production water cut history 

at successive assimilation steps. The inset figures show the ensemble variances of model 

parameters at various assimilation steps: 1, 3, 5, and 8. 
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Figure ‎3-20 Oil production rates, water cut and water injection rates of the re-sampled 

ensemble before (left column) and after (right column) resuming EnKF updating for Case-

RP. Ensemble shown on the left was generated by probability weighted re-sampling. 
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Figure ‎3-21 Average permeability map of the initial (a) and updated (b) ensemble (9 update 

steps, 9 months of remaining production history). 

 

Figure ‎3-22 Permeability map of a randomly-selected ensemble member: initial (a) and the 

updated (b) model. 
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Figure ‎3-23 Comparison of experimental histogram of the average ensemble facies 

proportions in Example B. 
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Chapter 4: History Matching and Uncertainty Quantification 

of Discrete Fracture Network Models in Fractured 

Reservoirs
5
 

4.1 Introduction 

Fluid flow in fractured reservoirs mainly takes place through the network of 

interconnected fractures surrounding matrix blocks. Proper characterization of 

the fracture system is of outmost importance while making a robust model for 

simulation of the multiphase fluid flow in fractured reservoirs.  

Continuum and discrete fracture modeling approaches are implemented for 

description of the fracture network. In the Continuous Fracture Modeling (CFM) 

method the geological and geomechanical factors that control fracturing of the 

formation are identified. These factors, known as fracture drivers, are related to 

fracture observation and indicators at the well locations. Once a relation is 

established, the fracture drivers are used to model the fractures throughout the 

reservoir and their equivalent porous medium parameters are further exported for 

use in numerical simulation. The Discrete Fracture Network (DFN) modeling 

approach focuses on modeling fractures explicitly. DFN models are 

characterized by properties such as length, orientation, intensity and 

transmissivity. Various data from different resources such as seismic reflection 

data, production tests, and well logs can be utilized to generate and validate the 

                                                 

5
 A version of this chapter has been published 

Nejadi, S., Trivedi, J., Leung, J., 2014. DFNE, Vancouver, Canada, October 19 – 22. 
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DFN models and calibrate the flow properties of the fractures. However, due to 

computational complications and costs, DFN models consisting of thousands of 

fracture elements cannot be utilized to simulate multiphase flow at the full field 

scale (Dershowitz et al. 2004). 

Developing a reliable and accurate simulation model is essential for predictions 

of hydrocarbon recovery and uncertainty assessment of fractured reservoirs. 

Dual-porosity modeling is widely adopted in fractured reservoir simulation 

(Warren and Root 1963, Kazemi et al. 1967). It conceptualizes the fracture-

matrix system as dual continuous media in which the fluid flow takes place only 

through the high permeability fracture system and the matrix blocks act as the 

storage. An extension of dual porosity simulation is the dual-porosity dual-

permeability approach, which allows fluids to flow through both the fracture 

network and between matrix blocks (Fung et al. 1991).  

To construct a dual continuum reservoir simulation model, equivalent porous 

medium properties are assigned to each reservoir cell of both matrix and fracture 

continua. The determination of the equivalent parameters is an important step for 

simulating fluid flow in the fractured reservoirs. Different techniques have been 

introduced to upscale DFN to the equivalent dual porosity model. Various 

authors have extensively studied upscaling of fracture permeability data and the 

matrix fracture interaction. An analytical formation was developed by Oda 

(1985). Numerous authors have proposed other upscaling approaches (Bourbiaux 

et al. 1998, Karimi-Fard et al.2006, Bogdanov et al. 2007). Flow-based upscaling 

and local-global upscaling techniques have also been studied by a variety of 
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authors (Chen et al. 2003). Using upscaling techniques, individual fracture 

properties are upscaled to an equivalent permeability tensor and the sigma factor 

or shape parameter described in the dual porosity simulation model.  

In addition to the static information (geologic and seismic data), history 

matching techniques are further implemented to integrate dynamic (production) 

data for enhanced reservoir characterization. Many techniques have been 

implemented for history matching of fractured reservoirs. The techniques focus 

on either directly updating dynamic model parameters, or updating fracture 

drivers and correlation parameters in CFM approach, or adjusting fracture 

parameters in DFN models.  

Traditionally, fractured reservoirs are treated the same as conventional 

reservoirs, where field production performance is integrated to adjust dynamic 

model parameters. The history matching process updates parameters such as 

permeability, porosity and matrix fracture interaction coefficient. It ignores 

explicitly optimizing fracture parameters and updating complex geological 

features of fractured reservoirs.  

Several authors have used the parameters of a volumetric grid, which is derived 

from continuous fracture models, as a tuning parameter. Ouenes et al. (1995) 

implemented a neural network to correlate geological information and well 

performance to the reservoir fracture intensity. Ouenes (2000) implemented a 

fuzzy neural network to evaluate the effect of different fracture drivers, such as 

structure, lithology and bed thickness on fractures and develop correlations 

between geological drivers and fracture intensity. The optimized fracture 
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intensity map is used for selecting potential infill drilling well locations with 

estimated ultimate recovery higher than certain economic limits. Sezuki et al. 

(2007) have used probability perturbation methods to adjust fracture intensity 

and large-scale fracture trend. They have calculated directional effective 

permeability of the single porosity reservoir simulation model from matrix 

permeability and fracture intensity. Cui and Kelkar (2005) have used a gradient 

simulator and adjoint method for conditioning the fracture intensity to the 

production data. They have used the fracture intensity map to estimate 

directional fracture permeability and matrix fracture interaction coefficient. 

Few authors have focused on characterizing parameters of discrete fractures 

integrating dynamic production data. Gang and Kelkar (2008) have used the 

adjoint method to calibrate permeability of individual fractures as well as the 

capillary pressure curves. They have assumed that the relationship between the 

grid block effective permeability and fracture permeability is known. Hu and 

Jenni (2005) have used object-based Boolean simulation to define faults and 

fractures in the model. They have implemented the gradual deformation method 

to calibrate the object based model (location, shape and size of the objects) to 

dynamic data. De Lima et al. (2012) have used gradual deformation to 

characterize fault density, fault position and length of a fractal fault model. 

This chapter attempts to address two particular issues with history matching of 

fractured reservoirs. Firstly, various fracture parameters, which are implemented 

in discrete fracture network modeling, are characterized. These parameters 

include global fracture parameters such as intensity and connectivity, as well as 
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single fracture parameters, such as orientation, size, shape, aperture, 

transmissivity, and storage. Prior to dynamic data integration, the probability 

distributions of the parameters are inferred from static geological evidence. The 

objective functions are further implemented in inverse modeling to minimize the 

observed data mismatch and obtain samples from the posterior probability 

density function (pdf). Current frameworks for optimization and history 

matching of fractured reservoirs lack the ability to estimate a large number of 

model variables. The applications mainly focus on updating few parameters. 

Secondly, it is intended to generate a group of multiple history matched models, 

which are calibrated to both static and dynamic observations. A single history 

matched model might be useful; however, for quantifying uncertainty of the 

forecasts, multiple models with small dynamic data mismatch are necessary.  

Oliver and Chen (2011) have reviewed various history matching techniques for 

quantifying uncertainty on production forecasts. Application of these techniques 

for fractured reservoir models and uncertainty assessment of fracture parameters 

is limited. Ghods and Zhang (2010, 2012) have used Ensemble Kalman filter 

(EnKF) for parameter estimation of dual porosity dual permeability reservoir 

models. Ping and Zhang (2013) have used EnKF combined with level set 

parameterization for estimating fracture distribution in a two dimensional 

synthetic reservoir model. Their principal objective was to capture the main 

features of the fracture distributions in the reference dynamic model. Cliffe et al. 

(2011) used Bayesian approximation to condition the transmissivity of a DFN 

model of a ground water flow problem to observed pressure data. 
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The Ensemble Kalman Filter (EnKF) is a Monte-Carlo technique that 

implements Bayesian updating scheme for data assimilation. It has been 

introduced to the petroleum engineering industry by Lorentzen et al. (2001) as a 

promising approach for solving high-dimensional history matching problems 

(Aanonsen et al. 2009). The EnKF implements an ensemble of model states and 

approximates the covariance matrices sequentially in time as new observations 

become available. The primary assumptions are linear system dynamics and that 

the model parameters follow a multivariate Gaussian probability distribution 

function (pdf). Applying the updating schemes iteratively during each 

assimilation step has been proposed to address the issues related to non-

linearities (Chen and Oliver 2012, Li and Reynolds 2009). In the case of DFN 

characterization, the highly nonlinear relationship between the DFN model 

parameters and the simulation model production data  implies that assimilating 

state variables (e.g. pressure data) is not practical and each proposed state 

requires a run of forward model after every update step to ensure consistency 

among state and model variables. The Gaussian assumption implies that the 

EnKF does not converge to the correct distribution, identified by geological 

studies, if the prior joint pdf has non-Gaussian contributions. The conventional 

EnKF method must be modified such that it can be applied for models whose 

parameters are not characterized by multivariate Gaussian distributions (Evensen 

2003, Aanonsen et al. 2009). Nejadi et al. (2012) have implemented Normal 

Score transform as a parameterization technique to update decomposed 

permeability tensor parameters of a fractured reservoir along principal flow 
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directions. The technique has shown successful result in their studies, where the 

model parameters followed a bimodal distribution. This chapter proposes an 

innovative methodology based on ensemble-based history matching solutions to 

estimate probability distribution of DFN model parameters. This is achieved by 

updating various DFN model parameters using EnKF data assimilation 

technique. In this application, the uncertain parameters of global fracture 

distribution and connectivity as well as individual fracture properties are 

updated. To be more specific, the global parameters include global fracture 

intensity, number of fractures connected to the well and tributary drainage 

volume. The individual fracture parameters are local grid fracture intensity, 

fracture trend and plunge (orientation parameters).  

The organization of this chapter is as follows: we begin our discussion with the 

formulation of DFN model parameter estimation integrating dynamic data. Next, 

we present the results obtained from the application of the proposed 

methodologies in a synthetic tight gas reservoir model. At the end, the 

conclusion and remarks drawn from the case study are discussed. 

4.2 Methodology 

4.2.1 Generating discrete fracture network models 

Initially, the fracture model is discretized into volumetric cells. The cells are 

equivalent to the grid blocks of the dual porosity model of the reservoir 

simulator. The geocellular model is implemented in our methodology to 

integrate data from different resources (dynamic and static) and characterize 
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DFN models. Different local fracture parameters (such as intensity and 

orientation) are correlated to the cell attributes (seismic attributes, stress or strain 

tensor). 

Generation of Initial DFN Realizations: The initial ensemble of DFN realizations 

is generated by defining specific global fracture intensity ( 32Gp ), for different 

realizations. Generally 32P is the area of fractures per volume of rock mass. The 

fracture intensity at each and every grid block is defined by local fracture 

intensity ( 32LP ). If secondary data, such as seismic coherence are available, 32LP  

of the initial realizations is correlated to the secondary data, otherwise it is 

considered to be constant all over the model. 

Generation of DFN Realizations Using Updated Parameters: Global fracture 

intensity ( 32Gp ), local grid based fracture intensity ( 32LP ) and fracture 

orientation parameters (trend   and plunge ) are the parameters, which are 

updated during history matching. The optimized cell parameters are 

implemented in geocellular fracture generation algorithm as implemented in 

FracMan® software to generate an improved ensemble of DFN models. The 

geocellular algorithm uses the cell properties to generate fractures to a 

volumetric grid. Total number of fractures connected to the well ( fwn ), tributary 

drainage volume ( TDVvol ), and global fracture intensity of tributary drainage 

volume ( 32G TDVp  ) are other parameters that affect fluid flow and the pathways 

in the reservoir. These parameters are estimated during dynamic data integration 

and used as the conditioning data to generate new DFN realizations. Monte 
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Carlo simulation is implemented to generate DFN models that honor the target 

(updated) parameters. 

The DFN models are conditioned to the fracture observations at the well 

locations. Image logs, core analysis and production logs provide valuable 

information, in relation to fracture parameters such as fracture opening and 

linear fracture intensity ( 10p , which is the number of fractures divided by the 

length of scanline). After a DFN is generated, statistical analyses are performed 

to examine how closely the intersecting fractures match the observed 10p value 

at the well location. If necessary, Monte Carlo simulation is implemented to 

minimize the mismatch between the experimental 10p of the generated 

realizations and the target 10p value. 

4.2.2 Upscaling 

Equivalent grid cell permeability tensors are computed as parameters of a dual 

porosity reservoir simulator by implementing upscaling techniques. In our 

implementations‎ we‎ have‎ used‎ Oda’s‎ analytical‎ approach,‎ which‎ is‎

computationally faster than flow-based upscaling techniques.  

4.2.3 Defining orientation parameters 

Given a discrete fracture network model, upscaling is carried out to calculate the 

grid cell permeability tensors for reservoir simulation. The upscaling procedures 

will generally create full tensor permeability for each and every grid block of the 
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geocellular reservoir model. The permeability tensor is a symmetric and positive 

definite matrix. The permeability tensor, K, is in the following form:  

xx xy xz

yx yy yz

zx zy zz

k k k

K k k k

k k k

 
 

  
 
 

 

In conventional homogenous reservoirs, the grid blocks of the reservoir 

simulation model are defined along three directions that transform the 

permeability tensor into a diagonal matrix. Specifically, a pressure drop along 

the coordinate directions would only yield to fluid flow in same path. In highly 

heterogeneous reservoirs, with lots of variations in rock properties, defining a 

local coordinate direction according to the fluid flow pathways is practically 

impossible. As a result, the off-diagonal permeability tensor elements of the 

grids in which the principal flow directions do not coincide with the grid 

coordinate system are not zero.  

Eigen decomposition is implemented to factorize a matrix into canonical terms. 

The permeability tensor can be represented in terms of its eigenvalues and 

eigenvectors. The eigenvectors define the principal flow directions in the grid 

block and the eigenvalues describe how rapidly fluids can flow along the 

principal directions. Since the permeability tensor is a symmetric, positive 

definite matrix, its eigenvectors are orthogonal. The first two eigenvectors, 

corresponding to the two largest eigenvalues, describe the spatial orientation of a 

plane in which the ability of the rock to permit fluid flow is highest. In fractured 
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reservoir models, this plane, describes the average orientation of the fractures in 

a grid block. The third eigenvector is perpendicular to the prescribed plane and 

defines the average pole orientation of the fractures within the grid (Figure ‎4-1). 

In other words, the eigenvector corresponding to the smallest eigenvalue is the 

pole vector of the predominant fluid flow plane in the grid (Nejadi et al. 2012). 

Consider the first eigenvector 1V , its components in the spherical space can be 

written as 
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Consider the second eigenvector 2V , its components in spherical space can be 

written as 
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Similarly, the angles of the third eigenvector 3V  in spherical space can be written 

as 
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where 3 and 3 are the trend and plunge of pole vector, which is perpendicular 

to the predominant fluid flow plane in each grid. 

The permeability tensors of all grid blocks in the upscaled model are 

decomposed into its principal directions, above formulation is implemented to 

calculate the trend and plunge of the pole vector. The trend and plunge values 

are updated by means of optimization algorithms and are further used as soft 

data for an improved estimation of fracture orientations in DFN models 

1 2 3

3 3 3 3, , ,..., b
T

n        , ‎4-4 

 
1 2 3

3 3 3 3, , ,..., b
T

n        , ‎4-5 

where bn is the total number of grid blocks in the geocellular model and T 

denotes the matrix transpose. 

4.2.4 Forecast model 

In a fractured reservoir, fluids exist in two connected systems: the matrix and the 

fractures. Typically fractures provide high conductivity conduits and the matrix 

provides the fluid storage. A dual porosity/single permeability model may 

characterize a fractured reservoir with relatively low matrix permeability, but 
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high porosity. In this study, the commercial reservoir simulation software 

Eclipse (2011) was used as the forecast model. 

The forecast model is separately applied to each ensemble member. The 

multiphase fluid flow in petroleum reservoirs is described by material balance, 

momentum balance, phase behavior descriptions and numerous auxiliary 

equations. This system of non-linear differential equations is solved numerically 

using methods such as finite difference  

0

, 1,...,
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u m
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d u
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where j

ku  denotes the estimated state variables (pressure and saturation) and j

kd

is the production data predictions, after running the dual porosity dual 

permeability reservoir simulator (forward model, G) from the initial conditions 

at time 0 to time step k. Individual realization is denoted by j, and en  is the total 

number of ensemble members. 

4.2.5 Ranking the realizations 

After applying the forecast model to the upscaled DFN models, the simulations 

results are compared with the actual production data. The objective function is 

defined as the dynamic data mismatch or the root mean square error (RMSE) 

1( ) [ ] [ ]j j T j

k k obs D k obsO m d d C d d  
, ‎4-7 

where DC  is the error covariance matrix. The prescribed user defined objective 

function is implemented in the concept of importance weights in particle filter 
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technique, where ensemble members (particles) are weighted on the basis of 

likelihood function. Emerick and Reynolds (2012) suggested a weighting 

function that is proportional to  exp ( )O m . Nejadi et al. (2014) have also 

successfully adopted an analogous probability weighting scheme in the EnKF 

framework to maintain the reference statistics of the model parameters and to 

improve ensemble variability. A weighting scheme similar to that of Emerick 

and Reynolds (2012) is implemented to calculate the weight of each ensemble 

member. The approach is analogous to the use of importance weights in particle 

filtering techniques, where ensemble members (particles) are weighted on the 

basis of likelihood function. Ensemble members are promoted based on their 

likelihood and sampled members are used as the basis for optimization of 

fracture model parameters. 

4.2.6 Analysis step – Ensemble Kalman filter 

The analysis step is carried out using the observation data (dk) for all ensemble 

members 

 , , ,a j p j p j

k k k ik ky y KG d Hy  
, ‎4-8 

where ja

ky ,  represents the analysed state vector, jp

ky ,  is the posterior state vector, 

kKG is the Kalman Gain at k
th

 step, and H is the observation operator, which 

represents the relationship between the state vector and the observation vector 
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 I  0H
. ‎4-9 

ikd  is the observation data at the thk  step (dobs,k) plus observation noises (εk) for 

ensemble member i 

kkobsik dd  , . ‎4-10 

Kalman gain kKG is defined as 
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where jp
ky

C ,  is the state cross covariance matrix, and 
kdC  is the error covariance 

matrix.  

The cross covariance matrix is approximated as 
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where T indicates matrix transpose, and 
p

ky is the average of all posterior state 

vectors. 

In this study, the state vector of the ensemble Kalman filter formulation ( j

ky ) 

consists of the DFN model parameters ( j

km ) and the production data predictions 

( j

kd ), which are the simulation outputs of the dynamic model. 
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The following parameters are included in the state vector as the model 

parameters ( j

km ) and updated using EnKF algorithm: 

• Global fracture intensity of the model ( 32Gp , which is scalar parameter 

corresponding to each realization) 

• Local grid cell fracture intensity ( 32LP , which is 1bn  column vector 

corresponding to each realization. bn is the total number of grid blocks in the 

geocellular model) 

• Fracture trend ( , which is 1bn  column vector corresponding to each 

realization) 

• Fracture plunge ( , which is 1bn  column vector corresponding to each 

realization) 

• Total number of fractures connected to the well ( fwn , which is scalar 

parameter corresponding to each realization) 

• Tributary drainage volume TDVvol and fracture intensity of the tributary 

drainage volume ( 32G TDVp  , which is scalar parameter corresponding to each 

realization) 
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4.3 Procedure 

The detail procedure to update DFN models and their upscaled flow simulation 

models is described below: 

a) Initially the following parameters are defined to generated the DFN 

realizations: 

1- 32Gp is derived from a uniform distribution. The true expected value 

of the total number of fractures is believed to lie between the lower 

and upper limit of the distribution.  

2- 32LP is assumed to be constant for all grid cells. 

3- Initial values for orientation parameters ( , ) are obtained from 

fracture observations at the well locations and other geological 

information. 

4- 
fwn , TDVvol and 32G TDVp  are unknown and DFN realizations are only 

conditioned to observed 10p value at the well locations. 

b) Generate ensemble of DFN realizations; 

1- 32Gp , 32LP , and  are implemented in geocellular fracture 

generation algorithm. 

2- Using Monte Carlo simulation, the realizations are conditioned to the 

observed 10p  value; at subsequent assimilation steps, these 

realizations are also conditioned to the updated fwn and 32G TDVp  .  
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c) Perform statistical analysis to calculate the following statistics for the 

new DFN realizations: 

1- 32LP  

2- 
fwn  

3- TDVvol  

4- 32G TDVp   

d) Upscale DFN realizations. 

e) Estimate  and from Equation ‎4-4 and Equation ‎4-5. 

f) Apply the forward model (G) to the realizations (from t0=0 to tk, k is the 

number of update step). 

g) Calculate the objective function (Equation ‎4-7) and rank the realizations. 

h) Apply EnKF to the high rank realizations and estimate updated model 

parameters. 

i) Repeat step b to h for the entire production history. 

The aforementioned procedure is schematically presented in Figure ‎4-2. 

4.4 Case Study 

The proposed methodology has been implemented for history matching of a 

synthetic tight gas fractured reservoir model. Three-stage hydraulic fracturing 

operation is used for well treatment and improving the productivity. Parameters 

of the hydraulic fracture planes are assumed to be known. The objective of this 

case study is to predict the spatial distribution and orientation of the natural 

fractures in the reservoir. 
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4.4.1 Reference model description 

The dimensions of the model are 3000 m × 3000 m × 30 m. One horizontal well 

(700 m long) is located in the model. The well and hydraulic fracture locations 

are shown in Figure ‎4-3.  

One set of natural fractures is present in the reservoir. The global model fracture 

intensity ( 32Gp ) of the reference model is 0.03 m
-1

. The fracture orientation 

parameters of the fracture pole vector trend and plunge are 85° and 15° 

respectively. The orientation distribution of the pole vector is defined using 

Fisher (1953) distribution; the Fisher dispersion parameter is set to 15. The 

fracture size distributions are derived from uniform probability density 

functions; the minimum and maximum fracture size is 66 m and 135 m 

respectively, while the aspect ratio is ten. The spatial fracture distribution of the 

reference model is depicted in Figure ‎4-4. Table ‎4-1 summarizes the parameters 

of the reference model.  

The numerical model for the case study consists of a  

100 × 100 × 10 grid in x-y-z directions. A dual porosity model is considered for 

reservoir simulation. The matrix properties are assumed to be constant 

throughout the model. Matrix porosity and permeability are constant and defined 

as 5% and 0.01md respectively. The fracture system properties are derived from 

upscaling the DFN model, implementing the Oda (1985) analytical technique. 

Fracture permeability (in y direction, yyk ) for the dual porosity simulation model 

is depicted in Figure ‎4-5. 
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The production schedule is defined for 28 months, and the complete production 

history is used for history matching and calculating the RMSE. The producer is 

operated with a maximum gas production rate of 141.6 standard cubic meters 

(SCM) per day and a minimum bottom hole pressure limit of 3.45e+6 Pa. The 

synthetic field-observed data set, which consists of gas production rate and 

bottom-hole pressure, is obtained by subjecting the reference model to a 

reservoir simulator. The Eclipse black-oil simulator was used as the reservoir 

simulator (forward model). Table ‎4-1 summarizes the parameters of the discrete 

fracture network model and the dynamic dual porosity model. 

4.4.2 Implementation of history matching algorithm 

To begin, 150 independent realizations, all equally probable, are generated. The 

individual DFN realizations are created using geocellular fracture generation 

algorithm. The global fracture intensity ( 32Gp ) of the DFN models is derived 

from a uniform distribution. The lower and upper bound of the distribution are 

0.005 and 0.09 (m
-1

), respectively. The local fracture intensity ( 32LP ) is 

considered to be constant all over the reservoir model. 

After generating the DFN models, local fracture intensity ( 32LP ) of the models is 

calculated. 32LP map of four randomly selected realizations are shown in 

Figure ‎4-6. Statistical analysis is implemented to calculate total number of 

fractures connected to the well and the tributary drainage volume. Figure ‎4-7 

shows the histogram of total number of fractures connected to the well ( fwn ), 

tributary drainage volume ( TDVvol ), and the global fracture intensity within 
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tributary drainage volume ( 32G TDVp  ), for the initial ensemble members. 

Figure ‎4-8 shows the equal area (Schmidt), lower hemisphere stereonet of 

fracture pole orientations of a randomly-selected initial ensemble model. 

Probability distribution function of the fracture orientation follows Fisher (1953) 

distribution.  

In the next step, the DFN models are upscaled. The upscaled models are 

subjected to the forward model (dual porosity, Eclipse reservoir simulator) for 

the first production period ( 0 0t   to 1 4t months ). Figure ‎4-9 shows the 

cumulative gas production and well bottom-hole pressure of the initial ensemble 

compared to the true production values. 

Equation ‎4-7 is used to compare the production performance of individual 

realizations with the true production history. The calculated objective function 

value, which is equivalent to the root mean square error, is implemented to 

assign a weight to the realizations. The weighting function is proportional to 

exp(-O(m)), where O(m) is a user-defined objective function. The weighting 

factors are used to sample from the realizations. Probability sampling is 

implemented to select members for the subsequent update steps. 

History matching is performed for 7 steps. Update steps are every 4 months. The 

reservoir simulation is applied from 0 0t  to kt  where k is equal to 4 months for 

the‎ first‎ step‎and‎8,‎12…‎and‎28‎months‎ for‎ the‎ subsequent‎update‎ steps.‎The‎

updated local fracture intensity maps ( 32LP ) of four randomly selected 

realizations are shown in Figure ‎4-10.  
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Figure ‎4-11 shows the histogram of total number of fractures connected to the 

well, tributary drainage volume, and the global fracture intensity within tributary 

drainage volume, for the updated realizations. Figure ‎4-12 shows the equal area 

(Schmidt), lower hemisphere stereonet of fracture pole orientations of a 

randomly-selected updated ensemble model. Figure ‎4-13 shows the cumulative 

gas production and well bottom-hole pressure of the updated models compared 

to the true production values. 

4.5 Results and Discussion 

Root mean square data were used to measure the quality of the observed data 

match and to assess the performance of the methodologies (compare Figure ‎4-9 

and Figure ‎4-13) Furthermore, the parameters of the updated discrete fracture 

network models are in agreement with the geological parameters of the 

formation (the true model) and realistic fracture parameters distributions are 

maintained in the updated ensemble (Figure ‎4-11). In the case study, it is 

illustrated that several equally probable dynamic models match the production 

history. These realizations and their equivalent DFN models are implemented for 

reservoir production forecasting and uncertainty assessment of the fracture 

parameters. 

Figure ‎4-7 and Figure ‎4-11 depict the histogram of the number of fractures 

connected to the well in the initial and updated ensemble. These fractures highly 

affect the average reservoir permeability in the region around the well and in the 

tributary drainage volume. The updated models clearly reveal the expected 

number of fractures which are connected to the well and the tributary drainage 
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volume for our case study. By analogy, the fracture intensity maps of the 

updated ensemble members (Figure ‎4-10) should be compared against the initial 

ensemble members (Figure ‎4-6). Prior to dynamic data integration, few static 

evidences are typically available to approximate the fracture intensity and its 

relation to geological parameters. The updated 32LP maps demonstrate the 

expected bounds and spatial distribution of the fracture intensity in the case 

study. These data are potentially implemented to update the relation between 

geological drivers and fracture intensity in the region far from the wells. Table 2 

summarizes the statistics of some important DFN model parameters, which were 

updated during the history matching. 

4.6 Conclusion 

The proposed new methodology, integrates static data and dynamic observations 

for characterization and history matching of fractured reservoirs. It implements 

the root mean square error of production data match to update discrete fracture 

network model parameters and propose multiple equally probable DFN models 

and their equivalent continuum dual-porosity models. The updated models match 

the observed dynamic data and reproduce geologically realistic fracture 

parameters. 

Fracture parameters having the highest uncertainty and impact on the production 

performance are selected as optimization parameters. Subsequent to each 

optimization step, a new ensemble of DFN models are generated using updated 

parameters. This aids the algorithm to maintain the diversity among ensemble 
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members and avoid underestimation of the uncertainty in the posterior 

probability distribution. The technique presents a promising potential in 

characterization of fractured reservoir model parameters using diverse data 

sources. 

 

Table ‎4-1 Parameters of the discrete fracture network model and the dynamic dual 

porosity simulation model. 

Discrete fracture network parameters: 

Fracture aperture 1e-6 m 

Fracture transmissivity 1000 m
2
/hr 

Fracture storativity 1 e-6 1/m 

Dynamic model specifications: 

Model dimensions 100×100×10 grids 

in x, y and z directions 

Grid dimensions 30 × 30 × 3 m  

Reservoir depth 1220 m 

Matrix porosity 5% constant 
Matrix permeability 0.01md constant 
Initial reservoir pressure 1.37895e+7 Pa 

Well constraints: 

Maximum gas productions rate 141.584 SCM/day 

Minimum bottom hole pressure 3.44738e+6 Pa 

Total generated history 28 months 

 

Table ‎4-2 Mean and standard deviation (STD) of different discrete fracture network model 

parameters for the initial ensemble compared with the updated realizations. 

Parameter Initial Models Updated Models True 

p32 G Mean: 0.0360 

STD:   0.0143 

Mean: 0.0292 

STD:   0.0032 
0.0293 

nfw Mean:  296 

STD:   388 

Mean:  89 

STD:   42 
47 

vol TDV Mean:  5.16e+7 

STD:    5.77e+7 

Mean:  1.79e+7 

STD:    0.79e+7 
1.10e+7 

p32 G-TDV Mean:  0.0375 

STD:    0.0085 

Mean:   0.0392 

STD:     0.0062 
0.0359 
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Figure ‎4-1 Schematic diagram showing fracture plane, 1V , 2V , and 3V which is the fracture 

pole vector. 
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Figure ‎4-2 Diagram representing various steps for characterization of fractured reservoirs. 
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Figure ‎4-3 Well and hydraulic fracture locations. 

 

 
Figure ‎4-4 Fracture distribution of the true model. 
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Figure ‎4-5 Upscaled fracture permeability in y direction (logarithmic scale), dual porosity 

reservoir simulation model. 
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Figure ‎4-6 Fracture intensity map ( 32LP ) for some randomly selected initial ensemble 

members (logarithmic scale). 

 

 

 
Figure ‎4-7 Histogram of the (a) total number of fractures connected to the well, (b) 

tributary drainage volume, and (c) fracture intensity of the tributary drainage volume for 

the initial ensemble. 
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Figure ‎4-8 Stereonet illustration of fracture pole orientation for a randomly-selected initial 

ensemble member. 

 

 

 
Figure ‎4-9 Cumulative gas production and bottom-hole pressure of the initial ensemble. 
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Figure ‎4-10 Fracture intensity map (P32 L) for some randomly selected updated models 

(logarithmic scale). 

 

 

 
Figure ‎4-11 Histogram of the (a) total number of fractures connected to the well, (b) 

tributary drainage volume, and (c) fracture intensity of the tributary drainage volume (P32 

G-TGV) for the updated realizations. 
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Figure ‎4-12 Stereonet illustration of fracture pole orientation for a randomly-selected 

updated ensemble member. 

 

 

 
Figure ‎4-13 Cumulative gas production and bottom-hole pressure of the updated models. 
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Chapter 5: Integrated Characterization of Hydraulically 

Fractured Shale Gas Reservoirs with Microseismic 

Analysis, Rate Transient Analysis and Production History 

Matching
6
 

5.1 Introduction 

Shale gas reservoirs with low permeability rock matrix often experience 

uneconomical production rates. Successful (commercial) production requires 

maximum reservoir contact that is acquired through long horizontal well drilling 

and multi-stage hydraulic fracturing. Characterization of the fracture system, 

which facilitates fluid flow in the reservoir, is a key task in building a 

mathematical model for recovery predictions. 

In conventional reservoirs, well test analysis is generally applied to characterize 

reservoir and fracture properties using various measurement data. Specific tests 

such as drawdown followed by a buildup period are conducted under controlled 

conditions to record downhole and surface flow measurements. In 

unconventional tight formations, the low reservoir permeability slows down the 

reservoir responses, and a relatively long testing time is required to measure the 

reservoir pressure transients, which is often not practical. Alternatively, analysis 

of dynamic production data, which are recorded over the life time of the well, 

                                                 

6
 A version of this chapter has been published 

Nejadi, S., Leung, J., Trivedi, J., Virues, C.J.J., 2014. SPE 171664. CSUR, Calgary, Canada, 30 
September – 02 October.  
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though might be less accurate compared to well test measurements, could 

provide valuable information for reservoir parameter estimations.  

Production data analysis (PDA) has been widely adopted for quantification of 

reservoir and hydraulic fracture properties in tight gas and shale gas reservoirs. 

Many authors such as Clarkson (2013a, 2013b) have presented thorough reviews 

of the latest techniques for PDA and discussed workflows for production 

forecasting and reserve estimation. Analytical models, which are essentially 

simplified solutions to the detailed governing equations, have been employed 

extensively in pressure transient (PTA) and rate transient analysis (RTA) to 

estimate various system parameters such as hydraulic fracture half-length and 

fracture-matrix contact area (Bello, 2009). In the areas of PTA, Al Kobaisi et al. 

(2006) investigated the effect of fracture parameters using a hybrid model for a 

single fracture intersecting a horizontal well. Cheng et al. (2009) have used 

pressure data to estimate reservoir and hydraulic fracture parameters during the 

elliptical flow periods. They have estimated formation permeability, skin factor, 

and fracture half-length. Medeiros et al. (2008) have used a semi-analytical 

model to study the effects of natural and induced fractures as a dual porosity 

region together with the hydraulic fractures in shale gas reservoirs. In recent 

years, RTA has been widely adopted to characterize reservoir and hydraulic 

fracture parameters. Luo et al. (2014) have combined RTA with Monte Carlo 

analysis to assess uncertainties in matrix and hydraulic fracture properties. They 

demonstrated that uncertainties in matrix and fracture properties lead to 

uncertainty in production forecasts and estimated ultimate recovery. 
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Despite of the complex connectivity and configuration of a given hydraulic 

fracture system, analytical models used in most PDA methods would idealize the 

reservoir rock matrix and hydraulic fracture systems as simple domains by 

conceptualizing matrix as rectangular system, slabs, or other simple shapes with 

constant rock properties, separated by uniformly-distributed orthogonal fracture 

planes. This idealization is necessary to generate analytical or semi-analytical 

models representing fluid flow in the fractures and matrix-fracture fluid 

exchange. However, PDA or history matching is posed as an inverse problem 

with non-unique solutions. Analysis with analytical models would typically yield 

a homogeneous deterministic estimate representative of an average parameter 

value, but it fails to capture the effects of heterogeneity descriptive of the spatial 

variability in reservoir and fracture properties. In addition, analytical models 

often invoke assumptions including sequential depletion and a fully-connected 

fracture system, rendering detailed multiphase flow analysis in a multiple-

porosity medium difficult. On the other hand, numerical simulations can be used 

to compute transient flow response in tight/shale gas media in which matrix 

blocks deplete into the fracture networks simultaneously within an arbitrary 

drainage volume (Alkouh et al., 2012). 

RTA analysis is typically limited to some information about hydraulic fracture, 

mainly drainage volume, but fracture or SRV geometry cannot be obtained by 

these types of analysis. On the other hand, micro seismic monitory and analysis 

(MSMA) can provide information about limits of SRV as well as fracture 

geometry. MSMA is a rapidly evolving field that provides valuable information 
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for hydraulic fracture characterization and field development. It is used to 

determine the spatial extent of fractured rock resulting from stimulation and well 

treatment by mapping the locations of induced microseismic events. Fisher et al. 

(2005) have used microseismic analysis together with surface and downhole-tilt 

fracture mapping to characterize the induced fracture network. They have 

presented correlations between production responses and different fracture 

parameters. Typically, information from MSMA is used to constrain RTA and to 

select the appropriate model for analysis. There have been few studies in recent 

past comparing hydraulic fracture half-length estimates from different 

techniques such as RTA, PTA, microseismic and hydraulic fracture (fracture 

treatment pressure) modelling. Barree et al. (2005) and Clarkson (2011) 

provided such comparison for tight and shale gas reservoirs. It is important to 

note that these two studies provide valuable insight into estimates of fracture 

half-lengths by various methods and discrepancies between them. However to 

the‎best‎of‎the‎authors’‎knowledge,‎comparison‎of‎fracture‎properties‎estimated‎

from RTA and MSMA with those obtained from detailed DFN models coupled 

with history matching has not been done. Besides, the history matched DFN 

models could potentially provide more information on effective fracture network 

than available through RTA, PTA, and MSMA. 

In this chapter, production data, geologic information, and MSMA are integrated 

in an ensemble-based history matching technique to assimilate various DFN 

model parameters of the hydraulic fracture model. The result would be various 

DFN models and their equivalent dual continuum reservoir simulation models, 
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which honor both static geological data and dynamic information. In this field 

case application, the uncertain models parameters are hydraulic fracture radius 

and transmissivity as well as size, intensity, and transmissivity of the secondary 

induced fractures.  

Numerous ensemble-based history matching techniques can be applied for 

practical production data integration (Emerick and Reynolds 2013). Ensemble 

Kalman filter (EnKF) is a Monte-Carlo based technique for data assimilation and 

has been introduced to the petroleum engineering industry by Lorentzen et al. 

(2001) as a promising approach for solving high-dimensional history matching 

problems (Aanonsen et al. 2009). An ensemble of initial models consistent with 

prior knowledge of the initial state and its probability distribution) are advanced 

to the time of the next observation using a forward model (e.g., numerical 

reservoir simulation). Prior joint probability distribution (covariance and mean 

of model states) are approximated directly from the ensemble of states and used 

to compute the Kalman gain, which is applied to update each ensemble member. 

The updated ensemble represents an empirical estimate of the posterior joint 

probability distribution of the model states (Liu and Oliver 2005). The primary 

assumptions are linear system dynamics and that the model parameters follow a 

multivariate Gaussian probability distribution function (pdf). Applying the 

updating schemes iteratively during each assimilation step has been proposed to 

address the issues related to non-linearities (Chen and Oliver 2012; Li and 

Reynolds 2009). In the case of DFN characterization, the highly nonlinear 

relationship between the DFN model parameters and the simulation model 
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production data  implies that assimilating state variables (e.g. pressure data) is 

not practical and each proposed state requires a run of forward model after every 

update step to ensure consistency among state and model variables.  The 

Gaussian statistics assumption also presents an important challenge for applying 

EnKF to estimate fracture property distributions, which are commonly 

multimodal due to the underlying non-Gaussian geological features. A common 

strategy is to transform non-Gaussian model parameters from the original space 

to other space(s) in which they follow a nearly Gaussian distribution, such that 

EnKF can be applied in the transformed space. Various parameterization 

schemes such as truncated pluri-Gaussian, level set method, Gaussian mixture 

models, and discrete cosine transform have been proposed in the literature 

(Evensen 2007; Aanonsen et al. 2009). In this work, instead of characterizing 

individual fractures, five unknown model parameters (transmissivity and 

equivalent radius of the primary fracture, transmissibility, length, and global 

intensity of the secondary (induced) fractures), which are assumed to be constant 

and spatially invariant, are updated. These updated parameters are subsequently 

considered as conditioning data to populate the spatially-distributed secondary 

fractures based on a nearest neighbor model. Finally, each updated DFN model 

is upscaled to an equivalent dual porosity model for forward simulation 

modeling.  

This chapter proposes an innovative methodology that incorporates numerical 

simulations with history matching workflow for parameter estimation of 

hydraulic fractures. The parameter optimization algorithm involves a probability 
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sampling step combined with ensemble Kalman filter (EnKF). The sampling 

technique, which is analogous to the use of importance weights in particle 

filtering, enables the algorithm to remove low weight models with a high 

probability. As the updated DFN models must be upscaled to equivalent dual 

porosity models prior to forward simulation modeling, additional nonlinearities 

between model parameters and system responses are introduced; retaining 

ensemble members with low weights leads to significant computational 

inefficiency and convergence difficulties. 

The organization of this chapter is as follows: we begin our discussion with the 

formulation of the proposed EnKF and probability sampling procedures for 

dynamic data integration in DFN model parameter estimation. Next, we present 

the results obtained from the application of the proposed methodologies for a 

hydraulically-fractured shale gas model in Horn River Basin and the results are 

compared with production data analysis. At the end, the conclusion and remarks 

drawn from the case study are discussed. 

5.2 Methodology 

In this section, various components of the procedure are discussed in detail. The 

key techniques involved in the history matching procedure and optimization of 

discrete fracture network model parameters in hydraulic fractured wells are 

highlighted. 
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5.2.1 Generating discrete fracture network models 

In this chapter, a hydraulic fracture is conceptualized as a fracture system 

consisting of a primary fracture, which is an elongated penny-shaped crack, 

together with secondary fractures, which are complex induced fractures 

connected to the primary fracture. This definition is consistent with the fracture 

system described by Fisher et al. (2005) as complex or very-complex hydraulic 

fracture system. 

Generating discrete fracture network models involves defining basic features of 

the fractures including intensity, orientation, location, size, elongation, and other 

fracture properties such as aperture and transmissivity, which are defined 

individually for each fracture set in the model. Initially, features associated with 

the primary fracture are specified. In this work, fracture location, orientation, and 

aperture are considered to be constant and known, while fracture transmissivity (

pfT ) and equivalent radius ( pfR ) are unknowns. Subsequently, secondary 

fractures are defined in relation to the primary fracture. Locations of the 

secondary fractures are defined by means of nearest neighbor model, in which 

the local fracture intensity (
32

sf

LP ) decreases exponentially with distance from the 

primary fracture. The intensity (
32

sf

LP ) at any point in space is defined by 

32( ) bP x ce 
, ‎5-1 

where c and b are constants and δ is the distance between location x and the 

primary fracture plane (Dershowitz 1993). The orientation parameters of the 

induced fractures are defined using Fisher distribution (Fisher 1953). The global 
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fracture intensity (
32

sf

GP ) of the induced fractures, a scalar parameter equivalent to 

the total number of fractures in the model (fracture count), is considered as an 

uncertain parameter in the case study. Fracture length ( sfL ) and transmissivity (

sfT ) are the other unknown parameters of the secondary induced fractures. 

Initial ensemble of discrete fracture network models is generated by defining 

primary and secondary fractures, conditioned to the known parameters and 

considering specific distributions for uncertain parameters. The uncertain 

parameters are updated during history matching and an improved ensemble of 

DFN models are constructed from the assimilated/updated parameter values 

using a fracture generation algorithm as implemented in FRACMAN
®

 (2011). 

5.2.2 Upscaling discrete fracture network models 

Once a discrete fracture network model is generated, it is translated into dual 

porosity reservoir simulation model, which is an equivalent representation of the 

fracture network and the matrix systems defined over a structured mesh. In this 

implementation,‎Oda’s‎(1985)‎analytical‎approach‎is‎used.‎Oda’s‎technique‎is‎a 

static approach without any flow simulation computations. This method is fast 

and efficient, and it is well suited for well-connected and high-density fractures; 

this assumption is practical for upscaling primary and secondary induced 

hydraulic fractures that are by definition, highly connected to each other. 

5.2.3 Forecast model 

In a fractured reservoir, fluids exist in two connected system; the matrix and the 

fractures. Typically fractures provide high conductivity conduits and the matrix 
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provides the fluid storage. A fractured reservoir with relatively low matrix 

permeability, but high porosity, may be characterized by a dual porosity/single 

permeability model.  

The forecast model is separately applied to each ensemble member. The 

multiphase fluid flow in petroleum reservoirs is described by material balance, 

momentum balance, phase behavior descriptions and numerous auxiliary 

equations. This system of non-linear differential equations is solved numerically 

using methods such as finite difference 

1

0

p a

k k

p a

k

u m
G

d u


   

   
    , ‎5-2 

where u denotes the estimated state variables (pressure and saturation) and d is 

the production data predictions, after running the dual porosity dual permeability 

reservoir simulator (forward model, G) from the initial conditions at time 0 to 

time step k. en  is the total number of ensemble members and the superscripts, p 

and a, specify the predicted and analysed states, respectively.. 

5.2.4 Probability sampling of the proposals 

Considering the history matching problem in the Bayesian framework, it is 

desired to find the maximum a posteriori estimate (MAP) of discrete fracture 

network model parameters m. Observed data dobs is used as the conditioning 

information to estimate the posterior probability density function (pdf) that is 

given by 
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     | | exp ( )obs obsp m d L d m a O m  
, ‎5-3 

where ( )O m denotes the objective function 

1 11 1
( ) [ ( ) ] [ ( ) ] [ ] [ ]

2 2

T T

obs D obs prior M priorO m G m d C G m d m m C m m      
. ‎5-4 

Here, the objective is to sample realizations based on their likelihood 

(Equation ‎5-3). The likelihood function is used to assign a weight to each 

realization; all proposals have a probability to be accepted and promoted to the 

next step. This techniques, enables the algorithm to explore the solution space 

and to avoid local minima. Ma et al. (2008) have proposed a two-stage Markov 

Chain Monte Carlo (MCMC) method for quantification of permeability 

uncertainty in history matching reservoir models. They start by computing the 

observed data mismatch for a proposed change in model parameter based on a 

linearized approximation to flow simulation. If the proposed changes satisfy the 

acceptance criterion and the estimated objective function match is better than 

that calculated for the current state in the Markov Chain, the proposals are 

subjected to full flow simulation. Using this two-stage algorithm to pre-screen 

the proposals, the computational costs are reduced. Emerick and Reynolds 

(2012) suggested an Ensemble Kalman filter Markov Chain Monte Carlo 

procedure where MCMC is implemented to generate the desired number of 

samples for EnKF. They proposed a sampling based on the objective function. 

They have reweighted the Markov Chain samples based on the likelihood and 

implemented the concept of importance sampling to remove low probability 
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samples. They proposed a weighting function that is proportional to  exp ( )O m

. Nejadi et al. (2014) have also successfully adopted an analogous probability 

weighting scheme in the EnKF framework to maintain the reference statistics of 

the model parameters and to improve ensemble variability. 

In this study, a weighting scheme similar to that of Emerick and Reynolds 

(2012) is proposed. The likelihood of the model parameters m is defined based 

on the production mismatch. 

  11
| exp [ ( ) ] [ ( ) ]

2

T

obs obs D obsp m d a G m d C G m d 
    

  . ‎5-5 

The implementation in Equation ‎5-5 is similar to the concept of importance 

weights in particle filter technique, where the importance weight 
jw  of ensemble 

member j is computed as  

1

( )

( )
e

j

j n

k

k

m
w

m









, ‎5-6 

where ( )jm is defined as 

   1( ) exp ( ) exp [ ( ) ] [ ( ) ]T

j j j obs D j obsm O m G m d C G m d      
. ‎5-7 

The objective function in Equation ‎5-7 should be defined based on the nature of 

the history matching problem. If prior information regarding the model 

parameters is available, the objective function can be modified to capture the 

mismatch in model parameter statistics. The sampled members are used as an 

input to EnKF algorithm. With this sampling procedure, all proposed realizations 
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have a certain selection probability, avoiding getting trapped in local optima. In 

addition, the proposals with large mismatch (high value of O(m)) would have 

low importance weights and are more likely to be removed. This selection 

approach is analogous to the use of importance weights in particle filtering 

techniques, where ensemble members (particles) are weighted on the basis of 

likelihood function. Ensemble members are promoted based on their likelihood. 

5.2.5 Analysis step – Ensemble Kalman filter 

The analysis step is carried out using the observation data (dk) for the selected 

samples 

 , , ,a j p j p j

k k k ik ky y KG d Hy  
, ‎5-8 

where ja

ky ,  and jp

ky ,  represent the analysed state vector and the posterior state 

vector of ensemble member j, respectively; kK is the Kalman gain at k
th

 step, and 

H is the observation operator, which represents the relationship between the state 

vector and the observation vector 

 I  0H
, ‎5-9 

j

kd  is the summation of observed production data at the thk  step (dobs,k) and j

k , a 

vector of measurement errors such that T

DE C     

kkobsik dd  , . ‎5-10 

Kalman gain kK is defined as 



162 

 

 , ,

1

p j p j
kk k

T T

k dy y
K C H HC H C


 

, ‎5-11 

where jp
ky

C ,  is the state cross covariance matrix, and 
kdC  is the error covariance 

matrix.  

The cross covariance matrix is approximated as 
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where T indicates matrix transpose, and 
p

ky is the average of all posterior state 

vectors. 

In this study, the state vector of the ensemble Kalman filter formulation ( j

ky ) 

consists of the DFN model parameters ( j

km ) and the production data predictions 

( j

kd ), which are the simulation outputs of the dynamic model 


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. ‎5-13 

The following parameters are included in the state vector as the model 

parameters and updated using EnKF algorithm: 

 Transmissivity of the primary (elongated penny-shaped) fracture ( pfT ) 

 Equivalent radius of the primary (elongated penny-shaped) fracture  

( pfR ) 

 Global fracture intensity of the secondary (induced) fractures (
32

sf

GP ) 

 Transmissivity of the secondary (induced) fractures ( sfT ) 
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 Length of the secondary (induced) fractures ( sfL ) 

The model parameters ( j

km ) is a 5×1 vector for different realizations 

32[ , , , , ]j pf pf sf sf sf T j

k G km T R P T L
. ‎5-14 

For each updated member of the selected ensemble, new models are generated 

such that the actual ensemble size remains unchanged. In addition, this re-

sampling step can help to avoid ensemble collapse and maintain diversity among 

the re-sampled ensemble members. 

5.3 Field Case Study 

The objective of this case study is to illustrate the history matching workflows 

described in the Methodology for characterization of a hydraulically-fractured 

shale gas well in the Horn River basin. It further demonstrates the applicability 

of the proposed framework for uncertainty quantification of hydraulic fracture 

parameters for shale gas reservoirs.  

The application case is taken from the Horn River Resource Play, located 

approximately 100 km northeast of Fort Nelson, BC, Canada. The formation 

under development is the Devonian age Horn River Group comprised of the 

Muskwa, Otter Park, and Evie shales. Four-stage hydraulic fracturing operation 

is used for well treatment and improving its productivity. 

5.3.1 Model description 

The dimensions of the model are approximately 750 × 900 × 175 m
3
. It consists 

of a single multi-fractured horizontal well. Microseismic data is acquired for 

hydraulic fracturing treatment of the well. Figure ‎5-2 shows the recorded 
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microseismic activity locations. The approximate trend (the horizontal angle in 

the x-y plane away from the North) and plunge (the vertical angle in space away 

from horizontal x-y plane) of the primary and induced fractures of each stage are 

inferred from the microseismic responses. Figure ‎5-3 shows the pole orientation 

(orientation of the vector normal to the fracture plane) for the primary and 

induced fracture planes. MSMA has determined that the fracture growth occurs 

predominantly along the northeast direction of the treatment zone. The 

approximate azimuth angle of the fractures is 50 degrees measured from North 

(equivalent pole trend of 140 degrees) and 600 out of 900 events are contributing 

to the effective fracture volume. 

Roughly 12 months of production history is available for the well. Four months 

of the production history is used for parameter optimization and history 

matching; the rest of the history is used to assess the production forecasting 

capability of the updated models. CMG Gem simulator (2013) is used as the 

reservoir simulator (forward model). Table ‎5-1 summarizes the parameters of the 

discrete fracture network model. 

5.3.2 Workflow 

Implementation details of the described workflow in this field case study are 

presented here. Initial probability distributions of the uncertain model parameters 

(Equation ‎5-14) are modeled as Gaussian random fields. In particular, spatial 

distribution of the micro seismic point data is applied to infer the approximate 

statistical parameters of fracture size. The mean of pfR  and sfL  are estimated as 
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97 and 50 meters, respectively. The probability distributions of pfT , sfT and
32

sf

GP  

are constructed to encompass the entire possible range of uncertainties, such that 

true value would fall in between the distribution minimum and maximum. 

Additional geologic information could be helpful to refine this range. Table ‎5-2 

and Figure ‎5-4 summarize the distribution statistics of the five unknown model 

parameters. Fifty random vectors of the model parameters (ns = 50) are sampled 

from these initial probability distributions. Next, three specific ensemble 

members (nd = 3) are generated corresponding to each random vector of the 

model parameters in a Monte Carlo simulation. Figure ‎5-5 illustrates an example 

of initial discrete fracture network model that is generated from the average 

values of the initial probability distributions. 

The initial ensemble of DFN realizations are subsequently upscaled into their 

equivalent dual continuum geocellular models using Oda (1985) analytical 

upscaling technique. The geocellular model consists of a 15 × 18 × 14 grid. 

Cartesian local grid refinement is used to enhance the grid definition in the areas 

near the horizontal well and to improve numerical accuracy. A two-step 

approach is performed to upscale the near-wellbore regions over a locally-

refined grid and the rest of the reservoir over the global grid as defined 

previously. Parameters of the upscaled dual porosity simulation model are 

summarized in Table ‎5-1. Petrophysical properties (porosity and permeability) of 

the matrix system are assumed to be constant for each layer. Figure ‎5-1 shows 

the dynamic model structure and porosity values of individual layers for the 
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matrix system. The upscaled dynamic models ( 150s dn n  models) are 

subjected to the forward model for the first production period ( 0 0t   to

1 15t days ). Figure ‎5-6 shows the gas production rate of the initial ensemble 

compared to the actual gas production rate measurements. 

In order to assess the performance of individual realizations, an objective 

function based on production mismatch is implemented to assign a weight to 

each ensemble member, as explained in Equation ‎5-6. The weighting factors are 

used in a probability sampling approach to randomly select ns members, which 

are considered as the prior in EnKF. Taking into account the data likelihood, 

posterior members are obtained from EnKF update. For each of the ns updated 

members, nd new models are generated. As discussed in the Methodology 

section, this re-sampling step helps to ensure constant ensemble size, avoid 

ensemble collapse, and maintain diversity among the re-sampled ensemble 

members. Unlike traditional EnKF, where Bayesian update is combined with 

advancing the model in time, as new data becomes available, the posteriors are 

used to generate new DFN models, which are then subjected to flow simulation 

from t0 to the next assimilation time step t2. This type of iterative EnKF scheme 

is often implemented to ensure consistency between model parameters m and 

data d when G(m) is a highly non-linear function.  

The prescribed workflow is repeated until the last assimilation time step to 

incorporate the entire production history. In this study, history matching is 

performed for 5 steps using 4 months of the production history. In each step the 
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objective function is calculated for the time period 0 0t 
 
to kt , where tk is equal 

to 15 days for k = 1 and is equal to 1, 2, 3, and 4 months for 2‎≤‎k ≤‎5. Figure ‎5-7 

shows a randomly-selected discrete fracture network model from the updated 

ensemble, and Figure ‎5-8 shows the gas production profiles of the updated 

models compared to the true production values. Also presented in Table ‎5-2 are 

the distribution statistics of the updated DFN model parameters. 

5.3.3 Rate transient analysis 

RTA is also performed to estimate numerous reservoir and fracture parameters 

including stimulated reservoir volume, matrix or fracture permeability, fracture 

half-length and contacted matrix-fracture area. The analysis models implemented 

in Fekete Harmony 
TM

 (2014) and F.A.S.T. RTA
 TM

 software are summarized 

below: 

- Flowing material balance (Moghadam et al. 2011) 

- Analytical models (Brown et al. 2011) 

 Horizontal multifrac composite model  

 Horizontal multifrac SRV (Uniform) model 

- Type curve 

 Agarwal-Gardner (Agarwal et al. 1999) 

 Blasingame (Anderson et al. 2006, Amini et al. 2007) 

 Normalized pressure integral (Blasingame et al. 1989) 

 Transient (Finite conductivity fracture) 

 Wattenbarger (Wattenbarger et al. 1998) 
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- Numerical 

 Horizontal multifrac model 

- Unconventional reservoirs 

Model assumptions and type curve analysis for selected techniques are 

summarized in Figure ‎5-9. Table ‎5-3 compares the results of different analysis 

methods with those obtained from the history matching procedure presented in 

this chapter. In some cases, the production data does not follow a particular type 

curve but scatter over a number of curves; the plots in Table ‎5-3 are chosen to 

represent the best attainable match and the corresponding model parameters 

derived from the analysis. 

5.4 Results and discussion 

In the field case example, we examine the ability of the proposed algorithm to 

characterize a number of hydraulic fracture parameters. The initial realizations 

are created based on the available geologic and microseismic data, capturing the 

uncertainty in the prior model. Figure ‎5-6 illustrates the production profiles of 

the initial ensemble and the proximity of an individual member to the true 

dynamic response. Although the true production history is captured among the 

initial ensemble, it is clear that the uncertainty exhibited by the initial ensemble 

is too large. The high production mismatch reflects the uncertainty in the initial 

ensemble. The objective function decreases as the history matching progresses. 

It is interesting to note that although only a small portion of the production 

history has been integrated in the model assimilation workflow (4 months), 

capability of the updated ensemble to predict the future well performance 
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(remaining 8 months of available production data) is remarkable, as evident in 

Figure ‎5-8.  

Static data such as well logs and microseismic interpretations are typically 

insufficient to infer all relevant parameters of the hydraulic fracture systems. For 

example, secondary induced fracture parameters such as intensity and 

transmissivity cannot be directly obtained from microseismic analysis. However, 

it is demonstrated that utilization of dynamic flow data could extend the 

observability of the model parameter estimation by integrating complex fluid 

flow physics. The history matching procedure also assists the proper 

quantification of uncertainties in model parameters.  Figure ‎5-4 compares 

statistics of the five unknown parameters for the initial and updated ensemble; 

the same statistics are also summarized in Table ‎5-2. For all model parameters, 

higher variances (wider ranges) are observed among the initial distributions, 

which are derived based on microseismic estimates or prior knowledge extracted 

from nearby fields. The history matching process has refined these distributions 

conditioning to both dynamic and static information. As a result, variance 

exhibited by the updated ensemble is diminished, reflecting a reduction in 

uncertainty in the updated models. Mean of the updated ensemble is also 

adjusted. For example, radius of the primary hydraulic fracture plane is 

significantly reduced (Mean: 19.76 and STD: 18.55) compared to the initial 

microseismic analysis (Mean: 97.55 and STD: 36.22). This is because the 

hydraulic fracture size interpreted from microseismic analysis represents created 

fracture, whereas the effective fracture network available to flow is much 
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smaller. It is believed that the production data usually give pessimistic but 

accurate measure of the hydraulic fracture parameters due to effective flow. 

These observations are in-line with those made by Baree et al. (2005) and 

Clarkson (2011) for tight gas reservoirs. Clarkson (2011) observed that well-test, 

frac-modelling and RTA-derived values were lower than miscroseismic-derived 

values due to created nonconductive fractures.  

Various PDA models have also been employed to estimate the hydraulic fracture 

half-length, stimulated reservoir volume, and effective reservoir permeability. It 

is clear that different models often produce different results depending on the 

assumptions and ensuing simplified analysis equations. For example, a wide 

range of effective permeability estimates (e.g., near-wellbore areas surrounding 

the hydraulic fractures and outer or matrix regions) can be obtained using a 

number of different models. In the updated models obtained from the history 

matching procedure, locations, sizes, and transmissibilities of the primary and 

secondary induced fractures are considered, providing a more comprehensive 

characterization of the entire hydraulic fracture system. Finally, it is noted that 

the estimated primary fracture half-length (20m) is within the observable range 

of 6.71 to 98 m from PDA. Similar conclusions can be derived by comparing the 

stimulated reservoir volume (9e+6) to the wide range of 3 to 105e+6 m3 from 

PDA (Table ‎5-3).  

The final updated models take into account effective conductivities and contact 

area between matrix and fracture systems at different scales (primary and 

secondary). Another advantage of the proposed approach is that it can be readily 
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adopted, if necessary, to estimate additional unknown parameters. For example, 

fracture aperture, which is generally unattainable from other means including 

PDA, can be considered as an unknown parameter. The algorithm presented in 

this study provides a suite of equally probable equivalent dual-media models and 

their equivalent DFN models that are useful and reliable for future production 

forecasting. 

5.5 Conclusion 

Estimation of hydraulic fracture parameters is often challenging because 

reservoir characterization based on both static and dynamic data is an inverse 

problem that is highly nonlinear and the solutions are not unique. In this chapter, 

a novel procedure is proposed for dynamic data assimilation in hydraulically-

fractured reservoirs. The method entails combining probability weighted 

sampling with Ensemble Kalman filter. A weighting scheme based on dynamic 

data mismatch is proposed. Results from a field case study demonstrate the 

applicability of the described technique in characterizing a number of hydraulic 

fracture parameters for a shale gas model. Multiple discrete fracture network 

models and their equivalent dual media are updated. It is also illustrated how the 

proposed history matching procedure can be integrated with microseismic 

analysis to obtain realistic estimates of hydraulic fracture parameters along with 

the corresponding uncertainties. 

In order to ensure consistency between model and data vectors, an iterative 

scheme is implemented where after every update step, the updated ensemble 

members are subjected to the forward model to compute the dynamic responses 
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from the beginning to the next assimilation step. Although additional 

computational efforts are incurred with these extra forward model executions, 

the improvement in estimation accuracy is significant enough to offset the extra 

costs. Therefore, the proposed procedure presents a promising potential for 

history matching and uncertainty assessment of hydraulic fracture model 

parameters. 

 

Table ‎5-1 Parameters of the discrete fracture network model and the dynamic dual 

porosity simulation model. 

Discrete fracture network parameters: 

Primary Fractures 

Aperture 1e-3 m 
Storativity 1 e-6 1/m 

Trend (Stage#1) 226 º 

Obtained from 

Microseismic 

Trend (Stage#2) 357 º 

Trend (Stage#3) 64 º 

Trend (Stage#4) 68 º 

Plunge (Stage#1) 19 º 

Plunge (Stage#2) -68 º 

Plunge (Stage#3) -28 º 

Plunge (Stage#4) -55 º 

Secondary Fractures 

Aperture 1e-6 m 
Storativity 1 e-6 1/m 

Trend 
Similar to primary fracture 

Plunge 

Fisher orientation distribution  10 

Dynamic model specifications: 

Model dimensions 750 × 900 × 175 m
3
 

Number of grids 15 × 18 × 14  

Reservoir depth 1731 m 

Matrix porosity 5 to 7 % 

Matrix permeability 2.61 e-4  to 3.56 e-4 md 

Initial reservoir pressure 33,000 kPa 
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Table ‎5-2 Mean and standard deviation (STD) of different discrete fracture network model 

parameters for the initial ensemble compared with the updated realizations. 

Parameter Initial Models Updated Models 

Transmissivity
pfT  

Mean:  280.88 

STD:   120.26 

Mean: 339.56 

STD:   44.41 

Radius
pfR  

Mean: 97.55 

STD:   36.22 

Mean:  19.76 

STD:   18.55 

Intensity
32

sf

GP  
Mean:  0.0069 

STD:    0.0013 

Mean:  0.0091 

STD:    0.0005 

Transmissivity
sfT  

Mean:  31.16 

STD:    18.70 

Mean:   44.91 

STD:     4.68 

Length
sfL  

Mean:  49.58 

STD:    15.83 

Mean:   44.42 

STD:     8.65 

 

 

Table ‎5-3 Fracture half-length, stimulated reservoir volume and formation permeability 

obtained from different production analysis techniques compared with our methodology. 

Analysis Name 
Fracture Half-

Length (m) 

Stimulated Reservoir 

Volume (m3) 
Permeability (md) 

P
ro

d
u
ct

io
n
 D

at
a 

A
n
al

y
si

s 

FMB-Gas - 3,492,841 - 

Gas-AM-Hz Multifrac Composite 6.71 105,000,093 
0.00789 Inner Zone 

0.00020 Outer Zone 

Gas-AM-Hz Multifrac Uniform 6.71 3,523,103 
0.02694 Inner Zone 

0.01811 Outer Zone 

Gas-AG-Fracture 11.54 7,325,771 0.00742 

Gas-Blas-Elliptical 42.89 8,364,088 0.00549 

Gas-Blas-Finite Cond. 11.72 7,550,301 0.01047 

Gas-Blas-Fracture 16.24 3,623,978 0.00514 

Gas-Blas-Horizontal - 4,604,596 - 

Gas-NPI-Fracture 9.08 4,536,670 0.00802 

Gas-Transient-Finite Cond. 98.01 6,723,621 0.00145 

Gas-Wattenbarger 22.89 2,963,834 0.01519 

Numerical-Hz Multifrac 13.20 105,000,093 
0.00351 Inner Zone 

0.00020 Outer Zone 

UR-GST 6.71 3,523,103 
0.01811 Matrix 

1.30E-05 Effective 

UR-GVPH 16.31 8,561,218 
0.00315 Matrix 

1.30E-05 Effective 

DFN History Matching 
19.76 Main crack 

65 Main+Induced 
8,909,179 - 
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Figure ‎5-1 Grid structure and matrix porosity of the dynamic reservoir model. 
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Figure ‎5-2 Microseismic event locations (brown: stage 1; blue: stage 2; green: stage 3 and 

red: stage 4) 
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Figure ‎5-3 Contour plot showing the fracture pole orientation of primary and secondary 

(induced) fractures from microseismic analysis. 

 

 

 
Figure ‎5-4 Comparison of primary and secondary fracture parameter statistics for the 

initial and updated ensembles. The error bar represents variation around the parameter 

mean. 
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Figure ‎5-5 Illustration of an initial discrete fracture network model based on parameter 

distribution means. 
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Figure ‎5-6 Gas production profiles of the initial ensemble compared to the observed 

production data. 
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Figure ‎5-7 Illustration of a discrete fracture network model after EnKF updating. 
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Figure ‎5-8 Gas production profiles of the updated models compared to the observed 

production data. 

 

 

Agarwal-Gardner 

Typecurve 

 

Model utilizes the concepts 

of equivalence between 

constant rate and constant 

pressure solutions. The 

dimensionless variables of 

the typecurves are based on 

conventional welltest 

definitions.  
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Blasingame Elliptical 

Flow 

 

Model assumes a 

hydraulically fractured well 

in the center of a reservoir 

with a closed elliptical 

boundary.  

 
Blasingame Finite 

Conductivity Fracture 

 

Model assumes a planar 

crack propagated from a 

well by hydraulic fracturing 

having a non-zero pressure 

drop in the fracture.  
 

 
Blasingame Infinite 

Conductivity Fracture 

 

Model assumes an infinite 

conductivity hydraulic 

fracture in the center of a 

cylindrical reservoir.  

 

 
Blasingame Horizontal 

Well 

 

Model assumes a square 

shaped reservoir with 

uniform thickness with a 

horizontal well penetrating 

the center of the pay zone. 
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Normalized Pressure 

Integral Typecurve 

 

Model implements pressure 

integral curve as the base 

curve for diagnostics that 

does not suffer noisy and 

scattered data. 

 

 
Transient Finite 

Conductivity Fracture 

Typecurve 

 

Model assumes a square-

shaped reservoir with a 

hydraulic fracture in the 

center. 

 
  

 
Figure ‎5-9 Summary of the model assumptions and type curve analysis for selected 

production data analysis techniques. Values of estimated parameters are shown in Table 5-

3. 

 

  

  

  

  

  

  

  



183 

 

Chapter 6: Conclusions and Recommendations 

This thesis has described novel re-sampling procedures to honor geologic 

information in reservoirs with non-Gaussian model parameters and a new 

workflow for characterization of fracture networks. The research methodology 

consists of generating multiple geological models and updating the uncertain 

parameters using dynamic flow responses using iterative EnKF technique.  

Implementation of EnKF together with re-sampling of the new realizations 

demonstrates reasonable improvement in the history matching and uncertainty 

assessment of non-Gaussian and unconventional reservoir models. This chapter 

summarizes the main conclusions drawn from this work.  

6.1 Contributions and Conclusions 

6.1.1 Characterization of Facies distribution using ensemble 

Kalman filter with re-sampling 

Two novel re-sampling procedures are proposed to honor geologic information 

in reservoirs with non-Gaussian model parameters after history matching. The 

methods entail combining a re-sampling step with the discrete cosine transform – 

ensemble Kalman filter approach. 

Method 1. The re-sampling step consists of constructing a facies probability 

map and application of probability field (P-Field) simulation to re-sample 

a new ensemble. After certain number of assimilation steps in EnKF, the 

updated ensemble members are used to propose a probability map for 

facies distribution. P-Field simulation is performed subsequently using 
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the facies probability map to generate a new ensemble, which honors the 

static geologic data and is more consistent with the early production data. 

Method 2. A novel probability weighted re-sampling scheme is implemented 

to generate a new ensemble using the updated ensemble members. After 

certain number of assimilation steps, model parameters having the 

highest impact on the production performance are selected as re-sampling 

points. These points capture updating information derived from previous 

assimilation steps to be incorporated in the new ensemble. The new 

ensemble is generated using the information at the re-sampling points as 

well as the reference statistics regarding the proportions and spatial 

continuity of different facies. 

After resampling, the entire ensemble is subject to the forward model from the 

beginning until the last EnKF update step. This will certainly incur additional 

computational efforts. However, the additional costs can be justified by the 

improvement in terms of improving the ensemble variance and maintaining the 

ensemble diversity as well as reference statistics reproduction and uncertainty 

estimation in the posterior probability distribution. 

6.1.2 History matching and uncertainty quantification of discrete 

fracture network models 

An integrated approach for history matching and characterization of reservoirs 

with natural or hydraulic fractures is presented. This new methodology includes 

generating multiple discrete fracture network (DFN) models, upscaling the 
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models for numerical multiphase flow simulation, and updating the fracture 

parameters using dynamic flow responses such as continuous rate and pressure 

measurements.  

Fracture parameters having the highest uncertainty and impact on the production 

performance are selected as optimization parameters. Subsequent to each 

optimization step, a new ensemble of DFN models are generated using updated 

parameters. The method used for dynamic data integration entails combining 

probability weighted sampling with Ensemble Kalman filter. The weighting 

scheme is based on the dynamic data mismatch. Implementation of this 

automated history matching approach results in multiple equally probable 

discrete fracture network models and their upscaled flow simulation models 

which honor the geological information and at the same time they match the 

dynamic production history. 

The methodology is implemented for history matching of two different case 

studies. The first one is a synthetic, naturally occurring tight gas fractured 

reservoir model in which dynamic observed data, including gas production rate 

and well bottom hole pressure measurements, are integrated for characterization 

and uncertainty assessment of spatial distribution and orientation of the natural 

fractures in the reservoir. In the next application, the methodology is applied to 

facilitate characterization of hydraulic fracture parameters of a multi-stage 

hydraulic fractured shale gas well in the Horn River basin. 

In‎ this‎ research‎Oda’s‎ techniques‎ is‎ used‎ to‎ upscale‎ discrete‎ fracture‎ network‎

models. Oda is a static approach without any flow simulation computations. This 
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method is fast and efficient, and it is well suited for well-connected and high-

density fractures. For low density fracture sets, such as sparse distributed natural 

fractures in shale reservoirs, using Oda technique may degrade upscaling results 

and flow based upscaling methods are more accurate. However, computational 

efficiency and simulation costs should be considered when applying flow based 

upscaling approaches. 

6.2 Recommendations for Future Work 

For further improvement in dynamic data integration and characterization of 

non-Gaussian reservoirs, the following future research is recommended: 

 The presented approaches to probability re-sampling of the ensemble are 

applied for characterization of two dimensional synthetic reservoir 

models. The approach could benefit from further study and application 

for model parameter estimation of real reservoir models such as SAGD 

reservoirs. For such applications relative permeability and capillary 

pressure of different flow units (facies) should be included in the state 

vector and updated together with permeability, porosity and facies 

indicators. 

 The extra forward model execution after re-sampling incurs additional 

computational effort. The improvement in estimation accuracy of real 

reservoir models shall be investigated to justify the extra simulation 

costs. 

 The hydraulic fracturing operation data such as injection pressure, total 

injected volume, injection rate and etc. can be used to simulate hydraulic 
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fracturing process and obtain invaluable knowledge of fracture pattern 

and network. These results improve the initial knowledge of the fracture 

parameters and their spatial distribution. Similarly, fluid production 

during flow back period in tight/shale gas reservoirs provides valuable 

information regarding hydraulic fracture parameters such as fracture 

volume, fracture surface area as well as rock properties such as capillary 

pressure curves. The fracture parameters derived from aforementioned 

simulations shall be integrated to generate an improved set of initial 

discrete fracture network models for history matching. 

 Uncertainty assessment and history matching of natural and hydraulic 

fracture reservoirs using a two stage algorithm will significantly improve 

the overall performance of the methodology described in chapters four 

and five. The algorithm shall include a fast proxy approximation as an 

initial stage to analyze the rough sensitivities of the production 

performance to the fracture parameters. In the second stage, the discrete 

fracture network models that pass the proxy approximation stage will be 

subjected to upscaling and dynamic simulation. 
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