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Abstract

The problem of comparing the mean values of two populations has a great importance
in applied statistics. Such comparison consists of either testing the hvpothesis that the
difference between the two means is equal to a given value or constructing a confidence
interval for their difference. If in addition. the two populations are heteroscedastic
(i.e. have different variances). then the problem becomes what is known as “Behrens-
Fisher problem™ named after its first two investigators. Furthermore. non-normality

in the data will add further complications in testing the hypothesis.

The first aim of this thesis is to give a comprehensive review of literature of
the currently available strategies for both univariate and multivariate Behrens-Fisher
problem and summarize the related Monte Carlo studies as reported in the literature.
The second aim is to carry out additional Monte Carlo comparisons of some of these
procedures in order to shed light on their robustness when applied to data from

normal mixture distributions.
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Chapter 1

Introduction

This chapter introduces the problem under consideration. known as the Behrens-
Fisher problem. We state the hypothesis to be tested and discuss testing procedures
under three situations that depend on the information about the population variance
or covariance matrices. The notion of univariate and multivariate Behrens-Fisher

problem is clearly identified. Finally. we give motivation for this thesis.



1.1 Univariate Populations

Suppose we have two independent random samples (21, .... 15, ) and (zay, ..., Tan,) OF
their observed values from two normal populations, V(g o7) and N (ys.03) respec-

tively.

-

We denote the sample mean and sample variance of the i** population by Z;. s
respectively, for i = 1.2, We also define, d = £y —&s. fi=n; — 1, fy = ny — 1 and
f=hH+F

The following properties of the sample mean and sample variances are well es-
tablished (Bickel and Doksum 1977) :

(i) the pair (£}.s7) is independent of (. s3).
(ii) £; is independent of s? for { = 1.2 and

(iii) £, ~ V(pi.0?/n;) and fis?/o? ~ \J", for:=1.2.

Under this set-up. a test for Hy : iy — gy = J against any of the alternatives
(a) ur — p2 # 4.
(b) pr—p2 <dor
(€) pr —pa >0
will depend on the information about ¢} and ¢}. Accordingly, we have three cases

that will be considered in the next subsections. In what follows, without loss of

generality, we will focus our attention on the alternative (a) u; — pg # 6.

1.1.1 Known Variances

If o and o2 are known and we denote the variance of

(S



o3 = ai/n, + o3 /na. (1.1)

then (d — §)/oq ~ N(0,1) under Hy. In this case. a natural way of testing the null

hypothesis is to use the statistic (d — §)/a; and reject Hy at level a if

_1d—4]

a

~
-~

> ZQ/'.’.t (12)

where Z,/, is the upper 100a/?2 percentile of the standard normal distribution.

The square of (d - §) /o4 is distributed as a chi-square with one degree of freedom

and it provides an equivalent test for rejecting Hy at level a if

,  [d=8\* .
N < ) Sl (1.3)
a4

where Y}, is the 100a percentile of the chi-square on one degree of freedom.

1.1.2 Homoscedasticity

The homoscedasticity arises when the variances. g7 and ¢3. are unknown but have a
common value 0. In this case. d ~ .N(d. a%(n, + na)/n n;) under the null hypothesis.

By analogy to (1.2). (1.3). we may use the statistic

t = _d—é_ (1.4)

s (N1 N2
U ——————————
ning
where & is the square root of an estimator &2 for o2.
An unbiased estimator of o2 which uses the information contained in both s? and

s2 is the “ pooled sample variance *,

& = 5(fush + fasd).



Replacing & by s,. (1.4) becomes

or equivalently,

(1.6)

The numerator of (1.6) is a standardized normal variate independent of the denomi-
nator which is the square root of s'f,/O'2 ~ x}/f. This implies that the statistic in (1.5)

has Student’s ¢{-distribution with f degrees of freedom (Bickel and Doksum 1977).

Now. using (1.3). Hy is rejected at level o if

where t;,/2 is the upper 100a/2 percentile of Student’s ¢t-distribution with f degrees

of freedom.

An equivalent procedure can be obtained by using the square of (1.7) which

follows the F-distribution with 1 and f degrees of freedom. Thus. Hy is rejected if

2> Fl.j.a- (13)

The above tests and those of the previous section can be derived rigorously by

the likelihood ratio technique (Bickel and Doksum 1977) .

1.1.3 Heteroscedasticity

Now we consider the situation where variances are unknown and unequal. The prob-

lem of testing Ho : 1 — pp = & or equivalently, constructing a confidence interval

4



for ¢ under variance heterogeneity (i.e, 67 # o3) is called the “Behrens-Fisher prob-
lem™ (Bickel and Doksum 1977, Kendall and Stuart 1969). Let o3. the variance of
d = I; — I;. be defined by ¢ = }/n, + 03/n, as before so that d ~ N(§,03) under
Hy. Analogy to the earlier discussion suggests the use of d — d/04. with o, replaced

by the square root of the unbiased estimator of oy.

=l 22 (1.9)
ny na
This leads to
[ Cl"'()~ d—5 / £
t = - ::( )/?‘1 ([10)

for testing the null hypothesis.

Unfortunately. due to the variance heterogeneity. the quantity in the square root
(s3/¢%) is not exactly a chi-square divided by its degrees of freedom. as was the
case in (1.6) . Therefore. the statistic t' = (d — §)/s4. known as the Fisher-Behrens
statistic, does not have an exact t-distribution. [ts exact distribution. called Fisher-
Behrens distribution. depends on the unknown ratio § = ¢{/c} and has no simple

form (Kendall and Stuart 1969).

When the difference between o} and o3 can be ignored. one may use the ho-
moscedastic procedures of the previous section. However, violating the underlying
variance homogeneity condition renders the Type [ error rate of the test much higher
than any nominal a. especially when n| and n, are unequal and when the sample with
a smaller sample size is associated with the larger of the two variances {Keselman,
Carriere and Lix 1993 and 1995). Furthermore, the test is asymptotically incorrect

for large unequal sample sizes (Scheffé 1970).

Variety of solutions have been proposed for the Behrens-Fisher problem. These
will be discussed in Chapter 2 in detail where we will notice that most of these

solutions are based on approximating the distribution of the ¢’ given in (1.10).



1.2 Multivariate Populations

Let ( Xi1.....Xyn,) and (Xay, ..., X2n,) be two independent random samples or their
observed values from the two p-variate normal distributions. V(g ,. %) and N (g, £,)
respectively. Let X,,S; denote, respectively, the sample mean and sample variance-
covariance (v-c) matrix of the i** population (i = 1,2). Let also d = %X; — %,

fi=n, —1. ’fg =ns — 1l and f = f; + f5 as before.

As in the univariate case. we have:
(i) X,. X3. S and S, are independently distributed.

(ll) X ~ .\"(pl.Eg/n;) and f,‘Si ~ Wr.,(flEl) for i = 1.2.

For the multivariate set-up. we will consider testing
Hy:py—p, =686 vs  H:p—p, =4, (L.11)

similar to the univariate case.

1.2.1 Known v-c Matrices

If the v-c matrices. £; and ¥,. are known, then d ~ N(§.Z,;) under Hy. with &, =

¥1/n1 + Ea/na. A generalized form of the univariate =7 statistic. (1.3). is given by
2=(d-8TTHd - 4).

which is distributed as a x? with p degrees of freedom. Based on this statistic, Hy is

rejected at level a if

2 =(d-8)TE;Hd~8) > .. (1.12)



1.2.2 Homoscedasticity

In the homoscedastic case, the two p-variate normal distributions have common but
unknown v-c¢ matrix ¥. Again, a generalization of the univariate ¢2 statistic is given
by

T = (—l--%-i)_l(d—&)TS;l(d—J) (1.13)

np n)
where

— [1S1 + £>28,

S, ;

(1.14)

is the “pooled sample covariance estimator”.

Since fiS, ~ W,(f1.Z1) independently of f,S, ~ W,(f;.X,), we have (Johnson
and Wichern [998)
fSp = fiSi + f2Sa ~ W, (f.5).

Also. under H,. /
11\ )
—_+ — (d=68)~ N(0.2).

n; nj
Hence, (1.13) follows the Hotelling's T2 distribution with a dimension p and f degrees
of freedom which is equivalent to {fp/(f — p + 1)} Fp j—p+1- Then, we reject Hy at
level a if

. f -
T2 > -f—_ﬁf:‘p‘f_p.f_l.a. (113)

1.2.3 Heteroscedasticity

The heteroscedasticity in multivariate data arises when the v-c matrices of the data
from the two populations are unknown and unequal. The problem of testing p, —, =
d or constructing a confidence interval for the vector § under the v-c heterogeneity

becomes the “Multivariate Behrens-Fisher problem.”

-1



In this case, we have d ~ N(§.%,) under Hy with

z 3,
24=—l+—:'

n na '
If we estimate £, by its uniformly minimum variance unbiased estimator.

5, =t S (1.16)

ni na’

then by analogy to (1.13). we may consider a test statistic of the form.
T? =(d-§7s;'(d-4d) (1.17)

for testing fo. However. the distribution of this statistic is not the Hotelling’s T2

distribution. Its distribution depends on the unknown parameters. £, and .

In situations where ¥, and ¥, are not very different. we can still use the Hotelling's
T procedure for the homoscedastic case. Many investigators have shown via limited
simulation studies that mild departures from homoscedasticity do not inflate the Type
[ error (Keselman et al. 1993. Keselman et al. 1995. Algina et al. 1995). However.
one should exercise caution as such a procedure may suffer from inflated Type I error

rate similar to the univariate case.

1.3 Motivation and Summary

In this chapter, we have defined the problem that will be investigated in this thesis.
In the subsequent chapters we will attempt to identify the best strategy, when the

existing procedures are applied to the data arising from mixture distributions.

In reality, data do mot always satisfy all classical statistical assumptions such
as normality, homogeneity of variances, linearity, etc. This thesis will devote its

attention to the problem of heterogeneity and non-normality.

Many investigators have studied the Behrens-Fisher problem for these situations

(Keselman et al. 1993, Keselman et al. 1995). However, testing procedures with data

8



from mixture distributions are not yet known. Our aim is to examine whether the
currently available tests can be used in such situations. To accomplish our aim, we
first review and compare various available solutions to the Behrens-Fisher problem in
Chapter 2. In Chapter 3. we formally define the type of mixture distributions we are
concerned with and carry out simulation study to investigate robustness of various
existing testing procedures when sampling from mixture distributions. Chapter 4 will

give examples, concluding remarks and directions for further research.



Chapter 2
Review of the Literature

This chapter will review various strategies that have been developed since 1935 to ad-
dress the Behrens-Fisher problem. We review univariate and multivariate solutions,
followed by comparative evaluations based on what is reported in the literature. We
will then identify several competitive methods to be investigated thoroughly for em-

pirical robustness with mixture data in the next chapter.

10



2.1 Solutions for the Univariate Behrens-Fisher Prob-
lem

We will review an important class of solutions with rejection region of the form.

d -4

S

|t =

> Ua/2 (21)

for testing Ho : py — po =0 vs Hy : py — pp # §. where d = 7, — I». U2 1S @ critical
value (either constant or a function of the data) and s is a function of the data. From
here on. we shall use the term “d-solution” to refer to the members of this class. The
notation s will be as defined in (1.9). In the following sections we will review the

proposed forms for s and vy, in (2.1).

2.1.1 Fisher-Behrens (F-B)

Fisher (1933) constructed a fiducial interval for § using the equation

d—d—fl-#l 9+ =—L= cosd

— = sin
Ve sy YN
provided by Behrens. where ¢ is such that tan 6 = (s,/,/n()/(s2//n2). The testing

procedure obtained from this fiducial interval is a d-solution with va/2 Obtained from
tables that were first calculated by Sukhatme (1938). The tables provide critical
values only for @ = 0.05 and for selected values of fi.f; and #. A more detailed
discussion of the fiducial argument and in particular this procedure can be found in
Kendall and Stuart (1969). However, due to the limited tabulation of this Fisher-

Behrens statistic, many investigators turned to develop approximate solutions.
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2.1.2 Welch’s approximate degrees of freedom solution (W)

Welch (1936) approximated the distribution of the random variable s3/a7 by ex}W/fw

by equating their first two moments to solve for e and fi and found that,
e=1. fit =+ (1=c)ft

with

s3/ny

22
Sd

. (2.

o
(]
~—

¢ =

Hence. the Fisher-Behrens statistic. t'. will have an approximate ¢-distribution
with fi- degrees of freedom and the Welch's approximate degrees of freedom procedure
(APDFP) rejects Hy at level « if
|d — 9]

Sd

[t i = > Va2 = tfw’.a/'z' (2'3)

This d-solution is generally recommended in most introductory statistical text

books. See for example. Bickel and Doksum (1977).

2.1.3 Scheffé (S)

Scheffé (1943) investigated a ratio of the form

L-§ (L-38)/VV
V@Q/k  VI(Q/V)/k

such that, for all values of o? and o3,

(2.4)

i) L is a linear function of the data and Q is a quadratic function of the data.

ii) L ~ N(4.V) independently of Q/V ~ x2.

Clearly, any such ratio has an exact ¢-distribution with & degrees of freedom, and

can be used to construct an exact confidence interval for §. On the other hand, for

12



ny < ny, Scheffé proved a per se important result which states that no ratio of the

form (2.4) can have an exact t-distribution with more than k = n; — 1 degrees of

- . id |- . .
freedom. Therefore, it is sufficient to construct dj, ....d,, S N (4, V) linear functions

of the data. and define,

o
ot
~—

ng d ni
L= —, Q=) (d - L) (2.
2 2
Scheffé’s choice of the d; was,
di = Iy — Z Ci;I'2,
=1
with ¢;; to be determined. After imposing the conditions that all d; have the same

mean and the same variance. (J. V7). and the expected length of the confidence inter-

val associated with the statistic (2.4) is minimum. Scheffé determined the following

\/ J S n
—_ flln7

¢ =

particular set of ¢;,:

_]>fl1
nz

where J;; is the Kronecker delta. Hence.

n
di =z — ,/—-r ,/ E T +—§17--.
1 2 nins 25 2

These d; placed in (2.5) will give,

where,



Now, using (2.4) with the above L and Q. Scheffé’'s method rejects Hy at level a

d—4¢

V@Q/fi

where fi = n; — 1. The procedure is. therefore. a d-solution with s = \/Q/f, and

> t,ﬁ.a/'_’- (28)

Vo/2 = bp o/

One practical difficulty that led Scheffé himself to renounce this method is that
in defining @ in equations (2.6) and (2.7). only n; randomly chosen elements of the
large sample are involved. That is, the method may give different results to different

analysts even with the same set of data.

2.1.4 Welch-Aspin (W-A)

This solution (also known as. Welch's series solution ) was first proposed by Welch

(1938, 1947) and its critical values tabulated later by Aspin (1943).

Welch’s basic idea for the two-sample problem consisted in constructing a confi-

dence interval for 4 by finding a series solution. A(s7. s3. a). for the integral equation.
[\ 2 2 .
P [[t | < h(s].385.a)| =1 -« (2.9)

where t' is the Fisher-Behrens statistic defined in (1.10).

Using Taylor’s series expansion. he found

h(s1,82,a) =& +

+ 5(3“352 - &) (Z c?/f,?) +.. (2.10)



where £ = Z,/, is the upper 100a/2 percentile of the standard normal distribution,

and ¢; = (s7/n;)/s3 for i = 1,2.

The W-A test procedure is then obtained by inverting the inequality in (2.9). It
is a d-solution and rejects the null hypothesis at level o, if
|d — &

S

It = > vy = (s, s2.0) (2.11)

where h(sl.a:-_v.a) is the same in (2.10).

2.1.5 Banerjee (BS)

Banerjee (1961) constructed a confidence interval for 4 with confidence coefficient not

less than a by proving that.

/

o
)

Dividing by s, and inverting inequalities in (.

(8
—
o
=
4]
=
)
<
[g1]

4 ’sf/nl 3 sﬁ::/’ng 2
P {lt |2 \/Tth.&/? + thz.a/'zJ <a
1 <4
Using this latter inequality. Banerjee's test rejects Hy at level a if
d=4

34

It] = > \Jeth an T (L=0)t]

a2 (2.13)

where c is defined in (2.2) for method (W) and ¢, ,/2 is the upper 100c/2 percentile

of the Student’s ¢-distribution with f; degrees of freedom.

2.1.6 Denish Bhoj (DB1 and DB2)

It can be easily seen that the Fisher-Behrens statistic. t = (d — §)/sq, satisfies.

_d=d __ (d=d)/os N1

o l.s_% + 1 i V bl'x.z(l + 62X§2

crznl 0'3 n;

¢

(2.14)

15



with

)
o /n; -
b‘: x/" L"—'l,? (210)
o
where,

ol 9

2 01 03

g;=— + —.

ny ng

Bhoj (1993) constructed a random variable whose first three moments match
those of b;x3, +021}, by generalizing a result of Gabler and Wolff (1987) in which they
approximated the distribution of a linear combination of chi-square random variables
each with one degree of freedom. As a consequence. he obtained an approximate

density of the form
b’-tfx/"bx + b'ltjg/bg ‘216)

for the above ¢’ statistic. where the parameters b; are to be replaced by their unbiased
2 27
sy/ny i S5/ N
l/,, and by = | — ¢ = =
53 s

estimators. 51 =c=
Thus. the first test of Bhoj, denoted from here on by DBI. rejects Hy at level

{tl[ = - 5y [ > thl/c.a/'l + (J- - Cﬂjz/(l—c).a/?- (217)

The quantity (2.16). with b;s defined by (2.15), is itself a linear combination of ¢-
distributions and can be approximated by e t;,,, (a weighted Student’s t-variate
with degrees of freedom fpp, ) by matching their first two moments. I[n this way.

Bhoj determined,

_ 4B -24? AB \?
fDBz = ?———4’7 €=

2B - A?
with
file f2l(L=c)
B p—rg + s
h fa f f2 N
(T -2 -4) (T - =4
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and

Hence, Bhoj's second method (DB2) rejects Hy at level o if

d — 4]

t]=

o
—
(v 6]
Rt

> €lfppa/ (2.

with the above defined e and fpga.

2.2  Solutions for the Multivariate Behrens-Fisher

Problem

A class of solutions similar to that of Section 2.1 has also been proposed for the
multivariate Behrens-Fisher problem. Most of the solutions of this class are extensions

of their univariate counterparts. The rejection region of these solutions is of the form,
T"=(d-8§7TSHd-4)> v, (2.19)

where d = X; — X, S is a p x p symmetric and positive definite matrix obtained from

the data and v, is a critical value which is either a constant or a function of the data.

2.2.1 Bennett (B)

Bennett (1951) was probably the first to investigate the multivariate Behrens-Fisher

problem. He extended Scheffé’s univariate method S for n, < n; by defining the

17



multivariate versions of (2.6) and (2.7) so that

n;
_ 1
a = — u;
ny =1
1 T
S = ——7 > (w—a)(u-d) (2:20)

Using these definitions, Benett's test rejects Hy at level o if
T"=(d-8)"S"'(d=-8)>v. =T}, ., (2.21)

with T7 . _, , being the 100« percentile of the Hotelling’s T,

2.2.2 James’ Series Solution (JS)

This method is an extension of the univariate W-A method. Similar to (2.10). James
(1954) derived a series function A(S,.S,,a) whose first order terms have the form.

k k'ZYz.a (
h(S1.Sa. a)—b*[H (Pl ' p(p-*fl))} .

o
3]
o
~—

where
2 S.\?2
k = -1 S-I__'.
= (e
Zf [(trs = ) + 2tr (s- Sig-1 S)J (2.23)
n; n; n;

The James’ method then, rejects Hy at level o if (2.19) is satisfied with v, =
h(S1.S;,a) and S = S, defined in (1.16).

ky

To improve its performance, he extended this solution to second order series

solution, which has not been in much use in practice due to its relative complexity.

18



2.2.3 Yao’s Approximate Degrees of Freedom Solution (Y)

Yao (1963) suggested that an extension of Welch's approximate degrees of freedom
solution (W) to the multivariate case will involve T}, (Hotelling’s T*-distribution
with dimension p and fy degrees of freedom) in place of the Student’s ¢-distribution.
The approximate degrees of freedom. fy. which were determined by Yao by formally

extending Welch's fy. are given by

2

2 dTs-! (S—> s-d\
-1 _ —1 L a9,
v —;L oot : (2.24)

The method of Yao. therefore. rejects Hy at level o if (2.19) is satisfied with

Vg = T;’.fy_'& and S = S.,.

2.2.4 Johansen (JH)

Johansen's procedure (Johansen 1980) is a refinement of JS and rejects Hy at level «

if (2.19) is satisfled with

Si/ny + Sa/n,

> po2i- oAbl - 2]

(2.25)

and
Ug = pfrgw (2.26)

where 4 = Z?=l X;LTI—_I). (tr(I=V=IV )2 + (tr(I - V-IV))3) with V; = (Si/ni) 7Y,

V =V, +V,and f;g =p(p+2)/34.

Due to its flexibility in specifying the test statistics and relative simplicity, it
has been adopted for use in repeated measures and factorial designs (For example,

Keselman et al. 1993 and 1993).
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2.2.5 Nel and Van der Merwe (NV)

Nel and Van der Merwe (1986) presented a method similar to that of Yao in the sense
that it extends Welch’s univariate approximate degrees of freedom method. They
approximated the distribution of the S, statistic. which is a weighted sum of Wishart

variates. by a Wishart distribution. For this procedure, S = S, and

2 a a-
Va = Tpvf.vvva (2.27)

where the approximate degrees of freedom, fyv. is given by

tr(S?) + [tr(S)]?

fvv = - I . (2.28)
Dim T T [tr(Si/n)? + [te(Si/ni) 7]
2.2.6 Kim (K)
Kim's procedure (Kim 1992) has S defined by
S =d7QAY? + rI)72QTd. (2.29)

The matrix A is a diagonal matrix containing the generalized eigenvalues )\ of

i—l-x = ,\%x, for £ = 1,....p. and Q is a non-singular matrix whose columns are
L 2

the corresponding eigenvectors qi and r = (II_, \¢)!/??. The critical value of the test

is given by

of fr (2.30)

Vo = 1L f fy—p+la
fr - p+1

where e =Y 13/ I f= (T 1)/ T3, I = (A + 1)/(M/* + r)? and fy being the

approximate degrees of freedom of Yao's procedure as given in (2.24).

2.2.7 Jordan and Krishnamoorthy (JK)

Jordan and Krishnamoorthy (19935), while constructing an exact confidence region for

the common mean vector of several multivariate populations, provided a conservative
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test for Ho : 4y = p, = --- = p, in the Behrens-Fisher problem when k groups are

involved.

Considering the case k = 2 and following the remark of the authors, the confidence

region for the common mean is nonempty provided that,

3

i(i(v - %;)TW; ) VWY Z(ZW“ - x,-)>ga (2.31)

=1 \= =
holds with probability 1 — a. where the ¢; are positive weights satisfving > ¢; = 1.
Wit =¢nS7 V=Wt + W3 and a is such that P(c,T? + ali<d=1-a
with T? ~ ff‘—p.Fp_f,_pH being independent Hotelling's T-variates for i = 1.2

;1 =Dp+1

A test that rejects Ho: p; —p, = 0 if (2.31) does not hold. would be at the level

of a. Further simplifving (2.31). the null hypothesis is rejected at level o if
T"=d's7'd >,
with
S=W/'Viwilv-iwrt o WiVvIiwrivoiw; ! (2.32)

and v, = a. The authors suggested the use of

. [Var(T2)]!
“= NVar(TA)] L + Var(12)]-L

(2.33)
as the positive weights, where Var(T?) = 2pf*(f: = 1)/(fi = p — 1)*(f; — p — 3). How-
ever, there could be other choices of the ¢; that might improve the test.

They also provided the exact critical values, v, = a, corresponding to a =

0.05.0.01 and p = 2,3, 4.



2.3 Summary Review

2.3.1 The Univariate Case

Scheffé (1970) considered some of the solutions of Section 2.1 and compared their

significance levels and powers. He disqualified his own procedure because. as was
previously mentioned. it may give different results to different analysts who are dealing

with the same data set.

In addition to the difficulties mentioned in Section 2.1.1. Fisher-Behrens solution.

F-B. is rather liberal and always has higher Type I error and lower power than W-A.

Banerjee (1961) compared the critical value of his solution SB with those of W-A

for different values of ¢ (see (2.2) ). He considered the situations where n, = 9
ny = 9,13.0¢c with a = 0.05 and n;, = 13. n, = 13,2 with o = 0.0l. The SB
was found to have larger critical points for the same values of the null statistic. which

means inflated Type I error. leading to liberal rejections of the correct null hypothesis.

Bhoj (1993) compared the significance levels and powers of his solutions. DB1 and
DB2. with those of method W. He based his comparison on sizes and powers of the
method W reported by Davenport and Webster (1975) for the cases: n;, = n, = 3.
ny = ny =18 and n; = 3.n; = 19, all with @ = 0.05. Bhoj recommended the use
of his solutions because they are simple and have better control on the empirical size

than Welch’s approximate degrees of freedom solution.

2.3.2 The Multivariate Case

Many Monte Carlo studies were carried out by several investigators in order to study
and compare the methods developed for the multivariate Behrens-Fisher problem. In

this section we summarize the results of some of these studies done recently.

(V]
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Yao (1965) used uncorrelated data (i.e. £; and £, were diagonal matrices) and com-
pared the significance level of her method with that of James. JS. She considered
two nominal significance levels, @ = 0.01 and o = 0.05. For each nominal a, she
carried out the simulation for various combinations of covariance matrices and for
(p- fi: fa) = (2.6.12).(2.12.12), (2.8, 18). From Yao's study it seems that the method

Y is superior to JS in terms of controlling the Tvpe I error.

Subrahmaniam and Subrahmaniam (1973) compared the significance levels and pow-

ers of the procedures B. JS and Y. They considered the combinations:

(i) p=2and p =3 each with (fi. fo) = (6.12).(12. 12).(6.13)

(i) p=+4 and p = 5 each with (f. f) = (12.12).(6.13)

(i) p =10 with (fi. fo) = (15.15).(15.30). (20.20)

[n each case they varied the eigenvalues of the matrices T,.E, (assumed diagonal)
and a noncentrality parameter o and they confirmed that method B achieves the ex-
act level a as it should. The Y method is more conservative than JS although neither
of them protects the nominal @. Power of JS is the highest but Y has a power that
is only slightly lower than the power of JS. Method B’s power is alarmingly low. The
power of all methods tends to 1 as the noncentrality parameter ¢ increases. Also.
the power improves as f increases. holding fixed all other parameters. On the other

hand, the power decreases for a given value of o as p increases.

They concluded that method Y is superior to JS and B in terms of Tyvpe I error

and empirical powers.

de la Rey and Nel (1993) compared the Type I error and powers of B, JS. Y and NV

using diagonal covariance matrices. They considered the situations:
(i) p =2 with (f1. f2) = (6,12),(12,12), (6, 18)

(ii) p = 3 with (i, f2) = (12.12)

(iii) p = 4 and p = 5 each with (fi, f2) = (12,12), (8, 16)
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(iv) p = 10 with (fi. f2) = (15.13), (15, 30).

[n all situations. the nominal significance level & was 0.05 and they varied the eigen-
values of £,,¥, and the non-centrality parameter ¢. Their conclusion was that NV
has the lowest Type I error followed by Y (note that B achieves the exact nominal «).
The power of JS was always the highest and B’s power was the lowest. The powers
of Y and NV compete except when the heteroscedasticity (i.e. the difference between

Y, and ¥, ) was large and n; << ns. in which case NV was superior to Y.

Kim (1992) reported Monte Carlo powers and significance levels of his method K and
Yao's Y for the cases:

(i) p=2and (fi. fo) = (3. L1). (3. 17)

(i) p =3 and (fi. fo) = (7. 15).(7.23).

[n each case. the eigenvalues of £, and ¥, (both assumed diagonal). and the non-
centrality parameter ¢ were varied, whereas the nominal level was held at a = .03.
Kim concluded that the level of K varied in [.026..062] whereas Y's level varied in
[.038..172] reaching the value .172 for p = 3. Moreover. if the sample with a smaller
size is associated with the larger variance. then K has better power than Y, otherwise

Y has better power.

Wilcox (1995) studied the effect of non-normality on the power and significance levels

of six methods. The six methods were: K, JH. modified JH (the modification consisted
of using § = S;/f1 + S2/f; in (2.25)) and a trimmed mean version of each one of
these (i.e, modifving them for comparing trimmed means instead of means). He also
mentioned that the method NV performed very poorly in non-normality situations
and therefore it was excluded from the simulation study. The non-normality was
introduced using the g-and-A distribution proposed in Hoaglin, Mosteller and Tukey
(1985), where g and h are parameters controlling, respectively. the heaviness of
the tail and the skewness of the distribution. Simulation were carried out for each
combination of p = 4, & = .05 and (f., f2) = (11,17),(19.19).(11,23),(5.11). In

each situation, the non-centrality parameter ¢, the correlation matrices (considering
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all possible combinations of four correlation matrices) and the parameters g and A
were varied. According to Wilcox’s simulation, all six methods appear to behave
well in terms of Type [ errors provided that sample sizes are not too small. Under
non-normality. methods based on trimmed means have better power except for small
unequal sample sizes, in which case the trimmed K is less satisfactory than all others.
In general, the method JH with trimmed means is the best “in terms of power” when
both n; and ny > 20, and the modified JH with trimmed means seems to be the best

if 10 < ny.ny €20 whereas. for both n; and n, < 10 the trimmed K is preferable.

2.3.3 Concluding Remarks

From the Monte Carlo studies reported in the literature. it seems that the methods.
Y. K, JH and NV are quite competitive and perform reasonably well in keeping the
empirical level close to the nominal value in many situations. But according to Wilcox
(1993). under nonnormality (like the mixture models we intend to study). NV would
perform very badly. Therefore. we shall consider adopting the methods of Johansen.
Kim. Yao and Jordan & Krishnamoorthy to a mixture data set. We shall also include

Hotelling's T? method for comparative purposes.



Chapter 3

Mixture Distributions and

Simulation Study

This Chapter is concerned with mixture data and the performance of the currently
available procedures for the Behrens-Fisher problem that were found to work well
under variance heterogeneity when coupled with mixture data. We first introduce
notations and related parameters for mixture populations followed by our simulation

study results.



3.1 Introduction

Mixture distributions are common models in many applications ranging from fisheries.
taxonomy, medical sciences and satellite imaging to robustness studies of certain sta-
tistical procedures (Averitt and Hand 1981). It arises when the underlying population

is composed of several subpopulations and the sampled data is not easily classifiable.

In general, a mixture of A" p-variate normals has the density.

.
F(x) =) meo(x: pe. Te ). (3.1)
L

where o(x:p,.2x) is the density functicn of a p-variate normal distribution with
mean g, and v-c matrix ¥ and m;s are mixing proportions satisfving Y, 7+ = 1 and

O<my<lforallk=1.....A".

When A" = 2 for comparing two populations. (3.1) reduces to

(O]
-~

filx) = mpo(xip, . B) + mpd(xig,. B).  i=1.2 (3.

for 21 =Eg =3.

Each population (i = 1.2) is a mixture of two bivariate normal populations having
the same v-c matrix X, but different means g;, and g;,. and mixing proportions

and mp =1 — m;p.
The exact distributions of sample statistics from this type of mixtures are func-
tions of {m1. Ni.p,ni: { = 1.2}, where
A2 Te-1
A7 = (i — pi2) 7 (B — pia)s (3.3)
is the squared Mahalanobis distance associated with the :** mixture (Srivastava 1982).

In particular, the quadratic forms, (X;; — X;2)7S~!(X;; — Xi2). that are involved

in the methods considered here will depend on the parameters listed above. Thus, by

(]
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varying the components in the set {;,.\;, p,n;: | = 1.2}, we have different mixture

distributions.

It can be seen (Johnson 1937) that mean value and v-c matrices of the population

with density (3.2) are given by .

Bi = Tl + Tof;
) = DA mama(pg - se)lpg —pp) =12 (3.4)
For equal mixing proportions. i.e. 7, = m» = .5. we see that the mean of the

mixed data g} is
. _ B T H
B =7

and the v-c matrices of the mixed data I is

( j T
Yi=X+ \Hiy —”ii’)i/“:‘l — i;5) .

whereas for 7;; = .9 and =;; = .1 they are

B = u; + .1y,

and
T

LI =X+ 090 — pi2) (B — pia)”
respectively and the bivariate normal data with a higher mixing proportion dominate
the eventual density and the mean vector and v-c matrices. In particular. if the

data is composed of two normal variates with the same mean. £} = ¥ and B =

regardless of the mixing proportions.

In this chapter, we carry out Monte Carlo evaluations to investigate significance
levels of the methods of Kim, Yao. Johansen and Jordan & Krishnamoorthy using
the density (3.2) with p = 2. The use of such a mixture of two multivariate normal
distributions enables us to evaluate robustness under a wide range of departures from

normality (e.g, bimodality, non-normal skewness and kurtosis) and heteroscedasticity.
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3.2 Simulation Methods

Without loss of generality, we test the null hypothesis
Ho:py=p3=0

and we assume that the common v-c matrix is given by

10
0 1

S=1,=

and

0 0
by = - : B = .
ui p'

2 . A . ..
where /.LS,:.) are chosen as functions of \; and 7. Then. from (3.4) with the condition

that u7 = p3 = 0. we have

0 O v -
By = o Ha = (3.3)
_TZZAL "lAL
and
L 0
Y= . (3.6)
0 I+ 77"1.‘!','3.3:-"
so that.

ur =0. (3.7)

In order to have an idea of the type of mixtures we are dealing with, we portray
some of these mixtures in Figures 3.1-3.2 with =;; = .3, #;; = .9 and for Mahalanobis

distances A; = 0,2, 3.
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Figure 3.1: Bivariate two-component normal mixture densities and their contours

with proportions m;; = 7;; = .5 and Mahalanobis distances .\; = 0.2,3
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A=

Figure 3.2: Bivariate two-component normal mixture densities and their contours

with proportions 7;; = .9, 72 = .1 and Mahalanobis distances ; =0,2,3
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For a given set of parameters {m;;. A, ni: ¢ = 1,2}, we generate 10000 samples

from each of the two mixture populations (3.2) according to the following scheme:

Algorithm:
Compute p;y, p;s from (3.3).
For j=1,...n

Generate x;; from N(0.I,)
Generate uj from Uniform(0.1)
If u; < wyy

Xij =Xy T 4y
otherwise,

Xij =X+ 4.

end

Qutput X,y ... Xin,

These samples are then analyzed using procedures of Hotelling, Kim. Yao. Jo-
hansen and Jordan & Krishnamoorthy with nominal significance level @ = 0.05. The
percentage of times in which the null hypothesis is rejected is reported as the Monte
Carlo significance level. For the empirical power. we add (1 1)T to one of the two

samples generated. That is. we consider the alternative

1
Hy:pl—p; =
and again we account the number of times the null hypothesis is rejected as the

empirical power of the test. Results for
2

Hy:pl—p;=

-



were also obtained but not reported in this thesis. However, these results confirm the

power increase which is usually expected.

Due to extremely conservative preliminary results of Jordan & Krishnamoorthy's
procedure, we decided not to pursue it any further in the following analysis. Please

refer to the Appendix A for detailed results of this procedure.
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3.3 Results for the Case of 7| = m; = 0.5

When mixing proportions are equal for both populations. the resulting mixture popu-
lations are symmetric. We recall that the null hypothesis of interest is Ho : g7 —p3; =0
with nominal significance level set at o = .05. We also assume. without loss of gen-
erality, that _\3 > ;. The Tables Al-Al in Appendix A contain detailed simulation

results for (n,.n2) = (7, 7).(7, 14). (14, 7). (21.21) for this case.

Tables 3.2-3.5 display the performance of these selected procedures in keeping
the nominal level. If the empirical sizes are within [.045. .054]. the corresponding

procedures shall be deemed adequate and satisfactory for a = .05.

We shall distinguish the simulated cases as being

(a) Homogeneous populations or

(b) Heterogeneous populations.

These distinctions are based on the variance heterogeneity factor (VHE) of the two
populations. That is. if Ay — A, > 0 they are called heterogeneous populations
because the resulting v-c matrix for ; = | differs from that for ; = 2 as shown in
(3.6). Even with the equal mixing proportions. if there is a sizable difference in their
Mahalanobis distances, the [2.2] entry of X in (3.6) will increase as a function of
the difference A; — A, resulting in heterogeneous populations. If A; — A} = 0,
then the populations are homogeneous. However. due to other problems affecting its
performance such as bimodality, we summarized the results based on the A; — A

rather than variance heterogeneity factor.

The heterogeneous populations in (b) can also be divided into marginally het-
erogeneous population if 0 < A; — A; < 2 and severely heterogeneous population if

A —Ap > 2
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To ease the interpretation of the simulation results and have an idea of the amount
of heterogeneity in the variances of the two populations being compared in this case,

we report in Table 3.1 the variance heterogeneity factor

. 1+ w0}
VHF = ——————= 3.8
1 + 7‘-11"712AI ( )
obtained from (3.6).
Table 3.1: Variance heterogeneity factor for =y, = 7, = 0.5.
Ay
A, 0 1 2 3 3 6
0 I 1.25 2 3.25  7.25 10
1 l 1.6 2.6 3.8 3

[
—
—_
(@7}
[
Ot
(VS
o
[0
n
(1]

3 l 2,23 3.08
3 L 1.38
6 1

The above table exhibits gross heterogeneity of variances as A, — .\ increases.

Studies have shown that in the Behrens-Fisher problem with unequal sample sizes,
the performance of various testing procedures depends on where the larger variance
lies (Keselman et al. 1993). Recognizing this, we define a * positive correlation” in
sample size and sample variance if a larger variance is associated with a larger sample

size and a * negative correlation ” if otherwise.

Figures 3.3-3.6 plot the summary empirical levels (averaged over corresponding

cases of Ay — A\|) against the values of the difference A; — A} =0,1,2,3,3,6.

On the average. when n, = n,, the Hotelling's T? performs quite competitively,
specially when the sample sizes are reasonably large at n, = n; = 21. In fact, there

were no discernible discrepancies among the procedures we considered in this case.
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However, its performance deteriorates as Ay — \| exceeds 2. In general. it appears

that Kim’s procedure is the best.

Clearly, the Hotelling’s T is not an option when the sample sizes are unequal and
the populations are heterogeneous. Figures 3.5-3.6 indicate that its performance is
rather sensitive and deteriorates rapidly with Ny — 2\ > 0. All tests had a tendency
to be liberal when smaller sample sizes are associated with larger £;. This tendency
is reversed when larger sample sizes are associated with larger 7 and hence with the

Mahalanobis distance \;.

3.3.1 Homogeneous Populations

Overall. all procedures perform quite well even with mixture data when the Maha-
lanobis distances are equal and the sample sizes are equal. When the sample sizes
are unequal. HT appears to be the best followed by Johansen. This is also evident in

Tables 3.2-3.5 in the portion headed by \; — A, = 0.

3.3.2 Marginally Heterogeneous Populations

Again when sample sizes are equal. all procedures perform reasonably well. The
simple HT works rather well here. When sample sizes are unequal and smaller sample
sizes are associated with larger \\; and hence larger . none of the methods was able
to keep the empirical level at the nominal value although Kim's procedure was close
enough to a = .05. However. this was not the case when the larger sample sizes were
associated with larger £7 and :\; where all except Hotelling’s T'? performed rather

well.
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3.3.3 Severely Heterogeneous Populations

When the sample sizes are equal and large, there were very minor differences among
the procedures in maintaining the nominal level. Kim's procedure was the best fol-
lowed by Yao. When the sample sizes are unequal and negatively associated with
sample variance and Mahalanobis distance, none of the procedures was able to main-
tain the nominal level although Kim's method appeared to be better. followed by Yao.

All procedures were positively biased when the sample size is negatively correlated

with ¥7.

3.3.4 Monte Carlo Power

Overall, in terms of sizes. Kim's procedure seems to be the best in case of negative
association of small sample size and large variance. However. Kim's procedure tends
to be rather conservative for small sample sizes. It is recommended to use Kim's
for the case of negative association between sample size and variance and Johansen's

method otherwise.

To confirm this performance. we also examined the empirical power. We note
here that all tests tend to be conservative except when A; — A; > 2 in which case all
of them are liberal. HT is the least conservative (most liberal) in terms of empirical

significance levels, a fact that is reflected in Table 3.6 of Powers.

Because HT has always relatively larger sizes than the other methods. our Table
unfairly depicts HT as being powerful (see also Figures 3.7-3.10). However, other
than the case A; — \; = 0, HT should not be recommended as it does not maintain

the empirical sizes.

[t is interesting to observe that HT gives satisfactory results for the type of mix-
ture data we considered as long as there is no heteroscedasticity in the two populations

being compared.
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In our power calculations. we conclude that JH is the best overall closely followed
by Y. However, note that only Kim's procedure can be used for the case of negative

association between sample size and variance.
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Table 3.2: Summary empirical levels for n, /ny = 7/7. 711 = ™, = .5 and nominal & =
.05. This table contains the results of Table A.l summarized over the Mahalanobis

distance differences of the two populations being compared. Ny — .

Test Min Mean Max STD
A=A =0
HT 0.0481 0.0526 0.0546 0.0025
Y 0.0419 0.0453 0.0477 0.0025
JH 0.0457 0.0496 0.0523 0.0028
K 0.0419 0.0454 0.0481 0.0028
0<Ar—-137<2
HT 0.0481 0.0529 0.0560 0.0029
Y 0.0423 0.0464 0.0496 0.0024
JH 0.0457 0.0496 0.0523 0.0023
K 0.0407 0.0453 0.0481 0.0025
A — A >2
HT 0.0573 0.0635 0.0683 0.0040
Y 0.0506 0.0548 0.0595 0.0028
JH 0.0533 0.0581 0.0618 0.0029
K 0.0476 0.0503 0.0533 0.0019
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Table 3.3: Summary empirical levels for n,/n, = 14/7, 7 = m; = .5 and nominal
a = .05. This table contains the results of Table A.2 summarized over the Maha-

lanobis distance differences of the two populations being compared, A, — ;.

Test Min Mean Max STD
A=A =0
HT 0.0480 0.0513 0.0536 0.0020
Y 0.0507 0.0570 0.0625 0.0039
JH 0.0492 0.0553 0.0595 0.0036
K 0.0469 0.0547 0.0596 0.0045
0<A—-42,<2
HT 0.0586 0.0638 0.0795 0.0082
Y 0.0574 0.0608 0.0636 0.0029
JH 0.0550 0.0579 0.0620 0.0024
K 0.0509 0.0545 0.0534 0.0029
A=A >2
HT 0.0925 0.1121 0.1358 0.0161
Y 0.0633 0.0657 0.0678 0.0016
JH 0.0609 0.0643 0.0656 0.0013
K 0.0514 0.0539 0.0587 0.0024
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Table 3.4: Summary empirical levels for n;/ny = 7/14, m; = 72, = .5 and nominal
a = .05. This table contains the results of Table A.3 summarized over the Maha-

lanobis distance differences of the two populations being compared. A, — \,.

Test Min Mean Max STD
Ay -2 =0
HT 0.0476 0.0504 0.0517 0.00153
Y 0.0522 0.0571 0.0645 0.0049
JH 0.0501 0.0546 0.0603 0.0040
K 0.0431 0.0535 0.0612 0.0051
0<Ar =3 L2
HT 0.0339 0.0407 0.0490 0.0057
Y 0.0453 0.0508 0.0395 0.0050
JH 0.0459 0.0503 0.0583 0.0045
K 0.0444 0.0503 0.0596 0.0048
A=\ >2
HT 0.0298 0.0331 0.0358 0.0020
Y 0.0470 0.0504 0.0342 0.0023
JH 0.0493 0.0519 0.0563 0.0023
K 0.0462 0.0496 0.0527 0.0022
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Table 3.5: Summary empirical levels for ny/ns = 21/21, m;; = m5; = .5 and nominal
a = .05. This table contains the results of Table A.4 summarized over the Maha-

lanobis distance differences of the two populations being compared. \; — ;.

Test Min Mean Max STD
A—A =0
HT 0.0472 0.0499 0.0352 0.0029
Y 0.0465 0.0494 0.0542 0.0028
JH 0.0466 0.0495 0.0546 0.0029
K 0.0466 0.0493 0.05330 0.0031
0< A -1\ L2
HT 0.0463 0.0502 0.053+4 0.0027
Y 0.04354 0.0492 0.0519 0.0024
JH 0.0453 0.0492 0.0520 0.0024
K 0.0438 0.0493 0.0523 0.0024
A=A >2
HT 0.0512 0.0542 0.0569 0.0019
Y 0.0500 0.0514 0.0528 0.0013
JH 0.0498 0.0515 0.0527 0.0011
K 0.0462 0.0491 0.0507 0.0014
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Table 3.6: Empirical power averaged over Mahalanobis distance differences with nom-
inal @« =0.05 and p; —p> =1

HT Y JH K
ng=n;=7.m7; =% =.3
Ay—A =0 0.3947 0.3677 0.3850 0.3702
0<; -4 L2 0.4101 0.3313 0.3970 0.3748
A -4 >2 0.3476 0.31384 0.3246 0.2763
ny=n, = 21. Ty = T = !
A—-3; =0 0.9142 0.9136 0.9137 0.9134
0<A - L2 0.9216 0.9207 0.9208 0.9193
A—1;>2 0.8769 0.83741 0.8724 0.3376
n1=l4.ng—7 T =M = 3
A=A =0 0.5639 0.3195 0.5265 0.5136
0<A -1 L2 0.5791 0.5014 0.5009 0.4781
Ay~ >2 0.5417 0.4336 0.4099 0.3422
n1=7.n2=14,.u=7'31=5
A=A =0 .5628 0.5175 0.53225 0.5113
0<A; -4, L2 0.5421 0.5420 0.5329 0.5409
A=A >2 0.4531 0.4826 0.4999 0.4632
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3.4 Results for the Case 7, =m; = .9

This is the situation when each population is 10% contaminated by another nor-
mal population with different location parameter. Unlike the previous case, these

populations are not symmetric.

To assist. interpretation of the results we also give in Table 3.7 the variance

heterogeneity factor defined in (3.8) for this case.

Table 3.7: Variance heterogeneity factor for 7y, = 7, = 0.9.

l 1 125 1.66 298 3.39
2 I 133 239 3.12
3 I 1.793 2.34
5) 1 1.3
6 1

Compared to Table 3.1. the VHF is not grossly large when the populations are
contaminated only by 10%. However, our simulation results are still classified accord-

ing to the Mahalanobis distance differences rather than VHF.

Figures 3.11-3.14 and Tables 3.8-3.11 show the performance of the selected proce-
dures in keeping the nominal level @ = .05. On the average, when n; = n,, Hotelling’s
T? outperformed the other methods even when the sample size is as small as 7. How-
ever, when A; — ) > 2 none were able to perform well. The situation becomes worse
if there is a negative association between sample size and variance (See Figure 3.13).

All procedures seem to be rather sensitive as A, — 2\, increases.



3.4.1 Homogeneous Populations

For this rather asymmetric case, Hotelling’s T performed exceptionally well even at
such small sample size as n, = ny = 7. Its performance was independent of unequal or
equal sample sizes. [t is worth noting that all other procedures tend to be extremely
conservative when sample size is small. Johansen's procedure was a little better than

the others. while Kim's procedure tends to be the most conservative.

3.4.2 Marginally Heterogeneous Populations

In general. an overall increase of the empirical significance level as a function of
A; — 1\, is noted (see Figures 3.11-3.14). Kim's method continues to be the most
conservative when sample sizes are small. Hotelling’s 7% becomes noncompetitive
when sample sizes are negatively correlated with the ¥7. Johansen's procedure re-

mains to be an excellent method.

3.4.3 Severely Heterogeneous Populations

From Figures 3.11-3.14, it is clear that none of the procedures appear appropriate
when the non-symmetric populations are extremely heterogeneous. This was espe-
cially more so when the sample sizes are negatively correlated with the Mahalanobis
distance. Tables 3.8-3.11 show the overall performance for this case (the bottom por-
tion). It appears that one should increase sample size for the population with larger

variance in which case Hotelling’s T? appears to do reasonably well.

3.4.4 Monte Carlo Power

When the mixture data are contaminated only slightly, we observed that the best

strategy was to increase the sample size for the population with larger variance. If
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this strategy is achievable, Table 3.12 and Figures 3.15-3.18 indicate that Johansen
is the most powerful procedure to use. The other alternative is to make sample size
reasonably large. However, the large sample size effect appears diminished as N, — A,
increases, leading to the strategy observed above for the unequal sample size case. i.e,

taking more samples from the population with a larger variance.



Table 3.8: Summary empirical levels for ny/ny = 7/7, 711 = 721 = .9 and nominal @ =
.05. This table contains the results of Table A.5 summarized over the Mahalanobis

distance differences of the two populations being compared, N, — A,.

Test Min Mean Max STD
A= =0
HT 0.0419 0.0486 0.0515 0.0041
Y 0.0349 0.0413 0.0439 0.0043
JH 0.0365 0.0448 0.0491 0.0051
K 0.0307 0.0392 0.0445 0.0057
0<A -1 L2
HT 0.0414 0.0492 0.0529 0.0040
Y 0.0345 0.0425 0.0462 0.0040
JH 0.0361 0.0433 0.0495 0.0046
K 0.0303 0.0409 0.0456 0.0050
Ny =2 >2
HT 0.0518 0.0637 0.0775 0.0092
Y 0.0437 0.0557 0.0693 0.0092
JH 0.0471 0.0390 0.0724 0.0092
K 0.0424 0.0521 0.0641 0.0082




Table 3.9: Summary empirical levels for n,/n, = 14/7. m;; = 73 = .9 and nominal
o = .05. This table contains the results of Table A.6 summarized over the Maha-

lanobis distance differences of the two populations being compared. N, — A;.

Test Min Mean Max STD
A=A =0
HT 0.0453 0.0430 0.0533 0.0030
Y 0.0478 0.0515 0.0553 0.0026
JH 0.0439 0.0499 0.0530 0.0026
N 0.0-164 0.0487 0.0518 0.0020
0<A = <L2
HT 0.0494 0.0568 0.0627 0.0049
Y 0.0333 0.0587 0.0654 0.0033
JH 0.0528 0.0561 0.06253 0.0033
K 0.0513 0.0536 0.0602 0.0031
A —-N >2
HT 0.0635 0.0825 0.1079 0.0153
Y 0.0578 0.0791 0.0966 0.0122
JH 0.0543 0.0753 0.0948 0.0126
K 0.0506 0.0697 0.0870 0.0112




Table 3.10: Summary empirical levels for n;/ns = 7/14, 71y = 72, = .9 and nominal
a = .05. This table contains the results of Table A.7 summarized over the Maha-

lanobis distance differences of the two populations being compared. A; — A;.

Test Min Mean Max STD
A —-A =0
HT 0.0441 0.0435 0.0512 0.0025
Y 0.046+ 0.0514 0.0539 0.0026
JH 0.0450 0.0498 0.0519 0.0025
K 0.0430 0.0:36 0.0512 0.0029
0< N - L2
HT 0.0432 0.0458 0.0488 0.0019
Y 0.0451 0.0496 0.0537 0.0033
JH 0.0446 0.0484 0.0523 0.0023
K 0.0437 0.0477 0.0511 0.0030
A=A >2
HT 0.0439 0.0514 0.0393 0.0041
Y 0.0467 0.0551 0.0625 0.0054
JH 0.0431 0.0560 0.0643 0.0035
K 0.0453 0.0536 0.0601 0.0030

57



Table 3.11: Summary empirical levels for n,/n, = 21/21, 7}, = 73; = .9 and nominal
o = .05. This table contains the results of Table A.8 summarized over the Maha-

lanobis distance differences of the two populations being compared. \; — \,.

Test Min Mean Max STD
A=A =0
HT 0.046+4 0.0487 0.0523 0.0025
Y 0.0448 0.0476 0.0522 0.0029
JH 0.0449 0.0479 0.0525 0.0029
Y 0.0460 0.0485 0.0525 0.0027
O0< -1 <2
HT 0.0471 0.0504 0.0522 0.0018
Y 0.0467 0.0492 0.0508 0.0017
JH 0.0467 0.0493 0.0509 0.0016
K 0.0464 0.0495 0.0519 0.0013
N - >2
HT 0.0495 0.0618 0.0720 0.0075
Y 0.0487 0.0605 0.0708 0.0073
JH 0.0485 0.0604 0.0704 0.0072
K 0.0480 0.0581 0.0673 0.0067
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Table 3.12: Empirical power averaged over Mahalanobis distance differences with
nominal a = 0.05 and uj —p; =1

HT Y JH K
nl=n'_)=7.ﬂ'[1=:‘l'31=.9
A—-A =0 0.4533 0.4212 0.4351 0.4116
0< A - L2 0.4343 0.-4364 0.4706 0.4463
A=A >2 0.4990 0.-4691 0.4307 0.4433
ny=nq = 21, Ty =T = 9
A—-A, =0 0.9462 0.9452 0.9430 0.9442
0<; - L2 0.9534 0.9525 0.9521 0.9501
A=A > 2 0.9244 0.9229 0.9216 0.9103
n=ld.na=7. 7 =m = 9
A=A =0 0.6171 0.6013 0.603- 0.5868
0<A -1 L2 0.6-484 0.6039 0.6041 0.5827
A=A >2 0.65441 0.6046 0.5958 0.5522
n; = T n, = 14. Ty =T = .9
- =0 0.6182 0.5560 0.5702 0.5502
0<A -4 L2 0.6271 0.5906 0.6025 0.5863
A=A >2 0.5711 0.5697 0.5882 0.5619
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3.5 Overaill Summary

The case of Ay — A} = 0 corresponds to the situation where the data do not have
Behrens-Fisher problem although they may consist of 2 different populations. Re-
gardless this fact, the conventional procedures developed originally for normally dis-
tributed data appear to work well. On the average, all satisfied the usual criteria by
staying within the confidence regions with an exception of the cases when the mixed
populations are not symmetric and sample sizes are both small or populations are

symmetric but samples are unbalanced.

When Ay — A # 0. we considered two situations. A moderately heterogeneous
and thus nearly homogeneous if Ay — A < 2. Overall. Hotelling's procedure was not
to be recommended. Kim's procedure tends to be extremely conservative with small
samples. Johansen's procedure appears to be the best except when the sample size
has negative correlation with the Mahalanobis distance. However. all procedures are

rather liberal in this case.

When the data are extremely heterogeneous with Ny — 2\, > 2, some of these
procedures still work if the mixing proportions are equal leading to symmetric distri-
butions. In such cases, Johansen's test was excellent followed by Kim and Yao. But
this situation requires moderately large sample sizes and when the sample sizes are

unequal, they have to be positively correlated with the Mahalanobis distance.
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Chapter 4

Concluding Remarks

This thesis is concerned with testing hypothesis for data arising from a mixture of two
normal distributions that are likely to have the Behrens-Fisher type problems. To
our knowledge. no studies have been done to accommodate such testing situations of
empirical data. although it is very plausible having data with mixture distributions.
In this chapter, we summarize our findings and give several practical examples where

our investigation will find its usefulness and real applications.

The literature that is available for finite mixture models is mainly concerned with
the estimation of parameters involved in the mixture (e.g, mixing proportions, the
number of components, location and scale parameters etc.) using estimation methods
such as the Maximum Likelihood with the EM algorithm or some graphical methods
(Averitt and Hand 1981). To our knowledge, there are no methods devised for testing
hypothesis of equality of the location parameters of two populations, each of which is a
mixture. For the perfectly normal populations, such methods exist and some of them
have been extensively investigated and are known to perform well. Therefore, for the
time being, a researcher dealing with hypothesis testing in mixture populations has
no choice other than to use the available methods developed for normal distributions

with the Behrens-Fisher problem, hoping that they perform reasonably well.
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In this thesis, we investigated the four possibly better procedures based on the lit-
erature. These methods were, Johansen's, Yao's, Kim’s and Jordan and Krishnamoor-
thy’s. and for comprehensive comparison purposes, we also included the Hotelling’s
two-sample T>-test procedure as well. Our overall conclusion was that Johansen’s
procedure appears to be the best for the small sample data we considered. Based on
the performance with respect to the empirical size and power in small samples. we
recommend the Johansen’s procedure. However, the noted performance is not uni-
form for all cases. Therefore. the recommendation for investigators who are still in
planning stage is that they try to increase the sample size if equal mixing proportions
of both components are suspected. If the data are expected to be contaminated only
slightly. the best strategy will be to increase the sample size for the component that

will have disproportionately large variance.

Next. we give few examples where univariate and bivariate normal mixtures are

used to model actual data sets.

Examplel: Gage and Therriault (1998) fitted a two component univariate nor-
mal mixture to the human birth-weight data for different sex and ethnic groups. The
authors assumed a general case in which the two components have different location
and scale parameters. Using the Maximum Likelihood estimation procedure with the
EM algorithm. they found that the male African American’s birth-weight distribution

is of the form.,
F(r) = 0.926.V(3337,463) + 0.074.V(2662, 1090).

Similar mixture distributions were found for European. Asian and Hispanic Ameri-
cans’s birth-weight data. Here we have 4 populations to compare. where each popula-
tion is a mixture of two univariate normal components (i.e, A’=2 ). This is an example
of a situation where one would desire to compare mean birth-weights for different eth-
nic groups. If any of the univariate procedures for the Behrens-Fisher problem that

were discussed in Chapter 2 is known to perform satisfactorily on mixture data, then
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one could use them to test such hypothesis without even requiring the estimation
of the parameters of each group. This is extremely desirable especially when sam-
ple sizes are only moderately large (i.e, not greater than 30) in which case many of
the parameter estimation methods do not give satisfactory results {Titterington et
al. 1985). That is, large samples are required for such estimation methods to be stable

and robust.

’

Example2: Another example is provided by a study conducted by Friedlander.
Kark, Kidron and Bar-On (1995) where the authors used bivariate mixtures with
normal components in order to model fasting glucose concentration and the glu-
cose concentration two hours after an oral glucose load for the Jewish population of

Jerusalem.

According to (Friedlander et al. 1995). from a previous study there was no evi-
dence of sex influence on these glucose concentrations. Therefore. in their study. male

data and female data were combined.

In this situation, one could employ the procedure developed by Johansen (1930),
which was found in this thesis to perform quite well and was the best overall proce-
dure, to test the hypothesis of no difference between male and female mean glucose

concentrations.

Other examples of situations where bivariate normal mixture models where fitted

to data can be found in Namboodiri et al. (1975).

Having recognized the the demand for mixture models and hypothesis testing
there in, especially in human life matters. some possible directions for future investi-

gations are:

1- There is a need to develop robust methods and procedures for the Behrens-Fisher
problem in order to better accommodate analyses of data from the mixture

distributions such as the situations considered in this thesis.
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2- There is a need to develop a new procedure for testing the null hypothesis of no
difference between two groups, each of which is a finite mixture with components
having the same variance-covariance matrices. This is the case that does not

suffer from identifiability problems (McLachlan 1983).

3- The method of Jordan & Krishnamoorthy was not considered further in this thesis
due to.its extreme conservativeness. However. there could be a possibility of
improvement. Use of weights other than the ¢;'s suggested by the authors might

lead to a better solution.

4- Further Monte Carlo study is needed to investigate and compare the univariate
procedures such as Welch's approximate degrees of freedom. Banerjee's proce-
dure and Bhoj's two procedures. The latter two procedures are quite recent
methods and not considered in any previous extensive studies. In fact. Lee and
D Agostino (1976) considered two component normal mixtures and investigated
the performance of the two-sample Student’s ¢. Welch's approximate degrees of
freedom method and the Mann-Whitney test under such mixtures. Therefore,
an extension of the results of Lee and D Agostino (1976) to new solutions of the

univariate Behrens-Fisher problem will be useful in the literature.

5- The effects that other values of p have on the empirical sizes and powers need to

be investigated.
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Appendix A

Tables of Empirical Significance

Levels

This Appendix contains tables of empirical significance levels as functions of .\, and
A, (the Mahalanobis distances associated with the two bivariate normal mixture
populations being compared. see Section 3.1). The procedures of Hotelling, Yao.
Johansen, Kim and Jordan & Krishnamoorthy were used with nominal a = .03.
mixing proportions m;; = m3; = .5..9 and various sample sizes. The Mahalanobis
distances were varied in the set {0,1.2,3,5.6}. In each table, each cell contains

empirical levels for the procedures HT, Y, JH, K. JK respectively.



Table A.1: Empirical significance levels for n, = 7, ny = 7, m;; = 72y = 0.5. Each cell
contains empirical significance levels of the methods, HT, Y, JH. K. JK respectively.

A,
Ay 0 1 2 3 3 6

0 0.0514 0.0431 0.0539 0.0333 0.0683 0.0669
0.0427 0.0423 0.0471 0.0513 0.0595 0.0563

0.0466 0.0437 0.0506 0.0533 0.0618 0.0604

0.0419 0.0407 0.0446 0.0492 0.0533 0.0503

0.0036 0.0081 0.0035 0.0133 0.0197 0.0230

1 0.0431 0.0501 0.0538 0.0658 0.0656
0.0419 0.0447 0.0496 0.0538 0.0533

0.0437 0.0476 0.0517 0.0530 0.0587

0.0419 0.0433 0.0464 0.0433 0.0504
0.0083 0.0090 0.0114 0.0183 0.0213
2 0.0541 0.0536 0.0573 0.0642
0.0466 0.0470 0.0506 0.0561
0.0512 0.0498 0.0533 0.0605
0.0463 0.0468 0.0476 0.0318
0.0102 0.0095 0.0150 0.0133
3 0.0546 0.0560 0.0610
0.0477 0.0434 0.0531
0.0520 0.0523 0.0569
0.0481 0.0481 0.0516
0.0102 0.0143 0.0160
3 0.0345 0.0525
0.0477 0.0458
0.0523 0.0496
0.0481 0.0469
0.0107 0.0112
6 0.0528
0.0452
0.0499
0.0462
0.0105




Table A.2: Empirical significance levels for n, = 14, n, = 7. 7;; = m; = 0.5. Each cell
contains empirical significance levels of the methods, HT, Y. JH, K, JK respectively.

Ay

Ay 0 1 2 3 3 6

0 0.0504 0.0586 0.0747 0.0925 0.1257 0.1358
0.0562 0.0582 0.0619 0.0639 0.0676 0.0633

0.0543 0.0566 0.0583 0.0609 0.0654 0.0653

0.0547 0.0536 0.05-4 0.0551 0.0514 0.0514

0.0008 0.0003 0.0011 0.0014 0.0065 0.0089

1 0.0430 0.0647 0.0793 0.1165 0.1213
0.0507 0.0574 0.0613 0.0661 0.0648

0.0492 0.0550 0.0568 0.0646 0.0638
0.0469 0.0523 0.0309 0.0533 0.0521
0.0007 0.0005 0.0018 0.0065 0.0075
2 0.0529 0.0659 0.0931 0.1145
0.0570 0.0536 0.0662 0.0661
0.0554 0.0566 0.06:44 0.0643
0.0533 0.053+ 0.0350 0.0541
0.0007 0.0019 0.0054 0.0095
3 0.0509 0.0770 0.0925
0.0563 0.0656 0.0673
0.0554 0.0620 0.0656
0.0533 0.0584 0.0387
0.0010 0.0043 0.0071

0.0536 0.0610

0.0625 0.0625

0.0595 0.0603

0.0596 0.0584

0.0035 0.0049
6 0.0520
0.0590
0.0582
0.0583
0.0042

O




Table A.3: Empirical significance levels for n; = 7, ny = 14, 7; = m2; = 0.5. Each cell
contains empirical significance levels of the methods, HT. Y., JH. K, JK respectively.

AV

Ay 0 T ) 3 5 6

0 0.0505  0.0490 00371 0.0347  0.0327  0.0208
0.0535  0.0546  0.0503  0.0510  0.0508  0.0470
0.0327  0.0535  0.0406  0.0511  0.0519  0.0493
0.0492  0.0511  0.0495  0.0511  0.0432  0.0462
0.0008  0.0009  0.0007  0.0010  0.0012  0.001L
] 0.0507  0.0399  0.0339 00333 0.0350
0.0522  0.0453  0.0467  0.0520  0.0542
0.0501  0.0459  0.0465  0.0531  0.0563
0.0481  0.0444  0.0470  0.0308  0.052%
0.0007  0.0010  0.0011  0.0013  0.0013
3 0.0476  0.0421  0.0313 _ 0.0325
0.0533  0.0320  0.0500  0.0474
0.0515  0.0516  0.0515  0.0493
0.0508  0.0520  0.0495  0.0477
0.0007  0.0012  0.0009  0.0021
3 0.0502  0.0359  0.0353
0.0585  0.047+  0.0506
0.0548  0.0470  0.0525
0.0542  0.0488  0.0510
0.0014  0.0009  0.0020
5 0.0516  0.0472
0.0604  0.0595
0.0581  0.0583
0.0575  0.0596
0.0036  0.0027
6 0.0517
0.0645
0.0603
0.0612
0.0046




Table A.4: Empirical significance levels for n, = 21. n, = 21, 7;; = m = 0.5.
Each cell contains empirical significance levels of the methods. HT, Y. JH, K. Jk
respectively.

AV
Ay . 0 1 2 3 5] 6
0 0.0503 0.0473 0.0529 0.0529 0.0346 0.0569
0.0500 0.0470 0.0513 0.0513 0.0507 0.0328
0.0502 0.0467 0.0513 0.0513 0.0508 0.0524

0.0496 0.0462 0.0511 0.0507 0.0462 0.04389
0.0011 0.0011 0.0014 0.0015 0.0024 0.0023
1 0.0477 0.0463 0.0516 0.0550 0.0552
0.0472 0.045+ 0.0503 0.0527 0.0500
0.0474 0.0453 0.0504 0.0527 0.0518
0.0-166 0.0458 0.0502 0.0503 0.0490
0.0013 0.0007 0.0009 0.0022 0.0015

0.0532 0.0497 0.0512 0.0538

0.0542 0.0486 0.0500 0.0527

0.0546 0.0491 0.0493 0.0527

0.0550 0.0492 0.0436 0.0498

0.0011 0.0012 0.0015 0.0015
3 0.0485 0.0534 0.0524
0.0430 0.0519 0.0502
0.0430 0.0520 0.0505
0.0482 0.0523 0.0490
0.0011 0.0018 0.0017

o

3 0.0472 0.0499
0.0465 0.0493

0.0466 0.0494

0.0469 0.0500

0.0013 0.0010

6 0.0506
0.0503

0.0503

0.0498

0.0016

-3
-3



Table A.5: Empirical significance levels for n; = 7. ny =7, 7,y = 7 = 0.9. Each cell
contains empirical significance levels of the methods, HT, Y., JH, K, JK respectively.

A

Ay 0 1 2 3 3 6

0 0.0514 0.0462 0.0529 0.0513 0.0636 0.0775
0.0427 0.0411 0.0462 0.0437 0.0536 0.0693
0.0466 0.0437 0.0495 0.0471 0.0588 0.0724
0.0419 0.0405 0.0456 0.0424 0.0515 0.0641
0.0086 0.0082 0.0084 0.0095 0.0107 0.0169
1 0.0515 0.0507 0.0513 0.0641 0.0731
0.04-9 0.0450 0.0451 0.0554 0.0651
0.0491 0.0432 0.0479 0.0593 0.0688
0.0445 0.0438 0.0422 0.0516 0.0612
0.0078 0.0032 0.0077 0.0126 0.0151

2 0.0512 0.0517 0.0554 0.0639
0.0439 0.0440 0.0479 0.0614
0.0487 0.0482 0.0507 0.06-6

0.0443 0.0435 0.0440 0.057:

0.0034 0.0085 0.0095 0.0128
3 0.0504 0.0499 0.0530
0.0422 0.0413 0.0468
0.0472 0.0449 0.0503
0.0397 0.0403 0.0444
0.0073 0.0088 0.0039
3 0.0449 0.0414
0.0373 0.0345
0.0405 0.0361
0.0339 0.0303
0.0069 0.0036
6 0.0419
0.0349
0.0365
0.0307
0.0056




Table A.6: Empirical significance levels for ny= 14, no= 7, 1) = 79, = 0.9. Each cell
contains empirical significance levels of the methods, HT, Y, JH, K, JK respectively.

A
AV 0 l 2 3 ) 6
0 0.0484 0.0521 0.0590 0.0635 0.0914 0.1079
0.0532 0.0557 0.0578 0.0578 0.0820 0.0966

0.0513 0.0528 0.0550 0.0543 0.0760 0.0948
0.0501 0.0515 0.0513 0.0506 0.0712 0.0870
0.001t 0.0011 0.0006 0.0013 0.0014 0.0027
1 0.0482 0.0586 0.0611 0.0793 0.0950
0.0514 0.0387 0.0596 0.0728 0.0910
0.0513 0.0351 0.0579 0.06938 0.0881
0.0436 0.0530 0.0541 0.0641 0.0300
0.0012 0.0006 0.0011 0.0016 0.0022
2 0.0463 0.0349 0.0719 0.0846
0.0500 0.0581 0.0710 0.0839
0.0490 0.0555 0.0670 0.0802
0.0471 0.0534 0.0623 0.0742
0.0008 0.0008 0.0017 0.0015
3 0.0535 0.0627 0.0661
0.0353 0.0654 0.077

0.0530 0.0625 0.0724
0.0513 0.0602 0.0682
0.0006 0.0017 0.0013
3 0.0462 0.0494
0.0512 0.0333
0.0482 0.0536
0.0482 0.0515
0.0009 0.0013
6 0.0453
0.0478
0.0459
0.0464
0.0005




Table A.7: Empirical significance levels for n,= 7, ny = 14, 71 = my; = 0.9. Each cell
contains empirical significance levels of the methods. HT. Y, JH, K, JK respectively.

A,
Ay 0 1 2 3 3 6
0 0.0491 0.0461 0.0432 0.0439 0.0502 0.0550
0.0522 0.0494 0.0495 0.0524 0.0574 0.0623
0.0499 0.0474 0.0430 0.0516 0.0574 0.0626
0.0491 0.0462 0.0482 0.0503 0.0565 0.0601
0.0009 0.0008 0.0006 0.0011 0.0015 0.0013
1 0.0512 0.0437 0.0452 0.0497 0.0593
0.0539 0.0511 0.0527 0.0545 0.0625
0.0515 0.0502 0.0509 0.0566 0.06443
0.0506 0.0496 0.0308 0.0545 0.0593
0.000+4 0.0005 0.0005 0.0014 0.0011
2 0.0503 0.0463 0.0490 0.0507
0.0517 0.0537 0.0531 0.0519
0.0511 0.0523 0.0546 0.0526
0.0495 0.0511 0.0523 0.0305
0.0005 0.0008 0.0009 0.0010
3 0.0479 0.0470 0.0517
0.0517 0.0451 0.0467
0.0493 0.0436 0.0431
0.0485 0.044+4 0.0453
0.0006 0.0003 0.0008
0.0485 0.0438
0.0527 0.0454
0.0519 0.0446
0.0512 0.0437
0.0006 0.0006
6 0.0441
0.0464
0.0430
0.0430
0.0007

(@1}
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Table A.8: Empirical significance levels for n, = 21, ny = 21, 7, = T = 0.9.
Each cell contains empirical significance levels of the methods, HT, Y, JH. K, JK
respectively.

As

A : 0 1 2 3 3 6
0 0.0528 0.0471 0.0507 0.0495 0.0611 0.0698
0.0522 0.0467 0.0498 0.0487 0.0399 0.0632
0.0525 0.0467 0.0497 0.0435 0.0597 0.0682
0.0325 0.046+ 0.0493 0.043 0.0568 0.065
0.0013 0.0009 0.0009 0.0011 0.003 0.006
1 0.047 0.0315 0.0522 0.0633 0.072
0.0465 0.0508 0.0307 0.0613 0.0708
0.0467 0.0505 0.0309 0.0617 0.0704

0.0469 0.0502 0.0503 0.0601 0.0673
, 0.0006 0.0007 0.0013 0.003+4 0.005
2 0.0505 0.0493 0.056 0.0652
0.0501 0.04385 0.0555 0.0641
0.0501 0.0434 0.0552 0.0637
0.0506 0.0479 0.0528 0.0621
0.0009 0.0009 0.0013 0.0043
3 0.047 0.0522 0.0567
0.0458 0.0507 0.0552
0.0453 0.0507 0.0554
0.046 0.0519 0.0529
0.0011 0.0011 0.0026
5 0.0464 0.0496
0.0443 0.0474
0.0449 0.0432
0.0461 0.0504
0.0007 0.0006
6 0.0488
0.0461
0.0471
0.0491
0.0012
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Appendix B

Tablés of Empirical Powers

This appendix contains tables of empirical powers for all the methods analvsed in
Chapter 3 except Jordan & Krishnamoorthy's procedure. The empirical powers are
considered as functions of N;. Ny € {0.1.2.3.5, 6} (the Mahalanobis distances associ-
ated with the two bivariate normal mixture populations being compared. see Section
3.1) under the alternative f : pj —p3 = 1. Various sample sizes are used with mixing
proportions 7 = Ty = .5,.9. Each cell contains empirical powers of HT, Y. JH. K

respectively.



Table B.1: Empirical powers for ny = 7. ny =7, m;; = 7, = 0.9 and p] —p; = 1.
Each cell contains empirical powers of the methods. HT. Y. JH. K respectively.

AV

A 0 L 2 3 3 6

0 0.3225 0.5185 0.3055 0.3010 0.3050 0.53125
0.4920 0.4930 0.4795 0.4745 0.4735 0.4880
0.53100 0.5065 0.4935 0.4395 0.4855 0.4880
0.4330 0.4365 0.4690 0.4550 0.4465 0.4473

1 0.5015 0.5000 0.4990 0.4960 0.5290
0.4695 0.4690 0.4775 0.4685 0.5040
0.4345 0.4885 0.4865 0.4770 0.5125
0.4635 0.4630 0.4643 0.4410 0.4673

2 0.4570 0.4645 0.4950 0.4910
0.4285 0.4365 0.4595 0.4600
0.4405 0.4320 0477 0.4745
0.4245 0.4305 0.4495 0.4330
3 0.4305 0.4635 0.4625

0.3960 0.4340 0.4250
0.4135 0.4430 0.4415
0.3920 0.4200 0.4063

b 0.4060 0.4390
0.3735 0.4055
0.3333 0.4190
0.3565 0.3905

6 0.4025
0.3675
0.3785
0.3450
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Table B.2: Empirical powers for ny = 7. ny = 7, 711 = 7 = 0.5 and uy —p; =1
Each cell contains empirical powers of the methods, HT, Y, JH. K respectively.

A,

Ay 0 1 2 3 3 6
0 0.3215 0.5035 0.4365 0.4105 0.3525 0.3410
3 0.4735 0.4310 0.3840 0.3205 0.3080
0.5120 0.4905 0.4475 0.3935 0.3285 0.3085
0.4975 0.4675 0.4193 0.3595 0.2685 0.2295
l 0.4730 0.4555 0.4110 0.3325 0.3490
0.4435 0.4255 0.3305 0.2960 0.3140

0.4605 0.43380 0.3950 0.3050 0.3155
0.4410 0.4110 0.3700 0.2395 0.2445
2 0.4035 0.3755 0.3225 0.3290
0.3715 0.3485 0.3005 0.3070
0.3930 0.3685 0.3050 0.3110
0.3763 0.3305 0.2760 0.2695
3 0.3640 0.3470 0.3433
0.3370 0.3173 0.3175
0.3560 0.3280 0.3295
0.3365 0.3060 0.3035
3 0.3085 0.3220
0.2830 0.2940
0.2995 0.3115
0.2900 0.2990
6 0.2975
0.2715
0.2890
0.2800
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Table B.3: Empirical powers for n, = 21. n, = 21, Ty =my =09 and u] —p; =1
Each cell contains empirical powers of the methods. HT, Y, JH. Kk respectively.

2

AV 0 1 2 3 3 6

0 0.9840 0.9335 0.9705 0.9690 0.9280 0.9140
0.9835 0.9835 0.9705 0.9690 0.9260 0.9125
0.9835 0.9835 0.9705 0.9690 0.9260 0.9105
0.9843 0.9835 0.9700 0.9665 0.9230 0.3910
l 0.97380 0.9740 0.9545 0.9355 0.9060
0.9730 0.9725 0.9540 0.9345 0.9045
0.9780 0.9730 0.9540 0.9335 0.9035
0.9780 0.9735 0.9510 0.9250 0.3815
2 0.9660 0.9650 0.9255 0.9105
0.9655 0.9635 0.9235 0.9090
0.9650 0.9630 0.9230 0.9060
0.9655 0.9630 0.9175 0.8900
3 0.9505 0.9240 0.9065
0.9485 0.9215 0.9045
0.9500 0.9185 0.9015
0.9510 0.9120 0.8880
3 0.9055 0.9025
0.9045 0.9020
0.9025 0.9020
0.8985 0.3980
6 0.8930
0.8910
0.8910
0.8880
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Table B.4: Empirical powers for ny = 21, ny = 21. m;; = 7, = 0.5 and pr —p; =1
Each cell contains empirical powers of the methods, HT. Y. JH, K respectively.

A,

Ay 0 1 2 3 3 6
0 0.9330 0.9765 0.96+45 0.9275 0.3360 0.8720
0.9825 0.9753 0.9640 0.9260 0.3805 0.8665
0.9320 0.9760 0.9640 0.9260 0.8730 0.8635
0.9815 0.9760 0.9645 0.9225 0.3320 0.7870
1 0.9693 0.9535 0.9275 0.8350 0.8635
0.9690 0.9550 0.9270 0.8305 0.8660
0.9690 0.9555 0.9265 0.3800 0.8635
0.9695 0.9550 0.9230 0.8410 0.8080
2 0.9385 0.9060 0.8710 0.83535
0.9380 0.9050 0.3695 0.8540
0.9385 0.9045 0.8675 0.8530
0.9330 0.9035 0.8530 0.8180
3 0.9015 0.8820 0.8495
0.9010 0.8795 0.8495

0.9010 0.3800 0.8475
0.9915 0.8750 0.8390
3 0.8440 0.8395
0.8440 0.8390
0.8435 0.8390
0.8420 0.8380
6 0.8490
0.8470
0.8480
0.8480
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Table B.5: Empirical powers for ny = 14, ny = 7, 1y, = 721 = 0.9 and ] —p3 = 1.
Each cell contains empirical powers of the methods, HT, Y. JH. K respectively.

Dy
Ay 0 ! 2 3 3 6
0 0.7025 0.7100 0.6900 0.6865 0.6605 0.6630
0.6355 0.6430 0.6135 0.60-0 0.6020 0.6125
0.6685 0.65-0 0.6250 0.6105 0.5960 0.5965
0.6565 0.6335 0.6045 0.3835 0.5493 0.3440

1 0.6865 0.6733 0.6615 0.6745 0.6490
0.6470 0.6143 0.6110 0.6135 0.6105
0.6555 0.6215 0.6100 0.6010 0.5975
0.6370 0.6045 0.5865 0.5620 0.5370
2 0.6430 0.6410 0.6270 0.6640
0.6095 0.3915 0.3910 0.6195
0.6105 0.3900 0.3360 0.6050
0.3935 0.5690 0.5505 0.5335
3 0.6200 0.6020 0.6085
0.6010 0.5725 0.5340
0.6025 0.3615 0.5740
0.3885 0.5350 0.5380
3 0.5330 0.33385
0.5640 0.5765
0.3605 0.3665
0.5380 0.5440
6 0.4975
0.3335
0.5230
0.5070
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Table B.6: Empirical powers for ny, = 14. ny = 7. 7, = m, = 0.5 and uy —p3 =1
Each cell contains empirical powers of the methods, HT. Y, JH. K respectively.

s
A 0 1 2 3 3 6

0 0.7065 0.6765 0.6535 0.6035 0.3405 0.5425
0.6600 0.6045 0.5490 0.4745 0.4215 0.4190
0.6700 0.6150 0.5485 0.4630 0.3915 0.3360
0.6345 0.3935 0.5205 0.4260 0.3210 0.2725
L 0.6735 0.6395 0.3810 0.5390 0.3345

0.6285 0.5465 0.4925 0.4275 0.4250

0.6390 0.3355 0.4340 0.4080 0.3890

0.6250 0.5370 0.4520 0.3380 0.2920

2 0.3885 0.5490 0.3305 0.3370
0.5280 0.4305 0.4330 0.4280

0.3385 0.4300 0.4180 0.4040

0.3230 0.4645 0.3645 0.3445

3 0.5113 0.4985 0.3015
0.46380 0.4235 0.4335
0.4750 0.4130 0.4200
0.4385 0.3825 0.3795
3 0.4465 0.4560
0.4100 0.4135
0.4135 0.4105
0.4033 0.3965
6 0.4570
0.4225
0.4230
0.4170
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Table B.7: Empirical powers for n, = 7, ny = 14, 7;; = 72, = 0.9 and pur —ps =1
Each cell contains empirical powers of the methods. HT. Y. JH. K respectively.

A,
Ay 0 l 2 3 3 6
0 0.7135 0.7195 0.6615 0.6320 0.5715 0.5705
0.6740 0.6630 0.6460 0.6230 0.5905 0.3320
0.6340 0.6875 0.6340 0.6365 0.6110 0.6030
0.6693 0.6700 0.6395 0.6230 0.5810 0.5715
1 0.6740 0.6510 0.6270 0.5680 0.3420
0.6175 0.6090 0.6135 0.5773 0.3520
0.6315 0.6225 0.6175 0.5930 0.5740
0.6135 0.6105 0.6035 0.5705 0.5400
2 0.6610 0.6235 0.5775 0.5620
0.3975 0.3900 0.5695 0.5415
0.6100 0.5975 0.5875 0.5635
0.3955 0.3845 0.5650 0.3335
3 0.6130 0.5665 0.5450
0.5530 0.5280 0.5163
0.5700 0.5460 0.5375
0.5545 0.5295 0.5090
0.5405 0.5405
0.4665 0.4300
0.4870 0.4925
0.4635 0.4645
6 0.5025
0.4225
0.4385
0.4045

(1]
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Table B.8: Empirical powers for ny = 7, ny = 14, m; = 7, = 0.5 and g} —p3 = 1.
Each cell contains empirical powers of the methods, HT. Y, JH. K respectively.

Ay
A 0 1 2 3 5] 6
0 0.7145 0.6830 0.5940 0.5195 0.4520 0.4535
0.66350 0.6525 0.6230 0.53600 0.4900 0.4783
T 0.6300 0.5633 0.3070 0.4985

0.6740 0.6573

0.6605 0.6510 0.6225 0.3535 0.4700 0.4295
1 0.6600 0.3913 0.5195 0.4560 0.4240
0.6155 0.3910 0.5430 0.4320 0.4630
0.6270 0.6035 0.5565 0.5015 0.4765
0.6155 0.5855 0.3425 0.4615 0.4290
2 0.3830 0.5165 0.4440 0.4425
0.5280 0.5100 0.4773 0.4345
0.5295 0.5210 0.4965 04773
0.5135 0.5095 0.4690 0.4370
3 0.5145 0.4265 0.4490
0.4743 0.4285 0.4535
0.4300 0.4495 0.4730
0.4635 0.4305 0.4565
5 0.4560 0.4615
0.4030 0.4410
0.4065 0.4525
0.3985 0.4430
6 0.4490
0.4170
0.4130
0.4115
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Appendix C
Matlab Code for the Simulations

function comb1=comb1(file,n1,n2,pil,pi2,cvjk)
hcvijk represents the critical values of JK’s procedure.
%These critical values are tabulated
%in Jordan and Krishnamoorthy (1995).
DELTA=[0 1 2 3 5 6];
fid = fopen(file,’'w’);
fprintf(fid,’ ’this file contains results of case:
n1=%2.1f n2= %2.1f’,n1,n2);
fprintf(fid,’ pil= %3.2f pi2= %3.2f\n\n’,pil,pi2);
for r=1:6
fprintf(fid,'}5.4f ’ ,DELTA(L,r));
end
fprintf(fid,’\n’);
status = fclose(fid);
cor=[1 0;0 1];

for i=1:6
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resulti=zeros(5,6);
DELTA1=DELTA(1);

mull=[0; (pi1-1)* DELTA1];
mul2=[0;pil* DELTA1];

for k=1:6

DELTA2=DELTA (k) ;
mu21=[0; (pi2-1)* DELTA2];
mu22={0;pi2* DELTA2];

result=sig_levs(mu11,mu12,mu21,mu22,cor,pi1,p12,...

nl,n2,8.373);

result1(:,k) =result

end

fid = fopen(file,’a’);

for £=1:5
for 1=1:6

if (1<i)

fprintf(fid, '%s’,’'&’)

elseif (1>=i & 17=6)
fprintf(fid, '%3.3f’ ,resulti(f,1));
fprintf(fid,’%s’,’&’);

else

fprintf(£fid, ’%3.3f’ ,resulti(f,l));
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fprintf(fid, %s’, '\\’);
end
end
fprintf(fid,’\n’);
end
fprintf(fid,’'\n’);

status = fclose(fid);

end
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function sig_levs=sig_levs(mull,mul2,mu21,mu22,cor,piil,...

pi2,n1,n2,cvjk)
p=2;

ccor=chol(cor);

sig_lev=[0;0; 0; 0;0];
for k=1:10000

X1=randn(p,ni);
X2=randn(p,n2);
for j=1:nt
if (pil>= rand(1))
X1(1:p,j)=ccor*X1(i:p,j)+mull;
else

X1(1:p,j)=ccor*X1(1:p,j)+mul2;

end
end
for j=1:n2
if (pi2>=rand(1))
X2(1:p,j)=ccor*X2(1:p,j)+mu21;
else
X2(1:p,j)=ccor*X2(1:p,j)+mu22;
end
end

fi=n1-1; f2=n2-1;
f=f1+£2;
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X1bar=mean(X1’)’;
X2bar=mean(X2’)’;

Sl=cov(X1’);

S2=cov(X2’);

d=X1bar-X2bar;

Sp=((f1.%S1) + (£2.*352))./(f1+£2);
Su=(Sl./n15 + (82./n2);

WARAARDAA R AAA A% HOTELLING’S T2 CALCULATIONS %4U%U%AULULLULLLY

fhot=fcv(p,f-p+1);
cvhot=((£f*p)/(f-p+1))*fhot*((ni+n2)/(ni*n2));
Thot=d’*(inv(Sp))*d;

p=2;

if Thot > cvhot
hot=1;

else
hot=0;

end

BRBARRIARDAARGAA A A% YAQ'S APDF CALCULATIONS YUAULUULLULULLLLLYYL
yapdfi= (( (d’*(inv(Su))*(Si./n1)*(inv(Su))=*d)...
/(d’*(inv(Su))*d) )~2)/f1;

yapdf2= (((d’*(inv(Su))*(S2./n2)*(inv(Su))*d)/...
(d'*(inv(Su) )*d)) "2)/£2;
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yapdf=1/(yapdf1+yapdf2) ;

fyao=fcv(p, yapdf-p+1);
cvyao=fyao*(p*yapdf)/(yapdf-p+1);
Tyao=d’*inv(Su)*d;
if Tyao > cvyao

yao=1;‘
else

yao=0;

end

WARRRR L L LA AR AL AL JOHANSEN’S PROC. CALCULATIONS UAAAAAALLALANAYL
Vi=inv(S1./n1); V2=inv(S2./n2);

V=V1+V2;

Bi=eye(p,p)-(inv(V)*V1); B2=eye(p,p)-(inv(V)*V2);

Al= (1/(2*f1))* ( trace(B1*B1) + (trace(B1))"2) ;

A2=  (1/(2%£2))* (trace(B2*B2)+(trace(B2))"2) ;

A= AL + A2;

Sjd=p+(2%A)-( (6%A)/(p*(p~1) +2) ) ;
#Sjd=p+2*A-6xA%x(p+2);
japdf=(p*(p+2))/(3*4);

fjohan = fcv(p,japdf);

cvjohan = fjohan;

Tjohan=(1/Sjd)*(d’*(inv(Su))*d) ;
if Tjohan > cvjohan
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johan=1;
else
johan=0;

end

WARRRARALRRRAL LA AAAAL KIM?S PROC. CALCULATIONSUAUAULALLLLLLY
[q,LAMDAl=eig(S1./n1, S2./02)
r=det (LAMDA) ~(1/(2*p));
51S2=sqrtm(S2./n2) *sqrtm(sqrtm(V2) *(S1./n1)*sqrtm(V2) )*. ..
sqrtm(S2./n2);
Sk=(S1./n1)+(r"2.#(82./n2))+((2*r) . *5152) ;
lamda=diag(LAMDA) ;
1=(lamda+ones(p,1)) ./ ((lamda."(1/2) + (r*ones(p,1)) )."2);
c=(1'*1)/sum(1); £=(sum(1l))"2 /(1’'*1);
fkim= fcv(f,yapdf-p+1);
cvkim=fkim*c*f*yapdf/(yapdf-p+1);
Tkim=d’*inv(Sk)=*d;
if Tkim > cvkim

kim=1;
else

kim=0;
end
WAARAAAY JORDAN & KRISHNAMOORTHY PROC. CALCULATIONAUAARALAL LAY
b1=1/(2*p*(£1"2)*(£1-1) /((f1-p-1) "2 (£f1-p-3)));
b2=1/(2%p*(£272) *(£2-1) / ((£f2-p-1) ~2*(£2-p-3))) ;
c1=b1/(b1+b2); c2=b2/(b1+b2);
Wl=cl*V1,; W2=c2*V2;
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W=W1+W2;
SJK=( W2*inv(W)*W1i*inv(W)*W2 )+(Wi*inv (W) *W2*inv(W)*W1);
Tjk=d’'*SJK=*d;
hevik=cvik;
if Tjk > cvjk
jk=1; .
else
jk=0;
end

BRI RII AT DTN LD DRI DI BRI DDD DD DD DI BIGDAD DD DDDD ST TeTo oo o T o

sig_lev=sig_lev+[hot; yao; johan; kim;jk ];

end

% Returning a vector containing Empirical significance
g g mmp g

% levels of HT, Y, JH, K and JK respectively.

sig_levs=sig_lev./10000
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