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Abstract

Machine learning (ML) has shown great potential to create tremendous value

and growth to all sectors around the world, enhancing productivity, health, and

longevity of humanity. ML differentiates itself from all previous methods through its

adaptive and self-learning capabilities. In recent years, the energy sector experienced

significant setbacks due to collapsing commodity prices and increasing pressure from

environmental groups. As such, the sector is now actively seeking new innovative

strategies to improve their bottom line. One such avenue is to centralize and leverage

historical data for process optimization and enhanced business decisions, a concept

known as Industry 4.0. This thesis aims to explore and demonstrate the capabilities

of ML in process modelling, monitoring, and control.

Central to Industry 4.0 is the ability and necessity to create value for stake-

holders. As technology continues to progress and data continues to accumulate, it

becomes increasingly difficult for engineers to fully understand and optimize mod-

ern processes. By leveraging ML, whose performance is highly correlated with the

amount of training data, highly multi-variate relationships within modern processes

can be identified. Through their discovery, multi-variate optimizations can be lever-

aged to further enhance process performance and push the bounds operating effi-

ciency. In Chapter 2, a comprehensive process for identifying the multi-variate rela-

tionships and optimization step was shown and applied onto an industrial pipeline.

Just as important to process optimizations is the topic of process safety. Cur-

rently, the strongest line of defense against process upsets is proactive risk manage-

ment, where the hazards are eliminated or isolated before they escalate. If this fails,
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industrial alarms will warn plant operators of the potential dangers. Unfortunately,

many industrial alarm systems are poorly designed, resulting in thousands of flood-

ing alarms during process upsets. Here, ML was first used to construct proactive

anomaly prediction tools for passive risk monitoring. To tackle alarm floods, a ML-

based alarm management system was introduced to mitigate redundant alarms and

prioritize safety critical alarms.

Lastly, process control and optimal control are perhaps the most important sub-

jects in the modern process industry for safety and operation excellence. Traditional

optimal control used methods such as model predictive control (MPC) where a model

of the process is identified and leveraged to perform multi-variate optimization. Such

methods were widely demonstrated on small systems; however, their application in

large, multi-variate systems are still limited due to computation constraints. Fur-

thermore, the identification of such processes may not be feasible. In Chapter 5,

a ML-based optimal control algorithm, known as reinforcement learning (RL), was

leveraged instead to perform optimal control. The two main advantages of RL are

its unreliance on a process model and cheap online computation cost, making it a

convincing method for processes with un-identifable and/or fast dynamics.

Each application presented was then applied onto an engineering system to val-

idate its effectiveness and feasibility in a physical process. Pipelines, distillation

towers, and wastewater treatment plants were selected as the engineering systems

due to their importance to society, making them prime targets for optimization. By

leveraging ML and RL, the pipelines and wastewater treatment plants undergone

significant cost savings while still meeting strict government regulations. Moreover,

safety and reliability were greatly enhanced on the distillation tower through a RL

fault-tolerant control system. To explore the current progress of RL, this thesis was

concluded with a literature review of its current applications in the process industry.
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Chapter 1

Introduction

1.1 Motivation

The non-existent price recovery of the Western Canadian Select crude index since

its collapse in 2015 has forced many Canadian energy companies to shift their op-

erating strategies from expansion to optimization [1]. Typically, existing processes

in the oil and gas sector have been operating in a similar regime for many years. In

doing so, vast amounts of data have been collected for the current operating regime.

Through rapid advancements of computer hardware, this data can now be leveraged

as a gold mine for modern data hungry machine learning algorithms. Firstly, the

data can be used for predictive applications such as forecasting, digital twinning,

soft sensing, and even training purposes. The data can also be leveraged to create

ML-assisted safety applications similar to driver assistance in the automotive indus-

try. For example, process monitoring and process forecasting ML models can be

built to proactively manage operational risk by identifying hazards well in advance

of actual incidents. Modern optimal control methods (i.e., maximizing profits of a

plant or minimizing operating cost) can also benefit greatly through the assistance of

ML algorithms. Currently, a common optimal control method in industry is model

predictive control (MPC); however, the method assumes the availability of a (often

times, accurate) process model. In any industrial scale process, an accurate process

model is nearly impossible to identify due to the vast amount of non-linear interac-
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tion effects. Even after identification, the model would require re-tuning after several

months due to process drifts and other changes. Furthermore, for large processes,

the dimension of the states and actions may be too large for online optimization

to be feasible. One field of study known as distributed MPC aims to solve this

computational hurdle by decomposing the system into smaller sub-systems; how-

ever, distributed MPC performance is typically subpar compared to its centralized

counterpart due to communication issues [2]. Through RL, such large problems may

be computationally feasible as a centralized algorithm by pre-computing the opti-

mal control policies offline. Moreover, process drifts can be naturally handled by

RL through its direct adaptive optimal control nature [3]. For traditional optimal

control, adaptive characteristics are typically indirect and require re-identification

of the system models. In the case of RL, the policy is adapted directly through

interactions with the environment. There exist numerous big data machine learning

success stories in the technology sector such as deep learning for highly effective

targeted advertisement. However, applications involving highly complex and non-

linear models in the process industry are still severely limited even though there

exist large archives of data. One main reason for the absence of recent big data ML

progress in the process industry is the lack of a workforce skilled in both ML and

process control.

Many technology companies and ML engineers specialized in the big data have

attempted to fill the gap; however, process control data is exceedingly different

compared to the typical user or transactional data used by technology companies.

The data in process control is typically unintuitive and is ofte unreliable or noisy. As

such, traditional ML engineers lacking engineering expertise will struggle to build

models that translate to true value. Indeed, most of the effort in machine learning

projects is not spent on the algorithms, but rather, the data pre-processing step.

That is, even simple algorithms such as linear regression can achieve neural network

performance if the data is properly de-noised and the proper features are selected.

Without fundamental engineering expertise, feature selection and data de-noising
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could be almost impossible. For example, an engineer trying to predict the heat

released by a reaction would intuitively selects the mass and temperature features

due to his/her knowledge of thermodynamics while a ML engineer would start with

arbitrary initial features out of the thousands available. There also exist many

time delays in chemical processes and feature engineering is difficult without proper

fundamentals of process engineering. Comparatively, the data in the technology

sector is often very intuitive and easy to understand. For example, building a

classification algorithm for facial recognition is easier to understand compared to

predicting when a pump will fail. The former only requires an image of the individual

or some 3D spatial data corresponding to the individual’s facial features. In the

latter, there may be thousands of interactions affecting the ultimate outcome of the

pump, most of which are impossible to identify through intuition alone. Due to these

differences, engineers not specialized in the process sector faced great challenges

when attempting to create value in the process industry.

More recently, there has been a surge of ML innovations made by research sci-

entists and AI start-up companies catered towards the process industry. However,

most were never commercialized because the mentality between industry and the

engineers is vastly different. In industry, the ultimate objective is to create share-

holder value through risk-managed products; it may be traditional methods or it

can be ML. For the research scientists, the focus is more on the elegance and nov-

elty of the algorithm, regardless of the complexity. For industry, such algorithms

are difficult to explain to a non-technical audience, have a high cost of ownership

for the customer, and are difficult to understand without a team of subject matter

experts (which themselves cost a significant amount of money).

Throughout this thesis, the main theme is to introduce easy, cost effective solu-

tions that explicitly consider the following four customer focused values required for

successful commercial products [4]:

• Functional value: Describes the overall usefulness of the product compared

to other available products. For example, a ML anomaly detection algorithm
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may be far superior compared to other methods if sufficient data is present.

• Monetary value: The cost savings generated from this product (e.g., amount

of money saved through using an optimization algorithm or preventing a loss

incident).

• Social value: Ability for the product to enhance your brand or product

awareness is especially important for sales focused enterprises. For example,

after an individual goes to Disneyland, they may tell many people how great

it was without any incentive from Disney. In the process industry, operators

and/or engineers will recommend great products that helped them in their

jobs and/or become more productive without external incentives.

• Psychological value: Ability to make the company feel superior compared

to the competition. For example, a firm may believe it has better chances

at winning contracts if its products contain state-of-the-art ML technology

needed for big data applications.

Ultimately, the goal is to create organic growth for the local industry through new,

innovative ways. This thesis introduces novel techniques to cater machine learning

to the local industry, ranging from commodities transportation to automation.

1.2 Introduction to AI

Artificial intelligence (AI) has set off a change in perspective in the various

sectors around the globe, ranging from health care to manufacturing. The previously

arcane topic is now spreading wildly across countless academic and industrial minds

alike. Quick progressions in computing power and declining prices in data storage

combined with AI’s self-learning abilities have transcended AI to become the go-to

algorithm for many difficult worldwide problems such as natural language processing,

predictive analytics, and computer vision. PwC projected AI to contribute well over

$15 trillion USD to the global economy by 2030, while elevating GDP of local markets
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by 26% [5]. Generally speaking, the field of AI is ever-expanding and contains many

goals.

Figure 1.1 shows the six major goals of AI. Out of all the goals, machine learning

(ML) is currently the most influential topic in industry. The field of ML can be

described as the study that develops algorithms to give machines explicit abilities

to learn different tasks without being pre-programmed to do so [6]. ML can be

further decomposed into supervised learning, unsupervised learning, semi-supervised

learning (a combination of supervised and unsupervised learning), and reinforcement

learning.

Figure 1.1: The major goals of artificial intelligence.

The sub-fields of ML are shown in Figure 1.2. In supervised learning, the algo-

rithm learns the optimal input-output mapping, called the model, from a training

data set pre-labeled by an external supervisor [7]. Be aware that not all labels

provided are guaranteed to be correct. In fact, it is not uncommon to have misla-

beled data caused by noise in the original data set. For example, imagine trying to

transcribe an interview with the audio playback heavily corrupted by noise. In the

process industry, the supervisor is typically a sensor measuring the current condition

of the process (pressure, temperature, flow rate, etc.) and is often unreliable. In the

end, the performance of the supervised learning model is upper bounded by the qual-

ity of the labels provided by the supervisor. In the ideal case, the model can exactly

replicate the right and wrong labels of the supervisor. In unsupervised learning, the

algorithms are typically used to optimally segregate data based on their similarity

or to identify the principal components within large data sets [7], [8]. Objectively,

unsupervised learning identifies hidden patterns within data sets through feature
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extraction and dimensional reduction. Semi-supervised learning is a hybrid between

supervised and unsupervised learning where the models are trained on a small data

set of labeled data and refined using features extracted from the unlabeled data set.

For example, in the process industry, tasking an engineer to manually label data

sets is a costly but required endeavor. In many applications such as fault detection

or root cause analysis, a well labeled data set is required to materialize any useful

applications. Using semi-supervised learning in these scenarios, the model can learn

from the small labeled data set and extract additional helpful insights from the re-

maining unlabeled data to fine tune performance. In this case, the final algorithm

is vastly superior compared to its supervised or unsupervised learning counterpart

[9]. Unfortunately, all the above methods exhibit one critical flaw: the inability to

transcend the supervisor in terms of performance. Although these methods may pro-

vide great cost reductions and/or greatly speed up production through automating

trivial tasks, the methods fail to expand the current capabilities of modern methods.

Figure 1.2: The sub-components of machine learning.

Reinforcement learning (RL) aims to overcome this dilemma by providing ma-

chines the ability to surpass all known methods. More specifically, reinforcement

learning agents learn the optimal actions to perform in different situations (also

called optimal policy) through self-interaction with the environment. After each

interaction, the agent is provided feedback via a scalar reward signal; large positive

rewards follow good actions while negative rewards follow bad actions. In challenging

circumstances, actions affect both the immediate reward signal and the subsequent
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rewards there-forth. In an intuitively context, pursuing an University degree may

yield negative immediate rewards; however, rewards years down the line may be-

come significantly more positive due to the newly equipped knowledge. These two

characteristics—delayed feedback and guided trial-and-error search—differentiate

RL from all other types of algorithms and ultimately permit RL to push the exist-

ing boundaries of known science [7].

1.3 Thesis Outline and Contributions

The thesis is organized as follows: First, basic concepts of RL and MPC will

be introduced. In Chapter 3, applications of ML algorithms in prediction appli-

cations will be explored on an industrial pipeline. Following that, ML for process

safety applications will be shown in Chapter 4. Safety applications include topics

such as anomaly detection, anomaly prediction, and alarm management. Up until

Chapter 4, the projects will mostly use traditional supervised, unsupervised, and

semi-supervised learning methods because the applications are predictive in nature.

Towards the end of Chapter 4 until the end of the thesis, RL methods will be in-

troduced because these applications are more control oriented. Chapter 5 contains

various different RL applications in process control. Applications here include the

optimal control of a waste water treatment plant, set point tracking control of small

scale systems, and fault-tolerant control of an industrial distillation tower. Addi-

tionally, RL is also compared to MPC on simple small-scale systems in this chapter.

Finally, this thesis is concluded in Chapter 6. A comprehensive project report for

the pipeline optimization project introduced throughout this thesis is shown in Ap-

pendix A.

The contributions of this thesis are as follows: In Chapter 3, methods for identify-

ing representative process models in an industrial settings are introduced. Addition-

ally, a new adaptive modelling method was formulated here to significantly reduce

the cost of ownership of the machine learning models for the industrial partner. The

adaptive method also overcomes catastrophic interference and can be retrofitted onto

7
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all model structures. Chapter 4 introduces novel data pre-processing approaches to

anomaly detection and prediction in the process industry. Additionally, a new RL-

powered alarm management method is introduced for filtering of nuisance alarms,

alarm reduction, and alarm prioritization. Chapter 5 provides various comparisons

between traditional optimal control methods and RL on many different systems.

Furthermore, a new easy-to-implement continuous non-linear RL method is also

shown here. The last contribution in Chapter 5 is the extension of RL into a fault-

tolerant control where RL is used for both the fault detection algorithm and the

fault tolerant controller. Chapter 6 provides a literature review of all the renowned

applications of RL as well as RL agents that have potential to materialize value in

a process control environment.
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Chapter 2

Preliminaries and Tutorials

2.1 Preliminaries to Reinforcement Learning

Reinforcement learning is a goal-directed learning algorithm which continually

improves its own performance through interactions with the environment [7]. The

main objectives of reinforcement learning are to identify hidden structures within

the environment and to find the optimal policy (i.e., optimal state to control action

mapping) through guidance from an internal scalar reward (feedback). Two distinct

characteristics that deviate reinforcement learning from other methods are its trial

& error search to find the optimal policy, and its ability to identify delayed reward

signals. Modern reinforcement learning methods combine principles of optimal con-

trol and learning methods together to solve for the optimal control trajectory in

an environment. In the remaining sections of this chapter, fundamental reinforce-

ment learning concepts will be introduced. Then, tabular based RL methods will be

shown. However, due to the curse of dimensionality of high dimensional problems,

tabular based approaches struggle in large multi-variate scenarios. To overcome

these issues, deep neural networks will be leveraged for function approximation, and

deep reinforcement learning will be introduced.

9
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2.1.1 A Historical Overview

Reinforcement learning is a combination of two fields of research: optimal con-

trol through extremizing an objective function through dynamic programming and

animal psychology inspiring trial-and-error search. Originally, the optimal con-

trol problem was proposed for designing controller to maximize or minimize the

objective function of a dynamical system over time [10]. By the 1950s, Richard

Bellman extended on the works of Hamilton and Jacobi to develop a novel approach

to solve the optimal control problem. This approach, known as dynamic program-

ming, optimizes a system’s input trajectory by using the functional equation (a

function where the unknowns are also functions) generated from the system’s state

information together with a value function [11]. The functional equation, now called

the Bellman equation, is mathematically represented as:

V (x) = r(x) + γ
∑

P (x′|x, u) · V (x′) (2.1)

where V (x) represents the value function of x. Here, γ denotes the discount factor

to incorporate future uncertainty. r(x) is the reward signal obtained as a function

of the system’s desired performance. P (x′|x, u) is the dynamics function describing

the transitional probability of arriving at state, x′, given x and u. V (x′) is the value

function of x′. Intuitively, the value function describes how good or how bad being

in particular state is, assuming optimal behaviour thereafter; high values represent

good states and low values for bad. True dynamic programming is cursed by dimen-

sionality (i.e., computational cost increases exponentially with the dimensions of the

states and actions); thus, approximate dynamic programming (ADP) methods were

developed to bypass this hurdle [12]. In reinforcement learning, many ADP methods

are leveraged to solve for the optimal policy. The concept of a feedback oriented

learning system in RL originated from animal psychology. More specifically, the

original concept was introduced in the early 20th century, named the Law of Effect.

The law stated that animals tend to repeat actions resulting in good outcomes, vice

10
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versa for actions with bad outcomes [13]. Initially, the agent explores the environ-

ment in which it exists to identify the outcomes corresponding to different actions,

then only repeating the actions resulting in good outcomes thereafter. By unifying

dynamic programming from optimal control and trial-and-error search from ani-

mal psychology, the modern field of RL was developed. For a more comprehensive

overview of the history of RL, see [7].

The development of RL is shown in Table 2.1. Reinforcement learning takes

its roots from the k -armed bandit problem that has been extensively studied in

engineering, psychology, and statistics. This problem disregards state information,

and only worries about solving the optimal actions for one specific situation [14]–

[17]. As a natural extension, Barto, Sutton and Brouwer expanded the idea to

multi-situation systems [18] through associative search, also known as contextual

bandits. The main objective of this algorithm was to find an optimal policy, π∗(x),

for each situation. However, it only concerns the immediate rewards and not the

long term consequences. Reinforcement learning was then developed to find the

optimal policy for different situations based on immediate reward and the onward

trajectory there-forth.

Table 2.1: From left to right, the evolution of reinforcement learning.

k-armed bandits Contextual bandits Reinforcement learning

Optimal action Optimal action Optimal action

One situation Many situations Many situations

Immediate consequence Immediate consequence Long-term consequence

k-armed Bandit

The k -armed bandit problem provides the fundamentals to understanding mod-

ern reinforcement learning. Here, an agent is present and must choose action u from

U , where U has k choices. After each action, a scalar reward from a stationary dis-

tribution will be returned to the agent as feedback. Favorable actions yield positive

rewards, while unfavorable actions return negative rewards. The objective of the

11
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agent is to ultimately maximize reward over N steps. For each action, there is an

expected reward called value, given by Equation 2.2.

q∗(u) = E[Rt|Ut = u] (2.2)

where u is the action taken at time, t. Rt is a scalar reward returned to the agent

after action u was performed at time t. Rt is drawn from a stationary distribution,

Rt ∼ N(q∗(u), σ2). Finally, q∗(u) is the expected reward of taking action, u.

The real value is unknown, however, an estimation can be computed and is

denoted as Qt(u). Given all Qt(u) is maintained, at any time, one Qt(u) will be

greater than all others. Picking the action that corresponds to the maximum Qt(u)

is known as greedy, and the agent is said to be exploiting. If a non-maximum action

is picked, the agent is exploring [7].

Action selection based on estimating the value of actions are called Action-

value methods [19]. At time t, the estimate of the value is given by Equation 2.3

[7].

Qt(u) = =

∑t−1
i=1 Ri1Ui=u∑t−1
i=1 1Ui=u

(2.3)

where 1 equals 1 if the condition is true, else 0. Ri is the reward obtained at the

ith episode through selecting action, Ui. Intuitively, the numerator is the sum of

rewards when action, u, was taken prior to t. Likewise, the denominator is the

number of times action, u, was taken prior to t. As t→∞, Qt(u)→ q∗(u). Action

selection is based on Equation 2.4.

Ut = arg max
u

Qt(u) (2.4)

However, initial successful episodes may cause the agent to be stuck at local min-

imums. To overcome this, a semi-stochastic action selection method called ε-greedy

can be introduced to promote exploration. In this method, the agent will perform a

random action with ε probability (greedy action can be performed). Higher ε results

12
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in more exploratory moves. Consequently, all u ∈ U will be picked many times and

by the law of large numbers, Qt(u)→ q∗(u) [20]. Figure 2.1 shows the effect of ε on

the performance of the agent.

Figure 2.1: Average performance of three agents using different ε. The data is
averaged over 2000 runs. Figure from Reinforcement Learning: An Introduction by
Sutton and Barto (2018).

During implementation, ε should decay out as Qt(u) approaches q∗(u) to ensure

knowledge of the agent is being adequately exploited. For non-stationary problems

where the Q values change, ε must be greater than 0 for all t to ensure continued

exploration.

Algorithms to solve the k -armed bandit problem are easily applied to situations

where the concept of state is inert and only the actions are of concern; a near

impossibility in the real world.

Contextual Bandit

A natural extension of the k -armed bandit is associative search. In associative

search (sometimes called contextual bandit), different policies are associated with

different situations [18]. Equation 2.5 is the extension of Equation 2.2 in the asso-

ciative search problem.

q∗(x, u) = E[Rt|Xt = x, Ut = u] (2.5)
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Associative search is known as the method between k -armed bandits and re-

inforcement learning. In associative search, the objective is to associate optimal

policies to different situations, but only maximizing the immediate reward. Often

times, near term sacrifices are required to initiate the trajectory to a large lump

sum reward at the terminal state. For example, heavy capital and time investment

is required for University in the short term. However, the long term gain is so great

that it outweighs the short term losses, making going to University an optimal policy

for many individuals.

In order to find the true optimal policy (i.e., policy that returns the greatest

rewards over a long time period), the topic of reinforcement learning is developed.

In reinforcement learning, sequential decision making is explored to identify the

delayed reward signals from different actions and to ultimately find the optimal

policy, π∗.

2.2 Markov Decision Processes

In the presence of uncertainty, the agent’s sequential decision making is formal-

ized in the Markov decision process (MDP). The general MDP framework is shown

in Figure 2.2 and contains two components: the agent and the system. The agent

is a continuously learning decision maker and is mathematically represented by the

RL algorithm. Objectively, the agent will undergo numerous meaningful interac-

tions with the system to ultimately learn the optimal policy, π∗ (i.e., the optimal

decisions given different situations). Conversely, the system contains all elements

the agent cannot arbitrarily control. In process control, the ambient temperature,

actuators, and even the wires transporting the control signals are all part of the

system because the agent cannot deterministically manipulate them.
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Figure 2.2: The general Markov decision process framework. Original image from
[7].

Mathematically, the MDP is a discrete representation of the stochastic optimal

problem and a classical formulation of sequential decision making where both the

immediate and long term consequences are explicitly considered [11], [21]. Many

definitions of the MDP exist and are equivalent up to small alterations of the process.

One comprehensive definition is that a MDP is a tupleM = (X ,U , p(x′, r|x, u), γ, R)

where [22]:

• x ∈ X : States of the system at each time step. Common states in industrial

processes include temperatures, valve positions, pressures, flow rates, etc.

• u ∈ U : Bounded action space of the agent, (comprised of at least two ele-

ments). In traditional control, this is the bounded input signals sent to the

actuators.

• R ∈ R: Expected reward signal after performing action u at state x. Reward

functions are designed based on a desired performance metric. In control

theory, the reward function is known as the objective function. Typically,

|R| ≤ R for convergence guarantees, where R is some upper bound of the

reward.

• p(x′, r|x, u): System dynamics function. Formally, it is the probability of

transitioning to x′ and receiving r, given states x ∈ X and performing action

u ∈ U . Mathematically, it is described by the following:

p(x′, r|x, u)=̇Pr{Xt = x′, Rt = r|Xt−1 = x, Ut−1 = u} (2.6)
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where p describes the system dynamics and Pr denotes the probability op-

eration [7]. Additionally, p satisfies the following equality:

∑
x′∈X

∑
r∈R

p(x′, r|x, u) = 1,∀x ∈ X , u ∈ U (2.7)

Notice here that p is only a function of the immediate past, thus assum-

ing that xt−1 and ut−1 captures the complete history. This is known as

the Markov property and its underlining assumptions are critical for suc-

cessful process control applications using RL. Additionally, note that when

the state and actions are formulated as augmented past information: xt−1 =

[st−1, st−2, ...st−N ], ut−1 = [at−1, at−2, ..., at−N ], where st−N and at−N denotes

the past states and actions, the system is still Markov because decisions can

be made exclusively using xt−1 and ut−1.

• γ: Discount factor associated with uncertainty of the future, (0 ≤ γ ≤ 1).

γ < 1 is also a requirement for continuous processes to guarantee eventual

convergence.

There exists three different MDPs: fully observable MDP (FOMDP), partially

observable MDP (POMDP), and semi MDP (SMDP). Table 2.2 shows a general

guideline on the different MDPs.

Table 2.2: A comparison of different Markov decision processes.

FO-MDPs S-MDPs PO-MDPs

All states observable All states observable Some states observable

Discrete time Continuous time Discrete time

2.2.1 Fully Observable Markov Decision Processes

Fully observable Markov decision processes are the simplest and serves as the

foundational framework. They are mainly applied to discrete systems with fixed

sampling times where transition dynamics are unimportant and all states are ob-
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servable (measurable in control literature). Here, the agent starts in some initial

states, x0. At each time t, the agent maps xt to some ut corresponding to its policy,

πt. Given xt and ut, the system will then transition to some new states xt+1 dictated

by Equation 2.6 while outputting reward signal Rt+1 based on the reward function.

In regulation and set-point tracking problems, this reward function is typically the

squared tracking error between xt and xsp. By repeating this cycle many times, the

agent is able to traverse through some sequence, xt, ut, Rt+1, xt+1, ut+1, Rt+2, xt+3, ...

and accumulate [7]:

Gt = Rt+1 + γRt+2 + γ2Rt+3... (2.8)

=
∞∑
k=0

γkRt+k+1 (2.9)

where Gt denotes the cumulative discounted return at time t and γ is the discount

factor to capture the future uncertainty. MDPs can represent both finite or infinite

systems; the former describes episodic tasks with explicit terminal states while the

latter describes tasks that continue forever. Intuitively, most two-player board games

such as Checkers, Chess, or Go are finite MDPs where the game is terminated after

one player is defeated. Contrarily, an infinite MDP system could be the control

system in an industrial process. For infinite MDP systems, γ < 1 is a necessary

condition to keep Gt bounded. Ultimately, the agent is tasked with finding the

optimal policy, π∗, that maximize Gt, and subsequently the value function, over N

steps. The value function for each state is given as [7]:

vπ(x)=̇Eπ[Gt|Xt = x] (2.10)

= Eπ

[
∞∑
k=0

γkRt+k+1|Xt = x

]
(2.11)

= Eπ[Rt+1 + γGt+1|Xt = x] (2.12)

where vπ(x) is the value function of x under policy π. Theoretically, the existence

and uniqueness of vπ is guaranteed for continuous systems where γ < 1 or in systems
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with guaranteed termination. Compared to Equation 2.2, Equation 2.12 takes the

expectation of Gt; therefore, explicitly optimizing the long term returns rather than

only the immediate rewards. The action-value formulation of Equation 2.12 is:

qπ(x, u) =̇ Eπ[Gt|Xt = x, Ut = u] (2.13)

= Eπ

[
∞∑
k=0

γkRt+k+1|Xt = x, Ut = u

]
, ∀x, u ∈ X ,U (2.14)

FOMDPs work well for discrete systems where all states are observable. How-

ever, system states in industrial processes are often unobservable (unmeasurable in

control) due to limited hardware or engineering limitations. In such systems, the

Markov property no longer holds resulting in sub-optimal decision making of the

agent.

2.2.2 Partially Observable Markov Decision Processes

Partially observable Markov decision processes (POMDPs) extend upon the con-

cepts of FOMDPs and represent systems with unobservable states. In RL literature,

observability is equivalent to measurability in control; thus, the two terms are used

interchangeably here-forth. In FOMDPs, the current state xt at each time t is fully

observable. In the more general setting of POMDPs, the entire state vector describ-

ing the agent’s current situation is no longer available. Instead, the agent only has

access to a set of possible observations O. At each time t, the agent sees observation

ot which corresponds to probability distributions over states. Using ot, the agent

can infer the states it might currently be in [22]. Relating to a process control set-

ting, existing sensors typically only measure a subset of the current states; however,

by using available measurements, one can infer the remaining unmeasurable states

using probabilistic approaches.

Generally, finding π∗ in a POMDP setting is significantly harder compared to

FOMDPs. Even finding a near-optimal policy is at least NP-hard (non-deterministic

polynomial time) [23]. Furthermore, even agents with access to all the system’s true
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value functions are unable to behave optimally in a POMDP setting because the

current states are unknown [22].

Belief states is one method for agents to behave optimally in POMDPs. On a

high level, belief states transform the POMDP setting into its FOMDP counter-

part through a probabilistic approach. Specifically, belief states, b, are probability

distributions over states deduced using previous observations and actions. The prob-

ability distributions represent what the agent thinks its current state is. Using these

probabilities, the agent can compute scalar value functions of each state-action pair

and use these to act optimally. Note here that the agent’s behaviour is optimal

given the available information, and not optimal with respect to the system. An

quantitative example is provided below:

Suppose an agent exists in a two-input two-output (TITO) POMDP

setting with two unobservable states (x1 and x2) and two actions (u1

and u2) and suppose the problem is only concerned with the immediate

consequences (for longer horizons, the agent must also consider the long

term rewards, making the example less intuitive). In this system, there

are four value functions, one for each state-action pair. Suppose u1

earns a reward of 2 in x1 and 0 in x2. Similarily, u2 earns a reward

of 0 in x1 and 1 in x2. Given bt = [0.2, 0.8] (probabilities of being in

x1 and x2, respectively), then Q(bt, u1) = 0.2 · 2 + 0.8 · 0 = 0.4 and

Q(bt, u2) = 0.2 ·0+0.8 ·1 = 0.8, resulting in u2 being the optimal action.

In control theory, observers, such as soft sensors, are used to estimate unmea-

surable states. Observers are typically 1st principles, data driven, or probabilistic

models. The concept of belief states is very similar to observer design in control

theory. Traditionally, Kalman filter is a widely used observer design. Conversely,

recurrent neural networks (RNNs) are widely used for belief state estimation in

RL. The performance of RNN was compared with Kalman filter in [24], drawing

similarities of the two methods’ objective, theory, and performance.

System representations using FOMDPs and POMDPs work well in discrete tasks
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where transition times are constant and transition dynamics are disregarded; how-

ever, both topics are paramount for continuous optimal control.

2.2.3 Semi Markov Decision Processes

Semi-Markov decision processes (SMDP) extend the concepts of MDPs to con-

tinuous time and can represent unknown transition times and system dynamics. In

SMDPs, the transition dynamics of the system are explicitly captured using reward

function [25]:

R(xt, xt+1, ut) =

∞∫
0

t∫
0

e−βsρ(xt, π(xt))dsdFxt,xt+1(t|π(xt)) (2.15)

where R(xt, xt+1, ut) is the reward when transitioning from xt to xt+1 after perform-

ing action ut, adjusted for the unknown transition time. Here, ρ(xt, π(xt)) represents

the mean reward during the transition following policy, π. To obtain ρ, intermedi-

ate rewards are calculated at each time step in the transition period to explicitly

capture transition information. Fx,xt+1(t, u) denotes the probability distribution of

the transition time from xt to xt+1. Finally, β > 0 is the constant discount factor in

SMDPs. High β results in short-sighted agents. In SMDPs, the transition time is

no longer constant. Thus, the discount factor is corrected for transition time during

each update step. The corrected discount factor is:

γ(xt, xt+1, u) =

∞∫
0

e−βtdFxt,xt+1(t|πt) (2.16)

where γ(xt, xt+1, ut) is the transition time adjusted discount factor. The value func-

tion for SMDPs is obtained through combining Equations 5.39 and 2.12:

vπ(xt) =
1− e−βτ

β
R(xt, xt+1, π(xt)) + e−βτvπ(xt+1) (2.17)
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where τ denotes the unknown transition time. The action-value variant is given by:

qπ(xt, ut) =
1− e−βτ

β
R(xt, xt+1, π(xt)) + e−βτqπ(xt+1, ut+1) (2.18)

By representing control environments as SMDPs, policies resulting in large over-

shoot, inverse response, or other undesirable dynamics will be minimized. Addition-

ally, SMDPs can handle unknown transition times. An intuitive example of SMDPs

in process control is as follows:

Suppose a CSTR in a refinery must maintain a temperature of 200◦ C.

The temperature is regulated using cooling water via a heat exchanger.

A RL agent was tasked with maintaining the temperature set point. Sup-

pose the CSTR is initiated at 220◦ C. Agents using FOMDP represen-

tations may be overly aggressive and send large control actions because

the reward is calculated right before the next evaluation step. Therefore,

input signals resulting in large overshoot or inverse response may be

missed during the reward calculation. Contrarily, SMDPs consider the

average reward accumulated throughout the transition to provide feed-

back to the agent, allowing the undesirable dynamics to be captured.

Furthermore, the sampling time of SMDPs are not fixed (traditional

representations evaluate after a set time period), enabling re-evaluation

during the transitional period if unexpected events occur. In such sce-

narios, the discount factor will also be adjusted in accordance to the

elapsed time from last evaluation.

2.2.4 Optimal Solution of the MDP

The optimal solution to the RL problem refers to identifying a policy that gen-

erates the highest long term returns. Such a policy may not be unique; there may

exist many optimal policies, where vπ∗1 = vπ∗2 = ... = vπ∗N . Formally, the optimal

policy must satisfy the principle of optimality: the optimal policy π∗ is optimal
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if and only if vπ∗(x) ≥ vπ 6=π∗(x) for all x ∈ X [26]. Mathematically, the optimal

value function is:

v∗(x)=̇ arg max
π

vπ(x), ∀x ∈ X (2.19)

with its action-value variant being:

q∗(x, u)=̇ arg max
π

qπ(x, u),∀x, u ∈ X ,U (2.20)

In a more explicit form, the optimal value function and action-value function written

in terms of Equations 2.12 and 2.14 are given, respectively, by [7]:

v∗(x) = arg max
u

E[Rt+1 + γv∗(Xt+1)|Xt = x, Ut = u] (2.21)

q∗(x, u) = E
[
Rt+1 + γ arg max

ut+1

q∗(Xt+1, ut+1)|Xt = x, Ut = u

]
(2.22)

where the max operation denotes that the optimal action will be taken for the

remaining of the trajectory. Theoretically, all optimal value functions can be explic-

itly solved using Equation 2.21; however, such a task would require unreasonable

amounts of computation power for even simple systems. In the following section,

three popular methods will be introduced to estimate the value and action-value

functions in reinforcement learning.

2.3 The Reinforcement Learning Problem

In general terms, reinforcement learning in an industrial setting is simply an

agent undergoing meaningful interactions with the process to learn an optimal op-

erating policy. For added intuition, Figure 2.3 shows the information flow of an

agent in process control. First, the agent observes some states, xt ∈ X , from the

environment (some states may be unobservable). Given xt, the agent performs some

controls actions, ut ∈ U and receives a scalar reward signal, rt+1 ∈ R. Finally, the

process will transition to some new states, xt+1, given probability P (xt+1, rt+1|x, u).
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Figure 2.3: Basic setup of reinforcement learning where an agent interacts with the
system.

The three main branches of reinforcement learning solutions are shown in Figure

2.4. Starting from the left, dynamic programming (DP) methods can identify the

exact value functions, but require a perfect system model and is extremely compu-

tationally expensive, even for trivial tasks. Comparatively, both Monte Carlo (MC)

and temporal difference (TD) methods are approximate DP methods. As such, they

are less computationally demanding. Additionally, MC and TD methods do not

assume the presence of a system model and identifies the value functions through

interactions with the environment. MC methods find the value functions through

averaging the returns generated over many sampled trajectories of states, actions,

and rewards. One drawback is the significant variance in the sampled trajectories.

Consequently, this may lead to poor reproducability in highly noisy systems. TD

methods combine the best characteristics of DP and MC methods into one unifying

approach. Like MC methods, TD learn from sampled data. Like DP methods, TD

performs update steps after each step. However, TD methods typically exhibit large

bias (especially during initial learning episodes) due to estimating values through

previously estimated values (known as bootstrapping). The general details of each

method will be shown throughout this section. For a comprehensive introduction to

each algorithm, see [7].
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Figure 2.4: The sub-components of machine learning.

2.3.1 Dynamic Programming Methods

Dynamic programming algorithms identify the exact value functions through an

iterative procedure using the system dynamics function. In real life applications,

DP algorithms are rarely used due to their unreasonable computational cost for

even trivial problems. Nevertheless, the ideas of DP serve as the fundamentals for

modern approaches. Policy iteration and value iteration are two common techniques

in DP.

As an overview, policy iteration searches for the optimal policy by iterating

through infinitely many policies, π ∈ Π, storing only the policy corresponding to the

highest cumulative returns. The optimal policy is assumed to be found when Gπ can

no longer be improved. Policy iteration is comprised of two phases: policy evaluation

and policy improvement. Policy evaluation computes the value functions and

cumulative returns of the system under π through an iterative approach. Value

functions are initialized as 0, and are solved iteratively using:

vk+1,π(x) = Eπ[Rt+1 + γvk,π(xk+1)] (2.23)

v0(x) = 0, ∀x ∈ X

where k denotes the kth update. Here, vk+1,π(x) is the predicted value function for

x under policy π after k + 1 update steps. As k →∞, vk(x)→ vπ(x) for all x ∈ X

(i.e., the value functions converge to the true value functions under π). However,

there often exists a π′ where vπ′(x) ≥ vπ. Policy improvement identifies such
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situations. Once identified, current policy π will violate the principle of optimality,

hence deeming it ineligible for being the optimal policy. Then, the value functions

of π′ will be identified in the next policy evaluation. This procedure will continue

iteratively and infinitely until a policy where vπ∗(x) ≥ vπ 6=π∗(x) for all x ∈ X is

found. After such a policy is identified, it is regarded as the optimal policy.

Figure 2.5 shows a visualization of the policy iteration algorithm. It can also be

described using the following [7]:

π0
E−→ vπ0

I−→ π1
E−→ vπ1

I−→ π2
E−→ ...

I−→ π∗
E−→ v∗ (2.24)

where
E−→ and

I−→ denotes the policy evaluation and policy improvement steps, respec-

tively. From Figure 2.5, the agent starts with some arbitrary policy and performs

policy evaluation. Initially, a large gap exists between Vπ and π. As the iterative

procedure proceeds, the gap is continuously reduced until Vπ, π → V ∗(x), π∗. In

industrial applications, the required iterative procedure for each policy evaluation

is far too expensive for any non-trivial tasks.

Figure 2.5: A visualization of the policy iteration algorithm. Original image from
[27].

To improve upon these computational issues, value iteration was proposed. Value

iteration finds the optimal policy through identifying the optimal value functions

instead. Intuitively, value iteration is a special case of policy iteration where the

policy evaluation is terminated after one step. From the value functions of each

state, π∗ can be found by traversing through the states corresponding to the highest

values. Note that the optimal policy can only be found using V (x) if a dynamics
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equation of the system is provided. Without it, Q(x, u) must be identified instead

to behave optimally. The policy evaluation for the value iteration algorithm is given

as:

vk+1(x) = max
u

E[Rt+1 + γvk(xt+1)] (2.25)

qk+1(x, u) = E[Rt+1 + γmax
ut+1

qk(xt+1, ut+1)] (2.26)

Here, the max operation ensures that each vk(x) is updated using only the maxi-

mizing action so the optimal value function can be identified. After all v∗(x) are

identified, an agent can behave optimally starting in any state assuming the agent

takes the maximizing action at each time. Note that both policy and value iter-

ation are bootstrap methods. Bootstrapping in RL increases data efficiency while

capturing long-term trajectory information; however, the method also introduces

unintended biased.

In industry, both policy and value iteration have limited utility because their

updates are far too computationally expensive. In high dimensional settings, even

one iterative step may be intractable; therefore, even with value iteration’s reduced

computational complexity, it is still infeasible for most complex problems. Asyn-

chronous dynamic programming methods further reduces computational complexity

by only updating frequently visited states. However, agents are rendered hopeless

in states that are rarely encountered. Although, such a methodology mimics human

behaviour where encounters can be handled effectively and efficiently and more ex-

otic situations may catch us by surprise. Nonetheless, such methods still require

system models to be explicitly provided, an extremely rare case in industry.

2.3.2 Monte Carlo Methods

Monte Carlo methods no longer require explicit system models (a characteris-

tic known as model-free). Instead, MC methods estimate the average returns for

different policies through sampling infinitely many sequences of states, actions, and

rewards. As the samples increase, vk(x) → vπ(x) for all x ∈ X . Learning-wise, the
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average returns are updated at the end of each trajectory. Due to this, the finite

tasks with explicit terminal states are typically solved using MC methods. For ex-

ample, discrete manufacturing is an episodic task in process control. The system is

reset after the assembly of each object (cars, toys, ...). In episodic tasks, the value

functions are updated naturally after each episode. However, most tasks in process

control are continuous. Training a continuous agent using MC methods require ad-

ditional modifications. One method is to pre-specify a length of time. After the

time has elapsed, the agent will pause and update its value functions.

Policy search in MC methods is similar to policy iteration. There exists three

differences: 1) only visited states are updated; 2) updates use sampled data instead

of a model; 3) qπ(x, u) is required and identified instead of vπ(x). In MC methods,

the action-value functions are identified because a model is not provided to the

agent. Hence, the agent cannot behave optimally using only the value functions

because the actions required to transition to the high value states are not known.

Instead, action-values contain explicit information on the expected returns for each

action in each state. The iterative procedure of MC to compute the cumulative

returns is given by:

π0
E−→ qπ0

I−→ π1
E−→ qπ1

I−→ π2
E−→ ...

I−→ π∗
E−→ qπ∗ (2.27)

Intuitively, the agent is initiated in an unknown system and follows a certain policy,

π, to traverse throughout the state space while collecting rewards after each deci-

sion. Eventually, the agent will reach a terminal state and conclude the episode.

Upon termination, a sequence of returns G1, G2, ..., Gn−1 can be generated using the

received reward signals:

G1 = R1 + γR2 + γ2R3 + ...+ γn−1Rn

G2 = R2 + γR3 + γ2R4 + ...+ γn−2Rn

G3 = R3 + γR4 + γ2R5 + ...+ γn−3Rn
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...

Gn−1 = Rn

or:

Gm =
n∑
i=0

γiRm+i (2.28)

where Gm denotes the discounted cumulative return received on the mth step. Using

Gm, the action-values can be computed for each step by:

Qk+1(x, u) = Qk(x, u) +
1

k
[G−Qk(x, u)] (2.29)

where Qk(x, u) represents the kth action-value update and G corresponds to the

returns received after performing action u in state x. Notice that as k →∞, 1
k
→ 0;

therefore, this set-up is ineffective in non-stationary settings because the updates get

infinitely small. To extend Equation 2.29 to non-stationary problems, 1
k

is changed

to a constant given by α:

Qk+1(x, u) = Qk(x, u) + α [G−Qk(x, u)] (2.30)

where α ∈ (0, 1] is known as the learning rate (also called step size). The lower bound

prevents α from approaching 0; therefore, allowing for continually adaptation in non-

stationary problems. After each update of Equation 2.30, a new episode starts and

the procedures are repeated. As k, # of episodes → ∞, Q(x, u) → q(x, u). Once

Q(x, u) converge, online action selection can be conducted by:

π∗(x) = arg max
u

q(x, u) (2.31)

That is, π∗ is performing the greedy action in each state.
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Exploration in MC

Notice that bootstrapping is not used in MC methods. In fact, all value functions

are estimated independently. As such, MC methods do not suffer from bias issues;

however, MC methods may suffer from large variances instead caused by the noise

in each sampled trajectory [7]. Moreover, exploration is mandatory in MC methods

because the dynamics of the system are unknown to the agent. Through exploration,

the agent can discover the dynamics of the system and the value functions for each

state. Typically, exploration in MC methods is conducted by initiating the agent in

a random state at the beginning of each episode. After infinite episodes, all states

will be visited infinitely many times.

MC methods allow the agent to learn solely from sampled data; however, the

action-values are updated only after each episode. Such a procedure is unnatural in

continuous systems (most systems in process control), disadvantageous long episode

systems, and is not intuitive to human behaviour. For example, humans learn

immediately after feedback, not in pre-set increments. Temporal difference methods

combine the best features of DP and MC methods into one unifying algorithm.

2.3.3 Temporal-Difference Methods

Temporal difference (TD) methods are mathematically simple and cheap compu-

tationally compared to MC and DP methods. TD methods learn from experiences

(like MC methods) and bootstraps (like DP methods). Furthermore, a dynamics

model is not required in TD methods. Instead, the agent learns the dynamics from

interactions. Moreover, TD methods update their value functions immediately after

xt+1 and Rt+1 are received. The TD update algorithm for value and action-value

functions are given in Equations 2.32 and 2.33, respectively [28]:

V (xt)← V (xt) + α [Rt+1 + γV (xt+1)− V (xt)] (2.32)

Q(xt, ut)← Q(xt, ut) + α [Rt+1 + γQ(xt+1, ut+1)−Q(xt, ut)] (2.33)
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where← is the update operator. At each update, the old value function is corrected

as a function of the TD error by a fixed amount determined by α. The TD errors

are at each time t is given as:

δt = Rt+1 + γV (xt+1)− V (xt) (2.34)

δt = Rt+1 + γQ(xt+1, ut+1)−Q(xt, ut) (2.35)

The first two terms, Rt+1 + γV (xt+1), denote the predicted value function for x in

accordance with the last interaction. V (xt) is the previously predicted value function

for x. After infinitely many interactions with the system, V (xt) → v(xt) (i.e., the

estimated values converge to the true values). The action-values follow the same

procedure. After convergence of the values and/or action-values, the optimal action

selection is given in Equation 2.31.

Exploration in TD

Like MC methods, TD methods are also model-free; therefore, action-values are

required for the agent to act optimally and exploration is mandatory. A simple and

common exploration method used in TD methods is the ε-greedy action selection.

Here, the agent performs the greedy action with a ε ∈ [0, 1] probability of performing

a random action. During training, ε is typically decayed throughout training. At

the beginning, ε starts at a high value because agent knows nothing. Eventually, ε

decays to a low value when training is almost complete.

Unfortunately, random exploration is sample inefficient and may require the

agent to undergo thousands of interactions before learning anything meaningful.

Learning can typically be significantly accelerated through a heuristics function

H : X × U → R [29]. One such heuristics approach is the upper confidence bound

(UCB) action selection algorithm [30]. Here, exploration is promoted on states that
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have high potential to be optimal and is given by:

Ut = arg max
u

[Qt(x, u) +H] (2.36)

The heuristics function here is given by:

H = c

√
ln t

Nt(x, u)
(2.37)

where c is the degree of exploration. Large c values promote greater degrees of

exploration. Furthermore, Nt is the number of times action u was selected prior to

time t. As Nt(x, u)→∞, the corresponding Q(x, u) has been updated many times

and becomes very accurate. Hence, the heuristics function H → 0.

Popular TD Algorithms

The two most popular TD algorithms are SARSA and Q-learning. SARSA

is an on-policy algorithm. In such algorithms, the behaviour policy and target policy

are identical. Target policy refers to the goal policy of the agent. Typically, this

is the optimal policy. Conversely, the behaviour policy, b(u|s), is the policy used

by the agent for decision making. In cases where the target and behaviour policy

are identical, the agent is on-policy. One flaw with on-policy agents (assuming the

target policy is the optimal policy) is that during training, the agent may quickly

converge to a local optimum and never explore (since any policies containing explo-

ration is not the optimal policy). Ultimately, this results in a sub-optimal solution.

Contrarily, off-policy agents, like Q-learning, typically follow exploratory policies

during training to conduct deep exploration. Then in online applications, the pol-

icy is swapped to the optimal policy. Moreover, off-policy agents are guaranteed

to find the optimal policy assuming each state-action pair is visited infinite times

and b(u∗|s) > 0 (i.e., probability of picking the optimal action under the behaviour

policy is not 0) [28].

Since SARSA is on-policy, the action-value function are updated using Equation
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2.33 using the quintuple (xt, ut, Rt+1, xt+1, ut+1). Q-learning updates use only four

parameters (xt, ut, Rt+1, xt+1) through Equation 2.38:

Q(xt, ut)← Q(xt, ut) + α

[
Rt+1 + γ arg max

ut+1

Q(xt+1, ut+1)−Q(xt, ut)

]
(2.38)

In Q-learning, ut+1 is not required because the action taken might follow a different

policy compared to the target policy since the algorithm is off-policy. Instead,

Equation 2.38 uses the max operation to ensure Q-values are still updated towards

the optimal policy. Ultimately, TD methods unify DP and MC methods, allowing

the agent to learn from experiences and perform inter-episode updates to exploit

the most recent learnings.

A detailed numerical example is provided in Chapter 4 where a tabular Q-

learning algorithm was applied onto an industrial VFD system to conduct set-point

tracking control.

2.4 Summary of DP, MC, and TD

The main features of DP, MC and TD methods are summarized in Table 2.3.

Overall, DP requires a dynamical model of the system to compute the value func-

tions while both MC and TD methods can learn directly from interactions with the

system. Both DP and TD methods use bootstrapping to estimate value functions;

that is, they estimate the current value function based on previously estimated val-

ues. Bootstrapping is data efficient, but introduces large biases to the estimated

values, especially in the early episodes. Conversely, MC methods estimate the value

functions of each state independently through sampling many system trajectories.

However, this method, instead, introduces high variance. For extremely noisy sys-

tems, the reproducability of the results may be low. Comparing the computational

cost, DP methods require much more compared to MC or TD since all value func-

tions are simultaneously solved. In MC methods, only the value functions that

were visited in the sampled trajectories are updated. Additionally, updates are con-
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ducted at the end of each episode and not after each step. Similar to DP methods,

TD methods update the value function immediately after an experience; however,

only the value function corresponding to the last visited state is updated. In terms

of exploration, DP methods do not explore the system model (both transition prob-

abilities and expected reward) is explicitly provided. MC methods explore by being

initiated in a random state after each episode termination. In TD methods, agents

explore by occasionally performing a random action.

Table 2.3: A comparison of DP, MC, and TD methods.

Dynamic Programming Monte Carlo Temporal Difference

Requires model Yes No No

Estimate bias High Low High

Estimate variance Low High Low

Computational cost High Medium Low

v(x) update All states simultaneously After a trajectory After an experience

Exploration Not needed, all states update Random initialization Performing a random action

2.5 Reward Design for Process Control

The design of the reward function for process control applications is similar to

MPC. For regulation or set-point tracking problems, the MSE reward function can

be used and is given by:

r(x, u) = −(xi − xsp)2 (2.39)

However, the agent may find it difficult to distinguish between small off-sets using

this reward function. For example, when the tracking error is 10, the reward is

-100. However, if the off-set is only 0.25 or 0.1, the agent would find it difficult to

distinguish between the small rewards because the difference is miniscule compared

to an error of 10. To enhance this distinction, a Huber loss can be used [31]:

r(x, u) =


xt − xsp if |xt − xsp| > 1

(xt − xsp)2 otherwise
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In this case, large errors are not squared, significantly reduce their magnitude. In

the tabular cases, this error works exceptionally well; however, not so much in deep

RL. Typically, the inputs to neural networks are normalized for sufficient learning

[32]. When normalizing the rewards, small errors will once again become indistin-

guishable. In such a case, the following reward function typically works better:

r(x, u) =


xt − xsp if |xt − xsp| > 1,

(xt − xsp)2 if 1 ≥ |xt − xsp| > η,

+1 otherwise

where η is the maximum acceptable tracking error. Here, as the agent achieves

states within η, the rewards are significantly increased. Such an idea is similar to

zone MPC, where the objective of the controller is to guide the trajectory within

a zone [33]. Another flaw with deep RL comes from the noisy action signals. For

example, a normal human would not go and continuously change the air conditioning

set-point if the temperature inside a house varies between 22.1° C to 22.2° C because

the two temperatures are relatively the same. In the case of deep RL, these are seen

as two completely different states, and correspond to (slightly) different actions. One

could design a filter to remove such small actions from being sent to the system;

however, adding a cost to the change in inputs is a more natural way to mitigate

this:

r(x, u) = −[(xt − xsp)2 + ν∆u2
t ] (2.40)

where ∆ut is the change in input in the last sampling time. The coefficient, ν, is

used to tune the effect of the action on the reward. For example, if the system’s

input signals are typically small, a large ν would be used so the tracking error does

not dominate the entire reward function.

In exotic scenarios where the optimal input is known, the reward function can

become:

r(x, u) = −[(xi − xsp)2 + (ui + uss)
2] (2.41)
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Lastly, the rewards are sometimes clipped to avoid large TD errors causing numer-

ical issues during bootstrapping [34]. From Equation 2.38, it can be seen that if

R(x, u) >>> Q(x, u), Q(xt+1, ut+1), then the updated Q(x, u) would be completely

dominated by R(x, u). Additionally, any future updates bootstrapping off Q(x, u)

would subsequently become dominated by its value. As such, rewards are clipped

(bounded) within a range to prevent such issues. Unexpectedly large rewards may

originate from incorrect sensor readings, which consequently leads to inaccurate

reward signals being sent to the agent. Reward clipping is conducted by:

r(x, u) = min(max(rt, µ
−), µ+) (2.42)

where µ− and µ+ denotes the minimum and maximum rewards, respectively.

2.5.1 Reinforcement Learning vs. Other ”Learnings”

Reinforcement learning is a unique class of machine learning. An ideal super-

vised learning model can only be as good as the subject matter expert providing

the labels to the data set, which may not be 100%. For example, in a complex

control task, the control law is usually highly non-linear. Control experts can try

to provide control strategies for such systems, but optimality may not be guaran-

teed for highly non-linear systems. Also, supervised learning is used to generalize

responses for occurrences not present in the data [7]. Reinforcement learning works

by directly interacting with the environment without labels. Through adequate ex-

ploration, reinforcement learning will identify peculiar features to optimally control

such problems [citation required]. Reinforcement learning is similar to unsupervised

learning in terms of identifying hidden structures within the environment. However,

reinforcement learning tries to maximize an internal scalar reward signal, rather

than purely data mining.

Evolutionary methods, a family of optimization algorithms such as genetic al-

gorithm, are most similar to reinforcement learning. For a control problem, such
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methods can apply multiple static policies for different operating regimes [7]. Pol-

icy search is conducted by first initiating k random input trajectories of length N ,

generating input matrix U[k,N ] ∈ π. Subsequently, the loss, JU , of each U is calcu-

lated based on the objective function. Input trajectories with the lowest loss move

onto the next generation and generates new pseudo-random input trajectories. This

process is repeated until optimal policy, π∗ is found for each operating regime [35].

Evolutionary methods work well when the policy space is sufficiently small, easy

to find, or a lot of time is available for optimization. The biggest advantage of such

methods compared to reinforcement learning is that the whole state does not need

to be known. However, such methods does not capture the reinforcement learning

fundamentals of mapping X → U . Unlike evolutionary methods, reinforcement

learning keeps memory of each individual interaction making it a more data efficient

approach [7].

2.6 Function Approximation

2.6.1 Introduction to Function Approximations

Prediction models have wide applications in all sectors of the economy. To obtain

the highest possible accuracy, one can simply have an infinitely large repository of

previous examples. When given any input, a suitable output can be generated by

finding the exact solution in the repository. For example, if the task is to predict the

model of an automobile based on a picture and the dimensions of a car, one could

obtain 100% accuracy so long as every single car specification exists in a repository.

This idea sounds good in theory, but is only possible in real life if there exists infinite

memory. Function approximation aims to solve this problem by generating a model

to generalize across a massively large repository of historical data. Intuitively, the

model stores the information at a much lower space complexity, for a cost of some

reproduction error. There is also a trade-off between the reduced space complexity

and the reproduction error. Large, complex models have increased space complexity
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but reduced error while small, simple models exhibit the opposite. This section

focuses on complex neural network models with high predictive capabilities. In RL,

function approximation is typically used to approximate the (action-) value functions

or the policy itself.

2.6.2 Neural Network Basics

Neural networks are highly non-linear models that explore the individual and

interaction effects of each variable with all other variables [32]. The general structure

of a neural network is shown in Figure A.16. Neural networks are comprised of an

input layer, some hidden layer(s), and an output layer. The input layer consists of

the input data, while the hidden layer(s) and output layer consists of fitted weights

and biases, Wnx×nb and bnb×1, respectively. Here, nb and nx denotes the batch size

and the dimension of the input layer, respectively. In Figure A.16, xm denotes the

mth input variable. The superscript and subscript of a denotes the hidden layer

number and the node number in the corresponding layer, respectively. Subscript m1

to mr denotes the number of nodes in hidden layers 1 to r, respectively. Finally,

superscript o denotes the output layer.

Figure 2.6: Structure of a general neural network.

The details within a hidden layer’s node is shown in Figure A.17. First, the

outputs from the previous layer’s nodes are inputted and multiplied by the weights
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of the current node. The current node’s bias is then added. If the current node

is in the first layer, the outputs from the previous layer is replaced with the input

variables. Afterwards, the output is sent to an action function to provide the non-

linearity for any neural network model. In this thesis, the rectified linear unit (ReLU)

activation function is typically used and is given by:

a
[i]
j =


y, if y ≥ 0.

0, otherwise.

(2.43)

where i and j denotes any hidden layer and any node number, respectively. Two

other popular activation functions are sigmoid and tanh given in Equations 2.44 and

2.45, respectively.

a
[i]
j =

1

1 + e−z
(2.44)

a
[i]
j =

ez − e−z
ez + e−z

(2.45)

where e denotes the exponential operator and z = Wx + b. The sigmoid and

tanh activation functions have lost popularity in recent years because they create

the exploding/vanishing gradient effect. This effect occurs because the derivatives of

both the sigmoid and tanh functions are zero outside of a small section. Additionally,

the derivative at the inflection point is infinity. Since neural networks are trained

using backpropagation, often times, the gradient of the loss function becomes zero

as it is backpropagated through the neural network during training. Ultimately, this

leads to significant difficulties in training neural networks (especially deep networks)

[36].

Mathematically, for one example with input vector x:

z
[1]
j = W [1]x+ b[1]

a
[1]
j = ReLU(z

[1]
j )

z
[2]
j = W [2]a

[1]
j + b[2]

a
[2]
j = ReLU(z

[2]
j )
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Figure 2.7: Inside a hidden layer’s node.

...

z
[r]
j = W [r]a

[r−1]
j + b[r]

a
[r]
j = ReLU(z

[r]
j )

y = W [o]a
[r]
j + b[o]

Neural Network Initialization

Neural networks can be initiated in many ways. Although neural networks can

be initiated as all zeros, such an approach is not symmetry-breaking resulting in all

neurons performing the same calculations [32]. Ultimately, this results in all neu-

rons outputting the same values rendering the whole network useless. Therefore, a

primitive approach to overcome this was to initialize the neural network weights as

random near-zero values. This method was symmetry-breaking, but such networks

required long training times, especially in deep learning [37]. In 2010, Xavier and

Bengio published one of the first papers to explicitly study neural network initial-

ization.

In [37], the the Xavier initializer was proposed to equalize the variance of the

outputs of each layer with the variance of its inputs. More specifically, the biases of

each layer was initialized as zero, but the weights were initialized as:

W ∼ U

[
−

√
6√

nj + nj+1

,

√
6√

nj + nj+1

]
(2.46)

where U [−a, a] represents an uniform distribution bounded between (−a, a). Here,

nj and nj+1 denotes the size of the previous and current layers. The derivation of
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Equation 2.46 assumed linear actions. When tested using sigmoid activation func-

tions, the Xavier initialized neural networks showed substantially faster convergence

times. Unfortunately, sigmoid activation functions were considered obsolete as time

went on due to the exploding/vanishing gradients problem [36].

By 2015, He et al. proposed a new initialization method specialized for ReLU

activation functions, known as the He initializer [38]. He extended upon previous

work by assuming a ReLU activation function instead of a linear one and obtained

the weight initialization function given by:

W ∼ N
(

0,
2

nj

)
(2.47)

where N denotes the Gaussian distribution and 2
nj

denotes its standard deviation.

Like in [37], the He initialization showed substantially faster convergence times for

neural networks compared to previous methods when using the ReLU activation

function.

The advantages of each initialization are summarized in Table 2.4

Table 2.4: Comparing different neural network initialization methods.

Zero init. Random init. Xavier init. He init.

Does not work Simple but slow Ideal for sigmoid activations Ideal for ReLU activations

2.6.3 Cost Function for Neural Networks

MSE is the typical cost function for regression tasks and is given by [32]:

J(θ) =
1

n

n∑
i=1

(ŷi − yi)2 (2.48)

where J represents the loss. Here, n denotes the number of samples in the current

optimization step. ŷi and yi are the ith predicted and actual labels, respectively.

The MSE cost function is typically selected due to its convex nature [39].
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Gradient Descent

Given the cost function, the model parameters are updated using gradient de-

scent. The general gradient descent formulation is given by Equation A.6.

θm+1
j ← θmj − α

∂J

∂θj
(2.49)

where θj denotes the jth parameter (parameter includes both weights and biases)

of the model. Here, m represents the mth update of gradient descent and α is the

learning rate. Unfortunately, gradient descent can optimize quite slowly, especially

for neural networks where the solution is highly non-convex. There are many differ-

ent enhanced gradient optimization methods such as momentum gradient descent,

AdaGrad, RMSprop, etc; however, adaptive momentum gradient descent (ADAM)

method will be used for the remainder of this thesis [40]. Mathematically, ADAM

combines momentum gradient descent and RMSprop into one unifying algorithm.

ADAM improves upon Equation A.6 by computing an adaptive learning rate for

each parameter [40]. To do so, the exponentially decaying average of the past gradi-

ents and squared gradients of the weights and biases are computed and stored using

Equations A.7 to A.10.

VdW = β1VdW + (1− β1)dW (2.50)

Vdb = β1Vdb + (1− β1)db (2.51)

SdW = β2SdW + (1− β2)dW 2 (2.52)

Sdb = β2Sdb + (1− β2)db2 (2.53)

where V and S are the estimates of the gradient and squared gradients, respectively.

V and S are typically initiated as zero vectors and are heavily biased towards zero

at initial steps. Hence, the biases (numerical bias, not the neural network parameter
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bias) for the initial terms are corrected using:

V corrected
dW =

VdW
1− βt1

(2.54)

V corrected
db =

Vdb
1− βt1

(2.55)

ScorrecteddW =
SdW

1− βt2
(2.56)

Scorrecteddb =
Sdb

1− βt2
(2.57)

Combining the above equations, the weights and biases are updated by:

Wj ← Wj − α
V corrected
dW

ScorrecteddW + ε
(2.58)

b← b− α V corrected
db

Scorrecteddb + ε
(2.59)

where ε is a small scalar to avoid division by zero. The authors proposed values of

0.9, 0.999 and 10−8 for β1, β2, and ε, respectively [40]. Next, the amount of data

that will be used to compute the loss gradient will be explored.

Mini-batch Gradient Descent

Classically, the gradient of the loss function was computed using all data avail-

able. Furthermore, this method (called batch gradient descent) guarantees mono-

tonic improvements in performance after each update step [39]. However, BGD

suffers from space complexity and is infeasible in big data applications. Thus, mini-

batch gradient descent was used for the work in this thesis. Mini-batch gradient de-

scent fits between stochastic gradient descent (SGD) and BGD, where small batches

of data sampled from the original data set are used to perform stochastic updates

at each step [41]. Mini-batch gradient descent offers three benefits over the previous

methods: i) less computationally demanding compared to batch gradient descent;

ii) more accurate loss function gradient for parameter updates compared to SGD;
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iii) requires less steps compared to SGD.

Data Segregation

The data set was split into three sections for machine learning: training, valida-

tion, and testing. The partition and description of each section is shown in Table

A.6. The training data set was used to identify the machine learning model(s).

Then, the model was validated on unseen data via the validation data set (some-

times called development data). The error of the model on the validation data set,

evalidation, was then evaluated and compared to the training data error, etrain. If the

difference is large, the model was rebuilt using different data pre-processing tech-

niques and features. This step was repeated until etrain ≈ evalidation to ensure that

the model did not overfit to the training data. Finally, the model was tested on the

testing data to explore the performance of the model in live production. Testing

data was always the last 5% of the data set.

Table 2.5: Description of each data partition.

% of Data Description

Training 90% Identify the ML model

Validation 5% Tune ML model performance on unseen data

Testing 5% Test ML model performance on proxy live data

Regularization

Objectively, supervised learning models attempt to generalize the learnings ob-

tained from the training data set to predict for situations not seen before. For

example, suppose there exists a data set that contains the height and weight of a

species of dogs. Objectively, the model must predict the weight of the dog given its

height. After the model is trained, it should have sufficient capability to predict for

the weight of a dog even if the exact height provided was not in the training data

set. Often times, the training data set is small and does not represent the whole

population of the data set. This ultimately leads to the model overfitting the train-

ing data set, resulting in poor generalization characteristics. In machine learning
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literature, the model error is often called the bias. Similarily, the difference in the

modelling error between the training and validation data set is called the variance

[32]. Models exhibiting high variance are typically overfit to the training data, and

does not predict well in production. Regularization aims to significantly reduce

variance at only a slight cost to bias. Generally speaking, regularization reduces

the likelihood of learning a complex model by penalizing large weights through the

objective function. One common method is called the L1 regularization (sometimes

called Lasso regularization) where a linear penalty is applied to weights and is given

by:

J(W ) =
1

n

[
n∑
i=1

(ŷi − yi)2 + λ

p∑
j=1

|Wj|
]

(2.60)

where λ is a hyper parameter to determine the aggressiveness of the penalty and

p denotes the number of parameters inside the model. The L2 regularization is

another popular regularization technique and applies a quadratic instead:

J(W ) =
1

n

[
n∑
i=1

(ŷi − yi)2 + λ

p∑
j=1

W 2
j

]
(2.61)

Figure 2.8 shows the optimal solution space of the L1 and L2 regularizations for

a two parameter model. Overall, L2 regularization is typically the preferred choice

because of its unique, stable solution and invariance under rotation [42]. Another key

difference is that L1 regularizations cannot be used for gradient based approaches

because it is not continuously differentiable [43].

Figure 2.8: Solution space of the lasso (left) and ridge regularization (right). Original
image from [44].
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Two other popular, but specialized regularization techniques catered towards

neural networks are drop-out and batch normalization [45], [46]. Figure 2.9 shows

a neural network with and without drop-out. On a high level, drop out randomly

disable neurons during training to prevent major ”co-adaptation” between adjacent

neurons. Intuitively, the drop-out process introduces (significant) pseudo noise into

the training step, forcing neurons to learn a more probabilistic mapping. Ultimately,

the drop-out method was able to achieve state-of-the-art performance when tested

on various data sets in computer vision, natural language processing, classification,

and computational biology. A more detailed explanation of drop-out can be found

in [45].

Figure 2.9: A neural network with (right) and without (left) drop-out [45].

Batch normalization is another recently popularized regularization method in

deep learning. Neural networks are trained through backpropagation. In this

method, the accuracy of the neurons in the later layers are paramount for proper

parameter updates in the earlier layers. If not, the backpropagated errors are signifi-

cant incorrect. Specifically, the distribution of different layer’s inputs change during

training due to the weight changes of the subsequent layers. This characteristic,

called internal covariate shift, contains a significantly negative effect on the training

time of neural networks. Batch normalization aims to overcome internal covariate

shift by normalizing layer inputs. In doing so, deep neural networks are less sensi-

tive to initializations and much larger learning rates can be used. Additionally, the

method was shown to contain regularization effects and often times eliminate the

need for drop-out. In experiments, the authors found that neural networks using

batch normalization can achieve previous accuracies with 14 times fewer training
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steps. For more information on batch normalization, see [46].

2.7 Deep Deterministic Policy Gradient

Deep deterministic policy gradient was introduced as one of the first RL architec-

tures to handle both continuous states and continuous actions [47]. Additionally, it

was shown to also work in massively large state and action space systems (one such

system was x ∈ R102 and u ∈ R9). DDPG contains four neural networks and employs

an actor-critic framework. The actor is the deterministic policy gradient (DPG) al-

gorithm and maps states to actions. Similarily, the critic is the deep Q-learning

network (DQN) algorithm and approximates the action-values of the state-action

pairs. Intuitively, combining DPG and DQN into one unifying algorithm overcomes

several shortcomings exhibited by each algorithm individual. For example, policy

gradients were traditionally trained using MC methods and cannot update mid-

episode; however, DDPG trains the DPG using the gradient of the DQN, allowing

for inter-episode updates. Furthermore, DQN cannot output continuous actions,

but DDPG can by leveraging DPG to select actions. Another advantage provided

by DDPG is the mitigation of large variances in the DPG through the use of DQN.

Previously, DPG experiences high variance because similar action sequences may

return different outcomes in stochastic environments; however, evaluating the ac-

tion using the DQN (a deterministic function) will result in an unbiased estimate of

performance [47].

2.7.1 Actor - Deterministic Policy Gradient

The DDPG leverages the DPG algorithm to deterministically map continuous

states to continuous control actions. Classically, policy gradient algorithms repre-

sent the policy as a probability distribution πθ(u|x) = P[u|x; θ] which stochastically

maps states to actions [48]. In DPG, deterministic policies are considered instead

and are given by u = µθ(x). Comparatively, deterministic policies are more ad-
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vantageous because only Qµ(x, µθ(x)) is required during updates steps compared to∑
u

π(u|x)Qµ(x, u). Here, π(u|x) denotes the probabilities of picking different actions

u in x.

Like all experience driven RL algorithms, exploration is required in DPG; thus,

requiring some stochastic behaviour policy (ironically making it non-deterministic).

To this end, DPG can be trained using an off-policy actor-critic method where a

deterministic policy is identified while following a separate exploratory policy. Such

a concept is analogous to Q-learning, where a deterministic greedy policy is identified

while following a noisy behaviour policy (typically ε-greedy) during training. For a

detailed explanation of DPG, please refer to [48].

2.7.2 Critic - Deep Q-learning Network

In DDPG, DQN is used to reduce variance and provide off-policy training to

the DPG. DQN is a deep Q-learning approach to map from states to action-value

functions [49], [50]. Historical methods to train deep Q-learning were unstable and

data inefficient. Authors of DQN introduced two important concepts in the DQN

algorithm—the experience replay and target networks—to significantly improve con-

vergence rate. The experience replay is a dictionary of tuples (x, u, r, x′). During

training, random mini-batch of experience tuples are sampled to enhance data effi-

ciency (same experiences used many times) and to provide the agent with tempo-

rally de-correlated training examples. The target network solves the ”moving target

problem”. In all deep Q-learning approaches, supervised learning models are used

to predict for the action-values. Initially, the model is trained using:

yi(x, u, r, x
′) = r + γmax

u
Qθ(x

′, u′) (2.62)

J(θ) = E(x,u,r,x′)∼U(R)

[
(yi −Qθ(x, u))2

]
(2.63)

where Qθ denotes the predicted Q value given model parameters θ. Additionally,

(x, u, r, x′) ∼ U(R) represents sampling experience tuples from the experience replay
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following an uniform distribution and yi denotes the ”target” Q value (i.e., the

label to the model). From Equation , yi is also partly calculated from the Q value

prediction model. As the model updates, yi will consistently change, creating an ill-

posed minimization problem ultimately resulting in poor learning. In DQN, a target

network is introduced to prevent this problem. Architecturally, the target network

is an exact copy of the original model; however, the model weights are a time-

delayed version of the ”online” model. That is, the weights of the target network

are kept constant for a period of time and are used to compute yi. By doing this,

the target (although inaccurate during initial episodes) remains stationary during

the optimization step. After a period of time, the target network copies the weights

from the online model and the procedure is repeated until accurate Q-values can be

predicted. Typically, this occurs when the target and online network are sufficiently

similar.

A more detailed explanation of experience replay is provided below. For complete

details, see [51], [52]. For more details the target network or DQN, see [49], [50].

2.7.3 Exploration in DDPG

Traditionally, exploration in continuous action spaces are difficult because clas-

sical approaches, such as ε-greedy, work only in a discrete action space. DDPG

explores through corrupting the action with exploratory noise [47]. Throughout

RL literature, many researchers conduct exploration using white noise. The noise

corrupted action is given by:

u′(xt) = u(xt|wt) +N (2.64)

where u′(xt) is the action corrupted by some noise, N .
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Exploration using White Noise

In Equation 2.64, N can be white noise drawn from N (0, σ2); however, white

noise is de-correlated and is ineffective for ”deep” exploration (i.e., traversing far

from the current state) due to the zero averaging effect [53]. Intuitively, white noise

simply introduces oscillation into the process and does not create displacement in

any particular direction. Therefore, it is more effective to corrupt the action using

a temporally correlated process such as the Uhlenbeck-Ornstein (UO) process.

Ornstein-Uhlenbeck Exploratory Noise

The UO process is given as [54]:

dxt = θxtdt+ σdWt, (2.65)

where θ > 0, σ > 0, and Wt denotes the Wiener process. Mathematically, the

Wiener process is a special case of a continuous time stochastic process. Detailed

information regarding the Wiener process and its properties can be found in [55].

The UO process is ideal for exploratory noise in RL because of its time correlated

feature.

Intuitively, actions ut from the RL agent can be understood as exerting an ex-

ternal force upon physical bodies and is given by [56]:

u = mẍ (2.66)

where m and ẍ denotes mass and acceleration, respectively. To obtain displacement

(i.e., movement in the state space), the force must be integrated twice:

x =
1

m

∫ ∫
u (2.67)

Interestingly, integration operators are low-pass filters and will remove high fre-

quency noise contained in u that are generated by the Wiener process [57]. Con-

49



2.7. DEEP DETERMINISTIC POLICY GRADIENT

sequently, this results in smooth displacements in temporally correlated processes,

such as the UO process. Additionally, the displacement will typically stay in the

same direction for long durations, allowing for deep exploration the state space. For

example, Figure 2.10 shows the trajectory of a randomly generated OU process,

and its corresponding effect on the displacement of the agent inside the state space.

It can be seen that the displacement is smooth and is heavily biased towards one

direction, ultimately promoting deep exploration.

Figure 2.10: Change in displacement caused by a randomly generated OU process.

2.7.4 Stabilization of Training

Architecturally, DDPG contains two interacting neural networks that are trained

upon each other. To successfully train such a complicated system, careful parameter

initialization and proper weight updates are paramount. Although some initializa-

tion techniques were introduces in the above sections, the authors of [47] initiated

the last layer of the networks with weights uniformly drawn from [−3×10−3, 3×10−3]

for low dimensional problems. Such an initialization ensures initial policy and value

estimates were near zero [47]. The other layers were initialized using uniform distri-

butions [− 1√
nj
, 1√

nj
], where nj was the size of the previous layer. Regularization-wise,

batch normalization was used [46]. For exploration, the UO noise given in Equation

2.65 with θ and σ as 0.15 and 0.2 was used.
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Experience Replay

DDPG also uses experience replay (sometimes called replay buffer) to enhance

data efficiency and prevent catastrophic interference during training. Experience re-

play was first introduced in [51] to provide temporally de-correlated training samples

to agents in time-series settings. In DDPG, tuples of:

(xt, ut, rt+1, xt+1)

are memorized and stored in the experience replay. During updates, random mini-

batches of previous experiences are sampled from the replay buffer to update the

agent. Consequently, the agent obtains the ability to learn the same experiences

many times, a concept similar to cycling through many epochs in deep learning.

Correlating to humans, experience replay is similar to hippocampal replay, where

memories are sub-consciously replayed over and over. Indeed, that is one theory ex-

plaining the efficiency of human learning [58]. However, human memories are rarely

replayed randomly. Instead, only the most important or unexpected memories are

replayed. Prioritized experience replay mimics this concept and biases sampling to

experiences with large TD errors [52]. Intuitively, such experiences are shocking

since the outcome was significantly different than what was expected. Using pri-

oritized experience replay, the agent learned faster in 41 out of 49 ATARI games

compared to the original experience replay.

2.7.5 Input and State Constraints

As with all RL methods, input constraints can be handled quite trivially; how-

ever, state constraints are much more difficult. Typically, soft state constraints are

implemented in RL by introducing large negative rewards when the agent arrives

at an undesired states. Indeed, humans learn state constraints in such a way where

guardians provide negative consequences when we venture into troubling situations.

In literature, constrained Markov decision processes (CMDPs) and safe RL are two
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fields that explore how RL can handle constraints explicitly; however, most mod-

ern methods either require explicit system models or are difficult to implement in

industry.

2.7.6 Training Algorithm

The DDPG algorithm is trained as follows [47]:

1. Initialize replay buffer and the actor and critic network weights corresponding

to the previous subsection.

2. Observe some states from the system

3. Map the states to some exploratory actions via the online actor network:

µ′t = µ(xt|θµ) +Nt

4. Implement µt to the system, observing transition to xt+1 and obtaining rt+1

5. Store tuple (xt, µt, rt+1, xt+1) into the replay buffer

6. Sample a mini-batch of N experiences (xt, µt, rt+1, xt+1) from the replay buffer

7. Using the target critic network, compute yt = rt + γQ′(xt+1, µ
′(xt+1|θµ′)|θQ′)

for each experience

8. Update online critic parameters by minimizing: J = 1
N

∑
(yi −Q(xt, ut|θµ))2

9. Update online actor parameters by:

∇θµJ ≈
1

N

∑
∇uQ(x, u|θQ)|x=xt,u=ut∇θµµ(x|θµ)|xt

10. Update both actor and critic target networks:

θQ
′ ← τθQ + (1− τ)θQ

′
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θµ
′ ← τθµ + (1− τ)θµ

′

Most steps above are intuitive to understand; however, steps 6 and 9 might be

slightly confusing. In step 6, mini-batches of experiences are used for training to

enhance data efficiency and to provide temporally de-correlated training data. For

time-series problems, such as continuous control, a direct adaptive control method

like RL will quickly adapt to the current operating condition and exhibit catastrophic

interference on other operating conditions. By training on an uniformly sampled

mini-batch of historical experiences, catastrophic interference can be largely avoided.

Step 9 shows the slow update of the actor and critic target networks. This follows

the same intuition as DQN, where the target network is frozen for periods of time

to prevent the moving target problem. Except in DDPG, the target networks are

updated in small steps after each episode rather than being kept frozen, and then

undergoing a complete update.

2.8 Model Predictive Control

Compared to all topics in process control, the concepts of model predictive con-

trol (MPC) is perhaps the closest resemblance to modern RL. MPC is a model-based

control strategy (known as a planning method in RL literature) that optimizes the

input trajectory of a system by using the functional equation (a function where the

unknowns are also functions) generated from the system’s state information together

with a value function. The performance of MPCs heavily relies on the accuracy of

system identification as the input trajectory is solved by extremizing an objective

function using mathematical programming (MP) as a function of the process model

[10]. The objective function is typically given as:

J =
N∑
i=1

xTi Qxi +
N∑
i=1

uTi Rui (2.68)

53



2.8. MODEL PREDICTIVE CONTROL

where N , Q, and R are the prediction horizon and tuning matrices, respectively.

Superscript T denotes the transpose operation. Q and R are diagonal matrices and

are used to emphasize importance on different state and inputs, respectively. Here,

x and u are given as:

xsp − xi (2.69)

uss − ui (2.70)

where subscripts sp and ss denote the set-point and steady state, respectively. Often

times, MPCs are applied onto integrating processes; thus, using ∆u to handle such

scenarios.

Implementation-wise, MPC uses a receding horizon approach where the con-

troller predicts and optimizes for a set amount of steps into the future. However,

only the first control action is implemented. During the next sampling time, the tra-

jectory is re-optimized and the cycle repeats. The length of the input trajectory and

the number of steps the controller predicts into the future are known as the control

and prediction horizon, respectively. During design, it is paramount to ensure that

both the prediction and control horizons are adequate in length to ensure optimal

dynamic performance. Intuitively, the prediction and control horizon can be related

to the everyday task of driving a car. It would be very dangerous if we only consider

events one second into the future because it would be difficult to react to curves and

other road side disturbances; therefore, the prediction and control horizons must be

sufficiently long to ensure safe and optimal driving practices. Typically, the control

horizon is chosen to be shorter than the prediction horizon due to computational

cost and the unimportance of unnecessarily long input trajectories [59]. One flaw

with the receding horizon approach is its extremely expensive online computational

cost, especially in large non-linear systems.

Explicit MPC was developed to mitigate this computational burden by leverag-

ing parametric programming to pre-compute solutions to the optimization problem

offline [60]. During online evaluation, the controller simply looks up the optimal in-
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put from a dictionary of pre-computed solutions, making online evaluation extremely

fast. This idea is exactly equivalent to RL, where the agent is trained offline (i.e.,

solves the optimal policies offline), allowing extremely fast online evaluations.

Ultimately, MPCs provide many advantages compared to classical control strate-

gies. For example, MPC considers long term planning and identifies the optimal

input trajectory rather than the best immediate action. Furthermore, MPCs have

predictive capabilities and can anticipate future events, allowing the controller to

plan future control actions accordingly. A third advantage is that the MP methods

used in MPC have been widely demonstrated to handle both input and state con-

straints relatively successfully. In modern times, MPCs are often implemented in

the supervisory control layer.

The process control hierarchy is shown in Figure 2.11. Starting from the bottom,

the regulatory controllers are typically used to ensure regulation of disturbances and

set-point tracking of the process and directly actuate the process instrumentation.

A common regulatory controller is the Proportional-Integral-Derivative controller

(PID). The layers above are known as the supervisory controllers. MPC is a com-

mon supervisory controller and is classically implemented for regulation or set-point

tracking problems exclusively. Economic objectives of the process were managed

by the real time optimization (RTO) layer through steady state optimization [61].

More recently, control practitioners began to unify the ideas of RTO and MPC into

a centralized algorithm called economic model predictive control (EMPC). Here, the

economic objective of the RTO is placed into the objective function of the MPC,

allowing for the input trajectory to optimize the economic objective instead [62],

[63].
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Figure 2.11: A typical industrial control architecture.

Comparatively, RL can be described as a general control algorithm and can be

used to replace any layer in Figure 2.11. For example, a MPC or PID based RL

would have its reward function to be identical as the negative of Equation 2.68. In

the EMPC case, the reward function of RL would instead be the economic objective.

In Chapter 4, the performance of RL based supervisory controls will be extensively

compared to traditional methods on simple and complicated processes. Additionally,

the pros and cons of each method will be summarized.
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Chapter 3

Machine Learning for Prediction

Applications

Cheap data storage and escalation of computational power allowed the world to

enter a new age: the age of big data. With vast amounts of data, previously in-

viable and data hungry machine learning algorithms are now implementable. The

technology sector was the first group to be able to exploit this arcane technology

to create tremendous value in applications ranging from targeted advertisements to

self driving cars. The value was so great that the current top four companies in

America by market capitalization are all technology companies (Microsoft, Apple,

Amazon, and Facebook) as of 2019. As the technology sector’s successes grow,

other industries begin to catch a glimpse of the potential value creation in their own

respective industries and initiate their own digital revolution. The ripples of success

from the technology industry ultimately resulted in waves of capital investments

into machine learning (ML) and artificial intelligence (AI) from all industries.

ML solutions promise to be cheaper, more accurate, and have online learning

abilities compared to traditional methods. Additionally, the solutions are promised

to be easier to implement and will take less time to design; feed it data and it

will learn, as they claim. With this mentality, machine learning engineers and

data scientists from technology companies attempted to conquer other industries,
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one industry being chemical process industry. Unfortunately, their crusade fell short

and their successes were few due to their lack of engineering knowledge and inability

to identify large value gains. Typically, projects in technology companies deal with

very unambiguous information such as identifying location of objects or predicting

the enjoyments of an individual based on previous articles they have read. However,

the process industry typically generates time-series data and is often very ambiguous

with data characteristics unique to the industry. Some characteristics include time

delayed data, multi-modal data, unreliable data, highly noisy data, state transition

dynamics data, and any combination of the prior. Due to the increased complexity,

data pre-processing for ML projects in the process control industry is mission critical

and much more vigorous for successful applications.

Table 3.1 shows some general machine learning applications for the process con-

trol industry. Currently, ML applications in the process industry can be broken

down into prediction, monitoring, and control. The field of prediction deals with

mapping from certain inputs to desired outputs. An example would be building a

soft sensor to predict for a state, xm, that is expensive to measure. By identifying

states highly correlated to xm, a multivariate soft sensor can be built to inexpen-

sively predict the state in the future. In ML monitoring, the algorithms are tasked

to monitor the process for anomalous activities. Here, an example would be ap-

plying a classification method to predict for failures in process equipment. Lastly,

ML control is concerned with the topics of adaptive, multivariate optimal control.

Reinforcement learning is the typical ML algorithm for control.

Table 3.1: General applications for machine learning in the process control industry.

Prediction Monitoring Control

Soft sensing Anomaly detection Supervisory control

Forecasting Anomaly prediction Regulatory control

Operator education Alarm prioritization Operator education

Process modelling Alarm reduction Multivariate control

Figure 3.1 shows a potential machine learning architecture that is generic enough

for implementation in all industrial plants. First, the industrial process (e.g. refinery,
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pipeline, reactor, etc.) sends raw sensor data into the cloud, where it is cleansed

through data pre-processing methods. Then, the filtered data is sent into different

machine learning algorithms depending on the objective of the application and will

output the desired values. After a set time frame, all ML models will then be

re-updated to learn the newest experiences.

Figure 3.1: A potential machine learning architecture in an industrial environment

The objective of this chapter is to convey ideas for implementing machine learn-

ing solutions catered towards the process control industry. In this chapter, the

first half consists of common data pre-processing techniques to handle common pro-

cess control concerns and is visually described by the Filter Data box. The second

half contains machine learning methods (in order of difficulty) to handle different

process control prediction problems (Prediction box in the above figure). To con-

clude this chapter, the prediction algorithms will be closed off with an adaptive

modelling technique inspired by reinforcement learning and adaptive resonance the-

ory. For validation purposes, the machine learning methods were implemented onto

an industrial pipeline for prediction, monitoring, and optimization1, 2.

Contributions made in this chapter include:

1. Effective data pre-processing techniques for the process industry

1This project was supported in part by Mitacs through the Mitacs Accelerate program.
2This chapter only contains the theory and application highlights. The detailed industrial

project report can be found in Appendix A.

59



3.1. DATA PRE-PROCESSING

2. Catering machine learning prediction techniques to the process industry

3. An outlier-free, data efficient, adaptive modelling method for multi-modal op-

erations

3.1 Data Pre-processing

Data pre-processing typically includes many steps starting with filtering by sub-

ject matter expertise, and then transitioning to common statistical methods. For

this section, only the filtering methods unique to process control will be discussed.

Please refer to Appendix A for details regarding the other steps. Process control

is typically concerned with multivariate time-series data plagued with noisy and/or

unreliable sensor readings. Time delays are critical to successful prediction appli-

cations in process control. Furthermore, some processes may also have a variety

of different operating regimes depending on downstream demand or ambient con-

ditions. In order to have successful prediction algorithms for process control, all of

the above must be considered.

3.1.1 Time Delay Data

Time delay is the time between the performance of a control action and the

change in output. Time delays occur due to the physics of the natural world. For

example, turning on a pump at the beginning of a pipeline does not result in higher

flow rates immediately. The process takes time to adjust and transition to the new

steady state; therefore, raw data must be first shifted to account for the time delay.

Without doing so, models would be using current information to predict the past.

Imagine building a model to predict for the outlet flow rate of a pipeline where the

regressors are pump statuses 300 km upstream of the outlet. If a change in pump

status occurred at t = 0, the pressure will take a few minutes to propagate down

the pipeline. Thus, the model taking pump statuses at t = 0 must have its flow rate

labels shifted from t = τ , where τ is the expected time delay. An example of the
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time delay shifting procedure for an industrial pipeline is shown in Table A.4 located

in Appendix A, where data was shifted for different locations along the pipeline to

enhance predictive capabilities.

Initial engineering expertise and/or data analysis must be conducted to identify

the time delay for specific processes. For example, it is well known that pressure

propagates down incompressible fluids at approximately the speed of sound (1480

km/h) [64]. Using this information, adjusting for the time delays along the pipeline

was made trivial.

3.1.2 Multi-modal Data

In the process industry, it is common to have multiple modes of operation due

to changing ambient conditions (e.g. summer, winter), different market demands,

and a variety of other factors. Each operating condition also consists of unique

equipment operation and process characteristics (flow rates, temperatures, etc.);

therefore, a common model to predict for many different operating conditions lead

to increased model errors. Here, unsupervised learning should be used to avoid this

scenario for systems with many modes. More specifically, clustering methods should

be applied to segregate data from different operating modes, and separate models

should be built using data from each operating mode to enhance accuracy. For big

data applications, k -means or density based scanning (DBSCAN) should be used

due to their scalability and non-iterative nature [65]. Of the two methods, k -means

is much faster while DBSCAN is more robust to outliers.

An example of the breakdown of a multi-modal system can be found in Figure

A.11 in Appendix A. By segregating the system into multiple modes, more accurate

weights can be identified for each mode compared to general weights for all modes. In

fact, most modes would not even use the same equipment. Such a concept is similar

to using a linear parameter-varying model to approximate a non-linear system.
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3.1.3 Unreliable and Noisy Data

Thousands of measured data are recorded per minute on modern distributed

control systems. However, many process variables such as viscosity, or parts per

million (ppm) are difficult to measure with modern equipment on a live process.

This results in inaccurate values being sent to the ML models, ultimately reducing

accuracy. To overcome highly unreliable data, a general strategy is to identify how

the operator(s) are using the data and to engineer the feature(s) to be used in the

same way for the ML model. For example, the densitometers installed along the

industrial pipeline shown in Appendix A all show different readings for the same

crude. At times, the reading could be off by ±20%. However, the operators only

use the density reading to determine the grade of crude inside the batching pipeline.

The crude is light if the API is above a threshold, heavy otherwise. The physical

number had no meaning for them. To improve the ML model accuracy, the density

reading was feature engineered to be a binary variable reading 1 if the API was

above the threshold, 0 otherwise. By doing so, the variable in the ML model was

used in the same way as the operators and the accuracy increased.

Other data measurements may be accurate, but highly noisy. Noisy measure-

ments may lead to significant predictive errors and should be minimized for proper

predictions. One such method to reduce noise significantly is to apply an exponen-

tially weighted moving average (EWMA) filter given by:

vt = βvt−1 + (1− β)θt, v0 = 0 (3.1)

vt ←
vt

1− βt ,∀v ∈ V (3.2)

where vt is the exponentially weighted value at time t. β is the exponentially weigh-

ing factor. Larger β results in smoother results. θt is the original value at time t.

V is a vector representing the exponentially weighted values before bias correction.

EWMA is a very effective way to remove noise in chemical processes because these

processes typically contain slow dynamics. By exponentially smoothing the data,
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the fast peaks are removed while preserving the slow dynamics. An example of the

EWMA algorithm applied to the measurement of drag reducing agent (DRA) ppm

values is shown in Figure A.7 in Appendix A. DRA ppm measurements are known to

be highly noisy; however, the noise can be almost completely removed by applying

EWMA.

3.1.4 State Transition Dynamics

Another unique topic of process control is the dynamics of the system. System

dynamics refer to the transitional period of going from one steady state to another

after a control input is provided. Typically, dynamical models are used for advanced

process controls where optimizing for the dynamics of the system is critical for

optimal performance. In order to build machine learning models to describe the

dynamics of systems, a time-series implementation must be pursued. Typical ML

models map states and control actions at time t to the desired output at time tss,

where tss is the time required for the system to transition to the new steady state.

By doing so, the dynamics of the system are completely omitted. In order to build

a dynamical ML model, the raw data needs to skip the time delay pre-processing

step and be augmented by time. Imagine a simple single-input single-output (SISO)

system:

y = w1x+ b (3.3)

In time-series implementation, the model would instead be:

yt+1 = w1xt + w2xt−1 + w3xt−2 + ...+ yt + yt−1 + ...+ b (3.4)

where the input vector would be augmented as X = [xt|xt−1|xt−2|...]. Here, Equation

3.4 becomes the 1-step ahead predictor of the system and dynamics can be predicted

for. This data augmentation method is identical to all ML models if a time-series

implementation is desired. In Appendix A, Figure A.20 shows an example of a time-

series prediction model. Because such models only predict one step in advance, error
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is typically very low. The predicted value can also be fed in recursively to generate

a infinite step ahead prediction that can be used for forecasting long term trends.

3.2 Machine Learning Methods

Many ML methods exist for prediction, each having its advantages and disadvan-

tages. In this section, the most common ML methods will be shown along with their

applications in process control. Unique hyper parameters for different ML methods

will also be shown; however, common hyper parameters such as α, training epoch,

and mini-batch size are common throughout and will be omitted. Furthermore,

common model performance metrics will be introduced.

Performance Assessment

The model performance were assessed using the following three ways:

1. Root mean squared error (RMSE) [32]:

J =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (3.5)

2. Mean absolute error (MAE) [32]:

J =
1

n

n∑
i=1

|ŷi − yi| (3.6)

3. Coefficient of determination (R2) [32]:

R2 = 1−

n∑
i=1

(ŷi − yi)2

n∑
i=1

(yi − ȳi)2

(3.7)

Table 3.2 shows the advantages and disadvantages of each assessment metric.
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Table 3.2: Pros and cons of different model performance assessment methods.

Method Advantages Disadvantages

RMSE Useful for identifying large errors Smaller errors are muted

MAE Easy to interpret as all errors have

the same weight

Inferior to RMSE when large er-

rors are undesirable

R2 Easy to understand, −∞ ≤ R2 ≤ 1 Valid only for linear relationships

3.2.1 Linear Models

Linear models have two variants, linear regression and logistic regression. The

former is used for prediction tasks associated with continuous variables while the

latter is used for classification tasks. For example, linear regression is a great al-

gorithm for soft sensor applications whereas logistic regression is more suitable for

monitoring for anomalous activities. In this chapter, only the prediction variant will

be shown. The model structure of linear regression is given as:

ŷ = W T
1 x+W T

2 u+ b (3.8)

where x ∈ Rn is a vector of states, u ∈ Rm is a vector of inputs and superscript T

denotes the transpose operation. ŷ is the predicted variable and can be anything;

in soft sensors, ŷ would be the soft sensed variable.

The most common model structure for ML in the process control industry are

linear models despite all processes being non-linear. This is because the narrow

region most processes operate around can typically be assumed to be linear [57].

Additionally, linear models are simple, interpretable, and require low amounts of

data. However, the draw backs of linear models are their poor performance in the

big data era where large amounts of data is available (see Figure 3.2). This trait is

intensified given high dimensional data sets where identifying interaction effects are

critical for accurate predictions.

Linear models were applied to the industrial pipeline as a benchmark algorithm.

The performance of the linear models can be seen in Tables A.9, A.10 and Figures

A.13, and A.14.
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Figure 3.2: Performance as a function of data. Original image from [39].

3.2.2 Polynomial Models

Polynomial models are a general class of non-linear models that explores the

main and interaction effects of its regressors. The general model structure of a two

regressor polynomial model is given by:

ŷ = w1x1 + w2x2 + w3x
2
1 + w4x

2
2 + w5x1x2 + e (3.9)

where w are the weights, x are the regressors, and e is the modelling error. In

this model, linear, quadratic, and interaction effects are all explored simultaneously.

However, the amount of parameterization required for a high dimensional prediction

problem using this model structure might be difficult to interpret, thus, a truncated

version of the model could be used instead for high dimensional problems. One

special case of a truncated polynomial model is the exponential model given by:

ŷ = w1x
w2
1 + b (3.10)

where the power of the regressor is also a weight to be identified. This is advanta-

geous in situations where the non-linearity of the system is unknown. A quadratic

and square root version of the exponential model were applied to the pipeline and

the performances are shown in Table A.12 and Figure A.18. Compared to the linear
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models, the errors were reduced by up to 10%.

3.2.3 Neural Network and Deep Learning Approaches

Neural network and deep learning approaches shine for predictive tasks where

predictive power is the primary driver, while interpretability is not an issue, and

acceptable3 hardware exists. Deep learning is a special case of neural networks where

many hidden layers exist. The general consensus of the AI and ML community is that

any neural network with more than three hidden layer is considered deep learning;

however, the idea is not concrete and is open to personal preference. The neural

network model structure is highly non-linear and attempts to explore interaction

effects of all regressors. For a more detailed explanation on neural networks, the

notation of its the variables, and its theory, please refer back to Chapter 1. Only

a brief summary of the theory will be provided here. Due to the model complexity

and high parameterization of neural networks, its predictive powers are unparalleled

compared to other methods and can fit any function. In [66], the authors showed

that:

There exists a two-layered neural network with ReLU activation func-

tions and 2n+d weights that can represent any function on a sample

of size n in d dimensions.

Three distinct types of neural networks exist: i) Multilayer perceptrons (MLPs);

ii) Recurrent neural networks (RNNs); iii) Convolutional neural networks (CNNs).

A visual representation of a MLP is shown in Figure 3.3. MLPs (also known as

feedforward neural networks) are the simplest and most common of the three. In

MLPs, the outputs of each neuron, a
[r]
j , is computed as:

a
[r]
j = f(w1x1 + w2x2 + ...+ wmxm + b) (3.11)

3Neural network models are typically executed on servers and the outputs are sent to the
actuators. For fast processes, deep learning models should be pushed to the edge device.
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where the function, f , is non-linear and known as the activation function. The

purpose of f is to introduce non-linearity to the model; a critical addition because

no process in the real world is linear. In an intuitive sense, MLPs can be visualized

as a brute force approach to identify the interaction effects of every regressor with

each other. Due to the sheer number of parameterization, MLPs are very effective in

predicting in-sample data points. However, the models suffer tremendously during

events where the testing data is significant different. Large MLPs also tend to

overfit; thus, it is critical to increase regularization as the MLP increases in size.

Figure 3.3: Structure of a general neural network.

MLPs were also applied to the industrial pipeline to model for the outlet flow

rate. The input variables were measurements of variables along the pipeline such as

temperatures and pressure, and the output was the outlet flow rate. Three different

MLPs with varying sizes were applied. Their respective performances can be seen in

Table A.14 and Figure A.18. It can be seen that the performance on the training and

validation data were both excellent, though the error on the testing data increased

significantly. This was caused by the testing data being significantly different from

the training data. Data for model training was collected during the winter months,

but was tested on summer months where the temperatures increased by up to 10°

C. The increase in temperature resulted in reduced viscosity of the shipped crude

and significantly hindered the predictive power of the MLPs. Ultimately, the MLPs’
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performance on the test data was almost identical to the much simpler polynomial

models and was not used.

An especially useful type of neural networks for the process industry are RNNs

(Figure 3.4) due to their time-series architecture. Naturally, RNNs are set up to be

infinite step ahead predictors and identifies temporal correlations within the data.

Traditional applications of RNNs can be found in speech recognition, translation,

and language modelling. In the process control industry where time-series data is

abundant, RNN is the natural choice for typical soft sensing applications. On a

high level, RNNs accept inputs xt, and outputs yt. At the same time, yt is sent

as an input, along with xt+1, back into the RNN to compute for yt+1. A similar

computation is conducted until the end of the sequence of inputs. By recursively re-

inputting outputs as input data, RNNs are able to predict for an output trajectory

given an input trajectory.

Figure 3.4: Architecture of a RNN. Original image from [32].

CNNs are the last type of neural networks and are typically used for computer

vision applications. The architecture of a typical CNN can be found in Figure

3.5. Unlike its predecessors, CNNs make the explicit assumption that inputs to

the network will be images. This enables certain properties to be encoded into the

architecture, making the forward pass more efficient while reducing the number of

parameters. More specifically, CNNs assume all inputs are arranged in three dimen-

sions: height, width, and depth. The height and width are simply the resolution of

an image while the depth is the amount of color channels. For example, a coloured
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image contains 3 channels (red, green, blue) while a grayscale image contains only

one. From this assumption, the weights of CNNs only need to be applied to spe-

cific locations, without the need of fully connected layers. Furthermore, the input

data will then be downsampled using pooling layers to extract the most important

features while discarding the rest.

Figure 3.5: Architecture of a CNN. Original image from [32].

In the process industry, CNNs can be leveraged as a soft sensor to measure

variables using cameras. An example would be detecting the level of crude inside a

primary separation vessel using the sight glasses, since traditional methods are not

as effective.

Both CNNs and RNNs were not applied to the industrial project directly, but

were provided to the reader as advanced methods for future projects that command

exceptionally high predictive power, or computer vision soft sensing capabilities.

More information regarding RNNs and CNNs can be found in [32].

3.2.4 Linear Parameter-varying Models

Linear parameter-varying models (LPV) were last type of ML models that were

applied to the industrial pipeline. The motivation behind LPV models is twofold:

i) Achieves a non-linear representation of the data using a combination of linear

models; ii) Models different operating regimes of a process using different models.

The LPV model structure is identical to linear models with the exception that there

are multiple linear models. The number of linear models is a function of the non-

linearity of the system, the number of operating regimes, and the amount of available
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data.

Figure 3.6 shows an example of fitting multiple linear models to approximate a

non-linear system. Two separate approaches were used: 3-model approach and 6-

model approach. Performance wise, the 6-model approach is far superior. However,

the 6-model approach uses twice as many models resulting in a significantly higher

maintenance and ownership cost. Additionally, the individual model performance

for the 6-model approach may experience high variance if low amounts of data

are present at certain points. If performance is of utmost importance and data is

abundant, a large number of linear models could be used. Otherwise, a LPV model

with a lower amount of models is adequate.

Figure 3.6: Fitting a non-linear function using multiple linear models.

Clustering techniques can be used to identify distinct models for large MIMO

systems containing multiple operating regimes and/or where non-linearity is not

easily visualized. Table A.15 and Figure A.19 shows the application of a 2-model

LPV model onto the industrial pipeline for the two separate operating regimes. The

original data set was first segregated into two clusters using DBSCAN. Then, sepa-

rate linear models were built for each cluster. During model testing, the Euclidean

distance of new samples to the centroids of each cluster is computed to determine
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which linear model should be used for prediction. In terms of performance, the

LPV model was able to achieve very similar performance metrics compared to the

other non-linear models. Additionally, the LPV models are more representative of

the process in terms of control because each model (for each operating regime) has

unique weights and constraints. For control, this is especially beneficial. For exam-

ple, if pump A was never used for operating regime B, the model would be highly

inaccurate if the control system recommended its operation. Using LPV models,

explicit constraints can be placed to prevent such a scenario, as shown in the LPV

section in Appendix A.

The training and deployment procedure for using a LPV model in an arbitrary

process is shown in Figure 3.7. Starting from the top, historical data for the process

is first clustered into n data sets. Here, n can be pre-defined using subject matter

knowledge, or can be found using DBSCAN. After segregation, each cluster should

have enough data to effectively identify useful linear models. Finally, the data sets

are used to identify linear models. Each model will have unique constraints to

enhance the representation of the physical process. Deployment-wise, new measure-

ments are obtained from field sensors and are sent to the LPV model. Then, the

Euclidean distance (or desired distance metric) between the new measurement and

the centroids of each model are calculated. The model exhibiting the lowest distance

will be used for prediction. However, if the distance between the new measurement

and the closest centroid is too large, the measurement will be labeled as anomalous

instead.

3.2.5 USIS: Uniform Sampling Incremental Supervised learn-

ing

A major selling point of ML solutions is their promise of being adaptive. Because

of the way ML solutions are updated (gradient descent), adaptation can easily be

incorporated in a natural way. Figure 3.8 shows an intuitive representation of the

gradient descent algorithm.
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Figure 3.7: Architecture of the LPV model during training and implementation

During an update step, the new knowledge is intuitively the old knowledge ad-

justed by new learnings. The new learnings are typically multiplied by a fixed

learning rate, α. From this, the new knowledge is always biased towards the most

recent experience, giving ML solutions an adaptive characteristic. Adaptive ML

can be implemented in two forms: online learning or incremental learning. Online

learning refers to the ML models being updated after each prediction and can be

understood mathematically as stochastic optimization. Common applications of on-

line learning can be found in search optimization for web pages, where millions of

data points are generated per minute. Online learning is not suitable for process

control applications due to three reasons: catastrophic interference (i.e., tendency

of neural networks to completely and abruptly forget previously learned informa-

tion upon learning new information [67]), sequential noisy data decimating model

accuracy, and insufficient incoming data to identify representative models for use-

ful applications. In adaptive ML, incremental learning is the preferred choice for

process control applications due to its reduced randomness. Incremental ML works

by creating a data cache, and then updating the model using all data from the
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Figure 3.8: An intuitive representation of gradient descent.

cache simultaneously after a fixed interval. By doing so, the models will be updated

much slower and the gradient of the loss function is an average of many examples,

a method similar to semi-stochastic optimization.

Motivation

Incremental learning still falls short in terms of catastrophic interference (also

known as catastrophic forgetting). This is especially a problem for the process indus-

try, where operating conditions may be prolonged for many months before a switch

is made. Because ML solutions are biased towards the most recent experiences, past

experiences will be forgotten and the model will perform poorly if faced with old

conditions after a long time.

The uniform sampling incremental supervised learning (USIS) algorithm was

proposed to overcome this issue and to enhance data efficiency for adaptive ML

techniques. USIS is a combination of adaptive resonance theory, uniform sampling,

and experience replay (from reinforcement learning theory), where each update step

is outlier free, data is efficiently used many times, and data is uniformly sampled

across the distribution of the model to prevent catastrophic interference.

The simplified adaptive resonance theory (ART) architecture is shown in Figure

3.9. ART was originally proposed to prevent disrupting existing knowledge during

learning of new knowledge. In ART, the comparison field first allocates the input

vector to the best match model in the recognition field based on a similarity metric,
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s. Then, the similarity between the input vector and the closest matching model

is compared to the vigilance parameter, ν. If s > ν, the model weights will be

adjusted using the new input vector. Otherwise, the input vector is used to initiate

a new model. The vigilance parameter has significant influence on the overall sys-

tem. Intuitively, higher vigilance produces highly detailed memories (many special-

ized models), while lower vigilance creates generalized memories (fewer, generalized

models) [68].

Figure 3.9: The simplified adaptive resonance theory architecture.

Uniform sampling is a random sampling method where proportions of each de-

sired group are forced to be sampled equally. For example, imagine a pump data

set used to predict for the pump RPM given an input current. The pump RPMs

range between 0 - 1000 and the accuracy of the model is important across all values;

however, the data set is significantly biased towards the 900 - 1000 RPM range,

with only few data points in other regions. To ensure the model has acceptable

performance across all values, the data set can be binned and equal amounts of data

from each bin are sampled during the update step. In the context of process control

where data typically remain constant over long periods of time, uniform sampling

can guarantee data variety during an incremental learning update step.

Lastly, experience replay is a method that gained popularity when it was first
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introduced to reinforcement learning to improve data efficiency and break temporal

correlations [69]. In experience replay, data (or experiences) are accumulated over

time and are stored in a buffer. During an update step, data is randomly sampled

from the buffer to break temporal correlations that could potentially bias the mod-

els towards the most recent experience. Additionally, data within the buffer can

be re-used many times rather than being discarded after one update. Only after

many time steps are the oldest memories removed from the buffer. An biological

interpretation behind the algorithm is that humans create memories of past expe-

riences. Over the span of our lives, the same experiences are replayed many times;

subconsciously when we eat, study, sleep, etc. In doing so, humans can learn new ex-

periences without catastrophically forgetting about past experiences; however, after

an elongated period of time, distance unimpactful memories are forgotten.

By combining the advantages of the previous three topics, a new adaptive,

outlier-robust, and data efficient algorithm catered towards the process control in-

dustry was developed.

USIS Algorithm

Figure 3.10 shows the key steps for the USIS algorithm. Initially, n ≥ 1 models

are present to model the system. For input vectors in n ≥ 2 systems, the distance d

between the input vector and the centroid of the data for each model is computed.

This step is skipped for systems where n = 1 because only one d is computed.

The lowest d is then compared to the neglect parameter, η (opposite of vigilance

parameter, ν). If d ≤ η, the input vector will be added to the training archive

(experience replay buffer) corresponding to the model. Otherwise, the data point

is transferred to the new model archive where data currently not belonging to any

model is stored. In the new model archive, new models will be generated and

added to the existing system of models after enough similar data is accumulated.

Likewise, the training archives are used to incrementally update all models after a

certain amount of data or time elapsed. During an update step, the archive data
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Figure 3.10: A brief visualization of the USIS algorithm.

will be blended with additional uniformly sampled data from the historical archive

(experience replay buffer) to avoid catastrophic interference.

To enhance clarity of each update step, the data storage structure of USIS is

shown in Figure 3.11. Before an update, the bins of each model must be defined.

The bins are typically defined by dividing the distribution of the predicted variable.

Bins can be narrower around regimes with abundant data, and wider for regimes

lacking data. During an update step, all data from the training archive alongside

some sampled data from the historical training archive are blended together and

fed into the gradient descent step for model updates. Typically in process control

applications, systems tend to linger around certain set points for many time steps.

Given this characteristic, the data in the training archives, consisting of m training

examples, typically belong to the same bin. To avoid catastrophic interference when

learning on elongated periods of similar operating conditions, m examples of data

77



3.2. MACHINE LEARNING METHODS

from each bin in the historical archive is also sampled and assimilated with the

training data when performing update steps. After the updates, all training archives

are emptied by transferring the data into the historical archives. When the historical

archives get sufficiently full, the oldest data (or memories) are deleted.

Figure 3.11: Data storage structure of USIS.

The full USIS algorithm is shown in Figure 3.12. There are five main tuning

parameters of the USIS algorithm: i) when to update models; ii) bin size for each

model; iii) neglect parameter; iv) distance metric; v) replay buffer size.

• i) Model Updates: Common strategies for model updates are periodically,

by example size, or when models exhibit large errors. The first two are proac-

tive methods, while the last is a reactive method. In the periodically updating

method, the models are automatically updated after a certain time has elapsed

(e.g., update every 24 hours). Updates by example size refers to model up-

dates after a certain amount of data is accumulated in the training archive.

Only the model with adequate amounts of data is updated. For these two

methods, there should not be a significant time gap between updates because

updates may lead to excessive model changes otherwise. Since this method

is automated, significant model changes could potentially lead to sudden per-

formance changes, jeopardizing production safety. Model updating after large

errors have incurred is the last method. Here, the models are updated after

an error threshold has been exceeded. Compared to the previous methods

where smooth update steps are performed, this method introduces significant
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changes to the model. Systems with highly noisy data and require inordinate

amounts of manual data processing will benefit from this update style because

completely automated updates may lead to model divergence.

• ii) Bin size: The bin size of each model should be tuned so the important

sections of the predicted variable can be properly predicted for each model.

Additionally, the bin can be narrower for sections where abundant data is

available and wider for sections where data is sparse.

• iii) Neglect parameter: Neglect determines the specialization of each

model. High neglect creates fewer generalized models, while low neglect pro-

duces many specialized models. For highly non-linear multi-modal systems,

low neglect may be the preferred choice; however, the initial setup and cost

of ownership for such a system could potentially be high if automated up-

dates are not implemented/feasible. On the other hand, high neglect systems

are cheaper to maintain due to the reduced number of models, but the accu-

racy may suffer. Picking a proper neglect parameter represents the trade-off

between accuracy and complexity. A general rule of thumb for the neglect

parameter would be the radius of the cluster. For example, η for a cluster

identified using DBSCAN would be its ε value.

• iv) Distance metric: The Euclidean distance between the input vector and

the historical data is the recommended choice; however, other distance metrics

can be used for specialized applications.

• v) Replay buffer size: The replay buffer size can also be tuned to adjust

when old memories are no longer relevant (intuitively, forgetting older mem-

ories). For processes where operating conditions are changing frequently, it

would be beneficial to have smaller replay buffers to avoid learning on obsolete

data. Replay buffers can also have an adaptive size depending on the current

prediction error as proposed in [70]; however, such a method is still embryonic

and further exploration should be conducted before implementation.
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Figure 3.12: The complete USIS architecture.

Uniform sampling in USIS can also be swapped out for importance sampling,

where high error examples are prioritized for the next sampling cycle (motivation

from [71]. In doing so, high error examples (biologically modelled as shocking ex-

periences) have higher probabilities of being recalled. Intuitively, humans recall

shocking experiences more often. The method enhances accuracy in many reinforce-

ment learning applications [69], [72], [73], although, such a method may prioritize

noisy, near-outlier data points in process control applications and introduce model

divergence.

3.3 Discussion: Cheaper, More Accurate, and Adap-

tive?

Machine learning has promised cheaper, more accurate, and adaptive solutions

for industries around the world. However, applying ML solutions naively into the

process control industry yields no significant value due to various unique factors in

process control data. So far in this chapter, different data pre-processing methods
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catered towards the process industry were introduced. General ML methods and

their applicability were correlated to the process control industry. By innovatively

combining parts of separate algorithms, a new algorithm catered towards the pro-

cess industry, USIS, was also introduced. USIS is an adaptive, outlier-free, model

structure that can be used to model a process with many operating conditions while

avoiding catastrophic interference. But are these solutions truly cheaper, more ac-

curate, and adaptive?

The comparison between ML prediction solutions and traditional methods is

shown below for common areas where ML is implemented today:

• Cheaper: ML soft sensors will definitely be cheaper for difficult-to-measure

process variables where lab test must be conducted. Conducting lab measure-

ments may cost up to hundreds of thousands per year if frequent measurements

are required. Initial cost for soft sensors may be high because a ML expert

must collaborate with process operators to first develop the soft sensor(s);

however, on-going costs for this application is minuscule. Soft sensors for pre-

diction of variables that are difficult to measure are definitely cheaper than

buying a highly advanced physical sensor. Lastly, prediction applications used

for operator training or forecasting should be significantly cheaper compared

to having a senior operator on shift explicitly to train a new operator or hiring

a group of subject matter experts to forecast future production possibilities.

• More Accurate: Soft sensors used to predict lab measurements could yield

high accuracy, but will never exceed lab measurements. This is because lab

data is used to train the soft sensor; hence, serving as a performance ceiling.

For soft sensors used to predict for difficult to measure process variables, the

accuracy will depend on the quality of the data used to build the soft sensor.

Additionally, the accuracy vary from application to application. For predicting

for heights in a primary separation vessel using cameras and the sight glass, the

accuracy can be extremely high. On the other hand, predicting the density

of a crude given highly noisy readings and poor input data may be nearly
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impossible.

• Adaptive: The adaptability factor of ML algorithms is purely dependent

on available feedback. For applications where immediate feedback is available,

such as predicting for a continuously measured output variable, adaptability

is trivial. However, ML solutions cannot adapt for tasks where no feedback

exists. One example of a non-adaptive ML application would be soft sensors

for prediction of lab measured process variables. If no additional lab measure-

ments are taken after the soft sensor is live, it will never adapt. Therefore, it

is good practice to continue obtaining lab measurements to evaluate the soft

sensor performance. For tasks requiring adaptation, ML solutions should be

the preferred choice because human operators would have a hard time remem-

bering all the historical data.

To summarize, ML prediction applications are generally cheaper compared to

their traditional counterparts. This is simply because applications that requires ML

are typically expensive and are solved poorly using traditional approaches to begin

with. In terms of accuracy, ML solutions would not exceed the performance of a lab

tested process variable; however, may surpass accuracy given representative data

sets or unique applications. Lastly, ML solutions can only adapt if proper feedback

is available for the algorithm.

3.4 Highlights of ML Application onto a Pipeline

The methods and algorithms in this chapter were applied onto an industrial

pipeline4, 5. The highlights of the implementation will be shown in this section. For

a detailed project report, please refer to Appendix A.

4Many values are significantly rounded and/or omitted to maintain confidentiality of the project
5The algorithms are live as of May 7th, 2019 on one industrial pipeline. Work is being done to

clone the project onto a second line.
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3.4.1 Process Description

Pipelines are critical assets for the transport of fluids safely and efficiently across

long distances. Fluids include petroleum products, clean water, natural gas, sewage,

and even beer. In Canada, over 97% of petroleum products are shipped by pipeline

alone. Due to the mission critical nature of pipelines on society’s success, ensuring

its reliability and efficiency has global-scale impact. Typical pipelines may contain

hundreds of digital sensors littered across the pipeline. Such information overload

may be overwhelming for humans; however, ML methods benefit greatly from the

abundance of data. Here, an opportunity was discovered where ML methods can be

applied to greatly increase the robustness and efficiency of the pipeline. For phase

one of the project, ML prediction models were built to create a digital twin of the

pipeline for operator training programs and future optimization purposes.

A schematic of the pipeline is shown in Figure 3.13. The highly complex pipeline

spans over 100 kms and carries two products, a lighter product and a heavier prod-

uct. The two products are batched (i.e., rotate between sending each product) and

each product is sent for approximately eight hours before switching to the other

product. The American Petroleum Institute (API) gravity for the lighter and heav-

ier products are roughly 40 and 20, respectively. For the rest of this chapter, the

lighter and heavier product will be referred to as light crude and heavy crude, re-

spectively. The pipeline is typically operated between 1800 bbl/h to 3050 bbl/h.

Figure 3.13: Schematic diagram of Line B.

Equipment wise, Line B boasts eight pumps spread across four pump stations.

Two pumps are variable frequency drives (VFD), while the rest are on/off pumps.
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Additionally, there are four drag reducing agent (DRA) injection pumps situated

at the second and third pump stations. Each pump station contains a heavy crude

and light crude DRA pump because the different crudes use different types of DRA.

The DRA is injected based on the product present at the pump station.

3.4.2 Data Pre-processing

The industry sponsors initially provided a data set containing 899 tags and

525,601 data points for each tag. The data pre-processing step was deconstructed

into three phases for this project: pre-processing by subject matter experts, auto-

mated data pre-processing, and manual data pre-processing. The first two phases

are typical of any machine learning project. The third phase contains methods intro-

duced in this chapter. Upon completion, an on-going iterative data pre-processing

procedure continued until the end of the project to ensure industrial sponsors were

satisfied with the model performance. The objective of the prediction models were

to predict the output flow rate as a function of process variables.

The data was first pre-processed by experts within the sponsor’s organization

to remove useless tags such as alarm limits, fire detector status, and the sort. Af-

ter doing so, the amount of tags was reduced to 124. The remaining data was

sent into various automated data pre-processing algorithms to further remove re-

dundant/insignificant tags. The algorithms include: missing data removal, data

imbalance analysis, and collinear analysis. Missing data removal cleans up any NaN

or empty values in the data set. Data imbalance analysis inspects all categorical

variables and removes heavily imbalanced tags where one class significantly domi-

nates all other classes. Lastly, collinear analysis identify heavily correlated columns

and removes all but one to prevent redundancy in the data set. Total tags reduced

to 65 after the automated feature selection.

Next, the manual pre-processing was conducted on the data set. First, engineer-

ing knowledge was applied to the pre-processing step to remove segments of data

where the process exhibits abnormal operating behaviour. Then, the data at each
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pump station was shifted to incorporate time delays. In pipelines transporting in-

compressible fluids, pressure propagates down at the speed of sound (1480 km/h)

[64]; therefore, all pressure variables were shifted with accordance to their distance

to the output of the pipeline (shown in Table 3.3. Likewise, DRA also had time

delay. DRA must be transported down the entire pipeline to exhibit its full drag re-

ducing effect. From giving flow rates and the length of each segment of the pipeline,

it was calculated that coating the entire pipeline required approximately ten hours.

Therefore, the first ten hours data corresponding to a set point change in DRA was

removed to ensure the DRA’s effect has been fully realized in the output flow rate

data.

Table 3.3: Time required for pressure changes at each pump station to be realized
at refinery.

B1 B2 B3 B4

Time to refinery at speed of sound

in liquids (1480 m/s) [64]

2.0 min 2.0 min 1.0 min 1.0 min

Additionally, the temperature and DRA ppm measurements were highly noisy

and were exponentially smoothed using Equations 3.1 to increase reliability. The

pre- and post-smoothed values of the DRA are shown in Figure 3.14 to illustrate

the effect of exponentially smoothing.

To conclude the data pre-processing procedure, the process operators were con-

sulted with to identify any special considerations that should be included into the

ML models. Here, the operators stated that the density reading is unreliable and

is only used to identify the crude type at each station. From this information, all

density readings were feature engineered into binary readings where 1 represented

light crude and 0 represented heavy crude to reflect the physical purpose of the

reading.

Exploratory data analysis was then performed on the processed data to gain

additional insight. In Figure 3.15, a kernel density estimation was applied to the

pipeline outlet flow rate to identify its distribution as shown. It can be seen that

the flow rate follows a bi-modal distribution and most likely corresponds to two
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(a) Station B2 heavy DRA sensor reading.

0 20000 40000 60000 80000 100000 120000 140000 160000
Time, t (min)

0

10

20

30

40

50

60

DR
A 
(p
pm

)

Original DRA Reading
EWMA DRA Reading

(b) Station B2 light DRA sensor reading.

0 20000 40000 60000 80000 100000 120000 140000 160000
Time, t (min)

0

10

20

30

40

50

60

DR
A 
(p
pm

)

Original DRA Reading
EWMA DRA Reading

(c) Station B3 heavy DRA sensor reading.
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(d) Station B2 light DRA sensor reading.

Figure 3.14: Pre- and post-processed DRA sensor readings.
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different operating regimes. To enhance ML model performance, the two modes

were segregated using DBSCAN. Here, DBSCAN was selected due to its scalability

to big data and ability to identify outliers. The hyper parameters, ε and min points,

for DBSCAN were 1.13 and 10,000, respectively.
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Figure 3.15: Flow rate distribution of the pre-processed data set.

The segregated distributions created from DBSCAN and the average character-

istics of each cluster are shown in Figures 3.16 and 3.17, respectively. Evidently

from Figure 3.17, the operation of equipment were vastly different in the two oper-

ating regimes. More specifically, cluster 2 used almost no DRA, and used Station

B3 Pump 1 and Station B1 VFD exclusively. In cluster 1, all equipment were used

with exception of Station B3 Pump 1. From this information, two ML models can

be created to cater to each cluster.

3.4.3 Machine Learning Predictions

The following models were implemented to predict for the pipeline outlet flow

rate: linear models, polynomial models, neural network models, and LPV models.

Ultimately, the LPV model reigned supreme due to its interpretability, consistent

results, simple model structure. The performance and hyper parameters of each
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Figure 3.16: Clusters identified after applying the density-based scan.

Figure 3.17: Average operating variables for the two operating conditions.

model are shown below. During model identification, the data sets were divided

into three sections: training, validation and testing. Table 3.4 shows the purpose of

each data section.

Linear Models

Linear models pertain the simplest model structure and will serve as a benchmark

for other models. The hyper parameters and performance metrics of the model are

shown in Table 3.5 and 3.6, respectively. The model’s performance on the validation
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Table 3.4: Description of each data partition.

% of Data Description

Training 90% Identify the ML model

Validation 5% Tune ML model performance on unseen data

Testing 5% Test ML model performance on proxy live data

and test data are shown in Figures 3.18a and 3.18b. From 3.6, the model MAE and

RMSE increased 4% and 6% on the testing data, respectively. R2 on the test data

significantly reduced. However, the trends from Figure 3.18b does not exhibit any

significant inaccuracies.

Table 3.5: Hyper parameters for linear regression.

Hyper Parameter Value

Epochs 800

Minibatch size 8192

Learning rate, α 0.001

Regularization, λ 0.001

Table 3.6: Performance assessment for the linear regression.

Training data Validation data Test data

MAE 98 98 102

RMSE 127 127 135

R2 0.91 0.91 0.70

Polynomial Models

Non-linear models were used to further enhance predictive capabilities. Two

exponential models were applied: quadratic and square root. The hyper parameters

and performance metrics of the exponential models are shown in Tables 3.7 and 3.7,

respectively. The model performances on the validation and test data sets is shown

in Figure 3.19. Compared to the benchmark model, the MAE and RMSE decreased

by up to 13% and 15% on the test data set. Moreover, the model performance does

not deteriorate when applied on the test data set.
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(a) Predicted vs. actual flow rate for the
validation data set.
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(b) Predicted vs. actual flow rate for the
test data set.

Figure 3.18: Linear regression validation and test plots.

Table 3.7: Hyper parameters for exponential regression.

Hyper Parameter Quadratic Square root

Epochs 1000 1000

Minibatch size 8192 8192

Learning rate, α 0.001 0.001

Regularization, λ 0.001 0.001

Neural Network Models

Neural networks and deep learning were the most advanced models to be applied

to this prediction task. Here, three different neural networks with varying sizes were

trained and their performances evaluated.

Tables 3.9 and 3.10 show the hyper parameters and performance metrics of the

three neural networks. Figure 3.20 shows the neural networks’ performance on

the validation and test data sets. From Table 3.10, it is clear that the training

and validation error decreased as the neural network increased in size; however,

the errors increased significantly on the test data. This was caused by the test

data being different than the training data. In this particular case, the test data

was collected in the summer months where temperatures increased by up to 10° C

compared to the training data. Because of the complexity and parameterization of

neural network models, data even slightly different from the training data can have

a significant impact on accuracy. Smaller, simpler, more regularized neural network
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Table 3.8: Performance assessment for the quad. and sqrt. model.

Training data Validation data Test data

Quad Sqrt Quad Sqrt Quad Sqrt

MAE 92 89 92 89 89 91

RMSE 121 118 121 117 120 115

models could be used to avoid this behaviour. Indeed, it can be seen that the test

data error increased as the size of the network increased. Another disadvantage

of neural networks are its lack of interpretability. Investigating the effects of each

regressor in this highly non-linear model is nearly impossible; hence, neural networks

are black box models and might be undesirable for safety critical systems.

Table 3.9: Hyper parameters for the feed-forward neural network.

Hyper Parameter Small NN Med. NN Large NN

Epochs 700 1000 1200

Minibatch size 8192 8192 8192

Learning rate, α 0.001 0.001 0.001

Regularization, λ 0.001 0.003 0.005

Number of layers 3 6 8

Neurons per layer 20 30 40

Activation function for hidden layers ReLU ReLU ReLU

Activation function for hidden layers Linear Linear Linear

Table 3.10: Performance assessment of the neural network models.

Training Data Validation Data Test Data

Sm. Med. Lar. Sm. Med. Lar. Sm. Med. Lar.

MAE 48 42 38 50 45 37 87 87 91

RMSE 66 58 57 69 61 56 107 117 118

Linear Parameter-varying Models

Linear parameter-varying models achieve the performance of non-linear models

using a system of linear models. Furthermore, the models are fully interpretable

through its weights. From the author’s experience, this model structure is an ideal

starting point for most industrial applications. For this project, two linear model
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(a) Predicted vs. actual flow rate for val-
idation data using the quad. model.
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(b) Predicted vs. actual flow rate for the
test data using the quadratic model.
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(c) Predicted vs. actual flow rate for the
validation data using the sqrt. model.
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(d) Predicted vs. actual flow rate for the
test data using the sqrt. model.

Figure 3.19: Polynomial regression validation and test plots.

were identified; one for each cluster in Figure 3.16.

The hyper parameters for each linear model is identical to the values shown in

Table 3.5. Performance metrics of the two linear models are shown in Table 3.11.

The model performance on the validation and test data sets are shown in Figure

3.21. Average MAE and RMSE of the LPV model is nearly identical to the square

root models (the best non-linear model). Moreover, the linear models are simpler

and have unique regressors in each model. For example, the linear model for cluster

2 is only a function of the Station B1 VFD current and the DRA ppms because

all other inputs did not change in the data set. Visually, the performance figures

show low correlation; however, this is because the validation and test data sets were

different compared to the previous models since the data set had to be decomposed.

Additionally, the flow rate in these new data sets contain higher noise compared to

previous data and the y-axis range is also reduced, enhancing the noise. Ultimately,
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(a) Validation data for the small neural net.
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(b) Test data for the small neural net.
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(c) Validation data for the med. neural net.
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(d) Test data for the med. neural net.
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(e) Validation data for the large neural net.
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(f) Test data for the large neural net.

Figure 3.20: Predicted vs. actual flow rates for the feed-forward neural networks.
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the performance metrics illustrate that the performance of the LPV model is nearly

identical to the non-linear models and was the model of choice in this industrial

application.

Table 3.11: Performance assessment for clusters 1 and 2 regression models.

Training data Validation data Test data

Cl. 1 Cl. 2 Cl. 1 Cl. 2 Cl. 1 Cl. 2

MAE 90 66 90 67 96 85

RMSE 115 91 116 92 120 110

R2 0.87 0.90 0.86 0.89 0.78 0.57
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(a) Validation data using model 1.
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(b) Test data using model 1.
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(c) Validation data using model 2.
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(d) Test data using model 2.

Figure 3.21: Predicted vs. actual flow rate for the linear parameter-varying models.

3.4.4 Implementation of USIS

After the model accuracy was deemed acceptable by the industrial sponsors, the

next phase of the project aimed to automate machine learning updates, creating a

94



3.4. HIGHLIGHTS OF ML APPLICATION ONTO A PIPELINE

true self-learning system. The USIS algorithm was applied to automate each update

step, while avoiding outliers and catastrophic interference.

The hyper parameters for USIS are summarized in Table 3.12. The model was

set to update every 24 hours to avoid any significant changes in model weights.

Each update step has a maximum of 1440 (24 × 60) data points per bin. There

were ten bins for each model; each had a width of 200 bbl/h. The bins ranged

from 1200 - 3200 bbl/h. The Euclidean distance was used to calculate the distance

metric, d. Moreover, the neglect parameter was selected to be 1.13, identical to ε.

Finally, each replay buffer had the capacity to keep three months data in memory to

avoid catastrophic interference. Three months was recommended by the industrial

sponsors to ensure relevant information was used for model updates.

Table 3.12: USIS hyper parameters for the pipeline project.

Hyper parameter Value

# of models, n 2

Model update frequency 24 hrs

Bin size, (bbl/h) 200

Distance metric, d Euclidean

Neglect parameter, η 1.13

Replay buffer 129,600 (3 months)

The overall USIS algorithm implemented onto the industrial pipeline is shown

in Figure 3.22. Raw process data is first inputted into the data pre-processing

step where data is smoothed (temperature, DRA), transformed (density data), and

normalized. The processed data is then sent into the model selection phase, where

one of the two linear models will be selected to perform the prediction. Then, the

data is archived in the USIS architecture. After every 24 hours, the models are

updated using historical data.

3.4.5 Concluding Remarks on the Pipeline Project

Pipelines are critical assets used to transport fluids across large distances. Com-

mon transported fluids include petroleum products, water, sewage, and natural gas.
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Figure 3.22: An overall look at the USIS algorithm on the industrial pipeline

Due to the mission critical nature of pipelines on society’s success, ensuring its

reliability and efficiency has global-scale impact.

The first phase of the pipeline project aimed to identify accurate, interpretable,

and adaptive models to predict for the output flow rate of the pipeline. To en-

hance model performance, the data was initially pre-processed vigorously through

smoothing, feature selection, feature engineering, and other methods. During model

identification, the following models were tried: linear models, exponential models,

neural networks with varying sizes, LPV models. Ultimately, LPV models were

selected due to their interpretability and predictive capabilities. Adaptability is an-

other key topic of this project. The USIS algorithm was equipped onto the LPV

models to allow for outlier-free model updates without suffering from catastrophic

interference.
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Chapter 4

Machine Learning for Process

Monitoring

ML prediction applications are effective complements to existing infrastructure

in the process industry through soft sensors, state estimation, and forecasting. How-

ever, they are limited in applications regarding safety and risk management. In the

process industry, safety is upheld as the greatest value; investing in a successful

safety system is just good business.

Safety is a value, not a priority. Priorities change, but company values

never do.

— Rex Tillerson, ex-CEO of ExxonMobil

Decades ago, process safety investments are frowned upon by management due

to its high costs and invisible returns. In fact, construction workers used to cheer

when project supervisors announced that only 20 deaths will incur for this project—

an event completely unacceptable in today’s standards [74]. Indeed, a perfect safety

and risk management system results in no change in day-to-day activities because

all the incidents are proactively mitigated. As such, it is incredibly easy to be-

come complacent towards risk management. However, if safety takes a back seat,

the occurrence of the next incident is not a matter of if, its a matter of when.

Therefore, safety must be proactively (not reactively) managed to safeguard people,
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the environment, company assets, and production capabilities in terms of physical

equipment and the social license to operate. Ultimately, proactive safety and risk

management just makes sense.

For enhanced process safety, ML can be leveraged to proactively monitor process

systems and create an additional layer of engineering safety factor. In this chapter,

ML algorithms will be applied to detect and predict equipment failures, process

abnormalities, process variability and also perform alarm management. Through

these applications, ML will be used to create multi-variate alarm systems that ex-

plore multi-variable interaction effects and gives fewer false alarms. Additionally, a

new alarm management system that specifically tackles alarm flood scenarios will

be introduced. The objectives of this system are twofold: 1) Reduce sheer num-

ber of alarms during a flooding scenario; 2) identify the most important alarms so

operators can prioritize safety critical alarms.

This chapter is organized as follows: Section 1 introduces data pre-processing

methods for anomaly detection/prediction applications where the data is heavily

imbalanced. Section 2 introduces the anomaly detection and prediction algorithms

and section 3 concludes this chapter with an introduction to a novel approach for

alarm management.

The main contributions of this chapter are the data pre-processing methods

used to prepare data sets for anomaly detection/prediction. Additionally, it was

shown that using synthetic data was able to enhance accuracy. Lastly, a novel

alarm management approach based on reinforcement learning was introduced to

filter nuisance alarms and sort alarms based on their priority.

4.1 Data Pre-processing for Monitoring

Data containing anomalous and/or incident events are extremely rare—thankfully—

in the process industry.

Anomaly or anomalous activity: An abnormal or unexpected event given

98



4.1. DATA PRE-PROCESSING FOR MONITORING

other variables (often multivariate). For example, a person walking in a

t-shirt when it is -30° C outside.

In fact, it is not uncommon to have just one incident in a data set containing

hundreds of thousands of records. Under such circumstances, building ML models

to identify incidents is extremely difficult. Remember, ML models are nothing more

than statistical models with training formulated in an incremental updating fashion.

In the scenario where the training data set contains 999,999 non-anomalous activities

with 1 anomalous activity, the model will simply learn to return non-anomalous for

all inputs; such a model would still achieve 99.9999% accuracy on the training data!

When a human is provided with this data set, the human would instead focus most

of its attention on the one anomalous activity, studying how it is different from all

the other points. A tabula rasa machine is simply not equipped with such cognitive

abilities, and will treat every data point equally; however, humans can artificially

provide cognition to the machine.

4.1.1 Data Prep for Anomaly Detection

Anomaly detection tasks are quite simple compared to anomaly prediction tasks

that will be discussed later on in this section. In anomaly detection, the model

simply has to classify if there is an anomaly at current time. For example, given

some states of a reactor, is the output temperature anomalous? That is, is the

measured output temperature expected given the states? Of course, such questions

are difficult for humans to answer, especially in multi-variate environments; however,

such questions can easily be answered by machines. Unfortunately, the events that

are of interest to us (anomalies) are, often times, significantly more rare compared

to normal process data. Hence, the leading reason for poor model performance in

imbalanced data sets (i.e., distribution of different classes are vastly different) is the

imbalanced nature. There exists two traditional ways to tackle the data imbalance

issue: undersampling and oversampling [75]. Objectively, both methods aim to

re-balance the data set so that the positive and negative data are in harmony.

99



4.1. DATA PRE-PROCESSING FOR MONITORING

A visual description of undersampling and oversampling is shown in Figure 4.1.

In undersampling, the majority class(es) are significantly down-sampled to be the

same size as the minority class. The obvious flaw with this technique is the signif-

icant data in-efficiency. In this method, the majority of the data that may contain

critical features and information are simply discarded. To take advantage of the

whole data set, oversampling is sometimes used. In oversampling, the minority class

data is copied n times until is approximately equivalent to the majority class. Al-

though oversampling allows the whole data set to be used, the models built typically

overfit to the minority data simply because it was copied so many times. During

deployment, anomalies that are even slightly different from the ones in the training

minority data set are often times misclassified.

Another more mathematical way to tackle this data imbalance issue is to bias the

cost function to heavily discourage misclassification of positive samples. However,

such a methods requires tuning of the cost function, and is often times difficult.

Figure 4.1: A visual representation of undersampling (left) and oversampling (right).
Original image from Kaggle.

Luckily, normal process data are typically plentiful and lack increasing informa-

tion (i.e., data is typically from steady state processes that hover around the same

value for weeks) in the process industry. Therefore, discarding large bulks of data

in certain processes do not affect the ultimate accuracy of the model. For anomaly

detection, the majority class data was first undersampled to be comparable to the

minority class. Undersampling should uniformly sample the data set to ensure all

operating regimes are sufficiently captured. Then, a label column is generated; all

anomalous events were given a value of 1 and normal process data had labels of

0. An example of undersampling is shown below. In this example, the process is
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deemed anomalous when x1 + x2 > 3.

Table 4.1: Original data set before undersampling.

x1 x2 label

2 -1 0

3 0 0

2 5 1

2 -2 0

5 -1 1

-2 -1 0

1 -3 0

2 -4 0

-2 2 0

-2 4 0

Notice that in Table 4.1, the majority class dominates the minority class 5:1.

After downsampling, the data set becomes:

Table 4.2: Original data set before undersampling.

x1 x2 label

2 5 1

2 -2 0

5 -1 1

-2 -1 0

Note that the majority and minority classes do not have to be perfectly balanced,

especially in cases where perfectly balancing the classes require discarding unique

information from the majority class.
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4.1.2 Data Prep. for Anomaly Prediction

A visual breakdown of the anomaly prediction task is shown in Figure 4.2. From

Figure 4.2, the old event refers to the anomaly detection problem. The new event

denotes the latest time step to predict an anomalous event. Overall, anomaly predic-

tion is a much more difficult problem compared to anomaly detection. In anomaly

prediction, the model must predict if an anomaly is going to happen before it hap-

pens. Compared to anomaly detection, this task is much more difficult, and how

far in advance an anomaly can be detected is heavily dependent on the speed of dy-

namics of the system. For example, in cat classification, anomaly detection simply

has to identify if the picture is a cat or not. However, anomaly prediction has to

predict if the animal in each picture will eventually grow up to become a cat.

Figure 4.2: Visualization of the anomaly prediction.

In anomaly prediction, the data is first labelled as in anomaly detection. After-

wards, the data is augmented as follows:

x = [xt−l−L, ..., xt−l−3, xt−l−2, xt−l−1, xt−l] (4.1)

where l > 0 denotes the minimum number of sampling time the model should predict

in advance. L represents the amount of previous information to be provided to the
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model. Augmenting the data as such provides temporal information to the ML

algorithms to perform more accurate predictions. Note that even though an l of

10 is chosen, this does not guarantee that the model will always predict anomalies

10 time steps in advance. Moreover, if the model predicts positive, it does not

mean that an anomaly will occur exactly 10 time steps later. Merely, it just biases

the algorithm to be more effective around that specific time range. How early an

anomaly can be detected is purely dependent upon the dynamics of the system. For

example, if the degradation of an equipment is slow and gradual, the anomaly might

be detected days in advance; however, an instantaneous failure offers no time for

any early detection.

Like in anomaly detection, the data is heavily skewed towards normal process

data; therefore, the majority class must also be downsampled to be comparable to

the minority data set. Downsampling occurs last to ensure no temporal relationships

are broken. A quantitative example for the augmentation of an anomalous data is

shown below. Here, suppose downsampling is not required (since an example is

already shown above) and l = 1;L = 2.

Table 4.3: An arbitrary time-series data set.

time x2 label

0 5 0

1 3 0

2 7 0

3 6 0

4 4 0

5 2 0

6 -1 1

7 -3 0

8 -1 0

9 2 0
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From Table 4.3, the time series augmented data point for the anomalous event

would be:

x = [x3, x4, x5]

x = [6, 4, 2]

4.1.3 Synthetic Data Generation

In the above methods, the assumption of plentiful data was made. In industry,

this is not always true, especially for the anomalous data. Here, three different

synthetic data generation methods will be introduced, with each method generating

fake, yet similar, minority class data. This topic is an especially popular research

topic for the computer vision field where good, labeled data are rare. In fact,

many Completely Automated Public Turing test to tell Computers and Humans Apart

(CAPTCHAs) use traffic signs to force potential users of the website to first label

some data, before being allowed to proceed. Most likely, the labeled data are then

sold to computer vision companies. The main idea of synthetic data generation is

to construct fake data that is exactly equivalent to the real data that even a subject

matter expert cannot tell them apart. Indeed, that was exactly the structure of one

of the most advanced generative methods, the generative adversarial network (GAN)

[76]. Synthetic data research in time-series data are unfortunately more primitive

compared to GANs, but still provide valuable accuracy gains in the final model.

Time-series oversampling

The first method caters to time-series data. This method simply oversamples the

data leading up to an event. Notice that this method is different from oversampling

because it does not directly copy the data. Instead, the sampling rate is increased

for periods leading up to an anomalous event (for anomaly prediction) or during

the anomalous event (for anomaly detection). For example, the normal sampling

time of a process might be one per minute. But to obtain more data, the resolution

might be greatly enhanced to one per 10 seconds to increase anomalous data.
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SMOTE

The second method for synthetic data generation is the Synthetic Minority

Over-sampling Technique (SMOTE). As a high level overview, SMOTE generates

synthetic minority data through combining features of real minority data points.

Suppose we plotted a 2-class data set with 2 features. Most likely, data points

corresponding to the two classes will be segregated (at least slightly). To generate

synthetic data on either class:

1. Start with an arbitrary point within that class

2. Identify the distance between that point and it’s closest neighbour (within the

same class). Typically, Euclidean distance is used for the distance metric and

is given by:

d(p, q) =
√

(p1 − q1)2 + (p2 − q2)2 + ...+ (pn + qn)2 (4.2)

where p and q denotes two arbitrary points belonging to the same class. Here,

n denotes the total number of features for p and q.

3. Multiply the Euclidean distance by an arbitrary number, r, between 0 - 1.

4. Place a new data point r × d from the original point

A visual representation of SMOTE is shown in Figure 4.3. For more information

regarding SMOTE, see [77].
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Figure 4.3: A visual representation of SMOTE.

ADASYN

The last method is an adaptive version of SMOTE called ADASYN. ADASYN

offers targeted data generation—more synthetic data is generated for neighbour-

hoods where the minority class is heavily dominated by the majority class. For

example, suppose the minority class is distributed into two distinct clusters, with

one cluster having significantly more minority data compared to the other. When

training a ML model on such a data set, the model will perform significantly better

on the minority-dense cluster. ADASYN can be applied here to target more data

generation on the less dense cluster, resulting in comparable model performance for

both clusters. However, ADASYN does not work for sparsely distributed minority

classes where only one data point is present. Additionally, some less dense clusters

are a result of noise. When ADASYN is applied on such clusters, inaccurate minor-

ity data will be created which greatly decrease model accuracy during deployment.

A more detailed explanation of ADASYN can be found in [78].

4.2 Anomaly Detection and Prediction

One of the simplest, yet very effective, classification machine learning algorithm

is the logistic regression [79]. Logistic regression is a binary classification algorithm

(although called regression) that outputs a value between 0 and 1, denoting the
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probability of a certain event occurring. For example, the output value to a logistic

regression model trained on pump failure data denotes the probability of the pump

failing. The model structure of the logistic regression is given as:

ŷ =
1

1 + e−(WT
1 x1+WT

2 x2+...+b)
(4.3)

where e denotes the exponential operator. For multi-class classification, softmax

functions are typically used and are given by:

y =
ezi

k∑
j=0

ezj
(4.4)

where zi is given as:

zi = W T
i,1x1 +W T

i,2x2 + ...+ bi

The dimensions of the parameter matrices are Wj×k and bj×1. Here, j amd k denote

the number of classes and the number of features for each data point, respectively.

Lastly, softmax are typically used because the function is continuously differentiable,

thus allowing for gradient methods to be viable.

4.2.1 Deep Learning Classification and Prediction

A deep learning binary classification model simply modifies the regression neural

network (introduced in the neural networks basic section in Chapter 1) by replacing

the last layer’s activation function to a sigmoid function. More specifically, the

following is the mathematical procedure of the regression neural network model:

z
[1]
j = W [1]x+ b[1]

a
[1]
j = ReLU(z

[1]
j )

z
[2]
j = W [2]a

[1]
j + b[2]

a
[2]
j = ReLU(z

[2]
j )

...

z
[r]
j = W [r]a

[r−1]
j + b[r]
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a
[r]
j = ReLU(z

[r]
j )

y = W [o]a
[r]
j + b[o]

In classification, the last step is simply replaced with:

z = W [o]a
[r]
j + b[o]

y =
1

1 + e−z
(4.5)

For multi-class deep learning classification, the output activation layer is replaced

with the softmax function given in Equation 4.4.

4.2.2 Cost Function for Classification

The classification models are trained using the following convex cost function:

J =
1

N

N∑
i=1

yi · log(f(xi)) + (1− yi) · log(1− f(xi)) (4.6)

where N denotes the total number of training data used for this update step (i.e.,

the size of the mini-batch). Here, yi is the label of the ith training data and f(xi)

is the probability output of the classification model. Intuitively, the cost function

penalizes incorrect misclassifications. For example, if yi = 1 and f(xi) = 1, then

the cost function would be zero. Likewise, if yi = 1 and f(xi) = 0, the cost function

would instead return 1.

4.3 Model Performance Assessment

Often times, accuracy (i.e., % of times the model predicted accurately) is a poor

performance metric for heavily imbalanced data sets. For example, a model that only

predicts false for a classification data set where 99% of the data is false will still result

in a 99% accuracy even though the model has no predictive capabilities. In such

data sets, precision and recall are more proper evaluations of model performance
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[80].

Precision: Percent of time the model successfully predicted a true positive and

is given as:

Precision =
TP

TP + FP
(4.7)

where TP and FP denotes the true and false positives, respectively. A model with

poor precision results in excessive false alarms and lead to operator complacency

quickly.

Recall: Percent of total events detected, given as:

Recall =
TP

TP + FP
(4.8)

A poor recall model misses many anomalous events.

Typically, there is a trade-off between precision and recall for traditional meth-

ods. This could be eliminated, to an extent, using deep learning models trained on

a large repository of data [39]. An acceptable precision and recall depends on the

particular application. For example, highly safety critical systems would require a

near perfect recall because even missing one event could lead to catastrophic dam-

age; therefore, a degree of false alarms is acceptable. On the other hand, safety

non-critical applications may favor a high precision model where every alarm should

be guaranteed to correspond to an actual event. In non-safety critical applications,

false alarms may lead to operator complacency. There do exist models with both

high precision and recall; however, such models require vastly more data to identify.

4.3.1 Interpreting ML Models

Another critical requirement of ML models is that it must provide real value to

the operators. The algorithms presented here create value in two ways: 1) Provide

explainability to the models which can increase intuition and gain addition buy-in

from project shareholders and potential users; 2) provide actionable recommenda-

tions to operators. It is almost useless to tell the operators that the plant will blow
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up in 10 minutes if no details on how to avoid such a fate is not provided.

The model weights can be analyzed to provide explainability for the logistic

regression model.

The explainability of neural networks are significantly more difficult compared to

logistic regression. Indeed, even providing a rough explanation is extremely difficult.

Some simple approaches include permutation importance, partial dependence plots,

and SHAP.

Permutation importance: Permutation importance identifies the importance

of each input feature to the ML model and is applied after the model is identified.

In permutation importance, the columns of the features are shuffled, one at a time.

After each shuffle, the model is re-evaluated with one incorrect feature data. Here,

if the model’s performance significantly reduces after the shuffling of a feature, that

shuffled feature is deemed to have high predictive power. On the other hand, if the

model performance is unaffected, then the shuffled feature is assumed to have little

to no predictive power. This step is repeated for all features in the feature space.

More details regarding permutation importance can be found in [81], an example of

feature shuffling is shown in Figure 4.4.

Figure 4.4: A visual example of permutation importance. Original image from [82].

Partial dependence plots: Partial dependence plots (PDPs) are also evaluated

after a model is identified and are used to show how each feature affects the final

model prediction. On a high level, PDPs are similar to evaluating the weights

of the models, except PDPs also capture additional, more complex, relationships.

Basically, the fitted model is used to predict for the output while keeping all variables

constant except for one.
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Figure 4.5 shows an example of a PDP plot for one variable. The y-axis shows

the change in the prediction (in this case, winning Player of the Game in soccer)

while the x-axis is the number of goals scored. Here, the number of goals scored is

the variable being manipulated. The plot shows how the chance of winning Player of

the Game changes as more goals are scored by a player. In this particular example,

the PDP shows that scoring one goal helps tremendously in obtaining player of the

game; however, any additional goals provide no impact. For more information on

PDPs, see [83].

Figure 4.5: A visual example of permutation importance. Original image from [84].

SHAP: Shapley additive explanations (SHAP) are used to decompose model

predictions so that the impact factor of each variable on the final prediction can be

identified. This analysis is critical for safety-sensitive systems; by applying SHAP,

positive anomaly predictions can be decomposed to identify the root case (i.e., which

feature is causing this prediction to be positive). Overall, SHAP provide values that

interprets the impact of having different values for certain features compared to

if that feature took a baseline value. For example, PDPs show how different the

prediction would be, given a change in one variable. Instead, SHAP shows how the

prediction is affected if one variable was changed, compared to if that variable took

some baseline value. In a multi-feature problem, a SHAP value is calculated from:

yshap =
∑

y − ybaseline (4.9)
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That is, the difference between what was predicted from the actual variable and what

would have been predicted if a baseline value was used. The sum of all individual

SHAP values correspond to how different the predicted value is from the baseline.

Afterwards, a SHAP decomposition graph, as shown in Figure 4.6, can be generated

to explain exactly how the prediction was constructed. Figure 4.6 was originally

generated to predict the % chance of winning the Player of the Game award in a

soccer match.

Figure 4.6: A visual example of permutation importance. Original image from [85].

From Figure 4.6, the red and blue arrows represent variables that resulted in a

higher and lower chance of winning the Player of the Game award. For example,

it can be seen that scoring two goals increased the chances of winning the award

drastically; however, the ball possession being at 38% reduced the chances. A more

detailed description of SHAP can be found in [86].

4.4 Industrial Application of ML Monitoring

The above algorithms were implemented onto an industrial pipeline for monitor-

ing of an unreliable variable frequency drive (VFD) pump. Often times, the VFD

would trip. When the VFD trips, the output pressure of the VFD drops to near zero.

Initially, plant managers just wanted to detect when the VFDs trip through anomaly

detection. For the second phase of the project, the managers wanted to manage the

VFDs proactively; thus, anomaly prediction was used to predict in advance when

the VFDs will trip. Furthermore, management wanted the largest contributors of

the VFD trip.
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4.4.1 Anomaly Detection

In total, the data set contained 54 anomalous events in a span of one year

(525,600 data points) and are shown in Figure 4.7. Some anomalous events lasted

up to a few days but most ended within a few hours. In total, approximately 15%

of the data was anomalous (any values dipping below the dashed red line).

Figure 4.7: Anomalous events of a pump in an industrial pipeline.

The number of anomalous and non-anomalous data in the training and valida-

tion data sets are shown in Table 4.4. In this study, an anomalous sample is any

point below the dashed red line shown in Figure 4.7. For training and validation

purposes, the data underwent a 90/10 split for the anomalous data. In the end,

70,956 anomalous events were contained in the training data set and the remaining

7884 were in the validation data set. The data sets were then mixed with an equal

number of non-anomalous data points. No synthetic data generation methods were

used here because there exists enough anomalous events to build an effective model.

Table 4.4: Training and validation data split.

Anomalous Non-anomalous

Training 70,956 70,956

Validation 7884 7884

Data pre-processing followed similar methods as shown in Chapter 2 to initially

reduce the number of redundant and/or unnecessary features. The initial 785 in-
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put features were reduced to 64 following consulting with subject matter experts,

redundancy analysis, and other analyses. Afterwards, logistic regression was ap-

plied onto the training data set. The learning rate, mini-batch size, and number of

training epochs for the model are 0.001, 256, and 800, respectively. The threshold

for a positive classification was set at 0.5. Ultimately, the algorithm was able to

achieve 99.6% accuracy, 99.3% precision, and 100% recall on the training data. The

performance on the validation data was 99.7% accuracy, 99.6% precision, and 100%

recall. From the results, it can be seen that deep learning was not required.

The largest contributors to the prediction model were:

1. Motor Vibration

2. Current Imbalance

3. Ground Current

4. Discharge Pressure

Although the model above achieved high accuracy in detecting VFD trips, it is a

reactive approach and does not prevent the incident from occurring. Next, anomaly

prediction algorithms will be shown where the events are predicted prematurely.

4.4.2 Anomaly Prediction

Compared to anomaly detection, anomaly prediction is a much more difficult

task. Additionally, the amount of data present will be reduced tremendously. That

is, previously, there were approximately 78,840 anomalous data points; however,

anomaly prediction can only use data right before an incident occurs because its

goal is to identify the dynamics behaviour of incidents before they occur. Therefore,

the total available data for anomaly prediction is only 54—the total number of

events.

The anomaly prediction training and validation data also underwent a 90/10

split where 48 incidents were in the training data set and 6 incidents were in the
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validation data set. The data was then balanced with non-anomalous examples.

For the data augmentation, l = 1 and L = 3 (i.e., predict at least 1 step before

the incident, and use the past 3 time step information for the prediction). The

hyper parameters of the logistic regression were identical to those used in anomaly

detection.

Table 4.5 shows the performance of the anomaly prediction algorithm using dif-

ferent parameters. In the headings of Table 4.5, Syn. Data represents the amount

of synthetic generated data points using ADASYN. Here, 1× means 48 additional

synthetic examples (1× the total incidents). N:A Ratio denotes the normal to

anomalous data ratio. For example, a N:A ratio of 12:1 means that the normal data

points outnumber the anomalous data points 12 to 1. From Table 4.5, it can be seen

that the initial precision was extremely low. With the addition of more normal data

points, the precision increased significantly without much reduction in recall. By

tuning solely the N:A ratio, the best results obtained were 58% precision and 98%

recall. To further increase accuracy, ADASYN was used to generate synthetic data.

After applying ADASYN, the best results achieved increased to 81% precision and

92% recall; still a large gap to ideal performance.

In further improve accuracy, a three layer deep learning classifier was used. The

learning rate, mini-batch size, and training epochs were set to be the same as the

logistic regression. Ultimately, the deep learning classifier was able to achieve both

100% precision and recall.

115



4.4. INDUSTRIAL APPLICATION OF ML MONITORING

Table 4.5: Precision and recall of the anomaly prediction algorithm using different
parameters.

Precision Recall Activation Syn. Data N:A Ratio Algorithm

15% 98% 0.70 0 1:1 Log. regression

30% 79% 0.95 0 1:1 Log. regression

54% 96% 0.70 0 5:1 Log. regression

56% 93% 0.82 0 5:1 Log. regression

41% 38% 0.95 0 5:1 Log. regression

40% 96% 0.70 0 8:1 Log. regression

42% 92% 0.83 0 8:1 Log. regression

58% 98% 0.70 0 10:1 Log. regression

57% 92% 0.83 0 10:1 Log. regression

53% 96% 0.70 0 12:1 Log. regression

57% 96% 0.83 0 12:1 Log. regression

54% 98% 0.70 1× 10:1 Log. regression

62% 92% 0.83 1× 10:1 Log. regression

75% 96% 0.70 5× 10:1 Log. regression

81% 92% 0.83 5× 10:1 Log. regression

100% 100% 0.5 5× 5:1 Deep learning

An example of the prediction algorithm in action is shown in Figure 4.8. It

can be seen that the algorithm predicted the incident approximately 11 minutes in

advance. The short prediction window is due to the suddenness of the events in this

study.

116



4.5. ALARM MANAGEMENT

Figure 4.8: Anomaly prediction of an incident. Prediction algorithm output (top)
as the incident gets closer (bottom).

4.5 Alarm Management

Industry today is plagued with many problems that require advanced algo-

rithms to overcome. Two of the largest problems are production optimization and

alarm management. With continually pressure from environmental groups and ever-

increasing government regulations, large industrial companies are forced to reduce

their environmental footprints while improving output quality. The status quo also

believes in zero-incident policies, i.e., all workplace incidents are preventable and

unacceptable; therefore, it is in the best interest of the companies to implement

effective, yet cheap, safety systems or their social license to operate could be com-

promised. To tackle these issues, we applied artificial intelligence (AI) algorithms in

conjunction with classical approaches to a wastewater treatment plant (WWTP)1.

The objectives were threefold: i) Design self-learning and adaptive RL controllers

to seek out optimal operating strategies. In this case, the controllers must identify

the optimal policy to meet government regulations in the most energy efficient way;

ii) direct adaptive control, allowing the RL controller to learn optimal operating

strategies as the operating conditions change by adapting the policy directly (not

model re-identification), i.e. adapting to changes in season, new government reg-

ulations, etc; iii) superior alarm management by developing state-of-the-art alarm

reduction and prioritization algorithms through pattern recognition and communi-

1This project was funded in part through an engage program with NTwist.
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cation establishment between RL and the alarm system. Objectives 1 and 2 will be

discussed in Chapter 4, objective 3 will be discussed in the following subsections.

Traditionally, alarms were the first line of defense against abnormalities in chem-

ical processes, and were very effective [87]. Due to their cost of implementation,

many teams of engineers and subject matter experts would gather together to brain

storm the most effective alarm strategies. However, today’s plants are littered with

thousands of alarms due to the price of alarms plummeting after the invention of

digital alarms. And because of their sheer number, many alarms are redundant and

convey no additional information. This project aims to firstly reduce the amount

of alarm floods through suppression and pattern recognition. Secondly, an alarm

prioritization algorithm will be introduced so operators can focus their attention on

the highest impact alarms first.

4.5.1 System Description

Figure 4.9 shows a schematic diagram of the WWTP. A dynamic model of

the WWTP was first built using the Benchmark Simulation No.1 documentation

from the International Water Association [88]. The WWTP comprises of a five-

compartment activated sludge reactor and a ten-stage gravity separator. The first

two compartments of the reactor are anoxic tanks, the last three compartments are

aerobic tanks. The two control loops are:

• Manipulating the oxygen transfer coefficient (KLa5) to control the dissolved

oxygen level in tank 5

• Manipulating the internal recycle flow rate (Qa) to control the nitrogen level

in tank 2
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Figure 4.9: Schematic of the WWTP process. Original image from [88].

The WWTP contains 145 states, 2 control actions, and 14 disturbances. The

states describe the characteristics of the overall WWTP system and contain process

variables such as the flow rate and product compositions. There are three sets of

disturbances available to the WWTP: i) Dry weather data. ii) Rain weather data.

iii) Storm weather data. The results presented here use the dry weather data. For

more detailed information regarding the WWTP, please refer to the Benchmark

Simulation No.1 documentation [88].

There exists five environmental constraints on the process:

1. Total nitrogen (Ntot)

2. Chemical oxygen demand (COD)

3. NH+
4 +NH3 nitrogen (SNH)

4. Total suspended solids (TSS)

5. Biochemical oxygen demand (BOD)
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The threshold for the environmental constraints is given as follows:

Alarm =



On, Ntot > 10

On, COD > 100

On, Snh > 4

On, TSS > 30

On, BOD > 10

(4.10)

If any of the above constraints are violated, an alarm will sound.

4.5.2 Basics of Alarms

In simple terms, alarm management is a special case of fault detection problem.

Let fi ∈ F be a set of possible faults and Ai ∈ A be a set of possible alarms. On

a high level, fi → Ai. That is, all alarms are generated by some fault or some

sequences of faults. In alarm management, the objective is reversed. That is, Ai is

given, and the fault, fi, that caused Ai must be identified instead.

In industrial processes, alarm floods are mostly caused by chattering and redun-

dant alarms or by poor alarm threshold design [87]. Chattering alarms often occur

on noisy process variables. Here, the measurement(s) repeatedly violate the alarm

limits purely due to measurement noise and do not pose any threat to the operation.

Redundant alarms refer to ones that repeat the same information as previous alarm.

For example, placing two alarms on a pipeline in series will cause the second alarm

to be redundant because any process upsets will already be reported by the first

alarm. Furthermore, many alarms are just poorly designed and contain extremely

low thresholds; thus, activating even when no process upsets are present. Given

that thousands of alarms may be triggered at once, the prioritization of different

alarms is equally difficult. In this study, alarm reduction methods based on pattern

recognition and RL will first be introduced. Then, an alarm prioritization method

on RL will be shown.
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4.5.3 Alarm Reduction

The first algorithm in the proposed alarm management system is alarm reduc-

tion. Here, two methods will be proposed: 1) Alarm sequencing based on pattern

recognition; 2) Alarm suppression via RL.

Alarm Sequencing

The first alarm reduction algorithm is called alarm sequencing. The main goal is

to create a sequence dictionary comprising of alarms that often occur (temporally)

together [89]. For example, if alarms 1 and 2 frequently occur one after another, an

alarm sequence, Sequence 1, could be generated representing alarms 1 and 2. During

an alarm flooding scenario, operators would see sequence 1 rather than alarms 1 and

2. In this simple scenario, the number of alarms appearing in the console would be

halved. More significant reduction in alarms can be achieved if 10 or 100 alarms

often occur together. The steps for the alarm reduction algorithm during initial

set-up and online implementation is shown in Table 4.6.
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Table 4.6: Alarm reduction algorithm

Alarm Reduction Algorithm

Alarms from Plant

Receive process alarms (typically as integers)

Alarm Coupling

Initialize alarm combinations list

Group all alarms in pairs

Save grouped alarms in list

Group all alarms in triplets

Save grouped alarms in list

...

Repeat until all alarms are grouped into one

Sequence Identifier

Count amount of times each sequence occurred

Sequence Dictionary Generation

Initialize sequence dictionary

If group alarm occurred ≥ n

Add grouped alarm to sequence dictionary

Return Sequence Dictionary

Online Implementation

Receive alarms from process

Alarm Masking

Group previous two alarms

Check sequence dictionary for match

If match

Replace previous two alarms with first alarm in sequence

Group previous three alarms

Check sequence dictionary for match

If match

Replace previous three alarms with with first alarm in sequence

...

...

Repeat until end of sequence dictionary

During online implementation, the alarm sequences are masked with the first

alarm in the sequence because it typically corresponds to the root cause of the

entire alarm sequence [89]. Moreover, simply displaying alarm sequences do little to
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help operators because it is essentially the same amount of alarms, except displayed

in a more condensed format.

Alarm Reduction through Suppression

The second alarm reduction method suppresses low impact alarms altogether.

The algorithm starts by using RL to assign credits to different alarms via the optimal

value or action-value functions, v∗(x) and Q∗(x, u), respectively. During alarming

events, alarms failing to exceed a threshold value will be suppressed and hidden

from operators and is given mathematically by:

Alarm =


On, if v(x) < z

Off, otherwise

where z denotes some arbitrary threshold. Intuitively, this algorithm assesses each

new alarm through observing the value of the current operating condition, v(x).

During critical events where alarms are necessary, v(x) are intrinsically low because

the plant would be operating far from ideal; however, during normal operations

littered with nuisance alarms, v(x) remains high resulting in suppression of all nui-

sance alarms. This algorithm also acts as a multi-dimensional alarm system. That

is, typical alarms occur after a higher or low limit is exceeded and do not consider

multi-dimensional effects. By using the value functions of the process, the interac-

tion effects can be additionally captured.

During initial identification of the v(x) or Q(x, u) values, both Markov reward

processes (MRP) or Markov decision processes (MDP) can be used. MRPs are used

if only the alarm suppression algorithm is of interest and no actions are involved.

MDPs should be used if the plant managers also want to understand the optimal

actions during different alarm events. When using Q(x, u), alarms are assigned the

average Q(xi, u) for xi (i.e., average of Q(x, u) across all possible actions).

Because Q-values may have significantly different magnitudes depending on the
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reward function design, the Q-values are first normalized using:

Qi,norm =
Qi −Qave

σ
(4.11)

where σ denotes the standard deviation of the Q-values. In tabular cases, the

mean and standard deviation of the Q-values can be found trivially because all Q-

values are shown in the Q-table; however, deep RL approaches may face challenges.

One recommended solution would be to discretize the system and calculate the

corresponding Q-values for each set of states and actions. For example, suppose

there exists a SISO system with x ∈ [0, 5] and u ∈ [5, 10]. The states and actions

can be discretized as: x = [0, 1, 2, 3, 4, 5];u = [5, 6, 7, 8, 9, 10] and the average Q-

values can be calculated as:

Qave =
1

p× q

p,q∑
i,j=0

Q(xi, uj|θ) (4.12)

where xi and uj are the ith and jth state and action, respectively. Moreover, the

standard deviation can be calculated as:

σ =

√∑
(Qi −Qave)2

p× q (4.13)

By normalizing the Q-values, the alarm threshold, z, across multiple units within

a plant will share similar magnitudes and can be tuned easier. Tuning of z is

dependent on the risk tolerance of the plant manager. For a high amount of alarm

suppression, z can be tuned exceptionally low. The steps to implementing this alarm

reduction algorithm is as follows:

1. Initialize the process and initialize the RL agent using any RL algorithm tabula

rasa.

2. Allow RL to learn the value or action-values of the process through any tra-

ditional way (alarms are not required).
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3. After training, find the mean and standard deviations of the Q-values through

Equations 4.12 and 4.13.

4. Online implementation: monitor alarms. Any new alarm will be assigned the

value or action-value at the time of their occurrence. For alarm sequences, the

assigned value is an exponentially weighted moving average (given in Equation

3.1) of the alarm values inside the sequence. An EWMA was used because

newer alarms matter more than old.

4.5.4 Alarm Prioritization

During alarm flooding events, alarm reduction algorithms may reduce the amount

of alarms to less than 5% of total alarms. However, it does not solve the root cause

of the problem. Also, 5% of thousands of alarms is still far from useful and too much

for a few operators to handle; therefore, a second algorithm was designed to sort

the active alarms by a score. Lower scores denote more dangerous alarms and will

be placed on the top of the alarm log. Through this algorithm, the operators are

equipped with knowledge regarding the priorities of different alarms and can work

to resolve the safety critical ones first.

The alarm prioritization algorithm is shown in Table 4.7. On a high level, each

alarm is assigned a value based on the current condition of the plant. Alarms

with higher values denote normal plant behaviour and are seen as unimportant.

Contrarily, alarms with low values correspond to poor plant performance; thus,

alarms associated with low values may be critical.
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Table 4.7: Alarm prioritization algorithm.

Alarm Prioritization Algorithm

Alarms from Plant

Receive process alarms (typically as integers)

Communication establishment with RL controller

Return value or average action-value in the given state

If new alarm is part of an existing sequence

Calculate the EWMA Q-value given previous values

Assign Q-value to alarm sequence

Else

Assign value or average action-value to the event

Alarm Sorting

While value of new alarm is higher than alarm below

Move sequence down alarm log

Return sorted alarm log

Tables 4.8 and 4.9 shows a comparison between a traditional alarm log compared

to the proposed algorithm. Comparing the alarm logs, it can be seen that the

SMART alarm system was able to vastly reduce the amount of alarms, while putting

the most important alarms on the top of the list. Additionally, the top alarm is

comprised of a sequence of alarms. The first alarm in the sequence (HH Vessel 2)

is shown because it is assumed to be the root cause. Other alarms were not shown

because their corresponding values are higher than the filtering threshold, z.

Table 4.8: State-of-the-art industrial alarm system. L, H, LL, and HH corresponds
to low, high, low low and high high levels.

Events Status Date Analysis Value Limit

1 Warning March 22 L Vessel 5 1.05 1.10

2 Warning March 22 H Tank 2 61.2 60.0

3 Warning March 23 L Vessel 3 0.96 1.15

4 Alarm March 23 HH Tank 1 1.51 1.10

5 Warning March 23 L Vessel 2 32.7 33.5

6 Alarm March 23 HH Tank 3 40.2 33.5
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Table 4.9: SMART alarm system.

Date Status Equipment RL Value

March 22 Alarm - Sequence HH Tank 1 2.5

March 23 Warning H Tank 2 9.5

March 23 Warning L Vessel 2 10.5

4.5.5 Simulation Results

The algorithms proposed above were simulated on the WWTP. During training,

the system was formulated as a MDP and the agent was trained for 10,000 episodes

where each episode comprised of a 14 day period of dry weather. Intuitively, the

agent was trained for approximately 383.6 years in simulation time (2 hours physical

time). After training, the simulation was reset and the storm weather data was

used. The storm weather data was used because it is guaranteed to create many

alarms in the system. In this study, warnings are triggered when values exceed

75% of the constraints shown in Equation 4.10. Moreover, alarms are triggered

if the constraints are violated. To replicate a redundant alarming scenario, Snh

alarms are placed on each stage of the separator; therefore, after one Snh alarm

triggers, 9 additional alarms will follow due to redundancy. Moreover, alarms are

placed on the overall system to measure the other constraints as well. To activate

the alarm management system, the alarm sequence dictionary must first be built

through pattern recognition.

The alarm sequence dictionary was first built by running the simulation once to

identify common alarm sequences. Alarm sequences were built based on the same

alarm sequence happening more than 4 times. Additionally, any alarms above z =

0.5 was filtered from the alarm log. After z and the alarm sequence dictionary were

specified, the alarm management system was ready for use. Two simulations were

ran: one without the alarm management system and one with the alarm management

system.

Without the system, there were 185 alarms generated within the process with
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no prioritization. With the system, only 33 alarms were generated, resulting in a

82% reduction in total alarms. Furthermore, the alarms were organized based on

their priority.

The algorithms presented above are exploratory in nature and demonstrate the

potential of RL in alarm management and root cause analysis problems. Here,

three algorithms are presented to reduce and prioritize alarms with the assistance of

RL. The presented algorithms have shown potential in a simple simulated example;

however, have not been applied to large scale systems with thousands of alarms.

One identifiable flaw with the sequencing technique is its space complexity. In large

industrial settings, there could exist millions of different sequences, rendering the

method computational infeasible. To implement the alarm sequencing portion of

this project, more research will be required.
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Chapter 5

Machine Learning for Control

Applications

Advanced process control and optimal control have traditionally used mathemat-

ical programming based trajectory optimization methods [10], [33], [62], [63]. The

effectiveness of these methods in addressing multi-stage optimal control problems

has been widely demonstrated; however, industrial scale application of such meth-

ods in stochastic multiple-input multiple-output (MIMO) systems are still limited

due to design and computation complications [90]. For example, accurate model

identification of complex MIMO non-linear systems is challenging. Even if a model

were to exist, the computational cost for the non-linear program could be infeasible

for online applications. Furthermore, the optimized trajectory to systems contain-

ing uncertainty uses stochastic programming with only a finite number of uncer-

tainty scenarios and uncertainty information is assumed to be known. In practice,

such information is typically unknown, non-stationary and are uncertain themselves

[91]. Moreover, the prediction and control horizon of the trajectory optimization for

large MIMO systems are generally truncated to ensure feasible computation time.

Though, the identified optimal trajectory for short horizons is typically local optimal

solutions [10]. Lastly, mathematical programming (MP) methods require accurate

dynamical system models (although no models are perfect in real life); intuitively
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bottlenecking the optimality of the solution, a scenario similar to supervised learn-

ing.

Comparatively, RL online computational time is significantly shorter even for

long control horizons or large-scale MIMO systems because the optimal solutions

are pre-computed and stored offline, a concept similar to explicit model predictive

control (MPC) where parametric programming is used [60]. Furthermore, RL finds

the optimal policy through meaningful interactions with the environment. After each

interaction, values are assigned/updated for the visited state. The value functions

are stored for future decision making. Through this identification process, the value

functions implicitly contain the uncertainty information of all x ∈ X . From these

unique features of RL in control applications, it is a natural curiosity to explore its

potential in the process control industry.

The contributions made in this chapter are as follows:

1. Introduction of a simple, cost-effective, and explainable RL algorithm for pro-

cess control. The method is also continuous and non-linear.

2. Compared RL and deep RL to traditional optimal control methods such as

MPC.

3. Applied RL to an industrial grade waste water treatment plant (WWTP)

for optimal control. Results were compared to MPC, economic MPC, and

distributed MPC frameworks.

4. Applied RL for fault prediction and fault tolerant control applications.

5.1 An direct adaptive optimal control method

On a high level, optimal control methods extremize the functional equation of

a system through MP methods. In literature, it was found that optimal control

methods are less tractable both computationally and analytically compared to set-

point tracking or regulations methods (due to non-convex optimization among fac-
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tors). Consequently, adaptive optimal control methods have received less academic

attention, with most existing studies focused on indirect methods like model re-

parameterization [92]. In [92], RL was shown to be an effective direct adaptive

optimal control method as it adapts its control policy directly. Direct adaptive opti-

mal control methods are especially useful for systems where accurate models are not

identifiable and/or available. In such scenarios, indirect methods struggle because

the accuracy of the model is paramount for successful control. On the other hand,

direct methods can update the control policy directly through interactions with

the system, eventually arriving at the optimal policy. In [93], the authors showcased

RL’s directly adaptive nature by applying an agent onto the control system of a data-

center cooling application. In such systems, accurate models are difficult to identify

due to complex non-linear relationships between thousands of variables. However,

the agent here was able to adapt to the optimal policy directly after sufficient online

interactions which ultimately resulted in 22% reduced power consumption compared

to model-based approaches. Likewise, [94] applied RL onto power systems with

ever-changing load fluctuations. The agent was still able to adapt its policy after

sufficient online interactions. The authors in [95] demonstrated deep RL’s direct

adaptive nature through its application onto wireless networks, ultimately resulting

in superior control compared to all previous methods.

5.2 Controlling a VFD using Q-learning

A detailed quantitative example is provided in this section to serve as a gentle

introduction of RL’s applicability in process control systems 1. Here, the off-policy

tabular Q-learning algorithm with upper confidence bound (learning acceleration

heuristics) was used for output pressure tracking of an industrial variable frequency

drive (VFD) pump.

1For further intuition, the supplementary code for all results generated in this section are
located at: https://github.com/RuiNian7319/Research/tree/master/2.RL Codes/Mechatronix
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5.2.1 System Description

The industrial VFD system is built by Turbine Technologies and is called the

FLUIDMechatronix. On the system, there exist thousands of different tags measur-

ing various states. For this control example, the output pressure, Pout, and pump

RPM will be used. From the FLUIDMechatronix manual, the safe operating ranges

of the pressure and pump RPM are:

0 kPa ≤ P ≤ 45 kPa

0 Hz ≤ RPM ≤ 60 Hz

In terms of system representation, a FOMDP will be used because all system mea-

surements are available and the system dynamics are fast. Initially, the system

starts in:

P0 = 41 kPa (5.1)

u0 = 60 RPM (5.2)

Figure 5.1: The FLUIDMechatronix experiment from Turbine Technologies [96].

Implementing RL for the control of an industrial process typically involves four

steps: i) Model identification; ii) agent design; iii) initial training; iv) online cali-
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bration. The details of each step are shown in 5.2.

Figure 5.2: General procedure for implementing industrial reinforcement learning.

5.2.2 Step 1: Model ID

One major drawback of RL is its unreasonable data efficiency. In fact, it may

take thousands of interactions before anything meaningful is first learned. As such,

implementing RL to learn online is time-infeasible because decades may pass before

the optimal policy is identified. To overcome this flaw, a representative simulation

model can first be constructed to pre-train the agent offline. After adequate per-

formance is observed in simulation, the agent can be implemented online. Initially,

the agent will calibrate its policy to the live process to overcome any model-plant

mismatches. The time required for calibration is heavily dependent on the accuracy

of the simulation model. For perfectly representative models, such as video games,

a calibration time is not required. Afterwards, optimal control can commence.

For model identification, pseudo-random input signals were used to provide ex-

citation to the VFD for input-out data generation. The data collection process

was terminated after 18,000 input-output signals were obtained. Then, a quadratic

model was identified using least squares. The identified model is given as:

Pout = 0.012 ·RPM2 + 0.024 ·RPM − 2.073 (5.3)

The mean squared error (MSE) of the identified model was 0.056 and the fitted
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model compared to the experimental data is shown in Figure 5.3.
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Figure 5.3: Performance of the identified system model on a test data set.

5.2.3 Step 2: Agent design

The overall RL paradigm for this example is shown in Figure 5.4. Intuitively, the

agent tracks a set-point for the output pressure by manipulating the pump RPM.

To allow for the tracking of a variable set-point, the state of the agent is the current

tracking error:

ε = Pt − Pt,sp (5.4)

and the action is the change in pump RPM ∆u. Here, Pt is the pressure at time t

and sp denotes the set-point. This velocity based implementation is a requirement

for tracking multiple set-points. If the action was the pump RPM instead (and not

∆u), then the agent would fail to track multiple set-points since it simply maps

different tracking errors to one pump RPM that corresponds to one set-point. For

example, suppose the current set-point is 10 kPa and Pt = 0 resulting in a -10

tracking error. Here, suppose the optimal RPM is u = 20. After implementing

u = 20, the system reaches steady state and achieves a tracking error of 0. After

some time, the machine operator may then decide to change the set-point to 20 kPa.

Now again, the tracking error is -10; however, the RPM from the agent would still
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be u = 20 because the state-action is a 1 to 1 mapping; thus, unable to track any

changes in set-points.

The reward function of the agent is given by:

r(x, u) = max(−ε2 −∆u,−200) (5.5)

where ∆u is the change in input to discourage the agent from making unnecessary

actions. Additionally, the reward is clipped to -200 for convergence properties and to

avoid numerical issues as explained in the reward clipping section. The upper reward

limit is not clipped because the function is naturally capped at 0. Here, the agent

evaluates every five seconds to guarantee that steady state has been reached before

consecutive actions are made. Five-second was chosen because it was identified to

be the longest transition time required. Moreover, the decision making would not

be Markovian (i.e., observed states are not independent of the past because the

states do not provide the transition information to the agent) if the agent evaluates

during the transition period. In such scenarios, the agent will fail to learn anything

meaningful.

Figure 5.4: The RL set-up for the FLUIDMechatronix experiment.

All hyper parameters of the agent are shown in Table 5.1. The states and actions

of the agent are discretized as:

x = [−20,−19, ..., 20]1×41 (5.6)

u = [−10,−9, ..., 10]1×21 (5.7)
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totalling 861 different action-values to identify. Furthermore, the Q-matrix storing

all the action-value functions is shown in Figure 5.5. The agent is initiated with all

action-values as 0, a condition known as tabula rasa.

Figure 5.5: Q-matrix of the Mechatronix system.

The states and actions on the axis of the Q-matrix correspond to ε and ∆u,

respectively. The discount factor, γ, was 0.9. Altogether, 2,000,000 time steps

were used to train the agent (corresponding to 115.7 days of continuous operating

experience). After every 400th time step, the agent’s state and action was reset back

to Equations 5.1 and 5.2 to prevent extreme controller saturation.

The agent uses a equiprobable random exploratory policy (ε = 1) to conduct

initial exploration. Throughout training, ε is slowly and linearly decayed until ε =

0.1 by the 500,000th update. Likewise, the learning rate is initiated at 0.7 and also

linearly decays until 0.001.
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Table 5.1: Summary of the agent’s hyper parameters in the Mechatronix experiment.

Hyper Parameter Value

States, x ε = [−20,−19, ..., 20]1×41

Actions, u ∆u = [−10,−9, ..., 10]1×21

Reward, r max(−(ε2 + ∆u), -200)

Learning rate, α [0.001, 0.7]

Discount factor, γ 0.9

Exploratory factor, ε [0.1, 1]

Evaluation time 5 seconds

System representation FOMDP

5.2.4 Step 3: Initial training

The agent behaves as follows: the agent observes some initial tracking error εt

and performs a random action ∆ut with accordance to its behaviour policy (initially

equiprobable random). Next, the pump RPM corresponding to ut = ut−1 + ∆ut is

sent to Mechatronix. After five seconds, the agent receives reward Rt+1 and then ob-

serves new tracking error, εt+1. Using the tuple (xt, ut, rt+1, xt+1), the agent updates

its current knowledge via Equation 2.38. This step is repeated many times until

the optimal policy, π∗, is identified. A numerical walk-through of the calculations is

shown below:

Suppose another simpler agent was constructed for this system. For this

agent, the system was discretized into five states and three actions:

x = [−21,−10, 0, 10, 21]1×5

u = [−1, 0, 1]1×3

Consequently, the Q-matrix was initialized as:
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Q(x, u) =



0 0 0

0 0 0

0 0 0

0 0 0

0 0 0


where the rows and columns correspond to the different states and ac-

tions, respectively. The system’s set-point was initially at 30 kPa. The

agent was initiated at steady state with 15 kPa and 37 RPM, resulting

in ε = −15. At t = 0, the agent receives the error and rounds it to the

nearest discretized value, x = −10. Given this state, the agent uses the

Q-table and picks the action that corresponds to the highest Q value

(note if a equiprobable random policy was initially followed, a random

action would be selected instead):

Q(−10, u) = [0, 0, 0]

where the three values correspond to the predicted action-values for se-

lecting actions ∆u = −1, 0,−1, respectively. Since the agent is inex-

perienced and has not been provided with prior information about the

system, it thinks that all three actions are indifferent; therefore, the

agent will pick an arbitrarily action to learn more about the system.

Moreover, during scenarios where Qmax = Q1 = Q2 = ... = Qn, ties

must be broken arbitrarily to avoid biasing one action over all others.

Assuming that u = −1 was picked, the system will transition to 13.8

kPa. After five seconds, the new observed tracking error would be -

16.2. Clearly, this was a sub-optimal action; if the pressure was already

lower than the set-point, it would be intuitive to increase pump RPM

instead. However, a tabula rasa agent is not aware of such a phenomenon,
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humans only know this through prior experience. Here, the agent would

also receive reward:

max(−16.22 − 1,−200) = −200

and be in new state x1 = −21. From this interaction, the agent would

then update the Q-matrix using Equation 2.38:

Q(−10,−1)← Q(−10,−1) + 0.7[−200 + γQ(−21, 0)−Q(−10,−1)]

Q(−10,−1)← 0 + 0.7[−200 + 0.9 · 0− 0]

Q(−10,−1)← −140

and the updated Q-matrix would be given as:

Q(x, u) =



0 0 0

−140 0 0

0 0 0

0 0 0

0 0 0


In this case, all three u’s for Q(xt+1, ut+1) are also reward maximizing;

therefore, the ties here must also be broken randomly to avoid unneces-

sary bias. Suppose the system was reset, initiating at x0 = −10. This

time, the Q-matrix provides:

Q(−10, u) = [−140, 0, 0]

telling the agent that ∆u = −1 is a sub-optimal compared to ∆u =

0 or 1. For a reward maximizing agent, either ∆u = 0 or 1 would be

picked instead.
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After many interactions with the system, the Q-matrix now becomes:

Q(x, u) =



−152 −133 −120

−149 −121 −99

−31 −22 −33

−102 −142 −162

−152 −162 −177


Now, the agent has vastly more knowledge about the system and can

begin acting optimally. After resetting the agent back to x0 = −10, the

decision making of the agent is now deterministic. The corresponding

action-values given x0 = −10 are:

Q(−10, u) = [−149,−121,−99]

Here, the agent would pick ∆u = 1 corresponding to Q(−10, 3) = −99

(greedy action) and the system would transition to P1 = 16 kPa. Al-

though the error is still closest to -10 (set-point is 30 kPa), the reward

obtained is much better compared to actions -1 or 0. The new update

step is given as:

Q(−10, 1)← Q(−10, 1) + 0.001[−197 + γQ(−10, 1)−Q(−10, 1)]

Q(−10, 1)← −99 + 0.001[−197 + 0.9 · −99 + 99]

Q(−10, 1)← −99 + 0.001[−187.1]

Q(−10, 1)← −99.19

Here, α is much lower compared to previously due to the continuous

decay throughout the training process. The currently TD error is -187.1,
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still quite a high value. Eventually, all TD errors will approach near-zero

and the agent’s policy will become optimal.

The reward obtained across the 2 million training steps is shown in Figure 5.6.

Ultimately, the reward was unable to become zero because the lower bound of ε was

set to 0.1, forcing exploratory moves even when the agent had the capability of acting

optimally. During training, the set-point was drawn from a Gaussian distribution

N(30, 5).
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Figure 5.6: Loss curve of the agent during training.

5.2.5 Step 4: Online calibration

The agent was then applied onto the real process to track pressure set-points

of 35 and 5. The output pressure trajectory of the Mechatronix is shown in 5.7a

and 5.7b. Performance-wise, the MSE was 14.2 and 15.5 for set-points 35 and 5,

respectively. To ensure a fair comparison, both cases started with initial pressures

approximately 5.5 kPa above the desired set-point. In this simple set-up, the agent

behaves much like a PID where the RL maps tracking errors to changes in input

and is linear in nature. Unfortunately, such a set-up only works well locally for

non-linear systems. Moreover, the performance decreases significantly as the agent

ponders away from the linear region, as shown in Figure 5.7b. In this experiment,

141



5.2. CONTROLLING A VFD USING Q-LEARNING

the agent’s performance is significantly better when tracking P = 35 because the

training set-points were heavily biased towards P = 35. From Figure 5.3, it can be

seen quite obviously that the controller gain changes significantly at lower pressures,

resulting in the optimal policy for the higher pressure range being completely sub-

optimal at lower pressures. Furthermore, the large off-set seen in these trajectories

is caused by the discretization error; there exists no action ∆u ∈ U that can obtain

exactly P = 35 or 5 kPa. To overcome this, one option is to discretize the action

space more finely, but this will unavoidably increase the training time and space

complexity required by the agent (perhaps by a massive margin). A simpler way

will be introduced in the latter half of this example.
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Figure 5.7: Pressure trajectory of the Mechatronix experiment. Solid line represents
the average of 10 runs to ensure reproducability. Shaded area correspond to one
standard deviation.

5.2.6 Extension to Non-linear Systems

A simple, cost effective way for the agent’s capabilities to extend to non-linear

systems is to model the system using a linear parameter-varying model as shown

in Figure 5.8. This way, each sub-piece of the model is linear, allowing even linear

control laws to be optimal. To create a Markovian setting, the agent will receive
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this information through a second state given by:

x(2) =



1, if P ≤ 10

2, if 10 < P ≤ 20

3, if 20 < P ≤ 30

4, if 30 < P ≤ 50

5, P > 50

The new state space for the agent is given by:

x = [(−20, 1), (−20, 2), (−20, 3), ..., (−19, 1), ..., (20, 5)]1×205 (5.8)

where the first value denotes the error and the second value correspond to the

region the agent is currently in. Here, the Q-matrix will be initialized as 0(41·5)×3

to accommodate for the second state. Intuitively, the agent now observes both the

magnitude and the context of the incurred tracking error; intrinsically, allowing the

agent to change its policy depending on the region it is currently in.

Figure 5.8: Approximating the non-linear Mechatronix system.

The new agent was implemented onto Mechatronix after 2,000,000 time steps of

training. The new agent’s output pressure trajectories for tracking P = 35 and 5
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are shown in Figures 5.9a and 5.9b. Performance-wise, the agent achieved MSEs

of 14.2 and 12.5 for the higher and lower set-point; a massive improvement for the

lower set-point. Nevertheless, the offset still exists.
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Figure 5.9: Pressure trajectory using the non-linear agent. Solid line represents
the average of 10 runs to ensure reproducability. Shaded area correspond to one
standard deviation.

5.2.7 Extension to continuous states and actions

Because the non-linear system was approximated using a LPV model, the control

law for the system should be always linear. Because of this, linear interpolation can

be used to find the optimal control action using [97]:

u = ulow + (x− xlow)
uhigh − ulow
xhigh − xlow

(5.9)

where x is the actual tracking error; typically, the exact value of x is not included in

the discretized state space X . Instead, x is typically between xhigh and xlow, where

xhigh and xlow correspond to the state that is higher and lower than x, respectively.

For example, if the discretized state space is given as x = [0,−5,−10] and the

current state is -3, xhigh and xlow would be 0 and -5, respectively. Similarily, uhigh

and ulow are the greedy actions for xhigh and xlow, respectively. For example, given

the action space u = [−5, 0, 5] and Q−matrix:
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Q(x, u) =


−5 2 1

4 1 −2

−2 0 3

 ,

uhigh and ulow are 0 and -5 (actions corresponding to the index of the highest

Q-value), respectively. Moreover, the optimal action for x = −3 would be:

u = −5 + (−3 + 5)
0 + 5

0 + 5

u = −3

With the addition of interpolation action selection, the 2-state RL agent (without

re-training the agent) achieved pressure trajectories shown in Figures 5.10a and

5.10b with MSEs of 13.6 and 11.7, respectively. Additionally, it can be seen that

the off-set is completely eliminated.
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Figure 5.10: Pressure trajectory of the non-linear agent using interpolation action
selection. Solid line represents the average of 10 runs to ensure reproducability.
Shaded area correspond to one standard deviation.

5.2.8 A Study on Interpolated RL

As shown in previous examples, a critical flaw regarding tabular RL is its dis-

cretized states and actions. In control problems requiring precise actions, the al-

gorithm assumes sufficient discretization resolution is provided. Unfortunately, in-
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creasing resolution of the system greatly increases the time required for RL to learn

the optimal policy. Contrarily, a system with coarse discretization results in sub-

optimal control and large off-sets. One simple, yet effective way to extend RL to

continuous space without dramatically increasing training time is to interpolate ac-

tions (as shown above). Here, an agent with and without interpolated actions will

be applied a low resolution SISO system to explore the technique’s effectiveness.

The SISO system is given by:

ẋ = −4x+ 2u

y = x

The RL hyper parameters are given in Table 5.2.

Table 5.2: A low resolution RL agent’s hyper parameters.

Hyper Parameter Value

States, x ε = [0, 1, ..., 8]1×9

Actions, u ∆u = [5, 6.4, ..., 16]1×9

Reward, r max(−(ε2 + ∆u), -200)

Learning rate, α [0.001, 0.7]

Discount factor, γ 0.9

Exploratory factor, ε [0.1, 1]

Evaluation time 1 seconds

System representation FOMDP

Figures 5.11a, 5.11b, 5.12a, and 5.12b compare the agent’s performance with

and without interpolated actions after experiencing no, low, medium, and large dis-

turbances. The tracking errors of the systems are provided in Table 5.3. From the

trajectory figures, it can be seen that the oscillations in the input are completely

removed; a significant benefit during implementation due to reduced wear-and-tear

on the actuator. The tracking performance also significantly increases and results
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in no oscillations. In terms of performance, the % improvement decreased dur-

ing larger disturbances due to the disturbance dominating the majority of the error.

From Table 5.12b, interpolated RL never performed worse than normal RL, suggest-

ing that there is little downside to implement this method other than the slightly

increased computational cost. Note that the algorithm cannot be used for extrap-

olation; therefore, interpolated actions cannot be conducted for states that surpass

the largest discretized state.

(a) State and input trajectory of the system
with no disturbance.

(b) State and input trajectory of the system
with small disturbances.

(a) State and input trajectory of the system
with medium disturbances.

(b) State and input trajectory of the system
with large disturbances.

Table 5.3: Tracking error for the agent with and without interpolated actions.

Normal RL Interpolated RL % Change

No disturbances 11.3 4.8 58

Small disturbances 14.5 8.6 41

Medium disturbances 25.9 19.7 24

Large disturbances 46.0 56.0 22
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5.2.9 Final Remarks

The RL methods introduced in this section along with their respective charac-

teristics are summarized in Table 5.4. Throughout this section, a simple RL agent

was implemented onto an industrial VFD system. It was shown that the vanilla

algorithm was unable to handle either non-linear systems or achieve off-set free con-

trol; therefore, simple, implementable techniques that extended the agent’s ability to

non-linear systems and for off-set free control were introduced. Each state trajectory

in this study was replicated on the live systems 10 times to ensure reproducability;

the standard deviation for every algorithm was very narrow, representing highly

reproducible results (indirectly, less risk).

Table 5.4: A comparison between RL, MPC in literature, and industrial MPC soft-
ware.

Normal Q-learning 2-state Q-learning 2-state interpolated Q-learning

MSE (High/Low SP) 14.2 & 15.5 14.2 & 12.5 13.6 & 11.7

Offset Yes Yes No

Non-linear No Yes Yes

In the implementation above, the agent only provided the input for the immediate

future. A concept very similar to MPC where only the next input is used; however,

MPC is considered receding horizon control, where an input trajectory for future

steps is also calculated. Using this trajectory, MPC is viable for short horizon open-

loop control. Comparatively, RL can also conduct receding horizon control. Such RL

methods typically employ a model of the system and are called planning methods.

In receding horizon RL, the agent still only outputs the immediate control action;

however, it then uses the model to identify the next state and its corresponding

optimal control action. The cycle continues until the set control horizon is met.

Additionally, like MPC, the trajectory is heavily inaccurate for long control horizons.

The example shown here is simple, has a pre-set sampling time and does not con-

sider transition dynamics or unobservable states. For systems containing dynamic

transition times and to consider systems dynamics, semi-MDPs must be used. The
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semi-MDP variant of Q-learning algorithm is [25]:

Q(x, u)← Q(x, u) + α

[
1− e−βτ

β
r(x, xt+1, u) + e−βτ max

ut+1

Q(xt+1, ut+1)−Q(x, u)

]
(5.10)

where r(xt, xt+1, u) is the reward rate and is provided in Equation 5.39. For systems

with unmeasurable states, concepts of POMDPs provided in Chapter 1 should be

used.

5.3 Optimality Evaluation of Reinforcement Learn-

ing

UCB tabular Q-learning suffers from discretized states and actions and the curse

of dimensionality. To overcome such issues, deep RL will be explored. More specif-

ically, this section uses the deep deterministic policy gradient (DDPG) algorithm

introduced in Chapter 1. DDPG offers several advantages and disadvantages com-

pared to tabular Q-learning. The advantages are that it can handle continuous

states and perform continuous actions. Furthermore, the scalability of the algo-

rithm is greatly enhanced because deep function approximators are used to map

states to actions, rather than a Q-table. However, these advantages come with some

disadvantages. First and foremost, DDPG is a black box approach and employs

four deep neural networks to perform function approximation; therefore, explicitly

identifying the control policy for DDPG is nearly impossible. Secondly, the function

approximations cause small perturbations in control. That is, the control outputs

can sometimes contain small jitters (given an ideal output of 1, DDPG may output

values between 0.995 - 1.005). Intuitively, this is caused by the generality of the

algorithm and can be related to humans. Humans possess perhaps one of the most

general intelligence available, yet we are not even capable of drawing a straight line.

DDPG follows a similar idea; the algorithm is so general that it sometimes struggle

with highly precise actions. For advanced details regarding DDPG, see [47].
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The objective of this section is to explore the optimality of RL and how closely

it can approach the optimal solution (assuming MPC provides the optimal solution

when given a perfect process model). Here, four different control strategies will be

applied onto simple SISO, SIMO, MISO, and MIMO systems. The four strategies

are shown in Table 5.5.

Table 5.5: Different control strategies to be compared.

Control Algorithm Reward Function

MPC MPC cost function

Tabular Q-learning MPC cost function

DDPG MPC cost function

DDPG Custom RL reward function

From Table 5.5, the MPC cost function is given as:

J =
N∑
i=1

xTi Qmpcxi +
N∑
i=1

uTi Rmpcui (5.11)

where:

xi = xt − xss

ui = ut − uss

and the custom RL reward function is:

reward =


15− (xt − xsp)× 15, if xi ≤ 1

x2
i + u2

i , otherwise

5.3.1 Single-Input Single-Output System

First, a SISO system will be used to benchmark RL against MPC. The system

is given by:

dx

dt
= −4x+ u (5.12)

150



5.3. OPTIMALITY EVALUATION OF REINFORCEMENT LEARNING

In the s-domain, the system equation is:

Y (s) =
1

s+ 4
(5.13)

The system is stable with one pole at -4. Initially, the system is at steady state

with:

x0 = 0.5

u0 = 1.0

The steady-state state and input, xss and uss, are:

xss = 5.0

uss = 10.0

Here, MPC used a prediction and control horizon of 20, with Qmpc and Rmpc as 0.1

and 0.1, respectively. The RL hyper parameters are given in Tables 5.6 and 5.7

Table 5.6: Tabular RL hyper parameters for the SISO system.

Hyper Parameter Value

States, x [0, 0.18, ..., 8]1×45

Actions, u [5, 5.22, ..., 15]1×45

Reward, r Equation 5.11

Learning rate, α [0.001, 0.7]

Discount factor, γ 0.95

Exploratory factor, ε [0.1, 1]

Evaluation time 1 second

System representation FOMDP
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Table 5.7: DDPG hyper parameters for the SISO system.

Hyper Parameter Value

Actor network size 3 layers: 50, 40, 40 neurons

Actor learning rate 0.0001

Critic network size 3 layers: 40, 30, 30 neurons

Critic learning rate 0.001

Reward, r Equation 5.11 or Equation 5.3

Discount factor, γ 0.95

Evaluation time 1 second

System representation FOMDP

Figure 5.13 shows the input and state trajectories of the four control algorithms.

The total cost of each trajectory (all calculated using Equation 5.11) is shown in

Table 5.8. Ultimately, RL actually surpassed the performance of MPC in this case,

even when MPC is equipped with a perfect process model. Comparing the tra-

jectories, it can be seen that RL started with aggressive inputs, but reduced the

magnitude thereafter. On the other hand, MPC started with a smaller initial in-

puts, and gradually increased it along the trajectory. Deep RL had the poorest

cost performance; it achieved the state set-point, but incurred large losses with its

aggressive inputs. In theory, MPCs using a perfect process model will output the

optimal solution. In this case, one source of error could be the discount factor in

RL that is not present in MPC. Typically, a discount factor of 0.95 denotes a 20

prediction horizon [39]; however, these are not exactly equivalent. Nevertheless, this

small scale study demonstrates that RL can actually surpass MPC even when the

cost functions are nearly identical.
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Figure 5.13: Input and state trajectories of the four control strategies on the SISO
system.

Table 5.8: Controller cost for the input and state trajectories on the SISO system.

MPC Tabular RL Deep RL with MPC cost Deep RL with RL cost

5.56 4.55 4.27 6.19

5.3.2 Multiple-Input Multiple-Output System

The above study was repeated for a simple MIMO system described by:

dx1

dt
= −3x1 − 2x2 + 4u1 (5.14)

dx2

dt
= −3x2 + 2u2 (5.15)

In the s-domain, the system equations are:

Y1(s) =
4

(s+ 3)2
(5.16)

Y2(s) =
2

(s+ 3)2
(5.17)
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The system is critically damped and stable (i.e., two identical poles at -3). Initially,

the system is at steady state with:

x0 =

1.3

4.0

u0 =

3.0

6.0

 (5.18)

The steady-state states and inputs, xss and uss are:

xss =

3.6

4.7



uss =

5.0

7.0


The MPC for this system also has a prediction and control horizon of 20. The

Q and R matrices are given by:

Q =

1 0

0 1



R =

1 0

0 1


The RL hyper parameters for the MIMO system is given in Tables 5.9 and 5.10.
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Table 5.9: Tabular RL hyper parameters for the MIMO system.

Hyper Parameter Value

States, x x1 = [0, 0.5, ..., 6]1×13

x2 = [2, 2.5, ..., 6]1×9

Actions, u u1 = [1, 2, ..., 7]1×7

u2 = [4, 5, ..., 9]1×6

Reward, r Equation 5.11

Learning rate, α [0.001, 0.5]

Discount factor, γ 0.95

Exploratory factor, ε [0.1, 1]

Evaluation time 1 second

System representation FOMDP

Table 5.10: DDPG hyper parameters for the MIMO system (identical to the SISO
system).

Hyper Parameter Value

Actor network size 3 layers: 50, 40, 40 neurons

Actor learning rate 0.0001

Critic network size 3 layers: 40, 30, 30 neurons

Critic learning rate 0.001

Reward, r Equation 5.11 or Equation 5.3

Discount factor, γ 0.95

Evaluation time 1 second

System representation FOMDP

Figure 5.14 shows the input and state trajectories of the MIMO system using

the four control methods. The total cost of each trajectory (again calculated using

Equation 5.11) is shown in Table 5.11. Here, MPC performed the best while the two

deep RL methods performed the worst. Furthermore, tabular RL’s performance was

nearly identical to MPC. Comparing the trajectories, the deep RL tends to favour
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x2 and made large actions in u2 while MPC and tabular RL instead focused on x1.

It is difficult to identify exactly why deep RL favored x2. Perhaps it was because x2

was only a function of itself and u2, but the exact reason is unknown.

Figure 5.14: Input and state trajectories of the four control strategies on the MIMO
system. The top figures denote x1 and u1. The bottom figures denote x2 and u2.

Table 5.11: Summary of the controller behaviour on the four different system.

MPC Tabular RL Deep RL with MPC cost Deep RL with RL cost

0.86 0.95 2.33 2.59

5.3.3 Discounted Stage Cost for MPC

To enhance the comparability of the two methods, MPC was changed to have an

infinite horizon; however, the cost function would be discounted at each successive

state. The new MPC cost function is given as:

J =
N∑
i=1

γi[xTQx+ uTRu] (5.19)

Using this new cost function, the previous comparisons along with new SIMO

and MISO systems were used to compare the four control strategies. The new state
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and input trajectories of the SISO, SIMO, MISO, and MIMO systems using the four

control strategies are shown in Figures 5.15, 5.16, 5.17, and 5.18, respectively. The

system descriptions and the costs are provided in Table 5.12. Note that the deep

RL using the custom RL cost was omitted here because it under-performed in all

previous scenarios. It can be seen that after discounting was introduced into the

MPC cost function, all trajectories look nearly identical with only slight differences.

MPC was able to achieve the lowest cost (theoretically sound); however, RL and

deep RL both achieved very comparable results through self-play alone! From these

plots, it can be concluded that RL does indeed approach the optimality of MPC,

although cannot achieve exactly the optimal results.

Figure 5.15: Input and state trajectories of the four control strategies on the SISO
system. MPC cost is calculated using Equation 5.19.
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Figure 5.16: Input and state trajectories of the four control strategies on the SIMO
system. MPC cost is calculated using Equation 5.19.

Figure 5.17: Input and state trajectories of the four control strategies on the MISO
system. MPC cost is calculated using Equation 5.19.
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Figure 5.18: Input and state trajectories of the four control strategies on the MIMO
system. MPC cost is calculated using Equation 5.19.

Table 5.12: Controller cost for the input and state trajectories on the MIMO system.

SISO SIMO MISO MIMO

System Equation
dx

dt
= −4x + u

dx1

dt
= −2x1 + u

dx

dt
= −3x + u1 + u2

dx1

dt
= −3x1 − 2x2 + 4u1

dx2

dt
= −3x2 + u

dx2

dt
= −3x2 + 2u2

Initial States x0 = 0.5 x0 = [2.0, 0.7] x0 = 3.0 xss = [1.3, 4.0]

u0 = 1.0 u0 = 2.0 u0 = [3.0, 6.0] uss = [3.0, 6.0]

Steady States xss = 5.0 xss = [4.0, 4.3] xss = 4.5 xss = [3.6, 4.7]

uss = 10.0 uss = 4.0 uss = [5.5, 8.0 uss = [5.0, 7.0]

MPC Cost 4.18 2.1 0.83 0.87

Tabular RL Cost 4.33 2.2 0.97 0.95

Deep RL Cost 4.32 2.1 0.89 1.14

5.3.4 Comparison of RL and MPC on a CSTR

All previous systems were applied onto arbitrary linear systems. Here, a non-

linear CSTR system will be used to evaluate the optimality of each control strategy.

The CSTR is given by the following differential equations [98]:

dC

dt
=
F0(c0 − c)
πr2h

− k0exp(−
E

RT
)c (5.20)

dT

dt
=
F0(T0 − T )

πr2h
+

∆H

ρCp
k0exp(−

E

RT
)c+

2U

γρCp
(Tc − T ) (5.21)
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dh

dt
=
F0 − F
πr2

(5.22)

The constants in the above equations are:

F0 = 0.1m3/min F = 0.1m3/min T0 = 350K

c0 = 1kmol/m3 γ = 0.219m k0 = 7.2x1010

E/R = 8750K U = 54.94kJ/min ∗m2 ∗K ρ = 1000kg/m3

Cp = 0.239kJ/kg ∗K ∆H = −5× 104kJ/kmol

Here, the agent’s states, x1 and x2, are the concentration of reactant A and

the reactor temperature, respectively. The control action, u1, is the coolant tem-

perature. Throughout this study, the reactant height inside the reactor remained

constant. The optimal set-points of the system were given as: x1 = 0.88, x2 =

324.5. The set-up of the tabular RL is as follows: x1 = [0.5, 0.525, ..., 1.2]1×29,

x2 = [300, 302, ..., 350]1×26, and u1 = [285, 286, ..., 315]1×31. For the deep RL agent,

the neural network set-ups were identical as for the SISO and MIMO systems.

Initially, all controllers (tabular RL, deep RL, and MPC) were evaluated once

every five seconds. The state and input trajectories in this case are shown in Figure

5.19. Interestingly, all the state and input trajectories are almost identical. Intu-

itively, this means that RL was able to exactly recover the optimal solution in this

case. Deep RL was slightly off the optimal solution towards the end of the trajectory,

but it was minuscule (T = 0.2).
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Figure 5.19: Input and state trajectories of the CSTR using controllers with sam-
pling time = 5.

Figure 5.20 shows the new state and input trajectories when the sampling time

reduces to 1. The tracking errors here are 2.9, 6.6, 188.9 and 6.5 for the MPC,

tabular RL, deep RL with MPC cost, and deep RL with RL cost, respectively. In

this system, the dynamics are too slow and do not finish in 1 second. Hence, RL

showed slight sub-optimality due to the system not being Markovian. Additionally,

deep RL showed an offset from the optimal set point. This extremely small off-set

was difficult to identify for an agent using deep learning function approximation;

thus, leading to an off-set. However, the off-set was able to be eliminated through

training a separate agent using the reward proposed in Equation 5.3. In this reward

function, there was more emphasis placed on small off-sets.
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Figure 5.20: Input and state trajectories of the CSTR using controllers with sam-
pling time = 1.

The control strategies were also explored when a disturbance was introduced

into the system. It was assumed that the reactor ran away for a second, resulting

in a large decrease in reactor temperature. Here, the RL agents were trained for

500,000 time steps, where a random disturbance was introduced once every 100

steps. After training, the RL was simulated against the MPC in the disturbance

case. The tracking errors (as per Equation 5.19) for the MPC, deep RL with MPC

cost, and deep RL with RL cost are 58.1, 57.4 and 43.9, respectively. Comparatively,

the agent using the RL cost function was actually able to accumulate significantly

lower tracking error compared to MPC equipped with a perfect process model.
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Figure 5.21: Input and state trajectories of the CSTR under a disturbance.

5.4 Control of Wastewater Treatment Plant

As shown in the previous section, RL can approach the optimal solution on small,

simple problems. This section applies an UCB tabular Q-learning algorithm for the

optimal control of an industrial scale waste water treatment plant. The details of

the plant were previously introduced in the alarm management section in Chapter 3.

Here, the objectives are twofold: i) Design a self-learning and adaptive RL controller

to seek out optimal operating strategies. In the WWTP, the controllers must identify

the optimal policy to meet government regulations in the most energy efficient way;

ii) direct adaptive control, allowing the RL controller to learn optimal operating

strategies as the operating conditions change by adapting the policy directly. In the

end, the results achieved by RL will be compared to different variants of MPC.

As a quick recap, the WWTP contains 145 states and 2 control actions and the

schematic is provided again, in Figure 5.22. In the WWTP, the dissolved oxygen

level in unit 5 is controlled via manipulation of the oxygen transfer coefficient, ukLa5

and the nitrogen level in unit 2 is controlled through manipulation of the internal
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recycle flow rate, Qa. For more information regarding the WWTP, see [88].

Figure 5.22: Schematic of the WWTP process. Original image from [88].

5.4.1 Performance Assessment

The WWTP performance is evaluated based on two metrics, the effluent quality

(EQ) (kg pollutant per day) and the overall cost index (OCI). Each performance

metric contains numerous states. For the exact definition of each state, please refer

to [88]. The effluent quality is given by:

EQ =
1

T · 1000

∫ tf

t0

(βss · SSe(t) +BCOD · CODe(t) +BNkj · SNkj,e(t)

+BNO · SNO,e(t) +BBOD5 ·BODe(t))Qe(t)dt (5.23)

where T denotes the evaluation period in days, the 1000 in the denominator is for

unit conversion to kg, and:

SNkj,e = SNH,e + SND,e +XND,e + iXB(XB,H,e +XX,A,e) + iXP (XP,e +Xi,e)

SSe = 0.75 · (XS,e +XI,e +XB,H,e +XB,A,e +XP,e)

BODS,e = 0.25 · (SS,e +XS,e + (1− fp) · (XB,H,e +XB,A,e))

CODe = SS,e + SI,e +XS,e +XI,e +XB,H,e +XB,A,e +XP,e

The OCI is a combination of four factors: 1) sludge production (SP) that requires
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disposal; 2) aeration energy (AE); 3) pumping energy (PE); 4) mixing energy (ME).

The sludge production is measured as the average solids production per day

(kg/day) and is given as:

SP =
0.75

T · 1000

∫ tf

t0

(Xs,w(t) +XI,w(t) +XBA,w(t) +XBH ,w(t)

+XP,w(t)Qw(t)dt+
1

T · 1000
(SS(tf )− SS(t0)) (5.24)

where solids include the sedimentary particles remaining in the WWTP and the

particles discharged through the waste flow, Qw. Additionally, subscripts w denote

the waste flow.

The aeration energy (kWh/day) is a function of the oxygen transfer rate in units

1-5, and is given by:

AE =
Ssato

T · 1800

∫ tf

t0

5∑
i=1

Vi ·KLai(t)dt (5.25)

where Vi and KLai represents the volume and oxygen transfer rate of the ith unit,

respectively. Furthermore, Ssato is the saturation concentration of oxygen. Here, the

value was assumed to be 8 g/m3.

Similarily, the pumping energy (kWh/day) accounts for the energy consumed by

the internal recycle and outer recycle pumps. PE is mathematically quantified as:

PE =
1

T

∫ tf

t0

(0.004Qa(t) + 0.05Qw(t) + 0.008QT (t))dt (5.26)

The mixing energy (kWh / day) is calculated as the total energy consumed for

mixing activities in the anoxic units (units 1 and 2). Total ME consumption is given

as:

ME =
24

T

∫ tf

t0

(∑
0.005 · Vi

)
dt (5.27)

Finally, the OCI can be computed as the summation of the above equations and
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is given as:

OCI = 5 · SP + AE + PE +ME (5.28)

5.4.2 Agent design

In this study, an off-policy Q-learning agent with UCB acceleration was used for

the controllers. The hyper parameters of the agent used to control the WWTP are

provided in Table 5.13. The agent’s states and actions are x ∈ R2 and u ∈ R2.

Table 5.13: Hyper parameters for the agent controlling the WWTP.

Hyper Parameter Value

States, x xO2 = [0.35, 0.5, ..., 2.35]1×65

xN2 = [1, 2.5, ..., 3]1×65

Actions, u ∆uO2 = [−0.50,−0.44, ..., 0.50]1×16

∆uN2 = [−0.50,−0.44, ..., 0.50]1×16

Reward, r Equation 5.33

Learning rate, α [0.001, 0.5]

Discount factor, γ 0.97

Exploratory factor, ε [0.1, 0.5]

Heuristics Acceleration Upper Confidence Bound

Degree of exploration, c 1.2

Evaluation time 15 minutes

System representation FOMDP

The reward function of the agent is given by the summation of the following four

Equations. Equation 5.29 provides feedback regarding the effluent quality and is

given as:

r1 =


5130− EQ, if EQ < 5130

−(EQ− 5130)2, otherwise

(5.29)
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Equation 5.30 considers the aeration energy cost.

r2 =


(3480− AE) ∗ 3, if AE < 3480

−(AE − 3480)2, otherwise

(5.30)

Similarily, Equation 5.31 considers the pumping energy cost.

r3 =


288− PE, if PE < 288

−(PE − 288)2, otherwise

(5.31)

And lastly, Equation 5.32 is for constraint handling. Note here that constraint

handling is not guaranteed with RL.

r4 =



−5000, if Ntot > 18

−5000, if COD > 100

−5000, if Snh(e) > 4

−5000, if TSS > 30

−5000, if BOD > 10

(5.32)

Combining Equations 5.29, 5.30, 5.31, and 5.32, the scalar reward function for

the agent is given by:

r = r1 + r2 + r3 + r4 (5.33)

For exploration, the agent used UCB and followed an ε-greedy exploratory policy.

As a quick reminder, UCB provides the agent with unique learning rates for each

state-action pair and promotes exploration in states that have a high probability of

being optimal (instead of random exploration). The UCB algorithm was given in
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Equation 2.36 and ε was given by:

ε =


1

1+
√
Nt
ε0, if Nt ≥ 15

0.5, otherwise

where Nt is the number of times action u was picked in state x and ε0 is the initial

epsilon value. Intuitively, as Nt →∞, ε0 → 0.

Lastly, the learning rate of the agent was decayed using:

α =


1√

Nt−14
α0, if Nt ≥ 15

0.5, otherwise

Intuitively, α ∈ [0.001, 0.5] is very high for the first 15 visits for each state-action

pair. Afterwards, the learning rate is decayed until a minimum value of 0.001.

Finally, the pseudo-code for the UCBQ-learning algorithm used in this particular

study is given by:

5.4.3 Control System Design

Typically, all implementation of advanced controls into today’s process systems

reside in the supervisory layer. In such a structure, the traditional regulatory con-

trollers guarantee stability of the process while supervisory controls simply provide

ideal operating set-points.

The control system design is shown in Figure 5.23. In this study, the RL con-

trollers were implemented in the supervisory controls layer and only provide the

set-points to the PIDs. Such a structure simulates a real world implementation

example. Here, the RL controller provides set-points to the Qa and KLa5 PIDs.

Two discrete PI controllers were used to control this system. The discrete PI

formulation is given by:

∆u) = Kc[e(tk)− e(tk−1)] +
KcTs
Ti

e(tk) (5.34)
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Figure 5.23: Control structure of the wastewater treatment plant.
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Upper Confidence Bound (UCB) Q-Learning: Learn Function Q: X × U → R
Require :

States X = {x1, ..., xn}
Actions U = {u1, ..., un}
Reward Function R : X × U → R
Probabilistic transition function T : Xt × U → Xt+1

Learning rate function α ∈ [0, 1], min = 0.0001

ε-Greedy function ε ∈ [0, 1], min = 0.01

Discount factor γ ∈ [0, 1]

Q-matrix Q : [...]x×u

Memory Matrices Nt and T : [...]x×u

Procedure UCB Q-Learning (X , U , R, T, α, ε, γ)

Initialize Q(x, u) : X × U → R arbitrarily

Initialize initial state, x

While Q is not converged do

Generate random number, n ∼ U [0, 1]

If n > ε: Choose u from x given max Q, break ties randomly*

Else : Choose random u

Perform action u, observe r, s’

Q(x, u)← Q(x, u) + α(r + γmax′uQ(x′, u′)−Q(x, u))

x← x′

Nt(x, u)← Nt(x, u) + 1

T (x, 6= u)← t(x, 6= u) + 1

until convergence or x is a terminal state

*Note: Ties must be broken randomly to avoid bias.

u(u) Output as a function of time sample

Kc Controller gain

e(tk) Current error

e(tk−1) Error at last time step

Ts Sampling time

Ti Integral time

The parameters of the two PI controllers are given in Table 5.14 and were origi-

nally provided from [88].

The pseudo-code for the supervisory RL controllers are as follows:
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Table 5.14: Hyper parameters for the PI controllers

Dissolved Oxygen Controller Nitrogen Controller

Kc 25 10,000

τi 0.002 0.00167

Supervisory Control - Dissolved Oxygen Controller Information Flow

Initiate Plant Operations

Regulatory Control Layer

Observe dissolved oxygen level, xO2,t, in unit 5

Calculate error e: xO2 - xO2,setpoint

Calculate ∆uO2 from Equation 5.34

Supervisory Control Layer every 15 mins

Observe initial xO2,t

Generate random number, n ∼ U [0, 1]

If n > ε:

Choose u from x given max Q, break ties randomly*

Else :

Choose random u

Perform action: xO2,sp ← xO2,sp + u

Observe rt+1, xO2,t+1, update Q, Nt, T

Q(xO2,t, ut)← Q(xO2,t, ut) + α(rt + γmaxut+1 Q(xO2,t+1, ut+1) −

Q(xO2,t, ut))

xO2 ← xO2,t+1

repeat forever or until terminal state
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Supervisory Control - Nitrogen Controller Information Flow

Initiate Plant Operations

Regulatory Control Layer

Observe nitrogen level, xN2,t, in unit 5

Calculate error e: xN2 - xN2,setpoint

Calculate ∆uN2 from Equation 5.34

Supervisory Control Layer every 15 mins

Observe initial xN2,t

Generate random number, n ∼ U [0, 1]

If n > ε:

Choose u from x given max Q, break ties randomly*

Else :

Choose random u

Perform action: xN2,sp ← xN2,sp + u

Observe rt+1, xN2,t+1, update Q, Nt, T

Q(xN2,t, ut)← Q(xN2,t, ut) + α(rt + γmaxut+1 Q(xN2,t+1, ut+1) −

Q(xN2,t, ut))

xN2 ← xN2,t+1

repeat forever or until terminal state

5.4.4 Comparison with MPC

To validate the optimality of the solution provided by RL, it was compared to four

variants of MPC: 1) centralized MPC (CMPC); 2) centralized EMPC (CEMPC);

3) distributed EMPC using a centralized model (DEMPCE); 4) distributed EMPC

using subsystem models (DEMPCS). The objective functions and subsystem de-

composition of the MPCs are from [99]. All controllers had sampling times of 15

minutes. The RL agent was trained for approximately 383.6 years in simulation (2

hour physical time) under dry weather conditions on a typical office computer (Intel
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i7-6700 with no graphics processing unit).

The EQ and OCI of RL and the four MPC variants are shown in Table 5.15.

Even in such a complex environment, RL was able to generate highly comparable

performance to MPC. In terms of EQ and energy usage, RL used more energy but

produced less waste while MPC used less energy, but produced more waste. In terms

of OCI, RL was only 0.129% higher compared to the best performance achieved by

MPC. Moreover, MPC used a perfect process model whereas RL learned the optimal

policy solely through self-play. Additionally, the computation time of RL in this

system was dramatically less compared to MPC. In fact, most of the computation

time used by RL was to solve the system equations, and not to generate the control

inputs.

Table 5.15: A comparison of performance between RL and MPC variants. The
MPCs all used a prediction and control horizon of 40. DEMPCS and DEMPCE
are the distributed economic MPCs using the subsystem and centralized models,
respectively [99].

RL CMPC CEMPC DEMPCS DEMPCE

EQ (kg pollution/day) 6034 6111 5834 6332 5828

Aeration Energy (kWh / day) 3454 3416 - - -

Pumping Energy (kWh / day) 315 338 - - -

OCI 16207 16186 16244 16197 16698

Computational Time (s) 1.91 8.79× 104 3.77× 105 8.47× 104 3.50× 105

The three most interesting confirmations of this study were:

1. RL can approach MPC performance even on highly complex, MIMO systems.

2. RL is significantly less computationally demanding compared to MPC during

online evaluation

3. RL’s online computation time is not a function of the complexity of the system,

only a function of its own state and action size (i.e., agents with more states

and actions require longer online evaluation time).

173



5.5. COMPARISON OF OPTIMAL CONTROL FRAMEWORKS

5.5 Comparison of Optimal Control Frameworks

The control framework of a typical process was first introduced in Chapter 1, and

is shown again here in Figure 5.24. As a brief refresher: RTO evaluates seldomly

(hourly basis) and is used to find the optimal steady states with accordance to a

desired performance metric [61]. These optimal steady states are then passed onto

the MPC layer, where the optimal input trajectories are identified. A typical MPC

objective function is:

J =
H∑
i=1

xTi Qmpcxi + uTi Rmpcui (5.35)

due to its convexity [10]. In recent advanced control literature, researchers inter-

twined the concepts of RTO and MPC into one unifying algorithm that is now

known as economic model predictive control (EMPC) [62], [63]. Here, the objective

function of EMPC explicitly contains the economic objectives of the process.

Figure 5.24: A typical industrial control architecture.

In control literature, there typically exists very distinct algorithms for each layer

presented in 5.24. For example, PID controllers are typically used for the regulatory

layers whereas the supervisory layers typically employ predictive controls. Due to

RL’s general nature, it is highly flexible and can used in any control layer. For

example, a MPC RL agent’s reward function is simply the negative of Equation

5.35, with the actions being the control actions or recommended set points. For a

regulatory layer agent, the reward function remains the same, but the actions would

involve direct actuation of the system’s hardware. Lastly, an EMPC based RL agent

would have an economic objective as the reward function.
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The biggest difference between RL and other advanced control methods is the

computation time. Typical MPCs have a computational complexity of O(H(n2 +

m2)), where H, n, and m are the control horizon and the dimensions of the states

and actions, respectively [100]. By exploiting prior information, MPCs’ compu-

tational complexity can further decrease to O(H(n + m)3) [101]–[103]. Even then,

the online computation time scales exponentially with states and actions, ultimately

becoming infeasible for large systems and/or for systems with exceptionally long pre-

diction/control horizons. Comparatively, RL’s optimal policy is first pre-computed

offline through a training process. Consequently, this makes online evaluation excep-

tionally quick. In control theory, the concepts of RL are very similar to parametric

programming from explicit MPCs [60]. Some may see the training requirement of

RL as extremely unattractive; however, offline computation time is typically very

flexible (i.e., offline computations can be done anywhere, anytime, on any machine)

and does not matter so long as it is not unreasonably long (e.g., 1 month).

Another major difference between RL and MP-based methods is RL’s model-

free nature. In RL, a (representative) model is only required for initial training

of the agent; online implementations are model-free. Conversely, the system model

is almost exclusively used in MPC. Inaccurate models are detrimental to control

performance. In literature, a technique known as off-set free control overcomes this

issue through online parameter re-adjustment [104]; however, the re-identification

process does not work well for extremely noisy processes. Moreover, most plants ex-

perience process drift, where the processes slowly changes as a function of wear and

tear. RL can inherently adapt to such an issue through a gradual and smooth pro-

cess. MPCs, however, adapt using off-set free control or other model re-identification

methods. For such methods, the updates directly and completely change the model

parameters at each sampling time. For processes heavily corrupted by noise, the

parameters at each update is most certainly incorrect.

Lastly, tabular RL has very few hyper parameters. As long as reasonable learning

rates are used, RL would work for most cases. Deep RL methods contain much more
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hyper parameters and are much more mathematically complex. Without a doubt,

the tuning of deep RL require many parameter sweeps; however, such details will be

omitted here because deep RL may not be economically viable to implement in its

current state. For MPC, adequate tuning of the Qmpc and Rmpc matrices are often

times paramount for optimal process control.

A comparison between RL and MPC on various important categories is shown in

Table 5.16. In addition to comparing RL and MPC in literature, RL was also com-

pared to industrial-grade MPCs currently implemented onto many processes world

wide. One popular MPC product in industry is AspenTech’s signature DMCplus

and DMC3 products [105], [106]. When implementing such products in real life,

the system model will never be perfect; therefore, only a near-optimal solution is

possible. Additionally, the computation time for DMC is exceptionally high and is

unviable for many non-linear systems. Comparatively, RL is not concerned with the

structure of the system; however, identifying an optimal policy for noisy systems

will be more difficult. Adaptation-wise, RL performs random actions to calibrate to

the real system (an idea that sounds dangerous for online processes). Interestingly,

AspenTech’s technology also performs such random actions for model calibration.

During commissioning, the controller is typically initialized in the smart step mode,

where the system performs random step tests online to calibrate the system model

to the real process. Afterwards, operators often switch the system to calibrate mode.

In this mode, the system continues to perform step tests in a much more infrequent

and lower in magnitude fashion. Such an adaptation paradigm is identical to RL,

where exploration is initially plentiful, but is eventually annealed to near zero. For

an more mathematical comparison between RL and MPC, see [107].

The features of RL, academic MPC, and industrial MPC is shown in Table 5.16.
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Table 5.16: A comparison between RL, MPC in literature, and industrial MPC
software.

Reinforcement Learning Model Predictive Control AspenTech DMC

Performance Close to optimal Optimal with perfect model Close to optimal

Online comp. cost Low High High

Offline comp. cost Policy & model identification Model identification Model identification

Reliance on model Only for training At all times At all times

Online calibration Exploratory moves Various methods Exploratory moves

Sensitivity to tuning Low High High

5.6 Fault-Tolerant Control System

It is seen that RL can only approach the performance of MPC in academic studies

where MPC utilizes a perfect process model, is well designed, and given sufficient

computational time. RL’s generality, ease of use, and adaptive nature might create

more value in industrial environments where engineers are time constrained and are

tasked with assembling a good enough controller with limited hardware.

This section explores the generality and robustness of the RL algorithm, even

when imperfectly designed and compares it to MPC for fault-tolerant control. The

algorithm from this study was then simulated on the Wood-Berry distillation tower

from the University of Alberta under different actuator faults.

5.6.1 Introduction

All process equipment such as sensors and actuators may malfunction or break-

down during their operational lifetime. Hence, it is desirable to have a fault-tolerant

control system (FTCS) to ensure sufficient performance during these impending fail-

ures. The application of FTCS in an industrial environment results in increased

operation robustness and safety, while reducing operating costs due to fewer plant-

wide shut downs [108]. A typical FTCS contains two parts: i) Fault detection system

(FDS) to identify the location and type of fault; ii) fault-tolerant controller (FTC)

to operate the process safely during a fault.
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Traditionally, a FTCS contains a variety of different controllers to handle dif-

ferent faults that may occur during online operations [108]. Furthermore, PID con-

trollers are generally used for FTC and are specially tuned to handle each fault

specifically [109]. The traditional approaches work well in terms of safety, but the

sheer number of controllers command a high maintenance cost. Moreover, the con-

trollers must be re-tuned periodically for optimal performance due to unavoidable

process drifts caused by wear and tear [57].

In this study, a reinforcement learning (RL) FTCS is proposed where different

system faults are detected and mediated using a general controller. Additionally, the

FTC can automatically adapt to process drift and new operating conditions. The

FTCS’ set-up is designed to be general enough to learn different faults using the same

algorithm and will reside on top of existing regulatory control systems. Furthermore,

the controller does not suffer greatly due to poor tuning or model plant mismatch,

a trait plaguing traditional optimal controllers [110]. The proposed FTCS is imple-

mented onto continuous multiple-input multiple-output (MIMO) systems with input

constraints subject to actuator faults. Various RL FTCS were previously proposed

for discrete systems, but not in the continuous case where transition dynamics are

explicitly considered [111], [112]. To demonstrate this approach, the system outputs

are assumed to be measurable and the system dynamics are assumed to be stable

using a pre-designed controller under the fault-free case. During normal operations,

the FDS will learn the expected closed-loop behaviour of the system. Behaviours

heavily deviating from the expected states are used to identify faults. The FTC is

activated during faults to operate the system using the non-faulty components.
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5.7 Preliminaries

5.7.1 System Description

A class of continuous-time MIMO systems with constrained manipulated inputs

is considered in this study and described in state space form by:

ẋ(t) = f(x(t), u(t) + ũ(t)) (5.36)

y = h(x(t)) + ε(t) (5.37)

where x(t) ∈ Rm denotes the state vector at time t, u(t) denotes the inputs at

time t, y = (y1, y2, ..., yn) ∈ Rn denotes the output variables, and ũ(t) denotes the

constrained manipulated input corresponding to actuator faults, which will be the

focus of this study. Lastly, ε ∼ N(0, σ2) denotes Gaussian noise in the measurements

of the output variables.

5.7.2 The Reinforcement Learning Problem

Fig. 5.25 shows the RL paradigm. The overall RL problem was stated in detail

in Chapter 1, and will only be briefly explained here. Starting from the top, the

environment includes all factors the agent cannot arbitrarily change (the system

in this study). The agent observes the states of the environment and performs

control actions that transition the environment to new states while outputting a

reward based on a desired performance metric. The reward guides the agent to the

optimal policy. In control, reward is typically a function of the tracking error. The

agent’s decision making process is formalized in the Markov decision process.
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Figure 5.25: Paradigm of the reinforcement learning problem.

5.7.3 Markov Decision Process

The Markov decision process (MDP) is a discrete representation of the stochastic

optimal control problem and a classical formulation of sequential decision making [7].

MDPs provide formalism to agents when rationalizing about planning and acting in

the face of uncertainty. Many different definitions of MDPs exist and are equivalent

up to small alternations of the problem. One such definition is that a MDP, M, is

a tuple (X ,U , P (x′, r|x, u), γ, R) comprised of [22]:

• x ∈ X : State space that describes the environment.

• u ∈ U : Action space of the agent. (U ≥ 2)

• R ∈ R: Expected reward from environment after agent performs u in x.

|R| ≤ R

• P (x′, r|x, u): State transition probabilities of the environment. Given

x ∈ X , u ∈ U , the probability of transitioning to x′ and receiving r.

• γ: Discount factor associated with future uncertainty. (0 ≤ γ ≤ 1)

The agent starts in some initial states, x0. At each time t, the agent picks an action ut

in accordance to the current policy π and transitions to some xt+1 while receiving rt+1

drawn from the P (xt+1, rt+1|xt, ut). By repeating the above procedure many times,

the agent is able to traverse through some sequence xt, ut, rt+1, xt+1, ut+1, rt+2, ... and
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accumulate:

Gt = Rt+1 + γRt+2 + ... =
∞∑
k=0

γkRt+k+1 (5.38)

where Gt is the total discounted return along the sequence. Here, the discount

factor, γ, captures the uncertainty of future rewards and keeps Gt bounded for non-

terminating tasks. Rt is the reward received at time t. The objective of the agent

is to find the optimal control policy π∗, that maximizes Gt. Optimal solutions for

MDPs work well for discrete tasks when transition times are constant and dynam-

ics of the system are disregarded. However, such systems are rare in the process

industry.

Fig. 5.26 shows different cases of poorly designed controllers in the process

industry. Controllers resulting in oscillations, large overshoot, or severe inverse

response lead to faster equipment deterioration and are detrimental to process safety

[57]. Additionally, transition time is often determined by the magnitude of change in

the set-point in non-linear systems. Controllers typically require more time to track

higher magnitude changes compared to ones of lower magnitude. One could design

a controller that evaluates seldomly to guarantee successful transitions, though such

excessively conservative designs may lead to economic disadvantages.

Figure 5.26: Symptoms of poorly designed controllers.
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5.7.4 Semi Markov Decision Process

System dynamics and transition times are vital to successful process control;

therefore, continuous control problems with unknown transition times are formalized

using the semi-Markov decision process (SMDP). In SMDPs, the dynamics of the

transition period are captured using the reward [25]:

R(xt, xt+1, ut) =

∞∫
0

t∫
0

e−βsρ(x, π(x))dsdFx,xt+1(t|π(x)) (5.39)

where ρ(x, π(x)) and t are the average reward and transition time for the transition

period from xt to xt+1. Additionally, β ∈ [0,∞) is the discount factor for SMDPs.

High β values result in short-sighted agents. Fxt,xt+1(t|πt) is the probability dis-

tribution of the time required for the system to transition from xt to xt+1 given

πt. The squared tracking error is calculated during intermediate transition periods,

explicitly capturing transition dynamics during the search for π∗. Here, rewards for

unknown transition time systems are corrected using:

γ(xt, xt+1, u) =
∞∫
0

e−βtdFxt,xt+1(t|πt) (5.40)

5.8 Proposed Fault-Tolerant Control System

Fig. 5.27 shows the proposed FTCS for any industrial process. The system con-

tains three parts: i) Industrial process; ii) fault detection; iii) fault-tolerant control.

The industrial process can be any arbitrary system (e.g., distillation tower, chem-

ical reactor). A contextual bandit algorithm was used for the FDS. Subsequently,

a tabular Q-learning approach was used for FTC. A bandit-based approach was

selected for fault detection because the agent is not concerned with the long term

reward (i.e., it is only concerned with the accuracy of its immediate classification)

[7]. Contrarily, sequential decision making is critical for the success of an agent

in control. Thus, an RL-based agent was used for FTC [113]. The tabular based
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approach was selected for its simplicity and ease of implementation into industrial

distributed control systems (DCS), much like how explicit MPCs are implemented

into processes that demand fast computations on cheap hardware with little storage

[60]. The flaws of the current algorithm are its lack of scalability and discrete nature.

For high dimensional industrial processes equipped with modern hardware, both

scalability and discreteness can be eliminated by using deep Q-network (DQN) and

deep deterministic policy gradient (DDPG) for the FDS and FTC, respectively.

DQN with γ = 0 is an ideal algorithm for the FDS due to its continuous state space

and discrete action space. Likewise, DDPG is ideal for control due to its ability to

handle large continuous states and action systems. For the remainder of this study,

the contextual bandit agent used for fault detection and the RL agent used for FTC

will be denoted as the prediction agent and control agent, respectively.

Figure 5.27: Overall set-up of the fault-tolerant control system.

In Fig. 5.27, the information flow is as follows. Initially, the industrial process

is operating fault-free while the prediction agent is actively monitoring real time

measurements for faults. When a fault is detected, the prediction agent will im-

mediately activate the control agent to receive real time measurements from the

process. Given the current process off-set, the control agent gives recommendations

to the operators regarding solutions to mediate the situation. Recommendations

can be new set-points for the regulatory controllers that are not at fault. Fig. 5.28

shows the information flow of the control agent.
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Figure 5.28: Information flow from the FTCS to the process.

5.8.1 Contextual Bandits Fault Detection

The fault detection system is used to identify faults in the process. FDS can

be categorized as model-, knowledge- or prediction-based approaches [114]. Model-

based approaches require an explicit model of the process. A fault is deemed active

if the prediction of the model is drastically different from the real time sensor mea-

surement. Knowledge-based approaches are based on subject matter expertise from

process operators or equipment vendors and are usually rule-based (e.g., if x > xmax,

then fault). Prediction-based approaches use historical data to identify a classifica-

tion model for fault detection. The identified model would contain knowledge about

normal operating boundaries regarding the process, and can be tuned by plant man-

agers to be more conservative or aggressive. When the process conditions are outside

the acceptable boundaries, a fault is deemed active.

Prediction-based methods are quickly becoming the forefront approach due to

more readily available data. This study uses a contextual bandit prediction-based

FDS to identify process faults. A contextual bandit algorithm was selected due to its

ability to adapt to non-stationary problems. Furthermore, bandit-based algorithms

are well suited for identification tasks because the agent is not concerned with long
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term reward [7]. The objective of the agent is to identify if the current situation is

faulty, given the current states xt of the process.

Prediction Agent Algorithm

In contextual bandit problems, for each time t, the agent observes states xt and

picks one action ut ∈ U . After each action, a scalar reward feedback is sent to the

agent as feedback to promote or discourage future similar state-action pairs. For

each action in state x ∈ X , there is an expected reward called action value, given

by Equation (5.41).

q∗(x, u) = E[Rt|Xt = x, Ut = u] (5.41)

where q∗(x, u) is the expected reward of taking u in x. Here, Rt is drawn from a

distribution, Rt ∼ N(q∗(x, u), σ2) [7]. The real action-value is unknown, but can be

estimated from Equation (5.42) [113].

Qn+1(x, u)← Qn(x, u) + αn(Rt −Qn(x, u)) (5.42)

where Q(x, u) and n are the estimate of q∗(x, u) and the number of times Q(x, u)

was estimated prior to the current estimate. α is the learning rate and is constant

for adapting to non-stationary problems [7].

Table 5.17 shows the reward space for the prediction agent. Furthermore, U

and X are given by Actions = [Fault,No Fault] and [xr1, x
r
2, ..., x

r
v], respectively.

Superscript r and subscript v denotes the relevant states and the number of relevant

states, respectively. To train the prediction agent, first, the historical data must be

Table 5.17: Reward for the prediction agent.

Process Fault Action Reward

Yes Fault 1

Yes No Fault -1

No Fault -1

No No Fault 0

labeled for faults. Next, the prediction agent will sample from the historical data
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and update its internal action values with accordance to Table 5.17.

Contextual Bandit: Learn f : X × U → R
Require:

States X = {x1, x2, ..., xv}
Actions U = {u1, u2}
Reward Function R : X × U → R
Learning rate α ∈ [0, 1]

Procedure Contextual Bandit (X , U , R, α)

Initialize zero matrix Q(x, u)X×U
While Q not converged do

Sample state, xt
Pick arg maxut Q(xt, ut)

∗

Perform action ut, observe Rt+1

Q(xt, ut)← Q(xt, ut) + α(Rt+1 −Q(xt, ut))

*Note: Ties broken randomly to avoid bias.

Once Q(x, u) reaches convergence, real time process measurements are sent to

the prediction agent to detect potential faults. Action selection is given by:

ut = arg max
u

Qπ(x, u), ∀ x ∈ X (5.43)

The prediction agent will activate the control agent when a fault is deemed active.

5.8.2 Reinforcement Learning Fault-Tolerant Control

Once activated, the control agent provides recommendations to stabilize the pro-

cess. Two strategies exist for the control agent: active FTC and passive FTC [115].

Active FTC refers to re-configurable control, whereas passive FTC uses robust con-

trol principles. Active FTCs are generally more economically advantageous because

passive FTCs are relatively more conservative. A tabular Q-learning active FTC is

used for this study because of its adaptive nature and ability to acknowledge future

rewards [116].
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Control Agent Algorithm

Reinforcement learning is similar to contextual bandits with the alteration that

the long term trajectory is also considered. The Q-learning algorithm for MDPs is:

Qn+1(x, u)← Qn(x, u) + αn(Rt + γmax′uQ
n(x′, u′)−Qn(x, u)) (5.44)

where x′ and u′ are the next state and the action that maximizes the return in x′.

By combining Equation (5.44) with Equations (5.39) and (5.40), SMDP Q-learning

is given by:

Qn+1(x, u)← Qn(x, u)+αn

[
1− e−βτ

β
Rt + e−βτmaxu′Q

n(x′, u′)−Qn(x, u)

]
(5.45)

where Rt is given by Equation (5.39) and τ ≤ τmax is the transition time from xt to

xt+1. If xt 6= xt+1 at τmax, the agent evaluates regardless. The reward is:

ρ = −
m∑
k=1

(yk(t)− yspk (t))2 = −
m∑
k=1

ek(t)
2 (5.46)

where yspk (t) and ek(t) are the set-point and tracking error for yk at t. The states

and actions are discretized as:

X = [(emin1 , ..., eminm ), ..., (emax1 , ..., emaxm )]p2×1 (5.47)

U = [(umin1 , ..., umino ), ..., (umax1 , ..., umaxo )]q2×1 (5.48)

where superscripts min and max denotes the min and max for each state error or

action. p, q ≥ 2 denotes the number of discretized values.

During training, exploration of the environment is mandatory to avoid locally

optimal policies. Traditional exploration methods, such as ε-greedy, indiscriminately

tries non-greedy actions (i.e., non reward maximizing actions given the current

knowledge) with a fixed probability [7]. However, exploring in frequently visited

states makes little sense. Instead, it be better to select non-greedy actions based
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on their potential of being optimal. One such way to do this is to use UCB action

selection [7]:

Ut = arg max
u

[
Qt(x, u) + c

√
ln t

Nt(x, u)

]
(5.49)

where ln t and c are the natural logarithm of t and the exploratory factor, respec-

tively. Large c values result in more exploration. Nt(x, u) is the number of times

u is picked in x prior to t. The square root term is the measure of uncertainty in

the current Q values. Uncertainty is reduced each time u is selected by increasing

Nt(x, u).

The control agent is trained using a high-fidelity simulator for the system.
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UCB Q-Learning: Learn f : X × U → Q

Require:

States X = {x1, x2, ..., xm}

Actions U = {u1, u2, ..., uo}

Reward function R : X × U → R

Learning rate α ∈ [0, 1]

SMDP discount factor β ∈ [0,∞)

Degree of exploratory c ∈ [0,∞)

Procedure UCB Q-learning (X , U , R, α, β, c)

Initialize zero matrices Q(x, u)X×U , N(x, u)X×U

Initialize time, t0

Observe initial state, x0

While Q is not converged do

Pick arg maxut Q(xt, ut) + c
√

ln t
N(x,u)

∗

Perform ut, expect xt+1

When x ≈ xt+1, observe R(xt, xt+1, ut), τ

Q(xt, ut)← Q(xt, ut) + α
[

1−e−βτ
β

R + ...

e−βτmaxut+1Q(xt+1, ut+1)−Q(xt, ut)
]

N(x, u)← N(x, u) + 1; xt ← xt+1; t← t+ 1

*Note: Ties broken randomly to avoid bias.

After convergence of Q(x, u), c is set to zero to stop exploration. Actions are

picked using:

ui,t = ui,t−1 + ∆ui,t, umini ≤ ui,t ≤ umaxi (5.50)

where ∆ut is from Equation (5.43).
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5.8.3 Stability and Convergence

The stability of RL is guaranteed assuming a Lipschitz continuous model and

confining exploration to within the region of attraction, given a bounded input [117].

For convergence, given learning rates 0 ≤ αn < 1, bounded rewards |rn| ≤ R and:

∞∑
i=1

αi(x, u) =∞,
∞∑
i=1

α2
i (x, u) <∞,∀x, u, (5.51)

the tabular Q-learning values, Qn(x, u)→ Q∗(x, u) as n→∞,∀x, u with probability

1—the optimal result given such stochastic conditions [118].

Fig. 5.29 shows the steps to implementing the control agent into industrial

control systems for mediating faults in stable processes where the above conditions

are satisfied. The implementation consists of three phases: i) preliminary training,

ii) calibration; iii) online monitoring.

• Preliminary training: A seed model of the process is first identified to allow

for preliminary control agent training. Simulations using the seed model will

establish a baseline performance for control agent. In this step, the control

agent will learn to operate the process under a desired performance metric

without using the commonly faulty equipment to gain fault tolerance.

• Calibration: The simulation-trained control agent will be implemented online

where it will operate and adapt to the real process, overcoming any model plant

mismatch. The control agent will perform minuscule exploratory moves while

online to ensure optimality. Exploratory moves can be tuned by ue,min ≤

u ≤ ue,max, where ue,min and ue,max are the lower and upper bounds of the

exploratory actions.

• Online monitoring: After sufficient performance is achieved, exploration

will be terminated, and the control agent is ready to mediate process faults.
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Figure 5.29: Steps on implementing the control agent.

The plant managers may choose to leave the control agent in calibrate mode

during a fault so it can continue to identify more optimal control strategies. Such a

strategy sounds risky in academia; however, it is indeed how state-of-the-art MPCs

are implemented in industry.

5.8.4 Computational Complexity

The computation complexity was decomposed into training complexity and on-

line evaluation complexity. The training complexity refers to the computational

time to find the optimal policy. Likewise, the online evaluation complexity is the

online evaluation time required to find the optimal input. Assuming tabula rasa,

the computational complexity to reach the goal state for the first time during train-

ing is O(p3) [119]. Online evaluation complexity is approximately O(mlog(p)) and

O(mlog(p) + qlog(q)) for the prediction and control bandit, respectively. Here, the

O(mlog(p)) is associated with finding the index of the states using binary search.

Similarily, O(qlog(q)) refers to sorting the value functions using heap sort to find

the maximum value. For traditional optimal control solvers, the computational com-

plexity is O(N3(p + q)3), where N is the control horizon [100]. Comparatively, RL

evaluates much faster online compared to traditional optimal control methods, but

must first be trained. For tasks where long training time is feasible and demand fast

online evaluation times, reinforcement learning may be the superior choice. Typ-

ically in the process control industry, training models offline is not a significant

downfall; however, online evaluation time is incredibly scarce especially in highly

complex plants due to hardware limitations. Therefore in terms of computation, RL

may be the desired method.
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5.9 Case Study

The proposed FTCS was simulated on a distillation tower to illustrate the pros

and cons compared to traditional methods. Distillation towers are integral units in

industrial processes that require the separation of mixtures of different components

into products based on their relative volatility. Heavy oil upgrading facilities utilize

distillation towers to separate feed mixtures into various products based on their

specific gravity. For many chemical plants, the distillation tower can account up to

50% of the total operating cost, making optimization of the distillation tower a low

hanging fruit for cost savings.

Flooding is a common and costly problem in industrial distillation towers. Flood-

ing occurs when liquids are entrained in the vapour due to abnormally high vapour

flow rates. Moreover, the excess pressure also causes liquid holdup in the higher

plates of the distillation tower. Ultimately, this leads to significant reduction in sep-

aration efficiency causing a loss in production, wasted energy, and off-spec products.

Flooding commonly occurs when the distillation tower heats up uncontrollable; typ-

ically due to actuator faults. In this case study, the proposed FTCS will be applied

to the Woodberry distillation tower under different actuator faults. The FTCS will

reside in the supervisory control layer, outputting recommended set-points for the

regulatory controllers.

5.9.1 Process Description

Distillation is the process of separating a liquid or vapour mixture of two or

more components into desirable purities through the addition or removal of heat.

The fundamental theory of distillation is that low boiling point components are

richer in the vapour of a boiling mixture, while the liquids would contain more

of the less volatile components [120]. Liquids exit the bottom of the distillation

tower and is sent to a reboiler, where heat is added to vaporize any straggling high

volatility product to ensure maximum separation. Similarly, vapour from the top of

the tower is sent to a condenser, where heat is removed and additional low volatility
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components may be recovered. The condensed vapour is collected in the reflux

drum, and will be recycled back into the distillation tower. Typically, distillation

columns are large vertical drums with evenly spaced trays to enhance separation of

the vapour and liquid components [121]. The tower is separated into two sections.

The rectifying section is located between the feed tray and the top of the column and

aims to concentrate light components in the vapour phase. Moreover, the stripping

section is located between the feed tray and the column bottom and is used to

concentrate the heavier components in the liquid phase [122].

The Wood-Berry distillation tower, shown in Fig. 5.30, contains one feed stream

and two outlet streams. The feed stream containing methanol and water is char-

acterized by the inlet mass composition Zf . Methanol has a boiling point of 64.7

°C whereas pure liquid water has a boiling point of 100 °C [123], thus, making

methanol the distillate and water the bottoms product. The control inputs are the

reflux and steam flow rates, R (lb/min) and S (lb/min). Furthermore, the outputs

are characterized by the distillate and bottoms methanol mass fraction, XD and XB,

respectively. Objectively, the distillation column aims to achieve 100% XD, while

maintaining XB at 0%. Additional detailed information about the operation and

inner workings of distillation towers can be found in [122].
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Figure 5.30: Wood-Berry distillation tower schematic.

The transfer function realization of the Wood-Berry distillation tower is given

by Equation (5.52) [124].

Y1(s)

Y2(s)

 =

G11 G12

G21 G22


u1(s)

u2(s)

 (5.52)

where u1 and u2 are R and S, respectively. Gij are:

G11 = 12.8e−s

16.7s+1
G12 = −18.9e−3s

21s+1

G21 = 6.6e−7s

10.9s+1
G22 = −19.4e−3s

14.4s+1

(5.53)

Equation (5.53) was converted into state space form using the ss function in MAT-

LAB and given by:
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ẋ1

ẋ2

ẋ3

ẋ4


=



−0.06 0 0 0

0 −0.09 0 0

0 0 −0.05 0

0 0 0 −0.07





x1

x2

x3

x4


+ I



u1(t− 1)

u1(t− 7)

u2(t− 3)

u2(t− 3)


+ I



ũ1(t− 1)

ũ1(t− 7)

ũ2(t− 3)

ũ2(t− 3)


(5.54)

XD

XB

 =

0.8 0 −0.9 0

0 0.6 0 −1.4




x1

x2

x3

x4


+



ε1

ε2

ε3

ε4


(5.55)

where I is the identity matrix and ũ(t) denotes actuator faults. Initially, the system

was at steady state where XD, XB = 100, 0 and initial states x0 = [251, 0, 103, 0].

Measurement noises, εi, were sampled from εi ∼ N(0, 2). Applying the Popov-

Belevitch-Hautus test to the system, rank([B,AB,A2B,A3B]) = 4, satisfying the

controllability criterion [57]. Furthermore, it can be seen that XD and XB are

controllable using either u1 or u2. Thus, even if one controller is faulty, the non-faulty

controller can still guide one system output to the desired set-point. Finally, the

system matrix contains only negative eigenvalues; therefore, the system is globally

asymptotically stable with the region of attraction spanning the entire state space.

Given a constrained input, the control agent in this study is guaranteed to be stable

under any policy.

5.9.2 Tuning of Regulatory Control

Proportional-Integral (PI) controllers were used for regulatory control because

its performance exceeds Proportional-Integral-Derivative (PID) controllers in the

Wood-Berry distillation tower due to the slow dynamics of the system [109]. The

discrete PI controller formulation is [57]:

ut = ut−1 +Kp(et + et−1) +Kiet (5.56)
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whereKp andKi are the proportional and integral parameters that must be tuned. A

multi-loop tuning strategy using equivalent transfer functions and simplified internal

model control was used to tune the PI controllers [125]. The controller parameters

are given in Table 5.18:

Table 5.18: Parameters for the PI controllers

u1 u2

Kp 1.31 -0.28
Ki 0.21 -0.06

5.9.3 Fault-Tolerant Control System

Integral wind-up is a common problem in PI controllers during actuator satu-

ration or faults. Amid these events, the integral term accumulates a larger error,

often resulting in excessive overshooting and irresponsiveness to errors in the oppo-

site direction [57]. In this study, the prediction agent learned faults through large

integral wind-ups. The states of the prediction agent is X = [∆y1,∆y2,∆u1,∆u2].

The prediction agent will learn typical ∆y1,2 pairings with ∆u1,2; if large ∆u1,2 is

observed without an equal change in ∆y1,2, a fault is deemed active.

Fig. 5.31 shows the normal and faulty controller input-output pairing for u1

and XD. Points within the dashed circles are expected states from the closed-loop

system. Any points residing outside are faulty. A similar relation exists with all

other input-output pairings. The prediction agent will deemed a fault active when

ten consecutive points fall outside the boundaries. This condition was imposed to

prevent false alarms caused by noisy process data.
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Figure 5.31: Relationship between XD and u1.

After a fault is identified, the control agent is activated to guide the system back

to the fault free case, if possible. In this study, the control agent’s state and actions

are:

X = [(−15, 15), (−15,−14), ..., (15, 15)]312×1 (5.57)

U = [(−10,−10), (−10,−9), ..., (10, 10)]212×1 (5.58)

Initial learning rate a0, discount factor β, and exploratory factor c were 0.5, 0.1 and

1.2, respectively. α is decayed as the agent gains experience, given by:

 αt = a0, N(x, u) < 25

αt = α0

1+N(x,u)
, N(x, u) ≥ 25

(5.59)

where αt ∈ [0.001, 0.5). The reward, |R| ≤ 900, is bounded and given by Eq. 5.46.

Learning rate decay and bounded reward are necessary for RL convergence [118].

5.9.4 Case Studies

Table 5.19 shows the four case studies that were explored. The prediction and

control agents were trained in simulation for 320,000 training steps for each case.

A random actuator fault was introduced at the 150th minute. τmax was set to 30
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minutes. Each episode was limited to a maximum of 2000 minutes before the system

was reset. The PI controllers were evaluated every 4 minutes.

Table 5.19: Case studies for the FTCS

Reward Description

Case 1 - e2
XD

Set-point Change

Case 2 - e2
XB

Set-point Change

Case 3 - 0.8e2
XD

- 0.2e2
XB

Optimal Operation

Case 4 - e2
XD
→ −e2

XB
Adaptation

The case study simulation results are shown in Figs. 5.32a, 5.32b, 5.33, and

5.34. In case 1, the operator changed the set-point from 100% to 90% for XD at

t = 350; however, the reflux valve became stuck. The FDS detected ten consecutive

anomalous (∆y1,2,∆u1,2) pairs and activated the FTC which guided the system

to the desired set-point successfully within 60 minutes. The FTC can also reject

disturbances as shown at t = 1400. Without the FTCS, the system would have been

stuck at XD = 76. Additionally, the system is robust to large process uncertainty (as

shown in the noisy measurements). Likewise, Fig. 5.32b shows a similar scenario for

XB where the steam valve became stuck. By training the FTCS for faults in XB, the

system can be easily re-stabilized using the same algorithm and hyper parameters.
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In case 3, both XD and XB are considered at different degrees, with XD being

valued at four times greater than XB. During operations, an actuator fault occurred
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in the reflux valve, significantly impacting both XD and XB. With the remaining

actuator, the system cannot be guided to the optimal set-points for both XD and

XB. Here, the agent found an operating condition to minimize the overall loss.
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Figure 5.33: Trade-off between conflicting objectives (Case 3).

Case 4 was used to explore adaptability of the FTCS. A pre-trained control agent

for regulating XD to 100 was re-tasked to regulate XB to 0. In Fig. 5.34, a fault

occurred at t = 300 in the reflux valve. Originally, the control agent was tasked with

using the steam valve to regulate XD back to 100; however, the operating objective

changed to regulating XB to 0. Here, the control agent was able to completely adapt

to the new operating objective in 90,000 training steps by solely experiencing the

new reward function. Adaptation speed can also be controlled by tuning learning

rate α.
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Figure 5.34: Adaptation of the FTCS (Case 4).

5.9.5 Learning Speed and Fault Mediation Time

Fig. 5.35b shows the time required to mediate faults of different magnitude. The

fault mediation time was calculated as ts − tf , where ts is when the control agent

made its first action and tf is when set points returned to 98% of its original values.

From Fig. 5.35b, the time required to mediate a fault increased linearly with

magnitude; however, this was caused by larger magnitude faults requiring additional

actions from the control agent. Moreover, the mediation time became constant

after being normalizing by the minimum number of actions required to mediate the

fault; the expected behaviour for linear systems. The control agent’s actions can

be increased to reduce mediation time during high magnitude faults. Variance was

higher at smaller magnitudes due to noise being more dominant.
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Fig. 5.35a shows the control agent’s performance for mediating a constant fault

after different training steps. It can be seen that the mean performance does not

greatly increase after 160,000 training steps; however, variance of results reduce

significantly until 320,000 training steps.
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5.9.6 A Comparison of Optimal Control

In this section, the performance of the RL-FTCS was compared to MPC. A

variety of factors relating to industrial implementation were explored for both MPC

and RL under different situations. Factors include: performance, computational

time, sensitivity to tuning, time required to implement, and robustness.

Figs. 5.36a and 5.36b show the XD trajectories under different control strategies

during a fault. The strategies provided are:

1. Classic MPC with no fault detection

2. MPC equipped with the proposed FDS to detect faults

(a) using a perfect model

(b) using a perfect model with un-tuned weighting matrices

(c) MPC using a model with 5% mismatch

3. RL-FTCS
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For the MPC control strategies, the internal states of the system are all assumed to

be measurable. The MPC cost function is given by:

J =
∞∑
i=1

γixTi Qxi (5.60)

xi = xi − xspi

where i denotes the stage number. γ = 0.9 is the discount factor to decay future

costs; a strategy RL uses to emphasize near-term performance. Here, it was added

to the MPC’s cost function to ensure the objectives of both controllers are identical.

The control and prediction horizons for the MPCs are ∞; however, stage costs

beyond i = 50 are decayed by 99.5% due to γ. The MPC weighting matrix, Qm×m,

is an identity matrix. In the un-tuned MPC case, Qm×m is a random diagonal

matrix. Furthermore, the inputs of the MPC are bounded by |ui| ≤ 10, an identical

condition imposed on the RL controller. Overall, the MPC’s objective was designed

to be an exact replica of the RL’s reward function to ensure both controllers are

solving identical problems.
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(a) Trajectories of XD under different control strate-

gies during a constant reflux valve fault. Shaded region

correspond to one standard deviation.
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(b) RL-FTC performance during a reflux valve fault av-

eraged over 30 simulations. RL-FTC was trained on a

model with 5% offset.

In this simulation, a fault occurred in the reflux valve at t = 350, causing a major

disturbance in XD. For the MPC without fault detection, XD dropped drastically,

and never recovered. With the FDS equipped, the MPC with the perfect model
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was able to recover to pre-fault conditions very rapidly; however, the same MPC

with a poorly tuned Q matrix results in overshooting and sub-optimal performance.

Nevertheless, the fault was still rejected. However, for a MPC using a model with 5%

offset (all values in the A matrix are increased by 5%), the MPC had a large offset

and was never able to achieve pre-fault conditions due to the optimal trajectory

calculated by the MPC being heavily reliant on the model itself.

Here, RL can overcome this problem through the velocity implementation style

and its model-free nature. The RL in Fig. 5.36a is trained on the 5% offset model.

But, RL uses the model only for an initial policy. Afterwards, real-time feedback

for RL is obtained in terms of an tracking error, et from the plant, and does not rely

on the initial model for any control purposes. Taking et, RL will perform control

action ∆u with accordance to its current policy. Through this, RL was able to reject

faults, even when trained on inaccurate models. Additionally, RL will update its

policy online to adapt to process drift, and continue to improve.

Table 5.20 contains the performance metrics for the controllers shown in Fig.

5.36a. MPC with a perfect model is still the superior choice, resulting in the low-

est RMSE and fault mediation time. On the contrary, if the weighting matrix is

improperly tuned, the MPC’s performance can suffer even using the perfect model.

RL (trained on the 5% offset model) has higher RMSE and fault mediation time

compared to MPC with a perfect model; however, RL performs better than all other

MPC implementations, and will continue to improve when implemented online.
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Table 5.20: Performance metrics for fault mediation using different control strate-
gies.

RMSE Mediation Time (mins)

Perfect Model 21.6 46
M

P
C

Perfect Model (un-tuned) 22.4 66

5% Offset N/A ∞

No Fault Detection N/A ∞

R
L RL-FTC 22.4 42

RL is also less prone to poor tuning as shown in Figs. 5.37a and 5.37b, and only

requires the output of the system for control. For RL, the only hyper parameters

that require tuning are αmin and β. But from Figs. 5.37a and 5.37b, it can be seen

that RL is quite robust to poor hyper parameter tuning; a trait not exhibited by

traditional optimal controllers. For αmin, any values below 0.25 results in relatively

the same performance. Likewise for β, any values under 0.5 results in similar per-

formance, with higher values only slightly depreciating performance. Nevertheless,

higher values result in significantly higher variance.
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Figure 5.37: Performance vs. α and β. Solid line represent average performance of
10 different agents. Shaded area represents one standard deviation.

The computational time of RL was also compared to MPC using IPOPT’s linear
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program. For a simulation lasting 2000 minutes, RL completed the simulation in

2.0 ± 0.2 milliseconds while MPC required 4.5 ± 0.1 seconds.

Table 5.21 summarizes the performance of RL-FTC compared to traditional

optimal controllers under actuator faults.

Table 5.21: Summary of RL-FTC compared to MPC.

RL MPC
1RMSE 22.4 21.6

1Mediation time (mins) 42 46
2Computational time (s) 0.002 ± 0.0002 4.5 ± 0.1

Sensitivity to tuning No Yes

Robustness Yes Bad models cause offset

Online calibration Exploratory moves Exploratory moves

Requires offline training Yes No
1Lowest value achieved across all different simulations. For RL, this value is the average of at least 10

simulations to ensure reproducability.

2Computational time required to run the Wood-berry distillation for 2000 minutes.

5.10 Concluding Remarks on the FTCS

Eventually, all process equipment will reach the end of their operational lifetime

and fail. Such failures are difficult to predict and may cause catastrophic dam-

age; therefore, it is advantageous to proactively manage risks using a fault-tolerant

control system (FTCS). This study proposed a general FTCS for continuous MIMO

systems using reinforcement learning (RL). The FTCS was placed in the supervisory

control layer and gave operating recommendations to process control systems. The

FTCS was simulated distillation tower, showing its fault tolerant nature, robustness

to uncertainties, and disturbance rejection capabilities all while being adaptive. The

system was also evaluated from an industrial implementation perspective and com-

pared to traditional optimal control methods similar to RL. Unsurprisingly, MPC

was found to be the superior method if a perfect model was provided and sufficient

computational time was given. However, MPC falls short during scenarios with

model plant mismatch, or if the controller is poorly tuned. RL’s performance is

only slightly worse than MPC, and is robust to model plant mismatch due to its
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model-free nature and velocity implementation style. Ultimately, RL may be the

preferred method in an industrial environment where hardware is lacking, engineers

being under time pressure to create solutions, and/or fast computational time is

necessary.
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Chapter 6

Review of RL for Process Control

This chapter starts with a literature review on the most famous RL applications

in history. Applications in this section have all been widely covered by the media

and are well known amongst researchers and industrial practitioners alike. Then,

a review on RL applications catered towards the process control industry will be

provided. Finally, this chapter is concluded with an impressive application of RL

for power optimization. The main contribution of this chapter is the conducted

literature view.

6.1 Renowned triumphs

The world witnessed, for the first time, artificial intelligence learning and playing

games with a mere camera placed in front of the computer screen [49], [50] in 2013!

The algorithm proposed was named the deep Q-learning network (DQN). In this

application, a general RL agent successfully conquered various ATARI games using

the camera images alone. However, such games are simple near-deterministic envi-

ronments with sufficiently small state and action spaces, allowing even rules-based

methods to be near-optimal (though previous algorithms did not learn the games,

nor can they play multiple games with the same algorithm). Although DQN show-

cased the power and generality of DQN, previous methods were already near-optimal

in such simple environments. To conquer a task never done before by computers,
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Google DeepMind developed AlphaGo in 2016. AlphaGo was an RL algorithm built

to conquer Go, a 2-player board game invented 3,000 years ago in China [126], [127].

Go is widely known as a near-impossible game for machines due to the dimensions

of its state and action space (over 10170 possible states, a googol times larger than

Chess), and the requirement to defeat opponents with stochastic strategies. State-

of-the-art Go programs struggle against even amateur players; however, AlphaGo

decisively defeated Ke Jie, the world’s best Go player. The structure of AlphaGo

employs value networks to evaluate the board state. Then, policy networks are used

for optimal action selection. During initial training, the agent used supervised learn-

ing to gain fundamental knowledge from amateur level play. Afterwards, advanced

strategies were developed by learning from expert level play. After surpassing the

experts, the agent continued to perfect itself through conducting playing against

itself, ultimately evolving into the world’s best Go player in history [126], [127]. In

terms of real world applications, these experiments demonstrate the potential of RL

to identify new techniques and insights to advance modern engineering beyond what

is already known.

Originally, AlphaGo contained human engineered features that were initially be-

lieved to enhance the agent’s learning speed. Ironically, DeepMind thought the

complete opposite. Instead, DeepMind believed that the features actually handi-

capped the agent’s skill ceiling, leading to the development of AlphaGo Zero (zero

refers to zero engineered features), a more natural version of AlphaGo that is free

of human intervention [128]. In AlphaGo Zero, the states were simply the locations

of the black and white stones. In terms of the algorithm, AlphaGo Zero combined

the value and policy networks into one network, making it a more simple algorithm.

After training for approximately 40 days starting tabula rasa, AlphaGo Zero was

able to surpass AlphaGo through pure self-play, without human engineered features

or learning fundamentals from human play. Furthermore, just 3 days was needed

for AlphaGo Zero to achieve world championship level (i.e., the level required to

decisively defeat Ke Jie). AlphaGo Zero was also much more efficient, using only 4
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tensor processing units (TPUs) compared to the 48 used by AlphaGo resulting in a

90%+ reduction in energy usage.

In the latter half of 2017, AlphaGo Zero was perfected into AlphaZero, a gen-

eral RL algorithm capable of teaching itself Chess, Shogi, and Go. Additionally,

the agent was ultimately able to defeat the world champion program in each re-

spective case [129]–[131]. Architecturally, AlphaZero uses a deep neural network

(p, v) = fθ(x) where p represents a vector of action probabilities pu = Pr(u|x),

θ are the parameters of the neural network, and v ≈ E[z|x] where z denotes the

expected game outcome [131]. For example, z = -1 for a loss, 0 for a tie, and 1

for a win. Magnus Carlsen, the world’s best Chess player in history, had a peak

FIDE ELO (skill evaluation assigned by FIDE, the world’s most prestigious Chess

organization) of 2882. In Chess programs using supervised learning to replicate Mr.

Carlsen’s playstyle, the ideal agent would be hard capped at 2882, a level represent-

ing zero replication error. Comparatively, AlphaZero achieved an ELO above 3300

from pure self-play in just 200,000 training steps. In 300,000 training steps (4 hours

physical time), AlphaZero confidently surpassed Stockfish, the best Chess engine

[132]. Comparing AlphaZero with Stockfish, Stockfish required decades of careful

engineering and refinement by Chess and software experts. AlphaZero started know-

ing literally nothing, and after 4 hours of self-play, it was crowned the best Chess

player in history. The most impressive accomplishment of AlphaZero in a RL liter-

ature contribution sense is the demonstration of RL’s ability for long-term decision

making. That is, AlphaZero played Chess like no other. The agent started by sacri-

ficing many pieces in the early game to eventually obtain a significant advantage in

the end game, some thirty steps in the future. Furthermore, AlphaZero only needs

to search 104’s moves per turn compared to traditional Chess engines, like Stockfish,

where up to 107’s moves are searched (over 1000 times more!). More impressively,

AlphaZero was then used to learn Shogi and Go as well. Ultimately, the agent was

able to defeat the respective best game engines, Elmo and AlphaGo Zero.

The achievements of DQN, AlphaGo, AlphaGo Zero and AlphaZero are all tech-
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nologically amazing; however, all previous applications hold no true value in the real

world. More specifically, the algorithms were all applied in a perfect information sys-

tem where all system states are perfectly observable and without stochasticity. For

example, you cannot keep the location of your pieces hidden from your opponent

in Chess. Additionally, the applications did not require real-time decision making.

Instead, the computers were given excessively long periods of time to provide an

action. Comparatively, systems in the real world occasionally contain fast dynam-

ics and often contain unobservable, and/or unreliable information. To demonstrate

RL’s ability to perform in stochastic and partially observable settings similar to

the real world, AlphaStar was developed [133]. Here, the agent learned to play

StarCraft II, a real time strategy game where the player acts as the general of an

army. Here, the agent is tasked with optimally allocating sufficient resources for

military and resource-generation needs in order to defeat the opponent. Compared

to other games, StarCraft is a very difficult (most humans cannot properly play

it), real time, and the opponent’s moves are hidden and, often times, stochastic

because the opponent is stochastic. The state and action spaces are also nearly

infinite because of the wide range of available choices (much like a military general’s

job in real life). Here, the agent must respond and act fast enough to win real

time battles while also managing the long term resource requirements of its army.

In the past, ML methods were applied on simpler real time games such as Mario

or Quake with heavy simplifications. Even with such modifications, no algorithms

ever performed even remotely close to professional level play. In AlphaStar’s case,

the agent decisively defeated two of the best StarCraft II pros using pixel inputs

alone and on the full game (with no modifications). Moreover, AlphaStar was not

given any additional hidden information and was also constrained to be inline with

human capabilities (e.g., the agent is not allowed to perform thousands of actions

per second, etc.). Through AlphaStar, RL was shown to have the ability to react to

unexpected situations in real time high dimensional environments. Additionally, RL

was very successful in hierarchical long-term planning tasks, as shown by its abil-
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ity to manage long-term resource needs. Such characteristics are vital in industrial

process control, especially in applications regarding fault-tolerant control or high

dimensional multi-variate optimal control.

AlphaStar used an off-policy actor-critic RL algorithm. Initially, AlphaStar

learning fundamental strategies of StarCraft using supervised learning from previous

game footage because the game is too difficult to learn tabula rasa. Afterwards, it

conducted self play to perfect itself.

All applications above assumed a single agent environment. In industrial process

control, the agent must also identify the consequences of its actions on the entire

process. RL’s capabilities in multi-agent partially observable settings was first con-

fidently demonstrated by OpenAI on a game known as Defense of the Ancients

(DotA) 2. DotA, like StarCraft II, is a real time high dimensional strategy game

(more commonly known as multiplayer online battle arena) where each team tries

to overcome the opponent. Unlike StarCraft, five players are on each team for DotA

and all players must work together. In such a setting, the agent’s interaction effects

with other agents must be explicitly considered to identify the optimal policy. In

DotA, the time horizon per game is also dramatically increased and can be up to

80,000. Comparatively, a game of Chess or Go typically ends within 150 turns [134].

In OpenAI Five, all agents use the proximal policy optimization algorithm and han-

dles the system’s partial observability using recurrent neural networks. At each

time t, 20,000 continuous observations are provided to the agent. The agent then

picks 1 action out of 1,000 different actions. The agents’ reward function contains

two parts: individual performance and team performance. The team performance

reward function was used to enhance cooperation among the independent agents.

In the reward function, a hyper parameter called team spirit, denoted here as φ,

was used to imply the importance of individual and team performance. Throughout

each game, team spirit was annealed from 0 to 1 to establish that in the end game,
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only team performance matters. The reward function for each agent is:

r(x, u) = φ · team reward function + (1− φ) · individual reward function (6.1)

On April 2019, OpenAI Five defeated the world’s highest ranked DotA 2 teams

[135].

Modern RL debuted in near-deterministic low dimensional video games, even-

tually transitioning to more complex systems that reflected the uncertain, unob-

servable, and stochastic nature of the real world. Throughout all these modern

RL triumphs, RL agents was shown to have capabilities to optimally handle par-

tially observable, long horizon, and high dimensional systems (better than humans).

Additionally, RL has fast online evaluation times, allowing for quick reactions to

unexpected situations. RL can also learn the optimal policy in multi-agent systems

and is feasible for real time applications with exceptionally fast dynamics. Most

critically, RL was shown, time and time again, to be a general algorithm with the

ability to learn different things. Such a characteristic could significantly reduce R&D

costs for advanced applications in industrial process control.

6.2 Simulated RL Applications

6.2.1 RL for Adaptive PIDs

Initially, senior management might hesitate to implement RL for direct closed

loop control due to safety concerns. To gain initial approval, this section intro-

duces RL methods to optimally tune PIDs. Proportional-Integral-Derivative (PID)

controllers are widely used throughout many processes due to their simplicity, ef-

fectiveness, and ease of implementation. The general PID formulation is given by

[57]:

u(t) = Kpε(t) +Ki

T∫
τ=0

ε(τ)dt+Kdε̇(t) (6.2)
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where ε̇(t) denotes the change in error at time t. Kp, Ki, and Kd are the PID param-

eters corresponding to the proportional, integral, and derivative gain, respectively.

These parameters must be well tuned for optimal controller performance; however,

the tuning process is time-consuming, especially in MIMO systems with many in-

teracting control loops (i.e., proper tuning of one control loop ends up de-tuning

another). Many traditional approaches exist for PID tuning. One popular method

is the Ziegler-Nichols method. But PIDs tuned using these general approaches

typically perform well below optimal [136]. Here, RL agents will be used to auto-

matically and optimally tune the PID parameters, resulting in superior performance

while reducing engineering work hours.

Perhaps the earliest study on automated PID tuning using RL concepts was pub-

lished in 2000 by [136] (algorithm overview shown in Figure 6.1). Application-wise,

the authors was able to successfully tune a Ford Motors Zetec engine. The algo-

rithm was called Continuous Action Reinforcement Learning Automata (CARLA),

and was typically used for fine tuning PIDs after initial parameters were set using

methods like Ziegler-Nichols. Controllers tuned using CARLA resulted in a 60%

reduction in the cost function compared to traditional tuning methods. CARLA is

implemented as follows: Initially, each hyper parameter (Kp, Ki, Kd) corresponds to

one CARLA. The output of each CARLA is the recommended new hyper param-

eter and is picked from the corresponding probability density functions, f(x). For

example, in a single PID system, there would exist three CARLAs corresponding to

Kp, Ki, and Kd. At each time step, the recommended parameters are outputted and

is implemented into the PID. Afterwards, the cost function using the recommended

parameters is evaluated. Costs lower than the mean will shift the distribution to-

wards the recommended parameters, vice versa for higher costs. Exploration-wise,

Gaussian white noise is added to the recommended parameters. Lastly, CARLA is

typically applied to low dimensional settings due to its non-scalability nature. For

more detailed information regarding CARLA, see [136].
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Figure 6.1: CARLA: An RL-powered automatic PID tuning algorithm

Six years later, [137] developed a more sophisticated PID tuning approach through

an actor-critic algorithm. Here, the agent’s states are given as:

x = [εt,∆εt,∆
2εt]

∆εt = εt − εt−1

∆2εt = εt − 2εt−1 + εt−2

and the actions are:

u = [Ki, Kp, Kd]

The states correspond to the integral, proportional, and derivative error terms of

a discrete PID. Intuitively, the agent maps the current error, and the first- and

second-order difference of errors to the optimal PID parameters at each t. Using the

new parameters, the PID is re-parameterized and outputs ∆ut using:

∆ut = Kiεt +Kp(εt − εt−1) +Kd(εt − 2εt−1 + εt−2) (6.3)

where Ki, Kp, and Kd are provided by RL and may change for each time t. From

∆ut, ut is calculated using:

ut = ut−1 + ∆ut

From [137], results showed the algorithm’s capability to near-perfectly track complex
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non-linear systems. By 2008, [138] applied this algorithm onto an industrial wind

turbine experiment, yielding near perfect set point tracking. Applicational details

are in [138]. In 2015, the algorithm was implemented on an under-actuated robotic

arm [139]. Here, the system contains fast dynamics and lacks sufficient actuators for

control. This study explores the RL tuning method’s fault tolerant characteristics

due to the under-actuated system. To test the PIDs, the robotic arm had to main-

tain proper formations and was exposed to many disturbances. Traditionally tuned

PIDs overshoot and exhibit other undesired behaviours; however, the RL tuned PID

showed significantly better performance for disturbance rejection and response time.

By 2017, a Q-learning variant of this algorithm was used to tune a race track robot

[140]. Compared to PIDs tuned using traditional approaches, the robots tuned using

RL achieved up to 59% faster lap times.

In 2013, [140] introduced a new automated tuning strategy to tune robots playing

soccer. This new method was comparable to the one used for the multi-PID soccer

robot. The main difference was the agent’s states. Instead of errors, the agent

received the location of the robot in the soccer game. Intuitively, this gave the

agent information regarding its current situation within the game, and allowed RL

to tune its specifications accordingly. For example, the robot will require faster

speed when sprinting down the soccer field compared to when it is ready to score a

goal. Such a tuning method may be useful for an event triggered control system in

industry. For example, if there is snow outside, the control system should act more

conservatively and have less gain compared to normal ambient conditions. In [140],

it was demonstrated that the RL tuned robots were vasting superior to robots tuned

using the Ziegler-Nichols method.

RL was also used for a model-based PID tuning strategy where the controller’s

finite horizon cost was considered instead of its immediate tracking error. In the

end, this method was highly successful and even worked on non-linear MIMO sys-

tems with arbitrary couplings. The method was validated in real life on a robot

named Apollo. Apollo had imperfect low-level tracking controllers and unobserved
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dynamics, but was able to perform adequately using the RL tuned PIDs. Advanced

details regarding this implementation can be found in [141].

In recent literature, many more RL automated PID tuning methods were pub-

lished, but were not listed here. Ultimately, all the ”new” approaches are very

similar to the ones presented with only slight alterations of the tuning set-up.

6.2.2 RL in Process Control

Studies where RL agents were applied solely for regulation or set-point tracking

are still quite rare due the undeniable success of traditional methods. [142] was the

first instance where RL was used for set-point tracking of an industrial process. Here,

the authors tracked the set-point of a CSTR using a neural network based agent. In

more recent literature, [143] was the first to show deep RL’s (DDPG) capabilities

in process control. Here, it was shown that RL can successfully control arbitrary

SISO and MIMO systems as long as the reward function is properly established. In

[143], the agents mapped x = [yt, ysp] to u = [ut]. Intuitively, the states provided

the current tracking error to the agent while the action changed the control input

to mitigate the error. In [144], an actor-critic agent was used to regulate the tem-

perature of a building heating, ventilation, and air conditioning (HVAC) system.

Ultimately, the agent resulted in a 2.5% reduction in energy consumption while

achieving a 15% increase in thermal comfort. The HVAC system was optimized

again in [145]. This time, a proximal actor-critic RL agent was used. All previous

applications formulated the agent to perform set-point tracking; however, there al-

ready exists many highly capable controllers for set-point tracking such as PIDs and

MPCs. RL’s greatest advantage compared to previous methods are its flexibility

and ease of use for optimal control (i.e., optimize an economic objective). More

specifically, optimal control can be achieved by simply changing the reward function

to be in terms of an economic objective. Furthermore, RLs are also shown to be

effective in fault-tolerant control (FTC) [146]. A RL agent trained under different

faults can identify a fault-robust optimal policy directly. Moreover, RL’s model-free
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nature and direct adaptive characteristics allow the agents to mediate faults even

when trained on inaccurate process models and can also adapt to process drift.

6.2.3 RL for Anomaly Detection

Another field where RL gained traction is time series anomaly detection. In

industry, anomaly detection is a proactive application to identify potential hazards

before a loss incident occurs. Compared to previous methods, RL’s ability to self-

learn provide an attractive edge. [147] was perhaps the earliest paper to introduce

RL-based anomaly detection (architecture shown in Figure 6.2). Here, the authors

built an adaptive neural network agent to identify cyber threats. Comparatively,

the architecture is nearly identical to the time-series anomaly detection introduced

in Chapter 3. A POMDP was used to describe the system where the agent mapped

observations o = [xt−n, xt−n+1, ..., xt] to actions u = [Normal , Anomalous], guided

by a reward signal based on the success or failure of its last prediction. The re-

ward function is designed as follows: correct identifications yielded +1 reward while

misclassification yielded -1 reward. Notice that the observations were augmented

past states. By doing so, the agent is provided with time-series information. More

recently, Zighra (a online security company) deployed the algorithm from [147] into

production through a software called SensifyID. Although the concepts here was

originally proposed for networks; the same concept was shown in [146] to work as a

general fault detection tool for industrial process control as well.

Figure 6.2: A sample anomaly detection architecture.

In early 2010, [148] extended the original RL anomaly detection concepts by
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representing the system as a partially observable Markov reward process (MRP). The

states in this new algorithm remained o = [xt−n, xt−n+1, ..., xt]. The agent had no

actions since a MRP was used to represent the system. Instead, the agent learned the

probabilities of each state transitioning into an anomalous state. Mathematically,

this is given as:

Pa(x) = P{ot+1 ∈ A|ot} (6.4)

where Pa(x) represents the probability of transitioning into an anomalous state

a ∈ A given observation ot where A is the set of anomalous states. There exists

another hyper parameter, µa, that denotes the anomaly threshold. High values

reduce false positives but increase false negatives, while low values increase true

positives but also increase true negatives. At any time when Pa(x) > µa, an anomaly

was deemed imminent. The value function of this approach is represented as:

V (x) =
n∑
i

P (ot+1 ∈ A|ot) · r(ot) (6.5)

where r(ot) is the reward received given ot. If ot ∈ A, r(ot) = 1, otherwise 0.

Notice here that higher value states have higher chance of being anomalous. As

validation, the authors compared the RL anomaly detection algorithm to other

popular classification algorithms such as support vector machines. In the end, RL

anomaly detection resulted in the highest detection accuracy, although all algorithms

scored accuracies above 99.8% on the selected data sets, even linear methods such

as logistic regression [148].

In 2018, Huang el al. introduced a recurrent neural network (RNN) based RL

anomaly detection algorithm without needing to tune µa [149]. The algorithm was

similar to [147] where π(u, x) mapped states to actions u = [Normal , Anomalous].

In this representation, µa was not required because the classification is binary (i.e.,

not a probability). Compared to [147], the new algorithm was still a POMDP;

however, it used a long short term memory (LSTM) recurrent neural network (RNN)

to memorize previous states rather than augmenting the previous states directly.
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The performance advantages between the two approaches have yet to be explored

in literature, but the LSTM RNN should require significantly more training. The

algorithm was validated on the Yahoo anomaly detection benchmark data set [150]

and successfully identified all anomalies with no false alarms.

6.3 Google’s success story

A world-changing implementation of RL was demonstrated by Google when a

RL agent1 showed the capabilities to autonomously controlling a live data center,

reducing electricity usage by up to 40%. This also indirectly reduced the carbon

footprint of all individuals using Google’s services, which encompasses a large part of

the world. Google’s data centers generate enormous amounts of heat through pow-

ering services such as Google Search, Gmail, and YouTube. Hence, the data centers’

primary energy usage is for cooling. Cooling industrial processes are accomplished

by equipment such as heat exchangers, pumps, and cooling towers—even at Google.

Modelling such a complex, non-linear systems poses several difficulties, rendering

traditional methods ineffective [151]:

1. Complex, high-dimensional environment with uncountable non-linear interac-

tions rendering modern system identification methods infeasible. Additionally,

experienced human operators simply cannot comprehend the countless inter-

actions.

2. Highly dynamic internal and external building conditions (such as ambient

temperature, server load, etc.) rendering rules- and non-adaptive methods

intractable.

3. All data centers have unique layouts and set-ups. This non-consistency de-

mands custom-tuned models for each individual data center, assuming tradi-

1Google DeepMind did not explicitly state the technology used to achieve the savings, only
machine learning. However, DeepMind is a company that focuses on reinforcement learning ap-
proaches and there were many mentions of creating a general algorithm for all the data centers in
the article; therefore, it was assumed reinforcement learning was used. More specifically, meta-RL
was most likely used due to the construction of many simulators and the agent’s adaptation speed.
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tional approaches were used; however, such a dilemma could be adequately

overcame through artificial general intelligence where one algorithm can learn

many different scenarios.

To overcome these difficulties, DeepMind researchers first identified neural network

models corresponding to different operating conditions by leveraging historical op-

erating data from different data centers. The inputs to the neural network models

were sensor information such as temperature, pump speeds, ambient temperature,

etc. The model output was the power usage effectiveness (PUE) given by:

PUE =
Total building energy usage

IT energy usage
(6.6)

Here, the neural networks were used as training simulators for the data centers.

RL was applied on said simulators to learn a control policy to minimize the PUE.

Different agents were trained on different data centers, during different operating

conditions. When implemented, the ideal agent would be picked based on the cur-

rent operating condition. Initially, the control actions provided by the agent were

only recommendations. The PUE with and without implementing the agent’s rec-

ommendations is shown in Figure 6.3.

Figure 6.3: Power usage effectiveness with and without ML control. Original figure
from [151].

By 2018, the agent was given full access to the data center control system after

safety constraints were added.

As a summary, the RL agents sample measurements from the sensors in each
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data center every five minutes and outputs the optimal control actions that satisfy

a robust set of safety constraints [152]. The local control operators then verify the

provided inputs to ensure that the system will remain within constraint boundaries.

In the first few months, the agent consistently reduced electricity consumption by

an average of 30% and is expected to improve as it continues to learn. In the end,

the agent reached an optimal policy that resulted in the lowest PUE ever seen, far

surpassing human operation—an event only achievable through RL.
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Chapter 7

Concluding Remarks

7.1 Concluding Remarks

Machine learning methods are becoming infinitely more powerful as the world

continues its transition to a digital era overloaded with data. Unfortunately, the lack

of individuals with knowledge in both the process engineering and machine learning

is holding back value creation in the process industry. This thesis introduced simple

and economically efficient machine learning algorithms for prediction, monitoring,

and control.

Chapter 2 introduced the ML models for prediction—the most widely used ma-

chine learning technique. Here, ML is used to predict the expected process variables

given other measurements. Applications in the process industry include soft sensors,

digital twins, and production forecasting. Combined with mathematical program-

ming, data-driven MPCs and real-time optimization applications can also be built.

Chapter 3 focused on ML applications for safety and risk management. More

specifically, anomaly detection/prediction and alarm management applications were

introduced. Anomaly detection/prediction applications served as multi-variate alarms,

proactively identifying deviations in process variables to safeguard people, the envi-

ronment, company assets, and production capabilities. The ML alarm management

system was used to reduce nuisance alarms and provide alarm prioritization during

alarm flood scenarios.
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In Chapter 4, ML was used for process control and optimal control and was com-

pared to model predictive control. More specifically, the focus transitioned to RL,

a branch of ML that can actually surpass previous knowledge and push the bound-

aries of research. Here, RL was applied for continuous control of processes. Firstly,

a tutorial on implementing RL for continuous process control was introduced. Then,

RL’s optimality was validated against model predictive control, a mathematical pro-

gramming approach to optimal control. Afterwards, the two methods’ pros and cons

were compared. To test the limits of RL, it was used in simulation to perform op-

timal control on an industrial wastewater treatment plant with 145 states and 14

disturbances. The chapter was concluded by showcasing RL’s abilities to serve as a

general fault detection and fault-tolerant control system.

In Chapter 5, a literature review of RL applications in the process industry was

conducted to provide motivation for future innovation. Here, it was discovered that

RL can be used for adaptive PIDs tuning, real-time optimal control, and anomaly

detection applications.

Table 7.1 shows the pros and cons of reinforcement learning. RL truly shines

in extremely fast, non-linear processes where model predictive controllers cannot

provide solutions in adequate time. Furthermore, RL also does not need process

models after initial training due to its model-free nature and can naturally adapt

to process drifts. Currently, the biggest disadvantages of RL are simply due to the

embryonic nature of the field. In literature, meta-RL studies a set of RLs that

can adapt quickly to unseen environments; thus, overcoming the requirement of

accurate simulators. Inverse RL began to tackle the reward design issue. Lastly,

stability theory and state constraints are being studied in the field of safe RL.
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Table 7.1: Most influential advantages and disadvantages of reinforcement learning.

Advantages Disadvantages

Online computation time Accurate simulator required

Can learn many tasks Reward design can be difficult

Direct adaptive optimal control Stability theory lacking

Engineered features not needed State constraints are difficult

As a final remark, the truly unique characteristic of RL that makes it the clos-

est thing to real artificial intelligence is its general nature, allowing for learning of

many things through a general algorithm. Although modern RL still faces many

challenges, the most interesting fact about artificial general intelligence is that it

is eventually scientifically achievable. Unlike galactic teleporters or other wild fan-

tasies from science fiction literature, artificial general intelligence is proven to exist,

currently within us! The last step is merely to reverse engineer human psychology.

And when such a task if finally conquered, the concepts reinforcement learning will,

without a doubt, reside as its central algorithm.

7.2 Future Extensions

7.2.1 RL-MPC - An Unified Approach

In terms of control, one possible future project would be to combine RL and

MPC into one unifying algorithm. Currently, RL is a newer field of research and

lacks industrial support. Therefore, most plant managers are skeptical of its per-

formance in direct closed-loop control. On the other hand, linear MPCs have many

applications in process control but the applications of its non-linear counterpart is

still relatively scarce. From an engineering prospective, non-linear MPC is vastly

superior because linear processes do not exist in the real world. One factor barring

non-linear MPCs from implementation is its much higher computational burden.

Mathematically, both linear and non-linear programming are solved in an iterative
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approach and the convergence is dependent on the initial guess. By leveraging RL

to provide initial guesses to the non-linear MPC, the computational time should be

substantially faster, leading to the viability of non-linear MPCs. Theoretically, the

initial guess provided by a perfectly trained RL should be exactly the optimal solu-

tion, greatly reducing the iterative procedure required by non-linear programming.

7.2.2 Meta-learning in reinforcement learning

Initially, RL agents must be trained on the desired task to obtain optimal per-

formance. Due to the low data efficiency of modern RL algorithms, thousands of

interactions may be required before the agent learns something meaningful. Such

a requirement is infeasible in real life applications; thus, a representative simulator

of the environment is first identified to pre-train the agent in simulation. Then,

the agent is implemented to the real process for control and optimization purposes.

Without a doubt, there will be off-sets between the identified model and the real

process. Hence, RL will also need an initial calibration period to directly adapt its

learned policy from the simulator onto the real process. The length of this adapta-

tion period is dictated by the accuracy of the simulator. Unfortunately, there are

many processes that are nearly impossible to identify accurately. In such scenarios,

the calibration period itself may be in-feasibly long. Meta reinforcement learning is

a new field that aims to significantly reduce this calibration time.

In meta reinforcement learning, many different simulators of the environments

are built to capture model uncertainty. For example in a refinery, one model is

built for winter ambient temperatures while another is built for the summer. There

could also be different models built for different compositions of crude oil. The goal

of the agent is to adapt to new similar environments quickly, even when the exact

same task was not trained for. One future project could be to explore training an

agent on many models with modeling errors, and then ultimately implementing the

agent onto the real system to identify its adaptation speed. If successful, such a

application holds many implications for RL in process control because one general
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agent could be used to control many different similar systems.
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Appendix A

Process Monitoring and

Optimization of an Industrial

Pipeline

Pipelines are critical for safe and efficient transportation of fluids across long dis-

tances. For example, pipelines are used by utility companies to transport clean water

and natural gas to homes for heating and living purposes. Furthermore, pipelines

are used in agriculture to transport irrigation water to hydrate crops. Moreover,

pipelines are used by energy companies for transporting energy-rich hydrocarbons

to fuel the world’s transportation and manufacturing needs. In the United States,

over 70% of petroleum products are shipped by pipeline. In Canada, this number in-

creases to 97% [153]. Data in 2014 estimates that there are approximately 3,500,000

kms of operational pipelines across 120 countries [154]. Due to the world’s depen-

dency on pipelines for transporting their basic needs, ensuring its reliability and

efficiency has a global-scale impact.

Typical pipelines have hundreds of digital measurements per minute and are hard

to analyze; however, machine learning methods benefit greatly from large amounts

of data. Thus, an opportunity was discovered where machine learning methods can

be applied to pipelines used to transport petroleum products. The objectives of this

This project was sponsored by Mitacs through the Mitacs Accelerate Program.
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A.1. PROCESS INTRODUCTION

project were to leverage machine learning to identify anomalous pipeline behaviour,

and to build a real time optimization tool to automate, normalize and enhance

pipeline operation.

In this chapter, a classification machine learning algorithm will first be intro-

duced for process monitoring and to detect anomalous activity within any pipeline

equipment. Then, a real time optimization tool will be shown. Due to confidential-

ity agreements, all information presented here-forth will be masked, and all parties

of this project will remain anomalous.

A.1 Process Introduction

Two separate pipelines, Line A and Line B, were analyzed. Line A is a simplistic

pipeline with few operating variables. Due to the lack of operational complexity, the

data was used to construct an anomaly detection monitoring tool. Line B was more

complex and had many degrees of freedom. Due to the additional complexity, the

pipeline operators were unsure about the optimal operations of the pipeline. Thus,

a real time optimization tool was built for this line.

A.1.1 Line A

The schematic of Line A is shown in Figure A.1. For Line A, the objective was

to build an anomaly detection tool to predict unexpected shut downs of its pumps.

Figure A.1: Schematic diagram of Line A.
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A.1.2 Line B

A schematic of Line B is shown in Figure A.2. Line B is a complex pipeline

spanning over 100 kms and carries two products, a lighter product and a heavier

product. The two products are batched (i.e., rotate between sending each product)

and each product is sent for approximately eight hours before switching to the other

product. The American Petroleum Institute (API) gravity for the lighter and heavier

products are roughly 40 and 20, respectively. For the rest of this chapter, the lighter

and heavier product will be referred to as light crude and heavy crude, respectively.

The pipeline is typically operated between 1800 bbl/h to 3050 bbl/h.

Figure A.2: Schematic diagram of Line B.

Equipment wise, Line B boasts eight pumps spread across four pump stations.

Two pumps are variable frequency drives (VFD), while the rest are on/off pumps.

Additionally, there are four drag reducing agent (DRA) injection pumps situated

at the second and third pump stations. Each pump station contains a heavy crude

and light crude DRA pump because the different crudes use different types of DRA.

The DRA is injected based on the product present at the pump station.

A.2 Real Time Optimization

The hierarchical structure of a typical process control system is shown in Figure

A.3. Modern control systems typically consists of three layers: real time optimiza-

tion (RTO), supervisory control, and regulatory control. From the top, real time

optimization is evaluated the least frequently, and performs a steady state optimiza-

245



A.2. REAL TIME OPTIMIZATION

tion of the process. The outputs of RTO are the ideal set points for all equipment

given an operating objective. Next, the supervisory control layer performs dynamic

optimization to identify the most efficient input trajectory to achieve the set points

from RTO. Supervisory control is evaluated faster than RTO, but slower than reg-

ulatory control. Model predictive control (MPC) and economic model predictive

control (EMPC) are typical supervisory control frameworks. More recently, rein-

forcement learning (RL) can also be retrofitted into this control layer. Finally, the

regulatory controllers actuate the physical equipment and follows the input trajec-

tory given by the supervisory control layer while maintaining stability. Common

regulatory controllers are proportional-integral-derivative (PID) controllers.

Figure A.3: Hierarchy of a typical control system.

A.2.1 Problem Description

Figure A.4 shows the traditional communication framework for operating a

pipeline. The goal of RM06A is to meet the demands of the downstream refin-

ery. To do so, a schedule with desired flow rates are sent to the operators from the

scheduling team, and the operators are tasked to operate the pipeline at the given

flow rate. Due to the complexity of this pipeline, different operators operate the

pipeline differently depending on their own experience. This difference introduces

turbulence and unnecessary wear-and-tear onto the pipeline, increasing maintenance

costs. Moreover, some operators are less experienced and operate the pipeline sub-
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optimally.

Figure A.4: Communication framework for operating Line B.

To overcome this problem, machine learning was used to identify a data driven

model of the pipeline. Then, a steady state optimization tool was built using mixed

integer linear programming (MILP) to give operators the optimal set-points for

each equipment given a desired flow rate. This system achieves the following three

objectives: i) Introduces uniformity in operator performance for desired set-points;

ii) semi-automation of the pipeline, freeing up operators’ time for other tasks; iii)

training tool for new operators in a non-safety critical environment (comparable to

flight simulators used for pilots).

The new ML-assisted communication framework for Line B is shown in Figure

A.5. Here, the desired flow rate is sent to both the operator and optimization tool.

The tool will then identify the most efficient set points to achieve the desired set

point based on given cost metrics and recommend them to the operators. The tool

is fully capable of automating the pipeline in open loop; however, initial perfor-

mance skepticism and lack of closed loop feedback may introduce unforeseen safety

concerns.

The rest of this section is organized as follows. First, the data pre-processing

step will be shown. Then, the model identification phase will be introduced. Follow-

ing that, the optimization algorithm and constraints for the real-time optimization

are presented. Finally, the section is concluded with some conceptual software de-

sign regarding its implementation into a supervisory control and data acquisition

(SCADA) system and the overall project impact will also be shown.
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Figure A.5: Proposed communication framework for operating Line B.

A.2.2 Data Pre-processing

Two data sets were initially provided by the industrial sponsor. The details

are shown in Table A.1. Model identification and optimization evaluations were

conducted for both data sets; however, the steps are very similar. Because the

second data set was used for the algorithm for live implementation whereas the first

data set was used primarily as a proof of concept, only the steps for the second data

set will be shown in detail.

Table A.1: Data details.

Date of Collection Data Dimension

Date 1 - Date 2 525, 601× 899

Date 3 - Date 4 159, 851× 738

Data pre-processing can be broken down into three phases: Pre-processing by

subject matter experts, automated data pre-processing, and manual data pre-processing.

An iterative procedure followed phase three where the subject matter experts worked

alongside the machine learning scientists to give suggestions on which variables

should be included/excluded in the final model.

Filtering by Subject Matter Experts

The first phase of data pre-processing was conducted by subject matter experts

from industry. The original data set contained all data corresponding to the pipeline.
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Variables such as alarm limits, fire detector status, monitor on/off status, etc., have

low predictive power and were removed. After this phase, the number of variables

reduced from 738 to 124. The distribution of the remaining variables along the

pipeline is shown in Table A.2.

Table A.2: Distribution of variables along Line B after phase 1 data pre-processing.

B1 B2 B3 B4 Refinery Other

# of Variables 24 21 21 33 22 3

Automated Data Pre-processing

Next, the data set was automatically filtered using the following methods:

• Missing data removal: Remove rows of data containing missing values.

• Data imbalance analysis: Remove boolean variables that contain 97% or

more of a single class. Heavily imbalanced variables create model biases to-

wards the majority class [155].

• Collinear analysis: Identify variables that are correlated over 90%. Corre-

lation, rxy is given in Equation A.1. After correlated variables are identified,

one variable is kept while the rest are removed to avoid redundancy [155].

rxy =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)2
(A.1)

After performing the above methods, the data set reduced from 124 to 65. The

distribution of the new data set is shown in Table A.3.

Table A.3: Distribution of variables along Line B after phase 2 data pre-processing.

B1 B2 B3 B4 Refinery Other

# of Variables 10 11 11 18 12 3
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Manual Data Pre-processing

The data set is then manually pre-processed to remove or modify rows due to

badly behaving sensors or irregular operating conditions. In this phase, only the

number of training examples are reduced.

For this pipeline, both light and heavy crude are transported in a cyclical fashion

due to the hydraulic dynamics of the pipeline. Otherwise, the heavy crude is too

heavy to be transported for sustainable periods. However, downstream demand for

each product can disrupt this operating cycle. From Figure A.6, it can be seen that

there were extended periods of time where only light or heavy crude were being

transported, and was caused by the lack of demand downstream. Such scenarios

deviate from normal operations and were removed from the data.
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(a) API data before abnormal condition removal.
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(b) API data after abnormal condition removal.

Figure A.6: API data before and after removing abnormal operating conditions.

Moreover, there is a time delay for the flow rate to react to a DRA set point

change because the new DRA concentration must be permeated throughout the line

before its effect can be fully realized. DRA was assumed to be catastrophically

destroyed when passing through a pump1; thus, DRA is only required to coat the

pipeline between pump stations for its full effect to be exploited. For Station B2,

it must coat the pipeline between Station B2 to Station B3. For Station B3, the

1According to the industrial sponsors.
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pipeline spanning between Station B3 and Station B4 must be coated. Given the

flow rate of the pipeline, it will take approximately ten hours to sufficiently coat

the majority of the pipeline. Hence, data corresponding to transitional periods are

removed. At times, transitional times may take longer; however, removing additional

data will reduce the available data for model identification.

Pre- and post-processed DRA parts per million (ppm) measurements are shown

in Figure A.7. DRA ppm is measured continuously for the control of the DRA in-

jection pumps. However, the measurement is unreliable and corrupted with noise.

Because DRA set points are rarely changed, an exponentially weighted moving av-

erage (EWMA) was applied to the DRA ppm readings for increased measurement

reliability. The EWMA formula and bias correction are given in Equations 3.1 and

3.2, respectively.

The objective of the machine learning model was to predict the flow rate at

refinery. However, there is a natural time delay between the time an equipment

status changed and the corresponding impact on downstream flow rate. Because the

pipeline is fully loaded and the product is incompressible, pressure changes upstream

will be propagated downstream at close to the speed of sound [64]. Table A.4 shows

the time required for pressure to propagate down the pipeline starting from each

pump station. The pump data for each pump station was shifted accordingly to

account for this time delay2.

Table A.4: Time required for pressure changes at each pump station to be realized
at refinery.

B1 B2 B3 B4

Time to refinery at speed of sound

in liquids (1480 m/s) [64]

2.0 min 2.0 min 1.0 min 1.0 min

A comprehensive list of the manual data pre-processing procedures is as follows:

1. Shift data to accommodate the time delay at refinery.

2. Smooth DRA data using EWMA given in Equation 3.1.

2Time delays are significantly rounded for confidentiality purposes.
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(a) Station B2 heavy DRA sensor reading.
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(b) Station B2 light DRA sensor reading.
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(c) Station B3 heavy DRA sensor reading.
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(d) Station B2 light DRA sensor reading.

Figure A.7: Pre- and post-processed DRA sensor readings.
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3. Remove first 10 hours data corresponding to DRA set point changes.

4. Remove data points where flow is under 800 bbl/hr.

5. Remove data when only light or heavy crude was sent through the pipeline.

The final data set contained 65 variables and 97,470 data points.

A.2.3 Model Identification

Feature Selection

For each pump station, there was a variety of sensors measuring the same process

variables. For example, VFD pumps have four readings each: On/off status, RPM,

HZ, and current. Many variables relating to one equipment is redundant; thus, only

one variable was selected when redundancy existed. Additionally, some sensors were

behaving abnormally.

In normal operations, the density fluctuates between 10 - 50 API, depending on

the crude present in the pipeline. After analysis, the Station B4 densitometer was

behaving abnormally compared to other densitometer and is shown in Figure A.8.

After confirming with the industrial that the densitometer was behaving abnormally,

the variable was removed.
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(a) Station B1 API data for 10,000 mins.
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(b) Station B4 API data for 10,000 mins.

Figure A.8: Comparison of normal and abnormal density readings.

Table A.5 shows the features selected for each pump station. The predicted

variable was the flow rate (bbl/h) at refinery.
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Table A.5: Features selected for machine learning models.

Station B1 Station B2 Station B3 Station B4 Refinery

u5: Boos. Pump Status u1: Light DRA (ppm) u3: Light DRA (ppm) u8: Boos. Pump Status x8: Inlet Temp. (°C)

u9: VFD Current (Amp) u2: Heavy DRA (ppm) u4: Heavy DRA (ppm) u10: VFD Current (Amp)

x4: Inlet Temp. (°C) x5: Inlet Temp. (°C) u6: Small Pump Status x7: Inlet Temp. (°C)

x1: API x2: API u7: Large Pump Status

x6: Inlet Temp. (°C)

x3: API

Feature Scaling

Figure A.9 shows the contour of a normalized and non-normalized cost func-

tion. It can be seen that the optimization of a non-normalized cost function can be

significantly hindered depending on where the optimization is initialized.

Figure A.9: Coutour of normalized and non-normalized cost functions. Original
images from [39].

The min-max normalization was applied to each variable to avoid this problem

and is given by:

xnorm =
x− xmin

xmax − xmin (A.2)

where xnorm is the normalized values. Here, xmin and xmax are the minimum and

maximum values of each variable, respectively. By applying this normalization, all

data will be bounded between xi ∈ [0, 1] and the elongation issue of the cost function

was resolved.

Exploratory Data Analysis

Exploratory data analysis was then conducted to gain insights into the data set.

First, the distribution of the flow rate was explored and shown in Figure A.10. It
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can be seen that the flow rate follows a bi-modal distribution corresponding to two

different operating strategies: a high demand strategy and a low demand strategy.
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Figure A.10: Flow rate distribution of the pre-processed data set.

To segregate the two Gaussian distributions, DBSCAN was used. DBSCAN is a

density-based algorithm for discovering clusters in large spatial data [156]. DBSCAN

also scales much better to big data compared to affinity propagation or Gaussian

mixture models due to the latter being iterative methods. DBSCAN contains two

hyper parameters, ε and min points. The steps of DBSCAN is as follows:

1. Normalize the data using Equation A.2 so each variable is weighted similarily.

2. Create an n−dimensional sphere of radius ε around an initial data point.

Euclidean distance was used for the distance metric and is given by:

distance =

√
(x

(1)
1 − x(2)

1 )2 + (x
(1)
2 − x(2)

2 )2 + ...+ (x
(1)
m − x(2)

m )2 (A.3)

where superscripts 1 and 2 denotes the first and second data points.

3. If there are more than min points in this sphere, then all points within this

sphere belong to the same cluster.
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4. Expand the cluster by recursively applying the above criteria to the edge points

of the cluster.

5. If the cluster can no longer be expanded, apply steps 2 - 4 to a new data point

currently not belonging to a cluster.

6. If there are less than min points in this sphere, then the data point is ignored

and we proceed to the next data point.

7. Outlier data points are ones that fail to belong to any cluster.

The resultant segregation created by DBSCAN using hyper parameters 1.13 and

10,000 for ε and min points is shown in Figure A.11. The first cluster (black)

contained 56,738 data points while the second cluster (green) contained 36,779 data

points. The remaining 3953 data points (blue) were identified as outliers.
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Figure A.11: Clusters identified after applying the density-based scan.

Average operating conditions of each cluster is shown in Figure A.12. The main

differences are the flow rate, DRA usage, and pump usage. Cluster 1 had 32% higher

average flow rate. Cluster 1 also used substantially more DRA compared to cluster

2, where almost no DRA was used3. Furthermore, the Station B1 booster pump,

3Actual values masked to ensure confidentiality
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Figure A.12: Average operating variables for the two operating conditions.

Station B3 booster pump 1, Station B4 boooster pump, and Station B4 VFD were

only used in cluster 1. Station B3 booster pump 2 was only used in cluster 2.

Data Partitioning

The data set was split into three sections for machine learning: training, valida-

tion, and testing. The partition and description of each section is shown in Table

A.6. The training data set was used to identify the machine learning model(s).

Then, the model was validated on unseen data via the validation data set (some-

times called development data). The error of the model on the validation data set,

evalidation, was then evaluated and compared to the training data error, etrain. If the

difference is large, the model was rebuilt using different data pre-processing tech-

niques and features. This step was repeated until etrain ≈ evalidation to ensure that

the model did not overfit to the training data. Finally, the model was tested on the

testing data to explore the performance of the model in live production. Testing

data was always the last 5% of the data set.

Table A.6: Description of each data partition.

% of Data Description

Training 90% Identify the ML model

Validation 5% Tune ML model performance on unseen data

Testing 5% Test ML model performance on proxy live data
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Cost Function

The mean squared error (MSE) cost function was used for all predictive models

and is given by:

J(W ) =
1

n

n∑
i=1

(ŷi − yi)2 (A.4)

where n is the number of samples in the current optimization step. ŷi and yi are

the ith predicted and actual labels, respectively. Here, J is the loss. The MSE cost

function was selected due to its convex nature [39].

To ensure adequate performance on the validation and testing data, the model

must avoid overfitting to the training data. This was done by reducing the model

complexity through removing or reducing individual variables’ impact on the model.

This study used a ridge regularization to reduce model complexity:

J(W ) =
1

n

n∑
i=1

(ŷi − yi)2 + λ
n∑
j=1

W 2
j (A.5)

where λ is the regularization penalty. Here, as λ→∞, W → 0. That is, the larger

λ is, the stronger large weights are penalized.

Model Optimization

The adaptive momentum (ADAM) gradient descent optimizer was used to up-

date the weights and bias of the models. The general gradient descent formulation

is given by Equation A.6 [40].

θm+1
j ← θmj − α

∂J

∂θj
(A.6)

where θj is the jth weight of the model. Here, m represents the mth update of

gradient descent and α is the learning rate. ADAM improves upon Equation A.6 by

computing an adaptive learning rate for each parameter. To do so, the exponentially

decaying average of the past gradients and squared gradients of the weights and
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biases are computed and stored using Equations A.7 to A.10.

VdW = β1VdW + (1− β1)dW (A.7)

Vdb = β1Vdb + (1− β1)db (A.8)

SdW = β2SdW + (1− β2)dW 2 (A.9)

Sdb = β2Sdb + (1− β2)db2 (A.10)

where V and S are the estimates of the gradient and squared gradients, respectively.

V and S are typically initiated as zero vectors and are heavily biased towards zero

at initial steps. Hence, the biases for the initial terms are corrected using:

V corrected
dW =

VdW
1− βt1

(A.11)

V corrected
db =

Vdb
1− βt1

(A.12)

ScorrecteddW =
SdW

1− βt2
(A.13)

Scorrecteddb =
Sdb

1− βt2
(A.14)

Combining the above equations, the weights and biases are updated by:

Wj ← Wj − α
V corrected
dW

ScorrecteddW + ε
(A.15)

b← b− α V corrected
db

Scorrecteddb + ε
(A.16)

where ε is a small scalar to avoid division by zero. The authors proposed values of

0.9, 0.999 and 10−8 for β1, β2, and ε, respectively.

Due to the size of the data, batch gradient descent where all data are used to

compute the gradient at each step is computationally infeasible. Thus, mini-batch

gradient descent was used where smaller batches of data were sampled from the
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original data set to perform stochastic updates at each step.

Performance Assessment

The model performance were assessed using the following three ways:

1. Root mean squared error (RMSE):

J =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (A.17)

2. Mean absolute error (MAE):

J =
1

n

n∑
i=1

|ŷi − yi| (A.18)

3. Coefficient of determination (R2):

R2 = 1−

n∑
i=1

(ŷi − yi)2

n∑
i=1

(yi − ȳi)2

(A.19)

Table A.7 shows the advantages and disadvantages of each assessment metric.

Table A.7: Pros and cons of different model performance assessment methods.

Method Advantages Disadvantages

RMSE Useful for identifying large errors Smaller errors are muted

MAE Easy to interpret as all errors have

the same weight

Inferior to RMSE when large er-

rors are undesirable

R2 Easy to understand, −∞ ≤ R2 ≤ 1 Valid only for linear relationships

Linear Modelling

Linear Regression

Linear regression was the first regression method to be explored, and was selected

as the benchmark due to its simplicity and linear nature. The model structure of
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linear regression is given as:

ŷ = W T
1 x+W T

2 u+ b (A.20)

where x ∈ R8 is a vector of states, u ∈ R10 is a vector of inputs and superscript T

denotes the transpose operation.

Hyper parameters of the linear regression are shown in Table A.8. The perfor-

mance assessment of the least squares model is shown in Table A.9. The overall

performance of the linear model was good. Error on the test data was 5.8% higher

compared to the training and validation data.

Table A.8: Hyper parameters for linear regression.

Hyper Parameter Value

Epochs 800

Minibatch size 8192

Learning rate, α 0.001

Regularization, λ 0.001

Table A.9: Performance assessment for the linear regression.

Training data Validation data Test data

MAE 98 98 102

RMSE 127 127 135

R2 0.91 0.91 0.70

The models’ performance on the validation and test data sets are shown in

Figures A.13a and A.13b.

The linear regression model is given in Equation A.20. Weights for x1− x4 were

very small and were omitted.

ŷ = 0.10u1 + 0.15u2 + 0.13u3 + 0.04u4 + 0.04u5 + 0.09u6 + 0.12u7 − 0.01u8

+ 0.49u9 + 0.02u10 + 0.09x1 − 0.18x5 + 0.30x6 − 0.05x7 + 0.04x8 (A.21)

From Equation A.20, it can be seen that turning on the booster pump at Station
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(a) Predicted vs. actual flow rate for the
validation data set.
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(b) Predicted vs. actual flow rate for the
test data set.

Figure A.13: Linear regression validation and test plots.

B4 results in a decrease in flow rate. Theoretically, this is impossible and is most

likely caused by noise in the data. To increase the model’s ability to reflect reality,

engineering knowledge was injected into the model via constraining the weights of

u1 − u10 to be strictly positive.

Constrained Linear Regression

The constrained linear regression used the same hyper parameters as shown in

Table A.8. Performance assessment of the constrained linear regression is shown in

Table A.10. Compared to the original linear regression, RMSE increased by 0.8%

for the training and validation data sets. However, performance on the test set was

improved by 8%. The constrained linear regression performance on the validation

Table A.10: Performance assessment for the constrained linear regression.

Training data Validation data Test data

MAE 98 98 94

RMSE 128 129 123

R2 0.91 0.91 0.74

and test data sets are shown in Figures A.14a and A.14b. The weights were nearly

identical to the unconstrained model; however, all negative weights on operating

variables were removed.

The constrained linear regression is given in Equation A.22. Weights for x8, x11−
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(a) Predicted vs. actual flow rate for the
validation data set.
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(b) Predicted vs. actual flow rate for the
test data set.

Figure A.14: Constrained linear regression validation and test plots.

x14 were very small and were omitted.

ŷ = 0.10x1 + 0.15x2 + 0.13x3 + 0.04x4 + 0.04x5 + 0.09x6 + 0.11x7

+ 0.49x9 + 0.02x10 − 0.18x15 + 0.30x16 − 0.05x17 + 0.03x18 (A.22)

Non-linear Modelling

To further increase the accuracy of the models, the following non-linear methods

were explored for modelling the pipeline flow rate:

• Polynomial models

– Quadratic model

– Square-root model

• Feed-forward neural networks

– Small neural network (3 layers, 20 nodes per layer)

– Medium neural network (6 layers, 30 nodes per layer)

– Large neural network (8 layers, 40 nodes per layer)

• Linear parameter-varying model
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Performance assessment of the non-linear models will use MAE and RMSE. In

non-linear models, R2 is not valid due to SSR + SSE 6= SSTotal [44].

Polynomial Models

The quadratic and square-root model structures are given by Equations A.23 and

A.24, respectively:

ŷ = W T
1 X

2 +W T
2 X + b (A.23)

ŷ = W T
1 X

1/2 +W T
2 X + b (A.24)

where W1 ∈ R18 are the weights for the squared and square rooted variables for

the quadratic and square root models, respectively. Furthermore, W2 ∈ R18 are the

weights for the original variables. The hyper parameters for both models are shown

in Table A.11.

Table A.11: Hyper parameters for polynominal regression.

Hyper Parameter Value

Epochs 1000

Minibatch size 8192

Learning rate, α 0.001

Regularization, λ 0.001

The performance assessment of the quadratic and square root models are shown

in Table A.12. Compared to linear regression, MAE and RMSE reduced by up to

10% and 9% when using the polynomial models, respectively. Moreover, perfor-

mance of the square root model was about 3.5% better than the quadratic model.

Table A.12: Performance assessment for the quad. and sqrt. model.

Training data Validation data Test data

Quad Sqrt Quad Sqrt Quad Sqrt

MAE 92 89 92 89 89 91

RMSE 121 118 121 117 120 115

The polynomial models’ performance on the validation and test data are shown

in Figures A.15a to A.15d. Overall, the model performances increased by introduc-
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ing non-linearities. To further increase accuracy, heavily non-linear neural network

models were explored.
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(a) Predicted vs. actual flow rate for val-
idation data using the quad. model.
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(b) Predicted vs. actual flow rate for the
test data using the quadratic model.
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(c) Predicted vs. actual flow rate for the
validation data using the sqrt. model.
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(d) Predicted vs. actual flow rate for the
test data using the sqrt. model.

Figure A.15: Polynomial regression validation and test plots.

Neural Network Models

Neural networks are highly non-linear models that explore the individual and inter-

action effects of each variable with all other variables. The general structure of a

neural network is shown in Figure A.16. Neural networks are comprised of an input

layer, some hidden layer(s), and an output layer. The input layer consists of the

input data, while the hidden layer(s) and output layer consists of fitted parameters,

Wnx×nb and bnb×1. Here, nb and nx denotes the batch size and the dimension of

the input layer, respectively. In Figure A.16, xm denotes the mth input variable.

The superscript and subscript of a denotes the hidden layer number and the node

number in the corresponding layer, respectively. Subscript m1 to mr denotes the

number of nodes in hidden layers 1 to r, respectively. Finally, superscript o denotes
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the output layer.

Figure A.16: Structure of a general neural network.

The details within a hidden layer’s node is shown in Figure A.17. First, the

outputs from the previous layer’s nodes are inputted and multiplied by the weights

of the current node. The current node’s bias is then added. If the current node

is in the first layer, the outputs from the previous layer is replaced with the input

variables. Afterwards, the output is sent to a rectified linear unit (ReLU) activation

function given by:

a
[i]
j =


y, if y ≥ 0.

0, otherwise.

(A.25)

where i and j denotes any hidden layer and any node number, respectively.

Figure A.17: Inside a hidden layer’s node.

Mathematically, for one example x:
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z
[1]
j = W [1]x+ b[1]

a
[1]
j = ReLU(z

[1]
j )

z
[2]
j = W [2]a

[1]
j + b[2]

a
[2]
j = ReLU(z

[2]
j )

...

z
[r]
j = W [r]a

[r−1]
j + b[r]

a
[r]
j = ReLU(z

[r]
j )

y = W [o]a
[r]
j + b[o]

The hyper parameters for each neural network is given in Table A.13. For highly

complex models such as large neural networks, overfitting was inevitable; thus, λ

was increased as the neural network got more complex to reduce overfitting. The

ReLU activation function was chosen for computational efficiency and avoiding the

exploding/vanishing gradient problem [157].

Table A.13: Hyper parameters for the feed-forward neural network.

Hyper Parameter Small NN Med. NN Large NN

Epochs 700 1000 1200

Minibatch size 8192 8192 8192

Learning rate, α 0.001 0.001 0.001

Regularization, λ 0.001 0.003 0.005

Number of layers 3 6 8

Neurons per layer 20 30 40

Activation function for hidden layers ReLU ReLU ReLU

Activation function for hidden layers Linear Linear Linear

Table A.14 shows the performance assessment of the small, medium and large

neural networks. In all cases, the training and validation data set performance was

significantly better compared to the linear model; however, the performance was

only slightly better on the test data set. On the training and validation data, the

error went down by up to 61%. On the test data, error went down by up to 19%.

The difference may be caused by the test data being different from the training

data. Due to the complexity of neural network models, they perform exceptionally

well on data that shares similar characteristics as the training data, but perform
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poorly otherwise. To close the gap in performance, a higher λ could be used to

reduce model complexity. Moreover, smaller neural networks could also be explored

to reduce model complexity. Additionally, a significant amount of data is lacking

for the application of neural networks to this data set because only winter months

data was collected; however, the models were tested on summer months data where

temperatures have increased by up to 10° C, significantly reducing viscosity of the

shipped crude.

Table A.14: Performance assessment of the neural network models.

Training Data Validation Data Test Data

Sm. Med. Lar. Sm. Med. Lar. Sm. Med. Lar.

MAE 48 42 38 50 45 37 87 87 91

RMSE 66 58 57 69 61 56 107 117 118

The comparison of actual and predicted flow rates on the validation and test

data for the neural nets are shown in Figures A.18a to A.18f.

Linear Parameter-varying Models

Lastly, the linear parameter-varying model (LPV) was explored to model the pipeline.

It is clear that the process is non-linear due to the large increase in accuracy when

switching to a non-linear model structure. LPV models were selected due to their

non-linear nature while still retaining the interpretability of linear models. Further-

more, any non-linear model can be approximated by a set of linear models [158].

The LPV model is given by:

ŷ = W T
1,1x+W T

1,2u+ b1

ŷ = W T
2,1x+W T

2,2u+ b2

...

ŷ = W T
n,1x+W T

n,2u+ bn

(A.26)

where n ≥ 1 represents the number of linear models used to capture the data

set. Here, Wn and bn are the weights and biases corresponding to the nth model,

respectively. For this study, n = 2. The models corresponded to the two clusters
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(a) Validation data for the small neural net.
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(b) Test data for the small neural net.
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(c) Validation data for the med. neural net.
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(d) Test data for the med. neural net.
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(e) Validation data for the large neural net.
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(f) Test data for the large neural net.

Figure A.18: Predicted vs. actual flow rates for the feed-forward neural networks.
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identified in Figure A.11. Models 1 and 2 are identified from clusters 1 and 2,

respectively. The hyper parameters for models 1 and 2 are identical to the previous

linear models, and are shown in Table A.8. During online implementation, the model

will be selected based on the Euclidean distance between the features of the new

data and the centroid of the two clusters. However, if the distance exceeds 1.15 in

both cases, the data will be labeled as anomalous.

The performance assessment of the two LPV models are shown in Table A.15.

Overall, the LPV models were able to reduce modelling error compared to normal

linear regression. Model 1 was only used to predict high flow rate scenarios. Never-

theless, its MAE and RMSE were still 8% lower compared to the linear regression

model used to predict for all data. For model 2, the MAE and RMSE were up to

31% lower.

Table A.15: Performance assessment for clusters 1 and 2 regression models.

Training data Validation data Test data

Cl. 1 Cl. 2 Cl. 1 Cl. 2 Cl. 1 Cl. 2

MAE 90 66 90 67 96 85

RMSE 115 91 116 92 120 110

R2 0.87 0.90 0.86 0.89 0.78 0.57

The comparison of actual and predicted flow rates on the validation and test

data for the LPV models are shown in Figures A.19a to A.19d. In Figures A.19c

and A.19d, it can be seen that model 2 performs poorly on the testing data. This

might be caused by some unobserved variables that were only used during low flow

rate operations.

Ultimately, the LPV model structure was selected to model the pipeline. The

LPV model has the interpretability of linear models, while having the predictive

capabilities of non-linear models. Furthermore, the LPV model identifies a separate

set of parameters for the two distributions, making the optimization algorithm more

representative of live operations. For example, because no DRA was used for lower

flow rates, the optimization algorithm will have explicit constraints on model 2 to

not use DRA as well. A similar example would be using only Station B3 booster
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(a) Validation data using model 1.
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(b) Test data using model 1.
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(c) Validation data using model 2.

0 250 500 750 1000 1250 1500 1750
Time, t (min)

1600

1700

1800

1900

2000

2100

2200

Fl
ow

 R
at

e,
 Q

 (b
bl

/h
)

Predictions
Actual

(d) Test data using model 2.

Figure A.19: Predicted vs. actual flow rate for the linear parameter-varying models.

1 for cluster 2, while using Station B3 booster 2 for cluster 1. The advantages of

these constraints are twofold: i) More realistic to live operations. ii) Avoid model

extrapolations (since no DRA data was used to identify model 2, the optimizer

should not be able to use it for optimization).

Time-series Modelling

All previous models are static (i.e., yss = f(x, u)) and are used for the real

time optimization layer in Figure A.3. To completely automate the pipeline, a

dynamic model was identified for the application of supervisory control. In dynamic

modelling, temporal correlations within the time-series data are exploited to improve

model accuracy. Moreover, yt is measured at each time and can be used to further
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improve model accuracy. The time-series model will have the following structure:

yt+1 = f(xt, xt−1, ..., xt−p, ut, ut−1, ..., ut−q, yr) (A.27)

Here, subscripts p and q denote the number of previous states and inputs to be

considered in the model, respectively. Subscript r = max(p, q). Least squares will

be used to identify the time-series model with data augmented as [xt, ut|xt−1, ut−1|...].

After exploring a variety of p’s and q’s, the final hyper parameters used for the time

series model is shown in Table A.16.

Table A.16: Hyper parameters for the time-series least squares model.

Hyper Parameter Value

Epochs 1000

Minibatch size 8192

Learning rate, α 0.001

Regularization, λ 0.001

# of previous states, p 2

# of previous inputs, q 2

The performance metrics of the time-series model is shown in Table A.17. Com-

pared to static models, dynamic models are significantly more accurate; error metrics

went down by up to 87%.

Table A.17: Performance assessment for the time-series least squares model.

Training data Validation data Test data

MAE 22 17 25

RMSE 41 34 65

R2 0.99 0.99 0.86

The comparison of actual and predicted flow rates on the validation and test

data for the time-series least square model are shown in Figure A.20. Here, it can

be seen that the test data was much more noisy. Nevertheless, the model was still

able to predict at a high level of accuracy.
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(a) Validation data.
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(b) Test data.

Figure A.20: Predicted vs. actual flow rate using the time-series model.

Model Applicability Range

Extrapolation while using data-driven models introduce risks to operations. Thus,

Table A.18 show the range of states where the model is most effective. The ranges

were identified from µ− 2σ ≤ x, u ≤ µ + 2σ to ensure the range captures 95.5% of

the data while omitting outliers. Usage of the models beyond the normal range may

be ineffective.

Table A.18: Applicable states of the machine learning models.

Variables Valid Range

Flow Rate (bbl/h) 2012 - 2913

Station B1 Density (API) 22 - 47

Station B2 Density (API) 15 - 45

Station B3 Density (API) 15 - 45

Station B1 Temp (°C) 35 - 50

Station B2 Temp (°C) 41 - 51

Station B3 Temp (°C) 43 - 54

Station B4 Temp (°C) 48 - 60

Refinery Temp (°C) 40 - 58

In addition to the state ranges provided above, the recommended set points are

also limited to avoid extrapolation. The set point ranges are shown in Table A.19.
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Table A.19: Applicable inputs of the machine learning models.

Variables Valid Range

Station B1 VFD (Amps) 105 - 322

Station B4 VFD (Amps) 78 - 134

Station B2 & B3 Light DRA Values

Station B2 & B3 Heavy DRA Values

A.2.4 Mixed Integer Linear Programming

The information flow of the optimization algorithm is shown in Figure A.21.

First, a desired flow will be inputted by the operators depending on the demand

from refinery. Then, the machine learning model along with equality and in-equality

constraints will be provided to the mixed integer linear program (MILP). Given the

objective function, decision variables, and the current costs of operation, the MILP

will output the optimal set points.

Figure A.21: Optimization information flow chart.

Mixed Integer Linear Program

The binary and continuous variables of the optimization problem are shown in Table

A.20. MILP was used to perform steady state optimization on the linear model

because the decision variables included binary and continuous variables. In total,

there were 10 decision variables; 4 binary and 6 continuous.

Constraints

The equality and in-equality constraints are shown in Table A.21. From the data

provided, the Station B1 pump was on 95% of the time, and at least one Station
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Table A.20: Binary and continuous decision variables.

Binary Continuous

On/off Station B1 Pump Station B1 & Station B4 VFD

2× On/off Station B3 Pump 2× light & 2× heavy DRA

On/off Station B4 Pump

B3 on/off pump was on; therefore, constraints were incorporated to reflect this.

Additionally, constraints were used to ensure proper DRA was injected into the

pipeline for the different crudes. There were also pressure constraints on the outlet

pressure of the pumps to ensure safe operations. Before a recommendation is made

to the operators, the recommended set points were used to predict for the outlet

pressures at each pump to ensure they do not exceed the maximum allowable working

pressure (MAWP). Finally, the final flow rate is given a range to ensure optimization

feasibility. Specifying exact flow rates sometimes led to infeasible solutions because

there may not exist a combination to get an exact flow rate.

Table A.21: List of equality and inequality constraints

Equality Constraints In-equality Constraints

On/off Station B1 Pump = On LB ≤ Flow rate ≤ UB

Station B3 Pump 1 and/or 2 = On PChey
Outlet ≤ 1480 psi

APIStationB2 ≥ 30 : DRAStationB2
light = On P StationB3

Outlet ≤ 1613 psi

APIStationB2 ≤ 30 : DRAStationB2
heavy = On P FL

Outlet ≤ 1613 psi

APIStationB3 ≥ 30 : DRAStationB3
light = On LB ppm ≤ DRA ≤ UB ppm

APIStationB3 ≤ 30 : DRAStationB3
heavy = On 105 Amps ≤ V FDChey ≤ 322 Amps

Station B1 On/off = 28 Amps 78 Amps ≤ V FDFL ≤ 134 Amps

Station B3 1 Pump = 190 Amps

Station B3 2 Pump = 278 Amps

Station B4 Pump = 117 Amps

Pressure models were built to ensure MAWP was not exceeded when the rec-

ommended set points are implemented. In the end, three linear regression pressure

models were identified; each at the outlet of a pump station (Station B1, Station

B3, Station B4) where pressure is expected to be the highest. The inputs to the
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Table A.22: Inputs to the pressure constraint models.

B1 Outlet B3 Outlet B4 Outlet

Inlet pressure Inlet pressure Inlet pressure

B1 VFD B1 VFD B1 VFD

B1 on/off pump B1 on/off pump B1 on/off pump

B1 temperature B3 on/off pump 1 B2 DRA ppm

B3 on/off pump 2 B3 on/off pump 1

B2 DRA ppm B3 on/off pump 2

B1 temperature B3 DRA ppm

B3 temperature B4 VFD

B4 on/off pump

B1 temperature

B3 temperature

B4 temperature

pressure models were all upstream of where the pump station was located and is

given in Table A.22.

The performance assessment of the Station B1, Station B3, and Station B4 pres-

sure constraint models are shown in Table A.23. The Station B1 pressure prediction

is very accurate; however the accuracy decreases as we traverse down the pipeline.

The primary reason is because an accurate inlet pressure is required to predict for

the outlet pressure. But the inlet pressures beyond Station B1 are unknown before

the set points implemented in the pipeline (Ex: the inlet pressure at Station B3 is

unknown because the recommended Station B1 VFD set points are not implemented

yet; thus, the predicted output pressure will be inaccurate). Furthermore, predicting

the outlet pressure at Station B3 is especially difficult because a mechanism exists

to limit the pressure to 1377 psi. The mechanism’s data is not captured, and causes

the regression curve to be hard constrained at an upper bound. Consequently, this

causes many inputs to result in the same output, and hinders learning.

The performance of the pressure constraint models on the validation data is

shown in Figures A.22a to A.22c.

Objective Function, Costs and Decision Variables

The objective is to operate the pipeline at the desired flow rate with the minimum
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Table A.23: Performance assessment of the Station B1, Station B3, and Station B4
pressure constraint models.

Training Data Validation Data

B1 B3 B4 B1 B3 B4

MAE 75 179 25 72 179 27

RMSE 101 217 32 96 217 35

R2 0.88 0.5 0.47 0.89 0.49 0.46

0 1000 2000 3000 4000 5000
Time, t (s)

−250

0

250

500

750

1000

1250

1500

Fl
o 
 R
at
e,
 Q
 (b
bl
/h
)

Predicted
Actual

(a) Station B1

0 1000 2000 3000 4000 5000
Time, t (s)

400

600

800

1000

1200

1400

Fl
ow

 R
at
e,
 Q
 (b

bl
/h
)

Predicted
Actual

(b) Station B3

0 1000 2000 3000 4000 5000
Time, t (s)

250

300

350

400

450

500

550

600

650

700

Fl
ow

 R
at
e,
 Q
 (b

bl
/h
)

Predicted
Actual

(c) Station B4

Figure A.22: Pressure constraint model performance on validation data.

possible operating cost. The optimization is given by:

min
J

=

[
αi
∑
i

µi ·DRAi + β
∑
j

νj · IjVj
]

s.t. y = f(x, u),

νStationB31 + νStationB32 ≥ 1,

νChey = 1,

20 ≤ DRAi ≤ 40, i ∈ I,

γminj ≤ Ij ≤ γmaxj , j ∈ J

where α denotes the cost of DRA per ppm, β denotes the cost of one kWh, µ denotes

the on/off status of the DRA pumps, and ν denotes the on/off status of the pumps.

DRAi is the DRA ppm set point of the ith DRA injection pump. Moreover, Vj and

Ij are the voltage and amperes corresponding to the jth pump. Here, γj are the

upper and lower bounds of the VFDs’ currents and are provided in Table A.21. For

on/off pumps, γj is fixed. The voltages of the pumps are provided in Table A.24.
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The power cost per kWh for the pipeline was $0.09 USD according to the local

commercial electricity costs4.

Table A.24: Voltages for the pumps.

Pump Voltage

V FDChey Large

V FDFL Large

On/off PumpChey Small

On/off PumpStationB31 Large

On/off PumpStationB32 Large

On/off PumpFL Small

The cost curves for DRA is shown in Figures A.23. The cost to increase DRA

ppm is dependent on the flow rate of the pipeline. Higher flow rates require more

DRA to be injected to achieve a desired parts per million reading; hence a higher

cost. Given a flow rate, the cost to increase the DRA ppm is given by Equations

A.28 and A.29 for the light and heavy DRA, respectively5.

Figure A.23: Cost of DRA as a function of flow rate.

$/ppmlight = W ·Q+ b (A.28)

$/ppmheavy = W ·Q+ b (A.29)

4Location masked for confidentiality.
5Costing information are highly confidential and are also masked.
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where Q denotes the volumetric flow rate in barrels per hour.

A.2.5 Conceptual Software Design

The conceptual software design for the optimization tool is shown in Figure

A.24. From the right, the users would first populate the costs corresponding to each

equipment. The pump costs are on a $/kWh basis, and the DRA cost is based

on $/ppm. Operating costs can also be incorporated by multiplying the costs by a

fixed factor (e.g. 1.1 · $/kWh). Currently, DRA costs are calculated automatically

based on the historical data using Equations A.28 and A.29. After specifying costs,

the user would provide the maximum steady state operating pressure (MSSOP) for

the pipeline, and enter the desired flow rate. Finally, the ”OPTIMIZE” button

would be pressed and all the boxes outlined in green will be populated with the

optimal set point values. When a set point is no longer deemed optimal, the outline

turns red. An example of such a scenario would be when the batch switches at

the Station B2 or Station B3 stations. During maintenance activities, the user can

click the ”ADVANCED...” button to specify special constraints and eliminate the

optimization from using certain equipment. For example, if the Station B1 VFD is

under maintenance, νCheyV FD can be constrained to 0, preventing the optimization

from using it.

A flow diagram of the tool’s internal structure is shown in Figure A.25. Starting

from the left, the operator would provide the constraints (equipment maintenance,

MSSOP, etc.), desired flow rate, and operating costs to the optimization tool. Like-

wise, the optimization tool also receives live temperature and density readings from

the SCADA system. Given the densities at Station B2 and Station B3, the proper

VFD pumps are turned on. From the flow rate and DRA pump status, DRA costs

are computed from Equations A.28 and A.29. Next, the costs, densities, and tem-

peratures are all fed into the machine learning model and the MILP is ran to find

the optimal set points to reach the desired flow rate. The set points are then sent

to the pressure constraint models to validate that no outlet pressure constraints are
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Figure A.24: Conceptual software design for the optimization tool.

violated. If none are violated, the optimal set points are recommended to the oper-

ators. To ensure implementability, the VFD amperes are first converted to pressure

set points because the operators do not know how to operate pumps by amperes.

Figure A.25: Internal flow diagram of the product.

A.2.6 Cost Savings and Impact on Society

Operating costs for running the pipeline using the optimization tool was com-

pared to historical values to identify the potential cost savings. In 2019, the pipeline

was plagued with unexpected shut downs and maintenances; thus, the data set rang-

ing from January 2018 - May 2018 was used for this comparison due to the stability
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of operations. Both the actual and optimal costs are calculated using the same

formulation to ensure a fair comparison.

First, the total monthly DRA cost was calculated by:

CostDRA =

43,200∑
i=1

1

60
(flight(Q, ppm) + fheavy(Q, ppm)) (A.30)

where the functions represent Equations A.28 and A.29 for computing the DRA

cost per hour. Here, i denotes the ith minute in a particular month. The costs are

divided by 60 to obtain the per minute costs and are summed over 43,200 entries

representing the total minutes in a 30 day month. Likewise, the monthly power

costs are calculated by:

Costpower =
p

1000

720∑
i=1

6∑
j=1

Ij · Vj (A.31)

where i denotes the ith hour in a particular month and j denote the jth pump. The

720 corresponds to the amount of hours per 30 day month. p denotes the power cost

in kWh and is divided by 1000 for unit consistency. Additionally, Ij and Vj denotes

the current and voltage for the jth pump.

The actual and optimal costs for DRA and power are shown in Table A.256.

It can be seen that the total savings range between -3.7% to 17.6%. The savings

were realized by using less DRA while running the pumps harder. For this initial

study, interaction effects between pumps and DRA were not explicitly considered.

Additionally, the effectiveness of the VFDs (i.e., flow rate as a function of current)

were assumed to be linear in the region of study; this may not be the case in actual

production because pumps’ efficiency changes with accordance to the pump curve

[64]. Likewise, DRA effectiveness was also assumed to be linear. Preliminary data

analysis showed a quadratic relationship between flow rate and increased DRA (Figs.

A.26a and A.26b and below for detailed DRA study); however, a MILP was used

for the first release of this product so a linear curve was used instead. From Table

6Actual costs are removed for confidentiality; however, percentage savings are still present.
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(a) Light DRA (b) Heavy DRA

Figure A.26: Flow rate as a function of DRA ppm.

A.25, it can be seen that the optimization tool shows great promise in terms of cost

savings. A loss was incurred in April because the industrial sponsor used only 10 -

15 ppm of DRA for a large part of the month. In the optimization, minimum DRA

was constrained to 20 ppm. In all other months, the algorithm was able to achieve

a cost savings.

Figures A.26a and A.26b shows the flow rate change (normalized by dP) as a

function of DRA ppm. The flow rates were normalized by pressure to ensure only

the DRA’s effect was explored. The flow rate was normalized by:

Timenorm =
Time

P2 − P1

(A.32)

where P1 and P2 are the pressures at the starting and ending pump stations, re-

spectively. A similar relationship is expected to exist for pumps due to the pump

curves. To further improve the accuracy of the optimization tool, the weights of the

model can be switched to functions.

A detailed analysis of the cost savings for January - May 2018 are shown in Table

A.26. The savings per barrel at higher flow rates were more significant compared to

savings at lower flow rates.

Ultimately, expected operating cost savings were estimated to be between 7% to

9%. Average saving per barrel was $ – (8%), increasing as the flow rate increased.

Moreover, savings for transporting one barrel of crude one km was $ – USD. The
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Table A.25: Optimal vs. actual costs ($USD 000’s) for January - May 2018.

January February March April May

A
ct

u
al DRA cost - - - - -

Power cost - - - - -

Total cost - - - - -

O
p
ti

m
al DRA cost - - - - -

Power cost - - - - -

Total cost - - - - -

D
iff

. Dollars - - - (-) -

% Improvement 8.0 17.6 7.8 (3.7) 9.7

Table A.26: Cost savings per barrel of crude shipped.

January February March April May

Ave. flow rate (bbl/h) 2195 2400 2256 2248 2575

Saving / bbl per hour ($) - - - (-) -

Saving / bbl / hour / km ($) - - - (-) -

total expected savings per year for Line B was estimated to be $ – USD. However,

the results are only realized if the pipeline is operating within the ranges provided

in Tables A.18 and A.19.

Benefits for Society

On the financial side, this optimization tool has shown to reduce operating costs

of transporting one bbl/h/km by $0.04 USD7 for an industry leading energy com-

pany. Cost savings can be even more significant for lower tier, in-experienced compa-

nies. In Canada alone, 175,000 barrels of crude is produced per hour and transported

at an average velocity of 9.5 km/h [159]. At $0.04 USD savings per barrel/km, the

annual savings result to approximately $583M USD ($784M CAD). Expanding to

North America, where approximately 742,000 barrels of crude is produced per hour,

the savings jump up to $2.5B USD ($3.4B CAD) [160]. Moreover, the savings here

does not include inter-refinery and inter-market pipelines; only produced crude were

included. The savings can be reinvested into greener products, resulting in signifi-

7A significantly rounded and slightly altered value to maintain confidentiality. An estimated
value was provided in order to quantify the impact to society.
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cant reduction of green house gases (GHG). In 2018, the social cost of carbon was

valued at $46 USD per metric ton [161]; $2.5B results in a 54.3M metric ton of

reduced GHG.

On the operational level, this tool standardizes the operation of complex pipelines.

Given a set of inputs, I = {Q,Costs, x}, the output of the optimization tool will

be identical each time due to the linear model. Thus, operators on different shifts

and with different experience levels will operate very similarly if this tool is used.

Additionally, this normalization reduces variance in operations which reduces de-

preciation of process equipment. Furthermore, the free cash flow can be reinvested

to obtain higher throughputs, which in turn will increase revenue and increase tax

dollars. Finally, the tool will also increase operational safety, which may result

in the Alberta Energy Regulator (AER) allowing higher throughputs on pipelines

currently operating under capacity.

A.3 Pipeline Project Conclusion

An adaptive outlier-robust optimization tool based on linear parameter-varying

(LPV) models was presented in this study. Objectively, the project aims to: 1)

introduce standardization in operations to reduce turbulence in the pipeline while

increasing efficiency of less experienced operators. 2) Open-loop automation of the

pipeline; reducing repetitive and painful tasks for the operators while freeing up

their time for more attention demanding tasks. First, exploratory data analytics

was performed to pick the most relevant features for the model. It was identified

that the flow rate followed a bi-modal distribution. The data was clustered into the

two operating conditions where cluster 1 averaged 2500 bbl/h and cluster 2 averaged

1900 bbl/h. Then, a LPV model consisting of two models was built; one model for

each cluster. The models predicted the output flow rate of the pipeline as a function

of 10 inputs and 8 states. The MAE, RMSE and R2 for model 1 on the testing data

set was 96, 120, 0.78, respectively. Likewise, the performance metrics were 85, 110,

and 0.57 for model 2. These models were then used for optimization via a mixed
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integer linear program where the outputs were the optimal steady state set inputs

based on specified operating costs. By comparing the operating costs incurred from

the actual operation with the optimal set points, cost savings of $ – USD could have

been realized in 2018. The average cost reduction was $8%, with an average savings

margin of $ – USD per barrel/km transported. A preliminary impact study was

also conducted and found that $583M USD in cost savings can be realized if this

tool was applied to all exporting pipelines in Canada. Intangible benefits include

increased efficiency for lower experience level operators, increased stability in the

pipeline, and reduced wear-and-tear from turbulence.
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