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Abstract

The main topic of this thesis is the investigation of drift resonance and drift-bounce

resonance between energetic particles and Pc3-5 Alfvénic ultra-low frequency (ULF)

waves in the Earth’s inner magnetosphere. We have developed numerical models

to simulate how the dynamics of O+, H+ ions and electrons are affected by Alfvén

waves in a dipole magnetic field. These models are used to interpret observations on

differential particle flux variations that are caused by interactions with ULF waves

in the magnetosphere. Observational data from different satellite projects, such as

Cluster and Van Allen Probes, and from the CARISMA ground magnetometer obser-

vatory array are introduced to investigate the characteristics of ULF waves and the

corresponding energetic particle flux variations.

We present observational studies on two fast-damped ULF wave events observed

by Cluster after an interplanetary shock. Comparisons between multi-satellite obser-

vations suggest that Landau damping is more effective in the plasmasphere boundary

layer than in the plasmasphere due to the relatively higher proportion of Landau res-

onant ions that exist in the plasmasphere boundary layer. Also, the energy exchange

between waves and particles through Landau damping is considered to be more ef-

ficient when heavier ions such as O+ are present. Based on the analysis of these

events, further studies with computation models are recommended for wave-particle

interactions.

The test-particle simulations presented in this thesis reproduced several features

of the pitch angle and energy spectrum of ion differential fluxes observed by the

Van Allen Probes-A spacecraft on October 6, 2012. The observed and simulated

fluxes are well correlated with giant pulsations of frequency f ∼ 10 mHz and contain
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modulations in a narrow range of energy, with stronger enhancements occurring for

non-equatorially mirroring particles. For ions at 35◦ pitch angle, a maximum in the

differential flux oscillations occurs at an energy of ∼ 150 keV, which is consistent

with predictions made with drift resonance theory. The lack of enhanced differential

fluxes of particles near the 90◦ pitch angle can be explained by the dependence of the

resonance energy on the pitch angle.

The electron flux modulations in ULF waves observed by RBSP-A on October

31, 2012 [Claudepierre et al., 2013] have been reproduced with our simulation results.

The simulated fluxes have larger amplitudes and slower attenuation rates than ob-

served fluxes due to the finite energy resolution of the MagEIS instrument on the

spacecraft. When they are binned in energy as in the MagEIS instrument, they ap-

pear remarkably similar to the observed fluxes. Test particle simulations of N = 0

drift resonance and N = −2 drift-bounce resonance with O+ ions reveal complex

dynamics in which different wave-particle resonances can potentially interact. These

simulations illustrate the expected behavior of ring current energetic ion populations

in a region where poloidal mode ULF waves are ubiquitous.

Another MHD Alfvén wave model with a more realistic ionosphere boundary

condition has been used to study the drift-bounce resonance of H+ ions with sec-

ond harmonic ULF field line resonance. We used the forward Liouville method and

the Monte Carlo method to reconstruct the distribution function of H+ ions when

they interacted with ULF waves. It has been demonstrated that second-harmonic

poloidal mode waves are efficient in energizing ions to tens of keV over timescales of

tens of minutes. The test-particle simulations of bounce-resonance reproduce particle

signatures which agree with theoretical predictions.
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Chapter 1

Introduction

In this chapter, we introduce fundamental space physics phenomena that are relevant

to this thesis. As solar wind is an important driver of ultra-low-frequency (ULF)

waves in the magnetosphere, we first give an overview of the sun and solar wind. We

then review different areas of the magnetosphere to provide insight into the plasma

environment for ULF waves and high-energy particles in the radiation belts. The

ionosphere is the boundary of field line resonance reflection, and its conductivity

plays an important role in the wave energy damping process. We will also briefly

review geomagnetic storms and substorms that are related to the generation of dif-

ferent plasma waves, including ULF waves. The motivation for this thesis will be

summarized in Section 1.5.

1.1 The Sun as the Source of Solar Wind

The sun is the closest star to the Earth. It is not only the source of virtually all energy

in the solar system but also the source of most of the space plasma throughout the

solar system. Solar activity creates variations in the Earth’s plasma environment.

Some properties of the sun are shown in Table 1.1, while the sun’s overall structure

is shown in Figure 1.1. Regions of the sun are listed below [Kivelson and Russell ,

1995]:

The sun’s energy is generated in the core region by thermonuclear reactions.

Thermonuclear reactions occur because the core of the sun has an extremely high
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Table 1.1: Bulk parameters of the Sun. Modified from Kivelson and Russell [1995].

Age 4.5× 109 yr
Mass 1.99× 1030 kg
Radius 696, 000 km
Mean density 1.4× 103 kg ·m−3

Mean distance from the Earth (1AU) 150× 106 km (215 solar radii)
Surface gravity 274 m · s−2

Escape velocity 617.6 km/s
Radiation emitted (luminosity) 3.86× 1026 W
Carrington rotation period 27 d
Mass loss rate ∼ 109 kg/s
Effective black-body temperature 5, 785 K
Visual magnitude −26.74
Spectral type G2V (yellow dwarf, main sequence star)
Composition 90%H, 10%He, 0.1% other elements

temperature (more than 10, 000, 000 K) and its dense gas has been compressed by

tremendously large gravitational forces.

The radiative zone extends from a depth of 515, 000 km to 200, 000 km from the

bottom of the solar atmosphere. Energy generated from the core propagates outwards

and gets transported via diffusion of γ-ray photons. The photons are scattered,

absorbed and remitted in the radiative zone and gradually transported to the outer

zones of the sun. As the mean free path of photons in this region is very small, it

takes millions of years for a photon to move to the next layer, which is called the

convection zone.

The convection zone is the outer-most layer of the solar interior. This zone is

located in the uppermost 30% of the solar interior. Energy is mainly transported by

convection in this region.

The solar atmosphere is the only region that is visible from the outside. So-

lar energy is radiated into space from the solar atmosphere. From the interior to

the exterior, the solar atmosphere is composed of several layers: the photosphere,

the chromosphere, the transition region, and the corona. An example of the sun’s

atmosphere is also shown in Figure 1.1.

The thickness of the photosphere is about 500 km. Visible light originates in the
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Figure 1.1: The interior of the Sun, and the structure of the Sun’s atmosphere. Taken
from: solarsystem.nasa.gov/planets/sun/indepth.

photosphere and accounts for the majority of the total solar luminosity. Radiation

from the photosphere is primarily in the form of thermal black-body emissions with

an effective temperature of about 5800 K. Relatively low temperatures and high

magnetic field regions on the photosphere are called sunspots. The total number of

sunspots observed on the sun’s surface varies from year to year, but appears to be

on an 11-year cycle. The total number of sunspots is also an indication of the sun’s

activity.

The thickness of the chromosphere is about 2000 − 3000 km. The temperature

increases from about 4300 K at the bottom to about 104 K at the top of the chro-

mosphere. The transition layer connects the top of chromosphere to the bottom of

corona.

The solar corona is the uppermost region of the solar atmosphere. It extends to

several solar radii. The corona is a plasma with a temperature of around 106 K. The

activity of the solar corona plasma is strongly connected to near-Earth space weather

3



since it extends out into interplanetary space and becomes the source of the solar

wind.

As the solar wind plasma has high conductivity, the sun’s magnetic field is frozen

into the plasma throughout the solar system. The magnetic field in the solar wind is

called the interplanetary magnetic field (IMF). Parker [1958] proposed that the IMF

has a spiral form because the solar rotation distorts the magnetic field.

Typical observations of the solar wind at 1 AU record speeds of about 300 −
1400 km/s, a density 1− 10 cm−3, and a magnetic field of several nT. However, solar

wind activity varies dynamically in density, temperature and speed over time and

over solar latitude and longitude. Strong solar wind activities are associated with

solar flares and coronal mass ejections (CMEs). A solar flare is a sudden flash of

increased solar brightness. Solar flares release energetic particles and stored magnetic

energy from the corona into space via magnetic reconnection. A CME is caused by

a sudden and violent release of plasma and the magnetic field from unstable coronal

structures.

As a result of solar activity, the IMF and particles in the solar wind affect the

Earth’s own magnetic field and near-earth plasma, and generate different magneto-

spheric processes. The structure and the important areas of the magnetosphere are

described in the Section 1.2.

1.2 The Magnetosphere

The Earth’s magnetic field protects its surface from being directly bombarded by high-

energy particles in the solar wind. When solar wind encounters the Earth’s magnetic

field, it forms a magnetospheric cavity called the magnetosphere. The direction of

the solar wind acts to compress the magnetosphere on the dayside and stretched it to

the nightside. Figure 1.2 shows a schematic of the magnetosphere and its important

structures.
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Figure 1.2: Schematic diagram of the magnetosphere. Taken from:
mms.space.swri.edu/science-4.html.

1.2.1 The Bow Shock and the Magnetosheath

In Figure 1.2, the bow shock is the boundary where the supersonic solar wind abruptly

slows to subsonic values at the upstream of the magnetosphere. The region between

the outer boundary of the magnetosphere and the magnetopause is called the magne-

tosheath. In the magnetosheath region, the solar wind’s kinetic energy is converted

into thermal energy.

1.2.2 The Magnetopause

The day-side boundary between the solar wind plasma and magnetospheric plasma

is defined as the magnetopause. A dynamic equilibrium between the dynamic ram

pressure of the solar wind and the magnetic pressure of the Earth’s magnetic field is

established at the magnetopause. On the dayside, the equatorial standoff distance of

the magnetopause is about 10Re (Earth’s radius) [Roelof and Sibeck , 1993] although
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it varies depending on the activities of the sun and the solar wind.

At the day-side magnetopause, magnetic reconnection is known to be an im-

portant process for coupling solar wind mass and momentum into the Earth’s mag-

netosphere across the entire magnetopause [e.g. Sonnerup et al., 1981]. When the

IMF encounters the magnetopause with different field line directions, the topology of

field lines is rearranged and magnetic energy is converted to kinetic energy of plasma.

Solar wind particles are able to enter the magnetosphere as the magnetic field lines

break and reconnect.

The Kelvin-Helmholtz (K-H) instability also plays an important role in the dy-

namic of the magnetopause. The K-H instability arises where there is a velocity dif-

ference across the interface between two fluids [e.g. Pu and Kivelson, 1983; Hasegawa

et al., 2004]. The K-H instability under mainly northward IMF in magnetic recon-

nection is also an important source of ULF waves in the magnetosphere. Although

the K-H instability excited surface waves at the magnetopause decay away from the

boundary, the wave energy can penetrate deep into the magnetosphere in the form of

fast mode Alfvén waves. These waves may couple to toroidal oscillations in the Pc3-

Pc5 range and also excite field line resonances [e.g. Walker et al., 1992]. The details

of fast mode wave coupling to field line resonances will be discussed in Chapter 2.

1.2.3 Polar Cusp

The polar cusp region is defined as a region of open field lines extending poleward

from the open/closed boundary (which is tied to the dayside merging region on the

magnetopause) to where particles are no longer able to directly enter [Fritz and Zong ,

2005]. The cusp region can be considered as part of the magnetospheric boundary

layer system. It provides a direct entry for the plasma from the magnetosheath into

the magnetosphere [e.g. Reiff et al., 1977; Marklund et al., 1990; Yamauchi et al.,

1996].
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1.2.4 The Magnetotail

The magnetic field extension on the night side of the magnetosphere is called the

magnetotail. Observations show that the magnetotail extension is on the order of

1, 000 Re from the Earth [Villante, 1975]. The magnetotail contains the northern and

southern tail lobes. Extended magnetic field lines in the north lobe point towards the

Earth while those in the southern tail lobe point away from the Earth. The two lobes

are separated by the plasma sheet, a layer with a weaker magnetic field and denser

plasma. The plasma sheet is centered on the equator and is typically 2− 6 Re thick.

In the center of the magnetotail, a cross-tail current system flows across the plasma

sheet from dawn to dusk.

1.2.5 The Plasmasphere

The plasmasphere consists of cold (∼ 1 eV), dense (10 − 104 cm−3) plasma in the

inner magnetosphere between 2 − 7 Re. The dominant(∼ 80%) plasmaspheric ion

species is H+, while He+ , O+ , O2+ , N+ and N2+ ions make up the remainder of the

ions [Kivelson and Russell , 1995]. The main source of plasmasphere particles is an

outflow of ionospheric plasma along mid- and low-latitude magnetic field lines.

The boundary of the plasmasphere, called the plasmapause, is commonly ob-

served as a sharp boundary with an order of magnitude, steep drop in plasma density

(for example, change of a factor of 5 in L < 0.5). Recently observations on plasmas-

phere [e.g. Moldwin et al., 2002; Carpenter et al., 2002; Wang et al., 2011] show that

the sharpness of the density profile and the extension of the plasmasphere boundary

vary strongly according to the level of magnetospheric activity and geomagnetic local

time.

An example of the plasmasphere is shown in Figure 1.3. The plasmasphere

generally appears as the torus of plasma that surrounds the Earth, while there are

also some irregular structures, such as the plume region [Sandel et al., 2003], in

the plasmasphere. A combination of corotational and solar wind driven convection

electric fields control the behavior of particles in the plasmasphere and therefore
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Figure 1.3: An example of the plasmasphere. The image is from the Extreme Ultra-
voilet Imager data at 07:34UT on 24th May, 2000, during a magnetic storm. Taken
from Sandel et al. [2003].

control the forming of the plume. During geomagnetic storms, the convection electric

field increases, eroding the outer region of the plasmasphere into a drainage plume

that extends sunward toward the dayside magnetopause [Grebowsky , 1971; Chappell

et al., 1970, 1971].

1.2.6 The Radiation Belts

The radiation belts, or Van Allen belts, is a zone of energetic charged particles first

discovered by James Van Allen [Van Allen et al., 1959]. The radiation belts and
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the plasmasphere occupy almost the same region in the magnetosphere. However,

the radiation belts are composed of magnetically trapped very high-energy ions and

electrons. Traditionally, the radiation belts are considered to be two separate shells

surrounding the Earth: The inner radiation belt (in L < 2) and the outer radiation

belt (in L > 3).

The inner radiation belt contains primarily energetic protons (exceeding 50 MeV)

confined by an intense magnetic field to the inner regions of the magnetosphere. The

main source of these energetic particles is the decay of neutrons freed when cosmic

rays collide with nucleus in the upper atmosphere [Hess et al., 1961; Kivelson and

Russell , 1995]. Other sources of ions in the inner radiation belt include the sun or

charged energetic cosmic particles [e.g. Mewaldt , 1994]. The outer radiation belt

contains mainly very high energy (0.1 − 10 MeV) electrons trapped by the Earth’s

magnetosphere. Also, various ions, mostly in the form of energetic protons and a

small amount of alpha particles and oxygen ions, are found in the radiation belts.

Maximum intensity of electrons flux is usually around L = 4 − 5 and the intensity

decreases rapidly as the energy increase. The outer radiation belt constantly changes

with geomagnetic conditions while the inner radiation belt is quite stable.

Between the two radiation belts, a slot region at L ∼ 2.5 is observed with

low energy particles during geomagnetic quiet periods. The slot region is believed

to be the result of pitch angle scattering. The pitch angle scattering effect theory

[Thorne et al., 1979] suggests that wave-particle interactions between the electrons

and chorus/hiss (waves in the plasmasphere with 1 Hz−1 kHz) modify the pitch angle

of the electrons which are then captured by the ionosphere. During severe magnetic

storms, the slot region can fill up [e.g. Blake et al., 1992a].

In recent years, new observations from Van Allen Probes have shown that a

previously undetected third belt can sometimes appear and persist for approximately

four weeks [Shprits et al., 2013]. This new radiation belt contains ultrarelativistic

electrons (> 2 MeV). The slot between the new radiation belt and the old ones is

the result of electron losses in the interplanetary medium and electromagnetic ion

cyclotron waves scattering to the Earth’s atmosphere.
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The interaction between energetic particles in the radiation belt and the magne-

tospheric ULF waves is one of the main topics of this thesis. The description of the

single particle motions will be discussed in detail in Chapter 5.

1.3 The Ionosphere

Figure 1.4: Schematic diagram of the density profile of the Ionosphere. The green
and the blue curves correspond to the Ionospheric density profile during daytime
and nighttime respectively (Taken from: magbase.rssi.ru/REFMAN/SPPHTEXT/
ionosphere.html).

The ionosphere is the partially portion of the upper atmosphere of the Earth,

at altitude of about 60 − 1000 km. The atmospheric ionization in the ionosphere is

because of solar extreme ultraviolet (EUV) radiation, x-ray photons, and energetic

particles from the magnetosphere. From bottom to top, the ionosphere is divided

into layers called the D layer, E layer, and F layer [e.g. Baumjohann and Treumann,

1996]. The D layer (60 km− 90 km) is very weakly ionized with an electron density

of ∼ 500 cm−3 because of high collision frequencies at this altitude. It is dominated

by the dynamics of the neutral atmosphere and is known to absorb shortwave radio

frequencies during the daytime. The ions in the E layer (90 km− 130 km) is mostly
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ionized O+
2 and NO+ caused by UV radiation. As with the D layer, the degree of

ionization in the E layer depends on the intensity of the radiation, the altitude and

the time of day. During daytime, the electron density in the E-region is on the order

of 105 cm−3. The F layer (above 130 km) is the uppermost layer of the ionosphere.

The ion component of the F layer is mainly O+, and the plasma density in this layer

is about 106 cm−3. At night the F layer is the only layer of significant ionization

present, while the ionization in the E and D layers is extremely low. During the day,

the F layer splits into two layers, F1 layer and F2 layer. The F1 layer is an additional,

weaker ionization layer that occurs only in the daytime. The F2 layer persists by day

and night and is the main region responsible for the refraction and reflection of radio

waves.

The ionosphere plays an important role in the electrodynamics of the space

environment. For example, the most visible manifestation of space weather is the

intense auroral activity, which occurs in the polar ionosphere during magnetic storms

and substorms, resulting in ionospheric conductivity enhancement along the auroral

oval. The aurora activity will be discussed in the next section. The ionosphere is

also one of the energy sinks of the ULF waves in the magnetosphere. The ULF wave

energy variation caused by the ionosphere will be discussed in Chapter 2 and 3.

1.4 Geomagnetic Storms and Substorms

1.4.1 Geomagnetic Indices

Different indices are used to measure geomagnetic activities. The most frequently

used indices include the Dst (or SYM-H) index, Kp index, and A indices.

The disturbance storm-time (Dst, or Kyoto Dst) index is a measurement of the

ring current’s strength. The ring current forms because trapped positive ions and

negative electrons are drifting in opposite directions, and that motion will create

a westward electric current around the Earth. As an assessment of the severity of

magnetic storms and substorms, the Dst index is monitored by the average of four

ground-based magnetometers at middle or equatorial latitudes because strong ring
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currents decrease the intensity of geomagnetic field on the Earth’s surface. The Dst

index is in units of nT. A negative Dst value means that the Earth’s magnetic field

is weakened and a positive value means that the field is strengthened. A more recent

global storm index is the SYM-H index [Wanliss and Showalter , 2006]. It is calculated

using a similar method but not identical to that used to calculate the Dst index. The

SYM-H index has one-minute time resolution, while the Dst index has a one-hour

time resolution.

The K-index is an alternative measurement of the magnitude of geomagnetic

storms. It quantifies disturbances in the horizontal component of geomagnetic field

in a 3-hour time interval with an integer in the range of 0−9. Typically, a geomagnetic

storm is related to a K-index of 5 or more. Different observatories have their own

observed K-indicies. The official planetary Kp-index is derived by calculating the

weighted average of K-indices from a network of geomagnetic observatories.

Figure 1.5: Development of the Dst index during a geomagnetic storm September
11-13, 1986. The initial phase, main phase, and recovery phase are indicated (Taken
from Okpala and Ogbonna [2017]).
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A-indices [Davis and Sugiura, 1966], include AU(Amplitude Upper), AE(Auroral

Electrojet) and AL(Amplitude Lower) indices, describe the enhanced ionospheric cur-

rents flowing below and within the auroral oval. Horizontal magnetic component

recordings from a set of globe-encircling stations are plotted to the same time and

amplitude scales relative to their quiet-time levels and then superposed. The upper

and lower envelopes of this superposition define the AU and the AL indices, respec-

tively. The difference between the two envelopes determines the AE index.

1.4.2 Geomagnetic Storm

A geomagnetic storm is a strong disturbance of the Earth’s magnetosphere caused by

the interactions between the interplanetary magnetic field and the Earth’s magnetic

field [Kivelson and Russell , 1995]. When a large coronal mass ejection (CME) or co-

rotating interaction region (CIR) is ejected from the sun, it can couple to the Earth’s

magnetosphere, increasing the solar wind pressure, which initially compresses the

magnetosphere and then transfers increases energy into the magnetosphere. The size

of a geomagnetic storm is classified by the minimum of the Dst index: moderate

(−100 nT < minimum of Dst < −50 nT), intense (−250 nT < minimum Dst <

−100 nT) or super-storm (minimum of Dst < −250 nT).

Figure 1.5 shows an example of magnetic storm that occurred September 11-

13, 1986 [Okpala and Ogbonna, 2017]. The evolution of a typical storm usually has

three phases: initial, main and recovery phases. The initial phase usually begins with

a sudden storm commencement (SSC) which is a sharp compression of the Earth’s

magnetic field that lasts from several minutes to an hour and is caused by increased

solar wind dynamic pressure. The main phase comes after the initial phase. The

magnetospheric ring current intensity increases largely, which causes a rapid decrease

in the Dst over several hours. During the recovery phase, the Dst gradually returns

to normal as ring current ions are lost. The recovery phase usually takes about 1− 5

days.

Geomagnetic storms produce major changes in the current systems, particle dis-

tribution and wave fields in Earth’s magnetosphere. Enhancements in the relativistic
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electron flux at energies of a few MeV are frequently observed in the outer radiation

belt. Recent analysis suggests 50% of magnetic storms were found to be associated

with relativistic electron flux enhancements at geostationary orbit [O’Brien et al.,

2001]. Since relativistic electrons are sufficiently energetic to penetrate spacecraft and

cause internal charging, flux enhancement events pose an important risk to satellites.

Several theories have been proposed. These theories include inward radial diffusion

driven by fluctuations in the large-scale magnetospheric electric and magnetic fields

[Schulz and Lanzerotti , 2012], drift resonance with ULF waves [Rostoker et al., 1998;

Liu et al., 1999; Hudson et al., 2000; Elkington et al., 1999; Zong et al., 2009], and

Doppler-shifted cyclotron resonance with whistler mode waves [Horne and Thorne,

1998; Summers et al., 1998; Summers and Ma, 2000].

1.4.3 Substorms

Compared to intense geomagnetic storms, magnetospheric substorms (also known as

auroral substorms) occur more frequently, result in less geomagnetic variations (Dst <

−50 nT) and last for shorter periods (usually one to a few hours). Substorms and

storms are highly related: substorms can be more intense and occur more frequently

during a geomagnetic storm. A substorm event is observed as a sudden brightening

and increased movement of auroral arcs, and is characterized by an AE index. The

morphology of aurora during a substorm was first described by Akasofu [1964].

Magnetic reconnection plays an important role in energy transfer from the mag-

netotail to the polar region during substorms [e.g. Xiao et al., 2006]. In the mag-

netotail region, around 100 − 200 Re downtail, the two opposite open field lines on

the two sides of the plasma sheet will reconnect. Then the reconnected field line will

relax and shorten in the Earthward direction due to magnetic tension. Plasma frozen

in the field line is transported toward the Earth along with the field line. During sub-

storms, this reconnection process is stronger. There is an explosive release of stored

magnetotail energy in the form of energetic particles and dissipated in the near-Earth

nightside auroral region. This process excites the widespread and intense auroras.

The auroras are caused by the collision between the precipitating energetic par-
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ticles and the neutral atmospheric constituents in the polar ionosphere. The color

of the aurora depends on the type of atmospheric component, and on the energy of

the participating particles. There are two basic types of auroras: discrete aurora and

diffuse aurora. The discrete aurora is formed by field-aligned accelerated energetic

particles [e.g. Lyons and Evans , 1984]. The diffuse aurora is formed by the lower

energy electrons which are participating due to pitch angle scattering [e.g. Lui et al.,

1973].

Particle precipitation causes significant ionization in the auroral region, where

the ionospheric conductivity is much higher than that in the polar cap. As a result,

the high-latitude current flow is concentrated inside the auroral oval, in what are

called auroral electrojets. The auroral electrojets are the most prominent currents

at auroral latitudes. The total current in auroral electrojets is on the same order of

magnitude as that in the ring current. However, the aurora contributes much higher

geomagnetic magnetic disturbance on the ground since the height of this current sys-

tem is about 100 km. Typically, the disturbance geomagnetic fields have magnitudes

of 10−1000 nT, and may reach 1760 nT during large magnetic storms [e.g. Tsurutani

et al., 2003].

1.5 Motivation

The principal objective of this dissertation is to provide a numerical method to better

understand the dynamics of charged energetic particles such as H+, O+, and e− in

the Earth’s radiation belts when an ULF wave is excited by the solar wind or by

the plasma instability in the inner magnetosphere. We presented an analytic MHD

Alfvén wave model about the field line resonance in the inner magnetosphere and

firstly use Liouville methods to study the wave-particle interaction between Alfvén

waves and energetic charged particles.

The behavior of charged particles in the Earth’s magnetosphere is of interest to

space weather research because of its potential impact on human space exploration.

For example, relativistic and ultra-relativistic electrons, or ”killer” electrons, can

penetrate the shielding of satellites, and result in internal discharge which damages
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and sometimes destroys satellites’ vital onboard electronic components [Robinson and

Coakley , 1992]. The dynamics of the oxygen ions in the magnetosphere are also

important in space physics researches. Although the magnetosphere protects the

Earth from atmospheric loss caused by solar wind, outflowing ionospheric O+ ions

from the ionosphere are a long-term but important loss mechanism of the oxygen

in the Earth’s atmosphere. Oxygen ions from the ionospheric outflow reach the

lobe/plasma sheet region and then convect into the inner magnetosphere, where they

accelerate and form a storm time ring current.

Different theories have been proposed to interpret the acceleration of charged

particles in the inner magnetosphere. For example, local acceleration of electrons

through electron cyclotron resonances with VLF waves has been widely considered

one of the primary electron acceleration mechanisms in the magnetosphere during the

storm time. However, the efficiency of VLF wave-particle interaction to accelerate

electrons to relativistic energies [Horne et al., 2005] is not enough to explain some

quick acceleration events [e.g. Blake et al., 1992b; Chen et al., 2007]. The Pc3-5 ULF

waves excited by solar wind dynamic pressure variations [Claudepierre et al., 2008;

Zong et al., 2009; Zhang et al., 2010] have much larger amplitudes than VLF waves.

The Pc3-5 ULF waves are considered to be a more effective and important way to

accelerate electrons [Zong et al., 2009] and H+, O+ ions [Zong et al., 2012b] and signif-

icantly enhance their radial diffusion [e.g. Elkington et al., 2003; Loto’aniu et al., 2006]

through drift- or drift-bounce resonance. The role of ULF waves in magnetospheric

energy transportation provides motivation for our development of numerical models

that describe global properties of ULF waves controlled by solar wind variability, and

how they affect energetic particle populations in the magnetosphere.

It has been common to use drift-bounce resonance theory developed by South-

wood and Kivelson [1981, 1982] to qualitatively interpret satellite observations of dif-

ferential flux modulation by ULF waves. This theory assumes the wave amplitude’s

infinitesimal growth, which is unlikely to be realized in practice. Zhou et al. [2016]

extended this theory to account for the finite lifetime of ULF waves. Generalizing

the theory to accommodate wave growth and damping stages makes the compar-

ison between the theory and observations more accurate. However, both theories
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exclude changes in L resonant ions experience during their interaction with waves.

Test particle simulations in this thesis provide the full description of trajectories of

ions and electrons as they interact with ULF waves. By backward tracing the test

particles from the location of the satellite, we can, with high precision, reproduce the

observation of differential flux at different energies and different pitch angles.

Although different ULF wave models [e.g. Rankin et al., 2000; Lui and Cheng ,

2001; Degeling et al., 2010; Lysak et al., 2013] exist, we developed a new analytic

MHD model to describe the Alfvén waves in the inner magnetosphere. This model

introduced a monochronic driver which can excite a wave from an unperturbed dipole

model of the magnetic field. The compressional component of magnetic field proves

that the first adiabatic invariant is conserved when we simulate the full trajectories of

the test particles. In previous studies, the forward Liouville method [Degeling et al.,

2013; Fei et al., 2006] was used to simulate the global distribution of the energetic

particles’ phase space density (PSD). When studying the time evolution of PSD at

a point in the spatial scale of satellite size with the forward Liouville method, it is

necessary to compensate for the statistical error caused by the size of the sampling

volume. This can be done using a large number of test particles. In this thesis, we

firstly used the backward Liouville methods to study the variations of PSD in ULF

waves. This method does not include any statistical errors from the sampling volume

size, so the time evolution of PSD at the sampling points can be precisely reproduced.

In this thesis, I have studied the interaction between charged particles and the

Pc3-5 Alfvén waves in the Earth’s magnetosphere. I developed computational mod-

els to retrieve the temporal evolution and spatial distribution of differential particle

fluxes under the effect of the ULF waves. The simulations are in good agreement with

the observational data from different satellites and ground magnetometer arrays. In

Chapter 2, I provide an overview of the theoretical background of ULF waves, test

particle motions, and drift/drift-bounce resonance. Chapter 3 presents observational

studies about different ULF wave damping mechanisms. The mechanisms have been

evaluated for two interplanetary shock-related ULF wave events observed by Cluster

on November 7, 2004, and August 30, 2001. It was further confirmed that Landau

damping is more efficient when heavy ions such as O+ are present, which explains
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why ULF waves excited by interplanetary shocks and solar wind pressure impulses

can have higher decay rates in the plasmasphere boundary layer than in the plas-

masphere. Our ULF wave models have been described in detail in Chapter 4. The

simulations of drift-bounce resonance are combination of this wave model and the

test particle models discussed in Chapter 5. The details about the Liouville methods

used to reproduce the differential flux, along with the implementation of our com-

putational code are also described in Chapter 5. In Chapter 6, the computational

models are used to study drift resonance between H+ ions and poloidal fundamental

mode giant pulsations. The ULF wave and test-particle simulations presented in this

chapter reproduce several important features of the pitch angle and energy spectrum

of ion differential fluxes observed by the Van Allen Probes-A spacecraft on October

6, 2012. The simulations of the ULF wave events reproduce the observed behavior

for poloidal mode wave parameters that are in general agreement with the data anal-

ysis presented by Takahashi et al. [2016]. The maximum of oscillation of differential

fluxes for ions at a 35◦ pitch angle appears at an energy level of ∼ 150keV, which is

consistent with the drift-resonance energy. The oscillation of differential fluxes near

the 90◦ pitch angle is weaker than that at 35◦ because of the dependence of the res-

onance energy on the pitch angle. Chapter 7 looks at the drift resonance between

electrons and ULF waves with the guiding center test particle model. Our simulations

reproduced the phase differences and the amplitudes of the differential flux oscilla-

tion observed by different energy channels of the MagEIS instrument on Van Allen

Probes-A. We have simulated high-energy resolution flux oscillations to show that

the flux oscillations attenuate rapidly during the damping stage of the observed ULF

waves is caused by the increasing phase difference between different energy particles

within energy bins of the MagEIS instruments. We have also provided simulations

of O+ ions undergoing N = 0 drift resonance and N = −2 drift-bounce resonance

provide insight into the dynamics of heavy ions that interact with ULF waves in this

chapter. Chapter 8 introduces an MHD Alfvén wave model with a more realistic

ionospheric boundary condition. The forward Liouville method is used to reconstruct

the distribution function of ions when they are interacting with second harmonic ULF

waves. It has been demonstrated that the second-harmonic poloidal mode waves are

efficient at energizing ions to tens of keV over timescales of tens of minutes. The
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test-particle simulations of bounce-resonance reproduce particle signatures that are

commonly observed by satellites. The energy dispersion agrees with the theoretical

predictions.
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Chapter 2

ULF Waves and Particle Motion in
the Earth’s Magnetosphere

In this chapter, we will briefly review theories about ULF waves and wave-particle

interactions in the magnetosphere to prepare the computational models provided in

Chapter 4 and Chapter 5. The magnetohydrodynamic theory, is introduced as an

important theory of ULF waves in Section 2.2. We describe the adiabatic motion

of ions and electrons in the magnetosphere in Section 2.3. Theories on drift- and

drift-bounce resonance are introduced in Section 2.4. Section 2.4 also introduces

Landau damping and flux modulation, which are part of the main topics of Chapter

3, Chapter 6, Chapter 6, and Chapter 7.

2.1 Introduction

The terminology ultra-low-frequency (ULF) waves refers to waves in the frequency

range of about 1 mHz to 1 Hz. The first recorded ULF wave event was geomag-

netic pulsations observed at the Kew Observatory [Stewart , 1861]. Although there

have been many observations of geomagnetic pulsations, the physical mechanism of

ULF waves was not well explained until the theory of Alfvén waves in magnetized

plasma [Alfvén, 1942] was developed. Dungey [1954] provided the theory of general-

ized Alfvén waves, also known as the magnetohydrodynamic (MHD) wave, to explain

these geomagnetic pulsations.
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The sources of ULF waves in the magnetosphere include external solar wind

disturbances and internal plasma instabilities. External sources include solar wind

dynamic pressure pulses [Kepko and Spence, 2003; Hudson et al., 2004; Takahashi and

Ukhorskiy , 2007; Claudepierre et al., 2009, 2010; Claudepierre et al., 2013], Kelvin-

Helmholtz (K-H) instabilities on the magnetopause [Hudson et al., 2004; Claudepierre

et al., 2008], and ion cyclotron resonance with back-streaming solar wind ions [Odera,

1986]. The K-H instability can excite ULF waves in the magnetosphere through

the coupling that occurs between fast mode waves and toroidal field line resonances

(FLRs) [Fairfield et al., 2000; Hasegawa et al., 2004; Rae et al., 2005; Claudepierre

et al., 2008]. Interplanetary shocks and solar wind dynamic pressure pulses also

excite ULF waves through substorm injections [James et al., 2013]. A special type

of standing Alfvén waves, the Giant Pulsations (Pgs), are considered to be generated

by plasma instabilities inside the magnetosphere.

Wave-particle interactions involving Alfvén waves [Dungey , 1955] can dramati-

cally alter the behavior of electrons [Zong et al., 2007, 2009] and ions [Yang et al.,

2010, 2011a; Zong et al., 2011; Ren et al., 2016] in the inner magnetosphere. Brown

et al. [1968] provided the first observation about modulations of energetic particle

fluxes by ULF waves with periods of several minutes. Numerous observations have

been reported also demonstrating that the modulation of energetic particle fluxes by

ULF waves is common [e.g. Baker et al., 1980; Kremser et al., 1981; Takahashi et al.,

1985; Takahashi et al., 1990; Claudepierre et al., 2013; Foster et al., 2015]. The theory

developed by Southwood and Kivelson [1981, 1982] is used to interpret the modula-

tions of ion and electron flux produced by ULF waves. This theory has recently been

improved by Zhou et al. [2016], who accounted for the finite growth and decay of ULF

waves.

2.2 Magnetohydrodynamic Description of ULF Waves

A typical classification scheme for the ULF waves uses the period and waveform of

the pulsation [Jacobs et al., 1964], as shown in Table 2.1. ULF waves can be excited

by external solar wind disturbances and internal plasma instabilities.
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Table 2.1: Typical classification scheme for ULF waves

Name T/s f

Continuous pulsations

Pc1 0.2− 5 0.2− 5 Hz
Pc2 5− 10 0.1− 0.2 Hz
Pc3 10− 45 22− 100 mHz
Pc4 45− 150 7− 22 mHz
Pc5 150− 600 2− 7 mHz

Irregular pulsations Pi1 1− 40 0.025− 1 Hz
Pi2 40− 150 6− 25 mHz

As suggested by Dungey [1954], magnetohydrodynamic(MHD) theory combines

electromagnetic theory and the theory of fluid dynamics. In general, ULF waves can

be described by MHD theory because their temporal scale is longer than the parti-

cles’ gyroperiod and their spatial scale is larger than the particles’ gyroradius. The

description of ULF waves is based on Maxwell’s equations (Equation (2.1)- Equation

(2.4)) and hydrodynamic fluid equations (Equation (2.8) - Equation (2.10)).

2.2.1 Fundamental Equations of MHD Theory

Maxwell’s equations in SI units can be written as below,

∇× E = −∂B

∂t
(Faraday′s law) (2.1)

∇×B = μ0(j+ ε0
∂E

∂t
) (Ampere′s law) (2.2)

∇ · E =
ρc
ε0

(Gauss′s law) (2.3)

∇ ·B = 0 (2.4)

where j is the current, ρc is the net charge density, and ε0 and μ0 are the permeability

and permittivity of free space, respectively. In space plasma physics, the plasma is

neutrally charged. Thus the equation of Gauss’s law can be simplified as

∇ · E = 0 (2.5)

The generalized Ohm’s law is also included in the electromagnetic component of

the MHD theory as

j = σ(E+ v ×B) (2.6)
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where σ is the plasma conductivity and v is the velocity of the plasma fluid element.

In the magnetosphere, the conductivity is so large that the assumption σ = ∞ is

applied. Therefore Ohm’s law (2.6) becomes

E+ v ×B = 0. (2.7)

This equation shows that there are no electric fields in the frame moving with

the plasma [e.g. Baumjohann and Treumann, 1996]. The fields are ”frozen in” to the

plasma element when the plasma is an ideal conductor.

Another important part of the MHD theory is the hydrodynamic fluid equa-

tions. The hydrodynamic component of the MHD theory incorporates the following

equations.

∂ρ

∂t
+∇ · (ρv) = 0 (Continuity equation) (2.8)

ρ(
∂v

∂t
+ v · ∇v) = j×B−∇p (Equation of motion) (2.9)

p

ργs
= constant (Equation of state) (2.10)

where v is the fluid velocity, ρ is the mass density, p is the plasma pressure, and

γs = Cp/Cv is the adiabatic index, which is defined as the ratio of the two specific

heats at constant pressure and constant volume, respectively.

2.2.2 Shear Alfvén Waves and Compressional Wave Modes

Based on the MHD equations, two important kinds of hydromagnetic waves can be

derived under the assumption of uniform, infinite, and fully-ionized cold plasma with

a uniform background magnetic field (B0 = B0ẑ). MHD equations can be linearized

by dividing the following terms into a stationary homogeneous background part and
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small perturbation part [Allan and Poulter , 1992].

ρ = ρ0 + ρ1 (2.11)

B = B0 +B1 (2.12)

E = E1 (2.13)

j = j1 (2.14)

v = v1 (2.15)

where the subscript 0 indicates the background part and 1 indicates the perturbation

part, E0 = 0,v0 = 0, and j0 = 0 is assumed. The linearized Maxwell equations

(Equation (2.1), Equation (2.2)) and the equation of motion (Equation (2.9)) can be

written as

∇× E1 = −∂B1

∂t
(2.16)

∇×B1 = μ0j1 +
1

c

∂E1

∂t
(2.17)

ρ0
∂v1

∂t
= j1 ×B0 −∇p (2.18)

where plasma pressure p = 0 in cold plasma, and the displacement current term

1
c
∂E1

∂t
in the RHS of Equation (2.17) is neglected because MHD motions in the mag-

netosphere are slow compared to the velocity of light. Combining Equation (2.16) -

Equation (2.18) with the frozen-in condition Equation (2.7),

∂2E1

∂t2
+ v2A∇× (∇× E1) = 0 (2.19)

where vA = B0/
√
μ0ρ0 is the so-called Alfvén speed.

According to Equation (2.7), the parallel component of E1 is zero because E1‖ =

−(v1 × B0)‖ = 0. The other two components of the electric field in a Cartesian

coordinate can be described by Equation (2.19)

(v−2
A

∂2

∂t2
− ∂2

∂y2
− ∂2

∂z2
)E1x = −∂2E1y

∂x∂y
(2.20)

(v−2
A

∂2

∂t2
− ∂2

∂x2
− ∂2

∂z2
)E1y = −∂2E1x

∂x∂y
(2.21)

Assuming that all perturbation quantities are uniform in the x direction, ∂/∂x ≡
0, and in the plane-wave form, ∝ exp[i(kyy + kzz − ωt)], the two dispersion relations
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can be solved from Equation (2.20) and Equation (2.21).

ω2/k2
z = v2A (2.22)

ω2/k2 = v2A (2.23)

where k =
√

k2
y + k2

z .

Equation (2.22) is the dispersion relation of the well-known shear Alfvén wave.

Its phase velocity is ω/kz = vA and group velocity is vg = ±vAẑ. The energy flow

of a shear Alfvén wave is always parallel or anti-parallel to the background magnetic

field B0. The perturbation of magnetic field B1 is perpendicular to background B0,

which makes the field lines oscillate like a stretched string.

Equation (2.23) is the dispersion relation of the fast magnetoacoustic mode. Its

phase velocity is also ω/k = vA but its group velocity is vg = ±vAk̂, parallel to

the wave vector k. The wave magnetic field is not necessarily perpendicular to the

background and is therefore compressional. Figure 2.1 shows the directions of all

perturbation quantities in the shear Alfvén mode and fast mode.

When the plasma is not completely cold, the plasma pressure p is not zero in the

equation of motion (Equation (2.18)). The magnetic compressional fast mode wave

couples with the fluid compressional sound wave. For the shear Alfvén wave, which

is non-compressional, the dispersion relation (Equation (2.22)) is unaffected. Solving

the dispersion relation of the fast magnetoacoustic mode (Equation (2.23)) leads to

two solutions [Allan and Poulter , 1992]

ω2

k2
=

1

2
(c2s + v2A)

[
1±

(
1− 4c2sv

2
A cos2 θ

(c2s + v2A)
2

)1/2
]

(2.24)

where θ is the angle between wave vector k and background magnetic field B0 to

make ky = k sin θ and kz = k cos θ, cs is the sound speed; cs =
√
γsp0/ρ0. In the case

of the parallel propagation wave, θ = 0, the two solutions of Equation (2.24) become

ω2/k2 = v2A, (2.25)

ω2/k2 = c2s (2.26)

which correspond to a transverse fast mode with a phase velocity of vA and a com-

pressional sound wave with a phase velocity of cs, respectively.

25



Figure 2.1: Polarizations of the fast mode and the Alfvén mode, taken from Allan
and Poulter [1992]. Upper panel: the fast mode. Lower panel: the Alfvén mode.

In the case of oblique propagation wave (cos2 θ 
 0) and cs is significantly smaller

than vA, Equation (2.24) can be approximately written as

ω2/k2 
 (c2s + v2A) (2.27)

ω2/k2
z 


c2sv
2
A

c2s + v2A
(2.28)
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The two modes described by Equation (2.27) and Equation (2.28) are known as

the fast and slow magnetosonic modes respectively. The propagation behavior of the

fast magnetosonic mode is similar to the slow magnetosonic mode as a compressional

wave but has a higher phase velocity. The energy flow direction of slow magnetosonic

mode is parallel to the direction of B0. Figure 2.2 shows the schematic diagram of

wave phase velocities of the three magnetohydrodynamic waves on different direc-

tions of wave vectors for the two case vA > cs and vA < cs. When the wave vector

is perpendicular to B0, the phase velocity of the Alfvén wave and that of the slow

magnetosonic mode is zero, which means these two modes do not propagate across

magnetic field lines. The phase velocity of the fast magnetosonic wave is a combina-

tion of Alfvén speed and sound speed; cms =
√
c2s + v2A because the magnetic pressure

and fluid pressure perturbations are in phase for the fast magnetosonic mode. In the

case of the parallel propagation mode, the phase velocity of the fast magnetosonic

mode is equal to or larger than the Alfvén speed and sound speed while that of the

slow magnetosonic mode is equal to or smaller than both the Alfvén speed and sound

speed.

Figure 2.2: Schematic diagram showing the dependence of MHD wave phase velocities
on the angle between k and B0. Taken from Baumjohann and Treumann [1996].
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2.2.3 Coupling between MHD waves and Field Line Reso-
nance

Field line resonances (FLR) are long duration standing waves along field lines in the

magnetosphere. FLRs are caused by the inward energy transportation of fast mode

waves in the magnetosphere. When the natural frequency of the field line matches

that of the fast mode source, the fast and Alfvén modes will couple together, cause

the field line oscillation with an enhanced amplitude, and thus establish the FLRs.

Below we are going to discuss the mechanism of mode coupling between the fast and

Alfvén modes by following the method derivations from Allan and Poulter [1992].

Assuming that the background magnetic field B0 and plasma density ρ are not

uniform in the direction perpendicular to the magnetic field, for example, x, the wave

electric field Ex and Ey and the Alfvén speed can be written as

vA = vA(x) (2.29)

Ex = Ex(x) exp[i(kyy + kzz − ωt) (2.30)

Ey = Ey(x) exp[i(kyy + kzz − ωt). (2.31)

Thus Equation (2.20) and Equation (2.21) become

[
ω2/v2A(x)− k2

y − k2
z

]
Ex = ikydEy/dx (2.32)

[ω2/v2A(x)− k2
z ]Ey = ikydEx/dx− d2Ey/dx

2. (2.33)

The two equations of Ex and Ey decoupled when ky ≡ 0

[
ω2/v2A(x)− k2

z

]
Ex = 0 (2.34)[

ω2/v2A(x)− k2
z

]
Ey = −d2Ey/dx

2. (2.35)

The dispersion relation of Equation (2.34) is ω2/k2
z = v2A. It corresponds to the

shear Alfvén mode which is similar to Equation (2.22). Equation (2.35) is related

to the fast mode wave dispersion relation (Equation (2.23)). The extra second-order

ordinary differential term −d2Ey/dx
2 on its RHS is the result of a spatial variation

in the x direction.

28



If parameter K2(x) = ω2/v2A(x) > k2
z , the coefficient of Ey on the LHS of Equa-

tion (2.35) is positive. In this case, the solution of Equation (2.35) is oscillatory in

space. One the other hand, K2(x) < k2
z , gives a wave solution which is evanescent

in space. Assuming that K2(x) is monotonically increasing with x, there is a turning

point xr where K2(x) = 0. A wave of frequency ω and wave number kz has oscilla-

tory spatial structure outside turning point (x > xr) and growth or decay inside it

(x < xr). Here xr is the reflection point for an inward propagation fast mode wave.

If ky �= 0, combining Equation (2.32) and Equation (2.33) to give

d2Ey/dx
2 − CdEy/dx+ [K2(x)− k2

y − k2
z ]Ey = 0 (2.36)

where

C =
k2
ydK

2(x)/dx

(K2(x)− k2
z)(K

2(x)− k2
y − k2

z)
(2.37)

The coefficient C has two singular points xr and xc. One is K2(xr) − k2
z = 0,

the reflection point. The other is K2(xc)− k2
y − k2

z = 0. xc always lies inside of xr if

∂/∂y �= 0 and K(x) monotonically increases with x.

Figure 2.3 show a diagram of the coupling between the field line resonance and

the incident fast mode waves in a box model magnetosphere [Rankin et al., 1993].

As stated in the discussion above, fast mode waves have an oscillatory structure at

x > xr and an evanescent structure at x < xr. A physical explanation for the singular

point xc is that resonance happens between the incoming fast mode wave and local

Alfvén mode wave. The phase speed of fast mode wave ω/k, where k2 = k2
y + k2

z ,

matches the local Alfvén speed vA(xc) at xc. The energy of the inward propagation

fast mode wave is transferred into the standing Alfvén wave which propagates along

the field lines.

2.2.4 Ionospheric Influence on ULF Waves: Pedersen and
Hall Conductivities

The plasma in the ionosphere is not collisionless and thus it has non-zero plasma

resistivity η = meνc/nee
2 where νc > 0 is the collision frequency. A collision term is
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Figure 2.3: Diagram of the coupling between the field line resonance and the incident
fast mode waves in a box model magnetosphere. Taken from Rankin et al. [1993].

introduced into the equation of motion,

m
dv

dt
= q(E+ v ×B)−mνc(u− v) (2.38)

where v is electron velocity and u is the velocity of collision partners. Assuming that

the collision partners are at rest (u = 0) and the plasma is in steady state (d/dt = 0),

the equation of motion can be written as

E+ v ×B = −meνe
e

v. (2.39)

Another form of Ohm’s law can be obtained by using Equation (2.39) and the

definition of current j = −enev

j = σ0E− σ0

nee
j×B (2.40)

Write current vector j as a function of electric field components as

j = σ0E‖ + σPE⊥ − σH(E⊥ ×B)/B (2.41)
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where σ0 is the plasma conductivity,

σP =
ν2
c

ν2
c + Ω2

e

σ0 (2.42)

σH = − Ωeνc
ν2
c + Ω2

e

σ0 (2.43)

are the Pedersen and Hall conductivity. Charged particles in the Hall current move

in the direction transverse to the electric and magnetic fields and do not gain or lose

energy. The Pedersen current driven by the perpendicular electric field is one of the

most important wave energy sinks in the ionosphere.

2.2.5 Ionospheric Influence on ULF waves: Ionospheric Joule
Heating

Ionospheric damping of Alfvén waves is one of their main sinks of energy. The damp-

ing takes place through Joule heating produced by the interaction of the waves with

ionospheric particles. For a transverse wave, Joule dissipation through Pedersen cur-

rents can be calculated based on a boundary condition at the ionosphere: b = μ0ΣPE,

where ΣP is the height-integrated Pedersen conductivity. This boundary condition

can also be written in another form [Southwood and Hughes , 1983]:

Eb

μ0

= ΣP |E|2 . (2.44)

In this equation, Joule heating is balanced by the net Poynting flux into the

ionosphere.

2.3 Adiabatic Motion of Trapped Magnetospheric

Charged Particle

The geomagnetic field can be approximately considered as a dipole field inside the

inner magnetosphere. Charged energetic particles are trapped by the geomagnetic

field and bounce back and forth between the northern and southern hemispheres.

Figure 2.4 shows the three types of periodic motion of particles: gyro-motion, bounce
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motion, and drift motion. Each type of particle motion is associated with one adia-

batic invariant. An adiabatic invariant is a property of a physical system that stays

constant compared with some typical periodicities of the particle motion. The mag-

netic moment, μ, is associated with the gyration motion around the magnetic field.

The longitudinal invariant, K, is associated with the bounce motion along the mag-

netic field. The third invariant, Φ, is associated with the azimuthal drift due to the

gradient and curvature of the magnetic field.

2.3.1 Gyro-motion around Field Line

The equation of motion for a particle of charge q under the action of the external

electric field E and magnetic field B can be described as

m
dv

dt
= q(E+ v ×B) (2.45)

where m is the particle’s mass and v is the particle’s velocity. When E = 0, this

equation reduces to

m
dv

dt
= qv ×B. (2.46)

The solution of Equation (2.46) gives the periodic circular motion around the

dipole background magnetic field. The frequency of this circular motion, so called

gyrofrequency, is defined as

Ωg =
qB

m
(2.47)

where opposite signs of charge q indicate different directions of gyro-motion. When

the background magnetic field direction is along +z in a right-handed cylindrical

coordinate system, the gyro-motion of ions is in −φ direction while the gyro-motion

of electrons is in the +φ direction. The radius of the gyro-motion, the gyroradius, is

defined as

Rg =
mv⊥
|q|B (2.48)

where v⊥ is the velocity component perpendicular to the background magnetic field

B. As long as the magnetic fields are slowly changing and can be considered as

constant in one gyroperiod of a particle, the particle’s first adiabatic invariant, μ is a
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constant. The definition of μ is

μ =
W⊥
B

=
mv2⊥
2B

(2.49)

where v⊥ is the perpendicular component of particle velocity, W⊥ is the perpendicular

energy.

Figure 2.4: Schematic diagram of particle motions in the inner magnetosphere. Mod-
ified from:www-ssg.sr.unh.edu/tof/Smart/Students/lees/periods.html

2.3.2 Bounce Motion along Field Line

A particle also moves along the magnetic field line if its parallel velocity v‖ is not

zero. As a dioplar magnetic field has a minimum field strength at the equator and a

stronger field strength at the polar region where the field lines converge, a particle will

stop moving further along the field line at the mirror point and reverse its direction

of motion due to the mirror force, which is defined as Fm = −μ∇‖B. The mirror

point is a point along the field line where the parallel energy is zero. The particle’s

pitch angle α, which is defined as sinα = v⊥/v, reaches α = π/2 at the mirror point.

When there is no perturbation of the ambient magnetic field, the particle’s and first

adiabatic invariant are conserved.

The period of bounce motion, τb, can be calculated by integrating ds/v‖ over one
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full bounce path along the field line

τb = 4

∫ λm

0

v−1
‖ ds (2.50)

where λm is the magnetic latitude of the particle’s mirror point. An approximation

of this integration in a dipole field is [Baumjohann and Treumann, 1996]

τb =
LRE√
W/m

(3.7− 1.6 sinαeq) (2.51)

where L is the L-shell, and αeq is the equatorial pitch angle.

The second adiabatic invariant, K, is defined by the total length of the field line

between the two mirror points of the particle l, and the average parallel momentum

along the field line < p‖ >= m < v‖ > [Schulz , 1971],

K = 2ml < v‖ >=

∮
mv‖ds. (2.52)

K is an invariant related to the periodic bouncing motion of a particle trapped be-

tween two mirror points on a magnetic field-line.

2.3.3 Azimuthal Drift Motion

The radial gradient and latitudinal curvature of the Earth’s dipole field leads particles

to azimuthally drift around the Earth while the particles are gyrating and bouncing.

Table 2.2 [Baumjohann and Treumann, 1996] summarizes the different kinds of elec-

tric drifts and the magnetic drifts of charged particles. When a particle drift around

the Earth without an external electric field, the curvature drift and the gradient drift

contribute to the particle’s drift velocity:

vd = (v2‖ + v2⊥/2)
B ×∇B

ΩgB2
(2.53)

where Ωg is the gyrofrequency described in Equation (2.47). The averaged angular

drift velocity can be obtained by numerical integration in one full bounce period, but

a more widely-used approximation for the average period is given below Baumjohann

and Treumann [1996]:

< τd >∼ πqBER
2
E

3LW
(0.35 + 0.15 sinαeq) (2.54)
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Table 2.2: Drift velocities of different guiding center drifts

Drift velocity

ExB drift vE = E×B
B2

Polarization drift vP = 1
ΩB

dE⊥
dt

Gradient drift v∇ =
mv2⊥
2qB3 (B×∇B)

Curvature drift vR =
mv2‖

qR2
cB

2 (Rc ×B)

where αeq is the equatorial pitch angle. The ions and electrons drift in opposite

directions: westward for ions and eastward for electrons.

The third adiabatic invariant Φ, which is associated with drift motion, is the

conserved magnetic flux encircled by the periodic orbit of a particle trapped in an

axisymmetric mirror magnetic field configuration when it performs closed drift shell

orbits around the magnetic field axis. This drift invariant can be written as

Φ =

∮
vdrdψ. (2.55)

The drift motion of the particle is highly related to the activity of the Earth’s

inner magnetosphere. Because positive ions and negative electrons drift in opposite

directions, the motion will create a westward electric current, the ring current, around

the Earth. Also, if the Earth’s magnetic field is compressed by slowly increasing or

decreasing solar wind, dynamic pressure, charged particles move radially inward or

outward to conserve the magnetic flux enclosed by their drift orbit.

2.4 Interactions Between ULF Wave and Charged

Particles

According to Equations (2.51) and (2.54) in Section 2.3, charged particles’ bounce

motion periods are on order of several seconds to several hundred seconds and their

drift motion periods are on order of several hundred seconds to several thousand

seconds. Particles can respond to the magnetospheric waves in ULF range while
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executing drift and bounce motion in the magnetosphere. Energy can be transferred

between charged particles and standing poloidal ULF waves (azimuthally propagating

waves) in the magnetosphere [e.g. Southwood et al., 1969; Kivelson and Southwood ,

1986]. Radiation belt electrons can be energized by ULF waves [Elkington et al.,

1999; Ozeke and Mann, 2008]. On the other hand, ULF waves can also be internally

generated or damped via interaction with energetic particles. In this section, we will

discuss the mechanism of drift-bounce resonance and its effect on ULF wave energy

variation.

2.4.1 Drift Resonance and Drift-bounce Resonance

Drift and drift-bounce resonances are important interaction mechanisms between en-

ergetic particles and FLRs in the magnetosphere. The resonance occur between the

drift-bounce motion of the particles and an azimuthally propagating ULF wave. En-

ergy can be transferred between energetic particles and waves in the process.

Figure 2.5: Schematic diagram showing the resonant trajectories of protons in the
frame of azimuthally propagating fundamental mode poloidal Alfvén waves. Modified
from Yang et al. [2011a]. The electric field intensity corresponds to the density of
the signs. The positive and negative signs represent eastward and westward directed
electric fields, respectively. (a) trajectory of resonant particles interacting with fun-
damental mode waves via the N = 2 resonance.(b) trajectory of resonant particles
interacting with fundamental mode waves via N = 0 resonance.

Drift-bounce resonance will occur if the following condition is satisfied [Southwood

et al., 1969]

ω −mωd = Nωb (2.56)

36



where ωb is the particles’ bounce frequency and ωd is the drift frequency, m

is the azimuthal wave number and N = 0,±1,±2, ... is a parameter corresponding

to different resonance conditions. The LHS of this equation is the Doppler-shifted

angular frequency of a drifting particle in the wave frame. Figure 2.5 shows a diagram

of N = 0 and N = 2 drift/drift-bounce resonance in the cases of a fundamental mode

FLR. Electric field intensity is indicated as the density of signs. Negative (westward)

and positive (eastward) signs represent the azimuthal direction of the wave electric

field. Electrons, for example, will be accelerated in the region marked as minus signs

and gain energy. Ions will be decelerated and lose energy in this region. When N = 0,

the particles are relatively static and do not drift in the wave frame, but will only

bounce along the field line. Particles with all pitch angles within the loss cone can drift

resonate with the wave. We call it drift resonance, and call resonances when N �= 0

drift-bounce resonance. Note that drift resonance only happens when the particle

drift direction is the same as wave propagation direction. Electrons drift resonate

with eastward-propagation waves and ions drift resonate with westward-propagation

waves. In Equation (2.56), we define m > 0 for an eastward-propagation wave.

Another representative case is N = ±2 in a fundamental mode standing wave. A

N drift-bounce resonating particle travels exactly N wave periods in one of its bounce

period in the wave frame. Depending on its initial position in the wave frame, particles

gain or lose net energy in a bounce period because of the difference of electric field

along the field line. Particles whose pitch angle is 90◦ will not gain or lose net energy

when they drift within the wave frame because the wave amplitude is periodic at

the equator. Generally speaking, the resonance of N = 0,±2,±4... will only happen

in odd harmonics while the resonance of N = ±1,±3,±5, ... will only happen in

even harmonics. Both eastward and westward propagating waves can resonate with

electrons and ions when N �= 0. Figure 2.6 shows the N = 0 drift resonance energy

and the N = ±2 drift-bounce resonance energy of O+ ions as functions of m. Note

that drift-bounce resonance energy with negative N = −2 is higher than positive

N = 2. We define N > 0 resonance condition as a particle travels exactly |N | wave
periods eastward in the wave frame. Higher energy ions drifting westward in the wave

frame will meet the N < 0 drift-bounce resonance condition.
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Figure 2.6: Resonance energy of O+ ions as functions of azimuthal wavenumber
m for different resonant coefficient N . The other parameters related to resonance
conditions are L = 5.7, wave period T = 100 s, equatorial pitch angle αeq = 30◦. In
this plot, waves withm > 0 are propagating eastward. The resonant coefficient N > 0
corresponds to the drift-bounce resonance when particles are moving eastward in the
wave frame. The dash line indicates the resonance energies in the case of m = −60.

2.4.2 Landau Damping and Flux Modulation

Consider the distribution function of particles f as a function of the particles’ kinetic

energy W , L-shell and magnetic moment: f = f(W,L, μ). If the first adiabatic

invariant μ is a constant in the temporal scale of an ULF wave, then [Southwood

et al., 1969]
df

dW
=

∂f

∂W
+

dL

dW

∂f

∂L
. (2.57)

The distribution function is stable when df/dW < 0. The Maxwell distribution

without L-shell dependence is an example of stable distribution: More particles have

lower energies while less particles have higher energies. In case of the drift/drift-

resonance, ULF waves accelerate more particles in energies lower than the resonance

energy and decelerate less particles higher than the resonance energy. The overall

energy transfer is from ULF wave to the particles. In this thesis, we call this wave

damping process Landau damping.

When df/dW > 0, the wave amplitude will gain energy from the unstable plasma.
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Figure 2.7: Schematic diagram of the Landau damping. (a) Stable distribution func-
tion f(v) before interacting with ULF waves. (b) Unstable distribution function f(v)
after interacting with ULF waves. Taken from Baumjohann and Treumann [1996].

Particle’s kinetic energy will be transferred to the wave and let its amplitude grow.

This mechanism is considered to be a source of giant pulsations (Pgs) in the magne-

tosphere [Green, 1979, 1985].

The flux modulation of electrons and ions in the ULF wave field is widely ob-

served by satelllites [e.g. Zong et al., 2009; Claudepierre et al., 2013]. The mechanism

of observed flux modulations can be described by a more general form of the distri-

bution function f [Kivelson and Southwood , 1985]

δf = −μb‖
B

∂f

∂μ
− δW

∂f

∂W
− δL

∂f

∂L
(2.58)

where δL, δW , and δμ are the change of the L-shell, kinetic energy and magnetic

moment caused by the ULF waves respectively. If we assume δμ = 0 [Southwood ,

1973],

δf = −δW
∂f

∂W
− δL

∂f

∂L
(2.59)

The E×B drift of particles in the poloidal mode Alfvén wave is in radial direction.

Inward particle displacement δL corresponds to increasing δW under assumption of

conserved first adiabatic moment μ. The distribution function f will increase or

decrease as the particles are displaced inward or outward. Although non-resonant

particles experience radial displacement within poloidal mode ULF wave, only drift

or drift-bounce resonant particles experience net inward/outward displacement in a

bounce period. The net effect of electric field is dependent on the relative location

of a particle in the wave reference frame. When a satellite moves relative to the
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wave reference frame, it observes flux modulation because the inward and outward

propagating fluxes driven by ULF waves are different. In Chapter 5, Chapter 6 and

Chapter 7, we will discuss the flux modulation of ions and electrons in poloidal ULF

waves. The L-dependence of the distribution function ∂f
∂L

will be discussed in Chapter

6.
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Chapter 3

Fast Damping of ULF Waves
Excited by Interplanetary Shocks
in the Magnetosphere

The work in Section 3.1 - Section 3.4 have been published on Journal of Geophysical

Research: Space Physics [Wang et al., 2015]. Although the damping of ULF waves

caused by the wave-particle interaction is out of the scope of our simulation models

in Chapter 4, we compared the energization effects of fast damped ULF wave on O+

and H+ ions in plasma environments with different thermal energy in Section 3.5. In

this chapter, we studied the energy exchanging process between ions and ULF waves

caused by interplanetary shocks. The observational evidences encourage us doing

further studies on this process with computational models.

The analysis of Cluster spacecraft data shows that intense ultra-low frequency

(ULF) waves in the inner magnetosphere can be excited by the impact of interplan-

etary shocks and solar wind dynamic pressure variations. The observations reveal

that such waves can be damped away rapidly in a few tens of minutes [Zong et al.,

2009; Zhang et al., 2010]. Here, we examine mechanisms of ULF wave damping for

two interplanetary shocks observed by Cluster on November 7, 2004, and August 30,

2001. The mechanisms considered are ionospheric Joule heating, Landau damping,

and waveguide energy propagation. It is shown that Landau damping provides the

dominant ULF wave damping for the shock events of interest. It is further demon-

strated that damping is caused by drift-bounce resonance with ions in the energy
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range of a few keV. Landau damping is shown to be more effective in the plasmas-

phere boundary layer due to the relatively higher proportion of Landau resonant ions

that exist in that region.

3.1 Introduction

Wave-particle interactions involving ULF standing waves [Dungey , 1955] can dramat-

ically alter the behavior of electrons [Zong et al., 2007, 2009] and ions [Yang et al.,

2010, 2011a; Zong et al., 2011] in the inner magnetosphere. These waves can be

excited by external solar wind disturbances and/or internal plasma instabilities. Ex-

ternal sources include solar wind dynamic pressure pulses [Kepko and Spence, 2003;

Hudson et al., 2004; Takahashi and Ukhorskiy , 2007; Claudepierre et al., 2009, 2010;

Claudepierre et al., 2013], Kelvin-Helmholtz (K-H) instabilities on the magnetopause

[Hudson et al., 2004; Claudepierre et al., 2008], and ion cyclotron resonance with back-

streaming solar wind ions [Odera, 1986]. The K-H instability can excite ULF waves

in the magnetosphere through coupling that takes place between long wavelength

surface mode waves and earthward field line resonances (FLRs) [Fairfield et al., 2000;

Hasegawa et al., 2004; Rae et al., 2005; Claudepierre et al., 2008]. Interplanetary

shocks and solar wind dynamic pressure pulses also excite ULF waves, although the

precise mechanism that converts shock energy to waves of high azimuthal wavenum-

ber (high-m) is not yet fully understood. A possible mechanism related to substorm

injections has been discussed by James et al. [2013]. In this chapter we put aside the

issue of how these waves are generated and focus on the wave-particle interactions

they cause.

ULF waves excited by shocks and dynamic pressure variations can be very in-

tense, and are sometimes damped away quickly over tens of minutes [Zong et al.,

2009; Zhang et al., 2010]. In this chapter, it is shown that the observed fast damping

is caused by drift-bounce resonance between ULF waves and ions having energies of

a few keV. Such a mechanism has been described theoretically by Southwood and

Kivelson [1981, 1982], and is possible because of the comparable periods of drift and

bounce motion of energetic particles and ULF oscillations. As reported by Yang et al.
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[2010, 2011a,b] and Zong et al. [2011], the associated damping takes place over time

intervals where wave electric fields accelerate charged particles, a process that can

also enhance radial diffusion (e.g., Loto’aniu et al. [2006]). Although energetic par-

ticle drift-bounce resonance may occur with different ULF modes, e.g. toroidal ULF

waves [Elkington et al., 1999] and compressional poloidal mode ULF waves [Elkington

et al., 2002, 2003, 2004; Tan et al., 2011], the interaction with poloidal ULF waves

[Zong et al., 2009; Zong et al., 2011, 2012a] is considered to be more efficient [Zong

et al., 2009; Yang et al., 2011a,b; Zong et al., 2012a], even leading to the formation of

a new radiation belt [Li et al., 1993; Wygant et al., 1994; Zong et al., 2011] in certain

situations. It has been reported by Zong et al. [2007, 2009] and Tan et al. [2004,

2011], that acceleration of electrons by drift-bounce resonance can also take place.

In the auroral zone, Wright et al. [2003] studied FAST satellite data and showed

that electron acceleration can dissipate an amount of energy similar to Joule heating.

Dispersive scale Alfvén wave damping has been investigated by Lysak and Lotko

[1996], who showed through analysis of the kinetic wave dispersion relation that

Landau damping by electrons can be efficient at spatial scales where electron inertia

and finite ion gyroradius become important. In a different context, Evans et al. [2009]

evaluated the importance of Landau damping for surface Alfvén waves in the solar

wind. Important as these studies are, they have not quantified Landau damping in

regions of the magnetosphere where standing Alfvén waves and FLRs are common.

One such attempt was made by Rankin et al. [2007], who showed through numerical

simulations that electron particle trapping can be efficient in suppressing Landau

damping in short perpendicular scale standing ULF waves. Another approach was

considered by Hollweg [1971], who calculated the nonlinear Landau damping rate of

Alfvén waves based on theoretical considerations of Stix [1962]. A general approach

to estimate the damping rate of standing ULF waves has been given by Southwood

[1976], who examined the drift-bounce mechanism that is the subject of the study

presented here.

Besides Landau damping, other ways of energy loss from ULF waves include

Joule heating in the ionosphere and the propagation of wave energy through the

magnetospheric waveguide. Joule heating of ionospheric particles through Alfvén
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waves has been widely studied and is usually considered the most effective energy

sink. For example, Newton et al. [1978] numerically computed the damping rate for

ULF waves for different height-integrated Pedersen conductivity, whereas Greenwald

and Walker [1980] studied in detail the amount of energy loss in a particular ULF

event. More sophisticated models [Sydorenko and Rankin, 2012] describing the prop-

agation of ULF waves in the ionosphere have also been developed. Two-dimensional

MHD computer models by Sciffer et al. [2005] and Waters and Sciffer [2008] include

solutions for near vertical magnetic fields at high latitudes and for oblique magnetic

fields applicable at lower latitudes. Observationally, Rae et al. [2007] found that more

than 30% of the energy in FLRs was deposited via Joule heating during a substorm

cycle. The same authors estimated that Joule heating can be an effective means of

transporting energy from the solar wind into the high latitude ionosphere. Another

mechanism of energy loss from ULF waves was considered by Wright [1994], who

studied transport of waves through the magnetospheric waveguide. A related study

by Claudepierre et al. [2008] studied transport of low-m ULF waves generated by the

Kelvin-Helmholtz instability in a numerical simulation.

In this chapter, we study the temporal variation of shock-excited ULF waves

under different damping mechanisms. Comparing the effects of Landau damping,

Joule heating, and waveguide propagation, we find that the evolution of wave energy

cannot be fully accounted for by Joule heating or waveguide propagation. We further

show that in certain situations the Landau damping rate of Alfvén waves is higher

than from Joule heating, i.e., as a result of fundamental mode (N = ±2) drift-bounce

resonance with energetic ions. Our results suggest that Landau damping can induce

fast damping of ULF waves when the drift-bounce resonance mechanism is effective,

i.e., when particles in sufficient numbers satisfy the resonance condition. To our

knowledge, we present the first reported explanation for the strong damping of ULF

waves that can accompany interplanetary shocks.

The chapter is organized as follows: Section 3.2 describes two representative

observations of fast damping of Alfvén waves in different regions of the magnetosphere.

In Section 3.3, we compare wave propagation, Landau damping, and Joule heating.

Finally, we suggest that the Landau damping mechanism is more effective for some
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regions of the magnetosphere because such regions can support generation and/or

propagation and damping of ULF waves excited by shocks without modifying the

frequency of Alfvén waves. This feature is a characteristic of the observations we

consider.

3.2 Observations

The magnetic and electric field data for ULF waves presented in this chapter are ob-

tained from the Fluxgate Magnetometer (FGM) and Electric Field and Wave (EFW)

experiment on the Cluster II satellite constellation [Balogh et al., 2001]. The plasma

density is calculated from the EFW experiment using the method fromMoullard et al.

[2002]. The four Cluster spacecraft are capable of observing three-dimensional, small-

scale spatial structure in the space environment, including electromagnetic fields and

particles. We present two shock-induced Alfvén wave events for detailed study.

3.2.1 Fast Damping of a Large-amplitude ULF Wave in the
Plasmasphere Bounday Layer

First of all, we focus on the shock event on November 7, 2004. Figure 3.1 gives

an overview of this event. An interplanetary shock hit the magnetosphere through

a sudden increase in maximum solar wind dynamic pressure and plasma density at

18:27 UT. The locations of the Cluster spacecraft are shown in Figure 3.2(a) and

Figure 3.2(b). During the event, Geotail was upstream in the solar wind at (19.28,

13.59, -2.66) Re in GSE coordinates. The magnitude of the solar wind velocity x-

component Vx increased from about 550 km/s to 700 km/s. The ion density increased

from about 8 cm−3 to 15 cm−3. The z-component of the interplanetary magnetic field

Bz increased by about 15 nT. The dynamic pressure of the solar wind continually

increased after the arrival of the shock and reached more than 70 nPa. An intense

magnetic storm with minimum Dst of −373 nT followed the shock [Tsurutani et al.,

2008].

ULF waves accompanying shocks, especially Pc5-ULF waves, are usually excited
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Figure 3.1: The overview of a shock event and the following ULF waves observed
on November 7, 2004 from 18:00UT to19:00UT. From top to bottom panels show:
(a) azimuthal component of electric field observed by Cluster spacecraft, black, red
and blue lines are the observations of C1, C2 and C4 respectively; (b) The electric
field dynamic power spectrum from C1 observed; (c) x component of solar wind
velocity; (d)solar wind ion density; (e) z component of interplanetary magnetic field;
(f) dynamic pressure of solar wind. (c)-(f) are observations from Geotail satellite.
Geotail observed a shock event and Cluster observed the energy enhancement of ULF
waves around the same time. Red dashed line indicates the arrival of interplanetary
shock.
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in the dayside of the magnetosphere [Hudson et al., 2004; Brito et al., 2012] but

propagate to the nightside at the fast mode speed [Wygant et al., 2002]. On November

7, 2004, the Cluster satellites observed ULF waves generated after a shock while the

Cluster fleet was traveling in the morning side of the plasmasphere boundary layer

(around 09:00MLT, L = 4.5). Figure 3.1 shows the observation of the azimuthal

component of the electric field (Ea) in a local mean field-aligned coordinate system

[Takahashi et al., 1990] and the corresponding x-component of solar wind velocity

(Vx) during the period from 18:00-19:00 UT . The observed quasi-sinusoidal electric

field with a period of about 3 minutes had a peak amplitude of 10 mV/m and was

attenuated over time. Figure 3.3 shows a comparison between satellite and ground

observations in this event. Along adjacent flux tubes, both the ground and satellite

observed amplitude attenuate over a similar time range. The power spectral density

(PSD) of Ea is shown in Figure 3.1(b), and was obtained using dynamic spectral

analysis [Takahashi and Ukhorskiy , 2007]. The central frequency of ULF waves is

observed to be about 6.7 mHz. The PSD is also strong at a frequency around 17 mHz,

which may be due to a higher harmonic resonance of 6.7 mHz. In this particular event,

the azimuthal wave number for the poloidal mode was estimated to be around 50, with

the wave propagating eastward [Zong et al., 2009]. In the process of wave generation

and damping, particles have been accelerated by ULF waves in this event as described

by Zong et al. [2009]. It will be demonstrated that the interaction between particles

and waves, especially resonant processes, can be a main factor in explaining the

damping of the observed Alfvén waves in this event.

3.2.2 Fast Damping of Moderate Amplitude ULF Waves in
the Plasmasphere and Plasmasphere Bounday Layer

Figure 3.4(a) shows shock-excited electric field variations measured by Cluster on

August 30, 2001. During the event, the spacecraft were in the outer radiation belt

with L ∼ 4.5 (C1, C2 and C4) at about 12:00 MLT. The locations of spacecraft are

shown in Figure 3.2(c) and Figure 3.2(d). C3 crossed into the plasmasphere boundary

layer while the other three spacecrafts were in the plasmasphere proper. The Geotail

spacecraft were located at (15.19,−12.15,−1.13) Re in GSE coordinates when they
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Figure 3.2: (a)Orbits of Cluster spacecraft in X-Y plane on November 7, 2004 from
18:20UT to 18:40UT. (b)Orbits of spacecraft in X-Z plane in the same time range as
(a). (c)Orbits of Cluster spacecraft in X-Y plane on 30 August, 2001 from 14:10UT to
14:30UT. (b)Orbits of spacecraft in X-Z plane in the same time range as (c). Orbits
of C1, C2, C3 and C4 are shown in black, red, green and blue lines. All orbits are
shown in GSE coordinate.
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Figure 3.3: (a) and (c) Band filtered north-south component of geomagnetic field
fluctuation. The elliptic band-pass filter is used and filter band is between 3 mHz and
8 mHz. Data to make panel (a) are from Dawson City (DAWS) station of CARISMA
magnetometer network. Data to make panel (c) are from Ewa Beach (EWA) of station
210 Magnetic Meridian magnetometer network. (b) Azimuthal component of electric
field observed by Cluster spacecraft in similar format as Figure 1(a). The three panels
are arranged along the geomagnetic latitude of the footprint of satellite or the station.
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observed the shock: the plasma density increased to 1.5 cm−3, the amplitude of so-

lar wind velocity increased from 450 km/s to 550 km/s, and the dynamic pressure

increased from about 0.2 nPa to about 1.0 nPa. This event was induced by a weaker

interplanetary shock than the one in 2004. The oscillations of the electric field az-

imuthal component were about 1.5 mV/m in this case and were attenuated over a few

minutes. The central frequency with the largest power density was in the ULF range

(about 7.8 mHz). In this event, the azimuthal wave number for the poloidal mode is

estimated as 10± 3 [Eriksson et al., 2006], with the wave propagating eastward.

The observed magnetospheric plasma density variation is shown in Figure 3.5(a).

The density of ions in the plasmasphere bounday layer was about 8 cm−3 at C3 while

being over 100 cm−3 in the location of C1, C2 and C4, which were in the plasmasphere.

Such large differences in densities between the plasmasphere boundary layer and

plasmasphere can induce distinct waves in the plasmasphere. Figure 3.5 shows wavelet

analysis results for different satellites, where the electric field components have been

converted into the mean field-aligned (MFA) coordinate system. Ea corresponds to

the poloidal mode of ULF waves, assuming a dipolar geomagnetic field. Spacecraft

C2 and C3 observed a power density increase for waves in the 5−10 mHz range. The

power of the waves observed by C3 is larger than that observed by C2, while their

rate of decay (damping) is much faster than at C2. At 14:12 UT, C3 observed an

electric field with power density fluctuations exceeding 100 (mV/m)2 with a period of

about 128 s, decreasing to about 10 (mV/m)2 at around 14:20 UT. As for spacecraft

C2, the power density of the electric field fluctuations decreased to 10 (mV/m)2

after 14:30UT. This difference may be reflected by the spatial separation of the two

spacecraft, which sampled a different local density and energy of particles. Previous

studies have pointed out that the density gradient in the plasmasphere boundary

layer should have an effect on VLF waves [Wang et al., 2011] and this appears to be

true also for ULF waves. The expected change in amplitude of ULF waves across the

plasmapause was also discussed by Allan and Knox [1979] and Menk et al. [2004].

According to Fraser et al. [2005], the plasma mass density distribution near the

plasmasphere boundary layer can affect the characteristics of ULF waves. But how

it affects ULF wave damping has not yet been fully analysed. The Alfvén velocity
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Figure 3.4: The overview of a shock event and the following ULF waves observed on
August 30, 2001 from 14:00UT to 14:30UT. Panels are shown in a similar format like
in Figure 3.1. Black, red, green and blue lines are the observations of C1, C2, C3 and
C4 respectively in (a). Shock arrived at about 14:10UT and Cluster observed small
amplitude ULF waves.
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a
Figure 3.5: Observations of ULF waves inside the plasmasphere and in the plasma-
sphere boundary layer for the event on August 30, 2001. Panel (a) is the plasma
density calculated from spacecraft potential measured by EFW instrument on Clus-
ter. C1, C2, C3 and C4 are shown in black, red, green and blue lines. C3 was in
the plasmasphere boundary layer and the other three spacecraft were in the plasma-
sphere. By comparing the wavelet spectrum analysis results from C2 and C3 shown
in panels (b) and (c), we see that wave energy is damped faster in C3.
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VA = B(s)/
√
μ0ρ(s) (where μ0 is the vacuum permeability and B is the magnetic

field) depends on the plasma mass density ρ(s) along field lines, and consequently

the frequency and propagation characteristics of ULF waves are affected as the waves

propagate through the plasmasphere boundary layer. It is also known that oxygen

ions contribute significantly to mass loading along the field line during disturbed

periods, which is another consideration at later times as the ring current develops

([e.g. Jordanova et al., 1996]).

3.3 Interpretation and Discussion: Possible Mech-

anisms for Fast Damping of ULF waves

3.3.1 Joule Heating

Ionospheric damping of Alfvén waves is one of their main sinks of energy. The damp-

ing takes place through Joule heating produced by the interaction of the waves with

ionospheric particles. For a transverse wave, Joule dissipation through Pedersen cur-

rents can be calculated based on a boundary condition at the ionosphere: b = μ0ΣPE,

where ΣP is the height integrated Pedersen conductivity. This boundary condition

can also be written in another form Southwood and Hughes [1983]:

Eb

μ0

= ΣP |E|2 . (3.1)

In this equation, Joule heating is balanced by net Poynting flux into the ionosphere.

In the events of interest, damping rates are calculated according to the simple model of

Newton et al. [1978]. Although more sophisticated and more recent numerical models

of ULF wave propagation in the ionosphere have been developed, we use Newton’s

calculations because it provides simple analytical expressions for damping that are

valid for high-m waves and near vertical geomagnetic field; assumptions which hold

for the events we are studying. As we shall see later, the damping rates for Joule

heating turn out to be much smaller than Landau damping, and so it is reasonable

to expect our conclusions will not change on using more complex models of damping.

Newton et al. [1978] calculated the damping rate of Alfvén waves due to Joule heating

and found that when the height-integrated Pedersen conductivity is large (ΣP > 1 S)
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in the dayside ionosphere, low harmonic poloidal Alfvén wave damping occurs at the

rate: γ/ω = 2.2× 10−2Σ−1
P L3/2.

Using this last result, the damping rate of ULF waves in both shock events

studied can be estimated based on a height-integrated conductivity calculated from

the IRI2012 model (http://wdc.kugi.kyoto-u.ac.jp/ionocond/sigcal/index.html). The

estimated damping rate at C1 is γ/ω 
 0.028. The effect of ULF wave damping

produced by Joule heating is shown in Figure 3.6. The wave amplitude reduces to

30% of the initial amplitude over the time indicated, and the calculated damping rate

is similar in both C1 and C3 in the 2001 event. Although Joule heating is an effective

damping mechanism, the two observations reported here reveal that the observed

damping is much faster than can be provided by Joule heating alone.

Figure 3.6: The variations of ULF waves amplitude caused by different damping
mechanism. Black, blue and red lines are the calculated damping rates at C3, based
on Joule heating, Landau damping and the combined effect.

3.3.2 ULF Wave Damping Through Drift-bounce Resonance

As discussed earlier in the chapter, Landau damping of large-amplitude standing

Alfvén waves in geomagnetic fields can occur through wave-particle interactions. It

represents an additional damping on waves over Joule heating. The most important

interaction between charged particles and ULF waves, especially poloidal ULF waves,

is drift-bounce resonance. The resonance condition is [Southwood and Kivelson, 1981]

ω −mωd = Nωb, (3.2)
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where ω , ωd and ωb are wave frequency, particle drift frequency, and bounce frequency,

respectively, m is the azimuthal wave number, and N is an integer which depends

on the harmonic mode of the standing wave. In each full bounce in latitude the

particle moves westward exactly N wavelengths in the frame of wave. In the two

events studied, electric fields of shear Alfvén waves are observed near equator or at

mid latitude region. We choose a fundamental mode with N = 2 as representative of

the events. According to Southwood and Kivelson [1982]; Chen and Hasegawa [1988],

the electric field seen by an ion in drift bounce resonance (in this case with an N = 2

high-m ULF wave) will cause damping or growth of the wave as it maintains the same

direction as the ion bounces between hemispheres. The resonance energy for different

ions can be calculated from Equation (3.2) because ωd and ωb are dependent on the

particle energy E [Baumjohann and Treumann, 1996], and take the following form in

a dipole magnetic field:

ωb =
(W/m)1/2

LRE

(0.59− 0.25 sinαeq)
−1, (3.3)

ωd =
LW

qBER2
E

(2.1 + 0.9 sinαeq), (3.4)

where αeq is the pitch angle of a particle at the equatorial region. By substituting

Equation (3.3) and Equation (3.4) into Equation (3.2), the resonance condition can

be obtained once the azimuthal mode number m is specified. The azimuthal wave

number can be calculated from multi-spacecraft data using the technique of Takahashi

et al. [1985]:

m =
Δθ

Δφ
, (3.5)

where Δθ and Δφ are, respectively, the cross phase difference in the time series, and

the azimuthal separation of satellites. In the 2004 event, the m-value is estimated

to be 50 for the poloidal mode [Zong et al., 2009; Zong et al., 2012a]. Combining

the m-value of poloidal ULF waves with the spatial separation of the spacecraft, the

resonance energy expected for oxygen ions in interaction with a wave of 7.8 mHz is

between 8.13 keV and 16.75 keV in the pitch angle range of 45◦− 75◦. For H ions the

resonance energy is between 0.623 keV and 1.03 keV.

The bounce frequencies of energetic electrons with energy of tens of keV in the

inner magnetosphere are much higher than either the energetic electron drift frequency
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or the Pc5 wave frequency [Zong et al., 2009]. Thus, the drift-bounce resonance of

energetic electrons can only be excited with N = 0. The condition for resonance

changes into:

ω = mωd. (3.6)

For electrons interacting with poloidal mode waves, the resonant energy requirement

is lowered because of their typically large m-value (m ∼ 50). The resonance energy

of electrons corresponds to Eres = 110.1 keV. From the considerations and estimates

presented above, hydrogen ions resonate at the lowest energy, followed by oxygen, and

then electrons. The approximate damping rate can be calculated following Southwood

[1976]:
γ

ω
=

ρresv
2
res

ρω2L2
, (3.7)

where γ is the damping rate, ω is the frequency of the wave, ρ and v are particle density

and velocity, and the suffix ”res” refers to the particle in resonance. This ULF wave

damping rate requires assumptions of finite plasma β and an axisymmetric field with

mirror symmetry. Around L ∼ 4 the magnetic field can be considered a dipole field

and so the model assumptions are valid for the observations of interest in this study.

Although the damping rate derived by Southwood [1976] is approximate, it provides

by far the largest damping rate and can explain the observed difference in damping

between waves excited in the plasmasphere and plasmasphere boundary layer.

Figure 3.7 illustrates the differential particle flux data obtained from the CIS

and RAPID instruments on Cluster. The top panel of the figure shows ion energy

flux overlaid with electric field oscillations for the 2004 shock event. The bottom

panel shows the flux in several energy channels as a function of time. There is a

resonance peak between 6.94 keV and 9.23 keV that brackets the resonant energy

expected for O+, i.e., between 8.13 keV and 16.75 keV in the pitch angle range of

45 − 75 degrees. The corresponding resonant energy for H+ is between 0.623 keV

and 1.013 keV. The ion flux data, especially the contribution from O+, provides

evidence of a link between the observed strong damping of waves and drift-bounce

resonant wave-particle interactions. In the event pertaining to this figure, the relative

density ρres/ρ is about 0.0143. Where ρres can be computed using data from the CIS

and RAPID instruments on Cluster. The calculated damping rate corresponds to
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Figure 3.7: The resonance between ULF waves and ions in the 2004 event. The top
panel shows ion spectrum overlaid with electric field oscillations for the 2004 shock
event. The bottom panel shows the flux in several energy channels as a function of
time.

γ/ω 
 0.117, which is much larger than the damping rate induced by Joule heating.

The effects of Landau damping and Joule heating are compared in Figure 3.6. It can

be seen that the amplitude of ULF waves is damped to below 3.2% of the original

amplitude in 600 seconds if there is only Landau damping. The combined effect of

both mechanisms can damp the ULF wave to 1.4% of the initial amplitude in the same

time span. The conclusion is that fast attenuation of the observed wave amplitude is

mainly caused by Landau damping.

The results calculated from Cluster in the case of the 2004 event with the com-

bined effect of Landau damping and Joule heating are shown in Figure 3.8. We

choose the maximum amplitude of the electric field as the initial wave amplitude,

and assume that damping proceeds from the time the maximum field is attained.

The results are based on Equation (3.7) and the observed frequency of ULF waves.

Comparing with the observation, the calculated damping rate gives a good fit to the

observation. This demonstrates that the main part of the energy loss of Alfvén waves

is due to bounce-resonant Landau damping in this event.
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Figure 3.8: Above panel: the azimuthal component of electric field observed by Clus-
ter in the 2004 event. Black, blue and red lines are the observation C1, C2 and C4.
The black dasdh line multiplies the maximum amplitude by the damping rate calcu-
lated from Equation (3.2). Below panel: wavelet analysis spectrum of C3 observed
electric field azimuthal component.

58



In the 2001 event, variations of electron number density imply that C3 was in

the plasmasphere boundary layer region and C2 was in the plasmasphere. This allows

us to consider damping rates of ULF waves in different regions of the magnetosphere.

The estimated and observed damping rates are shown in Figure 3.9 and Figure 3.10.

In this event, the resonant energy expected for O+ is about 4.34 keV. This is consis-

tent with a resonant response in ion flux oscillations in the energy channels between

1.16 keV and 4.94 keV. In Figure 3.9, the dashed lines and the solid lines show the

damping rate with and without Joule heating, respectively. It can be seen that in the

2001 event, Landau damping is also the main damping mechanism in both the plas-

masphere and plasmasphere boundary layer. As the damping rate caused by Joule

heating depends on the ionospheric conductivity at the end of field lines, there is no

significant difference in Joule heating rates between C2 and C3. According to the

observations shown in Figure 3.6, however, the ULF oscillations of C3 damped faster

than at the other satellites. Although C3 observed a larger amplitude maximum,

it damped much faster within 600 s, by which time the amplitude of C3 was below

0.1 mV/m while that of C2 was still around 1.4 mV/m. A more detailed compar-

ison between the observations and estimation of damping is shown in Figure 3.10.

The 4− 9 mHz band-filtered ULF waves and the calculated damping curve are very

close to each other in both the C2 and C3 observations. The different damping rate

between C2 and C3 is likely caused by the different plasma densities at the position

of C2 and C3 in the magnetosphere. The implication is that due to a dependence

of the damping rate on density, wave energy is transferred into particle energy at a

lower rate at C2. This can be inferred from Equation (3.7), which shows that the

proportion of particles in resonance is the main factor in determining the damping

rate. This proportion was smaller in the plasmasphere because the overall particle

density was higher in the plasmasphere. Regardless, Landau damping is the main fac-

tor in explaining the different damping rate in the plasmasphere and plasmasphere

boundary layer.
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Figure 3.9: The variations of ULF waves amplitude inside and outside of plasmas-
phere. Black, green lines are the calculated damping rates at C1 and C3 for the 2001
event. They show that the Landau damping rate of ULF waves is largely affected by
satellite position in the magnetosphere. The dashed lines indicate the damping rate
in considering both of Joule heating and Landau damping.

3.3.3 Energy Propagation in the Magnetospheric Waveguide

In this section we consider the possibility that shear Alfvén waves observed by Cluster

are field line resonances (FLRs) excited through mode-conversion of compressional

waves that propagate in the magnetotail waveguide. The compressional waves will

lose amplitude as they propagate, and this will manifest as an apparent damping of

shear waves observed by the satellites. As FLRs can be reasonably approximated as

1D eigenmodes of standing wave electric and magnetic fields, this is consistent with

the approach used to estimate Landau and ionospheric damping. We will estimate

and compare damping as a result of wave propagation with Joule heating and Landau

damping. The estimates provided are based on a point-like source of waves, which

should correspond to the strongest level of damping.

Figure 3.11 is a schematic diagram of the magnetospheric waveguide viewed in

the ecliptic plane according to Wright [1994]. A point-like source of fast mode waves

in the waveguide will propagate energy isotropically throughout the magnetosphere.

The wave energy arriving earliest in time at the observation point (satellite) will

have travelled along a path of minimum distance between the source and observation

point; it will therefore have the largest amplitude, having spread out the least. Wave
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Figure 3.10: Above panel: the azimuthal component of electric field observed by
Cluster C2 in the 2001 event. Blue line is the observation of C2. Middle panel: the
same format as C3 while the green line is the observation of C3. Below: The flux of
oxygen ions in different energy channels as a function of time. The flux in each energy
channel has been divided with the average flux before the Shock arrival(the average
flux between 14:00UT-14:08UT) in order to show the variation of each channel.
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energy arriving at the observation point after reflection from the boundaries of the

waveguide will arrive at the satellite with correspondingly smaller amplitude. Even if

energy dissipation is neglected, the observed wave amplitude would appear attenuated

because the amplitude as a function of time at the observation point represents arrival

of waves along paths corresponding to fast mode waves that are increasingly spread

out. Wright [1994] calculates this effect and gives an expression for the damping of

wave amplitude,

bz ∝ bz0/R
1/2, (3.8)

where R is the propagation distance from the wave source to the satellite accounting

for wave reflection, and bz0 is the amplitude of the fast mode wave at the source

point. Here we assume that the medium is uniform. For different wave packets with

different initial wave normal direction k, their arrival times are discrete at a specified

observation point. A wave leaving the center of the source region and bouncing off

the boundaries j times will traverse a distance in x of jxm. Only when j is a integer

will the wave packet arrive at the observation point. According to Equation (3.8)

from Wright [1994],

t =
√
y20 + j2x2

m/VA, (3.9)

where y0 is the distance between the source and observation point along the waveg-

uide, VA is the local Alfvén speed and xm is the width of waveguide. This feature is

not consistent with our observation. In Figure 3.11, we consider damping of a single

frequency source. Here the estimate of damping neglects mode conversion caused by

reflection from the inner magnetosphere turning point. As a result of this process,

wave energy can be absorbed depending on the angle of incidence of the fast mode

wave as it approaches the turning point [Kivelson and Southwood , 1986]. According

to Zhu and Kivelson [1989] and Inhester [1987], the turning point of the wave will

be:

xt − xω = − ω2λ2

[dV 2
A(x)/dx]x=xω

, (3.10)

where xt is the turning point and xω is the position of resonance on the field line. The

gradient of Alfvén velocity will be largest near the plasmapause. As an estimation, we

calculate the variation of VA from satellite data and choose the average ΔVA/Δx as

the velocity gradient. The turning point should be in the place of xt ∼ xω+1.108 Re,
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implying that wave energy absorption should be considerable in such a situation. The

conclusion is that there should be two effects that cause the wave to be damped in

the waveguide: the wave energy absorption effect and wave energy decreasing effect

over greater propagation distance as waves are reflected at waveguide boundaries

before reaching the spacecraft. The situation is in general more complicated because

of the geometry of the waveguide and the fact that the source of waves is unlikely

to be point-like. Nevertheless, based on our simple estimates the conclusion is that

propagation effects leading to loss of energy cannot explain the energy loss from waves

that is observed.

3.4 Conclusion

In this study, we have examined ULF wave damping mechanisms that include iono-

spheric Joule heating, Landau damping, and waveguide energy propagation. The

mechanisms have been evaluated for two interplanetary shock-related ULF wave

events observed by Cluster on November 7, 2004, and August 30, 2001. In the two

events studied, we discuss mechanisms for damping of ULF waves. Specifically, using

expressions in the published literature, we show that amongst Landau damping, Joule

heating and wave propagation, Landau damping can best explain the rates observed.

The experimental facts stemming from the interplanetary shock and the resulting

fast-damped ULF waves that are observed can be summarized as follows:

1. In the event on November 7, 2004, the four Cluster spacecraft observed in-

tense ULF waves with a period of about 100−200 s near the plasmasphere boundary

layer after arrival of the interplanetary shock. The resulting Alfvén waves with strong

poloidal components can accelerate particles effectively [Zong et al., 2009] and were

damped very fast within several hundred seconds. In the event on August 30, 2001,

C1, C2 and C4 observed relatively weak shock-induced ULF waves in the plasmas-

phere. C3 observed the same event in the plasmasphere boundary layer. By compar-

ing the power of observed waves, it is found that Alfvén waves are damped faster in

the plasmasphere boundary layer than within the plasmasphere in this event. The

redistribution effect of plasma near the plasmapause is omitted in this study.
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Figure 3.11: (a) Illustration showing the progress of the compressional waves propa-
gation in the waveguide of magnetosphere (modified from Wright [1994]). (b) Com-
parison between the calculated waveguide-caused damping and the observation from
Cluster for the event in 2004. (c) Similar comparison between calculation and obser-
vation from Cluster for the event in 2001.
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2. Joule heating is found to be significant in the two events studied but cannot

account for the fast damping of ULF waves that is observed. The damping rate

due to Joule heating maintained in general the same rate in the plasmasphere and

plasmasphere boundary layer.

3. Drift-bounce resonant (Landau damping) interactions between Alfvén waves

and different kinds of particles provide an effective ULF wave energy exchange process.

For the events considered, ULF wave damping rates for O+ in the range of a few to

several keV are large enough to explain damping rates of waves observed by Cluster.

The energy of O+ ions satisfying the drift-bounce resonance condition coincides with

a resonance peak in ion flux modulations in the November 7, 2004 and August 30,

2001 events observed by Cluster. In the event on August 30, 2001, Landau damping

is also higher in the plasmasphere boundary layer than in the plasmasphere. The

observed higher damping rates in the plasmasphere boundary layer can be explained

by the relatively higher proportion of Landau resonant ions present in that region.

It can be concluded that fast Landau damping of shock-induced ULF waves occurs

preferentially in the plasmasphere boundary layer region.

3.5 Simulations of Drift-bounce Resonance between

Ions and Fast Damping ULF waves

The ULF wave model described in Chapter 4 and the full-Lorentz test particle model

described in Chapter 5 are used in this section to discuss the energy changes of

different ions in these two event. The damping mechanism of ULF wave is not in the

scope of our wave model. However, our models will compare the responses of different

ions in ULF waves with damping rate set as a simulation parameter. The simulation

results about the ULF event on November 7, 2004 suggest that the energization of O+

ions is more effective than H+ ions during the drift resonance process with the same

damping ULF wave. In this section, we have also compared the simulation results

corresponding to Cluster C2 and Cluster C3 observations in the ULF wave event on

August 30, 2001. For ULF waves with a larger damping rate, O+ ions are energized

within a larger energy range. The larger energy exchanging rate between ULF waves
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and energetic particles is in agreement with the observation provided in this chapter.

Figure 3.12 shows the simulation results corresponding to the event on November

7 2004. The wave is excited with a large amplitude external driver, reaches ampli-

tude of ∼ 50 mV/m and then damped out in two wave period. The middle panel

and the bottom panel of Figure 3.12 show the energy changes of O+ ions and H+

ions respectively. The expected resonant energies of O+ and H+ obtained from the

drift-bounce resonance condition are in good agreement with simulation results. The

maximum energy change of O+ ions at the resonance energy bin ∼ 10 keV is about

50 keV , which is much larger than that of H+ ions at their resonance energy. The

simulations suggest that more energy from the ULF waves are deposited to O+ ions

in this event.

Figure 3.13 shows the simulation results corresponding to the event on August 30,

2001. We simulated two different waves with different damping rates: In the top two

panels, the wave profile corresponds to the C2 observation in the plasmasphere with

smaller damping rate. The wave damped out in about 5 wave periods. In the bottom

two panels, the wave profile corresponds to the C3 observation in the plasmasphere

boundary layer with larger damping rates. The wave damped out in about 2 wave

periods. The maximum energy changes in both cases are about 5 keV. In the case of

lower damping rate, the energy changes is smaller than 1 keV in energy bins larger

than 6 keV after 600 s. In the case of lower damping rate, the range of energy change

> 1 keV energy bins extends to ∼ 9 keV. The difference in wave-affected energy

range suggests that the energy exchanging happens between more test particles in a

faster damped ULF wave. A relatively higher proportion of resonating ions present

plasmasphere boundary region is consistent with the observational results.
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Figure 3.12: The top panel shows the simulated wave amplitude profile corresponds
to the event on November 7, 2004. The middle panel shows the energy changes of O+

ions as a function of measured energy bins and time. The bottom shows the energy
changes of H+ ions as a function of measured energy bins and time.
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Figure 3.13: The top two panels show the simulated wave amplitude profile and the
energy changes of O+ ions corresponding to the C2 observations of a wave damped
out in 5 wave periods in the event on August 30, 2001. The bottom two panels are in
similar format as the top two, but correspond to the C3 observations of a wave that
damped out in 2 wave periods in the same event.
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Chapter 4

MHD Alfvén Wave Model with
Monochromatic Driver

In this chapter, we developed an analytic MHD wave model with self-consistent elec-

tric and magnetic fields to describe Alfvén waves in the magnetosphere. The solutions

of field line resonance eigenfunction describe the distribution of fields along the field

line. Based on the free wave solutions, we include a monochromatic driver with har-

monic dependence exp[i(ωt−mφ)] to excite poloidal/toroidal mode ULF waves with

a radial/azimuthal magnetic field and azimuthal/radial electric field.

In Section 4.1, we provide derivations and the related assumptions about this

model. We estimate the contribution of phase mixing terms in our model, and give

an example of phase mixing of poloidal mode at the equator in Section 4.2.1. In

Section 4.2.2, we show examples of fundamental mode wave, and discuss how the

eigenmode is affected by the L-shell and by the plasma density.

4.1 Mathematical Description of ULF Wave Model

As described in Chapter 2, the linear shear Alfvén wave equation was derived using

a combination of the Maxwell’s equations and the momentum equation by assuming

that the wave was in ideal cold plasma with infinite conductivity. In this section, we

will start deriving our Alfvén wave model in the dipole magnetosphere.
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4.1.1 ULF Waves in the Dipole Magnetosphere

The geomagnetic field inside the inner magnetosphere is approximately dipolar. It

is useful to work in dipolar coordinate system even though the vector operations are

somewhat more complicated than in a Cartesian or spherical polar representation.

The dipolar coordinate system (x1, x2, x3) is defined in terms of the spherical polar

coordinates (r, θ, φ),

x1 =
cos θ

r2
, x2 =

r

sin2 θ
, x3 = φ. (4.1)

where x1 parameterizes the displacement parallel to the field: x1 = 0 at the equator,

x1 → −∞ as θ → π and x1 → +∞ as θ → 0. The value of x2 is constant along

a dipolar field line and corresponds to L-shells. The x3 direction is identical to the

azimuthal direction in the spherical coordinate. The associated scale factors of the

dipolar coordinate are:

h1 =
r3√

1 + 3 cos2 θ
, (4.2)

h2 =
r2

sin θ
√
1 + 3 cos2 θ

, (4.3)

h3 = r sin θ (4.4)

Radoski and McClay [1967] derived the linearized wave equation (Equation (2.19)) in

a dipolar coordinate with the assumption that the perturbations are in the form of

exp i(mφ−ωt) where m is the azimuthal wave number. The equations are written as

h−2
3

[
∂

∂x1

(h−2
1

∂h2E2

∂x1

) +
∂

∂x3

(
∂h2E2

∂x3

− ∂h3E3

∂x2

)

]
+ k2h2E2 = 0 (4.5)

h−2
2

[
∂

∂x1

(h−2
3

∂h3E3

∂x1

) +
∂

∂x2

(
∂h2E2

∂x3

− ∂h3E3

∂x2

)

]
+ k2h3E3 = 0 (4.6)

where E2 and E3 are the r-component and φ-component of the electric field E respec-

tively. E2, which correspond to the guided toroidal mode, is in the radial direction

while E3, which corresponds to the guided poloidal mode, is in the azimuthal direction

[Dungey , 1954].

The toroidal mode and poloidal modes are coupled in Equation (4.5) and Equa-

tion (4.6). When the wave is axisymmetric (say, m = 0), Equation (4.5) and Equation
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(4.6) are decoupled and give

h−2
3

∂

∂x1

(h−2
1

∂h2E2

∂x1

) + k2h2E2 = 0, (4.7)

h−2
2

[
∂

∂x1

(h−2
3

∂h3E3

∂x1

)− ∂2h3E3

∂x2
2

]
+ k2h3E3 = 0. (4.8)

The poloidal mode and toroidal mode are oscillating independently in this condi-

tion. A diagram of the fundamental toroidal and poloidal modes’ field line resonance

is shown in Figure 4.1. Equation (4.7) describes the guided toroidal mode and Equa-

tion (4.8) describes the guided poloidal mode. The poloidal mode is also called the

axisymmetric poloidal mode because it represents the axisymmetric compressional

oscillation of the dipole magnetic field.

On the other hand, Equation (4.5) and Equation (4.6) are also decoupled in the

case of highly azimuthal asymmetry perturbation (m → ∞) [Radoski and McClay ,

1967]. These two equations give

h−2
2

∂

∂x1

[
h−2
3

∂h3E3

∂x1

]
+ k2E3h3 = 0 (4.9)

when the electric field is dominantly poloidal, E3 
 E2.

4.1.2 Interactions between Toroidal and Poloidal Modes via
the Ionospheric Effect

As explained in Section 4.1.1, toroidal and poloidal modes are decoupled in axisym-

mertic dipole magnetic field as described in Equation (4.7) and Equation (4.8). Allan

and Knox [1979] considered the boundary effect of ionosphere and indicated that the

axisymmetric toroidal and poloidal modes interact via the ionospheric Hall effect.

Because the ”frozen in” condition (Equation (2.7)) is no longer available in the

ionosphere, the current can be written in the following form in the dipole coordinate

j2 = σPE2 + σHE3 (4.10)

j3 = σPE3 − σHE2 (4.11)

by assuming that the displacement currents can be neglected. Combining Equation

(4.10) and Equation (4.11) with Equation (2.17) and integrating them along the field
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Figure 4.1: Schematic diagram of (a) fundamental (odd mode) and (b) second har-
monic (even mode) standing oscillations of geomagnetic field lines. Decoupled toroidal
and poloidal modes are shown, with dashed lines depicting the displaced field lines.
Taken from [Menk and Waters , 2013].
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line through the ionosphere, we get equations of the electric field at the top and the

bottom of the ionosphere

ΣPE
0
2 + ΣHE

0
3 = ± 1

μ0

B0
13 (4.12)

ΣPE
0
3 − ΣHE

0
2 = ∓ 1

μ0

(B0
13 − B1

12) (4.13)

where superscripts 0 and 1 refer to the top and the bottom of the ionosphere, ΣH

and ΣP are height-integrated Hall and Pedersen conductivity, the RHS of Equation

(4.12) takes a positive sign and the RHS of Equation (4.13) takes a negative sign at

the southern ionosphere. By substituting Equation (2.16) into Equation (4.12) and

Equation (4.13), we can get coupled equations of the electric fields E2 and E3

ΣPE
0
2 + ΣHE

0
3 = ± i

μ0ω

[
1

h1h2

∂

∂x1

(h2E2)

]0
(4.14)

ΣPE
0
3 − ΣHE

0
2 = ± 1

μ0

{
i

ω

[
1

h2h3

∂

∂x1

(h3E3)

]0
+ b12

}
(4.15)

Equation (4.14) and Equation (4.15) show that an initial toroidal mode electric

field E2 generates an poloidal mode electric field E3, in the ionosphere through the

Hall conductance ΣH . Thus an isolated toroidal mode is only possible if ΣH = 0.

4.1.3 Free Wave Equations for Toroidal Mode Alfvén Wave

Although Section 4.1.1 gives examples of decoupled toroidal mode and poloidal mode

in specified m values, we will provide a ULF model with decoupled toroidal mode

and poloidal mode without assumptions on m value. In this model, the interaction

between toroidal mode and poloidal mode discussed in Section 4.1.2 is not under

consideration by assuming ΣH = 0.

The toroidal mode corresponds to the perpendicular disturbance of the magnetic

field in the x3 direction. The electric field disturbance is in the x2 direction. Com-

bining the corresponding components of the Faraday equation (Equation (2.1)) and

the frozen-in condition (Equation 2.7), we have

∂h3B3

∂t
=

h3

h1h2

∂

∂x1

(h2v3B10) (4.16)
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where B{1,2,3}, E{1,2,3}, v{1,2,3}, are the three components of the magnetic field, electric

field and plasma velocity in the dipolar coordinate, respectively. h{1,2,3} are the asso-

ciated scale factors, B10 is the background geomagnetic field. The toroidal component

of the momentum equation (Equation (2.9)) is

ρ0
∂v3
∂t

=
B10

μ0h1h3

∂

∂x1

(h3B3) (4.17)

where ρ0 is the plasma mass density. From Equation (4.16) and Equation (4.17),

h2
2

∂2

∂t2
(h3B3) =

∂

∂x1

[
v2A
h2
3

∂

∂x1

(h3B3)

]
. (4.18)

where vA = B10/
√
μ0ρ0 is the Alfvén speed.

The eigenfunction of Equation (4.18) can be written as

h3B3 = bNe
−iωtSN(x1), x1 ∈ [x−, x+] (4.19)

where SN(x1) is the N-th order eigenfunction of field line resonance, and ωN is the N-th

order eigenfrequency, x− and x+ are the corresponding x1 coordinates of the northern

and southern ionosphere. In general, the field line resonance can be expressed as:

h3B3 =
∑
N

bNe
−iωN tSN(x1) (4.20)

The eigenfunctions are orthogonal in the absence of ionospheric damping. Set

∂2/∂t2 → −ω2
N , we have

d

dx1

[
v2A
h2
3

dSN

dx1

]
+ h2

2ω
2
NSN = 0 (4.21)

To find out the relationship between different eigenmodes, we perform an inte-

gration along the field lines:∫ x+

x−
dx1SM [

d

dx1

(
v2A
h2
3

dSN

dx1

) + h2
2ω

2
NSN ] = 0 (4.22)

where SM = SM(x1) is another eigenmode. Integrating Equation (4.22) by parts, we

have:

ω2
N

∫ x+

x−
h2
2SMSNdx1 + SM

v2A
h2
3

dSN

dx1

∣∣∣∣x+

x−
−

∫ x+

x−

v2A
h2
3

dSM

dx1

dSN

dx1

dx1 = 0 (4.23)
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Switching M to N gives the orthogonality condition after subtracting, i.e.,

(ω2
N − ω2

M)

∫ x+

x−
h2
2SMSNdx1 = Const · δN,M (4.24)

A normalized solution of SN is:∫ x+

x−
h2
2S

2
Ndx1 = 1 (4.25)

The eigenfunctions and corresponding eigenfrequencies are solutions of Equation

(4.21) and Equation (4.25), which can be solved numerically. However, an analytic

solution of SN will be discussed in Section 4.1.4.

4.1.4 Analytical Solution of Field Line Resonance Eigenfunc-
tion

To solve the eigenfunction SN in dipolar geometry, we start from normalizing the

eigenfunction. Rewriting Equation (4.25) by substituting S̃N = RELSN and assuming

a fundamental mode field line resonance:

2

∫ smax

0

h2
dx1

ds

S̃N

R2
EL

2
ds = 1 (4.26)

where s = cos θ, θ is the co-latitude, and smax =
√

1− 1/L is the maximum of cos θ

at one of the two footprint points of the field line.

In Equation (4.26), term dx1/ds is:

dx1

ds
=

d

ds

(
cos θ

r2

)
=

1

L2R2
E

1 + 3s2

(1− s2)2
(4.27)

Substitute Equation (4.27) and Equation (4.3) into Equation (4.26), we have:

2

∫ smax

0

dsS̃N

2
= 1 (4.28)

It shows that S̃N is the normalized eigenfunction.

The normalized eigenfunction can be analytically solved in Equation (4.21) by

assuming a special density profile. Rewrite Equation (4.21) as

−h2
2ω

2
N

S̃N

REL
=

ds

dx1

d

ds

[
v2A
h2
3

1

REL

dS̃N

ds

ds

dx1

]
(4.29)
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Note that the Alfvén velocity is a function of the magnetic field and density; it

varies as a function of s:

vA =
B√
μ0ρ

=
Beq√
μ0ρeq

√
ρ

ρeq

√
1 + 3s2

(1− s2)3
= vA0

√
ρ

ρeq

√
1 + 3s2

(1− s2)3
(4.30)

where Beq and ρeq are the magnetic field and number density at the equator respec-

tively, vA0 is the normalized Alfvén velocity. Substitute Equation (4.30) into Equation

(4.29), we have:

S̃N = − vA0

ω2
NL

2R2
E

d

ds

[
1

ρ(s)

1

(1− s2)6
dS̃N

ds

]
(4.31)

Equation (4.31) can be largely simplified when ρ(s) = (1− s2)−6:

S̃N = −
(
ωNLRE

vA0

)2
d2S̃N

ds2
(4.32)

It shows that an analytical solution of the eigenfunction is simply

S̃N = A cos(f0s+ φ0) (4.33)

where A and φ0 are constants, and f0 = ωNLRE/vA0. The corresponding eigenfre-

quencies ωN for different order of standing wave modes can be estimated by fitting

to the boundary condition at the end of the field line (s = smax) and at the equa-

tor (s = 0) for different oscillation modes. For example, the boundary condition for

fundamental mode is S̃N(s = smax) = 0 and S̃N(s = 0) = 1.

4.1.5 Toroidal Mode Alfvén Wave Model with an External
Driver

Self-consistent electric and magnetic fields of standing mode ULF waves can be calcu-

lated using the approach described in Rankin et al. [1999, 2005]. On the other hand,

a monochromatic driver with harmonic dependencies will be added to the wave equa-

tions in Section 4.1.3 to excite poloidal and toroidal mode ULF waves in the dipole

magnetosphere. The amplitude of the driver can be made time-dependent, but only

when the constant leads to linear growth of the wave amplitude with time. As ge-

omagnetic field lines evolve independently in ideal MHD, the eigenfunction of wave

is explicitly a function of L. This enables growth, damping, and phase mixing to be
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accounted for in the model under the assumption of infinite ionospheric conductivity.

The absence of finite height-integrated Pedersen conductivity, and hence ionospheric

damping, means the wave amplitude is a free parameter. The mode structure along

field lines will change under finite conductivity, but as the differences are expected

to be minor for conductivities on the order of a few to several mho, effects of finite

conductivity are neglected to simplify the analysis.

The above analysis in Section 4.1.3 and Section 4.1.4 deal with free Alfvén waves,

the eignenmodes are linearly independent. To excite the field line oscillation, a driver

is added to the system to find the solution of field line resonance. The momentum

Equation (4.17) is rewritten as

ρ
∂v3
∂t

=
B10

μ0h1h3

∂

∂x1

(h3B3) +D (4.34)

where D = ρω0vD sinω0t, ω0 is the frequency of the driver, and vD is the plasma

velocity of the driver. This equation can be written as

∂

∂t
(h2B10v3) =

v2A
h2
3

∂

∂x1

(h3B3) + h2B10ω0vD�(ie−iω0t) (4.35)

where �(ie−iω0t) is the real part of ie−iω0t. Substitute Equation (4.35) into the toroidal

Faraday Equation (4.16), we have a modified field line resonance equation with an

external driver

∂2

∂t2
(h3B3) =

1

h2
2

∂

∂x1

[
v2A
h2
3

∂

∂x1

(h3B3)

]
+

1

h2
2

∂

∂x1

[
h2B10ω0vD�(ie−iω0t)

]
.

(4.36)

According to Equation (4.21), h3B3 = �(bNe−iωN t)SN . For a monochromatic driver

with the frequency ω0, we rewrite Equation (4.21) as

h3B3 = bN0�(e−iΔωt)�(e−iω0t)SN = bN�(e−iω0t)SN (4.37)

where ωN = ω0 + Δω, bN = bN0�(e−iΔωt), and bN0 is a constant. Assuming that

Δω2 � ω2
0,

−ω2
0bNSN − 2iω0

∂bN
∂t

SN =
bN
h2
2

∂

∂x1

(
v2A
h2
3

∂SN

∂x1

)
+ i

ω0

h2
2

∂

∂x1

(h2B10vD) (4.38)
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Equation (4.22) for eigenfunction SN(x1) can be substituted into the first term

in the RHS of Equation (4.38), then

−ω2
0bNSN − 2iω0

∂bN
∂t

SN = −ω2
NSN + i

ω0

h2
2

∂

∂x1

(h2B10vD) (4.39)

Multiplying by h2
2SN and integrating, we have:

−ω2
0bN + ω2

NbN − 2iω0
∂bN
∂t

= iω0

∫ x+

x−
dx1SN

∂

∂x1

(h2B10vD) (4.40)

Integrate by parts assuming vD(x−) = vD(x+) = 0,

∂bN
∂t

= i
ω2
0 − ω2

N

2ω0

bN − ω0

2ω0

∫ x+

x−
dx1SN

∂

∂x1

(h2B10vD) (4.41)

∂bN
∂t

∼ −iΔωbN +
ω0

2
RD (4.42)

where RD = 1
2ω0

∫ x+

x−
dx1h2B10vD

∂SN

∂x1
is the amplitude of the driver in the unit of nT

which is considered as a parameter of our model. By solving equation bN in Equation

(4.42) and taking bN(t = 0) = 0, we have

−iΔωbN +
ω0

2
RD =

ω0

2
RDe

−iΔωt (4.43)

bN(t) = −ω0RD

2iΔω
(e−iΔωt − 1) (4.44)

Then h3B3 = �(bNe−iω0t)SN can be easily evaluated as

h3B3 =
ω0RDSN(x1)

Δω
cos(ωt−mφ) sin

(
Δωt

2

)
(4.45)

where the term mφ corresponds to the wave propagation in the azimuthal direction,

and ω = (ωN + ω0)/2. Note that for Δωt/2 � 1, h3B3 ∝ ω0t. This means that

the wave grow linearly when the driver frequency is close to the eigenfrequency. In a

constant amplitude wave a desired width (in L) can be obtained by setting Δωt/2 to

some corresponding value.

Equation (4.45) gives the azimuthal magnetic field of the driven Alfvén wave.

Substituting this solution into Equation (4.16), we can have the radial electric field
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E2:

h2E2 = − h2B10v3

= − v2A
h2
3

RD

Δω

∂SN

∂x1

[
cos(mφ− ωN t+Δωt/2)

2ω0 −Δω
− cos(mφ− ωN t−Δωt/2)

2ω0 +Δω

]
(4.46)

Having considered that Δω2 � ω2
0, we have:

h2E2 = − h2B10v3

= − v2A
h2
3

ω0RD

Δω

∂SN

∂x1

sin(ωt−mφ) sin

(
Δω

2
t

)
(4.47)

Equation (4.47) is the electric field of the toroidal model Alfvén wave. For the

magnetic field of wave disturbance, only terms related to E2 in Faraday’s law need

to be kept, so we have:

∂B11

∂t
= −(∇× E1)1 =

1

h2h3

∂

∂x3

(h2E2) (4.48)

Combining Equation (4.48) with Equation (4.47), we have:

∂B11

∂t
=

m

h2h3

v2A
h2
3

RD

Δω

∂SN

∂x1

cos(ωt−mφ) sin(Δωt/2) (4.49)

After integrating Equation (4.49) with time, we have:

B11 =
m

ω0h2h3

v2A
h2
3

RD

Δω

∂SN

∂x1

sin(ωt−mφ) sin(Δωt/2) (4.50)

Substitute Equation (4.50) into Equation (4.47), we have

B11 =
m

h3ω0

E2 (4.51)

Therefore, there will be a corresponding compressional wave magnetic component

B11 ∝ m, which cannot be ignored when the analytic solution are used in the test

particle simulation.

For the azimuthal magnetic field B3, we have:

∂B3

∂t
= −(∇× E1)3 =

1

h1h2

∂

∂x1

(h2E2) (4.52)
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Substituting E2 in Equation (4.47) into Equation (4.52), we have:

∂B3

∂t
= − 1

h3

RDω
2
NSN

Δω
sin(ωt−mφ) sin(Δωt/2) (4.53)

Integrating this equation with time, we have:

B3 =
1

h3

RDω0SN

Δω
cos(ωt−mφ) sin(Δωt/2) (4.54)

The combination of the electric field component E2 and magnetic field compo-

nents B11 and B3 describes the wave field of a toroidal Alfvén wave.

4.1.6 Poloidal Mode Alfvén Wave Model with an External
Driver

The perpendicular magnetic and electric field of the toroidal mode are orthogonal to

that of the poloidal mode. We just need to modify the above equations by reversing

the dipolar coordinate subscripts h2 → h3 and h3 → h2. Equation (4.16) have become:

∂

∂t
(h3B10v2) =

v2A
h2
2

∂

∂x1

(h2B2) (4.55)

Rewrite Equation (4.18) with the poloidal components,

∂2

∂t2
(h2B2) =

1

h2
3

∂

∂x1

[
v2A
h2
2

∂

∂x1

(h2B2)

]
(4.56)

The radial magnetic field and corresponding azimuthal electric field are:

h2B2 =
ω0RDSN(x1)

Δω
cos(ωt−mφ) sin

(
Δωt

2

)
, (4.57)

h3E3 = h3B10v2 =
v2A
h2
2

RD

Δω

∂SN

∂x1

sin(ωt−mφ) sin(Δωt/2). (4.58)

Also, the parallel magnetic field B11can be obtained from the poloidal electric

field E3:

∂B11

∂t
= − (∇× E1)1

= − 1

h2h3

∂

∂x2

(h3E3)

= − 1

h2h3

∂

∂x2

(
v2A
h2
2

RD

Δω

∂SN

∂x1

)
sin(ωt−mφ) sin(Δωt/2).

(4.59)
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By using x2 = r−1, h2 = r2 at the equator, B11 can be simplified as

B11 ∼ 1

ω0h2h3

∂

∂x2

(
v2A
h2
2

RD

Δω

∂SN

∂x1

)
sin(ωt−mφ) sin(Δωt/2). (4.60)

4.2 Discussion

4.2.1 Phase Mixing

The concept of phase mixing in plasma physics was introduced in coronal heating

where magnetic gradients are large [Heyvaerts and Priest , 1983]. Phase mixing is a

mechanism of Alfvén wave dissipation caused by the inhomogeneity of a background

magnetic field or plasma density perpendicular to the background magnetic field

direction. According to the MHD Alfvén wave theory, shear Alfvén waves propagate

parallel to the magnetic field line. Shear Alfvén waves on different magnetic field

lines oscillate independently with the phase speed of local Alfvén speed. When there

is inhomogeneity of Alfvén speed in a direction perpendicular to the local magnetic

field, the phase difference of wave perturbation on different field lines increases with

time. As a result, friction between field lines with large gradient of phase dissipate

wave energy to the plasma.

The theory of Alfvén wave phase mixing explains the localization of ULF waves

in the magnetosphere [Mann et al., 1995]. On the closed magnetic field lines in the

magnetosphere, the phase mixing effect is limited by the energy dissipation caused by

ionospheric Joule heating or kinetic effects such as Landau damping. In our model,

we assume the ionosphere as a boundary of infinite conductivity, and the kinetic effect

of the plasma is not introduced as a sink of wave energy. The minimum perpendicular

scale of waves is a free parameter in our model. Here we will discuss how the phase

mixing effect is limited in our model.

In Section 4.1.5 and Section 4.1.6, the electric field of toroidal mode E2 and

poloidal mode E3 both include terms related to phase mixing. For example, the sine

cardinal function term sin(Δωt/2)/Δω in Equation (4.58) suggests that the wave

amplitude increases with time if the driver frequency ω0 is close to local eigenfre-

quency ωN(L). This term also defines the width of the localized ULF wave since
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Figure 4.2: Snapshots of the poloidal mode electric field on the equator at different
times. Panels (a)-(d) are snapshots at times (a) t = 0 s, (b) t = 150 s, (c) t = 300 s
and, (d) t = 450 s. The wave amplitude and phase mixing increase in these four
panels. Panels (e) and (f) are snapshots at times (e) t = 600 s and (f) t = 800 s.
The wave amplitude and phase mixing stop growing and keep constant in these two
panels. Panels (g) and (h) are snapshots at times (g) t = 1200 s and (h) t = 1500 s.
The wave amplitude starts decaying after t = 1200 s.
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sin(Δωt/2)/Δω = 0 when Δωt = π. The wave becomes localized in the radius di-

rection with increasing time. Another term, sin(ωt −mφ), where ω = (ω0 + ωN)/2,

suggests that the gradient of E3 in the radius direction will increase with time. Fig-

ure 4.2 shows the equatorial electric field of a fundamental poloidal mode ULF wave

simulated with our model. In this simulation, the eigenfrequency is set as ωN = ω0 at

L = 6.0, the wave frequency is f = 100 mHz, the maximum wave amplitude is about

5 mV/m, and the azimuthal wave number ism = 15 and propagating westward. Panel

(a)-(d) shows the effect of the two terms related to Δω: the wave field on different

L-shells becomes more distorted while the wave amplitude increases with time. To

avoid strong phase mixing, and to include the effect of ionospheric dissipation, we let

the wave damp out with a rate of γ after a ”damping time” tdamping. Also, the phase

mixing can be limited without damping out the wave by specifying the terms related

to phase mixing. The term sin(ωt−mφ) is set as sin(ω0(t− tlimit)−mφ+ φ0) after

a ”phase-limitation time” tlimit. Here φ0 = φ0(L) is the wave phase at time t = tlimit

on different L-shells. The wave amplitude will also stop growing if we set the wave

growing term sin(Δωt/2)/Δω = sin(Δωtlimit/2)/Δω as a constant after the phase-

limitation time tlimit. In this example, we set tlimit = 500 s and tdamping = 1000 s

and γ = 3.0ω0. Panels (e) and(f) of Figure 4.2 show the snapshots of the equatorial

field at t = 600 s and t = 800 s when the wave stops growing up, but does not start

damping. These two panels show that the distortion across the L-shells stops growing

up, and the wave propagates in azimuthal direction with the same speed for different

L-shells. Panels (g) and (h) of Figure 4.2 show the snapshots of the equatorial field

at t = 1200 s and t = 1500 s after the wave damped out. The amplitude of the wave

decreases exponentially after t = 1000 s.

4.2.2 Eigenmodes of Fundamental Mode Field Line Reso-
nance

The eigenfunction in Equation (4.33) provides the distribution of the electric field and

magnetic field along the field lines for different standing wave modes. The electric

field component of the toroidal mode wave in Equation (4.47) and that of the poloidal

mode wave in Equation (4.58) both include the same term, ∂SN/∂x1, which provides
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similar wave amplitude profiles along the field line for the toroidal mode and the

poloidal mode. The studies in this thesis are concentrated on the poloidal mode

wave, so in this section we show the fundamental mode of the poloidal Alfvén wave

as an example of Alfvén wave eigenmodes.

Figure 4.3: Eigenmode for a 20.94 mHz poloidal mode excited at L = 4.5. The
compressional magnetic field (top left panel) and azimuthal electric field (bottom left
panel) are in phase. The radial magnetic field (top right panel) and azimuthal electric
field (bottom right panel) are in anti-phase. The background density is specified to
have an r−6 dependence along geomagnetic field lines.

Figure 4.3 shows an example of a poloidal Alfvén produced by our ULF wave

model. A fundamental mode poloidal wave was excited at L = 4.5. The left and right

columns of this figure show the in-phase and 90-degree out-of-phase wave electric and

magnetic field components along the L = 4.5 field line, respectively. The amplitude

of the azimuthal electric field is about 2 mV/m at the equator and about 4 mV/m off

the equator. The distribution of the compressional component of the wave magnetic

field along the field line is similar than that of the azimuthal electric components. The

maximum amplitude of the compressional magnetic field is less than 10 nT within a

latitude range of −20◦ and +20◦ around the equator.

The profile of the poloidal mode along field line depends on the mass loading,

the L-shell of the field line and possible distortion from a dipole field. The results

presented here are valid at relatively low L-shells in the inner magnetosphere where

a dipole field model is justified. Here we compare the wave profile for different L-

shells and different background plasma densities. Figure 4.4 shows the profile of the

maximum poloidal electric field E3 at two different L-shells and with two different
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Figure 4.4: The electric field of the poloidal fundamental mode Alfvén wave’s along
the field line in different L-shells and background plasma number density. Panel (a)
shows the wave profile at L = 4. The equatorial density ρeq = ρres(L) corresponds to
the local eigenfrequency at L = 4. Panel (b) shows the wave profile at L = 8, and
the equatorial density ρeq = ρres(L) corresponds to the local eigenfrequency at L = 8.
Panel (c) and Panel (d) show the wave profile at L = 4 and L = 8 respectively, but
their equatorial densities are set to double of ρres(L) in Panel (a) and (b) respectively.

equatorial mass densities. The other wave parameters, such as the wave driver’s

frequency amplitude and the m value in these four cases, are identical to the wave

parameter in Figure 4.2. As the local Alfvén speed depends on the background density

of the plasma, the equatorial density ρres(L) corresponding to the local eigenfrequency

are calculated on the two L-shells L = 4.0 and L = 8.0 respectively. In each L-shell,

the profile of the electric field is calculated with two different equatorial densities:

ρ = ρres(L) and ρ = 2ρres(L). The maximum wave amplitude at L = 8.0 is much

larger than that of L = 4.0. Comparing the wave profiles for the two different

densities, the wave amplitude decreases greatly when the frequency of the driver is

different from the local eigenfrequency, and the wave profile along the magnetic field

line is generally the same in different L-shells.
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Chapter 5

Methodologies and Implementation
of Test Particle Simulations

In this chapter, we introduce the mathematical models, methodologies, and numerical

codes we developed and implemented to investigate wave-particle interactions in the

magnetosphere. The new results that are presented in this chapter illustrate how

the improved theory can be used in combination with numerical techniques to better

characterize resonant wave-particle interactions.

In Secton 5.1, we use the full Lorentz model and the guiding center model to

describe the 3D dynamics of ions and electrons respectively. Large gyro-radius ions

are described by the full Lorentz model, while the high gyro-frequency electrons are

described by the guiding center model.

In Section 5.2, we introduce the forward Liouville method and backward Liouville

method as two important test particle simulation methods used in this thesis. The

fundamental assumptions and the mechanisms of these methods are discussed in this

section. The implementation details of using these techniques, including how to

initialize the velocities and the locations of the test particles, are discussed in Section

5.3.

In Section 5.4, we describe the implementation details of the numerical code.

This section also includes the numerical methods used in test particle trajectory

integration, the workflow of the code, and the parameters used to generate simulation

jobs.
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Examples of our simulation results are presented in Section 5.5. In Section

5.5.1, we show an example of successfully reproducing the drift resonance between

H+ ions and ULF waves on April 11, 2014 by comparing with results of Zhou et al.

[2016]. Simulation results about N = 0 drift resonance with relativistic electrons are

presented in Section 5.5.2.

5.1 Test Particle Models

5.1.1 Full Lorentz Force Simulation for Large Gyro-radius
Ions

For charged particles in the magnetosphere, gravity force from the Earth is weak

compared to the electromagnetic force and can be omitted. Motion for a charged

particle can be fully described by the equation of Lorentz force

dp

dt
= q(E+ v ×B) (5.1)

where p is the momentum of the particle, q is the charge of the particle, E is electric

field, v is particle velocity, andB is the magnetic field. This equation is relativistically

correct if particle momentum is

p = γmv (5.2)

where γ =
√
1/(1− v2/c2) is the Lorentz factor. For ions in the range of several

hundred keV to a few MeV, the relativistic effect is weak, and we assume that γ ∼ 1.

In our test particle model, Equation (5.1) is integrated with time in the Cartesian

coordinate

dvx
dt

=
q

m
(Ex + vybz − vzby), (5.3)

dvy
dt

=
q

m
(Ey + vzbx − vxbz), (5.4)

dvz
dt

=
q

m
(Ez + vxby − vybx). (5.5)

The 4th order Runge-Kutta method is implemented in the numerical integration.

Because the magnetic field and electric field in our model are defined with the dipolar
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coordinate, B{1,2,3} and E{1,2,3} are converted into Cartesian coordinate⎡⎣Fx

Fy

Fz

⎤⎦ =

⎡⎢⎣−2 cos θ
δ

x
r
− sin θ cos θ cosφ

δ
− sin θ

δ
x
r
+ 2 cos2 θ cosφ

δ
− sinφ

−2 cos θ
δ

y
r
− sin θ cos θ sinφ

δ
− sin θ

δ
y
r
+ 2 cos2 θ sinφ

δ
cosφ

−2 cos θ
δ

z
r
+ sin2 θ

δ
− sin θ

δ
z
r
− 2 cos θ sin θ

δ
0

⎤⎥⎦
⎡⎣F1

F2

F3

⎤⎦ (5.6)

where F{x,y,z} are components of a vector in the Cartesian coordinate and F{1,2,3} is the

same vector, but described as being in a dipolar coordinate, and δ =
√
(1+ 3 cos2 θ).

The full Lorentz force method will describe the full trajectory of any charged

test particle without any theoretical approximation. However, a precise description

of the trajectory the use of a time step of integration that is much smaller than the

period of gyro motion

Tgyro =
2πm

q|B| . (5.7)

Tgyro is on the order of 0.01− 1 s for ions in the inner magnetosphere and on the

order of 10−5− 10−3 for electrons. The largely increasing requirements on computing

resource make simulations on a large number of electrons unrealistic. To improve the

effectiveness of electron simulation, we use a guiding center approach to study the

motion of electrons in the magnetosphere.

5.1.2 Guiding Center Simulation for High Gyro-frequency
Electrons

The guiding center approach treats test particle motion as two parts: fast gyro motion

around a point called the guiding center, ρ̇, and the relatively slow motion of the

guiding center, Ṙ. Figure 5.1 shows a schematic diagram of the gyro motion of a test

particle and its guiding center. If the test particle motion 〈ṙ〉 = 〈Ṙ+ ρ̇〉 is time-

averaged over a gyration period, and if the overall contribution of the gyro motion

relative to the guiding center over a gyro period is zero 〈ρ〉 = 〈ρ̇〉 = 〈ρ̈〉 = 0, the

guiding center can be considered as the time-averaged location of a particle. In our

ULF wave model, the characteristic distance over which the electric field and magnetic

field change is much larger than the gyro radius of electrons. The characteristic time

of ULF wave is also much longer than the gyro-period of electrons. The magnetic
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and electric field effects on the electrons are considered as constants during a gyro

period.

Figure 5.1: Schematic diagram of the gyro motion of a test particle and its guiding
center. Taken from Northrop [1963].

The non-relativistic guiding center motion equations were derived by Northrop

[1963]. The perpendicular drift motion of the guiding center is a combination of

the E ×B electric drift, the gradient drift, and the curvature drift [Baumjohann and

Treumann, 1996], which are discussed in Section 2.3.3. Combining the drift velocities,

we obtain an equation of motion for the guiding center

dR

dt
=

E×B

B2
+

μ

qB2
(B×∇B) +

p2‖
mqB2

(B× db

ds
) + v‖ (5.8)

where μ = W⊥/B is the first adiabatic invariant assumed as a constant in our sim-

ulation, p‖ = mv‖ is the parallel momentum, and b = B/|B| is the direction of the

magnetic field. The first three terms of Equation (5.8) correspond to the E×B drift,

gradient drift, and curvature drift, respectively, and the last term v‖ is the parallel

velocity of the particle. Since the parallel electric field is zero in a shear Alfvén wave,

the parallel motion of the guiding center is only affected by the magetic field along

the field line. The equation of parallel motion of the guiding center is [Northrop,
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1963]

m
dv‖
dt

= −μ
dB

ds
+ vE×B · (p‖db

ds
) (5.9)

where vE×B = E×B/B2 is the E × B drift speed.

The previous equations of motion are non-relativistic. The relativistic form of

these equations was derived by Northrop [1963]

dp‖
dt

= −μ

γ

dB

ds
+ vE×B · (p‖db

ds
) (5.10)

dR

dt
=

E×B

B2
+

μ

γqB2
(B×∇B) +

p2‖
γm0qB2

(B× db

ds
) +

p‖
m0γ

(5.11)

where p = γm0v is relativistic momentum, m0 is the rest mass of the electron.

Different from the full Lorentz approach in Section 5.1.1, the guiding center ap-

proach implicitly assumes the conservation of the first adiabatic invariant. To test the

guiding center model, the L-shell variation of freely bouncing electrons in different

energies has been simulated. It shows that particles are bouncing in the same L-shell

without external ULF wave. Secondly, trajectories of H+ ions have been simulated by

using the full Lorentz model and guiding center model respectively within the same

wave field. The results from these two models show identical trajectories and energy

variations. The detailed parameters of the H+ ions simulations will be provided in

Section 5.5.1. The guiding center model has also been tested with backward integrat-

ing. An electron’s trajectory was first simulated in the forward direction in time from

t = 0 to t = 10, 000 s; and then backward integration was used to trace the trajectory

backward. The forward and backward integration trajectories are almost identical;

the error is less than 0.1 %. These tests on the guiding center model have provided

preliminary evidences about the correctness of the model. In Section 5.5.2, we will

show more simulations with the guiding center model about drift resonance between

the ULF wave and relativistic and non-relativistic electrons.
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5.2 Phase Space Density Reproduction Methods:

Liouville Methods

The differential flux measurements on different charged particles are an essential part

of satellite particle observation. It is defined as the particle number flux incident on

a unit surface at a given energy, pitch angle, and position. The interactions between

the ULF wave perturbation and charged particles are observed by satellites as the

fluctuation of differential fluxes [Zong et al., 2007; Claudepierre et al., 2013]. For non-

relativistic particles, the relationship between the differential particle flux and the

distribution function, or the phase space density (PSD), is expressed as [Baumjohann

and Treumann, 1996]

J(W,α,x) =
v2

m
f(v‖, v⊥, α,x) (5.12)

where J is the differential particle flux, f is the phase space density, and α is the pitch

angle. The forward and backward Liouville methods introduced in this section will

provide ways to study the global variation of phase space density, and an accurate

history of phase space density for comparison with satellite measurements.

5.2.1 Forward Liouville Method

The time evolution of the phase space distribution function in a Hamiltonian dynam-

ical system follows the Liouville equation

df

dt
=

∂f

∂t
+

n∑
i=1

(
∂f

∂qi
ṗi +

∂f

∂pi
q̇i

)
= 0 (5.13)

where f = f(p, q, t), and qi, i = 1, 2, ..., n is canonical coordinate, and pi, i = 1, 2, ..., n

is canonical momentum. From Liouville’s equation, it follows that the phase-space

distribution function is constant along the trajectories of the system. Consider a piece

of a plasma element moving in a Hamiltonian dynamical system: the trajectory is

equivalent to the trajectory of single particle when the phase space volume of this

element is small enough.

The forward Liouville method is applied to simulate collisionless plasmas. Test

particles are ”tagged” with a specified distribution function f0(t0,v0,x0). The dis-
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tribution function is determined by the particle’s initial location in phase space at

initial time. To study the wave-particle interactions in the magnetosphere, the ini-

tial location and initial time here are defined as the location at and time in which

a particle is released without being affected by any magnetic or electric field other

than the Earth’s dipole magnetic field. By assuming a Maxwell distribution, Kappa

distribution, or any other distribution functions, f0 is obtained without statistical

error. After the particles are released within the ULF wave, the distribution func-

tion in a sampling volume can be determined by the tagged particles in the volume.

The statistical errors of this method come from the number of test particles in the

sampling volume in configuration space. The discrete distribution function inside the

sampling volume can be used to interpolate onto a regular velocity grid.

Satellite observations about particle differential flux can be reproduced using

the forward Liouville method. Test particles collected by an appropriately chosen

sampling volume represent the distribution function of particles measured by the

particle instruments on the satellites. On the other hand, the time evolution of global

particle distribution can be obtained if enough test particles are introduced in the

system. The assumptions and the test particle initialization methods are discussed

in Section 5.3.1.

5.2.2 Backward Liouville Method

If test particle models and wave field models have specific temporal and spatial de-

pendence, and if test particle trajectories can be integrated exactly backward in time,

the backward Liouville method can be applied to reproduce the particle distribution

function at any specified point and at any time. In contrast to the forward Liouville

method described in Section 5.2.1, this approach integrates particle trajectories at

a given observation time t1, observed position r1, and velocity v1 backward in time

until it reaches an input region at time t0, position r0, and velocity v0, where the

undisturbed distribution function f0(t0, r0,v0) is known. Following from Liouville’s

theorem, the distribution function at observed region 1 is obtained from input region

0 since f0(t0, r0,v0) = f1(t1, r1,v1).
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One of the main advantages of this approach over the forward Liouville method

is that it does not rely on sampling over a volume element, and therefore is free from

statistical sampling errors. By considering that the spatial size of a spacecraft is much

smaller than the size of the magnetosphere system, the backward Liouville method

is more suitable for studying the differential particle flux observed by the satellites

without any error from the size of sampling volume. In Section 5.3.2, we will describe

the process we used to initialize test particles and discuss the performance of this

method by comparing it with the resolution of real instruments on the Van Allen

Probes.

5.3 Initial conditions of Test Particles

5.3.1 Initializing the Global Forward Liouville Simulation
with Monte-Carlo Method

Ideally, the sampling volumes in configuration space, velocity space, and time should

uniformly include a large enough number of test particles in the forward Liouville

simulations. However, the total number of test particles we can use is limited by the

computing resource. In this section, we will describe how the locations and velocities

of test particles are initialized in the forward Liouville simulations with Monte-Carlo

methods.

The dipole-field ULF wave model has rotational symmetry on the order of m.

Here, m is the azimuthal wave number. The azimuthal boundary condition is con-

sidered to be periodic. Test particles are uniformly distributed in an azimuthal wave

period. The probability density function of the test particle’s initial azimuthal angle

is:

f(φ) =
m

2π
, 0 < φ < 2π/m (5.14)

The initial azimuthal location of a test particle is

φ = Rφ/f(φ) (5.15)

where Rφ is a uniformly distributed random variable between 0 and 1.
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In order to distribute test particles uniformly on an equatorial plane between

the minimum radius rmin and maximum radius rmax in a unit of Re, the distribution

function of the test particle’s initial radius on the equatorial plane is:

f(r) = Arβ, β = 1 (5.16)

where A is a normalization coefficient. By calculating the cumulative distribution

function of f(x), we can solve A

A =
β + 1

rβ+1
max − rβ+1

min

(5.17)

Generally, a negative gradient of the test particle’s radius distribution will build

up if β < 1 and a positive gradient will build up if β > 1. In the simulation studies

in Chapter 8, we are using a uniform radial distribution β = 1. The initial r of the

test particle is

r=[r
β+1
min + (rβ+1

max − rβ+1
min)Rr]

1
β+1 (5.18)

where Rr is a uniformly distributed random variable between 0 and 1.

The maximum latitude a test particle can reach depends on the particle’s equa-

torial pitch angle. When the wave is not present, all particles bounce freely along field

lines. To uniformly fill the field line with test particles, we use a different method

to randomize the particles’ initial latitude. First, using an isotropic Maxwell dis-

tribution, we randomize the initial equatorial pitch angle, initial energy, and initial

gyro-phase of a test particle:

f(W ) = f0
√
Wexp(−W/Wth) (5.19)

f(α) =
1

π − 2αm

(5.20)

f(φv) =
1

2π
(5.21)

where φv is the direction of velocity perpendicular to the Earth’s magnetic field.

φv corresponds to the initial phase of the particle’s gyro-motion. Note that W is

uniformally distributed when Wth → ∞. Particles are released at a random time

trand from the equator with a randomized initial pitch angle and energy and bounce

freely without an external wave. If the particle releasing time is long enough, the

particles along the field line are uniformly distributed.
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Two methods can be used to generate randomized particle energy for a Maxwell

distribution: the accept-rejection method, and the inverse transform method. For the

accept-rejection method, we first generate a uniform-random number WR between

Wmin and Wmax:

WR = Wmin +RW (Wmax +Wmin). (5.22)

Then, a second uniform-random number fR between 0 and 1 is generated. Repeat

generating WR and fR until

fR ≤ f(WR)/c (5.23)

where c is the maximum of f . Then the accepted random numbers WR follow the

distribution f(W ).

The inverse transform method uses a cumulative distribution function (CDF) of

the Maxwell distribution function

F (x) = −f0Wth

[√
x exp(−x/Wth)−

√
Wmin exp(−Wmin/Wth)

]
+
π

2
f0W

3/2
th [erf(x/Wth − erf(Wmin/Wth))]

(5.24)

where the constant f0 can be solved numerically by considering that CDF is 1 at

maximum energy, F (Wmax) = 1. To generate a random numberWrand for the Maxwell

distribution, we first generate a uniform-random number R between 0 and 1, and then

numerically solve Equation (5.24) with R = F (Wrand) to get Wrand.

5.3.2 Three-dimensional Grids in Velocity Space for Back-
ward Liouville Simulations

As discussed in Section 5.2.2, the backward Liouville simulation does not require

any randomization on the test particles on initialization because the final locations

(known as sampling points) of the test particles are known precisely, and their initial

locations are also known precisely after backward integration. At a sampling point,

particles can be initialized from uniform grids in the three-dimensional velocity space.

Although there are different choices in defining the form of grids in practice, we chose

to use uniform velocity space grids of (W,α, vφ) to initialize test particles because

this is one of the best approaches to compare the simulation outputs with satellite
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measurements. For example, the Level 3 pitch-angle resolved differential energy flux

data of electrons and protons measured by a MagEIS instrument on the Van Allen

Probes [Blake et al., 2013], which will be used in Chapter 6 and Chapter 7, are

measured using different pitch angle channels and different energy channels.

In most backward Liouville simulations in this thesis, we released the particles

with the same gyro-motion direction vφ because the azimuthal wavenumberm in these

studies is in the range of 30 to 60, and the energy range of the particles is in tens of

keV to several hundred keV. The spatial scale of the gyro-radius of protons/electrons

and the temporal scale of the gyro-frequency are both much smaller than those of the

ULF waves studied in these events. Therefore the gyro-motion of particles and their

initial phase are not important and are considered as uniform in these studies.

5.4 Computational Code for the Models

5.4.1 Numerical Computing Methods

Equations of particle trajectories described by the Lorentz and the guiding center

approaches are both ordinary differential equations (ODEs). In our test particle code,

the fourth-order Runge-Kutta method is used to integrate Equation (5.3)- Equation

(5.5) and Equation (5.10)- Equation (5.11). The numerical time-dependent solution

of an ODE fourth-order Runge-Kutta method (RK4) is expressed as

yn+1 = yn +
h

6
(k1 + 2k2 + 2k3 + k4), (5.25)

tn+1 = tn + h (5.26)

where yn, n = 0, 1, 2, 3, ... is the numerical solution of ODE ẏ = f(t, y), y(t0) = y0

and h is the time step size. An explicit expression of k1 to k4 is

k1 = f(tn, yn), (5.27)

k2 = f(tn +
h

2
, yn + h

k1
2
), (5.28)

k3 = f(tn +
h

2
, yn + h

k2
2
), (5.29)

k4 = f(tn + h, yn + hk3). (5.30)
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The local truncation error of the RK4 method is on the order of O(h5), and the

total accumulated error is on the order of O(h4). The main advantages of using RK4

in this study is that it is very stable, and we do not have to treat the first few steps

taken by a single-step integration method as special cases.

5.4.2 Implementation of Code

The test particle code is written with the Fortran90 programming language based

on Dr. Richard Marchand’s original code. The code is designed to have two main

objectives. The first purpose is to simulate the trajectory of a single particle in the

wave field. The second one is to determine the particles’ initial locations and velocities

with backward Liouville method. Output data of the simulation results are written

as plain text files, but their formats are different for different simulation purpose. For

a single particle trajectory simulation, each output data line includes the position,

velocity, and the magnetic/electric field effect on the particle at one simulation time

step. For a backward Liouville simulation, each line of output data represents the

information about a test particle. The information of each test particle includes its

position and velocity before and after backward integrating to the input region, and

its phase space density determined by the initial condition of in the input region.

The backward tracing simulation data usually include a series of files at different

observation times. By combining data from these time slices, we can reproduce the

overall evolution of phase space density observed by a spacecraft. The list of input

parameters is shown in Table 5.1.

This test particle code has high scalability and high computing resource uti-

lization rate. Large-scale simulation tasks can be divided into smaller jobs and run

independently on different computing systems, such as local server, cluster computing

systems, or cloud computing systems. An external input-parameter-generating script

is implemented to divide the simulation job into smaller tasks. Each job runs as an

independent process, and the CPU resource is dynamically distributed by the system.

Output data visualization codes are written with MATLAB.
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Table 5.1: Main input parameters of test particle simlation code.
Parameter name Description

Global parameters

option The purpose of simulation: Compute particle dis-
tribution function from particle backtracking, or
forward integrate a single particle trajectory.

time Total time range of test particle simulation.
step size Time integration step size.

Parameters of test particle

xyzPosition0 Initial position of test particle for trajectory sim-
ulation, or the observation position for backward
tracing simulation.

mass Mass of test particle.
charge Charge of test particle.
temp Plasma thermal temperature.
density Density of cold plasma, used to calculate Alfvén

speed.
v0 Initial velocity of test particle, only available in

single particle trajectory simulation.

Parameters of wave

omega driver Angular frequency of the external driver.
amp driver Amplitude of the driver in unit of nT.
m value Azimuthal wavenumber of wave.

Time when the wave start decaying.
decay rate Decaying rate of wave, wave amplitude will decay

exportationally after decay time.

Parameters of backward tracing simulation

Emin, Emax Minimum and maximum energies of test particles.
Egridnumber Number of energy grids between Emin and Emax.
PAmin, PAmax Minimum and maximum pitch angle of test parti-

cles.
PAgridnumber Number of pitch angle grids between PAmin and

PAmax.
Vphigridnumber Number of gyro-phase grids between 0 and 2π.
Snapshot interval Time interval between two backward tracing snap-

shots.
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5.5 Simulations on Drift resonance and Drift-bounce

Resonance with H+ and O+ Ions

5.5.1 N=0 Drift-resonant between Fundamental Mode Wave
and H+ Ions

In Figure 5.2, the test particle simulations with backward Liouville method repro-

duced the interaction between H+ ions and input ULF wave observed by Van Allen

Probes on April 11, 2014 [Zhou et al., 2016]. The top left panel of Figure 5.2 shows

the time profile of such an ULF wave with an m = 8, frequency f = 20.94 mHz,

and a poloidal mode wave excited at L = 4.5. The two bottom left panels show

the changes in energy and distribution function of the H+ ions interacting with the

wave. The right column of Figure 5.2 shows values of L, total energy W , normalized

magnetic moment μ/μ0 (here μ0 is the initial magnetic moment), azimuthal electric

field E3, the E × B drift velocity vE×B(black line in bottom panel), and the polar-

ization drift velocity vp(blue line in bottom panel) computed along the trajectory of

a drift-resonant ion of energy 244 keV. The magnetic moment is normalized by its

value at t = 0 to highlight possible regions of non-adiabatic behavior. In this case,

the particle trajectory is not strongly perturbed (right column) by the wave, which

has as a maximum electric field of 2 mV/m at the equator. The linear theory of drift

resonance improved by Zhou et al. [2016] predicted the variations of differential flux

in this case. The results come from our model are in good agreements with both drift

resonance theory and the satellite observations.

The pitch angle dependence of drift resonance is illustrated in Figure 5.3, with

panel (a) in the left column showing the time profile of the wave and panels (b) and (c)

showing changes in particle energy for pitch angles of 90◦ and 35◦, respectively. The

differential flux oscillation caused by drift-resonance is more efficient at 35◦ pitch angle

because ions experience a larger electric field off the equator (see Figure 4.3) and hence

a larger net acceleration/deceleration along their bounce trajectory. The differential

particle flux in the right column of Figure 5.3 is binned in energies similar to a

MagEIS-like instrument on the Van Allen Probes. The modulations of the differential

flux in Figure 5.3 have a maximum amplitude in the ∼ 240 keV energy channel,
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Figure 5.2: H+ ions interacting with a m = 8 poloidal wave of frequency 20.94 mHz.
The left panels show (a) the wave profile; (b) the change in particle energy; (c)
the relative change in the distribution function. The right panels show values of L,
total energy W , normalized magnetic moment μ/μ0 (here μ0 is the initial magnetic
moment), azimuthal electric field E3, and the E×B drift velocity vE×B(black line in
bottom panel), and the polarization drift velocity vp(blue line in bottom panel), of a
drift-resonant ion of initial energy 244 keV placed initially at L = 4.5. This figure is
published in Zong et al. [2017].
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which is consistent with the drift-resonance condition of N = 0. The differential flux

also exhibits a 180◦ phase change with energy across the resonance, as discussed in

Southwood and Kivelson [1981].

Figure 5.3: Test particle simulation of H+ ions. Panel (a) in the left column shows
the time profile of the wave. The energy changes of particles with pitch angles of
90◦ and 35◦ are shown in panels (b) and (c), respectively. Panels (b) and (c) in the
right column show corresponding modulations in differential particle flux for the two
values of pitch angle. This figure is published in Zong et al. [2017].

Figure 5.4 shows the trajectory of a 90◦ pitch angle H+ ion of drift-resonant

energy 244 keV. The trajectory is overlaid with snapshots of the electric field as a

function of L at the equator. Parameters are the same as in Figure 5.2 and Figure

5.3 except that the wave reaches a maximum amplitude of 2 mV/m at the equator

after 800 s and is held constant for a longer time scale of 3400 s before decaying over

a time interval of 800 s. The left and right panels of Figure 5.4 show different parts

of the orbit of the drift-resonant ion up to 4200 s and 5000 s, respectively. The left

panel of Figure 5.4 clearly shows that resonant H+ ions are trapped in an effective

potential well in the wave frame and are continually accelerated and decelerated as

they move periodically back and forth across L along their drift path. In the right

panel of Figure 5.4, the H+ ion then drifts azimuthally with constant energy and L
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after the wave decays out.

Figure 5.4: Test particle simulation of drift-resonant H+ ions of energy 244 keV and
90◦ pitch angle interacting with a m = 8 poloidal mode ULF wave at L = 4.5. In
the left panel the electric field grows linearly with time for 800 s and is then held
constant for 3400 s. The right panel shows the remaining part of the trajectory up to
t = 5000 s after the wave has decayed. Other parameters are defined in Figure 5.2.
This figure is published in Zong et al. [2017].

Figure 5.5 shows the time dependence of L, W , μ/μ0, E3, vE×B, and vp along the

ion trajectory marked in Figure 5.4. For the wave parameters used in this example,

the first adiabatic invariant normalized by its value at t = 0 is subject to small

variations during successive aperiodic excursions between L = 4 − 5. The bottom

panel of Figure 5.5 shows that the magnitude of the drift velocity is much larger than

the polarization drift velocity, which implies the former is more important in causing

radial motion. shows the trajectory of a 90◦ pitch angle H+ ion of drift-resonant

energy 244 keV.

In Chapter 6, the same models are applied to the study of waves with different

amplitudes and azimuthal wave numbers. The effects of gradients in phase space

density will also be investigated in order to better understand the complex behavior

of resonant processes affecting ions and electrons in the Earth’s inner magnetosphere.

5.5.2 Simulations of Relativistic Electrons Drift Resonance
with ULF Waves

In this section, we simulate the drift resonance of relativistic electrons with a fun-

damental poloidal mode ULF wave which has a low azimuthal wavenumber m = 3.
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Figure 5.5: Equatorially mirroring H+ ions of resonant energy 244 keV interact-
ing with an initially growing and then decaying poloidal mode wave with azimuthal
wavenumber m = 8 and frequency 20.94 mHz. The quantities in each panel are in
the same format as the right panel of Figure 5.2, and are computed along the ion
trajectory. Other parameters are the same as in Figure 5.4. This figure is published
in Zong et al. [2017].
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Although low-m ULF waves are mostly toroidal mode waves [Radoski and McClay ,

1967], the drift resonance energy in this case provides a proper condition to com-

pare the drift resonance with relativistic electrons and with non-relativistic H+ ions,

respectively. Using the backward Liouville method provided in Section 5.2.2, the re-

sponses of different energy electrons within a poloidal mode wave have been studied.

Figure 5.6 shows the energy changes δW of electrons and H+ ions at 90◦ pitch

angle affected by a fundamental poloidal mode ULF wave. The wave has a frequency

of f = 3.3 mHz and an azimuthal wavenumber m = 3. Depending on the different

drift directions of electrons, we use westward propagating wave in the case of H+ ions

and use eastward propagating wave in the case of relativistic electrons. As shown in

the top panel of Figure 5.6, the wave reaches a maximum amplitude of ∼ 2 mV/m at

the equator at ∼ 800 s, and is damped out after 1800 s. The strongest flux modulation

of H+ ions in the bottom of Figure 5.6 is about 500 keV, which is in good agreement

with the non-relativistic resonant energy Wres = 492.60 keV calculated from the drift

resonant condition ω = mωd. Relativistic effects in this energy range are not obvious

for H+ ions. However, electrons are relativistic in an energy range of several hundred

keV. For 90◦ pitch angle electrons, the relativistic drift angular frequency ωd is

ωd =
3μ

γeL2R2
E

(5.31)

where γ is the Lorentz factor. The theoretical drift resonant energy calculated from

Equation (5.31) shows that Wres = 689.67 keV. The middle panel of Figure 5.6 shows

that the residual flux variation for electrons near drift resonant energy is similar to

that in the bottom panel of Figure 5.6. The wave propagation direction is reversed

from that for the case of the ions, since the drift direction of the electrons is opposite

to that of the ions. The relativistic resonant energy has obviously shifted to about

700 keV which is consistent with the theoretical expectation.

Figure 5.7 shows the L-shell, energy changes, azimuthal electric field, and E×B

drift velocity of a single electron which drift resonates with an eastward propagating

wave. The initial energy of the test particle We = 700 keV. The frequency, azimuthal

wave number, and amplitude profile of the wave are identical to the simulations in

Figure 5.6. Unlike the ions’ simulation with the full Lorentz force approach, electron
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Figure 5.6: From top to bottom: The first panel shows wave amplitude profile of
an m = ±3, poloidal wave with a frequency of 3.33 mHz. The second panel shows
electrons energy changes as a function of measured energy within an eastward prop-
agating wave with amplitude profile in the top panel. The third panel shows H+ ions
energy changes as a function of measured energy within a westward propagating wave
with an amplitude profile in the top panel.
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simulations with a guiding center assumed that the first adiabatic invariant μ is

conserved. The guiding center model and the full Lorentz force model both imply

that the radial motion of resonating particles is caused by the drift motion under the

electric field of ULF waves.

Figure 5.7: The panels from top to bottom show the L-shell, energy changes, az-
imuthal electric field, and E×B drift velocity for an electron with energy of 700 keV.
The wave profile is identical to the top panel of Figure 5.6.

Figure 5.8 and Figure 5.9 are the Poincaré maps showing the equatorial motions

of electrons which have the same first adiabatic invariant μ. The poloidal wave

amplitude is a constant of ∼ 2 mV/m. The wave’s frequency is 3.3 mHz, and its

azimuthal wave number is 3. In Figure 5.9, particles are accelerated and decelerated

in different locations of the wave frame. The trajectories of particles in Poincaré maps
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Figure 5.8: Poincaré map shows the trajectories of electrons’ L-shell in the wave frame
for 90◦ pitch angle electrons with identical first adiabatic invariant. The wave has
frequency of f = 3.3 mHz, an azimuthal wave number m = 3 and is propagating
eastward. The wave amplitude is ∼ 2 mV/m and does not change with time.

Figure 5.9: Poincaré map shows the trajectories of electrons’ energy in the wave frame
for 90◦ pitch angle electrons with identical first adiabatic invariant. The wave has
a frequency of f = 3.3 mHz, an azimuthal wavenumber m = 3 and is propagating
eastward. The wave amplitude is ∼ 2 mV/m and does not change with time.
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illustrate that particles resonating with the wave change their energy and move in

the wave frame. Their trajectories in the wave frame form closed circles around the

relativistic resonance energy of W ∼ 700keV because their first adiabatic invariant

is conserved while interacting with ULF waves. These closed circles in the Poincaré

maps prove that our model has high precision in long-time integration.
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Chapter 6

Test Particle Simulations of
Poloidal Mode Wave Drift
Resonating with H+ Ions and Flux
Oscillation Observed by Van Allen
Probes and CARISMA

In this chapter, the ULF wave model in Chapter 4 and the full-Lorentz test particle

model in Chapter 5 are used to provide studies on the flux modulation of H+ ions

during a giant pulsations event produced by kinetic instabilities. The work in this

chapter have been submitted to Journal of Geophysical Research: Space Physics. Two

referee reports have been received, both of which state the paper should ”return to

author for minor revisions”.

Ultra-low-frequency (ULF) wave and test particle models are used to investi-

gate the pitch angle and energy dependence of ion differential fluxes measured by

the Van Allen Probes spacecraft on October 6, 2012. Analysis of the satellite data

reveals modulations in differential flux resulting from drift resonance between H+

ions and fundamental mode poloidal Alfvén waves detected near the magnetic equa-

tor at L ∼ 5.7. Results obtained from simulations reproduce important features of

the observations, including a substantial enhancement of the differential flux between

∼ 20◦ − 40◦ pitch angle for ion energies between ∼ 90− 220 keV, and an absence of

flux modulations at 90◦. The numerical results are in good agreement with observa-
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tions and predictions of drift-bounce resonance theory and demonstrate that the flux

modulation caused by ULF waves in the Earth’s magnetosphere can be understood

using relatively simple wave and test particle models.

6.1 Introduction

Ultra-low-frequency (ULF) waves strongly affect the dynamics of electrons and ions in

the Earth’s radiation belts. Resonant interactions between Pc5 waves and energetic

ions can result in substantial changes in particle energy over timescales of tens of

minutes or hours [Elkington et al., 1999; Hudson et al., 2000]. Higher frequency

Pc1 electromagnetic ion cyclotron (EMIC) waves can pitch-angle scatter electrons

on even shorter time periods and contribute to outer radiation belt particle loss

[Summers et al., 1998]. It is therefore crucial to quantify the physical conditions that

lead to efficient energy exchange between ULF waves and inner magnetosphere hot

plasma. Drift bounce resonance theory introduced by Southwood and Kivelson [1981,

1982] suggests that efficient energy transfer between ULF waves and charged particles

occurs when particle drift rates and wave frequencies are comparable. In the Earth’s

magnetosphere, poloidal mode ULF waves fall into this category [e.g. Elkington et al.,

2003; Ozeke and Mann, 2008] and are the main topic of this chapter.

Zong et al. [2007, 2009] have reported observational evidence of drift-resonance

between radiation belt electrons and standing ULF waves with wave periods of sev-

eral minutes (Pc5-range). There are also numerous observations demonstrating that

modulation of energetic particle fluxes by ULF waves is common [e.g. Baker et al.,

1980; Kremser et al., 1981; Takahashi et al., 1985; Takahashi et al., 1990; Claudepierre

et al., 2013; Foster et al., 2015]. Here, we investigate quasi-periodic modulations of

ring current ion fluxes by a class of fundamental mode ULF waves known as Giant

Pulsations (Pgs). These standing Alfvén waves are relatively rare but when they oc-

cur they have an easily identifiable signature in ground magnetometer data [Motoba

et al., 2015] that makes them ideal for analysis. As they support poloidal electric fields

sufficient to accelerate ions to relatively high energy, they are also good candidates for

studying resonant wave-particle interactions [e.g. Chisham et al., 1992; Chisham and
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Orr , 1997]. Ground observations of Pgs reveal they are quasi-monochromatic waves

in the Pc4-5 band with periods of approximately 45 − 150 seconds. The magnetic

field vector of the wave in the magnetosphere is mainly meridional but rotates by

∼ 90◦ through the ionosphere when sufficient Hall conductivity is present [Hughes

and Southwood , 1976]. From ground observations, Pgs are inferred to have westward

phase velocities and azimuthal wavenumbers m on the order of 16 − 35 [Rostoker

et al., 1979; Glassmeier , 1980].

Statistical studies of giant pulsations show they are predominantly a morning

side phenomena with both a seasonal and solar cycle dependence. Wave activity is

stronger at equinox near the solar cycle minimum [Green, 1979; Brekke et al., 1987].

The generation mechanism for giant pulsations is considered to be plasma instabilities,

with different types proposed. Glassmeier [1980]; Poulter et al. [1983]; Chisham et al.

[1990]; Chisham and Orr [1991] all conclude that Pgs are second-harmonic standing

waves excited through bounce resonance. As bounce resonance is only possible for

even harmonics, this mechanism is not viable for Pgs, which are fundamental mode

standing waves. Glassmeier et al. [1999] present clear evidence that Pgs are odd

mode ULF waves and argue that a modified bounce resonance mechanism is viable.

The modified drift-bounce theory has been criticized by Mann and Chisham [2000].

Green [1979, 1985] correctly concludes that Pgs are odd mode standing waves excited

by drift resonance rather than bounce resonance (with bounce harmonic N = +1

or −1). A kinetic instability known as the drift-wave instability [Hasegawa, 1971]

suggests another process by which fundamental mode standing waves can be excited.

In the modeling presented, the generation mechanism is not considered as waves are

excited by a specified source.

Drift resonance between equatorially mirroring electrons and Pc5 waves has been

investigated extensively by Degeling et al. [2007, 2010, 2014]. In their numerical

calculations, a source placed in the vicinity of the noon magnetopause is used to

excite low-m compressional waves that couple to field line resonances in the inner

magnetosphere. This interaction can produce radial peaks in electron phase space

density (PSD) [Degeling et al., 2008], drift-echoes, phase mixing during and after

waves have decayed [Degeling and Rankin, 2008], and both radial diffusion and local
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acceleration [Degeling et al., 2011]. Magnetopause excited compressional waves and

associated field line resonances can also drive transport leading to magnetopause

shadowing [Degeling et al., 2013] and betatron acceleration [Mann et al., 2013]. It

is clear then that Pc4-5 wave-particle interaction processes manifest many observed

characteristics of inner magnetosphere particle dynamics. As high-m waves launched

from a magnetopause source cannot easily penetrate the outer radiation belt, particle

acceleration resulting from such a source is not expected to increase electron and ion

energies in this region significantly. One exception is waves induced by interplanetary

shocks in the recovery phase of magnetic storms [Zong et al., 2009].

The theory of drift bounce resonance developed by Southwood and Kivelson

[1981, 1982] is useful in providing a qualitative interpretation of ion acceleration

by ULF waves. Satellite differential flux can be analyzed by making use of the drift-

bounce resonance condition ω −mωd = Nωb, which requires specification of the ion

drift and bounce frequencies ωd and ωb, respectively, and the order N of the resonance.

In the original formulation of the theory, the assumption of infinitesimal growth of

the wave amplitude is made, which is unlikely to be realized in practice. This led

Zhou et al. [2016] to extend the theory to account for the finite lifetime of ULF waves.

The generalization of the theory to accommodate wave growth and damping stages

enables better comparison between theory and observations. However, it excludes

changes in L resonant ions experience during their interaction with waves. There-

fore, in the studies presented here, test particle simulation is used to follow the full

nonlinear trajectory of ions as they interact with ULF waves. The drift-bounce res-

onance condition is not imposed a priori, and so resonant wave-particle interactions

take place without special constraints placed on the initial particle distribution.

Section 6.2 of the paper describes the methodology used to model ULF waves.

Single particle test particle simulations that illustrate new features of ion dynamics

not previously reported are discussed in Section 6.3. Section 6.4 summarizes ground

and satellite observations of giant pulsations and ion flux modulations observed by

the Van Allen Probes (RBSP) spacecraft on October 6, 2012. Section 6.5 presents

results of test particle simulation that are used to investigate the energy and pitch

angle (PA) dependence of these observations. Section 6.6 provides a summary and
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conclusions.

6.2 Simplified Model of Uncoupled MHD Poloidal

Mode ULF Waves

Figure 6.1: Electric and magnetic field perturbations at L = 5.7. The density varies
as described in the text; the wave frequency is 10 mHz and the azimuthal wavenumber
|m| = 35. The left column shows that the compressional magnetic field (B11 in the
top panel) and azimuthal electric field ( E3 in the bottom panel) are in phase. The
right column panels show the fields 1/4 wave period later.

To model observations of one hour duration giant pulsations observed by the

RBSP-A spacecraft on October 6, 2012, we use a simplified model of driven ULF

waves and a full Lorentz force test-particle code. We focus on the poloidal mode,

but illustrate the procedure for obtaining the toroidal mode as well. The limiting as-

sumption is that coupling between modes is neglected and that the toroidal (poloidal)

mode has an azimuthal (radial) perturbation in the magnetic field and a radial (az-

imuthal) perturbation in electric field. The equations describing the toroidal mode are

obtained from Ampere’s law, the cold plasma form of the linearized fluid momentum

equation, and Ohm’s law expressed as E = −v ×B,

∂(h3B3)

∂t
=

h3

h1h2

∂

∂x1

(h2ν3B10) (6.1)

ρ0
∂ν3
∂t

=
B10

4πh1h3

∂

∂x1

(h3B3) +D (6.2)

In these equations, the coefficients h1,2,3 are the usual metric factors for a dipole

magnetic field, with subscripts 1 and 3 denoting directions along the background
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magnetic field, and in the azimuthal direction, respectively. Subscript 2 denotes

the direction perpendicular to field lines in a meridian plane and x1 is the spatial

coordinate along the background field. Note that h1 = h2h3, while D in the second

equation is a constant frequency driving term with a time-dependent amplitude used

to describe growing and then decaying ULF waves. In our model,D = ρω0vD sinω0t,

ω0 is the frequency of the driver, and vD is the plasma velocity of the driver. The

background magnetic field is denoted by B10 while single-subscript variables such as

B1 indicate perturbed wave quantities, the wave compressional magnetic field in this

case. Multiplying Equation (6.2) by h2B10 and combining the result with Equation

(6.1), provides the wave equation describing the toroidal mode magnetic field,

∂2

∂t2
(h3B3) =

1

h2
2

∂

∂x1

[
V 2
A

h2
3

∂

∂x1

(h3B3)

]
(6.3)

Assuming free oscillations (D = 0), Equation (6.3) can be solved for the eigen-

function Sn(x1) by substituting the expression

h3B3(x1, t) ∝ Sn(x1) exp(−iωnt) (6.4)

into Equation (6.3). To obtain the corresponding equations for the poloidal mode one

simply makes the replacement h2 → h3 and h3 → h2 in Equation (6.1) and Equation

(6.4). The procedure for deriving equations that apply in the driven oscillator case

with D ∝ sin(ω0t−mφ) proceeds as described in Rankin et al. [1994, 1999].

Figure 6.1 shows electric and magnetic field profiles of a fundamental mode

poloidal wave on an L = 5.7 dipole field line in the inner magnetosphere. Wave pa-

rameters are chosen to match the observations discussed in Section 6.3; the azimuthal

wave number is set to |m| = 35 (westward propagation) and the wave frequency

f = 10 mHz. The eigenfrequency on the dipolar geomagnetic field line at L = 5.7 is

controlled by the variation of the background mass density ρ = ρeq(r/L)
−6 along the

field line. Here, r = LRE cos2 λ is the geocentric radius of the field line, λ is colat-

itude, and ρeq is the equatorial mass density. To obtain the results shown in Figure

6.1, the wave amplitude is increased to the value indicated by setting the driver D in

the model constant for a fixed time interval, and D = 0 thereafter.
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The bottom-left panel in Figure 6.1 shows the profile of the azimuthal electric

field at its maximal value over a wave period. Local maxima occur at positions off

the equator due to the curvilinear geometry and Alfvén speed variation along field

lines. In the top-left panel the wave compressional magnetic field component B1 is

in phase with the electric field. As B1 is proportional to dSn/dx1 this component is

non-zero at the equator. For the given parameters, the amplitude of B1 is less than

5 nT within ±20◦ latitude with respect to the equator. In passing, note that in the

case of the toroidal mode in a dipole field, a non-zero compressional component also

exists, except in the limit m → 0. The right-panels in Figure 6.1 show wave fields

one quarter-period later when the poloidal mode wave magnetic field component B2

is at its maximum value and the azimuthal electric field E3 is instantaneously zero.

Figure 6.2: The left panels show the trajectories of (a) 130 keV and (c) 260 keV H+

ions superimposed on snapshots of the poloidal mode electric field at the instant of
time where the wave amplitude is just about to decay (at t = 1500s). The dot and
cross on each panel denote the start and end-points of the trajectory. The right panels
show subsequent trajectories during the decaying part to the wave (at t = 2500s).
Note the different amplitude of the electric field in the left and right panels. Wave
parameters are as in Figure 6.1.

115



6.3 Single Particle Dynamics in ULF Wave Fields

The interaction between poloidal mode waves and a specified background ion distri-

bution function is discussed in detail in Section 6.5. Here, it is instructive to compare

single particle trajectories of equatorially mirroring ions of different energy.

Figure 6.2 shows two trajectories of 90◦ PA H+ ions of energy 130 keV (see panels

(a) and (b)) and 260 keV (see panels (c) and (d)). The 130 keV ion has an energy

satisfying the drift-resonance condition for an L = 5.7 field line, with |m| = 35 and

f = 10 mHz. Ion trajectories are overlaid with snapshots of the wave azimuthal

electric field in the equatorial plane at t = 1500 s (see panels (a) and (c)), and at

t = 2500 s when the wave has decayed appreciably (see panels (b) and (d)). The

wave amplitude grows linearly for 800 s and then remains constant for 700 s before

decaying by t = 2500 s. From Figure 6.2 it is evident that orbits of ions satisfying

the drift-resonance condition (see panels (a) and (b)) are more perturbed than for

non-resonant ions (see panels (c) and (d)).

Figure 6.3a-b shows trajectory parameters for the resonant and non-resonant H+

ions illustrated in Figure 6.2. The particle radial position L, change in energy, first

adiabatic invariant μ = mv2⊥/2B10, azimuthal electric field E3, and E×B drift velocity

experienced by each particle along its trajectory is plotted. The top two panels in

each column of Figure 6.3 show that ions move inward and outward across L-shells

in response to periodic acceleration and deceleration by the wave. The changes in

L, energy, and μ are largest for resonant ions (compare the left and right panel

trajectories in Figure 6.3).

An important consideration not previously reported is that resonant ions become

deeply trapped in an effective moving potential well after the wave amplitude has

increased sufficiently (cf. Figure 6.2a-b and the top-left panel in Figure 6.3). When

the wave has decayed appreciably, ions that were trapped in the wave potential move

along an unperturbed final drift path that depends on their radial position at the

point where the wave has dropped to sufficiently small amplitude. The middle panels

of Figure 6.3 show that during the elapsed time of 2500 s, the maximum variation in

the first adiabatic invariant is less than five percent for resonant ions and significantly
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smaller for non-resonant ions of twice the energy.

Figure 6.3: The panels on the left and right columns show the L-shell, change in
energy, normalized magnetic moment, azimuthal electric field, and E×B drift velocity
for H+ ions with energy equal to (a) the drift resonance energy, 130 keV and (b) twice
the drift-resonance energy, 260 keV. Wave parameters are defined in the caption of
Figure 6.1.

6.4 Van Allen Probes and Ground-based Observa-

tion of Pgs Event

Giant pulsations were observed by the RBSP-A spacecraft on October 6, 2012 during

a period of relatively low geomagnetic activity, Dst = −14 nT, Kp = 2+. When the

spacecraft was in the vicinity of the equatorial magnetosphere toroidal and poloidal

mode electric field perturbations were detected, with the toroidal component lasting

for about 20 minutes longer than the poloidal mode [Takahashi et al., 2016]. Time

series of the electric and magnetic fields are shown in Figure 6.4 in a mean field

aligned coordinate system [Takahashi et al., 1990]. In the second panel of Figure

6.4, the poloidal electric field Eφ increases to ∼ 4 mV/m between 14:10-14:20 UT

before slowly decaying. The amplitude drops below 1mV/m at around 14:40 UT. The

toroidal electric field Er in the top panel of the Figure 6.4 has a smaller amplitude

than the poloidal component, on the order of 2 mV/m, but is present between ∼14:15-

15:00 UT, i.e., until 20 minutes after the poloidal mode has decayed. The suggestion
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of a slight delay in the growth of Er and its persistence after Eφ has decayed is

discussed briefly below. The RBSP-B spacecraft did not observe signatures of ULF

wave activity as it was far to the east of RBSP-A. That the Pgs observed on October

6 are fundamental mode ULF waves is confirmed by the small values of the near-

equatorial wave magnetic field components in the last three panels of Figure 6.4.

The ground track of RBSP-A traced using the Tsyganenko T89c magnetic field

model is shown in Figure 6.5, along with locations of ground magnetometer sites

in northern Canada. The MCMU (Fort McMurray) station is nearly conjugate to

RBSP-A during the observation period, which explains why it measured the clearest

wave signatures.

In Figure 6.6, wavelet analysis of the toroidal (H-component, top panel) and

poloidal (D-component, bottom panel) mode ground magnetic field perturbations at

MCMU show features similar to the in-situ data, i.e., both components have essen-

tially the same frequency, f ∼ 10 mHz, and the poloidal mode appears slightly before

the toroidal component. The H-component spectra are slightly weaker after 14:40 UT

in comparison to the D-component, but in contrast to the satellite data both compo-

nents are present during the interval from 14:40-15:00 UT. Note that GILL (Gillam)

station in Figure 6.5 is eastward of the MCMU station and at approximately the same

latitude. The wavelet spectra at GILL (not shown) is similar to MCMU although the

H-component is more variable. That being said, the H and D component ground

magnetic field data show no clear evidence of strong wave decay after 14:40 UT. A

possible explanation is that the decay of the poloidal electric field after 14:40 UT

is a mixture of spatial and temporal effects affected by spacecraft motion across a

structure localized to a narrow range of L. The D-component time series at MCMU

and GILL shown in Figure 6.7 are also continuous after 14:40 UT, which further

suggests decay of the poloidal mode observed by RBSP-A is not exclusively temporal

decay. Spatial localization in L-shell and spacecraft motion may also explain why

the RBSP-A ion flux oscillations are observed after the Eφ component drops below

1 mV/m. Another possible explanation is that the observed ions are energized at a

different location and transported to the location of RBSP-A. The top-left panel of

Figure 6.3 provides an illustration of how this might occur.
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Figure 6.4: The top two panels show toroidal (Er) and poloidal (Eφ) electric fields
from the EFW instrument on RBSP-A. The third panel is the total parallel magnetic
field (Bμ). A 5 min average of Bμ is subtracted to obtain the fourth panel. The
bottom two panels show the magnetic field components for the poloidal (Br) and
toroidal (Bφ) modes. The magnetic fields are obtained from the FGM instrument on
the spacecraft.
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Figure 6.5: RBSP-A ground track from 14:00-15:00 UT on October 6, 2012. The
locations of CARISMA ground magnetometer stations are also indicated. Geographic
coordinates are used. The station nearest the magnetic foot-point is MCMU.

Differential fluxes of 35◦ PA ions measured by the MagEIS instrument on RBSP-

A are shown in Figure 6.8. The ∼ 100 s period of the modulations matches the

periodicity of Pgs observed in-situ and on the ground. The differential flux at 90◦

PA (not shown) contains no obvious evidence of modulations. A visual inspection of

Figure 6.8 reveals that differential flux modulations at 35◦ PA have their maximum

amplitude at an energy of about 150 keV, and cover the energy range of ∼ 88 −
191 keV. There is also a phase change of 180◦ across this range of energy, which

is consistent with a resonant wave-particle interaction process. It is easily confirmed

that ions of energy 150 keV and 35◦ PA satisfy the condition ω − mωd = Nωb for

|m| = 35, ω = 2π × 10 mHz, L = 5.7, and N = 0. The flux oscillations clearly

correspond to drift resonance.

The observed decay of the poloidal mode after 14:40 UT at the location of RBSP-

A, together with the apparent persistence of the signal detected on the ground, is an

interesting feature that deserves further analysis. However, as the numerical results

presented in the paper are not significantly affected by the uncertainty in the duration

of the signal, this aspect is considered to be outside the scope of this thesis. Section 6.5

describes the results of test particle simulations using the ULF wave models described
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in Section 6.2. The model is constrained using information from the in-situ electric

field and ground magnetic field observations in order to reproduce the differential flux

oscillations observed by RBSP-A.

Figure 6.6: Wavelet analysis of the MCMU ground magnetometer data between 14:00-
15:00 UT on October 6, 2012. The top and bottom panels show the toroidal (H-
component) and poloidal (D-component) magnetic field perturbations, respectively.

6.5 Simulation of Van Allen Probes Differential

Flux Modulations

In drift bounce resonance theory, an estimation of the first-order energy change of

resonant particles is made under the assumption that the particle L-shell is constant

and the energy change is small. Here, we compute ion differential fluxes by using a

full Lorentz force test particle code to evolve the distribution function of H+ ions in

ULF wave fields that are solutions to the equations introduced in Section 6.2. The

compressional wave field B1 is included to ensure conservation of the first adiabatic
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invariant μ. Note that guiding-center test particle calculations conserve μ regardless

of whether the compressional wave field is included. Excluding this field component

in a guiding center formalism may, however, lead to different results.

Backward-in-time test particle simulation is used for the event study of interest.

A phase space grid is defined in energy and PA at a point in configuration space,

and the test particle code is used to trace virtual particles backward to a time before

waves are present. For each phase space cell defined at a selected sampling point,

initial conditions in the past are chosen for each virtual particle such that it lies in the

equatorial plane. Liouville’s theorem is then used to map the distribution function

defined by virtual particles forward in time to the observation point. The distribution

function is assumed to be gyro-phase independent in order to avoid using a 3D phase

space grid.

Figure 6.7: Time series of the MCMU and GILL ground magnetometer data between
14:00-15:00 UT on October 6, 2012. In each column, the top two panels show the
raw data and the bottom two panels show the toroidal (H-component) and poloidal
(D-component) magnetic field perturbations, respectively.

The wave amplitude variation with time in the October 6, 2012 event is controlled

by the amplitude of the driverD in the wave model, cf. Equation (6.2). The amplitude

variation is divided into three stages (i) linear growth with time for eight wave periods

(ii) constant amplitude at around 4 mV/m for seven wave periods (iii) exponential

decay to below 1 mV/m over four wave periods. The other wave parameters needed

are the azimuthal wave number and wave frequency, for which we take |m| = 35
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and f = 10 mHz. The observation point is selected to be on the equatorial plane at

L = 5.7 where the largest electric field strength (across L) occurs.

Figure 6.8: Differential ion flux observed by the Van Allen Probe A satellite from
14:00-15:00 UT on October 6, 2012.

Phase space density (PSD) gradients are included in the simulations but tem-

perature anisotropy is omitted. An initial Maxwellian distribution function fd is

specified that has a specified dependency on L. The ambient temperature of the H+

plasma is obtained from the RBSP-A measured differential flux F = fdW/2mp and

the expression ln fd = W/T + ln fd0 where W and mp are the proton energy and

mass, respectively, and ln fd0 is a constant. Figure 6.9 shows a time average of fd

between 14:30-14:50 UT for two pitch angles and energy bins covered by the MagEIS

instrument on RBSP-A. The linear fit indicated by the solid lines in the figure gives

Ti ∼ 34− 41 keV, with the latter value used in test particle simulations of the event

for simplicity.

Figure 6.10 shows simulation results obtained from the test particle and ULF

wave model described in Section 6.2. The azimuthal electric field in the upper panels

of the figure reaches a maximum amplitude of ∼ 4 mV/m in the equatorial plane.
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Figure 6.9: Time averaged phase space density from 14:30-14:50 UT for energy chan-
nels ranging from 63.86 keV to 256 keV. Red circles are measured MagEIS values in
35◦. Blue squares show measured MagEIS values in 90◦. The red and blue lines are
obtained from linear regression of 35◦ and 90◦ results, respectively.
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The results shown are for a wave with a spatial extent across L that was estimated

from the H and D ground-component magnetic field data. Specifically, we use the

fact that RABB indicated on Figure 6.5 is poleward of the MCMU station at which

the ULF wave signal is most pronounced. As the ULF waves recorded at RABB are

weak, while those at MCMU and GILL (further to the east and at approximately the

same latitude) are strong and similar in magnitude, we use the latitudinal separation

of RABB and MCMU as an estimate of the resonance width. Mapping the magnetic

footprint of these stations to L-shells in the equatorial plane in a dipole field gives

ΔLeq ∼ 0.5, i.e., at approximately the location of RBSP-A. To limit the L-shell extent

of waves in the simulations, phase mixing to a scale less than ΔLeq is prevented.

This also has the effect of limiting the energy range over which flux modulations are

significant. In this manner, the simulation is tailored to predict the energy range of

flux oscillations based on measured wave properties sampled by (in this case) ground

stations closely spaced in latitude and extended in longitude.

Panels (b) and (c) in the left column of Figure 6.10 show the residual flux [Claude-

pierre et al., 2013] of ions of given PA as a function of their observed energy and time.

The flux is slightly larger at 35◦ PA than at 90◦ and is spread over a broader energy

range. The dashed horizontal lines in the figure show drift-resonance energies com-

puted from the expression ω = mωd. The initial PSD has no variation with L in

this case. In the right column of Figure 6.10, panels (b) and (c) show line traces of

differential particle flux for the same pitch angles. Values on the figure are averages

across the energy range of each channel of the MagEIS instrument on RBSP-A. The

amplitudes of the flux oscillations are largest at energies between 120.82-139 keV and

139.81-164.22 keV , and corresponding pitch angles of ∼ 90◦ and ∼ 35◦, respectively.

These resonant energies are in agreement with measured values on RBSP-A and drift-

resonance theory. The phase difference across the flux modulations is close to 180◦

and is consistent with observed values in Figure 6.8.

Comparing the amplitudes of flux oscillations at 35◦ and 90◦ pitch angle in the

right column of Figure 6.10, it can be seen that ions are modulated more strongly at

35◦ than at 90◦, although the relative differences are small. It is tempting to associate

this behavior with there being a stronger electric field at higher latitude, cf. Figure
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Figure 6.10: The panels labeled (a) show the wave amplitude profile used in simula-
tions. In the left column, panels (b) and (c) show the residual flux experienced by H+

ions as a function of their measured energy and time. The right column panels (b)
and (c) show corresponding differential fluxes for energies binned in the same manner
as the MagEIS detector on the Van Allen Probes spacecraft.
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6.1c. According to Southwood and Kivelson [1981, 1982], the mean energy variation of

a particle is proportional to its drift velocity and the electric field along its trajectory.

However, for fundamental mode poloidal mode waves, the variation in the electric

field magnitude with latitude is small, and the dominating effect is the pitch angle

dependence of the resonance energy, as discussed below.

Figure 6.11: Residual particle flux as a function of pitch angle and time for ions of
different energy (a) 110 keV, (b) 115 keV, (c) 130 keV, (d) 145 keV, (e) 160 keV, (f)
175 keV. The resonance energy is in the neighbourhood of 130 keV.

Figure 6.11 displays residual differential particle flux as a function of pitch angle

and time for ions of various energies. In Figure 6.11, panels (d)-(f), the maximum in

the flux occurs at a pitch angle and energy for which the drift resonance condition

ω = mωd is satisfied. In panels (a)-(c) of Figure 6.11, the flux gradually diminishes for

energies below the resonance energy because the drift-resonance condition becomes

increasingly more difficult to satisfy. The ”boomerang” shape of the pitch angle
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distributions after 14:45 UT in Figure 6.11 appears during the decaying phase of the

wave. These ions stream freely and undergo energy dispersion at a rate that depends

on their final velocity and pitch angle [Hao et al., 2017].

Figure 6.12: The residual particle fluxes and corresponding binned differential fluxes
variation, with additional L-shell dependence of L-shell f ∝ L−3, as functions of their
measured energy. The panels are arranged in a similar format as Figure 6.10.

An obvious question is why the observed differential flux modulation at 90◦ pitch

angle has smaller amplitude than that at 35◦ pitch angle. A possible explanation

is that PSD gradients are responsible. Figure 6.12 shows results of test particle

simulations in the same format as Figure 6.10, except that the initial PSD has an

imposed L-shell dependence of the form fd = f0L
−s. It is immediately obvious that

the residual flux at 90◦ pitch angle is much reduced in comparison to Figure 6.10,

whereas the flux at 35◦ pitch angle is relatively unchanged. Figure 6.13 shows the

pitch angle distribution for this case, which can be compared with Figure 11. PSD
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Figure 6.13: Residual particle flux as a function of pitch angle and time for ions of
different energies. The panels are arranged in a similar format as Figure 6.11. In this
figure, additional L-shell dependence of L-shell f ∝ L−3 is added.
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as a function of L for energies matching the MagEIS instrument is shown in Figure

6.15. The left column panels have no explicit PSD gradient, s = 0, corresponding

to results shown in Figures 6.10 and 6.11, whereas the right column panels are for

s = −3, matching results shown in Figures 6.12 and 6.13. The effect of the L−3 spatial

dependence is to change positive gradients visible in Figure 6.14a,c into negative

gradients, Figure 6.14b,d. At 90◦ pitch angle, Figure 6.14b, the PSD has a nearly

flat profile at the location of the wave at almost all energies, which explains why

the flux is not significantly enhanced. The gradients at the wave location for ions of

35◦ pitch angle in Figure 6.14d are negative (cf. panels c and d of Figure 6.13) and

consequently the flux in this range of pitch angles is not appreciably different.

Figure 6.14: PSD distribution of first adiabatic μ conserved particles as functions of
L-shell. Energies at the left axis indicate the energies at L = 5.7, centers of energy
bins of MagEIS. (a) Pitch angle α = 90◦, without L-dependence. (b) Pitch angle
α = 90◦, PSD ∝ L−3. (c) Pitch angle α = 35◦, without L-dependence. (d) Pitch
angle α = 35◦, PSD ∝ L−3.

It is of interest to notice that the pitch angle distributions in Figure 6.11 and
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Figure 6.15: Residual flux at 14:40UT (cf. Figure 6.11) as a function of pitch angle
and for different energies. The energy bin size is 10 keV. In the upper panel, PSD is
independent of L-shell. In lower panel, PSD is proportional to L−3.
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Figure 6.13 have a butterfly appearance similar to distribution functions produced

by VLF waves [Lyons et al., 1972]. Ions with pitch angles in the vicinity of 90◦

move increasingly out of resonance at lower energies while at higher energies and

increasingly field-aligned pitch angles the resonance condition is more easily satisfied.

Figure 6.15 shows the residual flux of ions as a function of pitch angle at the virtual

satellite position at 14:40 UT. The top panel corresponds to Figure 6.11 and the

bottom panel to Figure 6.13. Each coloured line on the figures corresponds to the

energy indicated in the legend, and illustrates that high energy particles are able to

satisfy the resonance condition at small and large pitch angles, while lower energy

particles move out of resonance. Interestingly, the largest energy change of particles

occurs in a pitch angle range αm ∼ 20 − 40◦ and 180◦ − αm, respectively. This PA

dependence is consistent with the RBSP-A observations.

Figure 6.16: Residual flux as a function of pitch angle and for different energies at
different time. Initial time t = 0 corresponds to 14:20UT. The energy bin size is
10 keV. In the upper panel, PSD is independent of L-shell in this figure. This figure
is not in the paper submitted to Journal of Geophysical Research: Space Physics.
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6.6 Conclusion

Test particle simulation is used to describe the dynamics of H+ ions moving in electric

and magnetic fields obtained from a simplified model of poloidal mode ULF waves.

The simulations reveal phenomena not previously reported, such as the formation of

a trapped population of drift-resonant ions over a range of L that depends on the

strength and spatial extent of the electric field of the wave. Those particles satisfying

the drift resonance condition ω = mωd have trajectories that follow constant wave

phase and move toward or away from Earth until they reach the low electric field

region where their E×B drift decreases. They are then re-captured during the next

period of the wave and periodically transported inward and outward by an amount

that depends on the strength of the accelerating electric field. This corresponds to

nonlinear particle trapping in a moving electric potential well.

The ULF wave and test-particle simulations presented in the paper reproduce

several features of the pitch angle and energy spectrum of ion differential fluxes ob-

served by the Van Allen Probes-A spacecraft on October 6, 2012. The observed and

simulated flux is well correlated with giant pulsations of frequency f ∼ 10 mHz and

contains modulations in a narrow range of energy, with stronger enhancements occur-

ring for non-equatorially mirroring particles. For ions of 35◦ pitch angle, a maximum

in the differential flux occurs at an energy of ∼ 150 keV predicted by drift reso-

nance theory. Simulations of the ULF wave event reproduce the observed behavior

for poloidal mode wave parameters that are in general agreement with the data anal-

ysis presented by Takahashi et al. [2016]. The lack of enhanced differential fluxes of

particles near 90◦ pitch angle can be explained by the dependence of the resonance

energy on pitch angle.

In conclusion, the results presented in this chapter provide a verification of drift-

bounce resonance theory, and demonstrate that satellite observations of particle ac-

celeration in Earth’s inner magnetosphere can be understood using relatively simple

models.
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Chapter 7

Test Particle Simulations of Drift
and Drift-bounce resonances with
Electrons and O+ Ions in Earth’s
Outer Radiation Belt

As a complement to the studies on the drift resonances of H+ ions in the previous

chapters, the drift resonances of energetic electrons and the drift/drift-bounce reso-

nance of O+ in the earth’s outer radiation belt have been studied in this chapter with

our models in Chapter 4 and Chapter 5. Charged particle acceleration and radial

transport by ultra-low-frequency (ULF) waves in Earth’s magnetosphere are inves-

tigated quantitatively by solving equations of motion for test particle electrons and

ions in electric and magnetic fields of the waves. Characteristics of poloidal mode

drift resonance are contrasted and compared with modulations in differential electron

flux observed by the Van Allen Probes spacecraft on 31 October 2012, 15:30-16:00

UT following an interplanetary shock. Simulated fluxes have larger amplitudes and

slower attenuation rates than observed fluxes due to the finite energy resolution of

the MagEIS instrument on the spacecraft. When they are binned in energy as in

the MagEIS instrument, they appear remarkably similar to the observed fluxes. Sim-

ulations of O+ ions undergoing N = 0 drift resonance and N = −2 drift-bounce

resonance provide insight into the dynamics of heavy ions that interact with ULF

waves. These simulations illustrate the expected behavior of ring current energetic

ion populations in a region where poloidal mode ULF waves are ubiquitous.
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The work in this chapter have been submitted as C. Wang, R. Rankin, Y. Wang,

Q.-G. Zong, X. Zhou, K. Takahashi, R. Marchand, A. F. Degeling, and D. Sydorenko

”Ultra-low frequency wave-particle interactions in Earths outer radiation belt” in the

American Geophysical Union Monograph on ”Dayside Magnetospheric Interactions”.

7.1 Introduction

It is established that various types of plasma waves exert control of energetic elec-

tron [Zong et al., 2007, 2009] and ion [Yang et al., 2010, 2011a; Zong et al., 2011;

Ren et al., 2016] dynamics in Earth’s radiation belts. Ultra-low-frequency (ULF)

standing waves with frequencies in the Pc4-5 band (2-22 mHz) [Dungey , 1955] cause

rapid order of magnitude changes in energetic particle fluxes over timescales of tens

of minutes to a few hours [Elkington et al., 1999; Hudson et al., 2000]. ULF waves

classified as toroidal [Elkington et al., 1999], compressional [Elkington et al., 2002,

2003, 2004; Tan et al., 2011], and poloidal mode Alfvén waves are involved to varying

extent [Zong et al., 2009; Zong et al., 2011, 2012a] . Compressional and poloidal mode

Alfvén waves have greater influence on charged particle dynamics than the toroidal

mode as they carry azimuthal electric fields that accelerate particles directly along

their drift-bounce path. Resonant energy transfer is possible for ions and electrons

moving at or near the wave phase velocity, i.e., westward and eastward in the wave

frame, respectively. Gyroresonant interactions between energetic electrons and ELF

(extremely low frequency) and VLF (very low frequency) chorus and hiss elements,

respectively, are known to cause local acceleration and transport, as well as particle

loss to the atmosphere via pitch angle diffusion. However, the relatively small ampli-

tudes of these waves makes the rate of transport small in comparison to ULF waves,

which have much larger amplitudes.

ULF waves are understood to be drivers of radial diffusion but can also produce

radial transport through non-diffusive processes such as prompt acceleration [Li et al.,

1993]. Radial transport occurs when electrons and ions are in drift-resonance or

drift-bounce resonance with ULF waves, with the poloidal and compressional modes

providing more efficient energy transfer than the toroidal mode [Zong et al., 2009;
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Yang et al., 2011a,b; Zong et al., 2012a]. Low-m compressional waves excited by solar

wind disturbances are effective in the outer magnetosphere, while high-m poloidal

waves excited by plasma instabilities, e.g., drift resonance, operate mainly in the

inner magnetosphere. The importance of drift resonance as a mechanism for forming

new radiation belts has been reported by Wygant et al. [1994] and Zong et al. [2011].

Sources of ULF waves in Earth’s magnetosphere include solar wind dynamic pres-

sure pulses [Kepko and Spence, 2003; Hudson et al., 2004; Takahashi and Ukhorskiy ,

2007; Claudepierre et al., 2009, 2010], interplanetary shocks [Claudepierre et al.,

2013], Kelvin-Helmholtz (K-H) instabilities on the magnetopause [Hudson et al., 2004;

Claudepierre et al., 2008], and internal plasma instabilities [Takahashi et al., 2016].

Recently, Claudepierre et al. [2013] reported clear signatures of fundamental mode

poloidal ULF waves and energetic electrons observed by the RBSP on October 31,

2012, 15:30-16:00 UT, following an interplanetary shock. This event provides an

excellent opportunity to test predictions of drift resonance theory using the method-

ology described in Chapter 4 and Chapter 5. The electron differential flux in the

event is perturbed in the energy range of 57− 80 keV where the resonance condition

ω−mωd = Nωb of Southwood and Kivelson [1981, 1982] is satisfied, and is modulated

at the wave period. Here, ω is the wave frequency, m the azimuthal wave number,

N = 0 the order of the resonance, ωd the drift angular speed, and ωb the bounce

angular frequency.

The drift-bounce resonance theory of Southwood and Kivelson [1981, 1982] ac-

counts for waves that grow slowly without limit over an indefinite amount of time. To

describe how differential flux modulations evolve during the growth and decay stages

of ULF waves the theory was modified by Zhou et al. [2016]. However, the original

and modified theory account only for first-order changes in the distribution function

as they assume particles follow unperturbed trajectories and the energy change is

small. Arbitrary variations in L and particle energy are accounted for in our studies

by solving equations of motion for electrons and ions in ULF wave fields without

apriori use of the resonant condition. Section 7.3 presents results using this approach

that are in good agreement with observations. Although MeV electrons are not reg-

istered in the Claudepierre et al. [2013] event, the observation facilitates quantitative
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analysis of wave-particle interactions that form one of the primary goals of the RBSP

mission. Southwood and Kivelson [1981, 1982] evaluate the effect of sensor bandwidth

and phase mixing on the detection of signatures of drift resonance in the magneto-

sphere. Here, simulations are used to quantify phase mixing within MagEIS energy

channels by averaging particle fluxes in energy bins similar to the RBSP.

Test particle simulations of drift resonance between equatorially mirroring elec-

trons and Pc5 waves have been reported by Degeling et al. [2007, 2010, 2014]. Their

simulations describe low-m compressional waves excited by a source placed in the

vicinity of the noon magnetopause. Coupling between compressional waves and

toroidal mode field line resonances in the outer magnetosphere is included and leads

to radial peaks in electron phase space density [Degeling et al., 2008; Degeling and

Rankin, 2008], and both radial diffusion and local acceleration [Degeling et al., 2011].

In the studies presented in this chapter, we consider high-m poloidal modes

that are more characteristic of the inner magnetosphere. Section 7.2 describes the

test particle and ULF wave models used to study the dynamics of electrons and

ions. Section 7.3 presents results of guiding-center test particle simulations of ULF

wave electron dynamics and their comparison with RBSP observations during the 31

October, 2012 event. Full Lorentz force test particle simulations of O+ undergoing

N = 0 drift resonance and N = −2 drift-bounce resonance are presented in Section

7.4. Section 7.5 provides a discussion of our results and conclusions.

7.2 ULF Wave and Test Particle Models

To calculate distribution functions in fields of ULF waves, we use a test particle model

with guiding-center and full Lorentz force options, and a simplified model for driven

poloidal mode ULF waves [Wang et al., 2018] excited by a monochromatic source of

frequency ω0. The electric and magnetic perturbations of poloidal mode are described

by Equations (4.57)-(4.59) in Chapter 4. On the resonant L-shell where ωN = ω0,

the poloidal magnetic field B2 grows with time at a rate ∝ RDω0t, while at other

values of L phase mixing narrows the radial scale to a width at time t defined by

Δωt/2 = π. When plasma conductivity is included, narrowing terminates at a time

137



when wave Poynting flux directed onto the resonant field line is balanced by Joule

heating in the ionosphere. However, as infinite ionospheric conductivity is assumed in

the wave model used here, the minimum perpendicular scale after a specified elapsed

time is set as an adjustable parameter. The variation of the field line eigenfrequency

and frequency mismatch with L is illustrated in Figure 7.1 for a resonant field line at

L = 5.8.

Figure 7.1: Field line eigenfrequency, fN , and frequency mismatch parameter, fn−f0,
as a function of L for a resonant field line at L = 5.8. Equatorial plasma number
density at L = 5.8 is about neq = 23.3cm−3.

Figure 7.2 shows the poloidal mode electric and magnetic field components for a

resonant field line at L = 5.8. Wave parameters are chosen to match the observation

described in Section 7.3. The wave period of 180s is obtained by setting the density

equal to a constant in the equatorial plane and choosing a power law variation along

field lines: ρ(r) = ρeq(req/r)
6, where r is the geocentric radius and req = LRe. In the

left column of Figure 7.2 the bottom panel shows the electric field as a function of

latitude at its maximum value over a wave period. The top-left panel shows magnetic

field components of the wave at the same moment of time, from which it is clear

that B2 and E3 are 90◦ out of phase, while B1 and E3 are in phase. In the right

column of Figure 7.2 wave fields are shown a quarter wave period later when B1 and

E3 are instantaneously zero and B2 is at maximum. It is important to note that

the compressional magnetic field component is included, and that it is small near

the equatorial plane and relatively large near the ionosphere. The amplitude of B1

depends mainly on the strength of meridional gradients, as seen on inspection of

Equation 4.59. The radial width in the equatorial plane in Figure 7.2 is a constant
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set equal to 1.5Re.

Figure 7.2: Electric and magnetic field perturbations at L = 5.8 for a wave frequency
is 5.5 mHz. Equatorial plasma number density at L = 5.8 is about neq = 23.3cm−3.
The left column shows that the compressional magnetic field (B1) and the azimuthal
electric field (E3) are in phase and that the wave magnetic field component B2 and
electric field E3 are 90◦ out of phase. The right column panels show the fields 1/4
wave period later.

With ULF wave fields determined by Equations (4.57)-(4.59) we now turn to

consideration of charged particle dynamics. The guiding-center approximation is

used for the electron energy range considered, but for heavy ions, the possibility of

non-adiabatic behavior requires that the full cyclotron orbit of particles be resolved.

The Lorentz force equations of motion is used in the latter case, as described in

Section 7.4. For the electron dynamics presented in Section 7.3, the guiding-center

equations are used. The drift motion of the guiding center is a combination of the

E×B drift, gradient drift, and curvature drift. The relativistic form of the equations

[Northrop, 1963] is defined by,

dp‖
dt

= −μ

γ

dB

ds
+ vE×B · (p‖db

ds
) (7.1)

dR

dt
= vE×B +

μ

γqB2
(B×∇B) +

p2‖
γm0qB2

(B× db

ds
) +

p‖
m0γ

. (7.2)

The first three terms on the right hand side of Equation 7.2 are the E × B drift,

gradient drift, and curvature drift, respectively, and the last term p‖ is the electron

parallel velocity. The E × B drift speed vE×B = E × B/B2 , p = γm0v is the
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relativistic momentum, m0 the electron rest mass, μ = W⊥/B the first adiabatic

invariant, p‖ = mv‖ the parallel momentum, and b = B/|B| the direction of the

magnetic field. The parallel electric field of a shear Alfvén wave is zero under the

ideal MHD approximation.

7.3 Simulation of Electron Drift Resonance Ob-

served by the Van Allen Probes on October

31, 2012

Observations of electron drift resonance by Zong et al. [2009] and others demon-

strate the importance of Pc5 waves in the dynamics of energetic electrons in the

inner magnetosphere. Radial electron transport caused by these waves violates the

third adiabatic invariant keeping the first and second invariants conserved [Hudson

et al., 2008]. This process is often quantified by a diffusion coefficient that depends

on the amount of wave power in the Pc4-5 band. In storm sudden commencements,

on the other hand, prompt-acceleration by shock-induced compressional waves pro-

ceeds coherently and non-diffusively [Li et al., 1993]. Another possible acceleration

mechanism involves substorm-injected eastward drifting electrons that excite poloidal

ULF waves via drift resonance [James et al., 2013]. In Claudepierre et al. [2013] this

is suggested as an explanation of modulations in differential particle flux observed by

the RBSP on October 31, 2012. Test particle simulations exploring this scenario are

presented in Section 7.3. That being said, it is an open question as to whether local

acceleration or radial transport dominates energization of outer zone electrons to rel-

ativistic energies. The precision will undoubtedly be improved as more observations

are made of energy dependence of the amplitude and phase of electron differential

flux modulations and their relation to phase space density gradients [Takahashi et al.,

2018].

Test particle simulations enable drift-bounce resonance theory to be validated

and quantify observations of the type reported by Zong et al. [2009], Claudepierre

et al. [2013], and Mann et al. [2013], which show evidence of electron acceleration

during the passage of interplanetary shocks. The amplitudes of differential flux mod-
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Figure 7.3: The four panels show the trajectories of a ∼ 60 keV electron superimposed
on snapshots of the poloidal mode electric field at (a) t = 400s, (b) t = 800s, (c)
t = 1200s, and (d) t = 1600s. The electrons are released at t = 0 at L = 5.5, 5.8,
and 6.1, corresponding to the red, white, and blue lines on each panel of the figure,
respectively.
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ulations in the October 31, 2012, event are largest between 50−100 keV, and smaller

at energies above and below this range. Electrons of energy 60 keV satisfy the drift-

resonance condition at L ∼ 5.8 for waves with a period of 180s, azimuthal wavenum-

ber m = 44, and N = 0. The m-value cannot be estimated directly as only RBSP-A

observed signatures of drift resonance. The absence of waves at RBSP-B suggests the

electron acceleration process in the event is highly localized over the approximately

five-period time scale of the event.

Figure 7.4: From top to bottom the panels show the L-shell, change in energy, az-
imuthal electric field, and E × B drift velocity for electrons of energy equal to the
drift resonance energy of ∼ 60 keV.

Figure 7.3 shows trajectories drift-resonant ∼ 60 keV electrons superimposed on

snapshots of E3(L, t) at t = 400s,800s,1200s, and 1800s, respectively. Three resonant

energy trajectories are shown for electrons released at different values of L, with the

red, white, and blue lines corresponding to initial particle positions at L = 5.5, 5.8,

and 6.1, respectively. It is clear that electrons follow trajectories that depend on the

phase of E3 they experience. The L-shell, change in energy ΔW , electric field E3,

and the E×B drift velocity experienced by the resonant electron at L = 5.8 over a

period of 2000s is shown in Figure 7.4. The growth and decay of the wave over this

timescale in the test particle simulation leads to an azimuthally localized interaction

region that is consistent with the event reported by Claudepierre et al. [2013].
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Figure 7.5: Panels (a) and (b) show Poincaré maps of test electrons that all have the
same first and second adiabatic invariant. Panel (a) shows the change in energy in
the wave frame for an azimuthal wavenumber m = 44. Panel (b) shows corresponding
changes in L-shell. The first and second adiabatic invariants μres and K are assigned
values defined by the strength of the dipole magnetic field at L = 5.8 and a 60 keV
electron satisfying the drift resonance condition ω = mωd. Panel (c) shows the
resonance energy as a function of L for different values of m, including m = 44. The
vertical dashed line marks the L-shell for the RBSP-A observation, while the other
dashed line corresponds to constant μ = μres.
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Poincaré plots for electrons subjected to acceleration and deceleration by poloidal

mode waves observed on October 31, 2012, are shown in Figure 7.5. Panels (a) and

(b) were obtained by releasing test particle electrons at different values of L with

initial particle energies defined by W⊥ = μresB(L). Here, μres takes a value defined

by the strength of the dipole magnetic field at L = 5.8 and a 60 keV electron satisfying

the drift resonance condition ω = mωd. Panel (c) in the figure shows the resonance

energy as a function of L for different values of m, including m = 44. The vertical

dashed line marks the L-shell for the RBSP-A observation on October 31, 2012, while

the second dashed line corresponds to the first adiabatic invariant for resonant energy

electrons, μ = μres. The Poincaré plot shows that electrons near resonance experience

changes in L and energy that are comparable to the energy range of differential flux

modulations on RBSP-A.

Figure 7.6: Time averaged phase space density from 15:35-16:00 UT for RBSP-A
energy channels ranging from 37 keV to 221 keV. The two lines indicated are obtained
from linear regression of the observations from 37 keV to 110 keV and from 110 keV
to 221 keV, respectively.

The initial particle distribution function is assumed known in the test particle

approach used here to investigate drift-resonance. For simplicity, an initial isotropic

Maxwellian distribution function fd is assumed. The ambient temperature Te is ob-

tained from measured RBSP-A differential fluxes F = fdW/2me and the expression

ln fd = −W/T + ln fd0. Here, W and me are the electron energy and mass, respec-

tively, and ln fd0 is a constant. Figure 7.6 shows a time average of fd for RBSP-A

between 15:30-16:00 UT utilizing 11 pitch angle channels and 8 energy bins covering

37.3 keV to 221.1 keV. The two solid lines on the figure show linear fits based on
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the four lowest and highest energy bins, respectively. The energy bins in the range

57 keV to 80 keV yield Te ∼ 10 keV, which is the ambient temperature we use in our

test particle simulations.

Given the initial distribution function, Liouville’s theorem is used to calculate

the evolution of fd with time due to the action of ULF waves. This is done by defining

a phase space grid in energy and pitch angle at the approximate location of RBSP-A

during the October 31, 2012, event; L = 5.8, magnetic latitude 6.0◦, assuming a dipole

field. Phase space points representing virtual electrons are traced backward in time

from this location by solving the relativistic guiding center equations numerically.

The distribution function at time t can be reconstructed once the initial positions

and velocities of virtual electrons have been obtained from backward-tracing. This

is achieved by applying Liouville’s theorem, which states that particles preserve fd

along their trajectory to the observation point at time t.

Simulated residual fluxes (J − J0)/J0 are shown in Figure 7.7 following the def-

inition used by Claudepierre et al. [2013]. In their paper J0 is a 10-minute running

boxcar average of the observed flux, which is introduced to take into account inter-

planetary shock compression effects not accounted for in the studies presented here.

In the simulations, the background differential flux defines values of J0. The top panel

in Figure 7.7 shows the simulated poloidal mode magnetic and electric fields for the

October 31, 2012, event. The wave amplitude reaches a maximum after two wave

periods and then decays over five wave periods similar to the observation. As the

electric field data is not available in the event, it is estimated using the magnetic field

component br measured by RBSP-A as ∼ 4 mVm−1. The middle panel of Figure 7.7

shows simulated residual fluxes as a function of time at various energies. Inspection

of flux modulations on either side of the resonance energy Wres = 60 keV marked by

a red line on the figure, indicates that modulation amplitudes decrease away from the

resonance energy within the energy range of matching the observations. There is also

a 180◦ phase shift across this range of energy as predicted by Southwood and Kivelson

[1981]. The bottom panel of Figure 7.7 presents residual fluxes in 1 keV energy bins

to make it more obvious that the phase difference increases with time as the wave

decays. This behavior arises due to the dependence of the electron drift speed on L,
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Figure 7.7: Simulation of the RBSP-A drift resonance event on 31 October, 2012.
The wave period is 180 s and the azimuthal wavenumber m = 44. The observation
point used for backward Liouville tracing is at L = 5.7 on the equatorial plane.
The top and middle panels show the wave profile and the simulated residual flux of
equatorial electrons at 1 keV resolution (the phase space grid size in the simulation),
respectively. The bottom panel shows simulated electron residual flux as a function
of energy and time.
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and is known as phase mixing in phase space. Phase mixing makes it a challenge to

observe signatures of drift resonance when the affected energy range is small.

The phase mixing effect discussed above is potentially problematic for satellite

instrumentation with variable and relatively large energy bin sizes [Schulz and Lanze-

rotti , 2012; Degeling and Rankin, 2008]. It has the effect of diminishing the measured

amplitude of flux oscillations artificially as waves decay. Figure 7.8 shows the same

data as Figure 7.7 except that averaging of the simulated flux in the third panel

of the figure is done identically to the MagEIS-A instrument. The second panel of

Figure 7.8 shows simulated residual fluxes at the center of each energy channel of

MagEIS-A without binning. Although the phase difference between the wave mag-

netic field and the 57 keV flux oscillation remains 180◦, the averaged residual fluxes

within MageEIS-like energy bins attenuate faster and have slightly smaller ampli-

tudes. The bottom panel of the figure shows the observed residual flux adapted from

Figure 2(a) of Claudepierre et al. [2013], from which it is clear that simulated and

observed Mag-EIS residual fluxes are in close agreement.

The test particle simulation results discussed up until now are for electrons of 90◦

pitch angle. Figure 7.9 summarizes the simulated pitch angle dependence of electrons

accelerated by electric fields in the Claudepierre et al. [2013] event. The top panel of

the figure shows the wave profile, the middle panel shows the residual flux in an energy

bin matching the ∼ 80 keV MagEIS energy channel, and the bottom panel shows the

observed electron differential flux adapted from Figure 2(d) of Claudepierre et al.

[2013]. The simulated and observed electron fluxes for 90◦ pitch angle are strongly

modulated in comparison to smaller pitch angles and are in good agreement. Figure

7.10 shows the simulated residual flux as a function of pitch angle at different energies,

illustrating that fluxes at all energies are strongest at 90◦ pitch angle, as expected for

ULF drift-resonance.
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Figure 7.8: The first panel shows wave profile used in simulations. The second panel
shows simulated residual fluxes at energies matching the center of energy channels of
the MagEIS-A instrument. Note that these fluxes are binned at the resoloution of the
phase energy grid in the simulation. The third panel shows simulated residual flux
for energies that are binned in energy the way it is done on the MagEIS detector on
RBSP-A. The fourth panel adapted from Claudepierre et al. [2013] shows observed
residual fluxes from 37 keV to 221 keV on MagEIS-A.
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Figure 7.9: The top and middle panels show, respectively, the simulated wave profile
and residual flux as a function of pitch angle and time for electrons matching the
MagEIS instrument energy channel at 80 keV. The bottom panel, adapted from
Claudepierre et al. [2013], shows the observed differential flux in the actual energy
channel of MagEIS-A.
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Figure 7.10: Residual flux at 15:46 UT as a function of pitch angle and for different
energies. The energy bin size is 10 keV.

7.4 Drift-Bounce Resonance Involving Fundamen-

tal Mode Poloidal Waves and O+ Ions

In Earth’s magnetosphere, heavy ions are often present during and after geomagnetic

storms and interplanetary shocks. In this section, we briefly discuss some aspects

of the expected response of O+ ions to poloidal mode ULF waves that accompany

these space weather disturbances. For ions drifting westward N wavelengths in the

wave frame in a single bounce period, the resonance condition ω −mωd = Nωb can

be satisfied for N = 0 and N = −2. Resonant ions experience net acceleration or

deceleration over a bounce period depending on their initial position and velocity in

the wave frame [Southwood and Kivelson, 1981, 1982].

In fundamental mode poloidal waves the energy of resonant ions is lower for

N = 0 than for N = −2. Drift resonant ions remain at a fixed azimuthal position

in the wave frame while bouncing between mirror points, and precipitate to the

atmosphere within a single bounce period if they are initially in the loss cone. Outside

the loss cone the resonance energy of ions is smaller the further they are from the

loss cone. Figure 7.11 illustrates that the electric field E3 increases gradually from

the equator before dropping rapidly near the ionosphere. It is of interest to consider

whether modulations in ion differential flux are strongest at 90◦ pitch angle where
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Figure 7.11: Electric and magnetic field perturbations at L = 5.7. The wave frequency
corresponds to f = 10 mHz. The format of the figure is the same as Figure 7.2.
Equatorial plasma number density at L = 5.7 is about neq = 7.8cm−3.

resonant ions have the lowest possible energy, c.f. Section 7.3, or at a pitch angle where

the mirror point is nearer to the electric field maximum off the equator. The pitch-

angle dependence of O+ ions is investigated below. Poincaré plots for O+ subjected

to acceleration and deceleration by poloidal mode waves are shown in Figure 7.12.

In Figure 7.13 the direction of wave propagation is assumed to be westward,

with the azimuthal wavenumber, wave period, and resonant field line taking values

m = −60, 100 s, and L = 5.7, respectively. The differential particle flux in the

figure shows clear evidence of N = 0 and N = −2 resonances. The electric field

amplitude in the top-left and top-right panels of the figure both increase with time,

but at different rates. The maximum wave amplitude is 8.5 mVm−1 in the top-left

panel and 3 mVm−1 in the top-right panel. The lower panels of the figure show

corresponding changes in ion energy, δW , as a function of energy and time on the

equator at L = 5.7. Dashed lines in Figure 7.13 indicate resonance energies predicted

by drift-bounce resonance theory. In the bottom-right panel, the pattern of positive

and negative δW falls within the linear regime [Southwood and Kivelson, 1981; Zhou

et al., 2016]. The vortex-like pattern of δW in the bottom-left panel is evidence of

nonlinear dynamics in which resonant ions experience large changes in L during each

bounce period.
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Figure 7.12: Poincaré plots of test particles for fixed first and second adiabatic in-
variants. Wave parameters are the same as Figure 7.11. The top-left and bottom-left
panel shows variations in particle energy and L-shell for N = −2 drift-bounce reso-
nance. The panels on the right show Poincaré plots for particles satisfying the N = 0
drift resonance condition in the same format as the left column panels.

Figure 7.13: The top-left and top-right panels show the electric field profile as a func-
tion of time. The bottom panels show corresponding energy changes, δW , experienced
by O+ ions as a function of their energy and time on the equator at L = 5.7. The
wave frequency and azimuthal wavenumber correspond to f ∼ 10 mHz and m = −60,
respectively.
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Figure 7.14: The panels are arranged in the same format as Figure 7.13 except m =
−90 in the left column, m = −60 in the right column, and the maximum electric field
amplitude is 23.8 mVm−1 at the equator.

The N = 0 and N = −2 resonance structures in Figure 7.13 are well separated

in energy and therefore do not interact. To investigate conditions under which island

overlap is possible, we increase the amplitude of the electric field to 23.8mVm−1 in

the equatorial plane and compare results for azimuthal wavenumbers m = −60 and

m = −90. Figure 7.14 shows results in the same format as Figure 7.13 except that in

the left column m = −90 and in the right column m = −60. Resonant islands have

a smaller separation for m = −90 to the extent that an intermediate island forms

between the N = 0 and N = −2 islands.

Stroboscopic Poincaré plots in the laboratory frame are shown in Figure 7.15,

with panels (a) and (b) showing changes in L and energy for the m = −90 case, and

panels (d) and (e) showing those for the m = −60 case. The overlap of N = 0 and

N = −2 resonant islands is more significant for m = −90. The bottom panels of

Figure 7.14 show resonance energies as a function of L, with dashed lines indicating

the first adiabatic invariant for ions in drift-resonance (N = 0) and drift-bounce

resonance (N = −2) at L = 5.7. For m = −90 ions with μ = μres lie on trajectories

that can potentially migrate between a resonant island at L = 5.7 and an island at

L = 9.2. The implications of resonant island overlap and radial transport are deferred

to a future study.
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Figure 7.15: Stroboscopic Poincaré plots with particle positions and energies calcu-
lated at intervals of the drift-bounce period for N = 0 and N = −2. Panels (a) and
(b) show changes in ion energy and L for m = −60, and panels (d) and (e) show
corresponding values for m = −90. The bottom panels show N = 0 and N = −2
resonance energies as a function of L with dashed lines indicating the first adiabatic
invariant for ions with an energy equal to the N = 0 and N = −2) resonance condi-
tion at L = 5.7. In panels (a), (b), (d) and (e), the red lines indicate the N = −2
resonance, and the blue lines indicate the N = 0 resonance.
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Figure 7.16: Maximum energy changes |δW | over a wave period as a function of pitch
angle for different energies. Each curve corresponds to an energy bin size of 10 keV.
The top panel shows energy changes close to the N = 0 drift resonance energy and
the bottom panel shows energy changes close to the N = −2 drift-bounce resonance
energy.
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Finally, Figure 7.16 shows the pitch angle dependence of changes in energy, ΔW ,

of ion that have various energies in the vicinity of the N = 0 and N = −2 resonances.

Unlike electrons, the maximum energy gain for heavy ions occurs at pitch angles

substantially different from 90◦. An obvious question is whether the pitch-angle

dependence of the energy changes in Figure 7.16 are related to the off-equator peak

in the wave azimuthal electric field. This is not the case as ions with pitch angles that

mirror more toward the ionosphere have a correspondingly larger resonance energy.

This is more obvious in the N = −2 drift-bounce resonance case where the resonance

energy is large in comparison to N = 0 drift resonance energy. Correspondingly,

resonant ions in the N = −2 case are concentrated near the high and low latitude

segments of geomagnetic field lines.

7.5 Conclusion

In this chapter, we have presented ULF wave and test particle simulation results on

drift resonance and drift-bounce resonance involving energetic ions and electrons in

Earth’s magnetosphere. The simulation results presented in Section 7.3 reproduce the

amplitude, phase difference with energy, and pitch angle dependence of modulations

in electron differential flux observed by the MagEIS instrument on RBSP-A between

15:30-16:00 UT, October 31, 2012 [Claudepierre et al., 2013]. They confirm that

the wave and electron signatures observed by the spacecraft are due to localized

drift resonance wave-particle interactions between fundamental poloidal mode Alfvén

waves and electrons near 60 keV. The flux oscillations attenuate rapidly during the

damping stage of the observed ULF waves because of the increasing phase difference

between different energy particles within energy bins of the MagEIS instruments.

The effect of finite energy bin size on satellite instruments is estimated by com-

paring residual flux obtained from high energy resolution simulations with and with-

out energy binning. Although the binned electron residual flux is in better agreement

with observations, the more rapid attenuation rate due to energy binning may give a

distorted picture of the actual process. The electron drift resonance results presented

in our study provide a verification of electron drift resonance theory in the mag-
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netosphere, and offer a path toward development of more realistic models that aid

interpretation of wave-particle interactions observed by spacecraft such as NASA’s

Van Allen Probes and MMS missions, and the Japanese ERG mission.

Test particle simulations of N = 0 drift resonance and N = −2 drift-bounce

resonance with O+ ions reveal complex dynamics in which different wave-particle

resonances can potentially interact. The pitch angle response of ions to ULF waves

is also strikingly different from electron drift resonance. For electrons, differential

particle fluxes peak at 90◦ pitch angle at all energies, and are relatively unaffected by

the profile of the accelerating electric field that peaks at latitudes well off the equator.

In the case of O+, the ion differential flux is strongly peaked at pitch angles that

place particle mirror points well of the equator. The drift-bounce resonance N = −2

differential flux also peaks at much higher latitudes than N = 0 drift resonance,

which is explained by the pitch-angle dependence of the resonance energy. More

observations and simulations are necessary to understand in more detail the features of

differential flux modulations resulting from drift-bounce resonance, and the resulting

radial transport caused by poloidal mode ULF waves in Earth’s magnetosphere.

157



Chapter 8

Test Particle Simulations of
Drift-bounce Resonance with
Advanced ULF Wave Model and
Forward Liouville method

The ULF wave model we used in previous chapters makes assumptions about infinite

ionosphere conductivity and specifies the plasma density distribution in the radial

direction. The infinite ionosphere conductivity decoupled the toroidal mode and the

poloidal mode of Alfvén waves on the field lines. In this chapter, we use a global MHD

ULF wave model developed by D. Sydorenko et al.. This model is more advanced

because it includes self-consistent coupling between the compressional mode and both

the toroidal and poloidal modes by introducing more realistic ionospheric boundary

condition and plasma density distribution. Although different ionospheric boundary

conditions are considered in previous MHD ULF wave models [e.g. Degeling et al.,

2011], the spatial domain of the model covers a range of altitudes stretching from

the ground to the magnetosphere. Different global distributions of plasma density

can also be specified in this model. The plasma density distribution can either be

previous models such as the Global Core Plasma Model [Gallagher et al., 2000], or

from the real data.

Other realistic features of ULF waves in the magnetosphere have also been intro-

duced in this model. For example, the ULF waves in the magnetosphere are usually
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combination of multiple frequency components. In Section 8.2, we will show that this

model provides a way to simultaneously excite FLRs with different harmonic orders.

The cold plasma convection has also been included in this model. The convection

electric field can be specified either from observations such as Super Dual Auroral

Radar Network (SuperDARN) [Chisham et al., 2007], or from global models such as

the Volland Stern model [e.g. Burke, 2007].

The test particle model we use in this chapter to simulate trajectories of H+ ions

in this chapter is the full Lorentz model. In previous chapters, we used backward

Liouville method to reproduce PSD variation at the sampling point. The method we

use in this chapter to reproduce PSD variation is the forward Liouville method in Sec-

tion 5.2, Chapter 5. This method simulates behavior of charged particles distributed

throughout a larger simulation domain (e.g., the inner magnetosphere) rather than

at a single point. Combining this method with the Monte Carlo method, this method

allows us to study the variation of PSD in an arbitrary sampling volume in the simu-

lation domain. We can also study particle transport throughout the system if enough

test particles are collected in the sampling volumes.

In this chapter, we combine the advanced ULF wave model and the Forward Li-

ouville method to provide some preliminary studies about the drift-bounce resonance

between the second-harmonic poloidal mode waves and H+ ions. It has been shown

that second-harmonic waves can energize ions to tens of keV. The test-particle simu-

lations also predict ion flux oscillations that have energy dispersion similar to satellite

observations.

The work presented in this chapter had been done earlier than the other chapters.

However, as we discussed in Section 8.5, we realized that the computing resources we

have do not allow us to effectively study the wave-particle interactions in the other

chapters. In this chapter, we only provide some preliminary simulations with this

advanced model.

The work in this chapter is based on an invited oral presentation given at the

URSI Asia-Pacific Radio Science Conference in Seoul, Korea in 2015. The IEEE

published a short paper summarizing the results [Rankin et al., 2016].
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8.1 Introduction

The electric fields associated with magnetospheric poloidal ULF waves [Dungey , 1955]

are known to accelerate electrons and ions in the inner magnetosphere. These waves,

with frequencies ranging from about 1 mHz to 1 Hz, can be excited by external sources

including solar wind dynamic pressure pulses [Kepko and Spence, 2003], Kelvin-

Helmholtz (K-H) instabilities on the magnetopause [Hudson et al., 2004; Claude-

pierre et al., 2008], and internal plasma instabilities. The K-H instability can excite

ULF waves in the magnetosphere through coupling that takes place between long-

wavelength surface-mode waves and earthward ULF Alfvén waves [Claudepierre et al.,

2008]. Interplanetary shocks and solar wind dynamic pressure pulses also excite ULF

waves, although the precise mechanism that converts shock energy to waves of a high

azimuthal wave number is not yet fully understood.

Wave-particle interactions involving these ULF waves can dramatically accelerate

electrons [Zong et al., 2007, 2009] and modulate flux of ions [Yang et al., 2010; Zong

et al., 2011] in the inner magnetosphere. The energization process following shocks

consists of a prompt increase in particle energy that initially shows little or no energy

dispersion. This is followed by a temporal response that exhibits a phase change of

π with energy that is characteristic of drift-bounce resonance.

ULF waves excited by shocks and dynamic pressure variations can be very in-

tense and are sometimes damped away quickly over tens of minutes [Zong et al., 2009;

Zhang et al., 2010]. A recent study [Wang et al., 2015] (cf. Chapter 3) suggests that

the observed fast damping is caused by drift-bounce resonance between ULF waves

and ions with energies of a few keV. Such a mechanism has been described theoreti-

cally [Southwood and Kivelson, 1981, 1982] and is possible because of the comparable

periods of drift and bounce motion of energetic particles and ULF oscillations. The

mechanism of drift/drift-bounce resonance is the main topic of this thesis. Among

different kinds of ULF waves with different wave field components the resonance be-

tween ions and poloidal ULF waves [Zong et al., 2012a] is considered to be more

efficient [Yang et al., 2011b], even leading to the formation of a new radiation belt

[Li et al., 1993; Wygant et al., 1994] in certain situations. In the previous chapters,
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the acceleration and transportation of ions caused by ULF waves were evaluated by

combining observations and simulations. In this chapter, by using electric fields from

the full-wave model developed by Sydorenko et al. [Sydorenko and Rankin, 2013],

studying global ions dynamics offers a path to being able to model the response of

the entire radiation belt to solar disturbances. To our knowledge, this study is the

first to implement the forward Liouville tracing method on this ULF wave model to

explain particle flux modulation caused by drift-bounce resonance.

This chapter examines the energization and modulation of radiation belt ions

caused by poloidal mode ULF waves. Electric fields from a full-wave model presented

in Section 8.2 are used to drive a full Lorentz force test particle model of drift-bounce

resonance. In Section 8.3, the forward Liouville method is used to reconstruct the PSD

response to 2nd-harmonic poloidal mode waves. A discussion of particle signatures

of heating and energy dispersion, along with limitation of this model is presented in

Section 8.4. The conclusion and future work are in Section 8.5.

8.2 Global ULF Wave Model with Advanced Plasma

Conditions

To model FLRs in the magnetosphere, we utilize a newly developed 3D linear MHD

simulation code. Although other approaches are possible [Degeling et al., 2010; Lysak

et al., 2013], using a structured grid and spherical geometry simplifies the specification

of inner boundary conditions, as well as enabling high scalability on parallel comput-

ers. Parallel electric fields are accounted for, together with a realistic ionosphere

with height-resolved ionospheric Pedersen and Hall conductivities. The model can

use non-dipole magnetic fields, but it is assumed in this study that the plasma is az-

imuthally symmetric, and that the geomagnetic field is a dipole. The spatial domain

of the model covers a range of altitudes stretching from the ground to several tens

of thousands of km. Electromagnetic wave propagation in the neutral atmosphere

will be included to improve the accuracy of the calculation of the signal created by

magnetospheric ULF perturbations on the ground. It will encompass the atmosphere,

ionosphere, and inner magnetosphere (to L ∼ 10). The plasma of the ionosphere and
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magnetosphere consists of electrons and multiple ion species (H+ , He+ , N+ , O+ ,

N2+ , NO+ , O2+ ). The multi-species plasma is represented as fluids that are coupled

through Maxwell equations. Collisional friction is necessary in order to represent the

ionosphere accurately. Neutral species (H, He, N, O, N2 , NO, O2 ) will be consid-

ered as a static background, while collisions of ions and electrons with each other

and with neutrals will be accounted for using the formalism in Sydorenko and Rankin

[2013]. In the system of linear equations that are solved, electromagnetic fields are

calculated using Faraday’s law and Ampere’s law. The determination of electric cur-

rents in Ampere’s law requires only a time advance of ion and electron flow velocities.

The latter are found by solving linearized multi-species ion fluid motion equations.

A predictor-corrector procedure implemented in the model ensures the stability and

accuracy of the field calculation by eliminating accumulative errors that can arise

over long simulation times.

The present model considers the magnetic field and electric field described by

Ampere’s and Faraday’s laws (Eqaution (2.1) and Equation (2.2)). These equations

are written in the form of components of a dipolar coordinate with finite ionospheric

conductivity:
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where ΣA is parallel conductivity, ΣP is the height-integrated Pedersen conductivity

(Equation (2.42)) and ΣH is the height-integrated Hall conductivity(Equation (2.43)).
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J23,ext are the perpendicular components of the external current driver. To solve the

six variables in the above equations, the implicit finite difference form of the equations

creates a system of two linear equations for E2 and E3 which are to be solved to

advance these field components. Equations of B2, B3, and E1 are written in explicit

finite difference form and a predictor-corrector procedure is used to move these field

components to the next time level as described below.

Figure 8.1: Power spectra of simulated second harmonic poloidal ULF waves. (a)
Power spectra of the poloidal component electrical field Eφ as a function of the L-
shell at a 30◦ latitude. (b) Power spectra of the poloidal component electrical field
Eφ as a function of the latitude at L = 6.2. The driver frequency is consistent with
the natural frequency of the field lines at around L = 6.2. (c) Power spectra of the
poloidal component electrical field Eφ as a function of the latitude at L = 5.0. The
natural frequency of the field lines is higher than the driver frequency.

The numerical scheme used to solve the coupled system of partial differential

equations will exclude fast timescale electron and ion Langmuir plasma waves. This
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is necessary to avoid having to take very small time steps. The finite difference forms

of Ampere’s law and the fluid plasma motion equations will be solved with the electric

field and flow velocities treated implicitly. The calculation of the wave magnetic field

will be shifted by a half-time-step relative to the electric field, while Faradays law

will be solved explicitly. Inside the plasma volume, the electric and magnetic fields

will be defined on staggered grids. First, a prediction of E2 and E3 at time step

n + 1/2 will be calculated by using the three components of the electric field. Then

E1,n, which was obtained from the last time step, will be corrected by using B2,n+1/2

and B3,n+1/2. The corrected E1,n will then be used to correct B2,n+1/2 and B3,n+1/2.

After the implicit correction, E2,n+1 and E3,n+1 will be explicitly calculated from the

magnetic field at a time step of n+ 1/2. The implicit correction will largely increase

the precision of the field when the simulation time is long. At each node, all three

components of a field vector will be specified. The benefit of such an approach is that

the electric field vector at each node can be found by solving a system of only three

linear equations, which is a very fast operation.

In the above system of equations describing ULF waves in interaction with the

ionosphere and atmosphere, electromagnetic fields will be calculated. As the model

is linear, the determination of electric currents in Amperes law requires only a time

advance of ion and electron flow velocities. The latter will be found by solving lin-

earized ion fluid motion equations. For Pc1-2 waves, the motion equations will have

terms involving ion inertia, the electric field, ion gyromotion, and friction. For waves

with a lower frequency, Pc3-5 and Pi1-2, ion gyromotion will be excluded and the

motion equations transformed into a modified generalized Ohms law with Pedersen

and Hall conductivities and the ion polarization current proportional to the ion mass

and the time derivative of the wave electric field. Electron motion in the plane per-

pendicular to the geomagnetic field will be described using the ordinary generalized

Ohm’s law, making use of the reduced conductivity tensor (with Hall and Pedersen

terms only). Electron motion along the geomagnetic field will be obtained using the

linearized electron fluid motion equation that accounts for electron inertia, parallel

electric fields, and friction. At the interface between the ionosphere and the atmo-

sphere, ion and electron currents will be calculated using the ordinary generalized
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Ohms law. The geomagnetic field may be specified using any available model, e.g., a

compressed dipole [Tsyganenko, 1995; Stern, 1985].

We establish a second harmonic poloidal ULF wave by applying a constant fre-

quency driver electric field located between L = 4.5 − 7.5. The driver frequency is

set at 11.1mHz and the azimuthal wave number is m = 44. Figure 8.1 shows power

spectra obtained from the wave model as a function of frequency and L (panel (a)),

and as a function of frequency and latitude (panels (b) and (c)).

In the top panel of Figure 8.1, the natural frequency of field lines varies from

about 20mHz at L = 4.5 to about 5mHz at L = 7.5. The driver frequency is found

to match the natural frequency of field lines located at L = 6.2. In the range of L-

shell shown in Figure 8.1(a), there is a dominant frequency component in the power

spectra at the expected L-shell, along with higher harmonics. The bottom two panels

of Figure 8.1 show the power spectral distribution along field lines at L = 6.2 and

L = 5.0, respectively. The driver frequency and natural frequency are distinct in the

lower panel (L = 5), but coincide in the middle panel (L = 6.2). The electric field

oscillation is nearly zero at the equator for second harmonic FLRs and strongest at

40◦ latitude on both sides of the equator.

8.3 Test Particle Simulation of Drift-bounce Res-

onance

The Forward Liouville method is used to reconstruct the distribution function of H+

ions. The method makes use of the Liouville’s theorem. For a collisionless plasma

described by the Vlasov equation, the distribution function of a single particle re-

mains constant along particle trajectories [Marchand , 2010]. Each particle in the test

particle simulation is a virtual particle and is tagged with the known numerical value

of distribution function f calculated in the injection region. The distribution function

can be tagged as any plasma distribution function. In the present study, they are

tagged with an isotropic Maxwellian distribution

f(v) = n
mp

2πkBT
exp

(
−mpv

2

2kBT

)
. (8.7)
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wheremp is the proton mass, kBT is the product of Boltzmann’s constant and temper-

ature, and n0 is the proton number density. The latter is considered to be a function

of L. To build up a realistic and stable initial distribution of PSD, test particles are

injected at a constant rate and randomly initialized with a uniform probability dis-

tribution function. Each particle brings information about the distribution function

to the observed location (sampling volume). To reconstruct the distribution function

near a virtual satellite location, the sampling volume is selected to be small enough to

eliminate spatial variations in PSD. To accurately model PSD, large numbers of test

particles must also be used. In the results shown we used several million test-particles.

Figure 8.2: Phase space density of 90◦ pitch angle protons as a function of time at
L = 6.0, latitude = 30◦, longitude = 0◦. The ULF wave is a second harmonic poloidal
wave. The sampling volume is 0.02Re in radius, 2◦ in azimuthal angle, and 5◦ in polar
angle. Energy is binned in step size of 1 keV.

In this section, we present simulations of drift-bounce resonance for protons that

are initialized with a 30◦ equatorial pitch angle between L = 5−7. The first adiabatic

invariants of the test particles range from 6.94 keV/nT to 0.250 keV/nT. To simulate
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the behavior of particles following interplanetary shocks, particles are released into

the wave fields 300 s after the second harmonic FLR is introduced into the system.

This mimics a prompt turn-on of the amplitude of wave electric fields, which reach a

constant amplitude of 20 mV/m during the first 300 s of the simulation.

Figure 8.2 shows the variation of phase space density observed in the sampling

volume at L = 6. In the 300 s interval after the wave reaches constant amplitude, a

modulation of phase space density is obvious in the energy range between 5 keV and

25 keV. According to the N = 1 drift-bounce resonance condition (Equation (2.56)),

the resonant energy is 12.84 keV. The theoretical resonant energy is consistent with

the energy range with the strongest modulation. In the time interval 600-900 s, the

phase space densities at all energies are largely enhanced. This enhancement of phase

space density at all energies corresponds to relatively fast heating of the plasma.

This effect has been observed in association with large amplitude fundamental mode

poloidal ULF waves in N = 0 drift resonance. The results presented here suggest this

effect should occur in the case of N = 1 bounce resonance involving second harmonic

mode waves.

8.4 Discussion

8.4.1 Ion Flux Modulation and Energization

The theory of drift-bounce resonance [Southwood and Kivelson, 1981] predicts that

second harmonic poloidal mode FLRs should produce PSDmodulations around 12.84 keV.

In Figure 8.3, these modulations are also accompanied by energy dispersion for ion

energies in the energy range of 5 − 25 keV. For ions with an equatorial pitch angle

αeq = 45◦, the time delay for an ion moving from one point to another along a field

line is computed according to the expression [Fälthammar , 1965]

δt =
LRE√
2W/M

∫ λ2

λ1

cosλ

[
1− sin2 αeq

√
1 + 3 sin2 λ

cos6 λ

]−1/2

(8.8)

where W denotes the energy of an ion, λ is the magnetic latitude, and αeq is the

equatorial pitch angle. The period of the dispersion signatures is equal to the wave
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Figure 8.3: Phase space density of protons observed in the sampling volume located
at L = 6.0, latitude of 0◦, longitude of 0◦. The size of the sampling volume is 0.02Re

in radius, 2◦ in azimuthal angle, and 5◦ in polar angle. Energy binning of particles is
1 keV.
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period. The duration of each dispersion signature is related to the latitude at which

measurements are made, and so the detected pitch angle dispersion signatures in the

sampling volume can be explained as thermal ions interacting with second harmonic

poloidal mode ULF waves. The white dash lines in Figure 8.3 are the traces of energy

dispersion predicted by Equation (8.8) which match the simulation results quite well.

8.4.2 Pitch Angle Distribution for Off-equatorial Flux Oscil-
lations

To study the behavior of H+ with different pitch angles at different latitudes, we

initialized non-equatorial test particles using the Monte-Carlo method described in

Section 5.3.1. Test particles were released from uniform random locations along the

magnetic field line, and with a uniform random pitch angle within an unperturbed

loss cone. The three panels in Figure 8.4 show different PSD variations as functions

of pitch angles and time. From top to bottom, the three panels correspond to the

PSD collected by three sampling volumes located at the same L = 6.0, but at a 30◦

latitude in the southern hemisphere, at the equator, and at a 30◦ latitude in the north-

ern hemisphere, respectively. The wave and plasma parameters are identical to those

in Section 8.4.1. According to the theory of drift-bounce resonance [Southwood and

Kivelson, 1981; Yang et al., 2011b], as the field-aligned beams of ions near the equator

propagate along the magnetic field line to a higher latitude, velocity dispersions will

emerge since the particles have different parallel velocity. Northern propagating par-

ticles with an equatorial pitch angle of α < 90◦ are collected by a sampling volume in

the northern hemisphere at an earlier time than southern propagating particles with

the same energy but equatorial pitch angle is 180◦−α. The negative slope of ion flux

modulation observed in the southern hemisphere is explained by the same mechanism.

In the middle panel, the PSD modulation near 90◦ is weaker since the secondary har-

monic FLRs have the weaker electric field at the equator, where particles with a 90◦

pitch angle experience weaker modulation by FLRs.
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Figure 8.4: From top to bottom: Pitch angle distributions of H+ phase space density
as a function of time within energy range of 12 − 13 keV observed at 30◦ southern
hemisphere, at the equator, and at 30◦ northern hemisphere, respectively. The size
of the sampling volumes is 0.02Re in radius, 2◦ in azimuthal angle, and 5◦ in polar
angle.
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8.5 Conclusions and Future Work

In this chapter, we used an alternative ULF wave model and test-particle simula-

tions to study drift-bounce resonance between ions and poloidal mode ULF waves.

The forward Liouville method was used to reconstruct the distribution function of

ions after they interacted with waves. Second-harmonic poloidal mode waves are

efficient at energizing ions to tens of keV over timescales of tens of minutes. The

test-particle simulations of bounce-resonance reproduce particle signatures that are

commonly observed by satellites. The energy dispersion is found to be in agreement

with theoretical predictions.

The realistic ionospheric conductivity ULF wave model requires more comput-

ing resource than the analytic ULF wave model because it computes global fields at

high-resolution grids at every single time step. For the simulations in Section 8.4.1,

the pitch angle is limited in a narrow range to guarantee that the phase-space sam-

pling volumes gather large enough numbers of particles at every time step. For the

off-equator simulations in Section 8.4.2, the test particle number is increased since

particles need to distribute along field lines with different pitch angles. For these

reasons, the resolution of figures in this chapter is not as high as that of the figures

in previous chapters.

The model in this chapter can be used in backward Liouville simulations in the

future. In this case, the magnetic field and the electric field on the global grids at

each time step should be determined before tracing the particles backward in time.

However, the size of global field grid data at each time snapshot is on the order of

several hundred megabytes, and the high-resolution test particle simulations require

a time step of much less than one second within an overall simulation range of several

thousand seconds. The requirement for the size of field data storage and the I/O

time consumption between the hard disk and memory makes the backward Liouville

simulation with this model impractical. However, the backward Liouville simulation

with the realistic ionospheric conductivity ULF wave model will be a worthwhile

future study project. Moreover, the test particle models can be implemented into

more space weather models, for example, it is worthwhile to couple the test particle
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formalism with the Lyon-Fedder-Mobarry (LFM) global MHD model [Lyon et al.,

2004] on the three-dimensional cubed-sphere grids [Ivan et al., 2013].
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Chapter 9

Conclusions and Future Work

This thesis has concentrated on investigating the drift resonance and drift-bounce

resonance between energetic particles and Pc3-5 Alfvénic ULF waves in the Earth’s

inner magnetosphere. We have developed numerical models to simulate dynamics of

O+ ions, H+ ions and electrons affected by MHD Alfvén waves in a dipole magnetic

field. The simulation results are used to interpret differential flux oscillations caused

by ULF wave events in the magnetosphere. Observational data from different satel-

lite projects, such as Cluster and Van Allen Probes, and from the CARISMA ground

magnetometer observatory array are introduced to investigate the characteristics of

ULF waves and the corresponding energetic particle flux variations. The ULF waves

events presented in this thesis are caused by different mechanisms, such as interplane-

tary shock and plasma instability. Our simulation results show high consistency with

the differential fluxes observed in these events.

We introduced relevant space physics concepts as the background of this thesis

in Chapter 1. The sun and solar wind are important drivers of ULF waves in the

magnetosphere. We then reviewed different regions of the magnetosphere to provide

insight into the plasma environment for ULF waves and high-energy particles in the

radiation belts. We also briefly reviewed geomagnetic storms and substorms which are

related to the generation of ULF waves. The motivation of this thesis was summarized

at the end of Chapter 1.

Chapter 2 briefly reviewed the theoretical backgrounds of ULF waves, test parti-

cle motions, and wave-particle interaction processes. This chapter includes the MHD

173



theory of Alfvén waves, the adiabatic motion of ions and electrons in a dipole magne-

tosphere, and the drift/drift-bounce resonance condition. Landau damping and flux

modulation were also discussed as the results of drift/drift-bounce resonance.

Chapter 3 presented observational studies about the ULF wave damping mech-

anisms. Two ULF wave events after interplanetary shocks observed by Cluster on

November 7, 2004, and August 30, 2001 were examined in this chapter. The ULF

waves excited by interplanetary shocks and solar wind pressure impulses led to a high

decay rate of wave amplitude in these two events. The energy exchanged between the

wave and particles through Landau damping is considered to be more efficient when

heavy ions such as O+ are present. A comparison between multi-satellite observations

also suggests that Landau damping is more effective in the plasmasphere boundary

layer due to the relatively higher proportion of resonant ions that exist in that region.

At the end of Chapter 3, we used our models to compare the energization effects of

a fast-damped ULF wave on O+ and H+ ions in plasma environments with different

thermal energy.

Chapter 4 showed the detailed mathematical descriptions of our MHD Alfvén

wave model including derivations and assumptions. An analytical solution of the

field line resonance eigenfunction with self-consistent electric and magnetic fields was

obtained based on a widely used Alfvén wave velocity distribution. By adding an

external monochromatic wave driver with harmonic dependence, we can study the

excitation and damping of waves. We also estimate the contribution of the phase-

mixing effect in our model and showed an example of its effects on the evolution of

phase difference across L-shells.

Computational simulations of drift-bounce resonance are based on the wave

model described in Chapter 4, while different descriptions about the particle dy-

namics affected by ULF wave fields are discussed in Chapter 5. A set of test particle

simulation methods, the Liouville methods, were used to reproduce the differential

flux observations in this thesis. The detailed implementation of these methods in our

computational code is a main topic in Chapter 5. We used the full Lorentz model

and guiding center model to describe the 3D dynamics of different species of particles

174



in the magnetosphere. Large gyro-radius ions were described using the full Lorentz

model, while the high gyro-frequency electrons were described using the guiding cen-

ter model. Chapter 5 includes mathematical models and numerical implementations

of these two different models. In Section 5.5.1, we show an example of successfully

reproducing the drift resonance between H+ ions and ULF waves on April 11, 2014

by comparing with results of Zhou et al. [2016]. Section 5.5.2 provided the simulation

results about the drift resonance between low-m ULF wave and relativistic electrons

with energy of several hundred keV. The difference in drift resonance conditions

between the relativistic electrons and non-relativistic H+ ions are compared.

Chapter 6 presented implementations of the models that we used to investigate

the pitch angle and energy dependence of ion differential fluxes measured by the Van

Allen Probes spacecraft on October 6, 2012. An analysis of the satellite data reveals

modulations in differential flux resulting from drift resonance between H+ ions and

the fundamental mode poloidal Alfvén waves detected near the magnetic equator at

L ∼ 5.7. Results obtained from simulations reproduced important features of the

observations, including a substantial enhancement of the differential flux between

∼ 20◦ − 40◦ pitch angle for ion energies between ∼ 90− 220 keV, and an absence of

flux modulations at 90◦. The numerical results are in good agreement with observa-

tions and predictions of drift-bounce resonance theory and demonstrate that particle

acceleration by ULF waves in the Earth’s magnetosphere can be understood using

relatively simple wave and test particle models.

Chapter 7 investigated the drift-resonance between electrons and ULF waves

with the guiding center test particle model. Using simulations, we reproduced the

features of electron flux modulation in an ULF waves event on October 31, 2012

[Claudepierre et al., 2013]. We also estimated the effect of finite energy bin size on

satellite instruments by comparing the binned and unbinned residual flux obtained

from high-energy-resolution simulations. This chapter also included simulations of

O+ ions undergoing N = 0 drift resonance and N = −2 drift-bounce resonance, to

provide insight into the dynamics of heavy ions that interact with ULF waves. These

simulations illustrate the expected behavior of ring current energetic ion populations

in a region where poloidal mode ULF waves are ubiquitous.

175



Chapter 8 includes another MHD Alfvén wave model with a more realistic iono-

sphere boundary condition. The forward Liouville method was used to reconstruct the

distribution function of ions interacting with ULF waves. Second-harmonic poloidal

mode waves are efficient at energizing ions to tens of keV over timescales of tens of

minutes. The test-particle simulations of bounce-resonance reproduce particle signa-

tures that are commonly observed by satellites. The energy dispersion was found to

be in agreement with theoretical predictions.

Future work may include more simulations on particles with equatorial pitch

angles near the loss cone. In previous studies, the underlying drift/drift-bounce res-

onance theory takes was more concerned with the variation of a particle’s energy.

However, a particle’s equatorial pitch angle will change when it is moving with con-

served first and second adiabatic invariants across L-shells in ULF waves. Recently,

preliminary simulation results have been obtained for the pitch angle variation of test

particles near the loss cone. It is worthwhile to study the relationship between energy

particle precipitation and ULF waves with our model in the future. Another worth-

while subject for future study is backward Liouville simulations with a ULF wave

model with realistic ionospheric conductivity. Moreover, the test particle models can

be implemented into more space weather models. For example, it is worthwhile to

couple the test particle formalism with the Lyon-Fedder-Mobarry (LFM) global MHD

model [Lyon et al., 2004] on the three-dimensional cubed-sphere grids [Ivan et al.,

2013].
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