INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand cormner and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9° black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

UMI






University of Alberta

Design and Implementation of a Novel BIST Scheme
for Xilinx XC4000E FPGAs

by

Jian Xu @

A thesis submitted to the Faculty of Graduate Studies and Research in partial

fulfillment of the requirement for the degree of Master of Science.
Department of Electrical and Computer Engineering

Edmonton, Alberta

Spring 2002



of Canada du Canada
S -
os:n-ou K‘Im &.CN K1A ON4
Canada Canada
Your i Vowe rédirence
Owr @9 Nowe sibivernce
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell reproduire, préter, distribuer ou

copies of this thesis in microform, vendre des copies de cette thése sous

paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it  Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-69780-0

Canada



University of Alberta

Library Release Form

Name of Author: Jian Xu

Title of Thesis: Design and Implementation of a Novel BIST Scheme for Xilinx
XC4000E FPGAs

Degree: Master of Science

Year this Degree Granted: 2002

Permission is hereby granted to the University of Alberta Library to reproduce
single copies of this thesis and to lend or sell such copies for private, scholarly

or scientific research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except hereinbefore provided, neither the thesis nor
any substantial portion thereof may be printed or otherwise reproduced in any

material form whatever without the author’s written permission.

Jian Xu

405, 9323-105 Avenue
Edmonton, AB
Canada, T5H 0J7

Date: December 17, 2001



University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of
Graduate Studies and Research for acceptance, a thesis entitled Design and
Implementation of a Novel BIST Scheme for Xilinx XC4000E FPGAs

submitted by Jian Xu in partial fulfillment of the requirements for the degree of

L Lt

Dr. Xiaoling Sun

Rl

Dr. Bruce Cockbumn

4

Dr. Mrinal Mandal

G

Dr. Martin Mueller

Master of Science.

Date: December 17, 2001



Abstract

This thesis presents novel built-in self-test (BIST) schemes for testing
configurable logic blocks (CLBs) and interconnect in Xilinx XC4000E SRAM-
based field programmable gate arrays (FPGAs). The minimum number of test

configurations for CLBs and interconnect are derived.

The proposed BIST scheme for CLBs includes the testing of FPGA carry
logic modules (CLMs) for the first time. A systematic method is proposed for
deriving the minimum number of testing configurations for CLMs, and the
testing for the remaining CLB resources is integrated with the CLM test

configurations.

One novel technique, functional test of D flip-flops, is proposed in the BIST
scheme for the sequential part of FPGA interconnect. It can be combined with
another novel technique from Dr. Sun, error-control coding for the
combinational part of FPGA interconnect, to provide superior multiple fault

coverage in FPGA interconnect testing.

A design flow developed by Susan Xu and others is used in this project with
some modifications to implement the proposed test configurations. Simulation

results are provided to demonstrate the feasibility of the proposed BIST scheme.



Acknowledgements

I would like to thank my supervisor, Dr. Xiaoling Sun, for her guidance,
valuable discussions, and financial assistance from her research grant throughout

this research project.

[ would also like to thank Susan Xu for the development of the design flow,

and Dr. Pieter Trouborst for his valuable comments.

Finally, I would like to thank my parents and my wife for providing support

and understanding throughout my university education.



Table of Contents

1 Introduction 1
1.1 Programming Technologies ........c..ccoirieiieeeceeeeece et 1
1.2 General FPGA ArChiteCture..........ccovieecieieieeereeeeeeersernsree e sseeensaeesesnsesnessnenne 2

1.2.1 Configurable Logic BIOCKS......c..coeiuioeieiee ettt 3

1.2.2 Programmable INtErconnect ..............cooeoceeecererereierescenscereesesrennesseneesseens 3

1.3 Problem Statement............ccccoomiimiiiceieeieeeereeeeeeneeneeeneeeesesreesees e sese s seeene e 4
1.4 Thesis Objectives and Organization .............ccecceevceeceereercnercrrcnrenueneeseesenscenacens 5

2 Literature Review 8
2.1 Current Measurement TECANIQUES...........ccooeeeeerreerrencerceerrieecresrensreereesesesseseneens 8
2.2 Voltage Measurement TEChNIQUES .......cccccocurireencieeeeeeieeeeeeeeeeceeereeeees e seeenes 9
2.2.1 Boundary-Scan TeChNIQUES.........ccooeeieeerercereeeceerceer e e e e eeeeene e naneeees 9

2.2.2 Device Testing Techniques..........ccooeuieeineeeneeeeeereeeee e 10

2.2.3 Built-In Self-Test TEChNIQUES ......ccceeereeerercrrereereeeceeneer e eee 10

3 FPGA CLB Test 13
3.1 Background Maternial ...........coocooiiiiiiiiiiecceieeeeeie et eanas 13
3.2 Proposed BIST Scheme...........oieeeeeeeeeeeeeceeee e ceeeeeeeeeseeeeeeeeeeas 15
3.3 Minimum CLM Test Configurations............ccccceereeeeveecrerreseeneeeesneeseesesesesesenanns 17

3.3.1 MethOdOIOY ..o e seseceeeeeetee e e sssea s e s sae e s sassannns 17

3.3.2 Testability of CLM Components............cc.ceeeceeerereeereeecreseeseescesseeesesssnsens 18



3.3.2.1 PrelIMUINATIES .....oeeeeeeeeeteeeeeceeeeceeeeeeeeeeeeeeee e smnneessssasnesssseesenenmnmannns 18

3.3.2.2 Single Stuck-at Fault Testability.........cccccoeirminniiniiirceceeennee. 20

3.3.2.3 Multiple Stuck-at Fault Testability .......cccceeeceeeeeecrernceenrenncennen. 22

3.3.2.4 Universal Fault Testability..........cccooeimiieiieeecieeeceeeeeeeeeeeene 25

3.3.3 Minimum CLM Test Configurations..........ccccceceeeeeeueeeeeresseeerceresserseeseeseens 26
3.3.3.1 The MINIMUMS......ccccvvritrereeerecerieeeeeeeeeeereereesreseesesrsesesesessseeeses 26

3.3.3.2 The “Best” of the MinImMumS ........cccccvereeeerieeeeireeeeeeeeeenneeeeeeennns 27

3.4 Minimum CLB Test COnfigurations.............cccceceeueerereeerreerreeerenessenssnesssesssessnens 30
3.4.1 Known Minimum and Test Challenges..........ccccoerrmrvemeereereccreeeeceeeneen. 31
3.4.2 Compatiability and Constraints .............cccceeeeeeeenrcresenneenseenesesscesseesecssaens 32
3.4.3 CLB Test CONfIGUIAtIONS......c...ccoveeeceeeremreeereerererereeeeeessseeesessrssessssenssenes 32

3.5 Evaluation and DiSCUSSION ......c..coomereiercreererrieireieeeeieesreeneeeeereeeseeeeseessseesnees 34
3.5.1 Test vectors and tESt COVETAZE .......cccuerreerrereeeerrerereneerensereeaessseesseassssesenss 34

4 FPGA Interconnect Test 36
4.1 Global Interconnect TESHNE ......cccceceeeeeeeeererererrteeeeeerresnesseeeseeseeseesnessesssessennns 36
4.1.1 Background Material.............ccceieirerirriniiiienireeceeesceeeseneeseee e neseeeeseens 36
4.1.1.1 Programmable Switches and Functional Models ........................ 36

4.1.1.2 Global and Local Routing ResSources .........cccceeeereccrrcencecenncn. 38

4.1.1.3 Dedicated Device Features ............ccccoveeerencencremnercenncecnrennecenenne 39

4.1.2 The Proposed BIST SCheme ..........ccoeiemeeeenieeciecieeteeeeeeniee e ceeeeaeaeees 39
4.1.2.1 Proposed Test Strategy .......c.eoceeceerceeeccmrccnerenrcneeceecceeeereeecasacene 40

4.1.3 Fault Models and Assumptions....................... rereeesenmeesnsnnanes 41

4.1.4 BIST Architecture and Test Procedure .........oeeeeeeeeeeeeeeeeeeereeeeeeemannnns 41



4.1.5 Test Sets

...................................................................................................

4.1.6 Proofs of Fault Detection

.........................................................................

4.1.7 Application

...............................................................................................

4.2 Combined Global and Local Interconnect Testing

............................................

4.2.1 Background Material

................................................................................

4.2.1.1 Local Interconnect

.......................................................................

4.2.1.2 Configurable Logic Blocks

..........................................................

4.2.2 The Proposed BIST Scheme

....................................................................

4.1.2.1 Proposed Test Strategy

................................................................

....................................................................

4.2.3 Proposed BIST Architecture

4.2.4 Fault Models and Assumptions

................................................................

4.2.5 Test Sets and Fault Detectability

..............................................................

4.2.5.1 Test Sets

.......................................................................................

4.2.5.2 Fault Detectability

........................................................................

4.2.6 Minimum Test Configurations

.................................................................

4.2.6.1 Interconnect Associated with a CLB

...........................................

4.2.6.2 Derivation of the Test Configurations

.........................................

4.2.6.3 Merging the Test for Global Interconnect

...................................

...................................

4.2.6.4 Combined CLB and Interconnect Testing

4.3 Discussion

.........................

.....................................

4.3.1 Pros

................................

......................................

4.3.2 Cons

50
51
51
51
53
53
53
56
58
59
59
60
63

63

74

74

74

...74




S Implementation 76

5.1 The CAD ENVIFONMENE .......oourimiiieciieeeiecneececnescensseeneesseeeeseesesessessnesesaeessees 76
5.2 The DeSiGN FIOW....oee ettt e e st et sae e e ee e enense 80
5.3 The IMPIemMentation...........cccoiiieiereceeeceeeceneceseenessees s seeecessanssseesneeseneseens 81
5.4 Scalability and Adaptability ...........eo et 86
6 Conclusion and Future Work 87
6.1 CONCIUSION ...ttt recnecere e ceieerestes s sesessesessrsnesssssessnsssasesssnseess 87
6.2 FULUIE WOTK ...ttt e s s ss st s e ssre e b s s s s 88
6.2.1 EXTENSIONS....ooeeeiiieiieeiecienieeneeenseesscsee st esnsesesesesssessessassossssesessessnssossssses 88
6.2.2 Suggestions for Xilinx FPGA Design and CAD Tools.......ccccccocueruueennnen. 89
Bibliography 91
Appendices
I Testability Equations forthe CLM ... ... 97
2 Twenty-two 8-TC SetS.....cuuimiiiiiiiiii ettt e e 109
3 17 Interconnect TOCs ... et ee e e e e e e e 121
4 Distribution of CLB TCs into Interconnect TCs.....c..oooooiiiiiiiiiii.. 156

5 VHDL Code for the BIST CirCuitry ..cc.oomeiieniimiiiirieiiiiiaeriiecnireereecenneee 158



List of Figures

Figure 1.1 General FPGA Architecture ......c....cooociiuiiiiiiiiiiiiiiiiiiienenne. 2
Figure 1.2  Configurable Logic BIOCK ...cuuimmiimiiiii e 3
Figure 1.3 Function Generator ........cccceeeuueieeniiememneeienrenreeneenreneenenneeneennns 3
Figure 1.4 Typical Test Environment..........cc.coooiiiiiiiiiiiiiiiiie, 5
Figure 3.1 CLB Diagram of Xilinx XC4000 Family FPGASs ........cc...c........ 14
Figure 3.2 XC4000 CLB Carry Logic Module........ccooeeeiiiiimiiiiniiiiiinannns 15
Figure 3.3  Proposed BIST Architecture .........ccooiimiiiiiiiiiiiiiieieiens 16
Figure 3.4 A Circuit Example. ..., 20
Figure 4.1 Programmable SWitches........c.ooouiiiiiiiiiiiiiiiiiiiiiieeerceeeeae 37
Figure 4.2 CLB Routing ReSOUrCes........ccccviemuimmiieiiiieiiiieieenieceeeeneeenes 38
Figure 4.3 Conceptual Block Diagram .............ccoeviemiiiiiiiiiniiiiicnininnnnnnnn. 40
Figure 4.4 Switch Matrix Test Configurations ...........ccoeeeiimiiiiiciiiiiiiannnanns 42
Figure 4.5(a) Orthogonal Test Architecture......cccoevireriiiiimiiiiiinienineenereeeeeeeanenes 43
Figure 4.5(b) Left_Diagonal Test Architecture .........ccevememmieiiiniomnieiciienaceenanns 44
Figure 4.6 Detailed Diagram of Interconnect Associated with a CLB ........ 52
Figure 4.7 Simplified Logic Diagram of a CLB..............cc.ooiiiiiiiiinniaennn. 53

Figure 4.8  Conceptual Block Diagram of the Proposed BIST Strategy....... 55



Figure 4.9
Figure 4.10

Figure 4.11

Figure 5.1

"~

Figure 5.
Figure 5.3
Figure 5.4

Figure 5.4

High-level BIST Architecture ........cocooevriiiiiiniiiiiiieieneeneane 57
An Example.. .ot 67
Ratio between the Number of TCs and PS Test Coverage......... 73
The CAD Environment ..........cooooiiiiiiiiiiii e cnnieenns 79
Logic Symbols for Components in the Data Path...................... 81
Logic Symbol of the BIST Controller..........ccccoovieiinirniininee 82
The State Diagram of the BIST Controller ................c.co.coioeeee 84

The Layout of a Test Configuration ........cccceeeevvemiienirnneenenene. 85



List of Tables

Table 3.1
Table 3.2

Table 3.3

Table 3.4

Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5

Table 4.6

Table 4.7

Table 4.8

CLM Weight ASSIgNMENTS .....ooomniimimmiiiiiiiiiiiiieeeeeeceeeieeennns 29
A Set of Carry Logic Test Configurations ..........c...c.ceeeueennneen.. 30

Compatibility and Constraints between CLM TCs and Function

L€7157: 12 ¢ 100 ] 7R ORRY 32
CLB Test Configurations ........ccuiieieuiiiieiieiieeneeireeeeeeeneenns 33
Proposed Tests for K=3 ......ooomiiimimiiiiriii e, 45
XC 4020E Global Routing Resources Test Configurations ....... 51
The Proposed Three Tests.. ..o 60
The Enumeration of Q Output Sequences of a DFF .................. 62
Interconnect Associated witha CLB .................. 64

Single and Double-Length Lines Tested in
17 Test ConfigUrations ......cc.euiiiuiieiieniiieciineeeiereneeeeeeaeeeneennes 69
16 Test Configurations That Test All Cross-Point PSs.............. 70

Number of TCs vs. Test Coverage......cccooeuuriviiiiiiiiiiiniinincnaenn. 72



List of Theorems

Theorem @I o et et et e e e s e eassnsneeeansnennsnsensnnesnannannns 47
1 T00] (3 o o BN RPN 48
N1 (0] ¢ 1« B O 49
B0 010 ] ¢ 1 « IR SO U 49
TREOTEIM 5 o et et e e s e et ennenenenan et sresaerasraaneanas 60
TREOTEMI 6 oot ee e ee e e nease s sneassnsneennesnnsnsnnnnns 61
B U1 T2e] ¢ o+ B U UPTUU TN 63
B U TTe T ¢« - T U UV 63



List of Abbreviations

ASIC
BIST
CAD
CLB
CLM
CMOS
CMSFT
CSSFT
CUFT
CuT
DFF
DFT
DRC
FPGA
GUI
HDL
ILA
IOB
LUT
MSF

NCD

Application Specific Integrated Circuit
Built-in Self-test

Computer-Aided Design

Configurable Logic Block

Carry Logic Module

Complementary Metal Oxide Semiconductor
Controllability for a Multiple Stuck-at Fault Test
Controllability for a Single Stuck-at Fault Test
Controllability for a Universal Fault Test

CLB under Test

D Flip Flop

Design for Testability

Design Rule Check

Field Programmable Gate Arrays

Graphical User Interface

Hardware Design Language

Iterative Logic Array

Input / Output Block

Look-up Table

Multiple Stuck-at Fault

Native Circuit Description



NS

ORA

PCG

PS

SE

SRAM

SSF

SwW

TC

TMSFT

TPG

TSSFT

UCF

WG

North East

North South

North West

Output Response Analyzer

Parity Code Generator
Programmable Switch

Random Access Memory

South East

Static Random Access Memory
Single Stuck-at Fault

South West

Test Configuration

Triple Mode Redundancy

Testability for a Multiple Stuck-at Fault Test
Test Pattern Generator

Testability for a Single Stuck-at Fault Test
Testability for a Universal Fault Test
User Constraint File

Universal Fault

West East

Wire Group

Wire under Test



Chapter 1

Introduction

Field Programmable Gate Arrays (FPGAs) are field programmable logic devices that
are widely used in digital designs. State-of-the-art FPGAs today contain millions of
equivalent logic gates and can operate at clock frequencies of over 100 MHz. They
have become widely accepted implementation technologies for low and medium-
volume computing applications. FPGAs can be programmed in packages and in
systems by end users with inexpensive programming devices. Design errors can be
corrected quickly and often without changes to the physical system design. Different
system functions can be re-programmed into the device for specialized data processing.
System upgrades can be a matter of sending a new configuration to a user, without
shipping and replacing a physical device. These features allow design engineers to

design, debug, prototype, and upgrade a system many times to achieve the best results

with the shortest time-to-market.

1.1 Programming Technologies

Currently there are several types of FPGAs with different programming technologies
[1]. Among them SRAM-based FPGAs are of special interest due to their mainstream
integrated circuit fabrication technology and their wide usage in practical applications.

This thesis focuses on the testing of SRAM-based FPGAs.

In SRAM-based FPGAs, programmable connections are made through pass
transistors, transmission gates, or multiplexers that are controlled by SRAM cells. As
the system powers up, the SRAM programming data is downloaded into the FPGA from

an external memory. The advantage of this technology is that it allows fast in-circuit



reconfiguration (the programming time is less than 100 ms) and the FPGA can be

reprogrammed any number of times.

1.2 General FPGA Architecture

An FPGA consists of a two-dimensional array of configurable logic blocks (CLBs)
which can be connected through programmable interconnect and input/output blocks

(IOBs), as shown in Figure 1.1.

7

S S S
3

I & ! X

CLB V//////////, Global interconnect
NN  Local interconnect S /O blocks

Figure 1.1: General FPGA Architecture

1.2.1 Configurable Logic Blocks (CLBs)

A CLB contains function generators, flip-flops, and multiplexers that are used to

implement desired logic functions. An example giving the principal CLB elements is



shown in Figure 1.2. In Figure 1.2 each CLB contains two flip-flops, FF1 and FF2,

three function generators, F, G, and H, and four multiplexers.

Tl

I-V

Figure 1.2: Configurable Logic Block

il

A function generator has two operation modes: look-up table (LUT) mode or RAM
mode. Essentially, a function generator acts as a small ROM or RAM when operating
in LUT or RAM mode respectively, whose output is selected by the input signals, as
shown in Figure 1.3. To provide one Boolean function of N inputs requires 2%

configuration bits.

N Inputs

Configuration
Memory

¥ bits)

Output

Figure 1.3: Function Generator

1.2.2 Programmable Interconnect

Programmable interconnect includes horizontal and vertical routing channeis that run in

between the CLBs. Each routing channel comprises wire segments and programmable



switches. An SRAM-based FPGA uses a number of basic elements to interconnect its
routing resources. These include bi-directional interconnect, unidirectional

interconnect, open collector interconnect and tri-state interconnect.

Bi-directional connections require pass transistors controlled by SRAM cells. Since
pass transistors have relatively high electrical resistance, bi-directional buffers are

required. The direction of the buffers is determined by an additional SRAM cell.

Unidirectional connections constrain wires to having one fixed driver, thus signals
flowing along these wires are unidirectional. This avoids implementing bi-directional

buffers but leads to less flexibility.

Open collector interconnect includes interconnect with open collector drivers. The
advantage of open collector drivers is that large fan-in AND and OR gates can be

constructed using wired logic.

Tri-state interconnect allows bus-like structures to be built on the FPGA using tri-
state buffers. The designer has the responsibility of avoiding driver conflicts arising

from more than one tri-state driver driving the signal at one time.

1.3 Problem Statement

Today it is common for application specific integrated circuits (ASICs) to be equipped
with built-in self-test (BIST) features and to be provided with IEEE 1149.1 compliant
standard test ports. BIST is a technique in which parts of a circuit are used to test the
circuit itself. IEEE 1149.1 requires that a chip contain a set of four external signals,
which are together called a JTAG port, for accessing testing-related chip features. The
IEEE 1149.1 standard ensures that chips contain a common base of circuitry which will
make the test development and testing of boards containing these chips significantly

more effective and less costly.

In digital system products, an increasing number of FPGAs are used to implement
complex system functions and co-exist with custom ASICs, as shown in Figure 1.4. In
such a system, BIST function in the custom ASICs can be invoked through the JTAG
port, while the FPGAs often remain untested when they are in the system. Therefore, it

is desirable to develop in-system testing techniques for FPGAs, where the FPGAs



under test have already been mounted in the system to implement certain system
functions and their /O pins are connected to other system components. Moreover, the
in-system testing techniques should be consistent with the BIST features in the ASICs

and the standard JTAG test port.

FPGA ASIC |—9p ASIC
ASIC FPGA ASIC
IEEE standard test controller

Figure 1.4: Typical Test Environment

During the last decade there has been considerable interest in developing testing
techniques and strategies for FPGAs. However, in-system testing of FPGAs poses a

challenging problem for test engineers because of the following reasons:

(1) Although considerable research has been done on component testing techniques
for FPGAs in manufacturing testing, these techniques require full access to the /O pins
and assume the use of externally applied test sequences. Unfortunately, the full access

to FPGA /O pins is unavailable in the in-system testing environments.

(2) Because the system functions may change for FPGAs that are dynamically re-
programmed, the tests provided for FPGAs are usually universal and function-
independent for all instances of the same type of FPGAs. This poses a more difficult

problem than the tests for the fixed-function ASICs.

(3) Testing an FPGA requires implementing various configurations in the FPGA, and
changing configurations incurs re-programming costs. It is a difficult task to determine

the minimum number of test configurations in order to minimize testing costs,



especially given the trend that each new generation of FPGAs contain more re-

programmable components.

(4) The test coverage and the multiple fault detectability of published schemes are
not satisfactory. For CLB testing there is no literature addressing the hardest-to-test
components, the carry logic modules (CLMs), within a CLB. For interconnect testing,
the current built-in self-test technique is a comparison-based technique, which does not

have strong multiple fault detectability.

1.4 Thesis Objectives and Organization

The objectives of this thesis are:

e To develop in-system BIST methodologies that do not use the I/O pins of the FPGA

and are independent of the system functions implemented by the FPGA.

e To modify and extend the original high-level BIST architectures in two previous
project proposals [2,3] for the target FPGAs and to derive the minimum test
configurations that verify the integrity of the CLBs including the CLMs, and that

test the interconnect with superior multiple defect detectability.

e To construct improved fault models, develop test sequences for the modeled faults,

and to study the fault detectability of the proposed schemes and look for ways of

improvement.

o To implement the proposed schemes on real FPGAs to demonstrate the feasibility

of the new tests.

The rest of this thesis is organized as follows.

Chapter 2 reviews the prior work on FPGA testing. General FPGA testing techniques

are discussed, and some basic terminology is defined.

Chapter 3 first describes the proposed BIST strategy for CLBs by using the high-
level BIST architecture in [2] with modifications. The necessary background material

is presented. Various fault models under the proposed scheme are studied and the



corresponding test sequence is developed. A systematic method is introduced for
finding the minimum number of test configurations for the CLMs under the proposed
fault models. The search results are then given. An intuitive method for deriving the
minimum number of test configurations for the remaining CLBs is given. The minimum

test configurations for the entire CLB are presented.

Chapter 4 describes the novel BIST scheme for global interconnect resources of
Xilinx XC4000E FPGAs using the error-control coding technique from [3]. This thesis
first completes the work in [3] by constructing the fault models, developing the test

sequence for the modeled faults, and analyzing the fault detectability.

The work in [3] is then extended in this thesis to include the testing of local
interconnect, and to combine the testing of both local and global interconnect. A new
BIST scheme is proposed for testing local interconnect and the combined global and
local interconnect using a novel technique (functional test of D flip-flops) and the
error-control coding technique in [3]. The fault models are given and the test sequence
for the modeled faults is developed. The fault detectability is studied. The merger of

the CLB and interconnect testing is also discussed.

Chapter 5 describes the implementation of the proposed test configurations,
including the CAD environment, design flow, and implementation of the BIST

circuitry. The test results demonstrate the feasibility of the proposed BIST scheme.

Finally, Chapter 6 draws conclusions about this project and recommends future

research directions.
Appendix | contains testability equations for CLMs under the proposed fault models.
Appendix 2 lists twenty-two “best” 8-TC sets for CLM.
Appendix 3 provides 17 minimum TCs for FPGA local interconnect.

Appendix 4 outlines the distribution of CLB resources into the 17 TCs in Appendix

Appendix § gives the VHDL source code for the BIST circuitry.



Chapter 2

Literature Review

All of the testing strategies proposed in the literature thus far for FPGAs use either

voltage or current measurement techniques.

2.1 Current Measurement Technique

The current measurement technique detects defects in CMOS devices by measuring the
quiescent power supply current. Such techniques are often called Ippq techniques [1].
They are based on the physical fact that defect-free CMOS circuits consume very little
current in the quiescent state [5, 7]. The presence of defects, under the right
conditions, can increase this quiescent current by an order of magnitude or more and
can thus be used to detect many defects. In [S], an Ippg-based test strategy is described
for detecting defects such as bridging faults in the logic resources and part of the
interconnect in FPGAs, and the testing of FPGA input/output resources is discussed in
[6]. The advantages of the Ippq techniques are that they can detect many defects that
are undetectable by voltage measurement techniques. Test generation can be easier
because there is no need to propagate the effect of the defect to a primary output.
However, the disadvantages of Ippq techniques are also obvious. The measurement of
the quiescent current must be very precise because a normal Ippq is very low, and an
accurate measurement takes a significant amount of time. Also, it is not so easy to set
an Ippq threshold for faulty devices. Because of these disadvantages, relatively little

research has been done in the field of FPGA testing using Ippg techniques.



2.2 Voltage Measurement Technique

Most research that has been done in FPGA testing uses voltage measurement
techniques. This testing approach distinguishes between two types of FPGA inputs:
operation inputs and configuration inputs. One uses operation inputs during
conventional FPGA operation to apply test sequences, and one also uses configuration
inputs before conventional FPGA operation to configure the FPGA. FPGA testing
using the voltage measurement technique consists of successively configuring the
FPGA using the configuration inputs and then applying test sequences using the

operation inputs.

Due to the inherent flexibility of FPGAs, the detectability of a fault depends on the
FPGA configuration. A given fault may be redundant and therefore undetectable in a
given test configuration, but the same fault may become non-redundant and detectable
in another test configuration. Therefore, the test configurations should make as many
modeled faults as possible appear non-redundant. Whether or not a fault can be
detected also depends on the applied test sequence on the operation inputs. Therefore,
under each test configuration, the objective is to generate the associated test sequence

to detect all of the non-redundant faults defined by the test configuration.

Currently there are three main types of voltage measurement techniques for FPGA
testing: the scan-chain based technique, the device testing technique, and the built-in

self-test technique.

2.2.1 Scan Chain Based Technique

In order to ease the testing process and reduce the testing costs, one of the design for
testability (DFT) strategies, the scan-chain based technique, has been applied in
SRAM-based FPGAs. Among the scan-chain based techniques, the boundary-scan
technique consists of adding scan registers to the input and output pins of FPGAs by
the vendors. It requires the addition of some logic to the FPGA for control and some
additional I/O ports. In general, boundary-scan provides a method for accessing all
application inputs and outputs from an external test controller via a JTAG test access

port. Several approaches have targeted the testing of FPGAs using boundary-scan



techniques [8, 9]. Recently, an implicit scan technique was proposed in [10]. It
guarantees that any sequential circuit implemented in the FPGA can be implicitly
scanned, at the cost of some area overhead and the modification of the classical FPGA
architecture. The major disadvantage of scan chain based techniques for FPGA testing
is the long test time, since the test patterns are scanned in and scanned out serially
instead of in parallel. The test time is thus increased by at least an order of magnitude

compared with parallel approaches.

2.2.2 Device Testing Technique

In the device testing techniques [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22], test
patterns are applied in parallel, which requires full access to the I/O pins and assumes
the use of externally applied test vectors. In [11, 12, 13, 14, 15], the minimization of
the number of CLB test configurations is considered. In [11, 12, 13], the CLBs in an
FPGA are tested under the proposed AND tree and OR tree testing architecture, which
provides strong multiple fault detectability for CLBs. In [14], the conventional CLB
resources are modeled as a network of multiplexers when the function generators
implement XOR/XNOR functions in their look-up table (LUT) modes. This last work is
extended to different FPGA families in [15].

In [17], three test configurations are used for interconnect testing. The basic idea is
to first configure interconnect to form “busses”, then to test these busses using classical
bus testing vectors applied to the I/O pins of the FPGA. Paper [18] presents heunistic
test procedures for stuck-at faults, extra-device faults, and missing-device faults
affecting programmable switch in the FPGA interconnect. These approaches try to
solve the problem of manufacturing tests for FPGA interconnect and are only
applicable for device-level testing. In [21, 22], the fault diagnosis of FPGA
interconnect using the minimum number of test configurations is discussed under the

single fault assumption.

2.2.3 Built-In Self-Test Technique

The first BIST approach for FPGA testing was proposed by Stroud er al. [23, 24, 25,
26, 27, 28. 29, 30]. In [23, 24, 25, 26], BIST for the CLBs is discussed. Essentially, a
portion of the FPGA is configured into test pattern generators (TPGs) and output

10



response analyzers (ORAs). Then this BIST circuitry is used to test the CLBs in the
remaining portion of the device. The TPGs and ORAs in [23, 24, 26] are distributed in
the same area containing the CLBs under test, and many routing resources need to be
used for signal connections. This may cause routing congestion when the BIST
circuitry becomes complex. An iterative logic array (ILA) based approach is given in

[26] to improve the routability of the above CLB BIST scheme.

In [27] and [28], BIST approaches for carry logic module testing within a CLB and
the CLB testing together with the carry logic modules are discussed for the first time.
The testability of the CLB including the CLM is discussed, and a methodology to
derive testability Boolean equations for different fault models is provided. Routing
congestion is avoided in [27, 28] by exploiting certain device features such as MUX

busses and edge decoders.

The first BIST proposal for FPGA interconnect testing is a comparison-based
approach [29]. The scheme configures a subset of the wire segments and
programmable switches to form two groups of wires under test (WUTs). The WUTs
receive identical test patterns from a group of CLBs configured as TPGs. The resulting
outputs are compared by another group of CLBs configured as ORAs. This proposal
promises good fault coverage for shorts and opens affecting wire segments, and stuck-
on/off faults in programmable switches. However, the ORAs fail to detect multiple
faults with identical faulty behavior in corresponding same positions in the two WUTs
since the strategy is essentially a comparison-based method with two voting parties. In
[30], an on-line FPGA testing and diagnostic method was proposed to test one column
and one row of CLBs and interconnects (called the self-testing area) at a time without
interrupting the normal system operation. The entire device is tested by gradually
moving the self-testing area across the chip. The test configurations for the

interconnect are inherited from [29] with some modifications.

The BIST approach in [31] proposes a novel technique for FPGA interconnect
testing in which error control coding is applied to test FPGA interconnects for the first
time. It avoids the unreliability of the comparison-based approach and can achieve
strong multiple fault detectability. However, in [31] only the testing of part of the

interconnect (global interconnects) is discussed.

11



Recently, the testing of transient and cross-talk faults in FPGA interconnects is

considered for the first time [32].

Papers [33, 34] address the testing of both the CLBs and the interconnect, however,
the scheme requires design modifications in the FPGA and the CLBs and interconnect

are not tested simultaneously.

12



Chapter 3

FPGA CLB Test

This chapter focuses on the testing of the configurable logic blocks (CLBs) in Xilinx
XC4000 series FPGAs. The background material is first prepared. The proposed buil:-
in self-test (BIST) scheme is then presented. A systematic method for deriving the
minimum number of test configurations for the carry logic modules (CLMs) is
introduced, and followed by the distribution of the remaining resources of a CLB into
the test configurations for CLMs. Finally, the proposed tests and the corresponding test

coverage are also discussed.

3.1 Background Material

The logic block diagram of the Xilinx XC4000 CLB is shown in Figure 3.1 [31]. For
ease of presentation, the CLB logic is partitioned into three parts: the conventional

CLB resources, the interface logic, and the CLM.

The conventional CLB resources consist of the CLB logic commonly considered in
the literature for CLB testing. It is shown to the right-hand side of the dotted line. The
F and G function generators can be programmed as RAMs or look-up tables (LUTs),

while the H block can be programmed as a LUT only.

The interface logic between the CLB and the CLM contains three multiplexers: MF1,
MGI1. and MG2. See the shaded multiplexers in Figure 3.1. They are used to select
input signals for the function generators from among inputs G2, G3, F4, C;;, and the
CLM output Cuo-

13



2

= ! SN S\ s SR uec
— ' " o [2 '
GC! ' > » > 2
[ e : S > > 2
[}
G+ 1
- [ 3
o=
Bt -
G2 ' G Ty Rep YQ
(= »351 ORam M STHS:
:G‘ | ' et o J [ CE QLAT
o —~ 2
| I : Shaa
Comto | D ) SR
H ‘
1 HL
ey i @lj " .., -
- F a 0 \J
'
== Logic | ! 1@# =
Module | ! o
—: o Ny Nep ¥ ~R
: s OFF 3
] 1 3 __O_Guuf
“ ] 4 p M asa
! M3 QRaa
e o H WE Do w_ SR
Q;-Elj '
= o ORam A "
= H ¥ ) =
[ [T awr e
= "
i s J
' L 3 Cout
K H =}
= r—e
]

Figure 3.1: CLB Diagram of Xilinx XC4000 Family FPGAs

The logic block diagram of the CLM is shown in Figure 3.2 [31]. It has two types of
inputs: configuration inputs (C0-C7) and operation inputs (Cis, F1-F3, G1, and G4).
The former signals are part of the device configuration stream and can only be
programmed through device configurations. The latter inputs supply signals to the
CLM during normal operation. There are 2° possible binary combinations of the eight

configuration inputs. Only forty-three of them are valid carry modes [31].

A CLM has two distinctive roles in a CLB when configured in one of its forty-three
valid modes [31]. It supplies signals to the conventional CLB resources and the
interface logic, and forms part of desired logic functions in a CLB. It can also be
programmed as part of fast carry chains (iterative arrays), together with the adjacent

CLM modules and the dedicated fast carry routing.

14



Tothe G

Generator

To the G/F
Function
Generators

Figure 3.2: XC4000 CLB Carry Logic Module

In XC4000 series FPGAs, wired multiplexers (MUX-busses) can be formed by
programming tri-state buffers and horizontal long lines. Two tri-state buffers are
available for each CLB. Figure 3.3 shows a design with two MUX-busses for each row
of CLBs. Dedicated carry logic routing resources link together the CLMs in CLBs to

form fast carry chains.

3.2 Proposed BIST Scheme

In the proposed BIST scheme, an mxm array of CLBs in an FPGA is partitioned into
two equal sections, an upper half and a lower half. When the upper half contains the
CLBs under test (CUTs), the lower half is used to form the BIST circuitry, and vice
versa. Prior to a test. each CUT is programmed into one of the CLB test configurations
(TCs) presented in section 3.4. Figure 3.3 depicts the proposed high-level BIST
architecture. The proposed BIST architecture has two distinct array structures: a
parallel array of mx(m/2) CUTs, and m/2 iterative arrays of the m CLM modules in the
CUTs in every two adjacent CLB columns. For example, the two left-most CLB

columns can form an iterative array.

15



During a test, the BIST circuitry broadcasts test vectors to the parallel array by
means of a comb-like bus structure, shown in bold lines in Figure 3.3. The two outputs
of the CUTs are connected to the wired MUX-busses via the tri-state buffers and the
select signal S; for column i, where 1 < i < m. The MUX-busses carry the output

responses of the CUTs back to the BIST circuitry.

In the same test, iterative arrays can be formed. For example, the CLM of the CUT
at the bottom of the left-most column can take the test input from the BIST circuit,
propagate signals upward to the CUT at the top of the column, then pass the signals on
to the CUT at the top of the second column, and then propagate signals downward to
the CUT at the bottom. The BIST circuit monitors and collects the output responses of
the array. All of the m/2 iterative arrays work in parallel. A pass/fail signal is asserted
if either of the parallel array or the iterative arrays fails the test. The BIST circuitry
interacts with the outside world through a built-in [EEE 1149.1 interface provided by
the FPGA vendor [31].

MUX-bus —1 7. {
CuUT

Tl

ey Eapnl

14

4
cuT
Y

A

4 i

-

P ¢ cuT

CarryChain,/d

Eapatam =aapil
Eaprey oy
<
..‘~
o O3] 11T -

M—+g<
1
k———ba

So Sl sm—l Sm

BIST Circuitry |

Figure 3.3: Proposed BIST Architecture

The proposed BIST scheme consists of two test sessions and each session tests half

of the CLBs. It is assumed that interconnect resources of the FPGA are pre-tested and

16



fault-free. Such an assumption is unnecessary when the CLBs and interconnects are
tested simultaneously as proposed in chapter 4. Hardware redundancy techniques, such
as triple modular redundancy (TMR), can be used for the BIST circuitry to reduce the
fault escape probability. The TMR technique is made possible by the simplicity of the
BIST logic and the availability of many spare CLBs in the BIST section.

3.3 Minimum CLM Test Configurations

First, the circuit logic of the CLM and its operations are studied, and the rest
configurations (TCs) for the CLM are derived. The CLM is the largest sub-block of a
CLB. Its depth of logic exceeds that of other CLB sub-blocks and it has relatively
many configuration inputs. It is quite restricted in selecting CLM TCs as only 43 out
of the 256 potential configurations are valid and many of the CLM configurations
require using the function generators in the conventional CLB resources to implement
certain logic functions. Due to these factors, it is harder to find a minimum set of TCs
for the CLM than to find such a set for the rest of the CLB. After a minimum set of

TCs is found for the CLM, they are extended to provide a set of TCs for the whole
CLB.

3.3.1 Methodology

To test a CLM requires supplying test stimuli for both the configuration inputs and
operation inputs. The configuration inputs can only be specified in the long serial bit
stream that programs the FPGA. The time to download the bit-stream is in the range of
tens to hundreds of milliseconds [14]. Therefore, it is not attractive to functionally

verify each of the forty-three valid CLM modes or configurations.

On the other hand, once a carry mode has been configured, many different input
combinations can be applied to the operation inputs in a short time. Since there are
only six operation inputs in a CLM, an exhaustive test on the inputs can be done very
quickly and this approach provides excellent functional coverage of the CLM in a given
carry mode. The application time for an exhaustive test of a CLM is a few orders of
magnitude smaller than the download time to define the configuration inputs.

Therefore, to verify the integrity of the CLM, a small set of valid carry modes is

17



selected as the CLM TCs using the configuration inputs, and for each carry mode an
exhaustive test is applied to the operational inputs. In this approach the challenge is to

find a minimum set of valid carry modes so that the total test time is minimized.

Since a CLM has only forty-three valid carry modes, the integrity of the CLM can
only be verified using the valid carry modes. Thus, the search for CLM TCs can be
considered as selecting a minimum set of valid carry modes using the configuration
inputs and verifying the integrity of the CLM when applying an exhaustive test on the

operational inputs.

Among the twelve components in the CLM, there are six multiplexers, two AND and
four XOR gates. A divide-and-conquer approach is used to verify the integrity of each
component when applying an exhaustive test on operation inputs for a minimum set of
TCs. The rationale is that the CLM should perform its intended functions if each of its
components functions correctly. The modularity of an FPGA is exploited by

configuring many CLMs into identical configurations and then testing them in parallel.

3.3.2 Testability of CLM Components

3.3.2.1 Preliminaries

The CLM is a combinational circuit. It has six primary inputs, two primary outputs and
twelve embedded logic components, inciuding AND gates, XOR gates, and
multiplexers. First, the definitions in [page 343, ref. 1] are used to discuss the
controllability and observability of the inputs and output of a component, then the
testability of the CLM components under the single stuck-at fault (SSF) model,

multiple stuck-at fault (MSF) model, and universal fault (UF) model are determined.

Definition 1 The controllability of a component input is the ability to establish a
specific signal value at the component input by setting values on the primary circuit
input(s) [1].

Definition 2 The observability of a component output is the ability to determine the
signal value at the component output by controlling the primary inputs and observing

the signals at the primary circuit outputs [1].

18



The CLM has seven configuration inputs and these static inputs reconfigure the
circuit. The above definitions consider the ability to control and observe signals by
manipulating the operation inputs within a certain configuration. The configuration
inputs do affect the controllability and the observability: a signal may be controllable

or observable in one configuration but not in others.

A very simple scheme is used to calculate controllability and observability. Given a
configuration, we only need to know whether a signal can be controlled to a certain
value or can be observed. Therefore the controllability of a component input or
observability of a component output can assume only two values: 1 to denote the ability
to control or observe, and 0 otherwise. Hence the controllability of component inputs

and the observability of a component output can be represented by Boolean equations.

A controllability equation of a component input I, C;(0) or Cy(l), defines the

conditions to control input /; to logic 0 or logicl respectively from the primary input(s).

The observability equation of a component output F, Of, specifies the conditions

required to observe the output at a primary output.

Example 1 Consider the circuit in Figure 3.4. The controllability and the observability
equations of the AND gate are:

Cn(0)=1, Cn(l) =1,
Cr(0) =1, Cr:(1)=1,
OF=1I3

Similarly, for the OR gate, they are:

CF(0)=T+12, CF(l)=N12,
Cr(0) =1, cr() =1,
06 =1.

Note that the controllability equations of primary inputs have constant 1 values,
since they are fully controllable, and the observability of primary outputs have constant
1 values since they are fully observable. For non-primary inputs/outputs, certain

primary input conditions are required to set the controllability/observability equations

19



to logic 1. The primary inputs that set an input controllability equation of a component
to logic 1 can control the component input to the logic value defined by the
controllability equation. For instance, to set input F of the OR gate to logic 1, the two
primary inputs, /; and /,, must be logic 1, as defined in Cr(1) = 1/2. The primary inputs
that set the output observability equation to logic 1 allow the component output to be

observed at a primary output.
I

e )y S—

I;

Figure 3.4: A Circuit Example

Definition 3 The controllability of a component is the ability to set the desired input

combinations on the component inputs by controlling the primary inputs.

The observability of a component is the same as that for the component output

defined in Definition 2 since a component has only one output.

A fault model determines the input combinations required for testing a component.
The input is component-type dependent. Using the divide-and-conquer approach
described in section 3.3.1, it is assumed that the SSF model, MSF model, and UF model

are with respect to the individual CLM components.

3.3.2.2 SSF Testability

Definition 4 The controllability for a single stuck-at fault test (CSSFT) of a k-input
AND gate is the ability to set both logic 0 and 1 on each input and set logic | on the

remaining (k-1) inputs by controlling the primary inputs.

The CSSFT of a k-input AND gate can be expressed by a set of Boolean equations,
called CSSFT equations. One CSSFT equation can be obtained by Boolean

multiplication of the input controllability equations that set the component inputs to a

20



desired input combination. A k-input AND gate has k+/ CSSF equations. If the
controllability or observability conditions of a CSSF equation are satisfied, the

equation assumes the logic value 1, otherwise, it assumes the logic value 0.

Example 2 For the 2-input AND gate in Figure 3.4, the inputs, 01, 10 and 11, detect all
the SSFs. The three respective CSSFT equations are:
CA=Cr(0)xCi:(1),
Cr2=Cn(l) x Cr(0),
Cria=Cn()xCrx(1).
When the primary inputs satisfy both input controllability equations of a CSSFT

equation, the CSSFT equation assumes the value of logic 1. And the input

combinations defined by the CSSFT can be set on the component inputs.

Definition 5§ The CSSFT of a k-input XOR gate is the ability to set both logic 0 and 1

on each input and set logic 0 (or logic 1) on the remaining (k-1) inputs by controlling

the primary inputs.

Definition 6 The CSSFT of a multiplexer with k data inputs and /og: k select inputs is:
(1) the ability to select each data input and apply both 0 and 1 to the selected data
input, and (2) the ability to set each select input combination, and apply logic 0 (or
logic 1) to the selected data input and the complementary logic value on the remaining

(k-1) data inputs, by controlling the primary inputs.

Example 3 Consider a multiplexer with a select input, S, and two data inputs, /; and /.

The CSSFT equations of the multiplexer are:

Cuuxi = Cs(0) x Cr(0),

Cuux2 = Cs(0)x Cn(1),

Cuuxs = Cs(1) x Cr=(0),

Cuuxs=Cs(1) x Ci(1) ,

Cuuxs = Cs(0) x [Cr(0) x Cr=(1) + Cri(1) x Cr(0)],
Cuuxs = Cs(1) x[Crn(0) x Cr(1) + Cr((1) x Cr(0)].

21



Proposition 1 If all the CSSFT equations of an AND gate, a XOR gate or a multiplexer
can assume the value of logic 1, then a test for a SSF can be applied to the component

from the primary inputs.

Definition 7 The testability for a single stuck-at fault test (TSSFT) of the CLM
component is the ability to satisfy its respective CSSFT equations, and to
simultaneously observe the component’s output at a primary output by controlling the

primary inputs.

The TSSFT of a component can be expressed by Boolean multiplication of its
observability equation with each of its CSSFT equations. A TSSFT equation thus
assumes the value of logic | if the primary inputs satisfy all its CSSFT equations and

its observability equation.

Example 4 The TSSFT equations of the multiplexer in Example 3 are:

TR =0F x Cs(0)x Cr(0),
TF2=0FxCs(0)xCn(1),

Tr3=O0F xCs(1)x Cr(0),

Trs=OFxCs()x CiA(1),

TFs = OF x Cs(0)x[C1i(0) x Cr=(1) + Cr(1) x C1(0)],
Tr6 = OF x Cs(1) x [C1i(0) x Cr(1) + C1i(l) x C(0)].

Proposition 2 If all the TSSFT equations of an AND gate, an XOR gate or a
multiplexer can assume the value of logic 1, then the test for SSF can be applied to the
component by controlling the primary inputs, and the output can be observed at a

primary output.

3.3.2.3 MSF Testability

Definition 8 The controllability for a multiple stuck-at fault test (CMSFT) of a k-input
AND gate is the ability to set all &£ walk-0 test patterns and one all-1 test pattern on the
inputs of the AND gate by controlling the primary inputs [36], [page 120, ref. 1].



The CMSFT of a k-input AND gate can be expressed as the product of the k+1

controllability equations that control the inputs to the £ walk-0 tests and one all-1 test.

Example § The CMSFT equations of the AND gate in Figure 3.4 are:

ChA=Cn(0)xCr:(1),
Cr2=Cn(l)x Cr(0),
Cri=Cn{l)x Crx(1).

Proposition 3 If all the CMSFT equations of an k-AND gate can assume the value of
logic 1. then the test for multiple stuck-at faults can be applied to the AND gate.

Definition 9 The CMSFT of a k-input XOR gate is the ability to set a walk-1 test and
one all-0 test to the inputs of the XOR gate by controlling the primary inputs [1, 36].

The CMSFT of a k-input XOR gate can be expressed by the products of the k+1

controllability equations that control the inputs to the k£ walk-1 tests and one all-0 test.

Example 6 Replacing the 2-input AND gate in Figure 3.4 by a 2-input XOR gate, its
CMSFT equations are:

Crom1 = Cn(1) x Ci(0),
Cror2 = Crn(0) x Cix(1),
Crxors = Cn(0) x Cr:(0) .

Proposition 4 If all the CMSFT equations of the XOR gate can assume the value of
logic 1. then the test for multiple stuck-at faults can be applied to the XOR gate.

Definition 10 The CMSFT of a multiplexer with k data inputs and /og.k select inputs is
the ability to select each data input and to apply both 0 and 1 to it while applying the
complementary logic values to the remaining data inputs by controlling the primary
inputs [37].

The CMSFT of a multiplexer with & data inputs and log.k select inputs can be

expressed by the products of the controllability equations that set the log.k select



inputs, and the equations that control the selected data input to logic 0 and logic 1 and

the other inputs to the complement values.

Example 7 Consider a multiplexer with a select input, S, and two data inputs, [, and L.

The CMSFT equations of the multiplexer are:

Cuux1 = Cs(0) x Cr(0) x Cr:(1),
Cumux2 = Cs(0)x Cn(1) x Cr(0),
Cwuxs = Cs(1) x Cr(0) x Ci(1),
Cuuxs = Cs(1) x Cr(1) x Cr:(0) .

Proposition § If all the CMSFT equations of a multiplexer can assume the value of

logic 1, then the test for multiple stuck-at faults can be applied to the multiplexer.

Definition 11 The testability for multiple stuck-at fault test (TMSFT) of a component
in Definitions 5, 6, or 7 is the ability to set all their respective test input values by
controlling the primary inputs, and the ability to observe the output of the component

on a primary output.

The TMSFT of a component in Definitions 5, 6, or 7 can be represented by the

products of its observability equation and its CMSFT equations.

Proposition 6 If all the TMSFT equations of a component can assume the value of
logic 1, then the test for multiple stuck-at fault can be applied to the component by
controlling the primary inputs and the output of the component can be observed at the

primary output(s).

Example 8 The TMSFT equations of the AND gate in Figure 3.4 are:

Tr = Or x Cr(0) x Cr(1),
Tr2 = Or x Cr(1) x Ci2(0),
Trs = OF x Cr(1) x Cr(1) .

24



3.3.2.4 UF Testability

Definition 12 The controllability for a universal fault test (CUFT) of a component is
the ability to set all the possible input combinations of the component by controlling

the primary inputs.

The CUFT of a component can be expressed as the products of its inputs’
controllability equations that control the inputs to all 2* possible input combinations,

where & is the number of inputs of the component.

Example 9 Consider the 2-input AND gate in Figure 3.4. The CUFT equations of the
AND gate are:

Cr1=Cn(0) x Cr:(0),

Cr2=Cn(0)x Cr:(1),

Cri=Crn(l) x Crx(0),

Crs=Cn(l)x Crz(1).

Proposition 7 If all the CUFT equations of the component can assume the value of

logic 1, then an exhaustive test can be applied to the component.

Definition 13 The testability for a universal test (TUFT) of a component is the ability
to set all the possible input combinations to the component by controlling the primary
inputs. and to observe the output of the component on the primary output for each input

combination.

The TUFT of a component is the product of its observability equation and its CUFT

equations.

Example 10 The TUFT equations of the AND gate in Figure 3.4 are:
T = Or x Cr(0) x Crz(0),
Tr2 = Or x Cr(0) x Cr:(1),
Tr3 = Or x Cr(1) x Cr(0),
Trs=O0rx Cn(1) x Ci(1).

25



Proposition 8 If all the TUFT equations of a component can assume the value of logic
1, then an exhaustive test can be applied to the component by controlling the primary

inputs and the output of the component can be observed at a primary output.

3.3.3 Minimum CLM TCs

3.3.3.1 The Minima

In the previous section, the testability equations for all the component types in the
CLM under the single stuck-at, multiple stuck-at, and universal fault models are
defined. A set of testability equations for all the components in the CLM under each
fault model [38] is derived. There are 62, 40 and 80 testability equations for the single
stuck-at, multiple stuck-at and universal fault models respectively, as shown in
Appendix 1. The testability equations are functions of both the configuration inputs and

operation inputs of the CLM.

Example 11 Consider the C2 stuck-at 1 fault for the component FM1 in Figure 3.2 on
page 15. To detect this fault we need:

(a) To set C2=0, select C2 by setting C3=0, so that FM1=C2.
(b) To observe FM1 at the primary output, Cgy.

The testability equation, Tgy(C2;.,..1), is given in equation (1) below. Substituting
equations (2)-(13) recursively into equation (1), the new Tg\;(C2;,.;) equation is a
function of the operation inputs, G1, G4, F1, F3, and C;,, and the configuration inputs,
C0-C7. This equation can assume logic 1 in one of the valid carry modes, ADD-G-F3
defined by C0-C7 = 01000111, when an exhaustive test is applied to the operation
inputs. This implies that the logic 0 applied to C2 in order to activate the C2 stuck-at 1

fault can be observed at the primary output.

T raii(C255.)= Cc2(0)*Cc3(0) *Oraes =(!C2) * (!C3) * Ofss; (1)
Orvi= ((Cemz(0)*Cin + (Cea2(1)*(!Cin)) ) * Ofuz; 2)
Cermz2(0) = (1C4*(!C35)*(!C7)) + (F3*(!IC4)*C35) + ('FI*C4*C5); 3)
Cemz2(1})= (1C4*(IC5)*C7) + (IF3*(!1C4)*CS5) + (FI*C4*C5); 4)
Ofyz = Comi(1); &)

26



Cori(1)= (IC6) + (C6* Cxora:(1)); (6)

CxorG:(1)= ( Cxorci(0)*G4 ) + (Cxorci(1)*(!G4) ); )
Cxor6i1(0) = (Cano6(0)*Ccmi(1)) + (Cunnc(1)* Cermi(0)): (8)
CxorGi(1) = (CanoG(0)* Cemi(0)) + (Canoa(1)* Cemi(1)): (9)
Canng(0)=(1G1l) + (IC7); (10)
Cesmi(1)=(IC0*Cl) + (F3*C0); (11)
Cuvog(1) =Gl *C7; (12)
Cevi(0)= (IC0*(IC1)) + (!F3*C0); (13)

Given a set of the testability equations, a subset of the equations can assume logic 1
in a valid carry mode (i.e. in a CLM TC). Note that n valid carry modes are required to
satisfy all the equations, where 1 < n < 43. Therefore, the problem of finding the
minimum CLM TCs that verify the integrity of a CLM is equivalent to finding the

minimum n that satisfy all the testability equations under a given fault model.

An algorithmic search was implemented. The search results show that the minimum
values are 6, 7 and 8 for TSSFT, TMSFT, and TUFT, respectively. There exist 6,384
sets of 6 TCs, 4,756 sets of 7 TCs, and 8,928 sets of 8 TCs. All the sets under each

fault model are equally good as the TCs when the CLM is considered as an independent

module.

3.3.3.2 The Best of the Minimums

The TC sets with the minimum values 6, 7 and 8 CLM TCs under each fault model
were studied. [t has been found that at least four TCs use the F and G function
generators in each set. Thus, none of the sets can be tested independently without using
the F and G function generators, and therefore the CLM can not be considered as a

completely independent module.

Moreover, there exist input dependencies between the inputs of the CLM and those
of the CLB. Recall that the CLM shares inputs F1-F3, G1 and G4 with the CLB, and
the two CLM outputs, C,u0 and C,,,, serve as the G2 input of the G function generator
and the C;;, input of an adjacent CLB, respectively. This implies that the conventional
CLB resource may not receive exhaustive test patterns when an exhaustive test is

applied to the CLB inputs, due to the input dependencies between the CLM and the

27



conventional CLB resource. A question that then arises is whether there exists any
minimum CLM TC set in the equally good values 6, 7 and 8 TCs, that permits the
simultaneous test of the CLM and the remaining part of the CLB.

There are two factors that interfere with the simultaneous test of the two parts, the
use of F and/or G function generators and the input dependencies between the CLM and
the CLB resource. A weight is assigned to each valid carry mode to indicate its
functional dependency on the F and G function generators and the input dependencies
between the CLM and the CLB resource. Fyy and Gyy are used to denote the respective
function generators are not used in a carry mode, and Fy and Gy, otherwise. The input
dependency and independence between the CLM and the CLB for each function

generator are denoted by Fp and Gp and F,and G, respectively.

Table 3.1 shows all the possible combinations of the conditions and their weight
assignments. A mode with a bigger weight allows a higher degree of parallel testing

for the CLM and the conventional CLB. The weight assignment rules are:

(1) A weight of 0 is assigned to a carry mode that uses both F and G function
generators to implement functions other than 4-input XOR/XNOR.

(2) A weight of 1 is assigned to a carry mode in which one function generator has
no input dependency and either is not used or is used to implement a 4-input XOR-
XNOR function.

(3) A weight of 2 is given when none of the function generators has an input
dependency and each function generator either is not used or is used to implement a 4-
input XOR/XNOR function.

Note that 4-input XOR/XNOR functions can be used to test the F and G function
generators (see section 3.4 for details). In Table 3.1, a certain combination may have
multiple weight values. This is because such a combination contains more than one

valid carry mode and different carry modes may have different weight values.

Each carry mode is defined in the Xilinx Software Manuals [39]. One can determine
if a carry mode requires the use of F/G function generators and has input dependency

by examining the mode definition.

28



Table 3.1: CLM Weight Assignments

GuFy GuFxu | GnuFu | GauFawy
GoFp 0 0 0 0
GpF, 0/1 1 0 1
GFp 0/1 0 1 1
G, 0172 1 1 3

Example 12 Carry mode ADD-F-CI defined by the following equations is Fy, Gy, Fp,
and G;.

F=FI®F2®F4;
Couwo = (FI*F2) + C,‘,,‘(FI“’F.’),’

G = not used;

Cnu! = Couro;

F4 = C,‘,,,'
2=G2;

G3 =G3;

C0-C7=01011101.

Definition 14 The weight of a CLM test set is the sum of the weights of all the carry

modes in the set.

The selection criteria for the “best™ minimum CLM test configurations are:
(1) Having the maximum set weight.
(2) No weight-0 carry mode in the set.

In addition. the TUFT sets are also required which are the super sets of TMSFTs and
the TMSFTs are the super sets of TSSFTs, so that a subset of a TUFT set can also be

used as a single and multiple stuck-at fault test if needed.

Twenty-two sets of 8 TC sets with the maximum weight of 13 were found, as shown
in Appendix 2. All twenty-two sets have five weight-2 and three weight-1 carry modes.
Thus, they are equally good choices of CLM TCs. Table 3.2 shows one set of

29



configurations randomly chosen from the twenty-two. The first six, seven (note that it
is not any combination of six or seven) and eight TCs are for TSSFT, TMSFT and
TUFT, respectively. These CLM TCs can be combined with the CLB test

configurations to achieve a complete test of a CLB, as discussed in section 3.4.

Table 3.2: A Set of Carry Logic Test Configurations

Configuration Bits

Carry Mode Co0, C1, C2, C3, C4, C5, C6,C7
ADD-G-F3 0 1 0 0 0 1 1 1
ADDSUB-FG-CI 1 0 0 1 1 1 1 1
INC-G-1 0 0 0 0 0 0 1 O
DEC-F-CI 0 0 0 1 1 1 o0 O
FORCE-1 0 0 0 0 0 O0 0 1
FORCE-CI 0 0 1 0 0 0 o0 O
FORCE-F3 0 0 0 0 0 1 O0 O
FORCE-F1 0 0 0 0 1 1 O0 O

3.4 Minimum CLB Test Configurations

In this section, the minimum TCs are derived for the whole CLB, including the CLM,
conventional CLB resources and the interface logic. Using a similar approach to the
derivation of the CLM TCs, the integrity of the CLBs is validated by verifying the
integrity of individual components within them. Thus, the problem of testing the whole
CLB is to find a minimum set of CLB TCs that sets each circuit node to the required
tests from the CLB inputs and observes the nodes from the CLB outputs when
exhaustive tests are applied to the CLB operation inputs. The single stuck-at fault
model is assumed for all the CLB components except the function generators. The
function generators are implemented as memory look-up tables, so separate treatment is
required to obtain satisfactory test coverage. During a test, the CLBs are configured
into one of the CLB TCs and are tested using exhaustive test patterns and the BIST

architecture described in section 3.2.

30



3.4.1 Known Minimum and Test Challenges

The objective of this project is to derive CLB TCs that support more comprehensive

test coverage of CLBs. The main challenges are:
(1) The inclusion of the CLM in the CLB and the bi-directional fast carry chains.

(2) The test of both RAM and LUT modes of the function generators in the
conventional CLB resources. It includes all the three RAM modes, 32x1, 16x1 single

port and 16x1 dual port.

The prior work on CLB testing focused on the conventional CLB resources [14, 135,
23, 25, 26. 40]. A minimum of five TCs was found for the LUT modes of
XC4000A/D/H/L CLBs [14]. A minimum of five CLB TCs was obtained for the
conventional CLB resources of XC4000E FPGAs, similar to that of [14]. A lower
bound of the minimum number of CLB TCs in this research is eight: five for the LUT
modes. and three for the RAM modes. The inclusion of the three RAM modes requires
three CLB TCs since the LUT and RAM modes of a function generator are mutually

exclusive.

3.4.2 Compatibility and Constraints

In [14], the conventional CLB resources were modeled as a network of multiplexers
when the function generators implement XOR/XNOR functions in their LUT modes. In
such a network, although it is easier to control and observe the inputs and outputs of a
component in a configuration than that of the CLM, there are a number of restrictions.
These restrictions are largely due to the use of the function generators and the routing
constraints inherited from the device. For example, a 32x1 RAM requires using all
three function generators, the 1-input of multiplexer MH1, and the 0-input of MH2.
This greatly limits the choices when selecting CLB resources and propagating signals
to a CLB outputina CLB TC.

The constraints of the CLM TCs and the function generators are studied in this
section. Table 3.3 summarizes the constraints that the CLM configurations pose on the
choices for configuring the CLB. A CLM TC can be associated with either a RAM or a
LUT mode of a function generator. The two CLM TCs, FORCE-1 and FORCE-CI, on

31



rows 5-8, have two rows displaying the CLB constraints, one for each mode. On the
other hand, ADD-G-F3, ADDSUB-FG-CI, INC-G-1, and DEC-F-CI on rows 1-4 require
the F and G function generators to implement dedicated LUT functions. Their
respective RAM modes, thus, are excluded. The check symbol “¥" indicates that the
tests of a CLM TC and a RAM/LUT mode of a function generator are compatible, i.e.

the tests can be performed simultaneously.

Table 3.3: Compatibility and Constraints between CLM TCs and Function Generators

Column # 1 2 3 4 5 6

CLM TC Mode | 32 RAM | 16 RAM F LUT G LUT HLUT | Row #

ADD-G-F3 LUT v G186G28G4 | 1

ADDSUB-FG-C! | LUT V(4-XNOR) | V(4-XNOR) ) 2

INC-G-1 LUT v G4 N 3

DEC-F-CI LUT Fi® F4 v N 4

FORCE-1 RAM v >

LUT v v ) 6

RAM v ) 7

FORCE-cl LUT v v v 8

3.4.3 CLB Test Configurations

The testability equation method introduced in section 3.3.2 for deriving CLM TCs does
not take the constraint factors into consideration, therefore it is not applicable to the
derivation of CLB TCs. An intuitive method is used to derive the CLB TCs in this
section. It begins with the first six CLM TCs in Table 3.2, uses the constraint
information in Table 3.3, and tries to integrate the test of the components in the
conventional CLB resources and the interface logic into the CLM TCs. The goal is to
obtain the minimum CLB TCs which support the complete single stuck-at fault test of

the whole CLB when exhaustive tests are applied to the CLB.

Table 3.4 (a) and (b) depict one set of the minimum eight CLB TCs that we derived.
Column 2 lists the CLM TCs used in the CLB TCs. Columns 3 to 25 correspond to the
23 components in the conventional CLB resource and interface logic. The numbers, 0-

3, denote the input pins of multiplexers used in a CLM TC. The symbols “x” and “-”

32




indicate that a component is not used and can not be used in a CLM TC, respectively.

The LUT functions and multiplexer pins in bold indicate that no other choices but the

ones given are permitted in the TCs. The derivation steps of the CLB TCs are as

follows.
Table 3.4 (a): CLB Test Configurations
1 2 3 4 5 6 7 8 9 10
TC #| Carry Mode | Mg, | Mg, | Mg: | F Function G Function | My, | My: | H Function
1 FORCE-CI 0 1 1 RAM 32x1 1 0 Hl‘F+§.l *G
, X L1 1 || [RaM6xI T RAMI6x1 [ ]
- ) (single port) | (single port)
RAM 16x1 RAM l16x1
3 FORCE-1 ! 0 L (dual port) | (dual port) - - ~
4 | ADD-G-F3 | 0 | 1 | 0 FH&XNOREE| G16G28G4 | 0
5 INC-G-1 0 1 1 1
ADDSUB-
6 EG.ClI o |1 |o 1
7 DEC-F-CI 0 1 1 1
8 X 1 1 1 1
(1) First consider the two RAM testing modes on rows 5 and 7 of Table 3.3. They have

(2)

the least numbers of check symbols, thus, they are least compatible with the CLM
TCs. One additional carry mode needs to be introduced to support the three desired
RAM modes, 32x1, 16x1 single port and 16x1 dual port. The three RAM TCs are
the CLB TC 1, 2 and 3 in Table 3.4 (a), where TC 2 is the new TC.

The multiplexer network model and XOR/XNOR functions in [14] are used to test
the LUT modes of the function generators. The LUT modes that implement these
LUT functions are grouped by the shaded boxes for each function generator in
Table 3.4 (a). In Step (1), the selection of the RAM modes for FORCE-1 and
FORCE-CI eliminated two out of the four LUT tests for G function generator (rows
6 and 8), a new TC must be added to complete the XNOR-XOR-XNOR test for the
G (the TC 8). The test for the H function can be accomplished by either TCs 4-6 or
TCs 6-8. The choice of TCs 4-6 for H was arbitrary. The LUT functions that are

neither in bold nor shaded in Table 3.4 (a) can implement any arbitrary function.

33



(3) The choice of a multiplexer input may be limited by the mode and the function that
a function generator implements, see the bold pin numbers in Table 3.4. Each data

input of the remaining components is used at least once within the eight CLB TCs.
See Table 3.4 (b) for details.

Table 3.4 (b): CLB Test Configurations

1 11112113114 15|16|17|18|19{20|21(22}23 24 25

TC # |M1 (M2 | M3 | M4 |Mg;|Mg:{Mg;| H1 |Din| SR | EC MvyoMxo YQ XQ
1 3y-1lo}-f{vi1rf1rio|1i2i3]|1}|1]| FF/Reset | FF/Reset
2 24 - 1 -{o0ojojo0oi1j]213]10]1 1 FF/Set FF/Set
3 1y -1t2¢-1 71 4{1 ] -13107j11]1 1 |Latch/Reset|Latch/Reset
4 310 - 1 - |0 - 3 (0 1 2 1 - FF/Reset -
5 0O|-1|3}-}1-10}10}2 ;1t]3 (01}t |1 | Latch/Set | Latch/Set
6 S S T (R U R R I O TN S I T I Y - -
7 -0 -l-tol-1-]-J1t2]-]-|-1o - -
8 ot-4t3]-|-]1 {17013 ]|1]211]1 | FF/Reset | FF/Reset

3.5 Evaluation and Discussion

3.5.1 Test Vectors and Test Coverage

Function Generators in LUT Mode

The XOR-XNOR-XOR (or their inverse) functions can detect single/multiple cell
stuck-at faults and transition faults in the LUT modes of the function generators, when

applying exhaustive vectors on the LUT input (address lines).
Function Generators in RAM Mode

A set of standard RAM testing algorithms, such as MATS++ and SMarch tests, are
used to test the RAM modes of the function generators. They guarantee the detection of
stuck-at cell faults, address decoder faults, transition faults, read/write logic faults,
dynamic coupling faults and parametric faults in the RAM modes of F and G function
generators [41]. The internal logic of the level-sensitive RAM is slightly different from

34



that of the edge-triggered RAM. An additional three CLB TCs are required. Tradeoffs

were made to test the edge-triggered RAM modes only since they exercise more RAM
resources [31].

Remaining CLB resources

Exhaustive tests on the CLBs support the complete single stuck-at fault coverage for
the CLMs (using six CLM TCs) and the remaining CLB resources.

35



Chapter 4

FPGA Interconnect Testing

In this chapter, the built-in self-test (BIST) issues of FPGA interconnect are addressed,
using the popular Xilinx XC4000E FPGA as the device model.

The interconnect in an XC4000E FPGA includes horizontal and vertical routing
channels that run in between the CLB arrays. Each routing channel comprises wire
segments and programmable switches. Global interconnect (or global routing
resources) contains wire segments and switch matrices located at the intersections of
horizontal and vertical routing channels. Local interconnect brings signals into and out
of CLBs through CLB /O pins and programmable switches that connect the I/O pins to

the global interconnect.

Interconnect plays an important role both for programming flexibility and
performance of FPGAs. Due to the complexity of FPGA interconnect, divide-and-
conquer techniques are used in this project to verify interconnect integrity. This chapter
focuses first on the testing of global interconnect, and then on the testing of combined

global and local interconnect.

4.1 Global Interconnect Testing

4.1.1 Background material

4.1.1.1 Programmable Switches and Functional Models

There are three types of programmable switches in XC4000E series FPGAs [35]: basic

programmable switches (PSs), cross-point PSs and multiplexer PSs.

36



A basic PS contains a transmission gate and a SRAM cell. The SRAM cell can be

programmed to open or close the transmission gate. Figure 4.1 (a) shows a basic PS.

A cross-point PS consists of six basic PSs, connecting the wire segments in west-
east (WE), north-south (NS), north-west (NW), south-west (SW), north-east (NE), and
south-east (SE) directions (see Figure 4.1 (b)). These transmission gates are denoted as
WE. NS, NW, WS. NE, and SE, respectively. Several cross-point PSs form a switch
matrix with the cross-point PSs on the main diagonal of the matrix (shown in Figure
4.1 (c)).

A multiplexer PS functions as a conventional many-to-1 MUX. It allows one of the
inputs to be routed to the output for given selection signals. The selection logic can
only be set through the configuration bits during the configuration stage [35]. Figure
4.1 (d) depicts the symbolic diagram of a 4-to-1 multiplexer PS and its corresponding

functional model.

Configuration cell

e

(a) Symbolic and logic (b) Symbolic and logic
representations of a basic PS representations of a cross-point PS
ABCD ABCD
L
Liddcn = | L] CLB
(c) Switch matrix (d) Multiplexer PS and its functional model

Figure 4.1: Programmable Switches

37



4.1.1.2 Global and Local Routing Resources

A high-level diagram of the wire segments associated with a configurable logic block
(CLB) is shown in Figure 4.2. There are five types of wire segments distinguished by
their relative length [35]. They are single-length lines, double-length lines, long lines,
global lines, and carry lines. A two-letter acronym is used to denote the wire groups,
where the first letter, H/V, indicates if a wire group is horizontal or vertical, the second
letter, S/D/L/G/C, denotes single-length, double-length, long, global, and carry line(s)
respectively. The number following the two letters represents the number of lines in a

group. For example. HS8 denotes a group of 8 horizontal single-length lines.

t 444 1t

Switch .
o Matrix o P uss
G - P HD:
- 1 : P HL3
j"Sclect
#'.’.'.Malﬁ léxée PSs".". . CLB
—]Y_Select
- > HL3
v Y v } |
VD VS VL VG vC
+ § 6 5 Input 1

Figure 4.2: CLB Routing Resources

The single-length lines and double-length lines have the same routing architecture
and vary only in the length of wire segments. Long lines run the entire length or width
of the device. Global lines are designed to distribute clocks with minimum delay and
skew and can also be used for carrying other high fan-out signals. Global interconnect
resources encompass switch matrices, single-length lines, double-length lines, long

lines and global lines. Local interconnect includes I/O pins of CLBs and programmable

38



switches (shown in the dotted boxes in Figure 4.2) that bring signals into and out of
CLBs. Note that the dedicated fast carry lines are not tested here since they can only

be tested together with the carry logic modules (CLMs) [28], as discussed in chapter 3.

4.1.1.3 Dedicated Device Features

As shown in Figure 4.2, each CLB has a pair of tri-state buffers. The assertion of the
selection control “Seiect” allows the outputs of a CLB to be driven onto the nearest
horizontal long lines implementing multiplexed busses [35]. Four wide-edge decoders
are used to boost the performance of wide decoding functions. Each of them can
implement wired-AND/NOR logic. They are located on the four sides of the I/O
boundary. These routing resources are part of the /O routing resources and are ignored

in the test strategy for global interconnect resources.

4.1.2 The Proposed BIST Scheme

4.1.2.1 Proposed Test Strategy

The proposed BIST strategy for global interconnect is a parity-checking based scheme.
It makes use of the in-system re-programmability of FPGAs to first program the device
into a set of minimum test configurations, perform deterministic tests on interconnect,
then program the device back into its intended system functions. The hardware
resources of an FPGA are partitioned into two equal sections, an upper section and a
lower section. Each contains CLBs and interconnect. When interconnect of the upper
section is under test. the CLBs and interconnect in the lower section are used to

implement the BIST circuitry, and vice versa.

Figure 4.3 shows the conceptual block diagram of the proposed BIST scheme. A
portion of wire segments and programmable switches are configured to form a wire
group (WG). A WG contains k wires, called wires under test (WUTs), and one wire
conveying the parity bit, denoted as the WUTs_Parity. Later in section 4.1.6 we show
that the WUTs_Parity uses a different routing channel in order to improve the fault
coverage. The test pattern generator (TPG) supplies the WUTs and WUTs_Parity with
test vectors at one end of the wires, where WUTSs_Parity is the parity of each sub-test

vector applied to the WUTs. A parity checker at the other end of the wire busses

39



computes the parity code of the WUTSs, called PCG_Parity, and compares the
PCG_parity with the WUTs_Parity. A disagreement in the two indicates an error in the
WG. Figure 4.3 is an even parity implementation of the parity checker. The parity code
generator (PCG) is a k-input XOR function while the Comparator is a 2-input XNOR
gate. An odd parity-checking scheme can be easily implemented with minor
modifications. Logic 1 at the output of the comparator, O,, indicates error-free and
logic 0 means an error is detected. The output response analyzer (ORA) is designed to
record first-fails on O, during a test and to assert a pass/fail signal (P/F) after the

applications of all input vectors.

Parnity-checker

X

Comparator \
WUTs k sty Cod PCG_Parity o
f——————p| FantyLode A\ b
PG Generator _) ORA L PF
WUTSs_Parity | l

Figure 4.3: Conceptual Block Diagram

The proposed scheme may appear to be a conventional parity-checking scheme that
detects only 50% of the errors in individual data vectors. However, as opposed to
techniques that try to detect intermittent errors in signals that travel over noisy
channels, non-intermittent faults are targeted and sensitized here with many different
vectors. The key is that, in the proposed schemes, an exhaustive test set is applied: a
fault missed by the parity bit of one test vector will be detected by one or more of the
other vectors in the test set. A specially-designed ORA detects a parity error on any of
the test vectors. In section 4.1.6, we show that the proposed scheme is capable of
detecting all single and m multiple stuck-at 0/1 faults, stuck-open faults and bridging
faults in wire segments, stuck-on/off faults and bridging faults in programmable

switches, and combinations of the faults outlined above, where 1<m<k.

40



4.1.3 Fault Models and Assumptions

The fault models under consideration for FPGA interconnect include:
(1) Multiple segment stuck-at 0/1 faults;
(2) Multiple segment stuck-open faults;
(3) Multiple bridging faults;
(4) Multiple switch stuck on/off faults;

(5) The combinations of the above faults.

The following assumptions are made:

Assumption 1 When a logic value, 0 or 1, is applied to one end of a wire which

contains stuck-open fault(s), the wire presents a logic 0 at the other end [1].

This assumption is quite realistic, even if the segment of the wire beyond the open
defect would be floating at some mid rail voltage. Such a voltage will be interpreted by

the parity checking logic as either a static low or a static high signal.

Assumption 2 A floating voltage caused by a bridging fault produces either a logic 0

or a logic 1, i.e. the bridging implements either a wired-AND or wired-OR function.
This assumption covers a wide range of bridging behavior of wire segments.

Assumption 3 A stuck-on fault of a switch has the same faulty behavior as a bridging

fault between two wire segments connected by the switch [21].

The switch stuck-on fault is detected as long as the bridging fault between the two
wire segments can be detected in one of the proposed test configurations. Therefore,

switch stuck-on faults will be considered as wire segment bridging faults for the rest of

this chapter.

Assumption 4 No detailed adjacency information is required within a WG, in addition

to the information provided in the vendor’s data books.

41



4.1.4 BIST Architecture and Test Procedure

Switch matrices can connect wire segments to form global busses. They are the most
complicated programmable switches in an FPGA. Three distinct switch matrix
configurations are required to test the six basic PSs in a cross point PS [17]. Figure 4.4
depicts the three test configurations, called orthogonal, left-diagonal and right-
diagonal, for a switch matrix with 8 cross point PSs. In orthogonal (left-diagonal, or
right-diagonal) test configurations, all the WE and NS (NW and SE, or WS and NE)
PSs in the switch matrix are programmed closed and all the other PSs are programmed

open.

T |

7.

LT I

(a) Orthogonal (b) Left-diagonal (¢) Right-diagonal

il
|

Figure 4.4: Switch Matrix Test Configurations

Figure 4.5 (a) and (b) show the proposed high-level orthogonal and left-diagonal test
architectures, respectively. The right-diagonal test architecture is similar to the left-
diagonal test architecture. In Figure 4.5 (a), there are two WGs, WGl and WG2.
WUTs_1 and WUTSs_2 are formed with all horizontal and vertical wire segments under
test. They are connected by the WE and NS PSs in all the switch matrices and by the
boundary connections. WUTs_Parity_1 and WUTSs_Parity_2 use boundary routing
resources away from the routing channels of the WUTSs so that the probability of a

WUTs_Parity bit and all its WUTs bridging together is negligible.

Two parity checkers are used: one for the horizontal WG and one for the vertical
WG. The outputs of the parity-checkers are first connected to the respective MUX-
busses, then to the wide-edge decoder implementing a wired-AND bus. The wired-
AND bus provides the input to the ORA. The select signals of the MUX-busses are
provided by the TPG (not shown in the diagram). They allow direct access to the

42



outputs of an individual CLB (implementing a parity checker). The left and right
diagonal structures are similar to the orthogonal structure. The BIST circuitry also
interacts with the outside world through a buiit-in [EEE 1149.1 interface provided by
the FPGA vendor [35].

E".'.-_.:'_.-_-_-'_'.'.T'E : mmmm—m————om- I‘: WG _Parity
v [ (W Ve checker
e | [ 1| 1 I ) . .
T HH— B B
' N 4
Pt
[}
[}
[}
[}
b ! T 1 o=
1 ] :
[ [ [ [ ] 1 - H :
[ 1 I g 1 i 4 e} ' '
o 1 J 1 T 1 | 0 ' :
- ' b
[ ] ' ]
Lt ' '
[ ] ' ]
[ 1 ]
14 ' ]
L 1 1 + — )
. 1 [ L [ 1 [ 1 ' 1
= aEss ass —BH—- ]
N
A - i i
| m——tecoa- L L ] ' :
[P - [] 1
k | S ) | L J :
3 ]
N k) " Pl
WUTs_2 [ ' '
. ' ! !
) ] 1
' bl
TPG i Vo
L : 1
' M H
WUTs_1 WUTs_Parity | ‘| B
: o
3 ]
1 : :
BIST Controller WG2_Parity H
checker 5 :
' :
< |
S E
o

AND-bus d
ORA P

Figure 4.5 (a): Orthogonal Test Architecture

43



lllllllllll - - =y

WUTs_Parity_2

llllllll lll.“
et “ "
H
]
]
(i \
P N
Upp— e = e
RS- — --
[]
[]
[]
(]
[]
' = a H
(]
]
]
(]
'
.-II- e - -
- — e e e o

TPG
ORA

BIST Controller

3
=TT
]
[
T
Lo
vy

\\||'I

|
L
2

—<

»
K \\ WUTs

Figure 4.5 (b): Left-diagonal Test Architecture

WUTs_Parity_I




4.1.5 Test Sets

To ease the presentation, we first consider two wire groups, WG1 and WG2. Later, in
section 4.1.7, it will be shown that many wire groups can be tested simultaneously
without causing routing congestion in an FPGA. WG] and WG2 are formed by
connecting the horizontal and/or vertical wire segments by means of programmable
switching matrices into one of the three test configurations shown in Figure 4.5. A WG
contains a k-wire WUTs and a WUTSs_Parity wire. WGl and WG2 have a total of
2(k+1) wires. Three proposed tests are shown in Table 4.1 for &=3. In all the three
tests, the respective parity bits, WUTs_Parity_1 and WUTs_Parity_2, are computed in
the conventional manner for the chosen parity checking (even parity) scheme. Each
test contains several test vectors. A test vector is defined as V = [e, ea, ..., ew]’,

where e; € {0.1} and 1 <1 < &k+].

Table 4.1: Proposed Tests for k=3

Test 1 Test 2 Test 3
vl v2 v3 vd v5 v6 v7v8 viv2vivadvive | vl v2 v3 v4d v5 v6
el 00001111 100000 o111l
WUTs_l  e2 00110011 010000 101111
WGl e3 01010101 001000 110111
WUTs_Parity_| ¢4 01101001 111000 000111
el 11110000 000100 111011
WUTs_2  e2 11001100 000010 111101
wG2 e3 10101010 000001 111110
WUTs_Parity 2 ed 10010110 000111 111000

Test 1 is an exhaustive test of 2° vectors for WUTs_1 and WUTs_2, respectively.
The test vectors for WUTs_2 is the complement of that of WUTs_1. Test 2 is a walk-1
test for WUTs_1 when an all-0 test is applied to WUTs_2. It is followed by an all-0
test for WUTs_1 while a walk-1 test is applied to WUTs_2. Test 3 is a walk-0 test for
WUTSs_1 when an all-1 test is applied to WUTs_2. It is followed by an all-1 test for
WUTSs_1 while a walk-0 test is applied to WUTs_2.

45



Each of the proposed tests is designed to detect a subset of the modeled faults. In
particular, Test 1 is capable of detecting multiple segment-stuck-at 0 (stuck-open)
faults. segment-stuck-at-1 faults and switch-stuck-off faults in the WGs, and multiple-
wire bridging faults (switch-stuck-on faults) within a WG. Test 2 and Test 3 detect
multiple-wire bridging faults (switch-stuck-on faults) between WG1 and WG2 for
either wired-AND or wired-OR bridging faults. The proofs of fault detection for the

proposed scheme can be found in the following subsection.

4.1.6 Proofs of Fault Detection

Let a sub-vector S of a test vector Vbe S c V and S # O. Test vectors applied to one
end of a WG are called the inputs to the wire group and the logic values appearing on

the other end of the WG are the outputs.

It can be seen from Figure 4.3 that fault(s) in a WG can be detected if the outputs of
PCG_Parity and WUTs_Parity are different. Thus, to prove the detectability for
fault(s) under a certain test. we just need to prove that the fault(s) will cause different

outputs on PCG_Parity and WUTs_Parity.
Assumption 5 Multiple faults can affect at most k£ wires in a WG of (k+1)-wires.

This assumption does not pose a serious limitation. Since the parity bit is routed
along a different channel from the WUTs, and since the direct parity connection is
much shorter than the total length of the WUTs that are formed by concatenating many

wire segments, it is unlikely that a fault will affect all WUTSs and the parity wire at the

same time.

The following proofs make use of a pair of sub-vectors Sw, and Sy that are identical
to each other except for one or two bit positions. Since Test 1 is an exhaustive test, any

arbitrary vector pair {Sw;, Sy} is contained in Test 1.

Definition 1 Given a set W of m faulty wires in a WG, an m-bit sub-vector S, in which
each bit corresponds to a wire in the wire set W is called an associated sub-vector of

the set W, where l < m < k.
Note that a m wire subset W has 2™ associated sub-vectors.

46



Lemma 1 For a set W of m faulty wires in a WG due to any combination of single or
multiple segment stuck-at-0/1 faults, stuck-open faults, switch stuck-off faults and/or
wire bridging faults. there exist two associated m-bit sub-vectors Sp; and S, which
are identical except for one bit, that produce the same values on the outputs of all wires
in W,

Proof: Consider an associated sub-vector S,;; that is constructed as follows:

(1) The input bits of any wires that are affected by a wired-AND bridging fault are
set to 0;

(2) The input bits of any wires that are affected by a wired-OR bridging fault are set
to 1;

(3) Any other bits 1n S,,; are set to an arbitrary value.

Note that for each wire bridging fault that affects the wire set W, sub-vector Sy,
contains at least two bits that are set to the controlling value for that wire bridging

fault. The controlling value of a wired-AND (wired-OR) function is 0 (1).

The second associated sub-vector S is derived from S, by flipping any arbitrary
bit in Spy,. Vectors Sy, and Sy, produce the same values on the outputs of all wires in
W. If the flipped bit is associated with a wire affected by a wire bridging fault, then
there is still another bit in Sy, that has the controlling value for that wire bridging faulit
so that the output values are not changed. If the flipped bit corresponds to a faulty wire
that is not affected by a bridging fault, then it is straightforward that the output of the

wire has the same value for both vectors. QED.

Theorem 1 Test 1 can detect any combination of single or multiple segment stuck-at-
0/1 and stuck-open faults. switch stuck-off faults and/or wire bridging faults affecting

any m wires of a WG. where 1 < m < k.
Proof: Case /: The WUTs_Parity is fault-free.

The m faulty wires are all WUTs. According to Lemma 1 there exist two m-bit sub-
vectors Sy, and S, associated with the m faulty wires which differ by one input bit and

still produce the same values on the outputs of the faulty wires. From these sub-

47



vectors we can construct two vectors Sw, and Sw: for the k-wire WUTSs using arbitrary
values for the bits associated with the fault-free wires, such that Sw; and Sy. are
identical except for the one bit that was flipped to derive S;,. Therefore, all the
outputs in the WG, including the output parity PCG_Parity, have the same value for
Swi and Sw.. However, the input parity WUTs_Parity is different for Sy, and Swa

because the vectors differ in one bit. Because of this parity error the fault is detected.
Case 2: The WUTs_Parity is faulty.

At least one of the wires in the WUTs is fault-free. According to Lemma 1 there
exist two m-bit sub-vectors S, and S, associated with the m faulty wires which differ
by one input bit and still produce the same values on the outputs of the faulty wires.
From these sub-vectors we can construct a vector Sw; for the k-wire WUTs using
arbitrary values for all but one of the bits associated with the fault-free wires. Since
Smi specifies a value tor the input parity, one of the bits associated with the fault-free

wires needs to be set to a value that generates the required input parity. Vector Sy, is

derived from Sw, as {ollows:
(1) S is replaced by Sp.2:

(2) One of the bits associated with the fault-free wires is flipped.

Note that parity of Sy is correct. If the difference between S, and S, is in the
parity bit, then the flipping of the fault-free bit is required to justify the parity. If the
difference between S, and S, is in a non-parity bit, then the flipping of the fault-free

bit is required to make sure the parity remains the same.

The output values of all wires, including the output of the WUTs_Parity wire, are the
same for Sw; and Sw: except for the output of the fault-free wire whose bit value was
flipped to derive Sw.. Due to the one output bit that is different for Sw. the output
parity PCG_Parity is different for the two vectors. This will generate a parity error

since the output of the WUTSs_Parity wire is the same for both vectors, and the fault is
detected. QED.

Theorem 2 Test 2 can detect any wired-AND bridging faults between m wires in WG1

and n wires in WG2, where 1l <m, n <k.

48



Proof: Case !/: WUTs_Parity_I and WUTs_Parity_2 are fault free.

Test 2 is a walking-1 test applied to WUTs_1 and WUTs_2 together. Consider a
vector V that applies a logic 1 to one of the m faulty wires in WUTs_1. The
WUTs_Parity_1 for this vector is 1. The outputs of WUTs_1 will all be 0 because of
the wired-AND bridging fault, thus PCG_Parity_1 is 0. The disagreement between
WUTs_Parity 1 and PCG_Parity_1 detects the fault.

Case 2: At least one of WUTs_Parity_I and WUTs_Parity_2 is faulty.

Without loss of generality, suppose WUTSs_Parity_1 is faulty. Consider a vector V
that applies the single | to one of the (k-m+1) fault-free wires in WGI.
WUTs_Parity_1 is 0 due to the Os applied to the n faulty wires in WG2. As the number
of 1s on the outputs of WUTs_1 is odd, PCG_Parity_1 is 1. Since WUTs_Parity_1 and
PCG_Parity_1 are different, the fault is detected. QED.

Notice that the proot of Theorem 2 uses a vector that sensitizes the faulty wires in
only one of the WGs. namely WUTs_l. The same fault is also detected by another
vector in Test 2 that sensitizes the faulty wires in the second WG, WUTs_2. In the

same manner there are at least two vectors in Test 3 that detect the faults mentioned in

Theorem 3.

Theorem 3 Test 3 can detect any wired-OR bridging faults between any m wires in

WG and any n wires in WG2, where l <sm, n<k.
Proof: Similar to the proof of Theorem 2. QED.

Theorem 4 The parity-checking scheme with Test 1, Test 2 and Test 3 can detect the
combinations of the faults in Theorems 1, 2 and 3 between WGI1 and WG2.

Proof: When considering stuck-at faults and bridging faults that affect the same wires,
there are six combinations of the two fault types, {stuck-at-0, wired-AND}, {stuck-at-
0, wired-OR}, {stuck-at-1, wired-AND}, {stuck-at-1, wired-OR}, {stuck-at-0, stuck-at-
1, wired-AND}, and {stuck-at-0, stuck-at-1, wired-OR}. The faulty outputs of wires

with a fault combination above always behave as either stuck-at faults or bridging

49



faults since only one of the fault types can be dominating. Only bridging faults can
share common wires between WG1 and WG2, and Theorems 2 and 3 have proven that
bridging faults between the WGs can be detected. Therefore, only fault combinations
within a WG need to be considered further. Theorem 1 shows that the combination of
stuck-at and bridging faults can be detected. Thus, Tests 1, 2 and 3 can detect the

combinations of the faults in Lemma 1, 2, 3 and 4 between WGI1 and WG2. QED.

In summary. the proposed scheme has superior multiple-fault coverage compared to
the classic walk-0/1 bus testing strategy [42]. This is achieved by using longer tests.
However, the most notable characteristic of FPGA testing is that the configuration time
required to program a device is much longer than the test application time. Therefore,
several additional test vectors have little impact on the test time cost. The goal of

FPGA testing is to minimize the number of test configurations rather than the number

of test vectors.

4.1.7 Application

This section discusses the application of the proposed BIST scheme using the Xilinx
XC4020E FPGA as the target device. Since the wire groups HS8, VS8, HD4, and VD4
in an XC4020E FPGA have dedicated switch matrices and share the same routing
architecture [35], they can be tested in parallel. Table 4.2 shows the distribution of
testing these wire groups and their respective programmable switches in the orthogonal.
left- and right-diagonal test configurations. On the other hand, wire segments in HL6,
VL6 and VG4 cross the entire chip and do not go through any switch matrices.
Although in theory the testing of these long WGs can be merged with the three existing
test configurations. they are not routable in practice due to the exhaustive usage of the
single and double lines and the boundary routing resource in the three test

configurations. This introduces the fourth test configuration for the long lines as

shown in Table 4.2.

In a BIST environment, it is impossible to test interconnect resources without using
CLBs, or vice versa. The proposed scheme uses CLBs to implement the BIST circuitry
and parity checkers. It provides implicit testing of these functional modules. For
instance, a faulty TPG generating m-bit erroneous test vectors can be detected as faulty

wires, where 1 < m < k. To reduce the fault escape probability hardware redundancy

50



techniques, such as triple modular redundancy (TMR), can be used to implement the
BIST circuitry. This technique is feasible due to the availability of spare CLBs in the
BIST section of an FPGA and the simplicity of our BIST circuitry.

Table 4.2: XC 4020E Global Routing Resources Test Configurations

Test Component Component
Configuration Type Under Test
PSs WE, NS
Orthogonal WGs VS8, HS8, VD4, HD4
PSs NWwW, SE
Left-diagonal
WGs VS8, HS8, VD4, HD4
» ‘ PSs WS, NE
Right-diagonal WGs VS8, HSS, VD4, HD4
Long-lines WGs HL6, VL6, VG4

4.2 Combined Global and Local Interconnect Testing

This chapter is an extension of the work in section 4.1. A modified BIST scheme is
provided that unifies the testing of both global and local interconnect. The
modifications are based on the challenges that will be addressed in chapter 4.2.2 that

combines the testing of both global and local interconnect.

4.2.1 Background Material

First, the following background material is provided in addition to the one given in

section 4.1.

4.2.1.1 Local Interconnect

A detail diagram of the interconnect associated with a CLB of a Xilinx 4000E FPGA 1is

shown in Figure 4.6.

51



>< J‘ - HD2
: $ ¢ HDI
& 4 < HSI
¥ o d HS2
> ¥ .
» . e o ®
- - - ®
:¢ : FO———}4s8
3 e - r{
J D G
++ HL4
— HLS
; T R
™ y A TBI
It v
L‘# o - F4 C4 G4 YQ .
-C) o O Y ;
— P Gl
P C1
1 Fl
CLB G
r_ 1 Cl
T F3 |-
P K
O o> 0~ X
O o £~ XQ F2C2 G2

- 3

Crme

VTBIF[L[

~ HL2

SSS S £ 5 eee S < £ S22 S55%5
i B2 X = X2 R :.‘5::2.‘

—dﬂ-r—

——

HL3

Figure 4.6: Detailed Diagram of Interconnect Associated with a CLB

Local interconnect includes pins of CLBs, and local programmable switches (basic
and multiplexer PSs) that bring signals into and out of a CLB. As introduced in section
4.1, there are three types of programmable switches. Basic PSs are mainly located at
the cross-points between wire segments and the output pins of a CLB, as shown in
small square boxes in Figure 4.6. Multiplexer PSs are mainly located at the cross

points between wire segments and the input pins of a CLB, as shown by small triangles

in Figure 4.6.

52



4.2.1.2 Configurable Logic Block

Figure 3 shows a simplified logic diagram of a CLB. It has twelve inputs, four outputs,

three function generators, G. F, and H, two D flip-flops (DFFs), and some muitiplexers.

c4___
C3 ———
C2——
Cl

¢
=
SR g YQ
G4 p O reset
G3 <> O set
Ga—— O I: K ce
Gl— Y
1 ]
p Oreset
j_r_ /' 0O set
F4 ¢ K
CE
FF— "— ,
F2 4 X
Fl — ‘/
K

Figure 4.7: Simplified Logic Diagram of a CLB

The function generators can implement any five input logic function, and some
further logic functions with up to nine variables. Each DFF has data input D, clock K,
clock enable CE. and asynchronous set/reset S/R. S/R can be programmed to the set
mode or reset mode in a configuration. S/R = 1 sets the DFFs in the set mode, and
resets the DFF in the reset mode. The outputs X and Y are unlatched, and XQ and YQ
can be either latched or unlatched by setting the respective output MUXes.

4.2.2 The Proposed BIST Scheme

4.2.2.1 Proposed Test Strategy

The proposed BIST strategy extends the work in section 4.1 on global interconnect

testing to include local interconnect, so that the integrity of both global and local

53



interconnect resources of a device can be verified. It also makes use of in-system re-
programmability of FPGAs to program a device under test into a set of minimum test
configurations (TCs), perform deterministic tests on interconnect resources, and then
program the device back into its intended system functions. The resources of an FPGA
are partitioned into two equal sections: an upper half and a lower half. Each contains
CLBs and interconnect. Interconnect resources under test are configured into busses.
Dedicated device features, such as wired-AND busses and wide edge decoders, are used
to access the test responses. When interconnect of the upper half are under test, the
CLBs and the interconnect network in the lower half are used to implement the BIST
circuitry, and vice versa. The BIST circuitry interacts with the external world through a
built-in IEEE 1149.1 interface [35].

In section 4.1, the global interconnect are tested by configuring global wires and
programmable switches into long busses, and their integrity is verified. The formation
of the global busses does not require any CLB resources. On the contrary, local
interconnect can only be tested indirectly by supplying inputs to CLBs and observing
them at CLB outputs. This requires involving all the CLB resources in the section of

the interconnect under test.

The parity-based error detecting BIST approach in section 4.1 requires using all
three LUT function generators, or nine out of the twelve inputs of a CLB. This
maximizes the number of global wires to be tested in parallel. The multiplexer
switches connecting to a CLB input pin contains up to seventeen programmable
switches. Each can be selected (or tested) in a separate TC. Therefore, the testing
challenge for the combined global and local interconnect is to derive a minimum of
seventeen TCs that can simultaneously verify the integrity of the local and global
interconnect resources. 1o maximize the number of programmable switches to be
tested in parallel in a TC. interconnect associated with a CLB is partitioned into two
parts, the combinational part and the sequential part. The combinational part includes
the three function generators. some input and output MUX PSs and an unlatched output
(X or Y). The sequential part consists of some input MUX PSs and a D flip-flop (DFF)
that has three control inputs, input D, clock enable CE, and set/reset S/R, and one

latched output (XQ or YQ). This allows for using all the twelve inputs of a CLB

54



during a TC (nine and three for the combinational part and sequential part

respectively), thus contributes to the derivation of the minimum number of TCs.

Figure 4.8 shows the conceptual block diagram of the proposed BIST strategy. A
portion of wire segments and programmable switches are configured to form two wire
groups (WGs), WG_c and WG_s, denoting the WGs being tested by the combinational
part and sequential part respectively. A WG_c contains eight wires under test
(WUTs_c), and one wire conveying the parity bit (WUTs_Parity_c). A WG_s contains
3 WUTs (WUTs_s) providing inputs to the D, CE and S/R inputs of the DFF.

CLB
/ WG ¢ :. _________ Parity checker '
: |
~ ol 1 Comparator_¢ | -
f WUTse S| |parityCode| PCG Parity | ! o0
g # 1* Generator _}D—l—b ORA ¢ [—pPF
'1 WUTs_Panty_¢| ! | i
Vb | .
Sd l
TPG l‘,' b e e - ———— -
WG _s
/ . Comparator_s
K WUTss 3 Qv \ O
B >  DFF -—}D’——D ORA_s LppF
:, : Qe

Figure 4.8: Conceptual Block Diagram of the Proposed BIST Strategy

The test pattern generator (TPG) supplies the WUTs_c and WUTs_Parity_c with test
vectors at one end of the wires. Similar to section 4.1, WUTs_Parity_c is the parity of
each sub-test vector applied to WUTs_c. A parity-checker at the other end of the wire
busses computes the parity bit of WUTs, named PCG_Parity, and compares the
PCG_Parity with the WUTs_Parity_c. A disagreement in the two indicates an error in
the WG. Figure 4.8 is an even parity implementation of the parity checker. The PCG
is an 8-input XOR function while the Comparator_c is a 2-input XNOR gate. An odd

parity-checking scheme can be easily implemented with minor modifications. A logic

w
W



1 on the output of the Comparator_c, Opc, indicates error-free and a logic 0 means that

an error is detected.

The TPG supplies WG_s with test vectors at one end of the three wires and the fault-
free output, Qrpg. for the sub-vector applied to WUTs_s. The output response analyzer
for the DFF (ORA_s) compares the output of Qp with Qrpg. Similar to Comparator_c,
Comparator_s is a 2-input XNOR gate. However, it is located in the BIST section of
the TC due to the fact that all the CLB resources in the WUTs section are fully utilized

in the proposed BIST strategy.

The fault detectability of the WG_c and WG_s groups is slightly different since
distinct test methods are used. For the wires and PSs in WG_c, the proposed BIST
scheme is capable of detecting all single and m multiple stuck-at 0/1 faults, stuck-open
faults and bridging faults in wire segments, stuck-on/off faults and bridging faults in
PSs. and the combination of these faults, where 1 < m < 8, as proved in section 4.1.
The wires and PSs in WG_s are tested indirectly by means of the complete functional
test of a DFF that receives the test signals from WUTs_s. It will be shown in section
4.2.5 that the proposed BIST strategy for WG_s can detect all single and multiple
stuck-at, stuck-open. and bridging faults in wire segments, stuck-on/off and bridging
faults in programmable switches, and the combinations of these faults in a WG_s, and

all the modeled bridging taults between a WG_c and a WG_s.

4.2.3 Proposed BIST Architecture

Figure 4.9 shows the proposed BIST architecture. The interconnect under test section
contains a nx(n/2) arrav of CLBs, where n is the number of CLBs columns in a device.
Each CLB implements a parity checker for WG_c and a DFF for WG_s as shown in
Figure 4.8. The X and XQ outputs of a CLB symbolically represent the output of the
parity checker for WG_c. O, and the output of the DFF for WG_s, Qp, respectively
(see Figure 4.8). In a TC, they could be any combination of X, Y and XQ, YQ outputs.
The O, and Qp outputs on each row are first connected to the respective wired MUX-
bus through the tri-state buffers at the outputs, then to the wide-edge decoder. The

select signal §;, where 1 </ < n, allows the two outputs, O,. and Op, of the CLBs in

56



column i to be connected to their respective edge decoders implementing wired-AND

and wired-NOR functions.

Switch matrix Edge decoder
\\ “
t : t —HH — —H Coo T :
=a H === T 1= =1 T 4¥H o ! '
WG_.j A i ) —
o ; : e wao!
3 X i 3 ! WAL |
o8 pholwief X B Pl 1A rhedge ! b ' | :
Ve gz = : S q E
1 al cth h : .
py v L T : 1
T e 8 i i B ) :
S5 5 i s ;
X X X : :
7 pudutee’ xXQfl 1 St XQ E :
27 3 Y ‘_l ;
- =el O th ! [ '
11 T 1 T ' '
r = = o : '
Si — Ss h_si
ORA ¢ [&————
PG || BIST |gx=p | Comparasor.s
Controller ORA_s |g G# q
ON
Qres l ORA

Figure 4.9: High-level BIST Architecture

The wide-edge decoder collects the WG_c outputs on column S; by implementing the
wired-AND function of all the O, signals on column §;. Since the fault-free output of
O, is logic 1, any number of faulty output(s) can be detected as long as there is one

fault free output in column S,.

The wide-edge decoder collects the WG_s outputs on column S; by implementing
wired-AND and wired-OR (wired_NOR logic combined with inverse logic) functions of
all the Qp signals column S;. The wired-AND and wired-OR busses, WAl and WAO,

are used to provide O, signals for the fault-free ‘1’ and *0’ of Qp signals respectively.

57



The wired-AND/OR tree structure used to collect Qp signals has strong inherited
multiple fault detectability. It guarantees the detection of any multiple faulty outputs
from CLBs if at least one signal connecting to the busses is fault-free [44]. The fault-
free WG_s signal. Qrpg, selects either WAO or WAL1. The Comparator_s compares the
selected WAl or WAOQ signal with Qrpg. A disagreement indicates an error in WG_s
and sets O to logic "0’. The ORA_c and ORA_s pass on their respective pass/fail
output signals to the BIST controller.

In a test configuration. test signals are broadcast from the TPG to all the WG_c and
WG_s (represented in dashed arrows in Figure 4.9) of the CLBs in the interconnect
under test section. It is achieved by forming global busses using the programmable
switch matrices. This allows the programmable switches in the switch matrices and in
the WG_c and WG_s to be tested in parallel. A fault in a switch matrix can be
propagated to many CLBs and be tested. In section 4.1, it has been shown that a six-
transistor cross-point PS in a switch matrix can be tested in three TCs, named
orthogonal, left-diagonal. and right-diagonal. Figure 4.9 shows a snake-like global bus
structure and the orthogonal test configuration using the NS and WE PSs for the
broadcast. Similarly. the left-diagonal and right-diagonal TCs can be used to test the
NW, SW, NE and SE PSs. Later, in section 4.2.6.3, it will be shown that the three TCs
required to test the switch matrices can be distributed into the seventeen TCs for WG_c

and WG_s, and have no impact on the overall test time.

4.2.4 Fault Models and Assumptions

The fault models under consideration are the same as the ones proposed in section

4.1.3. The following assumption is made in addition to the assumptions made in
section 4.1.3.

Assumption 6 At least one CLB output connected to the MUX busses is fault-free.

Under this assumption, any multiple faulty CLB outputs connected to the MUX
busses can be detected by the AND/OR tree structure. It is realistic to assume that at

least one of the signals on the busses is fault-free in the BIST environment, since a

58



device has been tested before being placed in a system, and the probability of massive

failure affecting all the MUX busses is negligible.

4.2.5 Test Sets and Fault Detectability

4.2.5.1 Test Sets

The proposed tests include three test sets, called Test 1, Test 2 and Test 3.

Test 1 is designed to test faults within WG_c and WG_s groups. The Test 1 for a
WG_c, denoted as Testlyg c. is an exhaustive test of 2* of exhaustive test vectors and
the parity-bit, where & = 8. Test | for a WG_s, denoted as Testlwg s, is a binary
counting sequence from 000 to 111 on the D, CE and S/R inputs of the DFF, and the
corresponding fault-free Q output sequence. Since Testlwg ¢ consists of 2* = 256 test
patterns, Testlwg s is repeated 256/8 =32 times during the application of Testlwg c.
The redundant 31 sets of the tests don’t affect the fault detectability of the test on
WG _s.

Test 2 is to test any Wired-AND bridging faults between WG_c and WG_s.
Test2wg ¢ consists of eight all-zero tests on the k+1 WG_c wires (the parity of an all-
zero vector is zero). Test 2wg s includes an exhaustive test on WG_s and their

corresponding fault-free Q output sequence.

Test 3 is to test any Wired-OR bridging faults between WG_c and WG_s Test2wg ¢
consists of eight all-one tests on WUT_s with the all-zero parities, and eight walk-1
tests with the all-one parities. Test 3wg s is the same as Test 2wg_s, but repeats twice.
The wtwo sets in Test2yg ¢ allow all the k+1 wires in WG_c carrying an all-one

sequence during application of an exhaustive test to WG_s.

Table 4.3 shows the proposed tests, where the Qprg is for the reset mode of the DFF
(see the detailed discussions in section 4.2.5.2). The fault-free sequence of Qprg in the
set mode can be found in Table 4.4. Note that no test pattern compaction is applied
since the time required to apply the test patterns is magnitudes smaller than the time to
program a device, and it is casier to generate exhaustive test patterns in the BIST

environments.

59



Table 4.3: The Proposed Three Tests

Test 1 Test 2 Test 3
0000000000 ses 11 | 00000000 | I1T11111 10000000
0000000000 eee 11 | 00000000 | 11111111 01000000
0000000000 eee 11 | 00000000 | 11111111 00100000
WUTs_c 0000000000 see 11 00000000 11111111 00010000
WG_c 0000000011 see 11 | 00000000 | 11111111 00001000

00000000 | 11111111 00000100
01101 vee 11 | 00000000 | 11111111 00000010
0101010110 eau oy | 00000000 | 11111111 00000001

WUTs_Parity_c 0110100100 eee 10 00000000 00000000 11111111

D 0000111100 eee 11 00001111 ; 00001111 00001111
WG_s WUTs_s CE | 0011001100 eee 11 00110011 | 00110011 00110011
S/R| 0101010101 eee 01 01010101 01010101 01010101

Qreg 0000001000 eee 10 00000010 | 00000010 00000010

4.2.5.2 Fault Detectability

As shown in chapter 4.2.2.1, distinctive testing methods were used to test WG_c and
WG_s in order to test the maximum number of wire segments in parallel to minimize
the number of test configurations and to achieve minimal test time. As a result,

separate treatments are required to study the fault detectability for WG_c and WG_s.
(1) Fault Detectability for WG_s

Theorem 5 Test 1w ¢ can detect any combination of single or multiple segment stuck-
at-0/1 and stuck-open faults, programmable switch stuck-off faults and/or wire bridging

faults affecting any m wires of a WG_c, where 1 <m < k [31].

(2) Fault Detectability for a WG_s

The WG_s is tested by means of the functional test of a DFF with asynchronous
set/reset and edge-triggered clock. An exhaustive test is applied to the three WUTs_s
connecting to the three control inputs, set/reset input S/R, data input D, and clock
enable CE, of the DFF and observe its Q output directly on a MUX bus. The DFF can
be configured to reset (or set) mode through a device configuration. Under the chosen

DFF reset (or set) configuration, an input vector, D, CE, S/R = x x | can be applied to



the DFF to initialize the DFF prior to the application of the test for WUTs_s. The fail
of set/reset can be observed immediately on the MUX bus. Therefore, the initialization
and observability problems for sequential circuit testing are avoided here although a
DFF is used to test the wire segments/programmable switches connecting to the input

pins of the CLB. This greatly simplifies the testing problem for WUTs_s.

Simple enumeration is used to examine the fault detectability of the three-input
circuit. There are forty-six modeled faults, including the single and multiple stuck-at,
stuck-open, and bridging faults in wire segments, stuck-on/off and bridging faults in
programmable switches. and the combinations of the faults in a WG_s. For both set

and reset mode of a DFF:

(a) The fault-free Q values are derived with respect to each vector in an exhaustive

test (2° = 8 vectors), as shown in Table 4.4.

(b) The Q values of the DFF are derived for each modeled fault under the same test

sequence, as shown in Table 4.4

To detect the modeled fault(s), the Q sequence of the fault must differ from that of
the fault-free Q sequence by at least one bit. The bits shown in italics in Table 4.4 are

the ones that differ from the fault-free sequences.

It can be seen from Table 4.4 that the exhaustive test can detect 45 out of 46
modeled faults in set mode only, or reset mode only, but all the modeled faults can be
detected in both set and reset modes. Therefore, both configuration modes are required

in order to test all the modeled faults.

Theorem 6 Test lwg s can detect any single or multiple segment stuck-at-0/1 and
stuck-open faults. programmable switch stuck-off faults, wire bridging faults and the

combinations of the faults above in a WG_s in the Reset and the Set modes of a DFF.

Proof: By enumerating all of the faults (see Table 4.4) and by proving it is true for all
the modeled faults in the reset and the set modes of a DFF. QED.

61



Table 4.4: The Enumeration of Q Output Sequences of a DFF

Reset mode | Set mode

Fault-free 00000010 11011111

D s-a-0 00000000 11101101

D s-a-1 00100010 11711111

CE s-a-0 00000000 11711111

CE s-a-1 00001010 01011111

S/R s-a-0 110000117 11000011

S/R s-a-1 00000000 11711111

D s-a-0, CE s-a-0 00000000 11711111

D s-a-0, S/R s-a-0 00000000 00000000

CE s-a-0, S/R s-a-0 00000000 11711111

D s-a-0, CE s-a-1 00000000 01010101

D s-a-0. S/R s-a-1 00000000 11711111

CE s-a-0, S/R s-a-1 00000000 117111111

D s-a-1, CE s-a-0 00000000 11711111

D s-a-1, S/R s-a-0 11111111 11711111

CE s-a-1, S/R s-a-0 000011711 00001111

D s-a-1. CE s-a-1l 10101010 11711111

D s-a-1, S/R s-a-i 00000000 11711111

CE s-a-1. S/R s-a-1 00000000 11711111

Q |Ds-a-0. CE s-a-0. S/R s-a-0 00000000 11711111
D s-a-0, CE s-a-0, S/R s-a-1 00000000 11711111

S [ Ds-a-0. CE s-a-1, S/R s-a-0 00000000 00000000
E | D s-a-0. CE s-a-1. S/R s-a-1 00000000 11711111
Q | Ds-a-1. CE s-a-0, S/R s-a-0 00000000 11711111
U | D s-a-1. CE s-a-0. S/R s-a-1 00000000 11711111
E | Ds-a-1, CE s-a-1, S/R s-a-0 11111111 11711111
N [ Ds-a-1. CE s-a-1. S/R s-a-1 00000000 11711111
C | D bridges with CE (wired-AND) 00000010 11711111
E |D bridges with CE (wired-OR) 00101010 11711111
D bridges with S/R (wired-AND) 00000000 11000101

D bridges with S/R (wired-OR) 00000000 11011111

CE bridges with S/R (wired-AND) 00000000 11111111

CE bridges with S/R (wired-OR) 00000000 11111111

D bridges with CE and S/R (wired-AND) 00000000 11711111

D bridges with CE and S/R (wired-OR) 00000000 11711111

S/R s-a-0, and D bridges with CE (wired-AND) 00000011 11711111

S/R s-a-0, and D bridges with CE (wired-OR) 11111111 11711111

S/R s-a-1, and D bridges with CE (wired-AND) 00000000 11711111

S/R s-a-1, and D bridges with CE (wired-OR) 00000000 11711111

CE s-a-0, and D bridges with S/R (wired-AND) 00000000 11711111

CE s-a-0, and D bridges with S/R (wired-OR) 00000000 11711111

CE s-a-1, and D bridges with S/R (wired-AND) 00000000 00000101

CE s-a-1, and D bridges with S/R (wired-OR) 00000000 01011111

D s-a-0, and CE bridges with S/R (wired-AND) 00000000 11711111

D s-a-0, and CE bridges with S/R (wired-OR) 00000000 11711111

D s-a-1, and CE bridges with S/R (wired-AND) 00000000 11111111

D s-a-1, and CE bridges with S/R (wired-OR) 00000000 11711111

62




Note that the clock input is not included in the DFF. A fault on the clock input can

be easily detected. Similarly, a failure to set/rest a DFF can be observed and detected
on the MUX busses.

(3) Fault Detectability between WG_c and WG_s

Theorem 7 Test 2 can detect any wired-AND bridge faults between a WG_c and a
WG _s in the reset and the set modes of a DFF.

Proof: Consider a wire, /. in WG_c, and a wire, j, in WG_s. The all-zero bits of
Test_2wg ¢ on wire i can be considered as a stuck-at 0 fault on wire j because of the
wired-AND bridging between the two wires. And the stuck-at fault can be detected by
Test_2wg_s. which is identical to Test_lwg_s. by Theorem 2. QED.

Theorem 8 Test 3 can detect any wired-OR bridge faults between a WG_c and a WG_s

in the reset and the set modes of a DFF.

Proof: Consider a wire. i. in WG_c, and a wire, j, in WG_s. The all-one bits of
Test_3wg_c on wire i when the exhaustive test is applied to WG_s can be considered as
a stuck-at 1 fault on wire j because of the wired-OR bridging between the two wires.
The stuck-at fault can be detected by Test_3wg s. which is identical to Test_lwg_s. by
Theorem 2. QED.

4.2.6 Minimum Test Configurations

4.2.6.1 Interconnect Associated with a CLB

As shown in Figure 4.6 on page 52, the local interconnect associated with a CLB
includes twelve input pins, four output pins, two control inputs and two data inputs of
the tri-state buffers, and the basic (MUX-based) PSs on the output (input) pin

segments. Table 4.5 lists the element types and the signals associated with them.

63



Table 4.5: Interconnect Assoctated with a CLB

) [nput F1-F4, G1-G4, C1-C4
Pin segments
Output X, XQ, Y, YQ
Other wires Inputs of tri-state buffers Crai. Crs2, Its1, Its2
17-to-1 MUX PS Gl, G3,F1,F3
Local G2, G4, F2, F4, C2,
interconnect : 16-to-1 MUX PS C4
associated PSS. asgocxated
with a2 CLB with input / 15-to-1 MUX PS Cl, C3
Programmable output pins
switches 8-to-1 MUX PS K
8 basic PSs X, XQ.Y,.YQ
PS; associated 4-to-1 MUX PS Crs1, Cra:
with control
| imputsoftwo | ¢ ., | MUX PS | S S
. 3-state buffers

4.2.6.2 Derivation of the Test Configurations
4.2.6.2.1 Discussion of the minimum number of test configurations

It has been shown in [43] that all of the global interconnect can be tested in three
configurations (theoretically) and in four configurations (in practice) due to limited

boundary connection resources.

For local interconnect, we need wp,, test configurations, where w,,, is the maximum
value of the w-to-1 multiplexer PS in local interconnect [45]. Wm, = 17 in XC4000E
series FPGAs and therefore the minimum number of TCs is 17. One set of 17 TCs was
derived that can test all the global and local routing resources, as shown in Appendix 3.

Therefore, 17 is the minimum number of test configurations required.

4.2.6.2.2 Selection of the interconnect under test

As discussed in chapter 4.2.2.1, the resources of an FPGA are partitioned into two
equal sections: one section contains interconnect under test, and the other is used to
implement the BIST circuitry. In the section that contains interconnect under test,

local interconnect associated with each CLB is tested in parallel, as shown in Figure



4.9 on page 57, and the minimum number of test configurations developed for local
interconnect associated with one CLB is the minimum number of test configurations for
the whole local interconnect under test. Therefore, the selection of interconnect under

test targets the local interconnect associated with one CLB.

The local interconnect in Xilinx XC4000E FPGAs can be modeled as a matrix with
M rows and N columns. S[M][N], where M (equals to 21) is the total number of inputs
and outputs associated with a CLB (including 13 input pins, 2 control inputs and 2 data
inputs of tri-state buffers, and 4 output pins). Parameter N (equals to 40) is the total
number of different wire segments associated with a CLB (including 8 horizontal single
lines, 8 vertical single lines. 4 horizontal double lines, 4 vertical double lines, 6
horizontal long lines. 6 vertical long lines, and 4 vertical global lines). For each
S[m][n], where 0 < m < M and 0 < n < N, logic value 1 is assigned if there exists a

MUX-based PS. and logic value 0 is assigned if there is no switch at S[m][n].

The selection of interconnect under test in each of the minimum test configurations
i1s based on the following constraints. These constraints are proposed due to (1) the
requirement of minimum number of TCs; (2) the limitation of the proposed scheme:

and (3) the device features in the FPGA interconnect.

Constraint 1: In each test configuration. each input pin of a CLB must be connected to
a wire segment through the MUX PSs to maximize the amount of local interconnect

under test, until all the PSs on the input pins have been selected (tested).

This constraint 1s proposed in order to minimize the number of test configurations. It

translates to the selection of each input row in S[M][N] until all the PSs in that row

have been selected.

Constraint 2: The signals on all the inputs must be independent of each other (except
for inputs Crg; and Crg. which share the same column select signal). That is, a test

signal can not be applied to more than one input pin of a CLB in a test configuration.

This constraint is due to the limitation of the proposed BIST scheme, which may fail

to detect some faults when input test signals are not independent. Constraint 2

65



indicates that the selection of the same column for two or more input rows in S{M][N]

is prohibited.

Note that in left-diagonal and right-diagonal test architectures, a horizontal single
line HS; is connected to a vertical single line VS;, and a horizontal double line HD; is
connected to a vertical double line VD;, where 1 <i < 8,and | <j <4. Itis unknown
which type of architecture (orthogonal, left-diagonal, or right-diagonal) is used before
merging the test of the cross-point PSs in switch matrices. Therefore, to ease the later

merging process. the selection of the two rows that connect to HS; and VS;, or connect
to HD; and VD, is also prohibited.

Constraint 3: The selection of two or more PSs in an input row is prohibited in a test

configuration.

This is due to the feature of the MUX-based programmable switches described in
chapter 4.1.1.1.

Constraint 4: A basic PS on an output pin is tested by connecting the signal on the
output pin segment to an input pin through the basic PS on the output pin segment and
the multiplexer PS on the input pin segment.

Under constraint 4. the basic PSs located at the same position of different CLB
output pin segments are tested in parallel, or in one TC. For example, in Figure 4.6 on
page 52. every basic PS that connects output pin X and vertical single line VS7 can be
tested by forming the path that connects X to VS7, and then to Cl. Otherwise, the
number of TCs for these basic PSs will be linear in the array size of CLBs. These PSs
are shown in Figure 4.6 on page 52 as little square boxes without fill-in color. Note
that the proper MUX configuration within a CLB can guarantee the signal
independence within 2 WG_c or a WG_s introduced by the connection and the fault
detectability for a WG_c or a WG_s is not affected. Figure 4.10 shows such an example.
Figure 4.10 (a) shows how an original wire group is formed without testing the basic PS
on any output pin, and Figure 4.10 (b) shows how the same wire group is formed without

signal dependence among its inputs when including the test of a basic PS on the output
pin X.



.
of

(a) ()

Figure 4.10: An Example

In Xilinx XC4000E FPGAs. eight of twelve CLB input pins have less than 17 MUX
PSs that can be tested in less than 17 TCs. After these pins were tested, they can be
used to test the basic PSs on the output pins. When forming a feedback path to test a
basic switch, the number of test signals required from the TPG will be reduced and
more than one basic PSc can be tested in a TC. The formation of both combinational
and sequential wire groups is not necessary for all the 17 TCs. When all the PSs on an

input pin are tested. there is no need to repeat the test in the later TCs.

One set of 17 TCs was derived manually based on the above constraints, as shown in
Appendix 3. In the derived 17 TCs, trade-offs were made between the number of TCs
and the test coverage. because some PSs are hard to test under the current design
architecture of XC4000E FPGAs. These PSs are shown in Figure 4.6 as gray-shaded

little square boxes or triangles.

It can be seen from the proposed BIST scheme (see Figure 4.9) that the parallel test
of interconnect requires the use of MUX busses, that is, horizontal long lines HL1 and
HL6 (see Figure 4.6) in each horizontal channel of an FPGA. Also, the proposed
scheme in Figure 4.9 is C-testable. that is, the number of TCs is independent of the

array size of FPGA interconnect.

However, when the testing of PSs located on HLL1 and HL6 (except the PSs that

connect the output of tri-state buffers to HL1/HL6) is included, it requires the use of

67



HL1 and HL6 which prohibits the forming of MUX busses, and thus prohibits the
parallel test of interconnect associated with each CLB. If these PSs are tested, at most
one of the basic PS on HL1/HL6 can be programmed on (connected to HL1/HL6) in a
TC because the direct merging (that is, not through tri-state buffers) of multiple outputs
is prohibited by the tool. Therefore the minimum number of TCs will be 17 + x, where
x is the maximum number of basic PSs on a horizontal long line, HL1 or HL6. Also, the
FPGA interconnect becomes linearly testable, that is, the number of TCs is linear in the
array size of an FPGA. Take the XC4020E device, for example. Here x equals to 112
(4 PSs associated with each CLB times 28 CLBs in a row), and the minimum number of
TCs will be 17 + 112 = 129. It can be seen that the number of TCs (or the testing cost)
increases by more than 750% while these PSs occupy less than 4.5% of the PSs

associated with a CLB.

4.2.6.3 Merging the Test for Global Interconnect

The complete test of local interconnect also tests all the wire segments in global
interconnect that are used to propagate test signals, and all the cross-point PSs are

tested if the WG structures used to propagate the test signals are properly chosen.

Note that in Xilinx 4000E series FPGAs, there are 10 cross-point PSs in each switch
matrix, with each cross-point PS having six basic PSs: WE, NS, NW, SE, and WS, NE.
Eight of the 10 cross-point PSs are used to connect single length lines while the
remaining 2 are used to connect double length lines. When global and local
interconnect are tested simultaneously, not all of the WE and NS (NW and SE, or WS
and NE) PSs in a switch matrix are tested under the orthogonai (left-diagonal, or right-
diagonal) structure in a test configuration since only part of the single and double
length lines are used to propagate test signals to the input pins of a CLB. Therefore,
several other orthogonal (left-diagonal. or right-diagonal) test configurations are
required to test all the WE and NS (NW and SE, or WS and NE) PSs in a switch matrix.

Table 4.6 shows the single and double length lines that are tested (selected) in each
of the 17 test configurations. The selection of the cross-point PSs in a TC is based on

the following two rules:

68



Rule 1: At most eight cross-point PSs are selected in each TC.

Note that in the proposed BIST scheme, the cross-point PSs are used to form global
wires to broadcast the test signals, and these wires need to go through the boundaries of
an FPGA (see Figure 4.9). Rule 1 is proposed due to limitations of the boundary

resources, which allow at most eight wires to be routed through them.

Table 4.6: Single and Double-Length Lines Tested in 17 Test Configurations

TC HSS HD4 Vss8 VD4
#lu)2)3)4)s5)6|7|8)t]2]3]|4]1|2]3)4|5|6|7|8]1]2]3]|4
1 R v v v v

2 LN NV | YEYEY v |V

3N Vi Vv v ) v v v
4 | N v ViV v

5 v v v v R v v
6 Vvl v v v v
7 v NN NEIE N
8 ]~ v v v ViV v

9 |+ e e v N N K
10 v v R v R
IR E Y i oW v ) v
12 2\ by v v ) v ViV
13 |V NI VI RN v v v

14 ViV v v v V|V
15 | V| N v ) v v

16 v v v v v
17 v

Rule 2: Each column in Table 4.6 (or each wire segment in single and double wire

group) must be selected at least three times (or in three TCs).

Rule 2 is proposed because we need at least three test configurations to test a cross-

point PS. See section 4.1.4 for details.

69



In Table 4.6, HS8 (VS8) means 8 horizontal (vertical) single length lines, and HD4
(VD4) means 4 horizontal (vertical) double length lines. The number i (1 < i < 8/4 for
single/double length lines) in the second row of Table 4.6 represents the ith line from
top to bottom (right to left) of the corresponding horizontal (vertical) wire group shown

in Figure 4.6, and the symbol “V” indicates that the corresponding line is tested.

Table 4.7 shows the required 16 test configurations that cover the test of all the
cross-point PSs. In Table 4.7, WE, NS (NW, SE, or WS, NE) indicate the
corresponding wire segments under test (marked with “V") using WE, NS (NW, SE, or
WS. NE) switches to form the wire groups. These PSs are tested when the wire groups

are tested. It can be seen tfrom Table 4.7 that all the cross-point PSs are tested since

each WE, NS (NW. SE. or WS, NE) switch has at least one “V" symbol.

Table 4.7: 16 Test Configurations That Test All Cross-Point PSs

(a) TCs test all WE and NS PSs

HSS HD4 VS8 VD4
TC | 1|2]3]4{s]e|7l18]1]2]3]af1]{2]3]a]s]6|7]8]1]2]3]4
# WE and NS PSs
2 PV v v VAR Y v v
3 1Y vi v v v v v v
9 | N NV v v v v
10 v v V|V v V|V
14 ViV v v v Vi v

{b) TCs 1test all NW and SE PSs

HSS HD4 VS8 VD4
TC [1]23]4]sie6]|7]8]1]2]3]a]1]2]3]4]5]6]7]8]1]2]3]4
# NW and SE PSs
5 v v ) v ViV v v
6 V|V v v v v
8 N v v v IR} v
1|~ v v v ¥ v
12 v \ v v v v iR

70



(¢) TCs test all WS and NE PSs

HSS HD4 VS8 VD4

T [Tl s el 7] 8] aT2] 3] «] 1 [2[3]a] s[ 6] [ 8] t[2]3] =
WS and NE PSs

1 LNV v v v

s |V i N 7| N

7 i~ Y V[ N

13 [ [V Il MK v

15 [N[~] |V N NI J

T ] NN N

Since the number ot test configurations to test all interconnect in one half of
XC4000E devices is 17. a total of 34 test configurations is required for a complete test
of all the global and local interconnect, which is also the minimum for a BIST

approach.

Table 4.8 and Figure 4.11 show the relationship between the number of TCs from
our set and the test coverage of interconnect when using the XC4020E as the device
model. The total numbers of PSs and wire segments in the interconnect resources in
the XC4020E are 244.608 and 47.824 respectively. It can be seen that all the wire
segments in one half of the FPGA are tested in the first 7 TCs. The first 17 TCs test
about 95.51% PSs and 129 TCs are needed to test all the PSs in one half of the FPGA.

The faults that can be tested in the PSs and wire segments are: (1) any combination
of single or multiple segment stuck-at-0/1 and stuck-open faults, programmable switch
stuck-off faults and/or wire bridging faults that affect any eight wires of a WG_c and
any three wires of a WG_s: (2) anyv modeled bridging faults between a WG _¢ and a
WG _s.

71



Table 4.8: Number of TCs vs. Test Coverage

Number Test Coverage
of TCs PSs (%) Wire Segments (%)
1 7.37 62.90
2 15.38 73.77
3 23.72 88.52
4 31.73 95.08
5 38.14 95.08
6 43.59 96.72
7 48.72 100
8 55.13 100
9 60.58 100
10 66.335 100
11 71.47 100
12 75.96 100
13 80.45 100
14 85.26 100
15 90.06 100
16 92.63 100
7 95.51 100
18 95.56 100
19 95.60 100
20 95.65 100
21 95.67 100
33 96.15 100
45 96.63 100
57 97.12 100
69 97.60 100
S1 98.08 100
93 98.56 100
105 99.04 100
117 99.52 100
129 100 100




100 T T , T REED DS
mxasenm E S35 T

90-7",.;7 '47:' 7 amoaa =525

80 'l:z,u -I :% ‘

70 EEEEEE e e SETEEEEEEEEED

« S SEEiEREEE L , i

PS Test Coverage
3

» B

o R BSTsIISIEIiiiiiiiiiiiiiiiiic
0 17 34 51 68 85 102 119
Number of TCs

Figure 4.11: Relationship betwecen the Number of TCs and PS Test Coverage

4.2.6.4 Combined CLB and Interconnect Testing

Minor changes are needed when combining the tests for both the CLBs and the
interconnect. It can be seen that during the interconnect testing, parity-checkers and D
flip-flops are formed in the section with the interconnect under test. Since parity-
checkers are essentially XOR/XNOR functions that can be used to test the LUT mode
function generators. and the D flip-flops are fully functionally tested during the
interconnect testing. The resources that remain untested within a CLB are the CLM,
the RAM mode of function generators and the MUXes. They can be easily distributed
over the 17 interconnect TCs. This is achieved by keeping the connections outside a
CLB for the 17 TCs unchanged, and changing the internal configurations and MUX
connections of a CLB to test all the CLB resources. Such a distnibution can easily be
derived manually and is shown in Appendix 4. It can be seen from Appendix 4 that 12

of the 17 TCs are sufficient to test all CLB resources. TCs 1 to 3 test the LUT mode of



all function generators, TCs 4 to 8 test all the RAM modes, TCs 2, 4, and 9 to 12 test
the CLM, and the testing ot all the MUXes and D flip-flops is distributed among TC 1

to 12. The test coverage is the same as the one discussed in chapter 3.5.1.

4.3 Discussion

4.3.1 Pros

Compared with the BIST approaches for FPGA interconnect in [29, 30], the proposed
BIST approach has superior multiple fault detectability. For example, if there are 12
wires under test, in the proposed approach two wire groups are formed, a WG_c with 9
wires and a WG_s with 3 wires. Only two combinations of multiple faults can not be
detected under the proposed fault models (all the 9 wires in the WG_c are stuck-at-0,
and all the 9 wires in the WG_c are bridged together). Note that any bridging faults
between WG_c and WG_s can be detected. In the approach proposed in [29, 30],
however, two wire groups WG1 and WG2 are formed with each WG containing 6 wires,
the ith wire in WGI1 is compared with the ith wire in WG2, where | < i £ 6. In this
case. there are 189 combinations of multiple faults that can not be detected. They are:

an even number of stuck-at-0 faults on the same position of wires in WG1 and WG2
(Cl +C} +C} +C} +C] +C¢ =63 combinations), an even number of stuck-at-1 faults
on the same position of wires in WGl and WG2 (C} +C? +C. +C} +C. +C? =63
combinations), and bridging faults that bridge the ith wire in WG1 and ith wire in WG2
(CL+Cl+C}+C} +C. +~C =63 combinations).

Also, the proposed approach guarantees routability by exploiting dedicated device

features such as MUX busses and edge decoders, while in [29, 30], routing congestion

may occur when the BIST circuitry becomes complex.

4.3.2 Cons

The cost for the superior muitiple fault detectability is that the applied test pattern is
longer than that in [29. 30]. However, in FPGA testing, the major factor that affects

the testing time is the time to configure an FPGA instead of the time to apply the test

74



patterns, since the former is usually two or three orders of magnitude greater than the
latter. Therefore. the major concern to minimize the testing time is to minimize the

number of test configurations, as will be justified in section 5.3 of chapter §.

75



Chapter S

Implementation

This chapter discusses the implementation of the BIST circuitry for testing both the
CLBs and the interconnect, using a XC4020E FPGA as the device model. The CAD
environment, the design flow. the implementation of the BIST circuitry, and the

performance analysis are presented.

The CAD design flow has been developed by Susan Xu er al. in [46], it is used in
this project with some modifications. In [46], a test configuration of the proposed
BIST scheme for global interconnects is also implemented. However, the BIST
circuitry and the BIST architecture need to be redesigned and implemented when both
CLBs and interconnects are under test because the BIST circuitry and the BIST
architecture are much more complex and the formation of bus structures is totally

different.

5.1 The CAD Environment

The commercial CAD tools used to implement the proposed test configurations include
Xilinx Foundation and third-party simulators such as ModelSim (Mentor Graphics).
Together with the patch tool developed in-house. the CAD environment allows for the
complete design and implementation of the proposed test configurations. Figure 5.1

shows the CAD environment.

FPGA EXPRESS: Accepts VHDL/VeriLog or schematic design, synthesizes and

simulates the design. and translates it into a netlist file, using . XNF or .EDIF format.

76



NGDBUILD: Reads a netlist file in . XNF or .EDIF, and creates an Native Generic
Database (NGD) file describing the logic design. The NGD file resulting from an
NGDBUILD run contains a logical description of the design that is reduced to Xilinx

NGD primitives and a description in terms of the original hierarchy.

MAP: Takes an NGD file as input and maps a logical design to a Xilinx FPGA. It
first pertorms a logical Design Rule Check (DRC) on the design in the NGD file, then
maps the logic to the components such as CLBs. /O blocks, and other components in
the target Xilinx FPGA. The output design is a Native Circuit Description (NCD) file,

which is a physical representation of the design mapped to the components in the
FPGA.

PAR: Accepts an NCD file as input, places and routes the design, and outputs an
NCD tile.

A user constraint file, .UCF, can be added before running the three tools.
NGDBUILD. MAP and PAR. It specifies the desired locations of the CLBs and I/O
blocks used to implement the design. It is used to ensure that the BIST circuitry is

located in the half of the FPGA that is not under test.

FPGA EDITOR: A graphical application for displaying and configuring FPGAs. It
allows for visual inspection and manual intervention of the layout of a design that has
been synthesized and mapped on to the logic components of an FPGA. In FPGA
EDITOR. one can locate individual logic components and signal nets. A set of GUI
features provided by the vendor allows manually editing a layout, such as re-
positioning certain logic modules and re-routing a critical path of a design. This step
can be taken after placement and routing in the conventional design flow. The file
editable in the FPGA editor is in .NCD format and FPGA EDITOR updates the .NCD

file generated by PAR before completing the remaining design steps.

BITGEN: Convert a .NCD file into a bit-stream file, a binary file with a .BIT

extension, for Xilinx device configuration.

77



TIMING ANALYZER: Provides static timing analysis of a post-mapping design,
including the maximum operation frequency and the maximum net delay information,

and outputs a timing report file *_TRCE.XML, or a plain text timing report file TWR.

NGDANNO: Generates a generic timing simulation model and outputs an annotated

logical design that has a NGA (Native Generic Annotated) extension.

NGD2VHDL: Translates the design into a VHDL file containing a netlist
description of the design in term of Xilinx simulation primitives, which can be used to

perform a post-mapping simulation by a VHDL simulator.

Patch Program: The in-house C program that was developed to perform the automatic
routing to form the desired net architecture. It generates a .SCR file that updates the

.NCD file by using the playback teature of the FPGA editor.

78



SIMULATOR

|

FPGA EXPRESS

t

t

Our Tool

| Device Information

MAP

i

Patch Program j PAR —p| NGDANNO
»  FPGA EDITOR NGD2VHDL
y
TIMING ANALYZER [#— NcDorxmc £ / v [/
! v

TWRor BITGEN SIMULATOR
* TRCE.XML ¢ ¢

S e o S

Figure 5.1: The CAD Environment

79



5.2 The Design Flow

The design flow is somewhat different from the conventional one that is used for the
design and implementation using an FPGA. The BIST circuitry, on the one hand, and
the interconnect structures to be tested, on the other hand, are generated separately.
The former is built and then combined with the latter through the FPGA editor. The

implementation of a test configuration is carried out in the following three stages.

(1) Design the BIST circuitry using either HDL or schematic design entry. Synthesize
the BIST circuitry using FPGA-Express and obtain the . XNF file. Compose the .UCF
to specify the desired locations of CLBs (within one half of the FPGA) for
implementing the BIST. Run NGDBUILD, MAP and PAR to generate the .NCD file.

(2) Run the patch program to generate the .SCR description of the desired bus structure
and the configuration ot CLBs in the other half of the FPGA where there exist CLBs
and interconnects under test. Load the .SCR file into the .NCD file of the BIST
circuitry by using the playback feature of the FPGA EDITOR.

One modification is made in this step compared with the design flow in our previous
work in [46]. The .SCR file is loaded directly into the .NCD design instead of saving
both .SCR and .NCD files as two macros and then combining the two macros together.
The modification is based on the fact that the Xilinx CAD tools prohibit any operation
with a macro. even the adjustment of wire connections that do not change the
functionality. The modification results in more flexibility during the design and better

performance, especially when a macro contains the critical path(s).

(3) Use the patch program to integrate the BIST circuitry in one half of the FPGA and
the CLBs and interconnects under test in the other half automatically to form the test
configuration. The results update the file .NCD. Use BITGEN to generate .BIT. Run
TIMING ANALYZER to perform the static timing analysis. Run NGDANNO and
NGD2VHDL to get the .VHD design. Use third party simulators, such as ModelSim, to

perform the post-mapping simulation.

80



5.3 The Implementation

This section presents the design and implementation of the BIST circuitry for the

proposed test configurations. using the Xilinx XC4020E FPGA as the target device.

The BIST circuitry consists of a data path and a control path. The data path includes
two general TPGs. one ORA and one shift register. The control path is the BIST

controller. The VHDL design for the BIST circuitry is shown in Appendix 4.

The general TPG generates four types of test patterns, exhaustive (counts up from all
Os to ail Is), walk-1. all-1, and all-0 with variable bit width. Figure 5.2 (a) shows the
logic symbol ot a general TPG with four inputs and three outputs. Input signal “Pattern
select” selects one of the four types of test patterns (exhaustive, walk-1, all-1, and all-
0). and input signal “Next test vector” asks the general TGA to generate the next test
vector under a certain test pattern. For example, if “Pattern select” selects exhaustive
test. and the current test vector is "010", then the TPG will generate the test vector
011" when the input signal “Next test vector™ is active. The output signals “outputs”
output the generated test vector. and the signal “Parity” is the odd-parity of the
generated test vector. The signal “Done™ is active when all the test vectors have been

generated tor the selected test.

N

ORA
WG ¢ &
General TPG WG_s(0) 4=
Next test vector f@— <@ Pass/Fail WG_s(1) [ Shift Register
€4 Outputs Pattern select (@~ Fault-free WG_s (@ <« Ouputs Load
4 Parity Clock - Clock @ Shift right
<4+ Done Reset |@— Reset (g— 4 Shift Done Clock
(a) General TPG (b) ORA (c) Shift Register

Figure 5.2: Logic Symbols for Components in the Data Path

81



The ORA collects the test responses from the resources under test, carries out the
output response analysis. and reports to the BIST controller the pass/fail result of the
test. It has six inputs and one output. as shown in Figure 5.2 (b). Signals WG_c,
WG_s(0). WG_s(1) and Fault-tree WG_s correspond to signals O,., WA_0, WA _1,
Qrrc in Figure 4.9 respectively. See Figure 4.9 in chapter 4 for details concerning the

signals.

The shift register provides the patterns for the column select of the CLB outputs, as

shown in Figure 5.2 (¢).

BIST Controller

—»| Enable Shift load H»
—»1 Clock Shift right %
—f Reset Next test vector 9>

TPG! pattern select P
—»1 Shift done TPG2 partern select H9»
—»{ TPG done Done +p
—1 ORA equal Pass/Fail (-

Figure 5.3: Logic Symbol of the BIST Controller

The BIST controller. the core component in the BIST circuitry, enables the test to
start. controls the process of the test, and generates the pass/fail signal. The logic
symbol of a BIST controller is shown in Figure 5.3. The signals "Shift load” and
“Shift right” control the shift register to load the initial pattern and to shift one bit
right. respectively. Signals "TPGI1 pattern select”, “TPG2 pattern select”, and “Next
test vector” are used to control the selection of different types of test patterns, and to
go on to the next test vector for the selected test pattern for the two general TPGs.
Signals “Shift done”. “TPG done”. and “ORA equal” monitor the process of the shift

register. TPGs. and the ORA, respectively. The remaining five signals (“Enable”.



*Clock™, “Reset”, “Done”, “Pass/Fail™) are used to communicate with the [EEE 1149.1

standard test port.

The BIST controller is designed as a finite state machine. [ts state diagram is shown
in Figure 5.4. It can be seen from Figure 5.4 that the operation of the BIST controller
can be divided into four parts. as shown in the four dashed boxes in Figure 5.4. Part 1
and part 2 correspond to test 1 and test 2 in chapter 4.2.5, respectively. Part 3 and part
4 correspond to test 3 in chapter 4.2.5. That is, test 3 is divided into two parts: (1) Part
3 is the all-1 test for WG_c with the corresponding parities and exhaustive test for
WG_s with the fault-tfree Q outputs. (2) Part 4 is the walk-1 test with the
corresponding parities for WG_c and exhaustive test with the fault-free Q outputs for

WG_s. See Table 4.3 in chapter 4 for details.

[t can be seen from Figure 5.4 that the state diagrams in the dashed boxes are similar
to each other. This is because the flow of the state diagram is the same for different
types of test patterns. During each applied test pattern, the state diagram begins with
the first test vector for the test. and collects the outputs in the first column. Recall that
once a test vector is applied. all the CLBs in the resources under test section will
generate their outputs. See the high level BIST architecture in Figure 4.9 for details. [f
the test vector for the first column is passed. the outputs from the next column will be
collected and examined. Finally. the state goes to the “Next test vector™ if there is no
fail for all columns. and the output collection is repeated column by column again,

until all test vectors in the selected test pattern have been applied.

Once the test fails. the state goes to “Test failed” and stops the application of the
remaining test vectors. Otherwise, after all the four tests have been applied and there

is no tail. the BIST controller enters state “All tests passed”.



of 3¢

1* test vector

Next test
vector

: Not passed

Enable not active

Not passed o
1™ test vector

of 1* test

Shift not done

Not passed Shift done z;nd passed

Next test
vector

1* test vector
of 3 test

Shift not done Shift done and passed

Next test
vector

Not passed

Not passed

4" test not done 1* test vector

of 2™ test

Notpassed —~———__

) 2™ test not done
Shift not done l .

Shift done and passed

4™ test done and passed

Next test
vector

2™ test donie and passed

Figure 5.4: The State Diagram of the BIST Controller



Figure 5.5 (a) shows the physical layout of one of the proposed test configurations, and
Figure 5.5 (b) illustrates the distribution of the key components in the configuration. It
can be seen from Figure 5.5 that the whole FPGA chip can be divided into five areas.
The upper half contains resources under test. The lower half contains the TPGs, the
ORA. the BIST controller, the interface for the IEEE standard test port (JTAG port),
and the internal I/O buffers. The insertion of the internal I/O buffers separates the
BIST circuitry and the resources under test so that the design of the BIST circuitry and
the build of the bus structures for the resources under test can be carried out
independently. All the communications between the two become communications with

these internal I/O buffers.

(a) Physical Layout



CLBs and Interconnects under test

Internal /O buffers
JTAG TPGs and BIST
Interface controller ORA

(b) Illustration of the Component Distribution

Figure 5.5: The Layout of a Test Configuration

It can be seen from the Xilinx data book [35] that the download time of a
configuration for the XC4020E is between 263ms~659ms. The post-map operation
frequency of the BIST system is 2.375MHz, which translates to a total test application
time of 3.3ms. Therefore. the test application time is less than 1.3% of the time
required for configuring the FPGA. This justifies the strategy of minimizing the
number of test configurations as the most effective way of reducing the test time (or

testing costs) instead of the compacting of the test patterns.

5.4 Scalability and Adaptability

The proposed BIST scheme is applicable and scalable for Xilinx XC4000 FPGAs with
over 200 CLBs. Our BIST scheme is adaptable to all XC4000 FPGAs. For CLB testing,
there is no adaptability problem since all the CLBs in XC4000 FPGAs are the same.
For interconnect testing. XC4000X FPGAs have additional quad lines. However, these
quad lines share the same routing architecture as the single and double lines in
XC4000E FPGAs. therefore, they can be configured into similar bus structures and be

tested in the same way as for single and double lines.

86



Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis the author modified the high-level built-in self-test (BIST) architecture in
[2. 3] for testing configurable logic blocks (CLBs) and interconnects, and determined
the minimum test configurations for the CLBs and interconnect in SRAM-based Xilinx
XC4000E field programmable gate arrays (FPGAs). This study includes both theory

and :mplementation. The main contributions of this thesis are:

(1) This thesis modified the BIST architecture to test the CLBs including the carry
logic modules (CLMs) in [2] by introducing the comb-shaped bus structure to replace
the originally proposed snake-shaped bus structures. This greatly increases the
maximum possible system operational frequency. The author introduced a systematic
method for testing the CLMs. It includes the construction of fault models, the
development of the test sequence for the modeled faults, the derivation of the
testability equations. and the implementation of an exhaustive search program for the
valid CLM operation modes [35] to identify all the solutions of the proposed testability
equations. A set of selection criteria was established to select the “best” CLM test
configurations (TCs) that permits the parallel testing of the CLM and the remaining

CLB resources.

An intuitive method was used to derive minimum TCs for the remaining CLBs. A
set of minimum TCs was derived manually that merges the testing of the remaining
CLB resources with the “best” CLM TCs.

87



(2) This thesis completes the work on FPGA global interconnect testing using the
error-control coding technique from [3]. The author constructed the fault models,
derived a test sequence for the modeled faults, and conducted a detailed analysis of the
fault detectability of global interconnects under the proposed fault models. This

analysis led to the formal proofs of Theorems 1-4, a joint work with the other authors

in [31].

This thesis further extends the work in [31] to include the testing of local
interconnect. A novel technique was proposed to test the sequential wire groups
through the functional test of D flip-flops (DFFs) in the CLBs in order to maximize the
usage ot CLB inputs. which in turn minimizes the number of TCs. A detailed analysis
of the faulty behaviors of the sequential wire groups tested by the DFFs was conducted
and the proofs of the fault detectability were given in Theorems 5-8. This novel
technique combines the error-control coding technique in [31] for testing the
combinational wire groups to provide superior multiple fault detectability on the
modeled interconnect faults, inciluding stuck-at. stuck-open. bridging faults on wire

segments and stuck-on/off faults of programmable switches, and the combination of the

faults outlined above.

The trade-off between the test coverage for interconnect and the test cost was
discussed. A minimum of 17 TCs, which verified the integrity of 95.51% of the local
and global interconnects. was derived under the proposed constraints and rules. The
remaining 4.49% interconnects can be tested in 4*n TCs due to architectural limitations
of the device family. where n is the number of CLB columns in an FPGA. We showed
that the 8§ CLB TCs can be easily merged into the 17 interconnect test TCs to support

the simultaneous test of both CLBs and interconnects.

(3) One of the 17 TCs for both CLB and interconnect testing was designed and
implemented on a XC4020E FPGA. The BIST circuitry, including the rest pattern
generators (TPGs). the output response analvzers (ORAs), and the BIST controller,
was designed and synthesized using the standard Xilinx FPGA tools. The CAD
environment and design flow in [43] is modified to create the desired bus structure. The

post-mapping simulation results demonstrate the feasibility of the proposed BIST

scheme.

88



6.2 Future Work

Future work will address both the extensions to this project and the suggestions for

future modifications of Xilinx tools.

6.2.1 Extensions

(1) Introduce design for testability (DFT) techniques into the BIST circuitry.

In this thesis the BIST circuitry was implemented in one half of the FPGA to test the
resources in the other half of the FPGA. To guarantee the fault-free operation of the
BIST circuitry itself, certain fault-tolerant techniques, such as triple mode redundancy,
could be applied to the BIST design. However, it is only applicable for medium and
large FPGAs. which conrtain more than enough CLBs in one half for the implementation
of BIST circuits. For small FPGAs. DFT techniques combined with boundary scan can
be added to the BIST design so that the BIST could be verified online verified to

guarantee fault-free operation.
(2) Build or obtain a layout information database to ease test automation.

Currently. the test configurations generated for one FPGA device family can not be
implemented directly on another FPGA device family because of the different layout
information contained in different device families. For the same device family. the
BIST circuitry designed for one TC can be used for another TC, but it needs lots of
work to torm the test structures for different TCs due to the bad component reference
rules in current Xilinx CAD tools, as further discussed in section 6.2.2. In the future if
there are no modifications to the component reference rules, nor to the CAD tool from
Xilinx that we used to obtain the layout information for all the components in the
FPGA. the following database could be built for each device family as an alternate
solution for the automatic zeneration of different TCs for a device family, or for
different device families. Such a database would include: (a) the X and Y coordinates
of the origin for each type of component, (b) the row and column number of each type
of component. (c) the offset of each type of component from its origin, and (d)

boundary information and tile information. Then a scripting program could use the

89



device information from this database to generate the test structures for FPGAs with

different lavouts.

6.2.2 Suggestions for Xilinx FPGA Design and CAD Tools

(1) Component Reference Rules

The test automation problem discussed in 6.2.1 (2) is inherently caused by the
component reference rules in the Xilinx CAD tools. In Xilinx CAD tools, some FPGA
components are referred by their relative position. For instance, the output pin X of
CLB in row 2 column 3 of an FPGA is referred as “CLB_R2C3.X". This reference rule
makes it possible for the program to refer to a component without knowing its physical
layout information. i.e.. its X and Y coordinates. The test configurations generated for
the component. therefore. can be re-used from family to family without any
modification. However. some other components in the FPGA (such as the single.
double length lines. long lines. global lines and boundary connection lines) are referred
to using absolute values of the X and Y coordinates. For instance. the first vertical
single line associated with CLB in row | and column 1 is referred to as *“/X:496
‘Y:10189". Such X and Y coordinates are device dependent. Furthermore. for the lines
in the boundaries and between the tiles. the offset of a certain type of line and its origin
1s trregular. so that it is impossible to know its X and Y coordinates unless the line is
manually selected in the CAD tool. This makes it impossible for a user-developed
program to generate the test structure automatically for different device families, or
different TCs (different test structures) for the same device family. Our suggestion is
that the component reference rule be modified such that all the components are referred
to by their relative positions without knowing the X and Y coordinates. For instance,
the above vertical single line could be referred to as “CLB_R1C1.VS1”. The design
automation problem could be solved if the proposed component reference rule were to

be applied.

(2) Flexibility in Macros

In Xilinx tools, one can implement a design and later insert the design as a macro
into another design. However, once a macro is formed, only communications through

its inputs and outputs are permitted and nothing can be changed within the macro, not

90



even routing changes that do not affect the functionality of the design. These
limitations restrict both the implementation flexibility and the circuit performance. For
instance, the tool will not be able to optimize the routing if the macro contains a
critical path that can be replaced by a non-critical path. Our suggestion is to allow
more freedom in the macro operation. At least routing changes should be permitted

within a macro that do not affect the functionality.

91



Bibliography

(1]

(4]

(6]

(8]

(91

Virtual Computer Corporation. Overview of the FPGA (Online document at

http://www.vcc.com/fpga.html).

X. Sun. Testing configurable logic blocks of Xilinx FPGAs. Project Proposal.
Department of Electrical &Computer Engineering, University of Alberta/Nortel
Networks. April 30. 1999.

X. Sun. Testing the interconnect of Xilinx FPGAs. Project Proposal. Department
of Electrical &Computer Engineering, University of Alberta/Nortel Networks,
May 21. 1999.

M. Abramovici. M. Breuer and A. Friedman. Digital systems testing and testable

design. Computer Science Press, 1990.

L. Zhao. D. Walker and F. Lombardi. [DDQ testing of bridging faults in logic
resources of reconfigurable field programmable gate arrays. IEEE Transactions

on Computers. 1136-1132, 1998.

L. Zhao. D. Walker. F. Lombardi. IDDQ testing of input/output resources of
SRAM-based FPGAs. [EEE Asian Test Symposium, 1999.

R. Gulati and C. Hawkins. [DDQ testing of VLSI circuits. Kluwer Academic
Publishers. 1997.

C. Su. S. Jeng and Y. Chen. Boundary-scan BIST methodology for
reconfigurable systems. In Proceeding of the IEEE International Test
Conference. 774-783. 1998.

G. Gibson. L. Gray and C. Stroud. Boundary scan access of BIST for filed
programmable gate arrays. In IEEE International Application Specific Integrated

Circuits Conference. 57-61, 1997.

92



[10]

(11]

(12]

(14]

(13]

[17]

(18]

[19]

M. Renovell. P. Faure, J. Portal, J. Figueras, and Y. Zorian. [S-FPGA: A new
symmetric FPGA architecture with implicit SCAN. In [EEE International Test
Conference, 924-931. 2001.

X. Sun, X.T. Chen, W.K. Huang and F. Lombardi. A row-based FPGA for single
and multiple stuck-at fault detection. In IEEE International Workshop on Defect

and Fault Tolerance in VLSI Systems, 225-233, 1995.

W.K. Huang, F.J. Meyer and F. Lombardi. Multiple fault detection in logic
resources of FPGAs. In International Symposium on Defect and Fault Tolerance
in VLSI Systems. 183-191. 1997.

W.K. Huang. F.J. Meyer and F. Lombardi. An approach for detecting multiple
faulty FPGA logic blocks. In IEEE Transactions on Computers, Vol. 49, No.1,
48-54. 2000.

M. Renovell. J.M Portal. J. Figueras. and Y. Zorian. An approach to minimize
the test configuration for the logic cells of the Xilinx XC4000 FPGAs family. In

Journal of Electronic Testing: Theory and Applications, 289-299, 2000.

M. Renovell. J. Figueras and Y. Zorian. Test of RAM-based FPGA: methodology
and application to the interconnect. In IEEE VLSI Test Symposium, 230-237,
1997.

M. Renovell. J. Figueras and Y. Zorian. Testing the inteconnect of RAM-based
FPGAs. In IEEE Design and Test of Computers, 45-50, 1998.

H. Michinishi, T. Yokohira and T. Okamoto. A test methodology for interconnect
structures of LUT-based FPGAs. In proceeding of Asian Test Symposium, 68-74,
1996.

W. Cheng, J. Lewandowshi and E. Wu. Diagnosis for wiring interconnects. In

IEEE International Test Conference, 565-571, 1990.



[20]

[24]

(26]

(27]

(28]

W.K. Huang, X. Cheng and F. Lombardi. On the diagnosis of programmable
interconnect systems: theory and application. In IEEE VLIS Test Symposium,
204-209, 1996.

Y. Yu, J. Xu, WK. Huang, and F. Lombardi. A diagnosis method for
interconnects in SRAM-based FPGAs. In [EEE Asian Test Symposium, 278-282,
1998.

Y. Yu., J. Xu. W.K. Huang. and F. Lombardi. Minimizing the number of
programming steps for diagnosis of interconnect faults in FPGAs. In IEEE Asian

Test Symposium. 1999,

C. Stroud. S. Konala. Pin Chen, and M. Abramovici. Built-in self-test of logic
blocks in FPGAs. In Proceeding of [EEE VLSI test symposium, 387-392, 1996.

C. Stroud. E. Lee. S. Konala, and M. Abramovici. Selecting built-in self-test
configurations for ftield programmable gate arrays. In Proceeding of IEEE

Automatic test Conference, 29-35, 1996.

C. Stroud. E. Lee. and M. Abramovici. BIST-based diagnostics of FPGA logic
blocks. In Proceeding of IEEE International Test Conference, 539-547, 1997.

C. Stroud. E. Lee. S. Konala, and M. Abramovici. Using ILA testing for BIST in
FPGAs. In Proceeding of IEEE International Test Conference, 68-75, 1996.

X. Sun. J. Xu, and P. Troubst. Testing the carry logic modules of SRAM-based

FPGAs. In IEEE Workshop on Memory Technology, Design and Testing, 91-98,
2001.

X. Sun, J. Xu and P. Trouborst. Testing Xilinx XC4000 configurable logic
blocks with carry logic modules. To appear in the Proceeding of IEEE

International Symposium on Defect and Fault Tolerance in VLSI Systems, 2001.

94



[29]

[30]

C. Stroud. S. Wijesuriya, C. Hamilton, and M. Abramovici. Built-in self-test of

FPGA interconnect. In Proceeding of [EEE International Test Conference, 404-
410, 1998.

M. Abramovici, C. Stroud. C. Hamilton, S. Wijesuriya, and V. Verma. Using
roving stars for on-line testing and diagnosis of FPGAs in fault-tolerant
applications. In Proceeding of IEEE International Test Conference, 973-982.
1999.

X. Sun. J. Xu, and P. Troubst. Novel technique for built-in self-test of SRAM-
based FPGAs. In Proceeding of IEEE International Test Conference, 795-803,
2000.

C. Metra. A. Pagano, and B. Ricco. On-line testing of transient and crosstalk
faults affecting interconnects of FPGA-implemented systems. In IEEE

International Test Conference. 939-947, 2001.

A. Doumar. T. Ohmameuda. and H. [to. Design of an automatic testing for
FPGAs. In IEEE Asian Test Symposium, 1999.

A. Doumar. H. [to. Testing the logic cells and interconnect resources for FPGAs.

In IEEE Asian Test Symposium. 1999.

The programmable logic data book. Xilinx Inc., 2000.

Frank F. Tsui. LSI/VLSI testability design. McGraw-Hill Book Company. 1986.
M. Renovell. J.M. Portal, J. Figueras, and Y. Zorian. SRAM-Based FPGA’s:

testing the LUT/RAM module. In Proceeding of IEEE International Test
Conference, 1102-1111, 1998.



[38]

(39]

(40]

[41]

(42]

(43]

(44]

[45]

X. Sun, J. Xu, and P. Trouborst. Testing xilinx XC4000 configurable logic
blocks with the carry logic modules. Technical Report, Department of Electrical

and Computer Engineering, University of Alberta, January 2001.

Xilinx Online Software Manual. Chapter 12: Attributes, constraints, and carry
logic. Library Guides. Alliance Series 2.li Software Documentation, Xilinx

Software Manuals.

C. Metra. et al. Novel techniques for testing FPGAs. In Design, Automation and
Test in Europe Conference, 89-94, 1998.

A.J. van de Goor. Testing semiconductor memories: Theory and Practice, John
Wiley & Sons Ltd.. 1991.

T. Liu. F. Lombardi and J. Salinas. Diagnosis of interconnects and FPICs using a

structured walking-1 approach. In Proceeding of IEEE VLSI Test Symposium,
256-261. 1995,

X. Sun. S. Xu. J. Xu. and P. Trouborst. Design and implementation of a parity-
based BIST scheme for FPGA global interconnects. IEEE Canadian Conference

on Electrical and Computer Engineering, 2000.

W.K. Huang, F.J. Meyer. and F. Lombardi. Array-based testing of FPGAs:
architecture and complexity. In Proceeding of IEEE Conference on Innovative

Systems in Silicon. 249-258, 1997.

M. Renovell, J.M. Portal. J. Figueras, and Y. Zorian. Testing the local
interconnect resources of SRAM-based FPGAs. In Journal of Electronic Testing:

Theory and Application, 513-520, 2000.

96



Appendix 1

Testability Equations for the CLM

97



Part 1: Equations for substitution

CO_ANDF = ('F2) + (!C7):

C1_ANDF =F2*C7:

CO_CML1 = (IC0*(!C1)) + (\F3*C0);

C1_CMI1 = (!C0*Cl) + (F3*C0):

CO_XORF1 = (CO_ANDF*C1_CM]1) + (C1_ANDF*C0_CM1);
C1_XORFI = (CO_ANDF*C0_CM1) + (CI_ANDF*C1_CM1):
CO_XORF2 = ( CO_XORF1*('F1) ) + (C1_XORF1*F1 );
C1_XORF2 = ( CO_XORF1*F1 ) + ( CI_XORF1*(!F1) )
CO_FMI1 = (C3*CO_XORF2)+(!C3*(!C2));

C1_FMI = (!C3*C2) + (C3*C1_XORF2);

CO_CM2 = (IC4+*(!C5)*(!C7)) + (F3*(1C4)*C5) + ({F1*C4*C5);
C1_CM2 = (IC4*(IC5)*C7) + (F3*(!C4)*C5) + (F1*C4*C5);
CO_FM2 = (CO_FM1*C0_CM2) + (C1_FMI1*(!Cin));

C1_FM2 = (CO_FMI1*C1_CM2) + (C1_FMI1*Cin):

CO_ANDG = (IGl) + (!C7):

C1_ANDG =Gl *CT:

CO_XORG! = (CO_ANDG*C1_CMI1) + (CI_ANDG*C0_CM1);
C1_XORGI = (CO_ANDG*C0_CMI) + (C1_ANDG*C1_CMI);
C0_XORG2 = ( CO_XORG1*(!G4) ) + ( C1_XORG1*G4 );
C1_XORG2 = ( CO_XORG1*G4 ) + ( C1_XORG1*('G4) );
C0_GM1 = C6*C0_XORG2:

C1_GMI = (IC6) + (C6*C1_XORG2):

O_FM2 =Cl_GMI:

98



O_FMI1 = ( (!Cin*Cl_CM2) + (Cin*C0_CM2) ) * O_FM2;
O_CM2 =CO0_FMI * O_FM2;

O_GMI1 = (!G4 * C1_FM2) + (G4 * CO_FM2);

O_XORG2 = C6 * O_GM]1;

O_XORG! = O_XORG2:

O_CM1_2=0_XORGI:

O_ANDG = O_XORGl:

O_XORF2 = C3 * O_FMI;

O_XORF! = O_XORF2:

O_CM1_1 = O_XORFI;

O_ANDF = O_XORF1:

99



Part 2: Testability Equations for Universal Fault Model of a CLM

ANDG_00= (!G1)*(!C7)*O_ANDG;
ANDG_01= (!G1)*(C7)*O_ANDG:

ANDG_10= (G1)*('C7)*O_ANDG:;

ANDG_11= (G1)*(C7)*O_ANDG:;

ANDF_00= (!F2)*(!C7)*O_ANDF;

ANDF_01= (IF2)*(C7)*O_ANDF;

ANDF_10= (F2)*(!C7)*O_ANDF:

ANDF_11= (F2)*(C7)*O_ANDF:

XORG1_00= CO_ANDG * CO_CMI1 * O_XORGlI;
XORG1_01=CO_ANDG * C1_CMI * O_XORGl;
XORG1_10=C1_ANDG * CO_CM]1 * O_XORG1:
XORG!_11=Cl_ANDG * C1_CMI1 * O_XORGI;
XORF1_00= CO_ANDF * CO_CMI1 * O_XORFI:
XORF1_01= CO_ANDF * C1_CMI1 * O_XORFI;
XORF1_10= C1_ANDF * CO_CM]1 * O_XORFI:
XORF1_11= Cl1_ANDF * C1_CMI1 * O_XORFI;
XORG2_00= CO_XORG! * (1G4) * O_XORG2:
XORG2_01=CO_XORG! * (G4) * O_XORG2;
XORG2_10= C1_XORG! * (1G4) * O_XORG2:
XORG2_11=Cl_XORGI * (G4) * O_XORG2;
XORF2_00= CO_XORF1 * (!F1) * O_XORF2:
XORF2_01= CO_XORF1 * (F1) * O_XORF2;

XORF2_10= C1_XORF1 * (F1) * O_XORF2;

100



XORF2_11=CI1_XORFI * (F1) * O_XORF2;
GM1_00= (!C6) * CO_XORG2 * O_GMI;
GM1_01= (!C6) * C1_XORG2 * O_GM1:
GM1_10= (C6) * CO_XORG2 * O_GM]1:
GMI1_11=(C6) * C1_XORG2 * O_GM1:
FM1_000= (!C3) * CO_XORF2 * (!C2) * O_FMI;
FM1_001= (!C3) * CO_XORF2 * (C2) * O_FMI:
FM1_010= (!C3) * C1_XORF2 * (!C2) * O_FMI:
FMI_0l1=(!C3) * C1_XORF2 * (C2) * O_FM1:
FM1_100= (C3) * CO_XORF2 * (IC2) * O_FMI:
FM1_110=(C3) * C1_XORF2 * (IC2) * O_FMI;
GM2_000= CO_GM1 * (!G4) * CO_FM2:
GM2_001= CO_GM1 * (!1G4) * C1_FM2:
GM2_010= CO_GM1 * (G4) * CO_FM2:
GM2_011= C0_GMI * (G4) * C1_FM2:
GM2_100= C1_GMI * (!G4) * CO_FM2:
GM2_101= C1_GMI1 * (1G4) * C1_FM2;
GM2_110= Ci_GMI * (G4) * CO_FM2;
GM2_111=Cl1_GM1 * (G4) * C1_FM2:
FM2_000= CO_FMI1 * CO_CM2 * ({Cin) * O_FM2:
FM2_001= CO_FM1 * CO_CM2 * (Cin) * O_FM2;
FM2_010= CO_FMI * C1_CM2 * (!Cin) * O_FM2;
FM2_011= CO_FMI * C1_CM2 * (Cin) * O_FM2;
FM2_100= C1_FMI * CO_CM2 * (!Cin) * O_FM2;

FM2 _101=C1_FMI1 * C0_CM2 * (Cin) * O_FM2;

101



FM2_110=C1_FMI * C1_CM2 * (!Cin) * O_FM2;
FM2_111=C1_FMI * C1_CM2 * (Cin) * O_FM2;
CM1_000= (!C0) * (!C1) * (!F3) * (O_CM1_l +O_CM1_2);
CM1_001= (I1C0) * (IC1) * (F3) * (O_CM1_1 +O_CM1_2);
CM1_010= ('C0) * (C1) * (IF3) * (O_CMI_l +O_CM1_2);
CM1 _011=(!CO) * (C1) * (F3) * (O_CMI_1 +O_CM1_2);
CMI1_100= (CO) * (!C1) * (!F3) * (O_CM1_1 +O_CM1_2):
CM1_101=(CO) * (!C1) * (F3) * (O_CMI1_1 +O_CMI1_2);
CM2_00000= (!C4) * (IC5) * (!F1) * (!F3) * (IC7) * O_CM2:
CM2_00001= (C4) * (!C5) * (IF1) * (!F3) * (C7) * O_CM2:
CM2_00010= ('C4) * (IC5) * (F1) * (F3) * ({IC7) * O_CM2:
CM2_00011= (C4) * (!C5) * ('F1) * (F3) * (C7) * O_CM2:
CM2_00100= ('C4) * (IC5) * (F1) * (!F3) * (!{C7) * O_CM2:
CM2_00101= (1C4) * (IC5) * (F1) * (IF3) * (C7) * O_CM2:
CM2_00110= ('C4) * (IC5) * (F1) * (F3) * (!C7) * O_CM2:
CM2_00111=(!C4) * (IC5) * (F1) * (F3) * (C7) * O_CM2:
CM2_01000= ('C4) * (C5) * (!F1) * ('F3) * (IC7) * O_CM2:
CM2_01001= (!C4) * (C5) * (!F1) * ('F3) * (C7) * O_CM2;
CM2_01010= (IC4) * (C5) * (IF1) * (F3) * (!C7) * O_CM2;
CM2_01011= (!C4) * (C5) * (!F1) * (F3) * (C7) * O_CM2:
CM2_01100= ('C4) * (C5) * (F1) * (\F3) * (IC7) * O_CM2:
CM2_01101= (IC4) * (C5) * (F1) * ('F3) * (C7) * O_CM2:
CM2_01110= ('C4) * (C5) * (F1) * (F3) * (!C7) * O_CM2;
CM2_01111=(!C4) * (C5) * (F1) * (F3) * (C7) * O_CM2:

CM2_11000=(C4) * (C5) * ('F1) * ('F3) * (!IC7) * O_CM2;

102



CM2_11001=(C4) * (C3) * ('F1) * (!F3) *(C7) * O_CM2;
CM2_11010=(C4) * (C5) * ('F1) * (F3) * (!C7) * O_CM2;
CM2_11011=(C4) * (C5) * ('F1) * (F3) * (C7) * O_CM2:
CM2_11100=(C4) * (C5) * (F1) * ('F3) * (IC7) * O_CM2;
CM2_11101=(C4) * (C5) * (F1) * (F3) * (C7) * O_CM2;
CM2_11110=(C4) * (C3) * (F1) * (F3) * (!C7) * O_CM2;

CM2_11111=(C4) * (C3) * (F1) * (F3) * (C7) * O_CM2;

103



Part 3: Testability Equations for Multiple Fault Model of a CLM

ANDG _01= (!G1)*(C7)*O_ANDG:

ANDG_10= (G1)*(!C7)*O_ANDG;

ANDG_11= (G1)*(C7)*O_ANDG;

ANDF_01= (!F2)*(C7)*O_ANDF;

ANDF_10= (F2)*('C7)*O_ANDF;

ANDF_11= (F2)*(C7)*O_ANDF;

XORG1_00= CO_ANDG * CO_CM1 * O_XORGI;
XORG1_01=CO_ANDG * C1_CM! * O_XORGI;
XORG!1_10= Cl_ANDG * CO_CM1 * O_XORG];
XORF1_00= CO_ANDF * CO_CM1 * O_XORFI;
XORF1_01= CO_ANDF * CI_CMI1 * O_XORFl;
XORF1_10=Cl_ANDF * CO_CMI * O_XORFI;
XORG2_00= CO_XORG]! * (!G4) * O_XORG2;
XORG2_01=CO0_XORGI * (G4) * O_XORG2:
XORG2_10=Cl_XORG! * (!G4) * O_XORG2;
XORF2_00= CO_XORF1 * (!F1) * O_XORF2;
XORF2_01= CO_XORF1 * (F1) * O_XORF2;
XORF2_10= C1_XORFI1 * (!F1) * O_XORF2;
GM1_00= (!C6) * CO_XORG2 * O_GMI;
GM1_10=(C6) * CO_XORG2 * O_GMI;
FM1_001= (!C3) * CO_XORF2 * (C2) * O_FMI;
FM1_010= (!C3) * C1_XORF2 * (1C2) * O_FMI;

FMI1_110=(C3) * C1_XORF2 * (1C2) * O_FM1;

104



GM2_001= CO_GM]1 * (!G4) * C1_FM2;

GM2_010= CO_GM1 * (G4) * CO_FM2;

GM2_101= C1_GM]1 * (!G4) * C1_FM2;

GM2_110= C1_GM!1 * (G4) * CO_FM2;

FM2_001= CO_FMI1 * CO_CM2 * (Cin) * O_FM2;
FM2_010= CO_FMI1 * C1_CM2 * (!Cin) * O_FM2;
FM2_101=C1_FMI * CO_CM2 * (Cin) * O_FM2;
FM2_110= C1_FMI1 * C1_CM2 * ({Cin) * O_FM2;
CMI1_001= (!CO) * (!C1) * (F3) * (O_CM1_1 +O_CM1_2):
CM1_010= (!CO) * (C1) * ('F3) * (O_CMI1_1 +O_CM1_2):
CM1_101=(CO0) * (IC1) * (F3) * (O_CM1_1 +O_CM1_2):
CM2_00001= (!C4) * (IC5) * ('F1) * ('F3) * (C7) * O_CM2:
CM2_00110= (IC4) * (IC5) * (F1) * (F3) * (1C7) * O_CM2:
CM2_01010= (!C4) * (C5) * ('F1) * (F3) * (1C7) * O_CM2;
CM2_01101= (IC4) * (C5) * (F1) * (!F3) * (C7) * O_CM2:
CM2_11011= (C4) * (C5) * ('F1) * (F3) * (C7) * O_CM2;

CM2_11100= (C4) * (C5) * (F1) * (!F3) * (!C7) * O_CM2:

105



Part 4: Testability Equations for Single Fault Model of a CLM

ANDG_G1_0= (!G1)*(C7)*O_ANDG:
ANDG_G!1_1=(G1)*(C7)*O_ANDG;
ANDG_C7_0= (G1)*(!C7)*O_ANDG:
ANDG_C7_1=(G1)*(C7)*O_ANDG:
ANDF_F2_0= ('F2)*(C7)*O_ANDF:
ANDF_F2_1= (F2)*(C7)*O_ANDEF:
ANDF_C7_0= (F2)*(!C7)*O_ANDF:
ANDF_C7_1= (F2)*(C7)*O_ANDF;
XORGI_ANDG_0= CO_ANDG * O_ANDG:
XORG!_ANDG_l=Cl_ANDG * O_ANDG:
XORG1_CM1_0=C0_CMI * O_CM1 _2:
XORG!_CMI1_i=C1_CMI * O_CM1 _2:
XORF1_ANDF_0= CO_ANDF * O_ANDF:
XORF1_ANDF_l=C1_ANDF * O_ANDF:
XORF1_CMI_0=CO0_CMI * O_CMI_I;
XORF1_CMI_1=Cl_CMI! * O_CMI _I:
XORG2_XORG!_0= CO_XORG! * O_XORGI;
XORG2_XORGI_I=C1_XORGI * O_XORGI:
XORG2_G4_0= (!G4) * O_XORG2;
XORG2_G4_1=G4 * O_XORG2:
XORF2_XORF1_0= C0_XORF1 * O_XORF1:
XORF2_XORF1_l=C1_XORF1 * O_XORFI:

XORF2_F1_0= (!F1) * O_XORF2:

106



XORF2_F1_1=F1 * O_XORF2;

GM1_C6_0= (!C6) * CO_XORG2 * O_GMI;

GM1_C6_l=(C6) * CO_XORG2 * O_GM]1:

GM1_XORG2_0= (C6) * CO_XORG2 * O_XORG2:

GM1_XORG2_1=(C6) * C1_XORG2 * O_XORG2:

FM1_C3_0= (!C3) * ((C2 * CO_XORF2) + ((!C2) * C1_XORF2) ) * O_FMI;
FM1_C3_1=(C3) * ((C2 * CO_XORF2) + ((!C2) * CI_XORF2) ) * O_FMI;
FM1_XORF2_0= (C3) * CO_XORF2 * O_XORF2;

FM1_XORF2_1=(C3) * C1_XORF2 * O_XORF2:

FM1_C2_0=(!C3) * (!C2) * O_FMI:

FM1_C2_1=(!C3) * (C2) * O_FM1:

GM2_GMI1_0= CO_GM1 * ( (G4*C0_FM2) + ((!G4)*C1_FM2) );
GM2_GMI1_1=C1_GMI * ( (G4*CO_FM2) + ((\G4)*C1_FM2) );
GM2_G4_0= C0O_GMI1 * (!G4):

GM2_G4_1= CO_GM]1 * (G4):

GM2_FM2_0= C1_GM1 * CO_FM2;

GM2_FM2_1=Cl_GMI * C1_FM2:

FM2_FM1_0= CO_FMI * ( (Cin*C0_CM2) + ((!Cin)*C1_CM2) ) * O_FM2;
FM2_FMI_1=CI_FMI * ( (Cin*C0_CM2) + ((\Cin)*C1_CM2) ) * O_FM2;
FM2_CM2_0=CO_FMI * CO_CM2 * O_FM2;

FM2_CM2_1= CO_FM1 * C1_CM2 * O_FM2;

FM2_Cin_0= C1_FMI * (!Cin) * O_FM2;

FM2_Cin_1= C1_FMI * (Cin) * O_FM2;

CM1_C0_0= (1C0) * ( ((!C1)*F3) +(C1*('F3)) ) * (O_CM1_1 +O_CMI _2);

CMI1_CO0_1=(C0) * ( ((!C1)*F3) +(C1*('F3)) ) * (O_CM1_1 +O_CM1_2):

107



CM1_C1_0= (!C0) * (ICl) * (O_CMI1_1 +O_CM1_2);

CM1_C1_1= (!C0) * (C1) * (O_CM1_1 +O_CM1_2);

CM1_F3_0=(CO0) * ({F3) * (O_CM1_1 +O_CM1_2);

CMI1_F3_1=(CO) * (F3) * (O_CM1_1 +O_CM1_2):

CM2_C4C5_00= (1C4) * (!C5) * ((({F1)*('F3)*(C7)) + (F1)*(F3)*(C7)) ) * O_CM2;
CM2_C4C5_01= (1C4) * (C5) * ( (F1)*(!F3)*(C7)) + ((IF1)*(F3)*(!C7)) ) * O_CM2;
CM2_C4C5_11=(C4) * (C5) * ( (('F1)*(F3)*(C7)) + ((F1)*('F3)*(!C7)) ) * O_CM2;
CM2_F1_0=(C4) * (C3) * ('F1) * O_CM2:

CM2_F1_l=(C4) * (C5) * (F1) * O_CM2:

CM2_F3_0= (!C4) * (C5) * ('F3) * O_CM2:

CM2_F3_1=(IC4) * (C5) * (F3) * O_CM2;

CM2_C7_0=(!C4) * (IC5) * (IC7) * O_CM2:

CM2_C7_1= (!C4) * (IC5) * (C7) * O_CM2;

O_1 = (1C6) * O_GM1:

108



Appendix 2

The “Best” 22 CLM TCs

109



TCSET 1

ADD-G-F3

ADDSUB-FG-CI

INC-G-1

DEC-F-CI

FORCE-1

FORCE-CI

FORCE-F3

FORCE-F1

TCSET 2

ADD-G-F3

ADDSUB-FG-CI

INC-G-1

DEC-F-CI

FORCE-1

EXAMINE-CI

FORCE-F3

FORCE-F1

110




TC SET 3

ADD-G-F3

ADDSUB-FG-CI

INC-G-1

INCDEC-F-CI

FORCE-1

FORCE-CI

FORCE-F3

FORCE-F1

TC SET 4

ADD-G-F3

ADDSUB-FG-CI

INC-G-1

INCDEC-F-CI

FORCE-1

FORCE-CI

FORCE-F3

FORCE-F1

111




TCSETS

ADD-G-F3

ADDSUB-FG-CI

DEC-G-0

DEC-F-CI

FORCE-1

FORCE-CI

FORCE-F3

FORCE-F1

TC SET 6

ADD-G-F3

ADDSUB-FG-CI

DEC-G-0

DEC-F-CI

FORCE-1

EXAMINE-CI

FORCE-F3

FORCE-F1

112




TCSET 7

ADD-G-F3

ADDSUB-FG-CI

DEC-G-0

INCDEC-F-CI

FORCE-1

FORCE-CI

FORCE-F3

FORCE-F1

TCSET 8

ADD-G-F3

ADDSUB-FG-CI

DEC-G-0

INCDEC-F-CI

FORCE-1

EXAMINE-CI

FORCE-F3

FORCE-F1

113




TC SET 9

ADD-G-F3

ADDSUB-FG-CI

INCDEC-G-0

DEC-F-CI

FORCE-1

FORCE-CI

FORCE-F3

FORCE-F1

TCSET 10

ADD-G-F3

ADDSUB-FG-CI

INCDEC-G-0

DEC-F-CI

FORCE-1

EXAMINE-CI

FORCE-F3

FORCE-F1

114




TC SET 11

ADD-G-F3

ADDSUB-FG-CI

INCDEC-G-0

INCDEC-F-CI

FORCE-1

FORCE-CI

FORCE-F3

FORCE-F1

TC SET 12

ADD-G-F3

ADDSUB-FG-CI

INCDEC-G-0

INCDEC-F-CI

FORCE-1

EXAMINE-CI

FORCE-F3

FORCE-F1

115




TCSET 13

ADD-G-F3

ADDSUB-FG-CI

INC-G-CI

DEC-F-CI

FORCE-0

FORCE-1

FORCE-F3

FORCE-F1

TC SET 14

ADD-G-F3

ADDSUB-FG-CI

DEC-F-CI

DEC-G-CI

FORCE-0

FORCE-1

FORCE-F3

FORCE-F1

116




TC SET 15

ADD-G-F3

ADDSUB-FG-CI

DEC-F-CI

INCDEC-G-CI

FORCE-0

FORCE-1

FORCE-F3

FORCE-F1

TC SET 16

ADD-G-F3

ADDSUB-FG-CI

DEC-G-CI

INCDEC-F-CI

FORCE-0

FORCE-1

FORCE-F3

FORCE-F1

117




TCSET 17

SUB-G-F3

ADDSUB-FG-CI

INC-G-CI

DEC-F-CI

FORCE-0

FORCE-1

FORCE-F3

FORCE-F1

TC SET 18

SUB-G-F3

ADDSUB-FG-CI

INC-G-CI

INCDEC-F-CI

FORCE-0

FORCE-1

FORCE-F3

FORCE-F1

118




TC SET 19

ADDSUB-FG-CI

ADDSUB-G-F3

INC-G-CI

DEC-F-CI

FORCE-0

FORCE-1

FORCE-F3

FORCE-F1

TC SET 20

ADDSUB-FG-CI

INC-G-CI

DEC-F-CI

FORCE-0

FORCE-1

FORCE-F3

ADD-G-F3

FORCE-F1

119




TC SET 21

ADDSUB-FG-CI

INC-G-CI

DEC-F-CI

FORCE-0

FORCE-1

FORCE-F3

SUB-G-F3

FORCE-F1

TC SET 22

ADDSUB-FG-CI

INC-G-CI

DEC-F-CI

FORCE-0

FORCE-1

FORCE-F3

ADDSUB-G-F3

FORCE-F1

120




Appendix 3

The 17 TCs for Interconnect Testing

In the following tables:

(a) A blank cell indicates that there are no programmable switches at the cross-point

between the corresponding row and column.

(b) A cell with symbol “x” indicates there is a programmable switch at the cross-point
between the corresponding row and column, but the programmable switch is not

selected in the test configuration.

(¢) A cell with logic | indicates there is a programmable switch at the cross-point
between the corresponding row and column, and the programmable switch is

selected in the test configuration.

121



TC1

(a) PS Selection between CLB pins and Horizontal Wire Segments

HSS8 HD4 HL6
(from top to down) (from top to down) (from top to down)
21314156 1 {21314 2 (1314|535
Gl
G2 1] x| x| x| x x { x| x| x x | x| x
G3
G4 x | x| 1| x{x x | x| x| x x | x| x
Fl
F2 x| x| x| x]1 x| x| x| x x | x| x
F3
F4 x | x| x| x| x x | x| x| x x | x| x
Cl1
C2 x | x| x{x|x x | x| x| x 1 x
C3
C4 x | x| x{x]!|x x | x | x | x x x
K
Crai
Ist
Cra:
Ig2
X x x
XQ x x x
Y x x
YQ x x

122




(b) PS Selection between CLB pins and Vertical Wire Segments

VS8 VD4 VL6 VG4
{trom right to lefl) (from right to left) (from right to left) (from right to left)
213|4{5|6|78]112}!3]4}]112|3j4 (5|61 2|34
Gl x x| xlxlx|x|x]x|x|x]|x]|x]|x x | x x
G2
G3 x| 1] xix{xtx|xlx|[x]x]x x | x x | x| x
G4
Fl x | xIx | lixtx|x]x] x| x| x§x]|x x | x x
F2
F3 x PxPx]xix|x]x] x| x| x| x 1] x x | x| x
F4
Cl x{x | xIx|xix|x]x|x|x]x 1} x x
c2
C3 xIxtx|x|xIx{x]x|1]x]|x x | x x
C4
K x | x x x x| x}x
Crg; x x x
Iat x x
Craa x x x
Itas x x
X x x x
XQ x x| x
Y x x x
YQ x x

123




TC2

(a) PS Selection between CLB pins and Horizontal Wire Segments

HS8 HD4 HL6
{ from top to down) (from top to down) (from top to down)
2131415]6 1121314 21345
Gl
G2 x| L] x| x| x x | x| x| x x | x| x
G3
G4 x | x| x| 1]|x x | x| x| x x | x| x
F1
F2 x | x| x| x| x x | x| x| x x | x | x
F3
F4 x | x| x| x| x P x| x| x x | x| x
Ct
2 x | x| x| x| x x | x| x |1 x x
C3
c4 x x| xix]x x | x| 1] x x x
K
Cri
Ipy
Cra2
Irg2
X x x
XQ x x x
Y x x
YQ x x

124




(b) PS Selection between CLB pins and Vertical Wire Segments

VS8 VD4 VL6 VG4
(trom right to lett) (trom right to lett) (from right to left) (from right to let})
2|13 |435|6(7|8)1 (2|3 [4f1(2]3}4!5]6112]3]4
Gl Tix|ixIx]xix|{x|x| x| x}|x]x]|x x | x x
G2
G3 x| x|x| x| xix|{xpx]| x| x]x 1| x x | x| x
G4
Fi x| x| x| x| lix|x]x|x|x]x§x]|x x | x x
F2
F3 x| x|xfx]x|x|1lx}x]|x]x x | x x [ x| x
F4
Cl xPx x| x| x]xixp | x|x]|x x | x x
c
C3 x| x| x|x|xix]x] x| x| x]x x | x x
()
K x | x x x x | 1] x| x
Crai x x 1
Ita: 1 x
Craa x x 1
Ira2 x x
X x x x
XQ 1 x| x
Y x x x
YQ x x

125




TC3

(a) PS Selection between CLB pins and Horizontal Wire Segments

HS8

(from top to down)

HD4

(from top to down)

HL6

(from top to down)

(1]

-

S

4

b]

6

1

213

4

2

3

4

2

Gl

G3

G4

F1

F2

F3

F4

Cl1

2

C3

C4

Crai

Its

Cia2

Ira2

X

XQ

YQ

126




(b) PS Selection between CLB pins and Vertical Wire Segments

VS8 VD4 VL6 VG4
(from right to left) (from right to left) (from right to left) (from right to left)
1123|415 |6|7 8112341213 ]4|5|6|1]|2]|3]|4
Gl [Ixix|lix|xixtx]|x]x]|x!x|x]x]x x | x x
G2
G3 Ix|x|x| x| l|x{x|x]xj|x]|x]|x x | x x | x| x
G4
Fl x x| x| xIx|xj x| x|x|x]x]|x]x x | x x
F2
F3 Ix|x|{x|x]xtx|x|x}]l]|x]|x]x x | x x | x| x
F4
Cl Ix|{x|x}x|x|[x|x]x]x|x|1]x x | x x
C2
C3 Ix|x|x|x{x|x|x|x]x]|x|x]x 1| x x
C4
K x | x x x x {x|1{x
Cmi |1 x x x
Its x x
Crs2 | ! x x x
Ite2 x 1
X x x x
XQ x x| x
Y x x x
YQ | x 1 x

127




TC4

(a) PS Selection between CLB pins and Horizontal Wire Segments

HSS8

{from top to down)

HD4

(from top to down)

HL6
(from top to down)

(]

3

4

5

6

112413]4

2

3

4

5

Gl

G3

G4

F1

F2

F3

F4

Cl

c2

c3

C4

Cmi

I,

128




(b) PS Selection between CLB pins and Vertical Wire Segments

VS8 VD4 VL6 VG4
(from right to left) (from right to left) (from right to left) (from right to left)
293|415 1617181 11213 14}1[2]3}4]5]6]J1 2|34
Gl x [ x ] Uix|[x]x|xx|x]|]x|x]x]|x x | x x
G2
G3 x| xIx]x|x{xIxlx|x]|x]|x x |1 x | x| x
G4
Fl x [ x{x|{x|x|x| D] x|x]x|x]|x]|x x | x x
F2
F3 x [ xfx|x]x|x|x] x| x| x| x x | x x i 1]x
F4
Cl x| x| xix|[x]x|x]x|x]|x]|x x | x 1
Cc2
C3 x| x| x| x| x|xfx] x| x|x]|x x |1 x
c4
K x |1 x x x | x| x| x
Crai 1 x x
Isy x x
Cra2 1 x x
Its2 1 x
X x x x
XQ x x | x
Y 1 x x
YQ x x

129




TCS

(a) PS Selection between CLB pins and Horizontal Wire Segments

HS8 HD4 HL6
(from top to down) (from top to down) (from top to down)
1123|4516 17 181 [[2]3|4]1|213]|4]5
Gl
G2 x | x| x x| x| lix|x] x| x| x| x x [ x| %
G3
G4 x [ x| x| x| x| x|x] 1] x| x| x| x x | x| x
F1
F2 x P x{xtx|x|x]x|x]x|1]x]x x | x| x
F3
F4 x [ x P x| x!x]x{x|x]x] x| x]!1 x | x| x
C1
C2 x | x| x| x|x|x|1|xyx|x{x]x x x
C3
C4 <! ] x| x| x|x|x|x] x| x| x| x x x
K
Crai
|65:Y)
Cra:
Itsa
X x x x
XQ x x x
Y x x x
YQ x x x

130



(b) PS Selection between CLB pins and Vertical Wire Segments

VS8 VD4 VL6 VG4
(from right to lef1) (from night to left) (from right to left) (from right to left)
213141516 (718]1 )2 [3j4)1}{2|3}4|5]6]J12]3j4
Gl x| xix | Plx]!x|x] x| x| x| x]|x]x x | x x
G2
G3 x [ x 11 {x|x!x{x]x|x}lx]|x x | x x | x| x
G4
F1 xfPx{x]{x|x|{x{x]1{xjx]x]x]|x x | x x
F2
F3 xix|x|x|x|x}x]x{x|1l]x x | x x | x| x
F4
Cl x|t lixtx|xi{x|x|x]|x]|x]x x | x x
C2
C3 x| x| x| x|x|x|x]|x]x|x{x x | x 1
c4
K x | x x x x| x| x]1
Crai x x 1
Itn; x x
Cra2 x x 1
Ita: x x
X 1 x x
XQ x x| x
Y x x x
YQ x x

131




TC6

(a) PS Selection between CLB pins and Horizontal Wire Segments

HS8

(from top to down)

HD4

(from top to down)

HL6
(from top to down)

~

3

4

d

6

1

2

3

3

9

-

3

4

5

Gl

G2

G3

G4

Fl

F2

F4

C1

2

(6K)

(o)

Crai

Irai

Cra2

X

XQ

YQ

132




(b) PS Selection between CLB pins and Vertical Wire Segments

VS8 VD4 VL6 VG4
(from right to left) (from right to left) (from right to left) (from right to left)
2131451617181 2|3 |4|1}2|3;4}5]|6]J1}{2}|34
Gl x| x|{x|x|Tix] x| x| x}{x|x]x]|x x | x x
G2
G3 x x| x| x| x]x]|xl x| x| x]|x x | x 1] x| x
G4
F1 x| x| x|x{x|x{x|x|x]|1}|x}x]|x x | x x
F2
F3 x| xtx|xfx|xix]x|x|x]x x |1 x | x| x
F4
Cl x| xfxIx|x]xixyx|1l]x]|x x | x x
2
C3 PixIx|x|x|{x{x]x|x|x|x x | x x
c4
K x | x x x x{x|x|1
Crai x 1 x
Its, x x
Cra: x 1 x
Itz x x
X x x 1
XQ x x| x
Y x x x
YQ x x

133




TC7

(a) PS Selection between CLB pins and Horizontal Wire Segments

HS8

(from top to down)

HD4

(from top to down)

HL6

(from top to down)

~

3

415

6

1[12])3] 4

2

31415

Gl

G3

G4

F1

F3

F4

Cl

]

C3

4

Cra:

Is

134




(b) PS Selection between CLB pins and Vertical Wire Segments

VS8 VD4 VL6 VG4
{from right to lef}) (from right to left) (from right to left) (from right to lefl)
11213145167 |81 ;213411234561 ]2}{3]|4
Gl x|x|x|x]x]x|[T!x]x|x|x]|x]|x]x x | x x
G2
G3 JIx|x|x|{xix|lix|x]x|x]x]x x | x x | x| x
G4
F1 x| x| x{x|x|xIx|x]x}|x!x]1}x]|x x | x x
F2
F3 Ixix|x|x{x|x|x{x]x]|x|x|x x | x 1] x| x
F4
Cl [l x| x|x|x|xIx|x]x]|x]x]|x x | x x
c2
C3 Ix|x|l|xixix|x|xpx|x]|x]|x x | x x
c4
K x | x x x x| x| x|1
Cr | x x x 1
Ita; x x
Crm: | x x x 1
Itg2 x x
X x x x
XQ x x| x
Y x x ) x
YQ | x x x

135




TCS8

(a) PS Selection between CLB pins and Horizontal Wire Segments

HS8

(from top to down)

HD4

(from top to down)

HL6

(from top to down)

i~

3

415

6

1j2(3]4

2

314]|5

Ita;

Cra:

Itga

XQ

YQ

136




(b) PS Selection between CLB pins and Vertical Wire Segments

VS8 VD4 VL6 VG4
(from right to left) (from right to left) (from right to left) (from right to left)
21314156 1{2{3}|4 213145 112314
Gl x| x| x{x]|x x { x| x| x x x | x x
G2
G3 x [ x x| x|x x | x| x| x x | x x x
G4
F1 x| x| x|x]|x x | 11 x| x x x| x x
F2
F3 x | x| x|x|x x| x| x| x x | x x 1
F4
C1 x [ xix]|1]x x | x| x| x x | x x
c2
G x x| x|x|x x ! x{x|x x | x x
c4
K 1| x x x | x| x| x
Cm x
ey x
Cra: x
Itp2 x x
X x x
XQ x x
Y x x x
YQ x x

137




TC9

(a) PS Selection between CLB pins and Horizontal Wire Segments

HS8 HD4 HL6
(from top to down) (from top to down) (from top to down)
213141516 1121314 21314]5
Gl
G2 x | x| x| x]|x x 1| x| x x | x | x
G3
G4 x| x| x{x]|x x | x| x| x 1] x| x
F1
F2 x [ x| x| x| x 1 x | x | x x| x| x
F3
F4 x | x| x|x1!x x | x| x| x x | x| x
Cl
Q2 x [ x x| x]|1 x | x| x| x x x
c3
C4 x| x| x| x]x x | x| x 1 x x
K
Crpi
Irs)
Cra:
Itsa
X x 1
XQ x x x
Y x x
YQ x x

138




(b) PS Selection between CLB pins and Vertical Wire Segments

VS8 VD4 VL6 VG4
(trom right 10 left) (from nght 1o left) (from right 1o left) (from right to left)
1234156781213 |41 |23 4 (5|6}1|2]|3]|4
Gl x| xix|x|x]|x|x|x]x}{x]|x]x]x}]x x |1 x
G2
G3 [Ix!x|x|x!{x|x|x|1]x{|x]|x]|x x | x x | x| x
G4
Fl x x| x|xtxix|x|x]x]x|tx]|x]x]x 1] x x
F2
F3 | x| x| x|x|x}{x]x]x] x| 1]} x]|x x | x x | x| x
F4
Cl x| 1| x}{xix|xix|xbx|[x]x]x x | x x
2
C3 Ixxtxjix|Tixix|x]x|x|x]x x | x x
C4
K x | x x x x| x| x|1
Crai | x x 1 x
Its x x
Cre2 | x x 1 x
Irg2 x x
X x x x
XQ x x | x
Y x x x
YQ | x x x

139




TC10

(a) PS Selection between CLB pins and Horizontal Wire Segments

HSS8 HD4 HL6
(from top to down) (from top to down) (from top to down)
2(314151]6 1121314 213415
Gl
G2 x| x ! x| x| x x | x| 1] x x | x| x
G3
G4 x| x| x| x| x x | x| x| 1 x | x| x
F1
F2 x | x| x| x|x x | x| x| x x| 1] x
- F3
F4 Ll x| x| x| x x | x| x| x x | x| x
Cl
c2 x | x| x| x|x x | x| x| x x 1
C3
C4 x | x| x| x| x x | x| x| x x x
K
Crai
Is,
Cra2
In:
X x x
XQ x x x
Y x x
YQ x x

140




(b) PS Selection between CLB pins and Vertical Wire Segments

VS8 VD4 VL6 VG4
(from right to left) (from right to left) (from right to left) (from right to left)
2113|4156 |7i811 23|41 2(3(4|5]|6}J1(2]34
Gl x [ xix|x|xtx{x| x| 1] x]x]x]|x x | x x
G2
G3 x{x|xtx|xpx{x]l]x]|x]|x x | x x| x{x
G4
F1 x| x| x|x|x|x|x]x]x]|x|x]x]|x x |1 x
F2
F3 x| x| x|x|x|x]x)x|x|{xjl x | x x | x}x
F4
Cl x| x| Pixix|[x|x}l x| x| x| x x | x x
C2
C3 xPx{x|x! 1| x|{x]x|x| x| x x | x x
Cc4
K x | x x 1 x| x| x|x
Crai x x 1
Its, x 1
Craz x x 1
Itsa x x
X x 1 x
XQ x x| x
Y x 1 x
YQ = x

141




TC11

(a) PS Selection between CLB pins and Horizontal Wire Segments

HS8

(tfrom top to down)

HD4

(from top to down)

HL6
(from top to down)

3

4

5

6

1121314

2

3

4

5

Gt

G2

G3

G4

Fl

F2

F3

F4

Cl

c2

(0K ]

Cc4

Crar

142




(b) PS Selection between CLB pins and Vertical Wire Segments

VS8 VD4 VL6 VG4
(trom right to left) (from right to left) (from right to left) (from right to left)
21314(5]6/7}8)1 121314123145 |6})1]|2]|3]4
Gl x | x| x| x]x{x]x]x]x|x|x|x]|1 x | x x
G2
G3 x Ix| x| x| x]x]x] x|l x]x x | x x | x| x
G4
Fl x| x|Px|x]x|x]x]x!{x|x|x]x|x x | x 1
F2
F3 x| x]x{x|x| x| x| x| x|x x | x x | x| %
F4
Cl x | x|xfx|1]x]|x]x!x]x]x x | x x
C2
C3 x| x| x| x|x}x|{x]|x|x]x]|]1 x | x x
C4
K x | x x x x| x| xil
Cra x x 1
Ita x x
Craz x x 1
Irg2 x x
X x x x
XQ x x| x
Y x x 1
YQ x x

143




TC12

(a) PS Selection between CLB pins and Horizontal Wire Segments

HS8 HD4 HL6
(from top to down) (from top to down) {from top to down)
21314(5]6 1121314 213145
Gl
G2 x | x| x| x| x x [ x| x| x x| 1] x
G3
G4 x | x| x| x|1 x | x| x| x x | x| x
F1
F2 | x| x| x| x x | x| x| x x | x| x
F3
F4 x| x| x| 1]x x | x | x| x x | x| x
Cl
2 x | x| x]x]|x x | x | x| x x x
C3
Cc4 x | x| x{x|x x | 1] x| x x x
K
Cras
Ite)
Cra:
Irs2
X x x
XQ x x x
Y 1 x
YQ x x

144




(b) PS Selection between CLB pins and Vertical Wire Segments

(from right to left)

VS8

vD4
(from right to left)

VL6

(from right to left)

(fromni

VG4
t to left)

to

3

4

b}

6

1

2

3

4

21314

5

1

2

3

4

x x

x

x

xX

x

X

x

1

x x

X

x

145




TC13

(a) PS Selection between CLB pins and Horizontal Wire Segments

HS8 HD4 HL6
(from top to down) (from top to down) (from top to down)
1213451617 |8)1}2i3|4])J1]2(|3]|4]5
Gl
G2 x| x| x| x| x{x!xix}]x]x]x 1 x | x| x
G3
G4 Tix | x x| x|x]x]x] x| x| x| x x | x| x
F1
F2 x { x| xix|xf{x|x}x|x]x] x x | x| x
F3
F4 x|x | x| x|x|1]x]xpx]|x|x]| x x | x| x
C1
C2 x x| x x| x{x|x|x}x|x]|x]|x 1 x
C3
C4 x x| x| x| Plx|x|x}]x]|x|x] x x x
K
Crai
Irs:t
Crs:
Irs2
X x x x
XQ x x x
Y x 1 x
YQ x x x

146



(b) PS Selection between CLB pins and Vertical Wire Segments

VS8 VD4 VL6 VG4
(from right to left) (from right to left) (from right to left) (from right to left)
213(415|67(8)1 2|3 (4J1}2|3]|4]5i6|]1(2]|3]4
Gl x| x| x| xtx]x|xlx|x|x]|x{1]x x | x x
G2
G3 x{x x| el x| xtx] x| x| x| x x | x x| 1]x
G4
F1 T x!x|xtx]x}ix]x]|x|x]x]x]|x x | x x
F2
F3 xfxtx{x|x|[1]x]x] x| x]x x | x x | x| x
F4
Cl x| x|Ix|{x]x|[x|{x]x]|x|x]x x |1 x
Cc2
C3 x | x| x!xixi{x|1lx]|x]|x]x x | x x
c4
K x | x x x x| x| x1|1
Cri x 1 x
Irg: x x
Cra: x 1 x
Ire2 x x
X x x x
XQ x x| x
Y x x x
YQ x x

147




TC14

(a) PS Selection between CLB pins and Horizontal Wire Segments

HS8

(from top to down)

HD4

(from top to down)

HL6

(from top to down)

~

3

415

6

112131} 4

2

31415

Gl

G2

G3

G4

Fl1

F2

F3

F4

Cl

Q2

c3

c4

Crar

|1}

Cra2

Iraz

X

XQ

YQ

148




(b) PS Selection between CLB pins and Vertical Wire Segments

VS8 VD4 VL6 VG4
(from right to left) (from right to left) (from right to left) {from right to left)
2131451678123 {431(2|3]|4|5|6}J1]|2]|3]4
Gl x| x| x|[xjx|[x|x]x|x|x]x]x]|x | x
G2
G3 x| x| x|xfx|1]xfx]x]|x]|x x | x x | x| x
G4
F1 x| xPx|x|x{x!x]x|]x|x]|]x]1]x x | x x
F2
F3 x | x| x]x|x|x|x]x|x|x]|x x | x x | x| %
F4
Cl x|Ixix|x|x{x|x]x]x|x]|1 x | x x
C2
C3 x{x{x|x|[x!=xIxtx]x]1]x x | x x
C4
K x | = 1 x x| x| x| x
Cim x x 1
Isy x x
Cra2 x x 1
[t x x
X x x x
XQ x x| x
Y x x x
YQ x x

149




TC15

(a) PS Selection between CLB pins and Horizontal Wire Segments

HS8

(from top to down)

HD4
(from top to down)

HL6

(from top to down)

~

3

45

6

11213 ] 4

2

3145

Gl

G2

G3

G4

F1

F2

F3

F4

Cl

2

C4

Crai

Ita:

Cra:

Ira2

XQ

YQ

150




(b) PS Selection between CLB pins and Vertical Wire Segments

VS8 VD4 VL6 VG4
(from right to left) (from right to left) (from right to left) (from right to left)
213 (4(5|6(7|811}12|3]|4]J1|2|3|4]|]5|6)1]|2]|3]4
Gl x| xix|xfx|x]|xpx|x|1]|x]x|x x | x x
G2
G3 xIx{x|x|{x|x|x] x| x| x| x x | x x [ x]1
G4
F1 x [Pl xPx|x|xfxlx|x]|x]|x]x]|x x | x x
F2
F3 x| x|x|lIx|x}xlx|x]|x]x x | x x| x| x
F4
C1 x | x!{x|{x|x|x]1lx|x|x|x x | x x
c2
C3 x| xIx|x|x|x]|x}lV{x]|x]|x x | x x
C4
K x | x x x x| x| x| x
Crai x x 1
Itg: x x
Cra2 x x 1
It x x
X x x x
XQ x x| 1
Y x x x
YQ x x

151




TC16

(a) PS Selection between CLB pins and Horizontal Wire Segments

HS8

(from top to down)

HD4
(from top to down)

~

3

415

6

112314

Gl

G2

G3

G4

F1

F2

F3

F4

Cl

c2

C4

Cri

Lras




(b) PS Selection between CLB pins and Vertical Wire Segments

VS8 VD4 VL6 VG4
(trom night to lefl) (from right to left) (from right to left) (from right 1o left)
2(314}|516;7|8)1]|2]|3|411{2]|3}4(5]|]6]11]2}{31]4
Gl x| x{x|x|x|x{x| V]| x|x]|x]x]|x x | x x
G2
G3 x| x|x|x{x|x]x]|x]|x]|x x | x x | x| x
G4
F1 x [ x| Vlx]xfxix]lx|x|x]|x]x]x x | x x
F2
F3 x [ x| x| x| Iix!x|x|x|x]x x | x x | x| x
F4
Cl x x| x|x|x|IT|=x]|x|x]|x]|x x | x x
Cc2
C3 x{x{x|x{xix|x]x|x]1]|x x | x x
Cc4
K x | x x x x | x| x| x
Crsi1 x x x
Ira1 x x
Cra: x x x
I1a x x
X x x x
XQ x x| x
Y x x x
YQ x x

153




TC17

(a) PS Selection between CLB pins and Horizontal Wire Segments

HS8

(from top to down)

HD4
(from top to down)

HL6

{from top to down)

~

3

415

6

1121314

2

3145

154




(b) PS Selection between CLB pins and Vertical Wire Segments

VS8 VD4 VL6 VG4
(trom right to left) (from right to left) (from right to left) (from right to left)
213(4]|5¢16 1{2]13]4 213|415 1121314
Gl x| xx|x]|x x | x| x| x x x | x 1
G2
G3 x| x{x|x|x x| x| x|1 x | x x x
G4
F1 x | x| x|x|x x | x| x| x 1 x | x x
F2
F3 x| x| Vfxtx x | x| x| x x | x x x
F4
Cl x| x| x|x]|x x | x| x| x x | x x
c2
C3 x| x|xjx|l x | x| > | x x | x x
C4
K X | x x x| x| x| x
Crsi x
I1s: x
Cra2 x
Itga x x
X x x
XQ x x
Y x x x
YQ x 1

155




Appendix 4

Distribution of CLB Resources into

Interconnect TCs

156



TC # Carry Mg Mg |Ma: F G |My|Mp| H
1 - 1 |11 4-XOR 4XOR | 1 | 0 | 3-XOR
2> | ADDSUB-FG-CI| 0 |1 | 0| 4NXOR [4NXOR| 1 | 0 |3-NXOR
3 - 1 |1}t 4-XOR 4XOR | 1 | 0 | 3-XOR
4 FORCE-CI 0 | 1]1 32x1 edge single 1 | 0 |HF+HG
5 - 1 1 1 16x2 edge single - - -
6 - 1|1} 32x1 level single 1 | 0 |HF+HG
7 - 1 11 16x2 level single 1 | 0o |HF+HG
8 .- 1|11 16x1 edge dual 1 | 0 |HF+HG
9 ADD-G-F3 o |1]0 4-XOR 3-XOR | 1 | 0 |3-NXOR
10 FORCE-1 1 o1 4-XOR 4XOR | 0 | 1 |3-NXOR
11 DEC-F-CI 0 | 1|1 |FlXNORF4 | 4-XOR 3-XOR
12 INC-G-1 0o |1]1 4-XOR G4 3-XOR
TC# | M1 [ M2 | M3 | M4 | M, [Mka|[Mgs| H1 |Din | SR | EC [Myo[Mw| FE(YQ) | FF(XQ)
1 [ -] -]o0]o] -1 -JToelolrl2]3]-T1 - FF/Set
2 -] -Joto ] -T1-JrJrf2]3]o0]-71 - FF/Reset
370 1] -] -1-Jo0]-12]13]0]1 ] 1] - FFReset -
4 o1 -] -1T1v]r]-73Telr]2]1]-1 Frmset -
5 0 - 2 1 0 0 0 0 1 2 3 1 1 FF/Reset | FF/Reset
6 | 3| -] -11]1]o0o]-123l0]1]1]e] FFEsSet -
7 | -]-10]lojlol-t1lol1{2]3]e07]1 - FF/Set
8 2 - 3 1 1 0 0 2 3 0 1 1 1 FF/Reset | FF/Reset
9 0| 1] -]o]-]1]-1213fo]1]1]1 FF/Set -
10 ] 0[O0 -]o0]-11]-13]0]1]2]1] -] FFReset -
11 | o] 1]1]-]-]0]o]ol1]2]3|1]1] FFSet FF/Set
12 1 1 0 - - 1 1 0 1 2 3 1 1 FF/Reset | FF/Reset

157




Appendix 5

VHDL Code for the BIST Circuitry

158



— A N bit Test Pattern Generator with Odd Parnity

-- Author : Jian Xu
-- Srudent ID : 0392076
- Date : Septemberl 1, 2001

-- File Name : gentpg.vhd
-- Architecture  : Behavioral
--Description  : The width of the TPG is determined by generic N

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use iece.std_logic_unsigned.all;

-- BLACK BOX description of I'O's
entity gentpg is

generic (n: positive := 8);

port( clock :instd_logic;

reset  :instd_logic;
advance : in std_logic;
mode : instd_logic_vector(2 downto 0);
output : out std_logic_vector((n-1) downto 0);
odd_parity : out std_logic;
done : out std_logic
);
end gentpg;

architecture behavioral of gentpg is

signal temp_out: std_logic_vector((n-1) downto 0);
signal temp_out_minus_1bit: std_logic_vector((n-2) downto 0);
signal monitor_all_0_1 : std_logic_vector((n-1) downto 0);
signal mode_previous: std_logic_vector( 2 downto 0 );

BEGIN

main_proc: PROCESS (clock, mode)

BEGIN

IF ( clockEVENT AND clock ='1' ) THEN
- rising edge of clock

IF ( reset ='1' OR mode_previous /= mode ) THEN
- sy. reset active high

case mode is
when "010" => -Walk 1

temp_out_minus_1bit <= ( others =>'0');
temp_out <='l"' & temp_out_minus_1bit;

159



when "100" => —-Count UP
temp_out <= (others =>'0");

when "110" => -ALL 0

temp_out <= (others =>'0");

monitor_all_0_1 <= (others =>'0";

--use a count-up counter to monitor the end of all O test
when "111" =>-ALL 1

temp_out <= (others =>'1");

monitor_all_0_1 <= (others =>'0");

--use a count-up counter to monitor the end of all 1 test

when others =>
temp_out <= (others =>'0");

end case;
mode_previous <= mode;

ELSIF ( advance ='1' ) THEN
- if advance signal high, progress pattern

case mode is

when "010" => --Walk 1
temp_out <="0' & temp_out((n-1) downto 1);
-- add a zero into right side of vector

when "100" => —-Count UP
temp_out <= temp_out + 1;

when "110" =>-ALL 0
temp_out <= temp_out;
monitor_all_0_1 <=monitor_all 0_1 +1;

when "111" =>-AlLL 1
temp_out <= temp_out;
monitor_all_0_1 <=monitor_all 0_1 +1;

when others => —-refresh
temp_out <= temp_out;

end case;
END IF;
END IF;

END PROCESS;

160



— detect when sequence is DONE

det_done: PROCESS(temp_out)

BEGIN
case mode is
when "010" => ~-Walk 1
done <= temp_out(0);
when "100" => —~Count UP
done <="'1";
FOR i IN temp_out'range loop
-- if any element is logic 0, counter is not done
IF temp_out(i) ='0' THEN
done <="'0";
END IF;
END LOOP;
when "110" =>--ALL 0
done <="'1";
FOR i IN monitor_all_0_1'range loop
-- if any element is logic 0, counter is not done
[F monitor_all 0_1(i) ='0' THEN
done <="0";
END IF;
END LOOP;
when "111" =>--ALL 1
done <="'1";
FOR i IN monitor_all_0_1'range loop
— if any element is logic 0, counter is not done
IF monitor_all 0_1(i) ='0' THEN
done <="'0";
END IF;
END LOOP;
when others => --refresh
doue <="'1";
end case;
END PROCESS;

-- determine the parity for the temp_out sequence
det_parity: PROCESS(temp_out)

variable temp_parity : std_logic;

BEGIN
temp_parity =='0';
FOR i IN temp_out'range loop

temp_parity == temp_parity XOR temp_out(i);
END LOOP;

odd_parity <= temp_parity;

161



END PROCESS;
output <= temp_out; --connect output to port

end behavioral;

162



- A N bit Register

-- Author : Jian Xu

-- Student [D : 0392076

- Date : Septemberi2, 2001
— File Name : registerN.vhd

-- Architecture  : RTL
-- Description  : The width of the shift register is determined by generic N

library [EEE;
use [EEE.std_logic_1164.all;

entity registerN is
generic(N : positive := 28);
port( clock  :instd_logic:
Load : in std_logic;
ShiftR :instd_logic;
shift_done : out std_logic;
Output :cutstd_logic_vector(N-1 downto 0));

end registerN;

-- structural implementation of the N-bit adder
architecture behavioural of registerN is

signal temp_out . std_logic_vector(N-1 downto 0);
BEGIN
PROCESS(clock, Load)

BEGIN
IF (Load ='1') THEN -- asy. loading
temp_out <= (others =>'1");
temp_out(n-1) <="0"; -- start sequence

ELSIF ( clockEVENT AND clock ='1" ) THEN -- rising edge of clock

IF (ShifiR ='1") THEN
temp_out <='1' & temp_out((n-1) downto 1); —~add a1 as the left
END IF;
END IF;
END PROCESS;

shift_done <= not temp_out(0);
Qutput <= temp_out;

END behavioural;

163



-- Control Path MODULE
— Author : Jian Xu
-- Student ID : 0392076

— Date : September 11, 2001

-- File Name : controller.vhd
-- Architecture : Behavioral

— Description  : Determines the control signals to pass to the datapath componet of the BIST controller

library ieee;
use ieece.std_logic_1164.all;

ENTITY controller is

port (
- Black Box Signals
Enable, Clk, Reset

: in std_logic;

Done, Pass_Fail : out std_logic;

-- Internal Signals

Shift_Done. TPG_Done, ORA_Equal
Shift_Load, Shift_Right. Advance_Sequence

TPG1_Mode_Select
TPG2_Mode_Select

end controller;

ARCHITECTURE behavioral OF controller IS

-- Declare a new type for the states
TYPE STATE_TYPE IS (

)
SIGNAL state: STATE_TYPE;

Waiting,
Reset_State,
First_Test,

Shiftl,
Incrementl,
Change_To_Test2,
Second_Test.
Increment2,
Change_To_Test3,
Third_Test,

Shift3,
Increment3,
Change _To_Test4,
Fourth_Test,
Shift4,
Increment4,
PASSED,
FAILED

164

: in std_logic;

: out std_logic;

: out std_logic_vector( 2 downto 0 );
: out std_logic_vector( 2 downto 0 )):



BEGIN

— Create a process that handles the state transitions
PROCESS (Clk, Enable, Reset)

BEGIN

IF ( Reset ='0' AND Enable ='1') THEN -- asy. reset, active low
state <= Reset_State;

ELSIF ( CIKEVENT AND Clk ='1' ) THEN
[F ( Enable ='1') THEN
CASE state IS

WHEN Waiting =>
state <= Waiting;

WHEN Reset_State =>
state <= First_Test;

WHEN First_Test =>
IF ( ORA_Equal ='0' ) THEN - state FAILED if column faiis
state <= FAILED;

ELSE
state <= Shiftl;
END IF;
WHEN Shift]l =>
IF ( ORA_Equal ='0' ) THEN -- state FAILED if column fails

state <= FAILED;
ELSIF ( Shift_Done ='0' ) THEN
state <= Shiftl;
ELSIF ( Shift Done ='1') THEN
state <= Increment!;
END [F;

WHEN Increment! =>
IF ( TPG_Done ='0' ) THEN
state <= Shiftl;
ELSIF ( TPG_Done ='1') THEN - test done, next test
state <= Change_To_Test2;
END IF;

WHEN Change_To_Test2 =>
state <= Second_Test;

WHEN Second_Test =>
IF (ORA_Equal ='0') THEN -- state FAILED if column fails
state <=FAILED;
ELSE

165



state <= Shifi2;

END IF;
WHEN Shift2 =>
[F (ORA_Equal ='0"' ) THEN -- state FAILED if column fails
state <= FAILED;

ELSIF ( Shift Done ='0" ) THEN
state <= Shift2;

ELSIF ( Shift_Done ='1' ) THEN
state <= [ncrement2;
END IF;

WHEN Increment2 =>
IF ( TPG_Done ='0' ) THEN
state <= Shift2;
ELSIF ( TPG_Done ='1') THEN -- test done, next test
state <= Change_To_Test3;
END IF;

WHEN Change To_Test3 =>
state <= Third_Test;

WHEN Third_Test =>
IF (ORA_Equal ='0") THEN - state FAILED if column fails
state <= FAILED;
ELSE
state <= Shift3;
END IF;

WHEN Shift3 =>

[F (ORA_Equal ='0' ) THEN -- state FAILED if column fails
state <= FAILED;

ELSIF ( Shift Done ='0"' ) THEN
state <= Shift3;

ELSIF ( Shift_Done ='l' ) THEN
state <= Increment3;

END IF;

WHEN Increment3 =>
IF ( TPG_Done ='0' ) THEN
state <= Shift3;
ELSIF ( TPG_Done ='1' ) THEN -- test done, next test
state <= Change To_Test4;
END IF;

WHEN Change_To_Test4 =>
state <= Fourth_Test;

WHEN Fourth_Test =>

IF (ORA_Equal='0')THEN  -- state FAILED if columm fails
state <= FAILED;

166



ELSE
state <= Shift4;
END [F;

WHEN Shift4 =>
IF ( ORA_Equal ='0' ) THEN — state FAILED if column fails
state <= FAILED;
ELSIF ( Shift_ Done ='0' ) THEN
state <= Shift4;
ELSIF ( Shift_Done ='1") THEN
state <= Increment4;
END IF;
WHEN Increment4 =>
[F ( TPG_Done ='0" ) THEN
state <= Shift4;
ELSIF ( TPG_Done ='1') THEN -- all the tests are passed
state <= PASSED;
END IF;

WHEN FAILED =>
state <= FAILED; -- hold resuits until reset is pushed

WHEN PASSED =>
state <= PASSED:; -- hold results until reset is pushed

END CASE;
ELSE --that is, IF ( Enable ='0")
state <= Reset_State;
END [F:
END IF:

END PROCESS;

-- Define the ourtputs based on what state the machine is in.
WTTH state SELECT

-- use modes for TPG1

TPG1_Mode_Select <= "100" WHEN Reset_State,
"100" WHEN First_Test,
"100" WHEN Incrementl,
"100" WHEN Shiftl,
"010" WHEN Change To_Test2,
"010" WHEN Second_Test,
"010" WHEN Increment2,
"010" WHEN Shift2,
"111" WHEN Change To_Test3,
"H1" WHEN Third_Test,
"1 WHEN Increment3,

167



"111" WHEN Shift3,

"110" WHEN Change To_Test4,
"110" WHEN Fourth_Test,
"110" WHEN Increment4,
"110" WHEN Shifi4,
000" WHEN others;
WITH state SELECT
— use modes for TPG2
TPG2_Mode_Select <= "100" WHEN Reset_State,
"100" WHEN First_Test,
"100" WHEN Incrementl,
"100" WHEN Shiftl,
"100" WHEN Change_To_Test2,
100" WHEN Second_Test,
"100" WHEN Increment2,
100" WHEN Shift2,
"100" WHEN Change_To_Test3,
"100" WHEN Third_Test,
100" WHEN Increment3,
"100" WHEN Shift3,
"100" WHEN Change_To_Test4,
"100" WHEN Fourth_Test,
"100" WHEN Incrementd,
"100" WHEN Shift4,
000" WHEN others;
WITH state SELECT
-- reset shifter when reset or next vector
Shift_Load <= 1 WHEN Reset_State,
1 WHEN Incrementl,
1 WHEN Increment2,
T WHEN Increment3,
0’ WHEN others;
WITH state SELECT
Shift_Right <= 1 WHEN Shiftl, -- walk-0 or walk-1
1 WHEN Shift2,
1 WHEN Shift3,
0 WHEN others;

168



WITH state SELECT

Advance_Sequence<=  'l' WHEN Incrementl,
1 WHEN Increment2,
T WHEN Increment3,
'0’ WHEN others;
WITH state SELECT
DONE <= T WHEN PASSED, -- DONE when PASSED
' WHEN FAILED, —~ DONE when FAILED
'0' WHEN others; -- NOT DONE any other time
WITH state SELECT
PASS_FAIL <= T WHEN PASSED, -- P/F =1 when PASSED
‘0’ WHEN others; - P/F =0 when FAILED or others
END behavioral;

169



— Package for Components for the BIST TC #1

-- Author : Jian Xu
— Student ID : 0392076
-- Date : September 11, 2001

-- File Name : package_comp.vhd
- Architecture :N/A
-- Description  : Package definitions for control path, counter, shifter

library icee;

use ieee.std_logic_1164.all;
use iece.std_logic_arith.all;

use iece.std_logic_unsigned.all;

package package_comp is

component controller is

port(
-- Black Box Signals
Enable, Clk, Reset : in std_logic;
Done, Pass_Fail : out std_logic;
-- Internal Signals
Shift_Done, TPG_Done, ORA_Equal : in std_logic;
Shift_Load, Shift_Right, Advance_Sequence : out std_logic;
TPG1_Mode_Select : out std_logic_vector( 2 downto 0 );
TPG2_Mode_Select : out std_logic_vector( 2 downto 0 ));

end component controller;
component registerN is
generic(N : positive := 28);
port( clock :instd_logic;
Load :in std_logic;
ShiftR  :instd_logic;
shift_done : out std_logic;
Output  :outstd_iogic_vector(N-1 downto 0));
end component registerN;
component gentpg

generic (n: positive := 8);

port( clock :instd_logic;

reset : in std_logic;

advance :in std_logic;

mode :in std_logic_vector(2 downto 0);
output - out std_logic_vector((n-1) downto 0);
odd_parity : out std_logic;

170



done : out std_logic);

end component;

end package package_comp;

171



-- The BIST for TC1

- Author : Jian Xu

— Student ID : 0392076

— Date : September 14, 2001
-- File Name : wutbist.vhd

-- Architecture  : structural
- Description  : Connects the control path, counter, shifter, and the MUX
package_comp

library ieee;

use iece.std_logic_1164.all;
use iece.std_logic_arith.all;

use ieee.std_logic_unsigned.all;
use work.package comp.all;

entity wutbist is
generic (BIT_SIZE1: positive

BIT_SIZE2: positive
COLUMNS: positive

nonon
9 I Co

port (Enable : in std_logic;

Clk :in std_logic;

Reset : in std_logic;

Done : out std_logic;

Pass_Fail : out std_logic;

ORA_Equal : in std_logic;

Parityl : out std_logic;

Column_Select :out std_logic_vector(COLUMNS-1 downto 0);

Output : out std_logic_vector(BIT_SIZE1+BIT_SIZE2-1 downto 0));

end entity wutbist;

architecture structural of wutbist is

signal gnd : std_logic;
signal sig_Shift Done : std_logic;
signal sig TPG_Done : std_logic;
signal sig_Shift Load : std_logic;
signal sig_Shift Right : std_logic;
signal sig_Advance : std_logic;
signal sig TPG1_Mode_Select : std_logic_vector( 2 downto 0 );
signal sig_ TPG2_Mode_Select : std_logic_vector( 2 downto 0);

signal sig TPG1_OQOutput : std_logic_vector(BIT_SIZE1-1 downto 0);

signal sig_ TPG2_Output : std_logic_vector(BIT_SIZE2-1 downto 0);
BEGIN

@d <= ror;

BIST_CONTROLLER : component controller

172



port map (

):

-—-EXTERNAL SIGNALS

Enable = Enable,
Ck => Clk,
Reset = Reset,
Done = Done,
Pass_Fail => Pass_Fail,
-—-INTERNAL SIGNALS

Shift_ Done => sig_Shift_Done,
TPG_Done => sig_ TPG_Done,
ORA_Equal => ORA_Equal,
Shift_ Load => sig_Shift_Load,
Shift_Right => sig_Shift_Right,
Advance_Sequence => sig_Advance,

TPG1_Mode_Select
TPG2_Mode_Select

BIST_TPGI! : component gentpg

generic map ( n => BIT_SIZE1 )

port map (

)

clock
reset
advance
mode
output
odd_parity
done

BIST_TPG2 : component gentpg

generic map ( n => BIT_SIZE2)

port map (

clock
reset
advance
mode
output

BIST_SHIFTER : component registerN

generic map ( N => COLUMNS )

port map (

clock
Load
ShiftR
shift done

=> sig_TPG1_Mode_Select,
=> sig_ TPG2_Mode_Select

=> C lk

= sig_Advance,

=> sig_ TPG1_Mode_Select,
=> sig_ TPG1_Output,

=> Parityl,

=> sig_ TPG_Done

=> Clh
=> sig_Advance,

=> sig_ TPG2_Mode_Select,
= sig_TPG2_Output

=> Clk,

=> sig_Shift Load,
= sig_Shift Right,
=> sig_Shift Done,

173



Output => Colummn_Select );
Outpuy(BIT_SIZE1+BIT_SIZE2-1 downto BIT_SIZE2) <=sig TPG1_Output;
Outpu(BIT_SIZE2-1 downto 0) <= sig_TPG2_Output;

end architecture structural;

174



