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Abstract

The equation of state for cold ultra-dense matter has puzzled astrophysi-

cists for decades. This is because the conditions of supra-nuclear density mat-

ter, such as those in neutron stars, are not terrestrially replicable. X-ray light

curves from accreting neutron stars have proven to be useful tools in studying

the neutron star equation of state. Theory predicts that the light curve from

a thermonuclear X-ray burst on a rapidly-rotating neutron star can be used to

determine the characteristics of the burst ignition spot and constrain the mass

and radius of the neutron star. We discuss the development of spherical and

oblate neutron star models that yield an X-ray light curve comparable to that

which would be observed. Using this simulation code with a genetic algorithm,

we disentangle the effects of various parameters on the light curve, showing

which parameter degeneracies will have the greatest impact on the observables.
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Chapter 1

Introduction

1.1 Neutron Stars

Neutron stars are the ultracompact remnants of moderately massive stars that

were initially ∼ 8 − 20 times the mass of our sun (M⊙). First theorized in 1933

by Baade and Zwicky [1], neutron stars were discovered by Hewish, Bell, et

al. in 1967 [2]. Neutron stars form in core-collapse supernovae. They have

masses on the order of 1M⊙, radii on the order of 10 km, internal temperatures

< 1MeV a few seconds after birth, and strong magnetic fields ranging from

∼ 107 to 1015G [3][4][5]. The acceleration due to gravity on the surface of a

neutron star is ∼ 1012ms−2 [5].

Initial calculations of theoretical neutron star models by Oppenheimer and

Volkoff in 1939 assumed a highly compressed ideal gas of free neutrons [6].

However, while neutron stars have approximately no net electric charge [1],

they cannot solely be a dense sea of pure neutrons, since this configuration

is very unstable. Modern observations and theories allow us to better predict

their physical composition. The outer crust of a neutron star is theoretically

composed of an iron Coulomb lattice [1], where highly ionized iron atoms share

electrons in a lattice structure and Coulomb forces are assumed to dominate

the interactions [5]. The inner crust is composed of densely packed neutron-
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rich elements like heavy iron, heavy nickel, and heavy krypton [7]. As we

move radially inward, densities increase to greater than neutron drip density,

∼ 4 × 1011 g cm−3, at which point it is energetically favourable for the neutrons

to leave their home nucleus and they “drip” off of the atoms [7]. Much of

the core of a neutron star is thought to consist of superfluid neutrons [8][9],

with minor amounts of superconducting protons and relativistic electrons [7].

The inner core is not well-understood, since it has a density greater than an

atomic nucleus, ∼ 1015 g cm−3 (nuclear density is ∼ 2.8×1014 g cm−3) [1][5]. There
are many theories about what this material is (e.g., quark matter, hyperons,

various particle condensates), but this active area of research in neutron star

physics has not yet yielded definitive answers [1].

As a first approximation, a neutron star is supported against gravitational

collapse by neutron degeneracy pressure, with further corrections given by the

strong nuclear force. The degeneracy pressure is a direct consequence of the

Heisenberg uncertainty principle. The compactness of a neutron star confines

the position of the neutrons, which causes the momentum of the neutrons to

have a larger uncertainty; this yields a pressure between the particles much

greater than the thermal pressure [7]. The equilibrium of pressure and grav-

ity that keeps the neutron star physically stable is referred to as hydrostatic

equilibrium.

1.1.1 Equation of State

The holy grail in neutron star research is to determine the equation of state for

neutron star matter. An equation of state is a way to quantitatively describe the

behaviour of matter in a given physical state. We commonly write equations

of state as a relation between pressure, density, and temperature, but since

the thermal energy of neutrons in a neutron star is below the Fermi energy,

∼ 30MeV, we can neglect the temperature [1]. Equations of state are known

for many types of matter, but not for cold supranuclear-density matter. For
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neutron star matter, different equations of state will allow for different sizes of

neutron stars. These so-called “soft” and “stiff” equations of state are relative.

Soft equations of state have a lower pressure at a given density, and tend to

give smaller neutron stars with a smaller maximum mass. Stiff equations of

state have a higher pressure at a given density, and tend to allow for larger

and more massive neutron stars. Additionally, rapid rotation (� 300Hz) can

allow for a more massive neutron star at a given radius, since the centrifugal

effects help to further support the neutron star structure against gravitational

collapse [4][10].

Obtaining constraints on the masses and radii of neutron stars narrows the

possible equations of state to describe ultra-dense nuclear matter in the inner

cores of neutron stars. We use neutron stars to learn about the ultra-dense

cold equation of state since this physics is not terrestrially replicable.

1.2 X-ray Binaries

A binary system consists of two stars gravitationally bound to each other in

orbit around a common center of mass. Binaries are considered X-ray binaries

when they are bright in the X-ray regime, due to the release of energy from

matter falling down in the gravitational potential well of a compact object (ac-

cretion). Of particular interest are X-ray binaries with a neutron star accretor.

We classify these binaries in terms of the mass of the companion as high mass

X-ray binaries (HMXBs) or low mass X-ray binaries (LMXBs) [3]. In HMXBs,

the companion is an O- or B-type star. Matter is transferred from the compan-

ion to the primary typically through stellar wind mass loss from the companion.

In LMXBs, the companion is typically less massive than the Sun. Here, matter

is transferred by the companion overflowing its Roche Lobe (volume of space

in which the companion is gravitationally dominant), at which point the over-

flowing matter falls towards the accretor [7]. Due to the angular momentum of
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the infalling matter, the accretor accumulates matter from the companion in a

disk about the accretor’s rotational equator. As accumulated matter orbits in

the accretion disk, it moves in closer to the accretor. Since material at smaller

disk radii makes more orbits per unit time than than material farther out in the

disk, there can be viscous heating between different rings of the accretion disk.

This heating causes the emission of X-ray radiation [3]. Therefore the presence

of X-ray emission informs us that the binary is undergoing active accretion. For

our purposes, emission from the accretion disk is background X-ray emission

coming from the system.

1.2.1 Accretion in Low Mass X-ray Binaries

In a LMXB, the neutron star accretes mass from the companion via Roche

Lobe overflow. Stable mass transfer happens onto the accretion disk on nu-

clear timescales (the time a nuclear supply lasts, ∼ 1010 M
M⊙

L⊙
L years) [11], how-

ever accretion onto the neutron star can occur in a stable or unstable regime.

We assume a simple Ghosh and Lamb accretion disk model, in which the disk

extends inward until approximately the co-rotation point [12], where the or-

biting material has the same rotational frequency as the neutron star’s spin

(and magnetic field). Here, material in the innermost part of the accretion

disk moves along the magnetic field lines onto the surface of the neutron star.

As the neutron star accumulates matter from the accretion disk, it gains the

angular momentum of this matter. Over time, this can spin up the neutron star

to millisecond spin periods [13][14]. These are referred to as “recycled” neutron

stars. We expect to see LMXBs in globular clusters such as 47 Tucanae, where

the stellar interaction rate is very high [15].
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1.2.2 Accreting Millisecond X-ray Pulsars

A pulsar is a rotating neutron star that typically emits in the radio regime.

The regular pulsed emission pattern is caused by observing the emitting region

as it faces towards and away from the observer during a rotation. Two types of

pulsars are known: radio pulsars, in which the emission is powered by rotation,

and X-ray pulsars, which are powered by accretion.

Accreting millisecond X-ray pulsars are rapidly spinning accretion-powered

pulsars with spin periods of a few milliseconds. Their pulsed X-ray emission

originates from material slamming onto the surface of the neutron star during

regular accretion and warming the surface so that it emits blackbody radia-

tion. Then, as the pulsar rotates, it gives periodic oscillations in brightness as

the emitting region faces towards and away from the observer. The first known

accreting millisecond X-ray pulsar, SAX J1808.4−3658 (hereafter, SAX J1808),

was observed by Wijnands and van der Klis in 1998 [13]. Accreting millisecond

X-ray pulsars are thought to be the missing link between LMXBs and mil-

lisecond radio pulsars. Papitto et al. 2013 [16] have recently observed a known

millisecond radio pulsar switching off and becoming an accreting millisecond

X-ray pulsar, suggesting that rapidly rotating pulsars can switch between these

two states on a timescale of a few years. It is believed that a millisecond pul-

sar will alternate between radio and X-ray states until its companion stops

transferring matter, at which point it becomes exclusively a millisecond ra-

dio pulsar. This new evidence strengthens the claim that accreting millisecond

X-ray pulsars are a missing link between LMXBs and millisecond radio pulsars.

Moreover, accreting millisecond X-ray pulsars are thought to have stronger

magnetic fields than regular neutron stars in LMXBs, ∼ 1010 − 1012G [17]. In

theory, this leads to accreted material funnelling onto the magnetic poles of the

neutron star, and strong magnetic fields over the poles could suspend matter

in an accretion column above the surface of the neutron star.

In addition to the regular X-ray emission, some of the phenomena these
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objects have are bigger, better, and more explosive: Type I X-ray bursts.

1.3 Type I X-ray Bursts

The accreted material building up on the surface of the neutron star stratifies

based on density. Once it reaches a critical density and temperature it ignites

unstable thermonuclear burning, and releases a large burst of X-rays [18]. These

localized thermonuclear X-ray bursts are categorized as Type I X-ray bursts.

Typically we expect to see helium and possibly hydrogen signatures in the burst

spectrum [19], since the neutron star is usually accreting from a main sequence

star or a white dwarf. Observed Type I X-ray bursts have peak luminosities

∼ 1038 erg s−1 and last a few seconds to minutes [17]. These X-ray bursts are

significantly brighter than the “background” X-ray emission from the accretion

disk.

The ignition and emission area on the surface of the neutron star is referred

to as the hotspot. It is presently unknown if material is only accreting at

the hotspot for these neutron stars with relatively low magnetic fields, or if

the hotspot is the only area where thermonuclear ignition and X-ray emission

occurs. Theories suggest two different surface hotspot models: one that ignites

nuclear burning at one point and spreads across the whole star, and another

that ignites at one point and begins to spread but remains limited to a smaller

area (referred to as a “persistent hotspot”) [18]. We will show models for the

second type of hotspot once they have established the persistent burning region,

but these models could be applied to one snapshot in time of the spreading

hotspot model, as long as the neutron star’s spin period is much less than the

time it takes for the burning to spread significantly. The persistent hotspot on

the surface of a rotating neutron star has been demonstrated to be an effective

model for Type I X-ray bursts from the source 4U 1636−536 [20].

The neutron star’s magnetic field might get buried in the accumulation of
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matter on the surface in systems that exhibit Type I X-ray bursts, which would

explain why the neutron stars in these systems have low inferred magnetic

fields (∼ 108–109G) compared to other neutron stars [21]. If magnetic fields are

strong enough, such as in accreting millisecond X-ray pulsars, accreted material

will accumulate at the magnetic poles, which likely would give two antipodal

hotspots, one at the north magnetic pole and another at the south magnetic

pole. While some accreting millisecond X-ray pulsars also exhibit Type I X-

ray bursts, not all Type I X-ray bursts come from accreting millisecond X-ray

pulsars.

1.3.1 Thermonuclear Burst Oscillations

In some Type I X-ray bursts we observe brightness oscillations whose frequency

strongly corresponds with the spin frequency of the neutron star; these are re-

ferred to as thermonuclear burst oscillations. Thermonuclear burst oscillations

are not detected in all Type I X-ray bursts, nor are they detected in every

Type I X-ray burst from sources that have exhibited thermonuclear burst os-

cillations in the past. Additionally, thermonuclear burst oscillations are not

detected during an entire Type I X-ray burst. Typically, burst oscillations

are seen in the rise and/or tail of the X-ray burst, and not during the peak

(e.g. see figures in Muno et al. 2002 [22] and Watts 2012 [18]). The amplitudes

of thermonuclear burst oscillations vary greatly during the X-ray burst, with

high amplitude oscillations found in the rise of the burst and lower amplitude

oscillations found in the tail [22][23]. Furthermore, only thermonuclear burst

oscillations from Type I X-ray bursts on accreting millisecond X-ray pulsars

have shown some harmonic content such as asymmetric pulse shapes; burst

oscillations from X-ray bursts on neutron stars without persistent pulsations

tend to have negligible harmonic contributions to the oscillation pulse shape

[22].

Most burst oscillations seen in the rise of the X-ray burst exhibit frequency
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drift, where the frequency of the oscillations increases by 1–3Hz towards the

known spin frequency of the neutron star [18][22]. Frequency drift is a common

complication in modelling burst oscillations in the rise of an X-ray burst, but

this thesis assumes a simplified burst oscillation model which does not address

these concerns.

There are presently 17 sources that exhibit thermonuclear burst oscillations

(see Watts 2012 [18] and references therein).

1.4 Light Curves

One of the strongest theories to explain thermonuclear burst oscillations is the

hotspot model, since the burst oscillation frequency approximately matches

the known frequency of the neutron star [18][23]. We expect that the hotspot

is not aligned with the rotation axis of the neutron star. This misalignment

gives way to the “lighthouse effect”, so that as the neutron star rotates, we see

varying amounts of photons from the X-ray burst at the hotspot. This gives rise

to observed periodic X-ray emission, or thermonuclear burst oscillations. Our

research focuses on simulating X-ray emission from hotspots in thermonuclear

burst oscillations, which this thesis will refer to as a light curve.

Since these X-rays originate from the surface of the neutron star, the light

curve contains information about the physical properties of the neutron star

itself. Modelling a light curve is referred to as “ray-tracing” the photon from

the surface of the neutron star out to an observer at infinity. By modelling light

curves and fitting them to observed data, we hope to constrain the masses and

radii of neutron stars.

1.4.1 History of the Method

In this section we review previous implementations of light curve ray-tracing

and fitting (of thermonuclear burst oscillations from Type I X-ray bursts and of
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persistent pulsations from accreting millisecond X-ray pulsars) in the literature.

The canonical paper by Pechenick et al. 1983 [24] is the first to report the

formalism for computing photon trajectories from a neutron star surface em-

bedded in a Schwarzschild spacetime (typically used to describe the curved

spacetime around a non-rotating black hole). This method accounts for gravi-

tational light bending and lensing of the strong gravitational field surrounding

the neutron star, but neglects frame dragging terms from a rotating spacetime

and rotational effects such as Doppler boosting. They assume that the emission

is only from the hotspot, and that there are no perturbations to the photons

once they are emitted from the neutron star’s surface. Since this includes as-

suming no magnetic field effects on the photon paths, this method is most

directly applicable to neutron stars with relatively weak magnetic fields, ∼ 107–
1012G [25]. Initially this method was to be used strictly for isotropic thermal

emission, but they include a rudimentary beaming pattern, where emission is

not isotropically emitted.

The two hotspot geometries shown by Pechenick et al. are for one polar cap

or two polar caps, and the computations for the bending angles we show in

Chapter 2 were introduced to the literature in this paper. The authors explore

various parameter geometries, showing their resultant light curves for different

emission set-ups. One of the key points demonstrated by this paper is that

eclipses in the light curve, in which the hotspot is not visible to the observer

even when accounting for light bending and so the observed flux is zero, are not

commonly expected. Additionally, the authors note that due to gravitational

light bending, “no point more than 2 or 3 km above the surface of a typical neu-

tron star is ever out of sight” [24]. This has important implications in column

models, where the emitting region is a column of material suspended above the

surface of the neutron star. However, the light curves that have been observed

from accreting millisecond X-ray pulsars are fairly simple and featureless, and

so they do not require accretion columns to get good fits [26][27].
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The photon trajectory ray-tracing mathematical approach is the basis or

inspiration for nearly all light curve methods seen in the literature. It has been

adapted to model a variety of emitting objects like anomalous X-ray pulsars,

neutron stars in HMXBs, emission of light near stellar mass black holes, or

observed data; object properties like two non-antipodal spots, various atmo-

spheres, global oscillation modes, or complicated hotspot shapes; and emission

mechanisms like inverse Compton scattering.

Understanding emission from isolated pulsars has benefitted from the Pechenick

et al. light curve formalism. Harding and Muslimov 1998 [28] model X-ray

light curves of the known isolated gamma ray pulsars Geminga, Vela, and PSR

0656+14 using different beaming models of thermal emission along the mag-

netic field lines. DeDeo et al. [29] re-create observed light curve shapes and

features seen in data from anomalous X-ray pulsar observations. As a final

example, Perna and Gotthelf 2008 [30] re-create anomalous X-ray pulsar data

with a double blackbody spectrum, appropriate for a warm outer ring and hot

inner cap emission area.

Emission from neutron stars in HMXBs is also a viable application of this

light curve modelling, typically using accretion columns instead of hotspot

caps. Kraus 2001 [31] apply a hollow accretion column model to Centaurus

X-3. Leahy 2004 [32] fits observed light curves from Hercules X-1 using an

accretion column model, with a fan-shaped beam emission pattern close to the

surface of the neutron star and a pencil-shaped beam emission pattern further

from the surface. Sasaki et al. 2010 [33] also model beam patterns to fit light

curves, and find that a single emission region is the best fit for EXO 2030+375.

Annala and Poutanen 2010 [34] find that using a pencil-shaped beam emission

pattern, the majority of slowly rotating X-ray pulsars in HMXBs likely have

accretion onto a small spot at the magnetic poles. As a final example, Caballero

et al. 2011 [35] fit observations of A 0535+26 with two non-antipodal hot spots

that each have a hollow accretion column and a surrounding scattering “halo”
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region.

Furthermore, the light curve computation method outlined by Pechenick et

al. sets the foundation for modelling emission from outside the event horizon of

black holes. Psaltis and Johannsen 2012 [36] adapt the method to use a Kerr

metric for stellar mass black holes, and Chan et al. 2013 [37] introduce GRay,

a massive parallel GPU-based integrator that traces the trajectories of photons

around Kerr black holes.

The Pechenick et al. ray-tracing method has been a competent model of

observed data of persistent X-ray emission from accreting millisecond X-ray

pulsars. Nath et al. 2002 [38] fit models of two known accreting millisecond

X-ray pulsars with Type I X-ray bursts, 4U 1636−536 and 4U 1728−34, us-
ing a Schwarzschild metric and electron scattering atmosphere but neglecting

Doppler effects. Morsink and Leahy 2011 [27] fit data from SAX J1808 from

six different epochs of emission, under the assumption that the mass and ra-

dius of the neutron star are constant from one epoch to the next. As a final

example, Lo et al. 2013 [39] use a Schwarzschild metric with Doppler effects

(we refer to this as the “Schwarzschild+Doppler” method) and test out a fit-

ting approach using a Markov chain Monte Carlo algorithm (discussed in more

detail in Section 4.3.1).

We can also use this method to explore what the light curve would look like

from two non-antipodal hotspots, as if from a neutron star with off-center mag-

netic poles. Weinberg et al. 2001 [40] model emission from two non-antipodal

hotspots resulting in asymmetric light curves. Bogdanov et al. 2007 [41] (revis-

ited in Bogdanov 2013 [42]) explain the thermal emission from PSR J043–4715

with an off-center magnetic dipole causing two non-antipodal emitting regions.

The effects of various atmospheres on the shape of the light curve is fairly

well-documented in the literature as a continuation on the Pechenick et al. for-

malism. Meszaros and Riffert 1988 [43] model cap and column emission mod-

els with photon propagation via radiative transfer in an atmosphere and then
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standard Schwarzschild spacetime photon propagation to the observer. Muno

et al. 2003 [44] fit light curves from Type I X-ray bursts from 4U 1636−536
with a model assuming that photons emitted from the surface are scattered

by a hot corona of electrons before reaching the observer, and find that this

“graybody”-type atmosphere is more likely than pure thermal emission. Bhat-

tacharyya et al. 2005 [45] fit asymmetric Type I X-ray burst light curves from

XTE J1848−338 with a Kerr metric and Doppler effects, and find that the

photons emitted at the surface experience Thomson scattering in the accreted

layers on top of the emission site as they travel to the observer. Ho 2007 [46] ex-

plores the effects a magnetic hydrogen atmosphere would have on emission from

two antipodal hot spots at the magnetic poles. As a final example, Gotthelf

et al. 2010 [47] model double blackbody emission from two antipodal hotspots

on Puppis A and place constraints on the magnetic field strength and system

geometry.

Global oscillation modes, small physical oscillations of spherical harmonics

of the neutron star matter, are thought to possibly play a role in neutron star

X-ray burst emission patterns. Strohmayer 1992 [48] models the anisotropic

beaming from large polar caps on a slowly rotating neutron star with global os-

cillation modes. Lee and Strohmayer 2005 [49] calculate theoretical light curves

produced by different oscillation modes propagating in a fluid ocean along the

equator of a neutron star (not from hotspots), using a Schwarzschild+Doppler

method. As a final example, Numata and Lee 2010 [50] compute light curves

as would be produced from a hotspot on a rapidly rotating neutron star if the

hotspot is perturbed by certain oscillation mode waves.

Methods of photon propagation have also been coupled to other codes to

model complicated hotspot shapes and how the resulting light curve would ap-

pear. Kulkarni and Romanova 2005 [51] use a pseudo-Newtonian+Doppler pho-

ton propagation method in combination with 3-dimensional magneto-hydro-

dynamic simulations of accretion onto a neutron star surface, and predict real-
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istic hotspot shapes.

Another emission effect typically unaccounted for is inverse-Compton scat-

tering, in which photons scatter off of energetic electrons to higher frequencies

[52]. Viironen and Poutanen 2004 [53] model emission from two antipodal

hotspots from accreting millisecond X-ray pulsars and Type I X-ray bursts,

looking at how inverse-Compton scattering off a hot electron cloud above the

hotspot would affect the spectral profile of initially thermal emission.

We now discuss some key adaptations to the Pechenick et al. methodology

which set the stage for our work.

The basis of our particular technique first appeared in Miller and Lamb

1998 [54]. This uses the Schwarzschild photon propagation seen in [24], and

also accounts for the effects of gravitational redshift and Doppler boosting

of rapid rotation on the observed light curve. Their sample models have a

neutron star spin frequency of 600Hz, for which the rotational Doppler effects

are nontrivial. As in [24], the authors use a point-like hotspot cap geometry

to model light curves for one or two hotspots. The motivation for developing

the Schwarzschild+Doppler model is to analyze brightness oscillations in the

tails of Type I X-ray bursts, which can be seen in the light curves from rapidly

rotating neutron stars. The goal of the authors in this paper is to determine the

largest possible amplitude of oscillation for a given neutron star compactness.

Our method is most directly based off Poutanen and Gierlinski 2003 [55].

They use the Schwarzschild+Doppler model from [54], but replace the full

ray-tracing computation with the Beloborodov approximation for calculating

the photon’s trajectory (shown in equation (2.2.6)) [56]. Additionally, they

expand the method’s applicability to include a non-trivially-sized hotspot and

an inverse-Compton scattering region above the hotspot on the surface. The

authors fit observed light curves from SAX J1808 to constrain the parameters of

the neutron star and emission geometry. Their fitting procedure is not explicitly

defined, but they are the first paper that uses a method similar to ours to fit a
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model to an observed light curve to constrain neutron star parameters. From

their best fit models the authors are able to constrain the neutron star radius

and observer inclination angle of SAX J1808.

Cadeau et al. 2005 [57] explain the importance of computing photon paths

with the full ray-tracing integral versus the Beloborodov approximation, and of

accounting for time delays between photon emission and detection for rapidly

rotating neutron stars. This is the first paper in the literature that outlines the

necessity of accounting for time delay effects. The authors compare the output

of light curve models with and without time delay, concluding that neglecting

time delays can moderately increase the errors for inferred parameters. Time

delay is explained in further detail in Section 2.3.

Cadeau et al. 2007 [58] outline the need for an oblate neutron star shape,

particularly for rapidly rotating neutron stars (∼ 600Hz), using the formalism

from [24][54][55]. The oblate neutron star model includes centrifugal effects

from rapid rotation, which yields a neutron star with a larger radius at its

equator than along the spin axis. Note that oblateness is directly caused by a

high spin frequency. All previous models discussed assume a spherical neutron

star shape, but the authors show that this is not as realistic an approximation

when compared to numerically solving the correct metric in equation (2.1.1).

Furthermore, they demonstrate that the difference between a spherical neutron

star in a Kerr metric (which accounts for frame dragging) and spherical neutron

star in a Schwarzschild metric is not nearly as drastic as the difference between

spherical neutron star models and oblate neutron star models. This paper

discusses the geometry of the oblate formalism and how one could constrain

the radius of a neutron star based on the amount of Doppler boosting seen in the

light curve. The authors conclude that a Schwarzschild+Doppler model with

an oblate neutron star shape is a more reasonable approximation for rapidly

rotating neutron stars than the spherical shape.

The full exposition of the oblate Schwarzschild+Doppler formalism appears
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in Morsink et al. 2007 [59]. This work is motivated by Cadeau et al. 2007 [58],

based on Pechenick et al. 1983 [24], Miller and Lamb 1998 [54], and Pouta-

nen and Gierlinski 2003 [55]. Here the authors lay out the mathematical de-

tails for photon emission from a rapidly rotating oblate spheroid embedded in

Schwarzschild spacetime, accounting for time delay effects. Using point-like

spots, they have two oblate models: one for neutron and hybrid quark stars,

and another for colour-flavour locked quark stars. In addition, the authors

show how the effects of oblateness can be conflated with Doppler effects for

some system geometries.

Using the spherical Schwarzschild+Doppler approach, Lamb et al. 2009 [60]

re-create the very low pulse amplitudes seen in accretion powered emission from

accreting millisecond X-ray pulsars. The authors discuss a model for a hotspot

that moves in latitude and longitude on the emission timescale, as well a hotspot

that moves on longer time scales. The emission regions modelled here are very

close to the rotational axes. It is thought that the spin up of the neutron star

to ∼ 400Hz causes the magnetic poles to move close to the rotational axes

[60]. While not explicitly fitting to data, the authors discuss how different

parameters (hotspot size, emission angle, and inclination angle) can affect the

light curve, showing that many different combinations of parameters can give

the desired low pulse amplitude. This is one of the first extensive discussions

of parameter degeneracies in the literature that uses models and methods very

similar to ours.

The most recent application of the oblate “Schwarzchild+Doppler” formal-

ism is in Leahy et al. 2011 [26]. The authors accommodate inverse-Compton

emission as well as the standard blackbody emission for the observed flux in

different energy bands from an accreting millisecond X-ray pulsar, noting that

inverse-Compton scattering only affects higher energy bands. With this, they

are able to fit the observed time-independent spectrum as well as the periodic

light curve. Their model for point-like hot spots has an anisotropy parameter
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to allow beam shapes from inverse-Compton scattering and an additional pho-

ton scattering region between the observer and the neutron star. The authors

use this model to constrain the parameters of XTE J1807−294, fitting with the

Levenberg-Marquardt algorithm (discussed in detail in Section 4.3.2).

1.5 X-ray Timing Telescopes

Since we are looking at phenomena that are happening on millisecond timescales,

and since Type-I X-ray bursts emit in the X-ray regime (as the name sug-

gests), we require a space-based X-ray timing telescope with sub-millisecond

timing resolution for observations. Four relevant satellites are the former NASA

mission RXTE, the future Indian Space Research Organization mission AS-

TROSAT, the future NASA mission NICER, and the proposed ESA mission

LOFT.

1.5.1 Rossi X-ray Timing Explorer

The Rossi X-ray Timing Explorer, RXTE, is a former NASA X-ray timing

satellite. It was launched into low-Earth circular orbit on December 30, 1995,

and was decommissioned on January 5, 2012 [61]. The Proportional Counter

Array (PCA), comprised of five proportional photon counters, was the most

applicable instrument to our research. It had a time resolution of 1µs, an

effective area of 0.65m2 at 6 keV, and a spectral resolution of 1 keV. The key

sensitivity range was 2–25 keV, but extended up to 60 keV [62].

Much of what is known about Type I X-ray bursts and other short-timescale

phenomena on compact objects comes from observations made with RXTE

[25][63][64][65].
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1.5.2 ASTROSAT

ASTROSAT is an Indian Space Research Organisation (ISRO) multi-wavelength

observing mission with three instruments for X-ray observing. Additionally,

it will feature a wide-field all sky monitor and two optical-to-UV-band tele-

scopes [66]. Currently the projected launch date is aimed for 2014.

The Large Area Xenon Proportional Counter will be best suited to our

research. It will have a timing resolution of 10µs, an effective area of 0.6m2,

a spectral resolution of 9% at 22 keV, and a sensitivity range of 3–80 keV [66].

Note that ASTROSAT will have a higher sensitivity than RXTE at energies

> 15 keV.

1.5.3 Neutron star Interior Composition ExploreR

NICER, the Neutron star Interior Composition ExploreR, is a recently ap-

proved NASA X-ray telescope slated for launch in 2016 [67]. It will be at-

tached to the International Space Station. The instrument will observe in the

0.2–12 keV X-ray band with a time resolution of 0.3µs, an effective area of

0.06m2 at 10 keV, and a spectral resolution of 0.137 keV [67]. This small, spe-

cialized instrument will allow for further observations of short-timescale X-ray

phenomena when it is launched in late 2016 [67].

1.5.4 Large Observatory For x-ray Timing

LOFT, the Large Observatory For x-ray Timing, is a proposed European Space

Agency (ESA) X-ray timing satellite mission as a part of their Cosmic Vision

program, addressing the topic of “matter under extreme conditions” [68]. This

medium-sized mission candidate is currently in the assessment phase along with

four other candidates, and in a few years one of them will be chosen to launch

in about 2022. LOFT would be a next-generation X-ray timing mission to

expand on the science that was made possible by RXTE.
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The two scientific components of LOFT are the Large Area Detector (LAD)

and the Wide-Field Monitor (WFM). The LAD is a collimated (pointable) in-

strument with an expected effective area of 12m2 in the 2–10 keV energy range.

Its projected time resolution is 10µs, its spectral resolution is 0.26 keV, and its

key sensitivity range is 2–30 keV with sensitivity extending to 50 keV [68]. The

WFM is intended for source monitoring and detection of interesting intensity

and spectral states for various burst sources. It has a 3.95 sr field of view,

6 arcmin angular resolution, and 2mCrab sensitivity (at 5σ after 50 ks) [68].

The two main science goals of the LOFT team are to determine if matter

orbiting close to the event horizon of a black hole follows the predictions of

general relativity, and to constrain the equation of state of ultradense matter

in neutron stars. The research in this thesis is contributing to the dense matter

group in placing constraints on the masses and radii of neutron stars.

1.6 Organization of this Thesis

Chapter 2 covers the mathematical theory involved in the research, such as the

spacetime metric used, gravitational light bending effects, the time of arrival

computation, Doppler effects, blackbody radiation, and the oblate neutron star

approximation. Chapter 3 discusses the light curve simulation code and our

additions to it. Chapter 4 discusses what a genetic algorithm is and how we fit

light curves with the Ferret genetic algorithm. Chapter 5 discusses the param-

eter degeneracies we encounter and how to account for them. Chapter 6 shows

the results from fitting light curves with a genetic algorithm and how these lie

in the parameter space when accounting for parameter degeneracies. Chapter

7 is the conclusion and discusses future research possibilities. Appendix A has

a sample temperature mesh over a large hotspot.
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Chapter 2

Mathematical Theory

In this chapter we discuss the mathematical and physical theory behind the ob-

served phenomena. The first part of the chapter covers the complete spacetime

metric and the Schwarzschild approximation. The second part of the chapter

includes equations relating to the gravitational light bending of photon emis-

sion from the surface of a neutron star. The third part of the chapter covers

the time of arrival of emitted photons reaching an observer at infinity. The

fourth part of the chapter contains equations relating to the Doppler boosting

of emission due to the rapid rotation of the neutron star. The fifth part of

the chapter covers equations relating to the blackbody emission from the neu-

tron star, as well as the pulse amplitude measured by an observer at infinity.

The sixth part of the chapter discusses the adaptations required for an oblate

neutron star.

All radii are measured from the center of the neutron star to the surface at

the hotspot unless otherwise stated. The subscript “em” means the parameter

is in the neutron star’s rest frame, the subscript “s” means the parameter is

for a static neutron star measured by an observer at infinity, and the subscript

“obs” means the parameter accounts for Doppler boosting as observed by an

observer at infinity. The equations in this chapter are from Poutanen and

Gierlinski 2003 [55] and Morsink et al. 2007 [59]. We only include the key
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equations.

Most values in this chapter use gravitational units, where G = c = 1. For

example, to transform mass and radius from SI to gravitational units, we use

2GM

Rc2
= 2Mgr

Rgr
, (2.0.1)

however we commonly drop the subscript “gr” when writing equations, even

when using gravitational units. The gravitational unit for angles is radians. If

a value is intended to have standard units, it will be explicitly stated as such.

2.1 Metric and Approximation

The stationary axisymmetric metric for a rotating neutron star is [58][69]

ds2 = −eγ+Ξ dt2 + e2α �dr̄2 + r̄2 dθ2� + eγ−Ξr̄2 sin2 θ (dφ − ω dt)2 , (2.1.1)

where γ, Ξ, α, and ω are metric potentials, or descriptors of the gravitational

field. These depend on the coordinates r̄ and θ. The coordinates are defined

as follows: ds is a spacetime interval, t is the time coordinate, r̄ is a modified

radial coordinate, θ is the polar angular coordinate, and φ is the azimuthal

angular coordinate. The isotropic Schwarzschild radius, r̄, is used here since

equation (2.1.1) does not limit to the Schwarzschild metric coordinate system

for a non-rotating star. This r̄ and the typical radial coordinate r are related

by the coordinate transform r = r̄ [1 +M�(2r̄)]2 (for reference, 2πr is the cir-

cumference of circle, while 2πr̄ is not) [70].

This metric requires a numerical approximation [10]. As shown in Cadeau

et al. 2007 [58] we can instead approximate this using the simpler Schwarzschild

metric (typically used to model a static, spherically symmetric black hole) and
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accounting for the rotational Doppler effects. The Schwarzschild metric is [70]

ds2 = −�1 − 2M

r
� dt2 + 1

�1 − 2M
r � dr

2 + r2 dθ2 + r2 sin2 θ dφ2 , (2.1.2)

where M is the mass of the neutron star, and the coordinates are the same as

in equation (2.1.1), but with the standard radial coordinate r. This metric is

preferable to the first because it can be solved exactly instead of numerically

approximated. However, the Schwarzschild metric has a coordinate singularity

at r = 2M , which lies inside the neutron star. Traditionally this is the location

of the event horizon of a black hole.

The spacetime inside a spherical star is given by the metric [70]

ds2 = −e2Φ dt2 + e2Λ dr2 + r2 dθ2 + r2 sin2 θ dφ2 , (2.1.3)

where Φ and Λ are gravitational field potentials as functions of r. We embed the

neutron star surface, with this metric inside, in a Schwarzschild spacetime. The

gravitational field potential Φ, which in the Newtonian limit is the Newtonian

gravitational potential [70], is defined by the relativistic equations of stellar

structure, [4]

dm

dr
= 4π r2 ρ , (2.1.4)

dP

dr
= −ρm

r2
�1 + P

ρ
��1 + 4πP r3

m
��1 − 2m

r
�−1 , (2.1.5)

dΦ

dr
= −1

ρ

dP

dr
�1 + P

ρ
�−1 , (2.1.6)

where ρ is density, P is pressure, r is the traditional radial coordinate, and m

is a function of r for the mass contained inside a spherical shell at r. These

interior equations are matched at the surface of the neutron star with the

Schwarzschild metric so that r = R, where R is the radius of the neutron

star, and m(r) = m(R) = M , where M is the mass of the neutron star. The
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Newtonian limit for equations (2.1.4), (2.1.5), and (2.1.6) takes P � ρ and

m� r.

In addition to approximating the exterior spacetime with a Schwarzschild

metric, we also account for Doppler effects of gravitational redshift and the

Lorentz boost from the rapidly rotating neutron star (discussed in section 2.4).

Together this mathematical framework comprises the Schwarzschild + Doppler

method [54][55].

2.2 Light Bending

The incredible density of a neutron star causes it to bend spacetime, requir-

ing the metric in the previous section. Bending spacetime produces a curved

geodesic, the shortest distance between two points, which in flat spacetime is

a straight line. Photons travel along geodesics, and so the path of a photon

is curved in the space time around neutron stars; this is referred to as “light

bending”. We will discuss the geometry of this and the equations needed to

account for this phenomenon.

The inclination angle, shown in Figure 2.1, is defined as the angle between

the rotation axis of the neutron star and the observer’s line of sight.

Figure 2.1: The inclination angle is the angle between the rotation axis of the
neutron star and the observer’s line of sight.
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The emission angle, θ, is measured at the center of the neutron star between

the radial vector at the rotation axis and the radial vector going through the

center of the emitting region, or “hotspot” (Figure 2.2). The angular radius of

the hotspot, ρ, is measured at the center of the neutron star between the radial

vector pointing to the center of the hotspot and the radial vector pointing to

the outer edge of the hotspot.

Figure 2.2: The emission angle, θ, is between the rotation axis of the neutron
star and the center of the hotspot. The hotspot’s angular radius, ρ, is measured
from the center of the hotspot to the outer edge of the hotspot.

The phase angle, φ, is measured in the equatorial around the star as it ro-

tates, such that φ ∶ 0−2π is one complete phase (Figure 2.3). Computationally,

one rotation of the star has n phase bins, and the flux values in a light curve

are computed once per phase bin.

Three key vectors (see Figure 2.4) are k, which points in the direction of

the observer located at infinity, l (that is, lower-case “L”), which points in the

initial photon direction, and r, which points radially outward from where the

photon was emitted. The zenith angle α is between the neutron star’s radial

vector (the zenith of the hotspot) and direction in which photon is emitted:

cosα = l ⋅ r . (2.2.1)
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Figure 2.3: Top-down view of a neutron star, with the rotation axis coming
out of the page at the center. The phase angle, φ, and normalized time, t,
are noted for four positions. The dotted line indicates the observer’s line of
sight; we have defined φ such that the observer always sits at φ = 0. The arrow
indicates the direction in which the neutron star is rotating. We notice that at
t = 0.25 the neutron star surface is moving radially away from the observer, and
at t = 0.75 the neutron star surface is moving radially towards the observer.
Since both phase angle and normalized time are cyclical parameters, φ = 0 = 2π
and t = 0 = 1.

The bending angle, ψ, between the zenith of the hotspot and the observer’s

line of sight, is defined by spherical trigonometry to be [55][59]

cosψ = k ⋅ r = cos i cos θ + sin i sin θ cosφ . (2.2.2)

We only calculate photons that end up at the observer, so all photons calculated

must move from l to k. In a flat spacetime, the photon is not able to bend,

which means that only the photons emitted in the direction of the observer will

reach the observer, and so ψ = α (as in Figure 2.5). Note that the vectors r,

k and l lie in the same plane, since the Schwarzschild metric requires a photon

to move in one plane. Due to this, l can be defined in terms of α, ψ, k, and r
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Figure 2.4: A close-up of a neutron star emitting a photon from a point-like
hotspot on its surface. The vector r points radially out of the neutron star
at the hotspot. The vector l points in the direction of the emission of the
photon. The vector k points in the direction of the observer located at infinity,
so that this vector and the observer’s line of sight (dotted line) are parallel. The
zenith angle α is between the radial vector r and the photon emission direction
l. The bending angle ψ is between the radial vector r and the direction of the
observer’s line of sight k.

such that [59]

l = 1

sinψ
(sinαk + sin (ψ − α) r) . (2.2.3)

These angles and vectors are shown together in Figure 2.4.

The bending angle ψ is computed using the full ray-tracing equation, inte-

grating from the surface of the star to the observer at infinity, by [24]

ψ = b � ∞
R

dr

r2
�1 − b2

r2
�1 − 2M

r
��−1�2 . (2.2.4)

This equation comes from solving the geodesic equations for photon orbits in

a Schwarzschild metric. The variable b is known as the impact parameter of a

photon (Figure 2.5).

As implied by Figure 2.5, in Newtonian gravity we would expect sinα = b�R.

In general relativity, the gravitational light bending effectively makes the neu-

tron star appear to have a larger radius R′ = R��1 − 2M�R. This gives the
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Figure 2.5: Shown in Newtonian gravity, with no light bending (for simplicity).
The photon impact parameter b, is the length of the solid line perpendicular
to the observer’s line of sight and the equator of the neutron star. Since this
is in Newtonian space, we have k = l, so the photon is emitted in the direction
of the observer. In addition, note that R, b, r, and k intersect at the photon
emission point on the hotspot on the surface of the neutron star.

correct relativistic relationship between α and b as [24]

sinα = b

R

�
1 − 2M

R
. (2.2.5)

A simpler approximation to the full bending angle integral (equation (2.2.4))

is the Beloborodov bending angle approximation [56],

1 − cosα = (1 − cosψ)�1 − 2M

R
� . (2.2.6)

This is only appropriate for small values of M
R and for photon emission close to

zenith, since the approximation is purely the Newtonian limit with a relativistic

correction factor. We find that while this is a commonly-made approximation

in the early literature, the computation of the ray-tracing integral is not too

computationally expensive. We thus elect to use the complete formalism to

achieve better precision.
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2.3 Time of Arrival

As the emitted photons travel from the neutron star’s surface to the observer

at infinity, an amount of coordinate time (that is, time as experienced by the

photon) has passed minus that experienced by the fiducial photon emitted with

b = α = 0. We compute this amount with the equation [59]

T = � ∞
R

1

1 − 2M
r

��(1 − b2

r2
�1 − 2M

r
��−1�2 − 1� dr . (2.3.1)

We use this equation to reconstruct the photon emission time, since two photons

emitted simultaneously but at different phases or impact parameters or local

emission angle or in a different initial direction will arrive at the observer at

different times [58]. The photons are time-binned relative to when they were

received, but this computation allows us to re-bin the photons with respect to

when they were emitted. In other words, this computation lines up the photon

emission bins and the photon detection bins.

2.4 Doppler Effects

An emitting source moving at a substantial fraction of the speed of light to-

wards the observer will have a bluer observed emission spectrum than the same

source in the rest frame. Conversely, if this same source is moving away from

the observer at a measurable fraction of the speed of light, the observer will

measure the spectrum to be redder than the source at rest. This blueshifting

and redshifting of emission spectra is first-order Doppler shifting.

Additionally we account for the transverse Doppler effect. This second-

order Doppler shifting arises from motion perpendicular to the line of sight

that is present in our system, causing changes in frequency and angles. Doppler

effects are required because the neutron stars we model are rotating so rapidly

that they can reach relativistic speeds on the surface, ∼ 1
10c. These Doppler
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effects, both first order and second order, have large effects on the emission

observed at infinity.

The full Doppler boost function, η, is

η =
√
1 − v2

1 − v cos ξ
, (2.4.1)

where the speed at the hotspot on the surface of the neutron star v as a fraction

of the speed of light is given by [55][59]

v = 2πν�R sin θ�
1 − 2M�R (2.4.2)

and ξ is the angle between the photon’s velocity vector and the photon’s initial

direction in the observer’s frame, given by [55]

cos ξ = −sinα sin i sinφ

sinψ
. (2.4.3)

Here, ν� is the neutron star spin frequency in Hz as measured by an observer at

infinity, and α, ψ, φ, i, and θ are as previously defined. The factor
�
1 − 2M�R

accounts for gravitational time dilation, so that the v calculated here is local,

since the ν� measured is at infinity.

The Doppler boost factor η is highly dependent on phase. It will show

redshifting at φ ∼ π�2 and blueshifting at φ ∼ 3π�2. It is well-understood that

Doppler boosting will cause an aberration in angle [71]. We show here how it

affects angles and solid angles in our geometry. The Doppler aberration of the

zenith angle α is [71]

cosαem = η cosαobs . (2.4.4)

The solid angle of the hotspot, as seen by an observer at a distance D if
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the star was not rotating, is given by [24][59]

dΩs = dSem

D2

1

1 − 2M�R cosα
d cosα

d cosψ
, (2.4.5)

where dSem is the surface area for a circular hotspot on a spherical neutron

star. This area is [72]

dSem = 2πR2 (1 − cosρ) , (2.4.6)

where ρ is the angular radius of the hotspot as previously defined. For a

rapidly rotating neutron star, the Doppler aberration modifies equation (2.4.5)

so that [73]

dΩobs = η dΩs (2.4.7)

is the total solid angle of the hotspot as seen by an observer at a distance D.

Note that as η and dΩs change with phase, so does dΩobs.

Since a neutron star has a large gravitational potential, the emitted photons

leaving that potential are somewhat redshifted, which is referred to as “grav-

itational redshift” to distinguish it from cosmological redshifting of emitting

sources at enormous distances. Gravitational redshift is given by

1 + z = (1 − 2M�R)−1�2 . (2.4.8)

Therefore light that is emitted at a frequency νem is observed at [59]

νobs = η

1 + z νem . (2.4.9)

The formula for Doppler-boosted intensity is [52][70]

Iobs = �νobs
νem
�3 Iem. (2.4.10)
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2.5 Blackbody Radiation

The observed flux is the intensity over the solid angle of emission, given by [59]

dFobs = Iobs dΩobs . (2.5.1)

This produces the total flux as measured by an observer at infinity

Fνobs = �
cosαem>0

η4(1 + z)3 Iem dΩs , (2.5.2)

which is integrated over all possible emitted angles. Three powers of η come

from the intensity transformation and the fourth comes from the solid angle

transformation.

Since we assume completely thermal emission from the hotspot, we compute

the flux as a blackbody. The bolometric blackbody flux of the hotspot in the

neutron star’s rest frame (i.e., non-relativistic) is

Fem = σT 4 . (2.5.3)

The monochromatic flux per phase bin i, in photons cm−2 s−1 keV−1, is given

by

Fmono, obs, i = 1

E
⋅ 2ΥdΩs, i η4i
c2 h3 (1 + z)3 ⋅

�E (1 + z)�η�3 × 109
eE (1+z) �η T − 1 (2.5.4)

where E is the monochromatic energy in keV as observed by an observer at

infinity and T is the temperature of the hotspot in keV. The surface area of

the hotspot, dΩs, i, is defined in equation (2.4.5) per phase bin. The graybody

factor, Υ, is set to 1 for blackbody, and is explained in section 3.1.2. The

redshift factor, 1+z, is given in equation (2.4.8). The Doppler boost factor, ηi,

is defined in equation (2.4.1) per phase bin.

Integrating over all wavelengths, the bolometric flux per phase bin, in pho-
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ton count units (photons cm−2 s−1):

Fbolo, obs, i = ΥdΩs, i η4i(1 + z)3 ⋅ 2 × 10
9 π T 3

c2 h2
⋅ 2.404 , (2.5.5)

where the last term comes from evaluating a units-modified version of Bradt

equation (6.17) [52] using a Riemann zeta function.

2.6 Oblate Approximation

An oblate neutron star is fatter around the middle than over the top, so that

the radius at the equator is greater than the radius along the spin axis. Oblate-

ness is an effect of centrifugal forces from rapid rotation, where the difference

between light curves from spherical and oblate neutron stars becomes distin-

guishable at ∼ 350Hz, and is appreciable at � 600Hz.
The formalism for dealing with an oblate neutron star model is in Morsink

et al. 2007 [59]. For most cases in this thesis we use the spherical model but

the light curve simulation code incredibly easily adopts the oblate shape. We

use an oblate shape for Cases 6 and 7 in Chapter 6.

One of the key differences between an oblate shape and a spherical shape

is that for an oblate neutron star, the normal vector from the surface and the

radial vector from the surface are not the same. So we introduce an angle β,

the oblate zenith angle, which is defined as

cosβ = l ⋅ n (2.6.1)

where l is the direction in which the photon is emitted, and n is the normal

vector to the surface at the hotspot. The full exposition can be found in [59].

The mathematics shown in this chapter provide the structure for the light

curve simulation code shown in the next chapter.
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Chapter 3

Light Curve Simulation Code

In this chapter we tackle the “forward problem”: we know all the parameters of

the neutron star and hotspot, and create the corresponding light curve. This

is accomplished using Spot, a light curve simulation code. With the input

parameters, Spot computes the flux in phase bins over one rotation of the

neutron star. We then output the flux into a table consisting of the normalized

phase, bolometric flux, monochromatic flux at 2 keV, a low energy band flux,

and a high energy band flux.

The first part of the chapter discusses hotspot parameters used by the code.

The second part of the chapter explains how the code handles non-trivially-

sized hotspots. The third part of the chapter discusses the calculation of flux

observed in discrete energy bands. The fourth part of the chapter includes how

the code was expanded to allow for differently shaped hotspots. The fifth part

of the chapter accounts for a non-zero background temperature on the surface

of a neutron star during an X-ray burst. The sixth part of the chapter shows the

light curves of two antipodal hotspots viewed from different inclination angles.

The seventh part of the chapter discusses how the code handles hotspots that

cover the rotation axis.

The research in this chapter is a continuation of the Spot code written

by C. Cadeau and S. Morsink [58][59]. Sections 3.2–3.6 are novel research
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completed for this thesis.

For all equations shown, we assume G = c = 1.

3.1 Hotspot Parameters

The parameters used to describe a neutron star and the emitting hotspot can

be separated into two categories, essential and additional. The essential pa-

rameters are required for a neutron star model; the additional parameters are

optional, with default values or settings to be used unless otherwise specified.

Here we explain all parameters used by the code.

3.1.1 Essential Parameters

The mass, M , is the total mass of the neutron star. When interfacing with the

user, the code uses values normalized to the mass of the Sun, with units M⊙.
Our nominal value is 1.6 M⊙.

The radius of the neutron star, R, is measured from the center of the neutron

star to the surface at the center of the hotspot, in the rest frame of the neutron

star. For spherical neutron stars, this is the same as the radius as measured at

the equator, but for oblate neutron stars this is an important distinction. Our

nominal value is 12 km.

The spin frequency of the neutron star, ν�, is the measure of how rapidly

the neutron star is rotating about its rotational axis, as observed by an inertial

observer at infinity. Since spin frequency can affect the mass and radius values

predicted by an equation of state [10], it is very important to account for this.

Our nominal value is 581Hz, which is the observed spin frequency of 4U 1636–

536, a known thermonuclear burst oscillation source.

The inclination angle, i, shown in Figure 2.1, is defined as the angle between

the rotation axis of the neutron star and the observer’s line of sight. In Figure

3.1 we observe how changing the inclination angle affects the light curve. All
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Figure 3.1: Light curves for a spherical neutron star with M = 1.6 M⊙,
R = 12km, varying inclination angle, θ = 40○, ρ = 6○, and ν� = 581Hz. The
key indicates the inclination angle of each light curve. For example, the solid
orange curve is the light curve for a neutron star with the listed parameters
and an inclination angle of 90○.

parameters are fixed except for the inclination angle, which is allowed to range

from 0○ to 90○ in increments of 10○. Note that for an inclination angle of 0○,
the light curve is a straight line at a normalized flux of 1. This is because

at an inclination of 0○, an observer is looking straight down the pole of the

neutron star. In this scenario, the rotation of the neutron star does not cause

the hotspot to appear bigger or smaller; instead, the hotspot is either entirely

visible or, if the hotspot is located close to the opposite pole, never visible.

Since the same surface area of the hotspot is always visible, we receive the

same amount of photons from the hotspot at all points in one rotation period,

and thus we do not see any modulation in the light curve.

The emission angle, θ, is measured at the center of the neutron star between

the radial vector at the rotation axis and the radial vector going through the

center of the hotspot (Figure 2.2). In Figure 3.2 all parameters are fixed except

for the emission angle, which is allowed to range from 0○ to 90○ in increments
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Figure 3.2: Light curve for a spherical neutron star with M = 1.6 M⊙,
R = 12km, i = 40○, varying emission angle, ρ = 6○, and ν� = 581Hz. These are
the same parameters as in Figure 3.1, except we fix the inclination angle at 40○
and allow emission angle to vary. We notice that this plot looks like a carbon
copy of Figure 3.1. See discussion in text.

of 10○. As with inclination, an emission angle of 0○ gives a straight line at a

normalized flux of 1. This is because at an emission angle of 0○, the hotspot

sits symmetrically over the geographic pole. In this scenario, the rotation of

the neutron star does not cause the hotspot to move, and so its size is constant

over one phase. Since the same surface area of the hotspot is always visible,

we receive the same amount of photons from the hotspot at all points in one

rotation period, and thus we do not see any modulation in the light curve.

The plots in Figures 3.1 and 3.2 are identical. From this we infer that the

inclination angle and emission angle play very similar roles in the appearance

of a light curve, and can be considered degenerate parameters. This important

point will be explored further in Chapter 5.

The angular radius of the hotspot, ρ, is measured at the center of the

neutron star between the radial vector pointing to the center of the hotspot

and the radial vector pointing to the outer edge of the hotspot (Figure 2.2).
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For light curves shown in this and subsequent chapters we adapt ρ = 6○, unless
otherwise specified in the figure caption. Section 3.2 discusses how hotspot size

affects light curve.

The phase angle, φ, is not specified by the user, but is important in under-

standing the functionality of the code. The user can specify how many phase

bins they want the code to use when computing the flux for the light curve.

The code then divides this number into 2π (since 2π is one phase, or one rota-

tion of the neutron star) to get the amount of phase (in radians) represented

by each bin. Note that for all plots shown in this thesis we normalize the phase

period to 1. We use the “front” of each phase bin as the phase value for its

corresponding flux, such that normalized phase ranges from 0 to 1− phase bin.
The code computes the flux for each phase bin, and each phase bin is one data

point on the light curve. All light curves shown are actually a series of data

points that are plotted with lines for better visualization. All light curves begin

with the hotspot at φ = 0, and the observer has a constant position at φ = 0.
The Spot code has the capability to model two types of neutron stars, oblate

and spherical, as described in Chapter 2. The desired shape is set by the user

with a simple toggle switch.

We expanded the code’s flux-calculating ability to include computing the

flux over different energy bands. The upper and lower limits on these bands

can be specified by the user at the command line. See Section 3.3 for details.

3.1.2 Additional Parameters

Since there is a time delay from when the photons are emitted to when they

arrive at a detector, we re-bin the photons in accordance with their calculated

relative arrival time to re-construct the emitted light curve from the detected

light curve as described in Section 2.3 [59].

The user can specify an output directory and file name. This is the file

where the table of fluxes are written for the given neutron star parameters. We
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use a directory naming convention that makes the parameter values part of the

folder and file names, so that it is easy to classify and find the output tables.

We can set the distance from the observer to the neutron star. All models in

this thesis use a distance of 6 kpc. Since changing the distance will only affect

the solid angle of the spot dΩobs, and we normalize the flux to 1, changing the

distance does not affect the shape of the light curve.

The user can toggle the beaming model, either isotropic or graybody. The

isotropic model assumes that photons emitted at all zenith angles α (equation

(2.2.1)) travel through the same amount of atmosphere and thus have the

same opacity. The graybody model is an inefficiently emitting limb-darkening

atmosphere (independent of wavelength) such that photons emitted close to

the normal to the surface travel through a less opaque total atmosphere, and

photons emitted close to tangent to the surface travel through a more opaque

total atmosphere [52]. This makes photon emission perpendicular to the surface

brighter than photon emission tangent to the surface. Our code uses a Hopf

function to approximate the graybody [74]. We typically use isotropic flux, but

two cases in Chapter 6 have a graybody flux.

The user can designate a data file to compare with the model parameters

they specify. The code computes the χ2 fit to compare how well the specified

light curve model fits the data using equation (4.0.1). This function is a crucial

aspect of Chapters 4, 5, and 6.

A phase shift is used when comparing a model with data. This value shifts

the light curve in the x-direction. A light curve can “start” at any point in

the phase, so this parameter lines up our model with the data so that they

are in phase for direct comparison. Since we use a phase normalized to 1, the

phase shift is also normalized. We use a phase shift of 0 for all simulated data

in this thesis. Note that this parameter is circular in the range 0–1, so 0.99 is

effectively very close to 0.00.

The user is able to set a toggle flag to normalize the flux. The code computes
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the flux in photon count units (photons cm−2 s−1), but we typically normalize

the flux so that the mean value of the light curve is 1.

For a large hotspot, we can compute the flux for smaller surface area chunks

and sum the values per phase bin. This is practical for hotspots large enough

to span a range of emission and phase angles where evaluating the flux only

at the center of the hotspot is not a good approximation. See Section 3.2 for

details.

Another optional parameter is the kT temperature of the hotspot, in units

of keV, as measured in the neutron star’s rest frame. For all models presented in

this thesis we assume a hotspot temperature of 2 keV, consistent with Kuulkers

et al. 2003 [75], Bhattacharyya et al. 2005 [45], and Lo et al. 2013 [39]. We treat

the ambient surface temperature of the neutron star to be 0 keV as in Braje et

al. 2000 [76], since it is likely significantly cooler than the hotspot. We discuss

the background temperature in further detail in section 3.5. The k in kT is

dropped in later references to temperature, but it is implied.

We can input a temperature mesh to achieve different hotspot shapes. The

effects of this are addressed in Section 3.4. The standard hotspot shape, used

for all cases shown in this thesis, is a full circle.

Calculating the flux from two antipodal hotspots on the surface of the neu-

tron star can be toggled with a flag. See Section 3.6 for details. We are also

able to compute the flux from only the second antipodal hotspot by setting a

different flag. This is useful when debugging and for demonstrating how the top

hotspot and second hotspot add up to make the components of the two-hotspot

light curve.

3.2 Non-Trivially-Sized Hotspots

The parameter ρ, the angular radius of the hotspot, allows us to change the

size of the hotspot (Figure 2.2). However it was unclear if the code is as precise
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for big hotspots as it is for infinitesimal hotspots. To accurately accommodate

large hotspots we split them up into a mesh or grid overlaid on the hotspot

and compute the flux for each cell, summing the values within each phase bin.

All meshes consist of n × n cells covering the circular hotspot. We show an

example of a 4 × 4 mesh with approximate cell shapes in Figure 3.3. A 1 × 1
mesh is geometrically equivalent to treating the whole hotspot as one uniformly

emitting region.

The code steps through the mesh beginning with the top leftmost cell. The

code finds the local emission angle,

θk = θ − ρ + k ⋅ dθ + 0.5 ⋅ dθ , (3.2.1)

where k is the row index ranging from 0 to n−1 and dθ = 2ρ�n. Using spherical

trigonometry, the phase angle at the edge of the current row is

φedge = cos−1 �cosρ − cos θ cos θk
sin θ sin θk

� , (3.2.2)

assuming that the center of the hotspot is at φ = 0. We then compute the local

phase angle for that specific cell,

φj = −φedge + j ⋅ dφ + 0.5 ⋅ dφ , (3.2.3)

where j is the column index ranging from 0 to n − 1 and dφ = 2φedge�n. The

surface area for cell (k, j) of angular area dθ dφ is approximated as

dSem, (k, j) = R2 sin �θk�dθ dφ (3.2.4)

so that the total hotspot surface area is

dSem = n−1�
k=0

n−1�
j=0

dSem, (k, j) (3.2.5)
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instead of equation (2.4.6). This local θk, φj, and dSem, (k, j) are then used in

the equations in Chapter 2 to compute the flux of photons emitted from each

cell.

Figure 3.3: Sample 4 × 4 mesh over a hotspot. The hotspot is the outlined
circle, and this mesh splits up the hotspot into 16 total cells. Increments in φ
move in the x-direction, and increments in θ move in the y-direction. Within
Spot each cell is assigned the local θ and φ that are appropriately offset from
the hotspot’s overall θ and φ, and flux is calculated for each cell per phase bin.
Then, for each phase bin, we add up the flux from each cell to get the total
flux from the neutron star within each phase bin.

We model a smaller hotspot, with an angular radius of 6○, in Figure 3.4.

We notice that dividing the hotspot into a mesh and calculating fluxes for each

mesh bit individually does not affect the overall flux. Thus we do not find a

significant difference due to mesh finenesses. We then model a light curve from

a larger hotspot, with an angular radius of 20○, in Figure 3.5. While the 1 × 1
mesh light curve is distinct, there is no discernible difference between the light

curves using the finer meshes.

We find that the light curves of larger hotspots are less modulated (have

a smaller pulse amplitude) than the light curves of smaller hotspots. This is

because the larger hotspot is visible for a wider range of phase angles, and the

larger hotspot is more strongly lensed on the opposite side of the neutron star.

This gives a less noticeable difference between the bright and dim parts of the

phase, and the light curve is dim for a smaller fraction of the phase. Thus we

observe a smaller pulse amplitude. The differences between the light curves of

different meshes are much more pronounced for large hotspots. In Figures 3.4
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Figure 3.4: Light curves for a spherical neutron star with M = 1.5 M⊙,
R = 12km, i = 20○, θ = 40○, ρ = 6○, ν� = 581Hz, and varying mesh fine-
ness. We see that there is no noticeable difference between the light curves.

and 3.5, we notice that when the size of each cell is less than approximately 6○
in radius, there is no noticeable difference between the light curves.

Additionally, a finer hotspot mesh is computationally expensive compared

to the time of one full light curve computation for a 1 × 1 mesh. Therefore in

Chapter 6 we use a hotspot radius of 6○ with a 1 × 1 mesh.

3.3 Flux in Energy Bands

To improve the applicability of our code to observations from telescopes, we

expand its capabilities to include calculating flux for specific energy bands.

This will allow the code to fit data from telescopes and thus be more realistic,

since telescopes do not detect bolometric or monochromatic flux. The equation

41



 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

N
o

rm
al

iz
ed

 f
lu

x

Normalized phase

Bolometric flux

1 x 1 mesh
5 x 5 mesh

10 x 10 mesh
15 x 15 mesh
20 x 20 mesh

Figure 3.5: Same parameters as Figure 3.4 but with ρ = 20○, and accordingly
different meshes. We notice that the 1× 1 mesh light curve is distinct from the
rest.

for calculating flux in an energy band, in photon count units, is [52]

Fobs, i = 2T 3

c2h2

Υ η4i dΩi(1 + z)3 �
E2�T

E1�T
x2

ex − 1 dx . (3.3.1)

Our integration variable is x = E�T , so that dx = dE�T . The integration bounds

are from E1 = Elower
1+z
η to E2 = Eupper

1+z
η , where Eupper is the upper bound of

the energy band in keV as measured by an observer at infinity, and Elower is

the lower bound of the energy band in keV, also as measured by an observer

at infinity. T is the temperature of the hotspot in keV and Υ is the graybody

factor. The surface area of the hotspot, dΩi, is defined in equation (2.4.5) per

phase bin. The redshift factor, 1+ z, is given in equation (2.4.8). The Doppler

boost factor, ηi, is defined in equation (2.4.1) per phase bin. Since the Doppler

boost factor changes with the phase angle φ, the integration limits change with
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phase as well. Fi is the total flux as measured in each phase bin.

To calculate the flux in units of erg cm−2 s−1, we have

F = 2T 4

c2h3

Υ η4dΩ(1 + z)3 �
E2�T

E1�T
x3

ex − 1 dx , (3.3.2)

where all variables are the same as in equation (3.3.1).

As an example, we calculate what the flux for a neutron star model would

look like in energy bands detectable with past, current, and proposed X-ray

telescopes in Figure 3.6, assuming 100% flat detector efficiencies. These light

curves have the same parameters but are calculated for different energy bands.
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Figure 3.6: Light curves as they would appear in various telescope instrument
energy bands for a spherical neutron star with M = 1.6 M⊙, R = 12km, i = 10○,
θ = 60○, ρ = 6○, and ν� = 581Hz. Note that the RXTE and LOFT curves
effectively overlap. The energy band values are from [61][77] [78][79][80].

Since we see that the energy ranges 2–3 keV and 5–6 keV are covered by all
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of the different telescopes, we choose to use these as the two standard energy

bands computed by our code for all models in Chapter 6. These are shown in

Figure 3.7. While we cannot detect a true bolometric flux from a telescope, we

include it as a baseline for the code.
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Figure 3.7: Light curves for a spherical neutron star with M = 1.6 M⊙,
R = 12km, i = 10○, θ = 60○, ρ = 6○, and ν� = 581Hz. Each curve here
represents the light curve flux in the labeled energy range. The soft lag is
apparent (see discussion).

We notice that the higher energy band light curve peaks earlier in the phase

than the low energy band light curve. Furthermore, the low energy curve has a

smaller pulse amplitude than the high energy curve. These two effects are due

to the Doppler boosting of the photons. Since blueshifted Doppler boosting will

increase the energy of the photons, the photons experience a maximal blueshift

at the peak Doppler boost factor. This occurs at φnorm = 0.75, when the hotspot

is tangential to our line of sight and moving towards us. So more energetic

photons will peak at a normalized phase close to 0.75 and less energetic photons
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will peak at a later phase. However we also have to account for the solid angle

of the hotspot as apparent to the observer at infinity. This is much bigger at

phases past 0.75 than phases before, so the energetic photons will peak at a

phase close to but past φnorm ∼ 0.75 and less energetic photons will peak at a

phase after that. Thus, the peak flux for a detected energy of 6 keV occurs a

little earlier in the phase than for a detected energy of 3 keV. This is part of

what gives us the “soft lag” phenomena, in which the soft (low energy) X-ray

photons peak later in the phase than the hard (high energy) X-ray photons.

Furthermore, the larger the apparent solid angle of the hotspot, the higher

the flux is. The combination of these two factors is what gives us the smaller

amplitude for soft photons and larger amplitude for hard photons.

Note that the energy bands are for the energy of the photons as detected by

an observer at infinity, but the Planck function in Figure 3.8 is in the neutron

star’s rest frame from a uniformly emitting 2 keV hotspot. This blackbody

curve is Doppler boosted and gravitationally redshifted before arriving at the

observer. The redshift will cause the peak of the blackbody curve to shift

towards the lower energy end of the spectrum.

To demonstrate the versatility of the code, we test much higher energy

bands. In Figure 3.10, we use the ranges 10–50 keV and 50–100 keV. The

soft lag is very apparent. In addition, the high energy band curve is very

asymmetric. This is due to potent Doppler boosting. We also notice that this

light curve peaks in flux quite close to φnorm = 0.75, when the peak Doppler

boosting occurs. We hope these extended energy band capabilities prove that

our code will be useful when ASTROSAT launches next year.

3.4 Hotspot Shapes

We can change the shape of the hotspot, the region on the surface of the neutron

star that is emitting photons. Previous iterations of this code have assumed
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Figure 3.8: Planck function for a kT = 2 keV hotspot for the parameters of
Chapter 6 Case 1; energy in keV plotted against the specific emitted intensity
in units keV Hz−1 m−2 sr−1. The black solid curve is the blackbody spectrum of
the hotspot in the neutron star’s rest frame. The black dotted curve includes
gravitational redshift, and so would be measured by an observer at infinity
if the neutron star was minimally rotating. The red dashed curve includes
the maximal Doppler redshift of the rotating neutron star, as measured by an
observer at infinity. This occurs at φnorm = 0.25. The blue dashed curve includes
the maximal Doppler blueshift of the rotating neutron star, as measured by an
observer at infinity. This occurs at φnorm = 0.75. The black solid curve peaks
at 5.643 keV, the black dotted curve peaks at 4.393 keV, the red dashed curve
peaks at 4.236 keV, and the blue dashed curve peaks at 4.439 keV.
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Figure 3.9: A plot of the Doppler boost factor against normalized phase, in
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The Doppler boost factor, η, is calculated using equation (2.4.1), and is unitless.
An η > 1 means blueshifted, η < 1 means redshifted, and η = 1 means not
shifted. The solid angle of the hotspot as seen by an observer at infinity, dΩobs,
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as used in Figures 3.7 and 3.10. The Doppler boost factor curve is centered on∼ 0.986 due to the

√
1 − v2 factor in equation (2.4.1).
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Figure 3.10: Light curves for a spherical neutron star with the same parameters
as Figure 3.7. As in Figure 3.7, each curve represents the light curve flux in
the labeled energy range. The soft lag is very apparent here (see discussion).

that the hotspot is a solid circle on the surface of the neutron star. While this

is the simplest theoretical model (for a non-trivially-sized hotspot), there is no

reason to believe that the X-ray burst fuel will burn in an even circular pattern

(e.g., see MHD simulations by Kulkarni and Romanova 2005 [51]).

Instead of defining a constant temperature for the whole hotspot, we split

the hotspot up into physical bins (as discussed in Section 3.2) and define a

temperature for each specific bin. It is important that the number of hotspot

mesh bins specified in the command line matches the size of the temperature

mesh read in. In this temperature mesh, the mesh bins to be treated as back-

ground are assigned a temperature of 0 keV, and the mesh bins to be treated as

an emitting region are given a non-zero temperature (e.g., 2 keV). This mesh

physically maps to the hotspot, and defines the shape of the region that is

emitting photons. A sample temperature mesh is presented in the Appendix,
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Table A.1.

We choose to illustrate light curves due to hotspot shapes using two extreme

shapes, the superposition of those two shapes, and the full circular hotspot

(Figure 3.11). Differences in light curves are much more pronounced for large

hotspots with fine meshes. For small hotspots or larger hotspots with very

coarse meshes, the differences are minute to negligible.
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Figure 3.11: Light curves for a spherical neutron star with M = 1.5M⊙,
R = 12km, i = 20○, θ = 40○, ρ = 15○, 15 × 15 hotspot mesh, ν� = 581Hz,
and varying hotspot shape. Each curve represents the flux of one period for
a neutron star with a hotspot emitting in photons in the specified pattern on
the surface of the neutron star. For a visual representation of what each shape
means, see Figure 3.12. We notice that “tall” has a slightly bigger pulse am-
plitude than “full”, “wide” has a slightly smaller pulse amplitude than “full”,
and “cross” is not distinguishable from “full”.

The circle referred to in the following descriptions is the outline of a circle

with the specified angular radius centered on the specified emission angle, or

what constitutes a typical “full” hotspot (see Figure 3.12). “Tall” can be
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Figure 3.12: A visual representation of the four hotspot shapes we test. “Tall”
is the vertical stripe in red, “wide” is the horizontal stripe in green, “cross” is
the superposition of vertical and horizontal stripes outlined in blue, and “full”
is the entire circle in magenta (including the area covered by the previous
shapes). See Figure 3.11 for the light curves for each of these hotspot shapes,
given the same neutron star parameters.

thought of as a line of very small (ρ = 1○) hotspots spanning a range of emission

angles in a thin stripe vertically down the middle of the circle. We know from

Figure 3.2 that larger emission angles cause a greater pulse amplitude, because

the apparent size of the hotspot varies more during one rotation period. We do

indeed see that “tall” has a slightly greater pulse amplitude than “full” (Figure

3.11). “Wide” can be thought of as a line of very small (ρ = 1○) hotspots

spanning a range of phase angles in a thin stripe horizontally across the middle

of the circle. The more phase angles the hotspot encompasses, the less pulse

modulation. This is due to the apparent size of the hotspot not changing

as much during one rotation period. So as expected, “wide” has a slightly

smaller pulse amplitude than “full” (Figure 3.11). “Cross” is a superposition

of “tall” and “wide”, such that the emitting region is both vertically down

and horizontally across the center of the circle. We theorize that “cross” is

indistinguishable from “full” because the increase in pulse amplitude of “tall”

approximately cancels the decrease in pulse amplitude of “wide” (Figure 3.11).

“Full” is when the entire area of the circle is the emitting region.

From Figure 3.11 we can deduce that emission angle has a bigger effect on
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the light curve than the phase angle. We use the full hotspot for all subsequent

light curves in this thesis.

3.5 Non-Zero Background Temperature

Accounting for a non-zero background temperature on rest of the surface of

a neutron star adds complications to and is very computationally expensive

for the Spot code. We ran some modified versions of Spot accounting for a

background surface temperature, and found that it shifted the mean value of

the non-normalized light curve in the positive y-direction, but did not change

the non-normalized pulse shape. This means that normalizing the shifted light

curve will change the overall pulse shape by a minor amount (for example,

y = sin(x) and y = sin(x)+1 do not normalize to the same curve). Therefore, the

pulse amplitudes computed by Spot are lower limits of what would be measured

if a background temperature is relevant. It is possible that thermonuclear

burst oscillations in the rise of a Type I X-ray burst would have a negligible

background temperature (as assumed in Braje et al. 2000 [76] for persistent

pulsations).

3.6 Two Antipodal Hotspots

Spot has the ability to calculate the flux from two antipodal hotspots, for ex-

ample one on the north magnetic pole and one on the south magnetic pole

(assuming a simplistic and centered magnetic dipole). This is not strictly nec-

essary to realistically model light curves from Type I X-ray bursts, but it will

be important for modelling the light curves from accreting millisecond X-ray

pulsars with their larger magnetic fields.

The top hotspot, or first hotspot, is located in the northern hemisphere

(0○ ≤ θ ≤ 90○) of the neutron star, and is the same as the single hotspot that
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has been shown previously. The bottom hotspot, or second hotspot, is located

in the southern hemisphere (90○ ≤ θ ≤ 180○) of the neutron star and at the

opposite phase of the first hotspot. So if the first hotspot is face-on to the

observer’s line of sight at φ = 0, the second hotspot would be face-on to the

observer’s line of sight at φ = π.
For calculating the flux of the second hotspot, we keep the neutron star

geometry the same and changed the inclination angle and the phase angle such

that i2 = 180 − i and φ2 = φ + 180. We calculated the flux from each hotspot

individually, and then added up the flux from both hotspots per phase bin to

create the visible light curve.

We also want to explore the effect of inclination on the light curves of two

antipodal hotspots. We elect to display the light curves in photon count units

instead of a normalized flux, since the normalization only takes into account flux

from that particular hotspot and not from both light curves. Thus normalized

scales would be misleading. We predict that, since we have shown previously

that inclination and emission angles are degenerate with each other, keeping the

inclination angle constant while changing the emission angles would produce

similar results.

3.6.1 Low Inclination

In this subsection we look at the light curves of a neutron star with two antipo-

dal hotspots, one at 60○ and another at 120○, viewed at an inclination angle of

10○ from the rotation axis (Figure 3.13).

The dashed line indicates the top hotspot. The second line, dotted, is for

the second antipodal hotspot, which is 180○ across the neutron star from the

top hotspot, as if it were on the opposite end of the magnetic dipole. The

solid line is the two light curves added together — this shows what we would

actually detect with a telescope if we were looking at this system. We note

that for this low-inclination system, the amplitudes are rather small compared
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Figure 3.13: Low inclination: Light curves for two antipodal hotspots on a
spherical neutron star with M = 1.6 M⊙, R = 12km, i = 10○, θ = 60○ and 120○,
ρ = 6○ each, and ν� = 581Hz.
to the next two figures.

3.6.2 Moderate Inclination

In this subsection we look at the light curves of a neutron star with two an-

tipodal hotspots with the same geometry as the previous subsection, θ1 = 60○
and θ2 = 120○, but viewed at an inclination angle of 30○ (Figure 3.14).

As with Figure 3.13, the dashed line is the first hotspot, the dotted line

is the second hotspot, and the solid line is the sum of the two. The second

hotspot affects the total curve much more strongly here than in Figure 3.13,

creating a distinct bump in the middle. It should be noted that this neutron

star has the same parameters as the previous one. The only difference is the

viewer’s inclination angle to the system. We can see that the total light curve

is distinctly non-sinusoidal.
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Figure 3.14: Moderate inclination: Light curves for two antipodal hotspots on
a spherical neutron star with M = 1.6 M⊙, R = 12km, i = 30○, θ = 60○ and 120○,
ρ = 6○ each, and ν� = 581Hz.
3.6.3 High Inclination

In this subsection we look at the light curves of a neutron star with two an-

tipodal hotspots with the same geometry as the previous subsections, θ1 = 60○
and θ2 = 120○, but viewed at a large inclination angle of 60○ (Figure 3.15).

Here, we very clearly see a middle peak from the second hotspot. In systems

with two visible hotspots, we may be able to constrain the inclination angle

based on how much each hotspot contributes to the total light curve.

3.7 Hotspot Covering the Rotation Axis

To expand the functionality of the code, we allow for a hotspot covering the

rotation axis. We do not think that systems with this geometry will be prevalent

in the data, but we want to permit them nonetheless, if only for the sake of

completeness. Given that this geometry provides minimal changes to the light
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Figure 3.15: High inclination: Light curves for two antipodal hotspots on a
spherical neutron star with M = 1.6 M⊙, R = 12km, i = 60○, θ = 60○ and 120○,
ρ = 6○ each, and ν� = 581Hz.
curve shape, we will not display light curves for the following subsections.

3.7.1 Symmetric Over the Rotation Axis

In this configuration, the hotspot is symmetric over the rotation axis such that

θ = 0. As we can see in the first curve of Figure 3.2, this gives us a constant

flux that normalizes to 1. Since inclination angle is constrained to the range

0○ to 90○, a hotspot centered at θ = 0 will always be at least partially visible

to the observer, and it will have the same apparent surface area dΩ during all

times in one complete phase. We compute the flux for θ = 0 + �, since the

equations are undefined at θ = 0, and step through the phase from 0 to 2π in

increments of 2π �number of phase bins.
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3.7.2 Asymmetric Over the Rotation Axis

In this configuration, the hotspot is asymmetric over the rotation axis (i.e.,

θ − ρ ≤ 0). This has two sub-cases: computing the flux for the hotspot as

a whole, and splitting up the hotspot into multiple bins using a mesh as in

Section 3.2. The first case does not require any special treatment since θ > 0,
and we compute the flux normally as described in Chapter 2 and Section 3.3.

For the second case, the mesh-and-spherical-trigonometry approach does

not hold, so we modify our geometric approach to compute φj. Instead of

slicing up the area of the hotspot into a mesh, we step our way around the

circumference of the hotspot. Each circumference segment is assigned the local

emission angle θk in the same way as before, but with φj = φedge (using equation

(3.2.2)). Then, if θk is over the pole, we use the absolute value of θk but with

φj + π to evaluate on the “other side” of the pole of the neutron star.

This approximation is acceptable for small hotspots, but is not adequate

for large hotspots.

Spot provides the ability to make neutron star models, which we will fit to

simulated data using a genetic algorithm as discussed in the next chapter.
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Chapter 4

Fitting X-ray Light Curves with

a Genetic Algorithm

In this chapter we tackle the backward problem: we take an observed light curve

and attempt to determine the parameters of the neutron star and hotspot

that created it. This is accomplished by modelling a light curve with a set

of parameters as in Chapter 3, and calculating the fit of this curve with the

observed data. After testing a multitude of solutions using a genetic algorithm,

we select the parameter set which best reproduces the data. All simulated data

in this thesis was created by a forward run of the Spot code.

We use χ2 statistics to compare how closely two light curves match. This

is computed as

χ2 = N�
i=1
�Fi, data − Fi, fit

σi
�2 (4.0.1)

where σi is the error in the ith phase bin (simulated as Poisson noise for an

appropriate telescope), Fi, data is the flux from the data file in the ith bin, and

Fi, fit is the flux from the fit model for the ith bin. This equation sums over all

of the energy bands for the light curve. The lower the χ2 the better the fit, so

the best fit will have the lowest χ2 value.

With the simulated data used in this chapter, we know the correct set of
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parameters that describe the neutron star and hotspot, and are attempting to

re-create that with the fits. We will need to perfect the algorithm and do many

blind tests that yield accurate results before fitting real data, for which the

true set of parameters is not known.

The first section of this chapter explains the function of a genetic algorithm

and why it is applicable to our problem. The second section discusses the details

of the specific genetic algorithm we are using. The third section discusses two

other light curve fitting algorithms seen in the literature.

4.1 The Concept of Genetic Algorithms

On a simple level, genetic algorithms operate on the evolution principle of “sur-

vival of the fittest”, in which the strongest characteristics or chromosomes have

a higher probability of getting passed along to future generations. This forces

a species to adapt its characteristics to suit the environment [81]. Adaptation

takes place by crossing the chromosomes of two different organisms to produce

one or more new organisms, by random mutation of one specific chromosome

in one organism, and by selection for optimal chromosomes to be passed on to

the next generation. There are a fixed length of chromosomes per individual,

a number of individuals per population, and a number of populations evolv-

ing separately but simultaneously for each generation. Synthetic evolution in

the form of genetic algorithms allows us to maintain a level of diversity in the

individuals for each generation so that we are efficiently exploring the various

possibilities in chromosome manifestations and combinations.

In a genetic algorithm, the string of chromosomes belonging to an organism

are analogous to a set of parameters, and an individual organism is analogous

to one simulated model [82]. Chromosomes are what genetically comprise an

individual, and the parameter set is what is fed into the code to create a light

curve model (as outlined in Chapter 3). We have a set number of individuals
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to be created and tested per population, and a set number of distinct but par-

allel populations per generation. A fixed number of generations, to take place

sequentially, comprise one full run of the genetic algorithm. The genetic algo-

rithm also saves the more recent parts of its history with regard to parameter

sets tried and how well-fitting they are, so that it can look to and learn from

them when selecting future parameter sets. This will help it avoid ill-suited

areas of the parameter space.

The environment is computationally analogous to the parameter space.

Thus, by testing the fitness of an individual in the parameter space, we are

testing how well that individual is adapted to the environment. Crossover is

the primary fitness adaptation mechanism in a genetic algorithm. Two indi-

viduals are paired at random from the population, and their parameter sets

are crossed to produce an offspring. Mutation, an adaptation mechanism sec-

ondary to crossover, selects one parameter at random within one individual

and changes it. Fitness measures how well a given individual is suited to the

environment. Our fitness parameter is the χ2 of that individual model with the

data, so that the lower the χ2, the better the fitness. If an individual has very

good fitness, it has a higher likelihood of selection. Selection is the explicit

“survival of the fittest” operator. A small percentage of the most highly fit

individuals from one generation, over all the populations for that generation,

become part of the starter population for the next generation. The rest of the

population is filled out with crossover from these, random selection to make

new individuals from parts of the parameter space that have not been sampled

yet, and crossover between these new individuals and the carried-over starter

individuals.

A principal concept in newer genetic algorithms is “building blocks”, or

small subgroups of the full parameter set of closely-related parameters, the

fitness of which can be treated like smaller sub-problems [83]. This is a par-

ticularly useful tool when dealing with a lengthy set of parameters, but is
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applicable regardless of an individual’s size.

In a standard genetic algorithm, building blocks are defined as small pa-

rameter sub-groups that are used to match patterns between a large number

of parameter sets. These building blocks have very good fitness, and are at the

core of the selection mechanism to ensure that only the best building blocks

are carried on to the next generation [83]. The smaller these blocks are, the

less likely they are to be disrupted by crossover or mutation. Building blocks

carve the parameter space into nearly-independent sub-spaces to be explored;

this reduces a large problem into smaller, more manageable problems [84].

The parameters within a building block are also “co-adaptive”, meaning that

changing each parameter individually does not improve fitness noticeably, but

changing them together does improve fitness [84]. However, note that a build-

ing block can be as simple as fixing one parameter. As the genetic algorithm

selects parameter sets for a new population, building block patterns that have

been shown to have good fitness have a higher probability of being selected,

and thus are preferentially given more new parameter sets following that pat-

tern. In other words, these fundamental building blocks are accounting for

the parameter sets of the individuals, the fitness of each individual, and the

similarities among individuals within a given population [83].

We can both exchange building blocks by combining two or more sets of

building blocks, and exchange parameters within the building blocks them-

selves. Regular crossover will cross any parameters including ones within build-

ing blocks, but building block crossover, which we can specify in Ferret (dis-

cussed in the next section), will swap building blocks.

Genetic algorithms are a robust way of fitting curves because they do not

require the curves to have continuous derivatives, and they have natural meth-

ods for avoiding convergence on local minima. We are utilizing a minimizing

genetic algorithm, since we want the minimum χ2 fit with the data. Genetic

algorithms are much more efficient than pure random parameter space sam-
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pling due to these building blocks, while operators like mutation and crossover

and selection still allow us to explore the parameter space thoroughly without

wasting time on ineffective or forbidden areas.

4.2 Qubist and the Ferret Genetic Algorithm

Qubist is a global optimization platform developed by Dr. Jason D. Fiege [84]

with a variety of methods for exploring the entire parameter space hunting

for the global minimum. Qubist has two main powerhouse algorithms: Ferret,

a genetic algorithm, and Locust, a particle swarm algorithm. We are using

Ferret because its niching, dispersion, and linkage-learning (these terms will

be defined in the following paragraphs) make it ideally suited to “degenerate

cases” like ours [85], and there is a dearth of neutron star light curve fitting via

genetic algorithm in the literature. Also, for some applications, Ferret is able

to explore the parameter space more exhaustively than Locust [85].

While Ferret has the capabilities of being a “multi-objective optimizer”, we

have a single objective: to minimize the χ2 of our light curve models with the

simulated data. Like a traditional genetic algorithm, Ferret uses the principles

of adaptation and natural selection to find the optimal set of parameters for the

objective. In addition, Ferret is capable of self-adapting to adjust the control

parameters, which is unique in the genetic algorithm literature.

Ferret’s most appealing aspect is its strong linkage learning features. Link-

age learning involves the code discovering for itself how the fitness of some

parameters strongly affects the fitness of other parameters, and investigating

which parameters are related in this way. Building blocks are composed of

linked parameters, and so linkage learning discovers building blocks.

For difficult problems, such as ones with degenerate parameters and many

local minima, linkage learning allows for a more thorough analysis of building

blocks and how they are combined in next generations [82]. To do this, Ferret
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employs not just crossover of parameters, but crossover of the building blocks

as well.

A tighter linkage is a building block with a smaller “defining length”, and

conversely a looser linkage has a larger “defining length”. In general, tighter

linkages are better, since they are less likely to be torn apart in mutations and

crossovers. Linkage learning is able to “differentiate between good and bad

linkage, codings, or operators” [82], and so Ferret is able to preferentially select

good linkages and therefore sturdier building blocks. Ferret learns the link-

ages between parameters faster than it learns what the best parameter values

are [82], which sometimes requires us to explicitly slow down the convergence

of values so that it will learn the parameter linkages thoroughly.

The following is paraphrased from the Qubist User’s Guide by J. D. Fiege

[84].

For the majority of Ferret runs, we use 300 individuals, 15 parallel popula-

tions, and 30 generations, but for some runs we increased these values a bit for

the lowest χ2 value of the generation and the average χ2 value of the generation

to converge better. We are currently working on runs with ∼ 500 generations in

close collaboration with J. D. Fiege, and we anticipate publishing these results.

Ferret saves 25 generations of history; that is, all individuals and their χ2

values for all populations within the last 25 generations. This “contain[s] all

of the information necessary to analyze or resume a run, or to play a movie

showing how the run progressed” [84].

Ferret’s version of the crossover function, referred to as “X-type crossover”,

is an adaptation of the traditional crossover to allow for a more complete ex-

ploration of the parameter space. In Ferret the parameters are encoded as real-

valued numbers, as opposed to a simplistic binary-valued bit. X-type crossover

draws a line between the two mates or parents in multi-dimensional param-

eter space and a new offspring is selected somewhere near that line with a

perturbation distance related to how far away the parents are in parameter
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space. Ferret employs a dispersion tactic to fill in the crossover area between

the mates, where the area of possibility for the offspring is expanded around

that central line. Specifically, we use biconic dispersion, in which two statistical

probability cones have a vertex on each of the mates such that the probability

of selecting a new individual close to one of the mates or in between them is

higher than selecting one farther away. Because of the cone shapes, there is

higher probability of selecting a new individual farther away from the center

dispersion line when we are midway between the two, and more chance se-

lecting an individual close to the line when closer to one of the mates. We

experimented with cylindrical, conic, and biconic dispersion, and we found the

best results with biconic.

We set the probability of X-type crossovers at 100%. Since crossover is the

primary method of adaptation, it is desirable to have a very high value here, so

that the largest amount of parameter sets will undergo crossover. The scale of

crossover is 50%, so Ferret will cross at most half of a parameter set. Within X-

type crossover, Ferret also has the ability to create the offspring farther away

from the other mate rather than closer to it. The probability of this anti-

crossover happening is set to 0%, so crossovers will always create the offspring

somewhere “in between” both mates in the parameter space. Crossover is not

restricted to building blocks, so all parameters are eligible for crossover. This

being said, building block crossover is considered “essential” to Ferret’s linkage

learning process [84].

Due to Ferret using real-valued parameters, its mutation operator provides

many more diverse possibilities than a straightforward bit flip mutator. The

probability of an individual’s location in parameter space being mutated is

15%. The scale of mutation is 40%, so it will mutate a given individual 40%

away within one standard deviation from the current location in parameter

space [84]. Again, this is to help explore the parameter space and push Ferret

out of local minima.
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Ferret also has the ability to selectively mutate highly clustered individu-

als, to better fill out the parameter space. We have set this so that mutations

happen 20% more frequently to clustered individuals than non-clustered indi-

viduals. This is designed to avoid convergence on local minima, so that over

the course of the whole run Ferret is able to find the global minimum. This is

very beneficial to our application, as the parameter space is riddled with local

minima. Mutation is not restricted to building blocks, so all parameters are

eligible. We have also allowed the probability of supermutation, a massively

disruptive mutation in which “a single building block is perturbed for all non-

optimal and non-elite solutions, in all populations” [84]. In very small doses

this will be beneficial to us, to help avoid convergence on local minima, so we

have the probability set to 1%. This is analogous to a mass-extinction of all

species with mediocre adaptiveness.

Our selection pressure is 80% on overall fitness. This allows niching (clus-

tering of solutions) to have slight priority over fitness when selecting superior

individuals, and decreases the convergence rate to the benefit of exploring the

parameter space more. That being said, each individual has a 100% chance

of competing. The selection pressure on building blocks is 100%, so that the

fitness of a building block is always a selection priority. We set 10% of the

population to be devoted to exploiting the current optimal region rather than

exploring. Ferret also keeps track of niching, so that it knows how clustered

the individuals are in the parameter space.

Elitism makes certain that the best-fit individuals of each generation are

passed to the next generation undisturbed by crossover or mutation [84]. We set

the top 5% of individuals per generation to be allocated as “elite” to propagate

forward.

While the populations are almost entirely independent, Ferret allows for

some “immigration” between populations. We define a 1% probability that an

individual will immigrate, or be randomly inserted into a different population.

64



We choose to keep this low so that each population will explore different areas

of the parameter space independently, which gives a better chance of finding

the global minimum χ2.

Overall, we have set Ferret’s genetic algorithm parameters such that we

believe they yield good light curve fits.

The five parameters Ferret simultaneously fits are mass, radius, inclination

angle, emission angle, and phase shift. We allow Ferret to explore somewhat

conservative mass and radius ranges: the tested mass range is 1.0 M⊙ to 2.5 M⊙
and the tested radius range is 10 km to 16 km. Furthermore, certain areas of

this mass-radius space are off limits, as they create “non-physical” neutron

stars. Causality constraints do not allow for neutron stars with M
R � 0.3 [1][4],

and no physical equation of state would yield a neutron star with M
R � 0.1 (in

gravitational units, where G = c = 1). Ferret checks these two conditions before

allowing a parameter set to be used.

Inclination and emission angle each range from 0.01○ to 90.0○, and normal-

ized phase shift ranges from 0.00 to 1.00, circularly. While it may concern

some that the inclination and emission angle do not extend to 0○, we find

that these angles require the least amount of precision to still create a good

light curve fit compared to the other parameters. On the incredibly rare occa-

sion that we would have a neutron star with an inclination or emission angle

0○ ≤ (i, θ) < 0.01○, the hundredths-place precision will not pose a problem. Ad-

ditionally, having i, θ = 0 would not give pulsations (e.g., Figure 3.1 and Figure

3.2), and so Ferret would quickly learn to avoid these values.

4.2.1 Components of Ferret

The following are the code components that work together to comprise Ferret,

listed in chronological order of when they are called within one complete Ferret

run.
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• init : Called once at the beginning of the whole Ferret run. Initializes all

constants specific to Spot such as spin frequency, spot temperature, gray-

body factor, neutron star model number, energy band intervals, angular

size of the hot spot, and distance from us to the neutron star. Addition-

ally, init loads the data file we will be fitting, and writes headers to a

number of output files and tables that are added to as later programs

run.

• FerretSetup: Called once at the beginning of the whole Ferret run. De-

clares all genetic algorithm-specific “control parameters” necessary for

Ferret such as number of individuals per populations, number of popula-

tions per generation, and number of generations per run, as well as the

mutation rate, crossover rate, etc., as discussed in the previous section.

• fitness : Called for each individual. Generates a set of parameters, checks

if the mass and radius are physical, calls spotMex to generate the light

curve, and returns the χ2 fit of that light curve with the data.

• spotMex : Called in fitness for each individual iteration of Ferret. This

works in precisely the same way as Spot, as defined in Chapter 3, by

creating a light curve from a full set of parameters and finding that curve’s

χ2 fit with the data. SpotMex is rewritten as a MATLAB-readable version

of Spot to interface properly with fitness.

• outputFerret : Called at the end of each generation. Appends the parame-

ters of the best fit of that generation to a table, saves a plot of the best fit

light curve with the data to a file so that we can visually track how well

the fit is evolving, and writes an executable shell script to a file such that

only the best fit from the last generation, the last run of outputFerret, is

analyzed in secondary algorithms.

• postProcessing : Called once at the very end of the Ferret run. Initiates
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param degen (discussed in Chapter 5) and catalogues all Qubist-related

files generated in the Ferret run so that we can revisit them if necessary

for further analysis.

4.3 Other Fitting Methods

We are the first in the literature to fit neutron star X-ray light curves with a

genetic algorithm to constrain the physical parameters of the neutron star. Two

other fitting methods found in the literature are the Markov chain Monte Carlo

method with Bayesian probabilities approach, and the Levenberg-Marquardt

algorithm.

4.3.1 Markov Chain Monte Carlo + Bayesian Approach

The ubiquitous Monte Carlo method has an element of random sampling or

random numbers present in the simulation or computation. This could be ran-

domly choosing the seed for a simulation, or exploring a likelihood distribution

via random sampling. The Markov chain Monte Carlo (hereafter, MCMC)

method is effectively a random sampling algorithm with memory of the previ-

ous step. This correlates the sampling of the current generation with that of the

previous generation [86]. There are a few different computational algorithms

used to achieve the random sampling. Within the application of light curve

fitting, MCMC walks around the test statistic space looking for the optimal

value (e.g. exploring the χ2 space looking for the minimum).

The basis of Bayesian statistics is in using subjective probability. It predicts

the probability of a hypothesis given the observed evidence and an assumed

prior probability distribution. This process can be done iteratively — with

more evidence, the probability estimate is updated. In light curve fitting, this

is looking at how the test statistic improves when moving in one direction versus

another in the parameter space, and then using this knowledge to give prefer-
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ence to some subsets of the parameter space over others. By using Bayesian

statistics to correlate the random samples of the current generation with the

previous generation, MCMC is an effective intelligent random walk algorithm.

There is a “burn-in” period in which the algorithm explores the test statistic

space to get an idea of its topology. After the burn-in period it starts to look for

the minimum. Technically, the Bayesian probability of a marginal likelihood

(probability of an event happening, i.e., a parameter having a specific value) is

a multidimensional integral, and the integrand is what the MCMC is helping

to integrate. At the completion of the run, the most probable parameter set is

declared to be the best fit.

While the MCMC + Bayesian approach is very computationally expensive,

this method is well-suited to exploring and optimizing poorly-behaved param-

eter spaces.

The MCMC + Bayesian approach is exploding in popularity in the liter-

ature, for neutron star light curve fitting as well as light curve fitting from

transiting exoplanets, gamma ray and radio emission from standard millisec-

ond pulsars, and gravitational lensing. Analyses of note are Bhattacharyya et

al. 2005 [45], Steiner et al. 2010 [87], and Lo et al. 2013 [39].

In Bhattacharyya et al. 2005 [45] the authors re-create light curves to match

those observed from XTE J1814−338. They do not go into much detail in their

use of MCMC, but they appear to be using it in conjunction with a grid method

to step through the parameter space to find areas of low χ2. There is no mention

of a Bayesian approach in their analysis.

In Steiner et al. 2010 [87] the authors determine possible radii for a 1.4 M⊙
neutron star to constrain dense matter equations of state. They use MCMC +

Bayesian to determine the “probability densities of quantities of interest”, or

the likelihood that a specific parameter value would be a good fit.

In Lo et al. 2013 [39] the authors create model light curves and then fit

them to constrain the original parameters, much like we show in this thesis.
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They use a MCMC + Bayesian algorithm to explore the parameter space and

then compute the Bayesian probability of each parameter set, where the most

probable is considered the best fit with their simulated data.

In Wang et al. 2013 [88] the authors fit multi-band optical spectra of the

SAX J1808 binary system during an X-ray burst and in quiescence (non-

outburst) to obtain constraints on parameters of the neutron star and com-

panion. They use a MCMC + Bayesian approach to select the parameters of

the fitting model and test the strength of each fit.

4.3.2 Levenberg-Marquardt Method

The Levenberg-Marquardt method is a first-order optimization algorithm that

implements iterative least-squares curve fitting, or trying to minimize the sum

of the square of the deviation between fit value and data. This has a tendency

to get stuck on and converge to the first local minimum it encounters. This

method requires that the parameters are selected first, and then the fit is found.

While the Levenberg-Marquardt method is not advisable for optimizing

challenging parameter spaces such as those we encounter, it is pre-made and

readily available in commercial software packages like MathCAD. This ease

of use makes it a useful tool to confirm a global minimum as determined by

another method like genetic algorithms or MCMC+Bayesian.

Analyses using the Levenberg-Marquardt method include those by D. A.

Leahy in [32][26][89]. In these papers the authors use the algorithm to step

through parameter sets with a variable step size looking for minima in the

least squares fit. To bypass local minima they can select the starting parame-

ter set for later in the iteration sequence.

In the next chapter we discuss a secondary algorithm which analyzes the pa-

rameter degeneracies of optimal parameter set from Ferret.
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Chapter 5

Understanding Parameter

Degeneracies

Parameter degeneracy is the conflation of effects from different combinations

of parameters. In application to our research with light curves, it means the

effects that one parameter has on a light curve can be easily mimicked by the

effects of one or more other parameters. This is a major hurdle to using light

curves to ascertain the parameters of the neutron star that created it.

Extracting parameters from a light curve is not a simple procedure. Once

a best fit parameter set is obtained, we want to be confident in the accuracy of

these results by knowing the extent of equivalences or degeneracies present in

the parameter space. Using the Ferret genetic algorithm to find the minimum

χ2 parameter set, we set out to determine the robustness of this fit by searching

the parameter space for other solutions as good as Ferret’s best fit. In this

chapter we motivate and define an algorithm for finding comparable solutions.

The first part of this chapter explains how we characterize a light curve and

how this will be used to explore parameter degeneracies. The second part of

this chapter describes a secondary algorithm written to explore the parameter

degeneracies and alternative fits for one of Ferret’s optimal solutions. The

third part of this chapter discusses the parameter degeneracies we expect in
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our parameter sets.

5.1 Characterizing Light Curves

The two attributes we use to characterize a light curve are normalized pulse

amplitude and asymmetry due to Doppler boosting, as in Figure 5.1. The

fundamental idea for the secondary algorithm described in the next section

is that if two light curve models have the same pulse amplitude and Doppler

boost, they will have very similar (if not the same) χ2 fits with a given data

set.
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Figure 5.1: Light curves from two different neutron star parameter sets, demon-
strating different pulse amplitudes and asymmetries due to Doppler boosting.
The top light curve has a low pulse amplitude and a negligible Doppler boost
asymmetry. The bottom light curve has a high pulse amplitude and a pro-
nounced asymmetry from strong Doppler boosting. The two light curves are
in phase, as indicated by the shared x-axis, but have different normalized flux
scales on the y-axes. These light curves are shown in the low energy band, 2–3
keV.

In the secondary algorithm we will be using approximations for the pulse
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amplitude and Doppler boost. We establish here that this approximation is

not very close to the true value, but changes in the approximation value do

translate to similar changes in the true value, and thus it is a useful proxy for

comparing two light curves.

The true pulse fraction of a light curve is given by

A = Fmax − Fmin

Fmax + Fmin
. (5.1.1)

An approximation prevalent in the literature is the Beloborodov pulse ampli-

tude approximation [56],

A = �1 − 2M
R � sin i sin θ

2M
R + �1 − 2M

R � cos i cos θ . (5.1.2)

This approximation does not take into account effects of Doppler boosting on

the pulse amplitude. We use a first-order approximation for Doppler boosting,

B = RΩ sin i sin θ�
1 − 2M

R

, (5.1.3)

where Ω is the angular spin frequency of the neutron star.

Table 5.1 contains the pulse amplitudes as approximated by equation

(5.1.2) compared to the true pulse amplitudes as computed by equation (5.1.1).

While the approximate pulse amplitude does not match any of the four true

pulse amplitudes we compute, there is only a ∼ 10% discrepancy between the

low energy band true pulse amplitude and the approximate pulse amplitude.

We are further reassured that the difference between the pulse amplitudes for

two very different physical systems is much larger than this discrepancy.
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1st curve 2nd curve

Approx. PA 0.132 0.624

True PA, bolo 0.160 0.730

True PA, mono 0.146 0.682

True PA, low 0.148 0.690

True PA, high 0.169 0.751

Table 5.1: Approximated and exact pulse amplitudes for two light curves. “1st

curve” indicates the top light curve, and “2nd curve” indicates the bottom light
curve in Figure 5.1. Pulse amplitude is abbreviated as “PA” here. The first
row is the approximated pulse amplitude as calculated by equation (5.1.2); the
second row is the true pulse amplitude of the bolometric flux; the third row is
the true pulse amplitude of the monochromatic flux at 2 keV; the fourth and
fifth rows are the true pulse amplitudes of energy band flux in the 2–3 keV
range and 5–6 keV range, respectively. All true pulse amplitudes are calculated
with equation (5.1.1). We notice that the approximated pulse amplitudes are
closest to but a bit lower than the monochromatic flux pulse amplitudes.

5.2 Degeneracy Contour Code

Using the approximate pulse amplitude and an approximation of the Doppler

boosting in a light curve, we explain the development of a code, param degen,

which solves for other parameter sets similar to the best fit light curve found by

Ferret. The motivation for developing this code is to find parameter sets with

similar χ2 values as Ferret’s best fitting parameter set, since the χ2 contour

regions are not straightforward in the mass-radius plane. We want to ensure

that other solutions as good as the best fit are also accounted for.

5.2.1 Solving for Inclination and Emission Angles

Given a parameter set {M,R, i, θ} that has A as the Beloborodov approxima-

tion for the pulse amplitude and B as an approximation of the Doppler boost

in the curve, we want to find what range of values of M,R will have a similar

value of A and B. First we choose a value of M and R by looping through an

evenly spaced “grid” of masses and radii that covers the allowed mass-radius
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space. Next we find possible values of i and θ while fixing A and B. If a solu-

tion for i and θ exists for a given M and R, then we run Spot with the values

to create a light curve and obtain its χ2 fit with the simulation data.

We have the Beloborodov approximation for the pulse amplitude, given by

equation (5.1.2), and a first-order approximation of the Doppler boosting given

by equation (5.1.3). Both A and B are known for a given {M, R, i, θ}.

We loop through a range of M and R values, denoted m and r. We define

ζ = B
�
1 − 2m

r

rΩ
(5.2.1)

such that

ζ = sin i sin θ , (5.2.2)

so

A = �1 − 2m
r � ζ

2m
r + �1 − 2m

r � cos i cos θ . (5.2.3)

Now we solve for the two unknowns, i and θ, from equations (5.2.2) and (5.2.3).

For equation (5.2.2) we must have 0 < ζ < 1, and so

cos i cos θ = sin i sin θ

A
− 2m

r

1

�1 − 2m
r � . (5.2.4)

We define κ such that

κ = ζ

A
− 2m

r

1

�1 − 2m
r � , (5.2.5)

so

κ = cos i cos θ (5.2.6)

with the rule 0 < κ < 1, so
κ2 = cos2 i cos2 θ . (5.2.7)

Using trigonometric identities and equation (5.2.2), we get equation (5.2.7) in
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terms of one variable and manipulate it to take the form of a quadratic:

κ2 = �1 − sin2 i� �1 − sin2 θ� (5.2.8)

κ2 = �1 − sin2 i��1 − ζ2

sin2 i
� (5.2.9)

κ2 sin2 i = �1 − sin2 i� �sin2 i − ζ2� (5.2.10)

κ2 sin2 i = − sin4 i + sin2 i + ζ2 sin2 i − ζ2 (5.2.11)

0 = sin4 i + �κ2 − ζ2 − 1� sin2 i + ζ2 . (5.2.12)

This is now a quadratic in sin2 i. Using the quadratic formula, we find

sin2 i = − (κ2 − ζ2 − 1)
2

± 1

2
∆

1
2 , (5.2.13)

where

∆ = �κ2 − ζ2 − 1�2 − 4ζ2 , (5.2.14)

and we require ∆ ≥ 0 , sin2 i ≥ 0 , and 0 ≤ sin i ≤ 1 . Note that equation (5.2.13)

has two solutions stemming from the ± sign. In Chapter 6 we will refer to

solutions that take the + as “positive solutions” and ones that take the − as

“negative solutions”.

If a solution for sin i exists, then, by equation (5.2.2),

sin θ = ζ

sin i
, (5.2.15)

with the requirement 0 ≤ sin θ ≤ 1 , ζ < sin i < 1 , and ζ < sin θ < 1 . Thus if a

solution for sin θ exists, then there exists a solution {m, r, i, θ} with a given A

and B.

In this code, we allow for a ±2% tolerance in A and ±3% tolerance in B for

low noise cases, and ±8% and ±6% tolerance in A and B, respectively, for high

noise cases. These values are decided from comparing A and B values between
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the best fit and ideal parameter sets, as noted in Table 6.3. There are seven

divisions in both, for a total of 49 AB combinations, with one of them having

the precise value of A and B as Ferret’s best fit solution. We loop through

these in a nested loop that sits inside the mass and radius nested loops.

5.2.2 Components of the Degeneracy Contour Code

Both of the following programs are called in postProcessing at the end of a

Ferret run. Here we outline the function of each program, in call sequence:

• param degen: Generates a set of parameters with the same pulse ampli-

tude and Doppler boosting as Ferret’s best fit parameter set using the

algorithm outlined in the previous section. It then computes the χ2 fit of

the light curve for each generated parameter set with the data for that

case and saves this information to a table, to be plotted by chi2contours.

We refer to param degen as the secondary algorithm to Ferret.

• chi2contours : Sorts all parameter sets created in param degen by χ2 into

σ deviations from Ferret’s best fit, from 1σ to 5σ. It then plots these in

the 2-dimensional mass-radius space with different colours for each σ, so

that each point in Figure 6.6 is one parameter set.

We combine these results with those from Ferret to give the solutions and

constraints in Chapter 6.

5.3 Parameter Degeneracies in Our Research

Parameter degeneracies are an expected obstacle in fitting neutron star light

curves. Here we explain the origin of common parameter degeneracies.

For all system geometries examined, increasing the inclination angle or the

emission angle correspondingly increases the observed pulse amplitude, as ev-

ident in Figures 3.1 and 3.2. This is caused by decreasing the ability to see
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the hotspot for farther around the neutron star, or seeing a smaller area of the

hotspot for a larger fraction of the phase, which in turn increases the observable

pulse modulation. Equation (5.1.2) verifies our observations: as (i, θ) → 90○,
we get sin(i, θ)→ 1 and cos(i, θ)→ 0, which manifests as a larger pulse ampli-

tude.

Some inclination and emission angle combinations yield such an enormous

pulse amplitude that an eclipse occurs, in which the hotspot is not visible for

a portion of the phase. Eclipses are theoretically replicable but are not evident

in most observations of thermonuclear burst oscillations.

When both inclination and emission angle are high, stronger Doppler effects

are observed as well as a large pulse amplitude. The inclination and emission

angles are easily swapped by Ferret, as evident by the i-θ symmetry in equations

(5.1.2) and (5.1.3). However there are subtle differences in the fits of one

compared to another that are not caught by our approximation, so in practice

they are not entirely interchangeable.

Increasing compactness (that is, increasing the mass for a fixed radius, or

decreasing the radius for a fixed mass) decreases pulse amplitude. With a

more compact neutron star, the gravitational light bending is stronger, so the

observer is able to see more of the total surface area of the neutron star. This

lets the observer see a larger area of the hotspot for a larger fraction of one

rotation, which decreases the overall variability in brightness, which decreases

the observed pulse amplitude. In looking at equation (5.1.2), increasing M
R will

increase the denominator more than the numerator, which corresponds to a

decrease in pulse amplitude.

Doppler effects also play a role in parameter degeneracies, namely that

it is more difficult to have parameter degeneracies with a strongly Doppler

boosted light curve. Strong Doppler effects are accomplished by increasing the

relative velocity of the hotspot to the observer. We can achieve this by giving

the neutron star a larger radius and have the spot at a higher emission angle,
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having both a high inclination angle and a high emission angle, or increasing the

spin frequency of the neutron star. This is evident in equation (5.1.3): as R or

Ω increases we will see an increase in B, or as (i, θ)→ 90○ we have sin(i, θ)→ 1,

which also boosts B. By combining conditions or exaggerating a condition, we

see a stronger Doppler boost and thus a more amplified asymmetry in the light

curve.
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Figure 5.2: Simulated light curves from two different neutron stars. Light curve
1 (blue solid) has M = 1.60 M⊙, R = 12.0 km, i = 10.0○, θ = 60.0○, and no phase
shift. Light curve 2 (orange dotted) has M = 1.55 M⊙, R = 10.8 km, i = 61.0○,
θ = 10.6○, phase shift = 0.999. All other parameters are identical. Shown in the
low energy band, 2–3 keV. The two light curves are indistinguishable. See text
for discussion.

Figure 5.2 elucidates the concept of parameter degeneracy. It shows two

simulated light curves from two distinct neutron star parameter sets. The neu-

tron star that created light curve 1 is less compact than the neutron star that

created light curve 2, and it has a low inclination and high emission angle.

The inclination and emission angle values for neutron star 1 are approximately
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flipped for neutron star 2. However, these light curves appear to be identical.

We can infer that the compactness for neutron star 2, which would make the

light curve less modulated, is balanced by its flipped and slightly higher values

of inclination and emission angle, which would make the light curve more mod-

ulated. This compensation of the pulse amplitude effects yields carbon copy

light curves.

We use the param degen code to understand the results from and limitations

of fitting light curves with the Ferret genetic algorithm in the next chapter.
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Chapter 6

Results

In this chapter we discuss our light curve fitting results from the Ferret genetic

algorithm and the constraints on those fits given by the secondary algorithm

param degen.

We use Ferret to fit light curve models to a data set to determine the best

parameter set to describe the data, and therefore the likely parameters of the

system that created the light curve. We simulate data as perturbations from an

ideal curve, so that we know the true parameters used to make each data set,

but we envision using the information we find about Ferret’s accuracy (from

an algorithmic standpoint and a parameter degeneracy standpoint) to fit real

light curves and help place constraints on masses and radii of neutron stars.

Here we have ten different cases illustrating different system geometries.

We fix the spin frequency, graybody emission toggle, and neutron star shape

model, noted for each case in the following subsections. Additionally, we have a

fixed distance of 6 kpc, a hotspot angular radius of 6○, a 1×1 hotspot mesh, and

a hotspot temperature of 2 keV. For all but one case we select a neutron star

spin frequency of 581Hz, the measured spin frequency of the Type I X-ray burst

source 4U 1636−536. In this chapter we have 59 degrees of freedom (d.o.f.),

since we are fitting the low energy band and high energy band simultaneously:

this gives 2×32−5 = 59 d.o.f., for the 32 phase bins per energy band, subtracted
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by the five fitting parameters.

The ideal curves in Figures 6.1, 6.2, 6.8, 6.10, 6.12, 6.14, 6.16, 6.18, 6.20,

6.22, and 6.24 were computed using the Spot code. The simulated data points

in Figures 6.1, 6.2, 6.8, 6.12, 6.14, 6.16, 6.18, 6.20, and 6.22 were computed

from their respective ideal curves using Poisson statistics by Dr. Denis A. Leahy.

These error bar sizes and noise levels are similar to what we would expect to

get from a very sensitive instrument such as LOFT. Data points in Figures

6.10 and 6.24 were computed using high noise statistics, based on observations

of 4U 1636–536 from RXTE.

The fit curves in Figures 6.1, 6.2, 6.8, 6.10, 6.12, 6.14, 6.16, 6.18, 6.20, 6.22,

6.24 are the light curves of the parameters that Ferret determined to be the

best fits to the data points. We ran Ferret twice for the high noise data sets

and thrice for the low noise data sets, and for each case we picked the best of

the best-fit runs to use as the simulation parameters in the figures.

To compute the accuracy of the best-fit mass and radius parameters, we

use the following equations for percent discrepancy:

%errM = �Mfit −Mideal�
Mfit

, (6.0.1)

%errR = �Rfit −Rideal�
Rfit

. (6.0.2)

Note that we use the fit value in the denominator, instead of the ideal value.

This is because when analyzing observed data, we will only know the fit values

and not the ideal or true values, and so we will want to give our accuracy as

percent discrepancy from the fit values.

6.1 Case 1: The Fiducial Case

The Case 1 light curve is characterized by a symmetric sinusoidal shape and a

low pulse amplitude. For this case we did nine runs of Ferret, and chose the
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lowest χ2 fit for the subsequent plots and discussion. We did a number of runs

for this case to understand the accuracy and errors in Ferret’s convergence for

the rest of the test cases, to determine how much fluctuation was possible in

the best-fit values. The optimal parameter set for each run is listed in Table

6.1. Of the nine runs, the largest percent discrepancy in mass was 10.0% and

the largest percent discrepancy in radius was 14.4%. We did not calculate

percent discrepancy for inclination or emission angle since they are not crucial

parameters. We deduce that for symmetric curves with low pulse amplitude,

it is likely that Ferret will fit the mass and radius within ∼ 10% and ∼ 15% of

the correct value, respectively.

In Figures 6.1 and 6.2 we can see that the ideal and fit curves are incredibly

close, and both replicate the data very well. The χ2 of the fit with the data

is lower than the χ2 of the ideal with the data. However, due to parameter

degeneracies, the parameter sets are notably different (see Table 6.1). We

notice that inclination angle and emission angle fits seem to be switched, and

for all the test cases (see Table 6.3) the two appear to be interchangeable. In

examining the parameters in Case 1 Fit 9, an inclination angle fit of 60.97○
is not remotely close to the ideal 10○, but it is an excellent fit for the ideal

emission angle of 60○. Likewise, the emission angle fit of 10.59○ is a horrendous

fit for the ideal 60○, but very close to the ideal inclination angle of 10○. The fit
mass is 3.1% from the ideal, and the fit radius is off by 9.8%.

Since we can see that the fit curves are very close to the data points in both

the low and high energy bands, we will only show the low energy band light

curves for comparison with the next cases.

6.1.1 Ferret

Figure 6.3 shows the mass and radius values of every individual from Ferret

that is within 5σ of the best fit for the run. There are no defined σ contours

in the mass-radius plane, likely because this plot only shows χ2 as a function
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Figure 6.1: Case 1: ideal curve (orange solid), Ferret’s best-fit curve (red
dotted), and simulated data (blue) for a spherical neutron star with isotropic
emission, rotating at 581Hz. Ideal parameters: M = 1.60 M⊙, R = 12 km,
i = 10○, θ = 60○, phase shift = 0, χ2 = 58.88. Fit parameters: M = 1.55 M⊙,
R = 10.82 km, i = 60.97○, θ = 10.59○, phase shift = 0.9991, χ2 = 55.43. Plotted in
the low energy band, 2–3 keV. For reference, the ideal curve has a gravitational
redshift of 1 + z = 1.28448.
of two parameters, out of five total parameters. There appear to be three 1σ

deep local minima, with one of them being the global minimum as determined

by Ferret.
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Figure 6.2: Case 1: ideal curve (orange solid), Ferret’s best-fit curve (red
dotted), and simulated data (blue) with the same parameters as in Figure 6.1.
Plotted in the high energy band, 5–6 keV.
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Figure 6.3: Case 1: The mass and radius values from all individual parameter
sets within 5σ of the optimal parameter set. Each point represents one individ-
ual model that was run by Ferret. The σ contour levels were calculated from
Fit 9, χ2 = 55.43, which had M = 1.54 M⊙ and R = 10.82 km. The χ2 cut-offs
are 57.73 for 1σ, 61.61 for 2σ, 67.26 for 3σ, 74.77 for 4σ, and 84.17 for 5σ. The
ideal mass and radius used to create the simulated data is noted with a black
triangle at 1.6 M⊙ and 12 km.

Additionally, if we examine one very small area of the plot, the mass and

radius values of different points in that area are not that different, but the

points have different χ2 values and σ levels away from the minimum. This

demonstrates that the inclination angle, emission angle, and phase shift values

clearly have an effect on how well the light curve fits the data.

To visualize how these individuals sit in the parameter space, we plot the

minimum χ2 surface versus mass and radius. This helps us understand the

topology of the parameter space and where the best-fit solutions fall.

To make a surface plot of the χ2 values against mass and radius (Figure

6.4), we “grid” the data to create a surface plot within Gnuplot. Each data
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Figure 6.4: Case 1: Surface plot of the χ2 between the simulated data and the
parameter set with each respective M and R value for all individuals run by
Ferret for Fit 9. We plot models with χ2 ≤ 100, since we aim to minimize χ2.
Since Gnuplot only plots maximal surfaces, we plot −χ2 on the z-axis, so what
appear to be maxima here are actually minima. Due to the way that the data
is binned to make it fit the surface plot requirements, the plot is a little spikier
than expected, but we do still expect many local minima.

point takes on the middle value of the mass bin, middle value of the radius

bin, and the lowest χ2 value of the individuals in that MR bin. We are using

200 divisions in both mass and radius, for 4000 MR bins total; we want a

smoother surface, for which larger bins would make sense, but we also do not

want to gloss over the local minima and bumpy parameter space landscape,

which require smaller bins for accurate visualization. The plot shows many

local minima, a few more significant local minima, and one global minimum

containing Ferret’s best-fit solution.

Then we colour-mapped Figure 6.4 onto the mass-radius plane to get Figure

6.5. As with Figure 6.4, we are mapping −χ2. This makes the minima (now
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Figure 6.5: Case 1: The surface plot of Figure 6.4 colour-mapped onto the
MR plane. We plot −χ2 values with the colour map because Gnuplot surfaces
are maximize-only. The ideal parameters are M = 1.6 M⊙ and R = 12 km with
χ2 = 58.88, marked with a star, and the best-fit parameters are M = 1.54 M⊙
and R = 10.82 km with χ2 = 55.43, within the circled minimum.

maxima) easier to see, and so the yellow colour represents χ2 ∼ 55. The local

minima are much more apparent on this plot than Figure 6.4. There are a few

minima regions, with two standing out as the lowest local minima. The small

thin elliptical minima region on the left side of the plot contains Ferret’s best-fit

solution. Since this data is a coarser version of that in Figure 6.3, we are not

able to see the finer features of the χ2 surface such as more local minima, but

the two plots have the same overall qualities.

In looking at Figures 6.3, 6.4 and 6.5, the most amount of information in an

easily presentable manner is in the Ferret χ2 contours of Figure 6.3. Therefore

we elect to show only the Ferret χ2 contour figures for Cases 2–10.
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6.1.2 Parameter Degeneracy

We use the parameter sets identified in param degen and their respective χ2

fits to map out the extent of the degeneracies in parameter space. This is to

detect other areas of the parameter space that fit the simulated data well that

may have been missed by Ferret. We are using Ferret’s best-fit solution, Fit 9,

for Case 1, since it had the lowest χ2 of all nine runs completed for Case 1.

The χ2 contour plot in Figure 6.6 is created in chi2contours, as explained in

section 5.2. Each point in Figure 6.6 is one parameter set run by param degen.

These points are then sorted by ∆χ2 region and plotted in the mass-radius

plane. The 5σ parameter sets are plotted first, followed by the 4σ, 3σ, 2σ, and

1σ points in superposition. This is so that if a (M,R) point has one solution

that is 2σ but another solution that is 1σ, it will appear 1σ on the plot, since

the other parameters and characteristics are less crucial. We care more about

whether a given (M,R) is able to produce an optimal parameter set and less

about what the other values of that parameter set are. The ∆χ2 for σ levels

for two free parameters, mass and radius, are as follows: ∆χ2 = 2.295 for 1σ,

∆χ2 = 6.180 for 2σ, ∆χ2 = 11.83 for 3σ, ∆χ2 = 19.34 for 4σ, and ∆χ2 = 28.74
for 5σ.

Furthermore, we plot the ideal solution, used to create the simulated data

set, on the χ2 contour plots, to get an idea of how well Ferret and param degen

can predict the true mass and radius of a given data set. Compared to Figure

6.3, Figure 6.6 shows that the χ2 space from param degen is much smoother

and more gradual than that discovered by Ferret.

In Figure 6.6 some of the points appear to have “stacked” or overlapping σ

levels. This is due to having a small tolerance in possible pulse amplitude and

Doppler boost solutions (equations (5.1.2) and (5.1.3)) for a given mass and

radius, and to having positive and negative solutions to equation (5.2.13), which

could give somewhat different χ2 values. This suggests that the emission and

inclination angles are not as interchangeable as originally thought (as indicated
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Figure 6.6: Case 1: A map of the χ2 space up to 5σ away from the best-fit
χ2 for Fit 9, contour-mapped onto the MR plane. Fit 9 has M = 1.54 M⊙,
R = 10.82 km, and χ2 = 55.43. The ideal parameter set, which was used to
create the simulated data for Case 1, is plotted with a black triangle. It has
M = 1.6 M⊙, R = 12 km, and χ2 = 71.99. We see that the ideal is within the 1σ
region of Ferret’s best-fit. The χ2 cut-offs are 57.73 for 1σ, 61.61 for 2σ, 67.26
for 3σ, 74.77 for 4σ, and 84.17 for 5σ. We notice that some of the points on
the χ2 contour boundaries overlap; see discussion in text. The abrupt cut-off
in mass and radius is due to setting the mass and radius range to be ±20% of
the best-fit values for analysis with param degen.

by Figures 3.1 and 3.2 being identical).

The ideal parameter set is visually within 1σ of the best-fit in Figure 6.6,

meaning that other parameter sets tested by param degen with nearby masses

and radii yield χ2 that are up to 1σ away from the best-fit χ2. We will refer to

this σ as the “pd σ” (or “param degen σ”). In comparing the ∆χ2 values of the

ideal parameter set and the best-fit parameter set, the ideal is up to 2σ away

from the best-fit (referred to as the “numerical σ” or “num. σ”). In theory,

the pd σ and the numerical σ should be the same, but in this case and most

of the following cases, we find that they are not. The difference between the

pd σ and numerical σ suggests that param degen is not finding all of the well-

fitting parameter sets close to the best-fit, and improvements to this secondary
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algorithm are discussed further in Section 6.11. We also notice that the best-fit

has a lower χ2 than the ideal. This suggests that the Poisson statistics, used

to add low amounts of noise to the simulated data, shifted all the points by an

overall trend or net amount, so that the ideal parameter set no longer yields

the best-fitting light curve.
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Figure 6.7: Case 1: A superposition of Figure 6.3 and Figure 6.6 for Fit 9. In
the key, “PD” refers to the results of param degen, and “Ferret” refers to the
results of Ferret. We elect not to plot the 5σ regions here. We notice that the
1σ regions do not overlap. See discussion in text. Note that the y-axis extends
up to 3M⊙ to fit the key for this plot.

The Ferret and param degen contour regions do not overlap well in mass-

radius space (Figure 6.7). This might be due to fixing the phase shift in

param degen to the Ferret best-fit phase shift value and not allowing it to

vary.

Table 6.1 shows the best solution for all nine runs from Ferret for Case 1.

The ideal solution is within 1σ for Fits 1, 2, 4, 6, 7, and 8.

In the subsequent cases, the ideal curves and fit curves in this section were

created in the same way as with Case 1. For each “Fit” curve we use the

parameter set of the lowest χ2 for that case to make a Ferret χ2 contour plot as
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in Figure 6.3 and a parameter degeneracy χ2 contour plot as in Figure 6.6. The

ideal parameters and best-fit parameters for each of the ten cases are shown in

Table 6.3. Results are discussed in detail in the next sections.
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6.2 Case 2: Strong Doppler Boost

The Case 2 light curve (Figure 6.8) is characterized by an asymmetric shape

and a large pulse amplitude. The ideal model uses a spherical neutron star,

isotropic emission, and a spin frequency of 800Hz, with moderate inclination

and high emission angles. The best-fit curve, using the parameters of Fit 3, is

indistinguishable from the ideal curve in Figure 6.8.
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Figure 6.8: Case 2: ideal curve (orange solid), Ferret’s best-fit curve (red dot-
ted), and simulated data (blue) for a spherical neutron star with isotropic
emission, rotating at 800Hz. Ideal parameters: M = 1.6 M⊙, R = 14 km,
i = 40○, θ = 60○, phase shift = 0, χ2 = 49.88. Fit parameters: M = 1.60 M⊙,
R = 13.81 km, i = 41.60○, θ = 58.59○, phase shift = 0.0008, χ2 = 45.39.

6.2.1 Ferret

The Ferret χ2 contour plot (Figure 6.9 top panel) is very concentrated, showing

that Ferret was easily able to find a large minima area, with four deeper minima

within that. There is a small 3σ and 4σ island off to the right. The ideal
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parameters fit nicely within the contour region. For Fit 3 the mass is 0% from

the ideal and the radius is 1.4% from the ideal.
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Figure 6.9: Case 2: Similar to Figures 6.3 and 6.6. The σ contour levels are
calculated from Fit 3, χ2 = 45.39, which has M = 1.60 M⊙ and R = 13.81 km.
The χ2 cut-offs are 47.68 for 1σ, 51.57 for 2σ, 57.21 for 3σ, 64.73 for 4σ,
and 74.13 for 5σ. The ideal parameters are M = 1.6 M⊙ and R = 14 km with
χ2 = 49.88. The top panel shows the Ferret χ2 contours. The bottom panel
shows the param degen χ2 contours. The two χ2 contour areas seem to be in
approximately the same location in mass-radius space. As seen in the bottom
panel, the ideal solution has a pd σ of 4σ from the best-fit.
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6.2.2 Parameter Degeneracy

For Case 2 Fit 3 the σ contour area is a small oval (Figure 6.9 bottom panel).

The different σ regions are not distinctly concentric or nested. The ideal so-

lution has a pd σ of 4σ. Numerically, the ideal solution is within 2σ of the

best-fit parameters.

6.3 Case 3: High Noise, Symmetric, Very Low

Amplitude

The Case 3 light curve (Figure 6.10) is characterized by noisy data for a mostly

symmetric shape with a very low pulse amplitude. The ideal model uses a

spherical neutron star with isotropic emission, and low inclination and emission

angles. The best-fit curve, using the parameters of Fit 2, is clearly different

from the ideal curve in Figure 6.10. The parameter most notably off is the

phase shift.

6.3.1 Ferret

The Ferret χ2 contour plot (Figure 6.11 top panel) shows a very large minimum

region. This is due to the large error bars and noisy statistics in the simulated

data. The different contour regions appear to almost line up on the lower part

of the graph, but are nested within each other on the upper part of the graph.

The ideal parameters fit nicely within the contour region. For Fit 2 the mass

is 22.9% from the ideal and the radius is 9.8% from the ideal.

6.3.2 Parameter Degeneracy

For Case 3 Fit 2 the σ contour area is massive, spanning the entirety of the

allowed area (Figure 6.11 bottom panel). The diagonal cut-off line on the top

left is likely from eliminating non-physical parameter sets. The ideal solution
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Figure 6.10: Case 3: ideal curve (orange solid), Ferret’s best-fit curve (red
dotted), and simulated data (blue) for a spherical neutron star with isotropic
emission, rotating at 581Hz. Ideal parameters: M = 1.4 M⊙, R = 13 km,
i = 10○, θ = 10○, phase shift = 0, χ2 = 72.14. Fit parameters: M = 1.72 M⊙,
R = 11.73 km, i = 58.99○, θ = 1.93○, phase shift = 0.9836, χ2 = 70.56.
has a pd σ of 1σ, and numerically, the ideal solution is within 1σ of the best-fit

parameters.

6.4 Case 4: Symmetric, Moderate Amplitude

The Case 4 light curve (Figure 6.12) is characterized by a symmetric shape

and a moderate pulse amplitude. The ideal model uses a spherical neutron

star with isotropic emission, and high inclination and low emission angles. The

best-fit curve, using the parameters of Fit 3, is nearly identical to the ideal

curve in Figure 6.12.
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Figure 6.11: Case 3: Similar to Figure 6.9. The σ contour levels are calculated
from Fit 2, χ2 = 70.56, which has M = 1.72 M⊙ and R = 11.73 km. The χ2 cut-
offs are 72.85 for 1σ, 76.74 for 2σ, 82.39 for 3σ, 89.90 for 4σ, and 99.30 for 5σ.
The ideal parameters are M = 1.4 M⊙ and R = 13 km with χ2 = 72.14. As seen
in the bottom panel, the ideal solution has a pd σ of 1σ from the best-fit. Note
that the y-axis extends up to 3 M⊙ to fit the key for these plots. The abrupt
cut-off in mass and radius in the bottom panel is due to setting the mass and
radius range to be ±25% of the best-fit values for analysis with param degen.

6.4.1 Ferret

The Ferret χ2 contour plot (Figure 6.13 top panel) is more concentrated on the

left, and less dense on the right. There appear to be three 1σ minima regions.
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Figure 6.12: Case 4: ideal curve (orange solid), Ferret’s best-fit curve (red
dotted), and simulated data (blue) for a spherical neutron star with isotropic
emission, rotating at 581Hz. Ideal parameters: M = 1.5 M⊙, R = 13 km,
i = 60○, θ = 20○, phase shift = 0, χ2 = 66.18. Fit parameters: M = 1.36 M⊙,
R = 11.22 km, i = 47.31○, θ = 28.05○, phase shift = 0.0048, χ2 = 58.32.
The ideal parameters are within the scattered region on the right. For Fit 3

the mass is 9.3% from the ideal and the radius is 12.7% from the ideal.

6.4.2 Parameter Degeneracy

For Case 4 Fit 3 the σ contour area is moderately large with defined but

asymmetric σ regions (Figure 6.13 bottom panel). There are two 1σ islands

within the primary 2σ region, and a small secondary 2σ on the top right. The

ideal solution has a pd σ of 5σ, very close to the 4σ boundary. Numerically,

the ideal solution is within 3σ of the best-fit parameters.
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Figure 6.13: Case 4: Similar to Figure 6.9. The σ contour levels were calculated
from Fit 3, χ2 = 58.32, which has M = 1.36 M⊙ and R = 11.22 km. The χ2 cut-
offs are 60.62 for 1σ, 64.50 for 2σ, 70.15 for 3σ, 77.66 for 4σ, and 87.06 for 5σ.
The ideal parameters are M = 1.5 M⊙ and R = 13 km with χ2 = 66.18. As seen
in the bottom panel, the ideal solution has a pd σ of 5σ from the best-fit.

6.5 Case 5: Graybody Model

The Case 5 light curve (Figure 6.14) is characterized by a fairly symmetric shape

and a moderate pulse amplitude. The ideal model uses a spherical neutron star

with graybody emission, and high inclination and low emission angles. It has
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the same ideal parameters as Case 4. The best-fit curve, using the parameters

of Fit 1, is nearly identical to the ideal curve in Figure 6.14.
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Figure 6.14: Case 5: ideal curve (orange solid), Ferret’s best-fit curve (red
dotted), and simulated data (blue) for a spherical neutron star with gray-
body emission, rotating at 581Hz. Ideal parameters: M = 1.5 M⊙, R = 13 km,
i = 60○, θ = 20○, phase shift = 0, χ2 = 44.95. Fit parameters: M = 1.42 M⊙,
R = 11.81 km, i = 23.93○, θ = 53.36○, phase shift = 0.0032, χ2 = 43.78.

6.5.1 Ferret

The Ferret χ2 contour plot (Figure 6.15 top panel) is very sparse. There are a

few small areas that have more clustered individuals on the left, but the ideal

parameters are in the very sparse scattered region on the right. For Fit 1 the

mass is 5.3% from the ideal and the radius is 9.2% from the ideal.

6.5.2 Parameter Degeneracy

For Case 5 Fit 1 the σ contour regions are approximately concentric in a

stretched out, eccentric ellipse shape, with one 1σ region in the middle (Fig-
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Figure 6.15: Case 5: Similar to Figure 6.9. The σ contour levels were calculated
from Fit 1, χ2 = 43.78, which has M = 1.42 M⊙ and R = 11.81 km. The χ2 cut-
offs are 46.07 for 1σ, 49.96 for 2σ, 55.61 for 3σ, 63.12 for 4σ, and 72.52 for 5σ.
The ideal parameters are M = 1.5 M⊙ and R = 13 km with χ2 = 44.95. As seen
in the bottom panel, the ideal solution has a pd σ of 4σ from the best-fit.

ure 6.15 bottom panel). The ideal solution has a pd σ of 4σ, very close to

the 3σ boundary. Numerically, the ideal solution is within 1σ of the best-fit

parameters.
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6.6 Case 6: Oblate Model

The Case 6 light curve (Figure 6.16) is characterized by a symmetric shape and

a moderately low pulse amplitude. The ideal model uses an oblate neutron star

with isotropic emission, and high inclination and low emission angles. It has

the same parameters as Case 4. The best-fit curve, using the parameters of Fit

1, is nearly identical to the ideal curve in Figure 6.16, but the phase is slightly

off.
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Figure 6.16: Case 6: ideal curve (orange solid), Ferret’s best-fit curve (red
dotted), and simulated data (blue) for an oblate neutron star with isotropic
emission, rotating at 581Hz. Ideal parameters: M = 1.5 M⊙, R = 13 km,
i = 60○, θ = 20○, phase shift = 0, χ2 = 55.51. Fit parameters: M = 1.42 M⊙,
R = 13.46 km, i = 55.10○, θ = 21.14○, phase shift = 0.0036, χ2 = 45.16.

6.6.1 Ferret

The Ferret χ2 contour plot (Figure 6.17 top panel) is quite concentrated in

the middle. The contours are approximately nested, with two 1σ minima. The
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ideal parameters fall within the clustered region, at M = 1.5 M⊙ and R = 13 km.

For Fit 1 the mass is 5.3% from the ideal and the radius is 3.5% from the ideal.
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Figure 6.17: Case 6: Similar to Figure 6.9. The σ contour levels were calculated
from Fit 1, χ2 = 45.16, which has M = 1.42 M⊙ and R = 13.46 km. The χ2 cut-
offs are 47.45 for 1σ, 51.34 for 2σ, 56.99 for 3σ, 64.50 for 4σ, and 73.90 for 5σ.
The ideal solution has M = 1.5 M⊙ and R = 13 km with χ2 = 55.51. As seen in
the bottom panel, the ideal solution has a pd σ of 3σ from the best-fit.
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6.6.2 Parameter Degeneracy

For Case 6 Fit 1 there are two distinct sigma regions, and within the larger

one, two distinct 1σ regions (Figure 6.17 bottom panel). The larger region is

reminiscent of a very thick “v”. The ideal solution has a pd σ of 3σ, on the

border of the 2σ region. Numerically, the ideal solution is within 3σ of the

best-fit parameters.

6.7 Case 7: Oblate, Graybody Model

The Case 7 light curve (Figure 6.18) is characterized by a symmetric shape and

a moderately low pulse amplitude. The ideal model uses an oblate neutron star

with graybody emission, and high inclination and low emission angles. It has

the same parameters as Case 4. In future light curve fitting with data we

will also be using the oblate model with graybody emission, as this model is

the most realistic of ours. The best-fit curve, using the parameters of Fit 1,

is nearly indistinguishable from the ideal curve in Figure 6.18, but the phase

shift is slightly off and the pulse amplitude is slightly larger.

6.7.1 Ferret

The Ferret χ2 contour plot (Figure 6.19 top panel) is concentrated in a teardrop

shape, with some outliers scattered out to higher masses and radii. The ideal

parameters are near one of the 1σ minima in the clustered region. For Fit 1

the mass is 1.3% from the ideal and the radius is 2.9% from the ideal.

6.7.2 Parameter Degeneracy

For Case 7 Fit 1 there are two distinct σ regions (Figure 6.19 bottom panel).

The first one is shaped a bit like an upside-down tear drop, with one 1σ region

in the middle. The second σ region only has a small 5σ area. The ideal solution
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Figure 6.18: Case 7: ideal curve (orange solid), Ferret’s best-fit curve (red
dotted), and simulated data (blue) for an oblate neutron star with graybody
emission, rotating at 581Hz. Ideal parameters: M = 1.5 M⊙, R = 13 km,
i = 60○, θ = 20○, phase shift = 0, χ2 = 66.27. Fit parameters: M = 1.48 M⊙,
R = 12.62 km, i = 50.38○, θ = 23.78○, phase shift = 0.0042, χ2 = 61.49.
has a pd σ greater than 5σ (denoted “N/A” in Table 6.3), but it is close to the

5σ edge. Numerically, the ideal solution is within 2σ of the best-fit parameters.

6.8 Case 8: Moderate Doppler Boost

The Case 8 light curve (Figure 6.20) is characterized by a somewhat asymmetric

shape and a moderately high pulse amplitude. The ideal model uses a spherical

neutron star with isotropic emission, and moderate inclination and emission

angles of the same value. The best-fit curve, using the parameters of Fit 2, is

identical to the ideal curve in Figure 6.20.
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Figure 6.19: Case 7: Similar to Figure 6.9. The σ contour levels were calculated
from Fit 1, χ2 = 61.49, which has M = 1.48 M⊙ and R = 12.62 km. The χ2 cut-
offs are 63.78 for 1σ, 67.67 for 2σ, 73.32 for 3σ, 80.83 for 4σ, and 90.23 for 5σ.
The ideal parameters are M = 1.5 M⊙ and R = 13 km with χ2 = 66.27. As seen
in the bottom panel, the ideal solution has a pd σ greater than 5σ from the
best-fit.

6.8.1 Ferret

The Ferret χ2 contour plot (Figure 6.21 top panel) is concentrated at moderate

masses and radii, with some outlying points beyond R ∼ 14 km andM ∼ 1.7 M⊙.
The ideal parameters are comfortably in the 1σ−3σ area in the clustered region.
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Figure 6.20: Case 8: ideal curve (orange solid), Ferret’s best-fit curve (red
dotted), and simulated data (blue) for a spherical neutron star with isotropic
emission, rotating at 581Hz. Ideal parameters: M = 1.5M⊙, R = 13 km,
i = 45○, θ = 45○, phase shift = 0, χ2 = 54.58. Fit parameters: M = 1.52M⊙,
R = 13.04 km, i = 49.23○, θ = 41.27○, phase shift = 0.0002, χ2 = 53.13.
For Fit 2 the mass is 1.3% from the ideal and the radius is 0.3% from the ideal.

6.8.2 Parameter Degeneracy

For Case 8 Fit 2 the σ region looks a bit like a horizontal teardrop, with a little

5σ tail off the top (Figure 6.21 bottom panel). The σ regions are nested on

the top, but approximately line up along the bottom edge. The ideal solution

has a pd σ of 4σ. Numerically, the ideal solution is within 1σ of the best-fit

parameters.
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Figure 6.21: Case 8: Similar to Figure 6.9. The σ contour levels were calculated
from Fit 2, χ2 = 53.13, which has M = 1.52 M⊙ and R = 13.04 km. The χ2 cut-
offs are 55.43 for 1σ, 59.31 for 2σ, 64.96 for 3σ, 72.47 for 4σ, and 81.87 for 5σ.
The ideal parameters are M = 1.5 M⊙ and R = 13 km with χ2 = 53.13. As seen
in the bottom panel, the ideal solution has a pd σ of 4σ from the best-fit.

6.9 Case 9: Symmetric, Moderately Low Am-

plitude

The Case 9 light curve (Figure 6.22) is characterized by a symmetric sinusoidal

shape and a moderately low pulse amplitude. The ideal model uses a spherical
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neutron star with isotropic emission, and very high inclination and low emission

angles. The best-fit curve, using the parameters of Fit 1, is incredibly close to

the ideal curve in Figure 6.22, but the phase shift is slightly off.
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Figure 6.22: Case 9: ideal curve (orange solid), Ferret’s best-fit curve (red
dotted), and simulated data (blue) for a spherical neutron star with isotropic
emission, rotating at 581Hz. Ideal parameters: M = 1.6 M⊙, R = 12 km,
i = 70○, θ = 15○, phase shift = 0, χ2 = 58.45. Fit parameters: M = 1.66 M⊙,
R = 12.66 km, i = 73.66○, θ = 13.66○, phase shift = 0.9966, χ2 = 58.80. This is
the only case where the Ferret fit χ2 is higher than the ideal χ2.

6.9.1 Ferret

The Ferret χ2 contour plot (Figure 6.23 top panel) is very sparse and scattered,

with a few small clustered areas. The ideal parameter set does not appear to

be close to other parameter sets. Also note that this is the only case in which

all three of Ferret’s best-fit χ2 values were higher than the ideal χ2 (see Table

6.3). For Fit 1 the mass is 3.8% from the ideal and the radius is 5.5% from the

ideal.

111



 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 10  11  12  13  14  15  16

M
as

s 
(M

su
n
)

Radius (km)

5σ

4σ

3σ

2σ

1σ

Ideal

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 10  11  12  13  14  15  16

M
as

s 
(M

su
n
)

Radius (km)

5σ

4σ

3σ

2σ

1σ

Ideal

Figure 6.23: Case 9: Similar to Figure 6.9. The σ contour levels were calculated
from Fit 1, χ2 = 58.80, which has M = 1.66 M⊙ and R = 12.66 km. The χ2 cut-
offs are 61.10 for 1σ, 64.98 for 2σ, 70.63 for 3σ, 78.14 for 4σ, and 87.54 for 5σ.
The ideal parameters are M = 1.6 M⊙ and R = 12 km with χ2 = 58.45. This is
the only case where the Ferret fit χ2 is higher than the ideal χ2. As seen in the
bottom panel, the ideal solution has a pd σ of 2σ from the best-fit.

6.9.2 Parameter Degeneracy

For Case 9 Fit 1 the large σ region spans all of the allowed radii, and has nested

σ regions (Figure 6.23 bottom panel). The ideal solution has a pd σ of 2σ, close

to the 1σ border. Numerically, the ideal solution is within 1σ of the best-fit
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parameters.

6.10 Case 10: Fiducial, High Noise

The Case 10 light curve (Figure 6.24) is characterized by noisy data for a sym-

metric sinusoidal shape with a low pulse amplitude. The ideal model uses a

spherical neutron star with isotropic emission, and low inclination and high

emission angles. This has the same parameters as Case 1 but with noisy simu-

lated data and large error bars. The best-fit curve, using the parameters of Fit

2, is distinguishable from the ideal curve in Figure 6.24. The pulse amplitude

of the fit curve is a bit less than that of the ideal curve, but the phase shift

appears to be correct.
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Figure 6.24: Case 10: ideal curve (orange solid), Ferret’s best-fit curve (red
dotted), and simulated data (blue) for a spherical neutron star with isotropic
emission, rotating at 581Hz. Ideal parameters: M = 1.6 M⊙, R = 12 km,
i = 10○, θ = 60○, phase shift = 0, χ2 = 71.99. Fit parameters: M = 1.75 M⊙,
R = 11.33 km, i = 68.70○, θ = 9.32○, phase shift = 0.9962, χ2 = 66.78.
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6.10.1 Ferret

The Ferret χ2 contour plot (Figure 6.25 top panel) shows a very large concentric

contour region. The ideal parameters are well within the 1σ area. For Fit 2

the mass is 9.4% from the ideal and the radius is 5.6% from the ideal.
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Figure 6.25: Case 10: Similar to Figure 6.9. The σ contour levels were calcu-
lated from Fit 2, χ2 = 66.78, which has M = 1.75 M⊙ and R = 11.33 km. The χ2

cut-offs are 69.07 for 1σ, 72.96 for 2σ, 78.61 for 3σ, 86.12 for 4σ, and 95.52 for
5σ. The ideal parameters are M = 1.6 M⊙ and R = 12 km with χ2 = 71.99. As
seen in the bottom panel, the ideal solution has a pd σ of 1σ from the best-fit.
Note that the y-axis extends up to 3 M⊙ to fit the key for this plot.
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6.10.2 Parameter Degeneracy

For Case 10 Fit 2 the σ contour area is massive (Figure 6.25 bottom panel).

The diagonal cutoff line on top is from eliminating non-physical parameter

sets, and the abrupt cut-offs in mass and radius come from only allowing a

range of ±25% in mass and radius for analysis in param degen. There is no

visible 5σ region, likely due to the stacked points, where another parameter

configuration with the same mass and radius yielded a lower χ2 fit. The ideal

solution has a pd σ of 1σ. Numerically, the ideal solution is within 2σ of the

best-fit parameters.

6.11 Discussion and Summary

Overall, Ferret is able to fit the simulated data light curves well. The best

accuracies in mass, at < 1% error, are for Case 2 Fit 1 and Case 2 Fit 3; the

best accuracy in radius, at < 1% error, is for Case 8 Fit 2. Both Case 2 and

Case 8 have low noise with small error bars, and moderate-to-strong Doppler

effects. We propose that this detectable asymmetry in the light curve allows for

such accurate fits, and for fitting observed light curve data we suggest the most

accurate constraints will come from asymmetric curves. However the cause of

this is not entirely clear. It was hypothesized that the more abrupt rise time

seems to make the phase shifts line up better, since phase shift is the most

sensitive parameter of the five. For example, a 5% deviation in phase shift will

yield a much larger ∆χ2 than a 5% deviation in mass, radius, inclination angle,

or emission angle. As evident in Table 6.4, Case 2 does have the most sensitive

phase shift deviation but Case 8 is not notably sensitive to phase shift, so this

hypothesis does not have conclusive proof. Determining why asymmetry allows

for better fits requires further investigation.

In addition, we see that the ideal parameter set is at most within the nu-

merical 3σ range, as computed using ∆χ2. Our goal in computing the pd σ is
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Case ∆ps for 1σ ∆ps for 2σ

1 0.00146 0.00188
2 0.0000474 0.000111
3 0.00590 0.00862
4 0.000200 0.000400
5 0.000236 0.000392
6 0.00123 0.00144
7 0.000220 0.000416
8 0.000260 0.000385
9 0.000537 0.000799
10 0.00243 0.00527

Table 6.4: Sensitivity of χ2 to deviations in phase shift for each case. Each
phase shift discrepancy (∆ps) was found by using the ideal parameters for each
case, comparing with the simulated data, and then adjusting phase shift until
the light curve gave a ∆χ2 closest to ∆χ2 = 2.295 for 1σ and ∆χ2 = 6.180 for
2σ.

so that after adjustments to param degen, the numerical σ is the same as pd σ

for a simulated data set, and thus we will be able to give accurate mass and

radius constraints out to different σ confidence contours. For these reasons,

in the future when Ferret finds the best-fit parameters for a set of data, we

feel it is safe to assume that the true mass and radius value is within the 3σ

confidence region, as indicated by the numerical σ.

We also want to look at how degeneracies scale with noise. As shown in

Table 6.3, the largest percent discrepancy of the best-fit mass and radius with

the ideal mass and radius are 10.7% (Case 4 Fit 2) and 14.4% (Case 1 Fit 4),

respectively, for data sets with low noise. Cases 1 and 4 have moderately low

pulse amplitudes and appear very symmetric. It is likely that this symmetry

allows for more parameter degeneracies, which yields a larger percent error. Of

the high noise cases, the largest percent discrepancy in mass is 27.9% for Case

3 Fit 1, and the largest percent discrepancy in radius is 14.0% for Case 10 Fit

1. Cases 3 and 10 are the only two noisy curves. Case 3 has a very low pulse

amplitude, which is a possible explanation as to why the percent discrepancy

in mass was so high, since the Case 10 mass error was comparable to the low

116



noise cases. And yet, the Case 3 percent discrepancy in radius is comparable

to Case 10 and the low noise cases, so there is not yet a definitive reason as

to what allowed for such a high mass discrepancy for Case 3. The high noise

cases require more analysis to draw strong conclusions.

We notice that the best-fit’s χ2 is lower than the ideal χ2 fit with the

simulated data, and moreover, the worse fits of the Ferret runs are those with

a χ2 closer to the ideal χ2. This likely comes from the Poisson statistics, used

to noisify our simulated data, shifting the light curve by some net amount.

However, it is potentially problematic: it implies that if we treat the ideal

parameters as the true values of the neutron star, then the code presently is

not able to determine the correct parameters.

Case 9 is the exception to the lower χ2 problem: the best-fit χ2 values are

always higher than the ideal, even if only by a fraction. There is nothing that

stands out about the Case 9 light curve in the low or high energy band that

could explain this. It is presently unclear what the implications of this are.

It is also possible that adjusting the Ferret setup parameters and allowing for

more generations in a run will eliminate this problem.

Nevertheless, the fairly low percent error in mass and radius for the low

noise cases is encouraging. We are collaborating more closely with J. D. Fiege

in setting up the Ferret evolution parameters to yield better fits, and we are

anticipating publishing the results of this further analysis.

One key observation that arises is that the param degen σ contours and the

numerical σ generally are not the same. For example, in Case 7 Fit 1, the ideal

does not appear to be within 5σ from param degen, but numerically it is within

2σ of the Ferret best-fit. This is probably due to the param degen algorithm not

being as thorough or nuanced as possible, and thus not accurately representing

the σ boundaries in mass-radius space. We allow for some tolerance in A and

B (equations (5.1.2) and (5.1.3)), as well as letting vary the mass, radius,

inclination angle, and emission angle, but the one parameter not given any
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leeway is the phase shift. While allowing it to vary will make the algorithm more

computationally expensive, a small tolerance in phase shift with a moderately

fine mesh may drastically improve the accuracy of the constraints.

The instances where the numerical σ is higher than the param degen σ,

in Case 1 and Case 10, are most confusing. These two cases have the same

parameters and characteristics, with their only difference being noise levels in

the simulated data, and they are the only two cases to exhibit this σ behaviour.

It is possible that this effect may be due to an oversight in the param degen

algorithm, or may consistently arise from symmetric light curves with low pulse

amplitudes, but the precise origin of this circumstance is unknown.

Furthermore, the param degen algorithm currently does not have a way

to account for graybody emission or oblateness in computing A and B. This

makes the approximation much less precise. As seen in Figure 6.26, graybody

and oblateness can distinctly change the light curve. For the given parameter

set, graybody emission increases the pulse amplitude and causes the curve to

peak a little later, whereas oblateness decreases the pulse amplitude, which

makes it peak a little sooner in the normalized phase. When these two effects

combine, as in the Case 7 curve, they appear to cancel, and so Case 4 and

Case 7 are comparatively close. It also appears that, to first order, graybody

emission and oblateness only affect pulse amplitude and not Doppler boosting,

so we may only need to adjust A when improving the param degen algorithm.

Allowing a tolerance in phase shift and accounting for graybody emission

and oblateness in A and B probably will produce noticeable improvements

in the mass and radius constraints that param degen is able to make. We

recommend directly computing the pulse amplitude — it is slightly more com-

putationally expensive than the current approximation, but will give better

results. Some tolerance in phase shift will likely give a larger σ area, which will

not constrain the mass and radius fits of a neutron star as tightly, but we will

be very confident in the constraints we will be able to provide.
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Figure 6.26: Ideal light curves for Cases 4, 5, 6, and 7, which have the same
parameters: M = 1.5 M⊙, R = 13 km, i = 60○, θ = 20○, phase shift = 0. As noted
in the key, Case 4 (red solid) is a spherical neutron star with isotropic emis-
sion (S, I), Case 5 (orange dashed) is a spherical neutron star with graybody
emission (S, G), Case 6 (blue dotted) is an oblate neutron star with isotropic
emission (O, I), and Case 7 (magenta dash-dotted) is an oblate neutron star
with graybody emission (O, G). We notice that for these parameters, graybody
increases the pulse amplitude and oblateness decreases the pulse amplitude.
These effects combine in the Case 7 light curve, so that the spherical isotropic
model is comparatively close to the oblate graybody model.

For running with real data, we will use an oblate neutron star model with

graybody emission such as in Case 7. While the best-fit does not currently

include the ideal parameters within a pd σ of 5σ, the ideal is numerically

within 2σ of all three fits so it is likely that with improvements to param degen

we will see more accurate mass and radius predictions and constraints.

In comparison with Lo et al. 2013 [39], we agree with their conclusion that

systems with both a high inclination angle and high emission angle allow for

tighter constraints on the predicted parameters, likely because these systems
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have more Doppler boosting present in the light curves. Additionally, our find-

ings do not disagree with their conclusion that low inclination angles and/or

low emission angles yield light curves that are more difficult to fit with the

correct parameters. The authors do not present the light curves for each of

their models, so we are unable to directly compare light curve shapes with the

constraints obtained.

Our results, as well as those published in the literature, substantiate the claim

that parameter degeneracies are not due to the fitting method used, but are

inherent in the problem of light curve fitting itself. Understanding the extent

of these degeneracies is key to correctly interpreting the parameter constraints

obtained from observed data.
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Chapter 7

Conclusion

Determining the equation of state of supra-nuclear density cold matter is the

holy grail of neutron star physics. The scientific community aims to do this

by accurately and precisely measuring the masses and radii of a number of

neutron stars. While other methods have yielded some advances in this (see

Bhattacharyya 2010 [25] and Özel 2013 [90]), we presented a fitting procedure

using our neutron star light curve model, which inputs the parameters of a

neutron star and emitting hotspot region and outputs the observed light curve.

Our fitting procedure has two parts: the Ferret genetic algorithm, which

fits the light curve data with our models using the “survival of the fittest” idea,

and a parameter degeneracy constraint algorithm, which finds other parameter

sets with the same light curve pulse amplitude and asymmetry as the best-fit

from Ferret and plots them in mass-radius space so that we can determine the

acceptable range of masses and radii within a given precision.

We implemented our fitting procedure by running through with ten cases

of simulated data. Eight cases had low noise, comparable to the projected

detection statistics for LOFT, and two cases had high noise, comparable to

the detection statistics for RXTE. The fitting results show that we are able to

accurately predict the mass of a neutron star to within at most 10.7% for low

noise cases, and at most 27.9% for high noise cases; we are able to accurately
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predict the radius of a neutron star to within at most 14.4% for low noise cases,

and at most 14.0% for high noise cases. The χ2 of the best-fit compared to the

simulated data is within no more than 3σ from the χ2 of the ideal parameter

set compared with the simulated data. With improvements to the secondary

parameter degeneracy algorithm, we are confident that we will be able to give

appropriate mass and radius constraints for a data set based on the best-fit

parameters from Ferret.

7.1 Future Research

Areas for future research include:

• Optimizing the FerretSetup parameters. We are currently in close collab-

oration with J. D. Fiege to ensure that the setup parameters are ideally

suited to combat our parameter degeneracies, and we anticipate publish-

ing the fitting results of this second round of analysis.

• Allowing some tolerance in the phase shift in the param degen algorithm.

• Allowing the Spot code to model light curves from neutron stars with two

non-antipodal hotspots.

• Determining if all oblate models give two separate σ contour regions in

the parameter degeneracy plots as in the bottom panel in Figures 6.17

and 6.19.

• Determining whether the oblate neutron star light curve properties “can-

cel out” with the graybody emission light curve properties (as in Figure

6.26) for all parameter sets.

• Accommodating the simultaneous fitting of more energy bands, to incor-

porate some amount of spectral fitting.
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• Looking at the effects of Poisson noise on the fits with multiple tests (each

with different Poisson noise) of the same ideal light curve.

• Applying the Ferret genetic algorithm and the param degen secondary

algorithm to actual data from Type I X-ray bursts. Asymmetric light

curves are preferable.

• Accounting for known parameter constraints and approximations for Type

I X-ray burst sources. For example, if the inclination angle is approxi-

mately known for a system or if we have a mass approximation, this can

be factored in to the Ferret genetic algorithm, and it may help to break

some of the parameter degeneracies.

• Developing a Kerr metric approximation for an oblate neutron star, as

suggested by Cadeau et al. 2007 [58].

With improvements like these, coupled with precise light curve measure-

ments from a next-generation X-ray timing mission, we will be able to place

constraints on the masses and radii of neutron stars to help deduce the equation

of state for cold ultra-dense matter.
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Appendix A

This appendix shows a hotspot temperature mesh to create a “tall” hotspot

shape, as described in Section 3.4. Each value shown in the table is the tem-

perature value for that cell over the hotspot. A kT temperature of 0 keV treats

that cell as a non-emitting background, and a non-zero temperature treats that

cell as an emitting region.

0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0

Table A.1: A 15×15 temperature mesh for a hotspot with ρ = 15○, so that each
cell shown here is 2○ in diameter. See Figure 3.3 for approximate cell shapes.
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