
University of Alberta

A CONTEXTUAL APPROACH TOWARDS MORE ACCURATE DUPLICATE BUG
REPORT DETECTION

by

Anahita Alipour

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

c©Anahita Alipour
Fall 2013

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of
this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only.

Where the thesis is converted to, or otherwise made available in digital form, the University of
Alberta will advise potential users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the
thesis, and except as herein before provided, neither the thesis nor any substantial portion thereof
may be printed or otherwise reproduced in any material form whatever without the author’s prior

written permission.



Abstract

The issue-tracking systems used by software projects contain issues or bugs written by a

wide variety of bug reporters, with different levels of knowledge about the system under

development. Typically, reporters lack the skills and/or time to search the issue-tracking

system for similar issues already reported. Hence, many reports end up referring to the

same issue, which effectively makes the bug-report triaging process time consuming and

error prone.

Many researchers have approached the bug-deduplication problem using off-the-shelf

information-retrieval tools. In this thesis, we extend the state of the art by investigating how

contextual information about software-quality attributes, software-architecture terms, and

system-development topics can be exploited to improve bug-deduplication. We demonstrate

the effectiveness of our contextual bug-deduplication method on the bug repository of An-

droid, Eclipse, Mozilla, and OpenOffice Software Systems. Based on this experience, we

conclude that researchers should not ignore the context of the software engineering domain

for deduplication.
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Chapter 1

Introduction

As new software systems are getting larger and more complex every day, software bugs

are an inevitable phenomenon. Software development is an evolutionary process where

after the first release, bug report submissions by the users and testers come through. Bugs

arise during different phases of software development, from inception to transition. They

occur for a variety of reasons, ranging from ill-defined specifications, to carelessness, to a

programmers misunderstanding of the problem, technical issues, non-functional qualities,

corner cases, etc. [37, 21]. Also, software bugs are considerably expensive. Existing

research indicates that software bugs cost United States, billions of dollars per year [55, 56].

Recognizing bugs as a “fact of life”, many software projects provide methods for users

to report bugs, and to store these bug/issue reports in a bug-tracker (or issue-tracking) sys-

tem. The issue-tracking systems like Bugzilla [50] and Google’s issue-tracker [5] enable the

users and testers to report their findings in a unified environment. These systems enable the

reporters to specify a set of features for the bug reports, such as the type of the bug report

(defect or feature request), the component in the system the report belongs to, the prod-

uct the report is about, etc. Then, the developers will select the reported bugs considering

some of their features. The selected bug reports are handled with respect to their priority

and eventually closed. The issue-tracking systems also provide users with the facility of

tracking the status of bug reports.

Addressing bug reports frequently accounts for the majority of effort spent in the main-

tenance phase of a software project’s life-cycle. This is why, researchers have been trying

to enhance the bug-tracking systems to facilitate the bug-fixing process [27, 8].

On the other hand, these advantages come with a notable drawback. According to the

large number of users of the software systems, defect reporting process is not very sys-

tematic. As a result, the users may report defects that already exist in the bug-tracking
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system. These bug reports are called “duplicates”. The word duplicate may also represent

the bug reports referring to different bugs in the system that are caused by the same software

defect. Researchers have addressed several reasons for duplicate bug reports [8]: inexperi-

enced users, poor search feature of bug-trackers, and intentional/accidental re-submissions

for reporting duplicate bugs, etc.

Hence, there is always need for inspection to detect whether a newly reported defect

has been reported before. If the incoming report is a new bug, then it should be assigned to

the responsible developer and if the bug report is a duplicate, the report will be classified

as a duplicate and attached to the original “master” report. This process is referred to as

triaging.

1.1 Bug Deduplication

Identifying duplicate bug reports is of great importance since it can save time and effort

of developers. Recently, many researchers like Bettenburg et al. [8] have focused on this

problem. Here are some of the important motivations for detecting duplicate bug reports:

• Duplicate bug reports may be assigned to different developers by mistake which re-

sults in wasting developers’ time and effort.

• In addition, when a bug report gets fixed, addressing the duplicates as independent

defects is a waste of time.

• Finally, identifying duplicate bug reports can also be helpful in fixing the bugs, since

some of the bug reports may provide more useful descriptions than their duplicates [8]

Currently, detecting duplicate bug reports is usually done manually by the triagers.

When the number of daily reported bugs for a popular software is taken into considera-

tion, manually triaging takes a significant amount of time and the results are unlikely to be

complete. For instance, in Eclipse, two person-hours are daily being spent on bug triag-

ing [3]. Also, Mozilla reported in 2005 that “everyday, almost 300 bugs appear that need

triaging” [2].

A number of studies have attempted to address this issue by automating bug-report

deduplication. To that end, various bug-report similarity measurements have been proposed,

concentrating primarily on the textual features of the bug reports, and utilizing natural-

language processing (NLP) techniques to do textual comparison [53, 46, 22, 36, 54]. Some
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of these studies also exploit categorical features extracted from the basic properties of the

bug reports (i.e. component, version, priority, etc.) [52, 26].

Some of these studies result in a method that automatically filters duplicate reports from

reaching triagers [26]. While, some other techniques provide a list of similar bug reports

to each incoming report. Accordingly, rather than checking against the entire collection of

bug reports the triager could first inspect the top-k most similar bug reports returned by this

method [59, 54, 52].

1.2 Contributions

In this work, we introduce a new approach for improving the accuracy of detecting duplicate

bug reports of a software system. For the purpose of bug report similarity measurement, we

make use of textual and categorical features of the bug reports as well as their contextual

characteristics. In terms of automating the triaging process, our approach provides the

triagers with a list of the most similar bug reports (sorted based on a similarity measurement

method) to every incoming report. So, the triagers can make the final decision about the

actual duplicates.

Our approach exploits domain knowledge, about the software-engineering process in

general and the system specifically, to improve bug-report deduplication. Essentially, rather

than naively and exclusively applying information-retrieval (IR) tools, we propose to take

advantage of our knowledge of the software process and product. Intuitively, we hypoth-

esize that bug reports are likely to refer to software qualities, i.e., non-functional require-

ments (possibly being desired but not met), or software functionalities (linked to architec-

tural components responsible for implementing them). Thus, we utilize a few software dic-

tionaries and word lists representing software functional and non-functional requirements

contexts, exploited by prior research, to extract the context implicit in each bug report.

To that end, we compare the bug reports to the contextual word lists and we record the

comparison results as new features for the bug reports, in addition to the primitive textual

and categorical features of the bug reports such as description, component, type, priority,

etc. Then, we utilize this extended set of bug-report features to compare the bug reports

and detect duplicates. Through our experiments, we demonstrate that the use of contextual

features improves bug-deduplication performance. Also, we investigate the effect of the

number of added features on bug-deduplication. Finally, we propose a set of most similar

reports for each incoming bug report to assist the tiragers in identifying the duplicates.
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We apply our approach on four large bug repositories from the Android, Eclipse, Mozilla,

and OpenOffice projects. In this research, we are taking advantage of five different contex-

tual word lists to study the effect of various software engineering contexts on the accuracy of

duplicate bug-report detection. These word lists include: architectural words [19], software

Non-Functional Requirements words [24], topic words extracted applying Latent Dirichlet

Allocation (LDA) method [20], topic words extracted by Labeled-LDA method [20], and

random English dictionary words (as a control).

To evaluate our approach, several well-known machine-learning classifiers are applied.

To validate the retrieval approach we employed 10-fold cross validation. We indicate that

our method results in up to 11.5% and 41/% relative improvements in accuracy and Kappa

measures respectively (over the Sun et al.’s work [52]). Additionally, we take advantage

of another evaluation method called Mean Average Precision (MAP) measure to assess the

quality of the list of the most similar bug reports returned by our approach.

This work makes the following contributions:

1. We propose the use of domain knowledge about the software process and products

to improve the bug-deduplication performance. The previous studies in this area

either focus on the textual [46], categorical, stack trace data [59], or a combination

of them [26] but not the context of the bug reports. We systematically investigate

the effect of considering different contextual features on the accuracy of bug-report

deduplication (by exploiting variant sets of contextual and non-contextual features in

our experiments).

2. We posit a new evaluation methodology for bug-report deduplication (by applying

the machine learning classifiers), that improves the methodology of Sun et al. [52] by

considering true-negative duplicate cases as well.

3. We demonstrate that our contextual similarity measurement approach was able to

improve the accuracy of duplicate bug-report detection by up to 11.5%, the Kappa

measure by up to 41%, and the AUC measure by up to 16.8% over the Sun et al.’s

method [52] that only makes use of textual and categorical features when comparing

the bug reports.

4. Finally, we propose some new bug report similarity criteria based on the REP function

introduced by Sun et al. [52] and the factors generated by the logistic regression

classification algorithm. As a result, we suggest a list of the most similar bug reports
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for each incoming report. We show that this criteria succeeded to improve the quality

of the list of candidate duplicates and consequently the MAP measure by 7.8-9.5%

over Sun et al.’s approach [52].

1.3 Outline

The rest of this thesis is organized as follows. Chapter 2 presents an overview of the related

work. We discuss the frequently used IR techniques in the area of software engineering. We

outline some of the software engineering challenges in which IR techniques are commonly

applied as of writing this thesis. Moreover, we address the existing research concentrating

on the issue of detecting duplicate bug reports. Finally, we briefly discuss some other

studies on the bug reports that could potentially result in facilitating the bug report triaging

and duplicate report detection processes.

Chapter 3 provides detailed information about the data-sets exploited in our experi-

ments. These data-sets include the bug reports from the bug repositories utilized in this

study as well as the contextual word collections adapted from other existing studies.

In Chapter 4 we discuss our approach for detecting duplicate bug reports. In this Chap-

ter, firstly, we explain our data preprocessing method. Secondly, we describe the textual

and categorical similarity measurements we benefit from in this study. Thirdly, we explain

our contextual similarity measurement method. Then, we present two different duplicate

bug report retrieval techniques applied in our work. Finally, we discuss the evaluation tech-

niques exploited in this thesis.

In Chapter 5, we report the results of our experiments on four different real world bug

repositories including Android, Eclipse, Mozilla, and OpenOffice bug reports. Then, we

analyze and discuss these results as well as the treats to validity of our approach.

Finally, we conclude in Chapter 6, summarizing the substantial points and contributions

made in this thesis and propose some potential future work.
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Chapter 2

Related Work

In this Chapter we outline the research literature related to this thesis which is organized in

two sections. First, we review the Information Retrieval (IR) techniques and the cases of

application of these techniques in software engineering challenges. Then, we discuss the

existing work on the automation of the bug report deduplication process and some other

bug report related studies which could help in this process.

2.1 Information Retrieval (IR) Techniques

Information retrieval is the activity of obtaining the needed information from a collection

of information resources. IR techniques are applied on a broad spectrum of different scopes

from image retrieval to web search. Here, we indicate some of the most frequently used IR

techniques.

Vector Space Model (VSM) is one of the tools exploited repeatedly in information re-

trieval. This model is a mathematical representation of text documents introduced by Salton

et al. [48]. This model is commonly utilized for the purpose of comparing textual queries

or documents. One of the outstanding methods of forming a weight-vector out of a text is

the Term Frequency-Inverse Document Frequency (TF-IDF) [47]. TF-IDF is a weighting

factor which denotes how important a word is to a document in a repository of documents.

The basic formulas for the TF-IDF are as follows:

tf(t, d) = 0.5 +
0.5 ∗ f(t.d)

max{f(w, d) : w ∈ d}
(2.1)

idf(t,D) = log
|D|

|{d : D : t ∈ d}|
(2.2)

tf − ifd(t, d,D) = tf(t, d) ∗ idf(t,D) (2.3)
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Where f(t, d) is the frequency of the term t in the document d. While, idf(t,D) shows

if the term t is common across the documents. The idf(t,D) divides the total number of

the documents by the number of documents containing term t.

To compare the resulting weighted vectors, several methods are proposed such as Jac-

card and cosine similarity [47]. There are also plenty of other information retrieval tech-

niques. We explain some of the commonly-used ones as follows.

Robertson et al. [45] have introduced a probabilistic retrieval model called BM25 in-

cluding the following variables: within-document term frequency, document length, and

within-query term frequency. This approach has shown remarkable improvement in perfor-

mance. Later, Robertson et al. [44] have extended this approach by adding the calculation

of combination of term frequencies prior to the weighting phase. This extension has made

the BM25 retrieval method more simple and interpretable with more computation speed

and higher performance.

Ganter et al. [17] have proposed the Formal Concept Analysis (FCA) technique which

is a method of deriving a concept hierarchy from a set of objects and their characteristics.

Additionally, Dumais et al. [15] have proposed a generative probabilistic model for sets

of discrete data called Latent Semantic Indexing (LSI). This method aims to identify pat-

terns in the relationship between the words and concepts included in a collection of text

documents. Moreover, Blei et al. [11] have presented Latent Dirichlet Allocation (LDA)

which is a generative model for documents in which each document is related to a group

of topics. The authors presented a convexity-based variational approach for inference and

demonstrated that it is a fast algorithm with reasonable performance.

2.1.1 IR in Software Engineering

Information retrieval techniques are frequently applied to resolve the software engineering

problems. These techniques pertain to the maintenance and evolution phases of the software

life-cycle. These techniques are exploited for variant issues including feature/concept loca-

tion, fault prediction, developer identification, comprehension, impact analysis, traceability

links, and refactoring [9]. Here we outline some of the existing research in this area.

Aversano et al. [4] have proposed a method to predict bug-introducing changes using

machine learners. In this approach, the software changes are represented as elements of an

n-dimensional space that can be used as a feature vector to train a classifier. Also, Zhao

et al. [60] have presented a static and non-interactive approach to locate features. Their

method combines the vector space information retrieval model and static program analysis.
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Maletic et al. [32] introduce a system called PROCSSI using LSI to identify semantic

similarities between pieces of source code. The result is employed to cluster the software

components. The authors present a model encompassing structural information to assist in

the code comprehension task. Regarding the problem of comprehension, Kuhn et al. [28]

have applied LSI to calculate the similarity among the software artifacts and then clustered

them. These clusters assist the developers to get familiar with the system at hand within

a reasonable amount of time. In addition, Marcus et al. [33] have used LSI to map the

concepts expressed by the programmers (in queries) to the relevant parts in the source code.

Their method is built upon finding semantic similarities between the queries and modules

of the software.

Maskeri et al. [34] have applied LDA in the context of comprehension and extracted

topics from the source code. Besides, Hindle et al. [23] have proposed and implemented

a labeled topic extraction method based on labeling the extracted topics (from commit log

repositories) using non-functional requirement concepts. Hindle et al.’s method is based

on LDA topic extraction technique. They have selected the non-functional requirements

concept as they believe these concepts apply across many software systems. Additionally,

Poshyvanyk et al. [40] have applied the FCA, LSI, and LDA techniques in order to locate

the concepts in the source code. They have also defined some novel IR based metrics

(exploiting LSI) to measure the conceptual coupling of the classes in the object oriented

programs [41]. This method is based on the textual information shared between the modules

of the source code.

2.2 Bug Report Deduplication

According to the necessity of automating the duplicate bug report detection process, several

researchers have studied this issue. Almost, all of the existing studies in this scope benefit

from IR techniques; and each one is trying to improve the state-of-the-art. The bug report

deduplication approaches reviewed in this section could be divided into four groups. These

groups are illustrated in Table 2.1.

2.2.1 Approaches Applying IR Techniques Exclusively

Runeson et al. [46] have presented a method in which only the natural language processing

techniques are utilized to identify duplicate bug reports. In this approach, after processing

the textual features of bug reports (tokenizing, stemming, and stop words removal), the bug

reports are converted into weight vectors using the following weighting formula for each
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Table 2.1: Related Literature on Detecting Duplicate Bug Reports

Author Comparison technique Retrieval Tech-
nique

Evaluation

Runeson
et al. [46]

applying vector space model
and cosine similarity met-
ric. similarity metric consid-
ering the time frames

list of candidate
duplicates

recall rate

Sun et
al. [53]

applying SVM to predict
duplicates based on textual
comparison metrics

list of candidate
duplicates

recall rate

Approaches
Applying
IR Tech-
niques
Exclusively

Nagwani
et al. [36]

applying vector space model
and cosine similarity metric
to specify duplicates based
on a specific threshold

automatic filter-
ing

recall and pre-
cision

Sureka et
al. [54]

constructing the character n-
grams of description and ti-
tle of the reports and com-
paring them based on the
number of shared character
n-grams

list of candidate
duplicates

recall rate

Hiew [22] applying vector space
model, cosine similarity
metric, and clustering to
identify duplicates based on
a specific threshold

list of candidate
duplicates

recall and pre-
cision

Stack
Traces
based Ap-
proaches

Wang et
al. [59]

comparing bug reports tex-
tually using TF-IDF and co-
sine similarity metrics as
well as execution informa-
tion and combining these
metrics

list of candidate
duplicates

recall rate

Textual
and Cat-
egorical
Similarity
based Ap-
proaches.

Jalbert et
al. [26]

applying vector space
model, cosine similarity
metric, using surface fea-
tures, and clustering the bug
reports

list of candidate
duplicates

recall rate and
Area Under
the ROC
Curve (AUC)

Sun et
al. [52]

applying a set of 7 compar-
isons including BM25F and
categorical similarity met-
rics

list of candidate
duplicates

recall rate
and Mean
Reciprocal
Rank (MRR)

Topic
Model [10]
based Ap-
proaches

Nguyen et
al. [38]

applying BM25F, and LDA
based topic extraction simi-
larity metric and combining
the metrics using Ensembled
Averaging

list of candidate
duplicates

recall rate

term: weight = 1 + log(frequency) in which frequeny is the frequency of the term

in a document. For comparing two bug reports, the cosine similarity metric is applied.

Furthermore, the authors have considered the time frames when comparing the bug reports.
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To retrieve the duplicates, a few top similar reports to any incoming bug report are pro-

vided to the triager to make the final decision about the actual duplicates. The authors have

performed their experiments on defects from Sony Ericsson software project. Although

this method was able to identify only 40% of duplicate reports, they have ended up with

the conclusion that 2/3 of the duplicates can possibly be found using the NLP techniques.

Also, the authors have interviewed a tester and a team of analysts that have utilized this

technique as an implemented tool. As reported by the authors, all of the interviewees had

found this tool helpful and time-saving.

Nagwani et al. [36] have proposed an object oriented similarity measurement method

to identify duplicate and similar bug reports. The authors call the two bug reports “sim-

ilar” when the same implementation resolves both of them. In contrast, they call two

bug reports “duplicate” when they report the same problem in different sentences. In

this approach, each bug report object includes 3 main features (summary, description,

and comments). They suggest the weight of these properties for a given bug report as

W = X ∗ Ssummary + Y ∗ Sdescription + Z ∗ Scomments where W represents the weight

of the bug report; and Ssummary, Sdescription, and Scomments denote the similarity mea-

sure for the summary, description, and comments. X , Y , and Z are the weights for the

preceding features respectively. After converting a bug report to an object, these weights

are calculated and the textual weighted similarity functions are applied on these objects.

Consequently, based on some predefined thresholds, the similar and duplicate bug reports

are identified. If the similarity thresholds for all the features (description, summary, and

comments) are met for two particular bug reports, the authors call them duplicates. If some

of the thresholds are satisfied, the bug reports are classified as similar.

Hiew et al. [22] have proposed a model of existing bug reports in the repository and a

method in which incoming bug reports are compared to the existing ones textually. Apply-

ing this method, some of the incoming bug reports are recognized as duplicates and sent

to triager who should make the final decision about them. In this approach, any incoming

report is converted to a weight vector in which the terms are weighted exploiting TF-IDF

technique. Then, the weight vectors are compared to the centroid in the above mentioned

model, utilizing the cosine similarity metric. If the result of these comparisons exceed a spe-

cific threshold, the incoming report is classified as a duplicate. Finally, the existing clusters

and centroids are updated when the incoming bug reports are added to the repository.

The experiments are performed on a subset of the bug reports from Firefox, Eclipse,

Apache, and Fedora software projects. This approach has achieved the best results for the
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Firefox bug repository for which 29% precision and 50% recall is acquired. The authors

have also conducted a study, taking advantage of human participants as triagers applying

the above-mentioned approach. This experiment resulted in detecting duplicate bug reports

more accurately within less amount of time in comparison to the case of absence of this

method.

Sureka et al. [54] have proposed a method exclusively utilizing textual features of the

bug reports. Like some of the above mentioned approaches, this method provides the

triager with the top-N similar existing bug reports to a specific report. Then, the triager

makes the final decision. The main novelty in this approach is exploiting the character-level

representations versus word-level ones. The authors count several advantages for using n-

grams1 [16] over the word-level text mining as follows: low-level text mining is language

independent so is more portable across languages; utilizing n-grams is more useful for an-

alyzing noisy text; n-grams are able to match concepts from system messages; n-grams are

able to extract super-word features; This method can handle misspelled words; this method

is able to match short-forms with their expanded form; the n-gram-based approach is able to

match term variations to a common root; this approach is able to match hyphenated phrases.

In this approach, first, the character n-grams of size 4 to 10 of the description and title of

the two bug reports under investigation are extracted. Then, the overall similarity score be-

tween the two bug reports is calculated based on the following parameter: number of shared

character n-grams between the two bug reports; number of the character n-grams extracted

from the title of one bug report present in the description of the other one. This technique is

applied on some Mozilla and Eclipse bug reports. According to what the authors reported,

this method could achieve 34% recall for the top-50 results for 1100 randomly selected test

cases.

Sun et al. [53] have proposed a novel text-based similarity measurement method to

detect duplicate bug reports. In their approach, first, the bug reports are processed using IR

techniques including tokenizing, stemming, and stop words removal. Then, the duplicate

bug reports are organized in buckets. A bucket is a data structure including one master bug

report and zero or more duplicate bug reports. In other words, in each bucket all the reports

are duplicates of each other and the master is the one reported earlier.

Afterward, some examples of duplicate and non-duplicate pairs of bug reports are ex-

tracted from the repository to train a Support Vector Machine (SVM) learner. In the train

set, for each pair a rich set of 54 textual features are extracted exploiting description, title,
1n-gram is a continuous sequence of n characters from a given text
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a combination of them, bigrams of them, and the idf metric. The authors utilize libSVM to

train their discriminative model to produce the probability of two bug reports being dupli-

cates of each other. To retrieve the duplicate reports, any incoming bug report is compared

to the existing bug reports in the buckets. And, based on the duplicate probability values,

a list of candidate duplicates are provided. This approach is applied on three repositories

from OpenOffice, Firefox, and Eclipse open-source projects. As the authors expressed, their

approach achieved 17-31%, 22-26%, and 34-43% improvement over the state-of-the-art on

recall measure for OpenOffice, Firefox, and Eclipse bug repositories respectively.

2.2.2 Stack Traces based Approaches

Wang et al. [59] have suggested a technique in which both the textual and execution infor-

mation of the arriving bug reports are compared against the existing bug reports’ textual

and execution information features. In this approach, a small list of the most similar bug

reports are proposed to the tirager to make the final decision and recognize if the new report

is a duplicate. As expressed by the authors, the execution information has the following

advantages over the natural language information. Execution information reflects the exact

situation of the defect and is not affected by the variety of natural language. Besides, exe-

cution information demonstrates the internal abnormal behavior which is not noticed by the

reporter.

In this approach, for each incoming bug report, two different similarities are calculated

between this report and all the existing ones. The first similarity metric is the Natural-

Language-based Similarity (NL-S) in which the summary and description of the bug reports

are converted to weight vectors using TF-IDF and compared with each other using cosine

similarity metric. The second one is called Execution-information-based Similarities (E-S)

in which a vector space model is used to calculate the similarity of the bug reports, based on

the execution information. However, in this similarity measurement, only the methods that

are invoked during the run are studied without considering how many times each method

has been invoked. Also, the canonical signature of each method is counted as one index

term. Thus, the weight vectors for the execution information are created using TF-IDF and

the similarities are measured by the cosine similarity metric. Finally, a combination of NL-

S and E-S contribute in ranking the most similar reports to a particular incoming bug report.

The experimental result indicates that this approach is able to detect 67%-93% of duplicate

bug reports in the Firefox bug repository.
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2.2.3 Textual and Categorical Similarity Based Approaches

Jalbert et al. [26] have proposed a technique that automatically classifies and filters arriving

duplicate bug reports to save triagers’ time. Their classifier combines the surface features

of the bug reports (non-textual features such as severity, operating system, and number of

associated patches), textual similarity measurements, and graph clustering algorithms to

identify duplicate bug reports. This classifier applies a linear regression over the features of

the bug reports. Each document is represented by a vector in which each vector is weighted

utilizing the following formula wi = 3+2log2(freq) in which the wi is the weight of word

i in the document and freq is the count of word i in the document. The textual similarity

between every two documents is calculated by the cosine similarity metric. The result of

this similarity measurement is the basis for inducing a similarity graph. And, a clustering

algorithm is applied on the graph. Finally, the surface features are exploited to identify the

duplicate reports. The experiments are performed on a subset of Mozilla bug reports. As

the authors report, this approach can detect and filter 8% of duplicate reports automatically.

Furthermore, Sun et al. [52] introduced an approach in which both textual and cate-

gorical features (including product, component, type, priority, and version) are taken into

consideration when comparing bug reports. They proposed an extended version of BM25

textual similarity metric [44], called BM25F, to compare long queries such as bug reports

descriptions. This metric is based on TF-IDF weighting technique. Moreover, the authors

present seven comparison metrics illustrated in Figure 4.2 to compare two bug reports in

terms of their textual and categorical characteristics. To combine all these comparisons, the

authors have proposed a linear function indicated bellow:

REP (d, q) =
7∑
i=1

ωi × comparisoni

in which d and q are two bug reports being compared. comparisonis are the compar-

isons indicated in Figure 4.2 and ωi are the weights for each comparison.

Sun et al. exploited a subset of bug reports from the repositories at hand as the train-

ing set. Using the training set, they have tuned the free parameters in BM25F and REP

functions. Additionally, they organized the duplicates of the train set into modules called

buckets (explained earlier). In the test phase, every single incoming duplicate bug report is

compared to all the existing buckets using REP function. Then, according to the values re-

turned by REP, a sorted list of candidate masters is suggested. The index of the real master

13



in the list represents the accuracy of this method. To evaluate the preceding approach recall

rate@k and a modified version of MAP metrics are exploited.

recallrate@k =
Ndetected

Ntotal

The above formula measures the ratio of duplicate reports that are successfully detected

in the retrieved top-K masters (Ndetected) over all the duplicate reports under investigation

(Ntotal). For calculating the MAP measure, considering the fact that each bucket has only

one relevant master report, the original MAP function is simplified by Sun et al. to the

Mean Reciprocal Rank (MRR) [58] measure as follows:

MRR(Q) =
1

|Q|

|Q|∑
i=1

1

indexi

where indexi is the index where the right master is recognized for the ith duplicate

report. And, Q is the number of duplicate reports.

As the authors expressed, they are the first to conduct the duplicate report detection ex-

periments on a large number of bug reports from different software systems. They have uti-

lized Eclipse, Mozilla, and OpenOffice software systems to accomplish their experiments.

Finally, they have reported 10-27% improvement in recall rate@k (1 ≤ K ≤ 20) and

17-23% in MAP over the state-of-the-art.

2.2.4 Topic Model Based Approaches

Nguyen et al. [38] have proposed a novel technique called DBTM in which both IR-based

techniques and topic extraction ones are applied to detect duplicate bug reports. To train

the DBTM, the existing bug reports in the repository and their duplication information is

utilized. For prediction, DBTM is applied to a new bug report and uses the train parameters

to estimate the similarity between the bug report and existing reports in terms of textual

features and topics. They have also proposed a novel LDA-based technique called T-Model

to extract the topics from the bug reports. The T-Model is trained in train phase in a way

that the words in bug reports and the duplication relation among them are used to estimate

the topics, the topic properties, and the local topic properties. In the prediction phase, for

any new bug report bnew the T-Model takes advantage of the trained parameters to find the

groups of duplicates G that have the most similarity with bnew in terms of topics. This

similarity is measured using the following formula:
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topicsim(bnew, G) = max
bi∈G

(topicsim(bnew, bi))

in which topicsim(bnew, bi) is the topic proportion similarity between the bug reports

bnew and bi.

To measure the textual similarity between the bug reports, BM25F method [52] is ex-

ploited. To combine topic-based and textual metrics a machine learning technique called

Ensemble Averaging is applied. Below, you can find the equation for calculating y which

is the linear combination of the two above mentioned metrics:

y = α1 × y1 + α2 × y2

In the above function, y1 and y2 are textual and topic-based metrics. Also, α1 and α2

control the significance of these metrics in the duplicate bug report identification process.

These factors satisfy α1 + α2 = 1. This approach provides a list of top-K similar bug

reports for every new report. The authors have performed their experiments on OpenOf-

fice, Eclipse, and Mozilla project bug repositories. And, reported 20% improvement in the

accuracy over the state-of-the-art.

2.3 Contextual Bug Report Deduplication

In our previous work [1], we developed a method to identify duplicate bug reports based on

their contextual features in addition to their textual and categorical fields. To implement this

method, we exploited software contextual data-sets, each consisting of a set of contextual

word lists. These contextual data-sets involve software architectural words, software non-

functional requirement words, topic words extracted by LDA, topic words extracted by

Labeled-LDA, and random English words (as a control). Given these contextual words, we

proposed several new features for the bug reports by comparing each contextual word list

to the textual features of the bug reports (description and title) using the BM25F metric

proposed by Sun et al. [52].

To compare the bug reports textually and categorically, we have applied Sun et al.’s [52]

comparison metrics illustrated in Figure 4.2. As a result, we could exploit all the textual,

categorical, and contextual features of the bug reports when comparing them with each

other. To retrieve the duplicate bug reports, we created a data-set including pairs of bug

reports with their textual, categorical, and contextual features and provided this data-set to

the machine learning classifiers to decide whether the two bug reports in each record are
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duplicates or not. For the purpose of validation, the 10-fold cross validation technique was

utilized.

We conducted our experiments on bug reports from Android bug repository and suc-

ceeded to improve the accuracy of duplicate bug report identification by 11.5% over the

Sun et al.’s approach [52]. We also investigated the influence of the number of added

features on the accuracy of the bug report deduplication by applying the random English

words context which resulted in a poor performance. These results led us to the conclusion

that it is context that improves the deduplication performance and not the number of added

features to the bug reports.

In this thesis, we extended the work in the above mentioned paper by applying the

machine learning based duplicate report retrieval on Eclipse, Mozilla, and OpenOffice bug

repositories in addition to Android bug reports. As a result, we were able to improve the

bug report deduplication for all these repositories by up to 0.7% in accuracy, 2% in Kappa

and 0.5% in AUC which is not as significant as the improvement achieved for Android

repository.

In addition to the work in our paper, we developed a new set of experiments that com-

pare every single bug report to all the existing reports in the repository by the means of

three different bug report similarity criteria, i.e. cosine similarity based, Euclidean distance

based, and logistic regression based metrics. As a result, for every incoming bug report, a

sorted list of candidate duplicates (based on a specific similarity criterion) is provided to

the triager to make the final decision about the duplicates of the incoming report. This bug

report retrieval method is evaluated by the Mean Average Precision (MAP) metric.

2.4 Other Bug Report Related Studies

Apart from detecting duplicate bug reports, a substantial number of studies have been con-

ducted concentrating on software bug reports. Here we outline a few studies that end up

with helpful results for enhancing issue-tracking systems and/or detecting duplicate reports.

Bettenburg et al. [7] believe that the current bug-tracking systems have defects causing

IR processes be less precise. They have summarized the result of their survey as follows:

• Information related to reproducing steps and stack traces are the most helpful infor-

mation for fixing the bug reports.

• Duplicate bug reports provide beneficial information to fix the bug reports.

• Bug reporters have difficulties to provide stack traces and reproducing steps.
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• The bug reports do not provide the information required by developers very often.

Later, in another study, the authors have conducted an interview with 156 developers

and 310 bug reporters from Apache, Mozilla, and Eclipse projects [27]. Regarding the

feedback they received from these individuals, the authors have proposed a list of seven

recommendations for enhancing the bug-tracking systems. Some of these recommendations

are as follows: providing a powerful and simple search engine for bug-tracking systems,

proving support for merging bug reports, integrating reputation into user profiles to identify

experienced reporters.

Besides, Bettenburg et al. [8] believe that not only the duplicate bug reports are not

harmful, but also they provide helpful information to fix the defects. To prove this hypothe-

sis, they conduct an empirical study , by exploiting bug reports from Eclipse project, which

indicates that duplicate bug reports contain information which is not present in master re-

ports. Based on their experiments, they present the following suggestions to enhance the

bug-tracking systems:

• Provide the possibility of merging bug reports.

• Check for resubmission of similar bug reports.

• provide the possibility of renewing not fixed old bug reports.

• The reporters should be encouraged to add more information to an already existing

bug report.

• Enhance the search feature of bug-tracking systems.

There are also some other studies that try to facilitate understanding the bug reports.

One of these studies is conducted by Lotufo et al. [31] who believe that bug reports are not

easy to understand since they are constructed from communication between reporters and

developers. The authors proposed an approach to summarize the bug reports to develop a

better understanding of the information provided in the bug reports.

This summarizer is based upon the model of reading a bug report by a human. The

authors believe that a reader would focus on the sentences tha are more important to him.

Based on a grounded theory, the authors suppose that readers mostly concentrate on the

sentences related to the topics in the title and description of the bug reports. This hypoth-

esis is tested taking advantage of the bug repositories from Mozilla, Debian, Launchpad,

and Chrome projects. The results illustrate 12% improvement in the state-of-the-art. For
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the purpose of validation, the authors have also applied their summarizing method on a

randomly selected reports and asked 58 developers to asses their results . These developers

validated the usefulness of this approach.

Anvik et al. [3] have presented an approach for semi-automating the developer assign-

ment in bug triaging process. They take advantage of machine learners to recommend a

list of candidate developers to the triagers. The machine learning algorithms applied in this

approach include Naive Bayes, SVM, and C4.5. To train the classifier, a set of reports la-

beled with the name of the developer who was either assigned to the report or resolved it.

New, unconfirmed, and reopened reports are converted to feature vectors. After the training

phase, for every incoming bug report, the machine learner recommends a list of developers

who may be qualified based on the reports developers have resolved before. The authors

have applied their method on Eclipse and Mozilla bug reports which resulted in 50-64%

precision. They have also applied this approach on gcc bug repository which resulted in 6%

precision.

Cubranic et al. [14] have proposed an approach to cut out the triager and automatically

assign the incoming bug reports to developers. The author treat the problem of developer

assignment as text classification problem. In the model they presented, each developer is

related to a single class of bug reports; and each document is assigned to only one class. A

proportion of the bug reports was used as train set that shows the correspondence of each

developer to the bug reports he/she has been assigned to. This train set is used to train a

Naive Bayes machine learner. In the test phase, the machine learner predicts the class for

each bug report in the test set. This method is applied on the bug reports from Eclipse

project achieving 30% classification accuracy. The authors proposed that this accuracy

could significantly lighten the heavy triaging burden.

Anvik et al. [2] presented some statistical information to characterize the data in the

software bug repositories of Firefox and Eclipse projects. As the authors reported, the

proportions of the reports that can result in a change in the software system to all the reports

for Eclipse and Mozilla projects are 58% and 44% respectively. Their work addresses two

common challenges in software repositories: difficulty of detecting duplicate reports and

assigning incoming bug reports to appropriate developers. According to the outcome of this

study, the authors emphasize on the necessity of automating or at least semi-automating the

above mentioned procedures. Besides, the authors have investigated the application of the

machine learning approaches to assist this automation process.
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Chapter 3

The Data Set

As mentioned earlier, four large bug repositories are used in this study. These include:

Android, Eclipse, Mozilla, and OpenOffice bug repositories. Android is a Linux-based op-

erating system with several sub-projects. The Android bug repository used in this study

involves Android bug reports submitted from November 2007 to September 2012. After

filtering unusable bug reports (the bug reports without necessary feature values such as Bug

ID), the total number of bug reports is 37536 and 1361 of them are marked as duplicate.

The Eclipse, Mozilla, and OpenOffice bug repositories utilized in this study, are adapted

from Sun et al.’s paper [52]. Eclipse is a popular open source integrated development

environment. It can be used to develop applications in Java and some other languages.

Eclipse bug repository includes the bug reports reported in year 2008. After filtering un-

usable bug reports, the total number of reports is 43729 and 2834 of them are marked as

duplicate. OpenOffice is a well-known open source rich text editor. OpenOffice contains

several sub-projects including a word processor (Writer), a spreadsheet (Calc), a presen-

tation application (Impress), a drawing application (Draw), a formula editor (Math), and

a database management application. The OpenOffice bug repository includes 29455 bug

reports in which there are 2779 bug reports marked as duplicate. Mozilla is a free software

community best known for producing the Firefox web browser. In addition, Mozilla pro-

duces Thunderbird, Firefox Mobile, and Bugzilla. The Mozilla bug repository exploited

in this study contains 71292 bug reports (after filtering junk bug reports) in which 6049 of

them are marked as duplicate.

Table 3.1 shows the statistical details of these bug repositories. The last column in this

table reports the number of buckets including duplicate reports in each bug repository. As

described in Chapter 2, bucket is a data structure proposed by Sun et al. [52] in which all

the reports are duplicates of each other and the one submitted earlier than others is called
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Table 3.1: Details of Datasets

Dataset #Bugs #Duplicates Period #Duplicate
Including

From To Buckets
Android 37536 1361 2007-11 2012-09 737
Eclipse 43729 2834 2008-01 2008-12 2045
Mozilla 71292 6049 2010-01 2010-12 3790
OpenOffice 29455 2779 2008-01 2010-12 1642

the “master” report. Also, Figure 3.1 illustrates the distribution of duplicate bug reports in

the buckets for Android, Eclipse, Mozilla, and OpenOffice repositories.
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Figure 3.1: Distribution of Android, Eclipse, Mozilla, and OpenOffice duplicate bug reports
into buckets.

Although according to the system, the features of the bug reports vary, these features

are analogous in general. The fields of interest in our study are demonstrated in Table 3.2.

These are the fields we take under consideration for every single bug report in our experi-

ments.

As indicated in Table 3.2, the bug reports exploited in this research include the follow-

ing features: description, summary, status, component, priority, type, version, product and

Merge ID. The status feature can have different values including “Duplicate” which means

the bug report is recognized as a duplicate report by the triager. To explain the functionality
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Table 3.2: Fields of Interest in Our Research

Feature Feature Type Description
Summary Text A brief description of the problem.
Description Text A detailed declaration of the problem which may in-

clude reproduction steps and stack traces.
Product Enum (String) The product the report is about.
Component Enum (String) The component the report is about.
Version Enum (String) The version of the product the bug report is about.
Priority Enum (String) The priority of the report to be fixed.
Type Enum (String) The type of the report: defect, enhancement, task,

feature.
Status Enum (String) The current status of the bug report: Fixed, Closed,

Resolved, Duplicate, etc.
Merge ID Integer If the report is a duplicate report, this field shows the

ID of the report which the bug report is duplicating.

of Merge ID we bring the following example. Assume the bug report A is recognized as a

duplicate of bug report B by the triager, the Merge ID feature of A refers to B’s Bug ID.

We call B the “immediate master” of A. Table 3.3 depicts some examples of duplicate bug

reports with their immediate master reports in Android bug-tracking system.

Table 3.3: Examples of duplicate bug reports from Android bug-tracking system.

Pair ID Component Product Priority Type Version Status Merge ID
1 13321 GfxMedia Medium Defect New

13323 GfxMedia Medium Defect Duplicate 13321
2 2282 Applications Medium Defect 1.5 Released

3462 Applications Medium Defect Duplicate 2282
3 14516 Tools Critical Defect 4 Released

14518 Tools Critical Defect 4 Duplicate 14516

Table 3.3 shows examples of pairs of duplicate bug reports from Android and their

categorical features. The Product field does not have any values in this table since Android

bug reports do not have Product field. The Summary and Description fields are not shown

in this table.

3.1 The Lifecycle of Bug Reports

As pointed out previously, Eclipse, Mozilla, and OpenOffice bug reports are extracted from

the Bugzilla issue-tracker. Bugzilla is a web-based bug-tracking tool, originally developed

by Mozilla. It is an open source and free software that has been utilized by numerous soft-

ware development organizations. The lifetime of a bug report in Bugzilla is as follows [2]:
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A newly submitted bug report has the status of either NEW or UNCONFIRMED. When

the report is assigned to a developer, the status changes to ASSIGNED. When the report is

closed, the status is set to RESOLVED. After the report is verified by the quality assurance

team, its status will change to VERIFIED and then CLOSED. There are a few different

ways for resolving a bug report. In Bugzilla, these are called resolution. If a bug report

resulted in a change in code, its resolution will be FIXED. If it is recognized as a duplicate

of an existing report, it will be resolved as DUPLICATE. If the bug is not reproducible,

it will be resolved as WORKSFORME. If the report explains a problem that could not be

fixed, the report will be resolved as WONTFIX. If the report was not an actual bug, it will

be resolved as INVALID. If the report is related to another repository, its resolution status

changes to MOVED. A resolved bug report may be opened later with the REOPENED

resolution. Figure 3.2 indicates the life-cycle of a bug report in Bugzilla.

Fixed 

Duplicate 

Worksforme 

Invalid 

Wontfix 

Moved

New 

Unconfirmed

New

Closed

Verified
Reopened

ResolvedAssigned

Figure 3.2: Bug lifecycle in Bugzilla [57]. Rounded corner rectangles are the states and the
notes represent the resolutions of the bug reports.

Android bug reports are classified differently. They are divided into 4 main groups

by the means of their status including New, Open, No-Action, and Resolved [13]. New

issues include the bug reports that have not been triaged yet (New) and the bug reports

that do not provide sufficient information (NeedsInfo). Open issues include the bug reports

that are triaged but not assigned to any developer yet (Unassigned), the bug reports that

are being tracked in a separate repository (Reviewed), and the reports that are currently

assigned to a developer (Assigned). No-Action issues include spams, reports presenting a

question (Question), the reports that are not producible by the developer (Unreproducible),
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the reports that describe a behavior which in fact is not a bug (WorkingAsIntended), and

the reports that in fact ask for a feature and are not bug reports (Declined). Resolved issues

include the bugs that have been fixed but not released yet (FutureRelease), the fixed and

released bugs (Released), and reports that are duplicates of existing reports (Duplicate).

Figure 3.3 displays the life-cycle of an Android bug report. As Figures 3.2 and 3.3 illustrate,

Bugzilla and Android bug reports are handled almost similarly. The only notable difference

is that no verification process is addressed for Android bug reports.

New 

NeedsInfo

Reviewed 

Unassigned

Question 

Unproducible 

WorkingAsIntended 

Declined

FurtureRelease 

Released 

Duplicate

Assigned

ResolvedAssignedNo-Action

OpenNew

Figure 3.3: Android bug lifecycle. Rounded corner rectangles are the states and the notes
represent the resolutions of the bug reports.

3.2 Software-engineering Context in Bug Descriptions

To study the effect of software-engineering contexts on detecting duplicate bug reports, we

have taken advantage of different software related contextual data-sets presented as lists of

contextual words. These contextual word lists are later exploited to be compared with the

bug reports’ textual features and specify the contextual characteristics of the bug reports.

These contextual word lists elaborate the raw data in the primitive bug reports before being

used for the bug report deduplication process. The contextual word lists are discussed

below.
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• Architecture words: For each of the bug repositories a set of architecture words

is created. Each set is organized in a few word lists. Each word list represents an

architectural layer.

For Android bug repository, we utilized the word lists provided by Guana et al. [19].

They produced a set of Android architecture words to categorize Android bug reports

based on architecture. These words are adapted from Android architecture documents

and are organized in five word lists (one word list per Android architectural layer [12])

with the following labels: Applications, Framework, Libraries, Runtime, and Kernel.

For Eclipse bug repository, we have created a set of architecture words that are or-

ganized in three word lists (one word list per Eclipse architectural layer) with the

following labels: IDE, Plugins, and Workbench.

For OpenOffice bug repository, the architectural words are organized in four word

lists with the following labels: Abstract layer, Applications layer, Framework layer,

and Infrastructure layer.

The architectural words related to Mozilla software system are organized in five word

lists. The word lists are labeled as follows: Extensions, UI, Script, XPCOM, and

Gecko.

• Non-Functional Requirement (NFR) words: Hindle and Ernst et al. [24] have pro-

posed a method to automate labeled topic extraction, built upon LDA, from commit-

log comments in source control systems. They have labeled the topics from a gen-

eralizable cross-project taxonomy, consisting of non-functional requirements such as

portability, maintainability, efficiency, etc. They have created a data-set of software

NFR words organized in six word lists with the following labels: Efficiency, Func-

tionality, Maintainability, Portability, Reliability, and Usability. These word lists are

exploited as the NFR context words in this thesis.

• LDA topic words: LDA represents the topic structure and topic relation among the

bug reports. Two duplicate bug reports must address the same technical topics. The

topic selection of a bug report is affected by the buggy topics for which the report is

intended.

Han et al. [20] have applied both LDA and Labeled-LDA [43] topic analysis models

to Android bug reports. We are using their Android HTC LDA topics, organized in 35

word-lists of Android topic words labeled as Topici where i ranges from 0 to 34. We
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also use their Android HTC topics extracted by Labeled-LDA, organized in 72 lists of

words labeled as follows: 3G, alarm, android market, app, audio, battery, Bluetooth,

browser, calculator, calendar, calling, camera, car, compass, contact, CPU, date, di-

aling, display, download, email, facebook, flash, font, google earth, google latitude,

google map, google navigation, google translate, google voice, GPS, gtalk, image,

input, IPV6, keyboard, language, location, lock, memory, message, network, notifi-

cation, picassa, proxy, radio, region, ringtone, rSAP, screen shot, SD card, search,

setting, signal, SIM card, synchronize, system, time, touchscreen, twitter, UI, up-

grade, USB, video, voicedialing, voicemail, voice call, voice recognition, VPN, wifi,

and youtube.

For Mozilla, Eclipse, and OpenOffice repositories we have utilized the Vowpal Wab-

bit online learning tool [29] to extract the topics by LDA. For each of these reposi-

tories 20 topic lists is generated, each one including 25 words, using this approach.

These word lists are labeled as Topici where i ranges from 0 to 19.

• Random English words: To investigate the influence of contextual word lists on

the accuracy of detecting duplicate bug reports, we created a collection of randomly

selected English dictionary words. In other words, we have created this “artificial

context” to study if adding noise data to the features of the bug reports can improve

deduplication even though the added data does not represent a valid context. This

collection is organized in 26 word lists, labeled “a” through “z”. In each of these

word lists there are 100 random English words starting with the same English letter

as the label of the word list.
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Chapter 4

Methodology

In this section, we describe our approach of duplicate bug report identification. First of

all, we explain our bug report preprocessing approach. Next, we describe our similarity

measurement method to compare the bug reports by the means of their textual, categorical

and contextual characteristics.

Afterwards, we propose our duplicate bug report retrieval method based on our bug

report similarity measurements. Finally, we present our evaluation approach to assess our

duplicate bug report retrieval method. Figure 4.1 displays the workflow of our method.

4.1 Preprocessing

After extracting the bug reports, we applied a preprocessing method consisting of the fol-

lowing steps:

1. The first step involves tokenizing the textual fields (description and title) of the bug

reports and removing stop words.

2. The second step involves the organization of the bug reports into a list of buckets. All

the bug reports are inserted in the same bucket with their master bug report (specified

by their Merge ID). The bug report with the earliest open time becomes the master

report of the bucket.

Then, the bug reports are converted into a collection of bug-report objects with the

following properties: Bug ID, description, title, status, component, priority, type,

product, version, open date, close date, and optional master id, which is the ID of

the bug report which is the master report of the bucket including the current bug

report.
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Figure 4.1: Workflow of our methodology. The typical rectangles represent the data-sets and
the rounded corner rectangles represent the activities. The arrows emerging from the typical

rectangles represent the data flows. And, the arrows emerging from the rounded corner
rectangles represent the control flows.
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Table 4.1 illustrates some examples of titles of Android bug reports before and after prepro-

cessing.

Table 4.1: Examples of Android bug reports before and after preprocessing

ID Primitive Title Processed Title
3063 Bluetooth does not work with Voice Dialer bluetooth work voice dialer
8152 Need the ability to use voice dial over bluetooth ability voice dial bluetooth
3029 support for Indian Regional Languages support indian regional languages
31989 [ICS] Question of Google Maps’ location pointer ics question google maps location pointer

4.2 Textual Similarity Measurement

To measure the textual similarity between a pair of bug reports, we take advantage of the

BM25F method introduced by Sun et al. [52]. BM25F is designed for short queries,

which usually have no duplicate words. For example, the queries in search engines usu-

ally include fewer than ten distinct words. However, in the context of duplicate bug report

retrieval, each query is a bug report. The query is structured such that it contains a short

summary and a long description, and it can sometimes be very long. So, the textual sim-

ilarity measurement in this thesis is performed based on the extended version of BM25F

which is defined as follows [52].

BM25Fext(d, q) =
∑
t∈d∩q

IDF (t)× TFD(d, t)

k1 + TFD(d, t)
×WQ (4.1)

WQ =
(k3 + 1)× TFQ(q, t)
k3 + TFQ(q, t)

(4.2)

TFQ(q, t) =
K∑
f=1

wf × occurences(q[f ], t) (4.3)

TFD(d, t) =

K∑
f=1

wf × occurences(d[f ], t)
1− bf +

bf×lengthf
average−lengthf

(4.4)

IDF (t) = log
N

Nd
(4.5)

In Equation (4.1), for each shared term t between a document d and a query q, the

following components are calculated:

• One is the TFD(d, t) of a term t in a document d which is the aggregation of the

importance of t in each textual field of d. In Equation (4.4), for each field f , wf is the
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field weight; occurrences(d[f ], t) is the count of the term t in the field f ; lengthf is

the size of the bag d[f ]; average− lengthf is the average size of the bag d[f ] across

all the documents in corpus; and bf is a parameter (0 ≤ bf ≤ 1) that determines the

scaling by field length: bf = 1 corresponds to full length normalization, while bf = 0

corresponds to term weight not being normalized by the length.

• Another one isWQ that involves weight from the query computed by TFQ(q, t). The

free parameter k3(k3 ≥ 0) is to control the contribution of the query term weight-

ing; for example, if k3 = 0, then the query term contributes no weight as WQ be-

comes always equal to 1. TFQ(q, t) involves the frequency of a term t in a query

q. In Equation (4.3), wf represents the weight of a textual field f in a query q; and

occurences(q[f ], t) shows the frequency of a term t in a textual field f of q.

• The last one is the IDF (t) which has an inverse relationship with the frequency of a

term t across all the documents in the repository. In Equation (4.5), Nd is the number

of documents containing the term t. N is the total number of documents.

In the above mentioned functions, the value for the free variables are adapted from Sun

et al.’s paper [52]. From now on, we use the BM25F and BM25Fext terms interchange-

ably.

Here we give an example to show the functionality of the above stated formulas. As-

sume we have a repository including 3 documents; each one involving only one textual field

(summary). The document summaries are as follows: “enhanced low-level bluetooth sup-

port”, “bluetooth does not work with voice dialer”, and “bluetooth phonebook access profile

PBAP character problem generating service with well known UUID”. We have a query q as

follows: “bluetooth phonebook access profile PBAP character problem”. To compare the

query with the first document in the repository, the BM25F will be calculated as follows.

d = enhanced low-level bluetooth support

q = bluetooth phonebook access profile PBAP character problem

t = bluetooth

k1 = 2.000

k3 = 0.382

wsummary = 2.980

bsummary = 0.703
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TFD(d, t) =

1∑
f=1

wf × 1

1− bf +
bf×5
8.4

= 4.168

TFQ(q, t) = wf × 1 = 2.980

WQ =
(k3 + 1)× 2.980

k3 + 2.980
= 1.225

IDF (t) = log
3

3
= 1

BM25Fext = 1× 4.168

k1 + 4.168
× 1.225 = 0.828

4.3 Categorical Similarity Measurement

To compare the categorical features of a pair of bug reports, we measure the similarity

between them based on their basic features (component, type, priority, product and ver-

sion) indicated in Table 3.2. According to Table 3.3, duplicate bug reports have similar

categorical features. This motivates the use of categorical features in bug-deduplication.

Figure 4.2 indicates the textual and categorical similarity measurement formulas applied in

our method. These formulas are adapted from Sun et al.’s work [52].

comparison1(d1, d2) = BM25F (d1, d2) The comparison unit is unigram.

comparison2(d1, d2) = BM25F (d1, d2) The comparison unit is bigram.

comparison3(d1, d2) =

{
1 if d1.prod = d2.prod
0 otherwise

comparison4(d1, d2) =

{
1 if d1.comp = d2.comp
0 otherwise

comparison5(d1, d2) =

{
1 if d1.type = d2.type
0 otherwise

comparison6(d1, d2) =
1

1 + |d1.prio− d2.prio|

comparison7(d1, d2) =
1

1 + |d1.vers− d2.vers|

Figure 4.2: Categorical and textual measurements to compare a pair of bug reports [52].

The first comparison defined in Figure 4.2 is the textual similarity measurement be-

tween two bug reports over the features title and description, computed by BM25F . The
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second comparison is similar to the first one, except that the features title and description

are represented in bigrams (a bigram consists of two consecutive words). The remaining

five comparisons are categorical comparisons.

Since the comparison3 is comparing the product of bug reports, it is not applicable

for our Android bug repository as the product feature of each Android bug report is not

specified. So, we set the value of this feature to 0 for all Android bug reports. Also,

regarding Sun et al.’s [52] method, we are not considering the version comparison for the

bug reports of Eclipse, Mozilla, and OpenOffice bug repositories.

Comparison4 compares the component features of the bug reports. The component

of a bug report may specify an architecture layer or a more specific module within an

architectural layer. The value of this measurement is 1 if the two bug reports belong to the

same component and 0 otherwise.

Comparison5 compares the type of two bug reports, for example in Android bug-

tracking system it shows whether they are both “defects” or “enhancements”. This com-

parison has the value of 1 if the two bug reports being compared have the same type and 0

otherwise.

Comparison6 and comparison7 compare the priority and version of the bug reports.

These measurements could have values between 0 and 1 (including 1).

The result of these comparisons establishes a data-set including all the pairs of bug re-

ports with the seven comparisons shown in Figure 4.2; and a classification column which

reports whether the compared bug reports are duplicates of each other. Table 4.2 demon-

strates; a snapshot of this data-set with some examples of pairs of Android bug reports.

The value of class column is “dup” if the bug reports are in the same bucket and “non”

otherwise.

Table 4.2: Some examples of pairs of the bug reports from Android bug repository with
categorical and textual similarity measurements (“textual categorical” table).

ID1 ID2 BM25Funi BM25Fbi Prod cmp Compo cmp Type cmp Prio cmp Vers cmp Class
14518 14516 1.4841 0.0000 0 1 1 1.0000 1.0000 dup
29374 3462 0.6282 0.1203 0 0 1 1.0000 1.0000 non
27904 14518 0.1190 0.0000 0 0 1 0.3333 0.1667 non

Regarding the number of bug reports in the bug-tracking systems, a huge number of

pairs of bug reports are generated in this step. Consequently, we need to sample the records

of the “textual categorical” tables before running the experiments. Since there are very

few pairs of bug reports marked as “dup” in comparison to the number of all the pairs
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(
(
size
2

)
, size = total number of reports in the repository), and we want to create a set of

bug report pairs including 20% “dup”s and 80% “non”s, we have selected 4000 “dup” and

16000 “non” pairs of reports randomly. So, per each bug repository we produce 20000

sampled pairs of bug reports.

4.4 Contextual Similarity Measurement

As discussed earlier, in this thesis, we focus on the impact of software contexts on the

bug report deduplication process. In this section, we describe our context-based bug report

similarity measurement approach.

As mentioned in Chapter 2, most of the previous research on detecting duplicate bug re-

ports has focused on textual similarity measurements and IR techniques. Some approaches

consider the categorical features of the bug reports, in addition to the text. Here, we intend

to describe our new approach which involves measuring the contextual similarity among the

bug reports. We believe this new similarity measurement can help finding the duplicate bug

reports more accurately by making the context of a bug report a feature during comparison.

In our method, we take advantage of the software contextual word lists described in

Chapter 3. We explain the contribution of context in detail, using the NFR context as an

example. As pointed out earlier, this contextual word collection includes six word lists

(labeled as efficiency, functionality, maintainability, portability, reliability, and usability).

We consider each of these word lists as a query, and calculate the similarity between each

query and every bug report textually (using BM25F). For the case of NFR context, there

are six BM25F comparisons for each bug report, which result in six new features for the

bug reports. Table 4.3 shows the contextual features resulted by the application of the con-

textual measurements, using NFR context, for some of Android bug reports. Each column

shows the contextual similarity between the bug report and each of the NFR word lists. For

example, the bug with the id 29374 seems to be more related to usability, reliability, and

efficiency rather than the other NFR contexts.

The same measurement is done for the other contextual word collections as well. At the

end, there will be five different contextual tables for Android bug repository as we have five

contextual word collections (Labeled-LDA, LDA, NFR, Android architecture, and English

random words). And, there are four contextual tables for each of the other bug repositories

since they lack the Labeled-LDA contextual words.
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Table 4.3: Examples of the NFR contextual features for some of Android bug reports (“table
of contextual measures”)

Bug ID Efficiency Functionality Maintainability Portability Reliability Usability
3462 3.45 4.57 1.35 0.57 1.53 1.41
2282 2.88 2.51 1.07 3.37 4.53 4.91

29374 3.89 2.52 0.13 0.99 3.20 5.07
27904 2.93 1.03 0.50 0.00 3.36 4.55

4.5 Combining the Measurements

In this phase of the process, we have the “textual categorical” table for pairs of bug reports

(as shown in Table 4.2) and a number of tables reporting contextual similarity measure-

ments, each one according to a different context for individual bug reports, as described in

Section 4.4. Here, we describe the combination of the “textual categorical” table and the

“tables of contextual measures”.

As our research objective is to understand the impact that contextual analysis may have

on bug-deduplication, in this phase, we aim to produce five different tables, each one includ-

ing pairwise bug-report comparisons across (a) textual features, (b) categorical features, and

(c) one set of contextual features. One of these tables, the one corresponding to the “NFR”

contextual feature is shown in Table 4.4 for Android bug repository. As demonstrated in

this table, the first seven columns are the same as the ones in Table 4.2; they report the

similarity measurements between the two bug reports according to the textual and cate-

gorical features. Next are two families of six columns each, reporting the NFR contextual

features for each of the two bug reports (with Bug ID1 and Bug ID2 respectively). The

second to last column of Table 4.4 reports the contextual similarity of the two bug reports

based on these two column families. We consider the contextual features of the two bug re-

ports as value vectors and measure the distance between these two vectors using the cosine

similarity measurement. The formula for calculating this similarity is shown below.

cosine sim =

∑n
i=1C1i × C2i√∑n

i=1(C1i)
2 ×

√∑n
i=1(C2i)

2
(4.6)

In this formula, n is the number of word lists of the contextual data which is equal to

the number of contextual features added to each bug report (in the case of NFR, n=6). C1i

and C2i are the ith contextual features added to the first and second bug reports in the pair

respectively. The cosine similarity feature is demonstrated in Table 4.4. This table reveals

an example where bug reports with IDs 3462 and 2282, and bug reports with IDs 29374 and

3462 are compared in terms of NFR context. One of the records demonstrates the features
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for two bug reports belonging to the same bucket (with class value of “dup”). And, the

other one shows a pair of bug reports pertaining to different buckets (with the class value

of “non”). Table 4.4 which includes textual, categorical, and the NFR contextual similarity

measurements, is called the “NFR all-features table”. Note that there are five different such

“all-features” tables, each one corresponding to a different context.

Table 4.4: Examples of the records in the data-set containing categorical, textual, and
contextual measurements for the pairs of Android bug reports.

ID1 ID2 cmp1 ... cmp7 Effic1 ... Usability1 Effic2 ... Usability2 Cosine sim Class
3462 2282 1.52 ... 0.29 3.45 ... 1.41 2.88 ... 4.91 0.73 dup
29374 3462 0.63 ... 1.00 3.89 ... 5.07 3.45 ... 1.41 0.79 non

The class value in the “all-features” tables should be predicted by the machine learning

classifiers in next phase. In other words, these classifiers decide whether the two bug reports

are duplicates of each other.

4.6 Prediction

In this section, we explain how the duplicate bug reports are retrieved and how these re-

trieval approaches are evaluated. In the first approach, we take advantage of the machine

learning classifiers to predict whether two specific bug reports are duplicates of each other

(given their similarity measurements). In the second approach, we compare every incoming

bug report to all the existing reports in the repository to provide the triagers with a sorted

list of candidate duplicates. As a result, the triagers can make the final decision about the

real duplicates.

4.6.1 Classification

In this section, we discuss the application of classifiers on different sets of our comparison

metrics for deciding whether a pair of bug reports are duplicates or not. The idea is to use

machine learning to amplify the impact of the work of the triager; as the triager identifies

duplicate bugs, the classifier learns how to better recognize duplicates and may suggest

candidates to the triager and thus simplify his/her task.

To retrieve the duplicate bug reports we are taking advantage of well-known machine

learning classification algorithms. In each experiment, a table including pairs of bug reports

with a particular combination of similarity metrics (i.e. textual, categorical, and contextual

features) is passed to the classifiers. Each “all-features” table (described earlier) includes

all the inputs necessary for our classifiers. The classifier should decide about the class

34



column’s value for each pair of bug reports. In other words, given any pair of bug reports,

the classifier should decide if the pair is a “dup” (the bug reports in the pair are in the same

bucket) or a “non” (the bug reports in the pair are not in the same bucket) based on some

combination of the similarity columns of the table. To avoid over fitting during training and

evaluation, we use the 10-fold cross validation technique

The classifiers we use are implemented by Weka (Weikato Environment for Knowledge

Analysis) [25]. Weka is a well-known tool of machine learning implemented in Java. This

tool supports numerous data mining tasks such as preprocessing, clustering, classification,

regression, visualization, and feature selection. Weka accepts data in a flat file in which

each instance has a fixed number of attributes.

The machine learning classifiers applied in this approach are as follows. The 0-R al-

gorithm is utilized to establish the baseline. The other applied algorithms are C4.5, K-NN

(K Nearest Neighbours), Logistic Regression, and Naive Bayes. K-NN tends to perform

well with many features, but as well if K-NN works it implies that the input data has a

fundamentally simple structure that is exploitable by distance metrics. Here we provide an

overview of these classifiers as follows.

• 0-R is the simplest classification method. This algorithm simply predicts the majority

class and does not provide any prediction power. However, it provides a baseline for

the performance of the other classification algorithms. We provide an example of

performance of this algorithm using Table 3.3.

This table indicates some examples of pairs of bug reports from Android bug repos-

itory accompanied by their textual and categorical features and their class. For this

table, the 0-R algorithm will provide the accuracy of 66.66% since it predicts “non”

for all the instances.

• K-NN is an instance based or lazy learning method for classifying objects based upon

the closest training examples [51]. This algorithm is sensitive to the local structure

of the data. The training examples consist of multidimensional vectors of features

including label (class). In the classification phase, unlabeled feature vectors are clas-

sified by assigning the most frequent label among the top k closest training instances.

Finally, the instance is assigned to the most common class among its k nearest neigh-

bors. Usually, the Euclidean distance is used as the distance metric in K-NN algo-

rithm. K is a small positive integer. In the case K=1, the instance is assigned to the

class of its nearest neighbor. In our experiments, K is set to 1.
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A disadvantage of this algorithm is ineffective classifying of skewed data. In other

words, the instances of a frequent class control the prediction of the new instances.

To overcome this drawback, some solutions are proposed such as weighting the clas-

sification and abstraction in data representation.

• Naive Bayes is a probabilistic classifier based upon Bayes theorem [6] . This classi-

fier assumes that the presence or absence of a particular feature is not related to the

presence or absence of other features (considering that instances in train and test set

are vectors of features). For some probability models, this classifier performs effec-

tively. This algorithm needs a small amount of training data to predict the classes.

Since the variables are considered independent, only the mean and variance of the

variables should be calculated. Based on Bayes theorem, the probability model for a

classifier is as follows.

P (C|F1, ...., Fn) =
P (C)P (F1, ...., Fn|C)

P (F1, ...., Fn)
(4.7)

In Equation (4.7) C is the dependent class which is conditional on several feature

variables F1 through Fn.

• C4.5 is an algorithm that generates a decision tree [42]. The resulting decision tree

is exploited for classification. The decision tree is created based on the training data

which includes already classified samples. Each sample includes an n-dimensional

vector containing some features representing the attributes of the sample as well as

the class of the sample. At every node of the decision tree, the C4.5 algorithm selects

the attribute of the samples that effectively divides the set of samples into separate

classes. Then the algorithm recurses on the smaller sublists. The splitting metric is

information gain [35] .

• Logistic Regression is a type of regression analysis [30] exploited for predicting the

value of a dependent variable that can take a few different values. The probabilities

impacting the possible values of the resulting variable are modeled as a function of

predicting variables using a logistic function. Logistic regression substantially refers

to the problems in which the dependent variable can take only two different values.

For the problems with more than two classes, mutinomial logistic regression could

be utilized [18]. The logistic regression algorithm measures the relationship between
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a dependent variable and some independent variables making use of probabilistic

scores as the predicted values of the dependent variable.

4.6.1.1 Evaluation Metrics

The evaluation of the retrieval performance is carried out by the following metrics: accu-

racy, kappa, and Area Under the Curve (AUC). Accuracy is the proportion of true results

(truly classified “dup”s and “non”s) among all pairs being classified. The formula for accu-

racy is indicated bellow.

acc =
|true dup|+ |true non|

|true dup|+ |false dup|+ |true non|+ |false non|
(4.8)

True “dup” and false “dup” are the pairs of bug reports truly and wrongly recognized as

“dup” respectively by classifiers. True “non” and false “non” have the same definition but

for the “non” class value.

Kappa is a statistical measure for inter-rater agreement. For example, kappa demon-

strates how much homogeneity there is in the rating given by raters. The equation for kappa

is:

kappa =
Pr(a)− Pr(e)

1− Pr(e)
(4.9)

Pr(a) is the relative observed agreement among the raters. Pr(e) is the hypothetical

probability of chance agreement, using the observed data, to calculate the probabilities of

each observer randomly saying each category. If the judges are in complete agreement, then

kappa = 1. If there is no agreement among them other than what would be expected by

chance , then kappa = 0.

AUC is the area under the Receiver Operation Characteristic (ROC) curve. ROC curve

is created by plotting the fraction of truly recognized “dup”s out of all the recognized “dup”s

(True Positive Rate) versus the fraction of wrongly recognized “dup”s out of all the recog-

nized “non”s (False Positive Rate) by the classifiers. AUC is the probability that a classifier

will rank a randomly chosen “dup” instance higher than a randomly chosen “non” one (as-

suming that “dup” class has a higher rank than “non” class).

4.6.2 Retrieving the List of the Most Similar Candidates

As addressed in Chapter 1, usually duplicate report detection techniques are applied to

alleviate the heavy load of triaging either by filtering the duplicate bug reports automatically
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or providing a list of top-K identical bug reports to an incoming report. To apply our

technique to a real world issue-tracking system and assist the triagers, we will provide a list

of top-K similar reports for any incoming bug report as well. For this purpose, we will need

a comparison metric to retrieve the candidate duplicates based on.

Figure 4.3 demonstrates the method of retrieving top-K similar bug reports to a specific

incoming report. As indicated in this figure, there is a similarity criterion which compares

the incoming bug reports against the existing reports in the repository and returns a sorted

list of candidate duplicate reports. To compare the bug reports contextually, we have pro-

posed some similarity criteria. These criteria could be divided into three categories: (1)

Cosine similarity based metric; (2) Euclidean distance based metric; (3) Logistic regression

based metric.

As addressed in Chapter 3, Sun et al. [52] have applied a linear function called REP to

sort the candidate masters; which indicated promising results in detecting correct masters

for duplicate reports. Therefore, we decided to combine our contextual comparison met-

rics with REP so that we can take advantage of all the textual, categorical, and contextual

features when comparing bug reports.

Bug Reports

Bug report 1

Bug report 2

...

Bug report m

Sorted List of Candidates

First similar bug report

Second similar bug report

...

Kth similar bug report

New bug 

report
Similarity

Criterion
Query

Query

Query

Output

Figure 4.3: Overal workflow to retrieve duplicate bug reports

To implement this method, we have established a data-set including all the pairs of

bug reports for each bug repository we are working on. This data-set includes all the pairs

with the similarity criteria we would like to study in the experiment at hand (the “similar-

ity criteria” data-set). For instance, if the only similarity criterion is the REP function (Sun

et al.’s method [52]), the data-set includes the IDs of the bug reports, the label for each pair
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(“dup” or “non”) , and the REP result for each pair. Table 4.5 indicates some sample records

from the “similarity criteria” data-set with the REP criterion for Mozilla bug reports.

Table 4.5: Examples of pairs of bug reports from Mozilla bug repository with their REP
comparisons result and their class (the “similarity criteria” table)

Bug ID 1 Bug ID 2 REP Class
563260 576854 2.617 dup
563250 596269 3.388 non
563325 612618 0.095 non
563308 582608 1.928 non
563276 602852 0.576 non

4.6.2.1 Cosine Similarity based Metric

The first similarity metric is the cosine similarity for a specific context which is presented

in Equation (4.6). In this formula, the contextual weight vectors of the two bug reports at

hand are compared. If two bug reports were exactly similar in terms of a particular context,

their contextual cosine similarity is equal to 1. And, if the two bug reports were completely

different in terms of that context, this value will be 0.

Since we expect this similarity criterion to assign a higher score to the more similar

reports in comparison to the non-similar ones, we utilize it as a duplicate report retrieval

criterion. This metric returns higher values when compares more similar vectors.

To combine the cosine similarity function and REP we have normalized REP to scale it

in the range of 0-1. Then, we simply calculated the average of normalized REP and cosine

similarity metric as indicated below:

combined cosine metric(B1, B2) =
norm(REP (B1, B2)) + cosine sim(C1, C2)

2
(4.10)

In this functionC1 andC2 represent the contextual features of the bug reportsB1 andB2

respectively. As an example, for the NFR context, C1 and C2 contain six dimensions each.

Equation (4.10) combines all the textual, categorical, and contextual similarity metrics to

compare a pair of bug reports. In some experiments only the cosine sim(C1, C2) formula

is applied to compare the bug reports only contextually.

To apply this criterion, and its combination with the REP function, we have added some

new comparison metrics to the “similarity criteria” data-set. Table 4.6 indicates some sam-

ple records from the “similarity criteria” data-set with the REP , and cosine sim criteria

(for different contexts) from Mozilla bug reports. So, if we want to combine the REP and
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cosine sim functions, we exploit two columns from this table, otherwise we only utilize

one of them to compare the bug reports.

Table 4.6: Examples of pairs of bug report from Mozilla repository with their REP and
cosine sim comparisons for different contexts and their class

ID 1 ID 2 REP Architecture cosine NFR cosine Random cosine LDA cosine Class
563260 576854 2.617 0.622 0.625 0.000 0.807 dup
563250 596269 3.388 0.955 0.877 0.000 0.392 non
563325 612618 0.095 0.000 0.854 0.474 0.076 non
563308 582608 1.928 0.256 0.916 0.000 0.077 non
563276 602852 0.576 0.000 0.802 0.000 0.000 non

4.6.2.2 Euclidean Distance based Metric

The second similarity metric is established based on the dimensional distance of the two

context vectors pertaining to the bug reports being compared. The following formula de-

picts this metric.

contextual distance(B1, B2) =
n∑
i=1

1

1 + |C1i − C2i|
(4.11)

In this function, n is the number of the word lists of the context at hand (such as 6

for NFR context). C1 and C2 are the contextual features for the bug reports B1 and B2

respectively. This similarity metric is analogous to the priority and version comparison

metrics illustrated in Figure 4.2. In this function, as the distance between the two context

vectors increases, the resulting value approaches to 0. And, when this distance decreases,

the resulting value approaches to 1. Therefore, this function results in higher scores for the

bug reports contextually close to each other.

To compare the bug reports textually, categorically, and contextually (utilizing the above

contextual similarity metric) we have combined Equation (4.11) and the REP linear func-

tion. To that end, we simply added the contextual distance function to REP which could

be considered as adding a few more features like priority and version to the REP function.

The formula is shown bellow:

combined euclidean metric(B1, B2) = REP (B1, B2)+contextual distance(B1, B2)

(4.12)

In the above formula, B1 and B2 are the two bug reports being compared. To apply this

criterion, we have added some new comparison metrics to the “similarity criteria” data-set

(demonstrated in Table 4.5). Table 4.7 indicates some sample records from this data-set
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with the REP, and contextualdistance criteria (for different contexts) from Mozilla bug

reports.

Table 4.7: Examples of pairs of bug reports from Mozilla repository with their REP and
contextual distance comparisons for different contexts and their class

ID 1 ID 2 REP Arch distance NFR distance Random distance LDA distance Class
563260 576854 2.6170 2.2987 3.3549 0.9741 10.8501 dup
563250 596269 3.3880 1.6458 3.1567 1.1871 09.6204 non
563325 612618 0.0950 0.5789 1.9480 1.4071 10.3120 non
563308 582608 1.9280 1.3722 3.4686 1.1337 05.3772 non
563276 602852 0.5760 0.8739 2.5228 2.5519 02.5027 non

4.6.2.3 Logistic Regression Based Comparison

Among all the machine learning classification algorithms we have decided to exploit logistic

regression to combine REP and contextual comparison metrics. The reason is that this

algorithm provides us with reasonable performance in detecting duplicate bug reports in our

experiments. Also, this algorithm provides us with appropriate coefficients for combining

two different metrics applying a probabilistic model.

This similarity criterion works based on the logistic regression classifier. This classifier

is applied in cases where the observed outcome (dependent variable) can accept only two

possible values (in our case “dup” or “non”). Logistic regression is applied to predict the

probability of being the desired case based on the values of the independent variables. The

logistic regression takes the natural logarithm of the probability that a particular outcome

is the desired case divided by the probability that it is not the case to create a continuous

criterion as a converted form of the dependent variable. The natural logarithm of success

is fit to the predictors using linear regression analysis [49]. The predicted value of this

logarithm is converted back to the probability of success using exponential function. Hence,

the logistic regression estimates the probability of being the case over the probability of not

being the case as a continuous variable and a threshold is exploited to translate the predicted

probabilities as a success or failure.

Logistic regression is adapted from the logistic function which always has a resulting

value between 0 and 1. A logistic function is indicated below.

F (t) =
et

et + 1
=

1

1 + e−t
(4.13)

If t was a linear combination of descriptive (independent) variables such as x1, x2, ....,

and xm, the logistic function could be written as follows:

41



π(x) =
eβ0+β1x1+β2x2+...+βmxm

eβ0+β1x1+β2x2+...+βmxm + 1
=

1

1 + e−(β0+β1x1+β2x2+...+βmxm)
(4.14)

This could be considered as the probability of the success. One of the characteristics of

the logistic function is that it can accept any input in any range and provide an output in the

range of 0 and 1. The probability of success over the probability of not being the case for

the above logistic function is as follows:

g(x) = ln
π(x)

1 + π(x)
= β0 + β1x1 + β2x2 + ...+ βmxm (4.15)

In the above formula, β0 is called the intercept and β1x1, β2x2,..., and βmxm are the

regression coefficients multiplied by some values of predictors. The probability of the de-

pendent variable equaling a success is equal to the values of the logistic function (shown in

Equation (4.14)).

The regression coefficients of the logistic function are calculated applying maximum

likelihood estimation [39]. Usually, an iterative process is utilized to estimate the coeffi-

cients. This process starts with trial values for the coefficients; and then revises the coeffi-

cients repeatedly to examine if they could be improved.

In logistic regression, the probability function is modeled as a linear function which in-

cludes a linear combination of the independent variables and a set of estimated coefficients.

The predictor function for a particular data point i is written as follows:

f(i) = β0 + β1xi1 + β2x2i + ...+ βmxmi (4.16)

in which β0 − βm are regression coefficients indicating the impact of each particular

descriptive variable on the outcome.

In our approach, we have taken advantage of the prediction function (4.16) to establish

a similarity criterion to sort the candidate duplicates based on. Considering the REP and

the cosine sim (Equation (4.6)) functions as the descriptive variables, we are interested

in distinguishing the appropriate coefficients for them in the similarity criterion. In other

words, we would like to discover improved coefficients for the cosine sim and REP mea-

sures to combine them rather than simply calculating their average (such as what is done

in Equation (4.10)). To that end, we have sampled the “similarity criteria” data-set includ-

ing the REP and cosine sim similarity functions (illustrated in Table 4.6). The sampled

data-set includes 10000 records with 20% of records labeled as “dup” and 80% of records

labeled as “non”. Then, the logistic regression classifier is applied on this sampled data-set.
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If we intend to exploit the REP function exclusively in our similarity criterion, we apply the

logistic regression on the sampled data-set including only the REP similarity metric; and

the resulting similarity criterion is as follows:

criterion = β0 + β1(REP ) (4.17)

In which the coefficients are estimated by the logistic regression classifier. Furthermore,

when we aim to combine two different metrics such as REP and cosine sim for NFR context

to sort the candidate duplicates, we apply the logistic regression on the sampled data-set

including the REP and the cosine sim for NFR to predict the coefficients. The similarity

criterion is defined as follows:

criterion = β0 + β1(REP ) + β2(cosine simNFR) (4.18)

Also, if we aim to investigate the effect of contextual comparison (for a specific con-

text such as NFR) on the duplicate bug report retrieval, the similarity criterion changes as

follows:

criterion = β0 + β1(cosine simNFR) (4.19)

In the above functions the coefficients are calculated by logistic regression. These cri-

teria are in fact the prediction function demonstrated in Equation (4.16) that are exploited

as the bug report comparison function.

4.6.2.4 Evaluating the List of Candidates

So far, we have presented our methods of duplicate bug report retrieval. In this section, we

aim to describe the technique we exploit to assess this retrieval approach. As stated earlier

in this Chapter, the retrieval functions are applied to compare every incoming bug report

against all the existing reports in the repository and sort the existing bug reports based on

their similarity to the incoming report. Since the list of candidates is sorted in descending

order based on the similarity measure, the most similar reports are expected to be ranked

higher in the resulting list. The quality of the sorted list of candidates is measured by

studying the index of the actual duplicates (of the incoming report) in the list. If the actual

duplicates are ranked relatively high in the list, we conclude that the similarity criterion at

hand is performing successfully in identifying the duplicate bug reports.
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To evaluate the sorted list of similar reports, we have utilized the Mean Average Preci-

sion (MAP) measure. MAP is a single-figure measure of ranked retrieval results indepen-

dent from the size of the top list. It is designed for general ranked retrieval problem, where

a query can have multiple relevant answers. In our duplicate bug report retrieval method,

each bug report can have several duplicates since there may be several bug reports in a

bucket. Given Q duplicate bug reports, for each of them, the system retrieves duplicates in

descendant order of similarity (until all the duplicates of the bug report are retrieved) and

records their indexes in the sorted list. The MAP measure is calculated as follows:

MAP =

∑Q
q=1AvgP (q)

Q
(4.20)

AvgP (q) =

∑n
k=1 P (k)× (Rel(K))

number of relevent documnets
(4.21)

In the above functions, relevant documents are the actual duplicates;Rel(K) = 1 when

the documents are duplicates of each other and Rel(K) = 0 otherwise; n is the number

of bug reports in the repository; and p(k) is the precision at the cut-off k. The precision

function is provided below:

precision =
|{relevant docs}

⋂
{retrieved docs}|

|retrieved docs|
(4.22)

Since in our experiments we would like to evaluate our list of candidates, we should

know the actual duplicates of an incoming report. Therefore, in our experiments, the in-

coming reports consist of all the reports marked as duplicate in the repository (that have

specific masters). This approach is similar to Sun et al.’s work [52]. However, Sun et al.

have simplified MAP to an MRR-like measure addressed in Chapter 2. But, we believe that

applying the original version is more meaningful in this case according to the fact that every

incoming bug report can have multiple duplicates.

Here, we provide an example to illustrate how the MAP measure works. Assume that

there are two duplicate reports with IDs 7 and 2 in a bug repository of 10 bug reports. We

demonstrate the buckets for this repository in Figure 4.4.

Master (ID = 4) Master (ID = 5)

Master (ID = 6)Master (ID = 9) Master (ID = 10)

Master (ID = 1)

Duplicate (ID = 7)

Duplicate (ID = 8)

Master (ID = 3)

Duplicate (ID = 2)

Figure 4.4: Buckets of the bug reports for a sample repository.
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Assume a specific similarity criterion is being applied on this repository. And, returns

the sorted lists of candidates for the duplicate bug reports with IDs 7 and 2 as demonstrated

in Figures 4.5 and 4.6 respectively. In these figures, the highlighted bug reports are the

duplicates of incoming reports at hand. In Figure 4.5, the indexes of the actual duplicates

are 2 and 5. Thus, according to Equation (4.21), the resulting average precision for the

duplicate bug report with the ID 7 is as follows:

AvgP (report(ID : 7)) =

∑9
k=1 P (k)× (Rel(K))

2
=

1
2 + 2

5

2
= 0.45 (4.23)

The bug report with the ID 2 has only one duplicate. The resulting average precision

for the duplicate report with ID 2 is provided below:

AvgP (report(ID = 7)) =

∑9
k=1 P (k)× (Rel(K))

2
=

1

1
= 1 (4.24)

Consequently, the MAP value for the similarity criterion at hand for this repository is

0.725 which is the mean of AvgP s. MAP returns values from 0 to 1. Higher values for the

MAP imply the better performance of the duplicate report retrieval similarity criterion.
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Figure 4.5: An example of bug report retrieval scenario for a duplicate bug report with ID 7
and evaluating the retrieval method using MAP measure.

45



Bug Report

(ID: 2)
Similarity

Criterion Query

Query

Query

Output

Bug Reports

Bug Report (ID = 1)

Bug Report (ID = 2)

Bug Report (ID = 3)

Bug Report (ID = 4)

Bug Report (ID = 5)

Bug Report (ID = 6)

Bug Report (ID = 8)

Bug Report (ID = 9)

Bug Report (ID = 10)

………..

Sorted List of Candidates 

1

2

3

4

5

6

7

8

9

Bug Report (ID = 3)

Bug Report (ID = 4)

Bug Report (ID = 6)

Bug Report (ID = 10)

Bug Report (ID = 8)

Bug Report (ID = 7)

Bug Report (ID = 1)

Bug Report (ID = 5)

Bug Report (ID = 9)

Figure 4.6: An example of bug report retrieval scenario for a duplicate bug report with ID 2
and evaluating the retrieval method using MAP measure.

4.6.2.5 The FastREP algorithm

In order to implement the logistic regression based retrieval function and evaluating this

function by the MAP measure, we have proposed an algorithm called the “FastREP” algo-

rithm. This algorithms involves the following steps:

1. As addressed in section 4.6.2.3, we sample the “similarity criteria” data-set including

the REP and cosine sim similarity criteria (illustrated in Table 4.6). The sampled

data-set includes 10000 records with 20% of records labeled as “dup” and 80% of

records labeled as “non”. Then, we apply the logistic regression classifier on this

sampled data-set. Depending on the experiment, the features involving in this classi-

fication may vary (the features may be only REP, only the contextual feature(s), or a

combination of both).

2. Based upon the criterion coefficients returned by the logistic regression classifier,

the criterion function is built and the value of this function for each record in the

“similarity criteria” data-set is calculated (applying a criterion function similar to

either one of Equation (4.17), (4.18). or (4.19) depending on the experiment) and

added to this data-set as a new column.

3. The resulting table that includes the criterion column is then sorted based on the

criterion column’s values in descending order.

46



4. Next, we establish a data structure keeping the index and the number of “dup” records

in the sorted table for each one of the duplicate bug reports in the repository. This

data structure provides all the required features for calculating the MAP function.

5. We walk through the sorted table and fill in the above discussed data structure. To

that end, for every record marked as “dup” in the sorted table, we save the number

of “dup”s observed for the duplicate bug report included in the current record and

append the rank of the current “dup” to our list of dup ranks for that report.

6. Next, we calculate the average precision (indicated in Equation (4.21)) for every du-

plicate record in the repository.

7. Finally, we calculate the mean of all the AvgP s to report the MAP result.

This method is fast because we can answer many queries in parallel and have only 1

sort step. The runtime is O(NlogN) as we use a merge sort (GNU sort) to sort the large

tables.
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Chapter 5

Case Studies

We applied our method on Android, Eclipse, Mozilla, and OpenOffice bug-tracking sys-

tems. To study the effect of contextual data on the accuracy of duplicate bug-report de-

tection, we applied the classification algorithms (mentioned in Chapter 4) on Android bug

repository in our recent work [1]. In this thesis, we applied the same approach on Eclipse,

Mozilla, and OpenOffice bug repositories as well. We applied classification algorithms on

three different data-sets extracted from each bug-tracker:

1. the data-set including all of the similarity measurements illustrated in the “all-features”

tables (such as Table 4.4, the NFR all-features table);

2. the data-set including only the textual and categorical similarity measurements of the

bug reports; and

3. the data-set including only the contextual similarity measurement features.

As mentioned before, these data-sets include 20000 pairs of randomly selected bug reports

with 20% “dup”s and 80% “non”s.

we have also conducted some experiments to provide the list of candidate duplicates

benefiting from the REP function presented by Sun et al. [52]. We have extended the

REP function (in section 4.6.2) to apply our contextual approach when providing the list

of candidates by three different methods: (1) cosine similarity based metric, (2) euclidean

distance based metric, (3) logistic regression based metric. We discuss the experiments

applying these retrieval methods in section 5.3.

5.1 Evaluating the Classification-based Retrieval Method

In this section we analyze the effect of context on detecting duplicate bug reports based

on the results reported by the machine learning classifiers while applying them on the
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“all features” data-sets (described in Chapter 4) with and without contextual features. Here,

we are eager to know the answer to the following question: Does the software context im-

prove the duplicate bug reports retrieval using the machine learning classifiers?

Tables 5.1, 5.2, 5.3, and 5.4 show the statistical evaluation measurement values without

considering the context of bug reports at the top. This part of the tables demonstrates the

resulting evaluation measures of the machine learners with the input data created by Sun et

al.’s method [52]. The maximum values are shown in bold in the preceding tables. These

tables demonstrate that Sun et al.’s method definitely finds duplicates.

Tables 5.1, 5.2, 5.3, and 5.4 also report the statistical measurement results, using the

contextual data-sets in bug-report similarity measurements. The highest value in each col-

umn is shown in bold.

As addressed in our previous work [1], classification algorithms can effectively identify

the duplicate bug reports of Android bug repository. Table 5.1 reports the results of applying

these algorithms on this repository. As shown in this table, the highest improvements are

achieved by utilizing the LDA and Labeled-LDA contextual data.

Tables 5.2 and 5.3 report the results for Eclipse and Mozilla bug repositories respec-

tively. As demonstrated in these tables, the LDA context makes the highest improvement

again however this improvement is trivial. According to what is reported in tables 5.2

and 5.3, the contextual features exclusively improves the accuracy of detecting duplicate

bug reports by around 6% over the baseline. This result is promising because LDA is an

automatic method and not that expensive to run and if its topics can help boost deduplica-

tion performance, then we have an automatic method of improving duplicate detection. For

OpenOffice bug repository, as indicated in Table 5.4, the highest improvement (which is

still trivial) is achieved by using NFR context. The NFR contextual word lists are project

independent so it can be considered as an automatic method of bug report deduplication as

well.

Table 5.5 illustrates some examples of predictions made by K-NN machine learning

algorithm for Android bug repository including textual, categorical, and Labeled-LDA con-

text’s data. The first pair of bug reports is correctly recognized as duplicates by the machine

learner given that both of the reports are about “Bluetooth” (which is an Android Labeled-

LDA topic). For the same reason the pair 4 is recognized as a duplicate by the machine

learner while the reports in this pair are not duplicates of each other. In pair 2, the bug re-

ports are categorically different and also textually not similar in terms of Android Labeled-

LDA topics, but they are wrongly classified as non-duplicates by the machine learner. In
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Table 5.1: Statistical measures resulted by the experiments on Android bug repository
including textual, categorical, and contextual data

Context Algorithm Textual, Categorical, & Contextual Contextual only
Accuracy % Kappa AUC Accuracy % Kappa AUC

0-R 80.000% 0.0000 0.500
Logistic

No Regression 82.830% 0.3216 0.814
Context Naive Bayes 78.625% -0.0081 0.778

C4.5 84.525% 0.4324 0.716
K-NN 82.380% 0.4616 0.737
0-R 80.000% 0.0000 0.500 80.000% 0.0000 0.500
Logistic

Architecture Regression 83.060% 0.3562 0.829 79.965% 0.0005 0.618
Naive Bayes 77.950% 0.2185 0.732 75.255% 0.0825 0.603
C4.5 87.990% 0.5947 0.880 91.690% 0.7083 0.916
K-NN 85.580% 0.5632 0.794 86.330% 0.5553 0.843
0-R 80.000% 0.0000 0.500 80.000% 0.0000 0.500
Logistic

NFR Regression 83.325% 0.3615 0.833 79.995% 0.0014 0.617
Naive Bayes 78.735% 0.1106 0.758 77.880% 0.0509 0.619
C4.5 89.450% 0.6661 0.856 96.145% 0.8792 0.952
K-NN 85.295% 0.5766 0.813 83.165% 0.5222 0.788
0-R 80.000% 0.0000 0.500 80.000% 0.0000 0.500

Random Logistic
English Regression 83.730% 0.3854 0.844 80.200% 0.0543 0.661
Words Naive Bayes 51.845% 0.1341 0.665 39.260% 0.0515 0.606

C4.5 89.995% 0.6673 0.901 91.590% 0.7101 0.917
K-NN 87.955% 0.6384 0.834 87.620% 0.6119 0.863
0-R 80.000% 0.0000 0.500 80.000% 0.0000 0.500
Logistic

LDA Regression 86.780% 0.5382 0.886 80.590% 0.1447 0.732
Naive Bayes 77.290% 0.3179 0.767 73.565% 0.2523 0.712
C4.5 91.245% 0.7284 0.866 96.070% 0.8759 0.946
K-NN 88.615% 0.6854 0.887 89.345% 0.7034 0.894
0-R 80.000% 0.0000 0.500 80.000% 0.0000 0.500
Logistic

Labeled Regression 88.125% 0.5967 0.904 82.605% 0.3151 0.798
LDA Naive Bayes 79.655% 0.3508 0.788 77.560% 0.3082 0.747

C4.5 92.105% 0.7553 0.888 95.430% 0.8574 0.939
K-NN 91.500% 0.7561 0.911 92.405% 0.7801 0.921

the pair 3, the reports are categorically similar and they are correctly recognized as non-

duplicates as they are about two different Android Labeled-LDA topics.

Figure 5.1 shows the ROC curves for results of applying K-NN algorithm on various

“all-features” tables (such as Table 4.4) for Android bug repository. It also displays the

ROC curve for the “textual categorical” table (such as Table 4.2). The figure shows that

the Labeled-LDA context outweighs the other ones. The “No context” curve shows the per-
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Table 5.2: Statistical measures resulted by the experiments on Eclipse bug repository
including textual, categorical, and contextual

Context Algorithm Textual, Categorical, & Contextual Contextual only
Accuracy % Kappa AUC Accuracy % Kappa AUC

0-R 80.000% 0.0000 0.500
Logistic

No Regression 96.610% 0.8922 0.989
Context Naive Bayes 96.500% 0.8896 0.985

C4.5 96.650% 0.8947 0.975
K-NN 95.270% 0.8522 0.915
0-R 80.000% 0.0000 0.500 80.000% 0.0000 0.500
Logistic

Architecture Regression 96.685% 0.8947 0.989 82.100% 0.2164 0.718
Naive Bayes 96.125% 0.8786 0.983 77.660% 0.2157 0.648
C4.5 96.700% 0.8961 0.966 83.720% 0.3462 0.700
K-NN 94.395% 0.8240 0.917 80.910% 0.3852 0.714
0-R 80.000% 0.0000 0.500 80.000% 0.0000 0.500
Logistic

NFR Regression 96.680% 0.8943 0.989 79.960% 0.0337 0.665
Naive Bayes 96.350% 0.8848 0.980 79.960% 0.0269 0.643
C4.5 96.585% 0.893 0.955 83.130% 0.3495 0.705
K-NN 93.725% 0.8043 0.904 78.010% 0.3619 0.699
0-R 80.000% 0.0000 0.500 80.000% 0.0000 0.500

Random Logistic
English Regression 96.605% 0.8921 0.989 80.720% 0.0983 0.661
Words Naive Bayes 92.095% 0.7714 0.949 41.870% 0.0702 0.610

C4.5 96.660% 0.8954 0.964 83.120% 0.3132 0.681
K-NN 94.920% 0.8417 0.930 80.600% 0.3459 0.710
0-R 80.000% 0.0000 0.500 80.000% 0.0000 0.500
Logistic

LDA Regression 96.750% 0.8968 0.990 86.215% 0.4716 0.854
Naive Bayes 94.710% 0.8382 0.972 78.765% 0.3208 0.722
C4.5 96.640% 0.8945 0.954 85.120% 0.5174 0.747
K-NN 94.225% 0.8222 0.919 84.070% 0.5376 0.792

formance of K-NN algorithm using the data generated by Sun et al.’s measurements (only

textual and categorical measurements) which show poor performance in comparison to the

other curves. Thus, adding extra features with or without Sun et al.’s features improves

bug-deduplication performance.

Figure 5.2 demonstrates the ROC curves for results of applying C4.5 algorithm on the

“all-features” tables for Android bug repository. It also indicates the performance of C4.5

on the “textual categorical” table. This diagram shows a tangible gap between the perfor-

mance of C4.5 using different contextual data-sets and its performance without using any

context.
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Table 5.3: Statistical measures resulted by the experiments on Mozilla bug repository
including textual, categorical, and contextual data

Context Algorithm Textual, Categorical, & Contextual Contextual only
Accuracy % Kappa AUC Accuracy % Kappa AUC

0-R 80.000% 0.0000 0.500
Logistic

No Regression 94.065% 0.8075 0.971
Context Naive Bayes 92.670% 0.7679 0.961

C4.5 94.085% 0.8114 0.943
K-NN 92.810% 0.7432 0.857
0-R 80.000% 0.0000 0.500 80.000% 0.0000 0.500
Logistic

Architecture Regression 94.340% 0.8169 0.973 80.450% 0.0980 0.719
Naive Bayes 91.105% 0.7326 0.950 74.775% 0.1248 0.646
C4.5 94.470% 0.8247 0.938 84.985% 0.4656 0.750
K-NN 91.895% 0.7451 0.879 82.395% 0.4290 0.728
0-R 80.000% 0.0000 0.500 80.000% 0.0000 0.500
Logistic

NFR Regression 94.210% 0.8133 0.973 79.825% 0.0136 0.637
Naive Bayes 92.650% 0.7690 0.956 80.145% 0.0380 0.658
C4.5 93.630% 0.7968 0.914 80.285% 0.1740 0.650
K-NN 88.260% 0.6343 0.818 73.465% 0.2263 0.621
0-R 80.000% 0.0000 0.500 80.000% 0.0000 0.500

Random Logistic
English Regression 94.390% 0.8188 0.973 82.110% 0.1994 0.684
Words Naive Bayes 78.075% 0.4870 0.893 35.880% 0.0461 0.638

C4.5 94.170% 0.8151 0.941 82.635% 0.2829 0.640
K-NN 90.440% 0.7020 0.859 79.620% 0.3473 0.694
0-R 80.000% 0.0000 0.500 80.000% 0.0000 0.500
Logistic

LDA Regression 94.775% 0.8318 0.975 84.280% 0.4049 0.823
Naive Bayes 91.265% 0.7331 0.947 78.855% 0.3333 0.753
C4.5 94.135% 0.8138 0.900 85.980% 0.5257 0.747
K-NN 89.505% 0.6796 0.849 83.415% 0.5133 0.775

Figure 5.3 displays the ROC curves resulted by applying K-NN algorithm on “all-

features” and “textual categorical” tables for Eclipse bug repository. In this diagram, the

LDA context shows the highest improvement in performance. Figure 5.4 depicts the same

curves resulted by applying the Logistic Regression algorithm. This diagram indicates a

very slight improvement when applying the LDA context.

Figure 5.5 displays the ROC curves resulted by applying C4.5 algorithm on “all-features”

and “textual categorical” tables for Mozilla bug repository. As indicated in this diagram, the

LDA context shows the highest improvement. Figure 5.6 reveals the same curves resulted

by applying the K-NN algorithm. As illustrated in this diagram, the highest improvement

is achieved by the architecture context.
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Table 5.4: Statistical measures resulted by the experiments on OpenOffice bug repository
including textual, categorical, and contextual data

Context Algorithm Textual, Categorical, & Contextual Contextual only
Accuracy % Kappa AUC Accuracy % Kappa AUC

0-R 80.000% 0.0000 0.500
Logistic

No Regression 93.125% 0.7729 0.961
Context Naive Bayes 91.415% 0.6960 0.951

C4.5 93.210% 0.7789 0.932
K-NN 90.580% 0.7042 0.812
0-R 80.000% 0.0000 0.500 80.000% 0.0000 0.500
Logistic

Architecture Regression 93.210% 0.7761 0.961 80.000% 0.0000 0.600
Naive Bayes 91.545% 0.7039 0.938 80.000% 0.0000 0.604
C4.5 92.975% 0.7734 0.920 79.995% 0.0565 0.573
K-NN 88.400% 0.6332 0.821 77.180% 0.1926 0.647
0-R 80.000% 0.0000 0.500 80.000% 0.0000 0.500
Logistic

NFR Regression 93.670% 0.7925 0.966 80.010% 0.0011 0.624
Naive Bayes 91.470% 0.6988 0.947 80.000% 0.0000 0.604
C4.5 92.380% 0.7562 0.893 80.325% 0.1775 0.645
K-NN 84.105% 0.5130 0.762 73.605% 0.2114 0.611
0-R 80.000% 0.0000 0.500 80.000% 0.0000 0.500

Random Logistic
English Regression 93.275% 0.7803 0.961 80.550% 0.1045 0.631
Words Naive Bayes 83.460% 0.5669 0.880 31.860% 0.0296 0.591

C4.5 93.120% 0.7762 0.935 81.215% 0.1657 0.586
K-NN 88.015% 0.6266 0.809 78.605% 0.2808 0.692
0-R 80.000% 0.0000 0.500 80.000% 0.0000 0.500
Logistic

LDA Regression 93.385% 0.7825 0.964 81.030% 0.1435 0.699
Naive Bayes 89.090% 0.6402 0.911 74.870% 0.1551 0.630
C4.5 92.505% 0.7618 0.890 79.350% 0.2502 0.654
K-NN 84.130% 0.5111 0.760 77.935% 0.3507 0.688

Table 5.5: Examples of predictions made by K-NN algorithm for Android bug repository
including textual, categorical, and Labeled-LDA context’s data

Pair ID Title Comp Prio Type Vers Act Pred

1 3063 Bluetooth does not work with Voice Dialer Device Med Def dup dup8152 Need the ability to use voice dial over bluetooth Med Def

2 3029 support for Indian Regional Languages... Framework Med Enh dup non4153 Indic fonts render without correctly reordering.. GfxMedia Med Def

3 8846 Bluetooth Phonebook Access Profile ... Med Def 2.2 non non31989 [ICS] Question of Google Maps’ location... Med Def

4 719 enhanced low-level Bluetooth support Device Med Enh non dup1416 Bluetooth DUN/PAN Tethering support Device Med Enh

Figure 5.7 displays the ROC curves resulted by applying C4.5 algorithm on “all-features”

and “textual categorical” tables for OpenOffice bug repository. As this diagram shows, the
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Figure 5.1: ROC curves resulted by applying K-NN algorithm on Android reports.
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Figure 5.2: ROC curves resulted by applying C4.5 algorithm on Android reports.
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Figure 5.3: ROC curves resulted by applying K-NN algorithm on Eclipse reports.
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Figure 5.4: ROC curves resulted by applying logistic regression algorithm on Eclipse reports.
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Figure 5.5: ROC curves resulted by applying C4.5 algorithm on Mozilla reports.

highest performance is achieved by applying the LDA context. Figure 5.8 reveals the same

curves resulted by applying the Logistic Regression algorithm. This diagram indicates a

slight improvement when applying the NFR context.

5.1.1 Discussion of Findings

Taking into account the reported measurements, the contextual features in some cases cause

remarkable improvement while in some other cases only make a slight improvement in

the duplicate report identification. Hence, the contextual information with no doubt can

recognize the duplicate bug reports. But, our experiments demonstrate that there is a notable

difference between the performance of identifying duplicate reports in Android and other

bug repositories. We believe this difference is because of an important difference among the
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Figure 5.6: ROC curves resulted by applying K-NN algorithm on Mozilla reports.
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Figure 5.7: ROC curves resulted by applying C4.5 algorithm on OpenOffice reports.

structure of these bug repositories. As indicated in Figure 3.1, there is a considerably large

bucket of duplicate reports in Android bug repository (including 188 duplicate reports).

We believe that contextual features of the duplicate bug reports in the same bucket are

recognized by the machine learning classifiers as similar patterns which help in recognizing

duplicate bug reports efficiently. Also, according to the fact that larger buckets provide more

pairs marked as “dup”, they provide more training data for the classifiers. Consequently,

duplicate bug reports pertaining to the large buckets are easily recognized by the machine

learners when they are provided by contextual features.

To examine this idea, we have removed all the bug reports belonging to the largest

bucket from Android bug repository and created a repository called Android modified.

Then, we conducted an experiment which traces the predictions made by the machine learn-
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Figure 5.8: ROC curves resulted by applying logistic regression algorithm on OpenOffice
reports.

ers for the data-sets including only the LDA contextual features. In this experiment, the ma-

chine learner with the highest prediction performance is taken into consideration for each

bug repository. Then, the False Negative (FN) predictions made by the machine learners.

I.e. we investigated the “dup” instances not recognized by the machine learner. Also, we

divided the buckets of bug reports into two groups: the large buckets (buckets including 10

or more duplicate bug reports) and the small buckets (the buckets including less than 10

duplicate reports). As a result, we realized that 90% of the FNs for the android modified

are from the small buckets while only 37% of all the pairs marked as “dup” are from these

buckets. For Eclipse repository, 88% of the FNs belong to the small buckets while 75%

of the “dup”s are from these buckets. This experiment on Mozilla repository indicated

that 81% of the FNs belong to small buckets while only 53% of the “dup”s are related to

these buckets. Finally, for OpenOffice bug repository, 82% of the FNs belong to the small

buckets while 68% of the “dup” instances are from these buckets. These result support the

idea that machine learners can identify the duplicate reports belonging to the larger buckets

more effectively in comparison to the duplicate reports from small buckets when applying

contextual features.

As a result, we realized that classifiers identify the duplicate records belonging to large

buckets more effectively in comparison to the duplicates from small buckets (like buckets

of size 2 that are very common as demonstrated in Figure 3.1). These observations leaded

us to the conclusion that duplicate records belonging to large buckets of duplicates are more

easy to identify by the machine learners in comparison to the rest of the duplicate reports.
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5.2 Effectiveness of Number of Features

As mentioned previously, each contextual data-set adds some new contextual features to

each bug report. The number of these contextual features is equal to the number of word

lists included in the contextual data-set. In this section, we analyze the influence of the

number of added features (to the bug reports) on the bug-deduplication process. Here we

answer the follwoing research question: Does adding more features (even junk) to the bug

reports improve the accuracy of duplicate bug report detection regardless of their context?

Figures 5.9, 5.11, 5.13, and 5.15 show the relationship between the kappa measure

and the number of added features to Android, Eclipse, Mozilla, and OpenOffice bug re-

ports respectively. Each box-plot in these figures represents the distribution of kappa values

for each context reported by the machine learning classifiers (0-R, Naive Bayes, Logistic

Regression, K-NN, and C4.5). In Figure 5.9, there is a little difference between the perfor-

mance of Random English Word context and NFR context, but NFR adds 20 fewer features.

Consequently, context is more important than feature count. Figures 5.11, 5.13, 5.15, imply

that although the English Random Words includes the maximum number of features, it re-

sulted in the weakest performance among the other contexts. This result reveals that number

of added features is not effective in improving the detection of duplicate bug reports. And,

it is the context that impacts the prediction of duplicates.

Moreover, we display the correlation between the number of added features and AUC

in Figures 5.10, 5.12, 5.14, and 5.16. The AUC measure for Naive Bayes, Logistic Regres-

sion, K-NN, and C4.5 is demonstrated in these figures. The Figure 5.10 shows the relation

between the number of added features and AUC by fitting a linear regression function (the

slope of this line is 0.0012). The measured correlation value for this figure is 0.46 which

does not represent a high positive correlation. For Figures 5.12, 5.14, and 5.16 the slopes are

−0.0002, −0.0006, and −0.0008 respectively which imply the low amount of correlation

between the number of added features and the efficiency of detecting duplicate reports.

5.2.1 Discussion of Findings

Taking into account the points mentioned above, it is evident that adding more features can

not improve the performance of duplicate bug reports detection per se.
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Figure 5.9: Kappa versus number of added features for Android bug repository. The x axis
shows the number of features each context adds to the bug reports (which is equal to the

number of word lists of the contextual data). The contexts from left to right are no context,
architecture, NFR, Random words, LDA, and Labeled-LDA.
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Figure 5.10: AUC versus number of added features for Android bug repository. The x axis
shows the number of features each context adds to the bug reports. The contexts from left to

right are no context, architecture, NFR, Random words, LDA, and Labeled-LDA.
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Figure 5.11: Kappa versus number of added features for Eclipse bug repository. The x axis
shows the number of features each context adds to the bug reports (which is equal to the

number of word lists of the contextual data). The contexts from left to right are no context,
architecture, NFR, Random words, and LDA.
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Figure 5.12: AUC versus number of added features for Eclipse bug repository. The x axis
shows the number of the features each context adds to the bug reports. The contexts from left

to right are no context, architecture, NFR, Random words, and LDA.
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Figure 5.13: Kappa versus number of added features for Mozilla bug repository. The x axis
shows the number of features each context adds to the bug reports (which is equal to the

number of word lists of the contextual data). The contexts from left to right are no context,
architecture, NFR, Random words, and LDA.
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Figure 5.14: AUC versus number of added features for Mozilla bug repository. The x axis
shows the number of the features each context adds to the bug reports. The contexts from left

to right are no context, architecture, NFR, Random words, and LDA.
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Figure 5.15: Kappa versus number of added features for OpenOffice bug repository. The x
axis shows the number of features each context adds to the bug reports (which is equal to the
number of word lists of the contextual data). The contexts from left to right are no context,

architecture, NFR, Random words, and LDA.

0 5 10 15 20 25

0.
80

0.
85

0.
90

0.
95

Number of added contextual features

A
U
C

Figure 5.16: AUC versus number of added features for OpenOffice bug repository. The x axis
shows the number of the features each context adds to the bug reports. The contexts from left

to right are no context, architecture, NFR, Random words, and LDA.
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5.3 Evaluating the List of Candidates

In this section, we discuss the impact of context on filtering the bug reports and providing

a list of candidate duplicate reports to triagers, based on the reported results of the MAP

measure. This bug report retrieval approach is different from the method applied in our re-

cent work [1] in which only the machine learning classifiers are exploited to decide whether

two bug reports are duplicates or not. Here, we aim to address the following research ques-

tion: Could the software context improve the quality of the list of candidate duplicates to

an incoming bug report?

Table 5.6: MAP results for the list of candidates of Android bug repository

Criterion MAP
REP 0.410
Architecture context 0.020
NFR context 0.200
LDA context 0.293
LabeledLDA 0.298
REP and Architecture context (cosine similarity) 0.376
REP and NFR context (cosine similarity) 0.301
REP and LDA context (cosine similarity) 0.324
REP and LabeledLDA context (cosine similarity) 0.330
REP and Architecture context (Euclidean distance similarity) 0.383
REP and NFR context (Euclidean distance similarity) 0.414
REP and LDA context (Euclidean distance similarity) 0.318
REP and LabeledLDA context (Euclidean distance similarity) 0.412
REP (Logistic regression based) 0.505
all (Logistic regression based) 0.459
all without REP (Logistic regression based) 0.097
REP and architecture cosine (Logistic regression based) 0.499
REP and LDA cosine (Logistic regression based) 0.513
REP and Random English words cosine (Logistic regression based) 0.479
REP and NFR cosine (Logistic regression based) 0.468
REP and Labeled-LDA cosine (Logistic regression based) 0.501
Architecture context (Logistic regression based) 0.042
LDA context (Logistic regression based) 0.365
Random English words context (Logistic regression based) 0.101
NFR context (Logistic regression based) 0.003
Labeled-LDA context (Logistic regression based) 0.374

Tables 5.6, 5.7, 5.8, and 5.9 report the MAP results for Android, Eclipse, Mozilla,

and OpenOffice bug reports respectively. In each one of these tables, three different types

of similarity criterion functions are assessed exploiting the MAP measure. As addressed
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Table 5.7: MAP results for the list of candidates of Eclipse bug repository

Criterion MAP
REP 0.379
Architecture context 0.008
NFR context 0.069
LDA context 0.072
REP and Architecture context (cosine similarity) 0.306
REP and NFR context (cosine similarity) 0.280
REP and LDA context (cosine similarity) 0.209
REP and Architecture context (Euclidean distance similarity) 0.367
REP and NFR context (Euclidean distance similarity) 0.372
REP and LDA context (Euclidean distance similarity) 0.245
REP (Logistic regression based) 0.457
all (Logistic regression based) 0.453
all without REP (Logistic regression based) 0.135
REP and architecture cosine (Logistic regression based) 0.455
REP and LDA cosine (Logistic regression based) 0.455
REP and Random English words cosine (Logistic regression based) 0.455
REP and NFR cosine (Logistic regression based) 0.456
Architecture context (Logistic regression based) 0.021
LDA context (Logistic regression based) 0.095
Random English words context (Logistic regression based) 0.037
NFR context (Logistic regression based) 0.077

earlier in section 4.6.2, these criteria are as follows: cosine similarity based, Euclidean

distance based, and logistic regression based metrics.

Some of the conducted experiments exclusively make use of specific contextual infor-

mation to retrieve the duplicate reports. Some other ones exploit both the REP function

and the contextual information. Moreover, in some of the experiments, all the contextual

information (except the Random English words one) are applied without utilizing the REP

function (all without REP) and with exploiting the REP function (all). The highest MAP

value achieved for each repository is presented in bold in the tables.

As indicated in Tables 5.6, 5.7, 5.8, and 5.9, applying the logistic regression based tech-

nique could make considerable enhancement in identifying duplicate reports. For instance,

when the similarity criterion exclusively exploits the REP function, the logistic regression

based approach provides helpful coefficients that boost the MAP value 9.5%, 7.8%, 9.1%,

and 8.3% for Android, Eclipse, Mozilla, and OpenOffice bug repositories respectively in

comparison to the case of normal REP being applied as the similarity criterion.
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Table 5.8: MAP results for the list of candidates of Mozilla bug repository

Criterion MAP
REP 0.208
Architecture context 0.005
NFR context 0.008
LDA context 0.018
REP and Architecture context (cosine similarity) 0.208
REP and NFR context (cosine similaxrity) 0.207
REP and LDA context (cosine similarity) 0.208
REP and Architecture context (Euclidean distance similarity) 0.169
REP and NFR context (Euclidean distance similarity) 0.203
REP and LDA context (Euclidean distance similarity) 0.089
REP (Logistic regression based) 0.299
all (Logistic regression based) 0.294
all without REP (Logistic regression based) 0.042
REP and architecture cosine (Logistic regression based) 0.299
REP and LDA cosine (Logistic regression based) 0.296
REP and Random English words cosine (Logistic regression based) 0.299
REP and NFR cosine (Logistic regression based) 0.299
Architecture context (Logistic regression based) 0.013
LDA context (Logistic regression based) 0.029
Random English words context (Logistic regression based) 0.015
NFR context (Logistic regression based) 0.013

5.3.1 Discussion of Findings

According to the experiments mentioned above, the added contextual data did not improve

the duplicate report retrieval performance significantly. As reported in the tables, two of the

repositories (Android and OpenOffice) showed that the combination of REP and contextual

similarity measure is able to improve the performance of duplicate bug report detection

by up to 0.7%. However, two other repositories (Mozilla and Eclipse) did not show any

improvement after applying the software context. Consequently, we could not elevate the

quality of the list of candidate duplicates greatly by considering the contextual data.

5.4 Context Matters

This document describes one scenario where context matters. And, we also showed how

software-development context matters in prior work [24]. This study provides more evi-

dence that we can gain in performance by including contextual features into our software

engineering related IR tasks, whether it is bug deduplication or LDA topic labelling and tag-

ging. We hope this work serves as a call to arms for researchers to start building corpora of
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Table 5.9: MAP results for the list of candidates of OpenOffice bug repository

Criterion MAP
REP 0.238
Architecture context 0.003
NFR context 0.041
LDA context 0.038
REP and Architecture context (cosine similarity) 0.180
REP and NFR context (cosine similarity) 0.136
REP and LDA context (cosine similarity) 0.105
REP and Architecture context (Euclidean distance similarity) 0.234
REP and NFR context (Euclidean distance similarity) 0.236
REP and LDA context (Euclidean distance similarity) 0.237
REP (Logistic regression based) 0.321
all (Logistic regression based) 0.322
all without REP (Logistic regression based) 0.078
REP and architecture cosine (Logistic regression based) 0.321
REP and LDA cosine (Logistic regression based) 0.321
REP and Random English words cosine (Logistic regression based) 0.318
REP and NFR cosine (Logistic regression based) 0.322
Architecture context (Logistic regression based) 0.010
LDA context (Logistic regression based) 0.051
Random English words context (Logistic regression based) 0.021
NFR context (Logistic regression based) 0.052

software concepts in order to improve automated and semi-automated software engineering

tasks.

5.5 Threats to Validity

Construct validity is threatened by our word-lists in the sense of how they are constructed

and if the word-lists actually represent context or just important tokens. Our measurements

rely on the status of bug reports in some real-world bug-tracking systems that have a huge

number of bug reports not processed by the triagers (have the status value of “New” or

“Unconfirmed”). And, there may be many duplicate bug reports among them. Also, for

Android, Eclipse, Mozilla, and OpenOffice bug repositories we exploited in this study,

there are only 2%, 6%, 8%, and 9% of the bug reports marked as “duplicate”. There are

likely many unlabeled duplicate bug reports.

We address internal validity by replicating past work (Sun et al.) but also by evaluat-

ing both on true negatives (non-duplicates) and true positives (duplicates), where as Sun

et al.’s methodology only tested for recommendations on true positives. Furthermore in-
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ternal validity is bolstered by searching for rival explanations of increased performance by

investigating the effect of extra features.

External validity is threatened by the fact that some particular characteristics of a bug

repository might lead to our experiment results. To reduce this risk, we have used four large

bug repositories related to different software projects in our experiments.
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Chapter 6

Conclusions and Future Work

In this thesis, we proposed a method that helps to automate the bug report triage process

by improving the bug report deduplication. We developed a novel bug report similarity

measurement method to detect duplicate bug reports. Also, we suggest a new approach for

duplicate bug report retrieval, based on a specific set of bug report similarity criteria.

The existing research on bug report deduplication has mainly focused on the IR tech-

niques and textual comparison of the bug reports to find the duplicates. In this study, we

have taken advantage of software contexts in addition to the textual and categorical com-

parison metrics to address the ambiguity of synonymous software-related words within bug

reports written by users, who have different vocabularies. We assume that bug reports are

likely to refer to a non-functional requirement or some functionalities related to some ar-

chitectural components in the system. So, we use contextual data-sets including words

organized in a few word lists including non-functional requirement words, software archi-

tectural words, software topic words extracted by LDA/Labeled LDA, and random English

words (as a control).

We replicated Sun et al.’s [53] method of textual and categorical comparison and ex-

tended it by adding our contextual similarity measurements. To that end, we have added

contextual features to the bug reports exploiting the above mentioned contextual word lists.

These features are taken into consideration in addition to the basic features (description,

title, type, component, version, priority, and product) while comparing the bug reports and

measuring their similarities.

To retrieve the duplicate bug reports, we have created a data-set such that any record

in the data-set includes a pair of bug reports with their textual, categorical, and contex-

tual similarity measurements. Each record in this data-set also includes a feature showing

whether the bug reports are duplicates of each other. This data-set is then provided to the
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machine learning classifiers to decide if the bug reports in each record are duplicates, given

the textual, categorical, and/or the contextual comparison features of the reports (applying

10-fold cross validation technique).

Moreover, we have proposed another duplicate report retrieval method which compares

every incoming bug report against all the existing ones in the bug-tracking system. This

comparison is carried out by applying the REP function (proposed by Sun et. al. [52]) or a

combination of REP and one of the bug report similarity measurement criteria we have pro-

posed such as the cosine distance based, Euclidean distance based, and logistic regression

based metrics. Based on the values returned by the similarity measurement criterion, the

existing bug reports in the repository are sorted in a way that the bug reports at the top of the

list are expected to be the most similar bug reports to the incoming report. The effectiveness

of this approach is evaluated by applying the Mean Average Precision (MAP) measure.

We have conducted our experiments on four large real-world bug repositories consist-

ing of the bug reports from Android, Eclipse, Mozilla, and OpenOffice software projects.

We were able to improve the accuracy of the duplicate bug report retrieval approach by

applying the machine learning classifiers. This improvement was significant for Android

bug repository (up to 11.5% over the Sun et. al.’s method [52]) and notable for other repos-

itories at hand. We have also investigated the impact of the number of added features to the

bug reports on the deduplication process by exploiting the English random words context

which revealed a poor performance in comparison to other contexts. These results leaded

us to the conclusion that the software context matters when comparing the bug reports.

We applied our method to help the triagers find the duplicate bug reports easily by the

means of providing a list of candidate duplicates to any incoming bug report. To that end,

we proposed three different similarity criteria for pairwise comparison of the bug reports

including cosine similarity, euclidean distance based, and logistic regression based metrics.

As a result, we found logistic regression based similarity metric as the most efficient one.

However, by adding the contextual data to the similarity criterion we could only improve

the list of candidates slightly for Android bug repository but not the rest of the repositories.

As our experiments illustrate, adding software contextual features to the bug reports

can improve the performance of bug report deduplication while retrieving the duplicates by

the machine learning classifiers. By adding the context, the classifiers can decide more effi-

ciently if the two bug reports are duplicates or not. On the other hand, adding the contextual

features could not enhance the quality of the list of candidate duplicates for the majority of

software projects.
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6.1 Contributions

The main contributions of this thesis are as follows:

1. We proposed the use of software engineering context for the problem of duplicate bug

reports detection by adding the contextual features to the bug reports (section 4.4).

For this purpose, the contextual word lists including software architectural word,

software non-functional requirement words, software topic words extracted by LDA/

Labeled-LDA are exploited (section 3.2).

2. We presented a new duplicate bug report retrieval method that considers not only the

true-positive duplicate cases but also the true-negative ones. To that end, “all features”

data-sets including the pairwise comparisons of the bug reports are created (sec-

tion 4.5) and provided to the machine learning classifiers to predict the duplicates

(section 4.6.1).

3. By applying the machine learning classifiers on the “all features” tables (section 4.6.1),

we were able to improve the accuracy of duplicate bug reports detection by 11.5%,

41%, and 16.8% in accuracy, Kappa, and AUC measures respectively (section 5.1)

over the Sun et al.’s approach which only utilizes the textual and categorical features

of the bug reports.

4. Finally, we posited some new bug report similarity criteria exploiting both the REP

function (proposed by Sun et al. [52]) and the logistic regression classifier’s prob-

abilistic model (section 4.6.2.3) that are used to provide the list of the most similar

candidate duplicates to the triagers. As discussed in section 4.6.2.4, this approach

was able to improve the quality of the list of candidates by 9.5%, 7.8%, 9.1%, and

8.3% for Android, Eclipse, Mozilla, and OpenOffice bug repositories respectively

over the Sun et al.’s [52] approach.

6.2 Future Work

In the future, we would like to extend our approach to take advantage of more software

contexts, such as the execution traces in addition to the textual, categorical, and existing

contextual data to find the duplicate bug reports more accurately. Furthermore, we would

like to implement our method as an embedded tool in an issue-tracker to empirically inves-

tigate the role that this method can actually play in assisting the triagers and save their time
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and effort when looking for the duplicates of an incoming bug report. This way, we can

take advantage of their helpful feedback to enhance the effectiveness and usability of our

approach.
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trieval based coupling measures for impact analysis. Empirical Software Engineering,
14(1):5–32, 2009.

[42] J. R. Quinlan. C4.5: programs for machine learning, volume 1. Morgan kaufmann,
1993.

[43] D. Ramage, D. Hall, R. Nallapati, and C. D. Manning. Labeled LDA: A supervised
topic model for credit attribution in multi-labeled corpora. In Proceedings of the 2009
Conference on Empirical Methods in Natural Language Processing: Volume 1-Volume
1, pages 248–256. Association for Computational Linguistics, 2009.

[44] S. Robertson, H. Zaragoza, and M. Taylor. Simple BM25 extension to multiple
weighted fields. In Proceedings of the thirteenth ACM international conference on
Information and knowledge management, pages 42–49. ACM, 2004.

[45] S. E. Robertson and S. Walker. Some simple effective approximations to the 2-poisson
model for probabilistic weighted retrieval. In Proceedings of the 17th annual interna-
tional ACM SIGIR conference on Research and development in information retrieval,
pages 232–241. Springer-Verlag New York, Inc., 1994.

[46] P. Runeson, M. Alexandersson, and O. Nyholm. Detection of duplicate defect reports
using natural language processing. In Software Engineering, 2007. ICSE 2007. 29th
International Conference on, pages 499–510. IEEE, 2007.

[47] G. Salton and M. J. McGill. Introduction to modern information retrieval. 1986.

[48] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing.
Communications of the ACM, 18(11):613–620, 1975.

[49] G. AF. Seber and A. J. Lee. Linear regression analysis, volume 936. John Wiley &
Sons, 2012.

74



[50] N. Serrano and I. Ciordia. Bugzilla, ITracker, and other bug trackers. Software, IEEE,
22(2):11–13, 2005.

[51] G. Shakhnarovich, T. Darrell, and P. Indyk. Nearest-neighbor methods in learning
and vision: theory and practice, volume 3. MIT press Cambridge, MA, USA:, 2005.

[52] C. Sun, D. Lo, S. C. Khoo, and J. Jiang. Towards more accurate retrieval of duplicate
bug reports. In Proceedings of the 2011 26th IEEE/ACM International Conference on
Automated Software Engineering, pages 253–262. IEEE Computer Society, 2011.

[53] C. Sun, D. Lo, X. Wang, J. Jiang, and S. C. Khoo. A discriminative model approach
for accurate duplicate bug report retrieval. In Proceedings of the 32nd ACM/IEEE In-
ternational Conference on Software Engineering-Volume 1, pages 45–54. ACM, 2010.

[54] A. Sureka and P. Jalote. Detecting duplicate bug report using character n-gram-based
features. In Software Engineering Conference (APSEC), 2010 17th Asia Pacific, pages
366–374. IEEE, 2010.

[55] J. Sutherland. Business objects in corporate information systems. ACM Computing
Surveys (CSUR), 27(2):274–276, 1995.

[56] G. Tassey. The economic impacts of inadequate infrastructure for software testing.
National Institute of Standards and Technology, pages 02–3, 2002.

[57] The Bugzilla Team. The Bugzilla Guide. http://www.bugzilla.org/docs/
3.0/html/lifecycle.html, 2013.

[58] E. M. Voorhees et al. The TREC-8 Question Answering Track Report. In TREC,
volume 99, pages 77–82, 1999.

[59] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. An approach to detecting duplicate
bug reports using natural language and execution information. In Proceedings of the
30th international conference on Software engineering, pages 461–470. ACM, 2008.

[60] W. Zhao, L. Zhang, Y. Liu, J. Sun, and F. Yang. SNIAFL: Towards a static noninter-
active approach to feature location. ACM Transactions on Software Engineering and
Methodology (TOSEM), 15(2):195–226, 2006.

75


