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Abstract

In recent years a number of computer programs for eukaryotic gene identification
have been developed. One such program, GRPL (Hooper ef al., 2000), is discussed
in detail in Chapter 1. GRPL has four distinct components, namely, the state score,
the length score, the functional site score, and the content score. The content score
consists of a log-likelihood ratio for nucleotide content, determined by models for
coding and non-coding regions.

Alternative models for content score are considered in Chapter 3. These models
make use of a regression technique called reference point logistic regression (Hooper,
2000). Reference point logistic regression is a generalization of logistic regression that
can be used in complex classification problems to model the conditional probability
that an item belongs to a specified class given the features observed for the item;

details are given in Chapter 2.
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Introduction

The cells of all organisms contain DNA sequences. A DNA sequence can be rep-
resented as a sequence from {A,C,G,T}. These DNA sequences contain information
which is used to build proteins. Only small parts of the DNA sequence actually codes
for protein.

The information in the DNA sequence is contained in genes. A gene consists of
one or more exons, where an exon is a continuous segment of the DNA sequence. For

example, a gene which is made up of two exons could be represented as follows:

. ATGAAACTGCATGGTCCGGTAAAGTACGTAGGCTCTCGTAAGTCGATG...

exon 1 exon 2

The gene is therefore, ATGGTCCGGCTCTCGTAA.

Given a DNA sequence, we are interested in locating all exons in the sequence, if
any. and in determining the formation of consecutive exons into genes. In recent years
a number of computer programs have been developed which address this problem by
computational methods. Such programs are known as gene prediction programs.

We are interested in eukaryotic gene prediction, where a gene consists of one or
more exons, as opposed to prokaryotic gene prediction, where a gene consists of a
single exon. We restrict attention to human and vertebrate gene prediction. Genetic
structure varies considerably among organisms so better results will be obtained by
focusing on a particular organism type.

We will discuss two computer programs for gene prediction in detail: GENSCAN,
which was developed by Burge & Karlin (1997), and GRPL, which was developed by
Hooper et al. (2000), and which employs an approach similar to that of GENSCAN.

1



The model used by GRPL has four distinct components, the state score, the length
score, the functional site score, and the content score.

The content score attempts to distinguish between the patterns which occur in
exons and the patterns which occur outside exons. It involves the estimation of a
large number of parameters. Two alternative models will be considered in an attempt
to improve on the high level of accuracy shown by GRPL.

We will now present a brief overview of the thesis.

Chapter 1 contains the biological background for the problem. [t also outlines the
various measures that are used to assess the accuracy of a gene prediction program.
GENSCAN and GRPL are discussed in some detail.

The alternative models for content score use a regression technique called Ref-
erence Point Logistic (RPL) regression. It is a generalization of logistic regression
which was introduced by Hooper (2000). RPL regression will be discussed in Chapter
2.

Chapter 3 contains the new models for content score. These new models are

compared to GRPL, GENSCAN and various other gene prediction programs.
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Chapter 1

Prediction of Genetic Structure

1.1 Biological Background and Terminology

A molecule of DNA is formed from two strands of nucleotides. A nucleotide
consists of a sugar-phosphate backbone and one of four bases. Two possible types
of base are present, pyrimidine bases and purine bases. The pyrimidine bases are
cytosine (C) and thymine (T), the purine bases are adenine (A) and guanine (G).
The two strands are parallel, forming a double helix. They are complementary in
that, opposite A there is a T and opposite C there is a G. A sequence of nucleotides,
that is, a strand of DNA, can be represented by a sequence from {A,C,G,T}.

A gene is a sequence of nucleotides that codes for a protein. A protein is a polymer
made up of amino acids. There are twenty common amino acids, each determined by
one or more nucleotide triplets called codons. There are three codons, namely TAA,
TAG and TGA, which do not code for amino acids. These are called stop codons and
they signal the end of a gene. The portion of a DNA sequence between genes is known
as intergenic. In prokaryotic species (bacteria) each gene is a continuous segment of a
DNA strand. In eukaryotic species (multicellular organisms) a gene usually consists
of several coding regions called exons which are separated by noncoding regions called
introns.

The transfer of genetic information takes place in three stages. First, a segment of

DNA containing a gene is transcribed, producing a precursor of mRNA. The introns



are then removed in a process called splicing, leaving a single coding region with
an intergenic region at either end. This is the mRNA which is transported to the
cytoplasm for translation into protein.

A number of special sites play a role in the transcription, splicing and translation.
A cap site and related promoter sites signal the start of transcription. A polyadenyla-
tion site signals the end of transcription. A translation initiation site is at the start of
every gene and is always followed by a methionine codon ATG. A translation termi-
nation site is at the end of every gene and is always preceeded by a stop codon. The
transfer point from an exon to an intron is called a 5’ splice site, and from an intron
to an exon is called a 3’ splice site. About 99% of introns begin with the dinucleotide
GT and end with the dinucleotide AG (Senapathy et al., 1990). A branch point site,
located in an intron upstream from the 3’ splice site, plays a role during splicing. A
two-exon gene and its conversion to mRNA can be represented as in Figure 1.

A gene prediction program tries to identify the translation initiation site. all 5’
and 3’ splice sites, and the translation termination site of a gene. These sites are
known as the functional sites. A complete specification of functional sites can be
usefully represented in terms of a parse of a DNA sequence. A parse is a possible
partition of the sequence into non overlapping intervals, with each interval assigned to
one of the following states: intergenic, intron of phase 0, 1 or 2, initial exon, internal
exon of phase 0, 1 or 2, single exon gene and terminal exon. The phase of an intron
is 0 if the the last codon in the previous exon is complete, the phase is 1 if the last
codon in the previous exon needs 2 nucleotides for completion and the phase is 2 if
the last codon in the previous exon needs 1 nucleotide for completion. The phase of
an internal exon is the phase of the preceeding intron. The parse must respect the
permissible state transitions which are
e from intergenic to single exon gene or to initial exon

e from initial exon to intron of phase 0, 1 or 2



Figure 1: The conversion of a two-exon gene to mRNA
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e from intron of phase 0, 1 or 2 to internal exon of the same phase or to terminal

exon

e from single exon gene or terminal exon to intergenic

Some authors (Burge & Karlin, 1997, Synder & Stormo, 1995) include additional
states in the parse, for example, the 5’ untranslated region (extending from the start
of transcription to the translation initiation site) and the 3’ untranslated region (ex-
tending from just after the stop codon to the polyadenylation site). Given a DNA

sequence a gene prediction program selects a parse based on some optimality criterion.

1.2 Measures of Predictive Accuracy

The various models on which gene prediction programs are based, all have a
number of parameters which need to be estimated. Parameter estimates are obtained
from a training set, that is, a collection of DNA sequences with known structure. As
noted by Burset & Guigé (1996), it is important that a program be tested on a set of
DNA sequences distinct from the training set, so that it can be evaluated objectively
rather than giving possibly inflated results due to over-fitting of the training set.

The coding proportion of a DNA sequence is the proportion of nucleotides in the
sequence that are in coding regions, that is, in exons. The coding proportion of the
sequences in the training and test sets are of interest because it is likely that accuracy
results will decrease as the coding proportion decreases substantially below that of
the training set (Hooper et al., 2000).

We employ three standard test sets for evaluating gene prediction programs, the
Burset/Guigd test set (Burset & Guigd, 1996), which contains 570 vertebrate genes,

with an average coding proportion of 0.21; the GeneParser test set [ (Synder &



Stormo, 1995), which contains 28 human genes, with a coding proportion of 0.14; and
the GeneParser test set II, which contains 34 human genes, with a coding proportion
of 0.17. The predictive accuracy is calculated for each sequence in the test set, the
results are then averaged over all sequences, with each sequence given equal weight.

The accuracy of the predictions is measured at two levels: the nucleotide level
and the exon level. Consider first the nucleotide accuracy. For a given sequence, let
TP (true positive) be the number of nucleotides correctly predicted to be in coding
regions, let TN (true negative) be the number of nucleotides correctly predicted
to be in noncoding regions, let FP (false positive) be the number of nucleotides
incorrectly predicted to be in coding regions and let FN (false negative) be the number
of nucleotides incorrectly predicted to be in noncoding regions. Then PP=TP+4FP
(predicted positive) is the number of nucleotides predicted to be in coding regions,
PN=TN+FN (predicted negative) is the number of nucleotides predicted to be in
noncoding regions, AP=TP+FN (actual positive) is the number of nucleotides in
coding regions and AN=TN+FP (actual negative) is the number of nucleotides in
noncoding regions.

Sensitivity is defined as Sn=TP/AP, the proportion of coding nucleotides that are
correctly classified. Specificity is defined as Sp=TP /PP, the proportion of nucleotides
predicted to be in coding regions that are correctly classified. We set Sq=TN/AN
and Sr=TN/PN. If, for a particular sequence, any of the denominators is zero, then
the corresponding numerator is also zero. The ratio is now undefined and is ignored
when averaging across sequences. Two additional measures reported are the Corre-

lation coefficient

_ (TP)(TN)— (FP)(FN)
— /(PP)(PN)(AP)(AN)

and the approximate correlation AC=-14+-2(Sn+Sp+Sq+Sr)/4. Usually CC and AC
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are close in value but, if one of the ratios Sn, Sp, Sq, Sr has a zero denominator, then
CC is undefined while AC is redefined using the average of the other three ratios.
At the exon level two accuracy measures are common, exon sensitivity and exon
specificity. Let XTP (exon true positive) be the number of actual exons that exactly
match predicted exons. Exon sewnsitivity, XSn, is XTP divided by the number of
actual exons. Exon specificity, XSp, is XTP divided by the number of predicted

exons.

1.3 Gene Prediction Programs

Since the early 1990’s a number of computer programs designed to predict the
structure of protein coding genes in genomic DNA sequences have been developed.
These include GRPL and GRPL+ (Hooper et al., 2000), GENSCAN (Burge & Karlin.
1997), Genie (Kulp et al., 1996), Xpound (Thomas & Skolnick, 1994), GenelD (Guigd
et al., 1992), GRAIL2 (Xu et al., 1994) and GeneParser (Synder & Stormo, 1995).

Many of these programs have an option for organism type. Genetic structure
varies considerably among organisms, and prediction can be improved by using pa-
rameters specific to the organism type. Where there was such an option, human or
vertebrate was chosen for the following comparisons.

Some of the programs make use of database sequence alignment methods such as
BLAST or XBLAST (Altschul et al., 1990). Several authors (Burset & Guigd, Synder
& Stormo, 1995) have commented on the difficulty in comparing programs that use
sequence alignment methods. It is conceivable that most programs will be improved
by incorporating sequence alignment techniques, though the extent of the improve-
ment may depend on the initial accuracy. The increase in accuracy will also depend

on the size of the database being searched. Among the programs compared below,



those using sequence alignment methods are GRPL+, GenelD+ and GeneParser3.

Burset & Guigé (1996) compared a number of the above programs using the
Burset /Guigd test set described previously. Their results appear in Table 1. Those
not analysed by Burset & Guigdé are GRPL, GENSCAN and Genie. The results
for GRPL and GRPL+ were obtained from Hooper et al. (2000). The results for
GENSCAN are from Burge & Karlin (1997). The results for Genie appear in Kulp
et al. (1996).

Table 1: Performance comparisons for the Burset/Guigé test set.

Program Sn Sp Sq CC AC XSn XSp

GRPL(Hu) 0.93 093 0.984 091 0.91 0.76 0.79

GRPL(Hu)+ 0.97 097 0.990 0.96 0.96 0.81 0.85
0

GENSCAN 093 093 n/a 092 091 0.78 0.81
Genie 0.76 0.77 n/a n/a 0.72 0.55 0.48
GRAIL2 0.72 0.87 =n/a 0.76 0.75 0.36 0.43
GenelD 0.63 081 =n/a 0.65 0.67 0.44 0.46
Xpound 0.61 087 n/a 0.69 0.68 0.15 0.18

GenelD+ 091 091 =n/a 0.88 088 0.73 0.70
GeneParser3 0.86 091 n/a 0.85 0.86 0.56 0.58

Tables 2 and 3 contain the performance results for the GeneParser test sets.
The results were obtained from Hooper et al. (2000), where the test sequences were
submitted to the respective program’s webserver, except in the case of Xpound which

was run locally.



Table 2: Performance comparisons for the GeneParser [ test set.

Program Sn  Sp Sq CC AC XSn XSp
GRPL(Hu) 0.96 0.88 0978 0.90 091 0.72 0.69
GRPL(Hu)+ 098 095 0994 0.96 0.96 0.73 0.80
GENSCAN 097 088 0982 091 091 0.74 0.73

Genie 0.86 0.81 0.964 0.80 0.80 0.63 0.64
GRAIL2 0.91 0.86 0.980 0.86 0.87 048 0.44
GenelD 0.80 0.84 0979 0.79 0.79 0.60 0.51
Xpound 0.76 0.87 0984 0.78 0.79 0.21 0.24

Table 3: Performance comparisons for the GeneParser I test set.

Program Sn  Sp Sq CC AC XSn XSp
GRPL(Hu) 0.89 0.93 0989 0.89 0.90 0.69 0.77
GRPL(Hu)+ 0.93 096 0.995 0.94 094 0.71 0.76
GENSCAN 0.89 0.92 0986 0.90 0.89 0.68 0.69

Genie 0.75 0.76 0.967 0.71 0.72 0.54 0.51
GRAIL2 0.70 0.84 0978 0.73 0.72 0.36 0.32
GenelD 0.70 0.75 0.961 0.68 0.71 0.49 0.43
Xpound 0.71 091 0.987 0.76 0.78 0.26 0.27

The programs with the highest accuracy on all three test sets are GRPL, GRPL+
and GENSCAN. GRPL and GENSCAN have similar results at the nucleotide level,
with GENSCAN more accurate at the exon level. GRPL+, which refers to GRPL
with protein sequence alignment techniques included, is more accurate at both levels.

This thesis will concentrate on a model for the content score of exons as defined in
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GRPL. GRPL is based on a Generalized Hidden Markov Model, similar in structure
to the model used by GENSCAN. GRPL and GENSCAN differ primarily in their
models for content score and functional sites. We will continue by describing the
underlying models in both of these programs.

GRPL and GENSCAN treat the general case where the input sequence may con-
tain a partial gene, a complete gene, multiple complete (or partial) genes or no gene
at all.

GRPL and GENSCAN use essentially the same training set, a set of 380 human
DNA sequences compiled by Burge & Karlin (1997), containing 238 multi-exon genes
and 142 single-exon genes. This set will be denoted by £. A small number of the
sequences were removed by Hooper et al. (2000) for the training of GRPL. A set
of 1619 human cDNA sequences is combined with £ to produce the set C. This set
was used by both Burge & Karlin (1997) and Hooper et al. (2000) to model content

scores.

1.4 GENSCAN

GENSCAN predicts genetic structure simultaneously on both DNA strands. In
the model used, the possible states for a parse are intergenic, 5’ untranslated region,
single exon gene, initial exon, intron of phase 0, 1 or 2, internal exon of phase 0,
1 or 2, terminal exon and 3’ untranslated region. All of these can occur on either
the forward or the reverse strand. A parse ¢ can be represented by an ordered set
of states {qi1,q2,-...,gn} With an associated set of lengths {d,,ds,.....dn}. The meeting
point between consecutive states is called a site. An illustration of a parse is given
in Figure 2.

For a fixed sequence length L, let ®; be the set of all possible parses of length

11



qi q2 qd3 qn—1 dn

° ° L TR ° ®
site  site site site  site
1 2 3 n—2 n-—1

Figure 2: A parse ¢

L and let S, be the set of all possible DNA sequences of length L. Given L, GEN-
SCAN assigns a joint probability to each parse/sequence pair, that is, to each (¢, S)
€ & x Sr. Thus, for a given DNA sequence S of length L, the conditional probability

of a particular parse ¢ € @ is calculated using Bayes rule,

Y
O = 5 e, P S

Given a DNA sequence S, let z be a sequence of proportions obtained from S as
follows: The i** element of z records the combined proportion of cytosine (C) and
guanine (G) in the general vicinity of the i’ nucleotide in S, that is, in a window of
up to 10,000 nucleotides on either side of the i** nucleotide in S. Shorter windows are
used near the ends of sequences and for shorter sequences. = is called the sequence of
C+G content of S. Gene density and certain aspects of gene structure are known to
vary quite dramatically in regions of differing C+G content. Burge & Karlin (1997)
attempt to compensate for this by using parameters conditioned on a C+G grouping.
They use four groups of C+G proportions with boundaries 0.43, 0.51 and 0.57. Since

z is a function of S, we can write

P(¢,S) _ _ P(#.S=z) _ _ P& S
Zdve(b[_ P(wy S) Z’Z'G‘DL P(d)'57:) E¢'€®L P(UJ.S’[:)

P(e|S) =

Given a sequence S of length L, an optimal parse is defined to be a parse ¢,

12



maximizing the conditional probability P(¢|S). To find an optimal parse it is thus
sufficient to find a parse maximizing the joint conditional probability P(¢,S|z).The

Joint conditional probability can be rewritten as
P(¢,S|z) = P(é|z)P(S|o, =)-

The conditional probability, P(¢|z), is modeled using an explicit state duration
Hidden Markov Model. It has three main components, a vector of initial probabilities
7 for the state of the first interval, a matrix of state transition probabilities T for the
state of the following intervals, a set of state length (state duration) distributions f.

The conditional probability can thus be written as
P(¢|z) = —'tnlzﬁh(dllz) x H T(Qk—lv?klz)j;lk(dklz)
k=2

where the states of ¢ are gy, qo, ..., ¢. With associated state lengths d,, d, ..., d,.

Separate initial and transition probabilities are est imated for the four C+G cat-
egories. The initial probability of each state is chosen to be proportional to its
estimated frequency in bulk genomic DNA. Since exon lengths are generally small
compared with intron and intergenic lengths, exons are assigned zero initial proba-
bility.

Empirically derived length distribution functions are estimated for initial, internal
and terminal exons and for single exon genes. Exon length distributions are consid-
ered independent of the C+G proportion. Intron and intergenic length distributions
are modeled as geometric with the parameter p dependent on the C4+G group. The
length distributions for the 5’ and 3’ untranslated regions are also modeled as geo-
metric but with the mean independent of =.

The model for the remaining term, P(S|®, z), is based upon a partition of the se-

quence S as follows: for each site 7 in ¢, a subsequence w; of S is formed consisting of
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nucleotides in the immediate vicinity of the site, the number of nucleotides depending
on the states at either side of the site. The w; are called signal sequences. By removing
the signal sequences from S there is a natural set of subsequences {vy,vs,....u,} re-
maining, so that S is simply the concatenation of vy,w,,vs,wa,.....Un_1,Wn_,U,, where
n i1s the number of states in the parse ¢. The v; are called the content sequences.

All signal and content sequences are assumed conditionally independent given ¢

and z, therefore
P(S|d,z) = P(vi|é, =) P(wi|d,y 2)eeeen---. P(vn_1|9, z) P(Wn_1|¢, z) P(v,]|®, 2).

The conditional distributions of the signal sequences given ¢ and = are modeled as
dependent only on the site type which is determined by the states either side of the
site. The conditional distributions of the content sequences given ¢ and = are mod-
eled as dependent only on the state of the interval in which they occur and the C+G

proportion. The conditional distribution of S given ¢ and = can thus be written as

P(S|¢73) = P(UllCIL,Z)P('lMICIth) ------ P('Un-1|Qn—1a3)P(wn—1|fln—1’qn)P(UnIQm3)-

Burge & Karlin use three models for the conditional distribution of the signal
sequences given the site type, the weight matrix method (WMM), the weight array
method (WAM), and the maximal dependence decomposition method (MDD). The
WMM is used for polyadenylation signals and translation initiation signals, it is also
used for translation termination and cap site signals, but with some adjustments. A
modified WAM model is used for 3’ splice signals. A MDD model is used for 5’ splice
signals.

The weight matrix method was introduced by Staden (1984). It derives the fre-
quency of each nucleotide j at each position ¢ of a signal of length r from a collection

of aligned signal sequences. The nucleotides at each position are considered indepen-
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dent. The weight array method, a generalization of the weight matrix method, was
applied by Zhang & Marr (1993). It allows for dependencies between adjacent posi-
tions. The maximal dependence decomposition method was introduced by Burge &
Karlin (1997). It generates a model from an aligned set of signal sequences, which cap-
tures the most significant dependencies between positions (allowing for non-adjacent
as well as adjacent dependencies) by replacing WMM probabilities by appropriate
conditional probabilites provided sufficient data is available to do so reliably.

The content sequences occuring in coding regions are modeled using an inhomo-
geneous 3-periodic fifth-order Markov model. Separate fifth-order transition matrices
are determined for hexamers ending at each of the three codon positions, in each of
two C+G compositional groups with boundary 0.43. The content sequences occuring
in non-coding regions are modeled using two fifth-order Markov models, again one

for each of the two C+G compositional groups mentioned above.

1.5 GRPL

In the model used by GRPL, the possible states for a parse are intergenic, single
exon gene, initial exon, intron of phase 0, 1 or 2, internal exon of phase 0, 1 or 2 and
terminal exon. Unlike GENSCAN, GRPL does not incorporate the 3’ untranslated
region and the 3’ untranslated region directly in the parse.

The program has two stages. First, all consensus sites are investigated. A con-
sensus site is a site exhibiting the common nucleotide patterns observed at either a
translation initiation site, a translation termination site, a 5’ splice site or a 3’ splice
site. RPL regression models are used to estimate the conditional probability that a
consensus site is a functional site given certain features observed for the site. A con-

sensus site that is not a functional site is called a pseudo site. Different RPL models
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and feature vectors are used for each of the four site types. The feature vectors are
mostly indicators of nucleotide usage in the immediate vicinity of the consensus site.
For example, features for the translation initiation site include indicators of nucleotide
usage at positions —1 to —7 (preceeding the site), a statistic measuring evidence of
a cap site some distance upstream, and content statistics measuring evidence of a
coding region immediately downstream.

In each RPL model equal prior probabilities for functional sites and pseudo sites
are used. Pseudo sites actually outnumber functional sites by more than 100 to 1 but

only the likelihood ratio

f(z|functional)
f(z|pseudo)

is used in GRPL, and the likelihood is unaffected by the choice of prior probabilities.
A consensus site is classified as a pseudo site if the estimated log likelihood ratio is
less than a specified value. A cutoff value of —3 was chosen in order to screen out
the majority of pseudo sites while keeping almost all functional sites.

The second stage of GRPL is concerned with the set of all possible parses formed
from the collection of admitted consensus sites. A score is assigned to each parse via
a Generalized Hidden Markov Model, and a dynamic programming algorithm is used
to find the parse with the highest score. Let & be the vector of observed nucleotides
and let y be a vector consisting of functional site locations and types representing
a possible parse for z. Let z be the vector of C+G content of the sequence . The

score for a parse y is defined to be an estimate of

P(ylz)

8 B lyale)’
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where yq is the null parse consisting of a single intergenic region. Using the fact that

z i1s a function of z, this can be rewritten as

P(ylz) Pylz, =)
2T oe YT 2
8 Blyle) — ' Plyolz. )

. Ply.z2)/ P(z|2)

= 1
€ Plyo, 212)/ P(zlz)

_ Py, z|z)
= 18 By )
P(ylz) P(zly,z)

= lo
& P(wolz) P2y, 2)

P(y|z) P(zly, z)
Plyols) T Plalye.z)

= log

Consider the first term in the final sum. The conditional probability, P(yo|z).

can be ignored when searching for an optimal parse. The conditional probability,

P(y|z), is evaluated in a manner similar to that in GENSCAN using a vector of

initial probabilities # for the state of the first interval, a matrix of state transition

probabilities T for the state of the following intervals, and a set of state length
distributions f, all conditioned on the C+G content.

The remaining term
P(zly, =)

o8 B lzlyer2)

can be rewritten by expressing z in terms of two vectors v and w, which depend on
the parse y, as follows: The vector v consists of all of = except nucleotides in the
immediate vicinity of functional sites. The vector w consists of features extracted

from z for each functional site. The features extracted depend on the type of site but
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always include indicators of nucleotide usage close to the site. This decomposition of

z can be illustrated as follows

e —e R e o—
site  site site site  site
1 2 3 n—2 n-—1

the vector v

Figure 3: The partition of z into the vectors v and w.

There is some overlap between v and w but this is ignored and they are considered

conditionally independent given y. Hence

log LGy, 2) - _ o P(v,wly, z)
gP(:c[yo,z) o gP(v,w]yo,:)
P(vly, z) P(wly)
~ log———- + log——"—.
® P(vlyo, =) gP(wlyo)

The distribution of w is assumed independent of z. The first term in the sum is called

the content score, the second is called the functional site score.

1.5.1 Functional site scores

Feature vectors for different functional sites are assumed to be independent, so

the functional site score is a sum of scores, one for each site. Let w; be the feature
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vector for the 7** functional site in the parse y. The ** functional site score is then

P(wily) lOgP(w;[ the site is a functional site)

I =
°8 P(w;lyo) P(w;| the site is a pseudo site)

As in the preliminary screening, RPL models are used to estimate this likelihood

ratio with the following expression

P(functional site |w;)

P(pseudo site |w;)

where P is an estimate of the conditional distribution of the i** site given the ob-
served feature vector, obtained from RPL models using equal prior probabilities for
functional sites and pseudo sites.
It was found that direct use of these estimates resulted in low sensitivity relative
to specificity. To improve accuracy the log likelihood ratio was adjusted as follows
P(functional site |w;)

Functional sitescore = 2.8 + 1.2 log — -
P(pseudo site |w;)

These values were selected by tuning GRPL on the training set L.
1.5.2 Content score

The content score is defined to be an estimate of

P(vly, z)
8 Bolye )

Conditional independence of content for different intervals is assumed, so the ratio

P(vly, z)/ P(v|yo, z), can be expressed as a product of terms, one for each interval.
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The content score for an interval is the logarithm of the likelihood ratio for that
interval. The content score for introns and intergenic regions is zero.

Let h = (by,be,bs,bs4,bs,b5) denote a hexamer observed at some point in the
sequence. Let t € {0,1,2,3} be a value, called the hexamer phase, determined by a
sequence parse and the position of b; in the sequence defined as follows: If 6; is in
a coding region determined by the parse then let ¢ + 1 be the position of ; in the
codon containing b;. If b; is a non-coding region then ¢=3.

Under this model the conditional distribution of b, given the sequence parse and
the sequence downstream from b;, depends only on the hexamer phase ¢ and the
following five nucleotides. Similarily, the conditional distribution of bs given the se-
quence parse and the sequence upstream from bg, depends only on the hexamer phase

t and the previous five nucleotides. Let

Pl(bllbg...bs,t,z) ilog Ps(bs[b[...bs,t,z)
Pl(bllbg...bs, 3,3) 2 Pe(belbl...bs,g,:)

s(t,h,z) = élog

where P and Ps denote the upstream and downstream conditional probability func-
tions, and ¢ € {0, 1, 2}.

The content score for an exon is then defined to be
content score = Z s(t, h,z),

where the summation is over all hexamers A covering most of the exon.
The functions s(¢,h,z) are modeled as linear functions of =z, with coefficients

depending on t and A, as follows
s(t, h,z}) = Bo(t,h) + Bi(t, h)(z — 0.5).

Estimates of the coefficients are obtained from the training set C. Let g. be a

grouping variable for C+G content z, having 6 groups with boundaries 0.4, 0.45, 0.5,
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0.55 and 0.6. The conditional probabilities P;(b;|bs,...be, t, g-) and Ps(be|by, -.-bs, t. g-),
are first estimated from the training set for each ¢ € {0, 1,2,3}, for each hexamer
h = (by, by, b3, b4, bs,bs) and for each g..

Consider, for example, estimating p = P;(b,|bs, ...bs, t,g.). Let m be the number
of occurrences of the hexamer (b1, bs, b3, b4, bs, bg) with hexamer phase ¢ and C+G
proportion in the group g.. Let n be the number of occurrences of hexamers of the
form (%, b, b3, by, bs, bg) with hexamer phase t and C+G proportion in the group g..
where * can be any base.

The conditional distribution of m given n is Binomial(n, p) and the maximum
likelihood estimator for p is m/n. The MLE is undefined when n is zero and highly
variable when n is small so, a Bayes estimator, which is biased but has smaller vari-
ance, is prefered. Let p be the MLE for the conditional probability P(b;|b2, b3, ¢.g-).
The Bayes estimator used by GRPL, for p is

m + nop

P= n+ng

A value of ng=10 was chosen.

In this way, estimates of s(¢,h,z) are obtained for each hexamer A, for each
t € {0,1.2} and for each = € {.355, .425, .474, .525,.575, .635}, representatives of the
6 groups defined by g.. For each (¢,h), the estimates of s(¢, h,z) are regressed on
z using weighted least squares to estimate the coefficients Go(¢, k) and 8,(¢, h). The
weights are inverse variance estimates for the s(t,h, =) estimates. The weighted least
squares slope estimates were multiplied by 0.7, shrinking the slopes towards zero. [n

all 3 x 4% pairs of coefficients are estimated for the content scores.

1.6 A Comparison Between GENSCAN and GRPL

GENSCAN and GRPL are similar in their overall architecture while differing in
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a number of significant ways. Some of these differences are

e GENSCAN searches for genes simultaneously on both DNA strands while GRPL
analyses each strand separately.

e GRPL uses a reduced set of consensus sites in constructing possible parses, but
this is in order to increase the speed of the program and does not alter the overall
model.

e GENSCAN includes cap sites and related promoter sites in the possible site types
in a parse and attempts to model them flexibly. GRPL incorporates this information
as features for translation initiation and translation termination sites.

e Both condition on C+G content, GENSCAN by grouping sequences into C+G
“rich” and “poor” categories, and GRPL by using a continuous model of C+G con-
tent.

e Each program defines an optimal parse in terms of the conditional probability of
a parse given the sequence. However, GRPL incorporates the conditional probability
of the null parse. This allows GRPL to easily use RPL models for the likelihood ratio
of a feature vector given that the site is a functional site or a pseudo site, without
having to worry about prior probabilities. GENSCAN uses a variety of models for
the feature vectors, depending on the site type. The MDD model used for 3" splice
sites is closest to the RPL models used in GRPL, in that it attempts to capture the
most significant dependencies between positions.

e In GENSCAN the content score is a sum of log likelihoods of content, one for
each interval. In GRPL, because a log likelihood ratio is used, only the content of

exons is considered. The content score for introns and intergenic regions is zero.
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Chapter 2

Reference Point Logistic Regression

Reference point logistic (RPL) regression, introduced by Hooper (2000), is a gen-
eralization of logistic regression which is highly flexible. It is closely related to a
method, also developed by Hooper (1999), for constructing classification rules.

Consider the following problem. An item belongs to one of J possible classes.
The particular class is unknown, but a number of features associated with the item
can be measured. Let Y be the unknown class and let X be the d-dimensional vector
of features measured. We are interested in estimating the conditional distribution of
Y given X.

RPL regression models p(y|z) in terms of the proximity between x and reference
points for each class. The parameters for the model have a two-level hierarchial
structure. The first-level parameters (including the number of reference points) are
fixed, then optimal second-level parameters are chosen. For this complete set of
parameters the risk is estimated. Based on these risk estimates first-level parameters
are chosen empirically.

Given the first-level parameters which are, a smoothing parameter A, which is
non-negative, the total number of reference points A’, and the number of reference

points K; assigned to the class j, where
K=K +Ro+....+ Ky,

the model is further parameterized by a positive scale parameter 7, vectors & € R¢

and scalars v € R, &£ = 1,2,..., K. The pair (&, &) are associated with the class
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cls(k) given by the class assignment function
cs(k)=7, if Ki+ ...+ Kjoy < k< K+ ...+ K.

Assume the first-level RPL parameters are fixed. Reference point logistic functions

wy. are defined as follows

exp(ye — 72 ||z — & [?)

7= — .
Zm:l exp(Ym — 772 ||z —ém I12)

(1)

wi(z) =

The RPL model assumes that
K

plylz) = I(cls(k) = y)wi(x).

k=1
Some algebraic manipulation of the reference point logistic functions gives

__explay + Ba) |
wi(z) = ot (2)

where

o =7 —7 &l —(vw =772 || Ex |I?)

and
B = 2772(& — k).

So, with one reference point per class, RPL regression is simply logistic regression.
Note that g = 0 and Bx = 0 so in the reference point parameterization (1) the
scale parameter 7 and one pair (&k,7vx) are redundant. The redundancies are not
removed however, because the over-parameterized model simplifies the selection of
initial parameter estimates in the likelihood maximization.

We define the loss incurred by the model given that (X,Y) = (z,y) as

L(z,y) = — log p(yl|z).



The goal is to find parameters that minimize the risk EpL(X,Y), where P is
the joint distribution of (X,Y). To this end, an estimate P of P is obtained from a
training set, {(z1,y1), (z2,¥Y2), ---» (Tn,Yn)}, that is, a set of items for which the feature
vector and class membership are known, and second-level parameters are chosen to
minimize the training risk EpL(X,Y).

Let p(y) be an estimate of the prior probability of the class y. If the training set is
a simple random sample from the population, then p(y) is the proportion of the class
y in the sample. If not, the prior probabilities have to be estimated in some other way.
Given the estimates p(y), let U be a random variable taking values in {1.2,...,n}, so
that (i) Pr{yy = j} = p(y) and (ii) the conditional probability of U given yuy = j
is uniform on {¢]y; = j}. Let Z be a d-dimensional vector of independent standard
normal random variables, with Z and U independent. The estimate £ is defined to
be the distribution of (zy + AZ, yu ), where A is the first-level smoothing parameter.

Initial parameter values £ are selected by using the A-means clustering criterion
(MacQueen 1967). Initially the 72 are set to zero. The scale parameter 7 controls the
smoothness of the functions wy, it is set to T = s,,, where s,,, is the average distance
between nearest neighbours among the A initial reference points £3.

Stochastic approximation is used to minimize the training risk over (&, ). it
uses the following iterative step. An observation (z,y) is selected from P and the
gradient of the loss incurred by the model at parameter values £}, and v} calculated.
New parameters values £, and v;'' are then selected by moving £} and 7] in the
directions of maximal decrease. The step sizes are initially large but approach zero
as the number of iterations increase.

Given the reference point numbers K; and the smoothing parameter A, we obtain
a model estimate. The actual risk of the model can be estimated using a test set
or cross validation. The reference point numbers and the smoothing parameter are

selected empirically based on these risk estimates.
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The RPL regression model has two invariance properties. First, RPL regression is
invariant under affine transformation, provided the unsmoothed training risk is used
(i.e. A = 0) and one is able to minimize this training risk. This invariance property is
invoked to justify standardizing the variance of the features, which helps in selecting
good starting values for the reference points.

The second invariance property concerns specification of prior probabilities. Given
conditional densities f(z|y) and two sets of prior probabilities p=(y) and p'(y), the
respective conditional probability models p*(y|z) and pf(y|z), obtained from Bayes

theorem, are related as follows

ot ylz) = PP (yl=)/p*(y) 3)
> (e (lz)/p=(7)

If p~(y|z) is an RPL model with vx = ~;, then p'(y|z) can also be expressed as an

RPL model with ”/}: = 77 + log{p'(v)/p"(y)}. The other parameters & and 7 are the

same in both models.

Consider estimates p=(y|z) and p'(y|z) obtained from the same training set but
based on different specified priors p™(y) and p'(y). Such estimates are typically not
related as in equation (3). However, a consistency argument shows that (3) is ap-
proximated by estimates when the sample size is large and an RPL model holds.

Numerical problems can arise when highly unbalanced prior probabilities are used
in an RPL model. Parameter estimates may diverge during training, causing p(y|z)
to be underestimated for classes y assigned small prior probability. It can be useful to
use more balanced priors in the RPL training, and then adjust the estimates obtained

using equation (3).



Chapter 3

Content Score

3.1 Introduction

Let = denote a DNA sequence, and y a parse of z, consisting of functional site
locations and types. We denote by v the vector consisting of all of z except nucleotides

in the immediate vicinity of functional sites.

-® *— L R ° °
site  site site site  gite
1 2 3 n— n
The parse y
Uy Vg (2% Un Untt
The vector v (the concatenation of vy, va, ..., Unt1)

Figure 4: The vector v given the parse y

The number of nucleotides on either side of the functional site that are removed
in the formation of v, depend on the type of site and are as shown in Figure 5.
Recall that yo denotes the null parse consisting of a single intergenic region, and

that = denotes the vector of C+G content of the sequence z, that is, the i** element
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Figure 5: The nucleotides that are removed are in boxes

of z is the combined proportion of C and G in the general vicinity of the i** element
of z.
In GRPL, the content score is defined as follows

P(uly, =)
P(v|yo, 2)

content score = log
n+l
Z ]. P('U; lJv <

°8 P(v1|y07 <~ ’

where n is the number of functional sites in the parse y.

The content score for introns and intergenic regions is zero. The content score
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can thus be found by summing the content score of all the exons in the parse.

The model used by GRPL for the content score of an exon, involves the estimation
of a large number of parameters (6 x4°). Two alternative models are now investigated
in an attempt to improve on the high level of accuracy demonstrated by GRPL. Both

models use RPL regression and use the training set £ for parameter estimation.

3.2 Model 1

Let v; = (by,ba,.....,b,) represent the content of an exon with up to three nu-

cleotides removed from either end. Then

content score (v;) = log

We define the phase t of a nucleotide b observed at some point in the sequence
in a manner similar to hexamer phase. Let ¢ € {0,1,2,3} be a value, determined by
y and the position of 4 in the sequence, defined as follows: If b is in a coding region
determined by y then let ¢t + 1 be the position of b in the codon containing 6. If b is
in a non-coding region then set ¢ = 3.

We model the conditional distribution of a nucleotide b, given the sequence parse,
the sequence z of C+G content, and the sequence downstream from b, as dependent
only on the phase t, the C+G proportion in the vicinity of b, and the n, nucleotides
immediately downstream, where n, is to be determined. Similarly, the conditional
distribution of a nucleotide b, given the sequence parse, the sequence z of C4+G
content, and the sequence upstream from b, depends only on the phase ¢, the C+G
proportion in the vicinity of b, and the r; nucleotides immediately upstream, where

r: is to be determined.



We work with symmetrized log likelihood ratios

L. Pblbis,byzyoobinat,z) 1 P(blbotybzy by . 2)
t,b,z) = = : 1 202 %)
s(t,6,2) = 5 log P(blbs1,bi2r - bima3.2) | 2 0 P(blb_1 b2 b1y 3.2)

1

L)

where by; refers to the i** nucleotide following b, and b_; refers to the i** nucleotide
preceeding b.
Hence

m

content score (v;)} = Z s(¢t, b, ).

=1

This model has therefore the same basic structure as the model used by GRPL, it
differs primarily in the way in which the function s is estimated. We use eight RPL
regression models to estimate s(¢, b, z), two for each ¢t € {0,1,2,3}. Given ¢, we need
to estimate the conditional distribution of b given z and the upstream nucleotides,
and the conditional distribution of b given z and the downstream nucleotides. We
use a different RPL regression model for each.

Consider, for example, position one of a codon, that is, ¢ = 0. We want to
estimate the conditional distribution of the nucleotides A, C, G, and T, given the C+G
proportion and the ry nucleotides immediately upstream. We use RPL regression to
estimate P(class|feature vector), where the class is either A, C, G, or T, and the
feature vector consists of the C+G proportion and the ry upstream nucleotides.

How the upstream nucleotides are included in the feature vector is important. In-
dividual nucleotides may not be as informative as pairs of nucleotides, which may not
in turn be as informative as triples of nucleotides and so on. Suppose, for example,
ro = 5 and the 5 upstream nucleotides are ATCAG. If we consider nucleotides individ-
ually, the feature vector can represented by (z, A, T, C, A, G), whereas if we use pairs

of nucleotides, the feature vector can represented by (z, AT, TC, CA, AG), and if we
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use triples of nucleotides, the feature vector can represented by (=, ATC, TCA, CAG).
We would like to use the grouping system, that is, individuals, pairs, triples, etc.
which will best estimate P(class | feature vector).

The feature vector is a vector of numbers so indicator variables are used to rep-
resent nucleotide singletons, pairs, triples, etc. For example, if the nucleotides are
included individually, 4 indicator variables are used for each nucleotide. A is repre-
sented by (1,0,0,0), C is represented by (0,1,0,0), G is represented by (0,0, 1,0),
and T is represented by (0,0,0,1). If the nucleotides are included in pairs then 16
indicators variables are used to represent each pair, for example, AA would be rep-
resented by (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0). If the nucleotides are included in
triples, then 64 indicators variables are used to represent each triple, in which case
AAA would have the first indicator equal to 1 and the rest equal to 0.

Grouping the nucleotides in groups of four or more will lead to a model with a
large number of parameters. In order to keep the number of parameters low we will
only consider grouping nucleotides in groups of three or less.

We choose the grouping system as well as n, and r, to minirnize risk, where risk
is defined to be Ep{—logP(class | feature vector)}, and D is the joint distribution of
(class, feature vector).

The values n,, r¢, and the grouping system can be considered additional first-level
parameters in the RPL regression model. Consider again the conditional distribution
of nucleotides in position one of a codon (¢ = 0), given the C+G proportion and the
upstream nucleotides. A training set is randomly selected from L. Each item in the
training set consists of the nucleotide in position one as well as the feature vector
consisting of the C+G proportion and the upstream nucleotides. A test set is also
selected from £

All first-level RPL parameters are fixed, that is, the grouping system, ng, rg, the

number of reference points, and the smoothing parameter are fixed. The second-level

31



parameters in the RPL model are chosen to minimize the risk over the training set.
The first-level parameters can then be selected empirically by using the test set to
estimate the risk.

This is the usual way of fitting an RPL model when we are interested in estimat-

ing conditional distributions. In this case, however, we are estimating the ratios

P(b|b—lab—2""-b—-1'o707 Z) and P(blb-i-ltb-i-'la ---'b-i-noaOv:)
P(OJb_1.b2. . brs.3.2) Pbrr.bra, b 3.2)

and so we will adopt a slightly different approach. If 6 has phase 0 we want the above
ratios to be large, this can be achieved not only by having a large numerator but also
by having a small denominator. Whereas if b6 has phase 3 we want the ratios to be
small, which can be achieved by a small numerator as well as a large denominator.
This amounts to a model for phase ¢ € {0, ,2} which has low risk on a test set with
phase ¢t but high risk on a test set with phase 3, and a model for phase 3 which has
low risk on a phase 3 test set and high risk on a coding test set. An empirical attempt
was made to choose such models, that is, to choose the first-level RPL parameters
which appear to give the above results.

In each RPL model, twelve reference points are selected as optimal, three for each
of the classes A, C, G, and T, and the smoothing parameter is set to zero. The
number of upstream and downstream nucleotides used for each ¢t € {0,1,2,3} are
given in Table 4.

In all of the above models the nucleotides are included individually in the feature
vector except in the case of position three where the upstream nucleotides are included
in pairs.

We assumed equal prior probabilities for A, C, G. and T. All nucleotides triples
code for amino acids except the stop codons. Two or more triples can code for the

same amino acid and the amino acids occur with varying frequencies, hence equal
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Table 4: The number of upstream and downstream nucleotides used in the feature

vectors of the RPL models.

Phase | upstream | downstream
t=0 8 5
t=1 6 7
t=2 2 7
t=3 8 S

prior probabilities for the coding regions do not seem justified. The prior probabilities
of A, C, G, and T, for the three codon positions, are estimated from the larger training
set C and are as in Figure 6. This set contains 1,061,147 occurrences of each codon
position.

The estimates of the conditional distribution of nucleotides, in positions one, two,
and three of a codon, obtained using RPL regression with equal prior probabilities,
are modified using equation (3) to reflect the true prior probabilities.

To evaluate the performance of the RPL regression models, eight test sets are
selected from £. For each t € {0,1,2,3}, two test sets are selected from all nu-
cleotides with phase ¢ in £, one with the feature vector containing the upstream
nucleotides and the second with the feature vector containing the downstream nu-
cleotides. Each test set contains approximately 10,000 entries. Each item in the
test set has the form (class, feature vector). We use the RPL models to estimate
P(class | feature vector), we then adjust these estimates for the true priors to obtain
estimates P(class | feature vector). An estimate of the risk is then an average, over
all items in the test set, of —logP(class | feature vector). Risk estimates for the eight

models are shown in Figure 7.

33



0.5 T 1 .

position 1 ——
position 2 ---x---
045 + position 3 ---#--- ]

04 | ~
0.35 B
03 b
025

0.2 -

0.1 e

0.05 B

(=]

Figure 6: Prior probabilities obtained from C

We are interested in the ability of the model to differentiate between an exon and
a non-coding region. That is, if b is in an exon, with phase ¢t € {0,1,2}, we would

like
P(blb_l, b—27 ] b—rn tv 3)

o8 B b6 162, b 3.2) O
and
P(b|b+1, b+2, cees b+n” t, Z)
lo > 0.
& P(blb+17 b+27 seey b+n3’ 33 2)
Whereas if b has phase 3 we would like
P(blb_y,b_g,...;b1,,t, 2)
0
o8 B (Blbor, bz by 3 2)
and
log P(b|b+lvb+23"'7b+nut73) 0.

<
P(b[b+]_, b+2.’ caey b+n37 3, Z)

Consider position one of a codon and the feature vector containing the upstream
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Figure 7: Risk estimates for the RPL models

nucleotides. For each item in the test set we use the RPL regression models to
estimate P(blb_1,b_2,...,b_,,0,z) and P(blb_y1,b_2,....,b_,;,3,z). We adjust the es-
timates to reflect the true priors and obtain estimates P(blb_l,b_z, versb_ry,0,2) and

P(blb_y,b_2,....b_r,,3,2). We calculate the average log likelihood ratio

o P(blb—lvb—27°“’b—r‘o707 3)
gp(blb—lvb—Qa "‘7b—r37373)

?

over all items in the test set. This gives an idea of how well the model is performing
for our specific purpose. These log likelihood ratios for each t € {0, 1,2} are given in
Figure 8.

For the non-coding test sets we use the RPL models to estimate
P(blb_1,b_3,....b_.,.t.2z) and P(blb_;,b_3.....,b_,,.t,z) for each ¢t € {0,1,2,3}. We
obtain estimates 15(6|b_[, b_g,.ccib_r,, t, =) and f’(blb_h b_s,....,6_.,,t,z) by adjusting
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Figure 8: The log likelihood ratio estimates for phase t € {0, 1,2}

for the true priors. We report the average log likelihood ratios,

P(blb—h b—27 as] b—l‘n t7 :)

og—=
P(blb—lvb—27 seee b—r373~,"'~)

and A
].Og ?(blb-{'-l’ b+27 seee b+nz7 t7 3) i
P(blb-f-l’b-i-?:"'v b+n37373)

for each coding nucleotide phase, in Figure 9.

The log likelihood ratio estimate, obtained from the non-coding test set, for po-

sition three of a codon using the upstream nucleotides is substantially less than the

other estimates. Recall that in the RPL model for ¢ = 2 and the upstream nu-

cleotides, the feature vector consisted of the C+G content and the two nucleotides

immediately upstream, included in the feature vector as a pair.

The training set for this model was selected from exons (with three nucleotides

removed from the end) in £, so no stop codons were included in the training set.

36



1
! ! with upstream nudéotides —_—
with downstream nucleotides —»x-—
0.5 | ~
oF . 4
——
_—"‘."M’.‘
st
-0.5 | -
-1 1 1 1
=0 t=1 t=2

Figure 9: The likelihood ratio estimates for the non-coding test set

Therefore, if the feature vector contains the pair TA, the estimated conditional prob-
ability of A and G will be very small. Similarly, if the feature vector contains the pair
TG, the estimated conditional probability of A will be very small. In the non-coding
test set, the classes A and G can occur with the feature vector TA and the class A
can occur with the feature vector TG. When this happens the estimate of

g PBlb_1,b3,2,2)
S P(blb-r,b_2,.b-1..3.2)

will be a large negative, since P(blb_,,b_s,2, =) will be very small. Figure 10 contains
the proportions of A, C, G, and T, in position three of a codon, given the upstream
pair, for all exons in L.

It should be noted that in numerous cases the triples coding for the same amino
acid differ only at the third nucleotide. For example, TCA, TCC, TCG, and TCT,
all code for the same amino acid, serine. In fact, for all codons with C as the second

nucleotide, the amino acid is determined by the first two nucleotides in the codon.
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Figure 10: The proportions of A, C, G, and T, in position three of a codon, given

the upstream pair

In this case, however, there seems to be a definite preference for C as the third
nucleotide. These patterns will be picked up by the RPL model for phase 2. This
model will then have high risk on a test set which doesn’t observe these patterns as
is the case with the non-coding test set.

In the case of phase 2, it was possible to choose an RPL model with high risk
on the non-coding test set, without compromising the risk on the phase 2 test set.
A similar model for phase 0 gave equally high risk on the non-coding test set but
the risk on the phase 0 test set was higher than for other models, and therefore, this

model was not chosen as the optimal model.
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The gene prediction program using this newly defined content score will be re-
ferred to as GRPL1. As in GRPL, direct use of the estimates of the functional site
scores results in low sensitivity relative to specificity. To improve accuracy we adjust

the functional site score as follows

P(functional site |w;)

Functional sitescore = 2.8 + 1.3 log—= -
P(pseudo site |w;)

These values were selected by tuning GRPLI on the training set L.

In all Model 1 estimates a total of 2517 parameters. We estimated nine prior
probabilities, three for each codon position. For each RPL model, we estimated
11x (the length of the feature vector +1) parameters. The length of the feature
vector was 1 4+ 4x (the number of previous or following nucleotides), except in the

case of codon position three where the feature vector had length 17.

3.2 Model 2

Let h = (by, bs, b3, by, bs, be) denote a hexamer observed at some point in z. We
define hexamer phase ¢ in a slightly different way to that used in GRPL. Let ¢ €
{0,1,2,3} be a value, determined by y and the position of bg in the sequence defined
as follows: If bg is in a coding region determined by the parse then let ¢ + 1 be the
position of bs in the codon containing bs. If bs is a non-coding region then t=3. In
GRPL, hexamer phase was defined on the first nucleotide in the hexamer.

For a hexamer A = (by, b, b3, by, bs, bs), we denote by ¢, the embedded pentamer
(b2,b3,b4,bs5,b5). We define pentamer phase in the same way as hexamer phase so
that a hexamer and its embedded pentamer have the same phase.

Under this model the conditional distribution of a hexamer h given y and =z,
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depends only on the hexamer phase ¢ and the C+G proportion in the vicinity of
bs. Similarly, the conditional distribution of a pentamer ¢ given y and z, depends
only on the pentamer phase t and the C+G proportion in the vicinity of bs. For the
remainder of this page we will suppress the explicit mention of the C+G content =
and assume that all probabilities are conditioned on =z.

Using a fifth-order Markov model we can express P(v;|y) as
P(Ully) = P(blv b27 secees bmly)
= P(bly 3] bSIy)P(b7lb2’ vey va y)P(bS|b37 () b77 y) ----- P(bmlbm—Sa .t bm—h !/)

P(b27 *ey ley) P(b3’ -es bSIy) P(brn.-—57 ) bmly)
P(b27 ooy bSIy) P(b37 . bTIy) ..... P(bm—57 s bm—lly)

= P(blv [RE] bsly)

P(h2|t2) P(hm—Sltm—-S)

= P(hyt) =220 . TP T

Therefore s s
log P(vily) = Y _ log P(hilt:) — > log P(qilt:),
=1 =1
and so
Puily) _ =, P(hit) R, Plgilt)
content score(v;) = log ———= = log log . 4
() =108 BTy = 2 8 PaE) ~ 28 B )

For a given hexamer h, with hexamer phase t and C+G proportion z, the likeli-

hood ratio of interest can be expressed as

P(hlt, z) _ P(h,t|z)/ P(t|z)
P(h|3, =) P(h,3|z)/ P(3|z)
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P(h.t|z) P(3|z)
P(k,3|z) P(t|z)

t

P(h|=)P(t|h, =) P(3|z)
P(h|z)P(3|k, z) P(t|z)

t

P(tlh, z) P(3|z)
P(3[h,z) P(t]z)

Similarly, for a pentamer ¢ with pentamer phase ¢t and C+G proportion z, we have

P(glt.) _ P(tlg, =) P(3]2)
P(q3,2) ~ P(lg, ) P(t]=)

Therefore, the content score of v; can be re-expressed as

) P(hm—sltm—z'n 3)
+ lo
) T8 T P (hms|3.2)

[

m—6
P(hilt;, = i3,
content score(v;) = Zlog P((h-l[3 ,)) f:((;l-lli

i

_ ’"z“:“log P(t:|h:, =) P(3]gi, 2)
P(glh,:) P(tilqivz)

Consider first the likelihood ratio

P(tlh,z)

P(3lh,z)"
We employ an RPL model to estimate the conditional distribution of hexamer phase
t € {0,1,2,3}, given the hexamer A and the C+G content z, that is, to estimate
P(class | feature vector), where the class is the hexamer phase and the feature vector
consists of the hexamer and the C+G content.

We select mutually exclusive training and test sets from £. As in Model 1, the

nucleotides in a hexamer can be included in the feature vector in a number of ways, as
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six individual nucleotides, as five pairs of nucleotides, or as four triples of nucleotides.
Again we consider the grouping system as an additional first-level parameter in the
RPL model. The optimal model uses the feature vector which groups the nucleotides
in pairs. It has twelve reference points, and the smoothing parameter is set to zero.

In the RPL model the prior probabilities were defined as follows:

P(3) = 3,

| =

L
6

that is, equal prior probabilities were used for coding and non-coding hexamer phase,

Pr(t)= -, fort €{0,1,2},

and within coding, equal prior probabilities were used for each ¢t € {0,1,2}.

Let p(coding) be the true prior probability of coding hexamer phase, and let p(3)
be the true prior probability of non-coding hexamer phase. Clearly p(coding) =
1 — p(3), and since each coding hexamer phase must occur equally often, we see that

the true prior probability of each t € {0,1,2} is given by

p(t) = —— 2%

We use the invariance property of RPL regression to modify the estimates obtained
from the RPL model to account for the true priors. Let P~(t|h,z) be the value of
the conditional distribution of hexamer phase given by the RPL model. We modify

these estimates using equation (3) to obtain estimates p(tlh, z) as follows:

b(t|h, =) p(t)P~(t|h, =)/ L
P(3lh,z) — PB3)P*(lh, =)/}

3p(t) P*(t|h, z)
p(3)P*(3|h, =)

p(coding) P*(t|h, =)
p(3) P*(3|h, =)
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Let ¢ be a pentamer with pentamer phase t and C+G proportion z, we can
repeat the above procedure to obtain an RPL regression model which estimates the
conditional distribution of pentamer phase ¢ given the pentamer ¢ and the C+G
content z, that is, which estimates P(class|feature vector), where the class is pentamer
phase and the feature vector consists of ¢ and z. We include the pentamer in the
feature vector as four pairs. The chosen RPL model has twelve reference points and
the smoothing parameter is set to zero.

Consider now the remaining ratio to be estimated,
P(3|=z)
P(t|z)

where ¢t € {0, 1, 2}.

This can be rewritten as
P(3|z) _ 3P(3|z2)
P(t|z) P(coding|z)’

We use RPL regression to model the conditional distribution of coding hexamer

(5)

phase versus non-coding hexamer phase given z. Equal prior probabilities for coding
and non-coding are used. Two reference points and a zero smoothing parameter are
chosen as optimal. Let P*(3|z) and P~(coding|z) be the values given by the RPL
model for a particular z. Let P(}[;) and P(coding[:) be the values given by equation

(3) on adjusting for the correct prior probabilities. Hence

P@Blz)  _ _ pBIPGla)
P(coding|z)  p(coding)P*(coding]|z)

Therefore, by equation (5) we see that the ratio of interest is estimated as follows:
P(3]z) 3P(3|z)
P(t|z) P(coding|z)

3p(3) P*(32)
p(coding) P*(coding|z)’
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We combine the estimates obtained from the three RPL models to produce an

estimate of the content score

= P*(tihi, ) P (3|q, =) 3P (tm—slhm—s.2) P*(3|z)

tent ) = 1 i .
content score(v;) ; og P~(3|he, z) Pr(ti]q, 2) +og P (3lhm_s,2) P=(coding|=)

This model gave poor results, however, when incorporated into GRPL. The reason
for this may be that when =z is small, both P*(3|A, z) and P*(3|q, z) tend to be large,
so we end up with a ratio of two large numbers and a ratio of two small numbers and
any information tends to be lost. Also, the risk for the RPL model used to estimate
P(t|q, z) is higher than the risk for the model used to estimate P(¢|h, =), so more
noise is being introduced and true information is harder to find.

An alternative approach is now considered in an attempt to overcome this prob-

lem. Recall equation (4),

lltl ~ = iy <
ZIO P(hilt;, =) 10gP(QIt, ).

content score v,

hl|37~) i=1 P(qllgv::)
We estimate the content score as follows:
m—5 m-—6
P(h,lt, z P(h; Itl,~
content score(v;) = Z log P(h B - ZI log P(h 3.2

where r is a constant which is chosen by tuning the gene prediction program on L. In

order to see why this approximation is plausible, note that for a true exon we assume

S log 2Lalti2)
& PG)

3]

>0,

8]

and

e

m—6
P(qilti7 <
log ———= >0,
2198 Bal3.2)

i=1
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and that the first of these will be greater than the second. We also assume that

there is a large association between these quantities. For a falsely predicted exon we

assuile

and

and that the absolute value of the first of these will be greater than the absolute
value of the second. Again we assume a large association between them. Under these

circumstances it is possible that

m—6 m—6
P(Qtltn ~ P(h; Itn
Zlo BaB.2) rlz;lo PGiB.2)

For a given hexamer h, with hexamer phase ¢ € {0,1,2} and C+G content =, we
use the RPL models to estimate the log likelihood ratio of interest as follows:

P(hlt.2) _ P(th.2) P(32)
P(h]3, =) P(3lh, z) P(t|z)

p(coding) P*(t|h, =) p(3) P*(3]z)
p(3)P*(3lh,z) p(coding)P*(coding|z)

3P*(tlh,z) P*(3|z)
P*(3|h,z) P~(coding|z)

We evaluate the performance of this estimator using four test sets, one for each
hexamer phase t € {0,1,2,3}. Each test set has approximately 10,000 entries. For a
hexamer in a coding region, that is, with hexamer phase ¢ € {0, 1,2} we would like
P(h|t, =

o PLAIES)

P(h|3,z)
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Consider hexamer phase ¢ = 0, for each item in the test set we estimate

P(R]0, =)
g 5B 2)

We then calculate the average log likelihood ratio over all items in the test set. These

log likelihood ratios for each ¢ € {0, 1,2} are given in Figure 11.

1 -T—

0s | i
S
of J
0.5 | i
-1 1 . .
t=0 t=1 =2

Figure 11: The log likelihood ratio estimates for hexamer phase ¢t € {0, 1,2}

For a hexamer in a non-coding region we would like

og ;;((Z—g:—j- < 0, foreacht € {0,1,2}.
For each item in the non-coding test set, we calculate this log likelihood ratio estimate
for each t € {0,1,2}. The average log likelihood ratios, for ¢t € {0, 1,2}, are given in
Figure 12.

These newly defined content scores are incorporated into a program called GRPL2.

The value of r and the functional site constants are found by tuning GRPL2 on the

training set £. A value r = 0.88 is chosen and the functional site score is adjusted as

46



05 + 1

-0.5 |- -

t=0 t=1 t=2

Figure 12: The likelihood ratio estimates for the non-coding test set

follows

P(functional site |z ;
Functional sitescore = 3 + 1.2 log (. - [ )
P(pseudo site |w;)

Model 2 estimates a total of 904 parameters. The first RPL model involves 902

parameters and the second RPL model involves 2 parameters.



3.3 Results and Conclusions

GRPLI1 and GRPL2 are now compared to the best performers out of the gene
prediction programs discussed in Chapter 1, which do not use sequence alignment
techniques. Table 5 contains the performance results on the Burset/Guigé test set,

Tables 6 and 7 contain the performance results on the GeneParser test sets.

Table 5: Performance comparisons for the Burset/Guigé test set.

Program Sn Sp Sq CC AC XSn XSp
GRPL(Hu) 0.93 0.93 0.984 0.91 091 0.76 0.79
GENSCAN 0.93 093 n/a 0.92 091 0.78 0.1
GeneParser3 0.86 091 n/a 0.85 0.86 0.56 0.38

Genie 0.86 0.81 0.964 0.80 0.80 0.68 0.64
GRPL1 0.89 091 0.981 0.88 0.87 0.71 0.74
GRPL2 0.86 0.89 0975 0.84 0.83 0.66 0.71

Table 6: Performance comparisons for the GeneParser I test set.

Program Sn Sp Sq CC AC XSn XSp
GRPL(Hu) 0.96 0.88 0.978 0.90 0.91 0.72 0.69
GENSCAN 0.97 0.88 0.982 091 091 0.74 0.73
Genie 0.86 0.81 0.964 0.80 0.80 0.68 0.64
GRPL1 0.97 0.90 0.984 0.93 092 0.76 0.75
GRPL2 0.94 0.85 0.962 0.87 0.87 0.68 0.66




Table 7: Performance comparisons for the GeneParser II test set.

Program Sn Sp Sq CC AC XSn XSp
GRPL(Hu) 0.839 0.93 0.989 0.89 0.90 0.69 0.77
GENSCAN 0.89 0.92 0.986 090 0.89 0.68 0.69

Genie 0.75 0.76 0.967 0.71 0.72 0.54 0.51
GRPLI1 0.78 085 0974 0.78 0.77 0.59 0.68
GRPL2 0.78 0.87 0974 0.79 0.76 0.58 0.69

Neither GRPL1 or GRPL2 match the performance of GRPL or GENSCAN on
the Burset/Guigd test set or the GeneParser II test set. GRPL1 does a little better
than GRPL and GENSCAN on the GeneParser I test set. GRPL1 performs better
than GRPL2 on all three test sets, particularly at the exon level.

GRPL2 appeared promising judging by Figures 11 and 12. We believe that the
poor performance of GRPL2 has to do with the choice of the constant r used to
adjust the log likelihoods. Alternative adjustment choices might be more effective. It

is conceivable that both GRPL1 and GRPL2 could be improved with some tuning.
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