
University of Alberta

GEOMETRIC FILTER:
A SPACE AND TIME EFFICIENT LOOKUP TABLE WITH BOUNDED

ERROR

by

Yang Zhao

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

c©Yang Zhao
Fall 2009

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific

research purposes only. Where the thesis is converted to, or otherwise made available in
digital form, the University of Alberta will advise potential users of the thesis of these

terms.

The author reserves all other publication and other rights in association with the copyright
in the thesis, and except as herein before provided, neither the thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form whatever

without the author’s prior written permission.

Examining Committee

Davood Rafiei, Computing Science

Mario Nascimento, Computing Science

Marek Reformat, Electrical and Computer Engineering

Mohammad Salavatipour, Computing Science

This thesis is dedicated to my parents Dongping Zhao and Zhonghui Yang.

Abstract

Lookup tables are frequently used in many applications to store and retrieve key-

value pairs. Designing efficient lookup tables can be challenging with constraints

placed on storage, query response time and/or result accuracy.

This thesis proposes Geometric filter, a lookup table with a space requirement

close to the theoretical lower bound, efficient construction, fast querying speed, and

guaranteed accuracy. Geometric filter consists of a sequence of hash tables, the

sizes of which form a descending geometric series. Compared with its predecessor,

Bloomier filter, its encoding runs two times faster, uses less memory, and it allows

updates after encoding.

We analyze the efficiency of the proposed lookup table in terms of its storage

requirement and error bound, and run experiments on Web 1TB 5-gram dataset to

evaluate its effectiveness.

Acknowledgements

First of all, I would like to thank my co-supervisors Dr. Davood Rafiei and Dr.

Mario Nascimento, for their help and support of my research. On our research

meetings, I learned not only how to do research, but also how to solve problems

in a systematic and scientific way. I thank my co-supervisors for providing me the

freedom in my research, which made the innovative research an enjoyable process

to me. I also highly appreciate their great effort in reviewing my thesis and making

it an excellent research work.

I would like to thank Dr. Marek Reformat, and Dr. Mohammad Salavatipour,

for their valuable time, and constructive comments on my thesis. And, I also would

also like to thank Dr. Paul Lu, and the Lab Instructor Stef Nychka, for their kindness

and patience in helping me in my TA.

I would also like to thank my friends in the master program, especially Pirooz

Chubak, Vahid Jazayeri, Reza Sherkat and Mojdeh Heravi, for their help in my

daily research work. Thanks to my classmates, Richard Zhao, Ci Song, and Qin

Dou, for providing me the valuable suggestions in the course work of the first year.

And, thanks to Chonghai Wang, for providing me a lot of help when I first arrived

in Edmonton.

Thanks to the Department of Computing Science at the University of Alberta,

for providing me an excellent opportunity to take part in advanced research in Com-

puter Science.

Table of Contents

1 Introduction 1
1.1 Problem definition . 1
1.2 Lookup table variations and applications 2

1.2.1 Bloom filter for membership lookups 3
1.2.2 Bloomier filter . 6

1.3 Thesis overview . 8

2 Related Work 9
2.1 Bloom filter . 9

2.1.1 The algorithm . 9
2.1.2 Bloom filter for general non-binary lookups 10
2.1.3 Log-frequency Bloom filter 11

2.2 Bloomier filter . 11
2.2.1 The algorithm . 12
2.2.2 Bipartite matching: preprocessing the dataset before encoding 13
2.2.3 Strengths and weaknesses of the Bloomier filter 15

3 Geometric filter 17
3.1 Geometric filter with bitarrays . 18

3.1.1 Data encoding . 18
3.1.2 Error bits, value bits and fingerprints 19
3.1.3 Decoding data . 20
3.1.4 Possible errors in Geometric filter 21
3.1.5 Eliminating encoded false positives by re-scan 21
3.1.6 Algorithms: Encoding with Re-scan, and Querying 23

3.2 Geometric filter without bitarrays 25
3.2.1 Relational encoding: separating fingerprints and values . . . 28
3.2.2 Incorporating the placement bitarray 29
3.2.3 Incorporating the validation bitarray 30
3.2.4 Revised Algorithms . 31

3.3 Quantitative basis of Hash tables 32
3.3.1 Analysis of uniformly distributed hashing 32
3.3.2 Load factor calculations 39
3.3.3 Finite sizes and non-uniform distributions 40

3.4 Quantitative basis of Geometric filter 43
3.4.1 Hash tables in the sequence 43
3.4.2 Length of the hash sequence 44
3.4.3 Overall space usage . 45
3.4.4 False positive rates . 45

3.5 Parameter Settings . 47
3.5.1 Minimizing the memory usage 47
3.5.2 Setting values for the parameters 52

3.6 Algorithm analysis . 55
3.6.1 Running time of encoding 55
3.6.2 Running time of querying 56
3.6.3 Comparison of memory space usage of Geometric filter and

Bloomier filter . 58

4 Experimental Study 61
4.1 Experiment settings . 61
4.2 Adjustment of load factor and storage ratio 61
4.3 False positive rate and overflow table size 64
4.4 Comparison of Geometric filter and Bloomier filter 65
4.5 Tradeoff between hash table number N and hash function number k 68

5 Conclusions and future work 70
5.1 Geometric filter’s advantages and drawbacks 70
5.2 Future applications . 71
5.3 Future improvements . 71

Bibliography 73

List of Tables

4.1 Details of Geometric filter experiments, with parameter settings for
eo = 1/216, V = 16, and |S| = 4× 108. The configurations in this
table can also be used for encoding smaller datasets 64

4.2 Running time of Geometric filter, when |S| = 4×108, E = 16, and
V = 16 . 68

4.3 Tradeoff between N and k, when |S| = 4× 108, E = 16, and V = 16 69

List of Figures

3.1 Load factor calculated by Eq. 3.11 and Algorithm 6 when |S| =
4× 108 and k = 1 . 41

3.2 Geometric filter’s space usage (with or without ceiling), when eo =
1/216 and V = 16 . 48

3.3 Hash tables in the Geometric filter. The configuration is: k = 1,
r = 0.2860, p = 0.9697, N = 61, and |S| = 4 × 108. The size of
hash table is measured by its location number. 54

3.4 Comparison of memory space usage (spaceG/spaceB), for c = V +
log2

1
eo

from 15 to 40 . 59

4.1 If |S| = 40 × 108, over filling happens for p = 0.9697 and k = 1
when r = 0.2860 but its correct value should be 0.2822 62

4.2 Starvation happens in the last a few hash tables when the config-
uration is correct (For |S| = 40 × 108, p = 0.9697, k = 1 and
r = 0.2822) . 63

4.3 Comparison of Geometric filter and Bloomier filter (encoding time
and space usage), when |S| ∈ [0.5, 5.0]× 107, E = 16, and V = 16 66

4.4 Comparison of Geometric filter and Bloomier filter (running time
of testings), when |S| ∈ [0.5, 5.0]× 107, E = 16, and V = 16 . . . 67

List of Symbols

A a hash table
M number of locations in hash table A
k number of hash functions in the hash table
hj the jth hash function of A, where j ∈ {1, 2, . . . k}

N number of hash tables in the Geometric filter
Ai the ith hash table of the Geometric filter, where i ∈ {1, 2, . . . N}
Mi number of locations in hash table Ai, where i ∈ {1, 2, . . . N}
hi,j the jth hash function of hash table Ai, where i ∈ {1, 2, . . . N}, and j ∈ {1, 2, . . . k}

x a key
v(x) the true value of key x
g(x) the value of x decoded from the lookup table
f(x) fingerprint of x

〈x, v(x)〉 an item in the dataset, which consists of a key x and its true value v(x)

S a dataset
|S| number of tokens in a dataset S
Si if i ∈ 1, 2, . . . N , it means the set of items tried on hash table Ai, S0 = S;

if i = N + 1, it means the set of items recorded in the overflow table
|Si| number of items in Si

p load factor, the fraction of occupied locations in a hash table
r storage ratio, for hash table Ai, r = Mi/|Si|
d remainder rate of the Geometric filter
E number of error bits in each hash location
V number of value bits in each hash location
c number of bits in each hash location, where c = E + V
e mathematical constant used in natural exponential function y = ex, the value

of which is 2.71828 . . .
eo overall false positive rate of the whole lookup table
eh false positive rate of each hash table in the Geometric filter
en false positive rate of each location in the hash table

Chapter 1

Introduction

In this chapter, we introduce the problem addressed in this thesis and a few appli-

cations that can benefit from our work.

1.1 Problem definition

Lookup tables are widely used by various applications. Storing a small lookup

table is straightforward. However, maintaining a relatively large lookup table in

limited memory space is not trivial and has been the subject of past and current

research. Our reference to lookup tables includes every binary relation in the form

of 〈key, value〉. key is used for uniquely identify an item; it can be a gene sequence,

an IP address, or generally a string of characters or bits. value can be a boolean

value, a numeric value, or any other data associated to the key.

There are numerous standard lossless compression algorithms that can be ap-

plied to lookup tables, compressing them to a small size; however, these algorithms

are generally unsuitable for searching, because one needs to uncompress the whole

data or part of it to access one particular item. Most applications need to have a fast

direct access to data in the lookup tables, and some lossy compression algorithms

can be introduced to achieve this goal.

Although requirements may vary from application to application, here are typi-

cal requirements for lookup tables:

• Compact Storage. Because of the high volume of data needed by applica-

tions, the lookup table has to be compact to fit into the limited storage space,

1

typically the main memory.

• Fast access speed. The lookup table is usually a very frequently accessed

component, therefore its query time should be short and ideally constant.

• Enough precision. The lossy compression will likely cause errors in the

lookup table’s querying result; however the probability of an error must be

small enough so that the application’s performance and accuracy are not seri-

ously affected. Sometimes, the application also requires the lookup table’s er-

ror to be one-sided. As an example, in a virus detecting program, erroneously

reporting virus pattern to be normal would cause enormous consequence, but

reporting a normal pattern to be a suspicious virus is sometimes acceptable.

The requirement on the lookup table’s precision is application dependent.

• Fast and easy build. Although building a lookup table can be done off-line,

the building procedure should not take too much resources, e.g. memory;

otherwise the building procedure may become a bottleneck.

• Updatability. Some applications need to change the lookup table’s values af-

ter building the table, therefore the lookup table should have some flexibility.

For example, many streaming data applications handle their data by a time

window: the recent data is most important, while the older data is relatively

less important and will finally be forgotten.

1.2 Lookup table variations and applications

Different applications have different requirements, hence the implementations of

lookup tables would be different from one application to another. The simplest

implementation is to record all the data in an array list and perform linear search.

An array list with linear search can be used in a small dataset, but its performance

on very large datasets would be too slow for real-time applications. In this section,

we provide some applications with more sophisticated implementations.

2

1.2.1 Bloom filter for membership lookups

Bloom filter is a data structure designed to support set membership queries [2]. In

a lookup table for membership queries, value is a boolean value that represents

the key’s existence in the set, 1 for existing and 0 for non-existing. Let D be the

universe of keys, and S ⊆ D. Given an element x ∈ D as the key, we define its

value as a function v(x):

v(x) =

{
1 x ∈ S
0 otherwise

The function v(x) can be implemented via Bloom filter. The set S can be en-

coded into the Bloom filter, and after the encoding, the Bloom filter will be able

to answer membership queries about set S, e.g. correctly evaluating v(x). Bloom

filter introduces a small false positive rate, but its memory space usage is lower than

the theoretical lower bound for lossless data compressions, and its querying time is

constant [4]. Bloom filter, discussed in more details in Section 2, is widely used in

database and network applications where space is precious and speed is important.

Differential file

Differential file is a typical example that may use a Bloom filter to save running

time. Most database systems need to handle interactive queries and modifica-

tions from multiple users. For example, an on-line ticketing system may query

the database to get information about available seats, modify the database to re-

serve a seat, then let the buyer pay for the ticket and end the transaction. Although

concurrency and on-line update are typical features of modern databases, imple-

menting these two features on a very large database brings difficulties to ensuring

the database accuracy, integrity, and recoverability [12] [20]. As a result, differen-

tial files are proposed as a way to ease these difficulties.

With differential files, typically the database system consists of two files, a main

datafile and a differential file. The main datafile is typically large and contains

the major part of the data. The main datafile is updated periodically, and during

the intervals between two updates, the newly arrived data will be stored into the

3

differential file, which is typically smaller than the main datafile [14]. At querying,

the database system may check whether the data item being queried has changed

or not. If it has changed, the system will search for the data in the differential file,

if not, the search will be conducted in the main datafile. This two-file system can

solve the difficulty of concurrent on-line updates [27] [23].

To efficiently detect whether a data item has changed, a Bloom filter may be

used. When an update is recorded into the differential file, the key of the modified

data item will be encoded into the Bloom filter. During the querying, the key is first

queried in the Bloom filter. If the Bloom filter returned 1, we consider the item to

be modified, and search for it in the differential file; otherwise we search for the

item in the main datafile.

Bloom filter has a small false positive rate, which means an item unchanged

could be erroneously reported as modified. In this case, we search for the item in

the differential file and discover that it does not exist, then we search again in the

main datafile. With a small probability of false positive, this kind of errors do not

significantly increase the running time, and they do not affect the correctness of the

queries.

Network-based applications

In applications where data is distributed in multiple nodes, Bloom filters are typi-

cally used as a compact storage for membership information. Instead of transmit-

ting a complete member list, a Bloom filter may be sent, reducing the overhead of

network communication.

One example is semi-join in distributed databases, which can be described as

following: list the oil prices in towns all around the world where the yearly living

expenditure is greater then 10000 dollars. A straight forward method to solve this

problem contains two steps: 1) search the global income database for a set of all

the towns with annual expenditure more than 10000 dollars; 2) search the oil price

database for the oil prices of the towns appeared in the set of step 1). If the two

databases are stored on different machines, then the semi-join needs to transmit

the town set on the network. Given the large number of towns all over the world,

4

transmission of the town set on the network would dramatically increase the cost of

network transmission and compromise the running speed of the query [3] [21] [17].

A solution to this problem is to encode the town set into a Bloom filter, then

transmit the Bloom filter on the network, instead of the original town set. And, on

step 2), to query each town in the Bloom filter to determine whether it is in the

set. Because Bloom filter uses much less space than the uncompressed member list,

and its querying time is much shorter than database searching, the running time and

network communication overhead can be greatly reduced [34] [18].

As another example, in peer-to-peer network, each node may maintain an array

of Bloom filters corresponding to the nodes adjacent to it, and each Bloom filter may

represent the resources owned by an adjacent node. Requests for resources can be

processed by querying the node’s own Bloom filters or forwarding the request to

adjacent nodes iteratively [11] [7]. This resource locating method is called Gossip

Protocol, and can be applied in some peer-to-peer applications, e.g. [25] [24] [28].

Whitaker and Wetherall proposed to use Bloom filter to avoid forwarding loops

in Internet routing. With a small bloom filter in the packet, we can record the

routers have been passed during the transmission; if the packet came to a router

for the second time, the Bloom filter will return 1, hence the forwarding loop is

detected and the packet is deleted instead of forwarding to the next hop [36].

Frequency lookup tables

Bloom filter can also be used in statistical language modeling to support a frequency

lookup table, where key is a string consisting of a sequence of words, and value is

the string frequency.

In this application, value is an integer greater or equal to zero; however, Bloom

filter can only store membership information. Talbot et al. propose changes to

a Bloom filter to answer queries about frequency [30]. The solution is based on

the fact that if a key x has value v(x) = n, then we have x ∈ {x|v(x) ≥ n},

x ∈ {x|v(x) ≥ n − 1} . . . , and x ∈ {x|v(x) ≥ 1}. With this change, a frequency

query is equivalent to a series of membership queries.

5

Variations of Bloom filter

In the classic Bloom filter, the hash table is an array of bits, and the queries can only

return a binary flag. But, there are variations of Bloom filters, such as Stable Bloom

filter [8], and Spectral Bloom filter [6], etc. These variations enlarge the hash table

from an array of bits to an array of integers, therefore the range of values is also

enlarged. For example, the counting Bloom filter [10] can be used in counting

the number of the keys or other value-based operations. However, these variations

cannot directly encode the value into the hash table. Even if a match is found, the

returned value approximates the true value, but is not necessarily equal to the true

value.

1.2.2 Bloomier filter

Bloomier filter is another extension of the Bloom filter, where each cell can be

a number other than 0 or 1. Unlike the Bloom filter, the Bloomier filter directly

encodes and decodes the data. Despite of a small false positive rate, for keys stored

in a Bloomier filter, the returned value exactly matches the true value [5]. Because

of its direct encoding and decoding, Bloomier filter can concisely represent more

complex data with non-binary values.

Frequency lookup with direct encoding and decoding

Talbot and Brants use the Bloomier filter in statistical language modeling to store

the frequency of n-grams [29]. Despite a slow off-line encoding, the filter responds

to a query almost instantly. As a frequency lookup table, the only significant draw-

back of Bloomier filter is that the data in hash table cannot be modified once it is

encoded.

Chazelle et al. propose a method to allow updates into the Bloomier filter after

its initial encoding [5]. In their proposal, a separate memory slot is allocated for

each key encoded. Instead of directly encoding the value of the key into the hash

table, Bloomier filter encodes the address of the slot that holds the value. After

encoding, although the hash table cannot be changed, the slot referenced by the

address can still be changed. The drawback of this methods is that it almost doubles

6

the memory usage of the Bloomier filter. Since Bloomier filter is usually used when

memory is precious, this drawback makes the updatable Bloomier filter impractical

for many scenarios.

FPGA-based Pattern-matching

In virus and spam detection, incoming data may be checked in real time against

threats. The scan is actually a pattern matching, where the data within a time win-

dow may be compared to patterns in a lookup table, and if a match is found, then

the data within this window is potentially harmful [15].

Because of the high data transmission rate, the scan must be very fast to avoid

a system bottleneck [33]. This fast speed is implemented by a programmable semi-

conductor device called field-programmable gate array (FPGA). A FPGA is a chip

that can be programmed by a customer after manufacturing, and it provides a fast

and convenience platform to implement high performance logic functions on hard-

ware [32].

Because the memory of FPGA is fast but small, the pattern lookup table has

to be very compact, hence Bloom filter or Bloomier filter can be used for storage

and lookup. And, because both Bloom and Bloomier filters are lossy compression

algorithms, they have a certain false positive rate. After finding a potential match,

an exact match may be needed to verify the potential matching and eliminate false

positives.

Ho et al. suggests that Bloomier filter is better than Bloom filter in this appli-

cation [15]. A Bloomier filter not only can detect a match, but it also return the

ID number of the matched pattern; this pattern can be directly retrieved and the

exact matching can be performed immediately. However, a Bloom filter can only

find a match, without any further information about which pattern is matched. To

determine the full pattern, one may do a pattern matching by a Finite State Machine

(FSM), for example using Aho-Corasick algorithm [15]. The FSM exceeds the ca-

pacity of on-chip memory, therefore the exact matching runs on off-chip memory,

which is much slower. Bloomier filter can provide the ID of the full pattern, and the

FSM is not needed [16]. Generally speaking, Bloomier filter’s greatest advantage

7

over Bloom filter is its ability to represent complex data exactly.

1.3 Thesis overview

In Chapter 2, we will provide a detailed analysis of a few lookup table algorithms

related to our research, including Bloom filter and Bloomier filter. In Chapter 3,

we will introduce Geometric filter. In the same chapter, we analyze the Geometric

filter’s performance and describe its configuration procedures. In Chapter 4, we

evaluate our Geometric filter on Google 5-gram dataset. Based on our experimental

results, we also provide an analysis of the Geometric filter in the presence of the

nonuniform hash functions.

The main contribution of this thesis is the Geometric filter. Geometric filter

overcomes the drawbacks of the Bloomier filter while maintaining most of its ad-

vantages. The improvements include the following aspects: 1) the encoding speed is

almost two times faster than Bloomier filter; 2) the encoding procedure does not use

any additional memory beside its hash tables, while in Bloomier filter the encoding

requires additional memory almost 7 times of its hash table; 3) the hash tables can

be updated after encoding, while Bloomier filter does not allow modification to its

hash table after encoding.

8

Chapter 2

Related Work

In this chapter, we present Bloom filter and Bloomier filter, the two lookup tables

closely related to our Geometric filter. Background knowledge about applications

will be included when necessary.

2.1 Bloom filter

Bloom filter is designed to support set membership queries [2]. But it can also

be used to represent a general lookup table, if the lookups can be transformed to

membership queries, as discussed in Section 2.1.2. In this section, we provide

detailed introduction and analysis of the Bloom filter.

2.1.1 The algorithm

Bloom filter uses a bitmap to represent the membership of keys in a set. An empty

bloom filter is an array of bits all initialized to zero. The Bloom filter has k hash

functions. When encoding a set S, every element in S is mapped to k locations by

the k hash functions, and the bits in those locations are set to one. When querying

for an element x, x is also mapped to k locations by the same hash functions. Ac-

cording to the encoding rule, if x is encoded as an element of S, all the k locations

should be one. If any one of the k locations is zero, x could not have been encoded

before [2].

Bloom filter is a lossy compression algorithm. False positives can happen dur-

ing the querying, because for an element x unencoded, its k hash locations may

9

be set to one by other encoded elements and the querying algorithm will return

v(x) = 1 although x /∈ S. However, false negatives are impossible in Bloom filter,

because locations changed to one can never be changed back to zero. In this case,

Bloom filter error is said to be one-sided.

2.1.2 Bloom filter for general non-binary lookups

The classic Bloom filter only answers queries about set membership. Talbot and

Osborne [30] propose a modified Bloom filter algorithm which transforms non-

binary lookups into a series of set membership queries.

The authors apply their algorithm to statistical language modeling, where key

is a string, and value is the number of times the key is observed in the sample

corpus, if the key does not exist in the sample corpus, its value is zero. Consider

a key x such that its value v(x) = n, then v(x) ≥ n is true, and for any integer

m ∈ [1, n], v(x) ≥ m is also true. We pair x with m to form a binary relation

〈x,m〉, then the encoding set S = {〈x,m〉|v(x) ≥ m is true}, and 〈x, n〉 ∈ S

implies that for any integer m ∈ [1, n], 〈x,m〉 ∈ S. Based on this observation,

Talbot and Osborne encode an item 〈x, v(x)〉 by pairing x with an integer m to

form an encoding element 〈x,m〉, where m iterates from 1 to v(x).

Equivalently, each query lookup is also an iterative procedure. In each iteration,

the queried key x is paired with a number m to form a querying element 〈x,m〉,

where m begins from 1 and increases by 1 after each iteration. If the Bloom filter

returns 1 for 〈x,m〉 and 0 for 〈x,m + 1〉, then the iteration stops and m will be

returned as the value of x.

The new algorithm has false positive errors happening in two ways: 1) for an

unencoded key, if its hash locations are set to one while encoding other keys, the

returned value will erroneously be non-zero; 2) for an encoded key x, the elements

〈x, v(x)+1〉, 〈x, v(x)+2〉, . . . may not be encoded, but the hash locations for these

elements could be set to one while encoding other elements, and the return value

for x can be larger than v(x). However, the error can still be treated as one-sided,

because for any key, the return value cannot be lower than its correct value.

10

2.1.3 Log-frequency Bloom filter

Talbot and Osborne soon discover a problem in their modification to the Bloom

filter. In statistical language modeling, in particular, many keys in n-gram have

very large frequencies (e.g. 105 or even more), and for these keys, Bloom filter is

inefficient because there are too many iterations for encoding and querying. As an

improvement, Talbot and Osborne propose Log-frequency Bloom filter [31], where

the values are quantized logarithmically. For a key x, the value is v(x), and the

quantized value is q(v(x)) = 1 + blogb v(x)c, where base b > 1. In encoding

and querying, instead of iterating from 〈x, 1〉 to 〈x, v(x)〉, the algorithm iterates

from 〈x, 1〉 to 〈x, q(v(x))〉, then the running time and space usage is significantly

reduced.

Log-frequency Bloom filter has the following advantages: 1) data can be com-

pactly compressed and the space usage falls significantly below the lower bound of

lossless compression algorithms; 2) the running time of querying is almost instan-

taneous; 3) the data can be efficiently encoded without any preprocessing.

Log-frequency Bloom filter also has a disadvantage: for an encoded key, false

positives in log-frequency may lead to a large error in the recovered value. One

usually needs to use an exponential function to recover the original value from

the log-frequency, and a small error in the log-frequency would result an order of

magnitude error in the recovered value. If v(x) is large, the difference could be too

large to be acceptable. For example, if q(v(x)) = 1+blog10 v(x)c, and v(x) = 104,

then q(v(x)) = 5. However, if a false positive happened and the returned log-

frequency is 6, then the error would be 9× 104.

In order to overcome this drawback of the Bloom filter, Chazelle et al. propose

Bloomier filter [5], as discussed next.

2.2 Bloomier filter

A Bloomier filter generalizes the Bloom filter, in that data can be encoded directly

without any iteration [5]. The encoded data is a binary relation 〈key, value〉, where

value can be of any type even a string. Because no quantisation is needed, there is

11

no restriction on the physical meaning of the value.

2.2.1 The algorithm

In the Bloomier filter, the hash table is expanded from a bit array to an array of

integers. Each location of the hash table is a cell containing c bits, hence the un-

signed integer stored in the cell is in the range of [0, 2c − 1]. Bloomier filter has k

hash functions (h1, h2, . . . hk). With these hash functions, a key can be mapped to k

locations in the hash table. Bloomier filter has another hash function called the fin-

gerprint function f(), and this function maps each key x to a number in [1, 2c − 1].

It is generally assumed that for any key x, h1(x), h2(x), . . .hk(x) and f(x) are

uniformly distributed and are independent from each other.

In the Bloomier filter, a key x is associated with its value v(x) by the function in

Eq. 2.1, where⊗means bitwise OR (or XOR);
⊗

means a series of⊗ calculations;

A is the hash table; and g(x) is the return value. After encoding, we should have

v(x) = g(x), which means the return value equals to the real value.

g(x) = f(x)⊗ (A[h1(x)]⊗ A[h2(x)] . . .⊗ A[hk(x)])

= f(x)⊗ (
k⊗

i=1

A[hi(x)])
(2.1)

Bloomier filter also allows false positives. In order to reduce false positive rate,

Bloomier filter introduces error bits. From the c bits of each cell, E bits are used

as error bits. When querying an unencoded key, the probability of false positive is

eo = 1/2E , and this probability is also called the false positive rate [29].

The encoding of the Bloomier filter must satisfy two constraints: 1) After encod-

ing a key, all the hash locations referenced by this key will be marked as occupied

and cannot be changed. Otherwise, if a referenced hash location is changed after

encoding, the return value of the keys that reference that hash location will also be

changed and is no longer equal to the real value. 2) When encoding a key, at least

one of the k hash locations must remain unoccupied. This unoccupied location is

called the critical location. If hj(x) denotes the critical location, then:

12

A[hj(x)] = v(x)⊗ f(x)⊗ (
k⊗

i=1∩i 6=j

A[hi(x)]) (2.2)

If all k locations are already occupied, then the key x cannot be correctly en-

coded, because encoding x needs to change at least one location. In Bloomier filter,

this situation is referenced to as a “hash collision”.

2.2.2 Bipartite matching: preprocessing the dataset before en-
coding

In order to satisfy the two constraints of encoding, the algorithm needs to preprocess

the dataset, and find a good encoding sequence.

The problem of finding an encoding sequence can be solved by finding an or-

dered matching in a bipartite graph [29], described as Algorithm 1. The bipartite

matching algorithm selects the one-degree nodes on the right-hand-side and deletes

all the edge that is adjacent to the node selected. The order of selection is a bi-

partite matching and can be used as a good sequence for Bloomier filter encoding.

Algorithm 1 is an approximation, because its failure in finding a bipartite matching

does not necessarily mean there is no bipartite matching exist. This approxima-

tion algorithm succeeds with high probability when k = 3 and the hash table size

M ≥ 1.23|S|. When k 6= 3, M needs to be larger than 1.23|S| for the bipartite

matching to succeed [19] [13] [22]. Therefore, Bloomier filter’s hash table size M

is at least 1.23|S|, regardless of k.

The running time of Algorithm 1 is O((k + 1)× |S|+M). This is the number

of edges and nodes that must be deleted before the algorithm returns a match, as-

suming that there is a match. Since there are k × |S| edges, |S| LHS nodes and M

RHS nodes, the total deletion time isO(|S|+k×|S|+M) =O((k+1)×|S|+M).

In a typical configuration, k = 3 and M = 1.23|S|, the bipartite running time is

O((3 + 1)× |S|+ 1.23|S|) = O(5.23|S|).

The memory needed for the bipartite matching is O((2k + 1) × |S| + M).

Suppose a vertex in the bipartite graph (either on LHS or RHS) takes 1 unit of

space, and an edge takes 2 units. Then, the memory needed for storing the bipartite

graph is O(|S| + 2 × k × |S| + M) = O((2k + 1) × |S| + M). When k = 3 and

13

Algorithm 1: Ordered Matching
input : S: n-gram dataset;

hj , j ∈ {1, 2, . . . k}: the k hash functions;
M : number of locations in the hash table;

output: on success, return matched: the ordered matching;
on failure, return FAIL;

/* degree one means a set containing one-degree vertices on RHS of
the bipartite graph; r2li means the ith vertex on RHS and l2ri means
the ith vertex on LHS. */

matched← ∅1

forall i∈ {1, 2, . . . k} do2

r2li ← ∅3

forall xi ∈ S do4

l2ri ← ∅5

forall j ∈ {1, 2, . . . k} do6

l2ri ← l2ri ∪ hj(xi)7

r2lhj(xi) ← r2lhj(xi) ∪ xi8

forall i ∈ [0,M − 1] do9

if |r2li| = 1 then10

degree one← i11

while |degree one| ≥ 1 do12

rhs← POP degree one13

lhs← POP r2lrhs14

PUSH(lhs, rhs) onto matched15

forall rhs‘ ∈ l2rlhs do16

POP r2lrhs‘17

if |r2lrhs‘| = 1 then18

degree one← degree one ∩ rhs‘19

if |matched| = |S| then20

return matched21

else22

return FAIL23

14

M = 1.23|S|, the memory requirement is O((2 × 3 + 1) × |S| + 1.23 × |S|) =

O(8.23|S|). When the bipartite matching is finished, the ordered sequence is stored

in the LHS vertices. Majewski et al. provides a hypergraph data structure for the

bipartite graph [9] [19], but considering the space of the stack to store the ordered

sequence, the memory usage is the same.

2.2.3 Strengths and weaknesses of the Bloomier filter

The most obvious advantage of Bloomier filter for storing data with general 〈key, value〉

pairs is its direct encoding and decoding. Specifically, Bloomier filter is better than

Bloom filter in the following aspects: 1) the running time of encoding depends only

on the dataset size |S|; 2) for any key, the querying time is constant, and takes only

a few CPU circles. Because the value is decoded exactly the same as it is encoded,

there is no restriction on the encoded values, or their distribution, etc.

Bloomier filter also has the following drawbacks.

• Auxiliary memory. Running a bipartite matching has some space overhead.

As discussed before, the memory needed by the bipartite matching is at least

8.23|S|, which is almost 7 times the memory needed by the hash table. Al-

though the memory space used to store the encoded Bloomier filter is rel-

atively small, the auxiliary memory needed for the bipartite matching can

easily exceed the capacity of main memory. The bottleneck for the size of

encoding dataset is actually the bipartite matching, because the dataset has to

be small enough so that the bipartite matching can run within the available

memory space. In this case, large datasets need to be divided into smaller

ones to be encoded separately and then organized by an index. The dataset

division and indexing can increase both the complexity and the running time

of the algorithm.

• Inflexibility. Bloomier filter does not allow any update to a location in the

hash table after that location is occupied by a key. This is a big constrain

in encoding more dynamic datasets. Although Bloomier filter can efficiently

support static lookup tables, its support to dynamic tables comes with a high

15

price of space usage. Instead of encoding the data into the hash table, the al-

gorithm needs to allocate one extra slot of memory for each key, then encode

the address of the slot into the hash table [5]. With this change, the memory

usage (which is already high) doubles.

• Running time. The running time of bipartite matching isO((k+1)×|S|+M);

given k = 3 and M = 1.23|S|, the running time is O(5.23|S|). When encod-

ing large datasets, the running time of bipartite matching will become signif-

icant, and the bipartite matching actually takes more time than the encoding

procedure following it.

In the next chapter, we will introduce our Geometric filter. Geometric filter

overcomes the limitations of the Bloomier filter while maintaining almost the same

or better encoding and querying speed.

16

Chapter 3

Geometric filter

A major drawback of the Bloomier filter is its bipartite matching at encoding. In

order to overcome this and other drawbacks discussed in the previous chapter, we

propose a new data structure, called Geometric filter. Instead of only one hash table,

Geometric filter has a sequence of hash tables, and the sizes of these hash tables

form a descending geometric series. Geometric filter avoids the bipartite matching

by resolving hash collisions when they happen. The data to be encoded is tried on

the hash tables sequentially; if a collision happens and the data cannot be encoded

into one hash table, it is tried on the subsequent hash tables until it is encoded.

Our presentation in this chapter is divided into three parts. In the first part, for

the ease of presentation, we present a more explicit version of Geometric filter with

some additional bitarrays. In this case, each hash table is accompanied by two bitar-

rays to indicate the status of every hash location. Introducing these two bitarrays

makes it easy to explain the basic ideas of the algorithm. In the second part, we

present a more compact version of Geometric filter, which is based on the same

ideas, and offers the same functionality as before; however, the information repre-

sented by the two bitarrays is integrated into the hash table. In the third part, we

provide a theoretical analysis of Geometric filter, and a discussion of its parameter

settings.

17

3.1 Geometric filter with bitarrays

A Geometric filter consists of a sequence of N hash tables, denoted as Ai, i =

1, 2, . . . N . Let Mi denote the size of hash table Ai. In our initial presentation,

every hash table Ai is also accompanied by two bitarrays, a placement bitarray

placementi, and a validation bitarray validationi. For every hash table Ai there

are k hash functions, denoted as hi,j , j = 1, 2, . . . k. For simplicity of analysis, we

assume these hash functions to be uniformly distributed and independent from each

other.

There is also an overflow table to store the data items that cannot be encoded

into any one of the N hash tables. For simplicity, we assume the overflow table is

implemented as a sequential file with key-value pairs. This overflow table is not

as compact as the hash tables, and searching the overflow table can be slower than

the hash tables. However, with a proper parameter setting, as discussed in Section

3.4.2, only a small portion of data items will be recorded in the overflow table, and

the probability of querying the overflow table is also very small; therefore, there is

no significant influence on the overall performance.

3.1.1 Data encoding

When encoding an item 〈x, v(x)〉, the key x will be tried on the hash tables sequen-

tially, starting from A1 and continuing up to AN (if needed). In each hash table, x

is mapped to k locations and is tried on these hash locations sequentially. If there

is one or more locations available, key x and its value v(x) will be encoded into

the first available location. In Geometric filter, “hash collision” means all the k

locations corresponding to x are already occupied, hence the item cannot be en-

coded into this hash table. If a hash collision happens, x will be tried on the next

hash table. Once x has been tried on all the N hash tables, and none of the hash

tables contains any available location for x, then the item 〈x, v(x)〉 is added into the

overflow table.

As introduced above, Geometric filter is different from Bloomier filter in its

method to deal with hash collisions. Bloomier filter needs to prevent any hash

18

collision from happening, but Geometric filter can solve the hash collisions once

they happen. Bloomier filter has only one hash table, therefore if a hash collision

happens, xwould not be able to find any other location for encoding. Bloomier filter

resolves the problem by running a computationally expensive bipartite matching to

prevent any hash collision from happening. Geometric filter has more than one hash

tables, and if one hash table does not contain any available location, x can still be

tried on the subsequent hash tables in the series, hence it is likely that x will find a

space in those hash tables.

The placement bitarray is used to find available locations in a hash table. Every

hash table has a placement bitarray attached to it. When the hash table is empty,

the placement bitarray is initialized to all zeros; when a location is occupied, its

corresponding bit is set to one. By testing the corresponding bit in the placement

bitarray, we can know whether a location is occupied or not.

Geometric filter is also different from classic Bloomier filter in its method to

encode an item into a hash table. In order to encode or decode an item, Bloomier

filter uses the contents of all the k hash locations, and the value to be retrieved is

calculated by a function shown in Eq. 2.1. However, Geometric filter uses only one

location, which is the first unoccupied location among the k hash locations. The

rest of the locations will not be touched and will remain in their original status,

either occupied or empty.

Consider an element x and let A[h(x)] be its first unoccupied location, after

encoding, the value of the location is set to f(x) ⊗ v(x) as Eq. 3.1 shows, where

f(x) is the fingerprint x. At the same time, the corresponding bit in the placement

bitarray is also set to one.

A[h(x)] = f(x)⊗ v(x) (3.1)

3.1.2 Error bits, value bits and fingerprints

The bits in each location of the hash table can be divided into two parts: the error

bits, and the value bits. Let E denote the number of error bits, V denote the number

of value bits, and c = E + V . Given V value bits, the value v(x) ∈ [0, 2V − 1].

19

The key-value pair 〈x, v(x)〉 is not directly encoded into Geometric filter, be-

cause the length of x is often too long for the hash tables. Instead, we combine x’s

fingerprint f(x) with x’s value v(x) to form a binary number that will be stored in

the hash location. The fingerprint function maps x to a number f(x) ∈ [0, 2c − 1],

which is typically more compact. Converting x into its fingerprint, however, is a

lossy procedure, because multiple keys may be mapped to the same value, and this

is the source of false positives.

3.1.3 Decoding data

When querying a key x, Geometric filter tries x on the N hash tables sequentially,

from A1 to AN . In each hash table Ai, Geometric filter maps key x to k hash

locations sequentially from Ai[hi,1(x)] to Ai[hi,k(x)], and tries to retrieve the return

value g(x) using Eq. 3.2.

g(x) = f(x)⊗ A[hi,j(x)], i ∈ [1, N], j ∈ [1, k] (3.2)

For any key x, its real value v(x) < 2V , therefore the correct return value should

be smaller than 2V . In Geometric filter, g(x) < 2V is used as a condition to judge

whether x and its value was encoded into the current location A[hi,j(x)].

Using error bits to identify a token’s encoding location is a lossy procedure.

The fingerprint takes a value in [0, 2c − 1] uniformly at random for every x not

actually encoded into the current location; therefore the retrieved value g(x) is also

a random number uniformly distributed in [0, 2c − 1]. Hence, on each location, the

probability of a false positive P (g(x) < 2V) = 2V

2c = 1
2c−V = 1

2E .

If x is a key that was not previously encoded, Geometric filter still needs to try

x on a sequence of hash locations, and if any one location in this sequence causes

a false positive, x will erroneously get a non-zero value. Obviously, the probability

of a false positive in the Geometric filter is higher than the probability of a false

positive in one single hash location.

20

3.1.4 Possible errors in Geometric filter

Geometric filter is a lossy compression algorithm that introduces errors. The errors

may happen in two ways: 1) for an unencoded key, the return value is valid such

that g(x) < 2V ; 2) for an encoded key x the return value is valid but different from

the true value, g(x) 6= v(x).

The former error is caused by false positives that happen in the sequence of tri-

als, as discussed in the previous section. With the same number of error bits in each

location, Geometric filter’s false positive rate would be higher than Bloomier filter;

therefore, Geometric filter needs some extra error bits to overcome the additional

false positive and achieve the same accuracy as Bloomier filter.

The latter error is also caused by false positive. Now, suppose x is an encoded

key. During the querying, x should be tried on a sequence of hash locations until it

retrieves a valid value. However, if a value within the valid range is retrieved before

the search reaches the actual location where x is stored, then the returned value

g(x) would be different from v(x). This kind of error is referred to as “encoded

false positive”.

3.1.5 Eliminating encoded false positives by re-scan

We cannot prevent false positives, because we cannot predict which keys will be

tried on the Geometric filter during querying. However, encoded false positives

are preventable, because they can only happen when querying a key within the

encoding dataset S. If we scan the dataset S for a second time, we will be able

to find out those items that can lead to an encoded false positive, and record them

in the overflow table. The size of the overflow table is not significantly changed,

because of the small probability of encoded false positives.

In the first scan, items in the dataset are encoded into the Geometric filter ac-

cording to their sequential order in the dataset. However, when encoding an item

〈x, v(x)〉, we need to detect whether encoding this item would cause an encoded

false positive. This is done by examining the return value g(x) calculated on occu-

pied locations.

21

For every occupied location tried for x, we calculate g(x) via Eq. 3.2, and

in the equation, A[hi,j(x)] is substituted with the value of the occupied location.

If g(x) < 2V , then the item previously encoded into this location will cause an

encoded false positive, unless g(x) = v(x). For any such location, a bit in the

validation bitarray is set to zero, to indicate a potential source of encoded false

positives.

With the validation bitarrays, the querying procedure needs to be modified.

When querying a key x, x is tried in a sequence of hash locations, and for each

hash location we calculate g(x) through Eq. 3.2; however, if on one hash location

g(x) < 2V , this g(x) cannot be directly returned as x’s value. We need to check

the validation bit for this location. If the bit is one, then there is no encoded false

positive at this location, and the g(x) can be returned as x’s value. However, if the

bit is zero, then there is an encoded false positive at this location; in this case, the

g(x) cannot be returned as x’s value, and we need to search the overflow table for

x.

All items that lead to an encoded false positive need to be recorded into the

overflow table.

With one scan of the dataset, we are not able to record the previously encoded

items, because the encoding function (Eq. 3.1) is a lossy encoding. In this case, we

need to scan the dataset for the second time. The second scan is actually a querying

test with an empty overflow table; this means every query that needs to search

the overflow table will get an invalid return value. For each item 〈x, v(x)〉 in the

dataset that is already encoded, there are only two situations of the query’s return

value g(x): 1) g(x) = v(x), which means 〈x, v(x)〉 was successfully encoded; 2)

g(x) 6= v(x) which means 〈x, v(x)〉 was not successfully encoded. The encoding

failure could be caused by an encoded false positive or an overflow. But no matter

what the reason is, once g(x) 6= v(x), the item 〈x, v(x)〉 will be recorded into the

overflow table. After the second scan, we have constructed the overflow table for

actual querying.

22

3.1.6 Algorithms: Encoding with Re-scan, and Querying

The algorithms for the Geometric filter with bitarrays include: encoding (with re-

scan), querying, and also a function that is used in both encoding and querying. In

our presentation, we assume the bitarrays are part of the hash table, and if the hash

table is an input parameter, then the accompanying bitarrays can also be used inside

the procedure.

Algorithm 2 is a function that is invoked inside other algorithms to get the status

information. It gives the following status information: 1) whether the location is oc-

cupied, 2) whether the validation bit is zero (whether there is a known encoded false

positive at this location), and 3) for a given key x, would the retrieved value g(x)

be smaller than the possible maximum 2V . Correspondingly, Algorithm 2 has four

possible return values: Open , Match , Recoverable-Collision , and Unrecoverable-

Collision .

• Open means the location is empty; and, the condition of g(x) < 2V does not

apply to an empty location as it does not contain any data.

• Match means the location is occupied and g(x) is within the range, i.e. g(x) <

2V . In querying, a Match for xmeans x is encoded into this location, and g(x)

can be returned as x’s value. However, in the encoding procedure, Match

means a newly detected encoded false positive. There will be an encoded

false positive at the location, if x is encoded. When an encoded false positive

is detected, the location needs to be set invalid.

• Recoverable-Collision means the location is occupied, and g(x) ≥ 2V . In

encoding, Recoverable-Collision means the location is occupied and x needs

to find other locations to be encoded in. In querying, Recoverable-Collision

means x is not encoded in this location, and we need to go on trying following

locations. Validation bitarray is not checked here, because if we already know

x is not encoded in this location, x cannot be related to any encoded false

positive at this location.

• Unrecoverable-Collision means the location is occupied and invalid, and g(x) <

23

2V . In encoding, Unrecoverable-Collision means the location is occupied,

and false positives have already been detected at this location; if x is en-

coded, there will be another encoded false positive here. The location is al-

ready set invalid, therefore, there is no need to change the validation bit again.

In querying, Unrecoverable-Collision means x is related to an encoded false

positive and therefore we need to stop trying in the hash tables and begin to

search in the overflow table.

Algorithm 2: getStatus(f(x), Ai, h)
input : f(x): the key’s fingerprint;

Ai: the hash table (including its placementi and validationi);
h the hash location being tested;

output: Open , Match , Recoverable-Collision , or Unrecoverable-Collision
(status of the hash location)

if placementi[h] = 0 then1

return Open2

if f(x)⊗ Ai[h] ≤ V then3

if validationi[h] = 1 then4

return Match5

else6

return Unrecoverable-Collision7

else8

return Recoverable-Collision9

Algorithm 3 gives the steps for encoding data with a re-scan. This algorithm

scans the dataset twice.

The first scan builds up the hash tables and their accompanying bitarrays. After

the first time of scanning, most items are already successfully encoded into the

hash tables, except a small portion of items. For an item 〈x, v(x)〉, there are three

possible reasons for its encoding failure: 1) overflow, which means x did not find

any available location in the N hash tables and needed to be stored in the overflow

table; 2) x found an available location in the hash tables and the item 〈x, v(x)〉 was

encoded into that location, however an encoded false positive was detected on this

location when encoding another item later, therefore the location is set invalid; 3)

24

an encoded false positive was detected when trying to encode x, therefore x could

not be encoded into the hash tables and needed to be stored in the overflow table.

The second scan is actually a querying test (Algorithm 4) with an empty overflow-

table as a parameter. In this case, only the items encoded in the hash tables can get

correct return values; the items that fail to be encoded into the hash tables, includ-

ing those in the overflow table and encoded false positives, will get a return value

of zero, which is incorrect. For these items, we record them into the overflow table.

The querying procedure is described by Algorithm 4. Given a key x, this algo-

rithm tries x on a sequence of hash locations. For every such location, the algorithm

gets the status, and takes further actions based on the status. Possible actions in-

clude: 1) returning g(x) as calculated on this location; 2) trying the next location;

or 3) stopping the search and checking the overflow table.

The overflow table can be implemented as a sequential or sorted file, and the

procedure search overflow-table for x can be either a linear search or a binary

search. More efficient implementations of the overflow table (e.g. hashing) are also

possible, but according to Section 3.4.2, the probability of accessing overflow-table

is very small, and the size of overflow-table is also very small. Therefore, although

linear search is slower than hash table lookup, the overall performance of the Geo-

metric filter is not significantly affected.

In the next section, we introduce an improved version of Geometric filter that

functions without the bitarrays. By manipulating the bitwise calculation applied to

the hash location, the status information represented by the two bitarrays can be

incorporated into the hash table. In this case, the two bitarrays are not necessary,

and the space usage is also reduced.

3.2 Geometric filter without bitarrays

As we introduced in the previous section, in Geometric filter, every hash table is

accompanied by two bitarrays, the placement bitarray and the validation bitarray.

These bit vectors carry the information about whether a hash location is occupied

and whether a hash location is valid. On the other hand, these two bitarrays also

25

Algorithm 3: EncodeRescan(S, A1, . . . AN)
input : S: encoding dataset;

Ai, i ∈ {1, 2, . . . N}: the N hash tables, each hash table includes its
hash functions hi,j(), j ∈ {1, 2, . . . k}, placementi and validationi;

output: Ai, i ∈ {1, 2, . . . N}: hash tables with data filled in;
overflow-table: the overflow table;

for i← 1 to N do1

placementi[]← all 0s2

validationi[]← all 1s3

foreach item 〈x, v(x)〉 ∈ dataset S do4

stored← false5

i← 16

while i ≤ N AND stored = false do7

j ← 18

while j ≤ k AND stored = false do9

status← getStatus(f(x), Ai, hi,j(x))10

switch status do11

case Open12

A[hi,j(x)]← f(x)⊗ v(x)13

placementi[hi,j(x)]← 114

stored← true15

break16

case Match17

case Unrecoverable-Collision18

validationi[hi,j(x)]← 019

stored← true20

break21

case Recoverable-Collision22

break23

foreach item 〈x, v(x)〉 ∈ dataset S do24

g(x)← query(x,A1...N , ∅)25

if g(x) 6= v(x) then26

add 〈x, v(x)〉 into overflow-table27

else28

continue29

26

Algorithm 4: query(x,A1 . . . AN , overflow-table)
input : x: querying key;

Ai, i ∈ {1, 2, . . . N}: the N hash tables, each hash table includes its
hash functions hi,j , j ∈ {1, 2, . . . k}, placementi and validationi;

output: g(x): the key’s value, 0 for unencoded key;

status← NONE1

for i← 1 to N do2

for j ← 1 to k do3

status← getStatus(f(x), Ai, hi,j(x), placementi)4

switch status do5

case Open6

g(x)← 07

return g(x)8

break9

case Match10

g(x)← f(x)⊗ Ai[hi,j(x)]11

return g(x)12

break13

case Unrecoverable-Collision14

g(x)← search overflow-table for x15

return g(x)16

break17

case Recoverable-Collision18

break19

if status = Recoverable-Collision then20

g(x)← search overflow-table for x21

return g(x)22

27

increase the Geometric filter’s space usage, where each hash location actually take

c+ 2 bits, including c bits in the hash table, and 2 bits in the placement bitarray and

the validation bitarray.

In this section, we introduce a number of encoding rules to merge the two bitar-

rays into their corresponding hash table. With these encoding rules, the information

represented by the two bitarrays can be incorporated into the hash table, hence re-

sulting in smaller space usage and more elegant design of the Geometric filter.

However, we still need to keep the status of each hash location, and when testing

a key on a hash location, we should be able to tell if the result is: 1) Open , 2) Match

, 3) Recoverable-Collision , or 4) Unrecoverable-Collision . The status is retrieved

by a different function called getStatus(); but most parts of the EncodeRescan()

procedure and the query() procedure are the same as the previous version of Geo-

metric filter.

3.2.1 Relational encoding: separating fingerprints and values

Our earlier version of the Geometric filter uses Eq. 3.1 to calculate the value of

the hash location for encoding 〈x, v(x)〉. In that bitwise XOR calculation, the key’s

fingerprint f(x) and the key’s value v(x), and the hash location all have c bits. This

equation is introduced following the encoding function used by the Bloomier filter

(Eq. 2.2). For convenience, the XOR calculation in Eq. 2.1, Eq. 2.2, Eq. 3.1

and Eq. 3.2 does a “uniform encoding”, meaning that all the variables of the XOR

calculations uniformly have c bits. Uniform encoding is especially useful in the

Bloomier filter, because the value of an encoding is a combination of the values of

several other locations. However, in Geometric filter, the value of an encoding hash

location does not depend on any other location, and we can use a more effective

method to encode the data.

In our new encoding, the hash location is divided into two parts: 1) the error

bits of the location is called the fingerprint, denoted as f(x); 2) the value bits of

the location, still denoted as v(x). At encoding, the binary relation 〈f(x), v(x)〉 is

stored in the hash location. In this binary relation, f(x) is the tuple identifier. We

do not directly use the key x as the identifier, because in real applications, the key’s

28

length can easily exceed the capacity of a hash location.

The querying procedure remains similar to the querying procedure discussed

before. When querying for a key x, we still need to test x on a sequence of hash

locations until we find the location where x is encoded. However, the condition

g(x) < 2V is not applicable any more.

Let T () be the function that returns the number represented by the error bits of

a hash location, and G() be the function that returns the number represented by the

value bits of a hash location.

Suppose we are testing x on a hash location A[h(x)]. First, we calculate x’s

fingerprint f(x). Then, we compare f(x) with T (A[h(x)]), if f(x) = T (A[h(x)]),

then we return G(A[h(x)]) as x’s value; if f(x) 6= T (A[h(x)]), then x does not

match with this location, and we need to try x on the hash locations that follows up

in the sequence.

In this encoding, for any key x, its fingerprint f(x) consists ofE error bits; if we

assume the fingerprints are uniformly distributed in [0, 2E − 1], then the probability

of two different keys having the same fingerprint is 1
2E , and false positive rate in

each location en = 1
2E . Hence the false positive rate in each location remains the

same as before.

3.2.2 Incorporating the placement bitarray

In Geometric filter, the placement bitarray carries the information of whether a hash

location is occupied. In order to incorporate the placement bitarray into the hash

table, we need to make an assumption on the fingerprint function.

Assumption 3.2.1 For any key x, its fingerprint f(x) is non-zero.

Assumption 3.2.1 can be satisfied by changing the range of the fingerprint func-

tion such that it always returns non-zero values. However, if the fingerprint function

is fixed, one can use a simple method where a particular bit (say the top-most bit)

is set to one when the fingerprint is zero.

With this assumption, we can incorporate the placement bitarray into the hash

table: Every occupied location must have at least one non-zero bit, because when

29

storing the relation 〈f(x), v(x)〉, at least one bit of f(x) is one. On the other hand,

every unoccupied location must have all bits zero.

By incorporating the placement bitarray into the hash table, we can reduce the

memory usage of Geometric filter. With this change, there are 2E − 1 possible

values for f(x), and the false positive rate in each location is en = 1
2E−1

, instead

of 1
2E . However, most applications require each hash location to have more than 12

error bits [31], and when E ≥ 12, the difference in false positive rate is negligible.

3.2.3 Incorporating the validation bitarray

In order to incorporate the validation bitarray into the hash table, we need to make

an assumption about the key’s value v(x).

Assumption 3.2.2 For any key x that exists in encoding dataset S, its value v(x) is

non-zero.

For simplicity, we assume the value v(x) is a positive integer, defined as:

v(x) =

{
integer in [1, 2V − 1] x exists in S
0 otherwise.

Assumption 3.2.2 can be satisfied by changing the range of the values to be

stored. In frequency-based querying applications, where v(x) indicates the fre-

quency of x, v(x) for an existing key x should be always greater than zero, because

v(x) = 0 means x does not exist in the dataset. If the value v(x) ∈ [0, 2V − 1],

the state that v(x) = 0 is actually wasted because no existing key would have a

frequency of zero.

When testing a key x on an occupied hash location, denoted as A[h(x)], we use

the following rules to retrieve the validation information: 1) if G(A[h(x)]) = 0,

then the hash location A[h(x)] is home to an encoded false positive and is invalid;

2) if G(A[h(x)])) 6= 0, then the location A[h(x)] is not home to any encoded false

positive and is valid.

In frequency-based querying applications, by incorporating the validation bitar-

ray into the value part of each location, we can reduce the memory usage without

introducing any additional error into the Geometric filter.

30

However, in case where v(x) can take the value of zero, using the state v(x) =

0 to represent invalid status may affect the number of distinct values that can be

represented, but this is negligible when the range of v(x) is not small.

3.2.4 Revised Algorithms

With the two bitarrays incorporated into the hash table, the algorithms also need to

be changed accordingly.

In getStatus(), instead of directly getting the occupancy and validation infor-

mation from the two bitarrays, the new algorithm needs to retrieve the information

from the fingerprint and the value part of the hash location. The new getStatus()

is described by Algorithm 5, in which functions T () and G() retrieve the error bits

and the value bits of a hash location respectively.

Algorithm 5: getStatus(f(x), Ai, h)
input : f(x): the key’s fingerprint;

Ai: the hash table;
h the hash location being tested;

output: Open , Match , Recoverable-Collision , or Unrecoverable-Collision :
status of the hash location

if Ai[h] = 0 then1

return Open2

if T (Ai[h]) = f(x) then3

if G(Ai[h]) 6= 0 then4

return Match5

else6

return Unrecoverable-Collision7

else8

return Recoverable-Collision9

The procedures EncodeRescan() and query() remain almost the same with

changes in a few lines as discussed next:

• According to the new encoding rules, the relation 〈f(x), v(x)〉 will be stored

into the hash location. Therefore, in EncodeRescan() (Algorithm 3), Line

13 needs to be changed from A[hi,j(x)] ← f(x) ⊗ v(x)) to A[hi,j(x)] ←

31

〈f(x), v(x)〉. Also note that the function f(x) has E bits and v(x) has V bits

now; and c = E + V .

• When setting a hash location as invalid, we change its value bits to all zeros,

therefore, in EncodeRescan() (Algorithm 3), Line 19 needs to change from

validationi[hi,j(x)]← 1 to A[hi,j(x)]← 〈f(x), 0〉.

• The return value g(x) can be directly retrieved from the hash location’s value

bits by function G() now; therefore, in query() (Algorithm 4), Line 11 needs

to change from g(x)← f(x)⊗ Ai[hi,j(x)] to g(x)← G(Ai[hi,j(x)]).

3.3 Quantitative basis of Hash tables

3.3.1 Analysis of uniformly distributed hashing

The analysis in this section is based on the assumption that all the hash functions

have uniform distributions.

Definition Load factor of a hash table, denoted as p, is the fraction of locations in

the hash table that are occupied.

Not every item in the dataset can be encoded into the hash table, some of them

will be rejected because of hash collisions. According to Geometric filter’s k-

attempt encoding rule, a key would not be rejected unless all of its k hash loca-

tions are occupied. Assuming the hash functions to be uniformly distributed, and

the load factor is p, the probability of a key being rejected is pk. If the key is not

rejected, then the load factor increases by 1
M

, where M is the hash table’s size. The

expectation of the load factor after trying the key is p + (1 − pk) × 1
M

. Let p(i)

be the expected load factor after encoding i items, where i ≥ 0, then p(i + 1) =

p(i) + (1− pk(i))× 1
M

.

If the distribution of the hash function is uniform and the hash tables are very

large, given the same k, and the same storage ratio, hash tables should all have the

same load factor. Specifically, for hash table A1 and A2, if the hash table size M1 is

d times M2 and the trying set size |S1| is also d times |S2|, then the load factor p1 is

the same as p2 after the k-attempt encoding.

32

We prove this statement in two steps. In Lemma 3.3.1, we prove that the state-

ment is true when d is an integer greater than one. In the following Theorem 3.3.2,

we generalize the statement to the case where d is any positive real number, which

means the correctness of the statement does not depend on d.

Lemma 3.3.1 By the k-attempt encoding rule of Geometric filter, data items are

tried on hash tables A2 and A1, where M2 × d = M1 (integer d > 1). Let M1 and

M2 be sufficiently large, then

p2(i) = p1(i× d).

Proof Throughout this proof, we hold the following point as self-evident: when

M1 is sufficiently large, we consider M1 as infinity, and 1
M1

, 1
M2

1
and o(1

M2
1
) as

infinitesimals on increasing orders; and the same to M2.

Because M2 × d = M1:

p2 (i+ 1) = p2 (i) +
(
1− pk

2 (i)
)
× 1

M2

= p2 (i) +
(
1− pk

2 (i)
)
× d

d×M2

= p2 (i) + d×
(
1− pk

2 (i)
)
× 1

M1

(3.3)

And, for any i, p1(i+ 1) = p1(i) + (1− pk
1(i))× 1

M1
, therefore (for simplicity,

we denote p1(i× d) as p):

33

p1 (i× d+ 1)

= p1 (i× d) +
(
1− pk

1 (i× d)
)
× 1

M1

= p+
(
1− pk

) 1

M1

p1 (i× d+ 2)

= p1 (i× d+ 1) +
(
1− pk

1 (i× d+ 1)
) 1

M1

=

[
p+

(
1− pk

) 1

M1

]
+

{
1−

[
p+

(
1− pk

) 1

M1

]k
}

1

M1

=

[
p+

(
1− pk

) 1

M1

]
+

{
1−

[
pk +

(
k

1

)
pk−1

(
1− pk

) 1

M1

+

(
k

2

)
pk−2

(
1− pk

)2 1

M2
1

+ . . .

]}
1

M1

=

[
p+

(
1− pk

) 1

M1

]
+

{
1− pk −

kpk−1
(
1− pk

)
M1

+ o

(
1

M1

)}
1

M1

= p+
(
1− pk

) 1

M1

+
(
1− pk

) 1

M1

−
kpk−1

(
1− pk

)
M2

1

+ o

(
1

M2
1

)
= p+ 2

(
1− pk

) 1

M1

−
kpk−1

(
1− pk

)
M2

1

+ o

(
1

M2
1

)

p1 (i× d+ 3)

= p1 (i× d+ 2) +
(
1− pk

1 (i× d+ 2)
) 1

M1

=

[
p+ 2

(
1− pk

) 1

M1

−
kpk−1

(
1− pk

)
M2

1

]

+

1−

[
p+ 2

(
1− pk

) 1

M1

−
kpk−1

(
1− pk

)
M2

1

]k
 1

M1

=

[
p+ 2

(
1− pk

) 1

M1

−
kpk−1

(
1− pk

)
M2

1

]

+

{
1− pk −

2kpk−1
(
1− pk

)
M1

+ o

(
1

M1

)}
1

M1

= p+ 3
(
1− pk

) 1

M1

− (1 + 2)
kpk−1

(
1− pk

)
M2

1

+ o

(
1

M2
1

)
34

. . .

p1 ((i+ 1)× d) = p1 (i× d+ d)

= p1 (i× d+ (d− 1)) +
(
1− pk

1 (i× d+ (d− 1))
) 1

M1

= p+ d
(
1− pk

) 1

M1

− (1 + 2 + . . .+ (d− 1))×
kpk−1

(
1− pk

)
M2

1

+ o

(
1

M2
1

)
= p+ d

(
1− pk

) 1

M1

− d (d− 1)

2
×
kpk−1

(
1− pk

)
M2

1

+ o

(
1

M2
1

)
(3.4)

Let b = d2k
2

. Because 0 ≤ p ≤ 1 and 1 − pk ≤ 1, d(d−1)
2
× kpk−1(1−pk)

M2
1

≤ b
M2

1
.

And because 0 < d(d−1)
2
× kpk−1(1−pk)

M2
1

< b
M2

1
, then

p+ d
(
1− pk

) 1

M1

− b

M2
1

≤ p1 ((i+ 1)× d) ≤ p+ d
(
1− pk

) 1

M1
(3.5)

We prove the following statement by induction on i, the number of items en-

coded:

0 ≤ p2(i)− p1(i× d) ≤ i
b

M2
1

(3.6)

1) When i = 0, p2(0) = p1(0) = 0, therefore 0 ≤ p2(i) − p1(i × d) ≤ i b
M2

1
.

Hence Eq. 3.6 is true when i = 0.

2) Assuming 0 ≤ p2(i) − p1(i × d) ≤ i b
M2

1
, we will prove 0 ≤ p2(i + 1) −

p1((i+ 1)× d) ≤ (i+ 1) b
M2

1
as follows:

We denote p1(i× d) = p, then

p ≤ p2(i) ≤ p+ i
b

M2
1

(3.7)

According, to Eq. 3.3, p2(i + 1) = p2(i) + d(1 − pk
2(i)) 1

M1
, therefore the

derivative of p2(i+ 1) with regard to p2(i) is

δp2(i+ 1)

δp2(i)
= 1− pk−1

2 (i)× dk

M1

. (3.8)

Because M1 is sufficiently large, the value of dk
M1

is close to zero, then

35

δp2(i+ 1)

δp2(i)
> 0. (3.9)

As Eq. 3.9 shows, the value of p2(i + 1) increases with the value of p2(i).

Because of Eq. 3.7 and the fact that p2(i+ 1) is monotonically non-decreasing with

regard to p2(i), given a fixed p, the value of p2(i+ 1)− p1((i+ 1)× d)) reaches its

minimum when p2(i) = p. Because of Eq. 3.3, p2(i + 1) ≥ p + d(1− pk) 1
M1

, and

using Eq. 3.4 and Eq. 3.5,

p2 (i+ 1)− p1 ((i+ 1) d)

≥
[
p+ d

(
1− pk

) 1

M1

]
−
[
p+ d

(
1− pk

) 1

M1

]
= 0

Also because of Eq. 3.9, with a fixed p, the value of p2(i+ 1)− p1((i+ 1)× d))

reaches its maximum when p2(i) = p+ i b
M2

1
. Then,

p2 (i+ 1)− p1 ((i+ 1) d)

≤
(
p+ i

b

M2
1

)
+

[
1−

(
p+ i

b

M2
1

)k
]
d

M1

−
[
p+ d

(
1− pk

) 1

M1

− b

M2
1

]
= p+ i

b

M2
1

+

[
1− pk − kpk−1 × i b

M2
1

− o
(

1

M2
1

)]
d

M1

−
[
p+

(
1− pk

) d

M1

− b

M2
1

]
= (i+ 1)× b

M2
1

+ o

(
1

M2
1

)
Hence, 0 ≤ p2(i+ 1)− p1((i+ 1)d) ≤ (i+ 1) b

M2
1

.

3) Because of 1) and 2), Eq. 3.6 is proved: for any integer i, 0 ≤ p2(i) −

p1(i × d) ≤ i b
M2

1
. Because the value of i is not infinity, then i b

M2
1
≤ ib

dM1
= o(1) is

negligible. Hence p2(i) = p1(i× d).

Definition Storage ratio, denoted as r, is the ratio of the hash table size M to the

encoding dataset size |S|, r = M
|S| .

36

Theorem 3.3.2 By the k-attempt encoding rule, hash table A1 has dataset S1 with

r1 = M1

|S1| ; hash table A2 has dataset S2 with r2 = M2

|S2| . Provided that M1 and M2

are sufficiently large, if r1 = r2, then after finishing the encoding of S1 and S2, load

factors

p1 = p2.

Proof Let A be an additional hash table, which has dataset S with r = M
|S| . Assume

that r = r1 = r2, and the size of A is M = M1 × t1 = M2 × t2, where t1, t2 are

positive integers.

Let p denote the load factor of A after encoding S. Let p(i), p1(i), and p2(i)

denote the load factor of A, A1, and A2 respectively, after trying the ith item in the

dataset.

Because M1 and M2 are sufficiently large, and M = M1 × t1 = M2 × t2,

therefore M is also sufficiently large. Because r = r1 = r2, therefore,

|S| = M

r
=
M1 × t1

r
= |S1| × t1. (3.10)

When the trials are finished, every item in the datasets has been tried on the

hash table, therefore p1 = p1(|S1|) = p1(M1 × 1
r1

) = p1(M1 × 1
r
), and p = p(|S|) =

p(M × 1
r
) = p(t1M1× 1

r
). Because M = t1M1, according to Lemma 3.3.1, p1 = p.

Similarly, p2 = p. Hence p1 = p2.

Theorem 3.3.2 actually generalizes the Lemma 3.3.1 to the case that d can be

any positive number, and the load factor p depends only on storage ratio r. In the

following part, we analyze the functional relationship between p and r.

Theorem 3.3.3 By the k-attempt encoding rule, dataset S is encoded into hash

table A with r = M
|S| . Given k, and provided that M is sufficiently large, then

1) load factor p is a function of r (which can be written as p = pk(r)), 2) pk(r)

is continuous, monotonically decreasing, and 3) its inverse function r = p−1
k (p)

exists and p−1
k (p) is also continuous and monotonically decreasing.

37

Proof 1) When M is sufficiently large, we consider it as infinity. Given k, accord-

ing to Theorem 3.3.2, p is determined by r, hence p is a function of r, denoted as

p = pk(r), and because r = M
|S| , M 6= 0 and |S| 6= 0, then r ∈ (0,+∞).

2) For the convenience of calculus analysis, we use ∆r to denote a small change

in the value of r, and ∆|S| to denote a small change in the value of |S|. For any

r0 ∈ (0,+∞), let ∆r = − r2

M
, then limM→∞∆r = 0, and r = M

|S| , then

|S| = M

r

⇒ ∆|S| = M ×

(
1

r
− 1

r − r2

M

)
= M ×

r2

M

r
(
r − r2

M

)
⇒ lim

M→∞
∆|S| = M ×

r2

M

r
(
r − r2

M

) = 1

Provided the load factor pk(r), when ∆|S| = 1, then ∆p = pk(r + ∆r) =

pk(r) + (1− pk
k(r)) 1

M
, therefore

lim
∆r→0

pk(r + ∆r)− pk(r)

∆r

= lim
M→∞

pk(r) + (1− pk
k(r)) 1

M
− pk(r)

− r2

M

= −1− pk
k(r)

r2
< 0

Therefore, according to the definition of function derivative, the derivative of

pk(r) exists for r ∈ (0,+∞) and p′k(r) < 0. Hence, pk(r) is continuous and

monotonically decreasing.

3) Because pk(r) is continuous and monotonically decreasing, its inverse func-

tion p−1
k (p) exists, and the inverse function is also continuous and monotonically

decreasing.

Theorem 3.3.3 specifies the functional relationship between p and r, which

means when the hash table is large enough, given k, p is determined by r, and

vice versa.

38

3.3.2 Load factor calculations

Let S be a dataset that is encoded into hash tableAwith a very large sizeM (treated

as infinity). As Theorem 3.3.2 shows, given k, the load factor p after the k-attempt

encoding is a function of storage ratio r, and here we denote this function as pk(r).

When k = 1, p1(r) can be calculated by a mathematical formula; when k 6= 1,

pk(r) can be determined by a Monte Carlo experiment.

When k = 1, each key is tried once; therefore the number of trials is |S|. After

trying the dataset, a location being empty means there was no key hashed to this

location, and its probability P (empty) = (1 − 1
M

)|S| = (1 − 1
M

)−M× |S|−M . When

M → ∞, limM→∞ P (empty) = e−
|S|
M = e−

1
r . Then, the probability of a location

being occupied P (occupy) = 1− e− 1
r . Hence:

p1(r) = 1− e−
1
r (3.11)

When k > 1, every item have k trials before being rejected. For each item, the

number of trials may vary from 1 to k, therefore it is difficult to provide a formula

of pk(r). In this case, the value of pk(r) can be determined by a Monte Carlo

experiment, as shown in Algorithm 6.

Because the hash functions are assumed to be uniformly random, we use a ran-

dom function instead of real hash functions. We run |S| iterations simulating en-

coding |S| items in the dataset. In each iteration, we use the random function to

select k bits in the bitarray of size r|S|, and set the first zero bit to one. Finally, by

counting up the bits set to one, we can find a very close estimation of pk(r). And,

because the time of generating a random number is much less than using real hash

function to process a key, this Monte Carlo experiment finishes in a very short time.

According to Theorem 3.3.2, pk(r) does not depend on the dataset’s size |S|;

however, this conclusion is based on the assumption that the hash table size M →

∞. In reality, M cannot be infinite, therefore the results closely approximates The-

orem 3.3.2, but with some difference. |S| needs to be provided in Algorithm 6 to

prevent the difference getting too large for real applications, and the reason will be

discussed in Section 3.3.3.

39

Algorithm 6: loadFactor(r, k, |S|)
input : r: storage ratio;

k: number of hash functions
|S|: size of dataset

output: p: hash table’s expected load factor after encoding

M ← |S| × r1

allocate bitarray bitarray[M]2

bitarray[M]← all 0s3

c← 04

for i← 1 to |S| do5

for j ← 1 to k do6

h← random() mod M7

if bitarray[h] = 0 then8

bitarray[h]← 19

c← c+ 110

break11

p← c / M12

return p13

When k = 1, we plot the curves of pk(r) by both Eq. 3.11 and Algorithm 6. As

Figure 3.1 shows, the two figures are almost identical.

3.3.3 Finite sizes and non-uniform distributions

Discussions about load factor function pk(r) are based on two assumptions: all the

hash functions are uniformly random, and hash table size M →∞. However, these

two assumptions cannot be satisfied in real applications. The hash table size is not

infinite, and the hash functions’ distribution is not uniform.

If M is not infinite, then when k = 1, p1(r) is not equal to 1− e− 1
r (Eq. 3.11),

although the values are close to each other.

The random function in Monte Carlo experiment and the hash functions actually

do not have a uniform distribution. Hash functions with non-uniform distributions

increase the number of hash collisions and reduce the hash table’s load factor. Non-

uniform distributions have different effects on hash tables with different sizes. The

distribution on a small hash table is usually more uniform than the distribution on a

large hash table, and the reason will be discussed later in this section. In this case,

40

Figure 3.1: Load factor calculated by Eq. 3.11 and Algorithm 6 when |S| = 4×108

and k = 1

41

with the same storage ratio r the load factor p is higher in a small hash table than in

a large hash table.

Hash functions are derived from a basis function H(x) with range [0,MH − 1],

and MH is larger than the hash table’s size M . For a hash table of size M , the hash

function h(x) = H(x) mod M , and h(x)’s range is [0,M − 1].

Here, we denote PH(v) as the probability that H(x) = v, and Ph(v) as the

probability that h(x) = v. Because H(x) does not have a uniform distribution,

PH(v) is not a constant when v ∈ [0,MH − 1]. For simplicity, we suppose MH =

M × a where a is an integer. Then, for the hash function h(x), Ph(v) = PH(v) +

PH(v + M) + . . . + PH(v + M × (a − 1)). By summing up a items from PH(v)

to PH(v + (a − 1)M), Ph(v) is more even than PH(v). Similarly, when derived

from the same basis function, hash functions with a small range have more uniform

distributions than hash tables with a large range.

Non-uniform hash functions will cause additional collisions in the hash table,

and reduce the hash table’s load factor. In most cases, the impact is unnoticeable

[35] [26]. However, the sizes of Geometric filter’s hash tables form a descending

geometric series. If a large hash table does not achieve the designed load factor,

and does not absorb the designed amount of items, then there will be additional

items going to the consequent hash tables. For the largest hash table in the front,

the amount of the additional items is insignificant; but for the smaller hash tables

following, these extra items will be a heavy burden. The smaller hash tables won’t

be able to absorb the extra items either, then the extra amount will be passed on to

the next one, and so forth.

As a result, the hash tables at the end of the sequence have a higher load factor

than expected, and some of them can be filled up to 100%. And, the number of

items going to the overflow table would also exceed the designed amount, which

means the size of the overflow table is not negligible. In this case, the Geometric

filter’s performance is harmed in three aspects: 1) the false positive rate e will be

higher than designed; and 2) the querying speed will be slower than expected, and

3) the storage space will be increased.

Being aware of the difference in hash table sizes, and non-uniform hash func-

42

tions, the following principles need to be applied:

• if the load factor is calculated by p(r) = 1 − e− 1
r (Eq. 3.11), then the value

needs to be reduced by a small amount (the change is usually made on the

3rd or the 4th digit after the decimal), because actually achieved load factor

is lower than theoretical calculation;

• if the load factor is calculated by Monte Carlo experiment (Algorithm 6), then

the size of the bitarray in the experiment needs to be greater or equal to the

size of the hash tables, or the calculated load factor needs to be deducted by

a small amount.

3.4 Quantitative basis of Geometric filter

In this section, we provide some mathematical formulas of Geometric filter, which

will be used by the parameter setting and the theoretical analysis in later sections.

3.4.1 Hash tables in the sequence

Geometric filter consists of a sequence of hash tables, the sizes of which form a

descending geometric sequence. And, the numbers of items tried on these hash

tables also form a descending geometric sequence.

Definition Trying set is denoted as Si, where i = 1, 2, . . . N,N + 1. When 1 ≤

i ≤ N , Si means the set of data items tried on the hash table Ai. SN+1 means the

set of items rejected by the last hash table (AN) and stored in the overflow table.

Obviously, S1 = S, because hash table A1 is the first hash table in the sequence,

and every item in dataset S will be tried on A1.

Definition Reject rate, denoted as d, is the proportion of items that are tried on a

hash table, and rejected because of hash collisions.

For hash table Ai, where 1 ≤ i ≤ N , the trying set is Si, and the items rejected

by Ai form the next trying set Si+1. In this case, the reject rate:

di =
|Si+1|
|Si|

(3.12)

43

In hash table Ai, we denote the load factor as p and the storage ratio as r.

The number of occupied locations is |Si − Si+1|. Since, Si+1 ⊆ Si, |Si − Si+1| =

|Si|−|Si+1|, hence the load factor of this hash table p = |Si|−|Si+1|
Mi

. Since di = |Si+1|
|Si| ,

then |Si| − |Si+1| = (1 − di) × |Si|. And, 1
r

= |Si|
Mi

, therefore p = (1−di)×|Si|
Mi

=

(1− di)× |Si|
Mi

= (1− di)× 1
r
. Then, p× r = 1− di, hence:

di = 1− p× r (3.13)

Assumption 3.4.1 In Geometric filter, all the hash tables, from A1 to AN , have the

same storage ratio r.

Assumption 3.4.1 is satisfied by adjusting the sizes of hash tables in the se-

quence as described following.

Given dataset S and storage ratio r, because S1 = S, then M1 = r|S1| = r|S|.

Given k, load factor p is a function of r, denoted as pk(r), then according to Eq.

3.13, di = 1 − r × pk(r). Provided that r is a constant in the hash tables, then the

value of di are also a constant, which we denote as d. |S2| = |S1| × d = |S| × d,

then M2 = r|S2| = r|S|×d = M1×d, . . . , hence the sequence of the sizes of trying

sets is:

|Si| = |S| × di−1 (3.14)

And the sequence of the sizes of the hash tables is:

Mi = r|S| × di−1 = M1 × di−1 (3.15)

Because d = 1− p× r < 1, the two sequences above are descending geometric

series.

3.4.2 Length of the hash sequence

In Geometric filter, we assume that the overflow table’s size is negligible, and that

most items in the dataset are absorbed by the hash tables. Therefore, the hash

table sequence needs to be long enough such that the overflow table size gets to the

smallest size |SN+1| = 1. According to Eq. 3.14, |SN+1| = |S| × d(N+1)−1, hence

44

N =

⌈
logd

(
1

|S|

)⌉
=

⌈
log1−r×p

(
1

|S|

)⌉
=

⌈
log1−r×pk(r)

(
1

|S|

)⌉ (3.16)

Because of the non-uniformity of hash functions, there are more hash collisions

than theoretically expected in the hash tables, therefore |SN+1| can be larger than

one. However, compared with the large size of the whole dataset, the overflow table

is still negligible.

3.4.3 Overall space usage

Ignoring the overflow table, we only consider the memory space used by the hash

tables. For convenience, we use bit as the smallest unit for space measurement.

The space of the Geometric filter spaceG is the sum of the spaces of all the hash

tables; using Eq. 3.15, the space can be calculated via Eq. 3.17, where c is the

number of bits per location.

spaceG =
N∑

i=1

Mi × c

=
N∑

i=1

r|S|di−1 × c

≤ lim
N→∞

N∑
i=1

r|S|di−1 × c

= r|S| 1

1− d
× c

= |S| r

1− (1− rp)
× c

=
|S|
p
× c =

|S|
pk(r)

× c.

(3.17)

3.4.4 False positive rates

On each hash location, the false positive rate is determined by the number of error

bits in the location. Given E error bits, the false positive rate on each hash location

(also called “natural false positive rate”) is en = 1
2E .

45

During querying, a key will be tried on a sequence of locations, and false pos-

itive could happen on any one of them, hence the Geometric filter’s overall false

positive rate eo ≥ en.

Lemma 3.4.2 If all the hash tables have the load factor p, and the false positive

rate on each location is en, then the Geometric filter’s overall false positive rate

eo ≤
p

1− p
en

Proof On each hash table, a key is tried in at most k locations, and false positive

could happen in any one of these locations. According to Algorithm 4, false pos-

itive happens when the following two conditions are satisfied: 1) x is mapped to

a occupied location, and 2) a false positive happens for x on this location. False

positive rate on a hash table, denoted as eh, can be calculated by Eq. 3.18. For

convenience, we use the following notations:

“FP.j” means false positive happens on the jth hash location, where 1 ≤ j ≤ k;

and “¬FP. 1 . . . j” means false positive does not happen on the first j hash loca-

tions. The false positive rate of the hash table equals to the sum of the probabilities

of false positives of all the hash locations. For each hash location, the probability of

false positive is the probability that one false positive happens on the location and

no false positive happens on the locations before it.

eh = P (FP. 1) + P (FP. 2|¬FP. 1) + . . .

+ P (FP. k|¬FP. 1 . . . k − 1)

= p× en + p2(1− en)× en + . . .+ pk(1− en)k−1 × en

≤ en × (p+ p2 + . . .+ pk)

= en ×
k∑

i=1

pi =
p(1− pk)

1− p
en

(3.18)

In the Geometric filter, a key also needs to be tried on a sequence of hash tables,

and if false positive happen on any one of these hash tables, the returned value will

be erroneous, therefore the overall false positive rate eo ≥ eh ≥ en, and its value

is calculated by Eq. 3.19. For convenience, in the following probability functions,

notation “Ai” means the key is tried on hash table Ai.

46

eo =
N∑

i=1

P (Ai)× P (FP.|Ai)

=
N∑

i=1

P (Ai)× eh

≤ lim
N→∞

N∑
i=1

pk×(i−1) × eh

= eh ×
1

1− pk
= en ×

p(1−pk)
1−p

1− pk

= en ×
p

1− p

(3.19)

For a key not encoded, the algorithm will search the overflow table for the key

if false positive did not happen in the hash tables; however, we do not consider false

positives in the overflow table, because it is implemented as a sequential file with

key-value pairs that does not have any false positive.

3.5 Parameter Settings

In order to configure the Geometric filter, we need to know the values of following

variables: 1) |S|, the size of the encoding set; 2) eo, the allowed false positive rate;

3) V , the number of value bits; and 4) k, the number of hash functions.

We use an example to illustrate the parameter setting, for which |S| = 4× 108,

eo = 1/216, V = 16, and k = 1.

The obtained parameters will minimize the memory space usage for encoding

the dataset, and the parameters are: 1) N , the length of hash table sequence; 2) r,

the storage ratio in each hash table; 3) E, the number of error bits in each location.

3.5.1 Minimizing the memory usage

In order to save space, we let the actual overall false positive rate reach its maximum

allowed value eo. According to Lemma 3.4.2, p
1−p

en = p
1−p
× 1

2E = eo, therefore

the number of error bits E = dlog2
p

(1−p)eo
e, then the number of bits per location

47

Figure 3.2: Geometric filter’s space usage (with or without ceiling), when eo =
1/216 and V = 16

c = V + E = V + dlog2
p

(1−p)eo
e. According to Eq. 3.17, space usage of the

Geometric filter (measured in bits) is:

spaceG =
|S|
p
×
(
V +

⌈
log2

p

(1− p)eo

⌉)
(3.20)

Provided that |S| is a given constant, the minimization of spaceG is equivalent

to the following minimization:

arg min
p∈(0,1)

1

p
×
(
V +

⌈
log2

p

(1− p)eo

⌉)
(3.21)

Given eo = 1
216 and V = 16, we plot the curves of y = 1

p
× (V + dlog2

p
(1−p)eo

e)

and y = 1
p
× (V + log2

p
(1−p)eo

). As Figure 3.2 shows, the minimum y values of

the ceiling and non-ceiling curves are close to each other. This is because the non-

ceiling curve’s derivative is close to zero near its minimum point, therefore a small

48

shift in p would not change the value of y dramatically.

For the ease of our analysis, we simplify the minimization of the ceiling expres-

sion to minimization of the following non-ceiling expression:

arg min
p∈(0,1)

1

p
×
(
V + log2

p

(1− p)eo

)
(3.22)

Lemma 3.5.1 Given the number of value bits V , allowed false positive rate eo, and

provided that V + log2
1
eo
≥ 3 then the minimum value of

f(p) =
|S|
p
×
(
V + log2

p

(1− p)eo

)
is reached when the load factor is 1:

p = 1− 1

1−W−1

(
−e1−ln 2×(V +log2

1
eo

)
)

Proof If f(p) reaches the minimum value, then its derivative f ′(p) = 0, therefore:

f ′(p) =
−1

p2

[
V + log2

1

eo

+ log2

p

1− p

]
+

1

p2
× 1

ln 2× (1− p)
= 0

Therefore,

1

p2

[
V + log2

1

eo

+ log2

p

1− p

]
=

1

p2
× 1

ln 2× (1− p)

⇒
(
V + log2

1

eo

)
+ log2

p

1− p
=

1

ln 2× (1− p)

⇒ ln 2×
(
V + log2

1

eo

)
+ ln p− ln (1− p) =

1

1− p
1W0(x) is the Lambert-W function on the branch where x ∈ [−1/e, +∞) and w ≥ −1; W−1(x)

is the Lambert-W function on the branch where x ∈ [−1/e, 0) and w ≤ −1. Please see [1] for
details.

49

For convenience, we let a = ln 2(V + log2
1
eo

), and x = 1− p, then,

a+ ln (1− x)− lnx =
1

x

⇒ ax+ x ln (1− x)− x lnx− 1 = 0

⇒ eax+x ln(1−x)−x ln x−1 =
eax+x ln(1−x)

ex ln x+1
= e0 = 1

⇒ eax (1− x)x

exx
= 1

⇒ eax (1− x)x = exx

⇒ (1− x)x

xx
=

e

eax

⇒
(

1− x
x

)x

=
1

eax−1

⇒
(

1

x
− 1

)x

=
1

eax−1

For convenience, we let t = 1
x
− 1, therefore x = 1

t+1
, and,

t
1

t+1 =
1

e
a

t+1
−1

⇒ ln t
1

t+1 = ln
1

e
a

t+1
−1

⇒ ln t

t+ 1
= 1− a

t+ 1

⇒ ln t = t+ 1− a

⇒ eln t = et+1−a

⇒ t = e1−aet

⇒ te−t = e1−a

⇒ (−t)e(−t) = −e1−a

It is provided that V + log2
1
eo
≥ 3, therefore a = ln 2 × (V + log2

1
eo

) ≥ 2,

then −e1−a ∈ (−1/e, 0). According to the properties of Lambert-W function, the

transcendental equation has two real roots:

−t = W0(−e1−a) or − t = W−1(−e1−a)

We consider these two roots respectively.

If −t = W0(−e1−a), then according to the properties of Lambert-W function,

−t ∈ (−1, 0), therefore t ∈ (0, 1). And, t = 1
x
− 1 and x = 1 − p, therefore

50

p = 1− 1
1+t
∈ (0, 1/2). If−t = W−1(−e1−a, we can similarly get that t ∈ (1,+∞)

and p = 1− 1
1+t
∈ (1/2, 1).

For both roots, f ′(p) = 0, therefore:

f ′(p) =
−1

p2

[
V + log2

1

eo

+ log2

p

1− p

]
+

1

p2
× 1

ln 2× (1− p)
= 0

⇒ −
[
V + log2

1

eo

+ log2

p

1− p

]
+

1

ln 2× (1− p)
= 0

We take the second derivative of f(p):

f ′′ (p) = (f ′ (p))
′

=
2

p3

[(
V + log2

1

eo

)
+ log2

p

1− p

]
− 1

p3

1

ln 2× (1− p)

+
−2

p3

1

ln 2× (1− p)
+

1

p2

1

ln 2× (1− p)2

=
−2

p3

[
−
(
V + log2

1

eo

+ log2

p

1− p

)
+

1

ln 2× (1− p)

]
+

1

ln 2p2 (1− p)

(
1

1− p
− 1

p

)
=

1

ln 2p2 (1− p)

(
1

1− p
− 1

p

)
If −t = W0(−e1−a), then p ∈ (0, 1/2), therefore 1

1−p
< 1

p
and f ′′(p) < 0,

hence this point is the maximum of f(p), which contradicts with the condition of

minimum space.

If −t = W−1(−e1−a), then p ∈ (1/2, 1), therefore 1
1−p

> 1
p

and f ′′(p) > 0,

hence this point is the minimum of f(p). Therefore, the minimum value of f(p)

space is reached when the load factor is

p = 1− 1

1−W−1(a)
= 1− 1

1−W−1(ln 2(V + log2
1
eo

))

Lemma 3.5.1 is based on the condition that V +log2
1
eo
≥ 3, but this condition is

satisfied by most applications. In Geometric filter, V ≥ 1, otherwise the Geometric

filter cannot represent any data; and in most applications, the false positive rate

eo ≤ 1
212 [29], otherwise the data stored in Geometric filter would not have enough

accuracy; therefore V + log2
1
eo
≥ 15 > 3.

51

3.5.2 Setting values for the parameters

Lemma 3.5.1 provides a close estimation of the load factor p. However, because

of the ceiling in Eq. 3.21, the value of p provided by the lemma may be not equal

to the actual setting. As Figure 3.2 shows, the curve with ceiling is sectionally

continuous, and on each continuous section, the minimal point intersects with the

curve without ceiling. The overall minimum point is one of these intersections. If

the minimum point of the non-ceiling curve is between two intersections, then one

of these two intersections is the actual minimum point.

Lemma 3.5.2 Provided the false positive rate eo and the number of error bits E,

then for each intersection point of curve f(p) = 1
p
(V + dlog2

p
(1−p)eo

e) and curve

f(p) = 1
p
(V + log2

p
(1−p)eo

), the corresponding load factor:

p = 1− 1

eo2E + 1

Proof On an intersection, the ceiling and non-ceiling curves have the same value,

therefore the number of error bits E = log2d p
(1−p)eo

e = log2
p

eo(1−p)
, then

E = log2

p

eo(1− p)
⇒ p

eo(1− p)
= 2E

⇒ −1 +
1

1− p
= eo2

E

⇒ 1

1− p
= eo2

E + 1

⇒ 1− p =
1

eo2E + 1

⇒ p = 1− 1

eo2E + 1

Setting the load factor p and error bits E. Suppose the load factor calcu-

lated by Lemma 3.5.1 is p̂, letE0 be an integer such thatEo ≤ log2
p̂

(1−p̂)eo
≤ E0+1,

then in the actual setting, E = E0 or E0 + 1. By Lemma 3.5.2, p = 1− 1
eo2E0+1

or

52

1 − 1
eo2E0+1+1

. With these two candidate values of p, we calculate the value of Eq.

3.22, the one with the smaller value will be chosen. With p determined, E is also

determined correspondingly.

In our example, if V = 16 and the allowed error rate eo = 1/216. By Lemma

3.5.1, estimated load factor p̂ = 1 − 1/
(

1−W−1

(
−e1−ln 2×(V +log2

1
eo

)
))

=

0.9606 , therefore log2
p

eo(1−p)
= 20.6073. Because 20 ≤ 20.6073 ≤ 21, E = 20 or

21. Correspondingly, p = 1− 1
eo2E+1

= 0.9412 or 0.9697. Because spaceG|p=0.9606 >

spaceG|p=0.9697 (Eq. 3.22), we choose p = 0.9697 and E = 21.

Setting of the storage ratio r. Given k, by Lemma 3.3.3, p = pk(r), and the

inverse function r = p−1
k (p) exists, therefore r is determined when p is known. For

clarity, function p−1
k (p) is also denoted as rk(p).

When k = 1, by Eq. 3.11, p1(r) = 1− e−1/r, therefore the inverse function:

r1(p) = p−1
1 (p) = − 1

ln(1− p)
(3.23)

In our example, given k = 1 and p = 0.9697, by Eq. 3.23, r = 0.2860.

When k > 1, function rk(p) can also be calculated by a Monte Carlo experi-

ment, as Algorithm 7. The return value of r does not depend on M ; however, for

the reason discussed in Section 3.3.3, M needs to be greater or equal to the largest

hash table size in the Geometric filter, so that the hash function’s non-uniform dis-

tribution does not harm the overall performance.

Setting of the length of hash table sequence N . With p, r and |S| known,

according to Eq. 3.16, the length of hash table sequence N = dlog1−r×p(1/|S|)e.

In our example, |S| = 4× 108, therefore N = 61.

Constructing the hash table sequence With all the parameters set, we can

construct the Geometric filter, in which the hash table sizes Mi = r|S| × di−1,

1 ≤ i ≤ N , where d = 1 − r × p. In our example, the sizes of the constructed

Geometric filter is shown in Figure 3.3.

53

Figure 3.3: Hash tables in the Geometric filter. The configuration is: k = 1, r =
0.2860, p = 0.9697, N = 61, and |S| = 4×108. The size of hash table is measured
by its location number.

54

Algorithm 7: storageRatio(p, k,M)
input : p: load factor

k: number of hash functions
M : size of hash table

output: r: storage ratio

|S| ←M × p1

allocate bitarray bitarray[M]2

bitarray[M]← all 0s3

c← 04

while c < |S| do5

for j ← 1 to k do6

h← random() mod M7

if bitarray[h] = 0 then8

bitarray[h]← 19

c← c+ 110

break11

r ←M/|S|12

return r13

3.6 Algorithm analysis

In this section, we provide a theoretical analysis of Geometric filter, including the

running time of the algorithms, and a comparison of space usage between Geomet-

ric filter and Bloomier filter.

3.6.1 Running time of encoding

Because we need to encode the whole dataset before using the Geometric filter as a

lookup table of that dataset, we investigate the running time for encoding the whole

dataset S, not for encoding an individual item. According to the encoding algorithm

(Algorithm 3), each key will be tried k times on each hash table, until it finds an

available location. For simplicity, we assume all the k trials are finished, despite

that the key may find an available location before finishing all the k trials, therefore

we get an upper-bound of the encoding time, and this simplification will also be

applied to the analysis in this section.

According to the definition of trying set, the number of keys tried on hash table

55

Ai is |Si|, where 1 ≤ i ≤ N . For any two adjacent trying set Si and Si+1, the reject

rate d = |Si+1|
|Si| , and d = 1− r × p (Eq. 3.13). Then an upper-bound of the running

time of encoding S:

time(encoding S) ≤
N∑

i=1

(|Si| × k)

= k × |S| ×
N∑

i=1

di−1

≤ k × |S| × lim
N→∞

N∑
i=1

di−1

=
k

1− d
× |S| = k

1− (1− r × p)
× |S|

=
k

r × p
|S|

(3.24)

Given k, p, and r, the encoding time of dataset S is linear on the dataset size |S|.

In our example, the Geometric filter has k = 1, p = 0.9697, and r = 0.2860, hence

the encoding time time(encoding) = |S| × k/(r × p) = 3.6058|S|. Considering

the preprocessing of bipartite matching, the encoding of Geometric filter is almost

two times faster than the encoding of Bloomier filter.

3.6.2 Running time of querying

The running time of querying a key is discussed in two situations: the key is found,

and the key is not found.

If the key is found, ignoring the false positives, the match happens on the loca-

tion where the key is stored. Moreover, we also neglect the overflow table, because

the overflow table size |SN+1| is negligible. If the query result is a match, then the

search tries the same number of locations as the encoding of the item, therefore the

average of running time of a matched querying is the same with the average encod-

ing time of each item in the dataset. According Eq. 3.24, the expectation of query

time is

time(matching x) ≤ k

p× r
(3.25)

56

With our illustration example, the Geometric filter has k = 1, p = 0.9697, and

r = 0.2860, then the running time time(match x) = k/(r × p) = 3.6058.

If the key is not matched, according to Algorithm 4, we need to consider two

situations: 1) the key is tested on an empty location; or 2) the key is tried on all

the hash tables but did not match any, and there is also no match for the key in

the overflow table. In the following equation, Ept.Ai means the key hits an empty

location in hash table Ai, and time(overflow) means the running time of linearly

searching the key in the overflow table. Then, the expectation of running time is:

time(¬matching x)

≤ k × (1 + P (¬Ept.A1) + P (¬Ept.A2|¬Ept.A1) + . . .

+ P (¬Ept.AN |¬Ept.A1, A2, . . . AN−1))

+ time(overflow)× P (¬Ept.A1, . . . AN)

= k × (1 + pk + p2k + . . . p(N−1)k)

+ time(overflow)× pN×k

= k ×
N∑

i=0

pi×k + time(overflow)× pN×k

=
k(1− pk×N)

1− pk
+ time(overflow)× pN×k

Given a correct configuration, as discussed in Section 3.3.3 and Section 4.2, the

load factors of the hash tables at the end of the sequence are lower than the hash

tables in the front, because the real hash functions do not have uniform distribution.

If we ignore the running time of accessing the overflow table, the querying time can

be simplified as Eq. 3.26, which is an upper bound of the actual running time.

k(1− pk×N)

1− pk
(3.26)

In our example, the Geometric filter has k = 1, p = 0.9697, and r = 0.2860.

For the query of an item not matched, the running time time(¬matching x) =

k/(1 − pk) + pN×ktime(overflow) = 27.9516. This is the upper-bound, and the

running time in reality is lower than it.

57

3.6.3 Comparison of memory space usage of Geometric filter
and Bloomier filter

Now we compare the memory space needed by Geometric filter and Bloomier fil-

ter for encoding the same dataset S, with V value bits, and false positive rate eo.

As discussed in Section 2.2.2, Bloomier filter needs additional memory space for

preprocessing the dataset; however, in this section, we do not consider the prepro-

cessing.

For Geometric filter, according to Lemma 3.5.1, the memory usage is

spaceG =
∑

M × cG =
|S|
p
×
[(
V + log2

1

eo

)
+ log2

p

1− p

]
.

where

p = 1− 1

1−W−1

(
−e1−ln 2×(V +log2

1
eo

)
) .

For Bloomier filter, the minimum memory space is reached when k = 3 [5]

[19], and the minimum memory usage

spaceB = M × cB = 1.23

(
V +

⌈
log2

1

eo

⌉)
.

Encoding the same dataset S, whether Geometric filter use more or less memory

than Bloomier filter, depends on V + log2
1
eo

, and for convenience, we let c =

V + log2
1
eo

, and we plot the curves of spaceG

spaceB
for c from 15 to 40.

As Figure 3.4 shows, when c ≥ 26, spaceG/spaceB < 1 which means Ge-

ometric filter uses less space than Bloomier filter. c = V + log2
1
eo

is close to

V + dlog2
1
eo
e, which is the number of bits per location in Bloomier filter, therefore

the figure above actually shows that when the Bloomier filter needs more than 26

bits per location, then the Geometric filter uses less space than it.

Talbot et al. [29] presents that in order to guarantee the accuracy, E ≥ 12

in the Bloomier filter. Assuming the number of value bits V ≥ 3, most ap-

plications of Bloomier filter need more than 15 bits per location, which means

spaceG ≤ 1.1spaceB. Therefore, the Geometric filter’s space usage is close or less

58

Figure 3.4: Comparison of memory space usage (spaceG/spaceB), for c = V +
log2

1
eo

from 15 to 40

59

than the Bloomier filter in most cases. And, Bloomier filter’s minimum space usage

1.23|S| × c is the theoretical lower bound of the lookup table [5], hence Geometric

filter’s space usage is close to the theoretical lower bound.

60

Chapter 4

Experimental Study

In this section, we use experiments to verify the results of theoretical analysis of

Geometric filter, including the space usage, running time, and false positive rate.

4.1 Experiment settings

The encoding datasets are chosen from Google 1-TB n-gram corpus, and the files

are sequentially named from 3gm-0000 to 3gm-0039, each containing 107 items.

The allowed false positive rate eo = 1/216, and the value bit number V = 16. In

different experiments, the dataset size |S| varies from 107 to 4 × 108, and number

of hash functions k varies from 1 to 6.

4.2 Adjustment of load factor and storage ratio

As discussed in Section 3.3.3, because of hash function’s non-uniform distribution,

with the same storage ratio, the actual load factor in a hash table is slightly lower

than the theoretical estimate, and the load factor on a large hash table is also lower

than the load factor on a small hash table.

For example, if eo = 1/216 and V = 16, then the minimum memory space

is reached when p = 0.9697. When k = 1, we can use a formula to calculate

r = −1/ ln(1 − p) = 0.2860. For |S| = 4 × 108, the theoretically calculated

parameter settings are r = 0.2860, N = 61, E = 21. However, according to Monte

Carlo experiment, r = 0.2822, which is lower than the theoretically calculated

value. This means the actually achieved load factor in the hash table is smaller than

61

Figure 4.1: If |S| = 40× 108, over filling happens for p = 0.9697 and k = 1 when
r = 0.2860 but its correct value should be 0.2822

the theoretical value, hence it does not absorb the designed amount of items, and the

extra rejected items will be pushed to the subsequent hash tables in the descending

geometric sequence.

If the Geometric filter is constructed with r = 0.2860, as Figure 4.1 shows, the

load factors of hash tables raise up to 100%. And, as a result, the overflow table’s

size is 41260, and the probability of searching overflow table when querying an un-

encoded key is almost 100%. The overflow table is too large, and also accessed too

often. The change in the value of p in Figure 3.1 seems insignificant, but Geometric

filter’s performance is significantly affected.

In real applications, if we use the theoretical formula to calculate r or p, then the

values need to be adjusted. If r remain unchanged then p needs to be deducted by a

small amount (on the 3rd or 4th digit after the decimal); if p remains the same then

62

Figure 4.2: Starvation happens in the last a few hash tables when the configuration
is correct (For |S| = 40× 108, p = 0.9697, k = 1 and r = 0.2822)

r needs to be deducted by a small amount. For simplicity, the values of r used in

the experiments are all obtained by Monte Carlo experiments on a bitarray of size

4× 108, which is larger or equal to the |S| of the experiments.

If the value of r and p are correct for the largest hash table, then in the following

smaller hash tables, the value of pwill be higher than the largest hash table provided

the same r. At first, the hash tables following the largest one absorbs more items

than designed, thus the number of items going to the subsequent hash table drops

correspondingly. If k = 1, and r = 0.2822, as Figure 4.2 shows, the hash tables at

the end of the sequence do not get any item, because all items are absorbed by hash

tables before them, hence their load factors drop to zero. The lower load factors do

not harm the Geometric filter’s performance; instead, it reduces the false positive

rate and makes the querying speed faster.

63

Configurations eo (×10−5) over
k p E r N allowed actual flows
1 0.9697 21 0.2822 70 1.526 0.712 1006
2 0.9697 21 0.4738 36 1.526 0.758 1070
3 0.9697 21 0.6039 26 1.526 0.703 1004
4 0.9697 21 0.6946 20 1.526 0.866 930
5 0.9697 21 0.7598 17 1.526 0.840 988
6 0.9697 21 0.8081 15 1.526 0.927 914

Table 4.1: Details of Geometric filter experiments, with parameter settings for eo =
1/216, V = 16, and |S| = 4× 108. The configurations in this table can also be used
for encoding smaller datasets

4.3 False positive rate and overflow table size

Because eo = 1/216 and V = 16, the minimum space is reached when p = 0.9697

and E = 21 (the detailed steps are provided in Section 3.5.2). Then, we calculate

the value of r with regard to k from 1 to 6 by Monte Carlo experiments (Algorithm

7) on a bitarray of size 4 × 108, therefore these values can be used on datasets of

size 4× 108 or smaller.

After parameter setting, we construct the Geometric filter, encode the dataset

of size S = 4 × 108 into it, and test the false positive rate eo, as Table 4.1 shows.

In order to test eo, we generate |S| = 4 × 108 different keys not belonging to

the encoded dataset S, and measure how many of these keys can get positive return

value from querying the Geometric filter. This kind of test is referred to as “negative

test” (¬test).

As the Table 4.1 shows, Geometric filter false positive rate eo ≤ 1/216, and the

overflow table size is negligible compared with the dataset size. The actual false

positive rate is smaller than the allowed false positive rate eo = 1/216, because of

the following two reasons: 1) the quantitative formulas of false positive rate is an

upper bound, and the simplifications, such as letting N → ∞, could enlarge the

value; 2) the hash tables in the end of the sequence actually have lower load factors

than the designed p, therefore the overall false positive rate drops correspondingly.

64

4.4 Comparison of Geometric filter and Bloomier fil-
ter

Under the condition of eo = 1/216 and V = 16, for 10 datasets sized from 0.5 ×

107 to 5 × 107, we encode them with both Geometric filter and Bloomier filter,

and compare the performance of the two data structures, including the space, the

running time for encoding, and the running time for querying. The experiments are

running on the same dual CPU system: Intel(R) Core(TM)2 Duo CPU E8400 @

3.00GHz × 2, and we ensure that the program can always get its required amount

of memory, and no data is stored in swap.

The configuration for Bloomier filter is k = 3 and r = 1.23, which is the min-

imum space of Bloomier filter. For Geometric filter, k may have different values,

and the configuration also changes with the value of k. In our experiment, we en-

code the datasets with k from 1 to 6, and compare their results with the Bloomier

filter’s. However, as Table 4.2 shows the performance of encoding with different

values of k are close to each other, and a small figure cannot show the 6 curves

clearly; therefore the value used for comparison is an average of the 6 experiments.

The results are shown in Figures 4.3 and 4.4. In the figures, positive test means

querying all the keys in S and checking whether the filter can return the correct

value. negative test (¬ test) means generating |S| keys that do not belong to S, and

testing whether the filter return 0 value for these keys.

We also measure Geometric filter’s running time on a large dataset with size

|S| = 4 × 108. The detailed configurations are the same as in Table 4.1, and the

results are listed in Table 4.2. We cannot run Bloomier filter on this large dataset,

because the bipartite matching for this dataset would require about 12.3 GB mem-

ory, which is not feasible for most current machines. If the bipartite matching could

be processed, the encoded filter would be 1.88 GB, which is still larger than Geo-

metric filter’s space usage listed in Table 4.2.

The experiments illustrate two advantages of Geometric filter over Bloomier

filter: 1) when the dataset is small, Geometric filter takes less time for encoding the

dataset; 2) Bloomier filter is not able to encode very large datasets because the size

65

Figure 4.3: Comparison of Geometric filter and Bloomier filter (encoding time and
space usage), when |S| ∈ [0.5, 5.0]× 107, E = 16, and V = 16

66

Figure 4.4: Comparison of Geometric filter and Bloomier filter (running time of
testings), when |S| ∈ [0.5, 5.0]× 107, E = 16, and V = 16

67

k 1st scan 2nd scan test ¬ test
1 1026 1267 1149 1802
2 1049 1233 1142 1722
3 975 1195 1084 1738
4 1018 1207 1106 1784
5 989 1197 1105 1797
6 993 1206 1105 1873

Table 4.2: Running time of Geometric filter, when |S| = 4 × 108, E = 16, and
V = 16

of bipartite graph would exceed the memory’s capacity; however, Geometric filter

does not have this problem.

4.5 Tradeoff between hash table numberN and hash
function number k

As Table 4.3 shows, given the same dataset size |S|, when the hash function number

k becomes larger, the hash table number N becomes smaller. As Table 4.2 shows,

this trade off affects the Geometric filter’s performance.

On one hand, a small N benefits the Geometric filter’s running time. When

switching from one hash table to the next, the algorithm needs to reset seeds of the

hash functions, and to change other parameters, like the hash table’s address, etc.

These operations would add to the program’s running time. The smaller the N is,

the less times of switching there would be. As Table 4.3 shows, when k increases,

N would drop and the running time would drop with N .

On the other hand, a small N may also harm the performance. When N de-

creases, k ×N has a slow but steady trend of increasing, which means the average

times of trial for querying a key is actually increasing, slowly but steadily. A small

N corresponds to a large k, which means r would become large. When r is large,

the size of the first hash table |S| × r is also large. As discussed before, hash func-

tion’s nonuniform distribution is more significant on large hash tables, therefore a

large hash tables has more hash collisions. Hash collisions will reduce the effi-

ciency of storage, and the increase of k × N means the program needs to perform

68

k N p e(×10−5) N × k
1 70 0.9697 0.712 55
2 36 0.9697 0.758 72
3 26 0.9697 0.703 78
4 20 0.9697 0.866 80
5 17 0.9697 0.840 85
6 15 0.9697 0.927 90

Table 4.3: Tradeoff between N and k, when |S| = 4× 108, E = 16, and V = 16

more operations to store the same amount of data. As k increases, false positive

rate e increases while space usage increases, which means we pay more space but

get an even higher error rate. As a result, N cannot be too small.

Configuration with large k and small N is feasible when the hash function per-

fectness is improved. For example, given the same range of hash function, we can

improve its distribution by increasing the range of the basis hash function. How-

ever, an increased range of basis hash function also means an increase of running

time. If N decreases to 1, Geometric filter would reduce to a common hash table

with rehashing. However, this extreme situation is not realistic, because when the

hash table is too large, its efficiency is low.

69

Chapter 5

Conclusions and future work

This thesis presents algorithms and theoretical analysis of a Geometric filter, an

efficient in-memory lookup tables for binary relations.

5.1 Geometric filter’s advantages and drawbacks

Geometric filter is an extension of the Bloomier filter, a state-of-the-art data storage

algorithm, for more efficient lookups. It offers some nice properties of the Bloomier

filter, but also has the following advantages: 1) the encoding procedure is much

faster; 2) the encoding procedure does not need any auxiliary memory except the

filter’s storage space; 3) the space usage is also relatively smaller than Bloomier

filter, when the data precision is high.

Compared with other generic compression algorithms, Geometric filter also has

the following advantages: 1) Beside the dataset size, Geometric filter’s encoding

does not require any knowledge of the dataset being encoded, therefore it can be

used to handle unpredictable incoming data, such as on-line streaming data; 2)

Geometric filter’s storage format consists of two separate parts, the key x, and its

value v(x), the two parts do not affect each other. For the same reason, Geometric

filter can be updated after encoding, because changing the encoding of one item

does not affect the encoding of other items.

However, as discussed in Section 3.6.2, Geometric filter’s running time is slow

when a query results in a “mismatch”. According to our experimental results, for a

mismatch query, Geometric filter can take twice the time of Bloomier filter. Because

70

of this drawback, Geometric filter would be most efficient for lookup tables that

get “match” results for most queries; when most queries get unmatch results, the

Geometric filter will be less effective.

5.2 Future applications

One application of our Geometric filter is n-gram frequency lookup table in statisti-

cal language model. Because Geometric filter does not need any auxiliary memory

when encoding, the size of the dataset to be encoded linearly depends on the amount

of available memory. Because of its fast querying speed, Geometric filter can also

be used to store a large amount of data that needs fast accessing speed. An example

is the pattern matching lookup table of an on-line virus scan program [16]. In this

application, key x is the data stream being scanned in a window; a return value of

0 means the data does not contain any virus characteristic pattern; and non-zero

return values means the data potentially contains virus, and the return value is a

reference number or address of the next step of operation.

Because Geometric filter does not have any restriction on the value v(x), it can

be used to store any kind of value, including those with very complex meanings. If

we consider x as the key attribute and v(x) as all the rest attributes of a relation,

Geometric filter can also be used to implement a relational database. v(x) can be

an action, and x can be a trigger event; in this case, Geometric filter can be used as

an action driven table that has an extremely fast response.

Geometric filter allows updates, and is also flexible for adding in new data,

therefore it can be used as an incremental counting data structure, for example in

network traffic monitoring. The encoding flexibility enables it to record visits from

new sources, while its updatability makes it possible to increase the visit counter if

there are repeated visits from the same source.

5.3 Future improvements

Geometric filter’s querying procedure can be improved by introducing pipelining.

As Algorithm 4 shows, for any hash table Ai where i > 1, the querying proce-

71

dure accesses Ai if and only if it cannot find a match in the hash tables before Ai.

Moreover, when Ai is accessed, all the hash tables before it are no longer needed

for the same query. Therefore, without finishing the current query, we can allow

the next query begin testing on the hash tables before the Ai. In this way, we can

test multiple keys concurrently and reduce the average running time of each key. If

implemented, this pipelining would be very useful on multi-processor machines.

Geometric filter’s algorithm may also need to be modified according to differ-

ent applications. For example, when using Geometric filter to store a relational

database, it may be necessary to store x itself instead of its fingerprint f(x), there-

fore there is no need to increase the error bits to overcome the false positives.

72

Bibliography

[1] D. A. Barry, P. J. Culligan-Hensley, and S. J. Barry. Real values of the w-
function. ACM Trans. Math. Softw., 21(2):161–171, 1995.

[2] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM, 13(7):422–426, 1970.

[3] K. Bratbergsengen. Hashing methods and relational algebra operations. In
VLDB ’84: Proceedings of the 10th International Conference on Very Large
Data Bases, pages 323–333, San Francisco, CA, USA, 1984. Morgan Kauf-
mann Publishers Inc.

[4] A. Broder and M. Mitzenmacher. Network applications of bloom filters: a
survey. Internet Mathematics, 1(4):485–509, May 2004.

[5] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal. The bloomier filter: An
efficient data structure for static support lookup tables. In In Proceedings of
the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 30–39, 2004.

[6] S. Cohen and Y. Matias. Spectral bloom filters. In SIGMOD ’03: Proceedings
of the 2003 ACM SIGMOD international conference on Management of data,
pages 241–252, New York, NY, USA, 2003. ACM.

[7] S.E. Czerwinski, B.Y. Zhao, T.D. Hodes, A.D. Joseph, and R.H. Katz. An
architecture for a secure service discovery service. In MobiCom ’99: Pro-
ceedings of the 5th annual ACM/IEEE international conference on Mobile
computing and networking, pages 24–35, New York, NY, USA, 1999. ACM.

[8] F. Deng and D. Rafiei. Approximately detecting duplicates for streaming
data using stable bloom filters. In SIGMOD ’06: Proceedings of the 2006
ACM SIGMOD international conference on Management of data, pages 25–
36, New York, NY, USA, 2006. ACM.

[9] J. Ebert. A versatile data structure for edge-oriented graph algorithms. Com-
mun. ACM, 30(6):513–519, 1987.

[10] L. Fan, P. Cao, J. Almeida, and A.Z. Broder. Summary cache: a scalable
wide-area web cache sharing protocol. IEEE/ACM Trans. Netw., 8(3):281–
293, 2000.

[11] M.C. Francisco, C. Peery, R.P. Martin, and T.D. Nguyen. Planetp: Using
gossiping to build content addressable peer-to-peer information sharing com-
munities. Technical Report DCS-TR-487, Department of Computer Science,
Rutgers University, May 2002.

73

[12] L.L. Gremillion. Designing a bloom filter for differential file access. Commun.
ACM, 25(9):600–604, 1982.

[13] G. Havas, B.S. Majewski, N.C. Wormald, and Z.J. Czech. Graphs, hyper-
graphs and hashing. In WG ’93: Proceedings of the 19th International Work-
shop on Graph-Theoretic Concepts in Computer Science, pages 153–165,
London, UK, 1994. Springer-Verlag.

[14] T.R. Hill and A. Srinivasan. Performance analysis in a differential file environ-
ment. In WSC ’85: Proceedings of the 17th conference on Winter simulation,
pages 278–283, New York, NY, USA, 1985. ACM.

[15] J. Ho and G. Lemieux. Perg: A scalable fpga-based pattern-matching en-
gine with consolidated bloomier filters. In International Conference on Field-
Programmable Technology, 2008, pages 73–80, Dec. 2008.

[16] J.T.L. Ho and G.F. Lemieux. Perg-rx: a hardware pattern-matching engine
supporting limited regular expressions. In FPGA ’09: Proceeding of the
ACM/SIGDA international symposium on Field programmable gate arrays,
pages 257–260, New York, NY, USA, 2009. ACM.

[17] Z. Li and K.A. Ross. Perf join: an alternative to twoway semijoin and
bloomjoin. In Proceedings of the International Conference on Information
and Knowledge Management (CIKM), pages 137–144. ACM Press, 1995.

[18] L.F. Mackert and G.M. Lohman. R* optimizer validation and performance
evaluation for local queries. SIGMOD Rec., 15(2):84–95, 1986.

[19] B.S. Majewski, N.C. Wordmald, G. Havas, and Z.J. Czech. A family of perfect
hashing methods. British Computer Journal, 39(6):547–554, 1996.

[20] J.K. Mullin. A second look at bloom filters. Commun. ACM, 26(8):570–571,
1983.

[21] J.K. Mullin. Optimal semijoins for distributed database systems. Software
Engineering, IEEE Transactions on, 16(5):558–560, May 1990.

[22] B. Pittel, J. Spencer, and N. Wormald. Sudden emergence of a giant k-core in
a random graph. J. Comb. Theory Ser. B, 67(1):111–151, 1996.

[23] R.L. Rappaport. File structure design to facilitate on-line instantaneous updat-
ing. In SIGMOD ’75: Proceedings of the 1975 ACM SIGMOD international
conference on Management of data, pages 1–14, New York, NY, USA, 1975.
ACM.

[24] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A scal-
able content-addressable network. In SIGCOMM ’01: Proceedings of the
2001 conference on Applications, technologies, architectures, and protocols
for computer communications, pages 161–172, New York, NY, USA, 2001.
ACM.

[25] A. Rowstron and P. Druschel. Storage management and caching in past, a
large-scale, persistent peer-to-peer storage utility. SIGOPS Oper. Syst. Rev.,
35(5):188–201, 2001.

74

[26] J. P. Schmidt and A. Siegel. The analysis of closed hashing under limited
randomness. In STOC ’90: Proceedings of the twenty-second annual ACM
symposium on Theory of computing, pages 224–234, New York, NY, USA,
1990. ACM.

[27] D.G. Severance and G.M. Lohman. Differential files: their application to the
maintenance of large databases. ACM Trans. Database Syst., 1(3):256–267,
1976.

[28] I. Stoica, R. Morris, D. Karger, M. Frans Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications. In
SIGCOMM ’01: Proceedings of the 2001 conference on Applications, tech-
nologies, architectures, and protocols for computer communications, pages
149–160, New York, NY, USA, 2001. ACM.

[29] D. Talbot and T. Brants. Randomized language models via perfect hash func-
tions. In Proceedings of ACL-08: HLT, pages 505–513, Columbus, Ohio, June
2008. Association for Computational Linguistics.

[30] D. Talbot and M. Osborne. Randomised language modelling for statistical ma-
chine translation. In 45th Annual Meeting of the Association of Computational
Linguists (To appear), pages 512–519, June 2007.

[31] D. Talbot and M. Osborne. Smoothed bloom filter language models: Tera-
scale lms on the cheap. In Proceedings of the 2007 Joint Conference on Em-
pirical Methods in Natural Language Processing and Computational Natural
Language Learning, pages 468–476, Prague, Czech Republic, June 2007. As-
sociation for Computational Linguistics.

[32] S. Trimberger, D. Carberry, A. Johnson, and J. Wong. A time-multiplexed
fpga. In FPGAs for Custom Computing Machines, 1997. Proceedings., The
5th Annual IEEE Symposium on, pages 22–28, Apr 1997.

[33] D. Uluski, M. Moffie, and D. Kaeli. Characterizing antivirus workload execu-
tion. SIGARCH Comput. Archit. News, 33(1):90–98, 2005.

[34] P. Valduriez and G. Gardarin. Join and semijoin algorithms for a multiproces-
sor database machine. ACM Trans. Database Syst., 9(1):133–161, 1984.

[35] Mark N. Wegman and J. Lawrence Carter. New classes and applications of
hash functions. In Foundations of Computer Science, 1979., 20th Annual Sym-
posium on, pages 175–182, Oct. 1979.

[36] A. Whitaker and D. Wetherall. Forwarding without loops in icarus. In Open
Architectures and Network Programming Proceedings, 2002 IEEE, pages 63–
75, July 2002.

75

