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Abstract

We study the problem of geotagging named entities where the goal is to identify

the most relevant location of a named entity based on the content of the Web pages

where the entity is mentioned. We hypothesize the relationship between the men-

tions of an entity and its geo-center in web pages, and propose a framework that

explores this hypothesis and provides a model that can give a ranked list of loca-

tions at different location granularities for an entity. We further study the problem

of dispersion, and show that the dispersion of a name can be estimated and a geo-

center can be detected at an exact dispersion level.

Two key features of our approach are: (i) minimal assumption is made on the

structure of the mentions hence the approach can be applied to a diverse and hetero-

geneous set of web pages, and (ii) the approach is unsupervised, leveraging shallow

English linguistic features and large gazetteers.

We evaluate our methods under different settings and with different categories

of named entities. Our evaluation reveals that the geo-center of a name can be

estimated with a good accuracy based on some simple statistics of the mentions,

and that the accuracy of the estimation varies with the categories of the names.
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Chapter 1

Introduction

During the past few years, there has been a growing interest in both extracting enti-

ties from the web [12, 27] and associating geographical descriptors to web resources

[2, 5]. The two lines of research point to an interesting but open issue of identifying

the associations between named entities and their geographical boundaries in the

Web pages that they are mentioned.

Many named entities have a geographic center or focus where the entity is better

known or associated with; a person may be associated to a location where s/he was

born, raised, worked, or known in general; an organization may be tagged with a

location where it is headquartered in or has a large customer base, and a disease

may be associated with a location where it is first reported, has a large spread, etc.

Exploring this relationship between a named entity and its geo-center(s) has

important implications. Knowing the geography of named entities that appear in

the matching pages of a query can help in disambiguating the entities, allowing,

for example, a search engine to better localize the search [25] or diversify the re-

sults [23]. For example, when a user who frequently visits the website of Yale

University posts a microblog containing “Shubert Theater”, it may be more accu-

rate for an advertising system to supply the ticket information of the theater in New

Haven, Connecticut, rather than the one in New York City, because it is very likely

that a frequent visitor to the website of Yale University is a resident in New Haven.

A real world example is that anyone who has filled one of the forms that read “I—

of—declare”, can assert that location is an important and sometimes inseparable

attribute of an entity and also the one that may uniquely identify an entity when
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combined with name.

Obtaining accurate and effective geographical information for named entities

on the Web can be challenging for several reasons. First, there is a large variation

in the scope and the geographical spread of named entities. While many entities are

only known in certain regions with limited boundaries (e.g. municipal and provin-

cial politicians, small companies and organizations, schools, sports teams, local

theaters, etc.), some entities with a large spread or better known globally may not

have a fixed geo-boundary; examples are well-known celebrities (e.g. Lady Gaga)

and politicians (e.g. Barak Obama), multi-national organizations (e.g. ACM) and

companies (e.g. McDonald, Google, Amazon), well-publicized products (e.g. Mac-

book Air), etc. Also entities can have multiple and sometimes non-overlapping geo-

centers (e.g. places of birth and work). Second, both entity and location mentions

in web pages can be ambiguous. For example, the term “Springfield” can refer to

63 places in 34 states in the USA [2] and names like Houston and Dallas can be

both person names and place names. Finally, many different semantic relationships

can exist between a named entity and a location; unlike some special cases where

the relationship may be described using some templates (e.g. headquarter and birth

place [24]), preparing an exhaustive set of patterns that can capture the semantics

of all or even most of these relations is difficult (if not impossible).

Problem Formulation. In this thesis, we propose a framework for tackling the

problem of geo-tagging the mentions of named entities in web pages. A problem

that often arises in working with locations is the overlap and inclusion relationships

between locations (e.g. Phoenix, Arizona, and USA); in our case, a geo-center can

be at any or all of country, state or province, and city levels. We assume these

relationships are described in a gazetteer (a geographical dictionary) and our ex-

periments make use of one in the form of a tree with the root node representing

the whole world, and the nodes in the second, the third and the fourth levels rep-

resenting respectively countries, states and cities. The problem can be formulated

as:

Given a named entity N and a set of its relevant pages P1, P2, ..., Pn and a tree

structure of locations (gazetteer), estimate N ’s geo-center, G(N), where the named
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entity has more significant visibility and familiarity than in any other location.

Hence the problem of finding the geo-center is equivalent to finding a node in

the location gazetteer.

We develop a probabilistic model that assigns geo-center(s) to a name based on

the geo-center of the pages that mention it and the distribution of location references

in the proximity of the name. The model is unsupervised, and allows ambiguity at

the location level with the probability mass distributed over all candidate locations.

We evaluate our model and its variations on a gold standard set of names with

known geo-centers and a set of pages that mention those names.

1.1 Thesis Statements

Our thesis statement is that the relationship between the mentions of an entity and

its geo-center in web pages can be modelled by simple statistics. We assume that

all mentions of the same name in a web page refer to the same entity hence would

have the same geo-center.

1.2 Thesis Contributions

Our contributions can be summarized as follows.

• We hypothesize that when a name has some sort of regional orientation and

is mentioned in a web page, it either inherits the geo-center of the page or is

explicitly qualified with a different geo-center.

• We propose an unsupervised framework that estimates the likeliness of a lo-

cation being the geo-center of a given named entity based on the mentions

of the named entity and locations in web pages. Exploiting the hierarchical

relationships between locations (provided by a large gazetteer), we analyze

locations at the country, state and city levels.

• We devise an algorithm that estimates the dispersion of a name, and show

that a geo-center can be detected at an exact dispersion level.
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• We evaluated our work on real world datasets composed of various kinds of

named entities and good performance has been shown by the results.

1.3 Thesis Organization

The remainder of this thesis is organized as follows. We review related work in

Chapter 2 and give an overview of our framework in Chapter 3. Chapter 4 intro-

duces the method for extracting location candidates from web pages and linking

them with the geographic entities in the gazetteer. Probabilistic frameworks for es-

timating the geo-centers at specified dispersion levels are presented and evaluated

in Chapter 5. In Chapter 6, we study the problem of estimating an exact dispersion

level of the geo-center of a name. We discuss techniques for filtering names that

do not have regional orientation in Chapter 7. We summarize the thesis and discuss

future work in Chapter 8.
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Chapter 2

Related Work

To our best knowledge, there is no prior work addressing the same problem studied

in this paper. In this chapter, we review the geotagging of web documents and re-

sources in social network systems. We also briefly discuss the connections between

our problem and other related topics.

2.1 Geotagging Web Documents

Geotagging web documents is the most related work to our problem. Existing ap-

proaches to extracting the geographic foci (geo-centers) of web pages focus on

building hand-made rules to disambiguate and aggregate the locations mentioned

in the pages.

Web-a-where [2] is one of the most widely studied methods, which comes up

with a geographic focus for a web page by assigning confidence scores to every

location using some predefined rules and propagating scores between locations that

are in a containment relationship. It generates a candidate list of geographic foci

mixing locations regardless of their administrative levels, i.e., there are locations at

different levels in the rank-list of geographic foci for the web page. Our approach

considers each administrative level (country, state and city level) separately at first

and then determines the correct level. Our approach is based on a probabilistic

model capturing the relation between the mentions of named entities and locations,

rather than some hand-picked confidence scores that are used by the web-a-where

method.
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Ding et al. [11] introduce the idea of the power and spread of a web page based

on the link structure and the geographical scope of the page. The spread introduced

in this work is similar to the entropy-based score used in our work for measuring

the likeliness of a geo-center to exist in a set of locations. Our work differs from

Ding et al.’s in that our approach does not rely on the link structure of web pages,

and can be applied to both individual pages and collections of pages.

Wang et al. [26] propose a system that computes three types of geographic

attributes of a web page: 1) provider location (the physical location of the web

resource owner); 2) content location (the geographic location that the content of

the web resource is about); 3) serving location (the geographic scope that the web

resource reaches). The provider location is determined by the extracted address

strings. A binary classification model trained with features like URL, title, anchor

text, page content, etc., is used to estimate whether extracted address strings are the

provider location. To estimate the content and serving locations, the authors adopt

methods similar to those proposed in [2, 11].

A comparison of different approaches for assigning geographic scopes to web

documents is studied by Anastcio et al. [4]. More recently, methods inspired from

the previous works have been applied to geotagging web pages in Russian [22] and

Chinese [9].

2.2 Geotagging in Social Network Systems

With the growth of the mobile usage and social network systems, there have been

studies on locating a user by analyzing the user generated content (UGC), based

on the hypothesis that a user’s location correlates with the content he/she generates

in social networks. Most efforts fall in two of the world’s most widely used social

network, Facebook [6] and Twitter [10, 16, 19], where known user geotags are used

to train models that can predict the users’ geo-centers. In contrast, our approach

is unsupervised for the reason that named entities with tagged locations are not as

prominent as UGC in social network systems.

There are some attempts to develop unsupervised methods that address the

6



sparseness of data that may be available for geotagged users, for example in a

geographic region or in a social network system. Li et al. [18] propose an unsu-

pervised approach, called GLITTER, to estimate the location of a microblog user in

by leveraging clues of points-of-interest (POI) that are mentioned by the user, and

the cities that contain those POIs, as provided by Factual1. Our approach is similar

to GLITTER in that locations at the same level (country, state and city) are analyzed

respectively and that an aggregation algorithm is used to find out the geo-center

from locations at different levels. Our approach differs from GLITTER in that the

scores assigned to a location in our work is highly dependent on the positions of its

mentions in each document, while GLITTER considers all the mentions of a loca-

tion equally important; this may be a reasonable assumption for tweets with lengths

limited to 140 characters but not for general web pages and documents.

2.3 Other Related Topics

Related work also includes the literature on detecting the locality of a web page,

i.e., whether a web page has a geographical orientation (e.g., topics related to a

specific area) or contains general information for global readers (e.g., electronics

and health topics). Existing approaches [3, 15] train a binary classifier based on a

set of pages in the Open Directory Project2 and features extracted from pages, such

as occurrences of place names and metrics based on them. The same problem arises

in the context of named entities. Our work also tries to detect if a named entity has

a regional geo-center or is of general interest, considering locations mentioned in

pages. Our work differs in that it is an unsupervised method and in estimating

the relevance of a name to a specific regional orientation based on the information

entropy of the estimates for different locations to be the geo-center of the name.

In some of the existing works, geotagging is known as the process of inter-

preting words as geographic locations and providing the coordinate values of the

locations. Lieberman et al. [20] proposes a spatial lexicon model that distinguishes

between a global lexicon of locations known to a large scope of audiences, and a

1http://factual.com/
2http://www.dmoz.org/
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local lexicon that is audience-specific. The local lexicons identified are then used

for resolving ambiguity of mentions of locations in newswire articles, based on as-

sumptions that an article author will develop a linguistic contextual framework for

the audience (i.e., tell the audience where the story happens) and that the author

is aware of the nature of the expected audience’s spatial lexicon (i.e., know what

an audience knows). Paradesi [21] has developed a system, TwitterTagger, that

geotags tweets. Different from our definition, the geotagging process is not about

associating tweets with their locations, but is to find out the references (mentions)

to geographic locations in tweets and to annotate these references with their actual

address.

In recent years, there has been a growing interest in relation extraction, which

closely relates to the problem we are tackling in this thesis, under the context of

relationships between a named entity and locations. Relation extraction studies

the problem on extracting semantic relations between entities from textual content.

Approaches that focus on predefined relations [1, 8, 13] (e.g., acquisition between

companies) require hand-crafted input seeds or patterns to find similar matches in

a large collection of pages. More relation patterns are learned from a given set of

matches, and similarly more matches can be found with more patterns. Our work

differs from these systems in that no prior knowledge of textual patterns between a

name and its geo-center is needed.

There has been more recent studies on open relation extraction [7] to address

the problem of relation extraction when the number of relations is massive and thus

requiring training data or hand-crafted patterns are unrealistic. These studies are

similar to our work in their unsupervised nature and the ability to identify relations

between named entities and locations (e.g., place of birth). However, while relation

extraction systems are more focused on relations between named entities that are

mentioned closely, our work can detect the geo-center for a name even if the loca-

tion is not mentioned nearby based on the hypothesis that a name may inherit the

geo-center of the web page where it is mentioned.
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Chapter 3

System Overview and Dataset
Preparation

In this chapter, we give an overview of the proposed framework and its underlying

assumptions. Our framework aims at geotagging various named entities in different

categories, including person names, organization names and implicit physical loca-

tions. In this regard, we also present our gold standard dataset composed of names

in different categories.

3.1 Hypothesis

Our framework is based on the hypothesis that when a named entity is mentioned

in a Web page, it inherits the geo-center of the page unless the name is explicitly

qualified with a different geo-center. We further assume that all mentions of the

same name in a web page refer to the same entity hence would have the same geo-

center.

To verify this hypothesis on a set of pages that have regional orientation, we ran-

domly selected 30 headline articles from six newspaper websites in North America.

We manually inspected each named entity tagged as PERSON or ORGANIZATION

by the Stanford Named Entity Recognizer [14]. We excluded named entities that

satisfy one of these two conditions: i) the named entity does not have a geo-center;

ii) the geo-center of the named entity spans over more than one country. A named

entity that satisfies one of these conditions does not have a regional orientation, and

is not considered in our study. Table 3.1 lists the names excluded from our study
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Table 3.1: Named entities without regional orientation.

Name Reason
Lorna Morello Character

Alex Vause Character
NHL North America

UN Security Council Global Influence
United Nations Global Influence

Red Cross Global Influence
International Energy Agency Global Influence

Jupiter Scientific, Global Influence
Kepler Scientific, Global Influence

Table 3.2: Different relations between named entities mentioned in Web pages and
their geocenters.

Relation Count %
A only 51 31.5
B only 44 27.2

A and B 65 40.1
C 2 1.2

and the reasons for their exclusion. For the remaining 162 named entities that had

geo-centers mentioned in the same pages, each name was assigned a geo-center.

Each named entity, based on the relation between the named entity and its geo-

center, is placed into one or more of the following three bins. Note that a named

entity can be placed in both bins A and B.

A. The named entity inherits the geo-center of the page.

B. Either the geo-center of the named entity is mentioned nearby, or there is a

name with the same but known geo-center mentioned nearby. We interpret

”nearby” as appearing in the same sentence, i.e., the clue for the geo-center

co-occurs with the named entity in the same sentence in a web page.

C. The named entity has a geo-center, but neither A nor B holds.

Table 3.2 shows the results of the study. We can see that in 71.6% (31.5% +

40.1%) of the cases the named entity inherits the geo-center of the page. We refer
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to this as our inheritance hypothesis. In 67.3% (27.2% + 40.1%) of the cases the

geo-center or a name with the same but known geo-center is mentioned nearby. We

refer to this as our near-location hypothesis.

Only 2 of 161 (1.2%) cases did not fall into one of the bins A and B. In one case,

as shown in Figure 3.1, names in each paragraph have different geo-centers, which

are mentioned at the beginning of the paragraph, but not mentioned in each sentence

hence they are not placed in bin B. In another case, as shown in Figure 3.2, we know

that Winifred is the wife of Alfred John Jones (Alf), who was born in Birmingham,

England. But we do not know the birthplace of Winifred. Neither A nor B applies

to the named entity Winifred, and this is because: 1) the web page is telling a story

of families from different places so we are not sure of the geo-center of the page; 2)

Only by inferring the context of multiple sentences and with the knowledge that Alf

is short for Alfred, we may conclude that the geo-center of Winifred is Birmingham,

England. Alf itself is not a named entity with a known geo-center.

Figure 3.1: The hypothesis cannot cover the case for the named entity Gary Whitt,
whose geo-center is Kentucky, USA.

Figure 3.2: The hypothesis cannot cover the case for the named entity Winifred.

The reported experiment confirms that our hypothesis holds for almost all the

cases in this study. And with only about one percent of the cases falling outside A

and B, we believe that our hypothesis is capturing the intrinsic rules for introducing

a named entity with certain regional orientation adopted by most of the newswire ar-

ticle writers. We are not expecting that this hypothesis will hold to the same degree

in general web pages, which is an area where more studies are needed. That said,
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in developing our framework, we assume the same or similar rules are followed by

the editors or writers of non-newswire web pages.

3.2 The Framework

Our framework takes as input a named entity and a set of web pages and estimates

the geo-center of the name based on its mentions in those pages.

If a page mentions both the named entity and a location, it is likely that there

exists some relation between the name and the location. Therefore, our approach

focuses on the extracted mentions of the target named entity and candidate locations

and leverages these clues to build models for geo-center estimation.

Our framework consists of three stages.

1. In the first stage, locations mentioned in each page are extracted and trans-

lated into canonical forms. For example, a mention of Edmonton is translated

into Edmonton, Alberta, Canada or other locations1 depending on its con-

text. Such preprocessing addresses the problem of location ambiguity in web

pages and is a common practice in the related works [2, 18].

2. In the second stage, the geotagging of the named entity is performed at the

same level of cities, states and countries, based on the clues provided by the

disambiguated locations mentioned in web pages.

3. In the final stage, the administrative levels of the geo-center are classified

based on the results for each level in the second stage, and one of the city,

state and country levels is selected as the exact administrative level for the

geo-center of the named entity.

By tackling the problem in this way, we can improve the overall performance

of the framework by optimizing the algorithm in each stage separately. We will

illustrate the details of each stage in subsequent chapters.

1http://en.wikipedia.org/wiki/Edmonton_(disambiguation)
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3.3 Gold Standard Datasets

Since a full coverage of all kinds of named entities is not realistic, we focus on

three sets of proper names: “persons”, “locations” and “organizations”, which are

key types in common named entity recognizers.

The first set consists of person names with different granularities of geocenters.

As politicians usually have a clear level of administration, we can obtain the geocen-

ter of politicians with high confidence. We collected names of heads of states in the

world2 into the set of country level politicians, where the country of the politician

is the ground truth. We also collected names of politicians in Canada. Names of

governors3 and party leaders4 of provinces and territories are categorized as names

at the state/province level. Names of city mayors5 and councilors6 are categorized

as names at the city level.

The second set is the names of implicit physical locations, which are usually

tagged as location named entities by many named entity recognition tools. This

kind of names are very indicative about location information, especially with the

common use of social networks on mobile phones, where user posts often contain

these names. Understanding the city level geocenter of these names is important.

To evaluate the performance of our geotagging framework on implicit physical lo-

cations, we collected names of museums, theaters and towers in the United States.

It is logical to consider the located city as the geo-center of an implicit physical lo-

cation, as these places may be well known in the same city but far less well known

in other cities even in the same state or province. We collected names and longi-

tude/latitude information from the Geonames database and the longitude/latitude

pairs are converted into cities with the Google Map API7.

2http://en.wikipedia.org/wiki/List_of_current_heads_of_state_
and_government, visited on March 11, 2014

3http://en.wikipedia.org/wiki/Provinces_and_territories_of_
Canada, visited on Sep 10, 2013

4http://www.parl.gc.ca/Parlinfo/compilations/ProvinceTerritory/
PartyStandingsAndLeaders.aspx, visited on Sep 10, 2013

5http://www.fcm.ca/home/about-us/big-city-mayors-caucus.htm, vis-
ited on Sep 10, 2013

6http://www.edmonton.ca/city_government/city_organization/
city-councillors.aspx, visited on Sep 10, 2013

7https://developers.google.com/maps/documentation/geocoding/, vis-
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The third set is the names of organizations, including universities, sports teams

and technology companies, collected as follows:

1. Names of universities and their locating cities were extracted from the list of

Top 100 U.S. Universities by U.S. News8;

2. Names and home cities of sports teams of four major sport leagues in the

North America (NHL, NBA, MLB and NFL) were extracted from the official

website of each league;

3. From CrunchBase9 we collected names of technology companies founded

after 2008 with Series C funding (which means they are likely to be known

by the public) and their headquarters at the city level.

Similar to the implicit physical locations, we consider the city where an organiza-

tion is located as the geo-center of that organization.

For each collection of names, we collected related pages from December 2013

to March 2014 by searching the names in the search engine Exalead10 with the

names as queries. For each name, (up to) the top 30 pages returned by the search

engine are used to build our dataset.

ited on Dec 30, 2013
8http://colleges.usnews.rankingsandreviews.com/best-colleges/

rankings/national-universities/, visited on Jan 11, 2014
9http://crunchbase.com/search/advanced/companies/2144281, visited on

Dec 30, 2013
10http://www.exalead.com/search/web/
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Chapter 4

Location Candidates Extraction

As our geotagging is based on the mentions of a target named entity and candidate

locations in web pages, extracting accurate location information plays a crucial role

in the performance of the whole work. In this chapter, we discuss the steps for

extracting location candidates from raw HTML sources.

4.1 Full Text Extraction

The source of a web page contains HTML tags and potentially scripts that are not

exploited by our framework. We are interested in the textual content of the pages.

Hence given the source of a web page, the first step of the analysis is extracting

the text content. We use the Keep Everything Extractor in the boilerpipe library1

developed by Kohlschütter et al. [17] to extract the full text of the page.

4.2 Mentions Extraction

To extract mentions of locations, we use the Stanford Named Entity Recognizer to

tag potential locations in text. A side effect of running the recognizer is that the text

is tokenized into a sequence of n terms (English words and punctuations),

W = {w1, w2, · · · , wn}. (4.1)

A mention m is a subsequence of W described by the indices of its first and

last terms, denoted by s(m) and t(m). Hence a mention m may be denoted as

1https://code.google.com/p/boilerpipe/
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ws(m), ws(m)+1, · · · , wt(m).

In this work, we extract three kinds of mentions:

1. Mentions of a target named entity. We tokenize the target named entity,

resulting in a sequence of k tokens ω1, ω2, · · · , ωk. A mention m of the tar-

get named entity which starts at s(m) and ends at t(m) of the sequence W

(inclusive) must satisfy

ωi = ws(m)+i−1 (4.2)

for 1 ≤ i ≤ k.

2. Mentions of locations. We consider consecutive terms in W tagged as LO-

CATION by the named entity recognizer as mentions of locations. We will

explain the disambiguation of these mentions in Section 4.3.

3. Mentions of adjectivals and demonyms of locations. We also collect the

adjectival forms of countries 2 and states in the U.S. 3. Mentions matching

these forms are resolved to the corresponding locations (e.g., mentions of

Canadian are considered the same as mentions of Canada). The matching

rules for each adjectival or demonym is the same as the target named entity

described above.

Note that we do not allow the mentions to overlap with each other. The extrac-

tion is done in the order described above, which implies that we ignore potential

locations and demonyms embedded in the target named entity. It should be noted

that such location mentions inside a named entity are useful clues that should be

exploited. However, we decided against using them to possibly underestimate (but

not overestimate) the performance of our system.

4.3 Location Disambiguation

With location mentions extracted, an important question is: Which geographic en-

tity does each mention of a location refer to?
2http://en.wikipedia.org/wiki/List_of_adjectival_and_demonymic_

forms_for_countries_and_nations
3http://en.wikipedia.org/wiki/List_of_demonyms_for_U.S._states
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Ambiguities often arise in resolving locations, and such ambiguities can be cat-

egorized into two types. The first is the GEO/non-GEO ambiguity, which char-

acterizes the situation where a named entity can possibly be both a location or

another kind of entity. The second kind of ambiguity is the GEO/GEO ambi-

guity. Mentions identified in the text may refer to more than one locations. For

example, the term “London” without considering any context information can re-

fer to “London, England, United Kingdom” or “London, Ontario,

Canada”. Without properly addressing this issue, we cannot provide valuable in-

formation for grounding the named entity.

4.3.1 Methods for Location Disambiguation

We tackle the problem of disambiguating location mentions as follows. For each

mention of a possible location tagged by the NER tool, we search the text of the

mention (this can be a multi-word term) in a database of geographic entities with

canonical information in a tree structure to obtain a list of possible matches 4. If no

results are returned, we simply treat the mention as non-location word. Otherwise,

we choose a geographic entity from the list and associate it with all the mentions

in the page with the same surface text according to the one-sense-per-discourse

principle.

We have experimented two disambiguation strategies. The first strategy is to

select the most populated location from the list. For example, by searching the

term “London” we may obtain two canonical locations: “London, England, United

Kingdom” and “London, Ontario, Canada”. Since the first one is more populated

and thus is known by more people, we resolve it as the geographic entity the term

“London” refers to.

The second strategy is based on the first one but also considers the mentions of

other locations in the same page. The intuition is that people (authors and read-

ers of web pages as well as other text media) can tell the canonical location of a

mention by referring to mentions of locations of higher level of granularity in the

4To achieve that, we have modified an open source project built upon the Lucene index of the
entries in the GeoNames database.
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context. In the previous example, if the page also mentions “Canada” but not “Eng-

land”, “British”, “UK”, “United Kingdom” or places such like, it is very likely that

“London” here is referring to the city in the province of Ontario, Canada.

Not all location mentions may help with resolving a disambiguation. Instead of

deciding which other mention or mentions should be considered for a resolution,

we use the term distance between a mention to be resolved and the mention that

helps the disambiguation. That is, a mention nearby should have more contribution

on a resolution. A supporting example is the way English canonical addresses are

mentioned, with place names of different levels written one followed by another.

At the same time, there may be multiple mentions with the same terms in the same

page. Given an unresolved location with text surface s (e.g., Edmonton) whose

mentions are

Mentions(s) = {m1(s),m2(s), · · · ,mk(s)}, (4.3)

and a set of location candidates

L = {l1, l2, · · · , l|L|}, (4.4)

a confidence score for that s actually refers to li is defined as

DS(li|s) =
∑
c∈li

∑
mj(c)∈Mentions(c)
mj(c)/∈Mentions(s)

1

minm(s)∈Mentions(s)DM(m(s),mj(c))
(4.5)

where c is a constituent term of li at city, state or country level. For example,

the constituent terms of the city of Edmonton in Alberta, Canada are Edmonton,

Alberta, and Canada.

We enumerate over all constituent terms of a location and for each constituent

c, we look for each of its mentions mj(c) in the page. If mj(c) is not a mention of

s, we treat mj(c) as a clue to resolve s. For example, Alberta is a clue to resolve

Edmonton.

As the closer mentions are expected to contribute more to the confidence score,

the contribution of mj(c) is calculated as the reciprocal of the minimum term dis-

tance between mj(c) and the mentions of s. Such term distance is formally defined
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as the number of terms between two mentions,

DM(m1,m2) = min{|t(m2)− s(m1)|, |t(m1)− s(m2)|}. (4.6)

By the one-sense-per-discourse principle, we resolve all mentions of s (mi(s) ∈

Mentions(s)) to the canonical location l with the largest DS(l|s) for l ∈ L.

The problem of location disambiguation has been studied in many prior works.

One of the most widely used strategies is proposed by Amitay et al. [2], which

applies a set of rules (e.g., checking if a location is qualified by another location) to

assign a confidence score to each resolved location. There are two commonalities

between their method and strategies proposed here.

1. When it comes to ambiguity, all methods rely heavily on the default meaning

of a term - the most populated location.

2. The clues that are used for resolving an ambiguous term both in Amitay

et al.’s work and in our second method are the co-mentions of locations in

the same page. Amitay et al. assign high confidence scores (only ranges are

described) to a term that can be resolved by looking at its neighbouring text.

For example, the term Alberta is resolved to Alberta, Canada with high confi-

dence if Canada occurs right after some mention of Alberta. With an overall

effect similar to Amitay et al.’s work, in our second method constituents of a

location appeared nearby contribute high scores to the location. For example,

an occurrence of Alberta, Canada contributes 1 for that Alberta resolves to

Alberta, Canada.

We implemented our own methods because we are not sure how the weights could

be assigned to different locations in Amitay et al.’s work.

4.3.2 Experiments and Evaluation

In this section, we evaluate the performance of our two location disambiguation

strategies using the dataset introduced in Section 3.3.

We check if the strategies can correctly find the ground truth in web pages that

are related to the given named entity. Specifically, for each page of a named entity,
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Category Total Pages
Pages with geo-centers
Population Mention

Companies 1079 570 575
Theaters 974 755 728
Museums 843 666 670
Towers 497 314 314

Politicians 603 487 491
SportsTeams 1486 1280 1286
Universities 1002 825 848

Overall 6484 4897 4912

Table 4.1: Numbers of pages with geo-centers retrieved from web pages using lo-
cation disambiguation strategies based on populations and mentions.

we apply both strategies and obtain a list of candidate locations. If the geo-center

of the named entity is included in the list, we count it a hit for the corresponding

page.

Table 4.1 shows the results of this experiment. We have listed results for each

category and for all names. We can see that the strategy that considers all mentions

of locations in a web page (MENTION) has a slight advantage over the strategy that

picks the most populous location (POPULATION). For all categories except The-

aters, the method MENTION has identified more geo-centers for the correspond-

ing name than the method POPULATION. On the other hand, for the category of

Theaters, the number of pages with geo-centers resolved by POPULATION is 2.8%

greater than that by the strategy MENTION.

We can see that the strategies have close performance with a slight advantage

for the strategy MENTION. Given that the method POPULATION would not be

applicable for locations with less populations, we opt for the strategy MENTION in

our later experiments.
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Chapter 5

Geotagging at Specific Levels

Given a named entity, a collection of relevant pages with mentions of the named

entity, a set of disambiguated locations in each page, and a desired level of disper-

sion (e.g., country, state, city), our task is to determine the most relevant location

(geo-center) of the target named entity at the specified level of dispersion.

In this chapter, we propose models to rank locations at a given level for a target

named entity. In the next chapter, we address the same problem but with no level of

dispersion given.

The structure of this chapter is as follows. In Section 5.1 we introduce the mod-

els for finding the geo-center at the city level. Upon these models, an aggregation

algorithm is proposed in Section 5.2 for locating the geo-center at the state and the

country level. Leveraging the techniques for analyzing single pages, we combine

the results from multiple pages for the same named entity in Section 5.3.

5.1 Geotagging at the City Level

Instead of geotagging at higher levels, we start with the city level for the reason

that when considering geotagging at the state or the country levels, one should not

ignore the city level locations because the mentions of such locations have strong

indication of the higher locations they belong to. Moreover, locations at the city

level are the most fine-grained locations in our gazetteer. That means the modelling

process should begin at the city level anyway.

Our hypothesis, as given in Section 3.1, specifies two sources where the geo-
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center of a named entity can be identified.

• Inheritance Hypothesis. The named entity inherits the geo-center of the

page.

• Near-location Hypothesis. Either the geo-center of the named entity is men-

tioned nearby, or there is a name with the same but known geo-center men-

tioned nearby. We interpret ”nearby” as appearing in the same sentence, i.e.,

the clue for the geo-center co-occurs with the named entity in the same sen-

tence in a web page.

Accordingly, we propose two models for geotagging a named entity, each tap-

ping into one of these sources, before we combine the two.

5.1.1 Near Location based Model of Geo-Center

Our study, as reported in Section 3.1, showed that in 67.3% of the cases the geo-

center is mentioned near the named entity in the same sentence for purposes such

as introduction and disambiguating the named entity, following our Near-location

Hypothesis.

We can turn our hypothesis to a model by rewriting the observation as the less

the term distance between mentions of the candidate location and the target named

entity is, the more likely the candidate location will be the geo-center.

Supporting examples span from newswire articles to information profile pages.

In Figure 5.1, a technology company called DataXu is mentioned next to a men-

tion of its headquartered city (Boston, MA) in a newswire article. In Figure 5.2,

in a profile page of the Krikorian Redlands Cinema the address of the cinema is

mentioned right below the name.

Based on this observation, we propose a model to estimate the geo-center at

the city level. Given a set of locations at the city level, L = {l1, l2, · · · , l|L|}, the

relevance of a location as a geo-center for a named entity N mentioned in page P

is defined as

Rd(l|P,N) = Rd(l|L,N) =

1
DE(l,N)∑

l′∈L
1

DE(l′,N)

, (5.1)
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Figure 5.1: The geo-center is mentioned near the target named entity in a news
article.

Figure 5.2: The geo-center is mentioned near the target named entity in a profile
page.
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where L is a set of locations mentioned in page P , DE(l, N) is the minimum term

distance between mentions of l and N , referred to as Entity Distance, defined as

DE(e1, e2) = min
m1∈Mentions(e1),
m2∈Mentions(e2)

DM(m1,m2), (5.2)

where e1 and e2 are two named entities and DM(m1,m2) is the term distance be-

tween mentions m1 and m2, defined in Eq. 4.6.

The reciprocal of DE(l, N) correlates with our observation where locations

mentioned nearby the named entity are more likely to be the geo-center. The scores

are normalized to a number between 0 and 1, so they can be interpreted as proba-

bilities.

5.1.2 Inheritance based Model of Geo-Center

According to the study in Section 3.1, in 71.6% of the cases a named entity in-

herits the geo-center of the web page where it is mentioned; we referred to this as

our Inheritance Hypothesis. This observation suggests a method for estimating the

geo-center of a named entity mentioned in a web page. A related problem now is

estimating the geo-center of a page.

The problem of geotagging a web page has been studied in the past (e.g., [2])

as reviewed in Chapter 2. Any of the methods reviewed in that chapter can be used

here; however, we adopt a simpler model based on the following small study on the

dataset reported in Section 3.1:

In a manual inspection of the 30 web pages in the dataset, we assigned a geo-

center to each page based on the relevance of the events reported in the page and the

expected readership of the page. We found that in 21 of the 30 cases the geo-center

of the page was the location where the newspaper was published. Among these 21

pages that we were sure of their geo-centers, we found that in 15 pages, the most

frequently mentioned location was either the geo-center or part of the geo-center of

the page.

This observation suggests that the more frequent a location is mentioned, the

more likely it is the geo-center of the page. Based on this observation and our
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Inheritance Hypothesis, we can estimate the geo-center of a named entity N men-

tioned in a web page P as

Rf (l|P,N) = Rf (l|L,N) =
|Mentions(l)|∑

l′∈L |Mentions(l′)|
. (5.3)

where l is a location from the set of locations L mentioned in P and |Mentions(l)|

is the number of mentions of l in the page.

5.1.3 The Combined Model

As discussed above, each model is only capturing one aspect of a geo-center. Ac-

cording to the study in Section 3.1, we should capture both aspects in order to cover

most of the cases where the geo-center is identified.

For a page P , consider the case when the values of Rd(l|P,N) are evenly dis-

tributed for every location l mentioned in P , which suggests locations have close

probabilities to be the geo-center. In other words, it is very likely that the name

does not have a unique geo-center. In this case, some of the questions that arise

are: how much should we rely on these values when the name actually has a clear

geo-center? Can we opt for another measure which can provide a larger margin

between the probabilities?

To answer these questions, we use the Shannon Entropy of the vector induced

by Rd(l|L,N) for l ∈ L to measure the probability that the name has exactly one

geo-center. This probability is defined as J(L|Rd, N) in Eq. 5.4, where the condi-

tional notation indicates that the probability is based on our near-location modelRd.

H(L|Rd, N), as defined in Eq. 5.5, is the distance-based entropy of the probabili-

ties distributed over the cities mentioned in the page, and Hmax(L) is the maximum

entropy value for all locations, which is log |L|, achieved when all the probabilities

are equal to 1
|L| .

J(L|Rd, N) = 1− H(L|Rd, N)

Hmax(L)
= 1− H(L|Rd, N)

log |L| (5.4)

H(L|Rd, N) = −
∑
l∈L

Rd(l|L,N) logRd(l|L,N) (5.5)

25



When the gap between the maximum probability and the second largest prob-

ability is large, H(L|Rd, N) is small and J(L|Rd, N) is large, indicating a strong

tendency toward the model that is based on term distance for correctly capturing

the geo-center. Conversely, J(L|Rd, N) is close to zero when the entropy value

approaches to its maximum, meaning that the top values of Rd(l|L,N) are close

and the model may not be effective in detecting a geo-center.

Given page P , the probability of l to be the geo-center at city level estimated by

the combined model is defined as

R(l|P,N) = R(l|L,N) = J(L|Rd, N) ·Rd(l|L,N) + (1− J(L|Rd, N)) ·Rf (l|L,N).

(5.6)

Eq. 5.6 is a mixture of two terms. The first term characterizes the joint proba-

bility of two events: 1) the near location based model provides a correct estimate

with probability J(L|Rd, N); 2) l is the geo-center, estimated by the near location

based model with probability Rd(l|L,N).

The second term of Eq. 5.6 characterizes the situation where the near location

based model cannot capture a unique geo-center. According to our hypothesis in

Section 3.1 we assume that the target named entity inherits the geo-center of the

page, and the probability of l being the geo-center is estimated by the Inheritance

based model.

It is noteworthy that we have experimented with other models as well, such as

replacing J(L|Rd, N) with a frequency based entropy, and we compare some of

these variations in Section 5.4.

5.2 Geotagging at State and Country Levels

As we tackle the geotagging problem not only at the city level, but also at other

levels for names that are more widely known, we try to generalize the above prob-

abilistic models to the state and country levels.

To find out the geo-center of a named entity N at the state level, we consider

both the mentions of cities and states (provinces) in the page. Assume that the set

of cities mentioned in page P is Lcity. Let Lstate = {ls1, ls2, · · · , ls|Lstate|} be the
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state level locations mentioned in page P .

The aggregation of the scores at city and state levels are done in two steps. First,

the mentions of both state-level and city-level locations are considered and the prob-

ability of each location is estimated based on the proposed models in Section 5.1.

Specifically, the probability is computed over the union of city and state level loca-

tions as our domain of discourse. Second, for each state level location ls in page P ,

the probabilities of the cities that belong to ls are added to the original probability;

this give a new probability of ls being the geo-center of N at the state level. If a

state level location is not mentioned in the page, but its cities are mentioned, its new

probability will be the sum of its cities’ probabilities.

R(ls|P,N) = R(ls|Lcity ∪ Lstate, N) +
∑

l is a city in ls

R(l|Lcity ∪ Lstate, N) (5.7)

The formal definition is given in Eq. 5.7. The aggregation is applicable to any

of the probabilistic models presented in Section 5.1. One can verify that the new

probabilities for all state-level locations sum up to 1.

We can easily generalize this method to country level locations by propagating

the probability mass of states and cities to that of the countries they are located in.

Let Lcountry = {lc1, lc2, · · · , lc|Lcountry |} be the country level locations mentioned

in page P . The probability of lc being the geo-center at the country level in page P

is given by

R(lc|P,N) = R(lc|Lcity ∪ Lstate ∪ Lcountry, N)

+
∑

ls is a state in lc

R(ls|Lcity ∪ Lstate ∪ Lcountry, N)

+
∑

l is a city in ls

R(l|Lcity ∪ Lstate ∪ Lcountry, N).

(5.8)

5.3 Corpus Aggregation

With a collection of relevant pages of a named entity N , one may locate the geo-

center of N by aggregating the results of geotagging at each page. Previously, we

have devised models and algorithms for estimating the geo-center at a given level

of granularity in single pages. Now we want to estimate the geo-center of N at a
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given level of granularity (city, state, or country) by aggregating the results from

pages in a collection of relevant pages of N .

5.3.1 Model Intuition and Definition

We treat each page Pi (1 ≤ i ≤ n) relevant to named entity N as a test for the

event that a candidate location is the geo-center of N . A location that is selected

as the geo-center is expected to pass all the tests. The probability for a location l

to pass the test of Pi is the probability for l to be the geo-center given Pi, namely

R(l|Pi, N) (See Eq. 5.1, Eq. 5.3, and Eq. 5.6). Thus the probability for a location l

to pass the tests of all the pages is the product of R(l|Pi, N) for all pages Pi in the

corpus of N .

However, it is possible that some pages do not mention the location being con-

sidered. To avoid making the probability zero, let λ be the minimum value of the

original probabilities for any location mentioned in any pages of N . Furthermore,

to avoid a decreasing value of the probability when the number of pages increases,

we compute the n-th root of the product mentioned above. Thus, the corpus-wise

probability of l to be the geo-center of N is defined as

R(l|N) =

(
n∏

i=1

max{R(l|Pi, N), λ}

)1/n

, (5.9)

where n is the number of pages in the corpus of N , and λ = min{R(l′|Pj, N)} for

any l′ whose level is the same as that of l and any page Pj (1 ≤ j ≤ n) such that

R(l′|Pj, N) > 0.

For each level, we sort the locations at that level according to R(l|N). The

geo-center at the corresponding level is the location with the maximum value of

R(l|N).

5.3.2 Implementation Glitch

Technically, the production of float numbers in Eq. 5.9 is error-prone. To reduce the

error introduced by the multiplication of float numbers, we calculate Eq. 5.9 with
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the transformation in Eq. 5.10.

R(l|N) = exp

[
1

n

n∑
i=1

log(max{R(l|Pi, N), λ})

]
= exp

[
1

n
S(l|N)

]
(5.10)

Instead of the production, Eq. 5.10 is computed with addition. In this way, we can

actually use the result of the summation of logarithm values, denoted by S(l|N), to

sort different locations. The location with the maximum value of S(l|N) is selected

to be the geo-center at the given level.

5.3.3 Location Refinement

We refine the model with the following heuristics. When the probability distribution

of a named entity is known at the country level, we can use it as a priori for the esti-

mation of the state-level geo-center. The underlying assumption of this refinement

is that the probability of a location to be the geo-center at its level of dispersion can

be affected by mentions of its parent locations in the tree structure.

We assume that a city ct is included in the state level location st, which is in the

country level location cn. The refined model computes the probabilities for st and

similarly ct being the geo-centers at the state and city levels as shown in Eq. 5.11

and Eq. 5.12 respectively.

Refine(st|N) = R(cn|N) ·R(st|N) (5.11)

Refine(ct|N) = Refine(st|N) ·R(ct|N) (5.12)

Note that we have Refine(cn|N) = R(cn|N) as the country level locations cannot

be refined from the root of the tree structure.

When implementing this extension, we can simply update the summation part

in Eq. 5.10 to include the terms for the priori of the enclosing locations so that the

multiplication of float numbers is avoided.

5.4 Experiments and Evaluation

We run experiments in two stages to evaluate the performance of the proposed ap-

proach to finding the geotag of named entities at a specific level. In the first stage,
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each time a named entity and a relevant page are given, we find the geo-centers of

the named entity at city and state levels based on the content of the page. In the

second stage, we evaluate the proposed approach on a corpus where page results

are aggregated.

5.4.1 Evaluation Settings

From the data we collected in Section 3.3, we build evaluation datasets according

to different tasks.

For geotagging at the city level, we collect single pages or document corpora

that mention the city name of any ground truth location. For geotagging at the state

or country level, we choose pages or corpora that contain mentions of the ground

truth location at that level or its lower levels. Specifically, we say a corpus contains

the ground truth location if and only if there exists a page in the corpus that contains

the ground truth location.

For the task of geotagging with single pages, each page is considered as a data

point and for geotagging at the corpora level, each corpus of a named entity is

considered as a data point. For each data point, if the geo-center estimated by our

algorithm matches one of the ground truth locations of the target named entity, we

treat the answer correct. In this way we can compute the accuracy by dividing the

number Tc of correct answers by the total number T of data points in the dataset:

Accuracy =
Tc
T
. (5.13)

Geotagging with single pages. The task of geotagging single pages is for eval-

uating the performance of the proposed models to estimate probabilities of a loca-

tion being the geo-center at the given level. Hence if the geo-center is dropped in

the pre-processing steps (see Chapter 4) or there is only one candidate, the page is

excluded because the result cannot be changed regardless of which model is used.

Geotagging with page corpora. In the task of geotagging with the entire cor-

pus of a named entity, we focus on evaluating the ability of our algorithm to ag-

gregate results of different pages. Thus we drop a corpus if it contains less than 5

pages simply because we may not get enough information from the corpus.
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5.4.2 City level geotagging with single pages

In this experiment, we evaluate the performance of the models proposed earlier as

well as other baselines as explained below. The uppercase letters in the parentheses

are the short names used in Table 5.1 to refer to the models themselves.

• Random (RAND): The random model assigns equal probabilities to all the

candidate locations of being the geo-center.

• Frequency (FREQ): This is the model defined in Eq. 5.3.

• Term Distance (TD): This is the model defined in Eq. 5.1.

• Mixing by Multiplication (MM): It is defined as the product of the values of

Eq. 5.3 and Eq. 5.1. This model assumes the term distance and the frequency

as the two factors that determine the probability to be the geo-center.

• Mixing by Addition (MA): This model considers the two events (1) the geo-

center appears near the target named entity and (2) the named entity inherits

the geo-center of the page, and it assumes the two probabilities are roughly

the same. The mixture model is defined as the mean of the two probabilities,

i.e. the sum of the values of Eq. 5.3 and Eq. 5.1 divided by two.

• Mixing based on the frequency entropy (MFE): It is similar to the defini-

tion in Eq. 5.6, with the difference that the disorderedness of probabilities is

computed based on frequency instead of term distance. That is

R(l|L,N) = J(L|Rf , N) ·Rf (l|L,N) + (1− J(L|Rf , N)) ·Rd(l|L,N).

(5.14)

where

J(L|Rf , N) = 1− H(L|Rf , N)

log |L|
, (5.15)

H(L|Rf , N) =
∑
l∈L

Rf (l|L,N) logRf (l|L,N), (5.16)

and L is the city level locations in page P .
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• Mixing based on distance entropy (MDE): This is our proposed model in

Eq. 5.6.

For each category of names, we compare the accuracy of different models. The

results are shown in Table 5.1. The scores in bold in each column indicate the best

accuracy achieved among all the models for the corresponding category.

Theater Museum Tower
Uni-

versity Company
Sports
Team Politician

RAND 0.220 0.228 0.233 0.235 0.342 0.166 0.273
FREQ 0.575 0.661 0.608 0.606 0.356 0.591 0.833
TD 0.756 0.691 0.608 0.678 0.641 0.376 0.840
MA 0.773 0.748 0.670 0.716 0.613 0.528 0.887
MM 0.773 0.751 0.688 0.733 0.605 0.536 0.882
MFE 0.756 0.721 0.636 0.695 0.639 0.438 0.863
MDE 0.758 0.759 0.727 0.712 0.605 0.560 0.891

Table 5.1: Accuracy of city-level geo-center estimation in single pages by different
models.

The results show that the model only based on frequency (FREQ) achieves the

best performance on Sports Teams with an accuracy of 0.591. It is noteworthy that

the surface text of named entities in the sports category often include the home city

or state of the team. We ignore this information to evaluate the ability of our ap-

proach for capturing other clues of the geo-centers mentioned in the page. Because

of this setting, when estimating the geo-center of a team, it may be more promis-

ing to look for clues from the page geo-center than finding locations nearby, as the

home location is less likely to be mentioned again closely.

However, the model FREQ does not perform well on other categories especially

on the category of technology company names, with an accuracy of only 0.356.

We analyzed the pages and found that many of the pages related to a company are

focusing on the business end of the company. As the companies in our dataset are

about technology, their business might not be limited to the areas of their home of-

fices, which makes it less possible for the main topic of the page has strong location

indication. Instead, the geo-center is often mentioned near the mention of the com-

pany name for readers to gain knowledge about the company’s location, which is
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indicated by the results of the model TD, whose accuracy (0.641) is the best among

those investigated.

As we can see, models only based on the feature of term distance or frequency

may perform well in one category but bad in another. In contrast, the mixed models

are more balanced. For categories of landmark names (theaters, museums, tow-

ers, and universities 1) and person names (politicians), MA, MM, MFE and MDE are

superior to the other models.

Among these mixed models, MDE is a robust one. It has the highest accuracy

in the categories of museums, towers and politicians. In the other categories, its

performance is also comparable to the best ones. Conversely, the remaining three

mixed models all fall behind MDE in the categories of towers and sports teams.

The model MFE achieves an accuracy of 0.639 in company names but falls short in

sports teams (0.438) and towers (0.636) when compared with the other three mixed

models.

In summary, we find that the relation between mentions of named entities and

geo-centers should be modelled with term distance and frequency simultaneously

so that a measure may play a more important role when the other measure cannot

estimate the geo-center with a good confidence. The experimental results show that

the proposed model MDE defined by Eq. 5.6 is more reliable than the others. Hence

we will use it in later stages of our experiments.

5.4.3 State level geotagging with single pages

We experimented with the proposed algorithm as well as a series of baselines for

state level geotagging with single pages. All algorithms leverage the probabilistic

model MDE selected in Section 5.4.2 to assign initial probabilities to the candidate

locations, with different aggregation approaches explained below.

• States only (S): This algorithm considers the state names mentioned in a page

as candidate locations. The probabilities assigned by the model MDE are used

for ranking the candidate locations.

1A university can be considered both as a landmark or an organization.
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• Cities only (C): This algorithm first computes the probabilities of cities in a

page with the model MDE. Then the probabilities of cities in the same states

are added up. The ranking of states is determined by these new probabilities.

• Maximum of S and C (MSC): For each state-level location and its probabil-

ities given by algorithms S and C described above, the algorithm MSC takes

the maximum and divides it by two to maintain a valid probability distribution

over the candidate locations.

• Average of S and C (ASC): This algorithm is similar to MSC. The difference

is that we take the mean of the probabilities given by S and C.

• Analyzing mentions of states and cities simultaneously (AMS): This is the

proposed algorithm described in Section 5.2.

Theater Museum Tower
Uni-

versity Company
Sports
Team Politician

S 0.617 0.848 0.801 0.664 0.405 0.361 0.641
C 0.740 0.688 0.667 0.643 0.619 0.588 0.725
MSC 0.809 0.877 0.801 0.707 0.618 0.472 0.813
ASC 0.817 0.886 0.813 0.730 0.616 0.493 0.821
AMS 0.858 0.853 0.838 0.759 0.690 0.600 0.861

Table 5.2: Accuracy of state-level geo-center estimation in single pages by different
aggregation methods.

Table 5.2 reports the accuracy of applying each algorithm to different categories.

We can see that the algorithm only considering either states (S) or cities (C) does not

achieve the best result in any category when compared to the other three (MSC, ASC

and AMS). It is noteworthy that the algorithm that only considers mentions of cities

performs better than the one that only analyzes mentions of states in categories of

theaters, companies, sports teams and politicians, which suggests that an algorithm

for geotagging at the state level should not ignore the mentions of their cities.

The above results show that our proposed algorithm has a robust performance in

all categories. It can find out the state level geo-center in a given page with accuracy

over 0.83 in the categories of landmarks and politicians and achieves at least 60%
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accuracy in the organizations category. The baselines may perform well on some

categories but fall much behind in others.

We can also see that our proposed algorithm (AMS) has a higher accuracy than

MSC and ASC, which combine the results given by methods S and C in all categories

only except the category of museums. This advantage of ASC is due to the fact that

when the number of mentions at different levels are not balanced, the algorithms

MSC and ASC may overestimate the probability for a location whose level has few

candidates, while the proposed algorithm AMS keeps such difference by distributing

original probabilities to both levels simultaneously.

As suggested by the experimental results, we will use AMS as our algorithm of

choice in the rest of our experiments.

5.4.4 Aggregating results of different pages

For each named entity and its set of relevant pages, we run experiments using dif-

ferent algorithms to aggregate the scores from individual pages. In addition to the

algorithm proposed in Section 5.3, we implement a few baselines for comparison.

The methods are explained below.

• Maximum probability of the location in all pages (MP): For each candi-

date location, the algorithm takes the maximum probability in all pages and

the candidates are ranked by these values.

• Number of pages that mention the location (NP): This algorithm counts

the number of pages that a candidate location is mentioned and ranks the

locations in descending order by these frequencies.

• Product of MP and NP (MP·NP): This algorithm ranks the candidate lo-

cations by the product of the values in MP and NP. The idea here is that the

geocenter should be mentioned in many pages and we expect in some pages it

is tagged with a high probability by our algorithm for page level geotagging.

• Average of probabilities of the location in all pages (AP): This algorithm

adds up the probability of a location to be the geo-center at each page, and
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divides the sum by the total number of pages. The intuition behind this al-

gorithm is that the geo-center should have a high average probability in the

corpus.

• Product of probabilities of the location in all pages (PP): This algorithm

ranks the locations by the probability given by Eq. 5.9.

Theater Museum Tower
Uni-

versity Company
Sports
Team Politician

MP 0.556 0.463 0.412 0.431 0.250 0.539 0.542
NP 0.733 0.707 0.618 0.824 0.672 0.831 0.958
MP·NP 0.756 0.756 0.618 0.824 0.656 0.865 0.958
SP 0.711 0.732 0.618 0.843 0.656 0.854 0.958
PP 0.733 0.756 0.676 0.843 0.672 0.910 0.958

Table 5.3: Accuracy for city-level geo-center estimation in document corpora by
different aggregation methods.

Theater Museum Tower
Uni-

versity Company
Sports
Team Politician

MP 0.716 0.662 0.706 0.610 0.174 0.532 0.538
NP 0.896 0.818 0.824 0.829 0.779 0.856 0.862
MP·NP 0.866 0.792 0.809 0.817 0.767 0.793 0.846
SP 0.881 0.805 0.809 0.829 0.721 0.793 0.908
PP 0.881 0.818 0.794 0.841 0.814 0.874 0.892

Table 5.4: Accuracy for state-level geo-center estimation in document corpora by
different aggregation methods.

The results for the city-level and the state-level geo-center estimation in docu-

ment corpora are shown respectively in Table 5.3 and Table 5.4.

We can see that the algorithm MP, which takes the maximum of page-level prob-

abilities, has the worst performance. This is because by taking the maximum the

results only reflect the characteristics of one page. If in this page the probability of

a location is overestimated it will affect the final decision. But in other algorithms

this problem is alleviated by using metrics that capture characteristics in all pages.

From Table 5.3 and Table 5.4 we can also see that our proposed algorithm PP

has competitive results in all categories for both state and city levels. In addition,
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PP achieves the best recall in the category of sports teams for both levels. From

the previous experiments, we have found that the categories of company names

and sports team names are the most difficult ones. Since PP performs the best in

these two categories and competitive in others, PP is selected as the algorithm for

aggregating results of different pages in our framework.

5.4.5 Location Refinement

In Section 5.3.3, we have proposed a refinement method for adjusting the proba-

bility of a location by multiplying the probability of its parent location in the tree

structure. Here we compare the accuracy with and without such refinement. As the

refinement is done to the probabilities analyzed from the whole corpus of pages, we

choose the corpus aggregation method PP selected in the previous experiment to be

the baseline for comparison. Table 5.5 compares the accuracy with and without the

refinement in different categories.

City level State level
Category PP PP Refined PP PP Refined
Theaters 0.733 0.700 0.881 0.833
Museums 0.756 0.780 0.818 0.844
Towers 0.676 0.735 0.794 0.824

Companies 0.672 0.766 0.814 0.872
Sports Teams 0.910 0.865 0.874 0.883
Universities 0.843 0.843 0.841 0.890
Politicians 0.958 0.917 0.892 0.877

Overall 0.796 0.802 0.845 0.862

Table 5.5: Accuracy for geo-center estimation in document corpora by with and
without the location refinement.

We can see that the refinement method slightly improved the accuracy for both

levels. At the city level the overall accuracy improved from 0.796 to 0.802 with

the refinement implemented, and at the state level similar improvement is recorded

from 0.845 to 0.862.

Another observation is that the improvement for the state level is more promis-

ing than that at the city level. This is somewhat expected as the refinement from

the country level to the state level is more reliable than that from the state level to

37



the city level, given that it is more accurate to estimate the geo-center at the country

level than that at the state level.
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Chapter 6

Geotagging at Arbitrary Levels

6.1 Classification on Levels of Dispersion

With the probabilities of locations as the geo-centers at different levels of the loca-

tion hierarchy, an interesting question is what is the most suitable level of dispersion

for the geo-center of a named entityN among the three levels: city, state, and coun-

try.

Inspired by the idea that the desired level should be the one where the geo-

center is more likely to be unique, we exploit the entropy-based models proposed in

Section 5.1 for estimating the probability (confidence) that a set of locations contain

a unique geo-center. We hypothesize that the exact level of dispersion should be the

level that is most likely to have a unique geo-center. Hence, our approach is to find

the level of dispersion with the maximum confidence defined as

C(v|N) =
1

n

n∑
i=1

J(Lv(Pi)|R,N), (6.1)

where v can be one of the three levels: city, state, and country, n is the total number

of pages related to N and Lv(Pi) are the locations at level v mentioned in page Pi.

As captured in Eq. 6.1, the probability for a level to be the exact dispersion is

the mean of the confidence score of the set of locations at the corresponding level.

The confidence score J(·|R,N), as defined in Eq. 5.4, measures the probability

that a unique geo-center can be detected from the given set of locations based on

the probability mass given by the combined model R defined in Eq. 5.6.

We choose the level with the maximum value to be the estimated level of dis-
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persion of the geo-center. Finally, we can assign the name with a geo-center at the

selected level based on the results of geotagging at the specific level.

6.2 Experiments and Evaluation

6.2.1 Evaluation Settings

In this task, we use only politician names for the evaluation for the reason that a

politician has a clear dispersion in terms of their serving regions. On the other hand,

organization names may have plausible reasons to be categorized into different lev-

els according to their popularity (e.g., Edmonton Oilers is an NHL team based in

Edmonton, Alberta, Canada but it is known by NHL fans in North America.) and

landmarks are mostly known at the city level.

We built a dataset with names with different dispersions. Besides the names of

politicians at the city level and the province level (equivalent to the state level) of

Canada as described in Section 3.3, we added a list of names of heads of states in

the most populated countries. In this way, we have names with their geo-centers at

each level of locations. Similar to the previous experiments for aggregating results

of pages in a corpus, we removed names with less than 5 relevant pages. Table 6.1

shows the statistics of our dataset for this experiment.

Names
City Level 44
State Level 30
Country Level 32
Total 106

Table 6.1: The number of names with geo-centers at each level of dispersion.

Let the total number of names be T and the number of names for which our

algorithm correctly identifies the geo-center at the exact level of dispersion be Tc.

We use the metric accuracy as defined in Eq. 5.13 for this evaluation. The accuracy

is the ratio of Tc to T .
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6.2.2 Methods

We experiment with the algorithm given for determining the level of dispersion

in Section 6.1 as well as a few baselines. The details are illustrated below. Note

that we have level v ∈ {city, state, country} and locations at level v and page Pi

denoted as Lv(Pi) unless it is stated otherwise.

• Total Locations (TL): For a page Pi, let the number of distinct locations at

level v be TL(i, v). This algorithm adds up the values of TL for all pages at

each level and the level with the most locations is chosen. It is formulated as

vTL = argmax
v

n∑
i=1

TL(i, v). (6.2)

• Total Mentions (TM): This algorithm is similar to TL, with the difference

that for each page the total number of mentions of locations at the given level,

denoted as TM(i, v), is used for counting. The level with the most mentions

of locations is chosen.

vTM = argmax
v

n∑
i=1

TM(i, v). (6.3)

• Frequency Disorderedness (FD): In this algorithm, for each level v and

each page Pi, the disorderedness of the frequency-based probability distribu-

tion over the locations at level v and page Pi, denoted as J(Lv(Pi)|Rf , N),

is computed as per the definition in Eq. 5.15. The algorithm then adds up

J(Lv(Pi)|Rf , N) for each page and chooses the level with the maximum sum.

vFD = argmax
v

1

n

n∑
i=1

J(Lv(Pi)|Rf , N). (6.4)

• Distance Disorderedness (DD): This algorithm is similar to FD, with the

difference that disorderedness score is replaced by J(Lv(Pi)|Rd, N) as com-

puted in Eq 5.4. It is formulated as

vDD = argmax
v

1

n

n∑
i=1

J(Lv(Pi)|Rd, N). (6.5)
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• Probability Disorderedness (PD): This is the algorithm described in Sec-

tion 6.1. The disorderedness is computed as defined in Eq. 6.1. It differs

from the methods FD and DD in that the score is based on the probability

mass given by the combined model R instead of Rf or Rd.

6.2.3 Results and Discussion

Method
Correct

Geo-centers Accuracy

TL 34 0.320
TM 70 0.660
FD 71 0.670
DD 73 0.689
PD 75 0.708

Table 6.2: Level classification results by different algorithms.

The results are shown in Table 6.2. The column “Correct Goe-centers” shows

the number of names whose geo-centers are correctly identified by each algorithm.

The column “Accuracy” lists the accuracy of each algorithm.

We can see that the proposed algorithm PD performs better than any baseline

with an accuracy of 70.8%. Another observation is that similar models that measure

the probability to have unique geo-centers (FD and DD) have competitive perfor-

mance, suggesting that choosing the level with a unique geo-center is an effective

way for classifying levels dispersion.
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Chapter 7

Regional Orientation

Recall that the proposed models assume that the named entities and the web pages

used for geotagging should have certain regional orientation. In this chapter we

suggest a way to filter named entities that do not have regional orientation.

7.1 Classification on Regional Orientation

Given a named entity and a set of pages, we try to answer the following question:

Based on the set of pages, can we determine the geo-center of the named entity

with high confidence?

If the answer is positive, it implies that there is certain regional orientation with

the name and we should be able to identify a geo-center for the name using the

geotagging algorithm proposed. If the answer is negative, we can reject the name

and not return a geo-center as the name may not have any regional orientation.

Again, we use the entropy-based confidence score to measure the probability

that a unique geo-center can be identified from a set of locations. Here we com-

pute the value of J(L|R,N) where L = {l1, l2, · · · , l|L|} is a set of country-level

locations for a named entity N .

We come up with a threshold α for the value of J(L|R,N). If and only if

J(L|R,N) ≥ α, we consider the name N to have regional orientation.
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7.2 Experiments

We collected names of endangered animal species on land as well as their living

areas around the world1. As in Section 3.3, we query each name in the search

engine Exalead to get its relevant web pages.

Based on the number of countries of their living areas, we divided the names of

animals into two groups. The first group contains names that have exactly one coun-

try as their only geo-center. Examples are endangered animals like Giant Panda in

China and Bumblebee Bat in Thailand. The other group consists of names that have

more than one country as their living areas listed in the collected data. Chimpanzee

living in Africa is an example of the second group, as Africa is a continent and

contains more than one country.

We obtained 39 names for the first group and 51 names for the second group.

After running the geotagging algorithm against each name at the country level, for

each name N we obtained a list of countries L = {l1, l2, · · · , l|L|}. We calculate

J(L|R,N) as defined in Section 5.4. Names that cannot be tagged due to the lack of

enough Web pages (at least 5) or names whose results did not contain any locations

are removed. Thus, we obtained 33 names in the first group (noted as UNIQUE

below) and 30 names in the second (noted as MULTIPLE below).

To determine a threshold α for predicting the group a name is in, we also col-

lected a few names of animals that are more common than the aforementioned ones.

For each name N , we calculate J(L|R,N). The results are shown in Table 7.1.

N J(L|R,N)
Deer 0.127
Bat 0.066

Otter 0.064
Monkey 0.029

Cat 0.009

Table 7.1: Probabilities to have a unique country level geo-center for common ani-
mal species.

We can see that there are four names with J(L|R,N) less than 0.1 and one name

1http://www.earthsendangered.com/, visited on March 11, 2014
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with a probability slightly greater than 0.1. So we empirically set the threshold

α = 0.1.

We apply this threshold to classify the two groups UNIQUE and MULTIPLE.

The results are shown in Table 7.2.

Table 7.2: Classification results for endangered animals to have a unique country
level geo- center.

Prediction Correct Prediction Incorrect
UNIQUE 28 5

MULTIPLE 17 13

We calculate the metrics commonly used for classification problems: Precision,

Recall and F1-Score. Precision (prec) is the number of correct predictions divided

by the total number of predications. Recall (recl) is the number of correct prediction

of UNIQUE. F1-Score is the Harmonic mean of prec and recl, as shown in Eq. 7.1.

f1 =
2 · prec · recl
prec+ recl

(7.1)

From the results in Table 7.2, we have

prec = (28 + 17)/(28 + 5 + 17 + 13) = 0.714

recl = 28/(28 + 5) = 0.848

f1 = 0.776

We can see that our algorithm can detect whether a named entity has a unique

geo-center or it has more than one country-level geo-center and does not carry much

geographic orientation. We give a brief error analysis for the results below.

From Table 7.2, we can see that our algorithm made 5 incorrect predictions

for names with a unique geo-center, classifying them as MULTIPLE. We found

that, despite being listed under one country name in our ground truth, three species

among them actually appear in more than one country: American Bison, Short-

tailed Chinchilla and Mongolian Beaver. For the other two names, our algorithm

made mistakes because there are lists of different animals and locations in the pages

where these names are mentioned. Our measure suffers from the cases where two

named entities and their geo-centers are closely mentioned.
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Our algorithm incorrectly predicted 13 names with multiple geo-centers as UNIQUE.

For three of them, Chimpanzee, Leopard and Jaguarundi, the errors are due to that

we collected many pages whose geo-center is the United States, resulting in a bias

towards the United States. For each of another 7 names, our algorithm correctly de-

tected at least one of its geo-center but due to the sparseness of the data, there were

not enough clues for other geo-centers to get a competitive score, resulting in a

bias towards only one location. For the remaining 3 names, our algorithm detected

incorrect geo-centers, where one of the failures was due to the error of location

disambiguation.
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Chapter 8

Conclusions and Future Work

In this thesis we conduct a study on estimating the geo-centers of named entities

based on their mentions in relevant web pages. We hypothesize that a name with

regional orientation mentioned in a web page inherits the geo-center of the page

unless it is qualified with another geo-center mentioned nearby. We propose an

unsupervised framework based on our hypothesis to identify the geo-center when

the target level of dispersion is either known or unknown. We devise a variety of

models that estimate probabilities of the existence of a unique geo-center among a

set of candidates. Experiments showed that the proposed probabilistic model and

the corpus aggregation algorithm can achieve a good accuracy for all categories of

names studied in this thesis. We also showed that we can detect the exact level of

the geo-center for names with different dispersion.

There are a few potential directions for improving this framework in future.

First, more named entities of different categories can be studied. For example,

in this work we only studied politicians for person names while names of more

professions (e.g., lawyers, professors, etc) can be studied.

Second, more clues can be leveraged when extracting candidate locations from

web pages. We have been using a free gazetteer GeoNames which mainly consists

of geographic entities. The future work may consider extracting named entities with

known geo-centers in web pages and using them as clues of locations. Names with

known geo-centers can possibly be obtained from free databases like Factual1 and

1http://www.factual.com
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Wikipedia 2.

Third, capturing the structure of a web page may be helpful. Currently we

extract text from HTML sources by simply keeping everything and aligning them

sequentially regardless of the different sections of a page. In fact, correctly separat-

ing different sections may lead to a more accurate model of measuring the distance

between mentions of entities.

Last but not least, our framework can be improved by applying different mod-

els to different classes of names and/or pages given that different models and al-

gorithms excel in different categories in many tasks of our experiments, though

deeper analysis on the characteristics of names and pages is required towards such

improvement. Such improvement may address the problem of geotagging named

entities in lists and tables mentioned in Section 7.2.

2http://www.wikipedia.org/
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