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Abstract—This paper reviews different methodologies for inter-
facing time-domain and frequency-domain simulation programs.
The main objective for this interface is to obtain the steady-state
or transient state of a power network containing linear and non-
linear loads, and the calculation of the corresponding harmonics
and the foregoing values for different types of analyses in power
systems.
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I. INTRODUCTION

P OWER system networks can be computationally solved
based on time-domain (TD) and frequency-domain (FD)

methods. The former is preferred in cases where switching de-
vices and nonlinear elements are to be considered. The latter is
adopted as a standard method in cases where the frequency de-
pendence of the electrical elements is important, or when only
(frequency) data measurements are available. Moreover, the re-
finement of Fourier methods, such as the numerical Laplace
transform, has contributed to efficient error control algorithms.

From the implementation point of view, one of the main dif-
ferences between TD and FD is that the former is based on a
sequential solution scheme, allowing iterations within a time
step, while the latter is based on a parallel scheme of solution
accounting for the whole simulation time at once. Topological
changes in the network can be easily incorporated in the TD
methodology due to its intrinsic sequential scheme of solution.

In general a power network is composed of both linear and
nonlinear elements. The increasing number of switching devices
and nonlinear elements demands that a simulation of the power
network considers the characteristics of all elements. In this re-
spect, it is desirable that the frequency dependence of a group
of network elements be combined with the accurate response of
nonlinear time-varying elements. Therefore, there is a need for
a hybrid method that can combine the merits of both FD and TD
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methods for accurate and efficient simulation of power system
networks.

Theoretically it is not possible to interface TD and FD due to
the differences mentioned above. However, the modeling of a
system via its decomposition into external and internal (study)
zones, enables such interfacing possible through a transmission
line used as a link between the TD and FD parts.

To obtain an efficient hybrid procedure it is recommended
that the specific characteristics of TD and FD be considered to
decide the parts of the simulation that should be conducted in
FD, or TD.

The theory of wavelets, combined with Fourier transform and
the dynamic harmonic domain (DHD) provide alternative tech-
niques to deal with the time and the frequency domains simul-
taneously. These techniques also have been applied for the de-
termination of harmonics in the transient state.

This paper is intended to present a summary of techniques
where TD and FD are used simultaneously within the same
solution algorithm. The techniques in the literature for inter-
facing TD and FD algorithms can be broadly classified into three
groups (a more detailed description is given in the following sec-
tions): (a) Full solution of the network in FD, and conversion of
the resultant FD variables to the TD, (b) iterative methods, going
back and forth from FD to TD, and (c) solution in TD and FD
simultaneously, accounting that the variables depend on both
frequency and time.

The paper is organized as follows. Section II describes the
general terms and definitions related to the interfacing method-
ologies. We briefly present the latest definitions reported in the
IEEE Standards and the Task Force publications. Section III
presents the classical FD techniques used in electrical power
systems. Section IV contains the classification of hybrid pro-
cedures, and in Section V, the DHD and wavelet techniques are
presented. Section VI shows a brief comparison of the hybrid
techniques arranged in a table. The conclusions are presented in
Section VII.

II. GENERAL TERMS AND DEFINITIONS

A. Time and Frequency Domains

To analyze the dynamic behavior of an electrical power
system, the network components must be represented by a set
of equations based on time or frequency as the independent
variables. According to the IEEE Standard Dictionary [1]:

Time domain: A function in which the signals are repre-
sented as a function of time.
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Frequency domain: A function in which frequency is the
independent variable.

TD methods cover all the elements in a power system. It is
possible to have a straightforward representation of nonlinear
and time varying elements with a very conservative CPU-time
and processing memory. Mature and universal time-domain
simulation software programs include but are not limited to
ATP, PSCAD/EMTDC and EMTP-RV.

On the other hand, FD is intrinsically a linear methodology.
It is basically used to model elements with distributed and fre-
quency-dependent parameters. The commonly used FD tech-
niques in power systems are based on the Fourier transform, the
numerical Laplace transform and the -transform.

The maximum frequency for a given network representation
is related to the simulation time step through the Nyquist crite-
rion.

B. Interface

An interface is the link between two or more elements, or
methodologies. The IEEE Standard Dictionary defines interface
data transmission as [1]:

A concept involving the specification of the interconnection
between two equipment or systems. The specification includes
the type, quantity, and function of the interconnection circuits
and the type and form of signals to be interchanged by these
circuits.

C. Orthogonality

FD techniques involving the orthogonality property (i.e., two
functions and ) are said to be orthogonal over the
interval , if the following basic property is satisfied
[2]:

.
(1)

III. FREQUENCY-DOMAIN TECHNIQUES

Although the FD analysis is inherently a linear methodology,
it can be extended for analyzing nonlinear problems found in
power systems. The FD analysis properties that make it attrac-
tive are as follows.

• Modeling of network elements with distributed and fre-
quency-dependent parameters can be done rigorously [59].

• Circuit parameters often are obtained and specified in the
frequency domain.

• Numerical error levels of the FD computations can be de-
termined and controlled in a straightforward manner [42].

• Being based on principles different to those of the TD
methods, the FD analysis constitutes an ideal cross-check
for the TD modeling [44].

Some of the classical FD techniques used in power systems
and their definitions will be described. Alternate FD tech-
niques, such as Hanker and Mellin transforms (used in signal
processing), are not listed here.

A. Fourier Transform

The Fourier Transform and its inverse are defined as follows
[3]:

(2a)

(2b)

Analytical solutions are rarely available for practical transient
problems. Therefore, one has to resort to numerical solutions by
means of discretization of (2a) and (2b). For instance, (2b) can
be solved numerically by using three steps as follows.
Step 1) The infinite integration range has to be truncated to

a finite value .
Step 2) has to be sampled within the truncated range

at evenly spaced intervals of length .
Step 3) Time is discretized by sampling inside the

range at intervals of duration .
Then, the numerical discretization of (2) leads us to the di-

rect discrete Fourier transform (DFT) and the inverse discrete
Fourier transform (IDFT) represented by

(3a)

(3b)

The fast Fourier transform (FFT) is an algorithm that solves
the DFT in a highly efficient manner especially when the
number of samples can be expressed as an integer power
of 2. The same applies for the inverse fast Fourier transform
(IFFT).

It is mentioned here that once the system has been solved in
the FD, the conversion of the solution variables is made through
(3b). Note that the TD resolution is related to .

B. Hartley Transform

The Hartley transform [4] has many of the basic properties of
the Fourier transform, however, the former handles purely real
variables. The Hartley transform application in power systems
can be founded in [5], [6]. The Hartley transform of a time func-
tion and its inverse are given by

(4a)

(4b)

where and are in radians
per second.
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Similar to the DFT, the discrete Hartley transform (DHT) and
its inverse (IDHT) are given by

(5a)

(5b)

Similarly, the fast Hartley transform (FHT) has been defined to
require operations [6]. The system is solved in
TD, the conversion of the solution variables is made through
(5b). Computationally, the Hartley transform becomes attractive
over Fourier-based methods since it handles only real variables
[12].

C. Laplace Transform

Let be a transient waveform and be its FD image.
These functions are related by the Laplace transform and its
inverse by [2]

(6a)

(6b)

where is the complex frequency ; corresponds to
the angular frequency variable and is a positive real damping
constant. Alternately, (6a) and (6b) can be expressed as [7]

(7a)

(7b)

From (7a), it can be noticed that the Laplace transform can be
interpreted as the Fourier transform of a signal that has been
damped artificially through its multiplication with a decaying
exponential function [see (2a) and (2b)]. This expo-
nential damping makes the reduction of aliasing errors possible
when (7b) is used. In fact, this is the approach of the modified
Fourier transform (MFT) [8]–[10].

With being a real and causal function, the inverse
Laplace transform is

(8)

The numerical evaluation of (8) requires sampling intervals
and given by (11a) and (11b), respectively. Furtermore, we
define

(9a)

(9b)

where for time and frequency domains, we use equally
spaced samples. The observation time corresponds to the
waveform repetition period. In this case, it is

(10)

Thus, we can establish the following relations:

(11a)

(11b)

where corresponds to the maximum frequency. Using the
sampling scheme and the definitions from (9a)–(11b), (8) can
be numerically approximated as

(12)

where

(13)

The term inside the square brackets in (12) permits us to utilize
the FFT algorithm [2]. This method is known in the specialized
literature as the numerical Laplace transform (NLT).

Similar to the Fourier transform, the numerical Laplace trans-
form permits solving the system in the FD. A subsequent step
is to convert all of the FD variables under study to the TD, see
(12). In this method, one can notice the strong relation between

and . Physically, it means that the faster the transient is,
the larger and the shorter .

D. Walsh Transform

The Walsh functions are a complete, orthogonal set of square
wave-like functions defined on the interval [0, 1] [11]. The
Walsh series representation of a time function and its inverse
are

(14a)

(14b)

For the discrete case, the integral of (14a) can be approximated
by a summation expression to obtain the discrete Walsh trans-
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form (DWT) (14a) and its respective inverse (IDWT) from
(14b), as given by [12]

(15a)

(15b)

where is the discrete Walsh function corresponding
to , is the th sampled value of obtained by
sampling times during the interval [0, 1], and is an
integer power of 2.

For instance, for as a normalized time
period, can be represented by

For analysis purposes, initially, the system is solved in FD by
Walsh series. Then, the solution is found as the superposition
of several step responses. Finally, the conversion of the solu-
tion variables is made through (15b). The Walsh transform has
potential applications in the analysis of truncated waves in elec-
tric circuits due to the compactness of the sequence spectrum of
these waves. A fast Walsh transform also exists (FWT) that has
been efficiently used in the power-quality area [60].

E. Z-Transform

The -transform [14], is a powerful tool to solve linear, con-
stant-coefficients difference equations. It has both FD and TD
properties and can be considered as an FD method due to the
close relationship that it has with the Laplace transform.

Based on the Laplace transform, the -transform can be de-
rived using the one-sided discrete Laplace transform [15], [16]

(16)

Based on the following definition:

(17)

substituting (17) and (16) becomes

(18)

Equation (18) corresponds to the definition of the one-side
-transform [2].

Fig. 1. Norton and Thevenin equivalents circuits for the � transform.

Consider the FD input–output relation of a linear time-in-
variant system described by

(19)

where is the transfer function of the system and
and are the input and the output, respectively. In most

-transform applications to EMT simulations, the transfer func-
tion is replaced (approximated) by a rational function
of the form

(20)

where the coefficients are identified by
fitting the frequency response of (20) with a given . Al-
ternatively, they can be obtained in the TD by matching the time
response of (20) with recorded or calculated data. After identi-
fication, substituting (20) into (19) gives

(21)

By noting that the operator implies a one-sample delay
in TD, and using the shift theorem, we obtain

(22)

The transformation of (20) to the discrete time domain indi-
cates that the output can be calculated by multiplications
and additions, which are very efficient if the model order
is small.

Expression (22) can be rewritten in the form

(23)

where and are the voltage and the current and

(24)

Thus, (23) and (24) can be interpreted as the Norton equiva-
lent circuit shown in Fig. 1(a), which is compatible with the
nodal formulation used in Electromagnetic Transients Program
(EMTP)-type programs.

Similarly, (22) can be rewritten in the form

(25)
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Fig. 2. Steady-state approach: Norton equivalent decomposition into linear and
nonlinear subsystems.

where

(26)

Thus, (25) and (26) can be interpreted into the Thevenin equiv-
alent circuit shown in Fig. 1(b).

IV. HYBRID TD-FD METHODS

Based on the type of power system analysis the hybrid TD-FD
methods are classified into three regimes: 1) steady-state, 2) dy-
namic, and 3) transient. In this section, the basics of the most
commonly used methods are described. Applications for most
of them are relegated to the references.

A. Steady-State Approach

1) Harmonic Power Flow: Our classification of hybrid
methodologies, in the steady-state, start with the harmonic
power flow method [17], [18]. This methodology consists in a
superposition of the steady-state phasor solutions at the funda-
mental frequency and at the dominant harmonics frequencies
[19]. It can either be used by itself, or as an initialization
procedure for the electromagnetic transient studies in a hybrid
procedure. Harmonic power flow analysis was primarily devel-
oped as an improved initialization procedure for the EMTP, for
cases where the initial steady-state was already distorted with
the harmonics produced by nonlinear elements. To obtain the
steady-state solution in a network, using harmonic power flow,
first the nonlinear loads are replaced by voltage-dependent
current sources at the fundamental frequency to make the
network linear. Second, the voltages at any other frequency are
then found by solving a system of nodal equations of the form

. The solution is deduced in two iterative loops: power
flow iterations are used to obtain the solution at the fundamental
frequency, while distortion iterations take the higher harmonics
into account [20]–[22].

2) Harmonic Balance Type A: Generally power systems net-
works are divided in two subsystems, one containing linear and
frequency dependent elements, the other containing nonlinear
elements and switches (Fig. 2). The voltage where the system
is partitioned and/or the flux-linkage , corresponding to
the nonlinear element, are assumed to be in the form of a trun-
cated Fourier series. Currents are determined separately for both
subsystems as

(27a)

(27b)

where subscripts and stand for the linear and nonlinear
parts, respectively; represents the nonlinear load current;

is a complex-valued diagonal matrix for the linear network;
and is the current injected by the source into a short circuit
at the terminal of the nonlinear element [23], [24].

A Newton–Raphson iterative procedure may be used to de-
termine the desired flux-linkage waveform

(28)

where matrix is

(29)

and is a diagonal matrix whose elements are .
The waveform is adjusted until the mismatch between the two
currents is less or equal to a predetermined value corresponding
to the steady-state response at the end of the simulation

.
3) Harmonic Balance Type B: The harmonic balance method

has been used as a means of analyzing the behavior of harmonic
ordinary differential equations (ODEs) [25]. The technique in-
volves assuming a solution in the form of a truncated Fourier
series with a predetermined number of harmonics for a net-
work in the steady state [26]. Similar to the Harmonic Balance
Type A method, the network is divided in two subsystems, one
with linear elements the other with nonlinear elements; the par-
tition is done at the buses where nonlinear loads are connected.
Voltage (Fig. 3) for all harmonics where nonlinear loads are
connected is assumed to start the simulation. The underlying
idea is based on the calculation of a current mismatch between
both subsystems. In the linear part, current is obtained by
using , where is a harmonic matrix represen-
tation of all the linear elements [27]. On the other hand, a TD
simulation is used to obtain current .

It is expected that will be equal to zero.
However, before convergence, is not yet accurately known,
resulting in a current mismatch . As seen from the interfacing
bus, the system has the admittance plus the admittance of
the nonlinear part. We can use, as voltage correction , the
solution of the equation

with an appropriate approximation for . The procedure ends
when the determined value of is close to zero. Fig. 3 gives a
conceptual representation of this procedure. The described pro-
cedures present certain advantages against TD methods. One is
the computational convergence speed for large networks. Also,
nonlinearities can be linearized for harmonic balance-type
studies [28].

4) Harmonic Balance Type C: Hybrids methodologies have
been used in harmonic distortion studies. The size of equations
in harmonic method depends on the number of variables and the
harmonic content, thus becoming a computational bottleneck.
This method is similar to the Type A and Type B procedures
previously described and consists of the following steps:
Step 1) Decomposition of the total network into its linear and

nonlinear parts [29], [30].
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Fig. 3. Harmonic Balance Type B procedure.

Step 2) Modeling the linear network in the FD and compu-
tation of a Norton equivalent [31].

Step 3) Computation of harmonic currents injected by the
nonlinear devices. This is performed by means of a
TD simulation for each device, in which the voltage

, is known from the previous iteration. Once the
steady-state is deduced for each device, a FFT is
performed on the currents absorbed by the nonlinear
devices.

Step 4) Formulation and solution of the nonlinear algebraic
(30a) with a Newton-Raphson procedure. The mis-
match between the two successive iterations is cal-
culated based on (30b)

(30a)

(30b)

where and correspond to the Norton equiv-
alent of the linear system, is the current from
the nonlinear load, and represents the highest har-
monic. If the mismatch in (30b) is smaller than a
predefined tolerance, the process is terminated [32],
[33].

The harmonic balance method provide the following advan-
tages:

• Computation time and memory space are greatly reduced.
• They can consider linear load unbalances and structural

unbalance, and it is possible to represent loads, capacitor
banks, or filters with several configurations, connected to
ground or isolated.

• Nonlinear loads are modeled in TD, with the greatest flex-
ibility to represent any kind of topology.

• The complex process needed to solve the steady state of
an unbalanced network with nonlinear elements is simpli-
fied offering good properties of convergence and great flex-
ibility to analyze a variety of systems that can impose dif-
ficulties using other methods.

B. Power System Dynamics

1) Transient Stability: To effectively use a hybrid procedure
for transient stability analysis, it must be considered if a FD
algorithm can be competitive and identified parts (if any) of
the simulation that should be conducted in FD as opposed to
the TD. According to the traditional method for transient sta-
bility analysis and based on the previous sections, linear ele-
ments are modeled in FD where it is possible to identify each
potentially hazardous oscillation frequency. Nonlinearities, in
this case generators, are modeled in TD. The procedure is as
follows:

• The classical representation of each generator is given as

(31)

where is the machine angle, and the subscript denotes
machine .

• To incorporate the generator signals into the network, the
generator voltages are converted from TD to FD, by using
a FFT with a relative small window to maintain accuracy

(32)

• The result is coupled to the network based on

(33)

where is the network admittance matrix including the
generators reactances, and is the vector of voltages, in-
cluding the generator voltages.

• IFFT is applied to transform the resulting FD currents back
into TD to work with the nonlinear elements

(34)

The procedure is repeated until the required time is complete.
The main advantage of using hybrid TD-FD techniques in tran-
sient stability analysis is the reduction of the computational time
[35]–[38].

2) Fault Analysis: The methods that combine TD and FD
can also be used for the fault analysis [39]–[41] to produce re-
sults that are superior to those obtained in the classical fault
analysis, without demanding a large increase in the computa-
tion time. For such analysis, synchronous machines and induc-
tion motor loads are represented in the TD by high-order models
that accurately predict the electrical and mechanical responses
of the machines. The power system is represented in FD. The
algorithm progresses first by solving the source and load model
equations to determine the most recent values of each compo-
nents terminal currents. A least square estimation algorithm is
then utilized to convert the differential equation solutions into
equivalent FD phasors. It is assumed that at any time the en-
tire history of the differential equations are available and the
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Fig. 4. Electromagnetic transient study: solution in FD, representation in TD.

function is assumed to be a single frequency sinusoid
, the coefficients and can be re-

lated to the samples assuming a window of three samples, and
then are used to estimate magnitude and angle by

(35a)

(35b)

The currents are used in to obtain the network node
voltages. The algorithm should be solved concurrently, but due
to the decoupled nature of the methodologies, a simultaneous
solution of all equations is not possible. A small time step is
used to avoid errors due to time skew.

C. Electromagnetic Transients

1) Full Frequency Domain Solution: FD is widely recom-
mended as a complement to the standard TD analysis tools. Ideal
sources and passive elements are modeled using one of the trans-
form methods described in Sections III-A-F [44]–[47]. Repre-
sentation of basic functions in Fourier, Laplace and -transform
can be found in [2]. The resultant algebraic equations are solved
for a specific frequency range [43] and at the end the packed of
results is transformed to the TD via an inverse transform of the
selected technique. For instance, the numerical inverse Laplace
transform from (12) including a window function to re-
duce truncation errors, is given by

(36)

Fig. 4 shows the procedure for calculating a transient event
in FD and converting the variables of interest to the TD. These
method has also been extended to nonlinear loads and switches
[48].

2) Two-Zone Hybrid Solution: As in the steady-state ap-
proach, this hybrid procedure partitions the system in two sub-
systems: one (study zone) is modelled in the TD and the other
(external zone) in the FD. The link between them consists on
a transmission line [49]. This methodology is briefly explained
based on the definitions shows in Fig. 5. First the incident wave
voltage at node A, is known beforehand and used to cal-
culate the reflected wave voltage in the TD, over a time
span . Then, is transformed into the FD via an FFT
operation to obtain , taken as an input for the external
zone where is computed in the FD by a multiplication of
transfer functions as in (37). Finally, is calculated
in the TD through

(37)

Fig. 5. Basic configuration for the two-zone hybrid solution.

Fig. 6. Two-zone hybrid solution for electromagnetic transient simulation.

where is the external zone transfer function and is the
shaping function obtained by the propagation function and
the delay, and

(38)

The procedure just discussed is shown in Fig. 6 and repeated
until the required simulation time is complete.

The advantages of this method are that the accuracy and sim-
plicity of the FD modeling are preserved, no approximation or
fitting is required, and the resulting accuracy cannot be matched
by the “equivalent methods.” However, the disadvantage is that
the external zone and study zone must be connected by a trans-
mission line with a travel time .

3) Hybrid Method for Steady and Dynamic States: This
methodology, based on the numerical Laplace transform, has
been proposed to calculate electromagnetic transients or to
compute the steady state of a network including nonlinear
elements [50]. For transient calculations the NLT is applied
in its original formulation. In the case of steady state compu-
tations a slightly modified NLT is used. Basically, the linear
and nonlinear parts of the network are treated separately (see
Fig. 7) and a current mismatch for the node joining both
subnetworks is defined. Assuming initially a known voltage

, the current entering the linear part is calculated in
the FD where the corresponding Jacobian corresponds to a
known admittance-based matrix. On the other hand, the current
entering the nonlinear part is calculated in the TD and the
calculation of the corresponding Jacobian is calculated
numerically via small perturbations to the input (taken as a
voltage) at the connecting node. Regarding the nonlinear part,
the process of going from FD to TD and vice–versa is made
through NLT operations. Joining the two subnetworks in their
linearized form (in FD) yields

(39)
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Fig. 7. Representation of the complete network.

Fig. 8. Nonlinear network.

Fig. 9. Voltage across nonlinear load using the DHD, NLT hybrid, and the TD.

Thus, a Newton-type iterative scheme to calculate a new
voltage is given by the recursive relation (taking the appropriate
signs of the currents)

(40)

The resulting method is attractive for handling frequency de-
pendent network elements tied to nonlinear loads and possibly
including inter harmonics. A major advantage of the proposed
method over the existing ones is that there is no need of resorting
to iterative methods for solving the nonlinear part of the net-
work. Additionally, a minor modification of the algorithm per-
mits to switch from steady state to transient calculations.

4) Illustrative Example: As an example consider the circuit
shown in Fig. 8. It consists of a combination of a source

with ,
and , a lumped parameter transmission line with

, and , and a nonlinear inductance as
a load having a current/flux relation given by .
All of the parameters are in per unit.

The source in the circuit from Fig. 8 is connected at
and the voltage across the nonlinear load is calculated. The

voltage is shown in Fig. 9, where we can notice that the three
resulting waveforms (labeled TD, DHD and NLT hybrid) are
superimposed.

V. DYNAMIC HARMONIC DOMAIN AND WAVELET TECHNIQUES

Dynamic harmonic domain and wavelets methodologies are
able to represent power networks simultaneously in time and
frequency domains for dynamic and transient studies.

A. Dynamic Harmonic Domain

The DHD is a direct approach for transient and steady-state
solution of harmonics. It is based on orthogonal and operational
matrices, with the coefficients of the orthogonal basis being the
state variables. Intrinsically, the DHD solution allows the possi-
bility of step-by-step computation of evolution of the harmonic
coefficients. In addition, the DHD methodology provides the
power-quality (PQ) indices used in steady-state applications as
functions of time.

In this section, we describe the conversion of an ODE from
TD to the DHD [51]. Without the loss of generality, consider the
linear time periodic (LTP) system for the scalar case

(41a)

(41b)

where subscript stands for time-periodic; for instance, is
defined as

(42)

with and representing the highest harmonic and the fun-
damental frequency. Expressing all of the variables from (41a)
and (41b) by their Fourier series (with time-varying coefficients)
and removing all of the exponential factors, the state represen-
tation (41a) and (41b) in the DHD becomes [53]

(43a)

(43b)

where the variables are now complex vectors (represented by
bold-type letters) with time-varying coefficients, e.g.,

(44)

where T denotes the transpose. is called the operational matrix
of differentiation given by [54]

(45)

and (as well as , , and ) has the Toeplitz structure

...
. . .

... (46)

Note that in the DHD, we obtain a system of ODEs of dimen-
sion for the general case. The system becomes diagonal
when dealing only with linear elements, and can further be re-
duced to order when considering half-wave symmetry (i.e.,
only odd harmonics). Note also that if (as well as , , and

) from (41a) is a real coefficient (a non-periodic quantity) (46)
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Fig. 10. Classical mother wavelet functions �.

becomes a diagonal matrix. By comparing (41a) and (43a), one
can observe that the LTP system has been transformed into a
Linear Time Invariant (LTI) system through the DHD. More-
over, the steady-state of the system is easily obtained by setting
to zero the derivatives in (43a) yielding [52]

(47a)

(47b)

The evolution of the harmonic content, with respect to time,
can be obtained from (43a) and the corresponding instantaneous
values are calculated by assembling a Fourier series as in (42).
Potential applications of the DHD technique are in the areas of
power-quality studies and analysis of possible ferroresonance
conditions.

The accuracy of the DHD results depends on the number of
harmonics included in the modeling (and on the time step). In
the specific case shown in the illustrative example (Figs. 8 and
9), we have taken up to 15 harmonics which are the most repre-
sentative in magnitude.

B. Wavelets

The wavelet transform (WT) is a mathematical tool [55]–[57],
similar to the Fourier Transform, that decomposes a signal into
different scales with different levels of resolution by dilating
a single prototype function. The decomposition into scales is
made possible based on the fact that the wavelet transform
is based on a square-integrable function and group theory
representation. The wavelet transform, provides a local rep-
resentation (in both time and frequency domains) of a given
signal. Therefore, it is suitable for analyzing a signal where
time-frequency resolution is needed such as disturbance transi-
tion events in power-quality analysis.

The integral WT of is defined by as [57]

(48)

where is the basis function known as mother wavelet or
window function, and takes the form

(49)

The mother wavelet is an oscillating and damped func-
tion. Each wavelet, is a scaled (compressed or dilated)
and translated (shifted) version of the same original function

, represents a time dilation (controls the wavelet fre-
quency), and is a time translation (gives the position of the
wavelet), and is an energy normalization factor that keeps
the energy of the scaled wavelets the same as the energy of the
mother wavelet. The original function can be recovered by

(50)

where , and the constant is given by

(51)

The mother wavelet determines the shape of the components
of the decomposed signal. Wavelets must be oscillatory, decay
at least as fast as as , and have an average of
zero. The most common types of wavelets are shown in Fig. 10.

Translating the mother wavelet continuously over a real con-
tinuous number system, generates substantial redundant infor-
mation. Therefore, instead of continuous dilatation and transla-
tion, the mother wavelet must be dilated and translate discretely
by selecting and where and are
fixed constants with , , and and are positive
integers. Then, the discretized mother wavelet becomes

(52)

and the corresponding discrete wavelet transform (DWT) is
given by

(53)

In the DWT, the original waveform is decomposed into an
approximation and a detail at the first stage and then succes-
sive decompositions are performed on the approximation only
with no further decomposition for the details, hence obtaining
the multi-resolution analysis (MRA). Based on careful choice of
the number of decomposition levels and suitable choice of the
wavelet family, the problem of spectral leakage can be reduced.
The number of levels depends on the harmonic order contained
in the original waveform that is required to be calculated sepa-
rately. Fig. 11 shows the coverage of the time-frequency plane
for the wavelet and for the Fourier transform, the dimensions of
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TABLE I
HYBRID TD–FD METHODOLOGIES

Fig. 11. Coverage of the time–frequency plane for: (a) the wavelet transform
and (b) the Fourier transform.

the resolution squares represent minimum time and frequency
intervals. Also from Fig. 11 one can notice that Fourier is re-
stricted to a fixed window size while wavelets covers a wider
frequency range [58].

VI. COMPARISON OF HYBRID TD–FD TECHNIQUES

Table I shows a brief comparison for hybrid techniques dis-
cussed before for easy visualization of citations, applications,
and relevant remarks.

VII. CONCLUSION

The main purpose of this paper is to describe methods
for interfacing frequency and time-domain techniques. Hy-
brid techniques have been classified into three categories: (a)
steady-state: harmonic power flow and harmonic balance, (b)

dynamic analysis for transient stability and fault calculations:
synchronous machines in TD and the network in FD, and
(c) electromagnetic transients: full FD or TD solution, and
two-zone hybrid solution. A brief summary of the merits and
limitations of the techniques are are presented.

The paper also presents a summary of the FD techniques
used in power system analysis. Fourier, Hartley, Laplace, and

-transforms are, until now, the techniques that have been refer-
enced to for power system analysis. Works with the Walsh and
Mellin Transform had focused on signal filtering and relay pro-
tection. Discrete transforms of the methodologies presented are
described as well.

In addition, two methodologies that have the capability to
present results in time or frequency domain without postpro-
cessing, are also presented. A brief summary of wavelets, in-
cluding some classical wavelets, and the dynamic harmonic do-
main are discussed.

It is believed that this material will provide power system
engineers with a sufficient background to understand the inter-
facing of TD and FD programs.
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