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Abstract

Exhaust gases emitted from roof-based sources are recognized as one of the primary

sources of urban air pollution that could considerably deteriorate both outdoor and

indoor air quality. Urban planners frequently use analytical and semi-empirical dis-

persion models to assess the pollutant distribution field, leading to extremely conser-

vative and less sustainable guidelines in the design process. In this regard, contribut-

ing to the effective and efficient passive approaches to control these contaminants,

with the aid of urban morphology modifications, has been set as the ultimate goal of

this research.

Given the limitations and complexities of the experimental investigations and the

known weaknesses of the semi-empirical correlations, Computational Fluid Dynamics

(CFD) has been selected as the method used in this study. The Mock Urban Set-

ting Tests experiment (or MUST, performed in Utah in 2001) was simulated in this

work to test and evaluate various modeling settings and to introduce a well-tested

infrastructure to contribute to the ”Best-Practice” in reliable modeling of dispersion

flow within complex urban geometries. The performance of three widely suggested

closure models of standard k − ε, RNG k − ε, and SST k − ω were assessed with

a specific emphasis on the effects of the source locations. This work demonstrates

that the relative over-prediction of the turbulence kinetic energy by the standard

k − ε model counteracts the general under-predictions by time-averaged methods in

geometries with building complexes, leading to the least discrepancies with the mea-

surements. A sensitivity study was also conducted to find the optimum turbulence

Schmidt number (Sct), using both the constant and locally variable values.
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To further improve the accuracy of the numerical predictions, a re-calibration

study is conducted to optimize the standard k− ε model by incorporating the recom-

mended modeling settings from the previous step. A modified optimization framework

based on a genetic algorithm was adapted to alleviate the computational expenses

and to further identify ranges for each empirical coefficient, to achieve the most reli-

able and accurate predictions. A robust objective function was defined, incorporating

both the flow parameters and pollutant concentration through several linear and log-

arithmic measures. The coefficients were trained using the MUST data set, leading

to proposed ranges of 0.14 ≤ Cµ ≤ 0.15, 1.30 ≤ Cε1 ≤ 1.46, 1.68 ≤ Cε2 ≤ 1.80,

1.12 ≤ σε ≤ 1.20, and 0.87 ≤ σk ≤ 1.00. Using the modified turbulence closure, the

fraction of predictions within the acceptable ranges from measurements increased by

8% for pollutant concentration and 27% for turbulence kinetic energy.

Employing the assembled infrastructure designed for CFD simulations of atmo-

spheric pollutant dispersion lays the foundation for the primary objective. In the final

step, a series of systematic studies aimed to explore the synergistic effects of unique

urban morphologies or heterogeneous geometries on turbulent mixing and pollutant

diffusion. This research contributes to ongoing efforts to advance urban planning

practices, offering a passive approach to control pollutant dispersion from rooftop

sources. Additionally, it advances the understanding of pollutant dispersion patterns

in the presence of urban non-uniformities.
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Chapter 1

Introduction

The adverse consequences of rapid urbanization in response to worldwide population

growth, particularly in developing countries, have clarified the importance of the field

of environmental health. The negative implications of expanding our urban area

footprint, combined with continuing industrialization, manifest in various challenges

regarding water quality, waste management, noise pollution, food security, mental

health, climate change, and of course, air quality. As documented by the World

Health Organization (WHO), deterioration of air quality is directly linked to severe

health issues, by causing respiratory and cardiovascular diseases [1]. Recent statistical

data indicate that one out of every six premature deaths across the world in 2019

was potentially associated with ambient air pollution [2]. These alarming statistics

highlight the need for immediate and appropriate actions to address this critical issue.

The effective management of urban air quality is quite challenging and necessitates

devising pollution mitigation strategies that can only be achieved by thoroughly un-

derstanding dispersion dynamics in a wide range of situations. In urban settings, the

unique behavior of pollutant streams is governed by factors such as dense building

clusters with varying configurations, building heights, urban density, and meteorologi-

cal conditions [3]. These variables collectively contribute to complex airflow behavior,

making it difficult to predict pollutant movement and concentration [4]. Moreover, the

diverse types of pollutant sources (e.g., industrial emissions, vehicular exhausts, con-
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struction dust, commercial and residential ventilation, etc.), each with their specific

characteristics, can result in distinct dispersion patterns [5–7]. One particular type of

urban pollution source often less emphasized in the literature than traffic-related pol-

lutants is roof-based sources. While these sources may not receive as much attention,

they can potentially have an important impact on the health of urban occupants.

That is because the turbulence generated by available buildings and other obstacles

can increase the chance of these pollutants being reintroduced into the ventilation

system via fresh air intakes, due to the localized re-circulation zones, compromising

indoor and outdoor air quality [8].

A range of methods and techniques have been developed over the years to address

these challenges and better understand the dispersion dynamics mentioned above [9,

10]. Among these methods, including full-scale experiments, reduced-scale physical

modeling, semi-empirical correlations, as well as numerical methods, each with its

known limitations and challenges, Computational Fluid Dynamics (CFD) stands out

for its flexibility in terms of applicability, convenience, and cost [11]. The potential

of CFD for providing guidance in enhancing urban air quality lies in its capability of

modeling a wide range of fluid flows and in producing detailed representations of the

complex interactions between air flows and urban structures [12]. Using CFD models,

researchers and urban planners can explore pollutant behavior in urban settings,

and manipulate urban design effectively to promote sustainable configurations and

enhance pollutant dispersion. Being aligned with the ultimate objective of this study,

this is crucial for developing strategies for air quality management, which is not only

a matter of environmental concern but also a public health imperative.

The application of CFD in urban environments has its own set of challenges. Urban

landscapes are characterized by complex geometries, varying surface roughness, and a

range of atmospheric conditions, all of which need to be accurately represented in the

models. Due to the necessity of simplifying assumptions, the reliability of the results

becomes highly dependent on modeling choices, and therefore, their validity must
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be verified [13]. Dispersion data sets generated by tracer gas experiments have been

shown to serve this purpose [14–16]. Nevertheless, it is not feasible to obtain high-

quality data for every geometry with its unique features, due to logistic difficulties.

A comprehensive review study by Toparlar et al. claimed that a high portion of CFD

investigations in urban micro-climate studies lack validating evidence [17]. Such a

scarcity has encouraged the research community of the field to progressively advance

the atmospheric dispersion modeling framework [18–20]. Despite the previous efforts,

achieving a fully comprehensive framework remains an ongoing pursuit [21].

To address these challenges, this research focuses on modifying CFD methodologies

and developing more accurate predictive models for urban pollutant dispersion, par-

ticularly emphasizing emissions from rooftop sources. This part of the study targets

an available shortcoming within the current body of the literature that is character-

ized as a gap in methodological advancements. By refining these models to more

effectively capture the realistic scenarios of urban environments, the research aims

to further bridge the gap between theoretical modeling and the broader narrative of

practical urban development and environmental sustainability. An exhaustive review

of the previous attempts has identified gaps in the area of formulating urban plan-

ning guidelines for future developments. In this regard, this work tries to address a

recognized knowledge gap in understanding the interplay of some of the most influenc-

ing morphological indices on the bulk quantities representing urban ventilation and

pollutant diffusion paths. Such insights can significantly help designers in passively

promoting urban air quality.

1.1 Thesis Objectives

Despite the endeavors made by previous researchers, precise prediction of the pol-

lutant concentration field and dispersion in high-density urban settings has shown

to remain quite challenging. Recognizing the gap in the literature and considering

the primary purpose of this research to contribute to the development of sustainable
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urban planning practices, the following objectives have been set:

• Assemble a well-tested framework for reliable and efficient numeri-

cal modeling of the pollutant dispersion in compact urban regions.

Considering the randomized, chaotic, and intermittent characteristics of the tur-

bulent dispersion flow within the Atmospheric Boundary Layer(ABL), there is a

wide range of influencing parameters and simplifying assumptions that severely

impact the outcomes of the CFD models. The RANS method was used in this

study to treat the governing equations, along with assuming the Boussinesq

hypothesis to model the resulting shear fluxes. Steady-state modeling of the

fundamentally transient flow features and fluctuating turbulent fluxes definitely

results in imperfect solutions, which could be because of RANS’s inability to

reproduce the largest eddies in a turbulent flow. In this regard, performing a sys-

tematic validation study to guarantee acceptable model accuracy and estimating

the uncertainty levels is of great importance. To achieve this goal, full-scale ex-

periments in complex geometries with available high-quality and comprehensive

data sets, such as the Mock Urban Setting Tests (MUST) experiment, were nu-

merically modeled to analyze the chosen methods of simplification for flow and

pollutant transport modeling. This was done to propose a framework for reli-

able and efficient modeling of the dispersion flow in complex urban geometries

where the field measurements were not available for validation. Several of the

most influencing turbulence modeling parameters and scenarios were carefully

investigated. The necessary modifications and recommendations were proposed

to accurately model the scalar dispersion or concentration field. The effective-

ness and uncertainties of the proposed modeling settings were further evaluated

through both quantitative and qualitative comparisons with high-quality exper-

imental data.

• Optimize Turbulence Closure Models for Enhanced Urban Atmo-
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spheric Dispersion Prediction. For this objective, the emphasis was on

refining atmospheric dispersion modeling in urban clusters by enhancing the

performance of turbulence closure models. Leveraging the framework estab-

lished earlier, the goal was to re-calibrate the model’s empirical coefficients,

focusing on both the turbulence and scalar dispersion. This was achieved

through a strategic optimization process, employing a modified genetic algo-

rithm, and utilizing the high-quality data set from the MUST experiment. The

re-calibration aimed to improve the model’s fidelity in representing pollutant

concentration and turbulence kinetic energy (TKE) within urban settings. By

attaining greater accuracy and reliability in the CFD model, this objective di-

rectly contributed to addressing urban environmental challenges, particularly in

air quality management. The refined model provided pivotal insights for urban

planning and public health, offering enhanced tools for assessing and mitigating

air pollution in densely populated urban areas. This endeavor not only ad-

vanced the field of environmental modeling but also supported the development

of sustainable and health-conscious urban environments.

• Define and conduct parametric studies to identify and study the

unique effects of urban morphologies on scalar dispersion and street

ventilation efficiency in heterogeneous geometries. While implement-

ing the proposed guidelines of the previous step for modeling the dispersion

flow, idealized but systematically irregular arrays were created to investigate

the physics of the scalar transport emitted from roof-based sources in the pres-

ence of urban heterogeneities. This approach was an intermediary between the

studies in actual geometries with case-specific outcomes and studies in idealized

and regular arrangements with missing impacts of the non-uniformities avail-

able in urban areas. For this objective, we parametrically studied the combined

effects of the pollutant source location, array orientation, planar density, and
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planar heterogeneity on the urban ventilation capacity and, consequently, on

the pollutant concentration fields in the proximity of the building exterior faces,

where the fresh air intakes are typically positioned. This study contributed to

sustainable urban and building planning practices by further informing design-

ers on how the interplay of urban morphological parameters could impact the

dispersion dynamics and the resulting bulk concentration levels.

1.2 Thesis Outline

Chapter 2 of this thesis provides essential background information to facilitate a

better understanding of the subsequent main chapters. It encompasses discussions on

pollutant dispersion within the atmospheric boundary layer, investigation methods,

turbulence modeling fundamentals, CFD modeling, and a survey of relevant literature

on the topic.

This thesis document was structured using the ”paper-based thesis” [22], with

Chapters 3, 4 and 5 nearly exact copies of three successive peer-reviewed publications

(the first two in print and Chapter 5 under review at the time of completion of

this document). The versions in this thesis have had minor graphical editing and I

have removed the three separate abstracts, preferring a single overall abstract for the

entire thesis included above. These next three chapters show the step-wise logical

progress of my research as I worked toward meeting my final goals following these

three important steps.

In Chapter 3, I conducted a comprehensive validation study, including a thorough

statistical assessment, to establish the most effective framework for atmospheric dis-

persion modeling in the context of building clusters. In Chapter 4, I explored the

avenues for improving the accuracy and reliability of numerical predictions by mod-

ifying turbulence modeling, specifically addressing the dispersion of rooftop-emitted

pollutants within compact urban arrays. My Chapter 5 addressed the final objective

of conducting an in-depth investigation of the synergistic effects of urban morpholo-
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gies on dispersion pattern dynamics. The findings have implications for informed

urban planning practices, particularly concerning rooftop emissions and the place-

ment of fresh air intakes. Finally, Chapter 6 concludes the thesis by summarizing key

findings and discussing their significance for urban planning, air quality management,

and the promotion of sustainable urban environments.
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Chapter 2

Background

Dispersion, in general, refers to the spread or distribution of a substance, such as

pollutants, throughout an environment. Depending on the specific characteristics

of the background environment, dispersion can manifest itself in various forms. Of

particular interest in this study is atmospheric dispersion, a phenomenon in which

pollutants spread more rapidly and cover wider areas than in other environments,

such as liquids, solids, or porous media [23]. In urban environments, the emission

of pollutants is common due to factors like high population density, heavy vehicular

traffic, and industrial activities, resulting in the dispersion of these pollutants [24].

This complex process is influenced by a multitude of factors, including meteorological

conditions, terrain, and pollution sources. Understanding and effectively managing

atmospheric dispersion in urban areas is crucial for mitigating the health and envi-

ronmental impacts of air pollution and improving the overall quality of life for urban

residents. This essential task can not be achieved unless one acquires the necessary

basic understanding of the underlying principles and science behind it. Therefore,

this section will offer a concise overview of the basics and key fundamentals, provid-

ing readers with the necessary background information on the topic, while a more

detailed review of the relevant literature, directly tied to the specific objectives of

this study, will be presented at the beginning of the upcoming chapters.
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2.1 Atmospheric boundary layer

The phrase Atmospheric Boundary Layer (ABL) typically refers to the lowermost

layer of the troposphere, which is directly affected by the earth’s surface through

vertical fluxes of momentum, heat, and moisture (i.e., mass) [25]. The profound

significance of investigating and researching this layer arises from the fact that all

human daily activities, down to breathing, take place within its confines. Variation

in surface fluxes due to differing surface characteristics, along with the influence of

geostrophic wind aloft, results in diurnal fluctuations in the thickness of the ABL [26].

The typical thermal mixing that happens during the day due to solar radiation extends

the depth of ABL. Conversely, the surface cooling that happens during the night

triggers the downward flux of heat that reduces the layer thickness considerably [27].

Similar to any boundary layer, the ABL is further subdivided into three main

sublayers. The lowest layer within the ABL is generally referred to as the roughness

sublayer with a thickness in the order of the aerodynamic roughness height, z0. Given

the overall height of the ABL, neglecting the roughness sublayer in certain applications

is often justifiable. Alternatively, its impact on the layers above can be effectively

accounted for through the use of wall-functions [28]. Moving upwards, the next

layer is called the surface layer, constituting approximately 10% of the ABL. This

sublayer is entirely turbulent, characterized by strong vertical gradients in wind speed,

temperature, and humidity. Coriolis forces are typically negligible here, with the

vertical wind velocity profile primarily determined by a balance between pressure

and friction forces. Considering the typical horizontal length scales in atmospheric

studies, it is reasonable to regard this layer as shallow. Consequently, the substantial

fluxes of physical quantities experience minimal vertical variation and are generally

assumed to remain constant. Such an assumption facilitates the conceptualization of

an ideal surface layer [29]. The outermost sublayer of the ABL is the Ekman layer,

where the Coriolis force becomes significant and notably affects both wind direction
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and speed. Beyond the Ekman layer lies the free atmosphere, where surface effects on

wind gradually diminish, and a balance between pressure and Coriolis forces derives

the geostrophic winds [30].

Given the broad spectrum of situations within the ABL, it is necessary to place

additional emphasis on specifying the study’s underlying physics. This emphasis

aids in refining governing equations and selecting appropriate methodologies prior

to initiating a study. As a result, the subsequent sections will offer an overview of

various classifications in atmospheric dispersion flow studies, with a particular focus

on scale and atmospheric stability states.

2.1.1 Scales of the atmospheric dispersion studies

Considering the objectives outlined in this work, which center around the investigation

of flow and pollutant dispersion dynamics, the layer of focus will be the surface

layer. The dispersion phenomena within the surface exhibit a multi-scale nature,

highlighting the great importance of appropriately defining the spatial scale of study.

According to Oke’s classification, atmospheric flow can generally be divided into four

main meteorological categories based on horizontal length scales: micro-scale (up

to an order of 103 m), local scale (102 to 104 m), meso-scale (104 to 105 m), and

macro-scale (105 to 108 m) [31]. The meteorological scales beyond the macro-scale

are typically classified as global-scale with dispersion time-scales that could take up

to years [32].

The study of urban pollutant dispersion over and around clusters of buildings falls

within the micro-scale category. This necessitates explicit modeling of geometry,

including all available structures, as they exert a significant influence on local flow

characteristics [33]. Micro-scale dispersion studies can be further divided into various

categories [34]. These include building-scale studies, which focus on the investigation

of isolated buildings [35–37], street-scale studies that encompass the spaces between

two or more buildings [38–40], neighborhood-scale studies conducted over a cluster of
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buildings [41–43], and city-scale studies that consider groups of urban settings, often

treated as urban blocks with bulk morphological characteristics [15, 44].

Considering the variations in turbulent diffusion of pollutants relative to their

distance from the source, an alternative classification has been introduced. This cat-

egorization divides dispersion studies into three main groups based on the interaction

between pollutant plumes and atmospheric flow influenced by nearby obstacles [45].

The first is near-field dispersion, where the plume retains a width smaller than the

length scale of available structures [46]. In this scenario, the plume is highly influenced

by localized flow structures, resulting in significant spatial variations. As the plume

progresses downstream, it enters an intermediate scale of dispersion, reaching a width

comparable to the size of buildings. While turbulence induced by buildings and flow

modifications still contribute to plume growth, the overall dispersion pattern experi-

ences milder changes compared to the near-field scenario. At a considerable distance

from the source, the size of the plume width surpasses that of the buildings. Con-

sequently, it follows a Gaussian distribution, with all available geometric structures

treated as surface roughness [47]. Given that the source locations in this thesis are

embedded within the cluster of buildings, the investigations are therefore classified as

near-field dispersion studies at the neighborhood scale.

2.1.2 Atmospheric stability classification

Atmospheric stability refers to a particular state of equilibrium that defines the ca-

pacity of the atmosphere to either enhance or resist vertical mixing. Understanding

different states of atmospheric stability is pivotal due to its undeniable influence on

weather conditions, air quality, and the dispersion of pollutants. To this aim, the

definition of the adiabatic lapse rate, Θl, is typically employed to assess the stability

state of the atmosphere [48]. Θl is defined as the rate at which the temperature of an

air parcel decreases adiabatically, solely due to cooling and expansion resulting from
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its rise within the atmosphere:

Θl = −dT

dz
=

g

cp
= 9.76◦C/km (2.1)

where T is the air parcel temperature, g is the gravitational acceleration, and cp is

the specific heat capacity at constant pressure.

In general, three main categories of atmospheric stability can be identified. A

stable atmosphere is formed when the environmental lapse rate falls below Θl. In

such circumstances, if an air parcel is vertically lifted, it becomes surrounded by

a warmer ambient air, causing it to have a higher density. As a result, the air

parcel shows the tendency to return to its initial position, indicating a suppression of

vertical mixing. Conversely, when the environmental lapse rate surpasses the Θl, it

gives rise to an unstable atmosphere. In such circumstances, an air parcel displaced

upward encounters an ambient with a lower temperature than itself, causing it to

continue ascending in the direction of its initial displacement. This results in enhanced

vertical mixing and momentum transfer. Lastly, a neutral atmosphere is present

when the environmental lapse rate equals Θl. In this scenario, a displaced air parcel

encounters surrounding air with the same temperature, leading to neither enhanced

nor suppressed vertical mixing [26].

While Θl provides valuable information for assessing atmospheric stability, it lacks

accounting for turbulence induced by wind shear over the earth’s surface. To this

aim, the Monin-Obukhove similarity theory offers a measure that relates the stability

state to the available momentum and heat fluxes. The Obukhov length, LO has shown

to be a practical scale in determining the level of atmospheric stability as it reflects

the height where the turbulence flow generated by buoyancy effects is comparable to

the one caused by wind shear [49]. Equation 2.2 provides the Monin-Obukhov length

(LO), where uτ represents the friction velocity, κ = 0.4 denotes the Von Karman

constant, and QH/ρ0cp stands for the kinematic heat flux [50]. Here, ρ0 and T0 are

defined as the reference density and temperature, respectively. Using this definition,
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LO → ∞ corresponds to a neutral surface layer, while LO < 0 and LO > 0 indicate an

unstable and stable atmosphere, respectively. To focus solely on the impact of urban

layouts on turbulence and dispersion patterns, without accounting for the influence

of stability effects on vertical fluxes, a neutral atmosphere is assumed in this thesis.

LO =
−uτ

3T0ρ0cp
κgQH

(2.2)

2.2 Modeling methods in ABL studies

The selection of an appropriate modeling approach holds significant importance in

the scope of ABL studies. Each method provides the opportunity to simulate a re-

alistic physical process set by a series of necessary assumptions and limitations. The

accuracy level and uncertainty inherent in these models are key factors that influ-

ence their suitability for a given problem. Due to these facts, the decision is far

from straightforward, often complicated by the challenge of assessing model uncer-

tainty. Additionally, factors like cost, resource limitations, time constraints, and data

availability further complicate the process. In this section, an overview of various

methodologies will be presented, accompanied by a discussion of their advantages

and limitations.

2.2.1 Full-scale field experiment

Conducting full-scale field tests, such as tracer gas experiments, can provide invalu-

able data sets that serve as essential resources for developing and validating dispersion

models. These tests capture real-world atmospheric conditions, encompassing factors

like urban wind flow, buoyancy forces, atmospheric stratification, and the dynamic

effects of surrounding structures on plume dispersion [34]. However, the inherently

uncontrolled meteorological conditions make it nearly impossible to independently

study influencing parameters and to collect data that can be used to define a general

guideline to predict the dispersion patterns within a particular geometry. Further-
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more, in a full-scale experiment, measurements can be taken at only a limited number

of accessible points and locations [51].

The typical approach in these experiments is to continuously release a tracer gas

with negligible background concentration in the atmosphere and collect samples at

multiple locations of interest to effectively show the dispersion pattern in the flow

field. For the tracer gas to be considered a passive scalar throughout the experiment

and to avoid possible environmentally destructive effects, it is necessary to limit the

emission rate. On the other hand, limiting the emission rates results in considerably

low tracer concentrations detected at sampling points, which demands high accuracy

and specialty gas analyzers. The concentration data must also be supplemented with

comprehensive meteorological measurements, including but not limited to wind speeds

and directions at multiple locations and temperatures at different heights. Tests

should be repeated on several occasions to cover an acceptable range of meteorological

conditions. Measurements at high frequency and for adequately long periods are also

essential during each trial so quasi-steady periods can be extracted from the data set

for steady-state purposes [49]. Consequently, conducting tracer gas experiments in

densely populated urban areas presents significant challenges, demanding substantial

financial resources and logistical considerations. The aforementioned challenges have

resulted in a noticeable scarcity of full-scale dispersion measurements, with only a

limited number of reliable data sets currently available [52–55].

2.2.2 Reduced-scale laboratory experiment

Wind tunnel and water channel experiments provide effective means to investigate

plume dispersion in complex geometries, while supplying dependable data sets to

develop and validate dispersion models [56]. These experiments are founded on the

theoretical assumption that the flow and dispersion patterns around scaled-down ob-

stacles exhibit dynamic similarity with those encountered in full-scale tests. In con-

trast to full-scale field experiments, wind tunnel, and water channel measurements can
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be conducted within a controlled setting, ensuring consistent test conditions (inflow

wind velocity, direction, temperature, background concentration, etc.) throughout

the experiments [57]. This controlled environment facilitates the examination of how

specific parameters affect dispersion patterns. Nevertheless, despite these advan-

tages, there are certain drawbacks to this approach, including the absence of realistic

atmospheric effects, the associated high costs, and intricate scaling and similarity

issues [10]. The number of conducted reduced-scale experiments within the current

body of literature is considerably higher than that of the full-scale tests [58–60].

2.2.3 Semi-empirical models

The limitations associated with both full-scale and reduced-scale tests have motivated

many researchers to develop and adapt various parametric dispersion models over the

years. These models incorporate mathematical functions that integrate analytical

solutions with experimental observations, providing a straightforward approach that

finds widespread application in urban planning exercises [9]. Notably, these widely

adopted dispersion models are mainly defined based on the Gaussian distribution of

plumes. The Gaussian distribution represents an analytical solution to the scalar

transport equation, derived under highly optimistic assumptions about meteorolog-

ical conditions and simplified geometric topographies. Some of these assumptions

include steady distribution, neglecting wind shear, assuming a flow field with parallel

and linear streamlines, and presuming that all meteorological factors and turbulence

characteristics remain uniform throughout the domain [13, 61, 62]. These necessary

simplifications, however, adversely affect the model’s accuracy and applicability.

Equation 2.3 shows an example of the Gaussian plume distribution equation derived

for a scenario involving an elevated source. The spatial concentration distribution

is denoted by C, while q represents the emission rate, and H corresponds to the

physical height of the source. Additionally, U represents the freestream wind velocity

at height H, and σy and σz stand for the standard deviations of the concentration
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spread in the cross-wind (y) and vertical (z) directions, respectively. In theory, both

σy and σz are considered functions of turbulence diffusion. Nevertheless, their actual

values are determined via empirical equations that take into account the atmospheric

stability state and the distance from the source, denoted as x. Further empirical

modification to the definitions of σy and σz could expand this model’s applicability

for case-specific scenarios [6]. As Equation 2.3 suggests, an undefined value of ∞ is

computed when the wind velocity equals zero, suggesting a limitation in the reliability

of model predictions under extremely calm wind conditions.

C(x, y, z) =
q

πUσyσz

exp

(︃
− y2

2σy
2

)︃[︃
exp

(︃
−(z −H)2

2σz
2

)︃
+ exp

(︃
−(z +H)2

2σz
2

)︃]︃
(2.3)

Wilson introduced a semi-empirical model aimed at estimating dilution levels along

the plume centerline downstream of the source. However, this model significantly

underpredicted the observed concentrations, with discrepancies observed in approxi-

mately 98% of the measurements [63]. Notably, the underprediction was more severe

at greater distances from the source, being approximately 10,000 times lower far from

the source compared to 200 times lower in near-field regions. In an attempt to account

for additional dilution caused by stack height, ASHRAE proposed a minimum dilu-

tion model based on the Gaussian plume distribution. This model assumed a virtual

source point upwind of the stack by adding the stack height to the distance between

the source and intake [62]. However, experimental results indicated that this model

was overly conservative, with observed concentrations ranging from approximately 40

to 450 times higher than the predictions. Moreover, these models failed to consider

the impact of rooftop structures (RTS) and the resulting downstream recirculation

zones [64]. The Atmospheric Dispersion Modeling System (ADMS), developed by

Cambridge Environmental Research Consultants (CERC) [65], is another widely rec-

ognized computer model rooted in the Gaussian plume model. ADMS has undergone

extensive validation in the literature and is among the few models that relatively

closely align with wind tunnel and full-scale experimental data [9, 66]. Nevertheless,
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while available dilution models like ADMS generally perform well in cases involv-

ing isolated buildings, they often provide inaccurate estimates in the vicinity of the

source and in complex terrains where turbulent fluctuations and three-dimensional

strain fields significantly influence pollutant dispersion. The uncertainty surrounding

these dispersion models has led urban planners and building designers to adopt overly

conservative approaches, resulting in substantial energy losses [67].

2.2.4 Numerical models

The need for a more accurate and comprehensive estimate of the plume behavior

around complex urban geometries has made numerical modeling an appealing solu-

tion. Computational Fluid Dynamics (CFD) is defined as the computer-based sim-

ulation and analysis of systems that involve fluid flow, heat transfer, and any other

related phenomena [68]. CFD stands out for its ability to deal with complex envi-

ronmental scenarios, primarily due to its use of fine-scale and adaptable grids. This

capability distinguishes CFD from larger-scale models that use simpler grids, making

CFD particularly effective for detailed studies of pollutant dispersion and airflow in

urban areas at a micro-scale level [69]. CFD offers numerous compelling advantages,

making it a more favorable alternative method to be used in sustainable building

designs [70]. These benefits include a marked reduction in lead times and costs for

designing new scenarios, precise estimation of concentration and flow characteristics

at each grid point within the computational domain, enhanced flexibility in modeling

complex systems that are difficult or impossible to replicate with physical modeling,

capability to analyze scenarios involving hazardous conditions safely, and the facil-

itation of rigorous and comprehensive parametric studies in atmospheric dispersion

research.

Conversely, CFD comes with several inherent limitations and disadvantages. It

relies on idealizations of reality, incorporating geometric simplifications and assump-

tions regarding flow and boundary conditions that can affect the accuracy of its
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simulations. CFD solutions are approximations, typically obtained through iterative

processes that may accumulate errors at each time step. Turbulence, a crucial aspect

of fluid dynamics, poses a particularly challenging problem for accurate modeling in

CFD and is often addressed with a significant degree of approximation. Although

CFD offers detailed insights, its limitations become evident when considering fac-

tors like computational intensity and the expertise required for result interpretation.

This underscores its disadvantages when compared to more direct experimental meth-

ods and simpler semi-empirical models [12]. Considering these inherent complexities

and uncertainties associated with CFD, it becomes evident that the validation and

verification of modeling choices and numerical results are crucial. It is essential to

compare all CFD models with high-quality experimental measurements to ascertain

their validity.

2.3 CFD in urban dispersion modeling

Upon conducting a thorough comparison of various methodologies, CFD has been for

its unparalleled flexibility in modeling complex urban dispersion flows. This flexibility

is particularly valuable for performing studies to explore the intricate effects of hetero-

geneous urban configurations on dispersion dynamics and local ventilation capacities.

However, it’s important to address the inherent uncertainties in these methods to

ensure the reliability of the results. This is specifically crucial for novel cases where

high-quality data sets matching the physical geometry are not available. In this sec-

tion, the focus will be on the most influential modeling settings and decisions in the

context of atmospheric dispersion within complex urban settings. This overview aims

to identify areas for improvement in the current state of urban dispersion modeling

and its implications for urban planning. A more specific and detailed review of the

previous literature directly related to the thesis objectives will be presented at the

beginning of the respective chapters.
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2.3.1 Turbulence modeling resolution

The turbulent nature of the ABL and its three-dimensional interactions with avail-

able structures (e.g., buildings) have made reliable modeling of the urban dispersion

flows a challenge. The presence of turbulence in fluid flow leads to the formation of

eddies characterized by various length and time scales, creating a dynamically intri-

cate phenomenon. The smaller eddies are universal and typically governed by the

inherent properties of the fluid dynamics, while larger ones are typically influenced

by the physical structure available in the geometry [71]. Numerous pioneering efforts

in the field of fluid dynamics have revolved around the development of numerical

methods aimed at accurately capturing and resolving these eddies. Direct Numerical

Simulation (DNS) is a highly detailed approach employed in solving the governing

equations for fluid flow without any approximation or modeling. To accomplish this,

DNS requires an exceptionally fine spatial grid to capture even the smallest eddies and

a correspondingly small time step to capture the fastest fluctuations in the flow [72].

Due to its prohibitively high computational demands, DNS is primarily used for fun-

damental research and small-scale problems, making it impractical for use in urban

flow simulations.

Two widely used methods for simulating turbulence in fluid flow are Large Eddy

Simulation (LES) and Reynolds-Averaged Navier-Stokes (RANS). LES offers an in-

termediate approach to turbulence calculations by resolving the larger eddies in the

field and filtering the unsteady Navier-Stokes equations to eliminate smaller eddies

(usually smaller than the size of the computational mesh) [73]. RANS, however, fo-

cuses on the mean flow quantities in the turbulent field by solving the time-averaged

equations to exclude the fluctuation effects while accounting for turbulent transport

with modeled turbulence viscosity [74]. Consequently, RANS directly resolves the

mean flow and uses closures to model turbulence across all scales. The debate among

researchers regarding the relative merits of RANS versus LES dates back many years
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and continues to be a topic of discussion [75–78]. Although LES tends to yield more

accurate results compared to RANS by accounting for the effects of large eddies, it

comes with substantially higher computational requirements and poses greater post-

processing challenges. This is the main rationale for observing a gradually increasing

focus on implementing this method in the research within the recent decade. However,

such a transition has not been noted yet in the design and consultancy discipline [79].

The fundamental challenge in engineering is still to identify methods that yield ade-

quately accurate results at minimal cost [80].

On the topic of near-field atmospheric dispersion modeling, RANS has remained

quite popular among researchers with respect to urban geometries of great sizes and

high planar densities. On the other hand, LES is also shown to be the most suit-

able choice for modeling the sudden accidental or deliberate release of hazardous

airborne scalars in geometry where instantaneous local concentrations are of great

importance [81]. In this research, the dispersion of the pollutant scalar in the com-

plex urban geometry is investigated which is being continuously released from the

source points. Therefore, considering the large size of the computational domain and

the interest in the mean quantities of flow characteristics, the RANS method has been

chosen to solve the governing equations.

2.3.2 Modeling considerations

The accuracy and reliability of the results obtained from a CFD code heavily depend

not only on the underlying physical and chemical models but also on the expertise

of the user within the respective field. Several critical considerations come into play

when performing ABL CFD modeling. To establish a well-defined urban flow CFD

model, one must make well-informed decisions on the required level of geometric

detail, the size of the computational domain, how much to refine the grid, which tur-

bulence model to use, whether to use a logarithmic or power law profile for the wind

in the atmospheric surface layer, what near-wall treatment methods to use, which dis-
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cretization schemes to pick, and what criteria to use for convergence. [82]. Examples

of sensitivity investigations can be found in the literature that have addressed the un-

certainties associated with influencing factors such as computational domain size [83],

grid resolution [84, 85], boundary conditions [86, 87], near-wall treatment [88, 89],

and horizontal homogeneity [90, 91].

The importance of establishing well-defined procedures for quality modeling has ini-

tiated several efforts for developing ”Best-Practice” guidelines that date back decades

[18, 92–94]. However, in the context of complex urban environments, the intricate

interplay of turbulence parameters and available structures further complicates the

task. Despite the effort of previous researchers to perfect the CFD modeling of dis-

persion flows around a cluster of buildings, the science is still inexact, highlighting

the necessity of continuous development [95, 96].

Focusing on the complexities of CFD modeling in urban settings, a key aspect that

demands further attention is the selection of a suitable turbulence closure model.

The balanced compromise between accuracy and computational complexity offered

by RANS, as discussed in Section 2.3.1, has made this method quite popular in

numerical urban studies. As a result of implementing this approach, additional terms,

known as Reynolds stress components are introduced in momentum equations. The

influence of turbulence on the mean flow is represented by these stresses, and further

modeling and supplementary equations are required to resolve them [68]. A wide

range of turbulence closure models, commonly known as eddy viscosity models, have

been developed to effectively recapture the pivotal turbulence-induced features (e.g.,

recirculation zones, vortices, etc.) within the flow. Among all, a few of the most

widely used first-order closures in urban flow simulation are the standard k − ε [97],

renormalization group (RNG) k − ε [98], realizable k − ε [99], standard k − ω [100],

shear stress transport (SST) k − ω [101], and Spalart-Allmaras [102].

Due to the empirical nature of the turbulence models, as they are derived through

extensive flow measurements in the context of classical generic flows (e.g., free shear
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flow, fully developed turbulent channel flow, etc.), none can be considered univer-

sal [103]. Therefore, a turbulence closure that proves effective in one scenario may

exhibit poor performance in another [79]. Several studies regarding ABL flows can be

cited that assessed the closure models’ performance in specific scenarios such as mean

and turbulent flow over a rural flat surface [104], hilly terrain [105, 106], generic case

of an isolated cube [107], high-rise isolated building [108], two uniform low-rise build-

ings [109], or dispersion flow between two buildings of different heights [38], behind a

single-block building [40, 110], within an isolated street canyon [78], and around an

isolated high-rise building with elevated pollutant source [111]. The variations in re-

sults obtained from different turbulence models for each distinct geometry emphasize

the importance of conducting such sensitivity studies tailored to the specific case of

interest.

Considering that these empirically developed closure models are not inherently de-

fined for ABL flows, they can be further modified to more accurately capture the

characteristics of ABL dynamics [112]. Achieving this involves obtaining high-quality

measurements specific to the intended generic case, which allows for the definition of

an appropriate training case. Furthermore, an objective function must be carefully

formulated, incorporating the desired parameters of focus. However, the process of

re-calibrating turbulence closure models is computationally demanding, mainly due to

the numerous coefficients requiring simultaneous adjustment. Therefore, an optimiza-

tion framework is also required to reduce the computational cost as much as possible,

while preserving the quality of the results. Several efforts have been made over the

years to fine-tune turbulence models to some extent in the context of ABL. For exam-

ple, certain studies have focused on the adjustment of a single empirical coefficient,

particularly in scenarios involving flow over flat or irregular terrain [113, 114]. Oth-

ers have specifically addressed flow characteristics over a cross-shaped building [115].

In addition, certain investigations have employed data-driven methodologies, such as

Bayesian approaches [116], whereas others have conducted linear sensitivity analy-
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ses by systematically varying individual coefficients [117]. Notably, there are also

instances where researchers have trained the turbulence model using the generic ge-

ometry of an isolated building [20, 118].

To the best of the author’s knowledge, none of the previous studies have specif-

ically addressed a generic case of a building cluster. They all focused primarily on

flow-related parameters when defining their objective functions, and none of them

utilized full-scale data sets that incorporated realistic atmospheric conditions. There-

fore, there is a clear gap for an optimized turbulence closure model that is carefully

calibrated for a generic building cluster scenario. This model should also incorporate

both turbulence-related and dispersion-related parameters in its formulation, which

is currently lacking.

2.3.3 Dispersion around buildings

Understanding how pollutants are advected and diffused, influenced by the interac-

tions between ABL flow and the available structures in urban settings is of great

importance for urban health and safety. Accurately predicting dispersion patterns in

the presence of buildings is crucial for sustainable urban planning and environmental

management practices. Given the gravity of the topic, an overwhelming amount of

research has been done, employing all forms of modeling as described in Section 2.2,

to continuously advance the knowledge in this field. Historically, research in this area

has primarily focused on more simplified, generic cases to build foundational under-

standing. Examples include studies on an isolated cube [35–37, 107, 119, 120], an

isolated high-rise building [108, 121, 122], or an isolated street canyon [39, 76, 78].

Urban flows exhibit intricate flow features, examples being large wake regions,

three-dimensional strain rates, and strong pressure gradients [10]. For such reasons,

the problem of air quality becomes even more critical when it should be addressed

in a bigger picture, for example, in a region with a high building density. A pioneer-

ing work by Oke [123] suggested that depending on the spacing between buildings
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in an array, three different flow regimes could occur. When buildings are sparsely

arranged, an isolated roughness flow occurs with minimal to no wake interactions. As

the arrangement becomes more packed, a wake interference flow takes place, in which

the available spacing still allows for the entertainment of flow from above the canopy.

However, the spacing is not that wide, and the wake behind the upstream building in-

terferes with the recirculation zone in front of the downstream building. As buildings

become adequately packed, the flow treats the canopy as a rough surface and does

not penetrate it. This condition, known as skimming flow, results in a steady recir-

culation zone with relatively low-velocity regions. With the exception of the isolated

roughness regime, the wind and dispersion flow in urban areas exhibit fundamentally

different patterns compared to those around isolated buildings [124]. Therefore, while

the insights of the initial studies are valuable, they lack the generality required for

compact urban planning practices.

Additionally, it is crucial to highlight that semi-empirical models fall far short

of even remotely providing very conservative estimates for dispersion patterns in

cases of near-field emissions within building clusters. This limitation arises because

the near-field plume within an array experiences significant distortion and expansion

due to the presence of individual buildings, resulting in a distribution that deviates

significantly from the expected Gaussian shape [125]. The enhanced turbulence levels

resulting from interactions between multiple buildings are highly dependent on the

geometric arrangements of the buildings [126]. Semi-empirical models, by some case-

specif modifications to their spread parameter(σy and σz), can only provide rough

estimates of pollutant distribution in the far-field by superimposing the flow around

individual buildings in very sparse configurations, or, treating the entire array as a

single block in highly dense packed clusters [69]. Given all these details, CFD is

strongly recommended as the only practical tool for urban planners to investigate the

complex dispersion patterns within urban settings through well-defined parametric

studies.
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A clear shift is evident in the literature toward applied cases within urban set-

tings. However, it is important to note that this area is relatively young and not as

extensively explored as the well-studied generic case of an isolated building [3]. Strate-

gically modifying urban forms can greatly enhance the built environment’s ability to

disperse outdoor air pollution [15]. A pioneering study on building arrays specified

the most influential bulk geometric characteristics of building clusters that have a

significant effect on near-field dispersion patterns. These include planar density, the

standard deviation of building heights, the mean pattern of the layout, and the mean

shape of the buildings [127].

A detailed review of the recent literature suggests that while some studies have

examined the impact of urban morphologies on wind flow and pollutant dispersion

in idealized, regularly aligned building arrays, providing key insights, there is still

a notable gap in understanding the effects of more complex, heterogeneous urban

forms. These studies often show a positive correlation between array permeability and

pedestrian-level air quality [110, 128, 129], but they also highlight that air quality is

significantly influenced by the array’s specific layout and geometric characteristics [44,

130]. The complexity of investigations increases for actual urban environments, where

non-uniform building arrays create more intricate flow and turbulence structures [131].

Recent studies have started to explore the generic non-uniform arrays and unique

urban terrains, but there is a scarcity of studies focusing on pollutant transport in

such settings [132]. This lack of comprehensive research on this topic, especially

regarding the interplay of non-uniformities and planar densities in urban clusters,

underscores the need for more in-depth and novel studies. This need is especially

notable in scenarios involving elevated pollutant sources and non-perpendicular wind

directions, which deviate from the typical airflow patterns [111, 133–135]. These

studies are crucial for understanding how geometric variations in urban arrangements

can affect pollutant dispersion, emphasizing the urgent need for further investigation

in this area.
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Chapter 3

Performance evaluation of the
RANS models in predicting the
pollutant concentration field within
a compact urban setting: Effects of
the source location and turbulence
Schmidt number

3.1 Introduction

Statistical studies show a significant soar in the urban population in recent years,

with a prediction that around 70% of the earth’s population to be living in urban

regions by the next few decades [136]. This sudden surge in urbanization has come

with detrimental impacts on urban air quality caused by airborne pollutants emitted

from various sources. In this regard, acquiring a thorough understanding of how these

pollutants are dispersed in the presence of structural obstacles with varying shapes

and dimensions is essential to effectively maintain air quality at acceptable levels. For

this purpose, urban planners have used analytical and semi-empirical dispersion mod-

els to assess the pollutant distribution field [62, 63]. However, using these dispersion

models, which were mostly developed based on very idealized generalizations of the

meteorological conditions and simplified geometrical topographies, leads to extremely

conservative and less energy-efficient guidelines in the design [9, 66, 67, 137].
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Computational Fluid Dynamics (CFD) can be introduced as a reliable alterna-

tive method to predict the dispersion pattern in complex turbulent flow fields [3]. It

is generally less costly than experiments, provides flow estimates at every point in

the computational domain, and can predict the concentration field more accurately

than the analytical and semi-empirical models [138]. However, the highly complex

nature of the turbulent flow in the Atmospheric Boundary Layer (ABL) demands

simplifications and assumptions in every step of modeling. Special considerations

are required to implement a suitable numerical algorithm and carefully define grid

resolution, boundary conditions, wall functions, and other modeling settings [139–

141]. Additionally, CFD models must be validated by comparison with high-quality

experimental measurements to assess the severity of the introduced errors and un-

certainties [142]. Tracer gas experiments can produce valuable data to validate the

open-field dispersion CFD models [16, 52, 143]. Nevertheless, there are high costs

and challenges associated with conducting such tracer experiments in urban regions,

which make it impractical to acquire a reliable data set in every geometry with each

unique domain topography and diverse structural arrangement [10, 14, 144]. In this

regard, introducing a well-tested and improved infrastructure is considerably benefi-

cial in setting the guidelines for a reliable and efficient practice in numerical prediction

of pollutant dispersion in analogous cases.

Attempts have been made in recent years to perfect the numerical modeling of

atmospheric dispersion flows in simplified geometries (e.g., isolated buildings, the

street canyon between two buildings, flat terrain, etc.) [5, 121, 122, 145, 146]. How-

ever, many studies have pointed out the unique and considerable impacts of the

neighboring buildings and urban morphologies on the wind and dispersion fields and

emphasized the importance of these types of investigations [14, 147, 148]. Despite the

endeavors made by previous researchers, precise prediction of the pollutant concen-

tration field and dispersion in high-density urban settings remains very challenging.

This is due to the behavior of the turbulent flows with large-scale recirculation struc-
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tures and three-dimensional strain fields that challenge turbulence models. In this

regard, contributing to the “Best-Practice” in simulating the ABL dispersion flow

within compact urban settings is set as the primary goal of this research paper.

One of the most critical decisions that need to be made by the modeler is selecting a

suitable physical model to recreate the flow field in the regions of interest. Considering

the well-established balance of the Reynolds-Averaged Navier-Stokes (RANS) model

between the computational cost and the prediction accuracy, this approach has been

extensively suggested for atmospheric dispersion, where the mean quantities of the

flow characteristics are studied [76, 78]. A wide variety of turbulence models are

proposed in the literature to estimate the turbulence viscosity resulting from the

Boussinesq hypothesis and to close the RANS equations [68]. Properly selecting the

closure model can immensely impact the quality and efficiency of the predictions.

Therefore, it is considered an essential step in contributing to the “Best-Practice” in

CFD modeling of the near-field pollutant dispersion.

Narjisse et al. evaluated the capability of the standard k − ε and Shear Stress

Transport (SST) k − ω, in accurately resolving the wind flow in the presence of a

hilly terrain [105]. They concluded that even though standard k − ε overpredicted

the wind velocity near the wall, it was still a more reasonable choice for modeling

the flow for these geometries than SST k−ω which offered slightly better predictions

at a much higher computational cost. Tominaga et al. also tested the performance

of several RANS closures in modeling the atmospheric wind flow with results of the

unsteady simulations and showed that RNG k− ε provided a comparatively accurate

representation of the flow around the building [108]. However, the results were only

validated for a case of an isolated high-rise building, and a general conclusion could not

be drawn for more complicated situations of complex urban geometries. Hosseinzadeh

et al. performed a series of validation studies on CFD models of wind flow between

two buildings and examined standard k−ε, realizable k−ε, standard k−ω, SST k−ω

closure models [109]. They found that k − ε based models predicted more accurate
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results for this configuration compared with of k − ω based models, with standard

k − ε performing slightly better overall.

The selection of a proper closure model to represent the wind and turbulence fields

becomes even more crucial in cases of accurately modeling the pollutant dispersion

flows. Lateb et al. carried out a comparison study by simulating the dispersion flow

between two buildings of different heights using three types of k−ε turbulence models

to find the proper selection for the geometry configuration of his study [38]. They

observed that the realizable model produced more accurate results in cases with lower

stacks’ momentum ratios and heights, while RNG performed better for other cases.

An et al. numerically modeled the dispersion of a pollutant emitting from a ground-

level source around a single-block building to build a validation case. The SST k−ω

was used, and a comparison with wind tunnel data demonstrated the satisfactory

performance of this closure model [110]. However, a systematic comparison with

other closure models was missing to indicate whether SST k−ω was the best possible

choice for this case or not. Keshavarzian et al. studied the effects of the pollutant

source location (different heights on the building sidewall) on the dispersion pattern

by numerically simulating flow around an isolated high-rise building [111]. They only

validated the standard k− ε closure model in this paper, and therefore, it is not clear

how the location of the source might affect the performance of the closure models and

the overall prediction of the concentration field.

Several other studies also evaluated the performance of various turbulence mod-

els in modeling the atmospheric dispersion flow in different geometries [41, 149–151].

The fact that each turbulence model provides relatively different predictions in each

geometry justifies carrying out this sensitivity study as an essential step of this re-

search to understand each model’s limitations and further contribute to the “Best-

Practice” in urban dispersion modeling. Additionally, the type of pollutant source

location (ground-level sources upstream or downstream of an obstacle, sources in ur-

ban canopies, rooftop sources, etc.) is another factor that might impact the accuracy
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of the results generated by each turbulence model [79]. In this regard, to address the

gap in the literature, three of the most commonly used models in computational wind

engineering ( [88]), including standard k − ε, RNG k − ε, and SST k − ω, have been

chosen to be comparatively analyzed in the context of the compact urban-like geome-

tries. Four different case studies from the detailed and thorough Mock Urban Setting

Tests (MUST) dispersion data set have been selected that provide four distinct types

of source locations.

The turbulence Schmidt number (Sct) is another influencing parameter in atmo-

spheric dispersion modeling that needs to be tested and modified for benchmarking

the “Best-Practice”. Despite the proven profound effects of Sct, there is no clear

definition of this parameter, and most previous studies used a constant value in the

broad range of 0.2-1.3, depending on the specific flow properties and geometry of

the problem [152]. The common approach for determining the optimum Sct suggests

conducting a series of validation studies beforehand to test different values [66, 153,

154]. In this paper, in addition to the conventional method of finding the optimum

and constant value of Sct, the method of using a variable Sct will also be tested in

the context of dispersion modeling in complex urban geometries.

3.2 Fundamentals and governing equations

The pattern in which an emitted pollutant plume will be dispersed in the atmosphere

is dependent on the wind regime and turbulence. Wind flow in a compact urban

setting is disturbed by the presence of structural features such as buildings of various

heights and shapes and by natural landscapes, which form a wind profile that is quite

distinct from the ones in the open rural area. As this work aims to model the dis-

persion of the emitting plume from sources within an urban setting, a quick overview

of the governing equations and methodology is beneficial to justify the applicable

assumptions.

The mass, momentum, and energy conservation laws can be applied in the form of
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Navier-Stokes equations to govern the dynamics of ABL flow. Assuming an isother-

mal fluid flow in a neutral atmosphere, the energy equation will not be used in the

context of this study. The remaining governing equations are simplified by consid-

ering the applicable assumptions, such as steady-state, incompressible airflow, and

constant isotropic viscosity. Since the region of interest in this study is limited to the

inner sublayer of the ABL, the terrestrial Coriolis effects can also be neglected [28].

To further evaluate the validity of this assumption, the non-dimensionalized Rossby

number (Ro) was estimated. Ro is defined as the ratio of the inertial forces to the

Coriolis forces and can be expressed as [155]:

Ro =
U

Lf
(3.1)

where U is the characteristic horizontal velocity, L is the characteristic horizontal

length scale, and f is the Coriolis frequency. Considering that the order of magnitudes

of these parameters in this research are U ∼ 1, L ∼ 102, and f ∼ 10−5, the resulting

Ro is of the order of 103 which justifies the assumption of negligible Coriolis effects.

Large length scales caused by the available structures, as well as the typical wind

speeds of interest in these types of studies, will result in the Reynolds number be-

ing the order of 106 − 108. Therefore, the airflow and pollutant dispersion in the

ABL will have an inherently turbulent nature. In this work, the dispersion of the

pollutant scalar in the complex urban geometry is investigated which is continuously

released from the source points. Therefore, considering the large size of the compu-

tational domain and the interest in the mean quantities of flow characteristics, the

RANS method has been chosen to solve the governing equations. Using the Reynolds

decomposition, the continuity and momentum equations can be presented in their

time-averaged forms as follows:

∂ui

∂xi

= 0 (3.2)

uj
∂ui

∂xj

= −1

ρ

∂p

∂xi

+ ν
∂2ui

∂x2
j

−
∂u

′
iu

′
j

∂xj

(3.3)
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where ui and u
′
i are the time-averaged and the fluctuating fluid velocity in the three

(i, j, k) Cartesian directions, and xi denotes these directions, ρ is the density, and p is

the pressure. On the right-hand side of Equation 3.3, the introduced turbulence term

is the time-averaged Reynold stress tensor (u
′
iu

′
j) which contributes to the convective

momentum transfer due to the turbulent eddies. With the use of the Boussinesq

approximation, the Reynolds stress term in Equation 3.3 is modeled as:

−ρu
′
iu

′
j = 2µt(Sij −

1

3

∂uk

∂xk

δij)−
2

3
ρkδij (3.4)

here µt is the turbulence viscosity, k = 0.5(u
′
iu

′
j) is the turbulence kinetic energy per

unit mass, Sij =
1
2
( ∂ui

∂xj
+

∂uj

∂xi
) is the shear strain rate, and δij is the Kronecker delta.

It should be noted that although the molecular viscosity, µ, is a property of the fluid,

the turbulence viscosity is considered to be a property of the flow [79]. Considering

the number of unknowns in Equations 3.2-3.4 for solving the flow field, supplementary

equations are required to close the problem, which are provided through the available

closure models.

The Menter SST k − ω has been considered as one of the possible choices in this

research paper, following the success of implementing this model in similar research

work [156]. SST k − ω is introduced as a hybrid turbulence model by providing a

transformation from the k − ε into a k − ω model in the near-wall regions and using

the standard k − ε model in the fully turbulent regions of the geometry far from the

wall [101]. The Standard k − ε and RNG k − ε closure models have been selected

along with the SST k − ω for further evaluation of their performance in predicting

the mean concentration field in a compact urban-like geometry. Detailed descriptions

of the mentioned closure models can be found in the ANSYS CFX user guide [157].

The different turbulence models also require case-specific modifications in the mesh-

ing procedure since the appropriate wall treatment heavily depends on it. One of the

advantages of the SST k − ω model is that it directly resolves the viscous sublayer.

Even though the accurate reproduction of the separation and recirculation zones can
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be achieved using this model, extra refinement is necessary adjacent to the wall, which

could considerably increase the computational expenses. The k− ε based models, on

the other hand, utilize the wall functions to resolve flow near the surfaces, which

by comparison, reduces the computational cost and the modeling complexities [88].

However, this could lead to a poor prediction of viscous effects near the walls, leading

to the inaccurate prediction of the pollutant dispersion in cases where the source is

located near the ground or on the roofs. In this regard, a careful investigation of the

overall performance of the selected turbulence models is necessary to benchmark the

recommended practice for modeling the dispersion of pollutants emitting from differ-

ent types of source locations. In this paper, the widely used scalable wall function

will be tested to resolve the flow adjacent to the wall when considering the k−ε based

models [157].

Furthermore, the governing equations are supplemented with the Eulerian diffusion-

advection equation. With the flow field and the turbulent characteristics solved, the

mass fraction of the scalar (pollutant) needs to be decomposed into mean, c, and

the fluctuating, c
′
, components. The turbulent scalar fluxes, −c′u

′
j, can be estimated

as Dt(
∂c
∂xj

) assuming the standard gradient diffusion hypothesis (SGDH). Dt is the

turbulence mass diffusivity and is defined as the ratio of eddy viscosity (νt) to the

turbulence Schmidt number (Sct). Numerous studies have demonstrated the profound

influence of Sct on turbulence diffusion, which drastically affects the predicted con-

centration field by RANS equations. Employing the SGDH, the transport equation

can be expressed as:

uj
∂c

∂xj

= (D +Dt)
∂2c

∂xi∂xj

+ S
′

(3.5)

where D is the molecular diffusion coefficient for the pollutant in the airflow field, and

S
′
represents the scalar source term. The pollutant is assumed to be a passive scalar,

meaning that due to its low mass fraction in the field and its non-reactive nature,

its concentration does not affect the conservation of momentum or bulk continuity.

Therefore, the scalar transport equation can be solved after the flow field is estimated.
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To effectively make a comparison between the numerical and experimental results,

the non-dimensionalized concentration parameter (C∗) defined by Equation 3.6 is used

hereafter, where C is the mean concentration in ppm at a given location in the domain,

Uref is the mean upstream wind velocity, Href is an arbitrary characteristic length,

and qs is the source’s volumetric flowrate. Using the C∗, the plume concentration

field and its lateral and vertical spreads in various case studies can be compared

quantitively to draw appropriate conclusions at any wind speed and discharge flow

rates.

C∗ =
10−6UrefCH2

ref

qs
(3.6)

3.3 Description of case studies

The comprehensive dispersion data set of the MUST experiments has been selected to

evaluate the modeling method and test several modeling settings that have the most

profound effects on the accuracy of the predictions. The MUST tracer study refers to a

series of tests conducted in an urban-like setting with the primary purpose of providing

a valuable resource that includes the meteorological and dispersion data, suitable for

validating the accuracy of the dispersion models and CFD simulations [158–162]. In

this experimental setup, a 10 by 12 array of shipping containers was placed outdoors

in the center of the test domain over relatively flat ground. The containers were 12.2

m long, 2.4 m wide, and 2.5 m high, forming an approximately 200 m by 200 m

square array (Figure 3.1a). Propylene was used as the tracer gas in this experiment,

and six different release configurations (with assigned letters A to F) were considered

to cover a wide variety of cases (Figure 3.1b). In total, 68 trials were performed: 63

with continuous releases and 5 with puff releases. The source locations varied from

positions within or upwind of the test array (37 locations).

The horizontal concentration field was measured using 40 Digital Photoionization

Detectors (dPID) located in four parallel lines downstream of the source at the height
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of 1.6 m. The horizontal sampling lines are named as Lines 1-4 (Figure 3.1a). The

vertical concentration field was mapped using 8 dPIDs installed on the central tower

at various heights, and 6 Ultra Violet Ion Collectors (UVIC) installed on each of

the four 6m towers. Since the climatological analysis suggested that the test region

frequently experiences wind flow coming from the two directions of Southeast and

Northwest, two 16m masts were also installed, approximately 30 m Southeast and

Northwest of the array, to capture flow characteristics upstream and downstream.

In an attempt to collect data in neutral and stable atmospheric conditions, 15-

minute trials were done mainly in the early mornings or nights when surface cooling

takes place in the absence of sun [55]. During these periods, the ground generally cools

more quickly than its surrounding air due to radiation, resulting in a temperature

gradient less negative than the adiabatic lapse rate that suppresses vertical mixing.

However, in the presence of a strong wind, nocturnal stability can be diminished by

turbulent mixing, which results in a temperature gradient closer to neutral conditions.

The uncontrolled nature of the boundary conditions in field experiments results in the

instantaneous variation of the measurements, making it quite challenging to use the

generated data to validate quasi steady-state numerical models based on Reynolds

averaging. In this regard, Yee ([49]) further processed the data set and extracted 200

seconds in each trial with the least recorded variation in the upstream flow that could

be considered quasi-steady periods.

Considering the number of available test cases in the MUST data set, a careful

assessment of all 68 trials was necessary to define the appropriate case studies. The

selected cases should contain high-quality measurements, be consistent with the as-

sumptions, and represent diverse scenarios to enrich the outcomes of this paper. In

this regard, only trials with continuous tracer gas release were considered, and cases

with puff releases were disregarded. The state of atmospheric stability during the

remaining trials is another important factor that should be considered for selecting

the target case studies. The Obukhov length (LMO) has been shown to be a practical
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(a)

(b)

Figure 3.1: (a) Planar schematic view of MUST container array; (b) Schematic view
of all six types of re-leasing locations.

scale in determining the level of atmospheric stability [122, 163]. Considering the

assumption of the neutral atmospheric conditions in this work, the ideal choice was

to use the measurements from the trials conducted in similar stability states. In this
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regard, the number of possible case studies is further limited to tests with positive

and large LMO to account for neutral and near-stable conditions.

The height and the location type of the source point are considered to be the

final criterion needed to select trials that assure diverse situations for comparatively

assessing the turbulence closure models. For the purpose of this study, four distinct

source location types were selected (Figure 3.1b):

• Type A: located 1m upstream of container J3 within the array (z/H = 0.72).

• Type D: located on the rooftop of container J9 within the array (z/H = 1.04).

• Type E: located 24m upstream of container L1 outside the array (z/H = 0.52).

• Type F: located on the road, centered between containers K8 and L8 long sides

(z/H = 0.72).

The final four case studies are shown in Table 1 with all the necessary quantities

(mean calculated values during the 200 seconds of quasi-steady period) required for

accurately modeling the dispersion flow. The quantities presented in Table 1 are the

tracer release rate (qs), the source location type, the source height (Zs), the upstream

wind speed at 4 m height (S04), the upstream wind direction at 4 m height with a

positive angle measured counter-clockwise from the y-axis (α04). The Obukhov length

(LMO) is also calculated at 4 m height on the central tower.

Table 3.1: Four selected trials of MUST field experiment.

Trial
No.

Trial
I.D.

qs ( l
min ) Source

type
Zs (m) S04 (ms ) α04 (deg) LMO (m)

1 2681829 225 F 1.8 7.93 −41 28000

2 2672213 200 A 1.8 2.68 30 150

3 2682320 225 D 2.6 4.55 −39 170

4 2692250 225 E 1.3 3.38 36 130
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3.4 CFD model description

3.4.1 General settings

The ANSYS CFX software was used to model the passive scalar dispersion of the

MUST experiments by discretizing the RANS equations described previously. De-

ciding on the size and shape of the computational domain was the first step toward

setting up a reliable framework for modeling the dispersion flow. Rectangular compu-

tational domains were selected for our simulations, having the inlet and outlet planes

perpendicular to the free stream. Following guidelines recommended by Franke et

al. [18], the distance from the inlet, lateral, and top boundary to the building cluster

should be at least 5H, while a minimum distance of 10H should be considered to the

outlet (H represents the height of the tallest obstacle within the geometry). Having

these criteria in mind and testing different arrangements, the size of the computa-

tional domain in this research was extended (14H from the inlet, 10H from the lateral,

12H from top boundaries, and 20H from the outlet) to ensure that no backflow at the

boundaries hampered the convergence of the iterative solver. Considering the size

of the MUST array and the maximum height of the obstacles within (H=2.5 m), a

nested computational domain with an inner domain of 200 m×200 m×10 m and an

outer domain of 285 m×250 m×32.5 m was defined.

Properly setting up the boundary conditions and applicable constraints signifi-

cantly affects the accuracy of the predictions made by the CFD model [18]. Zero

relative pressure was selected as the boundary condition at the outlet plane of the

computational domain, top and side planes were set to symmetry, and all the solid

surfaces in the geometry (building walls, roofs, and grounds) were defined as no-slip

walls. To accurately model the dispersion process in a complex urban area, setting

appropriate inflow wind and turbulence profiles is critical to account for the effects of

the upstream terrain roughness (not included in the domain) and the available verti-

cal wind gradient in the boundary layer. The two widely considered approaches for
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defining the boundary conditions at the inlet are the power-law and the logarithmic

profiles [164]. Depending on the availability of the information, either method could

be the appropriate choice. The logarithmic profile provides acceptable estimates in

cases with known upstream surface roughness, atmospheric stability conditions, and

approaching velocity at a given height. On the other hand, the power-law profile

could be the choice when upstream velocity at different heights is known, and an ap-

propriate power can be estimated. Therefore, assuming constant vertical shear stress

in the surface layer, the logarithmic inflow profiles derived by Richard and Hoaxy

were used in this work [165]. In the case of using SST k − ω closure model, it is also

required to convert the profile of the dissipation rate, ε, to the specific dissipation

rate, ω, using Equation 3.10:

U(z) =
uτ

κ
ln

(︃
z + z0
z0

)︃
(3.7)

k(z) =
u2
τ√
cµ

(3.8)

ε(z) =
u3
τ

κ(z + z0)
(3.9)

ω(z) =
ε

Cµk
(3.10)

where k is the turbulence kinetic energy, uτ is the friction velocity associated with

the logarithmic wind speed profile, z is the vertical displacement, and z0 is the aero-

dynamic roughness length, κ is the von Karman constant κ = 0.4 ([165]), and Cµ is

a model constant, Cµ = 0.09. The reference wind speeds measured at the reference

height of 4m upstream of the MUST array were used along with the aerodynamic

ground roughness of 0.045m to estimate the inflow wind speed and turbulence pro-

files [49].
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3.4.2 Grid sensitivity study

The parts in the computational domain with no structures were meshed using hex-

ahedral elements, and unstructured tetrahedral elements were considered to mesh

the inner domain. As explained before, the mesh refinement process near the solid

surfaces strongly depends on the selected closure models. In this regard, extra grid

refinement was considered near the wall for cases with the SST k − ω model to keep

the average y+ of less than 5 (y+ = (ρuτy)/µ). To investigate the dependence of

results on the grid size, three different grid resolutions were analyzed for two cases:

one with SST k−ω and the other with the ε based turbulence models. Following the

recommended procedure by Celik [166], the uncertainties resulting from discretization

are estimated for three grids in each case with different levels of refinement. Three

main parameters of grid refinement factor (r), average relative error (eavg), and Grid

Convergence Index (GCI) were calculated to measure the grid refinement error.

The grid refinement factor is defined as the ratio of the representative cell size (h)

of two successive grids (r = hcoarse/hfine ). Equation 3.11 can be used to calculate

the representative cell size of a three-dimensional grid:

h =

(︄
1

n

n∑︂
j=1

∆Vj

)︄ 1
3

(3.11)

in which n represents the total number of cells, and ∆Vj is the volume of the jth cell.

Furthermore, eavg in the predicted normalized concentration field (four trials with 72

sampling points each) was calculated as follows:

eavg =
1

m

m∑︂
j=1

⃓⃓⃓⃓
⃓C∗

j,coarse − C∗
j,fine

C∗
j,fine

⃓⃓⃓⃓
⃓ (3.12)

where m is the total number of sampling points. Having the eavg value from the last

step, Equation 3.13 was used to calculate GCI for two successive grids. Fs is the safety

factor and has a value of 1.25, as recommended for cases when at least three levels

of grid refinement are studied [38, 167]. Considering the second-order discretization
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scheme used in this work, an order of accuracy p = 2 was taken.

GCI =
Fseavg
rp − 1

(3.13)

The calculated GCI and eavg are presented in Table 3.2. The predicted concen-

tration profiles at the first horizontal sampling line of Trial 1 are also presented in

Figure 3.2 for qualitative comparison. The refinement factors, r, in both cases with

SST k−ω and k−ε based closure models are 1.20. As shown in Table 3.2, the lowest

values of GCI and eavg for both cases belong to the two finer grids. Furthermore, the

presented results indicate a much stronger grid independency for cases with SST k−ω

models, with eavg and GCI of 1.97% and 5.60%, respectively. These values show lower

deviations between the predicted concentration field obtained by SST k − ω model

as the gird is refined. However, one should note that this slightly better grid inde-

pendency comes at much greater computational costs. Finally, it can be shown in

Figure 3.2 that there are minimal apparent deviations between the predicted concen-

tration fields by the medium and fine grids, justifying the use of the medium grids

throughout this research.

Table 3.2: Results of the grid independence analysis.

Model
# Nodes(106) Coarse-Medium Medium-Fine

Coarse Medium Fine eavg% GCI% eavg% GCI%

SST k − ω 7.65 11.59 17.50 14.00 39.77 1.97 5.60

k − ε based 6.39 9.68 14.62 5.61 15.94 2.33 6.62

3.5 Statistical analysis method

The performance of the modeling methods and settings in accurately predicting the

plume concentration field was evaluated using the statistical measures introduced by

Chang et al. [168]. The performance measures calculated in this research are the

fractional bias (FB), the mean geometric bias (MG), the normalized mean square

errors (NMSE), the geometric variance (VG), and the fraction of numerical data
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(a) (b)

Figure 3.2: Comparison of concentration profiles at the first horizontal sampling line
in Trial 1 for (a) cases with SST k − ω and for (b) cases with k − ε based closure
models.

that fall within a factor of two of the field measurements (0.5 < Cp/Co < 2). It

should be noted that in cases of dispersion modeling where the concentration varies

significantly from point to point, calculating all the mentioned statistical parameters

is recommended to capture both the linear systematic bias (FB and NMSE) and the

random scatter of the data changing on different orders of magnitude (MG and VG).

These performance measures for dispersion modeling are defined as follows, where Co

is the observed concentration, Cp is the predicted concentration by the CFD model,

and C is the average value over the entire data set:

FB =
(Co − Cp)

0.5(Co + Cp)
(3.14)

MG = exp(lnCo − lnCp) (3.15)

NMSE =
(Co − Cp)2

Co Cp

(3.16)

VG = exp[(lnCo − lnCp)2] (3.17)

The ideally accurate CFD model would generate results that give FB and NMSE

of 0, and MG, VG, and FAC2 of 1. However, Chang et al. [168], suggested accept-

able ranges for these performance measures by investigating several dispersion data
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sets that are −0.3 <FB< 0.3, NMSE< 4, VG< 1.6, 0.7 <MG< 1.3, and FAC2> 0.5.

However, extra considerations are required when calculating the logarithmic measures

as they are sensitive to the small values and return undefined values for zero concen-

trations. Therefore, as suggested by Chang et al. [168], a lower threshold equal to the

sampler’s detection precision (0.04 ppm) is defined for the averaged concentrations

when MG and VG are calculated.

3.6 Results and discussion

3.6.1 Performance evaluation of closure models: Source lo-
cation effects

The predicted turbulence field, especially the turbulence viscosity (µt), has an unde-

niable impact on the accuracy of the predicted concentration field [169]. In addition

to the expected differences due to the various definitions of µt offered by each closure

model, the produced turbulence by the available row of containers upstream of the

source point also affects the predictions [11]. Using the appropriate computational

grids, the performance of the selected turbulence models in predicting the concen-

tration field was evaluated and compared in four cases with different types of the

source location. Figure 3.3 illustrates the predicted concentration fields in all four

trials represented by all three selected models, demonstrating clear distinctions in the

vicinity of the source. However, as the pollutant plume progresses downstream, the

differences in the predicted concentration fields at the plume centerline seem to be

gradually reduced. Furthermore, it is evident from Figure 3.3 that the modeled con-

centration field by SST k−ω promotes greater lateral spread of the plume compared

to other models, with standard k − ε showing the least.

Table 3.3 presents the calculated statistical measures for the point-to-point com-

parison in all the four selected trials. As it can be seen, the statistical measures

(except for VG) show values within the acceptable ranges, indicating the validity and

reliability of the CFD results despite the selected closure models. The VG represents
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Figure 3.3: Contours of the predicted concentration field obtained by different closure
models on a horizontal plane at z⁄H=0.64 (The height at which all horizontal PIDs
are installed).

the unsystematic scatter of the predictions and is calculated to be larger than the ac-

ceptable limit for all cases. That refers to a relatively larger scatter that is primarily
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due to the available deviations at the edge of the plume, where the concentrations

are relatively low, and even minor differences between observed and predicted values

could lead to considerably large VG values.

The simulation results for Trial 1, where the scalar source is positioned midway

between containers K8 and L8, show an overestimation of the concentration field in

all cases (negative values of the FB). The net overprediction of the simulation results

is further emphasized by the calculated MG values of less than 1, using all the three

turbulence models. However, the overall superiority standard k−ε closure is evident,

with 62% of predicted concentrations within the FAC2 of the observed values. Further

analysis of the parameters presented in Table 3.3 also suggests a relatively higher

quality of the simulation results produced by standard k − ε, showing less scatter

(both linear, NMSE, and logarithmic, VG) compared with the field measurements.

Table 3.3: Statistical evaluation of the concentration predictions for the selected trials.

Case Model FB NMSE VG MG FAC2

Trial 1

Standard k − ε −0.01 0.79 2.65 0.98 0.62

RNG k − ε −0.17 1.45 3.11 0.84 0.59

SST k − ω −0.23 2.06 3.81 0.80 0.59

Trial 2

Standard k − ε −0.11 1.04 2.35 1.24 0.70

RNG k − ε −0.25 2.21 3.76 1.13 0.65

SST k − ω −0.20 2.23 5.65 1.06 0.64

Trial 3

Standard k − ε −0.02 0.59 3.13 0.85 0.68

RNG k − ε −0.22 0.76 3.25 0.94 0.58

SST k − ω −0.29 0.66 5.36 0.97 0.53

Trial 4

Standard k − ε 0.07 0.46 1.98 1.01 0.65

RNG k − ε 0.00 0.62 2.54 0.86 0.65

SST k − ω 0.01 1.01 3.51 0.78 0.61

As suggested by previous studies, the inaccurate representation of the turbulence

field by two-equation viscosity models can be one of the primary sources of discrepan-

cies found between the predictions and measurements [38, 105, 108]. In this regard,

making a comparison between the predicted wind and turbulence flow field by all the
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studied closure models in this work is beneficial. Figure 3.4 maps the distribution of

the turbulence kinetic energy (TKE) in the vicinity of the source location for Trial 1.

Relatively higher TKE productions by standard k − ε are observed near the source

location, with the least values obtained by SST k − ω model. The higher TKE val-

ues produced by standard k − ε model further compliments the generated TKE by

available containers in the geometry, which contradicts the well-established limita-

tion of the RANS methods in underestimating the TKE fields [11]. Consequently,

higher values of turbulence viscosity will be estimated by the standard k − ε model

that promotes higher particle diffusivity (assuming a constant Sct), which justifies

the relatively milder overprediction of the concentration field.

Figure 3.4: The turbulence kinetic energy, TKE (m2 s−2), distribution in the vicinity
of the source location (red circle) in Trial 1.

The estimated vertical profiles of the TKE and wind velocity obtained by the

selected closure models at the central measuring tower are shown in Figure 3.5, along

with the corresponding field measurements. As Figure 3.5a suggests, the standard k−

ε offers a more accurate representation of the TKE vertical variation compared to the

two other closure models, with SST k − ω predictions showing the largest deviations
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with the field data. Furthermore, the standard k − ε model slightly overpredicts the

TKE at the lower region of the ABL (where the available structures heavily affect

the flow field), while the opposite is true in cases with the RNG k− ε and SST k−ω

models. In addition, Figure 3.5b illustrates an overprediction of the velocity profile

in all cases, with standard k − ε outperforming the other closures. It should also be

noted that the predicted velocity profiles are not considerably affected by the selection

of the turbulence model, with a maximum relative difference of less than 7.2%.
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Figure 3.5: Comparison of vertical profiles of (a) TKE and (b) velocity at the 32m
central tower with the field measurements of Trial 1.

The tracer gas in Trial 2 is released from a type A location, positioned immediately

(1 m) upstream of the container J3. As shown in Table 3.3, 70% of the estimated

concentrations using standard k− ε are within a FAC2 of the observations, while this

number is 65% and 64% for RNG k− ε and SST k−ω, respectively. Similar to Trial

1, negative values of the calculated linear fractional bias suggest that overpredicted

concentration fields (near the plume centerline where the concentrations are high)

were obtained by all the selected closure models. However, MG values larger than one

indicate net underprediction in all cases, which is a consequence of underestimation of

the concentrations near the edge of the plume. Considering the logarithmic nature of
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the MG, even minor discrepancies between the numerical results and measurements

at the plume edge contribute to the determination of the net over/underprediction.

Nonetheless, considering all the calculated statistical measures, the superiority of the

results produced by the standard k − ε model is evident.

The correct reproduction of the wind and turbulence field in the vicinity of the

container J3 windward face is vital in capturing the initial spread of the scalar plume,

which has a profound impact on the accuracy of the predicted concentration field. In

this regard, the distributions of the TKE isolines in the vicinity of the scalar source are

given in Figure 3.6. As it can be seen, larger values of TKE have been predicted using

the standard k−εmodel near the source that is more than 0.3 m2s−2, compared to less

than 0.3 m2s−2 and 0.2 m2s−2 predicted by RNG k − ε and SST k − ω, respectively.

The larger values of TKE, regardless of their accuracy concerning the field data,

promote a greater particle diffusivity that results in predicting lower concentrations

downstream. This explains the larger values of FB and MG for predictions made

using the standard k − ε (3.3).

Figure 3.6: The turbulence kinetic energy, TKE (m2 s−2), distribution in the vicinity
of the source location (red circle) in Trial 2.
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The estimated vertical profiles of TKE and wind velocity at the central tower inside

the array are presented in Figure 3.7. As expected, both the k − ε based models

predicted larger values of TKE within the lower heights of the ABL, where the flow

field is heavily affected by the presence of containers. However, by further progress in

the z direction and moving away from the solid surfaces (ground and containers), the

SST k− ω gradually switches from the standard k− ω to the standard k− ε closure.

As a result, larger values of TKE are estimated by SST k−ω compared to RNG k−ε

from around an elevation of z/H = 5 aloft. All the turbulence models underpredict

the TKE at the central tower, with the standard k − ε showing a better agreement,

which agrees with the presented statistical measures in Table 3.3. The estimated

velocity profiles obtained by all three simulations of Trial 2 show minor differences

with respect to each other and generally agree well with the field measurement at lower

elevations. However, considerable deviations are observed from field data at the upper

levels of the ABL, which could originate from the logarithmic profiles estimated at

the inlet boundary [165]. Considering the height of the containers, z/H = 1, these

recorded discrepancies with actual wind velocities at higher elevations do not impact

the accuracy of the predicted concentration fields.
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Figure 3.7: Comparison of vertical profiles of (a) TKE and (b) velocity at the 32m
central tower with the field measurements of Trial 2.
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Rooftop-based sources of air pollution (e.g., rooftop exhausts) are known as one of

the main causes of air quality deterioration in compact urban regions. In this regard,

Trial 3 has been purposely selected in this work for further evaluation of the modeling

settings and methods. The scalar source in Trial 3 is of type D, positioned 10 cm

above the container J9 roof. The standard k− ε model significantly outperforms the

other selected models by predicting 68% of the concentration field within the FAC2 of

the field measurements. On the contrary, the SST k− ω barely passes the validation

assessment by only estimating 53% of the concentration field within the FAC2 of the

field data. An overall overprediction of the scalar concentration field is observed,

with calculated MG values of less than one and negative FB in all cases. Regard-

ing the quality of results, the presented statistical measures in Table 3.3 strongly

suggest the superiority of the standard k − ε model, showing milder overall overpre-

dictions (FB=−0.02) and relatively fewer scatter with the experiment (NMSE=0.59

and VG=3.13).

Figure 3.8 illustrates the estimated distributions of the TKE by all three turbulence

models in the vicinity of the roof-based source. Consistent with previous studies [11,

119], an overprediction of the TKE by the standard k− ε is evident near the upwind

corner of containers, leading to poor estimation of the separation flow. The TKE

obtained by the standard k−ε near the source is approximately 1.75 m2s−2, compared

to less than 1.0 m2s−2 and 0.75 m2s−2 predicted by RNG k − ε and SST k − ω,

respectively. However, as previously mentioned, this overprediction of TKE makes

up for the general underprediction of TKE by the RANS method [36], resulting in a

more accurate representation of the concentration field downstream.

The vertical profiles of wind velocity and TKE at the central tower within the

MUST array are presented in Figure 3.9. As shown in Figure 3.9a, all three closure

models overpredict the TKE up to an elevation of z/H = 2, with SST k−ω performing

relatively better. Furthermore, the deviation between numerical results and field

measurements reduces with the elevation increase in ABL, where the effects of the
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Figure 3.8: The turbulence kinetic energy, TKE (m2 s−2), distribution in the vicinity
of the source location (red circle) in Trial 3.

available structures are negligible. Similar to what was discussed in two previous

cases (Trials 1 and 2), the standard k − ε model produces higher levels of TKE,

and as expected, its solution asymptotically approaches ones of SST k − ω at higher

elavations. Additionally, the wind velocity profiles estimated by all the three closures,

Figure 3.9b, show a good agreement with the MUST measurements at lower heights,

with k − ε based closures performing slightly better.

The numerical modeling of Trial 4 provides the opportunity to evaluate the turbu-

lence models if the source is located upstream outside of the array. As the statistical

metrics in Table 3 indicate, all three closures performed relatively similarly when the

scalar source and its initial spread were not impacted by the presence of obstacles

(containers). This observation further justifies investigating the effects of the source

location on the accuracy of predictions made by two-equation viscosity models. Both

k − ε based models predicted 65% of the resulted concentration field within a FAC2
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Figure 3.9: Comparison of vertical profiles of (a) TKE and (b) velocity at the 32m
central tower with the field measurements of Trial 3.

of the MUST data, while the number is 61% for SST k − ω. Furthermore, an overall

minor tendency to underpredict the concentrations was observed using the standard

k − ε (with a FB of 0.07 and a MG of 1.01). RNG k − ε and SST k − ω, however,

produced an overpredicted solution of the concentration field with an MG of 0.86 and

0.78, respectively. Assessing all five-performance metrics together, the overall supe-

riority of the standard k − ε is clear over the other two models, as all the calculated

measures are within a closer range to the ideal values.

The distributions of the TKE isolines near the source, shown in Figure 3.10, further

enforce the arguments made based on the statistical measures. As it can be seen, the

predicted TKE fields by the three closure models are very similar in the vicinity of

the scalar source. Taking a closer look at Figure 3.3, it can be clearly observed that

all three representations of the concentration contours have similar shapes upstream

of the array, and differences emerge as the generated plume passes the first row of

containers. Therefore, having the source in regions where the simulated turbulence

field is minimally affected by the type of the turbulence model (e.g., flow over an

empty flat terrain) [88] seems to be an influencing factor in observing less distinction
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among the statistical measures presented for selected models.

Figure 3.10: The turbulence kinetic energy, TKE (m2 s−2), distribution in the vicinity
of the source location (red circle) in Trial 4.

Figure 3.11 plots the vertical velocity and TKE profiles at the central measuring

tower of MUST geometry in Trial 4. Considerable underestimations of TKE at lower

elevations are observed when SST k − ω is used, which explains its less accurate

representation of the concentration field (FAC2 of 61%). Using the standard k −

ε model, an overprediction of the TKE field is observed at lower heights, where

the produced turbulence by available containers is available and compliments the

TKE overprediction of this model. As the building-generated turbulence disappears

after further progress aloft in the ABL, the reported TKE underprediction of RANS

prevails, which consequently results in a general underestimation in all cases.

To further assess the accuracy of the CFD models, the predicted results in horizon-

tal and vertical directions were also evaluated, and the calculated statistical measures

are presented in Table 3.4. As the given performance metrics suggest, all three clo-

sure models offer a more accurate representation of the vertical concentration field

than the horizontal field, with the standard k− ε model outperforming the other two
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Figure 3.11: Comparison of vertical profiles of (a) TKE and (b) velocity at the 32m
central tower with the field measurements of Trial 4.

closure models in every case. Additionally, less scatter is observed in vertical lines

(lower VG values) than in all the horizontal sampling lines. The negative values of

FB for vertical and the two immediate horizontal lines (sampling lines 1 and 2) indi-

cate an overall over-prediction. In contrast, the opposite is valid for the two farther

horizontal sampling lines where all three models generally under-predict the scalar

concentration field.

The under-prediction of the scalar concentration on sampling Line 4 is much higher

than the other lines, with FB values outside the acceptable range. It is suggested

by Hanna et al. [54] that linear performance measures (FB and NMSE) could be

excessively affected by randomly available large observed or modeled concentrations,

which necessitates assessing the logarithmic metrics (MG and VG) to process them

in a more balanced manner. A further look at the logarithmic measures also indicates

excessive under-predictions (MG values larger than 1.3) and considerable scatter (VG

values larger than 4.5) at the horizontal receptors of Line 4. Overall assessment of

the statistical measures in Table 3.4 suggests that even though the accuracy and

reliability of the predictions using standard k − ε degrade as the distance from the

54



source increases, this model performs considerably better than the other two on every

level.

Table 3.4: Statistical evaluation of the concentration predictions at horizontal and
vertical sampling lines.

Sampling line Model FB NMSE VG MG FAC2

Line 1

Standard k − ε −0.18 1.36 1.86 0.91 0.67

RNG k − ε −0.39 2.92 2.42 0.79 0.50

SST k − ω −0.48 3.21 5.67 0.84 0.38

Line 2

Standard k − ε −0.04 0.56 2.88 0.83 0.58

RNG k − ε −0.18 0.95 5.69 0.71 0.50

SST k − ω −0.11 0.90 5.85 0.53 0.53

Line 3

Standard k − ε 0.25 0.88 3.86 0.86 0.64

RNG k − ε 0.17 1.15 4.12 0.93 0.58

SST k − ω 0.38 1.66 6.81 1.16 0.53

Line 4

Standard k − ε 0.59 1.56 4.55 1.39 0.56

RNG k − ε 0.67 1.99 4.64 1.56 0.56

SST k − ω 0.81 2.56 6.66 1.81 0.53

Vertical

Standard k − ε −0.08 1.49 1.74 0.99 0.68

RNG k − ε −0.18 1.16 2.37 0.84 0.61

SST k − ω −0.12 1.66 3.22 0.85 0.61

Scatter diagrams are presented for the horizontal and vertical sampling lines to

better visualize the results of the conducted statistical analysis and the overall per-

formance of the closure models in predicting the concentration field (Figure 3.12).

The superiority of the standard k − ε over the other two closure models is evident,

predicting around 62% and 68% of the horizontal and vertical concentration fields

within a FAC2 of the measurements, respectively. Aligned with the presented statis-

tics in Table 3.4, the least scatter is observed for predictions made using the standard

k − ε, while the results obtained by SST k − ω show the most. The predicted con-

centrations with relatively high values, which belong to the samplers near the source

(e.g., sampling line 1) and along the plume centerline, are shown to be closer to the 1:1

line. In contrast, the predicted lower concentrations, mostly far from the source and
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the plume centerline, show considerably more scatter (this statement is supported by

the performance measures provided in Table 3.4). Constantly varying meteorological

conditions during field measurements, and inaccurate estimation of the inflow velocity

and turbulence profiles could be two possible reasons for this scatter.

(a) (b)

Figure 3.12: Scatter diagrams between the predicted and observed concentrations in
(a) horizontal and (b) vertical sampling lines.

In this regard, the effects of the inlet boundary conditions on the accuracy of the

predicted results were first investigated by examining the wind direction in Trial 2.

As mentioned before, the provided quantities in Table 3.1 are, in fact, the calculated

mean values over the 200-second quasi-steady period. Regardless of how minor the

variations in meteorological conditions are during the quasi-steady period, that could

give rise to the well-known shortcomings of the RANS method. Knowing the stan-

dard deviation of 7.9◦ in the instantaneous inflow wind direction in Trial 2 [49], two

more cases were simulated with different inflow wind directions of 22.1◦ and 37.9◦.

Considering the superiority of the standard k− ε, this model was used as the closure

to the RANS equations. Figure 3.13a shows the substantial deviation in the predicted

concentration field caused by minor variations in the inflow wind direction during the

field measurements, which further emphasizes the presence of discrepancies that could
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not be avoided.
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Figure 3.13: Comparison of the C∗ profiles at the first horizontal sampling line in
Trial 2 for different (a) inflow wind directions and (b) inflow turbulence profiles.

The estimated inflow turbulence profiles are another known source of error in urban

wind modeling. Figure 3.13b compares the predictions resulting from the estimated

turbulence profiles, Equations 3.8-3.9, and the fitted inflow profiles using the available

upstream measurements. As can be seen, a better agreement between predictions and

observations is achieved by using the fitted turbulence profile at the inlet boundary

instead of using the equilibrium equations. Noting that the detailed upstream mea-

surements for every meteorological condition are scarce in actual applications, the

estimated inflow profiles used in this study are shown to provide acceptable predic-

tions.

3.6.2 Turbulent Schmidt number

The turbulent Schmidt number (Sct) is the next modeling parameter shown to consid-

erably affect the predicted concentration field. Noting that there is no clear instruc-

tion on specifying the optimum Sct, different values are usually tested beforehand

based on the physical characteristics of the geometry (e.g., natural landscapes, an

isolated building, cluster of buildings, etc.) and the modeling scheme (e.g., turbu-
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lence closure model). Many studies have used different values of Sct specific to their

cases, as a remedy to make up for the under/over-prediction of the turbulent diffu-

sion [66, 152–154]. The findings of a wind tunnel investigation by Koeltzsch, however,

demonstrated the variation of the observed Sct with respect to the position in the

boundary layer [170]. Additionally, several other studies strongly advised on the local

variability of Sct [152, 171]. Therefore, conducting prestudies in generic cases is cru-

cial to define Sct properly, as well as to evaluate the level of uncertainties associated

with predictions.

Here, in addition to the conventional method of finding the optimum and constant

value of Sct, the method of using a variable Sct will also be tested in the context of

the dispersion modeling within complex urban geometries. For this purpose, Equa-

tion 3.18 will be incorporated into Equation 3.5 to account for the local variability of

the Sct. Equation 3.18 was recently proposed by Longo et al. [172] with the purpose

of estimating the optimum Sct based on the local turbulence state, that has shown

promising results compared to very few other available Sct formulations [171]. Sc

in Equation 3.18 is the molecular Schmidt number, Ret is the turbulent Reynolds

number, S is the strain-rate invariant, and Ω is the vorticity invariant.

Sct = exp
[︁
0.6617 Sc− 0.8188 Ret

0.01 − 0.00311 S − 0.0329 Ω
]︁

(3.18)

Ret =
ρk

ωµ
(3.19)

S =
k

ε

√︂
2SijSij Sij =

1

2

(︃
∂ui

∂xj

+
∂uj

∂xi

)︃
(3.20)

Ω =
k

ε

√︂
2ΩijΩij Ωij =

1

2

(︃
∂ui

∂xj

− ∂uj

∂xi

)︃
(3.21)

As an example, the results of further investigations done on Trial 3 (with a roof-

based scalar source) to specify the optimum Sct are presented in this paper. Keeping
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in mind the superiority of the standard k − ε in predicting the concentration fields,

this closure model will be considered for the remaining studies of this research. Fig-

ure 3.14a shows the concentration profiles resulting from different Sct values at the

second sampling line. The corresponding variable Sct calculated using Equation 3.18

is also represented by Figure 3.14b. As Figure 3.14a shows, increasing the Sct will

generally result in larger values of C∗ to be predicted by the numerical model. This

clearly shows the inverse relation of the turbulent diffusivity with Sct, which pro-

vides the modeler with the opportunity to control over/underpredictions of scalar

diffusion. An initial analysis of Figure 3.14a also indicates that Sct = 0.5 provides

relatively better predictions of the concentration field, except at the plume centerline,

where it considerably underpredicts the peak values. Accurate prediction of relatively

higher pollutant concentrations near the plume centerline is of great importance due

to exposure-related complications that might arise. Therefore, to better evaluate the

results of this sensitivity study, a detailed statistical analysis was conducted on the

predicted concentration field for a wide range of Sct.
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Figure 3.14: C∗ for different Sct, and (b) the corresponding variable Sct for the second
sampling line of Trial 3.

The numerical results obtained using Sct of 0.3, 1.1, and 1.3 are shown to have in-
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adequate qualities to be considered for further investigations in this work. It also can

be concluded from Table 3.5 that even though Sct = 0.5 results in FAC2 of 0.8, it gen-

erally provides predictions with an unacceptable level of underprediction (FB=0.42).

The relatively large value of the MG (1.22) further indicates the net underprediction

of the concentration field obtained using Sct of 0.5. Considering all the performance

metrics provided in Table 3.5, a constant Sct of 0.7 appears to be the optimum value in

this case study while showing relatively milder underpredictions (FB of 0.16 and MG

of 0.97) and fewer linear and logarithmic scatters (NMSE of 0.40 and VG of 1.74). It

is noteworthy that implementing the variable Sct, Equation 3.18, instead of using the

conventional “constant value” approach, also resulted in performance metrics quite

similar to the optimum Sct (0.7). Figure 3.14b maps the variation of the predicted Sct

by Equation 3.18 in the selected case study, which shows its fluctuations between 0.7

and 0.75. This justifies the implementation of this method in future applications and

studies that lack field measurements for carrying out a validation study to determine

the optimum Sct.

Table 3.5: Statistical evaluation of the C∗ predictions of Trial 3 for different Sct.

Turb. Schmidt Number FB NMSE VG MG FAC2

0.3 0.86 1.48 4.57 2.40 0.50

0.5 0.42 0.44 1.97 1.22 0.76

0.7 0.16 0.40 1.74 0.97 0.71

0.9 −0.02 0.59 3.13 0.85 0.68

1.1 −0.15 0.85 7.79 0.79 0.62

1.3 −0.23 1.12 22.27 0.78 0.55

Variable 0.13 0.41 1.82 0.98 0.71

3.7 Conclusions

A sensitivity study was carried out to evaluate the performance of the most widely

used two-equation turbulence models in representing the pollutant dispersion flow
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within a compact urban geometry. Four distinct case studies of the MUST compre-

hensive dispersion data set were chosen to further investigate the impacts of the source

location on the accuracy of the concentration fields predicted by the closure models.

The sources in Trials 1-3 are located within the MUST array, where the structure-

generated turbulence substantially influences the plume’s immediate spread. The

source in Trial 4, however, is positioned upstream and outside of the array, where all

three closure models estimate similar representations of the turbulence fields (flow

over an open flat terrain). Somewhat similar performance measures (FAC2 of 65%

for k− ε based models and 61% for SST k−ω model) were calculated for predictions

obtained by all closure models in Trial 4 compared to other case studies, which further

justified the importance of conducting this sensitivity study.

Overall, Standard k − ε showed superiority in predicting the concentration fields

for all the selected trials with higher calculated FAC2 than the other two models.

Except for Trial 4, the negative value of the calculated linear fractional biases (FB)

indicated overprediction by the CFD models, in which the standard k−ε showed bet-

ter performance compared to the two other closure models. In comparison to Trials

1-3, the predictions in Trial 4 obtained by the Standard k− ε showed minimal under-

prediction (positive values of FB). RANS methods are known for underestimating the

TKE field due to their inability to reproduce the large-scale eddies, which generally

results in underestimating the turbulent diffusivity and, consequently, overpredicting

the concentration field. However, the turbulence produced by the available obstacles

(here, containers) in compact urban geometries will make up for the underestimation

of the TKE by RANS models. The buildings’ effects on turbulence, combined with

the reported overestimation of the TKE by Standard k−ε, leads to milder overpredic-

tion of the concentration field by this closure model in Trials 1-3. Similar reasoning

also justifies the relatively higher positive FB value (0.07) calculated by the standard

k − ε model in Trial 4.

To further improve the accuracy of the simulations, another sensitivity study was
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also carried out to determine the proper value of the Sct. Following the conven-

tional procedure in finding the optimum Sct, several values in the range of 0.3 – 1.3

were tested, and the resultant concentration fields were compared with the field mea-

surements. An optimum Sct of around 0.7 was found to produce the most accurate

and reliable results. However, acquiring a high-quality dispersion data set for most

applications in actual geometries is quite challenging and impractical to do similar

sensitivity studies. In this regard, another approach was tested in the context of a

compact urban geometry, in which the Sct was defined as a locally variable parameter.

The calculated Sct varied in the range of 0.7 – 0.75, and considerable improvements

were observed in the accuracy of the predictions.
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Chapter 4

Modified accuracy of RANS
modeling of urban pollutant flow
within generic building clusters
using a high-quality full-scale
dispersion data set

4.1 Introduction

The continuous growth in the world’s population in recent decades and the need for

higher living standards have led to rapid urbanization worldwide [15, 136]. How-

ever, despite the countless benefits of the ongoing developments, several detrimental

impacts on the environment and public health are also inevitable. The emergence

of industrial facilities, along with the growth in the popularity of motor vehicles,

have aggravated poor urban air quality [39, 173, 174]. Additionally, the intensive

construction of crucial infrastructures in response to rapid urbanization has resulted

in a compact and diverse arrangement of buildings [175]. With these growing pres-

sures, anticipating and controlling the possible health hazards of living in compact

regions has become a topic that requires attention. The constantly changing layout of

urban areas affects the wind flow patterns, which, if not properly planned, can aggra-

vate poor air quality by progressively worsening urban ventilation performances [24].

Therefore, to mitigate the possibility of pollutant accumulation, assessing the wind
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flow field and the dispersion patterns around the buildings prior to construction is

strongly advised [34, 43].

Full-scale field measurements and reduced-scale laboratory experiments (i.e., wind

tunnels and water channels) have been used in the past to investigate wind flow and

dispersion patterns around the buildings and to further identify design shortcom-

ings [142, 176–179]. Even though field measurements can account for the realistic

atmospheric state, the uncontrolled meteorological conditions make it costly to inde-

pendently study influencing parameters and collect data that can be used to predict

dispersion patterns [10].

Reduced-scale experiments can be performed in a controlled arrangement, facilitat-

ing parametric studies. However, in addition to missing actual environmental effects,

this method has some disadvantages, such as complicated scaling and similarity is-

sues [56]. The apparent complexities, limitations, and high costs associated with the

experimental methods have limited their applications to general cases mainly used

for model validation studies. Therefore, the need for a more effective and practi-

cal approach has made computational fluid dynamics (CFD) very popular among

environmental researchers and urban planners [12, 149].

CFD can estimate the pollutant concentration and other flow characteristics on

every grid point in a computational domain and is generally less costly than exper-

iments. However, the numerical modeling of the urban dispersion flow within the

atmospheric boundary layer (ABL) is quite challenging due to its turbulent nature

with large-scale recirculation zones and three-dimensional strain fields [142]. There-

fore, considering appropriate assumptions and modeling settings at every step of the

process is essential to having a reliable and efficient CFD model. That includes efforts

to evaluate the applicable approaches to treat the governing equations, examples be-

ing Reynolds-averaged Navier–Stokes (RANS) and large eddy simulations (LES) [79].

LES was found to produce relatively richer results than RANS by resolving the large

and most prominent eddies; however, that comes with prohibitively greater computa-

64



tional demands. Given the large size of the computational domain in urban dispersion

studies and the focus in the mean quantities of flow characteristics (assuming a con-

tinuous release of the pollutant from the source), RANS has remained quite popular

in resolving the Navier–Stokes equations [40, 180–182].

The time-averaged treatment of this completely chaotic and randomized phenomenon

(i.e., turbulent atmospheric dispersion flow) can be achieved by applying the Boussi-

nesq hypothesis to model the intermittent shear fluxes [68]. However, neglecting the

available fluctuations during the momentum transport (using modeled turbulence vis-

cosity) undermines the reliability of the CFD model predictions. Under-prediction

of the turbulence kinetic energy (TKE) or inaccurate representation of the separa-

tion points and the reattachment lengths in flows around bluff bodies are among the

few well-established flaws of RANS [108]. Several closure models, along with their

modifications, have been introduced over the years to remediate these deficiencies.

Notably, these models were developed in the context of conventional classical flows

(e.g., fully developed turbulent channel flow, simplified wall-bounded, or free shear

flow, etc.), but their applications can be extended to a wide range of engineering

problems [103]. Despite the apparent disparity between the nature of the mentioned

classical flows and the ABL flow, common two-equation closures, such as standard

k − ε [97], realizable k − ε [99], renormalization group (RNG) k − ε [98], and the

shear stress transport (SST) k − ω [101] have been widely used in urban studies [10,

21]. To ensure the reliability of an urban dispersion model, conducting a sensitivity

study to select the most suitable closure for the specific case of interest is advised [38,

105, 109, 183]. Moreover, the accuracy of the selected model in the context of ABL

can be further improved by re-calibrating the empirical coefficients to better fit the

critical features of this particular flow.

The majority of CFD codes employ the revised values offered by Launder and

Spalding ([97]) as the default closure coefficients for the standard k − εmodel (Cµ = 0.09,

Cε1 = 1.44, Cε2 = 1.92, σk = 1, and σε = 1.3). Previous researchers have made efforts
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to modify the closure coefficients with the purpose of improving the representation

of the urban flow in various cases. As one of the initial attempts, Detering [113]

modified the original definition of coefficients for modeling the neutrally stratified,

one-dimensional atmospheric flow over flat and irregular terrain (e.g., hills, valleys,

etc.). In this work, Cµ was assumed to be inversely proportional to the depth of

the atmospheric boundary layer, which consequently led to a new set of constants

(Cµ = 0.03, Cε1 = 1.13, Cε2 = 1.9, σk = 0.77, and σε = 1.29). Later, Bechmann pro-

posed a hybrid RANS/LES method based on the standard k − ε model and adopted

a Cµ = 0.03, as suggested for atmospheric flows over irregular terrain, instead of the

original value of 0.09 for industrial flows [114]. The number of unknowns was reduced

in this proposed adjustment by keeping Cε2, σk, and σε the same as the standard values

but calculated Cε1 = 1.30 using an empirical correlation between the model constants

in the ABL. The mentioned correlation was developed by Richards and Hoaxy [165],

assuming constant shear stress in the atmospheric surface layer, resulting in an equi-

librium between shear production and viscous dissipation. The results of Bechmann’s

model of flow over Askervein hill showed an improved accuracy compared to the ones

offered by Detering. However, it could not be confidently distinguished whether this

progress was mainly due to the re-calibration of coefficients or the proposed hybrid

model.

The modification of the standard k − ε model was further extended to a more

complicated scenario by Guilass et al. [116], in which the airflow within a regular

street canyon was considered. The authors performed a Bayesian calibration to tune

four out of the five constants by excluding σε and calculating it directly via the

correlation between the model constants within the ABL [165]. The vertical profile

of the TKE at the center of the street canyon was considered as the optimization

objective, and the results of the 135 CFD runs were processed to determine a set of

constants that produced the preferable match with the wind tunnel measurements

(Cµ = 0.12, Cε1 = 1, Cε2 = 2.1, σk = 0.46, and σε = 0.42). In another work by Zahid
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Iqbal and Chan [115], an investigation of the wind flow field around a cross-shaped

building at the pedestrian level was conducted. The modification of the k − ε closure

model in this attempt was based on the proposed coefficients by Guilass et al. [116].

The number of unknowns was reduced to simplify the process by just varying Cµ

at four equal intervals within the range of 0.09–0.12 while keeping the values of

σk = 0.53 and σε = 0.5 constant, as suggested by Edeling et al. [184]. Setting the

normalized velocity field as the modification objective in their study, Cµ = 0.12 was

shown to provide the least discrepancies with wind tunnel measurements, though the

superiority of the tuned model over the one proposed by Guilass et al. [116] was

insignificant. This conclusion heightens the importance of calibrating the whole set

of coefficients simultaneously to accomplish a worthwhile improvement, in contrast

to alleviating the computational complexity by just doing a linear sensitivity study

on a selected coefficient.

The demonstrated uncertainty inherent in these coefficients implies the necessity

of their objective modification within the reference frame of generic case studies. Be-

cause of the non-linear relationship between coefficients, a complete closure optimiza-

tion for ABL flow in large models (e.g., compact urban settings) becomes substantially

more challenging. Implementing data assimilation methods, such as the Bayesian cal-

ibration, demands a large number of CFD runs, creating the need for more robust

optimization approaches to obtain the best coefficient set. In this regard, Shirzadi

et al. [118] used stochastic optimization combined with the Monte Carlo sampling

scheme and adopted the streamwise velocity around an isolated building as the op-

timization objective. They used available wind tunnel measurements to introduce a

set that better represents the flow characteristics compared with the standard model

(Cµ = 0.146, Cε1 = 1.489, Cε2 = 2.801, σk = 1, and σε = 0.373). Shirzadi et al. later

performed a parametric sensitivity study to evaluate the possibility of improving the

numerical simulation of cross-ventilation in compact urban regions [117]. They did

not use an optimization framework in this study but mitigated the associated com-
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putational costs by considering 10 uniformly distributed values for each coefficient

within the recommended ranges. The resultant set only offered modifications to Cε2

and σε (3.2 and 0.35, respectively), while keeping the rest of the coefficients the same

as their original values. The aptness of the suggested coefficients was examined us-

ing wind tunnel measurements of the wind pressure difference over the faces of the

central building (i.e., the objective function in this study). Even though an improved

agreement with measurements was observed, the accuracy of the calibrated model

was found to be inadequate and in need of further efforts [185].

4.1.1 Objectives

Following the previous endeavors, this study aims to enhance the reliability and gen-

erality of the closures in ABL dispersion studies. Based on the presented review, a

well-tested set of coefficients that accurately represents the pollutant concentration

field within an urban array has yet to be developed. The current research is part of

a project to improve the existing practices in dispersion modeling. In our previous

paper, the effects of several critical modeling decisions (e.g., closure model, inflow

boundary conditions, computational domain size, and turbulent Schmidt number)

were investigated, and a relatively efficient framework was introduced [183]. Consid-

ering different venting scenarios (i.e., various source locations), the standard k − ε

model coupled with the locally variable turbulent Schmidt number (Sct) was found

to be the most efficient setup with the least calculated deviations from field mea-

surements. Therefore, the present study conducts a thorough optimization of the

standard k − ε closure by incorporating the recommended modeling settings.

The importance of selecting a high-quality data set for the robust calibration of

the turbulence model constants is undeniable. Among all of the previous attempts

reviewed, none included the pollutant concentration field in their defined focus pa-

rameters. Additionally, to the best of our knowledge, all earlier ABL calibration

studies used reduced-scale wind tunnel data produced in controlled and steady test
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arrangements. Full-scale field measurements, however, have the effects of constantly

varying the meteorological features and realistic atmospheric conditions inherent in

them, making them very valuable for improving the time-averaged representation of

an intrinsically unsteady phenomenon. To this aim, the unique data set of the mock

urban setting tests (MUST) is employed, as it provides comprehensive measurements

of both the concentration and airflow fields throughout a compact building array (74

measuring points for the concentration field and 22 measuring points for the airflow

field) [55]. Using full-scale field measurements of this kind creates an unprecedented

opportunity to account for realistic atmospheric features that could potentially lead

to a more accurate representation of the dispersion flow by RANS simulations. Given

the variation in the concentrations in a broad range inside the domain (0.001–100

ppm), an exhaustive statistical analysis is carried out that includes both the linear

and logarithmic validation metrics. In addition to the optimization objective, the

predicted turbulence characteristics are also assessed to evaluate uncertainties of the

coefficients more extensively. Ultimately, three other test cases representing different

meteorological conditions (e.g., inflow wind speed and turbulent kinetic energy, wind

direction, etc.) and source locations are modeled to further examine the generality

of the proposed set of constants for an idealized array simulating urban regions.

4.2 Mathematical model

The pattern in which an emitted pollutant stream is dispersed in the ABL heav-

ily depends on the wind regime and flow features. In this regard, acquiring a solid

understanding of urban flows is essential prior to characterizing the physics of this

phenomenon. The ABL generally refers to the lowest portion of the atmosphere,

which can be divided into two main sublayers. The outer region (i.e., the Ekman

layer) makes up approximately 90% of this layer and shows a balance among pres-

sure gradient, friction, and Coriolis forces. The inner region (i.e., the surface layer)

exhibits strong vertical fluxes of physical quantities with negligible variation within
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its depth [28]. As our work aims to model pollutant dispersion within a compact

urban setting, the surface layer is the area of interest in investigating the flow char-

acteristics. Therefore, disregarding the Coriolis effects on the direction of the urban

wind flow is deemed an acceptable assumption. This claim can be further argued

by assessing the non-dimensional Rossby number (Ro), which quantifies the ratio of

inertial to Coriolis forces [155]. Given the typical velocity and length scales in urban

studies, Ro is estimated to be in the order of 103, which indicates a strong dominance

of inertial forces [183].

The atmospheric flows in urban areas with a horizontal length scale of less than

10 km are typically treated at the micro-scale range [186]. The CFD simulation

of pollutant dispersion within this spatial scope demands explicit modeling of the

available structures. These roughness elements, such as buildings of varying shapes

and dimensions, intensify the turbulent nature of the ABL flows. This generates

three-dimensional flow features, such as flow separation, recirculation, and substantial

directional change of the wind around the bluff bodies. As a result, eddies with varying

lengths and time scales are formed, and modeling them requires special considerations.

The RANS equations would be an appropriate method to employ in cases dealing with

time scales that are considerably greater than turbulent fluctuations. On pollutant

dispersion modeling in full-scale urban geometries, the RANS equations provide an

acceptable compromise between accuracy and computational cost and are, therefore,

adopted in this study.

The physics of a steady-state, incompressible, and iso-thermal flow within a neu-

trally stratified atmosphere with no body forces can be described by time-averaged

continuity and momentum equations:

∂ui

∂xi

= 0 (4.1)
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70



where ui and u
′
j are the mean and fluctuating velocity components in the Cartesian

directions of xi and xj, respectively (i, j = 1, 2, 3). ρ is the air density, p is the time-

averaged pressure, and ν is the kinematic viscosity defined as ν = µ/ρ with µ being

the dynamic viscosity.

The Reynolds stress tensor (u
′
iu

′
j) further promotes an enhanced diffusive transport

of momentum due to the fluctuating velocity components. However, this term intro-

duces additional unknowns, leading to more variables than the available equations.

Assuming an isotropic turbulent flow, the Boussinesq hypothesis can be applied to

model these Reynolds stresses in terms of mean velocity gradients:

−u
′
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in which Sij represents the mean strain rate tensor, k is the turbulence kinetic energy

(i.e., TKE), δ is the Kronecker delta, and νt denotes the eddy viscosity.

νt is a parameter defined as a property of the flow to reflect and control turbulence

through a form of viscosity, analogous to the role of molecular viscosity in laminar

flow [100]. In order to mathematically close the governing equations, several eddy-

viscosity closure models have been developed over the years to approximate νt and

provide supplementary equations. These closures aim to model the eddy viscosity

as a product of turbulent velocity and length scales. Based on the argument made

in the introduction, the standard k − ε model is adopted in the current study to

model νt and estimate all the other turbulence quantities [100]. The TKE represents

the turbulent velocity scale in this closure and can be calculated using a transport

equation as follows:

uj
∂k

∂xj

=
∂

∂xj

[︃(︃
ν +

νt
σk

)︃
∂k

∂xj

]︃
− u

′
iu

′
j

∂ui

∂xj

− ε (4.6)
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where σk is a model constant referred to as turbulence Prandtl number, and ε repre-

sents the dissipation rate of the TKE into internal energy (heat). The second term

on the right-hand side of the Equation 4.6 serves as a source of TKE production (Pk),

which can alternatively be expressed in terms of the mean velocity shear stresses using

the Boussinesq hypothesis:

Pk = −u
′
iu

′
j

∂ui

∂xj

≈ νt

(︃
∂ui

∂xj

+
∂uj

∂xi

)︃
∂ui

∂xj

(4.7)

In addition to the TKE, another turbulence quantity is required to estimate the

associated length scales of eddies within the flow field. The appearance of dissipation

rate in the form of a sink term in Equation 4.6 suggests that solving a transport

equation for ε is a logical choice to close the equation set. It is worth noting that

the TKE equation remains the same among all variants of k − ε closure, whereas

the proposed equation for ε is what distinguishes these models. Using the standard

version of k − ε model, the transport of ε can be resolved by:

uj
∂ε

∂xj

=
∂

∂xj

[︃(︃
ν +

νt
σε

)︃
∂ε

∂xj

]︃
+

ε

k
(Cε1Pk − Cε2ε) (4.8)

σε, Cε1, and Cε2 are the model’s empirical constants that were derived through in-

tensive data fitting with a number of classical flows [97]. The TKE and dissipation

rates resulting from supplementary equations can be further used in Equation 4.9 to

estimate the eddy viscosity. The factor of proportionality in this equation, Cµ, is

another empirical model constant.

νt = Cµ
k2

ε
(4.9)

The dispersion of the pollutant within the resolved wind and turbulence fields can

be modelled by solving the Eulerian advection-diffusion transport equation. Consid-

ering a neutrally buoyant and inert gas emitting from a source point without initial

momentum, the Reynolds averaging method is once again employed to decompose

the instantaneous quantities (i.e., velocity components and scalar concentration) into
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their mean and fluctuating elements:

uj
∂c

∂xj

=
∂

∂xj

(︃
D

∂c

∂xj

)︃
−

∂u
′
jc

′

∂xj

+ S
′

(4.10)

where c and c
′
are the mean and fluctuating scalar concentrations, respectively. S

′

denotes the scalar source term, and D represents the molecular diffusivity defined

as the ratio of molecular viscosity to molecular Schmidt number (D = ν
Sc
). Equa-

tion 4.10 is coupled with the RANS equation system in one-way under the assumption

of a passive scalar, which considerably reduces the computational cost and modeling

complexity [187].

The convective transport of the scalar concentration due to the fluctuating ve-

locities (i.e., unresolved flow field) is expressed by u
′
jc

′ . With an analogy similar to

the Boussinesq hypothesis (i.e., the random isotropic motion), the Standard Gradient

Diffusion Hypothesis (SGDH) assumes that turbulent convective transport of a scalar

occurs in the direction of the time-averaged concentration gradient [188]. From this,

the turbulent scalar transport can be approximated as follows:

−u
′
jc

′ = Dt
∂c

∂xj

(4.11)

Similar to eddy viscosity, eddy diffusivity (Dt = νt/Sct) is also a property of the

turbulence and not of the fluid. On another note, a normalized definition of pollutant

concentration (C∗) will be used in this work for making comparisons between pre-

dictions and measurements. In this equation, Uref is the upstream reference velocity,

C is the predicted or measured concentration at a given location, Href is a reference

length scale, Cs is the source concentration, and qs is the volumetric flowrate at which

pollutant is being released from the source.

C∗ =
UrefCH2

ref

Csqs
(4.12)

The turbulent Schmidt number, Sct, is a variable in the scalar transport equation

that substantially affects the accuracy of the predicted concentration field. Having
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in mind that the turbulent mass flux is approximated through a closure assumption

(i.e., SGDH), a universal value of Sct cannot be determined [152]. To this end, similar

to the coefficients of the eddy-viscosity turbulence models, obtaining case-dependent

Sct might be a practical approach. However, in addition to time demanding sensitiv-

ity studies required by this approach, several experimental and validated numerical

studies have demonstrated the strong local variability of Sct [170, 171]. As part of our

ongoing efforts to improve the reliability of the urban dispersion modeling, the pro-

posed framework in [183] is adopted in this study. Following these recommendations,

a well-tested locally variable Sct is incorporated into the advection-diffusion equation.

The aforementioned Sct formulation accounts for the local state of turbulence and es-

timates the optimum value in every computational node [172]. Implementation of the

locally variable Sct further strengthens the dependency of the transport equation on

the flow-related parameters. Using Equation 4.13, Sct is defined as:

log(Sct) = 0.6617 Sc− 0.8188 Ret
0.01 − 0.00311 S − 0.0329 Ω (4.13)

Ret =
k2

νε
(4.14)

S =
k

ε

√︄
1

2

(︃
∂ui

∂xj

+
∂uj

∂xi

)︃2

(4.15)

Ω =
k

ε

√︄
1

2

(︃
∂ui

∂xj

− ∂uj

∂xi

)︃2

(4.16)

where Ret is the turbulent Reynolds number, S is the strain rate invariant, and Ω is

the vorticity rate invariant.

4.3 Closure model calibration

The empirical coefficients of RANS closures were primarily tuned to provide a sat-

isfactory compromise between accuracy and applicability to a broad range of flows.

However, a review of the previous studies shows that these coefficients are not univer-

sal, implying they can be further adjusted for turbulent flow in case studies that were
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not originally considered [189]. This paper addresses the identified research gaps by

developing an adjusted set of coefficients suitable for ABL dispersion flows within a

generic form of urban settings.

A vital step in this process is deciding on the appropriate output constraints upon

which to base the modification of the model coefficients. To improve the reliability

of the air quality assessments in urban regions, a closure re-calibration is carried

out, in which the pollutant concentration field and the flow field parameters (velocity

and TKE) are set as the test parameters. The training case study is taken from

a comprehensive full-scale measurement campaign ([55]), which integrates realistic

environmental effects. A preliminary investigation of this dispersion data set shows

the wide-ranging variation in the concentrations throughout the domain, ranging from

100 ppm near the source to 0.001 ppm downstream and away from the centerline

(five orders of magnitude). Thus, specific considerations are required to define and

evaluate the validation metrics for scalar concentrations by including logarithmic

criteria, as using the typical linear measures alone would bias the fitting toward high-

concentration zones.

We have chosen three linear and two logarithmic measures to examine the agree-

ment of our numerical predictions with full-scale dispersion measurements. These

measures were defined by Chang and Hanna [168], and their reliability and effectivity

were exhaustively tested using several full-scale dispersion data sets [54]:

FB =
(Co − Cp)

0.5(Co + Cp)
(4.17)

NMSE =
(Co − Cp)2

Co Cp

(4.18)

MG = exp(lnCo − lnCp) (4.19)

VG = exp[(lnCo − lnCp)2] (4.20)
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FAC2 =
1

N

N∑︂
i=1

ni

ni =

{︄
1 if 0.5 ≤

⃓⃓⃓
Co

Cp

⃓⃓⃓
≤ 2

0 otherwise

(4.21)

Co and Cp are observed and predicted concentrations, respectively, while an over-

bar denotes the average over the data set with N sampling points. FB and MG are

fractional and mean geometric biases, respectively, metrics that measure the overall

under/over-prediction. NMSE is the normalized mean square error, and VG is the

geometric variance, quantifying the linear and logarithmic scatter of the predictions,

respectively. FAC2 is another linear metric that denotes the fraction of predictions

within the factor of 2 of the measurements. The necessity of analyzing all these

measures lies in the nature of the atmospheric pollutant distribution. Linear met-

rics could be inordinately affected by the random extreme values, while logarithmic

treatments might reflect a more balanced interpretation of them [54]. The ideal value

of these performance measures and their acceptable ranges for field experiments are

presented in Table 4.1. The application of these metrics is not limited to evaluating

the predicted concentration field, as they also can be effectively considered to assess

all the other flow parameters. Nevertheless, FAC2 might not be an adequately robust

criterion for measuring the deviations between the observed and modeled velocity and

TKE fields. Preliminary investigations indicated that even models with relatively de-

ficient accuracy exhibit FAC2 larger than 85% for velocity and TKE. Hit-Rate (HR),

on the other hand, sets more strict criteria and, therefore, could be an appropriate

substitution for FAC2. As it can be deduced from Equation (4.22), HR gives the

fraction of data points in which the relative deviation of predictions is within 25% of

the measured values. Pi and Mi are the predicted and measured values of a parameter

at data point i, respectively. An HR of at least 66% is required for the CFD model

to be considered valid [190].
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HR =
1

N

N∑︂
i=1

mi

mi =

{︄
1 if

⃓⃓⃓
Pi−Mi

Mi

⃓⃓⃓
≤ 0.25

0 otherwise

(4.22)

Table 4.1: The ideal value and the recommended ranges for validation metrics [54].

Validation metrics FB NMSE MG VG FAC2 HR

Ideal value 0 0 1 1 1 1

Acceptable ranges −0.3–0.3 0–4 0.7–1.3 1–1.6 0.5–1 0.66–1

Having the focus parameters defined as discussed, employing a systematic and

so-called “economic” optimization scheme is utterly crucial to modify the input vari-

ables (i.e., closure coefficients). In our work, a recommended optimization framework

([185]) is adopted and modified to carry out a rigorous calibration of the standard k−ε

model (adjusting all five coefficients) in the context of a large model (i.e., full-scale

urban dispersion flow).

The inherent uncertainties of the empirical coefficients, combined with their highly

nonlinear and synergistic effects on the output variables, make any linear sensitivity

approach ineffective in obtaining an optimized set. Despite that, simple screening

techniques can still be adopted to determine the input variables with the most influ-

ence on the validation metrics [118]. Here, the relative contribution of each closure

coefficient to the predicted concentration field will be assessed by quantifying its ele-

mentary effect [191]. For a selected validation metric denoted by G, which is assumed

to be a function of the vector of coefficients F = (f1, · · · , fm), the first derivative

term of the Taylor series can be used to give a measure of the elementary effect for

each coefficient:

Ei(F ) =
[G(f1, · · · , fi +∆i, · · · , fm)−G(F )]

∆i

(4.23)

where m is the number of coefficients to be assessed, and ∆i are step lengths de-

termined to account for the variation of the ith coefficient within a given range.
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Furthermore, the mean Ei and the standard deviation σEi of the elementary effects

related to each input variable must be calculated. The interpretation of these quan-

tities provides valuable insight into the possibility of prioritizing some coefficients

over others, potentially simplifying the optimization exercise [192]. Therefore, any

coefficient that demonstrates negligible and quasi-linear impacts on output variables

can be ignored at the optimization stage by keeping it at its standard value. The

modified value of this coefficient can be obtained later by performing a sensitivity

analysis while the optimized values for other closure constants are considered.

The amended list of the coefficients, together with their revised ranges from the

previous step, should be put through the calibration process. The eddy-viscosity

closure coefficients are pragmatic in definition; hence, their optimum value for pro-

ducing reliable and accurate outputs (i.e., pollutant concentration distribution and

flow parameters in this study) cannot be attained through a deterministic approach.

An appropriate optimization scheme can be implemented in such cases to effectively

navigate the performance variation caused by the random but targeted variation of

the coefficients in the considered parameter space. To mitigate the effects of the

available uncertainties on output variables, two intrinsically analogous and robust

objective functions are defined to be used at two levels of the optimization [193]:

Of1 =
l∑︂

i=1

(Gi − Γi)
2 (4.24)

Of2 =
l∑︂

i=1

[(Gi − Γi)
2 + σGi

2] (4.25)

Equation (4.24) is employed for assessing the performance of each analyzed set,

aiding in the deliberate choice among them in every optimization trial, while Equa-

tion (4.25) contributes to refining the ranges following each iteration of optimization.

For the validation metric i, Gi is its calculated value for each considered coefficient set

with Gi and σGi as its mean and standard deviation over each optimization iteration,

respectively. Γi is the ideal value for the ith validation metric, and l is the number of
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metrics included in this calibration study. The ranges for all input variables should

be adjusted to minimize the objective function Of2. The first term in Equation (4.25)

ensures the accuracy of the model, while the second term ensures its reliability by

reducing the variation in output responses within the proposed ranges.

Considering the complex and multidimensional parameter space in this work, the

genetic algorithm (GA) was adopted and carefully adjusted to carry out the cali-

bration exercise. GA is an optimization technique inspired by the natural selection

analogy that facilitates reaching an optimal solution through evolution [194]. It offers

balanced exploitation (cross-over) and exploration (mutation) of the search space,

which effectively produces populations of new coefficient sets with a higher poten-

tial for success. Different adjustments of GA were tested to form a framework that

best serves the re-calibration study in this work. Random selection of the coefficient

sets from investigated ranges is carried out by employing the Monte-Carlo sampling

method [195]. Using this selected population, the probability density function (PDF)

of the validation metrics is calculated by repeatedly running CFD simulations. A

rank-based selection based on the calculated Of1 values (Equation (4.24)), along

with a uniform cross-over approach, is found to be more efficient in exploring the pa-

rameter space. A cross-over probability of 75% is considered, which falls within the

recommended limits [196]. To explore new regions in the space that are not properly

examined during the cross-over step, the generated off-springs (new sets) should be

also mutated. In this regard, a Gaussian operator for the mutation step is adopted

to introduce controlled perturbations to each coefficient of the sets with a probability

of 10%. The new sets of coefficients generated in each iteration of the optimization

process replace the sets from the previous step, and the optimal ranges for each in-

dividual coefficient are refined accordingly until the defined objective function Of2

reaches its converged minimum values.

Further investigations are required to evaluate the performance of the modified

k − ε closure. To this aim, both the standard and optimized k − ε model will be
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considered next for a comparative study (Table 4.2). In the end, the generality of the

proposed set will be further tested by modeling three supplementary test cases.

Table 4.2: Standard and revised values of k− ε empirical constants with their prede-
termined variation ranges.

Coefficient
set

Cµ Cε1 Cε2 σk σε

Original
value [97]

0.09 1.44 1.92 1.00 1.30

Ranges 0.03–0.16 Equation 4.32 1.20–3.20 0.50–1.40 0.30–1.30

4.4 Description of case studies

The unique dispersion data set of the mock urban setting test (MUST) [55] was

invaluable to calculate the objective function for calibrating the k − ε turbulence

closure. MUST was sponsored by the U.S. Defense Threat Reduction Agency (DTRA)

to provide a reliable resource that includes the meteorological and dispersion data to

validate and verify the accuracy of the dispersion models and CFD simulations. An

idealized urban-like geometry was designed in this experiment that consisted of a

10 by 12 array of shipping containers placed in the center of the test domain over

relatively flat ground with a ground roughness of z0 = 0.045 m. Figure 4.1 illustrates

the schematic of the MUST geometry, along with the dimensions of the obstacles (i.e.,

containers), spacing between obstacles, and site configurations. In total, 68 trials were

performed in which propylene gas (C3H6) was released from 37 different locations that

can be classified into six main types with assigned letters A to F (Figure 4.1a). It is

noteworthy that the elevation at which the aforementioned sources are located varies

among all trials and should be identified prior to finalizing the CFD models.

Exhaustive measurements of the concentration field were carried out at 74 sampling

points distributed throughout the array. Forty sensors were spread in four horizontal

sampling lines of 1–4 (shown by black circles), and the remaining 32 sensors were

installed on the central 32 m tower and four 6 m towers of TA, TB, TC, and TD,
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Figure 4.1: MUST experiment schematic; (a) Dimensions and source locations, (b)
Top planar view with samplers locations.

positioned in each quadrant (Figure 4.1b). The mean velocity and turbulence mea-

surements were obtained using several sensors installed on all towers and masts (22

measurement points). That includes the 32 m central tower, four 6 m towers, two 16
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m pneumatic masts upstream and downstream of the array, and four 1.15 m tripods.

The specifications of all sampling points considered in this calibration study are given

in Table 4.3. The MUST data were further processed for time-averaged studies by

conditionally sampling all measurements to extract 200 s in each trial with the lowest

recorded temporal variation in the mean upstream wind speed and direction [49].

Table 4.3: Specifications of all MUST sampling points considered in the calibration
study.

Location

Sensors

Quantity Type Elevation

Tracer Flow Tracer Flow Tracer Flow

Lines 1, 2,
3, and 4

12, 9, 9, and
10

0 dPIDa − 1.6 m −

Central
tower

8 4 dPID 3D-SAb 1, 2, 4, 6,
8, 10, 12,
and 16 m

4, 8, 16, and
32 m

TA, TB,
TC, and
TD

6 each 2 each UVICc 3A-UAd 1, 2, 3, 4, 5,
and 5.9 m

2.4, and
6 m

S and N 0 3 each − 2D-SAe − 4, 8, and
16 m

Tripods 0 1 each − 3D-SA − 1.15 m

a Digital photo-ionization detector d 3-axis Ultrasonic anemometer

b 3-dimensional sonic anemometer e 2-dimensional sonic anemometer

c Ultra-violet ion collector

This paper considers four different trials: one as the training case to be used in the

calibration study and three as test cases (TC-1 to TC-3), to evaluate the generality

of the proposed coefficient set for various inflow boundary conditions and pollutant

source locations. Table 4.4 summarizes all four cases with their main characteristics.

This includes the averaged inflow velocity (S04) and direction (α04) at 4 m height,

source type and its elevation (Zs) with respect to ground, the tracer release rate

(qs), and the Monin–Obukhov length (LMO). The positive value of α04 is measured

counter-clockwise from the y-axis.
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Table 4.4: Summary of selected trials of MUST experiment for RANS calibration
study.

Case study Trial
I.D.

Source
type

qs ( l
min ) Zs (m) S04 (ms ) α04 (deg) LMO (m)

Training case 2682320 D 225 2.6 4.55 −39 170

TC-1 2681829 F 225 1.8 7.93 −41 28000

TC-2 2692250 E 225 1.3 3.38 36 130

TC-3 2672150 A 200 0.15 2.30 36 150

4.5 CFD simulation

Performing a reliable and accurate CFD simulation strongly depends on modeling de-

cisions at the setup stage. To this end, the following subsections deal with the general

CFD settings and considerations, mesh independence study, and the importance of

remediating the artificial horizontal inhomogeneity (i.e., the undesirable streamwise

gradients in the vertical profiles of flow variables).

4.5.1 General settings

The pollutant dispersion within a compact urban setting is modeled on a high-

resolution grid using the ANSYS CFX commercial code. The 3D steady-state RANS

equations coupled with the Eulerian transport equation are discretized and solved

by employing the hybrid finite element/volume method. High-resolution schemes are

considered to evaluate advection terms and turbulence numerics, and the Rhie–Chow

algorithm was adopted to implement pressure-velocity coupling. To ensure conver-

gence of the solution, target values of root mean square (RMS) normalized residuals

were set to 10−6 and 10−9 for flow variables and tracer concentrations, respectively.

The minimum size of the computational domain was determined based on the recom-

mendations of Tominaga et al. [197] and Franke et al. [18]. The additional domain

sizes were examined to specify the proper dimensions for the MUST geometry to

eliminate the possibility of any artificial flow accelerations around the buildings and
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destructive backflow at the boundaries. Taking the height of the obstacles as H,

distances from the MUST array are revised to 14H from the inlet, 10H from lateral

boundaries, 20H from the outlet, and 12H from the top boundary. This ensures

that the results are domain independent. Figure 4.2 illustrates a schematic of the

computational domain. As can be seen, the rectangular domain is oriented so that

the inflow wind stream is perpendicular to the inlet and outlet faces.

No slip

Inlet

Average relative 
pressure of zero

Symmetry

Symmetry

Symmetry

20 H

14 H

10
 H

12
 H

10
 H

Figure 4.2: Computational domain

The next crucial step in setting up a CFD model is to define the proper constraints

at the limits of the computational domain (i.e., boundary conditions). Assuming an

equilibrium atmospheric surface layer, the inflow velocity and turbulence profiles can

be approximated by [165]:

U(z) =
uτ

κ
ln

(︃
z + z0
z0

)︃
(4.26)

k(z) =
u2
τ√
cµ

(4.27)

ε(z) =
u3
τ

κ(z + z0)
(4.28)

where uτ is the friction velocity, κ is the Von Kármán constant with the value of

0.4 [165], and z0 is the aerodynamic roughness. Having a reference velocity at a

84



reference height (Table 4.4), Equation (4.26) can be used to calculate uτ for each case

study.

An average relative pressure of zero is specified at the outlet boundary. The top

and lateral limits are set as symmetry. The faces of each container are treated as

smooth walls with no-slip boundary conditions, while the ground is considered to be

a rough wall with a physical roughness of z0. The scalable wall function is employed

to resolve the velocity and turbulence quantities near the walls. The given uniform

ground roughness also represents the roughness of the upstream terrain that is not

considered in the domain. This implies having a fully-developed atmospheric flow at

the inlet, which, ideally, should not reflect any streamwise gradient as it progresses

through the domain [88]. However, horizontal heterogeneity is a known issue in ABL

flow simulations that needs to be carefully evaluated before claiming the reliability of

the results [18].

4.5.2 Grid convergence study

Generating a high-quality grid has a pivotal impact on reducing the discretization

error and enhancing the convergence of the solution. In the current study, a nested

domain was defined in which the inner domain encloses the MUST array. As a

consequence of taking this approach, the large empty portion of the domain was

meshed using structured hexahedral elements, which improves the overall rate of

convergence [94]. Unstructured tetrahedral cells are used to mesh the regions near

the blocks within the inner domain, while several prismatic layers are considered near

the solid surfaces (i.e., ground and faces of the blocks) to properly capture boundary

layer gradients.

Following the “best-practice” guidelines in computational wind engineering, the

sensitivity of the CFD model results to the grid resolution should be carefully as-

sessed [197]. In this regard, three successive grid resolutions of coarse, medium, and

fine were examined with 6.39, 9.68, and 14.62 million computational nodes, respec-
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tively. The vertical profile of normalized velocity at the central 32 m tower and the

horizontal profile of normalized pollutant concentration at the second sampling line

are compared to assess the uncertainty of results due to the grid size. As Figure 4.3a

illustrates, there are trivial deviations between the resultant velocity profiles using all

three grid refinements, which necessitates evaluating a more sensitive variable (i.e.,

concentrations). Figure 4.3b, however, implies that employing the grid with medium

refinement would be the appropriate choice with respect to the computational cost

and dependency of the predictions to mesh sizes.

Additionally, another grid sensitivity study proposed by Celik et al. [166] was

conducted to calculate the grid convergence index (GCI). The predicted pollutant

concentration at 74 sampling points was selected as the variable of interest. For

detailed mathematical steps and calculations of this investigation, please refer to

our previous paper [183]. Considering the second-order discretizations used in this

work and assuming a safety factor of 1.25 as suggested by Roache [167], the average

relative error and GCI for the two finer grids are 2.09% and 5.94%, respectively.

Comparing these quantities with ones of the coarse-medium case (average relative

error of 4.93% and GCI of 14.05%) further justifies the decision to use the grid with

medium refinement. For the selected grid, the building edges were divided into 20

elements and a 5-layer inflation region was considered for all the solid surfaces with

a growth rate of 1.07 to ensure y+ values were well within the acceptable range of

30 to 300. It is worth noting that the simulations were run on a workstation with

two 18-core Intel Xeon Gold 5220 CPUs (36 cores in total) and 256GB of RAM. On

average, a fully converged solution for each CFD run was achieved in approximately

4–5 hours.

4.5.3 Horizontal homogeneity

To ensure that the numerical uncertainty is kept to a minimum, the horizontal ho-

mogeneity of the flow must be first verified. A lack of homogeneity in the incident
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Figure 4.3: Mesh sensitivity of (a) normalized velocity at 32 m central tower and (b)
normalized concentration at the second horizontal sampling line.

velocity profile can lead to erroneous results [94]. To account for the roughness of

the wall, the majority of the commercial codes modify the wall function based on the

equivalent sand grain roughness (i.e., ks) approach [88]. As shown below, this method

seems to capture the homogeneity of the flow better compared to other methods, such

as replacing the no-slip with a constant shear boundary condition [91]. In order to

incorporate the wall roughness into the CFX simulation, Equation (4.30) along with

the modified wall function, Equation (4.31), are used [88]:

ks = 29.6z0 (4.29)

k+
s =

uτks
ν

(4.30)

UP

uτ

=
1

κ
ln

[︃
uτyP

ν(1 + 0.3νk+
s )

]︃
+ 5.2 (4.31)

where UP is the velocity at the center of the first cell next to the wall, and k+
s is

the dimensionless sand grain roughness. These equations and the proper value of

aerodynamic roughness were used to study the homogeneity of the incident profile in
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an empty domain.
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Figure 4.4: The velocity, TKE and turbulence dissipation rate profiles in an empty
domain.

Figure 4.4 shows the velocity, TKE, and dissipation rate at three cross-sections

in an empty domain. As can be seen, the horizontal homogeneity for the velocity

and dissipation rate was near completely achieved with a mean average error of 1.3%

and 1.7%, respectively. However, the TKE profile seems to display a small degree of

streamwise inhomogeneity in regions close to the ground, reaching a mean average

error of 2.4%. The analytical solution to the horizontally homogeneous atmospheric

boundary layer requires the production of turbulence to be balanced by the dissipation

at a constant rate leading to a uniform value for the TKE normal to the ground.

However, as indicated in the work of the previous researchers [40] and from Figure 4.4,

TKE varies with distance to the ground. The reason for this over-generation of

turbulence in the vicinity of the wall in the k − ε model was previously discussed by

Richards [198], and the inconsistent discretization of the turbulence production term

at the wall is described as the source of this excessive generation.
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4.6 Results and discussions

The suggested numerical scheme and the described methodology for closure model

optimization in previous sections are employed to improve the accuracy and reliability

of the RANS method in modeling the ABL dispersion flow within compact urban re-

gions. First, the results of the optimization study are presented and discussed. Later,

the modified closure is evaluated by comparing its resulting performance measures

with ones of the standard model. Finally, the generality of the proposed model is

examined by simulating three different case studies.

4.6.1 Closure re-calibration

Comprehensive optimization of the k− ε model demands the re-calibration of all five

empirical coefficients. Given the large size of the computational domain in this work

(i.e., full-scale compact urban setting), this process becomes prohibitively expensive

in terms of computing time and power. In this regard, taking specific considerations

is crucial to make this study more feasible and practical. A reasonable approach to

achieve this goal is to reduce the number of variables that require simultaneous tuning.

The necessity of maintaining a horizontally homogeneous flow in the atmospheric

surface layer encouraged Richards to devise a relationship between the constants of

the k−ε closure [165]. With this condition, the turbulence model, inflow profiles, and

the resulting ground shear due to the aerodynamic roughness would be in equilibrium.

Therefore, four out of the five constants (Cµ, Cε1, Cε2, and σε) must take appropriate

values to satisfy Equation (4.32). Accordingly, one of these four coefficients can

be arbitrarily excluded from the re-calibration process, as it can be determined as

a function of the remaining three. Following the recommendation of the previous

studies, Cε1 was omitted from the optimization process in this work [114, 199].

Cε1 = Cε2 −
κ2√︁
Cµσε

(4.32)

A further simplification of closure optimization may be possible by investigating
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the elementary effects of each coefficient on the objective parameters. To this aim,

each constant is varied independently in a predetermined range, while other constants,

except for Cε1, are kept at their original values. The preliminary ranges for closure

coefficients in this work are specified conservatively based on the previous studies

reviewed in Section 4.1 (Table 4.2). Considering 25 equally spaced values within each

range, a total of 100 CFD runs was carried out and processed for this part of the

study.

Prioritizing the accurate prediction of the concentration field, the elementary effects

of input variables (coefficients) on this parameter are presented in Figure 4.5. As it

can be deduced, increasing Cµ leads to more accurate predictions of the concentration

field (higher FAC2), while similar arguments cannot be made for the other constants.

For instance, higher levels of FAC2 are generally associated with smaller values of Cε2.

Ranging σε from 0.3 up to values of approximately 1.15 enhances the model accuracy,

whereas its further increase reduces the resulting FAC2. The variation in σk within

its range exhibits considerably milder but analogous impacts on FAC2 to the ones

in σε. As discussed in Section 4.3, despite the undeniable importance of FAC2 as a

measure of accuracy, the quality of the predicted concentration field should not be

judged solely based on this metric.

For this reason, two linear measures of FB and NMSE for the predicted concentra-

tion field, and their logarithmic counterparts, MG and VG, are also included in the

objective function. Figure 4.5 displays a drop for both FB and MG as Cε2 and σε

increase, while opposite trends are shown for Cµ and σk. Given the definition of the

validation metrics, smaller amounts of FB and MG indicate stronger scalar dispersion

and lower predicted concentrations at sampling points. It is worth noting that a VG

greater than 1 and positive values of FB reflect under-predictions of the concentration

field. However, due to the unavoidable presence of compensation errors in the calcula-

tions of FB and MG, there may be instances of significantly inaccurate predictions in

which these metrics take their ideal values. To avoid such a misinterpretation of the
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systematic errors, it is necessary to simultaneously calculate and explain NMSE and

VG metrics, which also quantify the available random errors (scatter of predictions

from measurements) [54]. Lower values of NMSE and VG that correspond to smaller

scatters are shown in Figure 4.5 to be gained by larger values of Cµ and σk within

ranges of 0.1 to 0.16 and 0.9 to 1.4, respectively. Conversely, adopting smaller values

of Cε2 between 1.2 and 2 considerably mitigates the scatters. For σε ranging from

0.3 to 0.6, the drastic fall of VG compared to the relatively moderate reduction of

NMSE suggests that data points with exceedingly low concentrations may have overly

influenced this logarithmic measure. Therefore, it is expected that the optimal value

of σε falls within the range of 0.8 to 1.2, which is in agreement with the recommended

ranges acquired by analyzing the other validation metrics.

A further examination of Figure 4.5 implies minimal sensitivity of all validation

metrics in response to the variation in σk compared to the rest of the coefficients.

Such observation advocates the exclusion of σk from the optimization study to reduce

computational expenses. However, the reliability of this decision must be assessed

beforehand by quantifying the elementary effects of closure coefficients on output

parameters using Equation (4.25). Heat maps are used as shown in Figure 4.6 to

qualitatively compare the mean (E) and standard deviation (σE) of the quantified

contribution of each coefficient to the output parameters. By employing this color-

coded scheme, we can promptly visualize the relative influence each parameter has on

the validation metrics. This approach provides a concise assessment without the need

for overwhelming numerical data and could serve as a complementary visualization

to the other presented figures in this work. A larger value of E for an input variable

suggests its relatively greater net impact on the validation metrics, while a larger

quantity of σE reflects its highly non-linear response or stronger interaction effects by

other input variables on output parameters [191].

As Figure 4.6 implies, the variation in Cµ shows the highest order of influence on

all validation metrics with the most significant level of interaction effects with other
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Figure 4.5: Elementary effects of closure coefficients on (a) linear and (b) logarithmic
validation metrics.
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factors. This remark was expected as Cµ not only contributes to the modeled eddy

viscosity (Equation (4.9)) and, consequently, scalar diffusion (Equation (4.11)), it

also plays a part in the estimation of the inflow TKE profile (Equation (4.27)). The

sensitivity of the validation metrics to variation in σε and Cε2 show roughly the same

order of significance, which can be categorized as the second and third most influential

factors, respectively. Finally, the calculated E and σE of the output responses to σk

variation hold the lowest orders relative to ones of other coefficients. Accordingly, it

is reasonable to claim that the validation metrics are considerably less sensitive to

σk, and this coefficient can be ignored at the optimization step. This statement is

moreover supported by some of the previous studies [114, 189]. Given the fact that σk

does not also correlate with other coefficients through Equation (4.32), its modified

value can be obtained later by conducting a direct sensitivity study.

FB NMSE VG MG FAC2

Cμ

Cε2

σε

σk

Low High

(a)

FB NMSE VG MG FAC2

Cμ

Cε2

σε

σk

Low High

(b)

Figure 4.6: Comparing (a) E and (b) σE of the elementary effects of closure coefficients
on the validation metrics

The distinct responses of the model’s accuracy to the variation in each closure

constant demonstrate the necessity of implementing a more rigorous approach to

navigate towards an optimized set. To this aim, the Monte-Carlo sampling method is

used to generate random selections of Cµ, Cε2, and σε within their associated ranges,

while Cε1 is estimated by Equation (4.32), and σk is kept at its standard value of 1.

Given the definition of the proposed objective functions (Equations (4.24) and (4.25)),

the GA optimization scheme aims at revising these ranges after each main iteration

to detect ones in which the model coefficients collectively correspond to a minimum
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value of Of2. Uniform distributions of probability are assumed for all coefficients in

their variation ranges, and 40 sample sets are generated randomly to produce the

initial population for the optimization process.

Figure 4.7 reveals scatter plots presenting the PDFs of FAC2 and HR for the pre-

dicted concentration and TKE fields, respectively. These plots offer valuable insights

into the variation and distribution of these metrics across the last 100 investigated

coefficient sets during the re-calibration process. As can be seen, both the concentra-

tion and TKE fields exhibit noteworthy sensitivity to the variations among coefficient

sets, which are evidenced by the widespread and diverse clustering of data points in

the provided PDFs. The observed similarity and consistency between both the output

responses (i.e., FAC2 and HR), further attest to the strong dependency of the pre-

dicted concentration field on the accuracy of the predicted TKE field, which justifies

the definition of the objective function as described in Section 4.3.
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Figure 4.7: Variation of validation metrics during the re-calibration (a) FAC2 for
pollutant concentration and (b) HR for TKE.

To better investigate the dependency of the model’s output responses on closure

sets, Figure 4.8 illustrates surface plots of FAC2 resulting from variations in the

considered closure constants during the re-calibration process. As can be concluded,

higher fractions of predictions within FAC2 of measurements are generally achieved
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for quantities of Cµ ranging from 0.13 to 0.16. Increasing Cµ from its standard value

of 0.09 could result in relatively lower eddy viscosity and inflow TKE to be estimated,

which could remediate the known flaw of the standard k − ε model: excessive over-

prediction of the TKE [11]. The shown results in Figure 4.8 further suggest that

decreasing σε from its original value of 1.3 increases the probability of acquiring

predictions with overall higher associated FAC2. Lower quantities of this constant

basically result in promoting the diffusive transport of the rate of viscous dissipation;

however, a general conclusion cannot be drawn due to the complex linked relationship

of the TKE and ε and the heavy modeling applied to Equation (4.8) [72]. The

optimal values of σε vary between 1 and 1.2. Cε2 appears as a factor for the sink

term available in the ε transport equation and is expected to substantially affect the

predicted turbulence field and, consequently, the resulting pollutant concentration

field. The most accurate representation of the pollutant concentration field for the

generic case of a compact urban setting is shown to be obtained by smaller values of

Cε2 than its standard value, differing between 1.6 and 1.8.

(a) (b) (c)

Figure 4.8: Surface plots of FAC2 variation for pollutant concentration field during
the calibration process.

The quality of the predictions within the detected ranges for closure constants

that contribute to the highest calculated FAC2 should be further examined. In this

regard, the concentration-related output responses of the remaining validation metrics

to different sets of closure coefficients are presented in Figure 4.9. Noting that the
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calculated NMSE remains well inside the acceptable limits and near its ideal value

(0.35 ≤ NMSE ≤ 0.55), it was decided to mainly focus on the FB, VG, and MG

metrics and omit the NMSE variation contours in this paper. As can be seen, both

the linear and logarithmic measures of the model’s systematic errors (i.e., FB and MG,

respectively) exhibit roughly similar trends in response to the closure modification.

(a) (b) (c)

Figure 4.9: Variation of FB, VG, and MG for pollutant concentration field during the
calibration process.

The analysis of Figure 4.9 suggests that the most desirable measures of FB and

MG are attained as Cµ takes values between 0.12 and 0.15, while 1.68 ≤ Cε2 ≤ 1.80

and 1.12 ≤ σε ≤ 1.20. The variation in FB and MG within the given ranges reflects

an overall under-prediction of the concentration field compared to the observations.

On the other hand, evaluation of the resulting scatter from measurements (i.e., VG)
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identifies the optimal ranges of coefficients as 0.14 ≤ Cµ ≤ 0.16, 1.50 ≤ Cε2 ≤ 1.80,

and 1.05 ≤ σε ≤ 1.20. These findings further emphasize the importance of collectively

assessing the validation metrics, as well as the synergistic effects of closure coefficients

on model outputs. The optimal ranges can be extracted from the intersections of the

identified spans to ensure the greatest reliability of predictions (FAC2). The proposed

ranges in this work are 0.14 ≤ Cµ ≤ 0.15, 1.68 ≤ Cε2 ≤ 1.80, and 1.12 ≤ σε ≤ 1.20, in

which a closure set of Cµ = 0.147, Cε = 1.344, Cε2 = 1.693, and σε = 1.196 produces

the most accurate and reliable predictions.

The optimal value of σk is successively derived by conducting a sensitivity study

using the standard k − ε model in which the modified coefficients are implemented.

As expected, all the output parameters demonstrate relatively weak sensitivity to the

variation of this coefficient, with FAC2 being the least responsive (Figure 4.10). In-

creasing σk weakens the diffusive transport of TKE, consequently leading to larger tur-

bulence mass diffusivity (i.e., Dt). This behavior of Dt enhances the under-prediction

of the pollutant concentrations at the plume centerline, which justifies the consistent

increase in FB shown in Figure 4.10a. Considering all the validation metrics together

while prioritizing FAC2 (i.e., the model’s accuracy), the range of 0.87 ≤ σk ≤ 1.00 is

suggested, with σk = 0.927 being the optimal value.

4.6.2 Performance and generality evaluation

The performance of the improved closure model with the proposed coefficient set

(Cµ = 0.147, Cε1 = 1.344, Cε2 = 1.693, σε = 1.196, and σk = 0.927) is evaluated

in this section. Figure 4.11 depicts the iso-surfaces of pollutant concentration (C∗ =

10−2) flooded by TKE contours that were predicted by all the considered revisions of

the k− ε turbulence model. Even though the overall form of the predicted plume by

both the optimized and standard turbulence closures display roughly similar shapes

due to the interactions between flow and structures, the predicted volumes of the

selected iso-surface exhibit clear differences. As for the TKE, the proposed model in
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Figure 4.10: Sensitivity of the (a) linear and (b)logarithmic validation metrics to the
variations of σk

this work resulted in considerably lower values compared to the other revision (i.e., the

standard version). The distinct differences observed among these models highlight the

necessity of such re-calibration practices and lays the foundation for a more meticulous

investigation of their performances. In this regard, rigorous statistical comparisons

are subsequently required to further elucidate the strengths and weaknesses of the

studied models.

The validation metrics of the predicted concentration field by all revisions of the

standard k − ε are calculated and presented in Table 4.5. The most accurate re-

production of the concentration field was obtained using the optimized closure in

this work, with 80% of the predictions within FAC2 of measurements. Evaluating

all validation metrics together, the decisive superiority of the optimized closure for

the generic case of a compact urban setting is apparent. The positive quantities of

FB show the general under-prediction of the concentration field using all these revi-

sions. The presented MG values further support this observation. Considering FB

values of 0.13 and 0.21 by the original and optimized versions, respectively, these

models demonstrate slight under-predictions of the concentration field. In terms of

the recorded scatters, the optimized model in the current study strongly outperforms
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(a) (b)

Figure 4.11: Normalized concentration iso-surfaces (C∗ = 10−2) flooded with TKE,
predicted by (a) standard, and (b) optimized revision of k − ε turbulence model.

the other revision with VG= 1.63.

Table 4.5: Performance evaluation of the modified closure model in predicting the
pollutant concentration field.

Closure revision FB NMSE MG VG FAC2

Standard [97] 0.13 0.41 0.98 1.82 0.72

Current study 0.21 0.40 1.05 1.63 0.80

A more rigorous interpretation of statistical measures in Table 4.5 is possible by

analyzing the predicted concentration profiles throughout the domain. Figure 4.12

maps the concentration field at four horizontally distributed sampling lines. The orig-

inal and optimized models over-predict the concentrations at the first two sampling

lines. As the plume progresses downstream, the intensity of over-prediction decreases

gradually until concentrations are entirely under-predicted at sampling line 4. It is

also worth mentioning that the variation in the field measurements along the hori-

zontal line closely resembles the profiles generated by the present optimized model.
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Figure 4.12: Comparison of the predicted concentration fields at horizontal sampling
lines.

The predicted vertical profiles of pollutant concentrations are shown and compared

in Figure 4.13. Given the direction of the upstream wind flow, two towers, TA and

TD, did not detect any tracer quantities and were, thus, excluded from this study. As

illustrated, the optimized model predicts relatively lower concentration levels along

the vertical sampling lines, resulting in improved agreements with the field measure-

ments. It should also be noted that the reproduced plume by the optimized models

successfully exhibits the expected Gaussian shape as it passes through the selected

vertical lines. To further evaluate the overall capability of the proposed model, a

scatter diagram for all 74 sampling points is presented in Figure 4.14. The improved

accuracy of the predictions by the optimized model is apparent by showing smaller

scatters, which further supports the lowest calculated VG of 1.63 (Table 4.5). In
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addition to sampling points with higher concentrations (near the source and plume

centerline), the profound improvement in predictions for points with lower concentra-

tions (near the plume’s edges and far from the source) is also evident, which implies

a more accurate reproduction of the pollutant spread throughout the domain. As a

result, a greater fraction of predictions is shown between the FAC2 lines using the

optimized model, with almost no data point outside the FAC5 lines.
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Figure 4.13: Comparison of the predicted concentration fields at vertical sampling
lines.

The capability of the proposed coefficient set in capturing the wind and turbulence

fields must also be examined to ensure the reliability of predictions exhaustively.

Table 4.6 compares the calculated validation measures for both the predicted velocity

and TKE fields obtained by optimized and standard versions of the k − ε model. As

previously discussed in Section 4.3, FAC2 is not an adequately strict metric for this
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Figure 4.14: Scatter plot between the observed and predicted concentrations at all
sampling points for standard and optimized closure sets.

part of the evaluation study and is replaced by HR. It should also be noted that the

measurements of one of the sensors of tower TA, both sensors of tower TD, and one

sensor of the upstream mast S are missing from the MUST data set and therefore

are excluded from calculations. In terms of the flow field, approximately similar

performances by both models are observed, with validation metrics well within the

acceptable ranges. The predicted velocity fields are slightly overestimated (negative

values of FB and MG below 1), and quantities of NMSE and VG suggest low scatter.

A minimum HR of 66% is required to consider predictions as valid, which is obtained

by all models.

As is expected, implementing different versions of coefficient sets leads to contrast-

ing representations of the turbulence field. As suggested by the validation metrics,

the standard revision of the k − ε coefficient sets substantially overestimates TKE

compared to the optimized model. The cross-comparison of the considered coefficient

sets and their associated impacts on the model’s outputs argue that large values of

Cε1 might be the most influencing factor in TKE over-prediction. The appearance of

a greater quantity of Cε1 in the form of a factor to the source term in Equation (4.8),

promotes the production of ε. Considering the coupled relationship of Equations (4.6)
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and (4.8), it is expected that the production rate of TKE is large where its dissipation

rate is large [68], which justifies considerably lower values of TKE predicted by the

optimized set in this work compared to ones obtained by the standard version.

Table 4.6: Performance evaluation of the modified closure model in predicting the
velocity and TKE fields for the training case study.

Closure revision
Velocity

FB NMSE MG VG HR

Standard [97] −0.03 0.03 0.93 1.05 0.72

Current study 0 0.03 0.96 1.04 0.78

TKE

FB NMSE MG VG HR

Standard [97] −0.15 0.05 0.87 1.04 0.67

Current study −0.03 0.02 0.98 1.02 0.94

The qualitative examination of the predicted turbulence field can be carried out

by investigating the resulting TKE profiles at several locations within the building

array. Figure 4.15 depicted the vertical variations of TKE at two different sample

locations: at the center of the array (central tower) and on tower TC, positioned nine

rows into the array. It is worth noting that the predicted TKE fields show major

dissimilarities at lower elevations, where the flow is primarily affected by the presence

of objects, but they asymptotically converge as the array’s influence disappears aloft.

Figure 4.16 is provided to facilitate a point-to-point comparison and evaluation of

the predicted flow field parameters using the standard and optimized k − ε models

at the 18 measuring points (which has measurements) spread across the MUST test

domain. The statistical data for the predicted velocity field presented in Table 4.5 are

further supported by Figure 4.16a, showcasing insignificant differences between the

performances of these two models. Furthermore, a clear trend is observed for both

the velocity and TKE, implying that the standard version of the turbulence model

generally returns higher values of these parameters. The considerable difference in

the predicted TKE values, despite what is noted for the velocity field, highlights
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the ample improvement achieved by the optimized model in the predictions. As was

already mentioned, TKE plays a pivotal role in the accurate representation of the

concentration field through the definitions of the eddy viscosity, Sct, and consequently,

the eddy diffusivity. This improved agreement can be attributed to the optimized

model’s ability to represent turbulent mixing and dispersion more accurately, resulting

in a more realistic depiction of the concentration distribution in the flow field.
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Figure 4.15: Vertical profiles of the predicted TKE (a) at 32 m central tower and (b)
at the tower TC.

As for the final step of this optimization study, the generality of the proposed set

must be tested prior to claiming its utility. To this aim, three test cases are consid-

ered (Table 4.4), in which the performance of the optimized model is comparatively

evaluated. As can be seen, all the test cases are selected to cover a diverse range of sit-

uations in terms of the tracer source type and location, array orientation, mean wind

speed, and atmospheric condition. Referring to Figure 4.1b, the source in the training

case is roof-based (i.e., type D) and positioned on container J9. For the test cases of

TC-1, TC-2, and TC-3, the sources are, respectively, located between containers K8

and L8 (type F), 24 m upstream of container L1 (type E) and immediately upstream

of container J3 (type A). In order to consider the distinct array orientations, cases

with different incident directions of wind flow that generate unique flow structures
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(a)

(b)

Figure 4.16: Point-to-point evaluation and comparison of the predicted flow field
across the test domain: (a) Velocity, (b) TKE. The error bars represent a 25% devi-
ation from the experimental measurements.

are chosen. The precise prediction of the scalar concentration field strongly depends

on the accurate reproduction of flow and turbulence fields [10]. Therefore, by defining

these test cases, opportunities to assess the extent of the applicability of the devel-

oped coefficient set were created. To further explore the limitations and uncertainties

associated with the proposed framework, two atmospheric stability classes of fully

neutral (TC-1), and stable near neutral (TC-2 and TC-3) are considered. Detailed

evaluation studies are carried out for all three test cases, for which the corresponding

statistical measures are given in Table 4.7.

The analysis of the presented data demonstrates the validity of the predicted flow

fields in all test cases. However, consistent with our earlier statements, the reproduced

velocity fields demonstrate minimal sensitivity to the modification of the closure co-
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Table 4.7: Validation metrics for three selected test cases during the generalizability
study.

Case Revision
Velocity

FB NMSE MG VG HR

TC-1
Standard −0.09 0.02 0.91 1.03 0.78

Optimized −0.07 0.01 0.94 1.03 0.89

TC-2
Standard 0.13 0.08 1.03 1.07 0.67

Optimized 0.15 0.06 1.05 1.07 0.72

TC-3
Standard 0.25 0.30 1.07 1.16 0.78

Optimized 0.26 0.28 1.09 1.15 0.78

TKE

FB NMSE MG VG HR

TC-1
Standard 0.05 0.03 1.07 1.05 0.83

Optimized 0.09 0.01 1.09 1.01 0.94

TC-2
Standard 0.13 0.04 1.07 1.08 0.72

Optimized 0.18 0.01 1.11 1.02 0.89

TC-3
Standard 0.08 0.03 0.97 1.06 0.83

Optimized 0.11 0.01 1.02 1.02 1.00

Concetration

FB NMSE MG VG FAC2

TC-1
Standard 0.11 0.68 1.08 2.11 0.64

Optimized 0.18 0.58 1.10 1.93 0.69

TC-2
Standard 0.12 0.47 1.10 1.52 0.70

Optimized 0.19 0.45 1.17 1.41 0.76

TC-3
Standard 0.10 0.59 1.12 2.03 0.67

Optimized 0.16 0.50 1.14 1.84 0.71

efficients. The same argument does not hold for pollutant concentration and TKE

fields. Concerning TKE, the modified closure achieves noticeable enhancements in

the accuracy and quality of predictions. In line with the output responses of the

training case, a relatively more intense under-prediction of TKE by the optimized

closure is observed, which has resulted in relatively higher quantities of FB and MG.

The slightly higher levels of FB and MG, however, have modified the predictions in

a manner that has led to smaller overall scatters (lower VG and NMSE) and raised
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HR in all three test cases. Having a more accurate and reliable representation of the

flow and turbulence parameters, an improvement in the predicted concentration field

is consequently expected.

Any changes to solutions for Equations (4.6) and (4.8) (i.e., using a revised coeffi-

cient set) modify the estimated eddy viscosity (νt) and, accordingly, the turbulence

mass diffusion (Dt) in Equation (4.10). Additionally, Dt is also affected by the defini-

tion of Sct in this work (i.e., Equation (4.13)), which shows an explicit dependency on

the local characteristics of turbulence. These contributions result in strong sensitivity

of the predicted concentration field to different editions of closure constants, which is

established by the presented data in Table 4.7. The evaluation of the validation met-

rics together exhibits an overall boost in the quality and reliability of predictions for

the three test cases. Therefore, the potential applicability of the trained closure set

for time-averaged modeling of atmospheric dispersion flow in compact urban settings

is attested.

4.7 Conclusion

In an effort to improve the accuracy of the steady atmospheric dispersion modeling

in the context of a compact urban setting, a re-calibration study is carried out on the

empirical constants of the standard k− ε model. To this aim, in addition to the flow

parameters (velocity and TKE), the pollutant concentration field is also selected as

the parameter of focus, implemented through the definition of five different validation

metrics (three linear and two logarithmic). An optimization scheme based on the GA

algorithm is adopted here with some modifications to systematically select sets of

coefficients from predetermined ranges to evaluate and eventually identify variation

spans with the highest associated model’s accuracy. The comprehensive and high-

quality dispersion data set of full-scale field measurements in an urban-like geometry

(i.e., the MUST experiment) was used to re-calibrate the model constants. In order

to evaluate the performance of the optimized closure, the quality of predictions for

107



concentration, velocity, and TKE fields are further compared with the ones of the

standard model. Finally, the general applicability of the modified set to other cases

is examined by modeling three distinctive test cases with different inflow velocities,

source locations, building orientations, and atmospheric states. The main steps and

key findings of this study can be summarized as follow:

• Considering the large size of the model, making specific arrangements is essential

to alleviate the associated computational costs. In this regard, the established

relationship among Cµ, Cε1, Cε2, and σε within the atmospheric surface layer is

utilized to omit Cε1 from the optimization study, as it can be calculated using

the other three constants.

• A screening method was used to quantify each constant’s direct and interac-

tional effects on the validation metrics. As suggested by the results, the model’s

outputs reflect a relatively minimal sensitivity to σk, which justifies the decision

to exclude this coefficient from the optimization step and find its optimal value

later through a simple sensitivity study.

• The rigorous analysis of all validation metrics together, while prioritizing achiev-

ing the highest quantities of FAC2, has led to recommending the optimal ranges

for the generic case of a compact urban setting as follows: 0.14 ≤ Cµ ≤ 0.15,

1.68 ≤ Cε2 ≤ 1.80, 1.12 ≤ σε ≤ 1.20, and 0.87 ≤ σk ≤ 1.00.

• Given the proposed ranges in this work, a closure set is found to generate

predictions that agree best with the selected field measurements of this study,

which consists of Cµ = 0.147, Cε = 1.344, Cε2 = 1.693, σε = 1.196, and

σk = 0.927.

• An exhausting assessment of the statistical measures resulting from the compar-

ative study indicates that the optimized closure significantly outperforms the
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other revision in reproducing the concentration and TKE fields, while both edi-

tions yield roughly similar results for the velocity field. Relative to predictions

by the standard model, the FAC2 for the concentrations (among 74 sampling

points) and HR for the TKE field (among 18 sampling points) are increased by

8% and 27%, respectively.

• The investigation of the general applicability of the proposed modifications sug-

gests that except for the predicted velocity field, in which only minor improve-

ments are observed, the closure model successfully enhances the quality and

reliability of predictions for concentrations and the TKE field in all three test

cases.
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Chapter 5

Unravelling the synergistic effects
of urban morphological
characteristics on dilution of air
pollution emitting from roof-based
sources in proximity of the fresh
air intakes

5.1 Introduction

The burgeoning world population and subsequent surge in urbanization have given

rise to a pressing concern regarding the outdoor air quality in urban areas and its

detrimental effects on public health. The gravity of this problem has initiated numer-

ous works of research to direct our efforts toward effective approaches for promoting

outdoor ventilation. Responding to this developing concern, specialists are actively

investigating novel approaches to address air pollution and enhance the urban living

environment. Given the complexity of urbanization and its effects on air quality, there

is a growing necessity to delve into inventive methods for pollution control. Recent

studies generally classify these fast-developing strategies into two main categories,

namely the active and passive methods [24].

The active strategies refer to any attempt to exploit mechanical factors to re-

duce the pollutant concentration levels within areas of interest (e.g., street canyons,
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vicinity of fresh air intakes, etc.). Broadly speaking, the active countermeasures com-

paratively encompass a wider variety of methods and often require energy provision

and frequent human interference to operate efficiently. Examples are properly de-

signing and operating the ventilation stacks to adequately disperse exhaust gases to

the upper part of the atmosphere and to reduce the probability of their introduction

into the built regions at unsafe concentrations [67]; using catalytic converters that

break down air-contaminant chemical structures and transfer them into less harmful

particles [200]; employing pollutant sinks such as electrostatic precipitators (ESP) at

sensitive locations to electrically charge the available particles in the air and remove

them by leveraging the electrostatic attraction principle [148]; planting green barri-

ers to filter out pollutants from the air and to absorb carbon dioxide [109] and even

imposing targeted regulations and demanding structural modifications to alleviate

traffic and industrially generated air pollution [201].

While the effectiveness of such active methods is undeniable, they are associated

with some drawbacks. For example, air pollution devices generally consume additional

energy and can be quite sensitive to the environment’s meteorological conditions

(humidity, airflow speed, etc.), enforcing regulations may encounter public resistance

and investment challenges, or exploiting the vegetation capability in this context does

not offer immediate improvement and even may degrade urban air quality in some

cases by reducing the local wind speed and ventilation rates [148].

As for passive strategies, effective manipulation of the urban morphological in-

dices could immensely enhance the capability of the geometry in dispersing outdoor

air pollution [15]. The recognition of the undeniable impact that urban structures

and arrangements exert on the complex dynamics of atmospheric turbulence and dis-

persion flow has accentuated the need for strategic interventions in urban planning.

A detailed survey of the relevant literature suggests that there are several geomet-

ric factors associated with urban layouts that have the most noticeable impacts on

their dilution potential, such as planar density, planar non-uniformities (i.e., het-
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erogeneities), urban setting orientation, and even the pollutant source location [3,

202, 203]. Therefore, carrying out a series of parametric investigations to assess the

resulting dispersion patterns within generic forms of building arrangements holds

substantial benefits for urban planning practices.

Many studies have explored how urban morphologies impact wind flow and pollu-

tant dispersion within idealized and regularly aligned building arrays, yielding valu-

able and fundamental insights. An et al. numerically modeled idealized urban areas

with different configurations to study the influence of the building separations on

the accumulation of traffic-originated pollutants within street canyons [110]. As a

general outcome, they observed a positive correlation between the array permeability

and air quality within the pedestrian level (height below 2m), a conclusion supported

by findings from several other studies [128, 129, 153]. However, regardless of the

permeability levels, the ultimate state of air quality has been repeatedly shown to

be heavily influenced by the specific formation of the array and its other geometric

characteristics [44, 130, 204]. Furthermore, the idealized and aligned building arrays

represent the most simplified forms of urban forms which are quite scarce, as the

actual urban forms are completely heterogeneous. The presence of non-uniformities

leads to much more complex flow and turbulence structures compared to regularly

aligned arrays, entailing the extension of urban studies to include such cases [131].

In recent years, there have been limited studies focused on exploring the character-

istics of atmospheric airflow within non-uniform idealized building arrays ([117, 132])

or realistic urban regions with unique terrain features ([110, 142]), with even fewer ad-

dressing the pollutant transport. Considering a staggered array effectively introduces

deliberate and systematic non-uniformities in the generic urban forms under study,

which facilitates investigating the influence of planar heterogeneities [124]. Bady et

al. [205], compared the resulting flow fields of two cases with aligned and staggered

arrays. They claimed that the former arrangement generally promotes breathability

within the pedestrian level when the wind direction is perpendicular to the disposi-
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tion line, while the latter performed relatively better in cases with a 45-degree wind

direction of incidence. However, further investigation of the fundamentally distinct

flow structures due to the array arrangements by Shen et al. [206] indicated stronger

dilution of the pollutant stream within the staggered arrangement. This finding was

in agreement with the conclusion of Goulart et al. which attested to the stronger

outflow pollutant flux from urban canopies in staggered layouts [134]. One possible

explanation for such conflicting statements on the impact of the staggered arrays

might be the different planar densities considered in the aforementioned efforts. The

synergistic effects of building spacing and disposition levels have the potential to dras-

tically alter the mean and turbulent flows and subsequently lead to either pollutant

accumulation or mitigation around the buildings. This further emphasizes the imper-

ative for carrying out an in-depth and rigorous examination of the collective influence

of geometric factors on pollutant dispersion flow. Such comprehensive analyses are

conspicuously lacking in the existing literature, highlighting a timely need for their

inclusion.

The direction of the incident wind (i.e., the urban setting orientation) has also been

shown to significantly influence the mean flow and its state of turbulence within and

around a group of buildings [133]. Hence, one expects the different wind directions

to substantially affect the spatial distribution of the scalar pollutant. Prior attempts

have predominantly focused on a single generic form of urban settings (for instance,

arrays with a constant planar density or an extreme disposition level), missing the

comprehensive examination of the wind direction effects in conjunction with arrays

exhibiting a wide range of geometric parameters [207, 208]. Furthermore, most of the

available systematic surveys into pollutant dispersion patterns are centered around

the standard scenario of wind incidence perpendicular to the frontal face of the ar-

rays [135, 209, 210]. These endeavors, while invaluable, overlook the complexity and

significance of the possible flow patterns that emerge due to varying wind directions

and their simultaneous interaction with diverse morphological indices.
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Moreover, the majority of former investigations have either considered near-field or

far-field dispersion of pollutants emitting from ground-based sources that respectively

encompass traffic-related or industrial-originated pollution. These studies provide

only a partial perspective on the broader spectrum of urban air quality dynamics,

as roof-based ventilation exhaust is another principal source of air pollution within

urban regions. The relatively higher elevation of these types of sources, coupled

with the specific characteristics of the mean flow and induced turbulence over the

roofs, results in unique patterns of pollutant dispersion that differ significantly from

those originating from ground-level sources [111, 183]. Moreover, the undesirable

poor dispersion of the exhaust gases from roof-based sources could potentially give

rise to a supplementary issue: the infiltration of outdoor air contaminants into the

indoor spaces via fresh air intakes that are typically positioned on the building’s

faces. Although this dearth in the literature underscores the need for incorporating

roof-based sources into relevant studies concerning urban air quality, only a limited

number of papers have ventured into this realm. Examples are the investigation of

roof-based pollutant dispersion adjacent to an isolated building [120, 169, 211], a

cross-shape tall building [111, 212], wake region between two buildings [67], and an

elongated rectangular building [213]. Therefore, expanding the scope of consideration

to include situations with clusters of buildings would inherently yield beneficial and

valuable insights.

5.1.1 Objectives

In order to complement the fast-developing urban planning trends, this study defines

generic case studies consisting of a cluster of buildings that systematically incorpo-

rate typical urban irregularities. To this aim, several degrees of array disposition

are considered to account for the urban planar heterogeneities. Consulting the re-

cent body of the literature suggests that if employed strategically, typical geometric

non-uniformities could immensely improve outdoor air quality. However, the effective-
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ness of these irregularities is intrinsically linked with other influencing morphological

indices. Therefore, to effectively contribute to formulating the urban planning guide-

lines, a parametric investigation is designed to analyze the synergistic effects of urban

heterogeneities alongside two other well-established influencing parameters of planar

density and wind direction. To accommodate this investigation, a series of case stud-

ies has been established, encompassing seven levels of block disposition, which include

cases without any disposition to serve as references with aligned blocks, in addition

to six planar density variations. Several quantitative ventilation indices, including

the velocity ratio, retention time, non-dimensionalized pollutant concentration, and

pollutant flow rates due to mean and turbulent flows are calculated to rigorously

evaluate the performance of each design. To further bridge the recognized gaps in the

literature, two wind directions of 0◦ and 45◦ are considered to cover the range of inci-

dences, and the pollutant sources in this work are positioned atop a block upstream

of the array (in accordance with the inflow wind direction). Considering roof-based

sources enables the exploration of how urban morphology affects gas dispersion above

the urban canopy and in proximity to potential locations for fresh air intakes. The

quantitative and qualitative conclusions of this work contribute to forming the theo-

retical framework that can steer urban planning practices toward sustainable designs

that result in higher outdoor air quality and efficient land use.

5.2 Fundamental and mathematical model

As discussed earlier, the wind flow and consequently the pollutant distribution within

the urban region are highly correlated with the morphological characteristics. The

in-depth assessment of the resulting concentration field due to the specific urban

texture, necessitates high-resolution modeling of the selected configuration at the

neighborhood scale (i.e., horizontal length scales up to 2km) [214]. Evaluating out-

door air quality at larger scales, such as city-scale, can be misleading. This is because,

while average ventilation indicators at this scale might fall well within health stan-
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dard limits, local extremes caused by specific urban forms can pose serious health

hazards [215]. These extremes impact not only pedestrians but also have the po-

tential to degrade indoor air quality. Considering the inherently turbulent nature of

the atmospheric urban flow, the Reynolds-averaged representation of the continuity

and momentum equations can be employed to govern the steady-state, isothermal,

and incompressible wind flow across the building arrays under study. A detailed de-

scription of the governing equations and the disintegration of the flow properties into

their time-averaged and fluctuating components using the Reynolds decomposition

approach are given in Section 4.2.

Appropriate turbulence closure models are further required to model the intro-

duced Reynolds stress terms into the momentum equations and close the system of

equations. Following the suggested modeling framework in Chapter 3, the standard

k − ε model has been shown to provide the most reliable and accurate prediction

of the flow parameters in case of a cluster of obstacles. The standard k − ε model

demonstrates a greater overestimation of turbulence kinetic energy (TKE) in com-

parison to alternative closures, as explored in Chapter 3. This overestimation, along

with the dominant turbulence generated by the structures within urban arrays, collec-

tively compensates for the typical underestimation of turbulence diffusion associated

with Reynolds-Averaged Navier-Stokes (RANS) due to its omission of large-scale ed-

dies [11, 183]. The standard k − ε model defines the eddy viscosity in Equation 4.3

as µt = Cµ(k
2/ε) and introduces two additional transport equations to estimate

turbulence kinetic energy (TKE) and the turbulence dissipation rate (ε), as shown

in Equations 4.6 and 4.8. To enhance the accuracy of the standard k − ϵ model

in predicting mean and turbulent flow parameters within a generic urban array, an

extensive re-calibration of its empirical coefficient set has been undertaken. A com-

prehensive account of this re-calibration process, along with a thorough evaluation,

is detailed in Chapter 4. Consequently, this chapter will employ the modified set of

model constants, which is as follows:
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• Cµ = 0.147, Cε = 1.344, Cε2 = 1.693, σε = 1.196, and σk = 0.927

To estimate the changes in pollutant concentration due to the near-field atmo-

spheric dispersion, the Eulerian advection-diffusion transport equation should be

solved (Equation 3.5). In this study, the pollutant is treated as an inert and pas-

sive gas, implying that Equation 3.5 is linked with the flow-related equations in one

way and can be directly solved subsequent to the computation of the flow field param-

eters. Moreover, the substantial influence of the turbulence Schmidt number (Sct) on

pollutant diffusion has been a topic of extensive research [152–154, 170, 171]. The

comprehensive examination detailed in Section 3.6.2 indicates that Sct is an intrinsic

flow property tightly linked to turbulence characteristics. In light of this, a variable

definition of Sct was incorporated into Equation 3.5, and its effectiveness was thor-

oughly assessed. Consistent with the modeling framework proposed in Chapter 3,

Equation 3.18 will be applied in this segment of the study as well [172].

5.3 Methodology

This section offers a description of the chosen case studies, presents the structured

parametric study, and introduces the selected outdoor ventilation and dispersion in-

dices employed for assessing urban air quality.

5.3.1 Description of case studies

The primary objective in defining the case studies for this research is to adapt generic

block arrays to asymptotically simulate actual urban settings commonly found in

cities. More accurately, the idea is to closely mimic the airflow patterns and air pol-

lutant dispersion within real street canyons. The main goal is to uncover the interplay

between urban morphological parameters and the dispersion of rooftop-generated air

contaminants near and on building facades, which are potential locations for fresh

air intakes of the ventilation systems. To achieve this, the target building is situated
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within an array consisting of four rows of buildings upstream within the direction

of the inflow wind. This type of geometry ensures a more reliable generality of the

numerical modeling outcomes and conclusions, as having an adequate number of

buildings upstream of the target building generates the expected internal turbulence

representative of an urban environment [216]. Moreover, previous investigations gen-

erally suggested that an approximate stream-wise equilibrium is often achieved for

most flow parameters beyond three rows of blocks [124, 205, 217]. The number of

rows in the transverse direction should be carefully determined to ensure that the

pollutant plume remains sufficiently distant from the array’s edge. This arrangement

helps keep the plume away from the accelerating flow beyond the last lateral row of

the buildings, especially when the internal flow within the array interacts with the free

stream flow. The defined array consists of cubical obstacles with a block aspect ratio

(height-to-width ratio) of AR = 2, which typically corresponds to mid-rise buildings

commonly found in densely populated urban areas [218, 219]. Figure 5.1 illustrates

a schematic of the building array used in this work to define the case studies.

Aligned array

Staggered arrayTarget building

ζ=0% ζ=25% ζ=33% ζ=50% ζ=66% ζ=75% ζ=100%

θ

W

Sb

B

W

B

Figure 5.1: Schematic and model descriptions of the defined case studies.
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The planar density (λp), also known as the floor coverage ratio, is a crucial morpho-

logical index that significantly impacts urban planning decisions. It plays a pivotal

role in balancing the efficient utilization of land with the ventilation capacity of the

proposed urban design. λp is defined as the ratio of the planar area occupied by

buildings to the total underlying area, and can be calculated as follows:

λp% =
B2

(B +W )2
× 100 (5.1)

as shown in Figure 5.1, B and W denote building and street widths, respectively. B

in this work is set to 10 m and remains constant among all case studies and will be

used as the reference length scale to normalize other parameters where applicable. To

facilitate a comprehensive parametric study covering diverse canopy flow scenarios,

including isolated roughness flow, wake interference flow, and skimming flow, six levels

of planar density are considered. Street width (W ) is systematically varied across

the case studies, using values of B, 1.25B, 1.5B, 2B, 2.5B, and 3B to represent a

range of urban configurations from densely packed to sparsely arranged. To align

with contemporary urban planning trends, this study primarily emphasizes denser

configurations, as wide building separations exceeding 3B are deemed impractical

and inconsistent with efficient modern urban development [218].

Urban forms with higher planar densities inflict relatively greater resistance to the

wind flow around the buildings, potentially weakening the pollutant removal rates be-

low the roof levels and within the pedestrian regions. However, a more compact con-

figuration of the heterogeneously arranged buildings intensifies the geometry-induced

turbulence, which is expected to amplify the turbulent mixing and consequently af-

fect pollutant dispersion greatly. Therefore, correlating the opposing influences of

mean flow and turbulence with dispersion patterns in irregular but generic urban

environments could significantly contribute to the current field of urban planning. To

incorporate systematic planar heterogeneity into the case studies, six different build-

ing arrangements were considered. As depicted in Figure 5.1, each row of buildings
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was shifted relative to its neighboring rows using incremental values of Sb ranging

from 0.25B to 1B. The percentage of disposition, denoted as ζ, with respect to the

aligned array can be simply calculated as follows:

ζ% =
Sb

B
× 100 (5.2)

Moreover, in addition to the perpendicular wind direction (θ = 0◦), the extreme

case of oblique wind incidence (θ = 45◦) is also considered. This addresses a notable

gap in the existing literature by exploring the combined effects of oblique wind direc-

tion and urban non-uniformities. It is important to note that, as shown in Figure 5.1,

only one direction of building disposition is taken into account to create staggered

arrays, and thus parallel wind flow to the disposition line is not examined. Finally, for

each scenario with a specific planar density, a corresponding baseline configuration

was established (reference cases), where no building disposition was applied, and all

rows of buildings remained aligned. The results that are acquired from defined case

studies will be normalized by the results obtained from the corresponding reference

cases. This approach facilitates a focused analysis of the interplay between these

specific factors while keeping other parameters constant. The Table 5.1 summarizes

all 84 case studies to be investigated in this research.

Table 5.1: Summary of geometric specifications for the investigated and reference
case studies.

Case studies Naming
scheme

λp(%) ζ(%) θ Pattern

Investigated cases S-λp-ζ-θ 6, 8, 11, 16,
20, 25

25, 33, 50,
66, 75, 100

0◦, 45◦ Staggered

Reference cases A-λp-ζ-θ 6, 8, 11, 16,
20, 25

0 0◦, 45◦ Aligned

5.3.2 Outdoor ventilation and dispersion indices

The capability of any urban configuration to dilute and disperse the gaseous pollu-

tant contents within the underlying atmospheric regions can be assessed using well-
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established ventilation indices. These indicators offer an opportunity to cross-compare

all the possible urban redevelopment and modification strategies in terms of their po-

tential to enhance outdoor ventilation and breathability. It is interesting to note that

the expression of breathability is based on the inhale-and-exhale analogy, in which

the assumed clean surrounding air will be delivered by atmospheric wind flow to the

urban configuration, referring to the inhalation, and purges the undesirable pollu-

tion out of the area through the exhalation [220]. In the following, the indicators

employed for quantitative investigation will be introduced. The regions considered

for evaluating these ventilation indicators are presented in Figure 5.2. The faces of

the evaluation volume and the target building are denoted by the letters T (top), F

(front), R (right), B (back), and L (left), distinguished by the subscript letters v and

b, respectively.

Lb Tb

Rb3B3B

3B

θ

θ

RvFv

Tv

Fb

Evaluation 
control volume

Lv Bv

Bb

Figure 5.2: Evaluation regions to assess outdoor ventilation capacity in the proximity
of the target building.
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Velocity ratio

The velocity ratio serves as the most simple, yet widely accepted indicator to effec-

tively quantify the extent of the available wind in a region, which directly reveals

the impact that a specific urban form can exert on the local flow field. It is simply

defined as the ratio of the local time-averaged velocity at the desired location, U , to

the upwind undisturbed velocity magnitude measured at the corresponding height,

U∞. To thoroughly evaluate the influence of the surrounding building configuration

on the ventilation capacity near the target building, it is essential to calculate the area

and volume-averaged velocity ratios (V ∗) across the designated regions and volumes

(Figure 5.2). This can be accomplished using Equations 5.3 and 5.4.

V ∗
A =

1

U∞A

∫︂
A

UdA (5.3)

V ∗
vol =

1

U∞V–

∫︂
V–

UdV– (5.4)

Non-dimensionalized concentration

The non-dimensionalized concentration (C∗) employed in this study serves as an at-

mospheric dispersion factor, representing the concentration of the pollutant at a given

location relative to its concentration at the source. The term ”normalized” indicates

that the concentration is adjusted or scaled to enable comparisons. This normaliza-

tion allows for the assessment of pollutant concentration relative to a reference point,

aiding in the evaluation of air quality trends, the identification of areas with varying

pollution levels, and the assessment of pollution control measures. Equation 5.5 pro-

vides a definition for C∗, where C is the predicted concentration at a given location,

Uref represents the reference velocity at a specified reference height, H is an arbitrary

length scale chosen as the uniform height of the buildings in the defined case studies,

Cs is the concentration of scalar at source, and qs is the volumetric flowrate of pol-

lutant emissions. Similar to V ∗, the area and volume-averaged values of C∗ can also
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be calculated within the designated regions.

C∗ =
CUrefH

2

Csqs
(5.5)

Retention time

The retention time (τ) is an important outdoor ventilation index frequently utilized

to quantitatively assess the dispersion properties of pollutants within a given environ-

ment. τ is considered an air-exchange estimation index and provides an estimation

of the pollutant residence time within the region of interest [221]. Several factors,

such as local airflow patterns and the presence of physical barriers or obstructions,

can affect the retention time. Longer retention times indicate higher pollutant con-

centrations in a particular area, thereby exerting a substantial impact on local air

quality [23]. To calculate τ , Equation 5.6 can be employed as follows:

τ =
1

qs

∫︂
V–

C∗dV– (5.6)

Pollutant transport rate

Calculating the pollutant transport rates into the defined control volume in Figure 5.2

is essential for understanding the dynamics of the dispersion patterns under the in-

fluence of the surrounding urban configuration. As suggested by Equation 4.10, the

total pollutant flow rate through each surface of the control volume can be decom-

posed into contributions arising from the mean and fluctuating velocity components.

Equation 5.7 quantifies the convective pollutant flow rate carried by the mean flow,

whereas Equation 5.8 estimates the diffusive transport due to turbulent flow [222]:

Fm =

∫︂
A

−→
U · −→n CdA (5.7)

Ft =

∫︂
A

−Dt
∂C

∂n
dA (5.8)
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The velocity vector is represented by
−→
U , while the normal unit vector to the con-

trol volume surfaces is denoted as −→n . Dt is the eddy diffusivity, a property of the

turbulent flow, and can be calculated as the ratio of the eddy viscosity, νt, to the tur-

bulence Schmidt number, Sct. It is important to note that negative values of Fm and

Ft indicate pollutant contaminants exiting the control volume through the specific

surface, whereas positive show pollutants entering.

5.3.3 Numerical scheme

The comprehensive explanation and examination of the general settings utilized to

numerically solve the governing equations pertaining to atmospheric flow and pollu-

tant dispersion in the context of urban geometries can be found in Section 3.4 and 4.5.

Following the modeling framework presented in the aforementioned sections, a similar

approach has been taken in this chapter to ensure the accurate and reliable simulation

of all case studies. A brief summary of all the modeling decisions, grid convergence

study, and numerical model validation are provided in the following.

The hybrid finite element/volume method is employed in ANSYS CFX commercial

code to numerically solve the three-dimensional governing equations. In all cases, rect-

angular computational domains are defined, with inlet faces oriented perpendicular to

the inflow wind direction. This arrangement allows for the application of symmetry

boundary conditions not only on the top face of the domain but also on the side faces,

simplifying the procedure. The minimum dimensions of the computational domain

are specified based on the guidelines proposed by the previous works [18, 197], and

are further customized to eliminate any possible non-physical influence by boundaries

on the solution. In this regard, a distance equal to 14Hmax (Hmax is the height of

the tallest structure) between the array’s windward edge and the inlet boundary is

considered, while the distance between the outer edge of the last row of the array

and outflow boundary is set to 20Hmax. The upper and side boundaries are also

positioned 10Hmax away from the corresponding edges of the investigated array.
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Considering the fact that a logarithmic approximation of the inflow wind profile

offers a more physically accurate representation of the wind flow in the ABL, Equa-

tions 4.26, 4.27, and 4.28 proposed by Richards and Hoaxy [165] are employed at the

inlet. The friction velocity required to evaluate the inflow atmospheric wind profile

can be estimated using Equation 5.9, assuming a constant vertical shear stress in

the atmospheric surface layer. Uref is the reference velocity of 2m/s at the reference

height of Href (which is the same as the uniform building heights), with an aerody-

namic roughness height of z0 = 0.4m, and κ = 0.4 as the Von Karman constant [165].

As for the remaining boundaries, all the solid surfaces are considered walls with no-

slip conditions, top and side boundaries are set as symmetry planes, and an average

relative pressure of zero is defined at the outlet.

uτ =
κUref

ln
(︂

Href+z0
z0

)︂ (5.9)

The discretizations of the advection terms of momentum equations and turbulence

numerics are carried out with the implementation of high-resolution schemes, and the

velocity-pressure coupling is dealt with using the fourth-order Rhie-chow algorithm.

The solutions to the flow equations (i.e., continuity, momentum, TKE, and ε) are

considered converged when the calculated normalized residuals reach values equal or

less than 10−6, whereas the criterion is 10−9 for the scalar transport equation.

Grid convergence study

In the generation of the computational mesh for all case studies, a similar approach

to that detailed and tested in Section 4.5.2 is applied. This approach involves the

formation of a nested domain to distinguish between regions significantly affected

by the presence of structures (i.e., inner region), where higher grid refinements are

needed, and regions situated far from the built area (i.e., outer region), resembling

open-field atmospheric flow. Structured and unstructured hexahedral cells are em-

ployed to mesh the outer and inner regions, respectively. Additionally, five layers of
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inflation with a growth rate of 1.07 are applied to provide extra refinements near the

solid surfaces. This ensures the proper resolution of boundary layer gradients while

maintaining the y+ within the recommended range of 30 to 300 [88].

The dependency of the numerical solutions on the grid resolution is examined by

comparing the results obtained from three progressively refined meshes. Figure 5.3

displays an example of the prediction made for the most sensitive parameters, C∗, by

all three grids in case [S-25-25-45◦]. The coarse grid comprises 8 million computa-

tional nodes, while the medium and fine grids consist of 11.4 and 17.9 million nodes,

respectively. The minor deviation between predictions obtained from the medium and

fine grids justifies the use of the medium grid due to its reasonable balance between

accuracy and computational cost.
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Figure 5.3: Pollutant concentration profile in case [S-25-25-45] along a horizontal line
midway between the target building and its immediate upwind row at Z/H = 0.75

Validation study

The validity of the mathematical model, the modified turbulence closure, modeling

settings, and the grid generation scheme employed in this work, were comprehensively

validated in Section 4.6.2. For this validation study, the high-quality full-scale disper-

sion data set of Mock Urban Setting Tests (MUST) was used to rigorously evaluate
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the accuracy and reliability of the numerical simulations in predicting both the flow

and dispersion parameters. However, given that the blocks considered in the case

studies of this chapter have different AR compared to the MUST geometry, it is con-

sidered prudent to conduct further validation studies using a case study that includes

blocks with similar geometries to ensure the robustness of the model in different sce-

narios. In this regard, the data set from the well-known wind tunnel experiment

“Case C” conducted by the Architectural Institute of Japan (AIJ) is used [59]. The

geometry of this particular case study consists of a 3 by 3 cubical array, simulating

a simplified and idealized urban configuration. The central block within this array

shares a similar geometry with the blocks featured in the present parametric study

with an AR=2, while it is surrounded by neighboring cubical blocks with an AR=1.

Figure 5.4 illustrates schematics of the AIJ Case C geometry with the locations of all

the measurement points.
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BC 

BC

BC

θ
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Figure 5.4: Schematic of the wind tunnel experiment “Case C” by Architectural
Institute of Japan (AIJ). The model’s reference length scale is BC=0.2 m. Small
black circles depict 120 measurement points.

This data set, however, only includes the velocity measurements at the given sam-

pling points (Z/BC = 0.1), and does not include any dispersion data. Nonetheless, as
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the tracer gas in this study is treated as a passive scalar due to its non-reactive nature

and low mass fraction, its influence on the fluid dynamics in the domain is considered

negligible. Therefore, it is justifiable to solve the transport equation after the flow

field has been resolved within the geometry. As a result, simultaneous consideration

of both validation studies, one with the MUST dispersion data and one with AIJ

Case C flow data, can provide sufficient evidence to assess the validity of the numer-

ical scheme presented in this chapter. Figure 5.5 maps V ∗ profiles at two horizontal

sampling lines within the array for two different inflow wind directions of 0◦ and 45◦.

As it is evident, the predictions made using the employed modeling settings closely

match the wind tunnel measurements, indicating the validity of the numerical model.

Further statistical analysis over all 120 sampling points (Figure 5.4) demonstrates

the superiority of the modified k− ε turbulence model over its standard version. The

former achieved a Hit-Rate (HR, Equation 4.22) of 79.2% and 74.1% for 0◦ and 45◦

inflow winds, respectively, while the latter achieved 69.2% and 65.8%.
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Figure 5.5: Predicted V ∗ profiles at shown sampling lines for inflow wind direction of
(a) θ =0◦, and (b) θ =45◦ at Z/BC = 0.1. The error bars represent a 25% deviation
from the experimental measurements.
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5.4 Results and discussions

This parametric study is designed to investigate the collective influence of various

morphological indices on urban air ventilation performance and pollutant dispersion.

It will systematically examine factors such as the velocity ratio, pollutant retention,

flow patterns, and convective and diffusive pollutant flow rates in proximity to build-

ing facets (referred to as the external faces of the buildings in this work) under differ-

ent urban layouts. Finally, the study will include a regression analysis to formulate

a correlation that accurately quantifies the combined impact of these morphological

indices on volume-averaged pollutant concentration near building surfaces.

5.4.1 Outdoor ventilation and pollutant dispersion

To thoroughly analyze the sensitivity of urban ventilation capacity and its effective-

ness in dispersing pollutants, two established indices, namely V ∗ and τ , can serve

as valuable tools for both quantitative and qualitative assessments. Given that the

pollutant retention time, τ , is a volume-based quantity, the defined control volume

shown in Figure 5.2 (enclosing the target building) is considered for calculations in

this section. Consequently, the availability of clean air flow in this region is also

assessed by calculating the volume-averaged velocity ratio, V ∗
vol. To effectively iso-

late and explore the combined impact of urban planar density and heterogeneities

while controlling for other possible confounding effects, the resulting indices obtained

from investigated cases with non-zero ζ values are normalized against ones obtained

from reference cases with no disposition (Table 5.1). Moving forward, all normalized

values will be denoted with a subscript letter“n”. Considering the primary focus of

this work, only the results for cases exhibiting planar heterogeneity within the range

of 25% ≤ ζ ≤ 100% are presented, as the outcomes associated with reference cases

(ζ = 0) are inherently expected to be unity.

Figure 5.6 showcases V ∗
vol,n and τn as a function of the ζ for building clusters with
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varying λp, under a perpendicular wind direction (i.e., 0◦) to the disposition axis. In

examining the velocity ratio as depicted in Figure 5.6a, a consistent pattern emerges

across all cases, indicating that V ∗
vol,n declines when transitioning from an aligned

arrangement to a staggered one. This trend underscores the intricate relationship

between urban planar heterogeneity and prevailing flow patterns. Specifically, the

expected channeling flow characteristic of aligned arrays is disrupted in the stag-

gered configuration. The diversion of airflow in staggered configurations significantly

reduces the flow’s overall momentum. This phenomenon can be interpreted as in-

creased resistance to the mean flow, caused by the expansion of wake regions and

intensified eddies due to enhanced heterogeneity. These conditions lead to pressure

differences that act as barriers, resulting in a local velocity deceleration [223].
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Figure 5.6: Variations in (a) V ∗
vol and (b) τ , normalized to their respective reference

values with identical λp (but no disposition), within the control volume enclosing the
target building under a θ =0◦ wind incidence.

Furthermore, the evident distinction among all planar densities suggests that at any

given disposition level, the ratio of velocity reduction compared to its corresponding

aligned configuration increases moving towards denser arrangements (i.e., higher λp).

The gradient of the plotted curves in Figure 5.6a, which characterize the rate of change

in V ∗
vol,n, also varies with λp. The curve associated with λp = 6% has a lower gradient,
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indicating a less sensitivity of the velocity ratio to changes in building disposition.

As the configurations become denser, steeper slopes are observed, suggesting a more

responsive behavior of velocity ratios to the building orientation. In the least dense

scenario (λp = 6%), the V ∗
vol,n value decreases to approximately 0.88 at ζ = 100%,

while for the most densely packed configuration, it drops to just below 0.50.

Such observation is consistent with the canopy regime classification introduced

by Oke [123]. As buildings become more clustered, the wakes behind buildings in-

terfere more extensively with the disturbed flow field in front of their downstream

buildings. This leads to a transition in flow patterns near buildings, shifting from a

semi-isolated roughness regime (as seen in case S-6-100-0) to full wake interference,

or skimming flows. Consequently, the airflow patterns induced by one structure are

incident upon the neighboring structures. This coupling of aerodynamic interfer-

ence leads to stochastic wind patterns with venturi flow channels, vortices, multiple

rates of strain, and multiple stagnation sites. Additionally, the higher λp results in

a decrease in the available open channels for wind flow, unlike sparser arrangements

where the wind can move more freely (Figure 5.7). Consequently, in denser urban

configurations, building dispositions play a key role in dictating the macroscopic flow

patterns.

Figure 5.6b demonstrates the complex relationship between the variation of τn,

representing the normalized pollutant retention time near the target building, and

changes in V ∗
vol,n. While expectations might imply an inverse correlation, where lower

clean air availability (i.e., smaller velocity ratio) leads to pollutant contents lingering

longer in the environment [130], this relationship does not hold for all cases studied

in this work. Given that τ also incorporates the effects of flow diffusion paths [23],

analyzing this index in relation to the velocity ratio, which primarily reflects mean

flow characteristics, can yield valuable insights.

There is a nearly constant, albeit slightly increasing, trend in τn for λp = 6% as

disposition levels increase. This suggests a relatively low sensitivity to changes in
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ζ=0% ζ=50% ζ=100%

0.3 0.8 2.1 5.6 15.0 39.9 106.3 282.7 751.9 2000.0C*  (10−3)

0.0 0.2 0.4 0.5 0.7 0.9 1.1 1.2 1.4 1.6V*

(a) λp = 6%

ζ=0% ζ=50% ζ=100%

0.3 0.8 2.1 5.7 15.3 41.0 109.8 293.6 785.2 2100.0C*  (10−3)

0.0 0.2 0.4 0.5 0.7 0.9 1.1 1.2 1.4 1.6V*

(b) λp = 11%

Figure 5.7: Contours of non-dimensionalized concentration (C∗) and velocity ratio
(V ∗) distribution at the midplane of the upper half of the cluster height (Z/H = 0.75)
for three different disposition levels in three cases: (a) λp = 6%, (b) λp = 11%, and
(c) λp = 20% for θ =0◦ wind direction.
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ζ=0% ζ=50% ζ=100%

0.3 0.8 2.2 5.8 15.7 42.1 113.2 304.4 818.4 2200.0C*  (10−3)

0.0 0.2 0.4 0.5 0.7 0.9 1.1 1.2 1.4 1.6V*

(c) λp = 20%

Figure 5.7: (Continued).

building arrangements (i.e., varying ζ) at this planar density, where the maximum

value of τn reaches 1.15. In sparse configurations like this one, where the flow is

minimally affected by the presence of surrounding buildings, a gradual decrease in

V ∗
vol,n near the target building leads to a corresponding gradual increase in τn, in line

with expectations (Figure 5.7). This consistent behavior highlights the significance

of open spaces, which enable wind to flow with minimal disruption and turbulence

interactions. A similar trend is observed for cases with λp = 8%, implying the dimin-

ished ventilation and prolonged pollutant presence up to disposition levels of 75%,

where τn starts to drop. One possible explanation is that at higher dispositions, the

disturbances introduced by adjacent buildings within this relatively denser configura-

tion reach the target area. The resulting enhanced turbulence appears to counteract

the decreasing velocity ratio, thereby promoting pollutant dispersion and turbulent

mixing in this region.
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As for λp = 11%, the packed building arrangement further amplifies the effects of

turbulence interference induced by neighboring structures. As ζ increases, the influ-

ence of neighboring buildings becomes even more pronounced, causing the trend to

reverse earlier, around the ζ = 66%. Following the same justification, the dispersion

pattern in the denser arrangements (i.e., λp = 16%, 20%, and 25%) is shown to be

more influenced by the turbulent mixing from the outset, leading to considerably

lower values of τn at ζ = 100% (0.84, 0.71, and 0.59, respectively). As can be de-

duced from Figure 5.7, the contours of C∗ and V ∗ variations across different level

dispositions for three instances of planar densities, from sparse to densely packed

arrangements, visually confirm these observations. The heightened turbulence struc-

tures within denser arrangements, driven by increased planar heterogeneity, clearly

led to a signified lateral spread of the pollutant plume. This implies a reduced av-

erage concentration around the plume’s centerline and a more uniformly distributed

pollutant in the horizontal plane.

To explore the potential influence of array orientation on V ∗
vol,n and τn responses to

urban configurations, an oblique inflow wind direction is also considered. The results

for this scenario are depicted in Figure 5.8. The figures show for both the perpen-

dicular and oblique wind directions, distinct classifications based on planar densities.

The sparse configurations (λp = 6%, 8%, and 11%) result in similar trajectories, each

at its own magnitude. While the densely packed arrays (λp = 16%, 20%, and 25%)

also exhibit a consistent behavior.

Figure 5.8a, V ∗
vol,n demonstrates a fundamentally different behavior in response to

variation of the geometry compared to what was observed with perpendicular wind

incidence. In the case of the 45◦ incidence, the skewed airflow less directly feeds vortex

lines which are necessarily aligned with geometric edges [45, 69]. Instead, it tends to

glide or skim alongside the buildings and experiences a redirection rather than facing

a direct blockade. Consequently, V ∗
vol,n does not exhibit the near linear decrease that

was previously observed for 0◦ wind direction as disposition levels increase. For all
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Figure 5.8: Variations in (a) V ∗
vol and (b) τ , normalized to their respective reference

values with identical λp (but no disposition), within the control volume enclosing the
target building under a θ =45◦ wind incidence.

planar densities under the oblique wind incidence, V ∗
vol,n mostly exceeds the baseline

value of 1, suggesting an overall trend of enhanced ventilation relative to the aligned

cases.

For the sparse configurations, the velocity ratio generally exhibits a lesser increase

compared to the reference cases. Such behavior supports the claim that oblique wind

encounters relatively modest resistance and diffuses more freely through alternative

pathways in less densely built environments. Moving towards denser configurations, a

notable surge in the positive gradient of V ∗
vol,n can be observed, potentially associated

with wind acceleration through tighter urban channels (Figure 5.9). However, as

shown in Figure 5.9, the systematic increase in ζ further obstructs these gaps and

channels, leading to increased flow acceleration.

With further intensification of planar heterogeneity (increasing ζ), each of the

arrangements within the densely built classification experiences a turning point where

the gradient of V ∗
vol,n reaches zero. Beyond these thresholds, the blockage effects

of the available obstructions seem to start to take effect, showing a negative V ∗
vol,n

gradient, and suppress the previously amplified velocity ratios. For λp = 16%, this
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ζ=0% ζ=50% ζ=100%

0.2 0.5 1.2 3.0 7.5 18.6 46.1 114.2 282.7 700.0C*  (10−3)

0.0 0.2 0.4 0.5 0.7 0.9 1.1 1.2 1.4 1.6V*

(a)

ζ=0% ζ=50% ζ=100%

0.2 0.5 1.3 3.4 8.8 22.7 58.5 150.7 388.2 1000.0C*  (10−3)

0.0 0.2 0.4 0.5 0.7 0.9 1.1 1.2 1.4 1.6V*

(b)

Figure 5.9: Contours of non-dimensionalized concentration (C∗) and velocity ratio
(V ∗) distribution at the midplane of the upper half of the cluster height (Z/H = 0.75)
for three different disposition levels in three cases: (a) λp = 6%, (b) λp = 11%, and
(c) λp = 20% for θ =45◦ wind direction.
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ζ=0% ζ=50% ζ=100%

0.2 0.5 1.4 3.8 10.2 27.4 73.2 195.7 523.5 1400.0C*  (10−3)

0.0 0.2 0.4 0.5 0.7 0.9 1.1 1.2 1.4 1.6V*

(c) λp = 20%

Figure 5.9: (Continued).

occurs around ζ = 75%, while this point arrives sooner for denser configurations

(ζ = 66% and 50% for λp = 20% and 25%, respectively). This observation can be

explained by considering the cumulative blockage effect. In denser arrangements,

the flow encounters more obstructions in cases with smaller ζ values, meaning there

are fewer channels for the wind to accelerate through (Figure 5.9c). As the ζ further

increases, any additional buildings or obstructions only serve to disrupt the previously

established flow patterns, leading to a decrease in V ∗
vol,n. It should be noted that

even after these turning points, the normalized velocity ratios are greater than unity,

implying an improvement in ventilation compared to the aligned case, regardless of

ζ.

The distribution of τn depicted in Figure 5.8b for theta = 45◦ illustrates more than

one competing effect. In the case of the two most sparse arrangements (λp =6% and

8%), the anticipated inverse correlation between V ∗
vol,n and τn is evident. In particular,

137



with an increasing normalized velocity ratio relative to the aligned configuration,

there is a corresponding decrease in retention time. This intuitively suggests that

higher velocities, driven by the enhanced acceleration due to oblique wind direction

and reduced blockage, cause more thorough ventilation, and consequently reduce the

pollutant residence time within the studied area. The reduction in pollutant lingering

times becomes more pronounced with incremental variations of λp up to 11%. It is

worth noting that the curve corresponding to λp = 11% exhibits a trend similar to its

sparser counterparts, displaying a negative gradient across all ζ values. In contrast

to the sparse cases where their curves exhibit negative second derivatives, the curve

associated with λp = 11% shows a semi-linear reduction, with even a slight concavity

observed. This observation can potentially point to a transitional phase in airflow

behavior as planar density increases.

In the two most densely packed configurations, λp = 6 and 8%, the ascending

trajectory for τn begins from the outset, starting at a relatively modest gradient

that is progressively amplified with increasing planar heterogeneity. One possible

explanation for this behavior is that at lower ζ values, the enhanced ventilation (i.e.,

increasing V ∗
vol,n) counteracts the diffusion paths that seem to trap the pollutants

around the target building. However, at higher ζ where V ∗
vol,n begins to decrease (as

indicated by the local maximums shown in Figure 5.8a), the removal of the pollutant

from the investigated region is hindered to a greater extent. This is evidenced by the

steeper slope of the curve at higher ζ values.

5.4.2 Dynamics of dispersion patterns

This section gives the analysis of the pollutant transport mechanism arising from

convection and turbulent diffusion through the faces of the defined control volume

(as illustrated in Figure 5.2) that encloses the target building. It provides a greater

understanding of the dynamics of dispersion flow, which is influenced by urban ge-

ometry. Figure 5.10 displays bar charts showing the normalized pollutant transport

138



rates due to mean and turbulent flow, denoted as Ft,n and Fm,n, under the 0◦ inflow

wind direction.

Given the physically elevated location of the scalar source in this work, the vertical

pollutant transport should be comparable in magnitude to the stream-wise transport.

This is despite the fact that the uniform building heights throughout the urban con-

figuration suggest a relatively undisturbed flow at the height where the Tv plane is

located [224]. As can be seen from Figure 5.10a, a net convective outflow is detected

through the Tv (i.e., negative values) resulting from the slightly upwards wind flow

deflected by buildings’ leading edges. Notably, the observation of values greater than

−1 for the sparse category raises interesting insights. This suggests that as planar

heterogeneity increases, there is a tendency for the outflow to decrease. One plau-

sible explanation for this phenomenon lies in the relatively wide spacing between

buildings in the sparse category. This increased heterogeneity appears to enhance

the upstream building downwash effects, effectively pulling down the emitting plume.

Consequently, the pollutant content adjacent to the Tv plane decreases, leading to a

noticeable decrease in convective pollutant removal.

As the building array becomes denser, the impact on the flow regime caused by

adjacent buildings collectively influences the flow patterns near the target building.

Therefore, the flow regime transitions toward a mode in which downwash effects

weaken as disposition levels increase, while the pollutant concentration just below

the TV height increases. This leads to a general increase in pollutant outflow through

the top face. The existence of this phenomenon is further supported by assessing the

diffusive transport rates. The fundamental principle underlying the Standard Gradi-

ent Diffusion Hypothesis advises that diffusion occurs in the opposite direction of the

scalar gradient [225]. In the case of a planar density of 6%, there is an observation

of outflow diffusion through the Tv plane, indicating that the concentration below

the Tv height exceeds that above it. As the urban configuration becomes denser, a

notable transition in turbulence diffusion becomes evident, with the shift from out-
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Figure 5.10: Normalized pollutant transport rate due to turbulence diffusion, Ft,n,
and due to mean flow, Fm,n, under θ =0◦ inflow wind through faces of the defined
control volume around the target building.
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Figure 5.10: (Continued).

flow to inflow patterns. This transition highlights the intricate interplay of factors

within the urban design, underscoring its profound impact on pollutant dispersion

dynamics.

From Figures 5.10b and 5.10c, it is evident that the pollutant transport rates

through the front and back faces of the control volume follow a relatively straight-

forward trend. As expected, an inflow of the pollutant is observed at Fv, while

conversely, the mean flow carries the pollutant out of the control volume through Bv.

In cases with low λp values, minimal variation compared to the baseline quantities is
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recorded, which can be justified by the relatively minor disturbance that the stream-

wise flow experiences. However, as a consequence of mean flow lateral diversion due to

enhanced heterogeneity in more densely packed scenarios, pollutant mixing is signifi-

cantly promoted while the stream-wise velocity is reduced. Furthermore, as discussed

earlier, a relatively smaller portion of the elevated pollutant plume is drawn down into

the “canyons”, further contributing to these dynamics. This reduction in pollutant

concentration is reflected in the gradual decrease of Fm,n evident with an increase

in ζ. It is also noteworthy that considerably small stream-wise gradients of pollu-

tant concentration are predicted, which resulted in negligible variation of diffusive

transport rates through the Fv and Bv faces of the defined control volumes.

The presence of symmetry in both the geometry and inflow characteristics in the

lateral direction for reference cases (i.e., aligned array), led to a similar convective

outflow of the pollutant from side faces of Lv and Rv. However, as asymmetry is

introduced by increasing ζ, the removal of pollutants by mean flow through the left

face of the control volume becomes more pronounced compared to the baseline values.

This behavior aligns with expectations, as shifts in building rows redirect the plume to

the left, consequently weakening the outflow through Rv. As shown in Figure 5.10e,

in the most sparse arrangement (λp = 6%), where the level of flow disturbance is

least, a net outflow was still observed through the right face. This indicates that,

despite a reduction in outflow compared to the reference case, the dispersion pattern

follows a trajectory similar to the reference case rather than resulting in an inflow.

With a further increase in λp within the sparse category, the outflow through Rv

transitions into an inflow, while the outflow through Lv is further intensified. In

both cases, higher disposition levels typically enhance the pollutant transport rates

in their respective directions. The gradual decrease in normalized transport rates

observed in densely packed cases (λp = 16%, 20%, and 25%) further supports the

mentioned reduced entrained pollutant content from upper levels within these densely

packed configurations. Concerning Ft,n, as concentrations within the control volume
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exceed those outside, the diffusive outflow is recorded through both Lv and Rv faces.

However, as pollutant mixing increases with ζ, concentration distribution becomes

more uniform, resulting in reduced turbulence diffusion.

Following the conclusions derived in Section 5.4.1, it is evident that the orientation

of the building cluster relative to the incident wind substantially influences disper-

sion patterns and flow dynamics. To emphasize these contrasts with the perpendic-

ular wind, bar charts in Figure 5.11 are employed to quantify normalized pollutant

transport rates under an oblique wind condition.

As can be seen in Figure 5.11a, the top boundary of the control volume for this

orientation is also a primary egress route for pollutants. Similarly, the accumulation

of pollutants well below the Tv is comparatively more pronounced in sparse config-

urations than in densely packed ones. However, it is clear that introducing planar

heterogeneity does not exert as strong an influence on vertical convective transport

rates as it does under 0◦ wind, as the quantities tend to hover closer to unity. This

could be attributed to the fact that the urban flow already encounters an irregular ar-

rangement in this orientation, and further disposition may either enhance or weaken

the pre-existing flow structures. Nonetheless, there is an overall decrease in Fm,n

quantities with increasing ζ, which results from a complex interplay of various factors

that affect the streamlines (e.g., downwash effects, circulatory vortices, flow separa-

tion, and wake regions) [205, 226]. This underscores the importance of data-driven

analysis to effectively formulate flow responses to geometric variations in irregular

cases. With regards to Ft,n, outflow due to turbulent diffusion is observed for cases

with λp = 6%, whereas for the remaining planar densities, the vertical gradient of

pollutant concentration across the Tv plane implies an inflow.

Unlike the 0◦ wind direction, it is not possible to distinctly classify the side faces

of the control volume into stream-wise and lateral groups for the oblique wind. As

illustrated in Figure 5.11, there is a convective net inflow of the pollutant into the

control volume through the Fv and Lv borders (i.e., windward faces), while the oppo-
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Figure 5.11: Normalized pollutant transport rate due to turbulence diffusion, Ft,n,
and due to mean flow, Fm,n, under θ =45◦ inflow wind through faces of the defined
control volume around the target building.
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Figure 5.11: (Continued).

site situation holds true for the Bv and Rv (i.e., leeward faces). Among all faces, it is

observed that the pollutant inflow rate by mean flow through Fv shows relatively low

sensitivity to changes in λp within sparser arrangements. This observation suggests

a weaker interaction with varying building spacing at this entry compared to its ad-

jacent windward face Lv. The behavior of Fm,n at Lv becomes increasingly intricate

as λp varies. In sparse configurations, there is a slight rise in convective pollutant

inflow through Lv with ζ, but this trend reaches a turning point where further dispo-

sition leads to a decrease in Fm,n. Similarly, densely packed arrangements display a
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comparable trend at the Fv face, with an initial increase in inflow Fm,n followed by a

subsequent decline. This turning point occurs earlier with higher λp. For dense cases

at Lv, Fm,n decreases initially with ζ, but it starts to increase again after reaching a

certain point, which arrives sooner with higher λp.

Regarding diffusive transport rates, an outflow through Fv is observed throughout

all the cases, indicating higher pollutant concentrations than just outside the control

volume, with variations in intensity in response to changing concentration gradients.

In contrast, the Lv face experiences significant variability between the diffusive inflow

and outflow pollutants, further complicating the response to λp and ζ. For all levels

of λp, the least disposition levels result in an outflow of pollutants, reflecting minimal

geometric deviation from the reference cases. This trend diminishes as the spacing

between buildings decreases. Interestingly, in denser arrays, an initial increase in ζ

appears to transition the diffusive pollutant transport rates from outflow to inflow.

However, this trend reverses as λp increases and greater heterogeneity promotes pol-

lutant outflow. This relationship, evident among the windward faces, also applies to

the leeward faces Rv and Bv, albeit with more complexity. These trends highlight

the significant impact of building orientation on pollutant transport, underscoring

the need to consider directional disposition in urban planning to enhance air quality

control.

Following the examination of the dynamics of dispersion patterns in response to

varying geometrical parameters, the presentation of heat maps can provide a de-

tailed visualization of the normalized area-averaged C∗ across building facets. This

approach helps clarify the impact of urban form on spatial pollutant distribution,

as it provides an intuitive understanding of concentration gradients and hot spots.

By highlighting areas of lower pollutant concentration, the heat maps provide valu-

able guidance about where to locate air intakes in the specific case of understudy

to minimize the ingress of pollutants into buildings. This is particularly relevant in

dense urban environments where strategic placement of these intakes can significantly
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impact indoor air quality [5].

Figure 5.12 displays heat maps of C∗
A,n on five faces of the target building, show-

casing the effects of varying λp and ζ under a wind perpendicular to the disposition

axis. Notably, an increase in the λp consistently results in the lowest recorded C∗
A,n

across all facets. This is consistent with earlier discussions, indicating that in densely

packed configurations, a relatively smaller amount of pollutants are drawn toward

the vicinity of the target building from the elevated plume as planar heterogeneities

are introduced to the geometry. Consequently, higher concentrations are detected at

the top face compared to the side faces in densely packed arrangements, indicating

the accumulation of pollutants at higher levels. In contrast, sparse cases exhibit the

inverse pattern, in which side facets are generally prone to higher concentrations than

roof areas. Nonetheless, it should be pointed out that the roof level exposure among

sparse arrangements exhibits relatively modest variations compared to reference cases

with C∗
A,n quantities hovering around unity. This trend is generally observed for other

faces with low λp and ζ as well, as they closely resemble the reference cases compared

to others.

As ζ increases, an overall consistent response is noticed among densely packed

cases, where C∗
A,n gradually decreases on all faces. This indicates that pronounced

flow interference, as evident from Figue 5.7, resulting from building proximity effects,

could effectively contribute to the dispersion of pollutant contents [147]. In sparse

configurations, the relatively modest flow interactions by neighboring buildings, cou-

pled with the resulting diversion of the stream-wise flow in response to the increasing

ζ, facilitate the transport of a higher portion of pollutants to the windward facet

(Fb). Increased downwash and sheltering effects behind the target building for low

λp and high ζ values also lead to pollutant accumulation at the leeward face. At the

side faces, the synergistic effect of geometric indices results in the most extreme re-

sponses, with the lateral disposition of building rows redirecting the pollutant plume

either towards or away from these facets. For the cases investigated in this work,
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Figure 5.12: Heat maps of the area averaged C∗
n on the faces of the target building

under θ =0◦ wind direction: (a) Tb, (b) Fb, (c) Bb, (d) Lb, (e) Rb.
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the highest quantities of C∗
A,n were obtained at Rb for λp = 11% and ζ between 50%

to 75%. This implies that in such building arrangements, especially when there is a

prevailing perpendicular wind, it is advisable to refrain from locating fresh air intakes

on the side exterior faces.

The heat maps of C∗
A,n under oblique inflow wind conditions are presented in Fig-

ure 5.13, enabling a more comprehensive examination of the potential impacts that

array orientation can exert on pollutant distribution. As can be seen, the responses

to an oblique wind appear to introduce a higher degree of variability in recorded

concentration levels at all exterior faces than the perpendicular wind. Roof-top ex-

posure to pollutant content in sparse arrangements exhibits minimal sensitivity to

planar heterogeneity. This argument holds to some extent for other facets as well,

particularly for low quantities of ζ. However, as λp and ζ increase, the effects of

building proximity become more pronounced, leading to a more noticeable response

to geometric variations, in which C∗
A,n gradually decrease with ζ.

Moving towards denser configurations, increased sensitivity to variations of ζ is

observed for windward facets, namely Fb and Lb. Opposite to the cases with low

λp, the pollutant exposure levels do not exhibit a consistent trend with ζ, and rather

they show oscillating trends. This variability can be attributed to the intricate airflow

dynamics within dense urban layouts, which can lead to the formation of various flow

structures, including vortices or eddies. These flow structures can locally influence the

velocity and direction of the wind, resulting in the observed variability in pollutant

exposure levels. Nonetheless, increased heterogeneity in dense cases, in general, led to

higher levels of pollutant exposure, albeit with variations among different cases. The

analysis of the provided heat maps, when integrated with practical urban development

considerations (e.g., land use efficiency, regulatory compliance, and infrastructure

planning), aids urban planners with a more informed data-driven basis for positioning

fresh air intakes. It is essential, however, to first acknowledge the specific direction

of building disposition considered in this work, and only then adjust the estimations
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Figure 5.13: Heat maps of the area averaged C∗
n on the faces of the target building

under θ =45◦ wind direction: (a) Tb, (b) Fb, (c) Bb, (d) Lb, (e) Rb.
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of the potential hot spots accordingly based on the prevailing wind patterns. This

ensures that conclusions are aligned with the unique aerodynamic characteristics of

each urban model.

5.4.3 Regression analysis

In this subsection, a regression analysis is presented, aimed at modeling the relation-

ship between the normalized bulk concentrations in close proximity to a building, the

dependent variable, and the urban form characterized by planar density and planar

heterogeneity, serving as independent variables. Through the application of bi-variate

polynomial regressions with variable order (linear, quadratic, and cubic), this analy-

sis endeavors to capture the complex interactions between urban form and pollutant

exposures. This multifaceted approach provides a richer understanding of urban flow

dynamics, uncovering both linear trends and more complex patterns of non-linearity.

The outcomes of this regression analysis contribute to the formulation of urban plan-

ning guidelines, providing a statistical foundation for informed decision-making. To

achieve this goal, a curve-fitting is carried out, resulting in polynomials described by

the general form presented in Equation 5.10. Table 5.2 presents the specific values

of these polynomial coefficients, along with the coefficient of determination, R2, for

each of the regression models.

C∗
vol,n = a1+a2ζ+a3λp+a4λpζ+a5ζ

2+a6λp
2+a7λpζ

2+a8λp
2ζ+a9λ

3+a10ζ
3 (5.10)

The visual representation of the fitted regression models is presented in Figures 5.14

and 5.15 for 0◦ and 45◦ inflow winds, respectively. Regarding the 0◦ wind, the linear

model provides a foundational understanding, achieving an R2 value of 0.864, which

suggests that a linear relationship accounts for a substantial portion of the variability

in C∗
vol,n. However, the quadratic model, with a higher R2 of 0.978, demonstrates that

incorporating squared terms captures higher order aspects of the relationship more
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Table 5.2: Coefficients of the bi-variate polynomials (Equation 5.10) fitted over the
C∗

vol,n data.

θ Order
Coefficients

a1 a2
(10−3)

a3
(10−1)

a4
(10−4)

a5
(10−4)

a6
(10−3)

a7
(10−4)

a8
(10−4)

a9
(10−4)

a10
(10−4)

0◦

One 1.302 −0.768 −0.214

Two 0.937 4.732 0.100 −2.886 −0.111 −0.477

Three 0.532 8.891 0.898 −8.541 −0.170 −4.982 0.018 0.112 0.821 −0.001

45◦

One 0.901 −0.111 0.062

Two 1.403 −6.066 −0.445 3.445 0.083 1.002

Three 1.504 5.423 −1.222 −7.805 −0.580 8.818 0.042 0.201 −1.915

Table 5.3: Performance evaluation of fitted regressions given in Table 5.2, using
coefficient of determination (R2), average relative error (eavg), and maximum relative
error (emax).

θ Order R2 eavg(%) emax(%)

0◦

One 0.864 5.301 17.912

Two 0.978 1.998 9.526

Three 0.993 1.111 2.928

45◦

One 0.190 7.056 30.056

Two 0.703 4.334 20.766

Three 0.888 2.810 10.034

effectively. The contours generated by the quadratic model reveal that the influence of

planar density and heterogeneity on pollutant distribution is not strictly proportional

but exhibits curvature, indicating interactions between these independent variables

that a simple linear model cannot capture. The cubic model, although offering the

highest R2 of 0.993, suggests further non-linear complexity, yet the modest increase

in explanatory power over the quadratic model might not justify its use in practical

urban planning scenarios. The mean relative error obtained by the cubic model,

eavg = 1.111%, shows minimal improvement compared to the quadratic model, with

eavg = 1.998% (Table 5.3). It should be also noted that even ζ is a key factor in
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determining C∗
vol,n, regression analysis reveals a semi-linear sensitivity of the bulk

concentration to this variable, compared to its strongly non-linear relationship with

λp.

0.3

C*
vol, n

0.5 0.7 0.9 1.1

(a) (b) (c)

Figure 5.14: C∗
vol,n distribution in terms of the λp and ζ under θ =0◦ wind direction

using (a) linear, (b) quadratic, and (c) cubic polynomials.
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0.8 0.9 1 1.1 1.2
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Figure 5.15: C∗
vol,n distribution in terms of the λp and ζ under θ =45◦ wind direction

using (a) linear, (b) quadratic, and (c) cubic polynomials.

For the 45-degree wind direction, the regression analysis presents a compelling

contrast to the 0-degree case. The R2 values and corresponding contours underscore

a distinct departure from linearity, with the linear model’s R2 of 0.190 indicating
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a poor fit and thus indicating its unsuitability for capturing the dynamics of pollu-

tant concentration. In contrast, the quadratic model, with an R2 of 0.703, provides

a considerably better fitting representation, although it does not capture the non-

linear interactions of the independent variables as robustly as in the 0◦ case. The

cubic model for the 45◦ wind direction yields an R2 of 0.888, which, although signif-

icant, suggests that the higher order effects in this orientation are more pronounced

than those of the 0◦ wind direction. Nevertheless, the cubic model outperforms the

quadratic model by more thoroughly capturing the non-linear relationships among

variables, with mean relative errors of 2.810% and 4.334%, respectively. However, it

is recommended to refrain from using high-order fits when possible. This is because

applying a high-order fit can lead to significant discrepancies for input data that fall

outside the range of the data used in the regression analysis.

5.5 Conclusion

A rigorous investigation of the outdoor air quality and ventilation was carried out in

simulated urban environments, with a particular focus on the dispersion of pollutants

originating from roof-based sources. The objectives of this study were motivated

by the need to advance the understanding of how varying urban forms impact air

pollution distribution, especially in relation to the strategic placement of fresh air

intakes. The synergistic effects of several of the most influential urban morpholog-

ical characteristics were numerically explored through the definition of six levels of

planar density, seven levels of building dispositions, and two array orientations with

respect to inflow wind direction. Normalized velocity ratio (V ∗
n ), retention time (τn),

non-dimensionalized concentration (C∗
n), and convective and diffusive transport rates

(Fm,n and Ft,n) were analyzed in close proximity to a target building to assess urban

form effectiveness and dispersion flow dynamics. This study yielded the following key

findings:
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• For 0◦ inflow wind, the volume-averaged V ∗
n consistently decreased when tran-

sitioning from aligned to staggered building configurations. This reduction was

more pronounced in denser urban arrays, highlighting the significant impact

of disrupting the channeling flow characteristic of aligned arrays on the resis-

tance to purging flow. Notably, a maximum reduction of 12% was observed for

λp = 6% at the highest ζ, while it reached approximately 50% for λp = 25%.

• For the τn under 0◦ wind, the response varied notably with urban density. In

sparse configurations, where the urban flow was minimally affected, the de-

crease in V ∗
n led to a modest increase in τn, confirming the conventional inverse

relationship between these two parameters. In contrast, densely packed layouts

exhibited an unexpected decrease as planar heterogeneity increased, with re-

ductions of up to 41% for λp = 25% and ζ = 100%. This suggests that in dense

urban landscapes, the heightened turbulence structures caused by neighboring

buildings more effectively disperse the pollutants around buildings. However, it

needs to be acknowledged that the results of this study pertain to the dispersion

of an elevated plume. The considerable decline in V ∗
n as ζ increases in compact

settings, could adversely impact the ventilation at pedestrian height, and in

turn hinder the dispersion of pollutants at ground level (e.g., traffic-related

pollutants).

• Under an oblique wind direction, the increase in V ∗
n in sparsely packed arrange-

ments indicated an enhanced ventilation which corresponded with a decrease

in τn, suggesting more efficient pollutant dispersion. In cases with λp = 16%,

20%, and 25%, V ∗
n initially increased due to wind acceleration through urban

channels but later decreased at higher disposition levels due to blockage effects,

impeding airflow. Simultaneously, τn exhibited a complex pattern, initially im-

proving ventilation at lower planar heterogeneities but later hindering pollutant

purge as blockage effects intensified.
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• Dynamics of dispersion patterns were explored through the examination of pol-

lutant transport rates to a control volume enclosing the target building. For

the perpendicular wind, convective outflow through the top plane was generally

observed, while for denser configurations modifications to flow patterns caused

by adjacent buildings led to increased pollutant outflow through the top face

and a shift in diffusive transport rates from outflow to inflow. Additionally,

the planar heterogeneity promoted asymmetrical pollutant dispersion in lateral

directions, enhancing removal on one side of the control volume while reducing

it on the other.

• In the oblique wind orientation, sparse setups had higher vertical convective

transport rates than dense ones, with planar heterogeneity showing relatively

modest impacts. Interestingly, both convective and diffusive pollutant transport

rates across different faces of the control volume showed varying sensitivities to

λp and ζ, emphasizing the importance of considering building orientation and

disposition in urban planning for effective air quality control.

• Under 0° wind conditions, transitioning to denser layouts progressively reduced

the area-averaged C∗
n across all faces of the target building due to the dimin-

ished downward pull of the elevated pollutant plume. In sparser layouts, the

side facets showed relatively higher exposures compared to the roof, with the

Rb facet in a case with λp = 11% and ζ = 66% experiencing a notable 33%

increase. Under oblique winds, sparse configurations showed relatively modest

changes, particularly at lower levels of ζ. However, with increasing λp and ζ,

the proximity of surrounding buildings led to more pronounced but variable

exposure levels across different facets. This variability was particularly evident

in denser settings, emphasizing the importance of considering the specific ori-

entation of building clusters and prevailing wind directions in urban planning

practices.
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• For the 0-degree wind direction, the quadratic regression model, with an R2 of

0.978, adequately captured the non-linear relationship between bulk morpho-

logical parameters and normalized concentrations, indicating a more complex

interaction than suggested by the linear model. Under a 45-degree wind, the

linear regression model exhibited significant inadequacies, while the cubic model

proved to be a suitable choice for accurately representing the data, achieving

an R2 value of 0.888. Nonetheless, the quadratic model is generally preferred,

R2 = 0.703, as higher order models might not perform well when used to make

estimations for input variables that fall outside the range of the data used in

the curve fitting process.

In the end, it is necessary to acknowledge that in numerical simulations of flow

over an array of blocks representing urban buildings, there is an inherent limi-

tation due to the use of symmetry boundary conditions, in particular over the

lateral faces of the computational domain. These conditions, while simplifying

the computational process, may not accurately represent the complex and varied

nature of real-world urban environments. However, the adoption of symmetry

boundary conditions is justified in this context, as it significantly reduces com-

putational resources and time, allowing for a more focused analysis of dispersion

dynamics in the presence of generic urban non-uniformities. This approach is

particularly useful in conceptual studies where the objective is to understand

flow patterns and interactions, rather than to replicate specific urban scenarios

in full detail. It is crucial to recognize these limitations when interpreting the

results, ensuring that the conclusions drawn are contextualized within the scope

of the study’s assumptions.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This research addresses the complexities of modeling and controlling urban pollutant

dispersion, effectively linking theoretical advancements to practical applications in

urban environmental engineering. Computational Fluid Dynamics (CFD) was em-

ployed to facilitate advancing the accuracy of numerical predictions concerning the

dispersion patterns of pollutants emitted from roof-based sources. In the following,

the specific outcomes of each research objective are outlined. These findings not only

advance current knowledge of urban dispersion flow dynamics but also hold promise

for influencing future urban development, where growth and sustainability align.

The first objective set the stage for the study by establishing a well-tested frame-

work for the numerical modeling of atmospheric pollutant dispersion. To this aim,

the high-quality and full-scale dispersion data set of the Mock Urban Setting Tests

(MUST) experiment was used to benchmark various modeling settings in the context

of complex urban geometries. Given the primary interest in the bulk quantities of

the flow and dispersion parameters, the steady-state framework was selected to treat

the governing equations. To align with the guidelines recommended in the existing

literature regarding the minimum dimensions of the computational domain, it became

necessary to expand these limits further, especially for geometries similar to that of

the MUST experiment with relatively wide spanwise dimensions. This extension was
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crucial not only to attain more reliable results but also to prevent nonphysical back-

flows at the outlet or any artificial acceleration of the flow, thereby improving the rate

of convergence. The logarithmic inflow velocity profile was selected over the power-

law, as it provided a more physically meaningful representation of the atmospheric

boundary layer. Several turbulence closure models were also tested to identify the

most appropriate representation of Reynolds stresses, leading to the least deviation

between the predicted and measured pollutant concentrations in urban configurations

with a particular focus on the source location.

The overall superiority of the standard k − ε model was evident among all cases

by successfully predicting an average of 66% of concentrations within a factor of

two (FAC2) of the measurements. In comparison, the RNG k − ε and SST k − ω

models achieved this accuracy for 61% and 59% of concentrations, respectively. An

over-prediction of the pollutant concentration field was recorded by all turbulence

closures in cases with pollutant sources located within the array. This stemmed from

the known shortcoming of RANS in under-predicting the turbulence kinetic energy.

However, this deficiency was more effectively mitigated by the combined influence

of geometry-induced turbulence and the relatively higher turbulence kinetic energy

predictions provided by the standard k − ε model compared to other closure mod-

els. The statistical analysis further revealed that standard k − ε more accurately

represented the vertical concentration patterns (average FAC2 of 68%) than horizon-

tal distributions (average FAC2 of 62%). While generally over-predicting near the

source, the model under-predicted at greater horizontal distances, particularly in the

farthest sampling line. Despite some accuracy degradation, the standard k− ε model

remained the preferred choice compared to alternative models. In the end, due to

the practical challenges of acquiring reliable dispersion data for urban geometries,

conventional methods for determining the optimal turbulence Schmidt number (Sct)

become impractical. In response, this study adopted a locally variable definition of

Sct and examined it in the context of urban dispersion flows. Using the MUST data
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set, implementing this method resulted in Sct values ranging from 0.70 to 0.75, which

led to 8% improvement in matching experimental findings.

The second objective built upon the established framework in the first step, aiming

to fine-tune the selected turbulence closure model (i.e., standard k − ε) to enhance

its applicability and accuracy in predicting atmospheric dispersion in urban envi-

ronments. In this regard, an adapted optimization framework employing a carefully

adjusted genetic algorithm was used to re-calibrate the turbulence model. A train-

ing scenario featuring a roof-based source was selected from the MUST full-scale

dispersion data set, which inherently accounts for realistic atmospheric conditions.

Through exploiting the empirical correlation among coefficients in the atmospheric

surface layer, Cε1 was excluded from the re-calibration process, as it could be calcu-

lated using Cµ, Cε2, and σε. Additionally, an exhaustive sensitivity study was also

carried out to investigate the possibility of further reducing the computational load of

the optimization exercise. It was shown that σk had minimal impact on all validation

metrics, allowing it to be disregarded during optimization. Instead, its adjusted value

was determined through a direct sensitivity analysis after the optimized values for the

remaining coefficients were found.

The parameter spaces of empirical constants within the recommended intervals

were systematically explored to extract a refined range for each. A robust objective

function was formulated, incorporating both linear and logarithmic validation met-

rics. This objective function navigated the re-calibration process, gradually converg-

ing toward coefficient sets that produced more accurate and reliable representations

of flow (velocity and turbulence kinetic energy) and dispersion (pollutant concentra-

tion) fields. The proposed ranges identified as most effective for atmospheric disper-

sion modeling in generic urban clusters are 0.14 ≤ Cµ ≤ 0.15, 1.30 ≤ Cε1 ≤ 1.46,

1.68 ≤ Cε2 ≤ 1.80, 1.12 ≤ σε ≤ 1.20, and 0.87 ≤ σk ≤ 1.00. Respectively, 8% and

27% increase in accuracy of the predicted concentrations (among 74 sampling points)

and turbulence kinetic energy (among 18 sampling points) was recorded. The gen-
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eral applicability of the modified model was further tested and verified by modeling

additional cases with varied inlet boundary conditions, source locations, and build-

ing orientations. Across all test cases, there was an average increase in prediction

accuracy of 15% for turbulence kinetic energy, and an improvement of 5% for both

velocity and concentrations.

Implementing the assembled infrastructure specifically tailored for CFD simula-

tions of atmospheric pollutant distributions facilitated the next objective, which was

to unravel the synergistic effects of urban geometric bulk characteristics on dispersion

dynamics. This aspect of the study was pivotal in translating the enhanced modeling

capabilities into practical insights regarding the impact of urban forms on outdoor

and indoor air quality concerning pollutants emitted from roof-based sources. To

ensure that the results could be translated and applied to urban planning practices,

a series of case studies were defined, systematically varying some of the most influ-

encing bulk and specific characteristics, namely planar density, planar heterogeneity

levels, and array orientation. The high-resolution modeling within a block array was

carried out at the neighborhood scale to investigate the localized dispersion patterns

within varied urban configurations.

The study yielded valuable insights. Under perpendicular wind conditions relative

to the disposition axis, there was a consistent decrease in ventilation capacity when

moving from aligned to staggered building configurations. This reduction was more

pronounced in denser urban arrays, with a maximum decrease of 50% in the most

densely packed case, compared to 12% in the most sparsely arranged layout. The

pollutant retention time showed an overall modest increase in sparser layouts as ex-

pected, while, interestingly, denser layouts exhibited significant decreases as planar

heterogeneity increased (up to 41% reduction in the most extreme scenario), indi-

cating that pronounced turbulent mixing induced by surrounding buildings plays a

dominant role in diluting the pollutant stream. Under oblique wind conditions, vary-

ing land use and planar heterogeneity showed diverse impacts on pollutant dispersion.
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In sparsely populated urban layouts, there was improved ventilation and more efficient

pollutant dispersion as heterogeneity increased, resulting in a maximum reduction of

26% in pollutant content. However, in denser urban areas, ventilation capacity ini-

tially increased due to wind channeling but later decreased due to blockage effects.

This led to complex patterns in pollutant retention time, with some cases showing an

increase in pollution levels as high as 29%.

The examination of pollutant transport rates revealed that denser configurations,

especially under perpendicular wind conditions, led to significant changes in flow pat-

terns. A consistent convective outflow through the top plane was observed, which was

intensified as the urban layouts became denser. This trend caused a shift in diffusive

pollutant transport, transitioning from outflow to inflow due to significant changes

in concentration gradients. Planar heterogeneity led to uneven pollutant dispersion,

promoting removal on one side while reducing it on the other. In oblique wind condi-

tions, sparser setups had higher vertical convective transport rates than denser ones,

while planar heterogeneity exhibited a modest impact. Pollutant transport rates

varied across control volume side faces, highlighting the need to acknowledge the pre-

vailing wind and disposition directions in the planning stage for better air quality

management.

Analyzing area-averaged concentrations on building facets revealed reduced expo-

sures with increased planar density and heterogeneity, attributed to decreased down-

wash of the elevated plume. In sparser configurations, side facets of buildings exhib-

ited higher pollutant exposure, notably with moderate planar density and heterogene-

ity levels (33% increase compared to the associated generic reference case). Under

oblique wind conditions, this pattern became more variable, with denser configura-

tions displaying pronounced fluctuations in exposure levels across different building

facets. Lastly, the relationship between urban morphology and variation of pollu-

tant levels (normalized by quantities obtained from well-studied generic geometries

of aligned arrays) was analyzed via regression analysis, contributing to the formulation
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of the urban planning guidelines. Under perpendicular wind, a quadratic regression

model effectively captured the inherently non-linear relationship between these vari-

ables, with a coefficient of determination (R2) of 0.978 and a mean relative error

of about 2%. However, under an oblique wind, the linear model displayed signifi-

cant inadequacies (R2 = 0.190), while both the quadratic and cubic models offered

a more precise representation with R2 values of 0.703 and 0.888, respectively. These

fitted regressions could aid urban planners in estimating the extent to which changes

in bulk geometric parameters might affect the bulk pollutant concentration levels

around buildings.

This study stands as a testament to the intricate relationship between urban de-

sign and environmental health. Each objective, while distinct in focus, collectively

underlines the importance of accurate and reliable modeling in urban air quality

management. The advancements in CFD modeling and turbulence model optimiza-

tion contribute notably to our ability to predict and mitigate urban air pollution.

Meanwhile, the exploration of urban morphology’s effects offers practical insights for

urban planners, highlighting how design choices can influence air quality. Going for-

ward, the methodologies and insights derived from this research have the potential

to improve urban planning policies and practices. The refined modeling techniques

can aid in developing more effective pollution control strategies, particularly in dense

urban areas where air quality is a pressing concern. Furthermore, the study’s empha-

sis on sustainable urban design aligns with global efforts to create healthier urban

environments, resonating with contemporary themes in urban development.

6.2 Future Work

While providing valuable insights into urban pollutant dispersion, this research en-

counters several limitations inherent in its methodologies and model assumptions.

The utilization of steady-state Reynolds-Averaged Navier-Stokes (RANS) models,

despite their computational efficiency, presents a limitation due to their inability to
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capture the full complexity of turbulence structures compared to Large Eddy Simu-

lations (LES). Nevertheless, it’s important to recognize that conducting high-fidelity

simulations like LES in the context of building clusters remains challenging and com-

putationally demanding, even with current computing capabilities. Additionally, the

assumption that pollutants are passive and inert gases, coupled with the focus on

neutral atmospheric stability conditions, may not fully capture the dynamics and

chemically reactive nature of realistic urban atmospheric dispersions. Given these

limitations, several areas are ripe for future research to build upon and enhance the

findings of this study:

• Regarding methodological advancements, efforts should be expanded beyond

the assumption of pollutants as neutrally buoyant and inert gases. Additionally,

accounting for diverse atmospheric stability conditions should be considered to

improve the realism and applicability of the models.

• Additional wind directions beyond the extreme cases of perpendicular and

oblique orientations need to be explored. That provides a more comprehen-

sive understanding of pollutant dispersion under diverse urban wind scenarios.

• The exploration of how urban morphology affects pollutant dispersion could be

enhanced by examining a larger number of cases featuring more complex het-

erogeneities, such as simplified geometries that closely resemble realistic urban

blocks (e.g., varying building heights and aspect ratios). This approach would

enable further refinement of the correlations and guidelines, improving their

applicability and accuracy across a wider range of diverse urban configurations.

• The investigation into how the momentum ratio of pollutant sources interacts

with urban forms in determining dispersion patterns could present new av-

enues for promoting sustainable urban designs. This approach, which merges

active and passive strategies, could significantly enhance operational practices
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for rooftop emissions. Such improvements have the potential to lead to sub-

stantial reductions in unnecessary energy waste, thereby contributing to more

energy-efficient and environmentally friendly urban environments.

• The potential of LES in urban dispersion modeling within compact geometries

should be investigated to exploit its capability to capture finer details of tur-

bulence and more accurate representations of Reynold’s stressed components.

That can further contribute to understanding airflow and pollutant dispersion

in complex urban environments.

• The impact of urban non-uniformities on indoor air quality can be further sys-

tematically studied in the context of natural cross ventilation. The results could

inform decisions on the location and types (e.g., symmetrical or asymmetrical)

of the openings.
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