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Abstract

We study the mass difference between the spin singlet and spin triplet states 

of positronium and heavy quarkonium, an effect which is referred to as the hy-

perfine splitting. For positronium, a bound state of an electron and a positron, 

we analyze the one-loop nonrelativistic effective Hamiltonian in d-dimensions, 

which we parametrize as d = 4−2ε. Our result constitutes an important part of 

the analysis in [1], which studies positronium’s hyperfine splitting to O(α7me), 

and substantially reduces the overall theoretical uncertainty. This is crucial 

for comparing high precision predictions of quantum electrodynamics with the 

results of modern experiments.

For quarkonium, a non-relativistic flavourless quark-antiquark bound-state, 

we set up a matching procedure between the perturbative analysis of the short-

distance interactions and the nonperturbative lattice analysis of the long-

distance effects. In particular, our result is used in [2], and it corrects an error in 

the previous matching calculation of Ref. [3], which was subsequently used in 

the analyses [4] and [5]. Combined with the one-loop perturbative lattice 

calculation, our result brings theory and experiment into agreement and effec-

tively solves the ηb mass puzzle.
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Chapter 1

Introduction: Non-Relativistic

Bound States

1.1 Positronium

Positronium (Ps) is a bound state that consists of an electron and a positron

(anti-electron). At leading order we can approximate the energy levels by

solving a Schrodinger equation with a Coulomb potential, somewhat similar

to the solution of the hydrogen atom. In Ps however, the two masses are

identical and the system must be treated in the centre of mass frame; there is

no stationary nucleus in this case. This leads to spectral lines that have half

the value of the equivalent hydrogen lines in leading order.

In its own right, Ps is a very important system to study because it is a

purely leptonic system. Since strong interactions in this system are only present

through hard fermion loop calculations, the effects are suppressed by the mass

of the electron over the typical hadronic mass scale all squared. Weak inter-

actions are similarly suppressed by the electron mass over the mass of the W

and Z bosons. As a result it provides an ideal system for performing very high

precision tests of Quantum Electrodynamics (QED), which is now one of the

most accurately tested theories in all of physics.
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Positronium can assume two different spin configurations depending on

whether the combined spin state of the electron-positron pair are symmetric or

antisymmetric. The spin-one configuration is known as orthopositronium (o-

Ps), while the spin-zero configuration is called parapositronium (p-Ps). In this

work we will be interested in studying the effect of hyperfine splitting (HFS)

on the positronium bound state. HFS is defined as the difference in energy

between the o-Ps and p-Ps states. In hydrogen the effects of hyperfine splitting

are suppressed, when compared to fine structure corrections, by a factor of

the electron mass over the proton mass. This is not so in Ps, and as a result

hyperfine corrections become comparable to fine structure corrections, making

it a much more important effect to study in detail.

In either spin-configuration Ps is unstable, decaying into two (p-Ps) or

three (o-Ps) photons in times on the order of ∼ 10−10 s and ∼ 10−7 s respec-

tively. Consequently, excited states are so short lived as to be negligible when

compared to the ground state configuration (1S-state). This means that HFS

becomes a leading effect to consider when taking measurements of positronium

masses. Precise measurements of this effect have yielded [6, 7]

∆νexp = 203.3875(16)GHz, (1.1)

∆νexp = 203.38910(74)GHz. (1.2)

There is a lot of effort right now to increase the accuracy of these measurements

and a recent result, claiming less systematic uncertainty from thermalization,

has produced a value substantially larger [8]:

∆νexp = 203.3941(16)stat.(11)syst.GHz. (1.3)

On the theoretical side, the present knowledge may be summarized as:
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∆νth = ∆νLO
{

1− α

π

(
32

21
+

6

7
ln 2

)

− 5

14
α2 lnα

+
(α

π

)2
[
1367

378
− 5197

2016
π2 +

(
6

7
+

221

84
π2

)

ln 2

− 159

56
ζ(3)

]

− 3

2

α3

π
ln2 α +

(

−62

15
+

68

7
ln 2

)
α3

π
lnα

+ D
(α

π

)3
}

, (1.4)

The leading order (LO) term, which has been taken out as an overall multiplica-

tive factor, gets contributions from both scattering and virtual pair annihilation

and is calculated to be

∆νLO =
( [1

3

]

sct.
+
[1

4

]

ann.

)

α4me =
7

12
α4me. (1.5)

In the above, α is the electromagnetic coupling (the fine structure constant),me

is the electron/positron mass, and in the first equality we have separated out

the contributions coming from scattering and annihilation effects. The first-

order correction was calculated in [9]. The logarithmically enhanced α6 ln(α)

term was found in [10, 11]. The nonlogarithmic O(α6) term includes the

pure radiative contribution [12], the three-, two- and one-photon annihilation

contributions [13, 14, 15, 16], the non-annihilation radiative recoil contribution

[17, 18], and the pure recoil correction computed numerically in [19, 20] and

analytically in [21, 22]. In O(α7), only the leading double-logarithmic [23] and

the single-logarithmic terms [24, 25, 26] are known, while the nonlogarithmic

coefficient D in (1.4) is not yet available. Including all the terms known so far,

we obtain a value that is above the experimental values (1.1) and (1.2) by 2.6

and 3.5 standard deviations, respectively

∆νth = 203.391 69(41)GHz. (1.6)

At the same time, it is only 1.2 standard deviations below the most recent

result (1.3). In this thesis we compute a significant piece of the coefficient D,

coming from the one-photon annihilation channel.
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1.2 Quarkonium

The theoretical study of flavourless nonrelativistic heavy quark-antiquark bound

states, or quarkonium, is amongst the earliest applications of perturbative quan-

tum chromodynamics [27]. Quarkonium is fundamentally different in com-

parison to positronium, its QED analogue, due to the peculiar property that

QCD enters a strong coupling regime around the scale ΛQCD ≈ 200MeV [28].

On the other hand, since the Bohr radius of quarkonium is smaller than the

confinement radius (r ∼ Λ−1
QCD) where the strong interactions become nonper-

turbative, QCD perturbation theory can be applied for the analysis of states

with low quantum numbers. This makes heavy quark-antiquark systems an

ideal laboratory for determining fundamental parameters of QCD, such as the

strong coupling constant αs and the heavy-quark massesmQ. However, in some

cases perturbative QCD fails to accurately describe the experimental data. A

famous example is the so-called. “ηb-mass puzzle”, which currently attracts

a lot of attention from the experimental and theoretical physics communities.

There is a significant discrepancy between the mass of the recently discovered ηb

meson, i.e. the lowest energy spin singlet bound state of bottomonium (bb̄), and

the perturbative QCD predictions for hyperfine splitting (HFS). The resolution

of this puzzle could shed new light on the dynamics of strong interactions.

For bottomonium bb̄, the HFS is given by the mass difference between the

spin-singlet ηb meson and the spin triplet Υ(1S) meson. The ηb meson has been

observed by Babar and Belle collaboration in the radiative decays of the excited

Υ states. Very high accuracy of Υ-spectroscopy allows for the determination

of HFS with only a few MeV error. The results are given in [29] and [30], and

are respectively

Eexp
hfs = 66.1+4.9

−4.8(stat)± 2.0(syst)MeV, (1.7)

Eexp
hfs = 57.9± 2.3MeV. (1.8)
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The most accurate theoretical prediction for HFS includes the complete

first-order corrections in αs as well as the resummation of all-order next-to-

leading logarithmic corrections of the form αn+1
s lnn αs. Numerically it gives [31]

EQCD
hfs = 41± 11(th)+9

−8(δαs)MeV, (1.9)

where“th” stands for the errors that come from higher-order perturbative cor-

rections as well as any nonperturbative effects. The term δαs represents the

inherent uncertainty in αs(MZ) = 0.118 ± 0.003. This result is about two

standard deviations lower than the experimentally measured values.

One explanation for the above discrepancy is that perturbation theory be-

comes inapplicable when the momentum is on the order of the binding energy

q ∼ α2
smb. The strong interaction is characterized by the corresponding running

coupling at this scale, and the effective expansion parameter αs(α
2
smb) ∼ 1 can

hardly be conisdered small there, thus perturbation theory effectively breaks

down. One way to get control over this problem is to use numerical lattice sim-

ulations of QCD which are not based on the expansion in αs. However, existing

lattice results do not properly take into account the contributions of the “hard”

virtual momentum, on the order of heavy quark mass q ∼ mb, which is cut off

by the lattice spacing a� 1/mb. Fortunately the hard region contribution can

be more reliably calculated within perturbation theory since the corresponding

expansion parameter there is αs(mb) ∼ 1/5.

The issue is now: how do we make perturbative calculations of the hard

region contribution consistent with the lattice simulations? This is accom-

plished through systematic separation of hard and soft effects. The procedure

that is used is called “matching”, wherein the hard contribution is given by

the difference between the full QCD perturbative result, and the same order

contribution contained in the effective NRQCD lattice perturbation theory.
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1.3 Outline

The plan of the thesis is as follows: In the next chapter we introduce the

basic theory of nonrelativistic hydrogen-like bound states, where we derive the

leading order approximation for HFS within the framework of non-relativistic

quantum mechanics (NRQM).

In chapter 3, we set up a natural framework for doing bound-state cal-

culations within relativistic quantum theory. Firstly, we show that not only

do we recover the leading order HFS result of chapter 2, but systematically

incorporate all other non-radiation based effects. We also show how the inclu-

sion of electron-positron annihilation modifies the leading order HFS result for

positronium. Finally, the leading order HFS for quarkonium is found within

the framework of QCD.

In chapter 4 we discuss the general approach for the inclusion of radiative

effects in the form of perturbative corrections. In particular, we demonstrate

that the perturbation theory for our bound states must be developed about the

nonrelativistic Coulomb approximation, rather than free electron and positron

states. We show how this can be systematically performed within the frame-

work of nonrelativistic effective field theory, which separates the contributions

from the various regions of momentum space. Finally, we discuss the numerical

effect of the one-photon annihilation contribution on the HFS of positronium.

In chapter 5, we apply straightforward generalizations of the effective field

theory approach to the theory of QCD in order to separate out the effects of

the various contributing regions of momentum. We then set up the formal

matching procedure between full QCD and effective NRQCD lattice theory,

and perform the calculations necessary for the matching. Following this, we

briefly discuss the renormalization group (RG) within the context of QCD and

explain how it can be used to obtain a RG-improved result for the HFS of

heavy quark bound states.
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Chapter 2

Basic Properties of NR

Bound-States

2.1 Energy Levels at Leading Order

The procedure for solving the hydrogen atom can readily be applied to many

other two-particle systems like positronium and quarkonium. We will present a

very brief overview of the subject matter and then proceed to apply it, within

a relativistic framework, to positronium and quarkonium in the next chapter.

The unfamiliar reader may consult any introductory book on quantum me-

chanics for a more thorough treatment of what follows (see for example [32]).

The quantum mechanical Hamiltonian for the hydrogen atom has the stan-

dard form with a Coulomb potential

Ĥ = − ~
2

2me

∇2 + VC(r) , VC(r) ≡ −α
r
, (2.1)

where ∇2 = 1
r
∂
∂r2
r − 1

~2r2
L̂2 , and me is the mass of the electron. L̂2 is the

operator in Hilbert space that, acting on an eigenstate, gives the square of

the total angular-momentum. By writing the Hamiltonian in this way, we

have made explicit that the angular momentum operator L̂2 commutes with

7



Ĥ, and can therefore be simultaneously diagonalized. Put another way, the

Hamiltonian is spherically symmetric and thus admits, as its angular solution,

the eigenfunctions of the angular-momentum operator. These solutions are the

famous spherical harmonics Y l
m(θ, φ),

L̂2 Y l
m(θ, φ) = l(l + 1) Y l

m(θ, φ) ⇒ Ψ(r, θ, φ) ≡ φ(r) Y l
m(θ, φ). (2.2)

Doing the separation of variables in (2.2) and solving, gives the hydrogen wave-

functions

Ψnlm(r, θ, φ) =

√
√
√
√

(

2

na0

)3
(n− l−1)!

2n
[
(n+ 1)!

]3

(

2r

na0

)l

L2l+1
n−l−1

(
2r
na0

)

Y l
m(θ, φ) e

− r
na0 ,

(2.3)

where Lpq−p are the associated Laguerre polynomials. In (2.3), a0 is the most

probable separation of the electron from the atom’s centre in its ground state,

and is known as the Bohr radius a0 = 1
αme

≈ 53 pm.

The energy levels of Hydrogen in terms of the quantum number n are

En = − α2

2n2
me ≈ −13.6eV

n2
. (2.4)

For the case of positronium and quarkonium, both masses involved in the

Hamiltonian are equal. As such, there can be no approximation of a stationary

nucleus. We thus treat this two body problem by reducing it to a one particle

problem with a reduced mass mr ≡ m1 m2

m1+m2
, circling around the system’s center

of mass. For positronium and quarkonium, the reduced masses are respectively

1
2
me and

1
2
mq (mq being the mass of the heavy quark).

Note that one of the consequences of using a reduced mass in solving the

Schrodinger equation, is that the “Bohr” radius that appears in the wave-

functions (2.3), is twice as large for positronium (aPs0 = 2a0)
1. If we now

substitute into (2.4), we can get the leading order expression for positronium’s

1Quarkonium’s Bohr radius has another alteration which we will get to in section 3.4
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energy spectrum

Eeē
n = − α2

4n2
me. (2.5)

Quarkonium on the other hand interacts via the strong force, and thus α → αs.

But, in addition we must also include a colour factor which in its essence is

nothing but a group theory factor that arises because QCD is based on a non-

abelian gauge theory. Therefore I will put off the presentation of its leading

order energies until it can be expressed in its natural frame as a piece of a

relativistic scattering amplitude (see section 3.4).

2.2 Overview of Spin Related Perturbations

2.2.1 Spin-Orbit Coupling

Any charged particle with spin angular-momentum acts like a magnetic dipole.

If an electron (spin-1
2
) is immersed in a magnetic field, it will feel a torque

acting on it which tends to align its spin orientation(µ̂), parallel to the field.

This torque can be written as ~τ = ~µ × ~B = ~r × ~F , which has the solution

~F = ∇r

(
~µ · ~B(r)

)
. Integrating the expression provides us with an energy

H = −~µ · ~B.

Next, we know from classical electrodynamics that any moving charge sets

up a magnetic field. In Hydrogen we tend to think about the electron as circling

around the stationary nucleus. From the (non-inertial) frame of the electron,

the proton appears to be circling around it, and thus sets up a magnetic field

proportional to its apparent orbital angular-momentum1.

The magnetic moment of the electron is proportional to its spin, thus pro-

ducing the familiar term ~σ · ~B from the Pauli-equation (a non-relativistic limit

for the Dirac-equation in the presence of an electromagnetic field Aµ). This

effect can be calculated as a perturbation to the non-relativistic Hamiltonian,

1B = µ0I
2r = µ0ev

4πr2 . Then L = m|~r × ~v| ∼ mvr ⇒ B ∼ µ0

4π
e

mr3L .
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the so-called spin-orbit interaction(S.O.)

δHs.o. =
µ0

8π

e2

m2
er

3
S · L =

1
2
~c

(mec)2

(

α

r3

)

S · L . (2.6)

As can be seen from the above perturbation, the Hamiltonian no longer com-

mutes individually with ~L and ~S, therefore the operator eigenvalues are no

longer separately conserved. This non-commutation will also persist in the

Dirac Hamiltonian as well (see sec. 3.2).

2.2.2 Spin-Spin Coupling

The previous section was intended to act as a segue into the interaction of

interest in this paper. Thus we will first discuss the physical concepts involved

in spin-spin coupling through the viewpoint of non-relativistic quantum me-

chanics. We will then proceed to discuss the interaction in its natural place as

an aspect of quantum field theory (QFT), in the next chapter.

The main idea, starting with hydrogen, is that the nucleus itself constitutes

a magnetic dipole and so sets up another magnetic field that is unrelated to

the relative motion of the two particles,

B =
µ0

4πr3
[
(3µp · r̂)r̂ − µp

]
+

2µ0

3
µpδ

3(r). (2.7)

This gives yet another magnetic field for µe to couple to. The gyromagnetic

ratios are2

µp =
gp e

2mp

Sp and µe = − e

me

Se, (2.8)

so that the perturbation takes the form

δHs.s. =
gp e

2

mempc2

[
3(Se · r̂)(Sp · r̂)

8π r3
− Se · Sp

8π r3
+ 1

3
Se · Sp δ

3(r)

]

. (2.9)

2The proton’s ratio is not simple like the electron’s because it is a composite structure.
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In any state where the orbital angular momentum is zero (l = 0), the expec-

tation value of the first two terms cancel each other3. We are then only left

with the term proportional to the delta function. The correction to the energy

levels is then given by first order perturbation theory

Es.s. = 〈ψ100|δHs.s.|ψ100〉 =
gpe

2

3mempc2
〈Se · Sp〉|ψ100(0)|2. (2.10)

In the case of hydrogen, the factor of 1/mp is responsible for the HFS contri-

bution being much less than the fine structure terms like spin-orbit coupling,

owing to the proton mass being mp ∼ 1800me. This will not be the case in

particles like quarkonium or positronium, and as such becomes a much more

important effect to study.

Now, similarly to spin-orbit coupling, we see that the addition of spin-spin

coupling to the Hamiltonian makes it so that individual spins are no longer

conserved. We are thus left with the problem of finding some spin related

quantum numbers that are conserved and characterize the system. We can

start by writing it out in terms of total angular momentum

S = Se + Sp ⇒ Se · Sp =
1

2
(S2 − S2

e − S2
p). (2.11)

Both particles are spin-1/2, thus S2
e = S2

p = s(s + 1) = 3/4. This still leaves

the problem of finding out what the quantity S2 is.

In classical physics we are capable of just adding any number of vectors

together by introducing a coordinate system and projecting the vectors onto

each axis, or onto a set of appropriate basis vectors, and then adding all the

components separately. In the case of quantum mechanics, we can know at most

the total magnitude of the angular momentum vector, and the value of one of

its chosen components (typically the z-component). The other components

3
∫
(a · r̂)(b · r̂) dcosθ dφ = 4π

3
a ·b, which will cancel the (integrated) second term in (2.9).

11



(say Lx and Ly) do not commute with Lz and thus we can’t simultaneously

diagonalize these components. This leaves us with an obvious problem: How

do we add angular momentum vectors in quantum mechanics?

In the ground state, the total orbital angular momentum is zero and we

are interested to know how the total spin configuration of the two-particle

system looks. For fermions, which have spin-1/2, the z-component can have

only two states (ms = ±1/2). We typically call them spin-up and spin-down,

and represent them | ↑ 〉 and | ↓ 〉 respectively.

To get the total magnitude of two indeterminate vectors we start by intro-

duce raising and lowering operators S+ = S+
(1)+S

+
(2) and S

− = S−
(1)+S

−
(2) which

act linearly on all possible states :

| ↑〉| ↑〉, | ↑〉| ↓〉, ... . (2.12)

The result is that the total value of spin ranges from |s1 − s2| → |s1 + s2| in
integer steps. Specifically, we get three states with total angular momentum

equal to one 3S1 ≡ |s=1;ms=0,±1〉, called the triplet. We also get one state

with total angular-momentum equal to zero 1S0 ≡ |s= 0;ms = 0〉 called the

singlet. This can be written symbolically as a set of orthonormal kets:







|1, 1〉 = | ↑↑〉
|1, 0〉 = 1√

2

(
| ↑↓〉+ | ↓↑〉

)

|1,−1〉 = | ↓↓〉







s = 1 , (2.13)

{

|0, 0〉 = 1√
2

(
| ↑↓〉 − | ↓↑〉

)
}

s = 0 . (2.14)

The hyperfine splitting occurs because the spin-spin perturbation takes on a

12



value which depends on the overall spin configuration (i.e. singlet or triplet).

Se · Sp =
1

2
(S2 − S2

e − S2
p) =

1

2
S2 − 3

4
, (2.15)

where S2 = 0 for the singlet, and S2 = 2 for the triplet. Therefore we get

Se · Sp = −3/4 for the singlet, and Se · Sp = 1/4 for the triplet. Then if

we take the difference between the two states in hydrogen, we get the famous

21cm line

Ehfs =
4gp

3mpm2
e c

2 a4
= 5.88× 10−6eV. (2.16)

The leading HFS for positronium and quarkonium follow in a simple way

from this, but we prefer to present these values in the next chapter within a

relativistic framework, and show that it agrees with the details presented above

in the NRQM framework.
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Chapter 3

Hyperfine Splitting at Leading

Order

It was mentioned in the last section that spin-spin coupling has its natural place

in QFT, and this statement is in fact true of spin in general. The Schrodinger

equation makes no mention of spin at all, being a differential operator acting

on a scalar function. Historically, it had to be added to the theory in an ad-hoc

manner. The Dirac equation is a relativistic wave equation for spin-1
2
particles,

and marks the natural start for a discussion leading to the relativistic scattering

expressions of interest. Of course, a thorough treatment of the subject matter

is far too lengthy to fully expound in this paper. We will present it in a

way that will put the necessary ideas on the table, and will assume a basic

familiarity with the Dirac equation and the Feynman diagram representation

of perturbation theory. This will give the reader the relevant formalism required

to understand the work presented throughout.

3.1 The Dirac Equation and Spin

The Schrodinger equation is non-relativistic by nature. This is immediately

obvious from the fact that it is first order in time derivatives but second order
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in spatial derivatives. Any relativistically covariant quantum theory must treat

time and space on equal footing, and reduce to the Schrodinger equation in the

appropriate non-relativistic limit. The Dirac equation in momentum space,

where the γµ are the familiar gamma matrices, and m is a fermion mass, is

(

/p−m
)
ψ = 0, /p ≡ pµγ

µ. (3.1)

If we multiply this by γ0, and go to position space, we get

i
∂ψ

∂t
= ĤDψ : ĤD ≡ γ0

(
iγ · ∇+m

)
= −iα · ∇+ βm, (3.2)

where, following convention, we have written γ0 = β and α = −γ0γ. The

relation (3.2) defines the free Dirac (or relativistic) Hamiltonian ĤD. The

Dirac equation is a matrix equation and as such ψ(x) = ψα(x), must have four

components. We know from NR quantum mechanics that fermions like the

electron and the quark have only two spin degrees of freedom. The reason for

a four-spinor is that relativistic quantum theory introduces antiparticles into

the works. Roughly speaking, two spin degrees of freedom are for the fermion,

and two are for the antifermion. This is all consistent then, only if two degrees

vanish in the fermion’s rest frame. In the classical regime where E >> |~p|, so
that p ≈ 〈m,~0〉,

(/p−m) ψ ⇒ m(γ0 − 1) ψ = 0. (3.3)

We choose a basis in which γ0 is diagonal

γ0 =




1 0

0 −1



 . (3.4)
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Then we plug this into (3.3) and get




0 0

0 1l








φ

χ



 = 0. (3.5)

Two of the degrees of freedom vanish as predicted, and γ0 − 1 acts like a

projection operator that picks out the NR physics1. In the rest frame of the

particle, these will represent the two spin state solutions for the fermion, and

we can write them (up to a normalization factor)

u1, u2 =




↑
0



 ,




↓
0



 (3.6)

For an unspecified four-momentum, the free Dirac equation has four linearly

independent plane-wave solutions:

ur(p) e
−ip·x, vs(p) e

+ip·x r, s = 1, 2. (3.7)

We note that because the new four spinor representation is formed from a

direct sum of two irreducible (and inequivalent) spinor representations, we get

a representation of the spin operator by diagonally stacking the two dimensional

representations of the spin operator (ubiquitously chosen as the pauli matrices).

We then obtain the spin operator for Dirac theory: Σ = σ ⊗ 1l2×2.

Let us now give precise definitions (representations) to the spinors and ma-

trices we will be using in this paper. The presentation from here on will follow

closely the section on the Breit equation given in Landau and Lifshitz [33]. A

useful spinor for our purposes is:

1Indeed (γ0 − 1)2 = −2(γ0 − 1), which is a projector up to normalization.
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us =
√
2m





(
1− p2

8m2c2

)
ws

(
σ·p

2mc

)
ws



 , (3.8)

where the w’s are 2-spinors. This reduces to the rest frame spinor in the

limit that momentum goes to zero, with the exception that a relativistic spinor

normalization is used (ūu = 2m).

The antiparticle spinors must satisfy v̄v = −2m, which is easily seen from an

application of charge conjugation ψc = iγ2ψ∗ :

v̄v = uTγ2 †γ0γ2u∗s = uTγ0γ2γ2u∗s = −ūu. (3.9)

To get the second equality we used
(
γµ
)†

= γ0γµγ0; to get the last equality

we took the transpose, since it is just a number afterall. These spinors are

consistent with the Dirac representation for the gamma matrices

γ0 =




1 0

0 −1



 , γ =




0 σ

−σ 0



 . (3.10)

Note that for arbitrary momentum the spinors are energy-eigenstates, but are

not spin-eigenstates. That is ur and vs are 4-spinors that satisfy (/p−m)ur = 0,

and (/p+m)vs = 0; but [HD,Σ] 6= 0. This should be clear since the Dirac equa-

tion introduces spin-orbit coupling explicitly in the basic spinor and gamma ma-

trix definitions. Recall from NRQM that the ad-hoc addition of spin-spin cou-

pling fouled up commutation relations between Ĥ and S, and we can now see

that this is an implicit property of our relativistic wave equation. As one would

expect though, the total angular momentum is conserved [HD,Σ+L] = 0.

3.2 Scattering Interaction at LO

In non relativistic scattering theory, the potential V (r) can be obtained from

the Fourier transform of the amplitude for scattering Γ = 〈ψi|V |ψf〉. In a
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typical scattering experiment, we are interested in the probability amplitude

that a particle that is initially far away from a stationary source, will scatter

off the source and end up in the asymptotic state ψf . In the initial and final

states the particles are essentially free. The Born approximation then reads

ΓBorn ∝
∫

d3re−ir·(p−p′)V (r). (3.11)

Classically we can speak of particle interactions due to a potential only up to

order 1/c2 because at order 1/c3, the effects of radiation begin to show up. We

will discuss how to include the effects of radiation in a later section, but for

now our program will be as follows:

� Calculate the scattering amplitude as formulated in relativistic QFT (at

tree level).

� Expand the amplitude (i.e. the spinors and propagators) to order 1/c2.

� Take the Fourier transform in order to recover what should be the equiv-

alent potential V (r) according to the Born approximation.

� Proceed as before and use this potential as a perturbation to the Coulomb

Hamiltonian.

Starting with Ps, the first order scattering amplitude for two fermions inter-

Figure 3.1: Tree Level Scattering
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acting electromagnetically and having masses m1 and m2, can be written:

Mscatt. = −e2 [ ūr(p′1)γµus(p1) ]Dµν(k
2) [ v̄t(p2)γ

νvw(p
′
2) ], (3.12)

whereDµν(k
2) is the gauge-propagator. The gauge boson for QED is the photon

with coupling e, whilst for QCD it is the gluon (with coupling gs). For now, we

do the calculation for QED, and leave the QCD one-gluon scattering calculation

to the end where it will be modified by α → αs and we will have to include a

colour factor as well. We will follow the custom when working in the NR limit,

and use the Coulomb gauge

D00 = − 1

k2
, Dij =

1

k2 − ω2
k/c

2

(

δij −
kikj
k2

)

. (3.13)

For now we are explicitly keeping factors of the speed of light (c 6= 1). The

order in 1/c then organizes the terms, allowing us to see at which stage of the

game new physics appears which is not present in the Schrodinger equation.

Let’s check the consistency of all this and neglect terms of order 1/c and

higher (which is the same as setting c → ∞). The spinors reduce to those of

NRQM and we simply get the leading part of the D00 term

Mscatt. = (2m1)(−2m2)(w
†
rws) V (k) (w†

tww), V (k) = − e2

k2
. (3.14)

V (k) is the Fourier transform of the Coulomb potential where

k = p′
1 − p1 = p2 − p′

2, (3.15)

just as we suspected for the complete NR-limit. To be consistent with the

order of the relativistic expansion, we must also include the next term in the

expansion of the relativistic kinetic energy in our Hamiltonian. The Hamilto-

nian operator is concerned with kinematical degrees of freedom, so we define
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the free Hamiltonian (with no potential present) as

Ĥ(0) ψ = (E −m1c
2 −m2c

2)ψ, with H(0) =
2∑

i=1

p̂i
2

2mi

− p̂i
4

8m3
i c

2
. (3.16)

Let us now write out our scattering amplitude to the required accuracy. We

use a concise notation where the labels 1,2 and 1′, 2′ represent both momentum

and spin indices. For example we write u1 ≡ uλ1(p1).

−Mscatt. = e2[ ū1′γ
0u1 ][ v̄2γ

0v2′ ]D00 + e2[ ū1′γ
iu1 ][ v̄2γ

jv2′ ]Dij

= e2[ u†1′ u1 ][ v
†
2 v2′ ]D00 + e2[ ū1′γ

iu1 ][ v̄2γ
jv2′ ]Dij (3.17)

We insert the expressions for the spinors and gamma matrices [eqn.’s (3.8),(3.10)],

and with some massaging get

u†1′ u1 = (2m1) w
∗
1′

[

1− k2

8m1c2
+
iσ1 · k× p1

4m1c2

]

w1, (3.18)

ū1′ γ u1 = (1/c)w∗
1′

[
iσ1 × k + 2p1 + k

]
w1. (3.19)

The terms arising from the anti-particle spinors are very similar(we set 1 → 2

and k → −k). If we carry out the multiplication and simplify, we get the tree

level result

Mscatt. = (2m1)(−2m2)w
†
1′w

†
2V (p1, p2, k)w1w2′ . (3.20)

The potential in momentum-space, with higher order terms in 1/c now included,

becomes:
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V (p1, p2, k) = −e2
[

1

k2
− 1

8m1c2
− 1

8m2c2
+

(k · p1)(k · p2)

m1m2k4
− (p1 · p2)

m1m2k2

+
iσ1 · k× p1

4m2
1c

2k2
− iσ2 · k× p2

4m2
2c

2k2
− iσ1 · k× p2

2m1m2c2k2

+
iσ2 · k× p1

2m1m2c2k2
+

(σ1 · k)(σ2 · k)

4m1m2c2k2
− (σ1 · σ2)

4m1m2c2

]

. (3.21)

We are of course only interested in the spin-spin interaction and thus can limit

our attention to only those terms containing both spin operators (σ1,σ2), which

upon examination is only the last two terms. Performing a Fourier transform

on these two terms we get [33]

Vspin = − e2

(16π)m1m2c2

[

σ1 · σ2

r3
− 3(σ1 · r)(σ2 · r)

r5
− 8π

3
σ1 ·σ2δ

3(r)

]

. (3.22)

Putting in Si =
1
2
σi, we obtain precisely the potential that we got from the

perturbation theory of NRQM. It is quite satisfying to see that not only have

we generated the interaction of interest in the relativistic formalism, but we

have systematically included all other contributions to the potential in this

order.

Now, we can just plug the non-vanishing piece into the expression for first

order perturbation theory as before and get

Es.s. =
8πα

3m2
e c

〈S1 · S2〉|ψ100(0)|2. (3.23)

Now, using the result that |ψ100(0)|2 = 1/π (2a0)3, the scattering amplitude gives:

E(S)
s.s. =

α4mec
2

3







+1/4 (triplet)

−3/4 (singlet)






, (3.24)

where the superscript emphasizes that this is the contribution from the scat-
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tering diagram only; there is another contribution as well to which we now

turn.

3.3 Annihilation of Positronium

To obtain the complete leading order result for positronium’s HFS we need to

include, in addition to the scattering interaction above, an annihilation con-

tribution. Annihilation is a process which has no classical analogue, but in

the positronium bound state there is always the possibility that the electron-

positron pair will annihilate (momentarily) into a single photon before returning

to the original particle pair. Photons are particles of spin one and as such we

must conclude that only a pair that is in the spin triplet configuration can un-

dergo single photon annihilation. As a result, we see that only the energy levels

of this configuration will be affected by such an interaction. It is also worth

noting that quarkonium gets no contribution from single gluon annihilation for

reasons to be explained in the next section.

The amplitude that is attributed to this process is similar in appearance to

the scattering amplitude but requires some simple modifications. We relabel a

bit and use p−, p+ and p′
−, p

′
+ to label the incoming and outgoing momentum

respectively. We also repurpose the variable k to now be

k ≡ p− + p+ = p′− + p′+ . (3.25)

With these redefinitions, the amplitude for photon annihilation takes the form

Mann. = [ v̄(p+)γ
µu(p−) ]Dµν(k

2) [ ū(p′−)γ
νv(p′+) ]. (3.26)

These amplitudes are of course gauge invariant, and we can switch to the usual

Feynman gauge at our leisure

Dµν =
1

k2
gµν . (3.27)
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Now, since the particles are nearly on shell p0i = mc + O(α2), we can write

k0 = (p0+ + p0−)
2 ≈ 4m2

ec
2 � k2. The propagator is therefore simply

Dµν ≈
1

4m2
ec

2
gµν , (3.28)

i.e. is of order 1/c2 already. Thus we need only keep spinors to first order for

this calculation

u(p−) =
√
2me




w−

0



 , (3.29)

with corresponding positron spinor

v(p+) =
√
2me




0

w+



 =
√
2me




0

−iσ2w∗
−



 . (3.30)

With this simplification we know that for instance

[ v̄(p+)γ
0u(p−) ] = [ ū(p′−)γ

0v(p′+) ] = 0, (3.31)

[ v̄(p+)γ u(p−) ] = [ v∗(p+)αu(p−) ] = 2me (w
∗
+σw−) . (3.32)

The amplitude then becomes

Mann. = − e2

4m2
ec

2
(2me)

2 (w∗
+σw−)(w

′ ∗
− σw′

+). (3.33)

In the end we need electron (positron) spinors with electron (positron) spinors.

To accomplish this we use the little known identity [33]

(w∗
+σw−)(w

′ ∗
− σw′

+) =
3
2
(w

′ ∗
− w−)(w

∗
+w

′
+) +

1
2
(w

′ ∗
− σw−)(w

∗
+σw′

+). (3.34)

All said and done then, we have that

Mann. = −
(
2me

)2
w

′ ∗
− w

′ ∗
+

[ e2

8m2
ec

2

(
3 + σ+ · σ−

)]

w−w+ . (3.35)
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This then leads to a contribution that can simply be added to the HFS already

found (since Ehfs ≡ ES1
3
− ES0

1
)

Ehfs = E(S)
s.s. + E(A)

s.s. = 1
3
α4mec

2 + 1
4
α4mec

2

= 7
12
α4mec

2

= 8.2× 10−4 eV. (3.36)

Notice that this is approximately one-hundred times the HFS in Hydrogen. In

terms of frequency we get

∆νLO = 204.4 GHz (3.37)

3.4 Colour Factors and Quarkonium

Strong interactions, as formulated in QCD, require quarks to carry one of three

different colour charges. The established notation is to label these by the three

colours Red, Green, and Blue (R,G,B) as well as their anti-colour equivalents

(R̄, Ḡ, B̄). We now turn to the subject of modifying the tree level scattering

amplitude in order to accommodate SU(3)c colour group factors. In order

to avoid a full blown explanation of non-abelian gauge theories, which would

require us to divert into Lagrangian densities which have highly non-trivial

covariant derivative properties, we will settle here for a heuristic discussion.

We must first of all attribute to each incoming and outgoing quark line

a factor indicating one of three different possible colours. If you like we can

even give them a specific representation (basis) such as the familiar one used

in Euclidean space (sometimes written as e1, e2, e3)

|R〉 =








1

0

0







, |B〉 =








0

1

0







, |G〉 =








0

0

1







. (3.38)
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in what’s called the adjoint representation:

|1〉ij = 1
2

(
|R〉i ⊗ |B̄〉j + |B〉i ⊗ |R̄〉j

)

|2〉ij = − i
2

(
|R〉i ⊗ |B̄〉j − |B〉i ⊗ |R̄〉j

)

|3〉ij = 1
2

(
|R〉i ⊗ |R̄〉j − |B〉i ⊗ |B̄〉j

)

...

|8〉ij = 1
2
√
3

(
|R〉i ⊗ |R̄〉j + |B〉i ⊗ |B̄〉j − 2 |G〉i ⊗ |Ḡ〉j

)
. (3.39)

As you can see they are all Hermitian matrices, and as quantum mechanical

operators, they act on the quark states. Apart from the factors of 1/2 in front,

these are the so-called Gell-man matrices (λaij). You can think of them as the

analogous 3× 3 matrices for SU(3) that the Pauli-matrices are for SU(2). By

the arguments above, these carry precisely the information of the incoming and

outgoing quarks, and that is all that is needed at a vertex. Explicitly;

λ1 =








0 1 0

1 0 0

0 0 0








λ2 =








0 −i 0

i 0 0

0 0 0








λ3 =








1 0 0

0 −1 0

0 0 0








λ4 =








0 0 1

0 0 0

1 0 0








λ5 =








0 0 −i
0 0 0

i 0 0








λ6 =








0 0 0

0 0 1

0 1 0








λ7 =








0 0 0

0 0 −i
0 i 0








λ8 =
1√
3








1 0 0

0 1 0

0 0 −2







.

(3.40)
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possible gluon exchanges:

∑

a,b

δab 〈q|T a |q〉 〈q̄|T b |q̄〉 = 1
3

∑

a,b

∑

i,j

δabT aijT
b
ji

= 1
12

∑

a,b

δabTr{λaλb}. (3.43)

The trace then gives us another factor of 2δab, which can checked by explicit

multiplication. Thus the colour factor works out to be

CF = 1
6

8∑

a=1

δaa =
4

3
. (3.44)

So what does this result tell us exactly? Well we have already shown how the

QED scattering amplitude at leading order reproduces the Coulomb potential.

If we therefore tack onto this result the appropriate colour factor CF , then

Vs = −CFαs
r

. (3.45)

If we then plug this potential into the Schrodinger equation and solve, we get

the leading energy spectrum

E(0)
n = −C

2
Fα

2
s

4n2
mq . (3.46)

The expression for quarkonium’s “Bohr” radius is then given by the relation

aqq̄0 =
(
1
2
CFαsmqc

)−1
. Therefore

|ψqq̄100(0)|2 =
(CF

2

)3 1

πa30
, (3.47)

and the final formula for the HFS in quarkonium at leading order is (c.f. (3.24))

Eqq̄
hfs =

C4
Fα

4
smqc

2

3
. (3.48)
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Chapter 4

Radiative Corrections To HFS

in Positronium

4.1 Introduction

The bound state of positronium is nonrelativistic by nature, as is evident by

comparing the LO Coulomb energies with the mass of the lepton pair. The be-

haviour of positronium is described by complicated multiscale dynamics char-

acterized by four different regions of momentum k = (k0,k):

1. The hard region, where k0 and k scale like the electron mass me.

2. The soft region, where k0 and k scale like mev ∼ meα.

3. The potential region, where k0 scales like mev
2 ∼ meα

2 and k scales like

mev ∼ meα.

4. The ultrasoft region, where k0 and k scale like mev
2 ∼ meα

2.

The nonrelativistic nature of the bound system means that the electron and

positron velocities (v) are on the order of the fine structure constant α, which

can be seen by taking the expectation value of v2 in the ground state Ψ100(r).

Bound states appear as poles in the scattering amplitudes as will be shown in
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This gives a total power (5n − 5) − (4n − 4) − 2n + n = −1, for all ladder

diagrams. Thus all ladder diagrams contribute on the same order as the born

diagram in the potential region, which allows the series to diverge. In the

soft region however, the energy scales only as mev ∼ meα, and the fermion

propagators now only contribute a power of −2(n − 1), and loop momenta

contribute 4(n−1) for the loops, giving a total of αn−2 from the diagrams. Thus

we see that as we move to higher regions of momentum (soft and hard), their

relative contributions to the perturbative series will be convergent. To further

understand the structure of the diagrams, we can see that in the ladder diagram

we have the situation where the integration contour is pinched between two

poles in the complex plane. This can be seen by taking p2 ∼ p1 ∼ (me,0)+O(α)

and noting that in the potential region, k20 ∼ O(α2), we have

Mbox ∝
1

((p2 + k)2 −m2 + iε)((p1 − k)2 −m2 + iε)
∼ −4me

(k0 − k2

2me
+ iε)(k0 + k2

2me
− iε)

.

In the crossed box though for instance, we would have both poles in the region

Im(k0) > 0, and we can close the contour from below, which avoids the singu-

larities altogether. A similar situation occurs in the vertex, which only makes

contributions to the hard momentum region. In general, all but the ladder

diagrams will scale with higher orders of α than the Born diagram. As we will

see in the section on Green’s functions, it is precisely these diagrams which

form the largest contribution to the potential in the Hamiltonian formulation,

viz. the coulomb term, which must be taken into account in all orders.

We can already start to get a feeling, from this rudimentary examination,

that it would be beneficial for us to be able to separate out the contributions

from the different regions. In order to accomplish this goal in a systematic

way, the method of nonrelativistic effective theories has been developed [34].

We now pass to the discussion of these effective theories where QED in this

language would be called the “full” theory or full QED.
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4.2 Effective Field Theory

Effective Field Theory (EFT) is exactly what it sounds like, it is a theory

that can accurately describe the physics at a particular length and/or energy

scale. For instance the De Broglie wavelength of a baseball is about one tenth

of a Planck length; the fact then that it technically behaves as a quantum

mechanical wave doesn’t matter. Similarly, even if you have Aroldis Chapman

pitch that baseball at a record 170 km/h, the expressions for the classical and

relativistic kinetic energy only differ by about one part in 1013. Thus we can

safely say that even by the most conservative estimate, baseball is governed by

classical mechanics.

I wish to begin the discussion of effective field theories with a great example

of a field theory model that predicted its own demise. The theory of weak

interactions was originally modelled by Enrico Fermi as a contact interaction

(i.e. contained no mediators). A four particle (2-in, 2-out) scattering event in

this framework, say neutrino scattering, would look like

iM (1) = G
[
ψ̄ γµ (1− γ5)ψ

][
ψ̄ γµ (1− γ5)ψ

]
(4.1)

at leading order; that is, it will just be some number dependent on the neutrino

mass and incoming momenta, times the coupling G. The next order diagram

is quadratically divergent

iM (2) ∼ G2

∫

d4p
(1

p

)(1

p

)

(4.2)

So we impose a cutoff Λ at some energy scale that is much larger than the

masses and momenta of interest, and this allows us to write the amplitude

schematically as

iM ∼ G+ Λ2G2 + O(G3) (4.3)

This is true provided that Λ2 � m2
ν , p

2
i ; but we can already see that it has to
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break down once Λ2 ∼ 1
G
, so that the second order term becomes comparable

to the first. In other words, new physics has to appear once the physical

parameters of the interaction such as the center of mass energy go like E2 ∼
1
G
. Indeed new mediator particles are produced at this energy, the W s (and

later the Z) bosons. The reparation of this cutoff dependence came with the

unification of electromagnetic and weak interactions, and the correct first order

diagram is actually

iM (1) =
( gw

2
√
2

)2 −gµν + qµqν/m
2
W

q2 −m2
W + iε

[
ψ̄ γµ (1− γ5)ψ

][
ψ̄ γν (1− γ5)ψ

]
. (4.4)

Evidently then, from the limit q2 � m2
W , we know that

G =
g2w

8m2
W

. (4.5)

Now, our goal in using effective theories in the work presented here, is to

create a natural framework which will allow us to go from relativistic field

theories to NR quantum mechanics. To do this we must first introduce the

QED Lagrangian density, which reads

LQED = Ψ̄
(
i /D −m

)
Ψ− 1

4
F µνFµν . (4.6)

The gauge-covariant derivative is defined in terms of the four-vector potential

Aµ = 〈φ , A〉, by the relationship

iDµ ≡ i∂µ − eAµ =
〈(
i∂t − eφ

)
,
(
− i∇− eA

)〉

=
〈(
E − V

)
,
(
p− eA

)〉
, (4.7)

where we have replaced the scalar-potential φ(r) by the electric potential

V (r) = eφ(r). The anti-symmetric electromagnetic-field tensor F µν , can be
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written out in terms of the potential as well

F µν = ∂µAν − ∂νAµ. (4.8)

Explicitly, the electric and magnetic fields are Ei ≡ cF 0i, and Bi ≡ −1
2
εijkF

jk,

which we can use to create the gauge-invariant Lorentz-scalar −1
4
F µνFµν =

1
2

(
E2/c2 −B2

)
. It is also sometimes instructive to write the field tensor as a

matrix

F µν =











0 Ex/c Ey/c Ez/c

−Ex/c 0 Bz −By

−Ey/c −Bz 0 Bx

−Ez/c By −By 0











. (4.9)

4.2.1 NRQED and pNRQED

We now pass to NRQED by performing an expansion in inverse rest energy

1/mec
2. This manifests the inherent NR nature of the system and brings it to

a Lagrangian containing the electron and positron as separate fields, each a 2-

spinor. In order to perform this expansion, we pass to a frame where the kinetic

energy of the particles is very small in comparison to their rest masses, and

we take out the dominant time-dependent term explicitly as Ψ → e−imec2tΨ̃.

We also change units to the so-called natural units in which c→ 1. The Dirac

equation in the presence of an electromagnetic field Aµ then becomes

[
i /D +me(γ

0 − 1)
]
Ψ̃ = 0. (4.10)

If we now write out the 4-spinor in terms of its 2-spinors




iDt −iσ ·D

iσ ·D −iDt − 2me








ψ

χ



 = 0, (4.11)
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we get two separate equations

iDtψ − iσ ·Dχ = 0, (4.12)

(
iDt + 2me

)
χ− iσ ·Dψ = 0. (4.13)

This can then be formally solved to give

χ =

(

1

iDt + 2me

)

iσ ·Dψ. (4.14)

We now back-substitute this result into our QED Lagrangian, which for the ψ

piece becomes

Lψ = ψ†

(

iDt − iσ ·D
1

iDt + 2me

iσ ·D

)

ψ (4.15)

The operator in the second term is then expanded in powers of 1/me to the

desired order
1

iDt + 2me

=
1

2me

[

1− iDt

2me

+O
(
1/m2

e

)
]

(4.16)

which when inserted into Lψ becomes

Lψ = ψ†

(

iDt +
(σ ·D)2

2me

− 1

4m2
e

(σ ·D) iDt (σ ·D)

)

ψ +O
(
1/m2

e

)
(4.17)

The first term in the expansion is fairly straightforward and more importantly

confirms the important fact that the magnetic moment of the electron (at

leading order) is indeed µS = 1
2me

; we show its derivation explicitly. Start with

the identity

σiσj =
1

2

[
σi, σj

]
+

1

2

{
σi, σj

}

= δij + iεijkσk , (4.18)
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so that (σ ·D)2 becomes

σiσjDiDj = D2 + iσ · (D ×D). (4.19)

If the operator components of D = p − eA commuted, then the second term

would vanish. As it is

(D ×D)k = εijk[Di, Dj]

= iεijk
(
[∂i , Aj] + [Ai , ∂j]

)

= iεijk
(
∂iAj − ∂jAi

)
, (4.20)

which follows from

[∂i, Aj]f = ∂i(Aj f)− Aj(∂i f)

= (∂iAj)f + Aj(∂i f)− Aj(∂i f)

= (∂iAj)f. (4.21)

Thus for the first term we get

(σ ·D)2 = D2 − σ ·(∇×A) = D2 − σ ·B, (4.22)

and we get the pleasing result that

(σ ·D)2

2me

=
D2

2me

− σ ·B

2me

. (4.23)

Thus to order 1/me we recover the famous Pauli-equation for spin-1/2 particles

Ĥ |ψ〉 =
[

1

2me

(
p− eA

)2 − e

2me

σ ·B + V (r)

]

|ψ〉 = i
∂

∂t
|ψ〉 . (4.24)
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To get the next order in (4.17) involves (σ · D) iDt (σ · D), and is a bit

more involved. The interested reader can start by commuting Dt past the Di’s

in a symmetric way1, and by noticing that we can write

[Dt,D] = E, (4.25)

which follows from the definition of the field tensor. All said and done then,

we get

LNRQED = ψ†
(

iDt +
D2

2me

+
D4

8m3
e

− cF
eσ ·B

2me

+ cD
e
(
D ·E −E ·D

)

8m2
e

+

cS
ieσ ·

(
D ×E −E ×D

)

8m2
e

+ O(1/m3
e)

)

ψ +
(
ψ → χ

)

+ dσ
α

m2
e

ψ†σψχ†σχ+ ... (4.26)

where ψ → χ just indicates that a contribution, equivalent to the first term,

comes from the positron field (and of course e→ −e). The first three terms are

kinetic and receive no corrections. The (Wilson) coefficients ci , i = {F,D, S},
which stand for Fermi, Darwin, and Spin-orbit respectively, do get corrections

from higher order loop calculations. The final term represents a four fermion

contact operator (which vanishes in the Born approximation) and the ellipses

indicate other contact terms that do no affect the splitting. We have arranged

it in such a fashion that in leading order ci = 1, and corrections can be incor-

porated naturally as a series in α. We can for instance write

ci = c
(0)
i + αc

(1)
i + ... (4.27)

They characterize the contribution from the hard modes that have been inte-

1that is to say, write it:

(σ ·D)Dt (σ ·D) = 1

2
(σ ·D)σ ·

{

DDt+[Dt,D]
}

+ 1

2

{

DtD+[D, Dt]
}

·σ (σ ·D)
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grated out. In order to obtain these coefficients, a matching procedure must

be used wherein select green’s functions from the full theory and effective the-

ory are set equal to each other at some momentum (e.g. qmatch = µ0). Full

theory graphs are expanded in 1/me (before evaluation of the graphs). The ef-

fective theory knows nothing about the hard modes, and so a general matching

condition looks schematically like

ci = Full graph (µ0)− Eff. graph (µ0). (4.28)

Now, we obtained the NRQED Lagrangian by formally integrating out the

hard modes k ∼ m, which then appear as corrections to the Wilson coeffi-

cients. But, we have not yet made contact with a Schrodinger-like picture.

Essentially the problem is that there are still dynamical degrees of freedom

with soft momentum, and consequentially integrals are still complicated by

having multiple scales (albeit one less). As an illustration of what we mean,

consider the 4-fermion Green function with two photon exchanges in NRQED

ie4
∫

d4q

(2π)4
1

(q−p)2+ iη
1

(q−p′)2+ iη
i

q0 + 1
2
E− q2

2m
+ iη

i

−q0 + 1
2
E− q2

2m
+ iη
(4.29)

We essentially have two contributing regions, so we separate the above integral

as Ip + Is. In the first region, where E ∼ p0 ∼ p
′ 0 ∼ q0 ∼ mv2 and |p| ∼

|p′| ∼ |q| ∼ mv , we can essentially neglect zero-components in the photon

propagators

Ip ∼
∫

d4q

(2π)4
1

(q−p)2+ iη

1

(q−p′)2+ iη

1

q0 + 1
2
E− q2

2m
+ iη

1

q0 −
(
1
2
E− q2

2m
+ iη

) .

(4.30)

If we now perform the contour integral over the q0 and notice that the photon

propagators are reduced to Coulombic ones, we can rewrite it as
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Ip ∼
∫

d3q

(2π)3
ṼC(p, q)

1

E − q2/m+ iη
ṼC(p

′, q). (4.31)

We already saw that the tree level scattering diagram produced precisely the

Coulomb potential (c.f. section 3.2). What we see here, is merely the second

order iteration of the Coulomb potential, and it arises in just the region we

would expect based on our analysis in section 4.1. Later on, in the section

on Green functions, we will see how this diagram and all higher order ladder

diagrams produce every iteration of the Coulomb potential.

In the second region where q0 ∼ q ∼ mv (soft momentum), we can then

replace the fermion propagators with the static approximation

Is ∼
∫

d4q

(2π)4
1

(q−p)2+ iη
1

(q−p′)2+ iη
i

q0+ iη

i

−q0+ iη , (4.32)

where it is understood that the poles from the potential contribution are to

be ommited, or more formally, they are subtracted off. We are thus left with

separate soft and potential additive contributions. This point will be very

important when we discuss the method of expansion by regions later on in this

chapter.

4.3 The Hamiltonian of pNRQED

For doing non-relativistic physics, the NRQED Lagrangian has a significant

advantage over the full QED Lagrangian because it emphasizes the importance

of the NR-operators by representing all possible operators as a series in 1/me.

It also allows the relevant radiative corrections (from the hard modes) to be

incorporated through multiplicative coefficients (Wilson coefficients) which are

themselves written as a series expansion in α. In this sense NRQED is a double

series expansion in both 1/me and α. It is however not yet optimal because, as

we just saw, photons still have soft degrees of freedom and therefore we cannot
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give a proper homogeneous power counting prescription.

Thus, if in addition to the hard modes we also integrate out the effects

of the soft momenta, by performing another matching procedure (expanding

NRQED diagrams in E/k,p/k), we arrive at what is called potential NRQED

(pNRQED) [35]. The culmination of this methodology creates a natural connec-

tion between a quantum field theory and its appropriate Schrodinger equation

from NRQM. The hard and soft photon fields do not show up in this frame-

work and are, as previously stated, “integrated out”. Their contributions do

however show up as additional operators in the Hamiltonian and as radiative

corrections to the operators present already in the Hamiltonian of the system.

These interactions describe the evolution of the NR electron-positron pair at

the level of an instantaneous potential. The corrections are in terms of both the

coupling constant α, and electron/positron velocity v, to the leading Coulomb

approximation. In addition to potential terms, there are also ultrasoft effects

that cannot be described by instantaneous potentials, which will be discussed

briefly later on.

The effective Hamiltonian valid to N3LO, can be written [36]

H = (2π)3δ(q)

(
p2

m
− p4

4m3

)

+ Cc(α)VC(q) + C1/m(α)V1/m(q) +
πα

m2

×
[

Cδ(α) + Cp(α)
p2 + p′ 2

2q2
+ CS2(α)S2 + Cλ(α)Λ(p,q) + Cc(α)T (q)

]

.

(4.33)

In the above expression, p and p′ are the spatial momenta of the incoming and

outgoing electron/positron respectively, written in centre of mass coordinates.

The operators, in order of appearance are:

VC(q) = −4πα

q2
, V1/m(q) =

2π2α

mq
, S =

σ1 + σ2

2
,

Λ(p,q) = i
S · (p× q)

q2
, T (q) = σ1 · σ2 − 3

(q · σ1)(q · σ2)

q2
. (4.34)
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where σ1 and σ2 are the spin operators of the electron and positron respectively.

The Ci(α) are similar to the Wilson coefficients found in the hard matching,

but they now have contributions from both the hard and soft modes. They too

can be written as a power series in α.

We are interested in the situation of the spin-triplet configuration, but we

will be performing the calculations of the potential in d-dimensional spacetime.

Note that when performing calculations, this prescription does not limit d to

take on an integer value and we represent it by d = 4 − 2ε, where epsilon is

only taken to zero at the end of the calculation. We therefore need to perform

a projection onto the spin-triplet configuration, keeping this in mind. In par-

ticular we use Tr(σiσi) = 2(d− 1), and we treat the commutator [σi, σj] as an

irreducible entity. By irreducible we mean that we cannot use the epsilon ten-

sor, and so in this scheme [σi, σj] 6= 2iεijkσk. If we perform this spin projection,

we get the following form for the potential (i.e. the piece neglecting kinetic

terms) in the Hamiltonian above

δV = −4πα

q2

[

CC + C1/m
π2|q|
m

+ C1/m2

q2

m2
+ Cp

p2 + p′2

2m2

]

. (4.35)

We have done the calculation and confirmed that the Born result for the coef-

ficients, correct to order ε2, is indeed given by (c.f. [37])

C(0)
p = 1, C

(0)
1/m = 1, C

(0)

1/m2 = −4− ε− 2ε2

6− 4ε
. (4.36)

The details of their calculation appear at the beginning of appendix A. In

this thesis we calculate the NLO (in α) contribution to the coefficient C1/m2 ,

and to order ε, the necessity of which will become clear later on. We can see

from the form that this contribution makes to (4.35), that in position space,

the correction becomes a delta function. When perturbation theory is applied

to this particular perturbation, we will therefore get something proportional to
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the wavefunction at the origin. Indeed, one of the main objectives of this thesis

is to provide the correction to the Coulombic wavefunctions at the origin.

Now, since the Lagrangians of these effective theories are only equal to the

full Lagrangian in the limit where all terms in the expansions are kept, they will

only be representative of a certain piece of the total phase space. This means

that some formal cutoffs have to be introduced in order to ensure that only the

relevant regions of momentum space are considered in the diagrams that are

used in the matching procedure. These cutoffs introduce additional unphysical

scales into the problem, which is precisely what we were trying to avoid by

using effective theories. The dependence on the scales is certainly substantially

simpler than the fully relativistic diagrams, but still, the matching procedure

between the full and effective theories can get rather involved. By far, the more

efficient method to use is based on what is called “expansion by regions”, and

we discuss this in the next section.

4.4 Dimensional Regularization and Expansion

by Regions

The main results of this thesis produce a potential, valid to one loop order,

that includes the effects of the dimensionality of the space-time in which the

Feynman diagrams are performed. This is accomplished by systematically per-

forming expansions in the unspecified space-time dimension “d”, via an ex-

tension of the dimensional regularization (DR) framework. Additionally, the

method of expansion by regions (EBR), which we mentioned at the end of the

last section, leans very heavily on a systematic application of DR, and as such

we must first give a full account of the procedures involved therein, before we

can continue on to discuss the methods of EBR.
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4.4.1 Dimensional Regularization

In higher order perturbative calculations, it is well known that divergences ap-

pear. Before we can get meaningful results, we must eliminate these spurious

infinities via a renormalization prescription which we will discuss fully for the

on-shell case in the section on renormalization. But, even before a renormal-

ization scheme can be chosen, we must find a way to regulate (parametrize)

the infinities. This can be accomplished in a number of ways. One way, still

commonly taught in QFT courses, is the Pauli-Villars regularization. In this

scheme, one introduces regulators into the definition of the propagators. It

is worthwhile considering a brief example of this method as it is with simi-

lar techniques, as we mentioned in the previous section, that parts of the NR

bound state effects were originally calculated. Additionally, it will facilitate

the discussion of Quarkonium in the next chapter when we consider how to

piece together the perturbative and lattice approaches. Consider then a one

loop correction that appears in massless scalar field theory1, which has the

schematic structure

Iφ4 ∝
∫

d4k

(2π)4
1

(
k2 + iη

)(
(p− k)2 + iη

) (4.37)

This integral clearly diverges in the ultraviolet region of the integration

variable where Iφ4 ∼
∫

d4k
k4

, and it does so logarithmically. It also diverges in

the infrared region as k → 0. In this case we parametrize the infinities by

altering the scalar propagator

i

p2
→ i

p2 − λ2
− i

p2 − Λ2
, (4.38)

which is restored to its original definition in the limit that λ→ 0 and Λ → ∞.

1It is quite common to use scalar field theory for explaining many aspects of regularization
and renormalization (see later on), because it avoids the discussion of some of the unnecessary
complications of gauge field theories, such as gauge symmetry and spin.
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Physically speaking, we can quasi think of this as adding a small positive mass

(λ) to the theory to make it infrared finite, and parametrizing some interac-

tion distance x ∼ 1
Λ
below which the theory does not accurately describe the

physical phenomena. Using the modified propagator we get a result containing

a term like ln(Λ/m), and a suitable renormalization can now be performed.

It should be noted however that applying this regularization scheme does not

preserve gauge invariance in QED, because the photon mass is not zero in the

calculation.

A method that is gauge-invariant, is that of dimensional regularization. In

this method, the integrals are carried out in d-dimensional space-time and the

proper theory is restored in the limit that d → 4. If we write d = 4− 2ε, then

the divergences appear as poles in ε as we set ε→ 0. The integration measure

is changed accordingly to

d4k

(2π)4
→ ddk

(2π)d
=

dΩd

(2π)d
dkkd−1. (4.39)

Vector spaces are designed to have a finite integer dimensionality, or at least a

countable infinity of integer dimensions (as in the Hilbert spaces of QM); but

a non-integer dimension? It is therefore far from clear that the above prescrip-

tion will give well defined results. The proofs pertaining to which integration

properties hold true in non-integer dimensions and give the correct known re-

sults when the limit of integer integer dimensions is restored, can get rather

involved. As such, we do not address all these things here, but instead refer the

reader to such works as [39]. Now, let us consider the same example integral

as we did before in (4.37)

Iφ4 =

∫
ddk

(2π)d
1

(
k2 + iη

)(
(p− k)2 + iη

)

=
i

(4π)d/2
Γ(d/2− 1)2

Γ(d− 2)
Γ(2− d/2)(p2)2−d/2

=
i

(4π)2

(
1

ε
− ln(p2)− γE + ln(4π) + 2

)

(4.40)
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where γE ≈ 0.5772 is the Euler-Mascheroni constant. Now, one might immedi-

ately object that the above has a logarithmic term containing a dimensionful

quantity, and rightly so. The reason for this is because we did not account for

the fact that the mass dimension of the coupling constant of a QFT actually

depends on the dimensionality of the space-time. If we wish to use this pre-

scription, then we must introduce a unit of mass into the integration measure

(ν20)
2−d/2, which simply becomes unity as ε→ 0.

d4k

(2π)4
→ (ν20)

2−d/2ddk

(2π)d
(4.41)

Iφ4 → i

(4π)2

(
1

ε
− ln(p2/ν20) + ...

)

(4.42)

Next, we must address the obvious issue of the Dirac algebra. For starters,

we note that now we have the relationship gµνg
µν = d. If we then take the

fundamental definition of the Dirac-algebra to still hold true {γµ, γν} = 2gµν ,

we then have to introduce d such gamma matrices
(
γ0, γ1, ...γd−1

)
. With this,

the familiar contraction identities from four dimensional space-time get altered

to reflect this, and new terms not present before appear. We will need a number

of new identities

γµγµ = d

γµγνγµ = −(d− 2)γν

γµγνγργµ = 4gνρ − (4− d)γνγρ

γµγνγργσγµ = −2γσγργν + (4− d)γνγργσ (4.43)

all of which can be proved by repeated use of the anti-commutator. With

that, we have completed our discussion of DR, which although rather brief, is

nonetheless sufficient to move on and discuss EBR.
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4.4.2 Expansion by Regions

In the interest of clarity we will introduce expansion by regions by way of

a simple “toy” example [40]. This should serve to illustrate the key points

involved, and the interested reader is referred to the appendix of this thesis for

details regarding its implementation in real-world loop calculations. Consider

then the integral

F (q,m, ε) =

∫ ∞

0

k−εdk

(k +m)(k + q)
, (4.44)

where k−ε will here serve a purpose very similar to the DR mass scale that we

needed to introduce in order to avoid dimensionful logs in the previous section.

Now let us give this integral some scaling properties like 0 < m � q. The

application of EBR to this integral is of course going to be gross overkill as it

can easily be evaluated in its present form

F (q,m, ε) = − π

sin(πε)

q−ε −m−ε

q −m
→ ln(q/m)

q −m
(as ε→ 0). (4.45)

But, in order to see the congruity of the method, we need just such an example.

Now, start by expanding the integral in a “power series” in m/k

Fk−large =

∫ ∞

0

k−εdk

k(k + q)
+ ... (4.46)

Obviously this doesn’t give the correct leading m behaviour because such an

expansion is only valid when |k| > m, and in carrying out the integral, k will

take on all values. Nonetheless, let us stubbornly plow ahead anyways shall

we? The whole series gives

Fk−large ∼
∞∑

n=0

(−1)nmn

∫ ∞

0

k−(n+ε+1)

k + q
dk (4.47)

=
π

q1+ε sin(πε)

∞∑

n=0

(m

q

)n

(4.48)
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Let’s make another huge mistake1, and for some reason assume k ∼ m� q

so that we can perform another series expansion, but this time in 1/q

Fk−small ∼
∞∑

n=0

(−1)n

qn+1

∫ ∞

0

kn−ε

k +m
dk (4.49)

=
−π

qmε sin(πε)

∞∑

n=0

(m

q

)n

. (4.50)

Now add these two ridiculous answers together

Fk−large + Fk−small =
π

q sin(πε)

( 1

qε
− 1

mε

) ∞∑

n=0

(m

q

)n

= − π

sin(πε)

q−ε −m−ε

q −m
. (4.51)

We got the correct result! It seems that by some mathemagical mystery, the

complete answer is actually given by F ∼ Fk−large + Fk−small. Okay...but why

did that work? The whole method was pure nonsense wasn’t it? Let’s do

the calculation more correctly then; in the first integral the expansion failed

because it was only valid for |k| > m, so let us introduce some scale m < Λ < q

and make it the lower limit in the first expansion. In the second expansion the

series fails once k > q, but since Λ < q, let’s just integrate up to the limit Λ.

We then have just a simple split integral

F (q,m, ε) =

∫ Λ

0

k−εdk

(k +m)(k + q)
+

∫ ∞

Λ

k−εdk

(k +m)(k + q)

=
∞∑

n=0

(−1)n

[

1

qn+1

∫ Λ

0

kn−ε

k +m
dk + mn

∫ ∞

Λ

k−(n+ε+1)

k + q
dk

]

(4.52)

We already know that if we extend these limits to the whole range 0...∞ that

we recover the correct answer, let us therefore define the leftover piece and

1There is indeed a method to my madness I assure you.
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examine how it cancels. We get

Fleft =
∞∑

n=0

(−1)n

[

1

qn+1

∫ ∞

Λ

kn−ε

k +m
dk + mn

∫ Λ

0

k−(n+ε+1)

k + q
dk

]

, (4.53)

but now, because of the limits in Fleft, we can expand the first term in m/k

and the second in k/q. It is interesting (and lucky for us) to note then that

we get exact cancellation order by order. Consider for instance the sum of the

leading terms

F
(0)
left =

1

q

∫ Λ

0

1

k1+ε
dk +

1

q

∫ ∞

Λ

1

k1+ε
dk

=
1

qΛε

( 1

ε
− 1

ε

)

. (4.54)

The crucial thing in performing these calculations is well separated scales. No-

tice also that to get convergence, we had to analytically continue to the region

ε < 0 in the first integral, and ε > 0 in the second. Well that’s it, we can now

pass to its implementation in general loop calculations.

Expansion by regions is a technique for the asymptotic expansion of loop

integrals with several momentum scales [40], [41]. It systematically expands

Feynman diagrams in any limit of momenta and masses, and the general pro-

cedure is as follows:

1. Separate the momentum integral into regions where the loop momentum

is characterized by one of the scales in the problem.

2. In each region perform a Taylor expansion in the parameters that are

considered small there.

3. Extend the integration limits of each region to the whole virtual mo-

mentum space and use dimensional regularization for both IR and UV

divergences.

4. Set to zero any scaleless integrals.
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The sum of the contributions of all the regions then recovers the full result to

any order required. The regions to be considered here in our case are those

listed at the start of the chapter. When we apply this method to the diagrams

of our calculation, they are evaluated in the full theory of QED. For instance,

all diagrams with hard contributions are performed by first performing an ex-

pansion in q2/m2. In the end, the results from this procedure must exactly

coincide with those of the effective field theory approach. Indeed the only dif-

ference in their methodology is at what level the expansions are carried out. In

the EFT approach, the expansion in relevant parameters is carried out at the

level of the Lagrangian, and thus it provides a modified set of Feynman rules

when perturbation theory is constructed from it. In the expansion by regions

method, the expansion in the same parameters is carried out at the level of the

diagrams instead.

Now, since we know that the method of expansion by regions will repro-

duce the contribution from the hard modes exactly, it is then possible to use

the Feynman rules from NRQED to reproduce the soft contribution, with the

caveat that the integration is carried out over all momentum space and not re-

stricted by any regulators. The beauty of this method is that we get automatic

matching, and there is no need for unphysical matching parameters!

4.5 Renormalization

We start our discussion of renormalization with a crucial remark common to

any interacting field theory: The parameters that show up in a Lagrangian

density such as mass and charge are only what we call their bare values. We

call them this because there is no reason to suspect that once the electron1

is actually interacting with the EM field, that its charge and mass should

remain the same. Indeed, from general arguments of special relativity, we

1Any electrically charged particle will do of course, but we might as well use an example
that is particularly relevant to the overall discussion.
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know that the energy from the surrounding EM field must change the value

of the electron’s mass. The charge on the other hand, is altered from the fact

that the photons making up the field are constantly creating and destroying

electron-positron pairs from the vacuum, which produce a shielding effect. The

take away from this is that things like the bare mass m0 and bare charge e0 are

not even observable quantities.

Ok, so what does this actually mean in practical calculations, and why

bring it up here? Well, as was mentioned in previous sections, quantum field

theories have a habit of popping out infinities once higher order perturbative

calculations are considered. We just discussed a couple of methods for regulat-

ing these infinities so that we aren’t stuck writing our integrals as I → ∞, but

we are still stuck with the problem of what to do with them. While one might

be a little troubled by the appearance of divergent integrals (and rightfully

so), the solution to the problem is in fact the most natural thing in the world.

Essentially we demand that the things we are evaluating are what we say they

are. That is, we demand that the electron’s charge and mass take on the values

that are measured in experiments.

The last remark is best explained by simply doing it, so let us begin with

an example from scalar field theory. The bare mass (m0) will appear in any

Green’s function as the pole of the propagator

DF =
i

p2 −m2
0 + iη

. (4.55)

As we said, quantum corrections will in general make changes to the mass

that appears there. There is however a result in QFT which states that the

exact two point function is equal to a one particle Feynman propagator with

a pole occuring at the value of the particle’s physical mass, plus a branch cut

that includes contributions from multi-particle states2. This result is derived

2Also, if any two particle bound states are possible, they will show up as additional
isolated poles just below the threshold for pair production (see earlier discussions).
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space reads qµs
µ = 0. So finally, we have that

Dµν =
−igµν

q2
(
1− Π(q2)

) . (4.61)

Therefore, by the arguments above, we have shown that the photon remains

massless to all orders provided that Π(q2 = 0) is regular.

Now we already mentioned that the bare charge, which appears at either end

of the photon propagator when attached to a vertex, is not even an observable

quantity. The thing is, we have to give an actual definition of the electric-

charge in terms of physically measurable objects. We could define it in such a

way that we recover the charge measured in the limit that a Coulomb potential

Vc = −α
r
is recovered. However, we can make this argument a little more

formal by defining it as the value of the electric charge that is measured at

large distances (i.e. where q → 0).

Now, in practice, we know that the function Π(0) is a divergent quantity,

and therefore we have no hope of recovering the Coulomb potential like we did

in chapter 3. So, following the discussion above, we define the physical charge

as e =
√
Z3e0, where we have multiplied the bare charge by the residue of the

propagator

Z3 =
1

1− Π(0)
. (4.62)

This then assures that everything is as it should be,

−igµν
q2

(
e20

1− Π(q2)

)

=
−igµν
q2

(
e2
(
1− Π(0)

)

1− Π(q2)

)

=
−igµν
q2

(
e2

1−
[
Π(q2)− Π(0)

]

)

, (4.63)

where the second equality is true to the order considered. The above procedure

is an example of what is called the on-shell renormalization scheme. In general

it is defined by requiring that the renormalized propagators have their pole at

the physical mass, and additionally that the residue of the pole is one.

53





This time, the geometric series gives

i
(

/p+m0

)

p2 −m2
0

+
i
(

/p+m0

)

p2 −m2
0

(
− iΣ

) i
(

/p+m0

)

p2 −m2
0

+ ...

=
i

/p−m0 − Σ(p)
, (4.66)

The physical mass is then found from the condition

[

/p−m0 − Σ(/p)
]

/p=m
= 0. (4.67)

To get the field-strength renormalization (i.e. the residue of the pole) we per-

form an expansion around the on-shell point

Σ(/p) = Σ(/p=m) +
(

/p−m
)
Σ′(/p=m), (4.68)

from which it follows that

SF (p) =
iZ2

/p−m
(4.69)

and

Z−1
2 = 1− Σ′(/p=m) (4.70)

In the appendix we perform the calculation of the NLO correction to the elec-

tron propagator and show that it takes the form

Σ2 =
α

4π

[
A(p2)m+B(p2)/p

]
. (4.71)

To the order desired then, we can write the field strength renormalization

Z2 = 1 + Σ′(/p=m)

= 1 +
α

4π

[

B(m2) + 2m2
( ∂A

∂p2
+
∂B

∂p2

)

p2=m2

]

. (4.72)

In the same way as with the photon propagator, we can always absorb the

field renormalization into the coupling as e = Z2e0 = (1 + δZ2)e0.
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Let us now pass to the discussion of the vertex correction, which has the

structure

ū(p′)
[
− ieΓµ

]
u(p) = ū(p′)

[
− ie

(
γµ + O(α)

)]
u(p). (4.73)

We can use Lorentz invariance and the Ward identity (qµΓ
µ = 0) to constrain

the form of Γµ to be

Γµ = γµA(q2) +
(
p′µ + pµ

)
B(q2). (4.74)

Next, we apply the Gordon identity to our expression, which states that

ū(p′)γµu(p) = ū(p′)
[(p+ p′)µ

2m
+
iσµνqν
2m

]

u(p). (4.75)

This allows us to remove the term proportional to pµ and p′µ. With a simple

relabelling of the coefficient functions then, we can rewrite the overall vertex

ū(p′)Γµu(p) = ū(p′)
[

F1(q
2)γµ + F2(q

2)
iσµνqν
2m

]

u(p). (4.76)

F2 is known as the Pauli form-factor and is of order α at leading order; it

gives rise to the so-called anomalous magnetic moment. On the other hand,

we already know that F1 (the Dirac form-factor) is just 1 at leading order, so

we will find it convenient to define F1(q
2) = 1 + δF1(q

2).

Let us now follow an argument similar to that which we gave for the photon

propagator. We know that if we are to recover the correct low energy behaviour

to leading order, we must have

Γµ(q2 = 0) = γµ. (4.77)

The above is another example of an on-shell renormalization condition. This

immediately implies that F1(q
2=0) = 1 to all orders. The correction to F1 was

calculated in the appendix, but it certainly did not go to zero at q2 = 0. Worse
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still, we have yet to include the effect of the electron self energy correction δZ2.

In total we actually have

Γµ(q2 = 0) →
(
1 + δZ2 + δF1(0)

)
γµ. (4.78)

Obviously we have a big problem here unless some cancellation occurs. Luckily

this is precisely what happens, but it is not miraculous, it is guaranteed to all

orders by an application of the Ward-Takahashi identity (for a proof see section

7.4 of [28]). Therefore we should really define the on shell Dirac-Form factor

as F̃1(q
2) = 1 + δZ2 + δF1(q

2). (4.79)

In the next section we will explicitly show that the implied cancellation does

occur, and more importantly does so to O(ε).

4.6 Calculation of C1/m2 at NLO

The contributions to the NLO result arise from higher order diagrams in the

perturbative expansion. All the details of their calculation also appear with

the Born result in Appendix A, and give the result to order epsilon in the

dimensionality. The way in which the graphs contribute to the potential is a

little different for each diagram, and we will elucidate that procedure here by

pulling all needed results from the appendix. For instance, the propagator cor-

rections as well as the vertex corrections, while presented as individual pieces,

are to be included in the full scattering amplitude as insertions into the tree

diagram. The box diagrams constitute full results in and of themselves. The

full one-loop diagrams relevant for the scattering amplitude are1:

1“Permutations”, simply means permuting the leg on which the fermion self energy ap-
pears.
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Now, the total on-shell Dirac form factor is defined as

F̃1 = 1 + δZ2 + δF1, (4.84)

where Z2 is defined by (4.72) and the functions in (A.44), giving

δZ2 = −α
π

[
3

4ε
+ 1 + ε

(

2 +
π2

16

)]

(4.85)

which when inserted into the above, ensures that F̃1(q
2=0) = 1. Notice that

this cancellation occurs even to order ε as we claimed. We stress that its

explicit calculation provides a very important check on our results. Putting it

all together we get

F̃1(q
2) = 1− α

π

(
q2

m2

)[
1

6ε
+

1

8
+

(
1

2
+
π2

72

)

ε

]

. (4.86)

Now let us recall the leading result (4.35), which upon multiplying by F̃1 gives

F̃1(q
2)δV

(0)

1/m2 = −4πα

q2

[

−
(
4− ε− 2ε2

6− 4ε

)
q2

m2
+
α

π

(
q2

m2

)(
1

6ε
+
1

8
+
(1

2
+
π2

72

)

ε

)]

,

(4.87)

that is to say that it gives back precisely the tree result, plus a correction

term proportional to α. If we fit the contribution into the scheme (4.80), and

remember to multiply by two because figure 3.2b gives an identical piece, we

get

C
(1)

1/m2,F1
=

(
4

3ε
+ 1 +

(

4 +
π2

9

)

ε

)

. (4.88)

Still considering the vertex, we now calculate the contribution coming from

the Pauli form factor. We must therefore consider a new type of contribution

which did not appear in leading order, i.e.

[

ū(p′1)
( iσµνqν

2m

)

u(p1)
][

v̄(p2)γµv(p
′
2)
]

. (4.89)
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The calculation of the spinor algebra is of significant enough size that we have

relegated it to the appendix, and we here only quote the result which consisted

of spin dependent and spin independent contributions

VPauli = −
(
4πα

q2

)

2F2(q
2)

(−q2

m2

)(
1 + ε− 2ε2

6− 4ε
+

1

4

)

= −
(
4πα

q2

)(−q2

m2

)
α

π

(

1 + 4ε+O(q2/m2)

)(
5

12
+

5

18
ε+O(ε2)

)

= −
(
4πα

q2

)(−q2

m2

)
α

4π

(
5

3
+

70

9
ε

)

. (4.90)

It follows that

C
(1)

1/m2,F2
= −

(
5

3
+

70

9
ε

)

, (4.91)

which will be added to C
(1)

F1,1/m2 along with all other contributions at the end.

We now move on to discuss the contribution arising from the photon prop-

agator correction. In the on shell scheme we get the renormalized photon

propagator to one-loop order

DR
µν =

−igµν
q2

(
e2

1−
[
Π2(q2)− Π2(0)

]

)

. (4.92)

The value of the denominator can be found from expression (A.33)

Π2(q
2)− Π2(0) =

−2α

π

∫ 1

0

dx(1− x)x ln

(
m2

m2 − (1− x)xq2

)

∼= 2α

π

∫ 1

0

dx(1− x)2x2
( q2

m2

)

+ O(q4/m4)

= − α

15π

( q2

m2

)

, (4.93)

where the second equality follows from expanding in q2/m2 to the desired order.

We note here that there is no extra ε-dependence (i.e. dependence on the

dimensionality), as it cancelled in this particular case. The contribution to the

coefficient from the photon propagator thus reads
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C
(1)

1/m2,γ =
4

15
. (4.94)

The last contribution to the hard region of the calculation comes from the hard

boxes. If we add the contributions from the planar (A.128), and crossed box

(A.112), we get

MBoxes =
α2

m2

(

1− 2ε
)(

1 + ε− 2ε2
)

+
α2

m2

(
1

ε
+

2

3
+

47

9
ε+

π2

12
ε

)

=
α2

m2

(
1

ε
− 1

3
+

56

9
ε+

π2

12
ε

)

. (4.95)

Since there is a 1/4π in the definition of the first order coefficient already, we

just multiply this result by −1 and get

C
(1)

1/m2, hb = −
(
1

ε
− 1

3
+

56

9
ε+

π2

12
ε

)

(4.96)

We can now add all the contributions from the hard region {C(1)

1/m2,i}, to get

C
(1)

1/m2 =
1

3ε
− 1

15
+ ε
(

− 10 +
π2

36

)

(4.97)

=
1

3ε
− 1

15
+ εc

(1,ε)

1/m2 (4.98)

This will contribute to the wavefunction at the origin. The soft contribution

to the coefficient comes entirely from the two soft boxes and the double vertex

graphs. If we add them together, we get

C(1)
q =

7

3ε
− 1

3
+ ε
(

2− 7

36
π2
)

(4.99)

=
7

3ε
− 1

3
+ εc(1,ε)q (4.100)

The above contains an implicit logarithm ln q2/µ2 with the same coefficient as

the pole, where µ is the mass term resulting from the use of dimensional regu-

larization1. As such, the Fourier transform of the log is no longer a simple delta
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function. The remaining divergences in these coefficients will be cancelled by

the ultrasoft contribution (k0 ∼ k ∼ mv2), which arises from the electric dipole

interaction Hus = E ·r, where E and r are the electric field and charge sepera-

tion respectively. Therein, real dynamical photons are emitted, propagate, and

are subsequently reabsorbed by the bound state.

4.7 The method of Green’s functions

Let us take as our starting point the Schrodinger equation

i~
∂Ψ

∂t
= H(t)Ψ. (4.101)

We now split the Hamiltonian into two pieces. The first piece is one for which

the full solution is known, and the other is a perturbation.

H = H0 + νδH . (4.102)

Idealy in the above, we should have some parameter ν � 1, but this is not

always the case. We can also expand the wave-function and eigen-energies in

a series expansion in the parameter ν,

ψ(x) =
∑

n

νnψ(n)(x) , En =
∑

m

νmE(m)
n (4.103)

where the leading terms ψ(0)(x) and E
(0)
n are the exact result of the unperturbed

system, and corrections are systematically included as will now be shown.

This brings us to the theory of Green’s functions. The Green’s function is the

solution to the Schrodinger equation with a delta function as a source term:

(H − E)ψ(x) = 0 → (Hx − E)G(x, y) = δ(x− y) (4.104)

1There is of course a benign lnm2/µ2 term in the hard contribution
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The spectral representation of the green’s function for a discrete eigen-spectrum

is:

G(x, y) =
∑

n

ψ∗
n(y)ψn(x)

En − E
, (4.105)

which has poles in the complex energy plane at E = En. This can easily be

modified to include systems with continuous spectra as well, by taking the

continuum limit of the sum into an integral equivalent. Thus it is understood

that the sum includes an integral over the scattering states as well, if applicable.

The perfect example of this is the free field green’s functions that are used to

form the propagators of covariant perturbation theory. To prove (4.105), we

take it as true and show consistency.

(Hx − E)G(x, y) =
∑

n

ψ∗
n(y)(Hx − E)ψn(x)

En − E
,

but the hamiltonian acting on ψn will give En, thus canceling the denominator

and giving

∑

n

ψ∗
n(y)ψn(x) (4.106)

To see that this is equivalent to a delta function δ(x − y), we multiply by
∫
f(y)dy

∑

n

∫

dyψ∗
n(y)f(y)

︸ ︷︷ ︸

ψn(x) = f(x)

cn

⇒
∑

n cnψn(x) = f(x), i.e. the answer to integrating a delta function. Thus

(4.105) is a representation for G(x, y).

So why is this useful? It becomes useful in perturbation theory when the

perturbation is an inhomogeneous term containing ψ. Take G0 as the Green’s

function for the unperturbed Hamiltonian.
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H = H0 + νδH,
(
H0(x)− E

)
G0(x, y) = δ(x, y)

(
H(x)− E

)
G(x, y) = δ(x, y) (4.107)

Then we assert that the following is also true:

G(x, y) = G0(x, y)− ν

∫

dx′G0(x, x
′)δH(x′)G(x′, y), (4.108)

which can be seen by multiplying both sides by (Hy−E). The LHS just gives a

delta function. For the first term on the RHS, we split Hy as in (4.107), which

gives a delta function from the unperturbed piece plus a contribution from the

perturbation. Then in the second term, since the integral is over x′, it gives a

delta function when operating on G(x′, y).

δ(x− y) = δ(x− y) + νδH(y)G0(x, y)− ν

∫

dx′G0(x, x
′)δH(x′)δ(x′ − y)

δH(y)G0(x, y) =

∫

dx′G0(x, x
′)δH(x′)δ(x′ − y),

which is obviously true. Next we expand the green’s function in a series in ν:

G(x, y) =
∑

m=0

νmG(m)(x, y) (4.109)

Thus G(0) = G0, and G1 through Gn can be expanded iteratively in the param-

eter ν, by inserting (4.109) into (4.108) and matching powers of ν:
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G(1)(x, y) = −
∫

dx′G0(x, x
′)δH(x′)G0(x

′, y)

G(2)(x, y) = −
∫

dx′G0(x, x
′)δH(x′)G(1)(x′, y)

= +

∫

dx′G0(x, x
′)δH(x′)

(∫

dx′′G0(x
′, x′′)δH(x′′)G0(x

′′, y)

)

G(3)(x, y) = ..... (4.110)

Now, let us recall the spectral representation

G(x, y) =
∑

n

ψ∗
n(y)ψn(x)

En − E
, (4.111)

and insert a series solution into the above

G(x, y) =
∑

n

(ψ∗0
n + νψ∗1

n + ...)y(ψ
0
n + νψ1

n + ...)x
(E0

n + νE1
n + ...)− E

=
∑

n

ψ∗0
n ψ

0
n

E0
n − E

+ ν
∑

n

[ψ∗0
n ψ

1
n + ψ∗1

n ψ
0
n

E0
n − E

− ψ∗0
n ψ

0
n

(E0
n − E)2

E1
n

]

+ ...

=
∑

n

G(n)(x, y)νn. (4.112)

The above is evident by expanding (E0
n + νE1

n − E)−1 in a geometric series.

We now set the first order term equal to the first order term in the expansion

(4.110), and get

−
∫

dx′G0(x, x
′)δH(x′)G0(x

′, y) =
∑

n

[ψ∗0
n ψ

1
n + ψ∗1

n ψ
0
n

E0
n − E

− ψ∗0
n ψ

0
n

(E0
n − E)2

E1
n

]

.

(4.113)

But we can rewrite the LHS in a more interesting form by also inserting the

definition of the free Green’s function there too

65



G(1) =

∫

dx′
(
∑

l

ψ∗0
l (x′)ψ0

l (x)

E0
l − E

)

δH

(
∑

l′

ψ∗0
l′ (y)ψ

0
l′(x

′)

E0
l′ − E

)

. (4.114)

If we examine the term with E1
n in (4.113), we see that that term will correspond

to the residue of the second order pole in (4.114). This occurs when l = l′:

−
∑

n

ψ∗0
n (y)ψ0

n(x)

(E0
n − E)2

E1
n =

∑

n

∫

dx′
(
ψ∗0
n (x′)ψ0

n(x)

E0
n − E

)

δH

(
ψ∗0
n (y)ψ0

n(x
′)

E0
n − E

)

,

from which the familiar result from perturbation theory follows

E(1)
n =

∫

dx′ψ∗0
n (x′)δH(x′)ψ0

n(x
′). (4.115)

The correction to the wave function from perturbation theory occurs at the

first order pole of the integral. This occurs when n = l but l 6= l′. Upon adding

the two different terms and canceling

ψ1
n(x) =

∑

l 6=n

∫
dx′ψ0

l (x
′)δH(x′)ψ0

n(x
′)

E0
n − E0

l

ψ0
l (x) =

∑

l 6=n

〈ψ0
l |δH|ψ0

n〉
E0
n − E0

l

ψ0
l (x). (4.116)

Let us now apply this method to positronium. Consider the time independent

Schrodinger equation:

(
1

me

∇2 + E

)

ψ = −V (r)ψ , (4.117)

where we have written it in center of mass coordinates so that 2me → me, and

r is the separation between the electron and positron. We start by writing the

free equation (V → 0) for the Green’s function. Insert both the definition of

G(x, y) in momentum space (i.e. its fourier transform) and the definition of
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Now, following the discussion at the end of last section, let us consider the

situation where the unperturbed Hamiltonian actually contains the Coulomb

term. We are interested in treating Vδ = Cδδ(r) as the perturbation1

Gδ = GC −
∫

GCVδGC + ... , (4.123)

from which it immediately follows that:

Gδ(r, r
′) = GC(r, r

′)− CδGC(r, 0)Gc(0, r
′) + ... . (4.124)

Therefore we can write Gδ(0, 0) as

Gδ(0, 0) = GC(0, 0)− CδGC(0, 0)
2 + ... (4.125)

If we use the spectral representation for the Green’s function (4.105), we can

write the above expression as

Gδ =
∑

i

|ψi,C(0)|2
Ei,C − E

[

1− Cδ
∑

j

|ψj,C(0)|2
Ej,C − E

]

. (4.126)

The sum is over all quantum numbers {n, l,m}; however, only states with l = 0

have a non-vanishing wave function at the origin. Recall that the correction

to the wavefunction is found from the residue of the first order pole in the

Green function. Thus we find the following expression for the correction to the

ground-state Coulomb wavefunction at the origin

δ|ψ100(0)|2 = −2Cδ|ψ100(0)|2
∑

n=2

|ψn00(0)|2
En,C − E

, (4.127)

= −2Cδ|ψ100(0)|2
[

GC(0, 0)−
|ψ100(0)|2
E1,C − E

]

, (4.128)

and recall that |ψ100(0)|2 = α3m3
e/(8π). The importance of calculating the

1Cδ is just some generic coefficient for the delta function for now. We will relate it to
C1/m2 soon.
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potential to order ε now becomes clear: We are looking to find the finite terms

that arise from the interference of the O(ε) terms with the 1
ε
poles in the

Coulomb Green’s function. By examining (4.128), we see that we just take the

O(ε−1) term from G
(1)
C , and multiply by the O(ε) term arising from (4.35)

δ|ψ100(0)|2
|ψ100(0)|2

= (−2)

(
α

4π

)

ε
(
c
(1,ε)

1/m2 +
2
3
c(1,ε)q + 2

3
c(1,ε)p

)
(

− 4πα

m2
e

)(
αm2

e

8π

)(
1

2ε

)

=

(
α3

π

)[
c
(1,ε)

1/m2

8
+
c
(1,ε)
q

12
+
c
(1,ε)
p

12

]

. (4.129)

Note that the derivation of the different numerical coefficients appearing in

front of the c
(1,ε)
i , which are determined by making use of the equations of

motion, can be found in [38]. These are of course precisely the coefficients

calculated in section 4.6 and Appendix-A, which we repeat here for convenience

c
(1,ε)

1/m2 =
(

−10 +
π2

36

)

, c(1,ε)q =
(

2− 7

36
π2
)

, c(1,ε)p = 0. (4.130)

4.9 Summary of Results

The results appearing in (4.129) and (4.130) constitute our final results for this

chapter, and represent an O(α3) correction to the wavefunction at the origin.

This was used in the subsequent analysis [1] to calculate the contribution of

the one-photon annihilation channel to HFS in positronium at O(α7me).

To see the effect of the contribution calculated in this thesis, we recall that

at leading order (see section 3.3), the one photon annihilation effect alters the

value of the HFS in positronium by

∆νLOann. =
α4me

4
. (4.131)

If we now insert (4.130) into (4.129) and multiply by the LO value, we get the

70



correction

∆νδψ
(3)

= ∆νLOann.

(
α3

π

)(

− 13

12
− 11

864
π2

)

= −α
7me

48π

(

13 +
11

72
π2

)

. (4.132)

The perturbative corrections to HFS split into a non-annihilation contribu-

tion, a one-photon annihilation contribution, and many photon-annihilation

contributions. The second order corrections are heavily dominated by non and

one-photon annihilation contributions, which are of the same sign and approx-

imately same magnitude.

We are interested in the one-photon annihilation contribution to the coef-

ficient D
(
i.e. the O(α3) correction to the LO result, see eq. (1.4)

)
which

presumably gives a significant fraction of the third-order correction. In [1], we

add the our contribution to the overall D1−γ
ann , which from (4.132) reads

Dδψ(3)

= −13

12
− 11

864
π2. (4.133)

The final result for the one-photon annihilation contribution then reads

D1−γ
ann = 84.8± 0.5. (4.134)

To summarize, we have calculated the O(α7me) one photon annihilation

contribution to the positronium HFS, which is the first nontrivial third-order

QED result in positronium spectroscopy. This opens the prospect of advanc-

ing the theoretical analysis of positronium to a completely different level of

precision.

Our final prediction for the positronium HFS including the O(α7me) one

photon annihilation term reads

∆νth = 203.39191(22)GHz. (4.135)
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The error due to the missing part of the O(α7me) corrections is given by the

size of the evaluated one photon annihilation contribution. The above estimates

give only a rough idea of the scale of the missing terms and the calculation of

the remaining part of the third-order corrections is mandatory for reducing the

theoretical uncertainty significantly below the experimental one.
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Chapter 5

Radiative Correction to HFS in

Quarkonium

5.1 Matching the perturbative and lattice HFS

We now address the matching of the lattice and perturbative results. The

fully perturbative NLO result quoted in [31], is approximately two standard

deviations away from the experimentally measured values quoted in the intro-

duction. It is quite reasonable to assume that perturbation theory will give

the correct result for the hard modes of the Wilson coefficient. However, we

know that due to asymptotic freedom the running coupling is too large in the

ultrasoft region where q ∼ α2
smq for perturbation theory to obtain consistent

results with any finite order calculation.

The effective pNRQCD Hamiltonian is

H = (2π)3δ(q)

(
p2

mq

− p4

4m3
q

)

+ Cc(αs)VC(q) + C1/m(αs)V1/m(q) +
πCFαs
m2
q

×
[

Cδ(αs) + Cp(αs)
p2 + p′ 2

2q2
+ CS2(αs)S

2 + Cλ(αs)Λ(p,q) + Cc(αs)T (q)

]

.

(5.1)

73



The coefficient CS2 will then contain all contributions to the spin-spin coupling

(i.e. from both cF and the four quark operator dσ in the NRQCD Lagrangian).

We define it in such a way that

CS2 =

[
4

3
+
αs
π
C

(1)

S2 + ...

]

. (5.2)

The main idea of our approach is to use continuum QCD only for the hard

contribution to the Wilson coefficient CS2 , which is suppressed by powers of

the reasonably small expansion parameter αs(mq) there. The contribution of

momentum q ∼ mqαs and below, is calculated within the effective NRQCD

lattice perturbation theory, by limiting the functional integral to be defined

on a finite lattice of spacing a � 1/mq. Calculations of this type are quite

technically demanding, and as a result they necessitate the use unphysical

infrared regulators. Specifically, we use a gluon-mass regulator λ in all gluon

propagators.

Now in the end, we want only the contribution of the hard region of mo-

mentum q ∼ mq to come from the continuum QCD. However, as pointed out

in the previous chapter, we need the infrared behavior to be identical in both

calculations in order to perform the matching, which means we must adopt

the same infrared regulator λ in the continuum case as used in the effective

NRQCD lattice perturbation calculation. This complicates the calculation (see

Appendix B) substantially, because we no longer get automatic matching1 and

we must extend our calculation through two different regions of momentum in

order to match the theory in a region of overlap.

The dimensionful parameters that remain are the hard scale νh ∼ mQ, the

soft cutoff νs ∼ 1/a, where a is the finite lattice spacing that is used in the

calculation, and of course the ad hoc gluon mass regulator λ. It is generally

true that the condition ΛQCD � 1/a � mQ is satisfied to ensure that the

1not to mention we now have an extra scale parameter to deal with in our calculations.
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calculations are both valid non-relativistically (q � mQ), and capable of being

treated in perturbation theory (q � ΛQCD) for the matching region. In order

to ensure that we can obtain the Wilson coefficient from the region of virtual

momentum of interest 1/a < q < mq, we apply a subsidiary condition on the

NRQCD lattice cutoff that says a < aqq̄0 . In other words, we arrange it so

that the lattice cutoff is larger than the reciprocal of the Bohr radius a0 of

quarkonium.

In order to obtain the first-order QCD correction to the Wilson coefficient

we must find the contributions of the planar box, the crossed box, and the

vertex diagram (both abelian and non-abelian). The details of the calculations

are presented in the appendices, and both the planar-box and crossed box have

been checked by applying expansion by regions. The results for individual

contributions read

C
(1)

S2 |p.b. = CF

[

− 2 + 2ln
(
λ/mQ

)]

, (5.3)

C
(1)

S2 |c.b. = − 2
(
CF − 1

2
CA
)
ln
(
λ/mQ

)
, (5.4)

C
(1)

S2 |F2 =
4

3

[

CF + CA

(

1 + ln
(
λ/mQ

))
]

. (5.5)

In addition, we must also include the effects of two separate two-gluon an-

nihilation box-diagrams, which contribute [43] C
(1)

S2 |ann. = 2Tf
(
1 − ln(2)

)
.

Summing all these coefficients together we get

C
(1)

S2 = −2

3
CF +

1

3
CA

(

4 + 7ln
(
λ/m

))

+ 2Tf
(
1− ln(2)

)
. (5.6)

The lattice NRQCD result for the first order soft contribution to the Wilson
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coefficient can be parameterized as follows

C
(1s)

S2 = Aslat +
7

3
CA ln

(
aλ
)
, (5.7)

where Aslat is a numerical constant. Since the singular infrared behaviour must

be the same in both NRQCD and full QCD, the coefficient of the logarithm of

λ is the same as in full QCD. We leave the numerically determined Aslat as a

free parameter in this paper.

To get the hard contribution to the Wilson coefficient consistent with the

lattice result, the first-order soft corrections to the spin flip potential computed

in perturbative lattice NRQCD, are subtracted from the first-order continuum

QCD result for the Wilson coefficient CS2 . Thus the hard contribution to the

Wilson coefficient, consistent with the lattice evaluation of the soft contribu-

tion, is given by the difference C
(1)

S2 − C
(1s)

S2 and reads

C
(1h)

S2 =

[

− 2

3
CF +

4

3
CA + 2Tf

(
1− ln(2)

)
− Aslat

]

− 7

3
CA ln

(
mQa

)
. (5.8)

The above is the main result for this chapter, and it represents a Wilson coeffi-

cient whose lower cutoff is now precisely the UV cutoff of the lattice simulations.

5.2 Renormalization Group

QCD is a non-abelian gauge theory. As was mentioned briefly in the previous

section, these gauge theories are known to exhibit a property called asymptotic

freedom. In order to appreciate the consequences of this, let us first start by

going back to our scalar field theory. Let’s say that we get an amplitude that

looks something like

M = −iλ+ iλ2B ln
(
Λ/µ

)
, (5.9)

where Λ is a Pauli-Villars regulator which indicates the relative momentum at
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which our knowledge of the theory breaks down. µ is some kinematical invariant

for the diagram whose specifics are unimportant, and λ is our coupling. We are

then faced with the question of what value to give to Λ and λ in this equation.

In other words, we have to give some defining properties to these quantities.

One useful way is to define the renormalized coupling λR, as the amplitude at

some particular value µ = µ0,

−iλR(µ0) = −iλ+ iλ2B ln
(
Λ/µ0

)
. (5.10)

In our QED calculation, we used the values at zero momentum transfer and

reconciled it with what we observe about free particles. In theories like QCD

this is not possible, since a free quark doesn’t exist, and we are forced to use

some other intermediate value. Now, the above relation is easily inverted to

give −iλ = −iλR − iλ2RB ln
(
Λ/µ0

)
. Then putting this into our amplitude

(5.9), we now have an equation that expresses the amplitude for the process of

interest at any energy we want based on measurable quantities only

M = −iλR(µ0) + iλ2R(µ0) ln(µ0/µ
)
. (5.11)

Now the issue arises when we wish to measure the process at some momentum

µ that is vastly different from our experimental reference point µ0
1. The

renormalized coupling constant may still be small, but we can’t claim the same

thing for the logarithm. This is where the introduction of the renormalization

group becomes invaluable. We want to choose the coupling constant that is

appropriate for physics at the scale µ so that the logarithm becomes small

again. In other words we want it in terms of a new coupling

M = −iλR(µ′
0) + iλ2R(µ

′
0) ln(µ

′
0/µ
)
. (5.12)

1In what follows, we reason along the same lines as outlined in [44]
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We thus want to derive an equation that can tell us how the value of the

coupling constant changes as we move to a new scale. A proper treatment of the

subject as a whole requires an explanation of Wilsonian renormalization theory

and the Callan-Symanzik equation, which is beyond the scope of this discussion.

For our simple example however it will be sufficient to use a little differential

calculus, and some careful interpretation of the result. Take µ′
0 ∼ µ0 + δµ0 for

the moment and subtract eq. (5.11) from (5.12) to get:

µ0
dλR
dµ0

= Bλ2R. (5.13)

This is known as a renormalization group equation and its solution, which must

be supplemented with initial conditions, tells us how the renormalized coupling

λR changes with the scale of the problem. For the case of QCD, the solution

of the renormalization group equation reads [28]

αs(q) =
αs(µ0)

1 +
[
β0αs(µ0)/2π

]
ln(q/µ0)

, (5.14)

where µ0 is the reference scale that provided the initial condition and β0 ≡
11
3
CA − 4

3
TF nl, is the one loop coefficient of the QCD β-function. Notice that,

contrary to QED, this equation predicts that the coupling becomes weaker as

we go to higher energies. This is a consequence of the non-abelian nature the

SU(3) gauge group and its overall quark content, and is known as asymptotic

freedom. It also follows that they are strongly interacting at low energies,

where the coupling becomes large, and it is for this reason that perturbation

theory becomes less and less effective. At a certain point, usually denoted

ΛQCD, perturbation theory breaks down entirely. At this point it is traditional

to introduce the point ΛQCD by means of the equation

(
β0
2π

)

αs(µ0) ln
(
µ0/ΛQCD

)
= 1, (5.15)
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which has been found, from various experiments measuring σ(e+e− → hadrons)

[28], to be approximately ΛQCD ∼ 200MeV . This allows the rewriting of (5.14)

as:

αs(q) =
2π

β0 ln(q/ΛQCD)
. (5.16)

Following this discussion, we can now get a more accurate estimation of

our previous result (5.8), by including the effects of the leading logs. Leading

log (LL) corrections come from inclusion of additional virtual gluon exchanges.

We can use the same arguments as used in the above discussion for the effec-

tive theory couplings (Wilson coefficients) and, by solving the corresponding

effective theory renormalization group equations, sum up the large logarithms

in the scale ratio
(
1/a
mq

)
. In other words, we improve our first order result by

resumming, to all-orders, the large logarithms of the lattice spacing a. The

leading log result is actually already known from [45]

CLL
S2 = αs(νh)

[

1 + β̃
(

z−2CA+β0 − 1
)]

, (5.17)

where β̃ = 2β0−7CA

2β0−4CA
, and

z ≡
(

αs(νs)

αs(νh)

)1/β0

=

(

ln
(
1/a
)

ln
(
mq

)

)1/β0

. (5.18)

5.3 Summary of Results

We can add the contribution from (5.17) into our previous result, provided we

remove the one loop log from our original result (5.8) to avoid double counting

C
(1h)

S2 (αs,mQ, a) =

[

− 2

3
CF +

4

3
CA + 2Tf

(
1− ln(2)

)
− Aslat

]

+
4π

3

[

1 + β̃

{(
αs(1/a)

αs(mQ)

)1−2CA

β0 −1

}]

. (5.19)
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The above relation constitutes our final (LL improved) result for the Hard

coefficient. We can find the correction that it makes to the HFS in Quarkonium

as follows

∆EHFS =

(
3αs
4π

)

C
(1h)

S2 ELO
hfs = C

(1h)

S2

(
C4
Fα

5
smq

4π

)

. (5.20)

This result is used in combination with the contribution from the numerically

computed NRQCD lattice result to determine the total hard contribution in

[2]. By including the hard contribution and the full lattice result, we find a

new theoretical result for M(Υ) - M(ηb):

Eth
hfs = 52.9± 5.5MeV. (5.21)

This result strongly favours the value obtained by the Belle collaboration [30]

Eexp
hfs = 57.9± 2.3MeV. (5.22)

The value reported by the Babar collaboration is significantly above Belle’s re-

sult. The discrepancy could be related to a large systematic uncertainty coming

from the subtraction of the resonance background in Babar’s analysis (see for

instance [46]). Thus, we use the more accurate result from the Belle collabora-

tion, rather than the average of the experimental values, for comparison with

our theoretical prediction. The result (5.21) also corrects a significant error

in the continuum QCD calculation reported in [3], that was then used in the

subsequent analyses [4] and [5], which reported the values

Eth
hfs = 70± 9MeV, (5.23)

Eth
hfs = 62.8± 6.7MeV. (5.24)

Since our publication of [2], there has been an erratum published in [47],

wherein the authors report that they now corroborate our correction. With

this, we have reconciled the theoretical predictions with the most accurate

experimental data, and effectively solved the longstanding ηb-mass puzzle.
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Appendix A

Evaluation of Diagrams for

Positronium

A.1 Born Result

In chapter 3, we skimmed over many of the details of the derivation of the

Born-result for the potential. In this section we shall elucidate many of these

details, with the caveat that we are interested in the d-dimensional potential

and thus, as previously stated, will leave the commutator terms as irreducible.

We start with expression (3.12),

MBorn = [ ū1′γ
0u1 ][ ū2γ

0u2′ ]D00 + [ ū1′γ
iu1 ][ v̄2γ

jv2′ ]Dij (A.1)

Now, in order to evaluate the above, we need an expression for the NR spinors

that appear there. This is given by the following expression

u =
√
2m





(
1− p2

8m2c2

)
w

σ·p

2mc
w



 . (A.2)

With this definition, we get that
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[ ū1′γ
0u1 ] = 2m w†

1

(

1− p2
1 + p′2

1

8m2c2

)

w′
1 +

1

2mc2
w†

1(σ · p′

1)(σ · p1)w
′
1 (A.3)

We write out the second term with indices explicit, for reasons that will be

apparent shortly.

(σ · p′

1)(σ · p1) = σi σj pi1 p
j′

1

= 1
2

[

[σi, σj] + {σi, σj}
]

pi1 p
j′

1

= 1
2

[

[σi, σj] + 2δij
]

pi1 p
j′

1 .

= 1
2
[σi, σj] pi1 p

j′

1 + p1 · p′
1. (A.4)

If we were working in the standard four dimensional spacetime, we could simply

write [σi, σj] = iεijkσk, which gives us the crossed product that appears in

equation (3.21). Since we are working in d-dimensional spacetime, this is not

possible, and the commutator is treated as irreducible. We will deal with this

commutator term a little later, but for now we notice that when the above

equation is inserted into (A.3), we get

[ ū1′γ
0u1 ] = 2m w†

1

(

1− q2

8m2c2

)

w′
1 +

1

4mc2
w†

1[σ
i, σj] pi1 p

j′

1 w
′
1 (A.5)

The second term in (A.1) is similar in its treatment.

[ ū1′γ
iu1 ] = (1/c) w†

1

[

σi
(
σ · p1

)
+
(
σ · p′

1

)
σi
]

w′
1

= (1/2c) w†
1

(

{σi, σj}
(
pj1 + pj

′

1

)
+ [σj, σi]

(
pi

′

1 − pi1
))

w′
1

= (1/2c) w†
1

(

[σj, σi]qj + 4pi1 + 2qi
)

w′
1 (A.6)
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Now we will be applying the spin-triplet projection operator to the derived

expressions which is accomplished by

Tr
(
σaMscatt.σ

a
)

Tr
(
σaσa

) (A.7)

Obviously there is no effect on any terms not involving sigma matrices (Pauli

matrices), and these terms will be identical to the four dimensional result.

The corresponding spinor combination to the right of the ones examined can

be easily obtained by changing the labels from 1 → 2 and q → −q. If we

look for example at (A.5), we see that when multiplied by the second spinor

combination, it gives

[ ū1′γ
0u1 ][ ū2′γ

0u2 ] = (2m)2 w†
1w

†
2

(

1− q2

4m2c2

)

w′ +
pi1 p

j′

1 + pi2 p
j′

2

4mc2
w†[σi, σj]w′

2w
′
1

(A.8)

The second term however, will vanish after performing the projection because of

the cyclic property of traces that says Tr(ABCD) = Tr(BCDA) = Tr(CDBA),

i.e.

Tr
(

σa[σi, σj]σa
)

= Tr
(

(σiσj − σjσi)(σa)2
)

= (d− 1)Tr
(

σiσj − σjσi
)

= 0 (A.9)

We now look at the transverse part (A.6), which when multiplied together with

its corresponding spinor combination (and ignoring all terms containing only a

single commutator) becomes

[ ū1′γ
iu1 ][ ū2′γ

iu2 ] = (1/2c)2 w†
1w

†
2

(

4(2p1 + q) · (2p2 − q) + [σj, σi][σi, σk]qjqk
)

w′
2w

′
1

(A.10)
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We’ll start by rewriting the first term, then move on to the second term which

will require some massaging to simplify down the projection. Since we’re in

the center of mass coordinate system p1 = −p2, and thus

(2p1 + q) · (2p2 − q) = −(2p1 + q)2

= −(p2
1 + p2

1′ + 2p1 · p
′

1)

= −(2p2
1 + 2p2

1′ − q2) (A.11)

Now for the next term, we remind the reader that {σi, σj} = 2δij, is indepen-

dent of the dimensionality of the spacetime. The full contraction however does

change to σiσi = d − 1. With these points we can easily prove a couple of

identities that will be very useful in the evaluation of the second term. For

instance, we have that

[σi, σj] = σiσj − σjσj

= 2σiσj − 2δij (A.12)

σiσaσi = −σiσiσa + 2δiaσa

= −(d− 3)σa (A.13)

We will also find it convenient to introduce the notation σij...l ≡ σiσj...σl for

what follows. Now, when we apply the triplet projection operator, we will need

to evaluate the trace of

1
4
σa [σj, σi] σa [σi, σk]. (A.14)
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We begin by applying the identities proved in (A.12) and (A.13), to the equation

(A.14).

1
4
σa [σi, σj] σa [σi, σk] = −σa (σji − δij) σa (σik − δik)

= −σajiaik + δikσajia + σa
2

δij
(
σik − δik

)

= (d− 3)σajak + σakja + (d− 1)
(
σik − δik

)

= −(d− 3)2σjk + (d− 1)σkj + (d− 1)
(
σik − δik

)

(A.15)

The final line of the above was obtained by using the fact that this expression

is contained inside of a trace, which allowed the cyclic property to be used.1

Finally we need to know that Tr[σiσj] = 2δij, from which we see that

Tr
[
1
4
σa [σi, σj] σa [σi, σk]

]

= 2
[

(d− 1)− (d− 3)2
]

δjk

= 2
[

(3− 2ε)− (1− 4ε+ 4ε2)
]

δjk

= 4
(
1 + ε− 2ε2

)
δjk (A.16)

Putting all this together with the other term gives the results

1
4m2 [ ū1′γ

0u1 ][ ū2′γ
0u2 ] = w†

1w
†
2

(

1− q2

4m2c2

)

w′
2w

′
1 (A.17)

1
4m2 [ ū1′γ

iu1 ][ ū2′γ
ju2 ]gij =

p2
1

2m2c2
+

p2
1′

2m2c2
− q2

m2c2

(
1

4
+

1 + ε− 2ε2

6− 4ε

)

(A.18)

This can be written in the form of a potential, where in what follows we adopt

the usual convention of setting c = 1.

VBorn = −4πα

q2

[

1−
(
4− ε− 2ε2

6− 4ε

)
q2

m2
+

p2
1 + p2

1′

2m2

]

(A.19)
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Thus we are left with Nµν = γµ(/k + /q)γν/k + γµγν m2. We can then use the

following identities to simplify the remaining two terms.

Tr{γµγν} = 4gµν

Tr{γµγνγργσ} = 4
(
gµνgρσ − gµρgνσ + gµσgνρ

)
. (A.23)

We note that although we are performing these calculations systematically in d-

dimensions, the identities above contain no γ5 matrix and are thus independent

of dimensionality. We are then left with

Nµν = 4
(
gµαgνβ − gµνgαβ + gµβgαν

)
(k + q)αkβ + 4gµνm2

= 4
[
(k + q)µkν + (k + q)νkµ −

(
k · (k + q)−m2

)
gµν
]
. (A.24)

Now let us return to the evaluation of the integral

iΠµν
2 = −e2

∫
ddk

(2π)d
Nµν(k)

[
(k + q)2 −m2

][
k2 −m2

] . (A.25)

We can combine the denominator in a standard Feynman parametrization ac-

cording to
1

AB
=

∫ 1

0

dx
[
B + (A− B)x

]2 (A.26)

Which gives

iΠµν
2 = −e2

∫ 1

0

dx

∫
ddk

(2π)d
Nµν

[
k2 −m2 +

(
q2 + 2k · q

)
x
]2 . (A.27)

We can then perform the change of variables k → l ≡ k + qx, so that

l2 = k2 + 2k · qx+ q2x2. This of course changes the numerator to

1
4
Nµν(l) = (l − qx)µ(l − qx+ q)ν + µ↔ ν −

[
(l − qx) · (l − qx+ q)−m2

]
gµν ,

but terms linear in the loop momentum can be dropped because they do not
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contribute to the integral owing to symmetric integration. This means that

essentially
{[

(1− x)lµqν − xlνqµ
]
+
[
µ↔ ν

]
−
[
(1− x)l · q − xl · q

]
gµν
}

→ 0.

We can also replace all instances of lµlν → 1
d
l2gµν , also by symmetry, so that

1
4
Nµν(l) = 2

(
lµlν + x(x− 1)qµqν

)
−
(
l2 + x(x− 1)q2 −m2

)
gµν

=
1

d
(2− d)l2gµν − 2x(1− x)qµqν +

(
m2 − x(1− x)q2

)
gµν

=
1

d
(2− d)l2gµν +Bµν(x) (A.28)

where we have defined Bµν(x) as a piece independent of the loop momentum

for convenience sake. We also do a similar thing in the denominator, and define

∆ = x(x− 1)q2 +m2, so that

iΠµν
2 = −4e2

∫ 1

0

dx

∫
ddl

(2π)d

1
d
(2− d)l2gµν +Bµν(x)

[
l2 −∆

]2

= −4e2
∫ 1

0

dx

[

−i(1− d/2)gµν

(4π)d/2
Γ(1− d/2)

Γ(2)

(
1

∆

)1−d/2

+
iBµν

(4π)d/2
Γ(2− d/2)

Γ(2)

(
1

∆

)2−d/2
]

. (A.29)

The second line was obtained in Appendix B of [28]. The expression can be

rewritten in a little nicer form by noting that (1−d/2)Γ(1−d/2) = Γ(2−d/2),
so that on regrouping we have

iΠµν
2 = 4ie2

∫ 1

0

dx

(4π)d/2
Γ(2− d/2)

∆2−d/2

[

∆gµν − Bµν(x)

]

. (A.30)

Now inserting the definitions for Bµν(x) and ∆, we get

iΠµν
2 = 4ie2

∫ 1

0

dx

(4π)d/2
Γ(2− d/2)

∆2−d/2

[

− 2x(1− x)q2gµν + 2x(1− x)qµqν
]

= q2
(

gµν − qµqν

q2

)

iΠ2(q
2), (A.31)
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where

Π2(q
2) =

−8e2

(4π)d/2

∫ 1

0

dx(1− x)x
Γ(2− d

2
)

∆1−d/2 . (A.32)

Now let us parameterize the dimensionality according to the relation d ≡ 4−2ε

and perform an expansion in ε. We have

Π2(q
2) =

−8e2

(4π)2

∫ 1

0

dx(1− x)x

(
1

ε
− ln∆− γ + ln(4π) + O(ε)

)

. (A.33)
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With these identities, the amplitude becomes

iΣ2(p) = e2
∫ 1

0

dx

∫
ddk

(2π)d
(2− d)(/p+ /k) + dm

[
k2 + 2(p · k)x+ (p2 −m2)x

]2 . (A.38)

We perform a change of variables k → l ≡ k + px, which allows us to write

l2−p2x2 = k2+2(p·k)x. If we further define the quantity ∆ ≡ p2x2−(p2−m2)x,

we get that

iΣ2(p) = e2
∫ 1

0

dx

∫
ddk

(2π)d
(2− d)(/l + (1− x)/p) + dm

[
l2 −∆

]2 . (A.39)

By the same reasoning as that used in the photon-propagator correction, we

can neglect terms linear in the loop momentum, effectively setting

iΣ2(p) → e2
∫ 1

0

dx

∫
ddk

(2π)d
(2− d)(1− x)/p+ dm

[
l2 −∆

]2

= e2
∫ 1

0

dx

(
(2− d)(1− x)/p+ dm

(4π)d/2

)
iΓ(2− d/2)

∆2−d/2 . (A.40)

It will now prove useful to introduce some new notation. We rewrite Σ2(p) as

iΣ2(p) =
iα
4π

[
A(p2)m+ B(p2)/p

]
, with the following definitions

A(p2) ≡
∫ 1

0

dx Γ(ε)(4− 2ε)
[
xm2 − x(x− 1)p2

]−ε

B(p2) ≡−
∫ 1

0

dx Γ(ε)(2− 2ε)(1− x)
[
xm2 − x(x− 1)p2

]−ε
. (A.41)

In order to perform the above integrals, we first expand in p2/m2

[
xm2 − x(x− 1)p2

]−ε ∼
(

1

x2m2

)ε[

1 +
ε(1− x)

x

(
p2/m2 − 1

)
]

+ O(p4/m4).

(A.42)

With this prescription for instance we can carry out the integrals involved in
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A(p2) and B(p2),

A(p2) = −(2− ε)Γ(ε)
p2/m2 − 3

(m2/µ2)ε(1− 2ε)

B(p2) = Γ(ε)
p2/m2 − 2

(m2/µ2)ε(1− 2ε)
(A.43)

We then perform an expansion in ε, and keep terms up to O(ε). In the result

below, there should also be terms like ln
(
m2/µ2

)
and ln2

(
m2/µ2

)
, as well as

transcendental factors like γ. We omit these in the interest of brevity, as all

the terms will cancel in the addition to the vertex, which is shown in section

3.2.2.

A(p2) =

(

3− p2

m2

)(
2

ε
+ 3 + ε

(

6 +
π2

6

))

B(p2) = −
(

2− p2

m2

)(
1

ε
+ 2 + ε

(

4 +
π2

12

))

. (A.44)

Finally, the expression for the on shell wave-function renormalization from this

diagram is

δZ = − α

4π

[

B(m2) + 2m2
( ∂A

∂p2
+
∂B

∂p2

)

p2=m2

]

=
α

π

[
3

4ε
+ 1 + ε

(

2 +
π2

16

)]

, (A.45)

where again the logarithms and transcendental constants are omitted.
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Let us make use of them on the numerator

Nµ ≡ γα(/p
′ + /k +m) γµ (/p+ /k +m)γα (A.48)

1. m2γαγµγα = −2m2γµ + (4− d)m2γµ

2. mγα(/p′ + /k)γµγα +mγαγµ(/p+ /k)γα = 4m(p+ p′ + 2k)µ− (4− d)m
[
(/p′ +

/k)γµ + γµ(/p+ /k)
]

3. γα(/p′+ /k) γµ (/p+ /k)γα = −2(/p+ /k) γµ (/p′+ /k)+ (4− d)(/p′+ /k) γµ (/p+ /k)

Thus in total we have

Nµ =− 2m2γµ + 4m(p+ p′ + 2k)µ − 2(/p+ /k) γµ (/p
′ + /k)

+ (4− d)(/p
′ + /k −m) γµ (/p+ /k −m). (A.49)

We can then apply the equations of motion to the term with coefficient (4− d)

since the vertex iΓµ will be sandwiched between ū(p′) and u(p). To be explicit,

we use ū(p′)/p′ = mū(p′) and /pu(p) = mu(p), to get

Nµ =− 2m2γµ + 4m(p+ p′ + 2k)µ − 2(/p+ /k) γµ (/p
′ + /k)

+ (4− d)/k γµ /k. (A.50)

We can do the same to the 3rd term, but it requires some rearrangement by

continuous use of γµ/a = 2aµ− /aγµ. That is, if we denote the terms a = (/p+ /k)

and b = (/p′ + /k) we have that

/aγµ/b =2aµ/b − γµ/a/b

=2aµ/b − 2a · bγµ + γµ/b/a

=2aµ/b − 2a · bγµ + 2bµ/a− /bγµ/a. (A.51)
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When we insert (A.51) into (A.50), we get the following

−2(/p+ /k)γµ(/p
′ + /k) =− 4

[
(/p

′ + /k)(p+ k)µ + (/p+ /k)(p′ + k)µ − (p+ k) · (p′ + k)γµ
]

+ 2(/p
′ + /k)γµ(/p+ /k)

=− 4
[
(/k +m)(p+ p′ + 2k)µ −

(
p · p′ + k2 + (p+ p′) · k

)
γµ
]

+ 2(/k +m)γµ(/k +m). (A.52)

The equations of motion have again been used in the second equality, and we

see that the first term proportional to “m” in the above, will cancel the second

term in (A.50).

Nµ =− 2m2γµ − 4
[
/k(p+ p′ + 2k)µ −

(
p · p′ + k2 + (p+ p′) · k

)
γµ
]

2(/k +m)γµ(/k +m) + (4− d)/k γµ /k. (A.53)

The −2m2γµ term cancels with the first term on the second line and we can

combine the last two terms there into (6−d)/kγµ/k = 2(6−d)/kkµ− (6−d)k2γµ,

so that finally

Nµ =
[
4p · p′ + (d− 2)k2 + 4(p+ p′) · k

]
γµ

− 4(p+ p′)µ/k − 2(d− 2)/kkµ + 4mkµ (A.54)

This completes the simplification of the numerator algebra, however it will be

beneficial, for the evaluation of the integrals, to rewrite it in the form

Nµ = Aγµ +Bµ
αk

α + Cµ
αβk

αkβ. (A.55)
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In (A.55), we must of course make the following identifications

A = 4p · p′ = 2(2m2 − q2),

Bµ
α = 4(p+ p′)αγ

µ − 4(p+ p′)µγα + 4mδµα,

Cµ
αβ = (d− 2)gαβγ

µ − 2(d− 2)γαδ
µ
β , (A.56)

where the second equality in A, follows simply from the definition q ≡ p′ − p.

Next we wish to use a Feynman parameter scheme to simplify the denominator;

to this end we will need the identity

1

A1A2...AN
=

∫ 1

0

dx1...dxN δ(Σxi− 1)
(N − 1)!

[
x1A1 + x2A2 + ...+ xNAN

]N
. (A.57)

In the denominator we have k2
[
(p + k)2 − m2

][
(p′ + k)2 − m2

]
, which upon

applying the prescription of (A.57), we get

D = x
[
(p+ k)2 −m2

]
+ y
[
(p′ + k)2 −m2

]
+ zk2

= (x+ y + z)k2 + 2(px+ p′y) · k + x(p2 −m2) + y(p′2 −m2)

= k2 + 2∆ · k. (A.58)

In the last line, we have made use of the delta function that appears in (A.57);

we have set the external momenta to be on-shell, which is true up to the order

of interest; and we have defined ∆ ≡ (px+ p′y).

iΓµ2 = 2e2
∫ 1

0

dxdydz δ(x+y+z−1)

∫
ddk

(2π)d
Aγµ +Bµ

αk
α + Cµ

αβk
αkβ

[
k2 + 2∆ · k

]3 (A.59)
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We can evaluate each of the three different terms in the numerator as separate

integrals. Firstly we have that in d-dimensions

I0 =

∫
ddk

(2π)d
1

[
k2 + 2∆ · k

]n

=
i(−1)d−n

(4π)d/2
Γ(n− d/2)

Γ(n)

1

(∆2)n−d/2
. (A.60)

Then, we have that

Iµ =

∫
ddk

(2π)d
kµ

[
k2 + 2∆ · k

]3 = −∆µI0 (A.61)

Iµν =

∫
ddk

(2π)d
kµkν

[
k2 + 2∆ · k

]3 =

[

∆µ∆ν +
1
2
gµν(−∆2)

2− d/2

]

I0. (A.62)

If we plug in n = 3 and d = 4− 2ε into the above equations, we get

I0 = − iΓ(1 + ε)

2(4π)2−ε
1

(∆2)1+ε
. (A.63)

It therefore follows that

iΓµ2 =
α

4π

∫

x,y,z

−iΓ(1 + ε)

(∆2)1+ε

[

Aγµ−Bµ
α∆

α+Cµ
αβ

(

∆α∆β− 1
4−dg

αβ∆2
)]

. (A.64)

Let us first simplify the x-integral using the delta function. We have that

∆2 = (px+ p′y)2 = m2(x2 + y2) + 2p · p′(xy)

= m2(x2 + y2) + (2m2 − q2)(xy)

= m2(x+ y)2 − q2xy

= m2(1− z)2 − q2(1− y − z)z. (A.65)

We then make a change of variables as defined by y = ωξ and z = 1−ω, which of

course implies that x = ω(1−ξ). This effectively sets ∆2 → ω2
[
m2−ξ(1−ξ)q2

]
,
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and
∫ 1

0

dxdydz δ(x+ y + z − 1) →
∫ 1

0

ωdωdξ. (A.66)

It will again be simplest to evaluate each of these integrals as separate terms.

For the Aγµ term we have

iΓµA = −iΓ(1 + ε)
α

2π

∫ 1

0

∫ 1

0

ωdωdξ

w2+2ε

(2− q2/m2)γµ
[
1− ξ(1− ξ)q2/m2

]1+ε

=
iΓ(1 + ε)

4ε

α

2π

∫ 1

0

dξ
(2− q2/m2)γµ

[
1− ξ(1− ξ)q2/m2

]1+ε

=
iα

2π

[
1

ε

(

1− 1

3

q2

m2

)

+
1

6

q2

m2
+
π2

12

(

1− 1

3

q2

m2

)

ε

]

γµ. (A.67)

Evaluating the Bµ
α∆

α will require some simplification first as will the Cµ
αβ. For

the former we have

−Bµ
α∆

α =
[
− 4(p+ p′)αγ

µ + 4(p+ p′)µγα − 4mδµα
][
pαξ + p′α(1− ξ)

]
ω

= −4ω
[

(m2 + p · p′)γµ − (p+ p′)µ
(

/pξ + /p′(1− ξ)
)
+m

(
pµξ + p′µ(1− ξ)

)]

= −4ω
[

(2m2 − 1
2
q2)γµ −m(p+ p′)µ +m

(
pµξ + p′µ(1− ξ)

)]

, (A.68)

where in the last line we have again used the equations of motion to elimi-

nate the /p and /p′ terms in favor of the mass term. We will separate all the

contributions into only two distinct terms according to (4.76)

ū(p′)Γµu(p) = ū(p′)
[

F1(q
2)γµ + F2(q

2)
iσµνqν
2m

]

u(p), (A.69)

Let us first calculate the correction to the Dirac form factor arising from the

second order correction. According to the Gordon identity (4.75), if we are

only interested in the contribution to the Dirac form factor, then we can just

replace (p + p′)µ → 2mγµ in (A.68). At first it seems there is an asymmetry

between p and p′ in the last term, but in fact by changing 1−ξ → ξ in the term
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in front of p′, we get that −Bµ
α∆

α → 2ω(q2 − 4m2ξ)γµ. Thus the contribution

to the Dirac form factor from the second term is just

iΓµB = −iΓ(1 + ε)
α

4π

∫ 1

0

ω2dω

w2+2ε

∫ 1

0

dξ
2(q2/m2 − 4ξ)γµ

[
1− ξ(1− ξ)q2/m2

]1+ε

=
iα

2π

[

1− 1

3

q2

m2
+
(

4− q2

m2

)

ε

]

γµ. (A.70)

Finally we pass to the evaluation of the contribution involving Cµ
αβ. The largest

term is

Cµ
αβ∆

α∆β = ω2(d− 2)
[
gαβγ

µ − 2γαδ
µ
β

][
pαξ + p′α(1− ξ)

][
pβξ + p′β(1− ξ)

]

= ω2(d− 2)
[(
m2 − ξ(1− ξ)q2

)
γµ − 2

(
pµξ + p′µ(1− ξ)

)(

/p+ /p′(1− ξ)
)]

= (d− 2)∆2γµ − 2(d− 2)m
(
pµξ + p′µ(1− ξ)

)
. (A.71)

Thus in total we have

Cµ
αβ∆

α∆β − 1

4− d
Cµ
αβg

αβ∆2 =

(

1− d− 2

4− d

)

(d− 2)∆2γµ − 2(d− 2)m
(
pµξ + p′µ(1− ξ)

)

= (2− 1/ε)(2− 2ε)∆2γµ − 4(2− 2ε)m2ξγµ.

(A.72)

If we now insert this into the appropriate integral, we get

iΓµC = −iΓ(1 + ε)(1− ε)
α

2π

∫ 1

0

ω3dω

w2+2ε

∫ 1

0

dξ

{

(2− 1/ε)γµ
[
1− ξ(1− ξ)q2/m2

]ε −
4ξγµ

[
1− ξ(1− ξ)q2/m2

]1+ε

}

=
iα

2π

[
1

2ε
+

1

4

q2

m2
+
π2

24
ε

]

. (A.73)

We can now add all the pieces that contribute to the Dirac form factor and get
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that the second order correction reads

δF1(q
2) =

α

π

[
3

4ε
+ 1− q2

m2

( 1

6ε
+

1

8

)]

+
α

π

[

2 +
π2

16
− q2

m2

(1

2
− π2

72

)]

ε.

(A.74)

It is a rather simple matter to get the Pauli form factor from the work that

has already been presented. For instance, looking again at the Gordon identity

(4.75), we see that we just have to replace all instances of (p+p′)µ with −iσµνqν .
If we do this, we obtain the result that

F2(q
2) =

α

2π

[

1 +
1

6

q2

m2
+
(

4 +
5

6

q2

m2

)

ε

]

(A.75)
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A.5 Pauli Form Factor Contribution

The way in which the Pauli form factor enters is as

MPauli = −e2[ ū1′γρu1 ][ ū2 iσµν u2′ ]
( qν
2m

)

Dρµ(q
2) (A.76)

We know immediately that ν = 0 contributes nothing because q0 = 0. We also

in this case might as well make qi → −qi to get a standard three vector (i.e.

change to contravariant components). It will be simplest to separate this out,

as in the Born case, into contributions from scalar and three vector terms. We

note for clarity here that we are still using the Feynman gauge

Dµρ =
4π

q2
gµρ

= −4π

q2
gµρ. (A.77)

It follows that, in terms of the separation just mentioned, we have

MPauli = −
(
4πα

q2

)(
qj

2m

)[

[ ū1′γ
0u1 ][ ū2 iσ

0j u2′ ] − [ ū1′γ
iu1 ][ ū2 iσ

ij u2′ ]

]

(A.78)

Now we know that σoi = iαi = iγ0γi. We can of course use (A.5), but (A.6)

will change slightly due to a minus sign, which makes the first term (in natural

units)

−(1/2m)[ ū1′γ
0u1 ][ u

†
2 γ

j u2′ ] =
1
2
w†

1w
†
2

(

1− q2

8m2

) (

[σk, σj](2pk1 + qk) + 4pj1 + 2qj
)

w′
2w

′
1

(A.79)
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This gives only one term of interest to the 1/m2 operator, which contributes

to the tree-diagram’s portion of the potential1 coming from (A.78) as

M
(1)
Pauli = −

(
4πα

q2

)(−q2

4m2

)

(A.80)

Now for the next term in (A.78). First, just a quick clarification on notation;

we note that the reader is likely familiar with the expression σµν = i
2

[
γµ, γν ],

from which it is typically written that

σij = εijk




σk 0

0 σk



 . (A.81)

This expression however is actually derived from [σi, σj] = 2i εijkσk, which of

course we can’t use. Instead, we must use the unreduced expression

σij =
1

2i




[σi, σj] 0

0 [σi, σj]



 . (A.82)

We can now insert this into (A.78), but we note that this matrix is diagonal

and the other set of spinors that multiplies this one will be of order 1/m (or 1/c

in non-natural units); therefore we need only the leading order spinor definition

here.

[ ū2 iσ
ij u2′ ] = (2m) w†

2
1
2
[σi, σj]w′

2. (A.83)

1This of course does not include the effect of the actual Pauli form factor yet
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It immediately follows that

−
(
qj

2m

)

[ ū1′γ
iu1 ][ ū2 iσ

ij u2′ ]

= −(4m2)

(
qkqj

4m2

)

w†
1w

†
2

1
4
[σk, σi][σi, σj]w′

1w
′
2

=(4m2)

(
q2

m2

)
1 + ε− 2ε2

6− 4ε
. (A.84)

More conveniently, for the sake of putting it into the form of a potential later,

we write as in (A.80)

M
(2)
Pauli = −

(
4πα

q2

)(−q2

m2

)(
1 + ε− 2ε2

6− 4ε

)

(A.85)
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extrapolate

A = −4
[
ūγνu

][
v̄γνv

]
pµpµ

= −4m2
[
ūγµu

][
v̄γµv

]

Bµkµ = 2
[
ūγνu

][
v̄ /p /kγνv

]
+ 2
[
ū /p /kγ

νu
][
v̄γνv

]

= 2m
[
ūγνu

][
v̄γµγνv

]
kµ + 2m

[
ūγµγνu

][
v̄γνv

]
kµ

Cµνkµkν = −
[
ūγργµγσu

][
v̄γργνγσv

]
kµk

ν . (A.90)

We will leave it here for now and return to the integral which now looks like

iMcb = e4
∫

ddk

(2π)d
A+Bµkµ + Cµνkµkν

k4
[
(p− k)2 −m2

]2 . (A.91)

We can get a Feynman parametrization from this by using the form already

used in (A.26) and just taking the derivative

1

a2b2
=

∂

∂a

∂

∂b

∫ 1

0

dx
[
a+ (b− a)x

]2

= 3!

∫ 1

0

x(1− x)dx
[
a+ (b− a)x

]4 (A.92)

Which applied to our integral after defining ∆ ≡ −xp, gives

iMcb = 6e4
∫ 1

0

x(1− x)dx

∫
ddk

(2π)d
A+Bµkµ + Cµνkµkν
[
k2 + 2∆ · k

]4 . (A.93)

The integrals can again be evaluated by referring back to the equations from

the vertex calculation (A.60) to (A.62). When we do this we find that

iMcb = iα2

∫ 1

0

x(1− x)dx
Γ(2 + ε)

(∆2)2+ε

[

A− Bµ∆µ + Cµν∆µ∆ν − Cµνgµν
∆2

1 + ε

]

.

(A.94)

We return now to finish up with the numerator. We will need only the leading

order approximation for the spinors since the integral will already be of order
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1/m4. The A-piece is pretty much done therefore, since only the piece with

µ = 0 will contribute in leading order, giving

A = −4m2. (A.95)

For the B-piece we will need the identity that

γµγν = gµν + σµν . (A.96)

If we insert this into the definition for B in (A.90)

1
2m
Bµkµ =

[
ūγνu

][
v̄(gµν + σµν)v

]
kµ +

[
ū(gµν + σµν)u

][
v̄γνv

]
kµ (A.97)

We can tell right away that the pieces containing σµν will not contribute because

the gamma matrix sandwiched between the other spinors is forced to have an

index of zero, but of course σ00 = 0 and σ0i = αi, which does not contribute

when only zeroth order spinors are used. thus we are left with

1
2m
Bµkµ ∼

[
ūγνu

][
v̄gµνv

]
kµ +

[
ūgµνu

][
v̄γνv

]
kµ

=
[
ūγµu

][
v̄ v
]
kµ +

[
ūu
][
v̄γµv

]
kµ. (A.98)

Again we can immediately conclude based on the structure here, that only the

term with µ = 0 will contribute, so in equation (A.122) we have Bµ∆µ →
B0∆0 = −4m∆0.

Finally we pass to the evaluation of the largest piece. It’s evaluation will

be more useful by separating it into terms that are spin-dependent and spin-

independent. First off though, we notice the piece Cµν∆µ∆ν → C00∆2
0, since

by definition of ∆ the other terms are subleading in α. It will be useful then

to see what the 00th term will be. If we neglect explicitly writing the spinors,
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we have using direct product notation

C00 =
[
γµγ0γν

]
⊗
[
γµγ

0γν
]

=
[(
2g0µ − γ0γµ

)
γν
]
⊗
[(
2g0µ − γ0γµ

)
γν
]

=
[
gµν + σµν

]
⊗
[
gµν + σµν

]

=
[
σµν
]
⊗
[
σµν
]
+
[
gµν
]
⊗
[
gµν
]

=
[
σij
]
⊗
[
σij
]
+ d
[
1
]
⊗
[
1
]
. (A.99)

To get the fourth line we used the fact that an antisymmetric tensor fully

contracted with a symmetric one will always give zero.

Now let us examine the spin-independent part of Cµνgµν , and again we will

neglect explicitly writing the spinors.

−
[
γµγργν

]
⊗
[
γµγσγν

]
gσρ

=− 1
4

[
2gµργν + 2gνργµ − γργµγν − γµγνγρ

]
⊗
[
2gµργν + 2gνργµ − γργµγν − γµγνγρ

]
.

(A.100)

We might as well just work with one piece at a time. We separate it out as

follows

1
2

[
2gµργν + 2gνργµ − γργµγν − γµγνγρ

]

= 1
2

[
2gµργν + 2gνργµ − γρ(gµν + σµν)− (gµν + σµν)γρ

]

= 1
2

[
2gµργν + 2gνργµ − 2gµνγρ − γρσµν − σµνγρ

]
. (A.101)

When all multiplied together again, we see that the first three terms of ex-

pression (A.101) form the spin independent part, and the last two terms are
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entirely spin dependent. The cross term will vanish since for instance

[
gµργν + gνργµ − gµνγρ

]
⊗
[
γρσµν + σµνγρ

]

=
[
γν
]
⊗
[
γµσµν + σµνγ

µ
]
+
[
γµ
]
⊗
[
γνσµν + σµνγ

ν
]

=
[
γν
]
⊗
[
γµσµν + σµνγ

µ
]
+
[
γν
]
⊗
[
γµσνµ + σνµγ

µ
]

= 0 (A.102)

In the third line we just renamed the dummy indices to show that it vanishes

since σµν = −σνµ.
We are of course only interested in the spin independent piece right now,

which is simply

[
gµργν + gνργµ − gµνγρ

]
⊗
[
gµργν + gνργµ − gµνγρ

]

= 3d
[
γµ
]
⊗
[
γµ
]
+
[
γν
]
⊗
[
gνργµ − gµνγρ

]
gµρ

+
[
γµ
]
⊗
[
gνργµ − gµνγρ

]
gνρ −

[
γρ
]
⊗
[
gµργν + gνργµ

]
gµν

=
(
3d− 2

)[
γµ
]
⊗
[
γµ
]
. (A.103)

Now for the spin-dependent piece we have that

[
γµγργν

]
⊗
[
γµγργν

]
=
[
γµγ0γν

]
⊗
[
γµγ0γν

]
+
[
γµγiγν

]
⊗
[
γµγiγν

]

=
[
γiγ0γj

]
⊗
[
γiγ0γj

]
+
[
γ0γiγj

]
⊗
[
γ0γiγj

]

+
[
γiγjγ0

]
⊗
[
γiγjγ0

]

=3
[
γiγj

]
⊗
[
γiγj

]

=3
[
σij
]
⊗
[
σij
]

=3
4

[
σi, σj

]
⊗
[
σi, σj

]
. (A.104)

In the above equalities, we only retained pieces that contribute to the spin-

dependent part, and dropped all others. Note also that in the combination

γ0γiγν , the only leading order contribution will be that for which ν = j.
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We return to the integral (A.122), which we repeat here for your reading

convenience

iMcb = iα2

∫ 1

0

x(1− x)dx
Γ(2 + ε)

(∆2)2+ε

[

A− Bµ∆µ + Cµν∆µ∆ν − Cµνgµν
∆2

1 + ε

]

.

(A.105)

We will have to evaluate the terms one by one again. Starting with the A-

integral, we first need that

∫ 1

0

dx
x(1− x)

(m2x2)2+ε
=

1

m4

1

(2 + 2ε)(1 + 2ε)
. (A.106)

When we plug this into the amplitude with the value of A = −4m2, we get

that

iMA
cb =

α2A

m4

iΓ(2 + ε)

(2 + 2ε)(1 + 2ε)
= − iα

2

m2

(
2− 4ε

)
+O(ε2). (A.107)

Now for the B-integral, we saw that only the B0∆0 term will contribute, where

∆0 = −mx. Thus we need that

∫ 1

0

dx
mx2(1− x)

(m2x2)2+ε
=

1

m3

1

2ε(1 + 2ε)
, (A.108)

from which it follows that

iMB
cb =

α2B0

m3

iΓ(2 + ε)

2ε(1 + 2ε)
= − iα

2

m2

(
2

ε
− 2 + 4ε+

π2

6
ε

)

+O(ε2). (A.109)

Finally for the C-integral, we need that

∫ 1

0

dx
m2x3(1− x)

(m2x2)2+ε
= − 1

m2

1

2ε(1− 2ε)
, (A.110)

113



which gives

iMC
cb = − iα

2

m2

[(
1

2ε
+

3

2
+ 3ε+

π2

24
ε

)

C00 −
(

1

4ε
+

1

2
+ ε+

π2

48
ε

)

Cµνgµν

]

= − iα
2

m2

(
1

2ε
+

3

2
+ 3ε+

π2

24
ε

)(

d+ 1
4

[
σi, σj

]
⊗
[
σi, σj

])

+
iα2

m2

(
1

4ε
+

1

2
+ ε+

π2

48
ε

)(

(3d− 2) + 3
4

[
σi, σj

]
⊗
[
σi, σj

])

+O(ε2)

(A.111)

The contribution from the commutators is slightly different than it was in

(A.16) since now there are no uncontracted indices. We can easily get the

required result however by noticing that we can just write
[
σi, σj

]
⊗
[
σi, σj

]
=

[
σi, σj

]
⊗
[
σi, σk

]
δjk. Upon applying the projection we get an extra factor of

δjkδjk = 3 − 2ε. Now adding all the pieces together, and again keeping spin

and spin-independent pieces (respectively) separate, we get

Mcb = − α2

m2

(
1

4ε
+
π2

48
ε

)(

2 + 2ε− 4ε2
)

+
α2

m2

(
3

2ε
− 5

2
+ 10ε+

π2

8
ε

)

.

(A.112)
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It is a simple matter from here to see the difference in this term between the

crossed box and the planar box that we are now examining. For instance, we

can expand exactly as we did before in (A.101). In the first term we will get

exactly the same thing, which we repeat here for your reading convenience

1
2

[
2gµργν + 2gνργµ − 2gµνγρ − γρσµν − σµνγρ

]
. (A.116)

In the second term, we just have to switch µ↔ ν, giving

1
2

[
2gµργν + 2gνργµ − 2gνµγρ − γρσνµ − σνµγρ

]
. (A.117)

We can therefore immediately conclude that the spin-independent part does

not change sign while the spin dependent part does owing to the fact that

σνµ = −σµν . Then there was also the minus sign difference in the definition as

well so that we have

Cµνgµν = −
(
3d− 2

)[
γµ
]
⊗
[
γµ
]
+ 3

4

[
σi, σj

]
⊗
[
σi, σj

]
. (A.118)

We now pass to the evaluation of the integral which is

iMpb = e4
∫

ddk

(2π)d
A+Bµkµ + Cµνgµν

k4
[
(p+ k)2 −m2

][
(p− k)2 −m2

] . (A.119)

This can be Feynman parameterized by means of the formula

1

a2bc
= − ∂

∂a

∫ 1

0

∫ x

0

2dy dx
[
a+ (b− a)x+ (c− b)y

]3

= 3!

∫ 1

0

∫ x

0

(1− x)dy dx
[
a+ (b− a)x+ (c− b)y

]4 , (A.120)

which leads to

iMpb = e4
∫

ddk

(2π)d
A+Bµkµ + Cµνgµν
[
k2 + 2(x− 2y)p · k

] . (A.121)
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The evaluation of the momentum integral is identical to the one performed in

the crossed box case, and gives

iMpb = iα2

∫ 1

0

∫ x

0

(1−x)dy dx Γ(2 + ε)

(∆2)2+ε

[

A−Bµ∆µ+C
µν∆µ∆ν−Cµνgµν

∆2

1 + ε

]

.

(A.122)

With the caveat that ∆ is now defined by ∆ ≡ (x− 2y)p. These can again be

evaluated one at a time, starting with the A integrals

∫ 1

0

∫ x

0

(1− x)dy dx
[
m2(x− 2y)2

]2+ε

=− 1

m4

∫ 1

0

(1− x)dx

(3 + 2ε)x3+2ε

=
1

m4(3 + 2ε)(2 + 2ε)(1 + 2ε)
. (A.123)

Thus in total we have

iMA
pb =

iα2

m4

Γ(2 + ε) A

(3 + 2ε)(2 + 2ε)(1 + 2ε)

=− iα2

m2

(

− 2

3
+

16

9
ε

)

+O(ε2). (A.124)

For the B-integral, we have simply

iMB
pb = − iα

2

m2
Γ(2 + ε)

∫ 1

0

∫ x

0

(1− x)dy dx

(x− 2y)4+2ε
B0(x− 2y)

= 0. (A.125)
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Finally for the C-integral we have

iMC
pb =

iα2

m2
Γ(2 + ε)

∫ 1

0

∫ x

0

(1− x)dy dx

(x− 2y)4+2ε

(

C00m2(x− 2y)2 − Cµνgµν
m2(x− 2y)2

1 + ε

)

=
−iα2

m2
Γ(2 + ε)

∫ 1

0

∫ x

0

x(1− x) dx

(1 + 2ε)x2+2ε

(

C00 − Cµνgµν
1 + ε

)

=
iα2

m2

Γ(2 + ε)

2ε(1 + 2ε)(1− 2ε)

(

C00 − Cµνgµν
1 + ε

)

. (A.126)

If we now insert the definitions for the constants and expand out to O(ε) as

usual, we obtain the result

iMC
pb =

iα2

m2

(
1

2ε
+

1

2
+ 2ε+

π2

24
ε

)(

− d+ 1
4

[
σi, σj

]
⊗
[
σi, σj

])

− iα
2

m2

(
1

4ε
+ ε+

π2

48
ε

)(

− (3d− 2) + 3
4

[
σi, σj

]
⊗
[
σi, σj

])

+O(ε2)

(A.127)

We now just add up all the pieces and arrange them as spin and spin-independent

pieces respectively, which reads

Mpb =
α2

m2

(
1

4ε
− 1

2
+ ε+

π2

48
ε

)(

2 + 2ε− 4ε2
)

+
α2

m2

(

− 1

2ε
+

19

6
− 43

9
ε− π2

24
ε

)

.

(A.128)
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The denominator for the crossed box is quite similar

Dcb = k2(k − q)2
[

(E + k0)−
(k+ p1)

2

2m

][

(E + k0)−
(p′

2 + k)2

2m

]

= k2(k − q)2k20

[

1− k · (k+ 2p1)

2mk0

][

1− k · (k− 2p′
1)

2mk0

]

. (A.134)

We see from (A.133) and (A.134), that expanding the denominators gives us

D = k2(k − q)2k20
(
1 + O(1/m)

)
. Two vertices connected with a transverse

photon will contribute to O(1/m2), while those with longitudinal photons will

be O(1). Recall that we are looking for contributions to the potential term that

are O(1/m2). Thus if we are considering the exchange of transverse photons

we will need only the leading behaviour from the denominator. It is only

when the diagram consists of longitudinal photons that we require a higher

order expansion of the denominator in 1/m. Now let us take a look at the

numerators of each diagram.

Npb = e4
[

1− 1
4m2 (2p1 + k) · (2p2 − k)

][

1− 1
4m2 (k+ p1

′ + p1) · (p2
′ + p2 − k)

]

=
e4

4m2

[

4m2 + (2p1 + k)2 + (k+ q+ 2p1)
2
]

+ O(1/m4) (A.135)

Ncb = e4
[

1− 1
4m2 (2p1 + k) · (2p2

′ − k)
][

1− 1
4m2 (k+ p1

′ + p1) · (k+ p2
′ + p2)

]

=
e4

4m2

[

4m2 − (k+ 2p1) · (k− 2p1
′)− (k+ q+ p1) · (k− q− 2p1)

]

+ O(1/m4)

(A.136)

Instead of evaluating each diagram separately, we find that many cancella-

tions will occur when we do them together. For instance, when we add the

contributions to the numerators from the transverse photons together we get

NT.P. = −2(2p1 + k) · (k− q)− 2k · (k+ q+ 2p1)

= −4k2 + 4k · q− 2q2. (A.137)
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In the above we used the fact that we can effectively set k · p1 → −1
2
k · q as is

clear from the symmetry of the problem. Recall also that the denominator of

the planar box had a negative sign relative to the crossed box. Thus to required

order, the transverse photons in the combined diagrams make a contribution

of

iMT.P. = − e4

4m2

∫
ddk

(2π)d
4k2 − 4k · q+ 2q2

k2(k − q)2k20
(A.138)

Having 3-vectors in the numerator and 4-vectors in the denominator means

we’ll need some fancy footwork to get this into a form that is easily solvable.

Let’s do it term by term starting with the first one. For this one, we note that

we can write k2 = k20 − k2, giving

iM
(1)
T.P. = − e4

m2

∫
ddk

(2π)d
1

(k − q)2

(
1

k2
− 1

k20

)

= − e4

m2

∫
ddk

(2π)d
1

k2(k − q)2
(A.139)

The second term could be set to zero because a simple change of variables

k → k − q makes the integral scaleless,1 which are zero by definition in the

effective theory. This integral is just a table integral, for example in Appendix

A of [40]

∫
ddk

(−k2 +m2)a(−k2)b = iπd/2
Γ(a+ b− 2 + ε)Γ(−b− ε+ 2)

Γ(a)Γ(b)(m2)n
. (A.140)

When we apply this to our integral, we get

iM
(1)
T.P. = − iα

2

m2

(
1

ε
+ 2 + 4ε− π2

12
ε

)

+O(ε2). (A.141)

1Recall that q0 = 0.
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Now for the second term we will need to rewrite it a little

2k · q =
(
k2 − 2k · q + q2

)
− k2 − q2

=
(
k − q

)2 − k2 + q2. (A.142)

When we compare what denominators are left under each of these factors, we

see that the first leaves k2k20, while the second leaves (k− q)2k20, both of which

are scaleless and set to zero. The third factor in (A.142), when multiplied by

2, cancels the third term in the overall integral (A.138). Thus we actually just

have

iMT.P. = − iα
2

m2

(
1

ε
+ 2 + 4ε− π2

12
ε

)

+O(ε2). (A.143)

The second part of this calculation is that which has longitudinal photons, and

requires a higher order expansion in 1/m of the denominators. Referring back

to equations (A.133) and (A.134), we see that

1

Dpb

+
1

Dcb

=
1

k2(k − q)2k20
(
1− k·(k+2p1)

2mk0

)

[

1

1− k·(k−2p′

1
)

2mk0

− 1

1 + k·(k+2p1)
2mk0

]

=
1

k2(k − q)2k20

[
k2 − k · q
mk0

+
(k2 − k · q)2

2m2k20

]

+O(1/m3). (A.144)

The first of these terms is of order 1/m and is thus not of interest for us; we’ll

have to expand the second term before it becomes useful.

1

Dpb

+
1

Dcb

=
1

2m2

k2(k2 − 2k · q) + (k · q)2
k2(k − q)2k40

=
1

2m2

[
k2 − 2k · q
k2(k − q)2k20

+
(k · q)2

k2(k − q)2k40

]

=
1

2m2

[
1

k2(k − q)2
− q2

k2(k − q)2k20
+

(k · q)2
k2(k − q)2k40

]

(A.145)

To get the second line, we just applied the trick that we already used in (A.139)
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to the first term. To get the third line we again used that same trick on the first

term, while the second term follows from equation (A.142) and the argument

that followed it. We already know what the value of the first term in the

integral will be from the evaluation in equation (A.141):

e4

2m2

∫
ddk

(2π)d
1

k2(k − q)2
=
iα2

m2

(
1

2ε
+ 1 + 2ε− π2

24
ε

)

+O(ε2). (A.146)

The second term is again just a tabulated integral that, like (A.140), can be

found in [40]

∫
ddk

(2π)d
1

(−k2)a
[
− (k − q)2

]b
(−2k · p)c

=iπd/2
Γ(−a− c/2− ε+ 2)Γ(−b− c/2− ε+ 2)

Γ(−a− b− c− 2ε+ 4)

× Γ(a+ b+ c/2 + ε− 2)Γ(c/2)

2Γ(a)Γ(b)Γ(c)(−q2)a+b+c/2+ε−2(p2)c/2
, (A.147)

provided that q · p = 0. It therefore follows that by choosing for instance

p = 〈1
2
, 0, 0, 0〉, we get

− e4

2m2

∫
ddk

(2π)d
q2

k2(k − q)2k20
=
iα2

m2

(
2

ε
− π2

6
ε

)

+O(ε2). (A.148)

The last term requires the most amount of work.

(k · q)2
k2(k − q)2k40

=
(k − q)2

4k2k40
− (k2 + q2)

2k2k40
+

(k2 + q2)2

4k2(k − q)2k40

=
k4 + 2k2q2 + q4

4k2(k − q)2k40

=
k2

4(k − q)2k40
+

q2

(k − q)2k40
+

q4

4k2(k − q)2k40

=
q4

4k2(k − q)2k40
(A.149)
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As usual, scaleless integrals were set to zero as they showed up. We can now

just apply (A.147) to the remaining term to get

e4

8m2

∫
ddk

(2π)d/2
q4

k2(k − q)2k40
= − iα

2

m2

(
2

3ε
+

4

3
− π2

18
ε

)

. (A.150)

Finally, we can add all the contributions of (A.143),(A.146),(A.148) and (A.150)

to get

iMS.B. =
iα2

m2

(
5

6ε
− 7

3
− 2ε− 5π2

72
ε

)

(A.151)
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The reason for writing this expression in such a pedestrian way, is because the

colour calculation will be carried out for a general SU(N) gauge group and it

gives us the form of a general singlet configuration projection operator in order

to carry out the calculation. From the above we see that the general singlet

projector is

|qq̄〉colour =
1√
N

N∑

i=1

|qi〉 |q̄i〉 =
1√
N

N∑

i=1

|eiq〉 ⊗ |eiq̄〉, (B.2)

where the column vectors have N components, and a value of one at the position

i and 0 elsewhere. An analogous expression for the post collision particles is

also used |qq̄〉′colour. We can use the rules for an SU(N) gauge group to get the

expression for the colour C̃

C̃ =
1

N
〈qi| T ailT blj |q′j〉 〈q̄′j| T ajmT bmi |q̄i〉 =

1

N
T ailT

b
lj T

a
jmT

b
mi. (B.3)

We will want to commute the matrices in order to simplify, thus matrix notation

will now be used. We have that

C̃ =
1

N
(Ta ·Tb) · (Ta ·Tb), (B.4)

which we can rewrite with the commutator rule: Tb ·Ta = Ta ·Tb − ifabcTc

of the lie-algebra, along with the associativity of matrix multiplication.

Plugging in and using the definition of the quadratic Casimir operator in the

first term,

C̃ =
1

N
C2
F δ

ijδji − ifabc

N
Ta ·Tc ·Tb = C2

F +
ifabc

N
Ta ·Tb ·Tc. (B.5)

Concentrating on the second term C̃(2nd), we can use the identity
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2Ta ·Tb =
1

N
δab1l+ (dabd + ifabd)Td

⇒ C̃(2nd) =
ifabc

2N

( 1

N
δab1l+ (dabd + ifabd)Td

)

·Tc. (B.6)

Since contracting an antisymmetric tensor with a symmetric one will obviously

give zero, this leaves only

C̃(2nd) = −f
abcfabd

2N
Td ·Tc. (B.7)

Then using one final identity facdf bcd = Nδab, we get in total

C̃ = C2
F − δcd

2
Td ·Tc

= C2
F − N

2
CF

= C2
F − 1

2
CACF . (B.8)

We might as well just get the planar box colour factor here too. Examining

Figure A.2 (p.47), it is apparent that we only need to switch the colour matrix

indices on the two middle matrices of the above. This means there is no need

to commute the colour matrix and we just get C2
F .

B.1.2 Calculation of Amplitude

The above diagram can be written in the following schematic form ( where the

colour factor is left out, and m = mq)

iM = ig4s

∫
d4q

(2π)4
A+Bµqµ + Cµνqµqν

(q2 − λ2)2(q2 − 2mq0 + iε)2
. (B.9)

It will be shown when we discuss the numerator algebra that the only term
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important for spin is the term second order in loop momentum Cµνqµqν . As a

result we consider only

iMspin = ig4s

∫
d4q

(2π)4
Cµνqµqν

(q2 − λ2)2(q2 − 2mq0 + iε)2
. (B.10)

In order to solve this integral it is simplest to use a simple Feynman parametriza-

tion
1

a2b2
= 3!

∫ 1

0

x(1− x)dx

[a+ (b− a)x]4
, (B.11)

which can be derived by twice differentiating the standard relation

1

ab
=

∫ 1

0

dx

[a+ (b− a)x]2
. (B.12)

So we now have the form

iMspin = 3! ig4s

∫ 1

0

x(1− x)dx

∫
d4q

(2π)4
Cµνqµqν

[(q2 − λ2) + (−2mq0 + λ2 + iε)x]4
.

(B.13)

In order to bring this into the form of a standard loop integral, we make the

substitution q0 → q′0 = q0 −mx so that q′ 20 −m2x2 = q20 − 2mxq0. This will

of course change the numerator but we note that C0i ∼ O(~k) and the term

C00(2mxq0) contributes an odd term which drops upon integrating over the

loop momentum.

iMspin = 3! ig4s

∫ 1

0

x(1− x)dx

∫
d4q

(2π)4
Cµνqµqν + C00m2x2

[q2 − {m2x2 + λ2(1− x)− iεx}]4 .
(B.14)

This integral is now a standard loop integral with the term in the curly brackets

independent of the loop momentum. This can be evaluated by looking it up in

a table ( see for instance [28] appendix B), giving:
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iMspin = − g4s
(4π)2

∫ 1

0

x(1− x)dx

[

−1
2
Cµνgµν

∆
+
C00m2x2

∆2

]

, (B.15)

where ∆ ≡ {m2x2 + λ2(1 − x) − iεx } , and we write Cµνgµν = C00 − C ii for

convenience.

−1
2
C00∆+ C00m2x2

∆2
=

1
2
C00[m2x2 − λ2(1− x) + iεx)]

∆2
, (B.16)

Thus in total the x-integral is:

iMspin = −α
2
s

2

∫ 1

0

x(1− x)dx

[

C00[m2x2 − λ2(1− x) + iεx)]

∆2
+
C ii

∆

]

. (B.17)

It will be simplest to evaluate each of these separately. Starting with the first

term we have

iMa
spin = −α

2
s C

00

2m2

∫ 1

0

dx
[x2 − δ2(1− x)][1− x]x

[x2 + δ2(1− x)− iεx]2
, (B.18)

where the m2 terms, which lead to an overall 1
m2 multiplying the integral, have

been factored out. Finally replacements with the dimensionless constant δ = λ
m

have been done. the details of this integral are not very interesting and we will

simply quote the result

iMa
spin =

α2
s C

00

2m2

(

2 + ln(λ/m)
)

. (B.19)

The second integral is likewise evaluated

iM b
spin = −α

2
s C

ii

2m2

∫ 1

0

dx
(1− x)x

x2 + δ2(1− x)− iεx
=
α2
s C

ii

2m2

(

1 + ln(λ/m)
)

.

(B.20)
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We now pass to the evaluation of the numerator algebra, which was written

out in terms of tensors of different rank, and is equivalent to the following.

[ūr(p
′)γµ(/s +m)γνus(p)][v̄t(p̄)γµ(/s

′ +m)γνvw(p̄
′)] (B.21)

where s = p′ − q and s′ = −p̄+ q. We use the identity γµ/k = 2kµ − /kγµ,

[ūr(p
′)(2sµ + (−/s +m)γµ)γνus(p)][v̄t(p̄)(2s

′
µ + (−/s′ +m)γµ)γνvw(p̄

′)]. (B.22)

Then of course ūs(p
′)[/p′ −m] = 0 and v̄t(p̄)[p̄+m] = 0 , leaving us with

[ūr(2s
µ + /qγ

µ)γνus][v̄t(2s
′
µ − /qγµ)γνvw)]. (B.23)

If we enumerate the terms in the first bracket as a,b and the second as c,d;

we can take a closer look and save some work. Any term combined with a(c)

will necessarily come with a factor sµ (s′µ), thus leaving only a single gamma

matrix sandwiched between the spinors. So let’s look at the form of the gamma

matrices to see why this has no interest for us.

γ0 =




1 0

0 −1



 (B.24)

~γ =




0 ~σ

−~σ 0



 (B.25)

The first matrix has no pauli matrices and thus contributes nothing to the spin.

The second matrix contains pauli factors but they cross the two top and bottom

components of the 4-spinors and in our non-relativistic approximation do not

contribute. Thus only the term (b,d) will contribute to the spin structure in

our approximation

−[ūr/qγ
µγνus][v̄t/qγµγνvw)]. (B.26)
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We can now use some gamma matrix identities to simplify the expression,

γµγν =
1

2
[γµ, γν ] +

1

2
{γµ, γν} = gµν + σµν , (B.27)

gµνgµν = 4 , gµνσµν = 0. (B.28)

As before we will only be interested in terms that generate spin, so the terms

where the metric has been fully contracted will leave a /q which is just a sum-

mation of a single gamma matrix at a time, and drops as before. Thus we are

left with

−[ūr /q σ
µν us][v̄t /q σµν vw)]. (B.29)

Now the form of σµν is that of a second rank antisymmetric tensor, and as

such can be represented as a two-vector σµν = 〈σ0i, σij〉 = 〈~α, i~Σ〉, where its

covariant equivalent is σµν = 〈−~α, i~Σ〉. Here ~Σ, is just the spin operator double

stacked (a 4D irreducible representation), so that it also covers positron states.

With a couple lines of algebra, you can convince yourself that,

σµνσµν = −2[ ~α1 · ~α2 + ~Σ1 · ~Σ2] . (B.30)

This brings our expression into the form:

2[ūr /q ~α1 us] · [v̄t /q ~α2 vw] + 2[ūr /q ~Σ1 us] · [v̄t /q ~Σ2 vw]

= 2
(
[ūr γ

µ ~α1 us] · [v̄t γν ~α2 vw] + [ūr γ
µ ~Σ1 us] · [v̄t γν ~Σ2 vw]

)
qµqν . (B.31)

This is good, because it tells us right away that the only important piece for

the spin is the tensor term in the integral, as previously stated. Now again we

are interested in the spin terms, which means we want the ones that have a

Σ matrix sandwiched between the spinors. This means of course that in term

1 both µ and ν must not be zero, and in the second term they must be zero.
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Let’s start by simplifying the first term, remembering γi = αiγ0:

C ij qiqj = 2 [u†r γ
i γk us][v

†
t γ

j γk vw]qiqj. (B.32)

We then re-express the gamma product again, and again drop terms like gijgij,

and replace σij matrices by their definition

σij = iεijkΣk, (B.33)

C ij = 2 i2 [u†r ε
ikl Σl

1 us][v
†
t ε

jkm Σm
2 vw]. (B.34)

We simplify as follows :

εiklεjkm = δijδlm − δimδlj,

(
δijδlm − δimδlj

)
Σl

1 Σ
m
2 = δijΣ1 ·Σ2 − Σi

1Σ
j
2,

Σ = σ ⊗ 12×2.

(B.35)

Now we have that

C ij = 2 [ξ†r ζ
†
t (σ

i
1 σ

j
2 − δijσ1 · σ2)ξsζw]. (B.36)

For later convenience:

C ii = −4 [ξ†r ζ
†
t (σ1 · σ2)ξsζw], (B.37)

where they are now 2-spinors. It should be clear from the above that the second

term ( where µ = ν = 0 ) leads to:

C00 = 2 [ξ†r ζ
†
t (σ1 · σ2)ξsζw]. (B.38)

If we write the amplitude out in all its glory we get

iM c.b.
spin =

C2
F − 1

2
CACF

2m2
α2
s

[

C00
(
2 + ln(λ/m)

)
+C ii

(
1 + ln(λ/m)

)]

. (B.39)
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→ q′ 20 = q20 + 2mq0(x− 2y) +m2(x− 2y)2.

iMspin = 3! ig4s

∫ 1

0

dx

∫ x

0

dy

∫
d4q

(2π)4
(1− x)

[
Cµνqµqν + C00m2(x− 2y)2

]

[
q2 − {m2(x− 2y)2 + λ2(1− x)− iεx}

]4

= 3! ig4s

∫ 1

0

dx

∫ x

0

dy

∫
d4q

(2π)4
(1− x)

[
Cµνqµqν + C00m2(x− 2y)2

]

[
q2 −∆

]4

= − g4s
4π2

∫ 1

0

dx

∫ x

0

dy (1− x)

[

−1
2
Cµνgµν∆+ C00m2(x− 2y)2

∆2

]

= − α2
s

2m2

∫ 1

0

dx

∫ x

0

dy (1− x)

[

C00[(x− 2y)2 − δ2(1− x) + iεx)]

∆′ 2 +
C ii

∆′

]

,

(B.43)

where ∆′ ≡ (x− 2y)2 + δ2(1− x)− iεx.

Interestingly enough, evaluation of the y-integral in the first term gives

α2
s C

00

2m2

∫ 1

0

dx
(1− x)x

x2 + δ2(1− x)− iεx
, (B.44)

which we know from (A.12) is just

iMa
spin = −α

2
s C

00

2m2

(

1 + ln(λ/m)
)

. (B.45)

Evaluation of the second term is a little more interesting, it is this term that

will give us a singular pole term in 1
λ
, along with another set of logarithmic and

constant terms contributing to the spin. It is nearly identical to the second term

in eqn. (9), except for the extra integral, and missing x-term in the numerator.
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But as we will see these minor changes create large differences in the answers.

iM b
spin = −C ii α

2
s

2m2

∫ 1

0

dx

∫ x

0

dy
1− x

(x− 2y)2 + δ2(1− x)− iεx
(B.46)

= −C ii α
2
s

2m2

∫ 1

0

dx
1− x

δ
√

1− x(1 + iε)
tan−1

(

x

δ
√

1− x(1 + iε)

)

,

(B.47)

the epsilons will be left in until we’re sure there’s no danger of a divergence,

but to save space b ≡ 1 + iε. Evaluation of the x-integral gives

Ibspin = − 1
2
ln(1− iε) +

2

3δ
√
−b2

tanh−1

(

δ2 − 2

2δ
√
−b2

)

+ ln(δ)− 2

3δ
√
−b2

tanh−1

(

δ

2
√
−b2

)

+
1

3
. (B.48)

We can now easily see that the
√
−b2 terms can safely be set to i.

Ibspin = − 2i

3δ
tanh−1

(

i

δ

)

+
2i

3δ
tanh−1

(

−iδ
2

)

+ ln(δ) +
1

3

=
2

3δ

[

tan−1

(

1

δ

)

+ tan−1

(

δ

2

)]

+ ln(δ) +
1

3
, (B.49)

where the identity i tanh−1(z) = tan−1(iz), was used. Now we have that
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tan−1(1/x) =
π

2
− tan−1(x) ∀x : [0, 1)

tan−1(x) ≈ x, x << 1.

Thus upon using the expansion in our expression we get that

Ibspin =
π

3δ
+

2

3δ

(

−δ
2

)

+ ln(δ) +
1

3

=
π

3δ
+ ln(δ)

=
πm

3λ
+ ln

(
λ
m

)
(B.50)

.

So now, all in all, we have

iMp.b.
spin = − C2

F

2m2
α2
s

[

C00
(

1 + ln
(
λ
m

))

+ C ii
( πm

3λ
+ ln

(
λ
m

) )]

, (B.51)

iM c.b.
spin =

C2
F − 1

2
CACF

2m2
α2
s

[

C00
(
2 + ln(λ/m)

)
+ C ii

(
1 + ln(λ/m)

)]

. (B.52)

Plugging in the definitions of the coefficients:

C ii = −4 [ξ†r ζ
†
t (σ1 · σ2)ξsζw] = −8S2 ; C00 = 2 [ξ†r ζ

†
t (σ1 · σ2)ξsζw] = 4S2

V p.b.
spin =

C2
F

m2
α2
s

[

−2 + 2ln
(
λ/m

)
+

4π

3

m

λ

]

S2, (B.53)
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V c.b.
spin = −C

2
F − 1

2
CACF

m2
α2
s

[
2 ln
(
λ/m

)]
S2. (B.54)

The equations (B.53) and (B.54) constitute our final result for these diagrams.

This result will be checked by a more modern analytical technique, known as

expansion by regions, later.

B.3 Non-Abelian Vertex

Figure B.3: Non-Abelian Vertex

If we perform this calculation in the background field formulation it will

make things considerably easier to carry out. Following the Feynman rules for

the background formalism [49]

iΓµ ∼
∫

dDk̂
γβ
[

gαβ(2k − q)µ − gµα
(
k + q + 1

ξ
(q − k)

)

β
+ gµβ

(
2q − k + 1

ξ
k
)

α

]

(/p+ /k +m)γα

[(p+ k)2 −m2][(k − q)2 − λ2][k2 − λ2]
.

(B.55)

In the above, constant prefactors have been temporarily omitted in the interest
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of space. Then, in the Feynman gauge the numerator simplifies substantially

iΓµNA(p, p
′) = ig3sC

a
ji

∫

dDk̂
γβ
[

gαβ(2k − q)µ − 2gµαqβ + 2gµβqα

]

(/p+ /k +m)γα

[(p+ k)2 −m2][(k − q)2 − λ2][k2 − λ2]
.

(B.56)

where i
2
CA T

a
ji ≡ Ca

ji. The work of Manohar [50] will be invaluable in this

calculation. The denominator of his calculation of this vertex reads (Eq.’s 31

& 32)

m2(x+ y − 1)2 − q2xy. (B.57)

We can reproduce precisely this denominator in our work if we use the following

Feynman parametrization (working first without the gluon mass)

∫ 1

0

dx

∫ 1−x

0

dy

∫

dDk̂
Nµ

k2 + 2p · k +
[
q2 − 2(q + p) · k

]
x− 2p · ky . (B.58)

From the above expression it is clear that the necessary change of variables is

k → l = k+[p(1−y)−p′x] . The quantity in the square brackets then goes back

into the denominator squared which gives m2(1−y)2+m2x2−2p·p′x(1−y), then
upon noting that −2p · p′ = q2 − 2m2 we recover the required denominator.

Finally we see that by including a gluon-mass term we incorporate into the

denominator a term of the form λ2(x + y). Thus inserting this factor into

Manohar’s expression for the non-abelian F2 we get

F g
2 = −αs

4π
CA

∫ 1

0

dx

∫ 1−x

0

dy
2(x+ y)(1− x− y)m2

m2(x+ y − 1)2 − q2xy + λ2(x+ y)
. (B.59)

We are interested only in the limit q → 0, so for us

F g
2 = −αs

4π
CA

∫ 1

0

dx

∫ 1−x

0

dy
2(x+ y)(1− x− y)

(x+ y − 1)2 + λ2

m2 (x+ y)
. (B.60)
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Evaluation of this integral gives us

F g
2 =

αs
4π
CA

[

3 + 2 ln
(
λ/m

)
]

+ O(q2/m2). (B.61)

We must add to this the contribution of the abelian vertex, which Schwinger

tells us (up to colour factors) is

F V
2 =

αs
2π

(
CF − 1

2
CA
)
+ O(q2/m2). (B.62)

We can thus write out the final result1

F2 = F V
2 + F g

2

=
αs
2π

[

CF + CA

(

1 + ln
(
λ/m

))
]

. (B.63)

1Note that we will have to multiply this result by two when inserting it into the Born
result, to account for the two separate insertions of the vertex corrections
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