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Abstract
Calculating and modeling a variogram from sparsely sampled data can be complex and time-

consuming due to the need for expertise in selecting the appropriate parameters and fitting functions

to the experimental variogram. To assist with variogram modeling, a novel approach based on Con-

volutional Neural Networks (CNNs) is implemented in this research to automatically calculate and

model variograms from sparse data. CNNs are known for effectively processing grid-like data such

as images and spatial maps making them suitable for geostatistical applications. To train the CNN

model, a large set of Sequential Gaussian Simulation (SGS) realizations, each with different vari-

ogram model parameters, is resampled to generate the training data. Training a CNN directly on

sampled data was not effective so each dataset is modeled using inverse distance; other interpolation

techniques such as kriging and nearest neighbors were also tested, but inverse distance was found to

be the most efficient for training data, the minimal number of input parameters for inverse distance

is attractive.

The approach consists of the implementation of three CNNs: CNN-A predicts the major direction of

continuity, CNN-1 estimates key variogram model parameters, and CNN-2 predicts the experimental

variogram values at pre-set lag distances. Considering these CNNs, two workflows are implemented:

(1) train CNN-1 to directly predict variogram model parameters (range, anisotropy ratio, nugget

effect) followed by the inference of an automated model based on the predicted parameters (2) train a

second CNN-2 to predict the experimental variogram values at specified lag distances which are easily

autofit. Mean squared error (MSE) is used as the loss function in the training process. Once trained,

the CNNs can predict the azimuth of the major direction, key variogram model parameters, and the

experimental variogram of a given dataset. When applying CNN to datasets, data augmentation

(rotation) is performed to obtain a set of variogram predictions that improves prediction robustness.

Hyperparameter tuning and sensitivity analysis are performed to determine optimal parameters for

the CNN by choosing configurations that minimize MSE and avoid overfitting.

The testing and validation of variogram prediction are conducted on various datasets, including the

Walker Lake, and a data validation consisting of 110 geological images transformed to grayscale

values. The results indicate that the prediction of variogram model parameters (CNN-1) is limited

by a fixed number of variogram structures and the second workflow (CNN-2) involving predicting

values at pre-set lag distances performs better without limiting the number of variogram structures.

CNN-2 results in the prediction of an experimental variogram that can be easily fit with automated

variogram programs achieving an R-squared value of 0.95 for the validation dataset. The workflows
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are fully automated and applicable to sparse or dense data but are currently limited to 2D datasets

and the output consists of normal score variograms.
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Chapter 1

Introduction
This Chapter explores the challenges involved in calculating and modeling experimental variograms.

The importance of variogram modeling in various geostatistical workflows and the parameters in-

volved in the process are discussed in Section 1.1. This Section also addresses how these challenges

motivate the automation of variogram calculation and modeling, which is a primary objective of

this research. The purpose of this thesis, which aims to automate the calculation and modeling of

variograms, is outlined in Section 1.2 and the structure of this thesis is summarized in Section 1.3.

1.1 Problem Setting and Background

The process of calculating and modeling a variogram from sparse data can be a challenging task

in geostatistics. A variogram is defined as the average square difference between two sampled

data values, separated by the same lag vector (Journel and Huijbregts, 1978). It is an essential

tool in geostatistical modeling that measures and describes the spatial variability of a random

variable distributed in space (Rossi and Deutsch, 2014) and it is required to perform multiple

geostatistical procedures such as estimation and simulation. The conventional workflow to infer and

model a variogram from sparse data starts first by calculating the experimental variogram based

on the location of the sampled data points and the values of the variable of interest. Once the

experimental variogram is calculated, a series of known, analytical positive definite functions are

fitted to the experimental variogram points (Goovaerts, 1997) resulting in a variogram model. The

most commonly used positive definite functions are the spherical, Gaussian, and exponential models.

These fitted models will be then used for estimation and simulation. The principal variogram model

parameters that are obtained from the process are the sill, ranges, nugget effect, azimuth of the

major and minor direction, and contribution of the variance (Chiles and Delfiner, 2012).

The conventional process of inferring and modeling a variogram from sparse data, as described

above, can be a time-consuming and technically challenging task, requiring a significant amount

of expertise in geostatistics. One of the major challenges is selecting the appropriate search and

tolerance parameters for the calculation of the experimental variogram, such as the lag distance,

the number of lags, the lag tolerance, and the azimuth tolerance. These parameters must be chosen

carefully, as selecting inadequate values can result in experimental variograms that are noisy and

difficult to model (David, 1988), especially in an early stage of geostatistical modeling, where there is

limited data available. This makes the process highly dependent on the geostatistical knowledge and

experience of the practitioner, which can be a limitation. Furthermore, the calculated experimental
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1. Introduction

variogram will be further subject to model fitting which is another source of complexity. The chal-

lenges associated with variogram modeling and calculation, as described above, have led to the need

for automated methods. To address this problem, various robust and automatic variogram modeling

techniques have been proposed and implemented in geostatistical workflows. These methods aim to

minimize the number of parameters that need to be selected and to reduce the overall time required

for modeling by the user. Some of these methods include the use of optimization algorithms and

Machine Learning (ML) techniques.

Among the proposed methods modelling by iterative least squares (Desassis and Renard, 2013) is a

method that uses an optimization algorithm to minimize the distance between the model and the

experimental variogram. This method is based on the iterative least squares optimization algorithm,

which is designed to find the best-fitting model parameters that minimize the objective function.

The VARFIT program, proposed by Larrondo et al. (2003) is a semi-automatic variogram modeling

approach, where an initial model is proposed, and then updates are made by iterating on the initial

proposed model until a model that minimizes the objective function is obtained. Another semi-

automatic method is Maximum Likelihood Estimator (MLE), developed by Todini and Pellegrini

(1999) for semi-variogram parameters in ordinary kriging. This method is based on the assumption of

a multi-normal distribution of the kriging cross-validation errors and by using MLE algorithm it can

estimate the semi-variogram parameters. The problem of automatically calculating and modeling a

variogram can be approached using ML techniques.

One of the most widely-used subsets of ML algorithms is Convolutional Neural Networks (CNNs).

Originally proposed by LeCun et al. (1989) CNN is a supervised learning technique that has proven

highly effective in a wide range of image processing and recognition tasks. These algorithms are able

to learn to identify patterns and objects in images. Additionally, CNNs have been shown to excel in

processing grid-like topology input data (Goodfellow et al., 2016) such as images and spatial maps.

CNN algorithms have many advantageous properties that make them well-suited for geostatistical

applications. With the ability to capture features from One-dimensional (1-D), Two-dimensional

(2-D), and Three-dimensional (3-D) input grids, CNNs are able to preserve the spatial information

of the data. They can predict both categorical (e.g., facies classification) and continuous variables

(e.g., variogram range). Additionally, the final layer of the CNN can predict multiple output values,

allowing for the prediction of an exhaustive subsurface model estimate, such as the values of a

variable at unsampled locations or the value of the experimental variogram points at multiple lag

distances. CNNs have been used in several research studies to tackle geostatistical problems. For

example, Avalos and Ortiz (2020) proposed a new technique based on Recursive Convolutional

Neural Networks (RCNN) for Multiple-Point Statistics (MPS) simulation, providing an alternative

to traditional MPS methods by extracting features and relationships from spatial data. Similarly,

Santos et al. (2021) employed a 3-D CNN algorithm to predict fluid flow through porous media by

analyzing 3-D digital rock images, leveraging the spatial relationship between the porous medium
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morphology and the fluid velocity field.

This thesis aims to investigate the advantages of using CNNs in geostatistics and the ease of applying

them to gridded data. To address the problem of automatic variogram calculation and modeling,

two methodologies are proposed. The first approach presents an automatic variogram modeling

program that utilizes CNN algorithms to determine the key variogram model parameters, such as

variogram ranges, the direction of maximum continuity, anisotropy ratio, and nugget effect. This

method is noteworthy for its ability to generate a variogram model directly from the data without

the need for intermediate steps, such as calculating the experimental variogram, in both major and

minor directions of continuity. The second methodology is a two-step workflow, where a CNN is

initially implemented to automate the calculation of experimental variogram values at different lag

distances.

The primary goal of this research is to develop a workflow that automates the process of variogram

modeling by minimizing the number of parameters that need to be selected by the user. This is

achieved through the use of CNN algorithms for the automatic prediction of a stable experimental

variogram, which is simpler to model and results in a more precise fit of the variogram. Furthermore,

the proposed workflow significantly reduces the time required for user input, resulting in a more time-

effective modeling process. These advantages provide a significant time reduction over traditional

methods, which often require a large number of parameters and tolerances to be selected manually.

In order to implement the proposed workflow, a CNN must be trained using appropriate training

data. To generate this training data, multiple Sequential Gaussian Simulation (SGS) realizations are

generated and resampled, with each realization being generated using different variogram models,

characterized by various ranges, major directions of continuity, anisotropy ratios, and nugget effect

values. The goal of using multiple combinations of variograms for building the training data is

to ensure that the data is representative of a wide range of possible variograms and can provide

reliable predictions for a variety of input data. This approach allows the CNN to be optimized to

predict variogram model parameters for a wide range of input data, rather than being constrained

to a single dataset. The optimization strategy applied in this work aims to generalize predictions to

multiple input data, thus requiring the CNN model to be trained only once, rather than repeated

for each case study. The resampled SGS realizations are then transformed into an exhaustive model

estimation using inverse distance weighting. Other interpolation techniques such as kriging and

nearest neighbors were also tested, but inverse distance weighting was found to be the most efficient

for training data. The use of inverse distance estimates as input for training the CNN was chosen

to help the network capture more spatial features, which improves the performance of the CNN

model. Additionally, by using the inverse distance estimates, the network can learn from denser,

more informative training data compared to using sparse data alone.

Historically, Artificial Neural Networks (ANNs) have been viewed by many practitioners as a ”black

box” with limited control over the inner workings of the algorithm (Kanevski et al., 2004). However,

3



1. Introduction

recent studies (Bochinski et al., 2017; Passos and Mishra, 2022) have shown that the performance of

an ANN model can be significantly improved through the process of hyperparameter tuning. The

spatial modeling process can be further enhanced by combining the ML with geostatistical tools

(da Silva et al., 2022; Samson, 2019). To achieve the best possible results in variogram modeling

using CNN, it is essential to find the optimal hyperparameters for the CNN architecture. Though an

existing CNN model may already perform well, it can still be improved through the hyperparameter

tuning process. However, the high number of hyperparameters in a CNN architecture makes it

challenging to decide which to prioritize and what range of values to test when tuning a model. In

this work, the most critical and relevant hyperparameters are first identified, then the values of these

hyperparameters are adjusted and evaluated based on the resulting Mean Squared Error (MSE) of

each of the tested models. The hyperparameters of the model that yields the lowest MSE are then

used to implement the final CNN model.

1.2 Thesis Statement

The primary goal of this research is to present a CNN-based approach for automating the process of

variogram calculation and modeling. The proposed approach aims to generate stable experimental

variograms that are easier to model, predict the key variogram model parameters, minimize the

number of parameters required to be selected by the user, reduce subjectivity in the modeling

process, and save time for the user. By automating the calculation and modeling of variograms, this

approach provides a less time-consuming alternative to traditional methods.

The thesis statement is: CNN-based approach for automating the process of variogram calculation

and modeling which aims to generate stable experimental variograms, predict key variogram model

parameters, minimize user interaction, and improve resource modeling efficiency and time-saving.

1.3 Thesis Outline

CHAPTER 1 of this thesis serves as the introduction and provides an overview of the problem

setting and motivation for the research. The objectives and scope of the thesis are also outlined in

this chapter.

CHAPTER 2 is a literature review that covers the key aspects of the proposed research, including

the calculation and fitting of experimental variograms, the definition and applications of CNNs, and

related research in the field of geostatistics.

CHAPTER 3 provides an overview of the proposed CNN algorithm and presents the general frame-

work and methodology of the proposed automatic variogram inference workflow along with the

significant findings obtained from its implementation.

CHAPTER 4 presents case studies that apply the proposed CNN approach to 2-D datasets.
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CHAPTER 5 delves into the sensitivity analysis for the training data and CNN hyperparameters,

and the importance of selecting the appropriate values for these parameters.

CHAPTER 6 concludes the thesis with a summary of the findings, recommendations for future work,

and an analysis of the limitations of the proposed technique.
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Chapter 2

Literature Review and Background
This Chapter provides a brief review of the fundamental concepts of spatial variability and vari-

ograms, including their calculation and modeling techniques. The literature review serves as the

foundation and motivation for the implemented automatic variogram inference methodology. Sec-

tion 2.1 is a literature review of the main aspects surrounding this research, i.e., calculating and

fitting an experimental variogram, and summarizes alternatives to the variogram modeling proce-

dure. Section 2.2 introduces the concept of ML and its applications in geostatistics. It provides

a comprehensive overview of CNNs, including their definition, applications, and the main building

blocks of their architecture. It also highlights the recent advancement and application of CNN in

the domain of geostatistics.

2.1 Variogram Calculation and Modeling

The spatial variability of a random function Z(u) can be characterized by the variogram function

(Journel and Huijbregts, 1978), as defined by Equation 2.1. The variogram represents the average

of the squared differences between two sample values, separated by a fixed lag distance (Goovaerts,

1997).

2γ(h) = 1
N(h)

N(h)∑
i=1

[
Z (ui)− Z

(
ui + h

)]2
(2.1)

Where N is the number of paired points, h is the lag vector between two sampled points, and Z(ui)

represents the value of the variable Z at the location ui.

Most geostatistical workflows involve the use of variograms, which is an essential tool in geostatisti-

cal modeling. Variograms measure and describe the spatial variability and continuity of a random

variable distributed in space (Rossi and Deutsch, 2014). They are essential for performing geostatis-

tical procedures such as estimation (e.g., kriging) and simulation (e.g., SGS). Estimation techniques

such as kriging require solving kriging systems or normal equations, where the variogram model is

used to account for the spatial variability between sampled and unsampled locations. Typically,

quantifying spatial variability and variogram modeling are conducted through the following steps:

1. Calculate the experimental variogram.

2. Select and fit a suitable variogram model to the experimental variogram.
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Step 1 starts by identifying the direction of major continuity in a spatial dataset by calculating the

experimental directional variograms in multiple directions. This involves using different lag distances

and directions, where there are sufficient numbers of paired data (Rossi and Deutsch, 2014). The

variogram of the major direction of continuity is considered to be the one having the most continuity

(Samal et al., 2011). In addition to calculating experimental variograms, other methods can also

be used to detect directionality and patterns in a dataset. For example, data visualization can

be useful in detecting patterns if enough samples are available. Another alternative visualization

tool is the variogram map, which can be used to detect directions of anisotropy in the data. The

variogram map is defined as the representation of variances of data points in different directions,

where each grid cell represents the average of variances of a group of paired points aligned along the

same direction (Chiles and Delfiner, 2012).

Step 2: Once the direction of major continuity detected, the next step is to model the calculated ex-

perimental variogram. The modeling process involves selecting the number and types of variogram

structures and fitting a positive definite function to the experimental variogram (Goovaerts, 1997).

The fitted analytical model may be composed of one or more structures, and the combination of

structures is referred to as the Linear Model of (Co)regionalization (LMC). The LMC is a combina-

tion of positive definite structures, and among the most commonly used structures are the spherical,

gaussian, and exponential types represented respectively by Equations 2.2, 2.3, and 2.4.

Spherical (d) =

 1.5( d/a)− 0.5( d/a)3, d ≤ a

1, otherwise
(2.2)

Exponential(d) = 1− exp(−3d/a) (2.3)

Gaussian(d) = 1− exp
(
−3(d/a)2

)
(2.4)

Where d is a scalar distance and a is the range. Parameters are estimated by fitting the models to the

experimental variograms. The spherical structure is often used as a first approximation, then more

complex structures are tried in case of a poor fit. The modeling procedure outlined in steps 1 and 2,

where the experimental variograms are calculated in multiple directions using the available sample

data, and then modeled using positive definite functions, is commonly referred to as parametric

modeling. This is because the variogram is represented by a set of parameters such as the range of

the major and minor directions, the contribution of variance, the azimuth of the major direction,

the anisotropy ratio, and the nugget effect. These parameters are used to represent the underlying

spatial structure and patterns of the data.

Achieving satisfactory variogram modeling can be a challenging task, as it requires selecting a high

number of parameters such as the lag distance, the number of lags, the lag tolerance, and the

azimuth tolerance. These parameter selections have a direct impact on the final result and a poor

selection can lead to noisy experimental variograms which are hard to model. There are various
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automated and semi-automated alternatives available to assist with variogram modeling (Cressie,

1985; Desassis and Renard, 2013; Emery, 2010; Larrondo et al., 2003; Li et al., 2018; Mardia and

Marshall, 1984). These alternatives can be useful for efficiently calculating experimental variograms

and fitting functions.

The least-squares workflow is a commonly used optimization method in variogram modeling. It

involves fitting a model to the experimental variogram by minimizing a cost function (Cressie,

1985). This cost function, also known as a misfit, measures the differences between the experimental

variogram values and the fitted model at the same specified lag distances. Common measurements

used to estimate the misfitting of the defined cost function include the MSE. Least squares have been

widely used in automatic variogram modeling, with different optimization techniques being employed

in the process. These techniques include random perturbation (Larrondo et al., 2003) simulated

annealing (Emery, 2010; Wilde and Deutsch, 2012), the Gauss–Newton algorithm (Desassis and

Renard, 2013), and the genetic algorithm (Li et al., 2018).

The maximum likelihood method is also used for variogram modeling, which involves directly estimat-

ing the variogram parameters, such as the range, sill, and nugget effect, by minimizing a negative

log-likelihood function (Mardia and Marshall, 1984; Oliver and Webster, 2014). This method is

considered to be attractive because it does not require an intermediate step, such as calculating

the experimental variogram. However, one limitation of this method is that it is only effective if

the variables under consideration are multivariate Gaussian distributed (Earle et al., 2007). The

maximum likelihood method has been widely used in geostatistics (Dietrich and Osborne, 1991;

Kitanidis, 1987; Kitanidis and Lane, 1985; Mardia and Marshall, 1984; Watkins and Mardia, 1992).

Todini and Pellegrini (1999) developed a maximum likelihood estimator for variogram parameters

in ordinary kriging, based on the assumption of a multivariate normal distribution of the kriging

cross-validation errors. Overall, the maximum likelihood method is a useful approach to variogram

modeling, as it provides a way to directly estimate variogram parameters without the need to cal-

culate the experimental variogram. However, this method is only applicable in situations where the

data is multivariate gaussian distributed.

In addition to the methods previously mentioned, Larrondo et al. (2003) proposed a program for

semi-automatic variogram modeling referred to as VARFIT. The program starts by proposing an

initial model with random parameters such as variance contributions, nugget effect, number of

structures, and structure type, then iteratively updates the initial proposed values until a model

that minimizes the objective function and reduces the error is obtained.

The problem of automatically calculating and modeling a variogram could also fall into the cate-

gory of ML. Dimitrakopoulos (1993) proposed an ML algorithm that automatically calculates and

evaluates an experimental variogram based on neural networks. This approach uses the capability

of neural networks to learn patterns and relationships in data. Similarly, Manchuk and Deutsch

(2019) proposed an ML algorithm that automatically fits an experimental variogram by implement-
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ing a multi-layer feed-forward neural network that predicts the azimuth of the major direction, the

anisotropy ratio, and the variance contributions. Also, Jo and Pyrcz (2022) proposed a 2-stage CNN

approach to predict the variogram model parameters. This approach uses the capability of CNNs

to learn spatial patterns in data. The results of those studies are promising and they show that the

use of ML methods is a viable alternative to classical geostatistics methods in variogram modeling.

The methodology implemented in this thesis is similar to the Automatic Semivariogram Modeling

by Convolutional Neural Networks (ASMC) proposed by Jo and Pyrcz (2022) but it has some key

differences. The three main differences are:

1. The primary advantage of the program implemented in this research is its generalizability,

eliminating the need for retraining on each dataset. This is achieved through a pre-trained

model that uses a larger training dataset (100 times larger; 100,000), which requires more

implementation time but runs only once.

2. The present method does not use the sparsely sampled data as input but uses inverse distance

estimates to train the CNN. This allows the network to learn from denser, more informative

training data compared to using sparse data alone.

3. Another contribution of this work is the estimation of the experimental variogram and the

nugget effect. In contrast, ASMC does not include the estimation of the nugget effect and

experimental variogram.

2.2 Convolutional Neural Networks

CNNs (LeCun et al., 1989) are a type of ANNs that is widely used in ML for image recognition and

feature extraction tasks. They are particularly effective at processing data with a grid-like topology

(Goodfellow et al., 2016), such as images or spatial maps. CNNs consist of a feed-forward network

that is generally composed of three main layers: a convolutional layer, a pooling layer, and a dense

fully connected layer (Figure 2.1). The network is divided into two zones: a feature extraction zone

and an inference zone (Avalos and Ortiz, 2019). In the feature extraction zone, the convolutional

and pooling layers extract spatial features from the input data, while in the inference zone, the

fully connected layer makes predictions based on those features. The weights W and biases b of

the CNN, also known as its inner parameters θ = {W, b}, play a key role in the training process.

Depending on the nature of the problem, the prediction made by a CNN may be either a continuous

or a categorical variable.

To extract spatial features from a gridded input, CNNs use convolutional filters, also known as ker-

nels. These filters consist of multiple weights W that slide over the input and perform element-wise

multiplication between the kernel values and their corresponding values in the input (Haykin, 2009).

The weights and biases are initially randomly assigned and are updated during each iteration of the
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Figure 2.1: Main building blocks of a CNN : convolutional, pooling, and fully connected layers

training process until the error of the model, as measured by an objective function, is minimized.

The training process involves the use of optimizers that employ gradient-based techniques (Kingma

and Lei Ba, 2015) to minimize a loss function, such as MSE. In this way, CNNs can adaptively learn

spatial features from the input data and use them to make predictions on unseen data.

2.2.1 CNN building blocks

This Section aims to provide a comprehensive overview of the key components and their functions in

a 2-D CNN architecture, including input data U , convolutional filters composed by multiple weights

W , bias vectors b, feature maps F , convolutional layers, activation functions, max-pooling layers

M , fully connected layers, and various operations such as convolution, pooling, dropout, and batch

normalization. Additionally, it also covers the process of training and optimizing these networks.

• Input data:

In a 2-D CNN, the input data is structured as a grid, with dimensions (ux, uy, ud). The input height

and width, ux and uy, correspond to the number of rows and columns in the grid, respectively. The

input depth, ud, represents the number of channels in the input data U . For example, in image

processing, a color image would have ud equal to 3, representing Red, Green, Blue (RGB) filters,

while a grayscale image would have ud equal to 1. The grid-like structure of the input allows CNNs

to efficiently process data with a spatial structure (Goodfellow et al., 2016).

• Convolutional layers:

These layers are the core of the CNN, they apply a convolution operation to the input data, which

involves sliding a kernel across the data and computing an element-wise multiplication between the

weights the filter W(i,j) and the values in the window of the input U(i,j) resulting in a feature map

Fl. The obtained feature map is subsequently used as input for the next layer, which, in turn,

generates a new feature map Fl+1 accordingly, this process is repeated for the number of layers
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used, generating new feature maps for the remaining layers. The mathematical expression for the

convolutional operation is given by Equation 2.5:

Fl(i, j) =
((

U ∗Wl

)
(i, j) + bl

)
(2.5)

Where Fl is the output feature map, computed by applying the convolutional operation (*) between

the input layer U (which can be an image, spatial map or sampled data) and the filter W . The

weights at position (i, j) in the filter are denoted by W(i,j).

CNN uses various techniques to process and analyze data, including the use of convolutional filters,

activation functions, and additional functions such as stride and spatial padding. These techniques

work together to extract features and patterns from the input data (Guo et al., 2016). Stride is

a parameter that determines the movement of the convolutional filters as they are applied to the

input data. It controls the distance that the filters move in each step, and a larger stride results in

a smaller output. Spatial padding is the number of pixels added to the edges of the input before

the convolutional filters are applied (Yamashita et al., 2018). This padding is used to preserve the

spatial dimensions of the input and prevent the output from being smaller than the input.

While these functions can be useful in certain situations, they are not always necessary (Avalos and

Ortiz, 2019). The basic convolution operation and activation functions are essential components

of a CNN, while stride and spatial padding may be used as additional techniques to optimize

performance. Both the stride and spatial padding can be adjusted to trade off computation time

and network performance.

fx =
[
ux − wx + 2padx

stx

]
+ 1 (2.6)

fy =

[
uy − wy + 2pady

sty

]
+ 1 (2.7)

Equations 2.6 and 2.7 represent the height fx and width fy of the output feature map. ux and uy

are the height and width of the input, padx and pady are the values of padding applied in each

direction to the input, wy,wy are the sizes of the filters, and stx, sty are the convolutional stride.

• Activation functions:

Activation functions, such as Rectified Linear Unit (ReLU), Hyperbolic Tangent (TanH), and Sig-

moid, represented by Equations 2.8, 2.9 and 2.10 and illustrated in Figure 2.2, introduce non-linearity

to the network, allowing it to learn complex and non-linear features in the data (Sharma et al., 2017).

Sigmoid(x) = 1
1 + e−x

(2.8)

TanH(x) = ex − e−x

ex + e−x
(2.9)
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ReLU(x) =


x if x ≥ 0

0 if x < 0
(2.10)

Figure 2.2: ReLU, Tanh, and Sigmoid activation functions

• Pooling layers:

Pooling layers are used to down-sample the input data by applying a pooling operation, such as

max pooling, which selects the maximum value in each window (Zafar et al., 2022). These layers

help to reduce the spatial dimensions of the data, as well as the number of learning parameters,

improving statistical efficiency (Gholamalinezhad and Khosravi, 2020). Equations 2.11 and 2.12 are

used to determine the dimensions of the feature map resulting from a pooling operation in a CNN.

These equations have three key components: fx and fy are for the height and width of the input in

the pooling operation. M stands for max pooling, and mx and my are the dimensions of the max

pooling window used in the CNN.

fx =
⌊
ux −mx

stx

⌋
+ 1 (2.11)

fy =

⌊
uy −my

sty

⌋
+ 1 (2.12)

• Fully connected layers:

These layers connect all the nodes in the previous layer to all the nodes in the current layer (Avalos

and Ortiz, 2019), allowing the network to learn global patterns in the data. The output of the fully

connected layers is passed through a final activation function to produce the final output of the

CNN.

• Loss function:

A loss function is used to measure the prediction error of the network and the optimizer is used to

adjust the weights and biases to minimize this error. Equation 2.13 is a common loss function for
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CNNs called Cross Entropy (CE). It is used for categorical variables, and the goal is to minimize

the difference between the predicted probability p̂(k) distribution and the true probability p(k)

distribution of the output. Equation 2.14 is another common loss function for CNNs is the MSE.

It is used for continuous variables, and the goal is to minimize the difference between the predicted

value ŷ(k) and the true value of the output y(k). In summary, the CE loss is used for classification

problems and MSE is used for regression problems.

CE = −
K∑

k=1

(log p̂(k)) · p(k) (2.13)

MSE = 1
P

P∑
k=1

(
ŷk − yk

)2 (2.14)

• Batch normalization:

Batch normalization (Ioffe and Szegedy, 2015) is a technique used to improve the stability and

performance of CNN models. It works by normalizing the input data to have a mean of 0 and a

standard deviation of 1 by subtracting the mean and dividing it by the standard deviation. This helps

to improve the generalization of the model to new data, it also can improve the final performance

of the model and speeds up the training process.

• Dropout:

Overfitting is a common issue in CNNs and other ML algorithms. It occurs when the model is too

closely tailored to the specifics of the training data (Ying, 2019), resulting in poor performance on

testing data or other datasets. Figure 2.3 (case 2) illustrates a clear case of overfitting, while Figure

2.3 (case 1) shows an ideal scenario with no overfitting. To prevent overfitting, there are several

regularization techniques available, such as dropout. Dropout (Srivastava et al., 2014) is a popular

method that randomly removes nodes from the network during training, which helps prevent the

learned weights from adapting too much to the training data.

2.2.2 Training Process of a CNN:

The method of training a CNN includes adjusting the inner parameters of the network θ = {W, b},

specifically the weights and biases, to minimize the difference between the predicted output and

the target output on a labeled dataset. This process is done over several iterations, referred to as

epochs, and the weights are adjusted based on the error calculated during each epoch. To train a

CNN, the following steps are typically followed:

1. Prepare the dataset: The training data should be formatted and divided into training and

validation sets. It is also common to apply data augmentation techniques, such as rotating or

cropping the images, to increase the size of the dataset and improve the generalization of the

model.
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Figure 2.3: Loss curve over the training epochs of two CNN examples for both training and testing sets.
No overfitting observed (case 1), and significant overfitting observed (case 2).

2. Define the model architecture: The CNN architecture should be defined, including the num-

ber and size of the convolutional and pooling layers, as well as the activation functions and

regularization technique to be used.

3. Initialize the model parameters: The weights and biases of the filters should be initialized

randomly.

4. Feedforward propagation of the network: The model makes predictions for a given input

by performing a series of convolutions and pooling operations and applying the activation

function.

5. Compute the loss: The difference between the predicted output and the true output is calcu-

lated using a loss function, such as the CE for categorical prediction and MSE for predicting

continuous.

6. Backpropagation of the network: The gradients of the loss with respect to the model parame-

ters are calculated using backpropagation.

7. Update the parameters: The model parameters are updated using an optimization algorithm,

such as stochastic gradient descent, to reduce the loss.

8. The process is repeated for the specified number of epochs, using the updated parameters at

each iteration.

9. Evaluate the model: The trained model is evaluated on the validation set to assess its perfor-

mance. If the performance is satisfactory, the model can be used for prediction. If not, the

model can be further tuned by adjusting the hyperparameters or the architecture through the

hyperparameter tuning process.
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2.3 Summary

This chapter provides a literature review and background on spatial variability and variograms. It

starts by reviewing key concepts related to variogram modeling, including the calculation and fitting

of experimental variograms. The chapter explores various automated alternatives for variogram

modeling, such as the least-squares and maximum likelihood methods, which have been widely used

in geostatistics. Additionally, the concept of ML and its applications in geostatistics is introduced,

specifically focusing on CNNs, including their architecture, key components, and the process of

training these networks. The literature review and background serve as the foundation for the

proposed CNN-based approach in this thesis, which aims to automate variogram calculation and

modeling.
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Chapter 3

Automatic Variogram Inference with
Convolutional Neural Networks
Chapter 3 presents the methodologies, results, and significant findings obtained from the two imple-

mented workflows. The first methodology, referred to as workflow 1, consists of automatic parametric

modeling and involves predicting key variogram model parameters directly from the data to infer the

variogram model. The second methodology, workflow 2, calculates the normal score experimental

variogram and fits the variogram model automatically.

The proposed methodologies are presented in Section 3.1 and involve several steps. First, a training

dataset is created using SGS. Then, CNNs are trained for different tasks. The azimuth of the major

direction is predicted using a first CNN denoted as CNN-A. Based on the estimated azimuth, another

CNN, CNN-1, is trained to predict the key variogram model parameters, enabling the inference of

the variogram model (workflow 1). Additionally, CNN-2, is trained to predict the experimental

variogram values at pre-set lag distances and automatically fit the variogram model (workflow 2).

The optimization of CNN hyperparameters and the application of data augmentation techniques,

such as rotation, are performed to improve prediction robustness. The trained models are then

tested using case studies.

Section 3.2 presents the results and findings of the implementation of these methodologies. Section

3.2.1 compares the predicted azimuth values to the true values using CNN-A. Section 3.2.2 evaluates

the performance of CNN-1 in predicting the range, anisotropy ratio, and nugget effect. Section 3.2.3

presents the results of predicting the experimental variogram values using CNN-2. Section 3.2.4

provides a comparison between the results obtained from workflow 1 (using CNN-1) and workflow

2 (using CNN-2). Finally, Section 3.3 summarizes the key observations and discusses the results

obtained from Sections 3.1 and 3.2. This Chapter aims to present an overview of the methodologies,

their implementation, and the obtained results.

3.1 Methodology and Proposed Techniques

The proposed methodologies involve the following steps:

1. Creation of a training dataset using SGS.

2. Training Process:

• Train a CNN that predicts the azimuth of the major direction.
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• Based on the estimated azimuth, train a CNN to predict the key variogram model pa-

rameters and infer a model from the predicted parameters (workflow 1).

• Train a CNN to predict the experimental variogram values at different lag distances

followed by an automatic fit of the variogram model (workflow 2).

3. Optimize CNN hyperparameters through hyperparameter tuning and conduct a sensitivity

analysis to create the optimal training data for modeling a variogram.

4. Application of data augmentation (rotation) to improve the robustness of the prediction.

5. Model testing using case studies.

3.1.1 Training Data Creation

The process of generating training data to train the CNN is divided into several steps, as illustrated

in Figure 3.1.

1. The training data generation process (Figure 3.1) involves resampling unconditional SGS re-

alizations in a 100 x 100 grid using different variogram model parameters (Table 3.1). These

SGS realizations are generated with different random seed numbers and parameters to improve

CNN generalization and avoid the need to repeat training for each new dataset.

2. The relationship between the input and output is established by labeling each realization with

its corresponding true variogram parameter value.

3. Transform the obtained sampled data from Step 1 into a subsurface model estimation using

inverse distance. Inverse distance is used as input to enable the network to capture more

spatial features, rather than feeding the network with only sparse sampled data.

4. The training data is randomly divided into two separate sets: the training set and the validation

set, with the training set comprising 80% and the validation set 20% of the total dataset.

The training dataset comprises 100,000 realizations, with 80,000 used for training and 20,000 for

validating. The large number of training samples is crucial for a CNN to effectively generalize

predictions, learn, and capture features for various scenarios where the azimuth ranges from 0 to

180 degrees. The anisotropy ratio, varying from 1 to 3, the range is divided into 20 increments

between 10 to 30. Additionally, the nugget effect is considered within the range of 0 to 0.3.

3.1.2 CNN Training

To predict the variogram model parameters and the experimental variogram, consider three different

models CNN-A, CNN-1, and CNN-2 (Figure 3.2). CNN-A is used to learn the azimuth of the major

direction. During training, CNN weights are updated and optimized by iteratively minimizing MSE
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Table 3.1: Details of the variogram model parameters used to train the CNN models

Variogram model parameter Values
Major direction of continuity Between 0 and 180 (degrees)
Range in the major direction Between 10 and 30 (grid cells)

Anisotropy ratio Between 1 and 3
Nugget effect Between 0 and 0.3
Structure Spherical

Number of nested structures 1

Figure 3.1: Workflow for the automatic calculation and modeling of the normal score variogram. The
methodology includes the creation of training data, inverse distance estimation of the samples, and the
training of three CNNs. The first CNN predicts the azimuth, while CNN-1 predicts key variogram model
parameters.CNN-2 predicts experimental variogram values at preset lag distances.

and using the Adam optimizer until each input matches its target azimuth. Once the training is

completed, CNN-A can predict the azimuth of the major direction of a given dataset.

For workflow 1, CNN-1 is trained on the output of CNN-A to predict the ranges in the major

direction, anisotropy ratio, and the nugget effect. For workflow 2, CNN-2 is trained to predict the

experimental variogram points at pre-set lag distances along the major/minor directions determined

by CNN-A.

The azimuth is predicted first with CNN-A and 18 different models are implemented in CNN-1,

where the azimuth values are divided into 18 increments separated by 10 degrees, ranging from 0 to

180 degrees. The resulting azimuth prediction from CNN-A is used to select an appropriate model

for predicting the variogram range in the major direction, anisotropy ratio, and the nugget effect

(Figure 3.2). In workflow 2, CNN-2 is trained to predict the experimental variogram values at pre-set

lag distances (Figure 3.2).

18



3. Automatic Variogram Inference with Convolutional Neural Networks

Figure 3.2: Schematic representation of the proposed methodology for predicting the variogram model
parameters and the experimental variogram using three different CNN models. CNN-A predicts the azimuth,
which is then used as input to CNN-1 for predicting the ranges in the major direction, anisotropy ratio, and
the nugget effect in workflow 1. In workflow 2, CNN-2 predicts the experimental variogram values at preset
distances.

The implemented CNNs use different architectures, which are obtained through hyperparameter

tuning. The models with the lowest MSE and minimal overfitting are selected, with the key difference

between workflows 1 and 2 being the number of convolutional layers and outputs of the final layer.

Workflow 1 uses 4 convolutional layers and 3 outputs, representing the range in the major direction,

anisotropy ratio, and nugget effect. In contrast, workflow 2 uses 6 convolutional layers and 13

outputs, representing variogram values at 13 lag distances, separated by 5-unit intervals. In this

work, MSE is used as the loss function for CNN-A, CNN-1, and CNN-2. Figure 3.3 displays the

MSE loss over 100 epochs for both the training and validation sets. All three CNNs exhibit a

gradual decrease in loss over the 100 epochs, with the training and validation curves decreasing

simultaneously. This indicates that there is no significant overfitting present, as evidenced by the

minimal difference between the training and validation MSE values.

Figure 3.3: Training and validation loss for CNN-A, CNN-1, and CNN-2

The detailed structures of the CNN architectures used in this work are outlined in Tables 3.2, 3.3,

and 3.4. The primary objective of the CNN is to extract spatial features from the training data and

estimate experimental variograms and variogram model parameters, which is accomplished through

a combination of convolution layers, activation functions, max-pooling layers, dropout layers, and
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a dense fully connected layer with neurons representing the outputs. Each layer performs a unique

function in feature extraction from the input data, as described below:

• The input is a 100x100x1 subsurface model obtained through inverse distance estimation of

the sparsely sampled data. These input dimensions remain fixed for every trained CNN.

• The convolutional layers use filters that slide over the input data, performing convolutional

operations. This process is repeated with multiple filters, resulting in multiple feature maps.

As the architecture progresses, the number of filters increases, enabling the extraction of a

larger number of features. In the first convolution, 8 filters were used, each measuring 3x3 in

size, with the kernel size determined through hyperparameter tuning outlined in Chapter 5.

• The ReLU activation functions are applied to the output of the convolutional layers. The

ReLU activation function is non-linear. This enables the convolutional layers to introduce

non-linearity into the model and capture complex features.

• Pooling operation layer: The network then applies a maximum pooling operation to reduce

the size of the feature map. This is done by taking the maximum value over a 2x2 window

resulting in a feature map of size 50x50x8. The pooling operation is important as it reduces

the number of learning parameters, improves statistical efficiency, and reduces computational

time.

• A batch normalization layer is used to normalize the activations of a layer in a neural network.

This normalization is done by subtracting the mean and dividing by the standard deviation

of the activations for a given batch.

• The output goes through a dropout layer, which is a regularization technique that randomly

drops neurons during the training, to prevent overfitting.

• Then the output goes through a flattened layer, which takes the output of the previous layers

and flattens it into a 1-D array, to be passed to a fully connected dense layer.

These building blocks are repeated four times in CNN-A, four times in workflow 1 and six times in

workflow 2, as determined through the hyperparameter tuning (Chapter 5). The selected architecture

results in the highest accuracy with the lowest overfitting. Keras and TensorFlow version 2.4.0

(Chollet et al., 2015) are used to implement the CNN architecture described. The Adam optimizer,

developed by Kingma and Lei Ba (2015), is used to optimize the weights of the convolutional filters

during training.

During the training process, the CNN is presented with a set of input data and corresponding

target outputs. The model then uses the convolutional filters with the initial randomly assigned

weights and biases to process the input data. As the model processes, the weights and biases are
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Table 3.2: The selected architecture of CNN-A used to predict 2 output values representing the sine and
cosine of the azimuth of the major direction of continuity.

Layer type Output shape Number of parameters involved
2D convolution (100, 100, 8) 80

Activation function (ReLU) (100, 100, 8) 0
Maxpooling (50, 50, 8) 0

2D convolution (50,50,16) 1168
Activation function (ReLU) (50,50,16) 0

Maxpooling (25,25,16) 0
2D convolution 25,25,32 4640

Activation function (ReLU) 25,25,32 0
Maxpooling 12,12,32 0

2D convolution 12,12,8 2312
Activation function (Tanh) 12,12,8 0

Dropout 12,12,8 0
Flatten 1152 0

Fully connected dense layer 2 2306
Output 2

Table 3.3: The selected architecture of CNN-1 used to predict 3 output values for workflow 1 representing
the range in the major direction, anisotropy ratio, and nugget effect.

Layer type Output shape Number of parameters involved
2D convolution (100, 100, 8) 80

Activation function (ReLU) (100, 100, 8) 0
Maxpooling (50, 50, 8) 0

2D convolution (50,50,16) 1168
Activation function (ReLU) (50,50,16) 0

Maxpooling (25,25,16) 0
2D convolution 25,25,32 4640

Activation function (ReLU) 25,25,32 0
Maxpooling 12,12,32 0

2D convolution 12,12,8 2312
Activation function (ReLU) 12,12,8 0

Dropout 12,12,8 0
Flatten 1152 0

Fully connected dense layer 3 3459
Output 3

adjusted to minimize the difference between the predicted output and the target output. This

process of adjusting the weights and biases is known as backpropagation. To achieve the described

backpropagation Adam optimizer is used. The Adam optimizer is an extension of the gradient

descent algorithm that uses both the gradient of the loss function with respect to the parameters

and the gradient information in order to update the parameters. In this research MSE is used as

loss function in CNNs, which measures the difference between the predicted output and the target

output. By minimizing the MSE, the model is able to learn the optimal weights and biases that will

produce the most accurate predictions. In summary, the training process in a CNN is an iterative

process that involves adjusting the weights and biases of the convolutional filters in order to minimize

the difference between the predicted output and the target output. The Adam optimizer and the
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Table 3.4: The selected architecture of CNN-2; used to predict 13 output values for workflow 2 representing
13 experimental variogram values at pre-set lag distances.

Layer type Output shape Number of parameters involved
2D convolution (100, 100, 8) 80

Activation function (ReLU) (100, 100, 8) 0
Maxpooling (50, 50, 8) 0

2D convolution (50,50,16) 1168
Activation function (ReLU) (50,50,16) 0

Maxpooling (25,25,16) 0
2D convolution 25,25,32 4640

Activation function (ReLU) 25,25,32 0
Maxpooling 12,12,32 0

2D convolution 12,12,64 18496
Activation function (ReLU) 12,12,64 0

Maxpooling 6,6,64 0
2D convolution 6,6,128 73856

Activation function (ReLU) 6,6,128 0
Maxpooling 3,3,128 0

2D convolution 3,3,8 9224
Activation function (Sigmoid) 3,3,8 0

Dropout 3,3,8 0
Flatten 72 0

Fully connected dense layer 13 949
Output 13

MSE are used to optimize the training process and improve the accuracy of the model. Once the

training process is complete, the model can be used to make predictions on unseen data.

3.1.3 CNN Hyperparameter Tuning and Sensitivity Analysis

• CNN hyperparameter tuning

Hyperparameter tuning of the CNN determines the optimal parameters for predicting the azimuth

of the major direction, key variogram model parameters, and experimental variogram values. The

parameters studied include the number of convolutional layers, kernel size, and dropout rate. The

number of convolutional layers is varied from 2 to 8 in increments of 2, while the kernel size is tested

at 2x2, 3x3, 4x4, and 5x5. The dropout rate is also examined at values of 0, 0.25, and 0.5. All

possible combinations of these parameters are tried to determine the optimal set of hyperparameters

for the CNN and summarized in Chapter 5. The parameters and their possible values selected for

examination are listed in Table 3.5.

Table 3.5: Range of hyperparameter values tested

Number of convolutional layers Kernel size Dropout
2 layers 2x2 0
4 layers 3x3 0.25
6 layers 4x4 0.5
8 layers 5x5 -
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The goal of the hyperparameter tuning analysis is to determine the optimal set of parameters for

the network to improve its performance. By varying the number of convolutional layers, kernel size,

and dropout rate, across the different configurations, the analysis aims to find the combination of

these parameters that would result in the best performance.

• Sensitivity analysis to create the optimal training data:

The sensitivity analysis conducted in this work aims to create the optimal training data for a CNN

to model a variogram by examining two main factors: (1) the sensitivity of the inverse distance

parameters, and (2) the number of training data used. Regarding the sensitivity analysis of the

inverse distance parameters, the parameters studied are the inverse distance power and the maximum

data used. The values considered for these parameters are summarized in Table 3.6.

Table 3.6: Range of parameter values to test for inverse distance

Considered Values
Inverse distance power 1 1.7 2 2.5 3 4 6

Maximum data used 12 24 48

The trained CNNs are then used to predict the experimental variogram for different case studies, and

the average MSE is calculated for each model. The model with the lowest MSE value is selected as

the most accurate model and its inverse distance parameters are considered optimal for the training

process.

Regarding the sensitivity analysis of the number of training data, it is investigated by varying the

number of training data from 1,000 to 100,000. This allows to understand the effect of the number

of training data on model performance and determine the optimal number.

3.1.4 Application of Data Augmentation (Rotation)

Data augmentation is a commonly used ML technique that increases the number of training data

by slightly modifying the original data (Maharana et al., 2022). This can be done through various

processes such as flipping, rotation, adding noise, shifting, and cropping (Lashgari et al., 2020). In

this work, data augmentation is performed by applying a 1-degree rotation of the dataset 20 times

(Figure 3.4). This produces a set of variogram predictions where the results can improve prediction

robustness and could be used to examine variogram uncertainty.

3.1.5 Model Testing Using a Case Study

The best-performing CNN models of CNN-A, CNN-1, and CNN-2 are selected from the training

process through hyperparameter tuning based on their lowest MSE values. The proposed two

methods: workflow 1 and workflow 2 are then used to predict the variogram model of a sparsely

sampled input. The following are the steps used in the process :
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Figure 3.4: Data augmentation through rotations; 20 rotations applied to original datasets to increase the
quantity of data and improve variogram prediction. The rotations consist of 10 clockwise and 10 counter-
clockwise modifications by 1 degree each, leading to 20 generated datasets.

• Transform the original input sparse data to a 100 x 100 grid size to accommodate the input

size of the trained CNNs.

• Transform the data to normal score values.

• Perform a subsurface model estimation of the transformed data using inverse distance.

• Pass the obtained subsurface model estimation through CNN-A to predict the azimuth of the

major direction.

• Use the predicted azimuth in CNN-A to select one of 18 different models implemented in

CNN-1, resulting in the prediction of key variogram parameters and inferring a variogram

model.

• Predict the experimental variogram using CNN-2. The prediction consists of 13 experimental

variogram points corresponding to 13 lag distances from 0 to 60 separated by 5 unit distance.

3.2 Results and Discussions

Results of the implementation of the workflows are presented. Section 3.2.1 compares the true

azimuth values to the predicted values for both the training and validation sets using CNN-A.

Section 3.2.2 evaluates the performance of CNN-1 in predicting the range, anisotropy ratio, and

nugget effect, enabling the inference of the variogram model. Section 3.2.3 presents the results of
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predicting the experimental variogram. Section 3.2.4 provides a comparison between the results

obtained from workflow 1 (CNN-1) and workflow 2 (CNN-2).

3.2.1 Prediction of the Azimuth of the Major Direction (Performance of

CNN-A)

The performance of CNN-A is evaluated in mapping sparsely sampled input data to the estimation

of the azimuth of the major direction. Figure 3.5 compares the true azimuth of the training and

validation sets to the predicted azimuth. 100,000 realizations are used to train CNN-A, with 80,000

realizations in the training set and 20,000 in the validation set; the model has an r-squared of

0.998 for the training set and 0.979 for the validation set. CNN-A performance is shown for four

synthetically generated SGS realizations with azimuths of 30, 60, 90, and 120 degrees (Figure 3.6).

The realizations are randomly sampled at 500 locations and used in CNN-A to predict the azimuth.

Figure 3.5: Scatter plots of the accuracy of the prediction of the azimuth of the major direction. The color
bar is point density.

3.2.2 Parametric Modeling: Estimating Variogram Model Parameters

(Performance of CNN-1)

Workflow 1 predicts variogram model parameters (range in the major direction, anisotropy ratio,

and nugget effect), and is evaluated on both the training and validation sets. Figure 3.7 compares

the true values to the estimated values of the key variogram model parameters. The r-squared of

the range is 0.983 for the training set and 0.969 for validation. The r-squared of the anisotropy

ratio is 0.953 for the training set and 0.945 for validation. The r-squared for the nugget effect is

0.933 for the training set and 0.867 for validation. Figure 3.8 compares the distribution of the target

variogram parameters with those of the predicted values from both the training and validation data.
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Figure 3.6: Visualization of CNN-A performance in predicting the azimuth of four validation datasets.
The first column shows the SGS realizations and the second column displays the randomly sampled data
locations. The third column visualizes the distribution of each sampled data, and the fourth and last column
presents the CNN-A estimation of the azimuth along with the results of data augmentation.

The comparison reveals a strong alignment between the actual and predicted values. A variogram

model is generated for the training and validation datasets based on the estimated parameters using

CNN-A and CNN-1.

The performance of CNN-1, is also demonstrated on six synthetically generated SGS realizations.

Six predictions are plotted in Figure 3.9. The results indicate that CNN-1 performs well for cases

requiring one single spherical structure with a maximum nugget effect of 0.4 (validation 2 and 5 in

Figure 3.9). However, it shows poor predictive performance for cases that require more than two

structures (validation 1, 3, 4, and 6 in Figure 3.9). This limitation can be attributed to CNN-1

being trained to predict a single spherical structure with a maximum nugget effect of 0.3, leading

to inaccurate variogram models when the experimental variogram requires two or more structures
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or if the nugget effect exceeds 0.4 (e.g., validation 3 in Figure 3.9). These limitations motivated the

development of CNN-2, which predicts the experimental variogram instead of the variogram model

parameters.

Figure 3.7: Comparison of estimated and true variogram model parameters. The scatter plots show the
accuracy of the predictions of the model for the range in the major direction, anisotropy ratio, and nugget
effect, with the training set above and validation set below.

3.2.3 Prediction of the Experimental Variogram (Performance of CNN-2)

Workflow 2 predicts the experimental variogram at pre-set lag distances without loss of automation

as the prediction is always smooth and easily autofit using existing algorithms (Larrondo et al.,

2003). Note that this is different than a typical variogram autofitting workflow as the experimental

variogram is automated and does not require the user to set lag tolerances, distances, or directions.

In Figure 3.10, the performance of the model is evaluated on 100,000 input data, with 80,000 data

sets for training and 20,000 for validation. The results show an average r-squared value of 0.95 for

the validation when comparing the predicted experimental variogram with the true experimental

variogram. The performance of CNN-2 is also demonstrated on six synthetic examples (Figure 3.11).

The comparison demonstrates a strong agreement between the true and predicted variograms, with

an r-squared value exceeding 0.92 and a significant improvement over workflow 1 (Figure 3.9). The

red-shaded area in Figure 3.11 represents the uncertainty introduced using data augmentation.
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Figure 3.8: Probability Density Function (PDF) of actual and predicted variogram model parameters.

Figure 3.9: Demonstration of CNN-1 on six datasets. True variogram of the realizations (blue) and
estimated variogram (red). Data augmentation is shown as the red-shaded zone.

3.2.4 Comparison Between the Results of Workflow 1 and Workflow 2

This subsection presents a comparison between workflow 1 and workflow 2. Figure 3.12 illustrates

the performance of CNN-1 and CNN-2 for the six selected realizations. In four out of six cases,

CNN-2 demonstrates superior performance, achieving a higher r-squared value compared to CNN-1.

However, for realizations 2 and 5, both workflows perform similarly, because these variograms are
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Figure 3.10: Histograms of the r-squared of CNN variogram using workflow 2 for training and validation
datasets. The average r-squared value is 0.95.

Figure 3.11: Demonstration of CNN-2 on six synthetic examples. True variogram of the realizations (blue)
and estimated variogram (red). Data augmentation is shown as the red-shaded zone.

well-fitted by a single variogram structure (Figures 3.9 and 3.11); the improvement of CNN-2 is

due to the limitations of workflow 1 for variograms that require two or more structures (Figure

3.9). Workflow 1 could be modified to consider additional variogram structures but the number

of required parameters to predict would quickly grow and would require very large training sets

and training multiple CNNs. Workflow 2 is preferred because it is not limited by the number of

structures, performs better, and has more potential to be extended to 3D.
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Figure 3.12: R-squared for CNN-1 and CNN-2 on six realizations

3.3 Summary

This Chapter proposes two methodologies that involve the use of CNNs to automatically calculate

and model normal score variograms in the major and minor direction of continuity of a given 2-D

dataset. The first methodology, workflow 1, directly predicts the key variogram model parameters,

allowing for the inference of the variogram model. The second methodology, workflow 2, calculates

the normal score experimental variogram at set lag distances. The proposed methodologies involve

creating a training dataset through unconditional SGS realizations, training a CNN, tuning hyperpa-

rameters, conducting sensitivity analysis, and applying data augmentation that could potentially be

considered as uncertainty. The performance of CNN-A in predicting the azimuth is evaluated. The

results show that CNN-A can predict the azimuth of the major direction with an r-squared of 0.998

for the training set and 0.979 for the validation set. The model is further tested on four synthetic

SGS realizations with varying azimuths, and the results demonstrate the ability of the model to

estimate the major direction of continuity. Followed by the evaluation of the performance of CNN-1

in predicting key variogram model parameters, including range in the major and minor directions,

anisotropy ratio, and nugget effect. The results show an r-squared of 0.983 for training in predicting

the range, 0.953 for the anisotropy ratio, and 0.933 for the nugget effect. The model is then inferred

from the predicted variogram model parameters. However, the predictive performance varies across

datasets, indicating the potential limitations of the model in predicting complex variogram struc-

tures. Specifically, when dealing with variograms that require more than one spherical structure

or have a high nugget effect, the accuracy of the model may be compromised. To overcome the

limitations of CNN-1, CNN-2 is implemented, which predicts the experimental variogram from the

data and automatically models it, allowing the possibility of fitting the experimental variogram with
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more than one structure. The results show an average r-squared value of 0.95 when comparing the

predicted experimental variogram with the true experimental variogram of the validation dataset.

The performance of the model is also visualized by comparing the predicted experimental variogram

with the true experimental variogram for six datasets, and the results show a close match between

the two. The results of this chapter demonstrate the potential of CNNs in predicting azimuth, ex-

perimental variograms, and variogram models. However, the limitations of the model in predicting

complex variogram structures are evident. For instance, workflow 1 only predicts a single spherical

structure in 2-D. On the other hand, workflow 2 predicts smooth, robust, and easily modeled exper-

imental variograms but is limited to cases where the nugget effect is lower than 0.3. To overcome

these limitations, a more sophisticated model should be developed that includes additional training

data to cover a wider range of inputs. However, this approach can be computationally expensive.

In Chapter 4 the workflows are tested on real case studies to better understand the performance

and the limitations, allowing to address the challenges posed by complex variogram structures and

computational complexity.
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Chapter 4

Evaluating CNN-Based Workflows for
Variogram Inference: Case Studies and
Performance Analysis
This Chapter presents a series of case studies that evaluate the performance of the two proposed work-

flows for variogram inference using CNNs. Workflow 1 predicts the key variogram model parameters

which allows the inference of the variogram model and workflow 2 predicts the experimental vari-

ogram. To enhance the robustness of the predictions, data augmentation techniques are employed

and could be used in uncertainty modeling. Through these case studies, the predictive accuracy

and limitations of the two workflows are evaluated, considering different datasets and addressing

the challenges involved in variogram inference using CNNs.

• The first case study is based on the Walker Lake dataset (Isaaks and Srivastava, 1989). Three

sets of data are taken from this dataset with different sampling configurations: regular sam-

pling, random sampling, and the originally published sampling (Isaaks and Srivastava, 1989).

• The second case study introduces the data validation data set, where the CNN automatic

variogram inference algorithm is applied to measure prediction accuracy and validate the

performance of the proposed workflows. This project involves 110 geological images, and the

results are categorized into subsets based on their respective MSE values.

4.1 The Walker Lake Dataset

4.1.1 Data Description

The first case study uses the Walker Lake dataset (Isaaks and Srivastava, 1989) which is characterized

by two variables (U and V) measured in parts per million (ppm). The dataset is exhaustively sampled

at a spacing of 1m, with 78,000 points distributed over a 260 x 300 rectangular grid (Figure 4.1).

This domain is sampled at 470 locations. Three sets of data are taken from the Walker Lake dataset

with different sampling configurations : the first set is regularly sampled at about 5 unit spacing,

the second is randomly sampled data, and the third is the originally published sampled data (Isaaks

and Srivastava, 1989).
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Figure 4.1: Location map of the exhaustive variable V

4.1.2 Evaluation of CNN-A on the Walker Lake Dataset

In this Section, the performance of CNN-A in predicting the azimuth of the major direction of

continuity is evaluated using three different sampling configurations of the Walker Lake dataset.

Figure 4.4 displays the location map and histogram of these datasets. To assess the accuracy of

CNN-A, the variogram of the Walker Lake data set is calculated first using the Geostatistical software

library (GSLIB) program Varcalc (Deutsch and Journel, 1998) in eight different directions, separated

by 22.5 degrees (0, 22.5, 45, 67.5, 90, 112.5, 135, and 157.5 degrees), to identify the direction of major

continuity. Figure 4.2 highlights that the direction of 157.5 degrees exhibits the longest continuity

as indicated by its highest range. CNN-A is then implemented on the three sampling configurations,

and data augmentation is applied. The results are summarized in Figure 4.3. In the case of the

regularly sampled data, the CNN predicts a mean estimated azimuth of 160.35 degrees. For the

randomly sampled data, CNN-A predicts 153.8 degrees, and for the original sampled data, it predicts

148.09 degrees, with the original sampling configuration exhibiting the highest uncertainty. CNN-A

performs best with the regularly sampled data, as it closely aligns with the longest range calculated

from the directional variograms.

4.1.3 Evaluation of Workflow 1 on the Walker Lake Dataset

The performance of workflow 1 is evaluated on the Walker Lake dataset (Figure 4.4). Key variogram

model parameters are predicted, and a model is inferred. All predictions are carried out with

normal score units. In the case of the originally sampled data, the CNN estimates a range of 25.88

units in the major direction and 16.66m in the minor direction for the variable V. The estimated

variogram models for variable V in the major and minor directions are plotted and compared to

the automatically fitted variogram model. Experimental variogram points are included for visual
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Figure 4.2: Experimental variogram calculation of the Walker Lake dataset. Identifying the longest
direction of continuity; 157.5 degrees exhibits the longest continuity as indicated by its highest range.

Figure 4.3: Comparison of CNN-A predictions of the azimuth on different sampling configurations of the
Walker Lake with data augmentation. The red dashed lines show the mean predictions for each dataset
configuration.

comparison. For the three sets of samples, the MSE ranges between 0.005 and 0.018. Poor predictive

performance is observed in some variograms (Figure 4.4) because the training of workflow 1 is limited

to one spherical structure and the variable V requires at least two structures. Rotation-based data

augmentation is applied to obtain a set of variogram models (red zone in Figure 4.4). This could be
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used for the examination of variogram uncertainty, but the reasonableness of this uncertainty was

not assessed.

4.1.4 Evaluation of Workflow 2 on the Walker Lake Dataset

Workflow 2 predicts experimental variogram values at different lag distances in the major and minor

directions of continuity determined by CNN-A, summarized in Figure 4.5. MSE using workflow

2 ranges between 0.0017 and 0.0045, a significant improvement over workflow 1 with MSE values

between 0.005 and 0.018. The shaded red area represents prediction using data augmentation. In

comparison to workflow 1, workflow 2 demonstrates a clear improvement in predicting the experi-

mental variograms and is not limited by the number of structures.

4.2 Data Validation Dataset

4.2.1 Data Description

The dataset includes 110 2D geological images, each serving as a diverse case study (Mokdad et al.,

2022). These datasets are derived from RGB geological images, converted to grayscale values (Figure

4.6), and sampled in various configurations to replicate real case studies. The images can be used as

inputs for various geostatistical techniques, allowing researchers and users to benchmark their newly

implemented methods since exhaustive data is provided for each dataset, which is not possible in

real case studies. In this work, data validation images are transformed to normal score units in a

100 by 100 domain size to match the input size of the trained CNN. These images are then used

to predict the experimental variogram and variogram model parameters through workflow 1 and

workflow 2.

4.2.2 Steps

The following Section outlines the steps taken to predict the experimental variogram and variogram

model of the 110 2D images from the data validation dataset:

• Rescale the data to a 100 by 100 domain size to match the input size of the trained CNN.

• Randomly sample the data at 400 locations, generating a set of 110 sampled datasets.

• Generate a subsurface model estimation of the sampled data using inverse distance.

• Apply a normal score transformation of the obtained subsurface model estimation to ensure

compatibility with the trained CNN, as it is trained on normal score data.

• Predict the variogram model by estimating the variogram model parameters for all the trans-

formed data obtained in step 4, using workflow 1 and based on the continuity determined by

CNN-A.
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Figure 4.4: True and estimated variogram models (workflow 1) for variable V in the major and minor
directions.

Figure 4.5: Predicted experimental variogram values (workflow 2) of the three selected datasets of variable
V. Red points are estimated with workflow 2.

• Predict the experimental variogram for all the transformed data obtained in step 4, using

workflow 2 and based on the continuity determined by CNN-A.

• Perform a comparison between the results obtained from workflow 1 and workflow 2.
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Figure 4.6: 2D Visualization of the images of the Data Validation Project (consisting of 110 2D geological
Images)

In summary, the approach adopted in this work to predict the experimental variogram and variogram

model of the 110 2D images using CNN, starts by first rescaling and sampling the data images and

generating subsurface model estimations using inverse distance. These estimations are then used

in two separate workflows: workflow 1 predicts the variogram model parameters, while workflow

2 predicts the experimental variogram. Finally, a comparison is performed between the results

obtained from the two workflows.

4.2.3 Evaluation of Workflow 1 on the Data Validation Project Dataset

In this Section, workflow 1, is demonstrated on the data validation project dataset. The goal is

to predict key variogram model parameters and generate an inferred variogram model based on
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these predictions. To assess the accuracy of the predictions, the MSE value is calculated, which

quantifies the closeness between the predicted model and the experimental true variogram model at

the corresponding lag distances. Figure 4.7 illustrates the results of the proposed workflow 1 when

tested on the data validation project, along with a histogram distribution of the MSE values. In

Figure 4.7, the average MSE value is 0.035. The results are categorized into three subsets based on

their respective MSE values: images with high accuracy (plotted in green) with an MSE lower than

the 25th percentile (P25), images with medium accuracy (plotted in yellow) with an MSE between

the 25th percentile (P25) and the 75th percentile (P75), and images with low accuracy (plotted

in red) with an MSE higher than the 75th percentile (P75). Figure 4.8 showcases an example of

variogram model prediction using workflow 1 for each category, accompanied by the corresponding

MSE value. It is worth noting that cases with a high nugget effect, cases requiring more than one

structure, and cases exhibiting spatial continuity for more than a third of the domain tend to result

in poor predictive performance when using workflow 1.

Figure 4.7: Results of the proposed workflow 1 tested on the data validation project which consists of
110 images collected from geological images along with a histogram distribution of the MSE values. Results
are categorized into high accuracy (green), medium accuracy (yellow), and low accuracy (red) based on the
MSE values.

4.2.4 Evaluation of Workflow 2 on the Data Validation Project Dataset

In this Section, the results obtained from applying workflow 2 to the data validation dataset in

order to predict the experimental variogram are presented. Once the predictions are made, the

MSE values are calculated to evaluate the accuracy of the predicted variogram compared to the true

experimental variogram at the respective lag distances. Figure 4.9 provides an overview of the results

of workflow 2 on the data validation project, along with the histogram distribution representing the

MSE values obtained. Analyzing Figure 4.9, the average MSE value for workflow 2 is 0.0148. Similar

to workflow 1, the results are classified into three subsets based on their corresponding MSE values.

Some images exhibit poor performance, plotted in red. Figure 4.10 shows a representative example of

the experimental variogram prediction using workflow 2 for each category, along with the associated
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Figure 4.8: Example of variogram model prediction using workflow 1 for each category along with its
respective MSE value.

MSE value. It is worth noting that, In the case of workflow 2, high nugget effects above 0.3 contribute

to poor predictive performance.

Figure 4.9: Results of the proposed workflow 2 tested on the data validation project which consists of
110 images collected from geological images along with a histogram distribution of the MSE values. Results
are categorized into high accuracy (green), medium accuracy (yellow), and low accuracy (red) based on the
MSE values.
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Figure 4.10: Example of experimental variogram prediction using workflow 2 for each category along with
its respective MSE value.

4.2.5 Comparative Analysis of the Two Proposed Workflows

Figures 4.11 and 4.12 compare the MSE results of the two workflows, showing their respective per-

formance in predicting the experimental variogram and the variogram model. Comparing workflow

1 and workflow 2, it is evident that workflow 2 has lower MSE values and performs better overall.

While workflow 1 is limited to predicting a single spherical structure, workflow 2 is not restricted

to a specific number of structures. This flexibility allows workflow 2 to achieve better predictive

accuracy. In the case of workflow 1, the results obtained from the data validation project dataset

show an average MSE of 0.035. On the other hand, workflow 2 demonstrates superior performance

on the same data validation dataset. The average MSE value for workflow 2 is 0.015. It should

be noted that both workflows exhibit poor predictive performance when dealing with case studies

that have a nugget effect higher than 0.3. This suggests that high nugget effects pose challenges

to accurate predictions regardless of the CNN workflow used, due to the training data not being

trained to predict such cases. The models are trained on a limited maximum nugget effect of 0.3,

which may not adequately capture the complexity of higher nugget effect cases. As a result, the

ability of the model to generalize predictions on cases with high nugget effects becomes compromised.
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In summary, workflow 2 outperforms workflow 1 with lower MSE values and greater flexibility in

handling multiple structures.

Figure 4.11: Comparison of MSE results for workflow 1 and workflow 2.

Figure 4.12: MSE results comparison between workflow 1 and workflow 2 for each image. Overall, workflow
2 outperforms workflow 1.

Despite CNN-2 having a lower average MSE, CNN-1 outperforms CNN-2, 10 times out of the 110

examples of the data validation project. Figure 4.12 illustrates cases where CNN-1 demonstrates
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superior performance over CNN-2. Six of these cases are plotted in Figure 4.13, providing a com-

prehensive study of when CNN-1 performs better. Figure 4.13 displays the exhaustive variogram,

the variogram predicted with CNN-1, and the variogram predicted by CNN-2, revealing that CNN-1

tends to perform similarly or better when the experimental variograms require only one spherical

structure. For instance, in examples (37, 67, and 102). It is also noted that CNN-1 performs better

in case studies with a nugget effect between 0.3 and 0.4, such as examples (12, 67, 95). This is

because CNN-1 is based on parametric estimation and directly predicts the value of the key vari-

ogram parameters rather than experimental variogram points, which includes predicting the nugget

effect. However, this improvement is not observed above the 0.4 threshold, where both CNN-1 and

CNN-2 result in poor predictive performance such as in example 79. Similarly, cases, where CNN-2

performs better, are plotted in Figure 4.14. For example, numbers 4 and 26 demonstrate that when

the variogram requires two or more structures, CNN-2 performs better. Another example, 101,

shows that even though the MSE is slightly lower for CNN-2, CNN-1 also performs well when the

spatial continuity is less than a third of the domain, has a nugget effect of less than 0.3, and when

the experimental variogram requires only one structure. In such cases, both CNN-1 and CNN-2

are reliable. Additionally, examples 43 and 44 reveal that when spatial continuity is higher than

a third of the domain, CNN-2 tends to perform better. Furthermore, CNN-2 is more suitable for

non-spherical structures than CNN-1, as seen in examples 41 and 43.

Figure 4.13: Comparative analysis of cases where CNN-1 outperforms CNN-2 in variogram prediction.

4.3 Limitations of the Proposed Workflows

This Section discusses the limitations of the proposed workflows for automatic variogram prediction

using CNN. The first limitation studied is the impact of the nugget effect on the predictive perfor-
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Figure 4.14: Comparative analysis of cases where CNN-2 outperforms CNN-1 in variogram prediction.

mance of the model. The second limitation is training the CNN on normal score data instead of

using the original values.

4.3.1 Impact of the Nugget Effect on MSE

In Figure 4.15, the relationship between the nugget effect and MSE values is explored to better

understand its impact on automatic variogram prediction using CNN-2, which is considered the

preferred workflow in this research due to its lower mean MSE than CNN-1. The plot consists of

green dots representing high accuracy and red dots indicating poor predictive performance. The

results are categorized into four groups based on their respective MSE values. In Group A, referred

to as ”High accuracy” the MSE is less than the 25th percentile (P25), indicating low MSE compared

to the other groups, is characterized by a low nugget effect, and serves as the benchmark in this

analysis. Group B, labeled as ”High nugget effect / low accuracy” shows a higher MSE above the

75th percentile (P75) and a high nugget effect, resulting in poor predictive performance. Group

C, referred to as ”Low nugget and low accuracy” demonstrates low accuracy despite having a low

nugget effect. Lastly, Group D, labeled as ”Low accuracy,” has the highest MSE among the four

groups.

Group A, represented by the green dots in Figure 4.15, stands as the benchmark with the highest

accuracy among the four groups. It exhibits an average MSE of 0.0039, which is notably lower than

the mean MSE of all data from CNN-2, which is 0.0148. Additionally, Group A is characterized

by a nugget effect below 0.3. In Figure 4.16, six variogram predictions using CNN-2 are shown,

demonstrating low MSE. The CNN model effectively handles case studies with nugget effects below

0.3. There are two key points to highlight, explaining why the model performs poorly when dealing
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Figure 4.15: Exploring the impact of the nugget effect on CNN-2. The green dots represent data points
with high accuracy, while the red dots indicate poor predictive performance. The results are categorized
into four groups based on their respective MSE values. Group A, ”High accuracy” exhibits low MSE (below
P25). Group B, ”High nugget effect / low accuracy” shows higher MSE and a high nugget effect. Group
C, ”Low nugget and low accuracy” demonstrates low accuracy despite having a low nugget effect. Lastly,
Group D, ”Low accuracy” displays the highest MSE among the four groups.

with examples with a high nugget effect. First, the model is trained to predict variogram ranges

with nugget effects below 0.3. Secondly, the decision to select a nugget effect higher than 0.3 should

be made by the geo-modeler, rather than being assigned automatically. Although occurrences are

rare, it is possible to encounter deposits with a nugget effect exceeding 0.3 (Pyrcz and Deutsch,

2014). Figure 4.17, shows six selected variograms from Group B, characterized by high nugget

effects above 0.3 and low accuracy, clearly illustrating that high nugget effect cases lead to poor

predictive performance.

In Figure 4.18, six variograms are selected from Group C, where despite having a low nugget effect,

it resulted in low accuracy. In Figure 4.18, it is apparent that despite the low nugget effect, the

variograms of Group C rise steeply. The ratio between the nugget effect and the third lag distance

of the variograms of the exhaustive data of Group C, compared to the same ratio for the benchmark

Group A (shown in Figure 4.19). The mean of the ratio for the variograms of Group C, which rise

more steeply, is three times higher than the ratio for the benchmark Group A. This suggests that

overall, CNN-2 results in poor predictive performance when dealing with variograms that rise steeply,

despite two examples that are well predicted in Group A with a ratio higher than 40. Lastly, Group

D, referred to as ”Low accuracy” shows six variograms in Figure 4.20 that exhibit poor performance.

In these cases, the variograms demonstrate zonal anisotropy where they do not reach the sill (Rossi
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Figure 4.16: Variogram predictions for Group A ”High accuracy” - Demonstrating high accuracy and low
MSE compared to the other groups.

Figure 4.17: Variogram predictions for Group B, ”High nugget effect / low accuracy”; six selected vari-
ograms from Group B, where the nugget effects exceed 0.3.

and Deutsch, 2014), as CNN-2 is not trained for cases with zonal anisotropy, leading to data shift

and decreased predictive accuracy.

4.3.2 Prediction of Normal Score Variograms

The output of the two proposed workflows results in a normal score variogram as the training data

are in normal score units. Training a CNN on normal score data, as opposed to using the original

values, offers several advantages. Here are some key reasons why normal score transformation is
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Figure 4.18: Variogram predictions for Group C ” Low nugget and low accuracy” – Reveal a steep rise in
the variogram.

Figure 4.19: Ratio between the nugget effect and the third lag distance of Group C: variograms with steep
rise compared to variograms from the benchmark Group A.

employed in the CNN training of this research:

• Generalization: By bringing the values to a similar range, the optimization algorithm can

more efficiently update the network weights to handle different ranges of case studies. Neural

networks are sensitive to the scale of input data (Nejedly et al., 2019). By normal score

transforming the data, the network is less sensitive to variations. This makes the network

more robust and generalizable.

• Avoiding dominance of large values: If the original values have a wide range, the larger

values can dominate the learning process compared to the smaller values. Normal score trans-

formations ensure that all values are scaled appropriately, preventing any particular value from
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Figure 4.20: Variogram predictions for Group D ” Low accuracy”. These variograms demonstrate zonal
anisotropy leading to poor predictive performance.

dominating others (Kothari and Oh, 1993).

• Compatibility with activation functions: Some activation functions, such as sigmoid or

tanh, are sensitive to the range of input values. Normal score transformations ensure that the

input to these activation functions falls within a reasonable range, allowing them to operate

more effectively (Hao et al., 2020).

It is also worth noting that mining applications are increasingly adopting the normal score variogram

(Pyrcz et al., 2018) for its practical use in modern geostatistical algorithms and softwares.

4.4 Summary

This Chapter presents an evaluation of two CNN-based workflows for variogram inference. Workflow

1 predicts key variogram model parameters, while Workflow 2 predicts experimental variograms. The

case studies involve different datasets, including the Walker Lake dataset and the data validation

project with 110 geological images. The case studies provide insights into the predictive accuracy

and limitations of the workflows. Workflow 1 is limited to a single spherical structure, leading to

some poor predictions. Workflow 2 performs better overall, with higher predictive accuracy since

it is not limited by a fixed number of structures achieving lower MSE values and greater flexibility

in handling variograms that requires multiple structures. CNN-1 performs well when the variogram

requires only one spherical structure, while CNN-2 is more suitable for variograms with multiple

structures. Both workflows are affected by variograms exhibiting zonal anisotropy and case studies

characterized by a high nugget effect.
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The poor predictive performance observed in the limitation section for both workflows is primarily

due to datashift. These workflows demonstrate suboptimal results when tested on variograms that

fall outside the training data, particularly when encountering conditions such as high nugget effect,

range exceeding a third of the domain, zonal anisotropy, and non-spherical structures.

The use of normal score data in CNN training provides advantages such as better generalization,

avoiding dominance of large values, and compatibility with activation functions. Overall, the case

studies provide valuable insights into the performance and limitations of the proposed workflows,

contributing to the understanding of variogram inference using CNNs in geostatistics.
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Chapter 5

Hyperparameter Tuning: Optimizing
CNN Performance for Variogram
Inference
Chapter 5 focuses on hyperparameter tuning in CNNs and the selection of optimal models for

predicting azimuth, key variogram model parameters, and experimental variogram values. The

Chapter begins by providing background information on hyperparameters in CNNs and their impact

on network performance. The hyperparameters discussed include learning rate, number of layers,

kernel size, pooling size, activation functions, and dropout rate. The Chapter then describes the

sensitivity analysis performed on CNN-A (predicting azimuth) and the selection of the optimal

model based on the MSE and the presence of overfitting. Similarly, the process is repeated for CNN-

1 (predicting key variogram model parameters) and CNN-2 (predicting experimental variogram

values). Furthermore, the Chapter explores the selection of appropriate training and validation

datasets for CNNs. The Chapter also investigates the influence of inverse distance parameters on

CNN predictions, as the inverse distance technique is selected to be used as training input data. The

impact of the maximum number of neighboring data to be used and the inverse distance exponent

(power value) on variogram prediction accuracy using CNN are analyzed. Optimal values for these

parameters are determined. Lastly, the sensitivity of CNN performance based on the size of the

training and validation datasets is examined. Different sizes of training and validation data are

tested.

5.1 Hyperparameter Tuning

In CNNs, hyperparameters are settings that are set before the training process begins and affect

the performance of the network (Jin, 2022). Parameters, on the other hand, are learned during the

training process (Avalos and Ortiz, 2019) and represent the weights and biases θ= {W, b} of the

network, with θ representing the parameters, W representing the weights, and b representing the

biases. Hyperparameters in a CNN include:

• Learning rate: Controls the step size at each iteration during the training process (Kingma

and Lei Ba, 2015).

• Number of layers: Determines the depth of the network and its complexity.

• Kernel size: Specifies the dimensions of the filters used for convolution operations.
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• Pooling size: Sets the dimensions of the pooling operation used for downsampling.

• Activation functions: Apply non-linear functions to the output of each neuron to help capture

complex features.

• Dropout rate: Refers to the regularization parameter used in dropout, which is employed to

prevent overfitting.

CNN sensitivity analysis consists of hyperparameter tuning. It involves analyzing how changes

in the values of hyperparameters affect the performance of the CNN (Cardoza et al., 2022). By

adjusting and evaluating different hyperparameter configurations, it is possible to select the settings

that result in the best performance for a given CNN task. In this Chapter, out of the six mentioned

hyperparameters, three are selected for tuning: the number of layers, the kernel size, and the

regularization parameters. These parameters do not have default values, and their optimal values

depend on each specific implementation case. However, the learning rate is kept fixed at 0.0001,

which is the recommended default value for all available optimizers in TensorFlow (Wu and Liu,

2023). Similarly, sensitivity analysis is not performed for the pooling size, instead, the default value

provided by TensorFlow is also used. The default pooling size in TensorFlow is set to 2x2 (Graham,

2014). The choice of a 2x2 pooling size also aligns with common practice in many CNN architectures

(Abdel-Hamid et al., 2014; Avalos and Ortiz, 2020; Jo et al., 2021; Jo and Pyrcz, 2022; Santos et al.,

2021) because it provides a balanced approach between reducing spatial dimensions and preserving

important spatial feature information. While alternative pooling sizes like 3x3 or 4x4 can be used,

they would capture fewer spatial features since pooling layers are used to downsample input feature

maps, thereby reducing their size for better computational efficiency. A larger pooling size would

result in a smaller output.

Regarding the selection of activation functions, the specific choices made in this research are based

on the characteristics of the target output values of each of the three proposed CNNs. For CNN-

A, which predicts the azimuth of the major direction, TanH function is selected. This choice is

motivated by the fact that, during the azimuth prediction process, the CNN model needs to estimate

the cosine and sine of the azimuth angle. The TanH activation function outputs values between -1

and 1, which is suitable for this purpose. In the case of CNN-1, which predicts the key variogram

model parameters, ReLU activation function is selected. The variogram range in the generalized

domain of 100 by 100 falls within the range of 10 to 30. As ReLU activation has no upper limit, it is

appropriate for this task. For CNN-2, which predicts the experimental variogram values at different

lag distances, the sigmoid activation function is selected. This choice is made because the sigmoid

function outputs values between 0 and 1, which aligns well with the standardized experimental

variogram values.
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5.1.1 Hyperparameter Tuning and Model Selection for CNN-A: Predicting

the Azimuth

This Section aims to assess the performance of the proposed CNN model in predicting the azimuth

of the major direction, referred to as CNN-A, by varying the values of the hyperparameters. The

hyperparameters selected for investigation in this study include kernel size, number of convolutional

layers, and dropout rate. As there are no default values for these parameters and the selection of these

values is not fixed and can vary depending on the specific case or application under investigation,

the range of values is determined based on common practices reported in the literature and diverse

previous implementations of CNNs in relevant studies (Avalos and Ortiz, 2020; Cardoza et al., 2022;

Jo et al., 2021; Jo and Pyrcz, 2022; Santos et al., 2021). The specific ranges of values chosen for

each parameter are summarized in Table 5.1.

Table 5.1: Range of hyperparameter values investigated for CNN-A

Hyperparameters
Number of convolutional layers Kernel size Dropout rate

2 layers 2x2 0
4 layers 3x3 0.25
6 layers 4x4 0.5

- 5x5 -

By selecting hyperparameters within their respective ranges, 36 different configurations of the model

are generated. These combinations are tested on 100,000 datasets, with 80,000 used for training

and 20,000 for validation. The number of epochs is set to 100. The criteria for selecting the best-

performing model in predicting azimuth using CNN-A consists of evaluating the MSE on both the

training and validation data, as well as assessing overfitting, which measures the difference between

the errors from the training and validation datasets.

The 36 proposed CNN models are implemented, and the results are presented in Figure 5.1. This

Figure is divided into three main Sections, each corresponding to 12 models with a specific number of

convolutional layers. Models 1 to 12 represent the results of models implemented with 2 convolutional

layers, models 13 to 24 with 4 convolutional layers, and models 25 to 36 with 6 convolutional layers.

Each Section further divides the results into four Subsections based on the kernel size used: models

1 to 3 with a 2x2 kernel, models 4 to 6 with a 3x3 kernel, models 7 to 9 with a 4x4 kernel, and

models 10 to 12 with a 5x5 kernel. Additionally, within each kernel size, the three models differ in

their dropout values. The first model has a dropout value of 0, the second model has a dropout of

0.25, and the third model has a dropout of 0.5.

In Figure 5.1, it is observed that the model with the lowest MSE for the validation data (plotted in

blue) is model 36, with an MSE of 0.029. Similarly, model 36 also achieves the lowest MSE for the

training data, with an MSE of 0.004. However, this model exhibits significant overfitting and cannot

be used reliably. Therefore, the selected optimized model is model 14, which has 4 convolutional
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layers, a 2x2 kernel size, and a dropout value of 0.25. This model demonstrates the lowest MSE

among all the models with minimum overfitting, with MSE values of 0.0318 for validation and

0.0314 for training. It is important to note that a CNN model with the lowest MSE achieved

through hyperparameter tuning may result in overfitting, leading to poor generalization on unseen

data. In contrast, a model with higher MSE but less or no overfitting exhibits better generalization

capabilities, making it more reliable for predictions on new data.

Figure 5.1: Performance of CNN-A with varying hyperparameters for predicting azimuth. The Figure is
divided into three Sections based on the number of convolutional layers, each containing four Subsections
representing different kernel sizes. The optimal model (model 14) offers a balance between accuracy and
minimum overfitting.

In the conducted sensitivity analysis of hyperparameters for the three CNN architectures, the impact

of varying the number of convolutional layers on model performance is studied. Specifically, 2, 4,

and 6 convolutional layers are conducted, and in the case of CNN-1 and CNN-2, the implementation

of 8 convolutional layers is added. During the experimentation with CNN-A, it became evident that

increasing the number of convolutional layers from 4 to 6 led to a significant increase in overfitting.

This is determined by evaluating the difference in the MSE between the training and validation

datasets. To visualize this relationship, Figure 5.2 illustrates the variation in MSE difference (over-

fitting) across different layer configurations. Figure 5.2 demonstrates that augmenting the number

of layers beyond 4 in CNN-A resulted in a notable rise in overfitting. As a result, given the increase

observed between 4 and 6 layers, it is deemed unnecessary to extend the analysis to include 8 layers

for CNN-A. Thus, the hyperparameter tuning process for CNN-A concluded at the maximum of

6-layer configuration. However, for CNN-1 and CNN-2, an extended investigation involving 8 con-

volutional layers is conducted, as there is no significant increase in overfitting observed between 4

is 6 layers.

Among the 36 trained models with different parameter combinations, Figure 5.3 shows the three
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Figure 5.2: Impact of the number of convolutional layers of CNN-A on overfitting; assessing overfitting
calculated based on the difference between the MSE of the training and the validation.

best-performing models that result in minimal overfitting: model 13 (4 convolutional layers, a 2x2

kernel size, and a dropout value of 0), model 14 (4 convolutional layers, a 2x2 kernel size, and a

dropout value of 0.25), and model 15 (4 convolutional layers, a 2x2 kernel size, and a dropout value

of 0.5). Out of the three models, model 14 is considered the optimal model. It achieves the lowest

MSE values for both the training and validation datasets, with an MSE of 0.0314 for training and

0.0318 for validation. The key criteria for selecting the optimized model is the absence of overfitting,

as this ensures the ability of the model to generalize effectively.

Figure 5.3: Comparison of best-performing models of CNN-A with minimal overfitting.

Figure 5.4 demonstrates the three worst-performing models in terms of overfitting: model 34 (6

convolutional layers, a 5x5 kernel size, and a dropout value of 0), model 35 (6 convolutional layers, a

5x5 kernel size, and a dropout value of 0.25), and model 36 (6 convolutional layers, a 5x5 kernel size,

and a dropout value of 0.5). These models exhibit evident overfitting. Although their training MSE

are lower than that of the chosen optimized model (model 14), it is crucial to prioritize generalization

capabilities and avoid overfitting issues. Overfitting occurs when a model excessively fits the training
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data, leading to poor performance on unseen validation data. Thus, despite their lower training

MSE values, these models are not selected as the optimal choice due to their pronounced overfitting

behavior.

Figure 5.4: Comparison of worst-performing models of CNN-A with overfitting.

5.1.2 Hyperparameter Tuning and Model Selection for CNN-1: Predicting

Key Variogram Model Parameters

Similar to CNN-A, the impact of different hyperparameters is investigated on the model perfor-

mance of CNN-1 and CNN-2. The only difference is that CNN-1 and CNN-2 are also tested with 8

convolutional layers, as there is no apparent overfitting between using 4 and 6 layers. Consequently,

this led to the generation of 48 models instead of 36 for CNN-A, as the addition of another value

in the number of layers increased the number of combinations. The specific ranges of values chosen

for each parameter are summarized in Table 5.2.

Table 5.2: Range of hyperparameter values investigated for CNN-1.

Hyperparameters
Number of convolutional layers Kernel size Dropout rate

2 layers 2x2 0
4 layers 3x3 0.25
6 layers 4x4 0.5
8 layers 5x5 -

For CNN-1, 48 different configurations are generated. The model is trained for 100 epochs, and

the MSE is used to evaluate performance. Figure 5.5 shows the MSE on both the training and

validation datasets, as well as overfitting. The model selected for CNN-1 is model 22, which has

4 convolutional layers, a 5x5 kernel size, and a dropout value of 0. This model demonstrates the

lowest MSE among all the models with minimum overfitting, with MSE values of 1.49 for validation

and 1.38 for training.

Figures 5.6 and 5.7 show, respectively, the three best-performing models that result in minimal

overfitting: models 22,23 and 24, and the three worst-performing: models 46, 47, and 48. Out of

the three best-performing models, model 22 achieved the lowest MSE values for both the training
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Figure 5.5: Performance of CNN-1 with varying hyperparameters for predicting the key variogram model
parameters. The Figure is divided into four Sections based on the number of convolutional layers, each
containing four Subsections representing different kernel sizes. The optimal model (model 22) strikes a
balance between accuracy and minimum overfitting.

and validation datasets, with an MSE of 1.38 for training and 1.49 for validation. Considering the

absence of overfitting, model 22 was chosen as the optimal model for CNN-1.

Figure 5.6: Comparison of best-performing models of CNN-1 with minimal overfitting.

Figure 5.7: Comparison of worst-performing models of CNN-1 with overfitting.
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5.1.3 Hyperparameter Tuning and Model Selection for CNN-2: Predicting

the Experimental Variogram

48 different configurations are also generated for CNN-2. The specific ranges of values chosen for

each parameter are summarized in Table 5.3. After training the models for 100 epochs, the optimized

model is selected based on the MSE. Among the 48 trained models with different hyperparameter

combinations, Figure 5.8 displays the evaluation of the performance of CNN2 based on the MSE;

the optimized model selected is model 29.

Table 5.3: Range of hyperparameter values investigated for CNN-2.

Hyperparameters
Number of convolutional layers Kernel size Dropout rate

2 layers 2x2 0
4 layers 3x3 0.25
6 layers 4x4 0.5
8 layers 5x5 -

Figure 5.8: Performance of CNN-2 with varying hyperparameters for predicting the experimental vari-
ogram. The figure is divided into four Sections based on the number of convolutional layers, each containing
four Subsections representing different kernel sizes. The optimal model (model 29) strikes a balance between
accuracy and minimum overfitting.

Figures 5.9 and 5.10 show, respectively, the three best-performing models with minimal overfitting:

models 28, 29, and 30, and the three worst-performing models with overfitting: models 46, 47, and

48. Among the three best-performing models, model 29 exhibited the lowest MSE values for both

the training and validation datasets, with an MSE of 0.00259 for training and 0.00266 for validation.

Consequently, model 29 is selected as the optimal model for CNN-2.
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Figure 5.9: Comparison of best-performing models of CNN-2 with minimal overfitting.

Figure 5.10: Comparison of worst-performing models of CNN-2 with overfitting.

5.2 Dataset Selection for Training and Validating CNN-based

Variogram Prediction

The selection of an appropriate dataset for training and validating a CNN is crucial in constructing

an efficient CNN. As discussed in Chapter 3, the workflow for generating the training data involves

generating multiple unconditional SGS realizations with varying key variogram model parameters

and directions of major continuity. These simulated data are then resampled to reproduce real case

studies. The sampled data, along with their corresponding variogram model parameters, azimuth

of the major direction, and experimental variogram, are used to train the CNNs.

The objective of the proposed CNNs is to predict the key variogram parameters, experimental

variogram, and azimuth from the labeled data of each dataset. By mapping the sampled data

obtained from SGS realizations to their labeled data, CNN learns to predict outputs for unseen

sampled data. However, relying only on sampled data leads to poor predictive performance. To

enhance the ability of the CNN to capture more spatial features, the workflow is based on a two-

stage approach. In the suggested two-stage workflow, subsurface model estimations are generated

and used to train the CNN instead of feeding the network with sampled data alone. This modification

proved to be more effective in improving predictive performance. Several techniques are investigated

for generating subsurface model estimations, including ordinary kriging, inverse distance, k-nearest

neighbor, two-stage CNN, sampled data without subsurface model estimation, and SGS realizations

with labeled variograms used to generate the sampled data.
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However, it is important to address a particular constraint related to ordinary kriging. Ordinary

kriging requires the use of a variogram, but there is no direct access to the variogram when making

predictions for unseen data in real case studies since the purpose of this work is to predict the

variogram itself. Manual calculation of the variogram to generate a kriging estimate that will

be then used to predict the variogram is not feasible, as the goal of this work is to automate

the variogram calculation. To overcome this constraint, ordinary kriging is implemented using an

arbitrary variogram and applied to all the sampled training data. The arbitrary variogram has a

range of 20, a nugget effect of 0.1, and an anisotropy ratio of 2. Choosing a range of 20 grid units is

motivated by the fixed domain size of 100 x 100, used to generalize predictions. The SGS realizations

are generated using a variogram range ranging from 1/10 to approximately 1/3 of the domain size,

equivalent to a range between 10 and 30. The range of 20 is selected since it falls in the middle.

An additional subsurface estimation technique requiring clarification is the two-stage CNN, which

involves two steps and is a modified version of the method proposed by Jo and Pyrcz (2022). First,

a subsurface model estimation is generated using a first CNN that maps the sampled data to an

exhaustive estimation. This CNN is trained using sampled data as the input and SGS realizations as

the target output. Once trained, the two-stage CNN generates a subsurface model estimation based

on the input sampled data. The subsurface estimations generated by the CNN are then used as input

training data to predict the variogram values at pre-set lag distances. By incorporating a two-stage

prediction workflow instead of training a CNN based on only sampled data, the aim is to enhance

the ability of the CNN to learn spatial features and improve its performance. Subsurface model

estimations are generated using the proposed techniques and implemented to predict experimental

variogram values at pre-set lag distances using CNN-2 to select the most efficient technique to

generate the training and validation data.

To evaluate the performance of each estimation technique, MSE of the CNNs are plotted based

on the training and validation data, as shown in Figure 5.11. It is noted that feeding the CNN

with only sampled data resulted in the highest MSE, indicating that this approach is not sufficient

to accurately map the input to the desired output. The best performance is achieved using SGS

realizations as training data. However, despite its superior performance, using SGS realizations as

training data is not feasible due to several reasons. First, these realizations are considered truth and

have the variogram that the main objective is to calculate embedded. Hence, comparing the model

trained on SGS realizations with the other techniques is unfair. Secondly, when testing the model

with unseen data, using SGS realizations is not feasible. This is because the variogram is required

to generate SGS realizations, making it impossible to automatically generate variogram estimation

without prior calculation of the variogram to be able to generate realizations as it is explained

with ordinary kriging. This method is included to generate a baseline for comparing errors rather

than as a feasible method for implementation. Among the estimation techniques considered, the

inverse distance method performes the best, with an MSE of 0.0052 for training data and 0.0056
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for validation. This method is attractive as it does not rely on a variogram and aligns with the

goal of predicting the variogram. Consequently, it is selected as the most suitable for generating

training data in this specific scenario of automatic variogram prediction. However, it is important

to note that this conclusion does not imply that inverse distance is superior to ordinary kriging as

an estimation method. The implementation of kriging in this study is not fair due to the use of

an arbitrary variogram, potentially impacting its efficiency. Therefore, a fair comparison cannot

be made. The decision to use inverse distance for generating training data is specific to the CNN

variogram estimation technique being studied in this research and does not indicate that inverse

distance outperforms ordinary kriging or machine learning estimation using CNNs.

Figure 5.11: Evaluating the performance of estimation and simulation techniques for generating training
and validation data to train the proposed CNN.

5.3 Exploring the Influence of Inverse Distance Parameters on CNN

Predictions

As demonstrated in the preceding Section, the analysis revealed that the implementation of the

inverse distance method is the most suitable proposed technique for generating training data. The

next step is to investigate the sensitivity of the inverse distance method to its key parameters and

its influence on CNN estimations.

One of the key parameters is the inverse distance exponent, also referred to as the power value which

determines the rate at which the influence of the data on the inverse distance weights decreases with

distance (Isaaks and Srivastava, 1989). By adjusting the power value, it is possible to control the

influence of distant data points on the predicted values. A higher power value results in a lower

influence of the distant points, giving more importance to the closest points. A lower power value
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allows more influence of distant points and results in a prediction closer to the mean (Babak and

Deutsch, 2009).

In addition to the sensitivity analysis on the power value, the impact of the number of neighboring

data to be used for the estimation of the accuracy of the CNN predictions is explored. By varying the

number of the maximum data used, it is possible to assess the optimal parameters to automatically

predict a variogram. This analysis provides a relationship between the inverse distance parameters

and the CNN predictive performance.

5.3.1 Impact of Maximum Neighboring Data on Variogram Prediction Using

CNN

To investigate the impact of the maximum number of neighboring data used, multiple training

data sets are generated with different maximum number of data used (n=12, 24, and 48). These

datasets are then implemented in CNN-2 as training and validation data to predict the experimental

variogram for the 110 case studies in the validation dataset. Through a comparative analysis of the

resulting predictions, the aim is to identify the maximum number of data that leads to the lowest

MSE. Figure 5.12 presents the obtained results. The model trained with a maximum number of data

n=48 results in the best performance with an average MSE of 0.0348 across the 110 case studies,

followed by the model trained with n=24 resulting in an average error of 0.0619. The model trained

with n=12 yielded the worst average MSE value of 0.067.

Figure 5.12: Impact of maximum neighboring data used on variogram prediction using CNN-2 applied on
the 110 case studies of the validation dataset: Comparative analysis and optimal training configuration.

60



5. Hyperparameter Tuning: Optimizing CNN Performance for Variogram Inference

In addition to the 110 case studies, the generated CNN models using various maximum numbers of

data are implemented on the Walker Lake dataset to predict the experimental variogram values using

CNN-2. Figure 5.13 presents the predicted variograms compared to the true variogram, accompanied

by a plot illustrating the relationship between the maximum number of neighboring data used and

the MSE. The results align with the implementation of the 110 case studies from the data validation

project, where the model run with n=48 results in the lowest MSE of 0.0017. Based on these findings,

the model trained with a maximum number of data used, n=48, is selected as the optimal choice.

Figure 5.13: Impact of maximum neighboring data used on variogram prediction using CNN-2 applied on
Walker Lake dataset: Comparative analysis and optimal training configuration.

5.3.2 Impact of the Inverse Distance Exponent on Variogram Prediction

Using CNN

This Section investigates the influence of the power value on the accuracy of CNN predictions. To

explore the impact of different power values, the values: 1, 1.7, 2, 2.5, 3, 4, and 6 are considered.

While the most commonly used value is 2, it is important to note that this choice is not obligatory,

and other values can be selected based on the specific requirements of the problem (Babak and

Deutsch, 2009).

Different sets of training data based on the various selected power values are generated. These sets

of training data are then used in CNN-2 to predict the experimental variogram values at different

61



5. Hyperparameter Tuning: Optimizing CNN Performance for Variogram Inference

lag distances. The training dataset resulting in the lowest MSE is selected. Figure 5.14 illustrates

the results obtained from implementing CNN-2 with different power values. The model trained with

a power value of 2 demonstrated the best performance, exhibiting an average MSE of 0.0348. This

result aligns with the commonly used power value of 2 in the inverse distance.

However, the model trained with a power value of 1.7 also achieved a competitive performance,

with an average MSE of 0.03684. This indicates that a slightly lower power value can still provide

accurate predictions. On the other hand, when higher power values are used, the accuracy of the

predictions decreases. The models trained with power values of 2.5, 3, 4, and 6 resulted in average

MSE values of 0.0414, 0.0409, 0.0447, and 0.0462, respectively.

Figure 5.14: Impact of the inverse distance exponent on variogram prediction using CNN-2 applied on the
110 case studies of the validation dataset: Comparative analysis and optimal training configuration.

In addition to the analysis conducted on the 110 case studies from the validation dataset, the

impact of the power value on the accuracy of CNN predictions is also evaluated using the Walker

Lake dataset. The same set of power values (1, 1.7, 2, 2.5, 3, 4, and 6) are considered for this

analysis. Figure 5.15 presents the results obtained when implementing CNN-2 with the different

proposed power values on the Walker Lake dataset. Similar to the findings from the validation

dataset, the model trained with a power value of 2 exhibited the best performance with an MSE

of 0.0017. Based on these results, it can be concluded that the power value of 2 results in optimal

performance in terms of predicting the experimental variogram values using CNN-2.
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Figure 5.15: Impact of the inverse distance exponent on variogram prediction using CNN-2 applied on
Walker Lake dataset: Comparative analysis and optimal training configuration.
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5.3.3 Sensitivity Analysis of CNN-2 Performance Based on

Training/Validation Data Size

In this Section, a sensitivity analysis is conducted for CNN-2 based on the number of training/vali-

dation data used. The selected numbers of data are 1000, 2000, 5000, 10000, 25000, 50000, 75000,

and 100000. Due to computational constraints, the analysis is stopped at 100,000 training data, as

using a larger number is computationally expensive when running CNN. The CNN model used in

the analysis is CNN-2, which predicts experimental variogram values. The training data constitutes

80% of the dataset, while the remaining 20% is used for validation. Figure 5.16 displays the curves

of the training and validation results. It can be observed that the MSE decreases as the number

of samples increases for both curves. However, the training data curve consistently exhibits lower

MSE compared to the validation data curve. Among the different configurations tested, the CNN

model trained using 100,000 data points yielded the best results, with an MSE of 0.0025 for training

and 0.0027 for validation.

Figure 5.16: MSE results of CNN-2 with varying the number of training and validation data.

5.4 Summary

In this Chapter, hyperparameter tuning is performed to optimize the performance of the proposed

CNN models for variogram prediction. Sensitivity analysis is conducted on the number of convolu-

tional layers, kernel size, and regularization parameters. The optimal hyperparameter configurations

are selected based on the MSE and the presence of overfitting.
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For CNN-A, the model with 4 convolutional layers, a 2x2 kernel size, and a dropout value of 0.25

is selected as the optimal model. It demonstrated the lowest MSE values for both the training and

validation datasets, with minimal overfitting. Similarly, for CNN-1, the model with 4 convolutional

layers, a 5x5 kernel size, and a dropout value of 0 is selected as the optimal model. For CNN-2, the

model with 6 convolutional layers, a 3x3 kernel size, and a dropout value of 0.25 is selected as the

optimal model.

The selection of the training and validation dataset is crucial for the performance of the CNN models.

The inverse distance method is found to be the most suitable technique for generating training data.

The impact of inverse distance parameters, such as the power value and the maximum number of

neighboring data, are also investigated. The optimal values were determined to be a power value of

2 and a maximum number of neighboring data of 48.

Furthermore, sensitivity analysis is conducted on the training and validation data size. The analysis

revealed that increasing the training data size led to improved performance with lower MSE values.

However, computational constraints limited the analysis to 100,000 training data.

In conclusion, the hyperparameter tuning process and dataset selection significantly influenced the

performance of the CNN models for variogram prediction. The optimized models demonstrated

improved accuracy and generalization capabilities, making them reliable for predicting experimental

variogram values, key variogram model parameters, and azimuth of the major direction. The findings

from this Chapter provide valuable insights for selecting optimal hyperparameter configurations and

dataset generation techniques for CNN-based variogram prediction tasks.
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Chapter 6

Conclusions
This Chapter outlines the main conclusions drawn from the implementation and application of the

CNN-based methodologies, demonstrating their potential and limitations. The primary objective of

this research is to develop a CNN-based method for automating variogram calculation and model-

ing, with the aims of predicting the major direction of continuity, generating stable experimental

variograms, predicting key variogram model parameters, minimizing user interaction, and reducing

user modeling time. To achieve these goals, two workflows are implemented. The first workflow

involves predicting key variogram model parameters, while the second workflow directly generates a

normal score stable experimental variogram. The computational time when applying the workflows

is minimal because the CNN is pre-trained. The effectiveness and limitations of the methodologies

are discussed along with recommendations and major contributions made in this research.

6.1 Contributions

The workflows offer a CNN-based alternative for automatically calculating the azimuth of the major

continuity and two alternatives for automating variogram inference using CNNs. The first work-

flow involves predicting key variogram model parameters, such as the range of the major direction,

anisotropy ratio, and nugget effect. These predicted parameters are then used to infer the variogram

model. The second workflow directly generates a robust and stable normal score experimental var-

iogram. This variogram is stable and easy to model. This workflow avoids the traditional exper-

imental variogram calculation process and eliminates the need for selecting search and tolerance

parameters. Both workflows simplify the modeling process.

The primary advantage of the program implemented in this research is its generalizability, elimi-

nating the need for retraining on each data set. This is achieved through a pre-trained model that

uses a large training dataset (100,000). Hyperparameter tuning, crucial to the performance of CNN

models, is performed, optimizing the number of layers, kernel size, and dropout rate. The selected

CNN model configurations are based on minimizing MSE and avoiding overfitting.

Several case studies are conducted to assess the performance and predictive accuracy of the im-

plemented workflows. The Walker Lake dataset, presented with different sampling configurations,

and a data validation project involving 110 geological images are used to provide insights into the

strengths and limitations of the methodologies. Workflow 2 is considered the most efficient method-

ology, effectively handling variograms requiring multiple structures.

The data validation images used as case studies are derived from grayscale values of different geo-
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logical images. These images can be used as inputs for various geostatistical techniques, enabling

researchers and users to benchmark their newly implemented methods. Unlike real case studies,

these images provide exhaustive data for each dataset to facilitate validation.

The main contribution of this research is the incorporation of CNNs into geostatistical workflows and

exploring the impact of hyperparameter tunning in CNNs on variogram inference. The implemented

workflows extend beyond traditional variogram calculations.

6.2 Limitations

There are limitations to the implemented approaches. The CNN models can only predict normal

score variograms in 2-D. The current CNN-based approach is designed and implemented for 2-D

datasets. While this is suitable for many geostatistical applications, it may not be directly applicable

to 3-D cases. Extending the approach to 3-D datasets may require significant additional complexities

such as additional training data and computational effort.

CNN-1, designed for predicting key variogram model parameters, is only capable of predicting

a single spherical structure with a maximum range of 1/3 of the domain size and a maximum

nugget effect of 0.3. This restricts its applicability to datasets where the spatial continuity can

be accurately modeled with a single structure, limiting the generalizability of the model. Datasets

with complex spatial structures requiring multiple nested structures cannot be effectively modeled

using the current version of CNN-1. Additionally, CNN-2, which predicts normal score experimental

variograms, results in poor predictive performance with variograms with a high nugget effect and

zonal anisotropy.

The performance of the CNN models is sensitive to the selection of hyperparameters. While the

study in Chapter 5 performed hyperparameter tuning, there is still a possibility that some specific

configurations may not have been explored exhaustively, leading to suboptimal model performance.

Further research and exploration of hyperparameters could improve model accuracy and robustness.

The performance of the CNN-based approach is highly dependent on the variability of the training

dataset. If the training data is limited or does not sufficiently represent the target dataset, the

predictions may exhibit bias. This is particularly evident when implementing CNN-2 in cases with

high nugget effects, zonal anisotropy, variograms showing a steeper rise, and variograms requiring

more than one structure for CNN-1. Both models are not trained for such cases, resulting in poor

predictive performance.

6.3 Future Work

The CNN-based approach could be extended to 3-D, which would increase the applicability of the

model to a wider range of geostatistical case studies. This would, however, require substantial

computational power and a higher number of training data to ensure robust and accurate predic-
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tions. Although an extension of CNN-2 applied to 3-D datasets is presented in Appendix 2. This

extension involves predicting the experimental variograms of 3-D datasets in the horizontal direction

(horizontal minor/horizontal major) for each stratigraphic layer.

Future work should focus on the enhancement of the training dataset. To improve model flexibility,

modifications to CNN-1 should be made to allow it to predict multiple nested structures, accom-

modating datasets with complex spatial continuity. The complexity of variograms could be further

addressed by developing and training a more advanced CNN-1 model that can handle multiple

nested structures, instead of a single structure. This would enhance the capability of the model

to predict complex spatial continuity and improve its overall predictive performance. To improve

the performance of CNN-2, the training data should include cases with high nugget effects, zonal

anisotropy, and steep variograms. This approach will help the model better capture spatial patterns,

contributing to its improved performance. Employing a wider variety of datasets would improve

the overall predictive performance of both models. Although computationally expensive, adding

additional training data, in this case, would address the limitations. Future research could also aim

to explore more hyperparameter configurations, optimizing model performance by conducting more

exhaustive hyperparameter tuning.

6.4 Final thoughts

The CNN workflows explored have the potential to be efficient for real data if enough samples are

available and if the variables under analysis are within a stationary domain. The first explored

workflow, CNN-1, can be particularly useful for predicting key variogram model parameters and

inferring the normal score variogram model for cases of spatial continuity that require a single

spherical structure with a maximum range of 1/3 of the domain and a nugget effect of less than 0.3.

For cases requiring one or more nested structures with a nugget effect of less than 0.3 and no zonal

anisotropy, the second workflow, CNN-2, is recommended. CNN-2 is the preferred workflow due to

its lower error and its applicability in cases requiring one or more nested structures. The workflows

reduce user modeling time and can be used as an initial model or scripted into a fully automated

simulation/estimation workflow. However, to effectively apply this technique and carefully predict

the variogram, it is crucial to consider and understand the geological factors that play a major role

in the variogram modeling process.
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Appendix A

Appendix A: Subsurface Model
Estimation Using CNN
Appendix A presents methodology and results for automating subsurface model estimation using

CNNs from sampled data. The objective of this technique is to automate the estimation process,

minimize parameter selection, and reduce modeling time. The methodology consists of two main

steps:

• Design and generation of the training data

• Training a CNN

To demonstrate the performance of the proposed methodology, it is applied to the Walker Lake

dataset. The model generated by the CNN is compared to the exhaustive data, and the difference

between the estimated values and the truth is evaluated.

A.1 Methodology

The methodology implemented in this study is similar to the method proposed by Jo and Pyrcz

(2022) but several changes have been made. These changes include incorporating the influence of

the nugget effect during training data generation and modifying the CNN architecture by adjusting

the number of layers, kernel size, and the type of activation function. The proposed CNN method

in this workflow automates the process and eliminates the need for variogram calculations, reducing

the number of parameters required for estimation. The workflow is divided into two steps: the

design and generation of the training data, followed by the second step, which involves training a

CNN.

A.1.1 Step 1: Design and Generation of the Training Data

To generate the training and validation data, 1000 SGS realizations using the input data are gen-

erated. These realizations are created using different combinations of variogram parameters (Table

A.1). For each combination, random values are chosen for each parameter.

For the azimuth, 1000 values are randomly generated and then one value from this set is selected for

each combination. The chosen azimuth values fall within the range of 0 to 180 degrees. Similarly,

the range values are determined to be approximately within 1/10 to 1/3 of the domain size, which is

128 by 128, resulting in range values between 10 and 40. Additionally, 1000 anisotropy ratio values
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between 1 and 3 are selected, and the nugget effect values are chosen to be between 0 and 0.3. It

is worth noting that all of the variograms used in the realizations have a single spherical structure

(Figure A.1). The SGS realizations are then sampled. The CNN is trained using sampled data as

the input and SGS realizations as the target output.

Table A.1: Details of the variogram model parameters used to train the CNN models.

Variogram model parameter Values
Major direction of continuity Between 0 and 180 (degrees)
Range in the major direction Between 10 and 40 (grid cells)

Anisotropy ratio Between 1 and 3
Nugget effect Between 0 and 0.3
Structure Spherical

Number of nested structures 1

Figure A.1: Variogram parameters for generating realizations used as training data.

A.1.2 Step 2: Training a CNN

To map sparsely sampled data to subsurface model estimation, the CNN is trained using the gen-

erated training data. The dataset of 1000 realizations is divided into 800 samples for training and
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200 for validation. The generated data is then fed into the CNN network, enabling the training of a

model for generating subsurface model estimations. The CNN architecture (Figure A.2 and Table

A.2) contains 5 convolutional layers, one dense fully connected layer, and 4 upscaling layers. A ker-

nel size of 2x2 and an upscaling factor of 2x2 are used, along with the sigmoid activation function,

selected through hyperparameter tuning to obtain the best model. Once trained, this model can

predict subsurface model estimation using input sparsely sampled data, eliminating the need for

prior calculation of a variogram.

Figure A.2: Architecture of the proposed CNN used to predict a subsurface model estimation.

A.2 Application of the Proposed CNN Methodology

The proposed methodology is applied to the Walker Lake to demonstrate its feasibility and assess its

accuracy. Figure A.2 illustrates the sampled data from the Walker Lake dataset. Figure A.4 displays

the subsurface model estimation generated by the proposed CNN model, the exhaustive data and

the difference map that indicates the error between the target truth and the estimation. Figure A.5

showcases data reproduction. It is important to note that the proposed CNN technique does not

reproduce the data at their locations but demonstrates a correlation of 0.871. While the mean of

the sampled data is fairly reproduced by the CNN technique, it tends to overestimate. The mean of

the sampled data is 0.28, whereas the mean of the data at the sampled data location predicted by

the CNN is 0.3. As the Walker Lake dataset also includes exhaustive data, a comparison between

the truth and the predicted value by the CNN is conducted (Figure A.6), resulting in a correlation

of 0.746 and an Root Mean Square Error (RMSE) of 0.115.
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Table A.2: The proposed architecture of CNN used to predict a subsurface model estimation.

Layer type Output shape Number of parameters involved
Fully connected dense layer (1024) 482304

Reshape (8,8,16) 0
2D upsampling (16,16,16) 0
2D convolution (16,16,16) 1040

Activation function (ReLU) (16,16,16) 0
2D upsampling (32,32,16) 0
2D convolution (32,32,16) 1040

Activation function (ReLU) (32,32,16) 0
2D upsampling (64,64,16) 0
2D convolution (64,64,8) 520

Activation function (ReLU) (64,64,8) 0
2D upsampling (128,128,8) 0
2D convolution (128,128,4) 132

Activation function (Sigmoid) (128,128,4) 0
2D convolution (128,128,1) 17

Output (128,128,1)

Figure A.3: Walker Lake dataset.

Figure A.4: Subsurface model estimation using CNN compared to the truth and error map.
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Figure A.5: Accessing data reproduction using the CNN estimate.

Figure A.6: Comparison of truth and CNN predictions.

A.3 Summary

A methodology for automating subsurface model estimation using CNNs is presented. The objective

of this technique is to reduce parameter selection and eliminate the need for variogram calculations,

thereby minimizing modeling time. The methodology consists of two main steps: generating training

data and training a CNN model. To demonstrate the practicality and accuracy of the proposed

methodology, it is applied to the Walker Lake dataset. The CNN-generated subsurface model

estimation is compared to the exhaustive data, and the difference between the estimated values and

the truth is evaluated. The results showed a correlation of 0.746 and an RMSE of 0.115. However,

the main limitation of this workflow is that it does not reproduce the data.
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Appendix B: Application of the
CNN-Based Approach on a 3D Synthetic
Dataset
Appendix B presents a CNN-based method for automatically predicting the azimuth of the major

direction of contunity and computing the experimental variogram of a 3-D dataset. A synthetic

dataset using SGS is used to demonstrate the workflow. The 3-D model is sliced into 2-D layers

along the vertical direction (stratigraphic layers), and the pre-trained 2-D CNN model predicts the

azimuth and the variograms for each sliced layer. The average variogram is then selected as the

most representative. The vertical variogram is calculated using a semi-automatic program. This

approach uses the pre-trained CNNs implemented in this research, making it applicable to 3-D

datasets without the requirement of training new CNN models or adding additional training data.

The accuracy of the approach is evaluated by comparing the calculated variograms with the true

variograms.

B.1 Methodology

The steps of the proposed method are as follows:

• Data set creation: A three-dimensional dataset is simulated using SGS with an extension of

100 x 100 x 100 nodes. The dataset is sampled at 5-unit spacing in the X and Y directions and

1-unit spacing in the vertical direction. The simulation is based on a one-structure spherical

variogram with a major direction of continuity of 160 degrees, a range of 30 in the major

direction, a range of 20 in the minor direction, and a nugget effect of 0.01. Figure B.1 represents

the generated unconditional 3-D model.

• Slice the 3-D model: The sampled 3-D model is initially sliced along the vertical direction into

100 horizontal 2-D models. Each of these slices represents a distinct 2-D layer of the data.

• Azimuth and variogram prediction for horizontal directions: For each sampled slice, inverse

distance is applied. The generated inverse distance estimates for each layer are then used

to predict the azimuth and experimental variogram in both the major and minor horizontal

directions using respectively CNN-A and CNN-2.
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Figure B.1: Unconditional 3-D model generated using SGS. The model represents a synthetic dataset with
a size of 100 x 100 x 100 nodes, based on a one-structure spherical variogram, characterized by a major
direction of continuity of 160 degrees, a range of 30 units in the major direction, a range of 20 units in the
minor direction, and a nugget effect of 0.01.

• Obtaining the representative horizontal variogram: To obtain the most representative horizon-

tal variogram for both major and minor directions, the average of the predicted variograms

for all the layers is computed, resulting in the most representative variogram.

• Vertical variogram calculation: The vertical variogram can be easily calculated using Varcalc

(Deutsch and Journel, 1998) since the data is sampled at one unit spacings in the vertical

direction. The densely sampled data can obtain a stable variogram in the vertical direction.

• Comparison with the true variograms: The horizontal variograms in both major and minor

directions are automatically calculated using CNN-2. These calculated variograms are then

compared to the true variograms obtained from the exhaustive data. Since the data in this case

is synthetically generated, there is access to the truth. Additionally, the calculated variograms

are also compared to the sampled variogram.

Using the pre-trained models from this research to predict variograms in 2-D, this approach is

extended to 3-D datasets without training a 3-D CNN, thus eliminating the need to augment the

number of training data with new components such as the vertical variogram.
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B.2 Results

The azimuth of the major direction of each layer is predicted in 2-D using the pre-trained CNN-A

model proposed in this thesis. In Figure B.2, the histogram displays the distribution of the 100

predicted azimuths, which correspond to the predicted azimuths of each layer extracted from the

3-D model. The average of all the predicted azimuths is computed, resulting in a value of 159.97.

The 3-D synthetic model is generated with a major direction of continuity set at 160 degrees. The

range of predictions varies from a minimum of 137.84 to a maximum of 178.05.

Figure B.2: Distribution of the predicted azimuth for 100 layers Using CNN-A. The histogram displays
the values of the predicted azimuths, with an average of 159.97. The 3D synthetic model is generated with
a major direction of continuity set at 160 degrees.

The variograms of each layer are predicted in 2-D, considering both major and minor horizontal

directions of continuity, using the pre-trained CNN-2 model implemented in this thesis. Figures B.3

and B.4 illustrate the results of 20 out of the 100 predicted experimental variograms in the major

and minor directions, respectively. These 100 variograms correspond to the predicted variograms of

each layer. To obtain the most representative variogram, the average of all the predicted variograms

is computed. Figures B.5 and B.6 present respectively the results of the average generated variogram

from the CNN prediction, compared to the variogram of the truth, both in the major and minor

directions of continuity. Additionally, the vertical experimental variogram is calculated (Figure B.7).

B.3 Summary

Appendix B introduces a CNN-based method for predicting the azimuth of the major direction and

computing the experimental variogram of a 3-D dataset. It involves generating a synthetic dataset

using SGS, slicing it into 2-D layers, and using a pre-trained CNN model to predict variograms for
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Figure B.3: Results of the CNN predicted variograms for 20 layers in the major direction. For display
purposes, only 20 variograms are plotted, although 100 variograms are estimated. The plotted variograms
are selected by taking one variogram for every 5 layers, starting from layer 4 and ending with layer 99.

each layer. The azimuth and the average variogram are then selected as the most representative

ones. The approach offers an automatic way to calculate variograms in horizontal directions without

training a new 3-D CNN.

81



B. Appendix B: Application of the CNN-Based Approach on a 3D Synthetic Dataset

Figure B.4: Results of the CNN predicted variograms for 20 layers in the minor direction.

Figure B.5: Comparison of the average CNN predicted variogram and true variogram in the major direc-
tion.
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Figure B.6: Comparison of the average CNN predicted variogram and true variogram in the minor direc-
tion.

Figure B.7: Vertical experimental variogram.
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Appendix C: Code Availability
The notebooks used to generate the results are available in the GitHub repository:

Generating training data and training a CNN:

https://github.com/Karim-Mokdad/Automatic-Variogram-Inference-Using-Pre-Trained-Convolutional-

Neural-Networks

Testing CNN with the Walker Lake dataset:

https://github.com/Karim-Mokdad/Testing-CNN-with-the-Walker-Lake-dataset

84

https://github.com/Karim-Mokdad/Automatic-Variogram-Inference-Using-Pre-Trained-Convolutional-Neural-Networks
https://github.com/Karim-Mokdad/Automatic-Variogram-Inference-Using-Pre-Trained-Convolutional-Neural-Networks
https://github.com/Karim-Mokdad/Testing-CNN-with-the-Walker-Lake-dataset

	Introduction
	Problem Setting and Background
	Thesis Statement
	Thesis Outline

	Literature Review and Background
	Variogram Calculation and Modeling
	Convolutional Neural Networks
	CNN building blocks
	Training Process of a CNN:

	Summary

	Automatic Variogram Inference with Convolutional Neural Networks
	Methodology and Proposed Techniques
	Training Data Creation
	CNN Training
	CNN Hyperparameter Tuning and Sensitivity Analysis
	Application of Data Augmentation (Rotation)
	Model Testing Using a Case Study

	Results and Discussions
	Prediction of the Azimuth of the Major Direction (Performance of CNN-A)
	Parametric Modeling: Estimating Variogram Model Parameters (Performance of CNN-1)
	Prediction of the Experimental Variogram (Performance of CNN-2)
	Comparison Between the Results of Workflow 1 and Workflow 2

	Summary

	Evaluating CNN-Based Workflows for Variogram Inference: Case Studies and Performance Analysis
	The Walker Lake Dataset
	Data Description
	Evaluation of CNN-A on the Walker Lake Dataset
	Evaluation of Workflow 1 on the Walker Lake Dataset
	Evaluation of Workflow 2 on the Walker Lake Dataset

	Data Validation Dataset
	Data Description 
	Steps
	Evaluation of Workflow 1 on the Data Validation Project Dataset 
	Evaluation of Workflow 2 on the Data Validation Project Dataset 
	Comparative Analysis of the Two Proposed Workflows 

	Limitations of the Proposed Workflows 
	Impact of the Nugget Effect on MSE
	Prediction of Normal Score Variograms

	Summary

	Hyperparameter Tuning: Optimizing CNN Performance for Variogram Inference
	Hyperparameter Tuning
	Hyperparameter Tuning and Model Selection for CNN-A: Predicting the Azimuth
	Hyperparameter Tuning and Model Selection for CNN-1: Predicting Key Variogram Model Parameters
	Hyperparameter Tuning and Model Selection for CNN-2: Predicting the Experimental Variogram

	Dataset Selection for Training and Validating CNN-based Variogram Prediction
	Exploring the Influence of Inverse Distance Parameters on CNN Predictions
	Impact of Maximum Neighboring Data on Variogram Prediction Using CNN
	Impact of the Inverse Distance Exponent on Variogram Prediction Using CNN
	Sensitivity Analysis of CNN-2 Performance Based on Training/Validation Data Size

	Summary

	Conclusions
	 Contributions
	Limitations
	Future Work
	Final thoughts

	References
	Appendix A: Subsurface Model Estimation Using CNN
	Methodology
	Step 1: Design and Generation of the Training Data
	Step 2: Training a CNN

	Application of the Proposed CNN Methodology
	Summary

	Appendix B: Application of the CNN-Based Approach on a 3D Synthetic Dataset
	Methodology
	Results
	Summary

	Appendix C: Code Availability 

