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Abstract 

This thesis sets out a workflow to quantify uncertainty of the Arrow Deposit, a tabular, vein type, high-

grade, basement-hosted, uranium deposit located on NexGen Energy Limited’s 100%-owned Rook I 

property in northern Saskatchewan. The uncertainty associated with the volume, grade, and density 

variables of the deposit are the focus of the study, as these variables define the overall metal content of 

the deposit, the largest input to project economics. 

In the study domain, the grade variable is exhaustively sampled at all drill hole locations, but the density 

variable is missing at approximately 82% of the drill hole locations and biased to high-grade intercepts. 

Effort was taken to make an interim debiased homotopic representative dataset through a simple 

imputation process that selected density values from the global deposit-wide dataset. Two uncertainty 

models were created for the grade and density variables using the representative dataset: a multivariate 

spatial bootstrap model and a density-imputed model using a Gaussian Mixture Model built on the 

representative dataset, followed by decorrelation via Projection Pursuit Multivariate Transformation and 

independent grid Sequential Gaussian Simulation. The multivariate spatial bootstrap model provided an 

assessment of uncertainty of the histogram parameters while considering the spatial correlation between 

the variables at data locations. The imputation and simulation process features the transfer of the 

uncertainty associated with the missing values of the original dataset while accounting for the biased 

nature of the dataset. 

Volume uncertainty was quantified by assessing: the uncertainty of the thickness perpendicular to the 

plane of continuity via a geometry imputation process, and the uncertainty of the boundary in the plane 

of continuity via an indicator estimate. The two assessments of domain uncertainty were combined to 

output volume uncertainty. The volume, grade, and density uncertainty models were combined into a 

single model; this uncertainty model will be used as the basis to evaluate mine output uncertainty with 

the mine design as the transfer function.  

The metal content of the Arrow Deposit is most sensitive to changes in volume due to the extreme high-

grade nature of the deposit, therefore the Boundary model, which has a large range of possible volumes 

(and range in the determination of ore/not ore), contributes the most to the metal content uncertainty. 

The Grade/Density model also significantly contributed to the metal content uncertainty, which is 

credited to the short-range variability of the variables. The thickness perpendicular to the plane of 

continuity model provided additional uncertainty to the metal content, but to a much lesser degree as the 

range of possible volumes associated with the model were relatively small. 
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Chapter 1 

1. Introduction 

In this thesis, multivariate workflows with accompanying implementation details are demonstrated on a 

case study, the Arrow Deposit. The Arrow Deposit is a high-grade, narrow-vein, basement hosted 

uranium deposit that has undergone rapid development since discovery in 2014 through aggressive and 

systematic drilling programs. The Project will be developed through transverse and longitudinal longhole 

mining methods, pairing primary and secondary stoping techniques with a high degree of equipment 

mechanization.  

The quantification of resource uncertainty at the Arrow Deposit will undoubtedly aid in decision-making 

as the project progresses through planning through to construction and extraction. This chapter describes 

the motivation for the thesis, the project, the study domain, and provides an outline to the thesis.  

1.1 Motivation 

Mining is a capital-intensive endeavour, and the viability of prospective mining operations relies on a 

sequence of engineering decisions. Understanding the uncertainty associated with the material to be 

mined can inform the engineering decisions. Geostatistical techniques, if applied correctly, can be used 

to quantify the uncertainty of the deposit. NexGen is currently approaching major engineering 

milestones, including detailed design; decisions are necessary to advance the project which can be 

informed with an uncertainty model. 

The metal content at the Arrow Deposit is the largest input to project economics and is the focus of the 

enclosed uncertainty study. The metal content uncertainty is quantified through the assessment of 

uncertainties associated with density, grade, and volume. The main goal is to apply appropriate 

geostatistical techniques to quantify the uncertainty of key variables to provide an accurate and precise 

representation of the metal content uncertainty at the Arrow Deposit.  

There are challenges to quantifying uncertainty for the Arrow Deposit. The highly correlated grade and 

density variables are heterotopically observed in the study domain dataset, with the grade variable being 

exhaustively collected at all sample locations, but the density values are missing at 82% of the sample 

locations and biased to high-grade intercepts. The dataset requires debiasing and the missing data should 

be accounted for to ensure a representative uncertainty model is created.  
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Assessing the volume uncertainty of the Arrow Deposit is important for understanding metal content 

uncertainty, as the metal content is sensitive to changes in volume due to the extreme high-grade nature 

of the deposit. The volume uncertainty can be assessed by determining the uncertainty of the domain 

position and thickness perpendicular to the plane of continuity, and the uncertainty of the boundary in 

the plane of continuity. Appropriate techniques are needed to assess these uncertainties. One challenge 

is that the vertical nature of the deposit facilitated delineation drilling from either side of the deposit but 

did not allow for the assessment of true domain thickness due to the drill holes intersecting the 

mineralization at oblique angles. The inclined drill holes provide known coordinate points defining the 

hanging wall (HW) and footwall (FW) limits of each domain, but FW and HW position uncertainty exists 

distal to the known points. The location of hangingwall and footwall position is important to global metal 

content uncertainty, but also to the positioning of the individual stopes. Optimizing each stope position 

will undoubtedly improve the economics of the mine. 

The objective of the thesis is to develop a multivariate workflow with appropriate geostatistical 

techniques that can be used to create an uncertainty model for the deposit. The workflow is tested on a 

study domain to ensure data is reproduced. 

1.2 Project Overview 

NexGen Energy Limited’s (NexGen) 100%-owned Rook I Project (Project) is situated in the Athabasca 

Basin, the highest-grade uranium district in the world, and hosts the high-grade Arrow Deposit, the 

largest undeveloped uranium resource in the basin. The Project is currently progressing through 

advanced engineering and permitting with a proposed new uranium mining and milling operation, 

including underground and surface facilities to support the extraction and processing of uranium ore 

from the Arrow Deposit. The Project is located on the southwest edge of the Athabasca Basin, 

approximately 40 km east of the Saskatchewan-Alberta border, 130 km north of the town of La Loche, 

and 640 km northwest of the city of Saskatoon.  

The following description of the local geology to the Arrow Deposit has been summarized from Hillacre 

et al. (2020). The Arrow Deposit is hosted in the Paleoproterozoic basement rocks of the Taltson Domain 

(Figure 1.1). The bedrock geology is comprised of variably silicified and metasomatized intermediate to 

mafic orthogneisses. Local mafic-rich amphibolite and pyroxenite, ultrabasic and syenitic dykes, and 

porphyroblastic feldspar- and quartz-rich pegmatites intrude the gneissic granulite facies rocks. The main 

fabrics and contacts of crystalline basement rocks in the Arrow Deposit area are all steeply dipping, 

dominantly southeast, with a northeast southwest strike. Basement rocks are unconformably overlain by 

late Paleoproterozoic to Mesoproterozoic Athabasca Supergroup sandstones of variable thickness, rarely 
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exceeding 50 m. Devonian and/or Cretaceous sedimentary rocks overlie the Athabasca sandstones, with 

Quaternary glacial deposits capping the geologic sequence and forming the present-day topography.  

 

Figure 1.1: (A) Lithostructural domains of northern Saskatchewan and Alberta illustrating the major 

components of the Churchill Structural Province of the Precambrian Shield and overlying Phanerozoic 
cover. (B) Cratonic map of western Laurentia showing Figure 5A (dashed box) in context of continent-

scale tectonics (Hillacre et al., 2020). 

After discovery of the Arrow Deposit in February 2014, mineral resource estimates were completed in 

2016, 2017, 2018, and 2021, each supported by successive systematic diamond drill programs. The latest 

mineral resource estimate was publicly released on February 22nd, 2021, coincident with the release of 

the Rook I Project Feasibility Study (FS). The deposit is currently interpreted to consist of several high-
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grade, near-vertical, uranium veins within at least six reactivated high-strain zones, known as the A0 

through A5 Shears (Figure 1.2). The heterogeneous high strain zones hosting the Arrow Deposit evolved 

through episodic reactivation events creating various small-scale brittle fault linkages oblique to, and 

connecting, the main fault zones (Hillacre et al., 2020). The main uranium-bearing mineral present at the 

Arrow Deposit is uraninite, whereas secondary uranium minerals such as coffinite or uranophane may 

partially or wholly replace uraninite (Hillacre et al., 2020). The mineralized area is 315 m wide with an 

overall strike of 980 m. Mineralization occurs 100 m below surface and extends to a depth of 950 m. The 

individual shear zones vary in thickness from 2 m to 60 m. The mineralized shear zones defining the 

Arrow Deposit comprise part of the Patterson Lake structural corridor, which is host to several other 

uranium deposits or showings, such as: Fission Uranium’s Triple R deposit; NexGen’s South Arrow 

Discovery, Harpoon Discovery, and Bow Occurrence; and Purepoint’s Spitfire Deposit (Figure 1.3). 

 

Figure 1.2: Plan view and oblique view of the current mineral resource wireframes. The blue, green, 

purple, red, and yellow wireframes denote the mineralization in the A0, A1, A2, A3, and A4/A5 Shears, 

respectively. Scale in metres. 
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Figure 1.3: Plan view of the southwest Athabasca Bain showing various structural corridors, relevant 

mineral dispositions, and uranium deposits and/or showings.  

The latest mineral resource estimate states that the Arrow Deposit has measured mineral resources of 

209.6 million (M) pounds (lbs) of triuranium octoxide (U3O8) contained in 2,183 kilotonnes (kt) grading 

4.35% U3O8, indicated mineral resources of 47.1 M lbs of U3O8 contained in 1,572 kt grading 1.36% 

U3O8, and inferred mineral resources of 80.7 M lbs of U3O8 contained in 4,399 kt grading 0.83% U3O8 

(Hatton et al., 2021). The measured and indicated mineral resources are supported by geostatistical drill 

hole spacing studies. In 2017, Clayton V. Deutsch Consultants Incorporated completed a geostatistical 

drill hole spacing study, evaluating the uncertainty of thickness, grade, density, and areal limit of the 

Arrow Deposit to determine a drill hole spacing suitable for indicated mineral resources. Indicated 

spacing was defined to be 24 to 32 metres (“m”) to be within 15% of predicted for a nominal quarterly 

production volume with a probabilistic tolerance between 75 and 90% (Figure 1.4; Wilde & Deutsch, 

2017). A subsequent geostatistical drill hole spacing study on the Arrow Deposit was completed by 

Resource Modeling Solutions in December 2018 to define measured mineral resource spacing in support 

of the 2019 drill campaign. The study resulted in a drill hole spacing of 9.00 to 16.75 m to be within 15% 

of predicted for monthly and quarterly production volumes using a probabilistic tolerance of 90% (Figure 
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1.5; Barnett & Deutsch, 2018). The measured and indicated mineral resources are limited to the A2 and 

A3 Shears and were used as the basis for the FS mine design (Figures 1.6). 

 

Figure 1.4: Graph showing the drill hole spacing of 24 to 32 m to have a probabilistic tolerance 

between 75 and 90% to be within 15% of predicted for a nominal quarterly production volume (Wilde 

& Deutsch, 2017). 

 

Figure 1.5: Graph showing a drill hole spacing of 9.00 to 16.75 m to be within 15% of predicted for 

monthly and quarterly production volumes (as per the Pre-Feasibility Study) at a probabilistic tolerance 

of 90% (Barnett & Deutsch, 2018). 
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Figure 1.6: Plan view and oblique view (looking north) of the currently defined measured and indicated 

mineral resources. The purple and red denote the A2 and A3 Shear Zones, the transparent portions of the 

wireframes signify indicated mineral resources, and the opaque portions demarcate measured mineral 

resources. Scale in metres. 

The mine design and milling process described below are summarized from the FS technical NI 43-101 

report (Hatton et al., 2021). The FS proposes two longhole mining methods, transverse and longitudinal 

stoping, to extract ore from the deposit (Figure 1.7). The stopes are to have a 30 m level spacing and a 

nominal stope strike length of 15 metres to 30 metres. The mine design predicts a 10.7-year mine life 

with an average daily throughput of 1,300 tonnes per day and average annual production of 21.7 M lb 

U3O8. The deposit is to be accessed by two shafts, both located in the footwall of the deposit (Figure 

1.7). One shaft will be used as a production shaft, and for transportation of personnel and materials into 

the mine. The production shaft will have divided compartments so that fresh air that encounters ore being 

skipped to surface will be immediately exhausted within the mine preventing radiation exposure to any 

personnel. The production shaft will also have a permanent headframe and hoisting house (Figure 1.8). 

The second shaft will be used as an exhaust ventilation shaft. The ore will be crushed underground and 

transported to the grinding mill on surface. The ore, after being reduced to a suitable size, will be 

transported to the leaching circuit to oxidize, and dissolve the uranium that is present in the ore solids. 

A counter current decantation circuit will wash the uranium-bearing solution from the barren leached 

residue. The residue is routed towards disposal while the pregnant aqueous solution reports to the solvent 

extraction circuit for uranium purification. The purified uranium is then precipitated as yellowcake 

through the addition of hydrogen peroxide. The yellowcake will be dried in a calciner and packaged in 

200 litre steel drums. Tailings generated from the mill processes will be used as cemented paste backfill 
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of stopes, as well as stored in purpose-built Underground Tailing Management Facility (UGTMF) 

comprised of several dedicated chambers (Figure 1.7). 

 

Figure 1.7: Oblique view of the currently defined measured and indicated mineral resources and the 

FS mine design. The purple and red denote the A2 and A3 Shear Zones, the transparent portions of the 
wireframes signify indicated mineral resources, and the opaque portions demarcate measured mineral 

resources. The grey wireframes indicate underground development and stopes, and the blue wireframe 

represent the UGTMF. 
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Figure 1.8: Oblique view (looking south) of the proposed surface infrastructure as per the 2021 

Feasibility Study (Hatton et al., 2021). 

This thesis considers publicly released data available at the initiation of the study, encompassing drill 

data from 2014 to May 25th, 2018, and mineral resource wireframes released in November 2018, 

coincident with the release of the Pre-Feasibility Study. The November 2018 mineral resource consists 

of indicated mineral resources of 256.6 M lbs contained in 2,890 kt grading 4.03% U3O8 and inferred 

mineral resources of 91.7 M lbs contained in 4,840 kt grading 0.86% U3O8 (O’Hara et al., 2018). The 

uranium grade values (% U3O8) were converted to gold grade values (grams per tonne) using an 

undisclosed method to avoid unintentionally disclosing sensitive information. 

 

1.3 Study Domain 

A high-grade domain within the A2 Shear of the Arrow Deposit is the subject of this study. The domain 

is created using a grade intercept limit equal to or greater than one metre with a minimum grade of 5% 

U3O8, although lower grades were incorporated in places to maintain continuity and a reasonable 

thickness. The drill holes delineating the vertical, northeast striking domain are oriented in two principal 

directions: 327- and 147-degrees azimuth, dipping between 60 and 80 degrees; however, there is one 

drill hole drilled vertically through the domain.  

The domain is entirely within the defined PFS indicated mineral resources and contains 35 drill holes 

spaced 0.5 to 25 m apart with a total of 656 composites. The assay grade and density data were 

composited to 0.5 m lengths within the domain, and composites less than 0.25 m were merged with the 



10 
 

previous composite. Declustering weights for the data set are calculated using the cell declustering 

method with a 25m (strike) by 25 m (vertical) cell, which is approximately equal to the spacing in the 

sparsely sampled regions. The data and domain were rotated to a north-south orientation to reduce the 

grid size, subsequently reducing the computational demand of running the model (Figure 1.9). 

 

 

Figure 1.9: Long section (20 m window looking west) of the drill holes constraining the domain, the 

domain wireframe, and domain composites displaying assay grade results. The composites within the 

domain are shown as enlarged spheres and the drill traces are lines (exludes assay grades). There are no 

barren intervals within the domain. Scale in metres. 

The grade and density variables are strongly and positively correlated with a correlation coefficient of 

0.91 (Figure 1.10). The grade variable is sampled at all 656 composite locations, but the density variable 

is incomplete with only 116 of the composite locations having density values (Figure 1.11). The locations 

without density values have an average grade of 226.18 grams per tonne (g/t) with a positively skewed 

grade distribution, whereas the locations with density values have an average grade of 401.75 g/t with a 

nearly uniform grade distribution (Figure 1.12). The difference in the two sample grade subpopulations 



11 
 

is reflective of preferential collection of density data in high grade samples, representing a bias in the 

dataset. Therefore, the bias in the heterotopic dataset needs to be addressed to get a representative dataset 

prior to any uncertainty assessment studies. The bias is likely due to the friable nature of lower-grade 

samples, which did not allow for reliable density measurements, and, to a lesser degree, the discretion of 

the logging geologist. 

 

Figure 1.10: Scatter plot of the grade (Au g/t) and density variables of the A2 high-grade domain. 

 

Figure 1.11: Histogram distributions of the grade (Au g/t) and density (S.G.) variables of the A2 high-

grade domain. Cell declustering weights were applied to both distributions.  
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Figure 1.12: Histogram distributions of the grade variable (Au g/t) of the A2 high-grade domain at 

locations with and without density values.  

1.4 Thesis Outline 

The thesis sets out a workflow to quantify uncertainty of the Arrow Deposit, testing and using various 

techniques. Chapter 2 is a background review of the available literature pertinent to the study. Chapter 3 

details two uncertainty models of the grade and density variables: a multivariate spatial bootstrap model 

and a density-imputed model using a Gaussian Mixture Model followed by decorrelation via Projection 

Pursuit Multivariate Transformation and independent grid Sequential Gaussian Simulation. Chapter 4 is 

an assessment of thickness perpendicular to the plane of continuity via a geometry imputation process. 

Chapter 5 describes the process to assess uncertainty in the plane of continuity. The geometry imputation, 

boundary, grade, and density models were combined into a single model and each individual component 

was reviewed to evaluate influence on overall uncertainty in Chapter 6. Figure 1.13 is a schematic of the 

workflow completed in this thesis. 
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Figure 1.13: Schematic of the thesis workflow 
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Chapter 2 

2. Background Review 

Chapter 2 briefly outlines the literature describing the geostatistical techniques and concepts applied to 

the Arrow Deposit; inclusive to missing data concepts, multivariate data imputation techniques, 

projection pursuit multivariate transformation, spatial multivariate bootstrap, geometry imputation of 

vein deposits, and approaches to boundary uncertainty assessment.   

The density variable at the Arrow Deposit is not exhaustive for sample locations, therefore understanding 

and accounting for the mechanism of the missing data will lead to an estimation of the statistical 

parameters that are more representative of the sampled populations. The missing data is to be imputed 

in a simulation workflow to transfer the uncertainty associated with the missing values into the model. 

After imputation, the dataset will be homotopic but may contain multivariate complexities that require a 

transformation to achieve multivariate Gaussianity, which can be achieved through the projection pursuit 

multivariate transform. The spatial multivariate bootstrap is used to measure global parameter 

uncertainty while considering to spatial correlation between the variables at data locations. The metal 

content of the Arrow Deposit is sensitive to changes in volume due to the extreme high-grade nature of 

the deposit, therefore understanding the uncertainty of volume and geometry of the domains is important. 

2.1 Missing Geological Data 

 

Rubin (1976) proposed that it is possible to relate missing and measured values through three distinct 

mechanisms: Missing Completely at Random (MCAR), Missing at Random (MAR), and Missing Not at 

Random (MNAR). Many mining projects unevenly collect data values for various geologic variables 

resulting in heterotopic datasets that contain missing data; thus, the datasets can be classified as MCAR, 

MAR, or MNAR.  

Consider a random vector of multiple correlated attributes of 𝑁 geological variables, 𝜱(𝑍1, 𝑍2, … , 𝑍𝑁). 

The MCAR mechanism occurs when the probability of missing value of 𝑍1 does not depend on the any 

of the 𝑁 − 1 variables observed nor the values of 𝑍1, the MAR mechanism occurs when the probability 

of missing value of 𝑍1 depends on some of the 𝑁 − 1 variables observed but not the value 𝑍1, and the 

MNAR mechanism occurs when the probability of 𝑍1 depends on the both some of the 𝑁 − 1 variables 

observed and the value 𝑍1 itself (Rubin, 1976). Appropriately accounting for the missing data 

mechanisms has been demonstrated to lead to an estimation of the statistical parameters that are more 

representative of the sampled populations. 



15 
 

The MCAR mechanism facilitates a complete case analysis where no additional controls are needed to 

ensure the dataset is representative. However, the MCAR mechanism is not observed in most practical 

cases, as the incomplete variable is unknowingly biasedly sampled, sometimes due to cost and/or 

physical restraints. Therefore, identification of the reasons for missing data is critical for a representative 

predictive model. The MAR mechanism can be accounted for through maximum likelihood estimation 

and multiple imputation approaches (Rubin, 1988; Schafer and Graham, 2002; Enders, 2010; Silva and 

Costa, 2019). The MNAR mechanism is more complex and difficult to account for, but nonetheless, the 

missing data carry important information about the data population that must not be ignored (Silva and 

Costa, 2019).  

Rubin (1987) proposed that the MNAR mechanism be accounted for by using an appropriate approach 

for missing MAR and using a fixed transformation applied to imputed MNAR values. The fixed 

transform uses a constant value to compensate for an over or under estimation of the imputed value. 

Cohen (1988) furthered the studies of Rubin, recommending that the constant value for transform be 

proportional to one-half of the standard deviation from an imputed scenario, therefore having a direct 

impact on the mean of the data set (Enders, 2010). More recently, Silva and Costa (2019) account for the 

MNAR mechanism by inferring the values of an under-sampled variable over the study area through a 

co-simulation approach and a univariate simulation performed on an artificially complete set. The 

workflow consists of seven primary steps: 

1. Randomly remove 20% of the samples from the incomplete variables in the original data set, 

𝜱𝑜, to create a test set, 𝜱𝑡. 

2. Independent spatial continuity modelling for all variables in the original data set, 𝜱𝑜. 

3. Apply Bayesian Updating (BU) to the test data set, 𝜱𝑡, using the spatial continuity model fitted 

to the original data set, 𝜱𝑜. Generate 𝑁 imputed scenarios for the test set, 𝜱𝑡. 

4. Calculate the maximum error for each 𝑁 imputed scenarios for the test set, 𝜱𝑡, via a cross-

validation process. 

5. Apply BU to the original data set, 𝜱𝑜, using spatial continuity models fitted to the original data 

set, generating 𝑁 imputed scenarios.  

6. Apply the fixed transform proposed to every imputed value in each scenario generated. 

7. Use the e-type imputed scenarios in the geostatistical analysis. 

The maximum imputation error calculated in the cross-validation process noted in step 4 is parameterized 

by the equation below.  
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𝐸𝑟𝑟𝑖𝑗  =  
 𝑧𝑗

∗(𝒖𝑖) −  𝑧(𝒖𝑖) 

𝑧(𝒖𝑖) 
 

(2.1) 

where 𝐸𝑟𝑟𝑖𝑗 is the error for j scenario at i location, 𝑧𝑗
∗(𝒖𝑖) is the imputed value at location i with a missing 

sample, and 𝑧(𝒖𝑖) is the measured sample at the i location.  

The fixed transform in step 6 corrects the imputed values to be proportional to the maximum error 

obtained, as per the equation below.  

𝑧𝑗
𝑇(𝒖𝑖) = 𝑧𝑗

∗(𝒖𝑖) + 𝑧𝑗
∗(𝒖𝑖) ∙  𝐸𝑟𝑟𝑗

𝑀𝑎𝑥 (2.2) 

𝐸𝑟𝑟𝑗
𝑀𝑎𝑥 is the maximum value of 𝐸𝑟𝑟𝑖𝑗 obtained in scenario 𝑗 and 𝑧𝑗

𝑇(𝒖𝑖) is the updated value after the 

fixed transform has been applied to the j BU scenario.  

The workflow proposed by Silva and Costa accounts for the MNAR mechanism where data imputation 

is not sufficient.  

2.2 Multivariate Data Imputation 

 

Multivariate data transformations are required in many geostatistical workflows, and many of the 

transformations, such as Projection Pursuit Multivariate Transformation (PPMT), Minimum/Maximum 

Auto-Correlation Factors (MAF) and Principal Component Analysis (PCA), can only be applied to 

homotopic data. However, heterotopic data is commonly encountered in practice, and if a multivariate 

transformation is required in a workflow, data will need to be imputed or discarded to make a homotopic 

dataset. Discarding heterotopic data observations can lead to biased models, as missing geologic data 

observations are typically not completely random (Little & Rubin, 2014). Therefore, imputation is 

generally the chosen method to create a homotopic dataset, and multiple imputation (MI) techniques are 

preferred as the techniques capture the uncertainty of imputed values (Barnett & Deutsch, 2015b). 

Barnett and Deutsch (2015b) proposed two MI techniques for geologic data using Bayesian Updating 

(BU): a fully parametric method that assumes a multivariate Gaussian distribution and a non-parametric 

method that uses univariate kernel density estimation (KDE) and Gibbs sampler to calculate likelihood 

distributions for BU. The assumption of a multivariate Gaussian distribution in the first method makes 

it difficult to reproduce complexities observed in the data. The non-parametric approach improved upon 

the first method by consistently reproducing the complexities observed in the original data set. Silva and 

Deutsch (2015a) continued the MI work in geostatistics and proposed another non-parametric workflow 

that fits a Gaussian Mixture Model (GMM) to the multivariate data, then uses the GMM to calculate 
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conditional distributions that defines the likelihood for the Bayesian Updating (BU). The GMM 

workflow is computationally faster and more accurate than the KDE with Gibbs sampler workflow, as it 

allows for the quick assessment of any marginal and conditional distribution needed without the use of 

Gibbs sampler (Silva, 2018). The GMM workflow of Silva (2018) is summarized below. 

Consider 𝑛 observations 𝑧 =  (𝑧1
𝑇 , . . . , 𝑧𝑛

𝑇  ) containing K-dimensional homotopic and heterotopic data 

observations 𝑧𝑖 = (𝑧𝑖,1, … , 𝑧𝑖,𝐾). The GMM imputation process consists of six primary steps. 

1. The independent normal score transformation of each variable, resulting in a set of 𝑛 data 

observations 𝑦 =  (𝑦1
𝑇 , . . . , 𝑦𝑛

𝑇 ). Performing the transformation independently ensures the 

transformation is not sensitive to heterotopic data observations.  

𝑦𝑖,𝑘 = 𝐺−1 (𝐹(𝑧𝑖,𝑘)) , 𝑘 = 1, … , 𝐾 𝑎𝑛𝑑 𝑖 = 1, … , 𝑛 (2.3) 

2. The expectation maximization (EM) algorithm is then used to fit a GMM with 𝑔 components to 

the transformed data defining the estimated multivariate density function, as per below.  

                                                   𝑓(𝒚𝑗; 𝚿) = ∑ 𝜋𝑖𝜙(𝒚𝑗; 𝝁𝑖;  𝚺𝑖)
𝑔
𝑖 = 1  (2.4) 

Where 𝑓 is the estimated distribution, 𝜙 is the multivariate Gaussian probability density function 

(PDF), and 𝚿 is the set of unknown parameters (𝜋1, … , 𝜋𝑔−1 , 𝜇1, … , 𝜇𝑔 ,  Σ1, … ,  Σ𝑔): weights to 

each component, the mean values, and the variance-covariance matrices. The EM algorithm 

maximizes the log likelihood, log 𝐿 (𝚿), which can be calculated for dataset as: 

log 𝐿(𝚿) = ∑ 𝑙𝑜𝑔 {∑ 𝜋𝑖𝜙(𝒚𝑗; 𝝁𝑖;  𝚺𝑖)

𝑔

𝑖 = 1

}

𝑛

𝑗 = 1

 (2.5) 

The EM algorithm consists of two steps, which are the expectation (E) and maximization (M) 

steps that iteratively maximize the log likelihood, log 𝐿(𝚿). Every observation is from a 

component of the mixture, but this information is unknown, hence, the EM algorithm is devised 

as an incomplete-data problem where the 𝑔-dimensional label vectors 𝑥1, ..., 𝑥𝑛 indicate whether 

an observation came from a certain kernel or not. The component 𝑥𝑖,𝑗  = (𝑥𝑗)𝑖 is equal to 1 if the 

𝑗th observation belongs to the 𝑖th component of the mixture and 0 otherwise. 1. Note that only a 

brief description of EM is provided here as it is well established. Interested readers are referred 

to McLachlan and Krishnan (2008) and McLachlan and Peel (2000) for a more detailed 

explanation of the algorithm. 

3. The prior distribution given the spatial data of the variable to be imputed needs to be defined for 

each imputation location. After the independent normal score transformation, each variable is 

assumed to be spatially multi-Gaussian, thus the prior distribution used in BU is Gaussian as 
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well. Therefore, the prior distribution can be parameterized by the kriging mean and variance, 

which are obtained by solving the simple kriging system of equations using nearby observations 

of the same variable being imputed.  

 

Consider the sub-vector 𝑦𝑝 for a given variable 𝑘 to be imputed in data matrix 𝑦 that contains 

all 𝑛 observed and previously simulated values for the same variable. The prior mean, �̅�𝑝, and 

variance, 𝜎𝑝
2(𝒖), is calculated with the equations below, where 𝒖 is the vector of spatial 

coordinates and 𝐶 is the spatial covariance.  

�̅�𝑝(𝒖) = ∑ 𝜆𝑖𝑦𝑝(𝒖𝑖)

𝑛

𝑖=1

 (2.6) 

𝜎𝑝
2(𝒖) =  1 − ∑ 𝜆𝑖𝐶(𝒖, 𝒖𝑖)

𝑛

𝑖=1

 (2.7) 

∑ 𝜆𝑖𝐶(𝒖𝑖 , 𝒖𝑗)

𝑛

𝑗=1

= 𝐶(𝒖, 𝒖𝑖)𝑖 = 1, … , 𝑛 (2.8) 

4. A likelihood distribution of the variable to be imputed needs to be obtained for the BU. The 

likelihood distribution is the marginal distribution of the conditional distribution given the 

collocated data observations respective to the variable being imputed. The conditional 

distribution can be extracted from the fitted GMM, where the conditional distribution of all 𝑔 

multivariate Gaussian components is parameterized by their conditional mean and covariance.  

The conditional mean and covariance are calculated by: 

 

�̅�𝑚
𝑖  =  𝝁𝑚

𝑖  +  Σ𝑚𝑜
𝑖 Σ𝑜𝑜

𝑖−1(𝒚𝑜  − 𝝁𝑜
𝑖 )     𝑖 =  1, … , 𝑔 (2.9) 

Σ̅𝑚𝑚
𝑖  =  Σ𝑚𝑚

𝑖  −  Σ𝑚𝑜
𝑖 Σ𝑜𝑜

𝑖−1Σ𝑜𝑚
𝑖            𝑖 =  1, … , 𝑔 (2.10) 

Σ𝑚𝑜
𝑖  and Σ𝑜𝑜

𝑖  are the sub-matrices of Σ𝑖, representing the covariance between missing and 

observed variables and the covariance between the observed variables for the 𝑖th Gaussian 

component, 𝑔. The sub-vectors 𝝁𝑚
𝑖  and 𝝁𝑜

𝑖  of vector 𝝁𝑖 are the mean of missing and observed 

variables for the 𝑖th component. After parameterizing the multivariate Gaussian components of 

the conditional distribution, the conditional distribution of the GMM can be defined by: 

𝑓(𝒚𝑚; 𝚿𝑚) = ∑ 𝜋′𝑖𝜙(𝒚𝑚; �̅�𝑚
𝑖 ; Σ̅𝑚𝑚

𝑖 )

𝑔

𝑖 = 1

 (2.11) 

𝜋′𝑖   =  
𝜋𝑖𝜙(𝒚𝑜; 𝝁𝑜

𝑖 ; 𝚺𝑜𝑜
𝑖 )

Σ𝑖=1
𝑔

𝜋𝑖𝜙(𝒚𝑜; 𝝁𝑜
𝑖 ; 𝚺𝑜𝑜

𝑖 )
 (2.12) 
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The likelihood distribution is then calculated as the marginal of the conditional GMM 

distribution relative to the variable being imputed.  

 

5. The prior and likelihood distributions are combined with non-parametric BU to create an updated 

distribution, as per Neufeld & Deutsch (2006), which is as follows: 

 

𝑃(𝐴|𝐵, 𝐶)  =  
𝑃(𝐴|𝐵) 𝑃(𝐴|𝐶)

𝑃(𝐴)
 (2.13) 

 

𝑃(𝐴|𝐵) is the prior distribution, 𝑃(𝐴|𝐶) is the likelihood distribution, and 𝑃(𝐴) is the global 

distribution which is N (0,1) from the original independent normal score transformation.  

 

6. Finally, missing data realizations are generated. The updated distribution is sampled with Monte 

Carlo Simulation to generate imputed realizations.  

Hadavand and Deutsch (2020) advocates visualizing marginal distributions to help determine the number 

of Gaussian components to be used in the GMM. The popular approach to determine the number of 

Gaussian components is the log likelihood ratio test, but Hadavand and Deutsch (2020) note that the 

approach is problematic; the test statistic is not bounded for Gaussian mixtures with unequal covariances 

matrices, and therefore an asymptotic distribution will not always approximate the true null distribution 

accurately. The null distribution could be generated via resampling, but this is typically computationally 

expensive.  

2.3 Multivariate Data Transformation 

 

Many mining projects require the characterization of multiple continuous variables. Conventional co-

simulation workflows assume that datasets are multivariate Gaussian (multi-Gaussian); the assumption 

allows the user to fully parameterize the multivariate relationships by a covariance matrix (Chiles & 

Delfiner, 2012; Isaaks, 1990; Journel & Huijbregts, 1978; Verly, 1983). However, multi-Gaussian is 

rarely observed in geologic data, where complex features such as heteroscedasticity, non-linearity, and 

constraints are more commonly observed (Barnett & Deutsch, 2015a). The schematic in Figure 2.1 

visualizes the typical complex features observed in geologic data.  
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Figure 2.1: Schematic representation of multivariate complexities and a comparative multi-Gaussian 

distribution (Barnett & Deutsch, 2015a). 

Previous authors noted that if the variables were individually transformed to be univariate Gaussian, 

typically through a normal score transformation, that a multivariate Gaussian assumption was still 

unrealistic (Barnett & Deutsch, 2015a; Chiles & Delfiner, 2012; Journel & Huijbregts, 1978). Figure 2.2 

shows a co-simulation of two variables that considers the data correlation. The original variables, silica 

(x-axis) and magnesium (y-axis), undergo a normal score transformation producing the univariate 

Gaussian marginal histograms of the upper right graph. However, the bivariate distribution of the 

transformed variables is not multi-Gaussian. The co-simulation of the normal score variables reproduces 

the correlation of the dataset, but not the observed complex features. Backtransforming the simulated 

values intensifies the issue, where neither the correlation nor complex features are reproduced.  
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Figure 2.2: Demonstration of geostatistical co-simulation with complex bivariate data (Barnett & 

Deutsch, 2015a). 

In an effort to correct the data replication issues, Leuangthong and Deutsch (2003) adapted a multi-

Gaussian transformation to a geostatistical workflow with the stepwise conditional transformation 

(SCT). However, the SCT was difficult to apply with datasets over two to four variables due to the curse 

of dimensionality (Bellman, 1957), requiring the implementation of specialized, complicated workflows 

with difficult decisions (Barnett & Deutsch, 2015a). The difficulties with the SCT motivated 

developments of new transformations to achieve multi-Gaussianity, such as the multivariate standard 

normal transformation (MSNT) (Deutsch, 2011) and conditional standardization (Barnett & Deutsch, 

2012). Eventually, the Projection Pursuit Multivariate Transformation (PPMT) was developed by 

Barnett, Manchuk, and Deutsch (2013), which the authors consider to be the current standard for 

transforming complex data to a multi-Gaussian. The PPMT technique effectively models complex and 

high dimensional data (Barnett, Manchuk, & Deutsch, 2013).  

2.3.1 Overview of Projection Pursuit Multivariate Transformation (PPMT) 

The PPMT workflow consists of four primary steps, as described below. 
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1. Normal score transformation of each variable to make the variables standard univariate 

Gaussian. 

2. Data Sphereing to transform the Gaussian distributions to be uncorrelated with unit variance. 

3. The Projection Pursuit algorithm is then used on the multivariate dataset to achieve multi-

Gaussianity. The algorithm uses an optimized search that iteratively finds the “most” non-

Gaussian projections and transforms the projection to be Gaussian.  

4. Backtransforming the data back to original units.  

The first two steps are considered pre-processing steps, with the following two steps representing the 

PPMT workflow. The PPMT transforms data of virtually any form, size, and dimension to an 

uncorrelated multivariate Gaussian distribution, allowing for independent simulation of the variables 

(Barnett & Deutsch, 2015a), as visualized in Figure 2.3. 

 

Figure 2.3: Demonstration of multivariate transformation and independent simulation with complex 

bivariate data (Barnett & Deutsch, 2015a). 

2.3.2 Pre-processing of data: Normal Scoring and Data Sphereing 

Each of the 𝐾 variables, in original units, 𝑧, are transformed to be Gaussian through a normal score 

transformation (Bliss, 1934; Boisvert, Rossi, Ehrig, & Deutsch, 2013; Verly, 1983), yielding the 

univariate Gaussian 𝑛 × 𝐾 data matrix, 𝐘 (Barnett & Deutsch, 2015a). Data sphereing is applied to 
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transform 𝐘 to be uncorrelated with unit variance, resulting in 𝐗, as per the equation below (Fukunaga, 

1972; P.J. Huber, 1985). 

𝐗 =  (𝐘 −  𝐄 {𝐘})𝐒−1/2, where 𝐒−1/2  =  𝐕𝐃−1/2𝐕T (2.14) 

𝐒−1/2 is the sphereing matrix, 𝐕 is the eigenvector matrix, and 𝐃 is the diagonal eigenvalue matrix. The 

eigenvector matrix and diagonal eigenvalue matrix are obtained through the spectral decomposition of 

the covariance matrix, Σ𝑌. In the sphereing matrix: 

• the multiplication of V rotates the variables to an orthogonal axis (like PCA), 

• 𝐃−1/2 transforms the variables to have a variance of one, and 

• the 𝐕𝑇 component projects the orthogonal variables back to the basis of the original variables, 

thus maximizing the loading of each original variable. 

The data sphereing through spectral decomposition makes the variables uncorrelated with minimal 

rotation, or minimal mixing in transformed space. There are other forms of data sphereing, such as the 

dimension reductions sphereing (DRS), but the spectral decomposition method is preferred for PPMT 

due to the minimal mixing it provides (Barnett & Deutsch, 2015a). 

2.3.3 Projection Pursuit Algorithm 

The projection pursuit algorithm is performed on the processed 𝐗 dataset and consists of three steps that 

are iteratively completed: the calculation of the projection index, an optimized search that maximizes the 

projection index, and Gaussianization along the projection. The projection pursuit algorithm is described 

below, summarized from Barnett & Deutsch (2015a). 

Consider a 𝑲 ×  𝟏 unit length vector, 𝜃, and the associated projection of the data upon it, 𝑝 = 𝜃𝑇𝐱. If 

𝐗 is multi-Gaussian, then any 𝜃 should yield a 𝑝 that is univariate Gaussian. The vector can be examined 

for non-Gaussianity with the test statistic known as the projection index, 𝐼(𝜃). If the projection is 

perfectly Gaussian, the projection index will be zero. The projection index is calculated using Friedman’s 

equation, as proposed by Friedman and Tukey (1974): 

𝐼(𝜃) =  ∑
2𝑗 +  1

2

𝑑

𝑗=1

𝐸𝑟
2{𝜓𝑗(𝐫)}  (2.15) 

Where 𝜓𝑗(𝐫) are Legendre polynomials and 𝑑 is the number of polynomial expansions. The Legendre 

polynomials are calculated recursively as: 
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𝜓0(𝐫)  =  1,  𝜓1(𝐫)  =  𝒓, 𝑎𝑛𝑑  𝜓𝑗(𝐫)  =  [(2𝑗 − 1)𝒓𝜓𝑗−1(𝒓)  −  (𝑗 − 1)𝜓𝑗−2(𝒓)]/𝑗 𝑓𝑜𝑟 𝑗 ≥  2 (2.16) 

The 𝒓 in the equation is a transformed version of the projection, 𝒑, corresponding to: 

𝒓 =  𝟐𝐺(𝐩)  −  𝟏, 𝒓 ∈  [−𝟏, 𝟏] (2.17) 

The derivative of the projection index, 𝐼(𝜃), may be calculated to allow for a gradient-based optimization 

while searching for 𝜃 that maximizes 𝐼(𝜃). After finding the vector that produces the maximum 𝐼(𝜃), 

the multivariate data is transformed so that the projection is univariate Gaussian, termed Gaussianization:    

�̃�  =  𝐺−1(𝐹(𝐩)) (2.18) 

Where �̃� amounts to the normal score transformation of the projection, p. Transforming the pre-

processed 𝐗 dataset so that its projection along 𝜽 is �̃� is completed in several steps; the first step is to 

calculate the orthogonal matrix: 

𝑼 =  [𝜃, 𝝓1, 𝝓2, . . . , 𝝓𝐾−1] (2.19) 

Where the K x 1 unit vectors, 𝝓𝑖, are calculated using the Gram-Schmidt algorithm (Reed & Simon, 

1972). Through the linear combination of the multivariate dataset, 𝐗, and the orthogonal matrix, 𝐔, 

results in the first column being the projection, 𝐩 = 𝐗𝜃: 

𝐗𝐔 =  [𝐩, 𝑿𝝓1, 𝐗𝝓2, . . . , 𝐗𝝓𝐾−1] (2.20) 

Transforming the linear combination, 𝐗𝐔, to a standard Gaussian projection in the first column, �̃�, while 

leaving the orthogonal direction intact, is denoted with Θ.  

𝚯(𝐗𝐔)  =  [�̃�, 𝑿𝝓1, 𝐗𝝓2, . . . , 𝐗𝝓𝐾−1] (2.21) 

Multiplying by 𝐔𝐓 returns 𝚯(𝐗𝐔) to the original basis: 

�̃� = 𝚯(𝐗𝐔)𝐔𝐓 (2.22) 

The transformed multivariate data, �̃�, yields a Gaussian projection along 𝜃, meaning it will have a 

projection index of 𝐼(𝜃)  =  0. The transform to be Gaussian is generalized by the function, 𝜙: 
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𝐲 =  𝜙(𝐱) (2.23) 

Iteratively completing the search and performing the gaussian transformation along projections will 

eventually transform the data to be multivariate Gaussian. The projection pursuit iterations are stopped 

once a target value of the Gaussian test statistic, 𝐼(𝜃), is achieved. However, as Barnett, Manchuk, and 

Deutsch (2013) note, stopping the algorithm in this manner is problematic, typically subjective, and not 

well defined in literature. If the dataset consists of many variables, discovering complexities in the data 

with the test statistic is difficult. If the dataset contains a small number of observations, the projections 

are less reliable for detecting meaningful multivariate structure. Barnett, Manchuk, and Deutsch (2013) 

used a bootstrapping algorithm to determine the Gaussian test statistic stopping criteria. For the 

bootstrapping algorithm, Monte Carlo Simulation (MCS) is used to randomly sample 𝑀 distributions of 

matching 𝐾 and 𝑛 from the Gaussian CDF. A projection index value, 𝐼(𝜃), is then calculated for all 𝑀 

distributions along 𝐾 random orthogonal unit vectors to yield a 𝑀 × 𝐾 distribution of projection indices, 

𝑰. The projection indices distribution of random Gaussian projection indices provides a basis for the 

convergence criterion. A targeted random Gaussian projection index percentile is then specified when 

executing the PPMT. After the PPMT forward transformation, independent simulation is completed.  

2.3.4 Backtransforming 

Backtransforming the simulated nodes is completed by inverting the forward transformation steps; 

therefore, the projection pursuit algorithm is the first step to be reversed, followed by the data sphereing, 

and then the normal score transformation.  

The 𝟏 ×  𝑲 vectors of N simulated nodes of K independently simulated Gaussian variables is denoted 

�̃�𝛼 , 𝛼 =  1, . . . , 𝑁. First, the Gaussian nodes need to be multiplied with the orthogonal basis, 𝐔, used in 

the projection pursuit iterations:  

�̃�α𝐔 =  [�̃�, �̃�𝛼𝝓1, �̃�𝛼𝝓2, . . . , �̃�𝛼𝝓𝐾−1], 𝑓𝑜𝑟 𝛼 = 1, . . . , 𝑁 (2.24) 

Where �̃� is equal to �̃�𝛼𝜃, and is assumed to lie within the Gaussianized projection of the transformed 

data, �̃� = �̃�𝑈.  The original projection of the data, 𝐩, is then used to reconstruct its empirical CDF, F(p).  

Θ−1(�̃�𝛼𝐔)  =  [𝒑, �̃�𝛼𝝓1, �̃�𝛼𝝓2, . . . , �̃�𝛼𝝓𝐾−1], 𝑓𝑜𝑟 𝛼 = 1, . . . , 𝑁 (2.25) 

The normal score back transformation, Θ−1, back-transforms the first entry of �̃�𝛼𝐔 to 𝑝 = 𝑭−𝟏(𝑮(�̃�)) 

while leaving the remaining entries unaffected. The simulated notes, �̃�𝜶, are then returned to the original 

basis: 
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𝒙𝛼  =  Θ−1(�̃�𝛼𝐔)𝐔𝑻, 𝑓𝑜𝑟 𝜶 = 𝟏, . . . , 𝑁 (2.26) 

The procedure above is repeated for each projection pursuit iteration to back-transform the simulated 

nodes to sphere space. The sphere space is then returned to normal score space using the sphereing 

matrix, 𝐒1/2: 

𝒚𝛼 =  𝐱𝛼𝑺1/2 𝑓𝑜𝑟 𝛼 =  1, . . . , 𝑁 (2.27) 

The simulated nodes then undergo normal score back-transformation to return the nodes back to original 

units, 𝑧𝛼𝑖: 

𝑧𝛼𝑖 = 𝐹𝑖
−1(𝐺(𝑦𝛼𝑖)) 𝑓𝑜𝑟 𝛼 =  1, . . . , 𝑁 𝑎𝑛𝑑 𝑖 =  1, . . . , 𝐾 (2.28) 

The empirical CDFs, 𝐹𝑖(𝑧𝑖) for 𝑖 =  1, . . . K, are constructed using the recorded original data, 𝒁. 

2.3.4 Limitations 

In most settings the PPMT surpasses other transformation methods for replicating complex multivariate 

features, but limitations exist.  

PPMT assumes that the transformed data will match the multivariate density of independently simulated 

Gaussian realizations (Barnett, Manchuk, & Deutsch, 2013). Where this assumption is true, Gaussian 

mapping should back-transform the simulated realization to reproduce the original density, but where 

the assumption is untrue, the original density will not be reproduced in the back-transform (Barnett, 

Manchuk, & Deutsch, 2013). Practitioners are advised by Barnett, Manchuk, and Deutsch (2013) to 

transform the normal score realizations to target 𝑁(0,1) distributions to improve histogram reproduction. 

PPMT, like the normal score transformation, requires the extrapolation of tail values. This is difficult in 

PPMT with the added dimensionality inherent to the transformation, where these tail values cannot be 

described with a single number. Therefore, the PPMT may not be appropriate in cases where the sampled 

data does not describe a large portion of the deposit’s variability and extreme values are crucial to the 

related model function (Barnett, Manchuk, & Deutsch, 2013).  

2.4 Spatial Multivariate Bootstrap 

 

Considering the uncertainty in global parameters is important in geostatistical workflows because 

uncertainty in resources can be significantly underestimated if ignored (Khan & Deutsch, 2016). 

Bootstrapping is a statistical resampling scheme that allows uncertainty in a global input statistical 
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parameter to be assessed from the data (Rossi & Deutsch, 2014). The multivariate spatial bootstrap is an 

extension of the bootstrap resampling scheme, where the spatial correlation between the variables at data 

locations is considered (Rezvandehy & Deutsch, 2016).  

The first step of the spatial multivariate bootstrap workflow is the establishment of prior uncertainty. 

Prior uncertainty is estimated using a resampling algorithm while considering spatial correlation of 

variables at data locations, essentially equating to unconditional simulation. Interestingly, in the spatial 

bootstrap method, a dataset with a high degree of spatial correlation will have higher uncertainty than a 

dataset with a low degree of spatial correlation, as the correlated data are effectively redundant (Khan & 

Deutsch, 2016). The prior uncertainty is updated through a conditional simulation approach that accounts 

for domain extents and the conditioning data, resulting in the posterior distribution (Khan & Deutsch, 

2016). The posterior distribution represents the uncertainty associated with the measured statistic. The 

multivariate spatial bootstrap workflow in a geostatistical context was proposed by Babak and Deutsch 

(2009) and subsequently described by Khan and Deutsch, 2009, then Vincent and Deutsch (2019), these 

papers serve as the basis for the summary below. Note that the papers focused on histogram uncertainty 

and did not address uncertainty in a variogram/covariance function. The Lineal Model of 

Coregionalization (LMC) is a linear function and would not be an appropriate representation of the 

complex relationships observed in the data and was avoided.  

2.4.1 Prior Uncertainty 

Babak and Deutsch (2016) proposed a multivariate spatial bootstrap procedure to constitute the prior 

parameter uncertainty for statistics such as the means, variances, and the multivariate covariance matrix. 

The multivariate spatial bootstrap procedure uses Monte Carlo simulation (Journel & Bitanov, 2004; 

Feyen & Caers, 2006) to sample the global statistics to determine the prior uncertainty while considering 

the spatial correlation of 𝑲 variables at 𝑛 data locations.  

The multivariate spatial bootstrap resampling procedure for geologic variables to obtain a prior 

uncertainty consists of six primary steps (Vincent & Deutsch, 2019), as described below. 

1. Normal score transformation of the data, 𝐹𝑍𝑘
(𝑧𝑘) to Gaussian units, 𝐺𝑌𝑘

(𝑦𝑘) for each variable. 

2. Create a Lineal Model of Coregionalization (LMC) by modeling the direct and cross variograms, 

𝛾𝑌𝑘
(𝒉) and 𝛾𝑌𝑘𝑘′

(𝒉), between all Gaussian variables, where the subscript of 𝑘 and 𝑘’ are the 

random variables indicating the variables in the cross variogram. There is a total of 𝐾(𝐾 + 1)/2 

direct and cross variograms. Practitioners can use a simpler intrinsic model of coregionalization 

if deemed appropriate.  
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3. A Cholesky LU decomposition of the covariance matrix is performed, 𝑪 = 𝑳𝑳𝑇, where 𝐂 is the 

covariance matrix, 𝑳 is the lower triangular matrix and 𝑳𝑇is the transpose of the lower triangular 

matrix. 𝑳 and 𝑳𝑇 are 𝑛𝐾 ×  𝑛𝐾 matrices.  

4. Unconditional realizations, 𝑀, are generated by multiplying the 𝑳 matrix by 𝒘, an 𝑛𝑲 ×  𝟏 

uncorrelated standard normal deviate vector, for each realization. 

𝒚(𝑚)  =  𝑳𝒘(𝑚), 𝑚 = 1, . . . , 𝑀 (2.29) 

The result is 𝒚, a 𝑛𝑲 ×  𝟏 vector of unconditionally simulated Gaussian values with appropriate 

correlation over 𝑀 realizations.  

5. The values of the realizations, 𝑦, are back transformed to original units, 𝑧, using the original 

transformation tables. 

6. Generate the prior uncertainty of the parameter of interest (e.g., mean, variance, etc.) for each 

random variable from the back transformed distributions. 

2.4.2 Posterior Uncertainty 

The prior uncertainty is transferred to the posterior through a conditional simulation approach that 

accounts for domain extents and the conditioning data, as per the steps described by Vincent and Deutsch 

(2019), summarized below. 

1. Normal score transform the original data 𝑀 times using the spatial bootstrap realizations as 

reference distributions.  

2. Use the transformed data to perform 𝑀 conditional simulations of the multivariate data, then 

backtransform each realization to original units using the transform tables from the previous 

step.  

3. The backtransformed realizations can be postprocessed to create the posterior uncertainty. 

The incorporation of multivariate parameter uncertainty into a geostatistical workflow is thus finalized 

with the simulation-based workflow described above.  

2.5 Geometric Imputation of Vein Deposits 

 

The Arrow Deposit is considered a hydrothermal vein deposit as described by Edwards and Atkinson 

(1986): Hydrothermal vein deposits are accumulations of economic minerals which form in association 

with hot aqueous fluids to develop a vein or multiple veins. The estimation domains for vein deposits 

are typically deterministically defined by explicit modeling, implicit modeling, or surface interpolation 

(Carvalho, 2018). These traditional methods for the creation of estimation domains are rigid and do not 

provide uncertainty assessment. However, Carvalho (2018) proposed a framework to capture geometric 

uncertainty of simple tabular vein domains while considering a local coordinate system, position 
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uncertainty, and thickness uncertainty. The workflow generated multiple realizations of the vein 

geometry and boundaries with unstructured grids that fit the shape of the vein (Carvalho, 2018); below 

is a summary of his framework. 

First, Carvalho converted the data from a Cartesian coordinate system to a local coordinate system. The 

transformation addresses the typical issues associated with the Cartesian coordinate system: it does not 

typically align with vein geometry and grade anisotropy, and thickness is not always easily calculated 

due to inclined drill holes (Carvalho, 2018). The transformation used was the one proposed by Ostenberg 

and Deutsch (2017), which fits a plane to the intercepts points, then defines a new coordinate system that 

is geologically significant relative to the plane. The plane is fitted via a linear regression modelling 

technique called Total Least Squares (TLS), which is calculated using drill hole intercept midpoints. TLS 

plane fitting minimizes the error between the points and the plane by minimizing the sum of squared 

errors (SSE). Three orthogonal directions were used to define the coordinate axis of the new modified 

system, referred to as 𝑢, 𝑣, and 𝑤, which correspond to the dip-direction, strike-direction, and 

perpendicular-to-the-vein-direction (Ostenberg and Deutsch, 2017).  

Position and thickness uncertainties, or geometry data uncertainty, are in part due to inclined drill holes 

intercepting the domain, where true thickness and vein location perpendicular to the intercept-point are 

not measured. The geometry data could be estimated at the unknown data location, but estimation would 

produce a deterministic value. Carvalho captured the position and thickness uncertainties with the 

imputation of geometry data for missing data locations; he deemed missing data locations as intercepts 

with an angle greater than 34 degrees from perpendicular to the vein in the modified coordinate system 

(Figure 2.4).  
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Figure 2.4: Cross section perpendicular to the fitted plane showing Carvalho’s example of rejected 

thickness values for simulation, thus requiring imputation (Carvalho, 2018). 

Variograms were calculated and modeled in the modified coordinate system for position and thickness 

in normal score units. The footwall surface was selected as the base surface, where the hangingwall 

intercepts were projected to the footwall and the hangingwall position was simulated using Sequential 

Gaussian Simulation (SGS) based on footwall elevation and thickness values. Subsequently, footwall 

intercepts are projected to the hangingwall, and the footwall elevation and thickness data are simulated. 

See Figure 2.5 for a schematic of the simulating procedure. The simulation is carried out at data locations; 

therefore, Carvalho used an irregular grid.  

 

Figure 2.5: Intercepts projection and position simulated (Carvalho, 2018). 

The elevation and thickness distributions were merged for the distribution to be randomly sampled. The 

merged distribution was created by back transforming the elevation values to original units, calculating 
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thickness values from the elevation values, and then capping the newly formed thickness distribution 

relative to the global thickness distribution. The newly formed capped thickness distribution is added to 

simulated thickness distribution, as both distributions are in the same space.  

 

Figure 2.6: Schematic of elevation and thickness distribution merging (Carvalho, 2018). 

The distributions were merged using error ellipses with geological data, as per the equation below, which 

was adapted for two univariate distributions (Rezvandehy & Deutsch, 2014). 

�̅� =  𝐶 (
𝑚1

𝜎1
2  +

𝑚2

𝜎2
2 ) , 𝐶 = (𝜎1

2−1
+ 𝜎2

2−1
)

−1

  (2.30) 

The vector correspond to the location of the weighted average is denoted by �̅�, 𝐶 is the resulting variance, 

𝑚𝑛 is the univariate mean, and 𝜎𝑛
2 is the univariate variance.  

A random sample is iteratively selected from the merged distribution to create an imputed distribution 

and the imputed values are back transformed to original values. Surfaces were created for the footwall 

and hangingwall with each surface realization using a single and different imputation realization as 

visualized in Figure 2.7, finalizing the workflow Carvalho proposed to assess geometry uncertainty in 

tabular vein deposits.  
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Figure 2.7: Schematic of surface simulation (Carvalho, 2018). 

 

2.6 Signed Distance Functions for Boundary Uncertainty 

 

Defining the areal extent, or the boundary, of estimation domains is important in accurately representing 

the contained mineral resources. Boundary modeling is traditionally defined through explicit or implicit 

modeling, resulting in a deterministic model that does not provide uncertainty assessment. 

The Signed Distance Function (SDF) with a modification of a constant, known as the C-parameter, has 

been used to assess boundary uncertainty (Munroe & Deutsch, 2008; Hosseini, 2009; Wilde & Deutsch, 

2011). The SDF algorithm is used in implicit modeling as a Euclidean distance measure between the 

nearest two samples of different indicator values. In SDF, the negative indicator values are ‘inside’, and 

the positive indicator values are ‘outside’; the indicator formalism for defining the data is: 

𝑖(𝒖𝛼) = {
−1, 𝑖𝑓 𝒖𝛼  ∈ domain 

1,            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑓𝑜𝑟 𝛼 =  1, … , 𝑛 (2.31) 

Where 𝑖(𝒖𝛼) is the indicator at location 𝒖𝛼 and is -1 inside the domain and 1 otherwise calculated for 

all 𝛼 conditioning data. The SDF is calculated as: 

𝑑𝑓(𝒖𝛼) = 𝑖(𝒖𝛼) · 𝑚𝑖𝑛𝛽 = 1,...,𝑛‖𝒖𝛼  −  𝒖𝛽‖, 𝑓𝑜𝑟𝛼 = 1, … , 𝑛 and 𝑖(𝒖𝛼) ≠ 𝑖(𝒖𝛽) (2.32) 

The distance function at the data location, 𝑑𝑓(𝒖𝛼), is equal to the indicator at that location multiplied by 

the absolute minimum distance to the nearest sample of an opposing indicator value. Anisotropy can be 

accounted for by: 
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‖𝒖𝛼  − 𝒖𝛽‖ = √(
𝑥𝛼  − 𝑥𝛽  

𝑎𝑥
)

2

+ (
𝑦𝛼  − 𝑦𝛽  

𝑎𝑦
)

2

 + (
𝑧𝛼  −  𝑧𝛽  

𝑎𝑧
)

2

   (2.33) 

Where the 𝑎 values specify the anisotropy, and the 𝑥, 𝑦, 𝑧 are coordinate locations of the two samples.  

When the SDF is equal to zero, the model is considered to be transitioning. An isosurface is made at the 

zero horizon, representing the contact between the domain and outside.  

The modified-SDF is a modification of the distance function using a C-parameter and 𝛽-parameter; the 

C-parameter is used to create an uncertainty bandwidth and the 𝛽-parameter corrects bias to centre the 

uncertainty bandwidth (Munroe & Deutsch, 2008).   

The C-parameter is an additive factor that is added to the data if it is outside the domain and subtracted 

from the data if inside, increasing the difference between the function values of inside and outside data.  

𝐷𝐹𝑚𝑜𝑑 = {
𝑑𝑓(𝒖𝛼)– 𝐶, ∈ 𝑑𝑜𝑚𝑎𝑖𝑛

𝑑𝑓(𝒖𝛼) + 𝐶, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2.34) 

The 𝐶-parameter constant is typically calibrated using a jackknife procedure (Hosseini, 2009; Wilde & 

Deutsch, 2011). The jackknife procedure leaves out a subset of data with subsequent estimation. The 

estimation is then compared to the left-out data. The procedure is iteratively completed with varying C-

values until an acceptable number of misclassifications are achieved between the estimation and the left-

out data. Misclassification is a disagreement between the estimation and the left-out data values, for 

example, a “outside” left-out data location that is estimated to be “inside”. The acceptable limit of 

misclassifications is commonly determined using elbow plots by selecting the distance which little 

change in misclassifications occurs. The resulting band between - C and + C represents the range of 

uncertainty where the true boundary exists somewhere in between (Wilde & Deutsch, 2011). 

The 𝛽-parameter can be used to address a bias within the model by multiplying or dividing the original 

SDF by a constant: 

𝐷𝐹𝑚𝑜𝑑 = {
(𝑑𝑓(𝒖𝛼)– 𝐶) ∙ 𝛽, ∈ 𝑑𝑜𝑚𝑎𝑖𝑛

(𝑑𝑓(𝒖𝛼) + 𝐶)/𝛽, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2.35) 

The 𝛽-parameter shifts the uncertainty bandwidth location that is controlled by 𝐶 (Munroe & Deutsch, 

2008). The 𝛽-parameter is typically calibrated by several reference models.  

The SDF can introduce bias to the model in the presence of asymmetrical, sparse data, which is 

commonly observed in the mining industry. Mancell (2020) addresses the problem introduced by 
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asymmetrical, sparse data, by using an indicator estimator to generate a probability field to establish an 

uncertainty bandwidth.  

2.7 Indicator Estimate Approach to Boundary Uncertainty 

Mancell (2020) proposed a new implicit modeling technique for boundary modeling that provides a 

globally unbiased model with a measure of uncertainty. Mancell (2020) generated a field of probabilities 

through an indicator estimate and applied a threshold that results in an extracted boundary. An 

uncertainty bandwidth is extracted from the indicator estimate by varying the indicator thresholds to 

produce eroded and dilated boundaries. The workflow consists of four primary steps, as described below. 

1. Creation of a Nearest Neighbour (NN) model to provide an unbiased spatial representation of 

the conditioning data. 

2. Creation of an indicator estimate to generate a field of probabilities of boundary location. 

3. Thresholding the indicator estimate to achieve global unbiasedness as derived from the NN 

model. 

4. Thresholding above and below the NN threshold to provide eroded and dilated boundary that 

gives access to a bandwidth of uncertainty. Mancell determined that values ±0.15 of the NN-

model base case are reasonable for bandwidth of uncertainty. 

NN volumes are a reasonable representation of global volume, as the model provides an unbiased spatial 

representation of the conditioning data and is a reasonable interpolator to use in sparse data areas; thus, 

NN volumes can be used to check an interpreted model’s global volume (Rossi & Deutsch, 2014). The 

NN algorithm designates a geological attribute to a selected node by finding the nearest sample and 

assigning its value.  

The first step in creating the NN model is to define the indicators through indicator formulism: 

𝑖(𝒖𝛼) = {
1, 𝑖𝑓 𝒖𝛼  ∈ 𝑑𝑜𝑚𝑎𝑖𝑛 
0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑓𝑜𝑟 𝛼 =  1, … , 𝑛  (2.36) 

Where 𝑖(𝒖𝛼) is the indicator at location 𝒖𝛼 and is 1 inside the domain and 0 otherwise calculated for all 

𝛼 conditioning data. 

The NN-model is created through the Ordinary Kriging of the indicators with a maximum of one datum; 

using a single informing data point and having the sum of the kriging weights equal one effectively 

equates to a NN-model. The model is tuned by varying the search distances, selecting a distance that 

results in a stable model that is geological reasonable. A global volume is obtained by summing all the 

cells assigned an ‘inside’ value in the NN-model. 
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Figure 2.8: Two-dimensional dataset with single domain comprised of inside and outside data (left). 

Nearest Neighbour model of indicators (right). Mancell (2020).  

The indicator estimate can be carried out with various interpolators using the same indicator formalism 

as the NN-model. Mancell (2020) tested global estimation techniques, such as Global Kriging and Radial 

Basis Functions (RBF), to create smooth, artifact-free models that considered all the conditioning data 

(Carvalho, 2018). RBF was selected over kriging in the case-study because the lack of edge effects 

observed in the RBF estimate, that first-order stationarity was not required, and variograms were not 

necessary (Martin, 2019). The edge effect is a common problem in boundary estimation where there is 

uncontrolled extrapolation of estimated domains to the extents of the model. The edge effect is the 

influence of samples extending into areas of sparse or no data. In Global Ordinary Kriging, the estimates 

distal to data are relatively constant with values close to the dataset’s mean indicator value. Mitigating 

edge effects in Global Ordinary Kriging is completed by restricting the variogram range or adding 

artificial controlling samples into the dataset (Maureira, 2015). 
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Figure 2.9: RBF estimate of two-dimensional dataset with single domain comprised of inside and 

outside data (Mancell, 2020).  

Mancell (2020) noted that global estimation techniques are problematic with datasets containing 𝑁 

>30,000 due to the computational power required for the dense 𝑁 x 𝑁 matrix used in the methods. 

Ordinary kriging with a restricted search can be used for the large datasets to reduce the computational 

demand (Deutsch & Journel, 1998). If an RBF is used as the indicator interpolator in these large datasets, 

sparse iterative or direct solvers can be used to reduce the computation time (Carr et al., 2001; Martin, 

2019).  

After the NN-model and indicator estimate are finalized, a threshold for the indicator estimate needs to 

be selected to extract an unbiased boundary. As previously mentioned, NN-models are a reasonable 

unbiased representation of global volume and can be used to select the indicator estimate threshold value. 

First, the ratio of inside to outside cells in the NN-model is calculated to provide a NN-thresholding 

value, 𝑡ℎ𝑁𝑁, between [0,1] as per the equation below (Mancell, 2020).  

𝑡ℎ𝑁𝑁 = 1 −
𝑉𝑁𝑁

𝑉𝑇𝑜𝑡𝑎𝑙
 (2.37) 

Then, the NN-thresholding value extracts from the indicator estimate cumulative frequency distribution 

(CDF) the estimate thresholding z-value, 𝑧𝑖
∗ (Mancell, 2020). 

𝑧𝑖
∗ = 𝐹𝑖∗(𝑡ℎ𝑁𝑁) (2.38) 
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The 𝑧𝑖
∗-value represents the boundary and all cells with a probability above this value are considered 

‘inside’ the domain and all cells with a probability below this value are considered ‘outside’ the domain.  

A bandwidth of uncertainty is generated by varying the threshold value by 0.15 above or below the 𝑧-

value to create eroded and dilated boundaries.  

 

Figure 2.10: Cumulative Distribution Function of RBF indicator estimate with green line and arrow 

demarcating the threshold to NN model, and the lighter and darker arrows indicating the +/- 0.15 

uncertainty thresholds (left; modified from Mancell, 2020). NN volume ratio of 0.66 corresponds to 𝑧-

value threshold of 0.37. An uncertainty bandwidth was calculated to be between 0.22 and 0.52. Indicator 

threshold uncertainty model with +/- 0.15 uncertainty thresholds (right; Mancell, 2020). 

Mancell (2020) used Probability Threshold Curves (PTCs), which visualize the relationship between 

threshold values and probability for an indicator estimate, to determine that 0.15 was an appropriate 

degree to vary the 𝑧-value for an uncertainty bandwidth. The first step in constructing PTCs is to generate 

true scenarios through a simulation process, then subsequently sample the 𝑁 truths at varying spacings. 

The indicators were interpolated with the multiple datasets using global kriging and RBF, and the 

resulting models were thresholded from p100 to p0 in increments of 0.05. Mancell compared the 

thresholded model volumes to their respective truths to determine the probability of a threshold model 

to be larger than its truth. An experimental PTC was then constructed by plotting the probabilities against 

their thresholds. The process was repeated over dozens of scenarios with different structural truth 

attributes, creating an equal number of PTCs. The PTCs were standardized by setting their midpoints to 

zero. The standardized PTCs have a near-linear shape and the distance between their midpoints and 
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where they transition to zero (or one spans a zone of uncertainty thresholds) is predominantly between 

0.10 to 0.15. 

 

Figure 2.11: Standardized Probability-Threshold Curves for plan and section view with varying drill 

hole spacing and geology, trimmed to show slight variation at p90 & p10 (Mancell, 2020). 

The workflow that Mancell (2020) proposed for boundary uncertainty is straight-forward to implement, 

accounts for asymmetries in data configuration, and provides a geologically rational output. However, 

as Mancell (2020) noted, NN modeling is susceptible to edge effects in areas with sparse drilling and is 

only controlled by adjusting maximum distances, which introduces subjectivity.  
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Chapter 3 

3. Grade and Density Models  
Two variables of interest for uncertainty quantification at the Arrow Deposit are the non-linearly, 

positively, and strongly correlated grade and density variables. The density variable is incomplete 

relative to the grade variable; the standard within the industry is to impute the density variable to make 

a homotopic dataset to facilitate a multivariate data transformation, as conventional co-simulation 

workflows assume that datasets are multivariate Gaussian. Typically, after imputation and 

transformation, the variables are simulated or co-simulated within a domain to generate realizations on 

a grid within a coordinate system. The generated realizations are reviewed together then checked. 

In the study domain, the grade variable is exhaustive at all sampled drill hole locations, but the density 

variable is missing at approximately 82% of the sample locations and biased to high-grade intercepts. 

An interim debiased homotopic representative dataset is created through imputation by selecting density 

values from the global deposit-wide dataset with equal or near-equal grade values of the study domain’s 

dataset. The purpose of the representative dataset, after a normal score transformation of the variables, 

is to fit a GMM to it. The GMM was used to impute the missing density values from the original dataset 

in a simulation workflow. The resulting realizations were decorrelated via Projection Pursuit 

Multivariate Transformation, variograms were fitted, and independent grid Sequential Gaussian 

Simulation was completed.  The simulated grid was clipped to the boundaries of the study domain and 

the realizations were back transformed to original units.  

Complementing the model described above, the uncertainty in the histograms of the representative 

dataset was assessed via the multivariate spatial bootstrap method (Khan & Deutsch, 2016). The 

multivariate spatial bootstrap resamples the dataset while considering the spatial correlation between the 

variables at data locations to create realizations, which represents prior uncertainty. The prior uncertainty 

was then updated through a conditional simulation that accounts for domain extents and the conditioning 

data, resulting in the posterior distribution. In this case, the multivariate spatial bootstrap technique is an 

imperfect measure of parameter uncertainty as the density variable of the representative dataset was 

imputed through a simple deterministic imputation process that did not consider spatial correlation and 

a variety of other factors. However, the output does provide a level of understanding that is helpful in 

assessing the risk associated with the deposit.  
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3.1 Workflow Outline 

The workflow for the assessment of grade and density uncertainty at the Arrow Deposit consists of four 

primary steps, listed below and further described in the following sections of this chapter.  

1. Define the missing data mechanism of the dataset (MCAR, MAR, or MNAR) and create a 

representative dataset. 

2. Impute the missing density data using a GMM fitted to the representative dataset, where the 

GMM provides an estimation of likelihood distribution within a Bayesian updating workflow. 

3. PPMT of the realizations from the GMM imputation workflow, as they contained multivariate 

complexities. The PPMT transforms data of virtually any form, size, and dimension to an 

uncorrelated multivariate Gaussian distribution, allowing for independent simulation of the 

variables 

4. Independent simulation of the variables on a grid within the domain and back transform to 

original units.   

In addition to the workflow described above, the uncertainty in the histograms of the representative 

dataset was assessed via the multivariate spatial bootstrap method to understand the effect of the 

conditioning data in its configuration within the study domain.  

3.2 Missing Data and Creation of Representative Dataset 

In the study domain, the collocated grade and density variables are strongly and positively correlated 

with a correlation coefficient of 0.91 (Figure 3.1). The grade variable is exhaustive for all 656 composite 

locations with an average of 242.34 g/t, whereas the density variable is incomplete with only 116 of the 

composite locations having density values, averaging 3.21 g/cm3 (Figure 3.2). The density data is 

incomplete due to the relatively high-cost and labour-intensive nature of collecting density 

measurements. The locations without density values have an average grade of 226.18 g/t with a positively 

skewed grade distribution, whereas the locations with density values have an average grade of 401.75 

g/t with a nearly uniform grade distribution (Figure 3.3). Reviewing the two subpopulations, it can be 

concluded that the density data was preferentially collected from high-grade samples, representing a bias 

in the dataset. The missing density data is considered to be a MNAR mechanism, where the probability 

of density depends on the grade observed and the density value itself (Rubin, 1976). A debiased 

representative data set needs to be created to better represent the density values missing at lower grades. 

The purpose of the representative dataset, after a normal score transformation of the variables, is to fit a 

GMM to it. Fitting a GMM to the representative dataset provides an estimation of the likelihood 
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distribution for the imputation workflow, and since it is fitted to the representative dataset, the bias 

observed in the original dataset is accounted for. 

 

Figure 3.1: Scatter plot of the grade (Au g/t) and density (S.G.) variables of the A2 high-grade domain. 
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Figure 3.2: Histogram distributions of the grade (Au g/t) and density (S.G.) variables of the A2 high-

grade domain. Cell declustering weights were applied to both distributions.  

 

Figure 3.3: Histogram distributions of the grade (Au g/t) variable of the A2 high-grade domain at 

locations with and without density values.  

Silva and Costa (2019) proposed a workflow to account for the MNAR mechanism by inferring the 

values of the under-sampled variable over the study area through a co-simulation approach and a 

univariate simulation performed on an artificially complete set. However, this approach does not 

consider that appropriate data is available in a larger, global deposit data set. At the Arrow Deposit, a 

global deposit dataset that contains 5850 collocated density (𝑍1) and grade (𝑍2) samples is available 

(Figure 3.4). Similar to the study domain data, the grade and density variables of the global deposit 

dataset are non-linearly, strongly, and positively correlated with a correlation coefficient of 0.82.  It was 

deemed that a simple imputation method could be used to build a reasonable representative dataset by 

selecting density values from the global dataset rather than complete the complex workflow Silva and 

Costa proposed.  
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Figure 3.4: Linear and semi-log scatter plots of the grade (Au g/t) and density (S.G.) variables of the 

global deposit dataset.  

The bias in the heterotopic study domain dataset is addressed by replacing the missing density values 

with suitable density values from the deposit dataset as informed by the strong correlation between grade 

and density. The grade of the composite with a missing density value is used as a search variable in the 

collocated deposit dataset. If there is one exact match between the search variable and the grade 

composite in the deposit dataset, the corresponding deposit density value replaces the missing value in 

the study domain dataset. If there are more than one matching grade, one of the corresponding density 

values is randomly assigned to the study domain dataset. If no grades match the search variable, the 

search variable is expanded by +/- 5% to create an upper and lower bound of grades to find in the deposit 

dataset, where a subset of related density values is created to randomly select from. The result is a 

debiased homotopic representative dataset for the domain that is directly built from the site-specific data. 

The representative dataset contains 116 collocated composites, 287 imputed density values selected from 

the deposit dataset where the grade values exactly matched, and 253 assigned density values selected 

from the deposit dataset where the grade values approximately matched. 

A polynomial function was fitted to the global dataset and applied to the study domain dataset to check 

for appropriateness of the representative dataset (Figures 3.5 and 3.6).  The polynomial function is as 

follows: 

𝑍1 = (1.14 ∗ 10−6)(𝑍2)2 + (1.32 ∗ 10−3)(𝑍2) + 2.4739 
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Figure 3.5: Linear and semi-log scatter plots of the grade (Au g/t) and density (S.G.) variables of the 

global deposit dataset with a fitted polynomial function. 

  

Figure 3.6: Histogram of representative density (S.G.) distribution (upper left), histogram of polynomial 

imputed density distribution (upper right), and scatterplot of the representative relationship overlain by 

the polynomial function (lower). 
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The polynomial imputed density dataset is oversmoothed and underrepresents low density values, but 

the mean and variance of the dataset closely reproduces the representative dataset, indicating the 

representative dataset is a reasonable representation of the study domain. 

3.3 GMM and Imputation 

Silva and Deutsch (2015a) provided a method for multivariate data imputation using GMM for 

estimation of likelihood distribution within a Bayesian updating workflow, consisting of three primary 

steps, as per below. 

1. Defining the prior distribution at the imputation location: Each variable is assumed to be 

spatially multi-Gaussian after the normal scores transformation and can be parameterized by 

the kriging mean and variance through the simple kriging systems of equations.  

2. Defining the likelihood distribution from the GMM: The likelihood distribution is defined as 

the marginal distribution of the conditional distribution given the collocated data observations 

respective to the variable being imputed.  

3. Creating an updated distribution: The information from the prior and likelihood distributions 

are combined with non-parametric Bayesian updating.  

To accommodate the first step, the grade and density variables from the homotopic representative dataset 

underwent individual normal score transformation to be standard normal.  

The grade and density variables are assumed to be spatially multi-Gaussian after the normal scores 

transformation and can be parameterized by the kriging mean and variance through the simple kriging 

systems of equations, thus requiring the creation of independent variograms (Figure 3.7). The kriging 

that produces the prior distribution at each imputation location was completed in the CCG program 

gmm_impute. The search radii for the kriging were set to 28 m, 10 m, and 5m, for the major (azimuth of 

0° and dip of 0°), minor (azimuth of 0° and dip of 90°), and vertical direction (azimuth of 0° and dip of 

90°), respectively.  
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Figure 3.7: Experimental variograms and variogram models of the normal score grade (top) and normal 

score density (bottom) variables of the representative dataset.  

After the prior distribution is created, the likelihood distribution needed to be defined. A bivariate plot 

was created to assess the relationship between the normal score grade and density variables, where it was 

apparent that the complex relationship between the two variables could not be captured with a single 

Gaussian model, a GMM is fit (Figures 3.8 and 3.9). A GMM is a probabilistic model that assumes all 

the data points are generated from a mixture of a finite number of Gaussian distributions (i.e., 

components) with unknown parameters. The GMM fitted to the standard normal representative dataset 

used four components and an expectation maximization (EM) algorithm, which iteratively maximizes 

the log likelihood, as described in Chapter 2. The four-component GMM model was selected from 

sensitivity analysis that compared 2, 3, 4, and 5 components (Figure 3.10). The models that used 2 and 

3 components underfitted the data and the model that used 5 components overfitted the data, as apparent 

in the bivariate and marginal distributions. The underfitted models failed to capture the complexity of 

the constraints observed in the data, particularly the reduced variance near the densest data cluster (NS 

Density ≈ 0.5 and NS Grade ≈ 0.5). The overfitted 5-component model contains a component that 

describes random noise in the data rather than the relationships between variables, trending from NS 
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Density ≈ 0.5 and NS Grade ≈ -3.5 to NS Density ≈ -2.5 and NS Grade ≈ 1.5. The selected 4-component 

GMM allows for the assessment of multi-dimensional probability distributions, and their conditionals 

and marginals distributions. The GMM represents the likelihood distribution in the imputation workflow. 

      

Figure 3.8: Bivariate plot of the representative dataset: normal score density values versus the normal 

score grade values.  

 

Figure 3.9: The GMM fitted to the homotopic representative dataset. 
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Figure 3.10: Bivariate Plot of the normal score representative data and the fitted GMM with different 

number of components.   

The prior and likelihood distributions were combined to create an updated distribution to randomly 

sample from. For the imputation of missing density values, the measured density values (n = 116) from 

the normal scored representative data were retained and the “non-measured density values” (n = 540) 

were deleted. The “non-measured density values” are values that are in the representative dataset but not 

the original data set (i.e., the density values are part of the interim debiased homotopic representative 

dataset that used an imputation method from the global deposit wide dataset but are completely missing 

in the original domain dataset). Then the missing/deleted values were then imputed iteratively from the 

updated distributions to create a set of homotopic datasets. In total, 200 imputation realizations were 

created, where 82% of the density values were imputed in each realization. Figure 3.11 is an example of 

the imputed values of the first realization in normal score space relative to the bivariate relationship of 

the normal score representative dataset. The normal score realizations were checked for variogram and 

histogram reproduction (Figures 3.12, and 3.13).  
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Figure 3.11: Bivariate plot of the imputed normal score density values in realization 1, underlain with 

data values of representative dataset.   

 

Figure 3.12: Variogram reproduction of imputed density values overlain by representative density 

variogram.  

 

Figure 3.13: Histogram reproduction of imputed density values in normal score space.  
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In general, the normal score density variograms were well reproduced, but the imputed values did not 

replicate the short-range variability in the minor or vertical directions. This was determined to be non-

consequential due to the extreme short-range variability in the minor direction; a range difference of 1-

2 m likely is not biasing the model significantly. The representative density histogram is well replicated 

by the imputed realizations, but there is a slight bias, which is believed to derive from the GMM model 

not fully capturing the variability of the representative dataset. The bias is negligible, and the realizations 

were considered acceptable for further work. The realizations were then backtransformed to original 

units to check for appropriateness: Figure 3.14 shows the grade and density distributions, as well as a 

scatter plot of density versus grade of the first two realizations and Figure 3.15 shows the histogram 

reproduction of the density variable in original units. Note that no grade values were imputed, therefore 

the grade distribution is the same for every realization. The backtransformed variables preserve the 

observed relationship noted in the representative database and the realizations replicate the original units 

reasonably well, but the negligible bias is still present.  

 

Figure 3.14: Grade (Au g/t) and density (S.G.) histograms, and a scatter plot of density versus grade for 

the first two imputed realization.  
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Figure 3.15: Histogram reproduction of imputed density values in original units (S.G.).  

After a simple debiasing technique was implemented using site-specific data, the GMM imputation 

workflow transferred the uncertainty associated with missing values into realizations. Excluding the 

heterotopic data observation would lead to biases in the model, as the missing density data observations 

were not missing at random. 

3.4 PPMT and Independent Simulation 

The output of the GMM imputation workflow contained multivariate complexities that required the use 

of the non-linear PPMT. The PPMT transforms data of virtually any form, size, and dimension to an 

uncorrelated multivariate Gaussian distribution, allowing for independent simulation of the variables 

(Barnett & Deutsch, 2015a). The PPMT consists of two steps after a univariate normal score 

transformation: data sphereing and the implementation of the projection pursuit algorithm. The data 

sphereing is applied to transform the Gaussian units to be uncorrelated with unit variance. The projection 

pursuit algorithm is based on the projection index, a test statistic for non-Gaussianity. An optimized 

search finds the projection of the sphered data that maximizes the projection index (the most non-

Gaussian projection). The Gaussianization transform of the multivariate data makes that projection 

Gaussian. Iterating this search and Gaussianization procedure, the sphered data is transformed to be 

multi-Gaussian. The PPMT was completed on each dataset realization to fully decorrelate the variables, 

Figure 3.16 is the transformed values of the first realization.  The targeted Gaussianity percentage for 

the PPMT was set to 99% with a maximum of 50 iterations.  
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Figure 3.16: Histograms and scatterplot of PPMT values in Realization 1.    

Variograms were automatically fitted to the PPMT realizations in the CCG varmodel program. Figures 

3.17 and 3.18 are the variogram models of the first two realizations for each variable, now referred to as 

PPMT 1 and PPMT 2. The variogram structure was nearly lost after the decorrelation of the highly 

correlated variables.  

 

Figure 3.17: Auto-fit variograms to the PPMT 1 variable in realizations 1 and 2. Major, minor and 

vertical directions shown.  
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Figure 3.18: Auto-fit variograms to the PPMT 2 variable in realizations 1 and 2. Major, minor and 

vertical directions shown.  

A 68 (x direction) by 320 (y direction) by 400 (z direction) grid of 0.5 m blocks was simulated using the 

PPMT values and the auto-fitted variograms. Each SGS realization was simulated using a unique 

decorrelated dataset and a unique PPMT 1 and PPMT 2 variogram fitted to that dataset.  The resulting 

simulated grid was clipped to the domain extents and viewed in Cartesian space for reasonableness. The 

representative dataset underwent PPMT to check the estimated grid (Figure 3.19). The estimated PPMT 

values in Cartesian space appear to replicate the informing data reasonably well, where locations of high 

and low values in the representative dataset are apparent in the simulated grid. The first two realizations 

were checked to ensure that the grid estimate is decorrelated as per the informing data (Figure 3.20). 

Variograms were calculated for each realization of the grid simulated model and compared to the average 

input variogram; it appears that the simulated model reasonably replicates the input variograms for 

PPMT 1 and PPMT 2, particularly in the shorter distances (Figures 3.21). However, in the minor 

direction, it appears that the model is slightly more continuous than the input variograms. Histograms 

were checked for data replication in PPMT space – the simulated model appears to replicate the 

informing data well, although not perfectly (Figure 3.22). The imperfect replication is likely partially 

due to the fact that the representative data is not the exact informing data for the model (the imputed 

realizations were used), and there would be slight differences during the projection pursuit transform.  
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Figure 3.19: Realizations 1/2 of PPMT values used in SGS and the corresponding SGS realizations.   

                               

Figure 3.20: Scatterplots of PPMT realizations 1 and 2 from grid SGS. 
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Figure 3.21: Calculated SGS variograms for each realization of PPMT 1 and PPMT 2 overlain by the 

average input variogram. 

 

Figure 3.22: Calculated SGS histograms for each realization of PPMT 1 and PPMT 2 overlain by the 

representative histogram.  

The clipped grid was back transformed to original units and the realizations were reviewed in Cartesian 

space; again, the estimated values appear to replicate the informing data reasonably well (Figures 3.23). 

The grade and density histograms of all the realizations were compared to the representative dataset – 

the realizations reasonably replicate the informing data (Figure 3.24). The difference between the 

representative dataset and the backtransformed model is small, with less than 5 % error between the two, 

and thus the model is deemed acceptable.   
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Figure 3.23: The representative dataset (upper) and the back transformed grade and density grid of 

realization 1 (lower).  

 

Figure 3.24: Calculated histograms for each realization of the grade and density variables overlain by 

the representative histograms.  

The E-type mean was calculated and reviewed to ensure that it was similar to the representative dataset 

(Figure 3.25). The average density and grade of each realization was calculated for the study domain; 

the average grade ranges from 204.22 g/t to 290.23 g/t with a mean of 255.32 g/t, and the average density 

distribution ranges from 2.83 g/cm3 to 3.09 g/cm3 with a mean of 2.96 g/cm3 (Figure 3.26).   
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Figure 3.25: Calculated histograms for each realization of the grade (Au g/t) and density (S.G.) variables 

overlain by the representative histograms.  

 

Figure 3.26: Average grade (Au g/t) and density (S.G.) distributions within study domain.  

3.5 Multivariate Spatial Bootstrap 

Bootstrapping is a statistical resampling scheme that allows uncertainty in an input statistical parameter 

to be assessed from the data (Rossi & Deutsch, 2014). The multivariate spatial bootstrap is a resampling 

scheme that considers the spatial correlation between the variables at data locations (Rezvandehy & 

Deutsch, 2016). The technique is used to create realizations representing the prior uncertainty, and the 

realizations are used as reference distributions for the conditional simulation, an uncertainty updating 

process to produce the posterior uncertainty (Vincent & Deutsch, 2019). The application of the process 

to the Arrow Deposit is described below. 

The density and grade variables of the representative dataset are transformed to Gaussian units through 

a quantile transform (Figures 3.27 and 3.28). A Linear Model of Coregionalization (LMC) is created by 

modeling the direct variograms of the gaussian density and grade variables and the corresponding cross 
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variogram, while maintaining a positive definite covariance matrix (Figures 3.29, 3.30, and 3.31). The 

direct and cross variograms have a nugget effect of 0.2 and two spherical structures. The ranges and 

directions for the structures in all three variograms are identical, but the contributions to the structures 

differ for each variogram (Table 3.1). The sill of the cross variogram is equal to the correlation between 

grade and density, 𝜌 =  0.82. 

 

Figure 3.27: Histograms of the grade (Au g/t) and density (S.G.) variables in Gaussian units.  

 

Figure 3.28: Scatterplots of the density (S.G.)and grade (Au g/t) variables in original and Gaussian units.   
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Figure 3.29: Modeled direct variogram of the normal score grade variable 

 

Figure 3.30: Modeled direct variogram of the normal score density variable 

 

Figure 3.31: Modeled cross variogram of the normal score variables. 
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Structure Contribution 

(NS Grade)  

Contribution 

(NS Density) 

Contribution 

(Cross) 

Major 

Range 

Minor 

Range 

Vertical 

Range 

𝐶0 0.20 0.20 0.20 - - - 

𝐶1 0.30 0.55 0.40 13.0 5.0 2.8 

𝐶2 0.50 0.25 0.22 31.0 21.0 2.8 

Table 3-1: Direct and cross variogram structure contributions and ranges. 

A Cholesky 𝐿𝑈 decomposition of the covariance matrix is performed, 𝐶 = 𝐿𝐿𝑇 , where 𝐶 is the 

covariance matrix, 𝐿 is the lower triangular matrix and 𝐿𝑇is the transpose of the lower triangular matrix 

(Rezvandehy & Deutsch, 2016). Two hundred unconditional realizations with 656 collocated samples 

are produced by multiplying the 𝐿 matrix by 𝑤, an uncorrelated standard normal deviate vector, for each 

realization (Rezvandehy & Deutsch, 2016). The realizations are back transformed to original units using 

the original transformation tables and the distributions of uncertainty were generated for grade and 

density (Figures 3.32 & 3.33). Spatial correlation directly affects prior uncertainty, increasing spatial 

correlation leads to greater uncertainty because the data are more redundant (Khan, Deutsch, & Deutsch, 

2014). 

 
Figure 3.32: Prior histogram uncertainty of grade (Au g/t) and density (S.G.) 
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Figure 3.33: Distribution of mean grade (Au g/t) and density (S.G.) of prior distribution. 

The realizations of the multivariate spatial bootstrap are used as reference distributions during the normal 

score transform of the representative data (Figure 3.34).  

 
Figure 3.34: Normal score transformation of grade (Au g/t) and density (S.G.) variables using prior 

distributions as reference distributions. 

The density variable is simulated independently at the grid locations using the previously modeled 

density variogram, and the grade variable is simulated using the grade variogram model and the 

simulated density realizations as a secondary data during co-simulation. The simulated grid is clipped to 

the domain dimensions, then the realizations were back transformed to the original units using the spatial 

bootstrap reference distributions (Figure 3.35). The back transformed grid was checked for histogram 

reproduction (Figure 3.36).   

 
Figure 3.35: Realizations of the grade (Au g/t) and density (S.G.) variables using prior distributions as 

reference.  
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Figure 3.36: Histogram reproduction of grade (Au g/t) and density (S.G.) variable in original units. 

Notably, the posterior uncertainty is only slightly reduced from the prior uncertainty (Figure 3.37); 

therefore, the conditioning data in its configuration in the study domain has little effect on the global 

uncertainty of the grade and density variables. 

 
Figure 3.37: Comparison of prior and posterior mean uncertainty of density (upper) and grade (lower). 
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Chapter 4 

4. Geometric Imputation of Domain  
Carvalho (2018) developed a technique for assessing domain geometry uncertainty in tabular vein 

deposits. The workflow considers a local coordinate system, position uncertainty (i.e., vein location 

perpendicular to the intercept-point) and thickness uncertainty. In the workflow, drill holes with shallow 

angle intersections are imputed to assess position and thickness uncertainty. Position and thickness 

uncertainties, or geometry data uncertainty, are in part due to inclined drill holes intercepting the domain, 

where true thickness and vein location perpendicular to the intercept-point are not measured. The 

workflow generated multiple realizations of the vein geometry and boundaries with unstructured grids 

that fit the shape of the vein (Carvalho, 2018). Prior to development of geometry uncertainty workflows, 

estimation domains for vein deposits were usually deterministically defined by explicit modeling, 

implicit modeling, or surface interpolation, which do not provide uncertainty assessment (Carvalho, 

2018). 

At the Arrow Deposit, all the informing drill holes intersect the vertical deposit obliquely, thus requiring 

imputation for uncertainty analysis. Note, that unlike the workflow Carvalho proposed, only thicknesses 

were considered in the evaluation as that was the primary interest in the deposit. Position uncertainty 

was not considered in this thesis.  The uncertainty of the domain thickness perpendicular to the plane of 

continuity is defined as “FW/HW” (footwall/hangingwall) uncertainty. 

4.1 Data preparation 

Nearly all of the drill holes delineating the vertical, northeast striking study domain are oriented in two 

main directions: 327- and 147-degrees azimuth, dipping between 60 and 80 degrees; however, there is 

one drill hole drilled vertically through the domain. The data and domain were rotated to a north-south 

orientation so that coordiniate directions are more geologically significant and to reduce the grid size 

(Figures 4.1 & 4.2). The domain contains 35 drill holes spaced 0.5 to 25 m apart and the deterministically 

explicitly modeled wireframe representing the domain ranges in thicknesses between 1 and 7m with a 

maximum vertical extent of 175 m along a strike of 145 m (Figure 4.3). The one drill hole drilled 

vertically through the domain was not considered in the imputation workflow described below. 
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Figure 4.1: Plan view of the drill holes constraining the domain, the domain wireframe, and domain 

composites displaying assay grade (Au g/t) results. Scale in metres. 

 

Figure 4.2: Oblique view (looking north) of the drill holes constraining the domain, the domain 

wireframe, and domain composites displaying assay grade (Au g/t) results. Scale in metres. 
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Figure 4.3: Long section (20 m window looking west) of the drill holes constraining the domain, the 

deterministic domain wireframe (pink vein created in Leapfrog), and domain composites displaying 

assay grade (Au g/t) results. Scale in metres. 

The inclined drill holes intersect the domain mineralization at an oblique angle; thus, the length of the 

mineralized interval along the drill hole is not a true representation of the thickness of the domain. In 

lieu of true thickness measurements, a database of interim thickness is created by calculating the distance 

between the intersection of the drill hole with the wireframe and the wireframe location opposite to the 

intersection (Figure 4.4). The assessed thickness is assigned to the wireframe intersection coordinate. 

The declustered average thickness is 2.2 m with values ranging between 0.36 m and 6.29 m (Figure 4.4). 

As expected, the lower values are located at the peripheral edges of the wireframe and at minor bends in 

the wireframe. The composite grades and lengths have no appreciable relationship with one another 

(Figure 4.4). The use of the wireframe and drill hole intersection coordinates to create thickness values 

- although not a direct observation from raw data - imparts geologic knowledge of the deposit onto the 

workflow. Each assessed thickness value will be replaced through the simulation workflow and the 

uncertainty will be assessed. 
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Figure 4.4: Cross section of the deterministic wireframe, a drill hole with the associated internal 
composites, and calculated thickness at intersection points (left). Scale in metres. Histogram of 

declustered assessed thicknesses (upper right) and scatterplot of the grade (Au g/t) versus thickness 

(lower right).  

4.2 Sequential Gaussian Simulation 

The thickness variable underwent a normal score transformation and a variogram model is fitted to the 

normal score data (Figure 4.5). SGS is performed on a 0.5 m (strike) by 0.5 m (width) by 0.5 m (vertical) 

grid for 200 realizations and back transformed to original units. The locations where the drill hole 

intersected the wireframe were populated with the thickness realizations of the closest block. The 

realizations reproduced the input histogram and variogram reasonably well (Figures 4.6 and 4.7).  
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Figure 4.5: Variogram of assessed normal score thickness variable.   

 

 

Figure 4.6: Histogram reproduction of the thickness variable in normal and original units. The grey lines 

represent the realizations and the orange line represents the input data.    

 



68 
 

 

Figure 4.7: Variogram reproduction of the normal score thickness variable in the major (blue), minor 

(orange), and vertical (green) directions. The bolded brown line is the input variogram. 

4.3 Wireframe Creation and Thickness Uncertainty 

The drill hole intercept points are fixed in Cartesian space and have the associated imputed thickness 

values. The north-south orientation of the rotated domain allowed for the simple conversion of the 

thickness values to coordinate points, where the thickness value was either added or subtracted to the X 

coordinate of the intercept. On average, the calculated coordinate position distribution across from each 

intercept point are centered on the originally assessed thickness measurement (Figure 4.8). The data was 

divided into HW and FW subsets, both containing coordinate distributions and fixed intercept locations. 
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Figure 4.8: Cross section schematic of the coordinate distribution opposite to the fixed drill hole 

intercept point with composite grades (Au g/t) and the originally assessed thickness distances. Scale in 

metres. 

The FW and HW surface wireframes were created from the data using the LeapFrog Geo version 5.0.1 

program from SeeQuent Limited. The program uses a radial basis function to interpolate a surface from 

the given points. The interpolant, which snapped to each individual point, used a linear model with total 

sill of 300 and base range of 50 m with no nugget effect. Two hundred wireframe realizations were 

created for both the FW and HW datasets (Figure 4.9).  
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Figure 4.9: Cross section of the generated HW and FW wireframe realizations with composite grades. 

Scale in metres. 

Each realization consists of a different imputed value perpendicular to the intercept point of the 

opposite dataset and the intercept point of the dataset being evaluated (i.e., the fixed data point).  This 

accounts for uncertainty in the boundary but is fixed at data locations. Automated implicit modelling 

was necessary to create the 400 surfaces (200 for FW and 200 for HW) being evaluated, as manual 

creation of the surfaces would be prohibitively time consuming.  
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Chapter 5 

5. Boundary Uncertainty Assessment 
Assessing volume uncertainty of the Arrow Deposit is important for understanding metal content 

uncertainty, as the metal content is sensitive to changes in volume due to the extreme high-grade nature 

of the deposit. The volume uncertainty can be assessed by determining the uncertainty of the domain 

perpendicular to the plane of continuity and in the plane of continuity. In Chapter 4, the assessment of 

domain position and thickness uncertainty quantified uncertainty perpendicular to the plane of 

continuity; this chapter describes the process to assess uncertainty in the plane of continuity, termed the 

“Boundary” uncertainty.  

Workflows using SDFs were not used, as they can introduce bias to the model in the presence of 

asymmetrical, sparse data, which is evident at the Arrow Deposit. Rather, the workflow Mancell (2020) 

proposed was used, as it addresses the problem through the use of an indicator estimator to generate a 

probability field to establish an uncertainty bandwidth. Since the uncertainty perpendicular to the plane 

of continuity was already assessed in Chapter 4, the boundary uncertainty assessment was limited to the 

plane of continuity, thus the data set was considered in two dimensions.  

5.1 Workflow Outline 

The workflow for the assessment of boundary uncertainty at the Arrow Deposit is derived from the 

boundary uncertainty work completed by Mancell (2020). The primary five steps implemented in this 

chapter are listed below – steps two to five are a summary of Mancell (2020). 

1.Reduce the data to relevant extents and create a representative dataset. Note that the uncertainty 

study only considers the boundary model in the plane of continuity (i.e., two dimensions), as the 

uncertainty perpendicular to the plane of continuity is quantified through different means.  

2.Creation of a Nearest Neighbour (NN) model to provide an unbiased spatial representation of 

the conditioning data. 

3.Creation of an indicator estimate to generate a field of probabilities of boundary location. Note 

that two estimator types were tested, Global Ordinary Kriging and RBF, and the one that is most 

geologically representative and reasonably replicates the data was selected.  

4.Thresholding the indicator estimate to achieve global unbiasedness as derived from the NN 

model.  
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5.Thresholding above and below the NN threshold to provide eroded and dilated boundary that 

gives access to a bandwidth of uncertainty. 

5.2 Data Preparation 

The drill data was clipped to relevant extents around the domain to inform the estimation; the resulting 

data encompasses a volume that is approximately 14 m wide (perpendicular to the plane of continuity), 

195 m along strike, and 242 m along the dip direction (Figure 5.1). The dataset is further reduced by 

removing “outside” indicators from drill holes that contain “inside” indicators, as these “outside” 

indicators are not relevant when the boundary is only being considered in the plane of continuity. In total, 

the number of “inside” indicators remained the same at 656 composites, but the number of “outside” 

indicators was reduced to 3,296 composites from over 259,000 composites. 

 
Figure 5.1: Long section and plan view of the reduced drill hole dataset. Scale in metres. 

5.3 Nearest Neighbour Model 

Nearest Neighbour (NN) volumes are a reasonable representation of global volume and can be used to 

check an interpreted model’s global volume (Rossi & Deutsch, 2014).  The first step in creating the NN 

model is to define the indicators through indicator formulism. 
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𝑖(𝒖𝛼) = {
1, 𝑖𝑓 𝑢𝛼  ∈ 𝑑𝑜𝑚𝑎𝑖𝑛 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑓𝑜𝑟 𝛼 =  1, . . . , 𝑛  

Where 𝑖(𝒖𝛼) is the indicator at location 𝒖𝛼 and is 1 inside the domain and 0 otherwise calculated for all 

𝛼 conditioning data. 

The NN model is created through the Ordinary Kriging of the indicators with a maximum of one datum; 

using a single informing data point and having the sum of the kriging weights equal one effectively 

equates to a NN model. The NN model was created on a grid of 0.5 m by 0.5 m cells extending 410 cells 

in the y direction and 478 cells in the z direction, for a total of 195,980 cells. The NN model used a 

search of 80 m (z direction) by 80 m (y direction), resulting in 49,132 cells with an indicator of 1, 

equating to 12,283 metres squared (Figure 5.2). For reference, the deterministic study domain has a two-

dimensional area of 14,076 metres squared.  

 
Figure 5.2: Long section of the reduced drill hole dataset and NN model. Scale in metres. 

5.4 Indicator Estimation – Global Simple Kriging 

Interpolation of the indicator values maps a field of probabilities from which a boundary interface can 

be extracted (Mancell, 2020). Global Simple Kriging was used to interpolate indicator values on the grid; 

Global Simple Kriging uses all available conditioning data and produces a smooth, artifact free model 

(Carvalho, 2018). A spherical variogram was fitted to the omnidirectional experimental variogram to 
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inform the estimate (Figure 5.3). Overall, no conventional variogram model fit the data well, so focus 

was on fitting the model to the short-range variability. Note that the Gaussian model fit the data better 

than the spherical variogram model, but resulted in an unrealistic, unstable model. The resulting 

interpolated field of probabilities of the indicator values from the Global Simple Kriging is visualized in 

Figure 5.4.  

 

Figure 5.3: Omnidirectional experimental and spherical model variogram.  

 
Figure 5.4: Global Simple Kriging of Indicators. 
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5.5 Indicator Estimation – RBF 

Mancell recommends RBF over kriging because the lack of edge effects observed in the RBF estimate, 

that first-order stationarity was not required, and variograms were not necessary (Martin, 2019). The 

edge effect is a common problem in boundary estimation where there is uncontrolled extrapolation of 

estimated domains to the extents of the model. The edge effect is the influence of samples extending into 

areas of sparse or no data. In Global Ordinary Kriging, the estimates distal to data are relatively constant 

with values close to the dataset’s mean indicator value. Mitigating edge effects in Global Ordinary 

Kriging is completed by restricting the variogram range or adding artificial controlling samples into the 

dataset (Maureira, 2015).  

In RBF estimation, a function is fitted to the conditioning data, and the function requires a kernel type 

to be selected. In the study domain, the Gaussian kernel was selected because it replicates short-scale 

continuity well, resulting in smooth models. The Gaussian kernel is defined as follows: 

𝜙(𝑟)  =  𝑒𝑥𝑝−𝜖2𝑟2
 

Where 𝜙(𝑟) is the Gaussian kernel as a function of radius and 𝜖 is the support parameter. A reasonable 

support parameter can be estimated from the geometrical configuration of the data. This is accomplished 

by finding the radius of the largest circle that can be placed inside the data configuration with all locations 

considered. Using the provided data, the support parameter was calculated to be 56.82; the equation and 

the output of the equation are below. 

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 𝑖𝒖 𝜖 𝑨
𝑀𝑎𝑥 [𝑖𝒖𝜶𝜖𝑨

 𝑀𝑖𝑛 |𝒖 − 𝒖𝛼|] 

Viewing the estimated model, minor edge effects are observed at depth in the northern portion of the 

model (Figure 5.5); however, the model is left unchanged as it will not be an issue during thresholding 

for an uncertainty bandwidth.  
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Figure 5.5: RBF of Indicators. 

5.6 Thresholding and Uncertainty Assessment 

As previously mentioned, NN models are a reasonable unbiased representation of global volume or area. 

The ratio of inside to outside cells in the NN model provides a NN-thresholding value, 𝑡ℎ𝑁𝑁, between 

[0,1] as per the equation below (Mancell, 2020). 

𝑡ℎ𝑁𝑁 = 1 −
𝐴𝑁𝑁

𝐴𝑇𝑜𝑡𝑎𝑙
 

The NN-thresholding value extracts from the indicator estimate cumulative frequency distribution (CDF) 

the estimate thresholding z-value, 𝑧𝑖
∗ (Figure 5.6; Mancell, 2020) 

𝑧𝑖
∗ = 𝐹𝑖∗(𝑡ℎ𝑁𝑁) 

In the study area, 𝑡ℎ𝑁𝑁 is equal to 0.749 and 𝑧𝑖
∗ is equal to 0.456 for the Global SK estimate and 0.462 

for the RBF estimate. Figure 5.5 shows the cumulative distribution function (CDF) of the indicator 

estimates with the NN threshold and corresponding 𝑧𝑖
∗ value (yellow arrow). A bandwidth of uncertainty 

is generated by varying the 𝑧𝑖
∗ value by ±15% to create eroded and dilated boundaries – the eroded and 

dilated limits were chosen at the discretion of the author based on geological knowledge of the deposit 
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but are in line with the recommendations of Mancell, where the end members of boundary uncertainty 

are the extents that appears to be geologically reasonably (Figure 5.7). 

 
Figure 5.6: Cumulative Distribution Function of indicator estimate (Global SK Estimate and RBF 

Estimate), showing NN threshold, the corresponding  𝑧𝑖
∗ value (yellow arrow), and the bandwidth 

uncertainty end members (blue and red arrows).  

 
Figure 5.7: The bandwidth uncertainty of the boundary (left: Global SK, right: RBF) and indicator 
composite dataset. Note that in areas where the boundary appears to overlap the informing data, this is 

an artifact in the visualizations, where the point data is enlarged for viewing purposes.  
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5.7 Conclusions 

The resulting boundaries corresponding with the 𝑧𝑖
∗ value and associated boundary uncertainty appears 

to be geologically reasonable. However, both the RBF and Global SK estimates have values below 0 

(25.1% of RBF estimated cells and 41.7% of Global SK estimated cells) and above 1 (10.2% of RBF 

estimated cells and 9.2% of Global SK estimated cells), which is attributed to the screening effect during 

estimation. The estimated cells with values outside the values of the informing dataset was considered 

to be of negligible importance in the evaluation of the boundary, as the estimates with the extreme values 

are in areas distal to the boundary location, typically in between drill hole intersections with the same 

indicator classification, as visualized in Figure 5.8.  

 

Figure 5.8: The Global SK (left) and RBF (right) estimated cells with extreme values 

The RBF estimate was selected for the uncertainty analysis as it appeared to honour the sparsely sampled 

areas better than the Global SK estimate, which is likely a function of a poorly fitting variogram used in 

the Global SK estimate. 

The workflow that Mancell (2020) proposed for boundary uncertainty is straight-forward to implement, 

accounts for asymmetries in data configuration, and provides a geologically rational output. However, 

as Mancell noted, NN modeling is susceptible to edge effects in areas with sparse drilling and is only 

controlled by adjusting maximum distances, which introduces subjectivity. The endmembers of the 
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uncertainty bandwidth are chosen rather arbitrarily by the user, as well as the clipping limits of the data, 

again introducing subjectivity. Still, as one of the cannons in the field of geostatistics is to ensure that 

the resulting model is representative for the related geology, which is believed to have been achieved; 

where the unbiased boundary closely matches the deterministic geologic interpretation.  
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Chapter 6 

6. Uncertainty Review of the Arrow Deposit 

The geometry imputation, boundary, grade, and density models were combined into a single model and 

each individual component was reviewed to evaluate influence on overall uncertainty. For the purposes 

of comparison, the uncertainty associated with the boundary in the plane of continuity is termed 

“Boundary”, the uncertainty of the domain thickness perpendicular to the plane of continuity is labelled 

“FW/HW” (footwall/hangingwall), the grade and density model is appropriately named 

“Grade/Density”, and the combined model considering all sources of uncertainty is denoted “Complete”. 

The uncertainty of each component is isolated for evaluation by using the E-type mean of the other 

components. In total, the domain contains 800 kilo (K) troy ounces of gold contained in 97 K tonnes at 

a grade of 259 grams per tonne gold, as per the E-type mean of the uncertainty assessments. No 

classification scheme or criteria was applied to the model. 

Unsurprisingly, the Grade/Density model is the largest input to specific gravity and grade uncertainties, 

with very little influence from the FW/HW and Boundary models (Figures 6.1 and 6.2). The limited 

uncertainty associated with FW/HW and Boundary models is from each realization occupying slightly 

more or less blocks, introducing minor fluctuations in the average of the domain.  

 
Figure 6.1: Kernel Density Estimates from histogram of specific gravity uncertainty pertaining to the 

“Grade/Density”, “FW/HW”, and “Boundary” models.  
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Figure 6.2: Kernel Density Estimates from histogram of specific gravity uncertainty pertaining to the 

“Grade/Density”, “FW/HW”, and “Boundary” models. 

The Boundary model contributes the most to tonnage uncertainty; the FW/HW and Grade/Density 

models contribute about the same degree of uncertainty, with the “FW/HW” contributing slightly more 

(Figure 6.3). The Boundary model has the largest influence on tonnage because the model has the largest 

range in volume realizations. The Boundary model defines a bandwidth for uncertainty assessment by 

varying the 𝑧𝑖
∗ value by ±15%. The selected percentage to vary the  𝑧𝑖

∗ value is in line with the 

recommendations of Mancell, and appears to be geologically reasonably, but the model is sensitive to 

percentage selected to create the bandwidth; thus, requires further research.  
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Figure 6.3: Kernel Density Estimates from histogram of tonnes uncertainty pertaining to the 

“Grade/Density”, “FW/HW”, and “Boundary” models.  

The Boundary model contributes the most to the metal content (gold troy ounces) uncertainty, followed 

by the Grade/Density model with minor influence from the FW/HW model (Figure 6.4). The impact of 

the Boundary model to the metal content is attributed to the associated tonnage uncertainty within the 

defined volume and the high-grade nature of the deposit, whereas the effect of the Grade/Density model 

is attributed to the short-range variability of the variables. Furthermore, the Boundary model is poorly 

sampled, where the sampling equates to drill hole spacing, meaning more uncertainty than other well 

sampled variables. The FW/HW model appears to reflect that thickness is more continuous than the 

sampling density.  
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Figure 6.4: Kernel Density Estimates from histogram of tonnes uncertainty pertaining to the 
“Grade/Density”, “FW/HW”, and “Boundary” models, as well as the combined model, noted as 

“Complete”. 

The uncertainty associated with the volume, grade, and density variables of the deposit are the focus of 

the study, as these variables define the overall metal content of the deposit, the largest input to project 

economics. The metal content of the Arrow Deposit is sensitive to changes in volume due to the extreme 

high-grade nature of the deposit, therefore the Boundary model, which has a large range of possible 

volumes (and range in the determination of ore/not ore), contributes the most to the metal content 

uncertainty; demonstrating the importance of applying the boundary technique with great care to ensure 

geologic reasonableness is achieved in a narrow vein, high-grade, tabular deposit. The Grade/Density 

model also significantly contributed to the metal content uncertainty, which is credited to the short-range 

variability of the variables. The FW/HW model provided additional uncertainty to the metal content, but 

to a much lesser degree as the range of possible volumes associated with the model were relatively small. 
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Chapter 7 

7. Conclusion 

This thesis details a workflow to quantify uncertainty of the Arrow Deposit, using a single, representative 

high-grade domain for the study. The grade variable is exhaustively sampled at all drill hole locations 

within the study domain, but the density variable is missing at approximately 82% of the drill hole 

locations and biased to high-grade intercepts. The density variable was de-biased through a simple 

imputation process that selected density values from the global deposit-wide dataset. A multivariate 

spatial bootstrap model was created from the debiased dataset, as well as a density-imputed model using 

a GMM followed by decorrelation via PPMT and independent SGS. The multivariate spatial bootstrap 

model demonstrated that the conditioning data in its configuration in the study domain has little effect 

on the global uncertainty of the grade and density variables. The GMM imputed model captures the 

uncertainty associated with the missing density data, thus is considered a more complete model (and 

there was little histogram parameter uncertainty) and was used in the final model. Appropriate checks 

were completed on the two models. 

Volume uncertainty was quantified by assessing the uncertainty of the thickness perpendicular to the 

plane of continuity via a geometry imputation process and the uncertainty of the boundary in the plane 

of continuity via an indicator estimate. 

The grade/density model was combined with the volume models and reviewed for contribution to the 

metal content uncertainty. The boundary model, which has a large range of possible volumes (and range 

in the determination of ore/not ore), contributes the most to the metal content uncertainty.  

The domain contains 800 kilo (K) troy ounces of gold contained in 97 K tonnes at a grade of 259 grams 

per tonne gold, as per the E-type mean of the uncertainty assessments. No classification scheme or 

criteria was applied to the model, further work is necessary to do so, including cost and revenue analysis. 

7.1 Limitations 

The original dataset was debiased by sampling the deposit-wide dataset assuming that any sample 

location with both a grade and density measurement in the deposit are representative of a location within 

the study domain. This assumption is supported by the author’s lithological, structural, and alteration 

knowledge of the deposit, and is thought to be pragmatically reasonable, but has not been tested with 

detailed academic examination; further research is recommended.    
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Uncertainty perpendicular to the plane of continuity was assessed through a thickness imputation 

process, which only contributed a minor amount to global metal content uncertainty.  Carvalho (2018) 

developed a technique for assessing domain geometry uncertainty that used both position and thickness 

uncertainty. Position uncertainty was not the focus of this thesis and adding it to the workflow can 

reasonably assumed to have little effect on global metal content uncertainty. However future analysis of 

the Arrow Deposit may require the addition of position uncertainty and should be considered in future 

workflows. 

In the boundary model, both the RBF and Global SK indicator estimates have values below 0 and above 

1 due to the screening effect during estimation. These cells are of negligible importance in the evaluation 

of the boundary, as the cells are distal to the boundary location to be assessed. Further research should 

be completed on the estimation types for the boundary model outside of the methods proposed by 

Mancell (2020) to reduce the number of extreme value cells.  

The uncertainty of the boundary model was assessed by randomly sampling the uncertainty bandwidth 

produced from the estimate, producing an irregular distribution. Further research is needed on the 

sampling of the bandwidth to produce a more justifiable outcome.  

In addition to the visual and reproduction of data checks performed on the model, cross-validation or k-

fold validation are to be completed in future research for an assessment of the estimate relative to the 

truth.  

The workflow can be optimized to account for flattening of the cartesian data (i.e., unfolding) and include 

the outcomes of the spatial bootstrap for both the multivariate (i.e., the grade and density model) and 

univariate (i.e., thickness) cases. The unfolding accounts for local anisotropy observed in the domain 

through a coordinate transformation whereas integrating the spatial bootstrap into the workflow, rather 

than as a side study, incorporates the uncertainty in global parameters in the final uncertainty. Figure 7.1 

is a schematic of the optimized workflow. 
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Figure 7.1: a schematic of the proposed workflow. 

7.2 Contributions 

The workflow within this thesis intends to provide a pragmatic approach to uncertainty quantification 

for a tabular vein type deposit with heterogeneously sampled data; most of the workflows can be 

completed with commercial software, which is likely useful to industry practitioners. The workflow, in 

part or in full and with modifications can be used for Mineral Resource reporting or used as the basis for 

classification criteria (i.e., reviewed against monthly or quarterly production panels for classification 
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based on uncertainty tolerances). The workflow can be generalized to be used on unfolded tabular veins 

or stratigraphic units.  

The workflow for the assessment of grade and density uncertainty demonstrates how to define the 

missing data mechanism (MCAR, MAR, or MNAR) and a simple way to create a representative dataset 

for later GMM fitting and imputation, thus de-biasing the data and maintaining uncertainty associated 

with the missing data. The fitting of the GMM is described as well as the testing recommended to select 

the appropriate number of components. The output of the GMM imputation workflow contained 

multivariate complexities that required the use of the non-linear PPMT. The PPMT, independent 

simulation on a grid, and back transformation is described with all the appropriate checks. The entirety 

of the workflow, which includes the linking and combining of multiple geostatistical techniques, can be 

used as a case study in the mining industry. 

The boundary and thickness uncertainties are interpreted to be independent from one another – the 

workflow describes how to decouple the data, prepare the data, and perform the various techniques to 

output the associated uncertainty, then combine the models to output the final volume uncertainty model. 
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