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ABSTRACT 

 

The noncoherent energy detector (ED), an algorithm that detects a primary signal based on the sensed 

energy, is one of the simplest devices used in cognitive radio (CR) spectrum sensing. Although the 

sensing performance of the ED has been extensively analysed in the literature, almost all of the 

research studies model the noise at the receiver as Gaussian which might not be a valid assumption 

when the noise exhibits impulsive behavior. Additionally, multipath fading, an inherent phenomenon in 

wireless propagation, makes the spectrum sensing task more difficult. Motivated by these scenarios, 

spectrum sensing performance with a single CR deploying the ED is considered in this study under 

multipath fading and impulsive noise environments. The primary user (PU) to CR channel is modeled 

as Rayleigh faded, the additive noise at the receiver is modeled as Laplacian, and the sensing 

performance of the ED is characterized. The ED performance is found to deteriorate with the increase 

in severity of the Laplacian noise. To mitigate the problem, use of multiple antennas is considered and 

found to yield a significant performance boost. Further, to obtain possible performance gains and to 

address the hidden terminal problem in spectrum sensing, a number of cooperative CRs is considered 

for joint detection of the PU signal. Interestingly, cooperation yields remarkable performance gains 

even under the aforementioned scenarios. Numerical (simulation) results are presented and discussed to 

yield valuable insights. 
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Chapter 1 

 

Introduction 

 

Wireless communication technology has undergone enormous growth recently. The demand for data 

rate is exponentially growing, while the demand for data fidelity is unprecedented. As forecast by 

Cisco, the global mobile data traffic demand will exceed 11 exabytes per month by 2017 [1] (Fig 1). To 

be more specific, the data rate demand will increase at a rate of about 10 exabytes per month in the 

years 2013 to 2017 [1], thus, an equivalent bandwidth will be needed. To meet this enormous demand, 

the available radio frequency spectrum needs to be effectively utilized. According to the Federal 

Communications Commission (FCC), the current licensed radio spectrum is largely underutilized 

across time and in space [2]. For instance, in New York and Washington D.C., the maximum total 

spectrum occupancy was found to be as low as 13% and 35%, respectively, of the spectrum below 3 

GHz [3]. 

 

 

Fig. 1. Global mobile data traffic forecast [1]. 

 

Radio spectrum underutilization is commonly spread over a large geographical area. Licensed users use 

it for a very short period of time which makes the utilization inefficient. If unused spectrum could be 
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detected and utilized opportunistically, bandwidth would not be wasted. 

Intelligent devices called cognitive radios (CRs) have emerged [2] with a goal of effectively utilizing 

licensed spectrum. In the CR communication paradigm, unlicensed users, i.e., secondary users (SUs), 

can utilize the spectrum allocated to licensed, primary users (PUs) whenever the PUs are inactive. PUs’ 

inactivity produces “spectrum holes” [18], or unused spectrum that can be put to use by secondary 

users. The detection of spectral holes is termed “spectrum sensing,” and this is the work of CR based 

communications [5]. By sensing and adapting to the environment, a CR is able to fill in spectrum holes 

and serve additional secondary users without causing harmful interference to the licensed user. This 

necessitates the detection of PUs that are operating within the communicable range of the CR. Once the 

PU is detected, the CR should withdraw from the spectrum to minimize the interference it may cause. 

To avoid interference, the CR must continuously sense the spectrum it is using in order to detect 

reappearance of the PU. Since the fundamental task of a CR is to detect the presence or absence of 

spectrum holes, several spectrum sensing algorithms have been developed. The energy detector (ED) 

algorithm is one of the most popular techniques. It is extensively used in practice due to its simple 

structure and ease of implementation [4], [5] and will be considered in this research study. 

The ED has several challenges to detect the presence of PUs because radio frequency signals 

propagating through a wireless channel are subject to impairments such as path-loss, shadowing, and 

multipath fading [6]. For the ED, multipath fading is an inherent challenge. Multipath fading is the 

random fluctuation of the envelope of the wireless signal due to constructive and destructive additions 

of signals received via multiple paths. Multipath fading detrimentally affects the performance of 

wireless systems [6] making signal detection more difficult because of degradation in the transmitted 

signal strength. Several studies have extensively analyzed the spectrum sensing performance of the ED 

in fading conditions [4], [32], [33]. However, these analyses considered additive white Gaussian noise 

(AWGN) at the receiver end. Although AWGN is the most popular noise model according to the 

literature, there are some situations where noise at the receiver may be better modeled by non-Gaussian 

noise. The detection performance of an ED is unknown under multipath fading in a non-Gaussian 

environment and is the interest of this research study. In section 1.1, the main objectives of this study 

are described. 

 

1.1 Objectives 

The main objectives of the proposed project are to: 

1. Investigate the quality of spectrum sensing in wireless multipath fading channels and impulsive 

noise.  
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2. Extend the scenario in objective 1 to investigate multiple antennas and cooperative spectrum sensing 

techniques to attain further performance improvement in fading channels with impulsive noise. 

 

1.2 Problems 

Objectives 1 and 2 are now briefly discussed as problems 1 and problem 2, respectively. 

 

Problem 1 

A received radio signal is affected by noise corruption at the CR receiver. Multipath fading and noise 

can cause the sensing performance of an ED to deteriorate [4], [5]. The noise at the receiver is 

popularly modeled as Gaussian due to the simplicity of the model and the ease in its analysis. 

However, non-Gaussian noise may arise in some power delivery networks and some mobile networks 

that experience significant interference, and the Gaussian noise model is impractical in these scenarios 

[7]. This impulsive noise is likely to worsen the sensing performance of the ED, which performs 

optimally only for Gaussian noise [8]. The problem of spectrum sensing in multipath fading with non-

Gaussian noise is a focus of this research study. 

 

Problem 2 

The “hidden terminal problem,” which occurs when a CR is shadowed or in severe multipath fading 

[5], is a challenge in spectrum sensing. For example, in a television broadcast system, if a CR is 

shadowed from the DTV transmitter, it cannot detect its presence and starts to transmit, harmfully 

interfering with the PU’s transmission. To address this issue, multiple CRs can be designed to 

collaborate in spectrum sensing. Recent work has shown that multiple antennas and cooperative 

spectrum sensing can greatly increase the probability of detection in fading channels. However, the role 

of cooperative spectrum sensing in multipath fading and non-Gaussian noise is unexplored. 

Improvement of the ED performance in the problem 1 scenario with the help of cooperative spectrum 

sensing is the second problem considered in this study. 
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Chapter 2 

 

Literature Review 

 

2.1 RF spectrum 

The term radio frequency (RF) refers to alternating current having characteristics such that, if the 

current is input to an antenna, an electromagnetic field is generated suitable for wireless broadcasting 

and or communications. These frequencies cover a significant portion of the electromagnetic radiation 

spectrum, extending from 9 kHz, the lowest allocated wireless communications frequency, to 

thousands of gigahertz [16].  

Many types of wireless devices operate in the radio frequency (RF) spectrum, such as cordless, cellular 

telephones, radio and broadcast stations, and satellite communications systems. For example, the 

Global System for Mobile Communications (GSM) operates at 700 MHz, The Code Division Multiple 

Access (CDMA) uses 450 MHz to provide a mobile coverage area, and Long Term Evolution (LTE) 

has a range from 700–800 MHz but can go up to 3600 MHz. Therefore, a specific portion of the RF 

spectrum is allocated to specific services. However, the RF spectrum is a scarce resource, which is 

getting scarcer due to ever increasing demand for ubiquitous wireless services. 

 

2.2 Spectrum underutilization 

Traditional RF spectrum allocation is based on services and regulations that forbid a device to use an 

empty portion of the spectrum unless the particular service has been allocated to that spectrum. For 

example, the FCC will allocate more than 11 exabytes per month by the end of 2017. However, studies 

have shown that the spectrum being allocated is not being effectively used and the total bandwidth is 

underutilized due to few licensed users. Thus the regulatory regime results in large portions of unused 

spectrum. Spectrum underutilization occurs both spatially and temporally. That is, there are a number 

of instances in which spectrum is used only in certain geographical areas, and a number of instances of 

spectrum being used only for short periods of time. So, spectrum scarcity is largely due to the 

inefficiency of available spectrum utilization [17].  

 

2.3 Cognitive Radio 

In traditional RF spectrum policy, specific spectrum is allocated to licensed users, or primary users 

(PU). If the PU does not use the complete spectrum allocated to him/her, the rest is wasted. Thus the 
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spectrum will be underutilized. To alleviate spectrum underutilization, an emerging technology called 

cognitive radios (CRs) helps secondary users (SUs) to access spectra when it is idle. A cognitive radio 

is an intelligent device that can detect the available channels in a wireless spectrum and change 

transmission parameters to enable SUs to operate concurrently in the same RF band. A cognitive radio 

uses a number of technologies including adaptive radio and software defined radio in which traditional 

hardware components, including mixers, modulators, and amplifiers, have been replaced with 

intelligent software. Its transceiver is designed to use the best wireless channels in its vicinity. Such a 

radio automatically detects available channels in a wireless spectrum, then changes its transmission or 

reception parameters accordingly to allow more concurrent wireless communications in a given 

spectrum band at one location. Two fundamental characteristics that a CR must possess are cognitive 

capability and re-configurability [13], [14]. 

 

Cognitive capability  

The cognitive capability of a radio technology enables it to sense information from its radio 

environment. This capability cannot simply be realized by monitoring the power in some frequency 

band of interest, more sophisticated techniques are required to sense the temporal and spatial variations 

in radio environments and to avoid interference to other users. Through this capability, the unused 

spectrum at a specific time or location can be identified. The best spectrum and appropriate operating 

parameters can then be selected. 

 

Reconfigurability  

The architecture of a CR is shown in (Fig. 2), where the main components consist of the front-end and 

the baseband processing unit. Each component can be reconfigured with the help of a control bus to 

adapt to a time varying RF environment. The received signal is amplified and converted by the front-

end. The baseband processing unit has to operate in different bands under various data rates and must 

combat adverse channel conditions. Reconfigurability enables a radio to be programmed according to 

the radio environment. The CR can be programmed to transmit and receive on a variety of frequencies 

and to use different transmission access technologies supported by its hardware design [15]. The 

transmission parameters of a CR can be reconfigured at the beginning of and during transmission. 

According to the spectrum characteristics, these parameters can be reconfigured such that the cognitive 

radio is switched to a different spectrum band, the transmitter and receiver parameters are reconfigured, 

and the appropriate communication protocol parameters and modulation schemes are used [34]. 
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Receiver  To user 

 

 

Transmitter           From user 

 

       

Control (reconfiguration) 

Fig. 2. Cognitive radio architecture [34]. 

 

2.4 Dynamic spectrum utilization 
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Fig. 3. Spectrum holes concept. 

 

A spectrum hole (SH) is defined as a band of frequencies assigned to a primary user that is not being 

utilized by the user at a particular time and specific geographic location [18]. If an SU can access the 

spectrum hole, the utilization of the spectrum is improved significantly. As shown in (Fig. 3), a 

promising mechanism to improve spectrum utilization by exploiting spectrum holes is based on the CR 

concept. The figure depicts the frequency-time slot, which has different time slots TS1, TS2, TS3, TS4 

and TS5 and the frequency slots FS1, FS2 and FS3. For example, an SU at TS1 and FS2 may be 
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looking for access to an available spectrum. When a PU is idle, the SU takes the opportunity to obtain 

access to the spectrum hole. When the PU tries to access the slot FS2 at TS1, the SU leaves the channel 

and skips to another slot where a spectrum hole exists. Most of the existing CRs detect SHs by sensing 

whether the primary signal is present or absent and then try to access the SHs so that SUs and PUs use 

the spectrum band either at different time slots or in different geographic regions [18]. 

 

2.3 Spectrum sensing 

To promote the concept of dynamic spectrum utilization, the foremost task of the CR is to detect the 

presence of spectrum holes. The CR must have the capability to continuously sense the spectrum to 

identify any possible return of the PU, which would require the SU to vacate the channel immediately. 

Spectrum sensing is a detection process that enables the CR to adapt to its environment by detecting 

spectrum holes. Many spectrum sensing techniques have been reported in the literature; four are 

discussed in the following sections. 

 

(i) Matched filter detection A matched filter is obtained by correlating a known signal with an 

unknown signal to detect the presence of the known signal in the unknown signal [19]. The main 

advantage of matched filter detection is that it needs only a short time to achieve high processing gain 

due to coherent detection. However, a major drawback of coherent detection is that it requires a 

dedicated sensing receiver for all PU signal types. In the CR scenario, the use of a matched filter may 

be impractical since the information about the PU signal is hardly available at the CR. This detection 

technique can be used only if partial information of the PU signal, such as pilot symbols or preambles, 

are known, which may not be available at the SUs.  

(ii) Energy detection The ED is a noncoherent device, that is, the ED detects the primary signal based 

on the sensed energy. The ED is therefore easy to implement. The major drawback is that it can detect 

the signal of the primary user only if the energy is above a certain threshold. This detection approach is 

chosen over the other detection techniques in this project as it is easy to implement and this detection 

does not require prior knowledge of a PU signal.  

(iii) Cyclostationary detection In cases where the PU signal exhibits strong cyclostationary properties, 

it can be detected by exploiting the cyclic information embedded in the received signal [5]. This 

detection approach is robust to random noise and interference from other modulated signals having 

different cyclic frequencies. However, cyclostationary detection requires prior knowledge of PU signal 

such as modulation format, which may not always be available, particularly if a wide range of spectrum 

is being sensed in which PUs may be exploiting various modulation formats in transmission [19]. 



8 
 

(iv) Wavelet detection Input signals are decomposed into different frequency components, then each 

component is studied with resolutions matched to its scale. To identify vacant frequency bands, the 

entire wide-band is modeled as a train of consecutive frequency sub-bands where the power spectral 

characteristic is smooth within each sub-band but changes abruptly on the border of two neighbouring 

bands [5]. Wavelet detection is based on such abrupt changes and it is preferred because of it low cost 

and easy implementation [20]. However, in CR systems wavelet transform based detection is employed 

as a coarse sensing stage and temporal signature detection is used as a fine sensing stage. The 

processing time is large. Wavelet detection also requires prior knowledge of a PU signal. 

 

2.6 Spectrum sensing as a binary hypothesis test 

The essence of spectrum sensing is a binary hypothesis-testing problem of the form, 

                           , 

                                  

Thus, the problem of identifying the presence or the absence of a PU is translated into a problem of 

deciding on one of the hypotheses,    or   . The signed model for spectrum sensing is popularly 

modeled as [4]: 

        
                               

ℎ                   

 , (2.1) 

where      is the observed signal at the CR, s(t) is the signal from the primary transmitter, w(t) is the 

additive noise, and h is the channel gain of the sensing channel between the PU and the CR. We 

assume that the sensing channel is time-invariant during the sensing process.  

 

2.7 Energy detector 

The structure of the spectrum sensing algorithm ED, which is the detector to be used in this research 

project as shown in (Fig. 4) [32]. The observed signal y(t) is fed to the detector and the decision is to be  

made by comparing the signal against the threshold for a given time period. The time bandwidth 

product can be defined as 

          ,        (2.2) 

where u is the product of integration time T and noise bandwidth W. Measuring the energy of the 

received signal performs the energy detection. By comparing the energy of the received signal with the 

threshold, the PU is detected.  

 

 



9 
 

 

 

i = 1,2,..N              threshold (λ) 

  (sampling) 

Fig. 4. Digital energy detector. 

 

The ED decision variable equation is:  

         
 

 
     

 
      

  

 
 
  

          (2.3) 

2.8 Performance metrics of the energy detector 

The detection performance of the ED is characterized mainly by two metrics, the probability of 

correctly detecting the PU, termed as the “probability of detection ( d )” and the probability of 

incorrectly detecting the PU, called the “probability of false alarm ( f),” which are mathematically 

defined as [5] 

                                                                 , and      (2.4) 

                               f                                        (2.5) 

where   r      , is the conditional probability of an event x given an event y,    is the hypothesis 

decision made by the detector, and       are the hypotheses denoting the presence/absence of a PU, 

respectively. Thus, a higher detection probability and a lower false alarm probability are desirable to 

ensure reliable ED performance. Another performance metric that jointly characterizes the effect on 

   and    is the probability of error: 

                                                                              (2.6) 

where           is the probability of misdetection. The lower the probability of error, the better is 

the detection probability. 

 

2.9 Multipath fading 

Multipath fading is an inherent phenomenon in wireless propagation; it occurs due to a constructive 

and destructive combination of randomly delayed, reflected, scattered, and diffracted signal 

components. (Fig. 5) depicts a multipath fading effect, which occurs due to interference in the 

atmosphere. Typically, this type of interference occurs due to a non-line-of-sight radio (NLOS) 

BPF      
 

 
     

             

Decide  

   or    
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propagation path between the base station (BS) and the mobile station (MS), because of natural and 

man-made objects that are situated between the BS and MS. At the MS, the waves arrive from many 

different directions with different delays. If the MS is moving in the scattering environment, then the 

spatial variations in the amplitude and phase of the composite received signal will manifest themselves 

as time variations, a phenomenon called envelope fading. Models that describe the behaviour of the 

multipath fading envelope depend on the nature of the radio propagation environment. Next, we  

 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Reflected, diffracted, and scattered wave components. 

 

discuss one of the most popularly used, multipath fading model in wireless communication system, the 

Rayleigh fading. 

 

2.9.1 Rayleigh fading 

The Rayleigh fading model is the most widely used fading model due to its ability to incorporate the 

scatter multipath effect and its relatively less complicated mathematical form; it is used in this study. In 

this fading model, the magnitude of a signal that has passed through such a transmission medium varies 

randomly, or fades, according to the Rayleigh distribution. The Rayleigh distribution is frequently used 

Receiver 

Buildings 
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Car 
Buildings 
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to model multipath fading with no direct line-of-sight (LOS) path. In this case, the probability density 

function (PDF) of the channel fading amplitude (|h|) is given by      

                                        =  
  

 
  

   

 ,  α   0,        (2.7) 

where α is the channel fading amplitude and Ω is the average fading power. 

The Rayleigh fading channel typically agrees well with the experimental data for mobile 

systems where no LOS path exists between the transmitter and receiver antennas [21]. It also applies to 

the propagation of reflected and refracted paths through the troposphere [22] and ionosphere [23], [24] 

and to ship-to-ship radio links [25]. 

 

2.10 Antenna diversity 

                                               

                

    

                    

 

Fig. 6. Detector with multiple antennas. 

 

Antenna diversity (Fig. 6) is popular in wireless systems because spectrum sensing performance is 

improved when the receiver has multiple antennas. Multiple antennas can cover a large space over a 

geographical area, enhancing the detection performance of the ED. Antenna diversity requires multiple 

antennas at the receiver, making the receiver bulkier than in the other diversity systems. Using multiple 

antennas in CRs is one of the possible approaches for the spectrum sensing. The PU signal is treated as 

an unknown deterministic noise and based on this model the performance of the ED has been evaluated 

in fading channels. Antenna diversity can be achieved through spatial separation, pattern 

configurations, or polarization. Spatial separation is the most common of the three and requires two or 

more antennas to be separated in space at the terminal. Two antennas that are physically separated in 

space experience different propagation environments and multipath components sum differently at each 

antenna. Ideally the antennas are spaced far enough in distance such that the brand signals have high 

probability of fading independently. This separation could be in order of tens of RF carrier wavelengths 

[28].  
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Complexity and system requirements are traded off in terms of different antenna diversity techniques. 

The most popular ones reported in the literature are discussed in the following sections. 

 

2.10.1 Combining techniques 

(i) Maximal ratio combining Maximal ratio combining (MRC) is an optimal coherent signal combining 

technique that maximizes the signal-to-noise ratio and requires complete channel state information 

(CSI) of all branches [29]. The branches are co-phased prior to summing to ensure that all branches are 

added in phase for maximum diversity gain. The summed signals are then used as the received signal 

and connected to the demodulator. The information on all channels is used with this technique to obtain 

a more reliable received signal. However, the coherent requirement makes the technique more 

complicated and it may not be useful for a non-coherent method such as the ED. 

(ii) Selection combining In selection combining (SC), the branch with the highest signal-to-noise ratio 

(SNR) is chosen among all of the collected diversity branches and fed to the detector. Thus, the 

receiver has to monitor the SNR of all branches all the time which conflicts with the ED requirements 

for low complexity in software and hardware. 

(iii) Square law selection Unlike MRC and SC, square law selection (SLS) (Fig. 7) is a non-coherent 

technique in which the branch with the maximum decision statistics is selected and the decision is then 

made to determine the presence or the absence of a PU. The decision variable in this case is given by 

                         .                              (2.8) 

The resulting probability of detection and probability of false alarm are, respectively, given by, 

                    
 , and                             (2.9) 

  
        

    –          
 .      (2.10) 
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Fig. 7. Square law selection combiner 
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2.11 Cooperative spectrum sensing 

A number of CRs collaborate together by sharing their information in order to improve the 

performance of spectrum sensing. This technique is known as cooperative spectrum sensing. 

Cooperative spectrum sensing is shown in (Fig. 8). Spectrum sensing is carried out with the help of the 

ED and cooperative spectrum sensing is implemented to improve the performance of the ED. At the 

receiver, two or more cognitive radios are placed. Due to interference caused by buildings, trees, etc., 

shadowing occurs. This might mislead an SU to use the channel when a PU is still active. To avoid 

such scenarios, a cooperative spectrum sensing technique is implemented with the help of many CRs. 

Individual CRs (1, 2, 3) make decisions based on the signals they sense and send their individual 

decisions to the fusion center. The strongest signal is considered to be the probability of detection or 

false alarm. Decision making is the critical task in deciding the presence/absence of a PU. 

 CR1    CAR 

       

 

 CR2 

 

 

CR3 

              CR BS 

DTV TRANSMITTER                   BUILDING 

 

                                   

DTV RECEIVER 

 

 

 

Fig. 8. Cooperative spectrum sensing. 

 

The cooperative spectrum sensing approach can be seen as data fusion and decision fusion protocols as 

elaborated in the following sections. 



14 
 

Decision fusion 

In decision fusion, each cooperating CR partner makes a binary decision based on its local observation 

and then forwards one bit of the decision to the common receiver. At the common receiver, all 1-bit 

decisions are fused together [5]. The main advantage of this is that it consumes limited bandwidth. 

When binary decisions are reported to the common node, two suboptimal rules of decision can be used, 

which are:  

 OR rule – The OR rule decides that a signal is present if any of the users detect a signal.  

 AND rule – The AND rule decides that a signal is present if all users have detected a signal.  

The false alarm probability of cooperative spectrum sensing based on the OR rule is given by [5] 

                 
     

                     (2.11) 

where   
   

 is the probability of a false alarm for each SU i in the coalition set K. The detection 

probability of cooperative spectrum sensing based on the OR rule is given by 

                 
   
  

          (2.12) 

where   
   

 is the probability of detection for each SU i in the coalition set K. 

 

Data fusion 

Alternatively, instead of transmitting the 1-bit decision to the common receiver, each CR can forward 

the entire sensing result to the fusion center without performing any local decision. A data fusion 

scheme is described by taking a linear combination of measurements of various cognitive users to 

decide between two hypotheses [5]. It is seen that the data fusion combining for spectrum sensing 

based on the ED achieves more precise detection than the decision fusion combining. However, data 

fusion consumes a large amount of bandwidth. The OR rule is considered in this study in view of the 

requirement to consume the least bandwidth. Hence, the OR rule, the decision fusion based approach, 

is used in this study. 

 

2.12 Noise models 

The performance of wireless communication systems is highly affected by noise at the receiver which 

is modeled as additive. The popular norm is to use with additive white noise (meaning the power 

spectral density is same over the whole range of frequencies in consideration). In general, the noise 

models used in wireless communication performance analyses are classified as Gaussian or non-

Gaussian. 
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2.12.1 Gaussian noise models 

In wireless communications, Gaussian noise represents statistical noise having probability density 

function equal to that of the normal distribution, which is also known as Gaussian distribution. 

Communication channels can be affected by wideband Gaussian noise coming from many natural 

sources, such as the thermal vibrations of atoms in conductors [35]. Gaussian noise model is widely 

used and its main advantage is that it helps in characterizing the thermal noise. In the noise channel 

model, the only impairment to communication is a linear addition of white noise with a constant 

spectral density and a Gaussian distribution of amplitude. Additive white Gaussian noise (AWGN) 

noise is additive, that is, the received signal equals the transmitted signal plus some noise, where the 

noise is statistically independent of the signal. The noise is white, that is, the power spectral density is 

flat so the auto correlation of the noise in the time domain is zero for any nonzero time offset. The 

noise has a Gaussian distribution [31]. The probability density function (PDF) of a Gaussian random 

variable z is given by 

           
 

    
  

  
       

   ,     (2.13) 

where   represents the mean value and    is the standard deviation.  

 

2.12.2 Non-Gaussian noise models 

Due to infrequent but high level noise spikes in radio frequency (RF) noise and low frequency 

atmospheric noise, the Gaussian noise model is not appropriate for impulsive noise characterization. 

Commonly used non-Gaussian noise models include the Laplacian noise, the Cauchy noise, and the 

Gaussian mixture noise [31]. Relative to Gaussian noise, the tail of a non-Gaussian noise PDF typically 

decays at a slower rate. In certain situations, for example, in power line communications, the signal at 

the receiver fades due to thermal effect. This can be easily depicted with Laplacian noise model which 

is considered in this study because of its impulsive nature (it includes impulsive sharp sounds like 

clicks and pops).   

The Laplacian noise PDF is given by 

                                
 

    
       

 

  ) |n|)       ,                              (2.14) 

where  2
 is the noise variance. 
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Chapter 3 

 

Performance of the energy detector in fading channels 

with impulsive noise 

 

The ED’s performance is studied in this project with Rayleigh fading as the fading channel model and 

Laplacian noise as the non-Gaussian noise model to characterize an impulsive noise environment. The 

quality of spectrum sensing is studied and the simulated results are based on the probability of 

detecting the presence of a PU under the fading and impulsive noise environment. To improve 

detection probability, multiple antennas and cooperative spectrum sensing techniques are implemented 

and their detection performance results are determined. Multiple antennas and cooperation spectrum 

sensing are used with the ED algorithm to improve the detection performance by taking advantage of 

spatial diversity so that the primary user can be protected and to reduce false alarms so that the 

spectrum is utilized more efficiently. Extension to cooperating CRs with multiple antennas and 

cooperative spectrum sensing techniques, SLS, and OR rule based suboptimal fusion is considered.  

The rest of this chapter is organized as follows. The system model is described in section 3.2. The 

simulation model is explained in section 3.3. Performance of the energy detector in multipath fading 

and Laplacian noise is characterized in section 3.4. Extension of the scenario to cooperative spectrum 

sensing is presented in section 3.5. 

 

3.1 System model 

Consider a cognitive network, with K cognitive users to sense the spectrum in order to detect existence 

of a PU [4]. Each CR performs local spectrum sensing independently by using N samples of received 

signal. As mentioned in section 2.3, the spectrum sensing problem can be formulated as a problem with 

two possible hypotheses    and   .      

      
                               

ℎ                   

 , 

 

where      is the transmitted signal,      is the receiver noise, which is are assumed to be statistically 

independent of each other and h is the channel gain of the channel between the PU and the CR user 

which is modeled as Rayleigh faded. The    and    hypotheses stand for signal presence (PU absent) 
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and absence (PU present), respectively. The signal      is fed to the input of the ED such that the 

detector decision variable is rewritten based on section 2.5 as 

    
 

 
     

 
      

  

 
 
  

                               

The decision variable for SLS, in the case of multiple antennas is given by 

                   , 

and the probability of detection and probability of false alarm are given by 

              
 , and 

      = 1 – (1 -   )  . 

When K cognitive radios are installed at the receiver, the false alarm probability based on the 

suboptimal OR rule is given by 

             
     

   . 

where   
   

 is the probability of a false alarm for each SU i in the coalition set K. The detection 

probability of cooperative spectrum sensing based on the suboptimal OR rule is given by 

             
   
  

   . 

where   
   

 is the probability of detection for each SU i in the coalition set K. 

The probability of error is 

               . 

3.2 Simulation model 

The numerical results in the project are based on semi-analytical Monte Carlo simulations. The Monte 

Carlo simulation is an iterative method, which is a class of computational algorithms that rely on 

repeated random sampling to obtain numerical results. In this study, Monte Carlo simulation is 

performed in MATLAB over     iterations.  

Rayleigh fading is a reasonable model where there are many objects in the environment that 

scatter the radio signal before it arrives at the receiver. The received complex envelope of the Rayleigh 

fading channel can be treated as Gaussian random process which is given as 

             ℎ     ℎ       ℎ            (3.1) 

where ℎ     and ℎ     are independent and identically distributed (i.i.d.) Gaussian random variables 

with a mean of 0 and a variance of 1 and j=√-1 is the imaginary unit. The amplitude  ℎ     is Rayleigh 

distributed as equation (2.7) in Chapter 2.  
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For generating Laplacian noise, its cumulative distribution function (CDF) is utilized, which is given 

by 

         
 

 
   

 

 
                     

       

 
                    (3.2) 

where sgn is the sign function,   is the location parameter, and b is a scale parameter. To obtain 

Laplacian noise samples, a uniform random variable which lies between 0 and 1 is generated. This 

generated value is mapped to the inverse CDF of equation 3.2 to the corresponding abscissa which 

represents the sample which has Laplacian distribution. 

3.3 Numerical Results and Discussion: Single CR case 

In this section, the effects of various parameters on the spectrum sensing outcome are illustrated in Fig. 

9-17. Numerical plots are illustrated to gain understanding on the critical parameters of interest and the 

performance quantification of the ED is carried out by plotting receiver operating characteristic (ROC) 

curves such as    vs. λ and          . The ROC curves are plotted with respect to how the detection 

probability changes with the false alarm probability for a varying threshold. The probability of 

detection for different values of SNR has been simulated with constant parameters. One of the most 

important detector parameters of interest, the probability of error    is considered in numerical plots. 

Similarly, we consider cooperative probability of error for collaborative spectrum sensing.  

 

Fig. 9. ROC plot of Pd vs. Pf for different mean values of μ; SNR = 0 dB and σ = 1. 
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Effect of noise level μ on ED performance 

The ROC curves shown in (Fig. 9) characterize the ED performance with variation in the average noise 

level μ. As depicted in the figure, the increase in the average noise level μ clearly degrades the 

performance of an ED, thus lower levels of noise is desirable. For instance, when μ varies from 2 to 1, 

about 14.2% gain in    is observed at    = 0.4. When μ varies from 1 to 0, about 16.07% gain in    is 

observed at    = 0.4. This means 16.07% improvement in detection performance can be attained by 

keeping μ as 0 and not higher values. We conclude that the lower the value of μ, the better is the 

detection probability.  

 

 

Fig. 10. ROC plot of Pd vs. Pf for different sigma values; μ = 1. 

 

Effect of noise variance σ on detection probability 

A ROC curve is plotted in (Fig. 10) for different values of noise variance σ,. The figure depicts the 

impact of σ; for example, an increase in σ decreases the detection performance. The figure shows that 

   dramatically decreases at higher σ values. Larger σ, results in higher error probability. From the 

plot we can see that, when σ varies from 2 to 1, about 13.3% gain in    is observed for    = 0.4. 
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Again, when σ varies from 1 to 0, about 35.2% gain in    is observed for    = 0.4 which means 35.2% 

improvement in the probability of detection performance can be attained by setting the value of σ  as 1. 

We conclude that the lower the noise variance, the higher is the detection probability. 

 

Fig. 11. Pe vs. λ for different mean values of μ; SNR = 0 dB and σ = 1. 

 

Effect of μ on    for varying λ 

In (Fig. 11), the impact of μ on Pe for a varying threshold λ at a fixed SNR is evaluated. The probability 

of error degrades when the value of μ decreases for λ between 0 and 6. For example, when the value of 

μ varies from 0 to 1, about 51.3% increase in    is seen when the threshold λ is fixed at 2. For the same 

threshold, when μ varies from 1 to 2, about 72.48% increase in    is noted. The performance of the 

detector degrades when μ increases. The optimal threshold λ keeps shifting for each value of μ. The 

minimal probability of error changes for different values of μ for a shift in threshold λ. When μ is 0, the 

minimum probability of error is attained when the threshold λ is set to 2. Likewise, when μ is 1 and 2, 

the shift in threshold is 3.2 and 6.7, respectively. We conclude that, the lower the value of μ, the lesser 

is the probability of error.  
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3.4 Numerical Results and Discussion: Antenna diversity and cooperative diversity 

 

 

Fig. 12. Pd vs. SNR for multiple antennas; λ = 5 and Pf = 0.01. 

 

Effect of L 

As shown in (Fig. 12), as the number of antennas L increases, the chance of detecting the PU signal 

increases. The value of    is fixed by varying the threshold λ to attain a fixed threshold at which the ED 

operates. The number of samples, noise variance, and mean are all set to constant values. At SNR = 10 

dB, we can see that effect of increasing the number of antennas approaches saturation. When L varies 

from 1 to 4, about 80% gain in    is observed at    = 0.1. This means that the detection performance of 

an ED using multiple antennas improves by 80%. With 2 or more antennas, detection of the PU can be 

achieved faster than by using a single antenna. The performance of the detector improves when a 

multiple antenna technique is incorporated under a fading channel. 
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Fig. 13. Pd vs. SNR for multiple antennas with different time bandwidths; λ = 5.25 and Pf = 0.01. 

 

Effect of time bandwidth product 

In an energy detector, the time bandwidth product u is an important factor in detecting the presence of a 

PU. As shown in (Fig. 13), increased incoherence of noise u leads to reduced degradation in detection 

Pd. From the simulation results we can see that for a constant threshold, when the time bandwidth of u 

varies from 2 to 5, about 13.6% decrease in the detection probability is estimated. For instance, when u 

is set to 2, for SNR = 10 dB, the detection probability observed is 0.76. For the same SNR value, when 

u is set to 4, the detection probability observed is 0.32 and it further decreases to 0.16 when u is 5.  

Noise incoherence plays an important role is the performance of an ED, thus noise incoherence has a 

drastic impact on the performance of the detector when they have higher values.   



23 
 

 

Fig. 14. Pe vs. λ for multiple antennas; SNR = 10 dB. 

 

Effect of L on    for varying λ 

In (Fig. 14), the effect of multiple antennas on the probability of error Pe in spectrum sensing 

performance is evaluated. Sensing channels and reporting channels both experience Rayleigh fading 

with a constant value of SNR. We infer from our analysis that the usage of multiple antennas improves 

the efficiency of the detector compared to the use of a single antenna. The probability of error can be 

minimized with multiple antennas. For example, 34.8% gain in    is achieved for fixed value of    to 

0.01. Antennas cannot only increase the channel capacity of the systems but also provide a high spatial 

diversity gain to combat channel fading. Implementing multiple antennas at each CR might be costly 

but it is very helpful in sensing the spectrum accurately for better detection probability and a lower 

error rate. 
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Fig. 15. Pd vs. L for different values of SNR; λ = 6 and Pf = 0.01. 

 

Effect of SNR  

As seen before, identifying the presence of a PU's signal under low SNR is difficult. The higher the 

SNR, the better is the detection probability. As shown in (Fig. 15), when the SNR = 10 dB, the 

probability of detection approaches saturation, which is the best case for any detector. For lower values 

of SNR, 0 dB and 5 dB, the probability of detection reaches up to 0.15 and 0.45, respectively. With 

multiple antennas, low SNR values can be detected, but to achieve a better antenna gain, the SNR 

should be high and multiple antennas should be used. Using a single antenna at SNR = 10dB, we attain 

a probability of detection close to 0.52 which is not the best case scenario for an ideal detector. For 

lower values of SNR, the detection probability is very minimal. From the numerical results we infer 

that the presence of a PU's signal can be detected with multiple antennas and a higher SNR.   
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Fig. 16. Pd vs. SNR for cooperative spectrum sensors; λ = 6.03 and Pf = 0.01. 

 

Effect of cooperative spectrum sensors K 

The spectrum sensing under a Rayleigh fading channel using a cooperative spectrum sensing technique 

is shown in (Fig. 16) for a constant threshold λ, and a probability of false alarm equal to 0.01. We know 

that the higher the value of the threshold, the lower is the detection probability, and the higher the value 

of SNR, the easier it is to detect the presence of a PU's signal. For example, when K varies from 1 to 4, 

about 35.7% gain in    is obtained for    = 0.01. This means that 35.7% improvement in the detection 

performance of an ED when multiple cooperative sensors are used compared to a single cognitive 

radio. Thus, we determine from the numerical results that the presence of two or more cooperative 

spectrum sensors characterizes spatial diversity which achieves a higher probability of detection for 

cooperative spectrum sensing. 
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Fig. 17. Qe vs. λ for cooperative spectrum sensors; SNR = 10 dB. 

 

Effect of K on    for varying λ 

In (Fig. 17), cooperative spectrum sensors K are used to improve the detection probability. The 

probability of error is higher for a single sensor than for multiple sensors. About 28.5% gain in    is 

achieved for    = 0.01 when cooperative spectrum sensors are incorporated. The optimal threshold 

value (λ), shifts as we increase the number of sensors. As discussed previously, the threshold value 

must be low to attain a better detection probability and low probability of error. For K = 4, and the 

threshold set to 5.03, 28.5% improvement in the detection performance is observed compared to a 

single spectrum sensor. A recently proposed solution for achieving spatial diversity at any terminal or 

node is cooperative diversity. It is cost effective and is based on grouping several nodes together into a 

cluster to form a virtual antenna array. Multiple sensors reduce the error rate and provide better 

performance of the ED, so the probability of detecting the presence of a PU's signal is higher. 
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3.5 Conclusion 

 

In this chapter, the spectrum sensing performance of an ED in Rayleigh fading and Laplacian noise is 

characterized. The effect of Laplacian noise on the detector performance metrics is studied through 

numerical simulation examples. Our results show the degradation in detection performance with 

increase in average mean value and variance of noise.  To mitigate the impact of severe noise levels in 

a single CR, specific parameters such as λ, u, SNR were taken into consideration which increases the 

detection performance by minimizing the probability of error in decision making. Next, the scenario is 

extended to multiple antenna with L number of antennas each deployed with an ED. Square law 

selection method is used for multiple antenna in which the branch with the maximum decision statistics 

is selected and the decision is then made to determine the presence or the absence of a PU. Other than 

multiple antennas, cooperative spectrum sensing with K collaborating CRs are used and each 

cooperative spectrum sensors were deployed with an ED. The fusion centre (FC) combines the 

individual decisions made by each CR according to the OR rule and comes up with a final decision on 

the presence or the absence of the PU signal. Interestingly, multiple antenna and cooperative spectrum 

sensing techniques are proven to be beneficial to improve the reliability of spectrum sensing provided 

the above said parameters are chosen appropriately. 
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Chapter 4 

 

Conclusion and Future Work 

 

In this study, the spectrum sensing performance of an ED-based CR network is considered. 

Sensing performance of the ED in multipath fading channel modeled by Rayleigh fading and impulsive 

noise environment modeled by Laplacian noise is investigated. As expected, the ED performance is 

found to degrade more as the Laplacian noise mean and or variance larger. To mitigate the degradation 

in performance, the use of multiple antenna is considered by deploying the SLS combining scheme at 

the ED. Interestingly, multiple antennas are found to yield huge performance boost compared to single 

antenna-based CRs in the aforementioned context of Rayleigh fading and Laplacian noise. Motivated 

by the popular hidden terminal problem in spectrum sensing, which renders the spectrum sensing by a 

single CR very unreliable, the use of a number of collaborating CRs for detecting the presence or 

absence of the PU signal is considered next with the help of the suboptimal OR rule for fusing the d. 

As expected, the cooperation among different CRs improves the overall quality of spectrum sensing by 

providing remarkable gains compared to a single CR-based spectrum sensing. 

Further extension of the work may involve investigation of the quality of spectrum sensing in 

other types of non-Gaussian noise models such as Gaussian mixture, generalized Gaussian, Cauchy 

noise etc. Another interesting extension would be to investigate the problem of spectrum sensing in 

multipath fading and non-Gaussian noise under very low SNR regimes, which may arise when the 

received signal is very weak and comparable in magnitude to the noise at the receiver. 
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