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A spatial scan statistic for compound Poisson
data

Rhonda J. Rosychuk and Hsing-Ming Chang’

The topic of spatial cluster detection gained attention in gtistics during the late 1980s and early 1990s. Effort has
been devoted to the development of methods for detecting s clustering of cases and events in the biological
sciences, astronomy and epidemiology. More recently, remeh has examined detecting clusters of correlated
count data associated with health conditions of individuad. Such a method allows researchers to examine spatial
relationships of disease-related events rather than justnicident or prevalent cases. We introduce a spatial scan
test that identifies clusters of events in a study region. Batise an individual case may have multiple (repeated)
events, we base the test on a compound Poisson model. We iliate our method for cluster detection on emergency
department visits, where individuals may make multiple digase-related visits. Copyright© 2012 John Wiley &
Sons, Ltd.
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1. Introduction

Spatial cluster detection (SCD) methods provide tools td firoximities where certain events occur significantly more
(or less) often than expected. SCD methods are popular yieilance of diseases (e.dl6]), studying growth pattern
of vegetation over landscapes (e.g.d]), and in crime pattern analysis (e.@]). The spatial pattern of disease spread
or other health outcomes often is of interest to health aitibs. Authorities typically collect administrative Hdadata
that can be used to study the epidemiology of diseasesrmatiehealth services provided, and the relationships &etw
potential sources and outcomes of diseases. Databasasdisush health data can also be utilized for evaluation®f th
efficiency and effectiveness of public health services. $@&hods can be employed with health data as surveillante too
to help monitor, in an objective and statistically sound memhealth outcomes across a geographic region.

Several authors have contributed to the development ofraregdiigated the properties of SCD methods (4€e13] for
reviews). General tests are designed to detect clustangwtiite overall pattern of disease in a complete regidnnder
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these tests, the cases of disease are assumed to occuramraaah individual in the population has an equal chance of
developing the disease. For these tests, no specific diteraigstribution for the cases is hypothesized.

Many of the available SCD methods assume that the geograpkés have comparable population sizes and are not
applicable to data consisting of areas with diverse pojuuiatzes. Our applications involve diverse populatioesiand
we focus our review on a few key methods. Often methods carutmensrized by either looking at areas of constant
population and comparing the number of casgsl{, 15] or looking for a specified number of cases and comparing
the underlying population size&][ Turnbull et al. [L5] take the former approach by combining geographic are@s int
circles that constitute constant numbers of individuatssét calculating the number of cases in each circle, anelsagsy
statistical significance through Monte Carlo simulatiokslldorff and Nagarwalla 2] generalize this approach with a
likelihood ratio test that assesses if the individuals inoaez (circle) have greater disease risk than those outsile th
zone. By maximizing the likelihood function over connecgdgraphs of the study region, a similar likelihood ratio
test is provided by Duczmal and Assuncaél[ Methods by Besag and Newell][and Tango 7] identify areas with a
tendency to cluster. Besag and Newé]ldombine regions with nearest neighbors and compare théeuaf neighbors
that must be combined to contain a pre-specified number escéschi-square statistic based on the discrepancy between
observed and expected relative frequencies and a “closemessure is proposed by TanddT.

The SCD methods described are all based on detecting exasss of disease and more recent developments and
extensions have included the detection of excess evemttedelo a particular condition or disease (e.4,6]). These
tests are based on a strategy similar to Besag and Newidlgeperal test. We now consider a spatial scan for compound
Poisson data to detect geographic areas with excess eVhgttest is in the same spirit as the spatial scan test intemtiu
by Kulldorff and NagarwallaZ]. Our method uses a compound Poisson process to model elissdated events as the
primary unit of analysis for SCD rather than analyzing ddiadividuals in a case/non-case fashion. Such a model erabl
us to detect geographical clusters of events when indilédna population may present multiple events (e.g., enmerge
department (ED) visits, post-emergency physician/piiacgr visits) related to a disease or disorder diagnosients
generated by the same individual should be deemed comlddgita probability distribution. In Sectidty we introduce the
notation used throughout the paper and our compound Paissdal. The test statistic is introduced and the procedure to
assess its p-value is outlined. In Secti)mwe describe our administrative data and present a casg ttuitlistrate our
methodology. Simulated data sets are analyzed for furtlustriative purposes in Sectigh Some concluding remarks of
the topic and future research ideas are organized in Se&tion

2. Methodology

We assume administrative health data can be segregated mia-overlapping geographic sub-divisions (sometimes
called subregions or cells). Suppose each subregion isdeaized by a centroid. A zone Z, which is defined by a
circular spatial scan window of radiusand its centre at the coordinate of a centroid, consists lyfanmd all individuals

in those subregions whose centroids lie inside the ci@le [

For this type of two dimensional scan test, we may choose paripund-, i = 1,--- , I, on the radius of the circular
scan window such that the population size of any zone defigagtdwindow centered at centroidloes not exceed
percent of the total population in the study region. As iatkd by Kulldorff and Nagarwall&], the choice of the upper
bound onr; should be decided prior to analysis. All test zones can bergéed by combining nearest subregions with
subregion; by varying the radius of the defining circle from O:tp for each:. Clearly whenr; = 0 for all 7, each zone
coincides with a single subregion. Zones with such a dedimitiave irregular geographic boundaries that depend on the
size and shape of those subregions whose centroids lieittsidspatial scan window.

Consider the hypothetical seven-cell region in Figur@s an illustration. Circular scan windows of various radd a
centered at the upper north centroid and the centroid abildwest corner. Starting from each centroid, a new test zon
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is formed when a new neighboring centroid is enclosed by ¢the svindow. The value of; varies for each centroitl
depending on the population size of cefind of its nearby neighbors and the chogen

@

S

g

Figure 1. hypothetical seven-cell region.

2.1. Notation, Compound Poisson Model and the Spatial Scan Test

Let Z be a collection of distinct subregions (administrat@reas) in geographic region R. For each predeterminedRZ
let Z C R denote the compliment of Z, such that'ZZ’ = () and ZU Z’ = R. Let there be a total af non-overlapping
and contiguous subregiong @uch as districts of land spaceé) 1,--- , I, in R (such as a state or a province).

Let the random variabl€’;;., with observed value;;,, be the number of individuals observed witlevents in subregion
S, (ke NT,i=1,...,I). Let the random variabl€’; = > ren+ Cix, With observed value;, be the total number of
individuals with at least one event in subregion \With the definition of a test zone in the previous sectior,rdmdom
variableCz = Zé?z C;, with observed value,, is the number of individuals (cases) with at least one eiredt and

similarly for outside the test zon€z = Zli:l C;, with observed value,,. Let C = Cz + Cz denote the total number
of cases in R. We wish to detect zones in R tzhat have higherkaected numbers of events. The spatial scan statistic we
propose is based on a likelihood ratio test which is in theesgpirit as in £].

In this paper, we assume the population size of subregicaisbe measured and is denotedibyor: =1, ..., 1, and
thatC; ~ POI(\;n;) where)\; > 0 are standardized Poisson intensities. We consider thainaattime period, say fiscal
year, individuals will only have event(s) within the subimgof their residence. Of the individuals with at least onerd,
let the random variabl&(;, denote the number of event(s) incurred by itteindividual in subregion $¢=1,...,C;.
The density distribution of the random variablg, can be arbitrary depending on the context, however, we assat
X, is discrete and follows a zero-truncated Poisson disiobwith density

Q(z;0;) = __0 fore=1,2,---
Pr(Xiy = xz;0;) = x!(efi —1) 1)
0 elsewhere

with meang; e’ /(e?s — 1) whereg; > 0.
The total number of events from the population of subregipca® be written as

C;
U, = Z Xie
=1

where it is reasonable to assume thats independent ok, for ¢ =1,...,C; andi = 1,...,I. For example(; can be
used to represent, over a fixed period of time, the numberaplpehaving respiratory symptoms in subregicand X,
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the number of times théh individual of subregiori visited for hospital emergency service with such symptdish
this formulationU; is a compound Poisson random variable. Parijgrdiscovered that the probabiliti&s (U; = u;) can
be obtained using a simple recursion formula

e 2
Pr(U; = w;) :AlmZﬂcQ(m;Hi)Pr(Ui:ui—m) u=12---, 1=1,--- 1. 2)

r=1

With Q(z; 0;) known, the likelihood function for the compound Poisson elan be written as

I U;
)\mi .
L\ 0 NPHU; = us —
(N, 0;) il_ll m EﬂmQ(Lel) r(U; = u; — x) 3)
Ci>0 =

since our main interest is on test zones having at least ad.ev
If we assume under the null hypothesis.H; = X andé; = 6 for all 4, the likelihood becomes

I .
L\, 0) = H e A H il ZmQ(Jc;é)Pr(Ui =u; — x) (4)

where andé are maximum likelihood (ML) estimates afandé, respectively. If we assume that under the alternative
hypothesis i A\; = Az andf;, = ufor S; € Z, \; = A\ andf, = v for S; ¢ Z, and\zuet /(e — 1) > A\pve”/(e” — 1),

the probabilitiesPr(U; = u;) can be obtained using separate recursion equations sitmi(@) for S; € Z and S ¢ Z,

i =1,..., 1. Note that we can interpret the inequality in the alterreatiypothesis statement as: per fixed population size,
the expected number of events incurred inside a test zorighieiithan that outside the zone. Conditionallgn= u; for
i=1,...,1I, the likelihood under the alternative beconig&, Az, Azr, i, ) having the following expression

I I N U I I N U
3 )\ m; - 3 )\ Ny -
—Azn; VAR ) Pr(U; = u; — =X mi VARG D) Pr(U; = u; —
H e }j[l " ; xQ(x; i) Pr( u; — ) E e }j[l " ; xQ(x; ) Pr( U; — )
S;€Z,C;=0 S:€2,C;>0 B Si¢Z,Ci=0 S:¢7,C;>0 -
5)
wherelz, Az, i andi are the ML estimates of their respective denoted parameters
2.2. Likelihood Ratio Test Statistic
We choose the likelihood ratio test statistic to be
max Lﬂ f,(Z 5\2 5\2’) ~ ~
’ ’ ’ L o Z7 A ,)\ ’
n= ZCR - or n= maxlOgM (6)

L) 2R L)

with A denoting the ML estimate of under the null hypothesis. We suggest thatf Q(z;6) in (4) be obtained first
also by the maximum likelihood method. Since the only vdaaln @) aren; andu;, various combinations af;, for
¢=1,---,¢; may contribute to the same setaf i = 1,--- I, to yield the same\ andé for (4) if they are jointly
estimated by the ML method. In direct joint ML estimation)o&indé using equation3), information on the individual
event numbers is actually not used in estimatingor instance, if we observe that subregidras five casegy; = 5), then
both {X;1 =1,Xi2=2,X;3=3,X;y=4,X;5 =5} and{X;; =3, X;2 =3,Xi3=3,Xuu=3,X,;5 =3} give U; =15
and will yield the same\ and# if they were jointly estimated front/; and @). This parameter identifiability issue is
eliminated ifd is estimated from¥,, and Q(z,0). Under the null hypothesis, for example, we chodge be the ML
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estimate which maximizes

Iaer
log [ T[] @Xic = #:6).
i=1¢=1
If each and every case in every region only has one eventpigakscan test using the Poisson model will be more
appropriate.

Estimatingd first, based onX;,, then substituting into (3) allows us to obtain a ML estimate ofbased onL,(A).
Lé(X) can then be evaluated for the likelihood ratio test statisiti a similar fashion but under the alternative hypothesis
for each test zone Z and,2\; and )\, are joint ML estimates based oB) @after obtaining: and first for Q(x, 1) and
Q(z,v)from S, € Zand S ¢ Z, respectively. Note that in practice, we only consigiélom zones such that the condition
Xgﬂeﬂ 5\%”}60 or ¢= —Aﬁ\zﬂeff(ei b R} (7)

(e =1) " (e =1) Azie? (el — 1)

is also satisfied since our interest is in finding regions ghlexpected number of events.

As for the spatial scan statistic introduced by Kulldodf®], the exact distribution ofy in an analytical form is very
difficult to obtain. Monte Carlo simulation is to be employdassess the significance of an observed valugwfder
the null hypothesis by taking the following steps. For afhglation procedures, we condition 6h= ¢ and the number
of events of thgth case in the study area regardless of subregigns =, for j = 1, ..., c. Note that given an individual
generates at least one event in R, the probability that sanéhdividual belongs to subregion & n;/n under the null
assumptions.

1. Conditioning onC = ¢ and X; = z;, sample randomly a subregion ID for each j =1,---,c. The sampling
distribution has weights,;/n for ¢ = 1,--- ,I. Depending on the generated subregion ID for each indiVidua
variablesC; and X;, = z;,, hencel;, are generated far=1,...,C; and: =1,..., 1.

2. Calculate the test statisticas defined ing).

3. Repeat steps 1 and 2 for 999 trials and record test stagfstiach simulation trial.

4. Rank the 999 simulated likelihood ratio statistics areldhserved statisti¢ from the data.

Note that in our model, the Iikelihooﬁé(ﬁ) is no longer a constant under the null hypothesis over eathlaiion trial as

it would be in ] and [19], because3d) depends oi/; = u; fori = 1,--- , I which are not fixed in the simulation trials.
Therefore, the numerator and the denominatoéphéed to be computed in step 2 of each simulation trial. Tipothesis
test can be considered significant at 1Q@@r cent level if the value of the observedalculated from data is among the
100Qx (an integer) highest of these 1000 ranked statistics in 4tef significant test indicates that the collection of
subregions which yields the observgéh the spatial scan test is the most likely cluster havindhéigexpected numbers
of events per fixed population size. Other zones which hameverlapping subregions with the most likely cluster also
have high values of the test statistic under conditigrsbiould be examined for possibility of being secondarytelss

3. Application to Emergency Data

We illustrate our spatial scan on emergency department (E&3entations by children and youth (ag&8 years) for
substance abuse in the western Canadian province of Alberiag six fiscal years (April 1, 2002, to March 31, 2008).
The data are extracted from population-based, provindmiaistrative data sets held at Alberta Health as part ofgela
study investigating ED presentations for mental healtrd@@ns [21]. Each ED presentation during the study period is
considered to be an event made by an individual and is tiekl toetbe SRHA code of patient residence. A case is defined
as an individual who had at least one ED presentation fortanbs abuse in Alberta during the study period. We examine
each fiscal year separately using both our new spatial scagvénts and two analyses using Kulldorff's spatial scan
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Table 1. Subregional Population Sze by Fiscal Years

sRHA

Fiscal Year 1 2 3 4 5 6 7 - 65 66 67 68 69 70

2002/2003 3743 7466 17573 8574 5357 19191 6692 - 6929 20083 2809 3357 3643 13280
2003/2004 3591 7372 17717 8473 5338 19288 6687 - 6951 20357 2772 3477 3701 13529
2004/2005 3471 7223 17783 8394 5417 19397 6686 - 6743 20740 2724 3535 3780 13756
2005/2006 3365 7129 17745 8376 5341 19432 6819 6690 21440 2712 3722 3740 13671
2006/2007 3379 7253 18362 8388 5567 19906 6965- 6588 22444 2673 3895 3770 14250
2007/2008 3272 7392 18970 8535 5690 20336 6937 - 6596 23131 2592 4024 3839 14807

software SaTScar2p], where analyses are performed on cases only and on evahes/asts were individual cases (i.e.,
ignoring correlation).

There arel = 70 distinct subregional health authorities (SRHA) in the pnoe of Alberta, Canada and we use these as
the subregions for analysis. The population size of eachfsRhpartially reported in Tablé by fiscal year. In Tabl,
the total number of cases and ED presentations related steswde abuse in each sRHA are partially reported. Note that
for some years and sRHAS, the cases and events are zero gé#aatithese SRHAs would not be included individually
as test zones.

Table 2. Cases and Events by Fiscal Year and SubRegional Health Authority

SRHA

Fiscal Year 1 2 3 4 5 6 7 8 .. 68 69 70
2002/2003 7(8) 12(13) 20(20) 7(8) —-(0) 24(27) 9(11) 7(7)-- 0(0) - 18(21)
2003/2004 —(0) 20(20) 22(22) -(-) —(-) 24(26) 12(13) 15(16)-- 0(0) 7(7) 18(18)
2004/2005 6(7) 16(21) 27(28) 6(6) —(-) 29(30) 20(23) 9(9)-- 0(0) 7(9) 29 (30)
2005/2006 10(10) 18(18) 20(21) 6(6) —(=) 36(39) 9 (10) 9(9)-- 0(0) 0(0) 33(37)
2006/2007 12(13) 24(25) 23(25) —(-) 15(15) 35(35) 18(19) (I® --- 0(0) -(-) 18(21)
2007/2008 11(18) 22(24) 30(34) -(-) -—() 34(37) 10(10) 1®@--- 0(0) 11(12) 27(32)

— denotes cell counts are6 and are suppressed to ensure confidentiality

The test zones are created with up to 7% of the study popalatiallow for between 250 and 300 zones for each fiscal
year. Alberta has a sparse population (around 800,000rehilehd youth) for its geographic area, and combining mleltip
sRHAs into a test zone could lead to large geographic regitish would likely not be clusters. The most likely clusters
for each fiscal year are provided in TalBland Figure2, and the detailed results for fiscal year 2005/2006 are geovin
Table4.

Table 3. Retrospective Analysis, Compound Poisson Model, g = 7

statistical summary

Fiscal Year sRHA(s) case (event) count log L.R. Stat. ¢ p-value
2002/2003 {60,61,62,70 97 (102) 13.44 1.54 <0.001
2003/2004 {47,506 75 (76) 12.69 1.02 <0.001
2004/2005 {61,62,7¢ 114 (125) 15.13 1.80 <0.001
2005/2006 {61,62,7¢ 119 (131) 15.90 1.54 <0.001
2006/2007 {35,36,37,38,39,40,52,62 85 (91) 19.33 1.04 <0.001
2007/2008 {61,62,7¢ 114 (128) 15.58 1.81 <0.001

Table4 shows the sRHAs in each test zone and the associated lotpdikel ratios (L.L.R.) and values. The zone
with the highest observed value of the log likelihood testistic (obs = 15.90) and the observed value 1.54 > 1
consists of SRHAs 61, 62 and 70. The compound Poisson mogigésts that these subregions, with 38, 56 and 37 events,
respectively, and population sizes of 12031, 17365 and 1,3&3pectively, together form the most likely zone of améve
cluster. The three subregions have over one and half tineeexpected number of ED visits than what is expected in
the other subregions, per capita. Through a simulation 8ft@ifils, the observed statistic= 15.90 ranked 1st of the
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Table 4. Mental/Behavioural disorder due to psychoactive substance abuse, 2005/2006, 5=7

SRHA(S) LLR. ¢ SRHA(s) LLR. ¢ SRHA(S) LLR. ¢

{1} 0.3792 1.4961  {10,13 -18.7081 4.1703  {63,64 -1.2480 1.1915
{1,2} -0.8030 1.4058 {11} -5.1287 3.4624  {63,64,6% 21757 1.3345
{1,2,26 1.2355 1.7844  {8,11,1% -14.1452 24367  {63,64,67,63 -1.2119  0.9676
{1,2,3,2¢ 21435 12537 {12} -6.2859 3.1230  {63,64,65,67,6B -3.1185 1.1823
{1,2,3,4,26 01292 1.0913  {9,12,15 74701 17090  {63,64,65,66,67,68 -1.4166  1.1950
{12,34,2526  -0.3605 1.1090 {13} 75173 3.8379 {64} -0.0470  1.8782
{2} 0.0257 1.2444  {10,13,1% -35.1713  6.6892  {63,64,63 -1.2548 13767
{23} 0.7784 0.7484 {14} -4.8699 22511  {63,64,65,68 -6.4589  1.1148
{234 -1.2600 07475 {1415 -9.2553 25372  {61,63,64,6568 -1.7907  1.2677
{1,2,34 11585 0.8824  {11,14,1% 143455 2.7709  {61,63,64,65,66,68 3.7669  1.3190
{1,2,34,3 1.0797 0.8882  {11,14,15,18 -23.4622 35059 {65} 0.8827  1.4790
{1,2,3,4,5,26 -0.2099 1.0999 {15} 43171 3.1336 {6566 42326  1.4450
{3} 1.0474 05509  {11,12,14,15% 205659 2.8077  {64,65,66 47362  1.5995
(3.4 -16.3610 6.2500 {16} 0.3704 2.0443  {60,64,65,66 55858 1.3979
{2,345 0.4944 08173  {16,17} 0.6109 0.8895  {59,60,64,65,6p 8.1739  1.3964
{1,2,3,4,5,25 3.0463 0.8831  {16,17,19 1.6716 0.8023 {66} 6.5460 0.9536
{4} -0.5443 20968  {16,17,19,20 0.7427 0.6089  {59,65,66 8.2643  1.4404
{3,4,5 147075 4.9071  {16,17,18,19,2p -0.1387 0.6015  {59,63,65,66 52423 1.3564
{1,2,34,57,25  3.3243 0.8552 : {59,63,64,65,6p 4.9958  1.4052
{5} 1.3630 2.2911 : {67} 11.1926  0.1808
{45 0.8896 2.1473 : {67,68 58120 0.0752
{3,4,5,7 3.6686 0.6501 {59} 3.7755 1.2434  {63,67,6§ -1.0549 1.6814
{34,56,% 05933 0.8889  {28,59 3.1805 15258  {63,64,67,68,69 -6.0829  0.7282
{6} 5.0360 0.9162  {27,28,59 1.3019 17017  {63,64,65,67,68,60 -7.7689  0.9810
{67} -0.2419 1.2656  {27,28,56,59 26235 1.1883  {63,64,65,66,67,68,§9  -4.7750 1.0609
{56, 0.3822 1.1106  {27,28,56,59,65 3.7688 1.2815  {64,68 -5.9884  1.0118
{4,5,6,7 26187 1.0120 {60} 0.0185 0.8505  {64,67,6§ 0.6349  0.9744
{4,5,6,7,25 49580 09771  {56,60 2.0780 0.7918  {61,63,64,67,68,69 -5.3024  1.0892
{7} -0.2183 0.6879  {56,57,6¢ 1.1048 0.9335  {61,63,64,6567,68,§9  -6.0414 12084
{6,7,25 0.1453 1.1364  {41,56,57,60 2.9072 0.8734  {61,63,64,65,67,68,69,J0 -4.5948  1.2939
{5.6,7,25 23659 1.1233 {61} 48650 1.4525  {69,70 -0.9448  0.9806
{5,6,7,25,34 3.7096 1.0565  {61,70 9.0281 1.3370  {68,69,70 -6.4182  0.8205
{456,7253%  6.1627 0.9392  {61,6270} 15.9000  1.5399 {61,68,69,70 -1.2853  1.0493
{8} -45483 17352  {60,61,62,70 13.2156 1.6563  {61,64,68,69,7p -1.4820  1.1560
{8,11} -9.7680 2.2830 {62} 9.1143 1.4841  {61,64,67,68,69,70 -3.1589  1.2901
{8,9,11 -6.4775 1.4241  {36,62 -0.3287 20042  {61,62,64,67,68,69,30 1.7970  1.5509
{9} 3.5985 04037  {36,37,63 -1.6605 1.6596 {70} 41170  1.2010
{912 29741 13460  {36,37,52,58,6Q 21736 1.4539  {61,69,7 2.5805 1.5026
{8,9,12 -7.6109 1.4367  {36,37,52,57,58,62 15499 1.3415  {61,62,69,70 12,1263 1.3121
{10} -11.1946  4.6576 {63} -0.7186 0.7597  {37,61,62,69,7p 0.7680  1.5187

the top 50 largest, identifying the cluster as statisticsigjnificant at the 5% significance level. On the other handes
associated with high log likelihood ratios but lew< 1 values are areas with fewer expected number of event ccants t
what is expected in the other regions and is not of interesttio particular purposes. The sRHAs identified in each year
differ, although sRHAs 61, 62 and 70 together appear in thst fileely cluster for four out of six consecutive years and
would be the most likely cluster in a spatial-temporal asslyvith a temporal window of one year. These sRHAs together
had at least one and a half times the expected number of Ef3 thsin what is expected in the other subregions.

Table5 shows the most likely clusters identified with the tradibepatial scan19] for each year separately based
on the discrete Poisson model. The first analysis only exaesnéases whilst the second analyses performs the test on
the events (i.e., treating them as if they are cases andiignoorrelation). Similar zones are identified for fiscal igea
2004/2005 and 2005/2006, however, the analysis based osdvas an additional SRHA 69 in fiscal year 2004/2005.
For other fiscal years, the analysis based on cases and giadtgquite different findings from the analyses based on our
compound Poisson model.

All the scripts used for data analyses based on our compoais$dh model are implemented in Matlet0]. The
amount of time it takes to run a complete spatial scan te2@62/2003 and 2003/2004 fiscal year data by our compound
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Table 5. Retrospective Analysis, Discrete Poisson Model, 5=7

analysis based on case analysis based on event

Fiscal Year

sRHA(s) count logL.R.Stat. p-value SRHA(s) rdou log L.R. Stat.  p-value
2002/2003 {46} 48 12.00 4.%10% {46} 55 15.77 5.%107
2003/2004 {28,29,30,53,5p 73 14.69 5.10° {28,29,30,53,5p 78 19.72 1.%108
2004/2005 {61,62,7¢ 114 18.32 4.6:108 {61,62,69,70 134 21.67 2.610°
2005/2006 {61,62,7Q 119 18.88 6.%10°8 {61,62,7¢ 131 18.80 7.510°8
2006/2007 {61} 58 27.31 8.%10%? {61} 72 41.47 1.x10%7
2007/2008 {44} 49 22.18 7.%1010 {44} 59 30.44 2.%1013

G 2002/2003

) 2003/2004

5 & 2006/2007

') 2002/2003, 2004/2005

2005/2006 and 2007/2008

7Y 2002/2003, 2004/2005

2005/2006, 2006/2007

6 and 2007/2008

Figure 2. Possible clusters of events in Alberta, Canada.

Poisson model is 2.9 and 4.5 hours, respectively, on a deskimputer equipped with single quad-core Intel i7 processo
running at 3.5 GHz. It takes between 3 to 5 hours to complets @ the data of other fiscal years. The computing time is
dictated by the programming language used. The computimgrtiay be improved dramatically if implemented in C/C++
by a statistical programmer, for example. The computingttmcomplete the spatial scan test by the discrete Poisson
model using SaTScan is within seconds for the aggregatedadaach fiscal year. SaTScan also allows the choice of

B WWWw.Sim.org
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using circular or elliptical window shapes, as well as theapof using the Isotonic Spatial Scan Statistic which is no
yet available in our approach.

4. Simulation Study

To further our understanding of how the new spatial scan nifégr drom analyses using Kulldorff's][9] spatial scan, we
generate random datasets based on Alberta’s geographsinfglicity, we re-label the 70 sRHASs as subregions-S-,

S7o inthe province and the regional population sizes are taken the 2005/2006 fiscal year. We first generate the number
of case<”; ~ POI(\;n;) of each subregion where = 0.0008 for all i, except we choosk; = 0.003 for subregions $,

S, S5, Ss1 and S, and seth;y = 0.0025 for subregion &,. The next step is to generate the number of events for each
case byQ(z; 0) in (1). The distributionQ(z; 0 = 1.5) is used to generate the number of events for each case in edch a
every subregion, exced)(z; 0 = 3) is used for $, Su4, Su5, Ss1 and So. To give a better idea of the two densities, we
tabulate the first 10 probability values of both distribngan Table

Table 6. Zero-truncated Poisson Density

xT

1 2 3 4 5 6 7 8 9 10
Q(z;6 =1.5) 0.4308 0.3231 0.1616 0.0606 0.0182 0.0045 0.0010 0.0002 000.0 0.0000
Q(z;0 = 3.0) 0.1572 0.2358 0.2358 0.1768 0.1061 0.0531 0.0227 0.0085 028.0 0.0009

In our past experience with emergency visit data sets, matiended to make fewer than 10 visits per year, but some
could make 40 or more visits. The distribution of events malylre simple and motivates the examination of the simple
Poisson model in SaTSca?7 and our compound Poisson model where cases and eventsamatgel by a mixture.

We choose three subregions; SS;; and S to generate an additional number of cagés~ POI(\!n;) whereX}, =
0.0003, A\j; = 0.0004, and A%, = 0.0005. Overall, the rate of the number of cases generatedrnisS\7y + A%, = 0.003,
which is the same as those qffSr i = 42,44, 45, 61 and62. This rate is at least three times the rate of the other sidneg
For each of the additional; cases, the following custom discrete distribution

50 o

%9
1-— — 25 forz=1,---,2
< E 100)/5 orx Lo, 25

( 19) xr=26
g\x; = 2
Rt
- forz =26.---
100 T 6, ,50
0 elsewhere

with ¢ = 1/400 is used to generate the number of events. This distributlows much higher probability of generating
26 to 50 events per individual. In this setup, higher evetgsrahould easily be identified for the three zo{®s,, S5},
{S41, S42,Ss5} and {Ss1, Se2, S70} due to geographical distance, and the three major zonesamrgpért from each
other without overlapping subregions. In particular, sirg, has a slightly higher mean number of events per case,
our conjecture is that the zoR&;, Ss2, S70} shall be more likely to be detected as the most likely clustevents.

We ran a simulation study of 100 experiments by generatig skets as described above. A sample data set is given
with the population (Pop.) size of each sRHA in 2005/2006ahl&7. We first ran a purely spatial analysis and choose a
Poisson discrete probability model in SaTSc2a# for case data only. The maximum spatial cluster size issbel %
and the spatial window shape is set to be circular. We thelyamthe event data separately by the same procedure using
SaTScanZ2] and by our compound Poisson model. The identified mostikkister and the number of times it has been
identified are tabulated in Tab&
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Table 7. A Sample of Generated Data Set

Dataset 15
S; Pop. ¢ u; S Pop. ¢ u; S Pop. «¢; u;
S 3365 4 11 S5 5045 2 3 Q9 23065 23 50
Se 7129 4 13 g6 13868 7 15 § 28609 26 61
S 17745 12 20 & 5627 3 6 $1 15305 9 14
Sy 8376 6 11 Sg 4358 3 4 32 6304 6 10
Ss 5341 4 11 &9 11065 9 20 &3 2224 1 3
Ss 19432 16 24 & 4427 4 8 S 5114 5 7
Sy 6819 5 7 S 8524 2 6 S5 3695 2 3
S 22409 13 21 & 30344 33 70 & 20010 16 34
So 19061 14 26 & 3998 3 6 $7 9252 6 13
Sio 23234 19 38 & 6556 2 2 S$s 4064 6 12
S;p 11387 10 19 & 4812 6 9 $o 11592 9 15
Si2 15513 10 17 & 5311 2 5 %o 10417 5 7
Si3 15286 10 26 & 8053 2 4 @ 11998 29 74
Si4 17383 16 74 & 3943 4 6 %82 17471 50 148
Si5 9954 14 118 & 5296 4 6 33 7342 6 10
Si6 5981 5 9 S 5937 6 11 & 4474 5 10
Si7 15704 10 18 @ 14575 16 29 & 6690 4 6
Sis 10067 6 20 9 12031 42 152 & 21440 13 20
Si9 6946 7 9 93 14134 12 20 & 2712 1 2
S0 19065 20 31 & 13671 49 163 & 3722 7 14
S 22838 10 21 17365 40 128 & 3740 2 3
S0 20234 24 44 19415 13 27 & 14250 44 278
Sz 11152 7 16 9y 14564 4 11
Sy 26786 29 42 g 24188 15 26
Table 8. Number of Detection in Smulation Sudy, 5=7
Poisson Model Compound Poisson Model
Cluster Analyzing Cases  Analyzing Events Analyzing CaseskEvents
{S61,S62,S70} 55 59 83
{S42,544,S45} 42 4 4
{S14,S15} — 15 8
{S61,562,S69,S70} 3 — —
{S14} — 1 —
{S61,S70} — 5 4
{Swo} — 16

— denotes values which are not available

The two zones{Ss1, Se2, Sro} and {Sy1, Su2, Sy5} have the same overall rate= 0.003, and when analyzing only
cases with a Poisson model, they have similar chance of beamified as the most likely case cluster. In this study,
{Ss1, Se2, Sro } are detected more frequently (55 times versus 42 $ar, Si2, Si5 }), the margin is small.

When analyzing only events using the Poisson model whicls do¢ take into account the intra-person correlation
of data, the spatial scan test of SaTSca# [identified {Ss1, Ss2, S70} as the most likely cluster 59 times which is
considerably more frequent than other identified eventetasThis confirms with our initial conjecture that in outige
{Ss1, Se2, S7o } should be more probable of being a cluster. If we take int@actthe intra-person correlations of events
generated by each case, our compound Poisson model is at#eeti{ Sy, Se2, S0} as the most likely cluster 83 times
which has a considerable higher success rate under thedfehip simulation study.

5. Discussion

Spatial cluster detection tests usually attempt to idgggographic regions with higher than expected numberscafémt
or prevalent cases of disease or illness. We are interestddtecting geographic regions with higher than expected
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numbers of events related to disease or illness, with thepkar feature that individual cases may have multipledse-
related events (i.e., correlated data). We have treateduhmoer of events as a compound Poisson random variable and
proposed a spatial scan statistic for compound Poisson Tazermit parameter identifiability, an estimate of theozer
truncated Poisson parameter is obtained and a likelihagmltesst statistic is developed based on the parameter &stim
inside and outside the tested zone. An inequality based @mmember of events was used to help identify zones with
higher, rather than lower, numbers of events expected. Barlo simulations are conducted to assess the significance
of zones.

We applied our method to substance abuse presentationddiieatand youth to Alberta emergency departments during
a six-year period and compared the new approach with twacgtigins of the traditional spatial scan: applying the spat
scan to case counts and applying spatial scan to event casiiftthe event counts were independent data. We adopt the
usual practice of using the region of residence of the inldisl as the geographic unit for ED events data as described in
Section3, some may deem this practice a limitation in our method. @#hié subregions identified were not necessarily the
same for each year, for 2004/2005 and 2005/2006 fiscal yeargsults of each analysis were similar. Potential claster
were identified in sparsely populated north eastern regimhthe central region around the capital city (Edmonton).
These zones may be true clusters or may represent areas diteitgitions of important factors are not the same (e.g.,
age distributions) and are not adjusted for in our analyaseld solely on counts. The traditional spatial sd&hdpplied
to case counts failed to identify a particular subregionas$ @f the most likely cluster in 2004/2005 and this hightggh
how the assumptions of the data distribution can effect tnelaisions. The differences among methods were further
explored with simulated data sets where we showed thatadéitnal spatial scan based on case or event counts may not
coincide with our compound Poisson spatial scan. It wouldifieult to know a priori whether a traditional scan based
on case counts or assumed independent event counts wouldgosimilar results as a spatial scan assuming a compound
Poisson data structure for the correlated events.

We recognize that the computational speed of the traditgpetial scan is superior, in that closed form expressioas a
available for only a few compound Poisson models and therderaior of the likelihood ratio test only has to be computed
once, however, this advantage may be unimportant if the lyidg model is not appropriate. Improvements could be
made for computation. A few distributions of the compouigdiistribution (example@(z;p) = —p*/x In(1 — p) for
x > 1, and wheré < p < 1 would givePr(U = u) a negative binomial distribution) are known to yield a cb&srm for
the distribution of a compound Poisson random variablewfilbspeed up the computation when evaluating the likelidf®o
instead of relying on the Panjer recursive formuld][ In light of a closed form for the distribution of a compound
Poisson random variable, and other possible choices ofatmpounding distribution, improvements in computation and
examining performance represent further work for us toypeirsVithout choosing a special compounding distribution to
yield a closed form foPr(U = «), computational speeds based on the Poisson or Bernoulklatedays dominates.

As mentioned by many authors, cluster detection resultem®n the valugs which should be specified before
the analysis. Our primary interest in this paper is discostient data, however, one could easily extend our method to
applications that deal with continuous data. As discussd@]iand its references, the spatial scan statistic can be used
for temporal data and be extended directly to a space-tittiagéor either retrospective or prospective analysis.ofvly
looked at separate yearly analyses but further work candiediormally extending our approach to spatio-temporadtelu
detection. On the other hand, our current spatial scan testeveloped to detect the change of case occurrence rates an
parameter shift in the compound distributi@x.). In future development, we can consider testing for changdbke form
of Q(.) under the alternative hypothesis.

Our approach allows for the detection of a most likely zondiséase-related (correlated) events in a geographic area
based on a spatial scan and compound Poisson data assussnphianapproach will be useful for organizations, such as
health administrators, who wish to identify geographi@areith higher numbers of disease-related events than &dgec
Upon identification, additional epidemiological investipns can be undertaken to determine a true cluster exidt a
any policy interventions can be undertaken to reduce diseslated events.
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