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A spatial scan statistic for compound Poisson
data

Rhonda J. Rosychuk and Hsing-Ming Chang∗†

The topic of spatial cluster detection gained attention in statistics during the late 1980s and early 1990s. Effort has

been devoted to the development of methods for detecting spatial clustering of cases and events in the biological

sciences, astronomy and epidemiology. More recently, research has examined detecting clusters of correlated

count data associated with health conditions of individuals. Such a method allows researchers to examine spatial

relationships of disease-related events rather than just incident or prevalent cases. We introduce a spatial scan

test that identifies clusters of events in a study region. Because an individual case may have multiple (repeated)

events, we base the test on a compound Poisson model. We illustrate our method for cluster detection on emergency

department visits, where individuals may make multiple disease-related visits. Copyright c© 2012 John Wiley &

Sons, Ltd.
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1. Introduction

Spatial cluster detection (SCD) methods provide tools to find proximities where certain events occur significantly more

(or less) often than expected. SCD methods are popular in surveillance of diseases (e.g. [1–6]), studying growth pattern

of vegetation over landscapes (e.g. [7, 8]), and in crime pattern analysis (e.g. [9]). The spatial pattern of disease spread

or other health outcomes often is of interest to health authorities. Authorities typically collect administrative health data

that can be used to study the epidemiology of diseases, patterns of health services provided, and the relationships between

potential sources and outcomes of diseases. Databases housing such health data can also be utilized for evaluation of the

efficiency and effectiveness of public health services. SCDmethods can be employed with health data as surveillance tools

to help monitor, in an objective and statistically sound manner, health outcomes across a geographic region.

Several authors have contributed to the development of and investigated the properties of SCD methods (see [10–13] for

reviews). General tests are designed to detect clusters within the overall pattern of disease in a complete region [1]. Under
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these tests, the cases of disease are assumed to occur at random: each individual in the population has an equal chance of

developing the disease. For these tests, no specific alternative distribution for the cases is hypothesized.

Many of the available SCD methods assume that the geographicareas have comparable population sizes and are not

applicable to data consisting of areas with diverse population sizes. Our applications involve diverse population sizes and

we focus our review on a few key methods. Often methods can be summarized by either looking at areas of constant

population and comparing the number of cases [2, 14, 15] or looking for a specified number of cases and comparing

the underlying population sizes [1]. Turnbull et al. [15] take the former approach by combining geographic areas into

circles that constitute constant numbers of individuals atrisk, calculating the number of cases in each circle, and assessing

statistical significance through Monte Carlo simulations.Kulldorff and Nagarwalla [2] generalize this approach with a

likelihood ratio test that assesses if the individuals in a zone (circle) have greater disease risk than those outside the

zone. By maximizing the likelihood function over connectedsubgraphs of the study region, a similar likelihood ratio

test is provided by Duczmal and Assunção [16]. Methods by Besag and Newell [1] and Tango [17] identify areas with a

tendency to cluster. Besag and Newell [1] combine regions with nearest neighbors and compare the number of neighbors

that must be combined to contain a pre-specified number of cases. A chi-square statistic based on the discrepancy between

observed and expected relative frequencies and a “closeness” measure is proposed by Tango [17].

The SCD methods described are all based on detecting excess cases of disease and more recent developments and

extensions have included the detection of excess events related to a particular condition or disease (e.g., [4, 6]). These

tests are based on a strategy similar to Besag and Newell’s [1] general test. We now consider a spatial scan for compound

Poisson data to detect geographic areas with excess events.The test is in the same spirit as the spatial scan test introduced

by Kulldorff and Nagarwalla [2]. Our method uses a compound Poisson process to model disease-related events as the

primary unit of analysis for SCD rather than analyzing data of individuals in a case/non-case fashion. Such a model enables

us to detect geographical clusters of events when individuals in a population may present multiple events (e.g., emergency

department (ED) visits, post-emergency physician/practitioner visits) related to a disease or disorder diagnosis. Events

generated by the same individual should be deemed correlated by a probability distribution. In Section2, we introduce the

notation used throughout the paper and our compound Poissonmodel. The test statistic is introduced and the procedure to

assess its p-value is outlined. In Section3, we describe our administrative data and present a case study to illustrate our

methodology. Simulated data sets are analyzed for further illustrative purposes in Section4. Some concluding remarks of

the topic and future research ideas are organized in Section5.

2. Methodology

We assume administrative health data can be segregated intoI non-overlapping geographic sub-divisions (sometimes

called subregions or cells). Suppose each subregion is characterized by a centroid. A zone Z, which is defined by a

circular spatial scan window of radiusr and its centre at the coordinate of a centroid, consists of only and all individuals

in those subregions whose centroids lie inside the circle [2].

For this type of two dimensional scan test, we may choose an upper boundr∗i , i = 1, · · · , I, on the radius of the circular

scan window such that the population size of any zone defined by the window centered at centroidi does not exceedβ

percent of the total population in the study region. As indicated by Kulldorff and Nagarwalla [2], the choice of the upper

bound onri should be decided prior to analysis. All test zones can be generated by combining nearest subregions with

subregioni by varying the radius of the defining circle from 0 tor∗i for eachi. Clearly whenri = 0 for all i, each zone

coincides with a single subregion. Zones with such a definition have irregular geographic boundaries that depend on the

size and shape of those subregions whose centroids lie inside the spatial scan window.

Consider the hypothetical seven-cell region in Figure1 as an illustration. Circular scan windows of various radii are

centered at the upper north centroid and the centroid at the southwest corner. Starting from each centroid, a new test zone
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is formed when a new neighboring centroid is enclosed by the scan window. The value ofr∗i varies for each centroidi

depending on the population size of celli and of its nearby neighbors and the chosenβ.

Figure 1. hypothetical seven-cell region.

2.1. Notation, Compound Poisson Model and the Spatial Scan Test

Let Z be a collection of distinct subregions (administrative areas) in geographic region R. For each predetermined Z⊂ R,

let Z′ ⊂ R denote the compliment of Z, such that Z∩ Z′ = ∅ and Z∪ Z′ = R. Let there be a total ofI non-overlapping

and contiguous subregions Si (such as districts of land space),i = 1, · · · , I, in R (such as a state or a province).

Let the random variableCik, with observed valuecik, be the number of individuals observed withk events in subregion

Si (k ∈ N+, i = 1, . . . , I). Let the random variableCi =
∑

k∈N+ Cik, with observed valueci, be the total number of

individuals with at least one event in subregion Si. With the definition of a test zone in the previous section, the random

variableCZ =
∑I

i=1
Si∈Z

Ci, with observed valuecZ, is the number of individuals (cases) with at least one eventin Z, and

similarly for outside the test zone,CZ′ =
∑I

i=1
Si /∈Z

Ci, with observed valuecZ′ . LetC = CZ + CZ′ denote the total number

of cases in R. We wish to detect zones in R that have higher thanexpected numbers of events. The spatial scan statistic we

propose is based on a likelihood ratio test which is in the same spirit as in [2].

In this paper, we assume the population size of subregion Si can be measured and is denoted byni for i = 1, . . . , I, and

thatCi ∼ POI(λini) whereλi > 0 are standardized Poisson intensities. We consider that within a time period, say fiscal

year, individuals will only have event(s) within the subregion of their residence. Of the individuals with at least one event,

let the random variableXiℓ denote the number of event(s) incurred by theℓth individual in subregion Si, ℓ = 1, . . . , Ci.

The density distribution of the random variableXiℓ can be arbitrary depending on the context, however, we assume that

Xiℓ is discrete and follows a zero-truncated Poisson distribution with density

Pr(Xiℓ = x; θi) =







Q(x; θi) =
θxi

x!(eθi − 1)
for x = 1, 2, · · ·

0 elsewhere
(1)

with meanθieθi/(eθi − 1) whereθi > 0.

The total number of events from the population of subregion Si can be written as

Ui =

Ci
∑

ℓ=1

Xiℓ

where it is reasonable to assume thatCi is independent ofXiℓ for ℓ = 1, . . . , Ci andi = 1, . . . , I. For example,Ci can be

used to represent, over a fixed period of time, the number of people having respiratory symptoms in subregioni andXiℓ
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the number of times theℓth individual of subregioni visited for hospital emergency service with such symptoms.With

this formulation,Ui is a compound Poisson random variable. Panjer [18] discovered that the probabilitiesPr(Ui = ui) can

be obtained using a simple recursion formula

Pr(Ui = 0) = e−λini ,

Pr(Ui = ui) =
λini

ui

ui
∑

x=1

xQ(x; θi) Pr(Ui = ui − x) ui = 1, 2, · · · , i = 1, · · · , I.
(2)

With Q(x; θi) known, the likelihood function for the compound Poisson model can be written as

L(λi, θi) ∝
I
∏

i=1
Ci>0

λini

ui

ui
∑

x=1

xQ(x, θi) Pr(Ui = ui − x) (3)

since our main interest is on test zones having at least one event.

If we assume under the null hypothesis H0: λi = λ andθi = θ for all i, the likelihood becomes

L(λ̂, θ̂) =

I
∏

i=1
Ci=0

e−λ̂ni

I
∏

i=1
Ci>0

λ̂ni

ui

ui
∑

x=1

xQ(x; θ̂) Pr(Ui = ui − x) (4)

whereλ̂ andθ̂ are maximum likelihood (ML) estimates ofλ andθ, respectively. If we assume that under the alternative

hypothesis Ha: λi = λZ andθi = µ for Si ∈ Z, λi = λZ′ andθi = ν for Si /∈ Z, andλZµe
µ/(eµ − 1) > λZ′νeν/(eν − 1),

the probabilitiesPr(Ui = ui) can be obtained using separate recursion equations similarto (2) for Si ∈ Z and Si /∈ Z,

i = 1, . . . , I. Note that we can interpret the inequality in the alternative hypothesis statement as: per fixed population size,

the expected number of events incurred inside a test zone is higher than that outside the zone. Conditional onUi = ui for

i = 1, . . . , I, the likelihood under the alternative becomesL(Z, λ̂Z, λ̂Z′ , µ̂, ν̂) having the following expression

I
∏

i=1
Si∈Z,Ci=0

e−λ̂Zni

I
∏

i=1
Si∈Z,Ci>0

λ̂Zni

ui

ui
∑

x=1

xQ(x; µ̂) Pr(Ui = ui − x)

I
∏

i=1
Si /∈Z,Ci=0

e−λ̂Z′ni

I
∏

i=1
Si /∈Z,Ci>0

λ̂Z′ni

ui

ui
∑

x=1

xQ(x; ν̂) Pr(Ui = ui − x)

(5)

whereλ̂Z, λ̂Z′ , µ̂ andν̂ are the ML estimates of their respective denoted parameters.

2.2. Likelihood Ratio Test Statistic

We choose the likelihood ratio test statistic to be

η =
max
Z⊂R

Lµ̂,ν̂(Z, λ̂Z, λ̂Z′)

Lθ̂(λ̂)
or η = max

Z⊂R
log

Lµ̂,ν̂(Z, λ̂Z, λ̂Z′)

Lθ̂(λ̂)
(6)

with λ̂ denoting the ML estimate ofλ under the null hypothesis. We suggest thatθ̂ of Q(x; θ) in (4) be obtained first

also by the maximum likelihood method. Since the only variables in (3) areni andui, various combinations ofxiℓ for

ℓ = 1, · · · , ci may contribute to the same set ofui, i = 1, · · · , I, to yield the samêλ and θ̂ for (4) if they are jointly

estimated by the ML method. In direct joint ML estimation ofλ andθ using equation (3), information on the individual

event numbers is actually not used in estimatingθ. For instance, if we observe that subregioni has five cases (Ci = 5), then

both {Xi1 = 1, Xi2 = 2, Xi3 = 3, Xi4 = 4, Xi5 = 5} and {Xi1 = 3, Xi2 = 3, Xi3 = 3, Xi4 = 3, Xi5 = 3} give Ui = 15

and will yield the samêλ and θ̂ if they were jointly estimated fromUi and (4). This parameter identifiability issue is

eliminated if θ̂ is estimated fromXiℓ andQ(x, θ). Under the null hypothesis, for example, we chooseθ̂ to be the ML

4 www.sim.org Copyrightc© 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 001–??

Prepared using simauth.cls



R. J. Rosychuk and H-M Chang

Statistics
in Medicine

estimate which maximizes

log
I
∏

i=1

Ci
∏

ℓ=1

Q(Xiℓ = x; θ̂).

If each and every case in every region only has one event, the spatial scan test using the Poisson model will be more

appropriate.

Estimatingθ̂ first, based onXiℓ, then substitutinĝθ into (3) allows us to obtain a ML estimate ofλ based onLθ̂(λ).

Lθ̂(λ̂) can then be evaluated for the likelihood ratio test statistic. In a similar fashion but under the alternative hypothesis,

for each test zone Z and Z′, λ̂Z andλ̂Z′ are joint ML estimates based on (5) after obtaininĝµ andν̂ first for Q(x, µ) and

Q(x, ν) from Si ∈ Z and Si /∈ Z, respectively. Note that in practice, we only considerη from zones such that the condition

λ̂Zµ̂e
µ̂

(eµ̂ − 1)
>

λ̂Z′ ν̂eν̂

(eν̂ − 1)
or φ =

λ̂Zµ̂e
µ̂(eν̂ − 1)

λ̂Z′ ν̂eν̂(eµ̂ − 1)
> 1 (7)

is also satisfied since our interest is in finding regions of high expected number of events.

As for the spatial scan statistic introduced by Kulldorff [19], the exact distribution ofη in an analytical form is very

difficult to obtain. Monte Carlo simulation is to be employedto assess the significance of an observed value ofη under

the null hypothesis by taking the following steps. For all simulation procedures, we condition onC = c and the number

of events of thejth case in the study area regardless of subregion,Xj = xj , for j = 1, . . . , c. Note that given an individual

generates at least one event in R, the probability that such an individual belongs to subregion Si is ni/n under the null

assumptions.

1. Conditioning onC = c andXj = xj , sample randomly a subregion ID for eachxj , j = 1, · · · , c. The sampling

distribution has weightsni/n for i = 1, · · · , I. Depending on the generated subregion ID for each individual,

variablesCi andXiℓ = xiℓ, henceUi, are generated forℓ = 1, . . . , Ci andi = 1, . . . , I.

2. Calculate the test statisticη as defined in (6).

3. Repeat steps 1 and 2 for 999 trials and record test statistic of each simulation trial.

4. Rank the 999 simulated likelihood ratio statistics and the observed statisticη from the data.

Note that in our model, the likelihoodLθ̂(λ̂) is no longer a constant under the null hypothesis over each simulation trial as

it would be in [2] and [19], because (3) depends onUi = ui for i = 1, · · · , I which are not fixed in the simulation trials.

Therefore, the numerator and the denominator of (6) need to be computed in step 2 of each simulation trial. The hypothesis

test can be considered significant at 1000α per cent level if the value of the observedη calculated from data is among the

1000α (an integer) highest of these 1000 ranked statistics in step4. A significant test indicates that the collection of

subregions which yields the observedη in the spatial scan test is the most likely cluster having higher expected numbers

of events per fixed population size. Other zones which have nonoverlapping subregions with the most likely cluster also

have high values of the test statistic under condition (7) should be examined for possibility of being secondary clusters.

3. Application to Emergency Data

We illustrate our spatial scan on emergency department (ED)presentations by children and youth (age<18 years) for

substance abuse in the western Canadian province of Albertaduring six fiscal years (April 1, 2002, to March 31, 2008).

The data are extracted from population-based, provincial administrative data sets held at Alberta Health as part of a larger

study investigating ED presentations for mental health conditions [21]. Each ED presentation during the study period is

considered to be an event made by an individual and is tied back to the sRHA code of patient residence. A case is defined

as an individual who had at least one ED presentation for substance abuse in Alberta during the study period. We examine

each fiscal year separately using both our new spatial scan for events and two analyses using Kulldorff’s spatial scan

Statist. Med. 2012, 001–?? Copyright c© 2012 John Wiley & Sons, Ltd. www.sim.org 5
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Table 1.Subregional Population Size by Fiscal Years

sRHA

Fiscal Year 1 2 3 4 5 6 7 · · · 65 66 67 68 69 70

2002/2003 3743 7466 17573 8574 5357 19191 6692· · · 6929 20083 2809 3357 3643 13280
2003/2004 3591 7372 17717 8473 5338 19288 6687· · · 6951 20357 2772 3477 3701 13529
2004/2005 3471 7223 17783 8394 5417 19397 6686· · · 6743 20740 2724 3535 3780 13756
2005/2006 3365 7129 17745 8376 5341 19432 6819· · · 6690 21440 2712 3722 3740 13671
2006/2007 3379 7253 18362 8388 5567 19906 6965· · · 6588 22444 2673 3895 3770 14250
2007/2008 3272 7392 18970 8535 5690 20336 6937· · · 6596 23131 2592 4024 3839 14807

software SaTScan [22], where analyses are performed on cases only and on events asif events were individual cases (i.e.,

ignoring correlation).

There areI = 70 distinct subregional health authorities (sRHA) in the province of Alberta, Canada and we use these as

the subregions for analysis. The population size of each sRHA is partially reported in Table1 by fiscal year. In Table2,

the total number of cases and ED presentations related to substance abuse in each sRHA are partially reported. Note that

for some years and sRHAs, the cases and events are zero meaning that these sRHAs would not be included individually

as test zones.

Table 2. Cases and Events by Fiscal Year and SubRegional Health Authority

sRHA

Fiscal Year 1 2 3 4 5 6 7 8 · · · 68 69 70

2002/2003 7 (8) 12 (13) 20 (20) 7 (8) – (–) 24 (27) 9 (11) 7 (7)· · · 0 (0) – (–) 18 (21)
2003/2004 – (–) 20 (20) 22 (22) – (–) – (–) 24 (26) 12 (13) 15 (16)· · · 0 (0) 7 (7) 18 (18)
2004/2005 6 (7) 16 (21) 27 (28) 6 (6) – (–) 29 (30) 20 (23) 9 (9)· · · 0 (0) 7 (9) 29 (30)
2005/2006 10 (10) 18 (18) 20 (21) 6 (6) – (–) 36 (39) 9 (10) 9 (9)· · · 0 (0) 0 (0) 33 (37)
2006/2007 12 (13) 24 (25) 23 (25) – (–) 15 (15) 35 (35) 18 (19) 19(19) · · · 0 (0) – (–) 18 (21)
2007/2008 11 (13) 22 (24) 30 (34) – (–) – (–) 34 (37) 10 (10) 19 (20) · · · 0 (0) 11 (12) 27 (32)

– denotes cell counts are<6 and are suppressed to ensure confidentiality

The test zones are created with up to 7% of the study population to allow for between 250 and 300 zones for each fiscal

year. Alberta has a sparse population (around 800,000 children and youth) for its geographic area, and combining multiple

sRHAs into a test zone could lead to large geographic regionswhich would likely not be clusters. The most likely clusters

for each fiscal year are provided in Table3 and Figure2, and the detailed results for fiscal year 2005/2006 are provided in

Table4.

Table 3. Retrospective Analysis, Compound Poisson Model, β = 7

statistical summary

Fiscal Year sRHA(s) case (event) count log L.R. Stat. φ p-value

2002/2003 {60,61,62,70} 97 (102) 13.44 1.54 <0.001
2003/2004 {47,50} 75 (76) 12.69 1.02 <0.001
2004/2005 {61,62,70} 114 (125) 15.13 1.80 <0.001
2005/2006 {61,62,70} 119 (131) 15.90 1.54 <0.001
2006/2007 {35,36,37,38,39,40,52,62} 85 (91) 19.33 1.04 <0.001
2007/2008 {61,62,70} 114 (128) 15.58 1.81 <0.001

Table4 shows the sRHAs in each test zone and the associated log likelihood ratios (L.L.R.) andφ values. The zone

with the highest observed value of the log likelihood test statistic (obs = 15.90) and the observed valueφ = 1.54 > 1

consists of sRHAs 61, 62 and 70. The compound Poisson model suggests that these subregions, with 38, 56 and 37 events,

respectively, and population sizes of 12031, 17365 and 13671, respectively, together form the most likely zone of an event

cluster. The three subregions have over one and half times the expected number of ED visits than what is expected in

the other subregions, per capita. Through a simulation of 999 trials, the observed statisticη = 15.90 ranked 1st of the
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Prepared using simauth.cls



R. J. Rosychuk and H-M Chang

Statistics
in Medicine

Table 4. Mental/Behavioural disorder due to psychoactive substance abuse, 2005/2006, β=7

sRHA(s) L.L.R. φ sRHA(s) L.L.R. φ sRHA(s) L.L.R. φ

{1} 0.3792 1.4961 {10,13} -18.7081 4.1703 {63,64} -1.2480 1.1915
{1,2} -0.8030 1.4058 {11} -5.1287 3.4624 {63,64,67} 2.1757 1.3345
{1,2,26} 1.2355 1.7844 {8,11,15} -14.1452 2.4367 {63,64,67,68} -1.2119 0.9676
{1,2,3,26} 2.1435 1.2537 {12} -6.2859 3.1230 {63,64,65,67,68} -3.1185 1.1823
{1,2,3,4,26} 0.1292 1.0913 {9,12,15} -7.4701 1.7090 {63,64,65,66,67,68} -1.4166 1.1950
{1,2,3,4,25,26} -0.3605 1.1090 {13} -7.5173 3.8379 {64} -0.0470 1.8782
{2} 0.0257 1.2444 {10,13,17} -35.1713 6.6892 {63,64,65} -1.2548 1.3767
{2,3} 0.7784 0.7484 {14} -4.8699 2.2511 {63,64,65,68} -6.4589 1.1148
{2,3,4} -1.2600 0.7475 {14,15} -9.2553 2.5372 {61,63,64,65,68} -1.7907 1.2677
{1,2,3,4} -1.1585 0.8824 {11,14,15} -14.3455 2.7709 {61,63,64,65,66,68} 3.7669 1.3190
{1,2,3,4,5} 1.0797 0.8882 {11,14,15,18} -23.4622 3.5059 {65} 0.8827 1.4790
{1,2,3,4,5,26} -0.2099 1.0999 {15} -4.3171 3.1336 {65,66} 4.2326 1.4450
{3} 1.0474 0.5509 {11,12,14,15} -20.5659 2.8077 {64,65,66} 4.7362 1.5995
{3,4} -16.3610 6.2500 {16} 0.3704 2.0443 {60,64,65,66} 5.5858 1.3979
{2,3,4,5} 0.4944 0.8173 {16,17} 0.6109 0.8895 {59,60,64,65,66} 8.1739 1.3964
{1,2,3,4,5,25} 3.0463 0.8831 {16,17,19} 1.6716 0.8023 {66} 6.5460 0.9536
{4} -0.5443 2.0968 {16,17,19,20} 0.7427 0.6089 {59,65,66} 8.2643 1.4404
{3,4,5} -14.7075 4.9071 {16,17,18,19,20} -0.1387 0.6015 {59,63,65,66} 5.2423 1.3564
{1,2,3,4,5,7,25} 3.3243 0.8552 · {59,63,64,65,66} 4.9958 1.4052
{5} 1.3630 2.2911 · {67} 11.1926 0.1808
{4,5} 0.8896 2.1473 · {67,68} 5.8120 0.0752
{3,4,5,7} 3.6686 0.6501 {59} 3.7755 1.2434 {63,67,68} -1.0549 1.6814
{3,4,5,6,7} 0.5933 0.8889 {28,59} 3.1805 1.5258 {63,64,67,68,69} -6.0829 0.7282
{6} 5.0360 0.9162 {27,28,59} 1.3019 1.7017 {63,64,65,67,68,69} -7.7689 0.9810
{6,7} -0.2419 1.2656 {27,28,56,59} 2.6235 1.1883 {63,64,65,66,67,68,69} -4.7750 1.0609
{5,6,7} 0.3822 1.1106 {27,28,56,59,65} 3.7688 1.2815 {64,68} -5.9884 1.0118
{4,5,6,7} 2.6187 1.0120 {60} 0.0185 0.8505 {64,67,68} 0.6349 0.9744
{4,5,6,7,25} 4.9580 0.9771 {56,60} 2.0780 0.7918 {61,63,64,67,68,69} -5.3024 1.0892
{7} -0.2183 0.6879 {56,57,60} 1.1048 0.9335 {61,63,64,65,67,68,69} -6.0414 1.2084
{6,7,25} 0.1453 1.1364 {41,56,57,60} 2.9072 0.8734 {61,63,64,65,67,68,69,70} -4.5948 1.2939
{5,6,7,25} 2.3659 1.1233 {61} 4.8650 1.4525 {69,70} -0.9448 0.9806
{5,6,7,25,34} 3.7096 1.0565 {61,70} 9.0281 1.3370 {68,69,70} -6.4182 0.8205
{4,5,6,7,25,34} 6.1627 0.9392 {61,62,70} 15.9000 1.5399 {61,68,69,70} -1.2853 1.0493
{8} -4.5483 1.7352 {60,61,62,70} 13.2156 1.6563 {61,64,68,69,70} -1.4820 1.1560
{8,11} -9.7680 2.2830 {62} 9.1143 1.4841 {61,64,67,68,69,70} -3.1589 1.2901
{8,9,11} -6.4775 1.4241 {36,62} -0.3287 2.0042 {61,62,64,67,68,69,70} 1.7970 1.5509
{9} 3.5985 0.4037 {36,37,62} -1.6605 1.6596 {70} 4.1170 1.2010
{9,12} -2.9741 1.3460 {36,37,52,58,62} 2.1736 1.4539 {61,69,70} 2.5805 1.5026
{8,9,12} -7.6109 1.4367 {36,37,52,57,58,62} 1.5499 1.3415 {61,62,69,70} 12.1263 1.3121
{10} -11.1946 4.6576 {63} -0.7186 0.7597 {37,61,62,69,70} 0.7680 1.5187

the top 50 largest, identifying the cluster as statistically significant at the 5% significance level. On the other hand, zones

associated with high log likelihood ratios but lowφ < 1 values are areas with fewer expected number of event counts than

what is expected in the other regions and is not of interest for our particular purposes. The sRHAs identified in each year

differ, although sRHAs 61, 62 and 70 together appear in the most likely cluster for four out of six consecutive years and

would be the most likely cluster in a spatial-temporal analysis with a temporal window of one year. These sRHAs together

had at least one and a half times the expected number of ED visits than what is expected in the other subregions.

Table5 shows the most likely clusters identified with the traditional spatial scan [19] for each year separately based

on the discrete Poisson model. The first analysis only examines cases whilst the second analyses performs the test on

the events (i.e., treating them as if they are cases and ignoring correlation). Similar zones are identified for fiscal years

2004/2005 and 2005/2006, however, the analysis based on events has an additional sRHA 69 in fiscal year 2004/2005.

For other fiscal years, the analysis based on cases and eventsyield quite different findings from the analyses based on our

compound Poisson model.

All the scripts used for data analyses based on our compound Poisson model are implemented in Matlab [20]. The

amount of time it takes to run a complete spatial scan test for2002/2003 and 2003/2004 fiscal year data by our compound
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Table 5.Retrospective Analysis, Discrete Poisson Model, β=7

analysis based on case analysis based on event

Fiscal Year sRHA(s) count log L.R. Stat. p-value sRHA(s) count log L.R. Stat. p-value

2002/2003 {46} 48 12.00 4.2×10-5 {46} 55 15.77 5.3×10-7

2003/2004 {28,29,30,53,56} 73 14.69 5.0×10-6 {28,29,30,53,56} 78 19.72 1.5×10-8

2004/2005 {61,62,70} 114 18.32 4.0×10-8 {61,62,69,70} 134 21.67 2.6×10-9

2005/2006 {61,62,70} 119 18.88 6.9×10-8 {61,62,70} 131 18.80 7.5×10-8

2006/2007 {61} 58 27.31 8.3×10-12 {61} 72 41.47 1.0×10-17

2007/2008 {44} 49 22.18 7.9×10-10 {44} 59 30.44 2.7×10-13

Figure 2. Possible clusters of events in Alberta, Canada.

Poisson model is 2.9 and 4.5 hours, respectively, on a desktop computer equipped with single quad-core Intel i7 processor

running at 3.5 GHz. It takes between 3 to 5 hours to complete tests on the data of other fiscal years. The computing time is

dictated by the programming language used. The computing time may be improved dramatically if implemented in C/C++

by a statistical programmer, for example. The computing time to complete the spatial scan test by the discrete Poisson

model using SaTScan is within seconds for the aggregated data of each fiscal year. SaTScan also allows the choice of
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using circular or elliptical window shapes, as well as the option of using the Isotonic Spatial Scan Statistic which is not

yet available in our approach.

4. Simulation Study

To further our understanding of how the new spatial scan may differ from analyses using Kulldorff’s [19] spatial scan, we

generate random datasets based on Alberta’s geography. Forsimplicity, we re-label the 70 sRHAs as subregions S1, · · · ,

S70 in the province and the regional population sizes are taken from the 2005/2006 fiscal year. We first generate the number

of casesCi ∼ POI(λini) of each subregion whereλi = 0.0008 for all i, except we chooseλi = 0.003 for subregions S42,

S44, S45, S61 and S62, and setλ70 = 0.0025 for subregion S70. The next step is to generate the number of events for each

case byQ(x; θ) in (1). The distributionQ(x; θ = 1.5) is used to generate the number of events for each case in each and

every subregion, exceptQ(x; θ = 3) is used for S42, S44, S45, S61 and S70. To give a better idea of the two densities, we

tabulate the first 10 probability values of both distributions in Table6

Table 6. Zero-truncated Poisson Density

x

1 2 3 4 5 6 7 8 9 10

Q(x; θ = 1.5) 0.4308 0.3231 0.1616 0.0606 0.0182 0.0045 0.0010 0.0002 0.0000 0.0000
Q(x; θ = 3.0) 0.1572 0.2358 0.2358 0.1768 0.1061 0.0531 0.0227 0.0085 0.0028 0.0009

In our past experience with emergency visit data sets, patients tended to make fewer than 10 visits per year, but some

could make 40 or more visits. The distribution of events may not be simple and motivates the examination of the simple

Poisson model in SaTScan [22] and our compound Poisson model where cases and events are generated by a mixture.

We choose three subregions S14, S15 and S70 to generate an additional number of cases,C∗

i ∼ POI(λ∗

i ni) whereλ∗

14 =

0.0003, λ∗

15 = 0.0004, andλ∗

70 = 0.0005. Overall, the rate of the number of cases generated in S70 is λ70 + λ∗

70 = 0.003,

which is the same as those of Si for i = 42, 44, 45, 61and62. This rate is at least three times the rate of the other subregions.

For each of the additionalC∗

i cases, the following custom discrete distribution

g(x;ϑ) =































(

1−
50
∑

x=26

x2ϑ

100

)

/25 for x = 1, · · · , 25

x2ϑ

100
for x = 26, · · · , 50

0 elsewhere.

with ϑ = 1/400 is used to generate the number of events. This distribution allows much higher probability of generating

26 to 50 events per individual. In this setup, higher event rates should easily be identified for the three zones{S14,S15},

{S41,S42,S45} and {S61,S62,S70} due to geographical distance, and the three major zones are far apart from each

other without overlapping subregions. In particular, since S70 has a slightly higher mean number of events per case,

our conjecture is that the zone{S61,S62,S70} shall be more likely to be detected as the most likely clusterof events.

We ran a simulation study of 100 experiments by generating data sets as described above. A sample data set is given

with the population (Pop.) size of each sRHA in 2005/2006 in Table7. We first ran a purely spatial analysis and choose a

Poisson discrete probability model in SaTScan [22] for case data only. The maximum spatial cluster size is set to be7%

and the spatial window shape is set to be circular. We then analyze the event data separately by the same procedure using

SaTScan [22] and by our compound Poisson model. The identified most likely cluster and the number of times it has been

identified are tabulated in Table8.
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Table 7.A Sample of Generated Data Set

Dataset 15

Si Pop. ci ui Si Pop. ci ui Si Pop. ci ui

S1 3365 4 11 S25 5045 2 3 S49 23065 23 50
S2 7129 4 13 S26 13868 7 15 S50 28609 26 61
S3 17745 12 20 S27 5627 3 6 S51 15305 9 14
S4 8376 6 11 S28 4358 3 4 S52 6304 6 10
S5 5341 4 11 S29 11065 9 20 S53 2224 1 3
S6 19432 16 24 S30 4427 4 8 S54 5114 5 7
S7 6819 5 7 S31 8524 2 6 S55 3695 2 3
S8 22409 13 21 S32 30344 33 70 S56 20010 16 34
S9 19061 14 26 S33 3998 3 6 S57 9252 6 13
S10 23234 19 38 S34 6556 2 2 S58 4064 6 12
S11 11387 10 19 S35 4812 6 9 S59 11592 9 15
S12 15513 10 17 S36 5311 2 5 S60 10417 5 7
S13 15286 10 26 S37 8053 2 4 S61 11998 29 74
S14 17383 16 74 S38 3943 4 6 S62 17471 50 148
S15 9954 14 118 S39 5296 4 6 S63 7342 6 10
S16 5981 5 9 S40 5937 6 11 S64 4474 5 10
S17 15704 10 18 S41 14575 16 29 S65 6690 4 6
S18 10067 6 20 S42 12031 42 152 S66 21440 13 20
S19 6946 7 9 S43 14134 12 20 S67 2712 1 2
S20 19065 20 31 S44 13671 49 163 S68 3722 7 14
S21 22838 10 21 S45 17365 40 128 S69 3740 2 3
S22 20234 24 44 S46 19415 13 27 S70 14250 44 278
S23 11152 7 16 S47 14564 4 11
S24 26786 29 42 S48 24188 15 26

Table 8. Number of Detection in Simulation Study, β=7

Poisson Model Compound Poisson Model

Cluster Analyzing Cases Analyzing Events Analyzing Cases and Events

{S61,S62,S70} 55 59 83
{S42,S44,S45} 42 4 4
{S14,S15} — 15 8

{S61 ,S62,S69,S70} 3 — —
{S14} — 1 —

{S61,S70} — 5 4
{S70} — 16 1

— denotes values which are not available

The two zones{S61,S62,S70} and {S41,S42,S45} have the same overall rateλ = 0.003, and when analyzing only

cases with a Poisson model, they have similar chance of beingidentified as the most likely case cluster. In this study,

{S61,S62,S70} are detected more frequently (55 times versus 42 for{S41,S42,S45}), the margin is small.

When analyzing only events using the Poisson model which does not take into account the intra-person correlation

of data, the spatial scan test of SaTScan [22] identified {S61,S62,S70} as the most likely cluster 59 times which is

considerably more frequent than other identified event clusters. This confirms with our initial conjecture that in our setup,

{S61,S62,S70} should be more probable of being a cluster. If we take into account the intra-person correlations of events

generated by each case, our compound Poisson model is able todetect{S61,S62,S70} as the most likely cluster 83 times

which has a considerable higher success rate under the setupof this simulation study.

5. Discussion

Spatial cluster detection tests usually attempt to identify geographic regions with higher than expected numbers of incident

or prevalent cases of disease or illness. We are interested in detecting geographic regions with higher than expected
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numbers of events related to disease or illness, with the particular feature that individual cases may have multiple disease-

related events (i.e., correlated data). We have treated thenumber of events as a compound Poisson random variable and

proposed a spatial scan statistic for compound Poisson data. To permit parameter identifiability, an estimate of the zero-

truncated Poisson parameter is obtained and a likelihood ratio test statistic is developed based on the parameter estimates

inside and outside the tested zone. An inequality based on mean number of events was used to help identify zones with

higher, rather than lower, numbers of events expected. Monte Carlo simulations are conducted to assess the significance

of zones.

We applied our method to substance abuse presentations by children and youth to Alberta emergency departments during

a six-year period and compared the new approach with two applications of the traditional spatial scan: applying the spatial

scan to case counts and applying spatial scan to event countsas if the event counts were independent data. We adopt the

usual practice of using the region of residence of the individual as the geographic unit for ED events data as described in

Section3, some may deem this practice a limitation in our method. While the subregions identified were not necessarily the

same for each year, for 2004/2005 and 2005/2006 fiscal years the results of each analysis were similar. Potential clusters

were identified in sparsely populated north eastern region and the central region around the capital city (Edmonton).

These zones may be true clusters or may represent areas wheredistributions of important factors are not the same (e.g.,

age distributions) and are not adjusted for in our analysis based solely on counts. The traditional spatial scan [19] applied

to case counts failed to identify a particular subregion as part of the most likely cluster in 2004/2005 and this highlights

how the assumptions of the data distribution can effect the conclusions. The differences among methods were further

explored with simulated data sets where we showed that the traditional spatial scan based on case or event counts may not

coincide with our compound Poisson spatial scan. It would bedifficult to know a priori whether a traditional scan based

on case counts or assumed independent event counts would provide similar results as a spatial scan assuming a compound

Poisson data structure for the correlated events.

We recognize that the computational speed of the traditional spatial scan is superior, in that closed form expressions are

available for only a few compound Poisson models and the denominator of the likelihood ratio test only has to be computed

once, however, this advantage may be unimportant if the underlying model is not appropriate. Improvements could be

made for computation. A few distributions of the compounding distribution (example,Q(x; p) = −px/x ln(1− p) for

x ≥ 1, and where0 < p < 1 would givePr(U = u) a negative binomial distribution) are known to yield a closed form for

the distribution of a compound Poisson random variable thatwill speed up the computation when evaluating the likelihoods

instead of relying on the Panjer recursive formula [18]. In light of a closed form for the distribution of a compound

Poisson random variable, and other possible choices of the compounding distribution, improvements in computation and

examining performance represent further work for us to pursue. Without choosing a special compounding distribution to

yield a closed form forPr(U = u), computational speeds based on the Poisson or Bernoulli model always dominates.

As mentioned by many authors, cluster detection results depend on the valueβ which should be specified before

the analysis. Our primary interest in this paper is discretecount data, however, one could easily extend our method to

applications that deal with continuous data. As discussed in [5] and its references, the spatial scan statistic can be used

for temporal data and be extended directly to a space-time setting for either retrospective or prospective analysis. Weonly

looked at separate yearly analyses but further work can include formally extending our approach to spatio-temporal cluster

detection. On the other hand, our current spatial scan test are developed to detect the change of case occurrence rates and

parameter shift in the compound distributionQ(.). In future development, we can consider testing for change in the form

of Q(.) under the alternative hypothesis.

Our approach allows for the detection of a most likely zone ofdisease-related (correlated) events in a geographic area

based on a spatial scan and compound Poisson data assumptions. This approach will be useful for organizations, such as

health administrators, who wish to identify geographic areas with higher numbers of disease-related events than expected.

Upon identification, additional epidemiological investigations can be undertaken to determine a true cluster exists and if

any policy interventions can be undertaken to reduce disease-related events.

Statist. Med. 2012, 001–?? Copyright c© 2012 John Wiley & Sons, Ltd. www.sim.org 11
Prepared using simauth.cls



Statistics
in Medicine R. J. Rosychuk and H-M Chang

Acknowledgement

The authors would like to thank the two anonymous reviewers for their comments that helped to strengthen some areas

of this paper. The work was funded by an operating grant from the Canadian Institutes of Health Research. Rhonda J.

Rosychuk is salary supported by Alberta Innovates - Health Solutions (AI-HS) as a Health Scholar. The authors thank Dr.

Amanda Newton at the Department of Pediatrics at the University of Alberta for facilitating data use and for insightful

comments.

This study is based in part on data provided by Alberta Health. The interpretation and conclusions contained herein are

those of the researchers and do not necessarily represent the views of the Government of Alberta. Neither the Government

nor Alberta Health express any opinion in relation to this study.

References

1. Besag J, Newell J. The detection of clusters in rare diseases.Journal of the Royal Statistical Society, Series A 1991;154:143–155.

2. Kulldorff M, Nagarwalla N. Spatial disease clusters: Detection and inference.Statistics in Medicine 1995;14:799–810. DOI: 10.1002/sim.4780140809

3. Le ND, Petkau AJ, Rosychuk R. Surveillance of clustering near point sources.Statistics in Medicine 1996;15:727–740. DOI: 10.1002/(SICI)1097-

0258(19960415)15:7/9<727::AID-SIM244>3.0.CO;2-X

4. Rosychuk RJ, Huston C, Prasad NGN. Spatial event cluster detection using a compound Poisson distribution.Biometrics 2006; 62:465–470. DOI:

10.1111/j.1541-0420.2005.00503.x

5. Jung I, Kulldorff M, Klassen AC. A spatial scan statistic for ordinal data.Statistics in Medicine 2007;26(7):1594–1607. DOI: 10.1002/sim.2607

6. Rosychuk RJ, Stuber JL. An exact test to detect geographicaggregations of events.International Journal of Health Geographics 2010;9:1–14. DOI:

10.1186/1476-072X-9-28

7. Haase P. Spatial pattern analysis in ecology based on Ripley’s K-function: introduction and methods of edge correction. International Association of

Vegetation Science 1995;6(4):575–582. DOI: 10.2307/3236356

8. Nelson TA, Boots B. Detecting spatial hot spots in landscape ecology.Ecography 2008;31(5):556–566. DOI: 10.1111/j.0906-7590.2008.05548.x

9. Kumar MV, Chandrasekar C. Spatial clustering simulationon analysis of spatial-temporal crime hotspot for predicting crime activities.International

Journal of Computer Applications 2011;35(3):36–43.

10. Marshall RJ. A review of methods for the statistical analysis of spatial patterns of disease.Journal of the Royal Satistical Society, Series A 1991;

154:421–441.

11. Lawson A, Biggeri A, Bohning D, Lesaffre E, Viel JF, Bertollini R. Disease mapping and risk assessment for public health. John Wiley & Sons,

Chichester, UK, 1999.

12. Kulldorff M, Tango T, Park PJ. Power comparisons for disease clustering tests.Computational Statistics & Data Analysis 2003;42(4):665–684. DOI:

10.1016/S0167-9473(02)00160-3

13. Kulldorff M. Tests of spatial randomness adjusted for aninhomogeneity.Journal of the American Statistical Association 2006;101(475):1289–1305.

DOI:10.1198/016214506000000618

14. Openshaw S, Charlton M, Craft AW, Birch JM. Investigation of leukaemia clusters by use of a geographical analysis machine. The Lancet 1988;

331(8580):272–273. DOI:10.1016/S0140-6736(88)90352-2

15. Turnbull BW, Iwano EJ, Burnett WS, Howe HL, Clark LC. Monitoring for clusters of disease: application to leukemia incidence in upstate New York.

American Journal of Epidemiology 1990;132(1 Suppl):136–143.

16. Duczmal L, Assunção R. A simulated annealing strategyfor the detection of arbitrarily shaped spatial clusters.Computational Statistics & Data Analysis

2004;45:269–286. DOI: 10.1016/S0167-9473(02)00302-X

17. Tango T. A class of tests for detecting ‘general’ and ‘focused’ clustering of rare diseases.Statistics in Medicine 1995; 14(21-22):2323–2334. DOI:

10.1002/sim.4780142105

18. Panjer HH. Recursive evaluation of a family of compound distributions.Astin Bulletin 1981;12:22–26.

19. Kulldorff M. A spatial scan statistic.Communications in statistics - theory and methods 1997;26(6): 1481–1496. DOI: 10.1080/03610929708831995

20. Matlab version 7.14.0 (2012a). Natick, Massachusetts: The MathWorks Inc., 2012.

21. Newton AS, Rosychuk RJ, Ali S, Cawthorpe D, Curran J, DongK, Slomp M, Urichuk L.The Emergency Department Compass: Children’s Mental

Health. Pediatric mental health emergencies in Alberta, Canada: Emergency department visits by children and youth aged 0 to 17 years, 2002-2008.

Edmonton, AB, 2011. Retrieved December 24, 2012 from the World Wide Web: http://www.EDCompass.net

22. Kulldorff M and Information Management Services, Inc.SaTScanTM v9.1.1: Software for the spatial and space-time scan statistics.

http://www.satscan.org/, 2011.

12 www.sim.org Copyrightc© 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 001–??

Prepared using simauth.cls


	1 Introduction
	2 Methodology
	2.1 Notation, Compound Poisson Model and the Spatial Scan Test
	2.2 Likelihood Ratio Test Statistic

	3 Application to Emergency Data
	4 Simulation Study
	5 Discussion



