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Abstract

Rapidly aricd transitions, such as rapid expansion or contraction of the flow in
a vertical or horizontal plane, in open channels typically involve flows with high
curvatures and/or slopes. The length of such iransitions is usually short, the pressure
distributions are significantly non-hydrostatic and the velocity distributions are highly
non-uniform. A two-dimensional (in a vertical plane) model or a three-dimensjonal
model would be able to model these situations satisfactorily. However, the
computational effort involved in modeling long river reaches and the complexity of the
cquations are often the limiting factors. On the other hand, one and two-dimensional
depth averaged modeling of gradually varied open channel flow, on account of their
simplicity and com:putational case, are common.

The depth averaged St. Venant equations, which are used for most of the
computational models in open channels, assume uniform longitudinal velocity and
hydrostatic pressure distributions and are inapplicable for modeling rapidly varied flow
phenomena. The Boussinesq equations, which represent a next level of approximation,
assume non-hydrostatic linear pressure and vertical velocity distributions and are
applicable to moderately shullow flows only.

The vertically averaged and moment (VAM) equations, which assume a linear
longitudina! velocity distribution and quadratic pressure and veriical velocity
distributions, provide an even higher degree of approximation for depth averaged
models and are applicable for a wavelengih to depth ratio as small as one. The
longitudinal velocity distribution allows for better representation of bed shear stress in
non-uniform flow and yields to easy incorporation of turbulent closure models. Thus,

these equations are capable of a better representation of {low situations with the



advantages of depth averaged medels. Also, these equations can casily be extended to
include lateral variations in open channel flows. The VAM cquations, because of their
advantages are investigated for developing a general purpose open channel flow model.

In this study, the VAM and VA (similar to the Boussinesg equations) equations
are solved numerically using a hybrid Pctrov-Galerkin and Bubnov-Galerkin finite
element scheme, while the modified St. Venant equations arc modeled using the
Petrov-Galerkin finite element scheme.

As a first test, the VAM equations arc applied to three cases of flow over
curved beds. Three tests consisting of flow from a horizontal to a steep channel with a
circular transition, flow over symmetric and asymmetric bed profiles and flow over an
idealized flip-bucket were conducted. The results show that the VAM cquations are
more suitable, for predicting bed pressure and water surface profiles, for curved beds
with large flows and large bed and water surface curvatures than the VA cquations.

Next, the VAM equations ar¢ used to model flow over frec overfalls with
smooth and rough beds and sharp crested weirs with sloping upstream faces. The
results from the VAM equations compare weil with the measured data, both for the
upper and lower nappe profiles of the free jet and the upstream surface profiles. Also,
the compi:ted longitudinal velocity distributions, and vertical velocity and pressure
distributions upstream of the overfall have satisfactory agreement with a potential flow
model and measured data respectively. The results for weirs with 4:1 (4 horizontal to |
vertical) and 2:1 upstream slopes are in good agreement with the measured data, while
for 45 degree upstream slope and large weir heights the modeled upstream water
surface shows numerical instabilities.

Both the Boussinesq and St. Venant equations arc unable to model the surface
profile of the hydraulic jump accurately. Using the moment of longitudinal momentum

equation and a simplified algebraic stress model, a single new term in the St. Venant



cquations is proposed. This new term, called the jump momentum flux, combings the
turbulent stress and velocity distribution effects in terms of depth and depth averaged
velocity. With an appropriate calibration of a single coefficient, the model gives good
results for the location, length and profile of hydraulic jumps ranging in Froude number
from 2 to 7. Furthermore, the location and length of the jump are found to be
independent of the spatial discretization.

In this study, the VAM equations are successfully modeled for rapidly varied
flow phenomena. These equations can further be used for modcling moving surges by
incorporating a turbulent closure model. Also, the present one-dimensional equations

can further be developed into two-dimensional equations.
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Chapter 1

Introduction

Rapidly varied transitions, such as rapid expansion or contraction of the flow in
a vertical or horizontal plane, in open channels typically involve flows with high
carvatures and/or slopes. The length of such transitions are usually short, the pressure
distributions are significantly non-hydrostatic and the velocity distributions are highly
non-uniform. Also, the bed shear stress may be significantly different from the
corresponding uniform flow conditions. These situations can be modeled satisfactorily
using a two-dimensional model in a vertical plane, while a three-dimensional model
would be required if the lateral variations across the channel are to be considered.
However, the computational effort involved in modeling long river reaches and the

complexity of the equations are often the limiting factors. On the other hand, one and



two-dimensional depth averaged modeling of gradually varied open channel flow, on
account of their simplicity and computational casc, arc common,

At present most computational models of open channels are based on the depth
averaged St. Venant equations. In these equations, uniform longitudinal velocity and
hydrostatic pressure distributions are assumed thus limiting their applicability to very
shallew flows, with wavelength to depth ratio in excess of about 20 (Henderson, 1966).
In order to model the rapidly varied flow phenomena using the advantages of depth
averaged equations, assumed velocity and pressure distributions have to be
incorporated in these equations. One such attempt is represcnted by the Boussinesy
equations, which assume lincar vertical velocity and non-hydrostatic lincar pressure
distributions. These equations are applicable for moderately shallow flows with
wavelength to depth ratio of about six (Steffler and Jin, 1993). For both the above scts
of equations, the longitudinal velocity is represented only by its mcan value, thus
uniform flow bed shear stress has to be used even for the case of highly non-uniform
flow. Also, for scour and erosion problems the dgirection of bed shear may be
significantly different from that of the mean flow (Steffler and Jin, 1993).

A further alternative in this area was the introduction of the vertically averaged
and moment (VAM) equations by Steffler and Jin (1993). Thercin, the plane Reynelds
equations were vertically averaged and the moment equations were developed by
vertically integrating the Reynolds equations after being multiplied by the vertical
coordinate. The three extra equations allowed specification of three further flow
paramelters. A linear longitudinal velocity distribution and quadratic pressure and
vertical velocity distributions were assumed and the equations wcre rewritien in terms
of the parameters of these distributions. The longitudinal velocity distribution, although

crude, allows for estimating the bed shear using the near bed velocity rather than the



mean velocity. Also, the above set of equations yields to easy incorporation of the
turbulent normal and shear stresses through turbulent closure models.

The VAM cquations, although vertically averaged, provide a better
representation of the flow by incorporating more vertical details when compared to the
St. Venant and Boussinesq equations. Small amplitude wave analysis, Steffler and Jin
(1993), showed that these equations are valid up to a wavelength to depth ratio of about
one, a considerable improvement when compared to the St. Venant and Boussinesqg
equations. Also, the present model has a poiential for extension to two-dimensional
flow in a horizontal plane, wherein the vertical detail incorporated in the model can
provide a better representation of the flow with the advantages of two-dimensional
depth averaged models (Jin and Steffler, 1993). Because of the above advantages, the
VAM cquations are investigated for developing a general purpose open channel {low
model, which in addition to modeling gradually varied flow should be capable of
modeling rapidly varied open channel flows.

Both the Boussinesq and St. Venant equations are traditionally depth averaged.
However, the Boussinesq equations, used in this study are derived as a special case of
the VAM equations by neglecting the longitudinal velocity distribution and assuming
lincar pressure and vertical velocity distributions. The resulting equations, although
similar to tha: reported by Gharangik and Chaudhry (1991), are called vertically
averaged (VA) equations.

The VAM, VA and St. Venant equations are modeled using a hybrid Petrov-
Galerkin and Bubnov-Galerkin finite element scheme. The Characteristic Dissipative
Galerkin finite element scheme, ¢ member of Petrov-Galerkin schemes, recently
introduced by Hicks and Steffler (1992), is employed for the continuity and
longitudinal momentum equations. While the rest of the equations, if applicable, are

modeled using the Bubnov-Galerkin finite element scheme.



As a first test, the results from the Boussinesq and VAM equations are
compared with the measured data for three different cases of flow over curved beds.
First, flow from a horizontal to a steep (up to 60 degree) slope with a circular transition
is modeled. Second, flow over a symmetric and an asymmetric bed profile is tested.
Last, flow over a flip-bucket spillway with a sloping upstream facc is modeled. A {lip-
bucket spiliway consists of a steep chute with a circular arc at the end which deflects
the incoming flow to a desired angle. The results show that the VAM cquations are
more suitable, for predicting bed pressure and water surface profiles, for curved beds
with large Nows and large bed and water surface curvatures.

A rectangular free overfall, which represents a vertical drop in the channel with
zero submergence, has been extensively investigated experimentally, numerically and
analytically by many researchers. The numerical and analytical solutions are based on
potential flow theory and the solution is limited to smooth horizontal beds.

Next, the rectangular free overfall problem is modeled using the VAM
equations and at the same time the applicability of the solution is extended to large
slopes by modeling flow over sharp crested weirs with sloping upstream faces and
rough beds. For modeling the free jet downstream of an overfall or a weir, the VAM
equations are modified and two types of elements are specified. A zero bed pressure is
specified for the free jet elements and the lower surface profile is obtained, while for
the second type of elements the bed profile is given and bed pressures are evaluated. At
the junction of two types of elements, internal boundary conditions of zero bed
pressure and a fixed bed elevation are specified. The results from the VAM equations
compare well with the measured data, both for the upper and lower nappe profiles of
the free jet and the upstream surface profiles. Also, the computed results of the vertical
velocity and pressure distributions upstream of the overfall agrec well with the

measured data; while the computed longitudinal velocity distributions match



satisfactorily with the two-dimensional poteatial flow model developed by Montes
(1992). The results for weirs with 4:1 (4 horizontal to 1 vertical) and 2:1 upstream
slopes are in good agreement with the measured data, while for 45 Jdegree upstream
slope and large weir heights the modeled water surface upstream of a weir shows
numerical instabilities.

The hydraulic jump, which represents a transitional state between an upstream
supercritical flow and a downstream subcritical flow, has a fixed length and location
for a given flow condition. Both the Boussinesq and St. Venant equations have been
numerically modeled to simulate the hydraulic jump. However, the dissipative shock
capturing schemes, adapted from the gas dynamics methods, for modeling these
equations emphasize mainly on suppressing the oscillations before and after the jump
and maintaining mormentum balance across the jump (Abbott et al., 1969). The jump
location is well predicted, but the length of the jump is a function of the spatial
discretization. The main limitation of the above sets of equations is the uniform
longitudinal velocity which cannot generate the turbulent stresses and total momentum
flux to spread the jump over its observed length.

A consideration of momentum conservation within a hydraulic jurnp leads to
the conclusion that both the momentum correction due to the non-uniform longitudinal
velocity profile and the depth averaged turbulent normal stress are important
mechanisms. Using the moment of longitudinal momentum equation and a simplified
algebraic stress model, a single new term in the St. Venant momentum equation is
proposed. This new term, called the jump momentum flux, combines the turbulent
stress and velocity distribution effects in terms of depth and depth averaged velocity.
With an appropriate calibration of a single coefficient, the model gives good results for
the location, length and profile of hydraulic jumps ranging in Froude numbers from 2.3

to 7.0, independent of the spatial discretization.



The three tests mentioned above are presented respectively in chapters two,
three and four, while the major conclusions and recommendation for future work
follow in chapter five. The details of the numcrical scheme applied are provided in

appendix A.
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Chapter 2

Vertically Averaged and Moment Equations
Model for Flow Over Curved Beds ™

2.1 Introduction

Rapidly varied transitions in open channels typically involve flows with high
curvatures and/or slopes. The length of such transitions is usually short, the pressure
distributions are significantly non-hydrostatic and the velocity distributions arc highly
non-uniform. While two-dimensional free surface (usually potential flow, ¢.g. Montes,
1994) models are feasible, hydraulic engineering practice relies primarily on physical
model studies for flow analysis of these situations. On the other hand, one-dimensional

modeling of gradually varied open channel flow is common. The purpose

* Accepted for publication in the J. Hydr. Engrg., ASCE



of this paper is to present the results of an cffort to extend the applicability of onc-
dimensional modeling to rapidly varied flow problems.

At present, most computational modeling of open channcl flows arc hased on
the depth averaged St. Venant equations. In these equations, uniform longitudinal
velocity and hydrostatic pressure distributions are assumed. Correction coefficients
may be applied for different distributions if they can be established a-priori (Yen,
1973). These equations are applicable for very shallow flows, with wavelength to depth
ratios in excess of about 20 (Henderson, 1966). For moderately shallow flows (i.e. for
shorter feature wavelengths), the Boussinesq equations are the next level of
approximation (Chaudhry, 1993). While the Boussinesq equations are applicable to
somewhat shorier lengths (about six depths) they do not appear to have been
successfully applied to problems with steep slopes (Montes, 1994).

Dressler (1978) attempted to extend the one-dimensional approach to higher
curvature flows by using a curvilinear, orthogonal coordinate system based on the bed
geometry. This approach, applied by Sivakumaran et al. (1983), is based on a potential
flow assumption. The method, however, does not account for the water surface
cuivature being different from the bed curvature and reduces to the St. Venant
equations for a flat bed.

Hager and Hutter (1984) presented a method, based on a potential flow in a
streamline coordinate system, which assumes a linear variation of flow angle and
curvature between the bed and surface. The result was shown to be an improvement
over the Boussinesq equations but is limited to geometrically mild slopes. Hager
(1985) extended this method to moderate slopes (up to about 30 degree). A similar, but
higher order method, was developed by Matthew (1991) in a Cartesian coordinate
system. This method involves an iterative solution. Corrections for the effects of

friction were also incorporated.



A further alternative was presented by Steffler and Jin (1993). Therein, the
plane Reynolds equations were vertically averaged and moment cquations were
developed by vertically integrating the Reynolds eqguations alter they had been
multiplied by the vertical coordinate. The three extra equations allow specification of
three further flow parameters. A linear longitudinal velocity distribution and quadratic
pressure and vertical velocity distributions were assumed and the equations were
rewritten in terms of the parameters of these distributions. Essentially, the approach
amounts to a low order weighted residual method. The mcthod suffers from the
crudeness and arbitrariness of the assumed distributions and results in some long and
complex equations where the terms are not of uniform order. It does have the
advantage of incorporating the effect of turbulent stresses directly, although these are
not important in the applications considered in this paper. Morc importantly for the
present purpose, there is no geometric limitation on slope unti! the flow is almost
vertical, where the assumed vertical distributions become meaningless.

In this paper, these vertically averaged and moment equations arc used for
simulating flow over curved beds. A Petrov-Galerkin finite clement scheme is
developed and applied to three test cases. First, flow from a horizontal to a steep (up 1o
60 degree) slope with a circular arc transition is modeled. Second, flow over a
symmetric and an asymmetric bed profile is tested. Last, flow over a flip-bucket
spillway with a sloping upstream face is attempted. The ultimate objective is to develop
a general one-dimensional model which naturally incorporates rapidly varied flow

transitions.
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2.2 Equations Modeled

The vertically averaged and moment equations (Steffler and Jin, 1993) consist
of three vertically averaged and three moment equations derived from the two-
dimensional (vertical - longitudinal, Fig. 2.1) Reynolds equations. The vertically

averaged continuity, longitudinal momentum, and vertical momentum equations are as

follows:

dg 0 (q"), 10gh® 13mi 1 dhp,
a;+ax( ]+2 dx e +2p ox

2 ahpq 1 ohG 84.1, Pl a«.[,
+ 290 10ROy L oy 0% f PLO% 4 Db () 2.
3p ox p ox ar® pox p @2

ahH aqu | a l aht Tb aZb D
_— I B 4= == =0, 3
o ar 6 ox [h"' W ] p ax pox p ()

where x is the longitudinal (horizontal) coordinate, z is the vertical coordinate, 1 is

time, h is the depth of flow measured vertically from the bed, g(=hug) is the
discharge per unit width, z, is the bed elevation, g is the gravitational acceleration,
and p is the fluid density. The other symbols appearing in the above equations are

explained below.

The assumed horizontal velocity distribution, shown in Fig. 2.2, is given by
U = Uy F U (2T = 1) e neeesisessenses s sb st bt s (2.4)
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where u, is the vertically averaged velocity, u; is the velocity at the surface in ¢xcess

of the mean and 7 is a non-dimensional vertical coordinate defined by

The vertical velocity distribution, shown in Fig. 2.3, is given by

W=W'b(l_n)+W24n(l—n)+M’hn ............................................................................ (2.6)

where wy, and w, are the vertical velocities at the bed and surface respectively, and w;
is the mid-depth vertical velocity in excess of the average of the vertical velocities at
the surface and bed. The vertical velocities at the bed and surface arc given by bed and

surface kinematic conditions as follows

_ i_ aq, 27
W, (h u,)ax ....................................................................................................... (2.7)
oh (g )a(q,+h)
= | Uy R e bt s 2.8
e o (h “ ) o (28

From (2.6), the mean vertical velocity is

W, 2 Wy,
Tl R U S R O T OO LUUR PP 29
2 73" (29)

and the mean square vertical velocity (needed in a subsequent equation) is

— 2 2
— ' 1
Wl =W+t —‘YL—-‘&’-‘&’-+—(2W—w,,-—w,,)2 ................................................. (2.10)

12 12 ¢ 20
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The pressure distribution, shown in Fig. 2.4, is assumed to be quadratic and is given by

p=(pgh+p )=+ Pranl = M) (2.11)

where p, is the bed pressure in excess of hydrostatic, and p, is the mid-depth pressure

in excess of the average of the pressure at the bed and surface. The bed stress. Ty, is

modeled with Chezy's equation as

.........................................................................................................

where C. is the non-dimensional Chezy conveyance coefficient, calculated from
Manning's equation or an appropriate log law. The average vertical velocity may be
important in this equation for steep slopes. The potential exists in this model to use
near bed velocities, rather than mean velocities. However, tor the cases considered
herein, the bed stress term was mostly of secondary importance only and the above
model was adequate. The vertically averaged turbulent normal and shear stresses are
represented by 6, and ‘c_; respectively. For the present examples, all involving
accelerating flows, these terms are neglected entirely. A turbulence closure model
would be required in cases where they were significant.

Three further equations are required to close the above system. Basically, the
additional equations are models for u,, w,, and p,. Setting these variables to zero
results in a set of equations similar to the Boussinesq equations (Gharangik and
Chaudhry, 1991). These equations will be referred to hereafter as the "VA" (Vertically
Averaged) equations. Further, setting p, to zero and ignoring (2.3) leaves two
equations analogous to the St. Venant equations. The difference is that the present

equations are vertically averaged (despite the title of the Steffler and Jin, 1993 paper)
13



where the St. Venant and Boussinesq equations are traditionally depth averaged. For
flat slopes, the respective cquation sets become equivalent.

Following Steffler and Jin (1993), three moment cquations arc used to compute
the three additional distribution parameters u;, w,, and p,. These cquations are
derived by vertically averaging the same thrce Reynolds equations after multiplying
through by the vertical coordinate z. After some manipulation (including subtracting
the mean elevation times the vertically averaged equations), the resulting cquations can

be written as

19n? 9z 10n'w

—+q— L1772 ¢ TSRO PPSPPIPON 2.13
i Ttk &1
du; 9 (qul) 1 (ap, 2 ah) 4p, 07 6 (1:,, . )
ou  Ofgu)_Lfop pon) 208 O[T, g % _ 7 |=0.... 2.14
or Tuxln 2p\ dx h ox * hp dx hp\ 2 Orgx = (214

woh* oK _h oz 0 [h
B 20 =) o=t - O )

2 ﬂ‘i(w+ﬁ+ﬂh—) -h?-ﬁ(@i-a)—ﬁt—h%—ihp, =0..(2.15)
: ) 2p dx 3p °

where

is the mean elevation of a vertical section. For convenience, the full set of equations
including (2.13) - (2.15) will be referred to as the VAM (Vertically Averaged and

Moment) equations in the following sections.
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2.3 Numerical Model

Substituting (2.9), (2.10), (2.12), and (2.16) into (2.1)-(2.3), (2.7), (2.8), and
(2.13)-(2.15) leaves a coupled system of eight first order equations with eight
unknowns (h, g, u;, Wy, Wy, W, p;, and p,). While these equations could be further
reduced, this expanded form was found to be convenient and is used in the numerical
model.

The equations are discretized and solved using the Characteristic Dissipative
Galerkin (CDG-1D) finite element scheme of Hicks and Steffler (1992). This scheme
provides selective artificial dissipation necessary for shock capturing. For both sets of
equations, the upwinding parameter is set to 0.25 and only continuity and longitudinal
momentum equations are upwinded. In all cases, to minimize numerical error as much
as possible, the spatial discretization was reduced until no change was observed in the
solution. Generally, the final element length is an order of magnitude less than the
depth of flow.

As the main aim of the study is to explore the applicability of the VAM
equations for flow over curved beds, the CDG-1D finite element scheme is employed
for illustration purposes. However, these equations can be modeled using any
conservative numerical scheme.

The VAM equations, in comparison to the VA equations, have three extra flow
parameters to be evaluated at every node and the computational time for these
equations should be higher. A steady state test conducted for finding the
comrputational efficiency showed that the VAM equations took about 30 percent more
time, to converge to the final steady state solution, as compared to the VA equations.

However, in terms of programming effort both sets of equations were found to be

similar.
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The problems considered, although steady, are solved as unstcady until the
asymptotic final solution is reached. An initial condition of constant depth and
discharge and all other variables equal to zero is arbitrarily specificd. To accelerate
convergence, a fully implicit finite difference time stepping scheme is used.
Preliminary tests indicated that stable, unique final solutions could be obtained for
Courant numbers up to about 6, which is used in the test runs conducted in this study.

For the resulting implicit set of non-linear algebraic equations, a Newton-
Raphson iterative solver, with an analytical Jacobian, is used to advance the solution to
the next time level. The convergence of the solution to a new time level is assessed by

the following convergence criteria

By
“

2-(-61),)— K LOEIANICE weereeeeeeeeeeereesesesssassseesacaesessesasseansssssanssnsassnneraseaseseseraessmssisies 2.17)

PNy

where @ is the vector of unknowns (length = 8 times the number of nodes), oD is the
vector of differences between the @ vectors at two successive iterations. The
convergence to final steady state solution is also assessed using (2.17), with o0d being
the difference between the @ vectors at two successive time levels. In this study, for

both convergence criteria, a tolerance of 10 is used.

2.4 Transition from Horizontal to Steep Slopes

The experimental data for water surface and bed pressure profiles are obtained
from the plots provided by Montes (1994). These experiments were performed in a
smooth channel of 0.402 m width. Two steep slopes of 45 and 6() degree were studied.
For both slopes, the transition from a horizontal to a steep slope was obtained through a

circular arc of (.1 m radius.
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The model boundary conditions used for this case, with critical flow occurring

at the upstream boundary, are a specified upstream depth (ho) and vanishing

derivatives of the extra pressure and velocity variables (QE'— = QE‘— = 922— = ) As the
ox ox Oox

downstream flow is supercritical, no conditions are applied at the downstream end. For
this casc the bed shear stress term is neglected.

Figs. 2.5 and 2.6 show the computed and measured water surface and bed
pressure profiles respectively, for different discharges, for the 45 degree slope
transition. The VAM equations model both the water surface and bed pressure profiles
extremely well. The VA equations predict a slightly lower water surface elevation and
higher minimum bed pressure in the transition region. For the 60 degree slope
transition, the water surface and bed pressure profiles are shown in Figs. 2.7 and 2.8.
The behavior of the VA equations is similar to the 45 degree slope case. The VAM
cquations predict the water surface profiles accurately, and while the bed pressure
prediction follows the measured values closely, the minimum pressure is overestimated
slightly. The agreement appears to improve with increasing discharge. The overall
quality of the solutions compare reasonably well with the two-dimensional potential

flow solution presented in the same paper.
2.5 Symmetric and Asymmetric Bed Profiles

The experimental data, consisting of depths and bed pressures, for flow over
symmetric and asymmetric bed profiles is obtained from Sivakumaran et al. (1983).
These experiments were performed in a horizontal flume 915 cm long, 65 cm high and
30 cm wide. Two bed profiles, symmetric and asymmetric as shown in Figs. 2.9 and
2.11, were tested. The leading edge of the profile in each case was placed 366 cm

downstream of the inlet box i.e. head tank. The upstream undisturbed depth was
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measured at 16 cm from the leading edge of the profile, and is used as an upstream
boundary condition for the models. The symmetric profile was shaped according to a
normal distribution and was 20 cm high and 120 cm long. The asymmetric profile, with
150 cm length, was achieved by passing a B-spline through a fixcd set of coordinates.
Further details of the experimental system and bed profiles can be found in the
reference cited above.

The results of both sets of model along with the experimental data for the
symmetric shape are shown in Figs. 2.9 and 2.10. For the low flow, the water surface
elevation and bed pressure predictions for both the VA and VAM models are almost
identical. The predicted water surface elevation matches well with the measured data in
the supercritical region, while the results in the subcritical region, although acceptable,
may be affected by the boundary conditions adopted for the two models. The modeled
bed pressures compare well with the measured data in the subcritical region, while in
the supercritical region the measured data show some scatter that may be duc to local
curvature error and resulting turbulence as discussed by Sivakumaran ct al. (1983). For
the high flow, the VA equations start to deviate from the results of both the VAM
equations and the measured data for surface elevation and bed pressure. For the
supercritical region, the VA equations predict a higher surface elevation and bed
pressure, while oscillations are predicted for both surface clevation and bed pressure
just upstream of the crest. The VAM equations perform well in both subcritical and
supercritical regions.

The results for the asymmetric dune shape are shown in Figs. 2.11 and 2.12. For
the asymmetric shape, the VA equations underpredict both the depth and pressure in a
region of sicep slope and large bed and water surface curvatures. The solution
deteriorates further for the higher flow. The full equation model performs satisfactorily

for the asymmetric dune shape in the entire region. A small blip is noticeable just at the
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crest, however. As before, the bed pressures show scatter in the supercritical flow

region.
2.6 Flip-Bucket Spillway

An idealized model flip-bucket spillway was constructed and tested to
investigate the behavior of the model for an hydraulic system consisting of several
components. The spillway crest is similar to the preceding comparisons but the chute
and flip-bucket present new requirements. A model capable of treating the entire
system at once could be useful in practical design work.

The experimental set-up is shown in Fig. 2.13. The upstream face of the dam
was set at an angle of 70 degree, while the spillway chute was set at 20 degree with the
horizontal. The two slopes were connected with a circular arc of radius 16.2 ¢cm. The
chute was 182.9 cm long. The flip-bucket was also a circular arc of radius 15.4 cm with
a 45 degree lip angle. The floor and walls of the chute were made of Plexiglas and the
circular arcs were constructed from PVC pipe segments. The flip-bucket spillway was
placed inside a 671 cm long, 46.4 cm wide and 90.5 cm high, channel with a head tank.
The water was supplied to the head tank from a sump through a 12.7 cm diameter pipe.
The pipe was equipped with a valve for controlling the discharge and a magnetic flow
meter for measuring the discharge. Although the flow rates considered in this test were
small, the radius of the spillway crest and flow depths involved were such that the
surface tension and viscosity effects, according to the criteria given by Rao (1975),
were negligible.

The water surface elevation was measured by a manual gauge with an accuracy

of 0.1 mm. The bed pressures were measured by means of 3 mm taps drilled through
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the spillway floor. The basc readings for the taps, in each experiment, were obtained
immediately after the flow was shut off.

For this test the bed friction term is included, assuming a smooth boundary
resistance law. The upstream boundary, for modeling purposes, is fixed at 10.1 ¢m
upstream of the start of the spillway. The boundary conditions are the same as in the
preceding cases, except that the bed pressure at the end of the flip-bucket is set to zero.

The predicted and e::perimental results for the flip-bucket spillway are shown in
Figs. 2.14 and 2.15. For the relatively low discharges measured, the surface elevation
and bed pressures predictions of both the VA and VAM models for surface clevation
and bed pressures agree well with the measurements. As in the prcvious tests, the VA
equations show some wobble near the crest at the higher discharge. In the flip- bucket.
both the rising and falling parts of the bed pressures are modeled accurately by bhoth

methods.

2.7 Conclusions

Vertically averaged and moment equations models are tested for flow from a
horizontal to a steep slope and flow over symmetric and asymmetric bed profiles and a
flip-bucket spillway with encouraging success. Comparisons of the results with the
measured water surface and bed pressure profiles indicate that, the VAM cquations arc
more suitable for curved beds with large flows and large bed and water surface
curvatures. The satisfactory performance of the VAM equations in these cases may be
attributed to a higher degree of vertical detail incorporated in the modcl. While the
present study does not give much insight into the mechanisms embodicd in the
vertically averaged and moment equations, it does indicate that they may be uscful in

open channel flow rﬁodeling.
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For the symmetric and asymmetric bed profiles, the results of the VAM
equations compare well with the method applied by Sivakumaran et al. (1983). Since
the latter method is applicable only for the product of depth and bed curvature in the
range of -2 to (.54, the bed pressures could not be predicted for certain regions of the
domain. For the VAM equations no such limitation is encountered and a solution for
the bed pressure throughout the whole domain could be obtained. For the transition
from a horizontal to a steep slope, the computed results agree well with the two-
dimensional potential flow model of Montes (1992). The advantage of the present
model is its potential for extension to two-dimensional flow in horizontal plane,
wherein the vertical detail incorporated in the model can provide a better representation
of the flow with the advantages of two-dimensional depth averaged models. Also, in
spite of the fact that for the VAM equations three extra parameters have to be evaluated
at each node, the time required for convergence to a final steady state solution was

found to be only 30 percent higher than the VA equations.
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Chapter 3

Modeling Overfalls Using Vertically Averaged
and Moment Equations *

3.1 Introduction

A free overfall represents a vertical drop in a channel with zero submergence. A
simple case of the free overfall is a horizontal or sloping channel with a vertical drop or
a channel with zero weir height at the end. The study of the simple free overfall is
important because of its possible use as a discharge measuring device. However, a
rclatively more important case, from the point of view of the design of an Ogee
spillway, is the study of an overfall with a weir (with a vertical or sloping upstream

face) at the end of the channel.

* Submitted for publication to the J. Hydr. Engrg., ASCE.
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On one hand, the simple free overfall has been extensively studied
experimentally, analytically and numerically. Rouse (1936, 1943) experimentally
investigated the end depth ratio of the rectangular free overfall, and measured the lower
and upper nappe profiles of the free jet issuing from a horizontal rectangular free
overfall respectively. Paderi (1954, 1956, 1959), examined experimentally the
rectangular free overfall for horizontal, positive and negative bed slopes. These studics
mainly focused on the upstream section of the overfall. Rajaratnam ct al. (1968, 1972),
carried out a detailed experimental study of velocity, pressure and shear stress
distribution in the upstream section of the rectangular free overfall for various bed
slopes, and studied the effects of bed roughness on the end depth ratio and velocity and
pressure distributions at the brink respectively.

Markland (1965) and Clarke (1965), used a two-dimensional potential flow
approach with integration by a relaxation method to solve for the surface profile
upstream of a rectangular free overfall and the boundarics of the free jet. Strelkoft and
Moayeri (1970) vsed potential flow theory with numerical integration to arrive at the
solution of the free rectangular overfall. Ali and Sykes (1971), applicd free vortex
velocity distribution and curvature to arrive at the end depth and the water surface
profile upstream of the overfall for rectangular, triangular and parabolic free overfalls.
Hager (1983), applied an analytical approach using an extended Bernoulli equation to
solve the rectangular free overfall problem. Recently, Montes (1992), solved the
potential flow equations numerically and Marchi (1993) solved analytically the
potential flow equations by expanding the stream function in a power series of the
vertical distance, to obtain the solution for the rectangular free overfall.

On the other hand, the design of an Ogee spillway, which requires the trajectory
of the lower nappe of the jet issuing from a sharp crested weir has been accomplished

exclusively through experimental investigation. Although most spillways arc designed
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with a vertical upstream face, spillways with a sloping upstream face are not
uncommon, especially for small irrigation projects. In this study, a different approach
is presented to <olve the simple frec overfall phenomena and at the same time the
applicability of the solution is ex'.'nded to ma:e practical problems by modeling sharp
crested weirs with sloping upstream face and rough beds. The equations used are the
vertically averaged and moment (VAM) equations recently presented by Steffler and
Jin (1993). These equations, although vertically averaged, assum.e a linear longitudinal
velocity profile and quadratic pressure and vertical velocity profiles. To solve for the
additional parameters of these assumed distributions, moment equations were
generated by vertically averaging the Reynolds equations after being multiplied by the
vertical coordinate. In this study, a hybrid Petrov-Galerkin and Bubnov-Galerkin finite
element scheme is developed and applied to rectangular free overfalls with smooth and

rough beds and sharp crested weirs with sloping upstream faces.

3.2 Equations Modeled

The two-dimensional Reyr.olds equations were used by Steffler and Jin (1993)
to generate three vertically averaged and three moment equations. These equations
along with kinematic bed and surface conditions can be used to determine the
parameters of the assumed distributions together with the depth and average velocity.
Referring to Fig. 3.1, the assumed longitudinal velocity, pressure and vertical velocity

distributions are as follows:

U= Uy F U (2117 1) e e e b (3.1)

P =(pgh+p )1 =)+ Py8T(1 = M) ot (3.2)



W= wp (1=M) F W N1 =T F Wi T e (3.3)

where u, is the vertically averaged longitudinal velocity, u, is the longitudinal velocity
at the surface in excess of the mean, p, is the bed pressure in excess of hydrostatic, p,
is the mid-depth pressure in excess of the average of the pressures at the bed and
surface, w, and wy, are the vertical velocities at the bed and surface respectively, w; is
the mid-depth vertical velocity in excess of the average of the vertical velocities at the
surface and bed, and g is the gravitational acceleration. The non-dimensional vertical

coordinate T is defined by

Pl

=3,
n=— (3.4)

where z, z, and h are respectively the vertical coordinate, bed elevation and depth of
flow measured vertically.
The vertically averaged continuity, longitudinal momentum, and vertical

momentum equations are as follows:

39,0 (q"), Logh®  1ohaf | 1 hpy
ot dxkh 2 ox 3 dx 2p ox

+—2—ahp2 _Loks, hé—zl-:ﬂ-p"-a_\z—’w}—‘l:O .................................................. (3.6)

3p ox p ox ox . ox P
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where x is the longitudinal (horizontal) coordinate, t is time, G, and T, are the

vertically averaged turbulent normal and shear stresses, p is fluid density and ¢

(= huy) is the discharge per unit width. The depth averaged vertical velocity w from

(3.3), and bed shear stress T, are given by

2 w
o 3.8
WES I (3.8)

I (3.9)
where C. is the non-dimensional Chezy conveyance coefficient, calculated from
h
G = 5.7510g(;—)+ 6. 2 et etee et e et e st er et s e ene st e ae e R e b n et e e a s sunesnne s (3.10)
;)

where k, is the equivalent sand grain height of the bed roughness. The vertical velocity

at the bed and surface are given by the bed and surface kinematic conditions as follows

u,,=(——u,)%% ..................................................................................................... 3.11)
oh Nz, +F
W"=E+(%+ !) (Sx e (3.12)



Threc more equations are required for evaluating u;, w,, and p,. which were
obtained, by Steffler and Jin (1993). by depth averaging the Reynolds equations after
they had been multiplied by the vertical coordinate. The three resulting moment

equations are

o 9% 19h'w

1

2ot a0 G139
du, a(qu,) l(ap, plah) 4p, 92 6(1‘,, _ 0% _) ,
o 9 (gu)_1(0pm poh) 45292 O(T 5 % 7 \og. . ..Q314
ot T3l ) 2p\ox hax) hpax hpl2  tax O * (314)

2 ﬂ(w+-’fl+ﬂ) -hF—ﬁ(ir-‘-’-z-—'o‘.)—ﬁﬂ’--aﬂ’--ihp, =0..(3.15)
: ) 2p0x 3p 0 C

where G, is turbulent normal stress in the vertical direction. In the above cquations, the
mean square vertical velocity w? (obtained using (3.3)) and the mean bed clevation

are given by

—2 ., W w,z, wew, 1 2
P W 2 (2W Wy — Wh ) et 3.16
WA T T ) G190

To model the fixed bed aad free jet portion of the flow together, both z, and p,

are considered to be unknown. For the fixed bed portion of the domain the following

additional equation constraining z, is added to the system
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O ) oo e e et e (3.18)
ot
For the free jet portion, (3.18) is replaced by
(3.19)

forcing the pressure at the underside of the nappe to be atmospheric. For the

applications considered in this study, all involving accelerating flows, the internal

turbulent stresses are neglected.
3.3 Numerical Model

Eqgs. (3.5)-(3.7), (3.11), (3.12), (3.13)-(3.15), and (3.18) or (3.19) constitute a
closed system, both for fixed bed and free jet, with nine unknowns (4, g, p, Or 2,, Wy,
Wy, W, Uy, Pa. 2, OF p). Although these equations can be reduced to a system of six
equations, the above expanded form is used for numerical modeling to avoid cross and
higher ozder derivatives.

The above set of equations is numerically modeled using a hybrid Petrov-
Galerkin and Bubnov-Galerkin finite element schemes. The continuity and longitudinal
momentum equations are upwinded using the Characteristic Dissipative Galerkin
(CDG-1D) finite element scheme of Hicks and Steffler (1992). This scheme provides
selective dissipation for shock capturing. The upwinding paraineter for this study is set
to 0.5.

The flow situations considered, although steady, are solved as unsteady
problems until a final asymptotic solution is reached. For all the tests, initial conditions

of constant water surface elevation and discharge are specified for the fixed bed
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portion. For the free jet, a constant depth equal to the brink depth and a parabolic lower
nappe profile, computed based on the bed slope and longitudinal velocity at the brink,
are specified as initial conditions. For the subcritical flow upstream of th2 overfall or
weir, an essential boundary condition for the discharge, and natural boundary condition
for the pressures and longitudinal velocity profiles parameters are specified at the
upstream boundary. For supercritical flow, in addition to thc above conditions an
essential boundary condition for the depth is also specified at the upstream boundary.
At the junction between the fixed bed and free jet, two internal boundary conditions arc
imposed. The bed pressure at the brink is forced to be atmospheric and the bed
elevation is kept unchanged. For free overfalls with smooth beds and subcritical flow
upstream, the upstream boundary for modeling purpose is located near a critical flow
section.

The coupled system of non-linear equations is discretized using lincar
interpolating functions, and the time derivatives arc approximated using finite
difference formulation. To minimize numerical error, the ratio of depth to spatial
discretization, for all tests, is kept between 10 and 20. To accelerate convergence, in
addition to using fully implicit time stepping scheme, the time step is geometrically
increased. The resulting discretized equations are solved implicitly using a Newton-
Raphson iterative scheme with an analytical Jacobian. The convergence of the solution

to a new time level is assessed by the following convergence criteria

~

>(8%)"
TP’

C  OLOIAIICE oeeevceeeeeeceeiirieeessesesseeseseenremssesaesastasseessosssrnsesesesrannsasnanrans (3.20)
where @ is the vector of unknowns and 8@ is the vector of differences between the @
vectors at two successive iterations. The convergence to final steady state solution is

also assessed using (3.20), with 8 being the difference between the & values at two

44



successive time levels. In this study, for both convergence criteria, a tolerance of 10-6

is used.
3.4 Rectangular Free Overfall with Smooth Bed

The data for the rectangular free overfall with smooth horizontal bed, both for
the water surface profile upstrcam of the overfall and lower nappe profiles for the free
jet, is obtained from the plots provided by Marchi (1993). Three tests, two for
subcritical upstream flow and one for supercritical upstream flow, are conducted and
the numerical results are compared with the measured data in each case. The bed shear
term is neglected in this case.

Figs. 3.2 to 3.4 show the computed and measured water surface elevation and
the lower nappe profile of the free jet for ali three cases. The vertically averaged and
moment (VAM) equations model both the water surface upstream of the overfall and
upper and lower nappe profiles of the free jet extremely well.

To compare the results of the simulated longitudinal velocity, vertical velocity
and pressure distributions upstream of the overfall with the measured data, a fourth test
with a subcritical upstream flow is conducted. The measured data for this test is
obtained from Rajaratnam et al. (1968) and Rajaratnam (1995).

Figs. 3.5 and 3.6 show that the water surface profile and the bed pressure
profile along the channel can be modeled accurately using the VAM equations. The
pressure profiles at the brink and upstream of the overfall are shown in Fig. 3.7. At the
brink, although the maximum pressure is modeled accurately, the limitation of the
assumed pressure distribution becomes apparent. The simulated pressure profiles

upstream of the brink show good agreement with the measured data.
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Fig. 3.8 shows a comparison of the computed longitudinal velocity profiles with
that obtained from the two-dimensional potential flow model developed by Montes
{1992). Although the assumed linear longitudinal velocity distribution is crude, the
agreement is satisfactory. Fig. 3.9 shows the computed and measured vertical velocity
distributions at the brink and upstream of the overfall. Although the VAM equations
predict slightly lower vertical velocities upstream of the overfall, the agrecment is

satisfactory.

3.5 Rectangular Free Overfall with Rough Bed

The experimental data for the rectangular free overfall with a rough horizontal
bed is obtained from Rajaratnam et al. (1976) and Rajaratnam (1995). The bed shear
stress is modeled using (3.9), wherein the non-dimensional Chezy conveyance is
evaluated using a &, value of 1.19 cm as suggested by Rajaratnam et al. (1976). In this
case, only the water surface profile upstream of the overfall was available and is
compared with the numerical model. Fig. 3.10 shows an excellent match of the

measured and computed results.

3.6 Weirs with Sloping Upstream Face

In this case, the data published by Bureau of Reclamation (1948) for sharp
crested weirs with sloping upstream faces is used. Three tests for upstream slope of 4:1
(4 horizontal and 1 vertical), 2:1 and 3:3 are examined. The upstream flow in all the
above tests was subcritical. The bed shear stress is neglected.

Figs. 3.11 to 3.16 show the comparison of measured water surface profile and

the trajectory of the free jet with the computed results. For the upstream weir slope of
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4:1 and 2:1. both the water surface elevation and the free jet trajectory are modeled
accurately by the VAM equations. For the 45 degree slope, the free jet trajectory is
modeled satisfactorily, but the computed results for the water surface elevation
upstream of the weir show numerical instabilities for larger weir heights. It is believed
that these oscillations are the results of the combined effects of the internal boundary

conditions. flow rate, weir height and significant non-lincarity of the actual

longitudinal velocity profile at the brink.

3.7 Conclusions

In this study, the existing potential flow models for free overfalls, which are
valid only for smooth horizontal beds, has been extended using the vertically averaged
and moment equations. The VAM equations are applied to horizontal rectangular free
overfalls with smooth and rough beds and to sharp crested weirs with sloping upstream
faces.

The comparison of computed results with the measured data for rectangular
overfalls show the validity of the model for both rough and smooth beds, with excellent
results for both the water surface elevation upstream of the overfall and the free jet
trajectory. The computed results of vertical velocity and pressure distributions, for the
smooth horizontal rectangular overfall, generally show a good agreement with the
measured data; while the computed longitudinal velocity profiles compare well with a
two-dimensional potential flow model. At the brink section, although the magnitude of
the maximum pressure is predicted accurately, the assumed quadratic pressure
distribution is limited in predicting the measured pressure profile accurately.

For weirs with upstream slope of 4:1 and 2:1, the computed results are in

excellent agreement with the measured results, both for water surface elevation and
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free jet trajectory. The water surface profile upstream of the weir, for 45 degree
upstrecam slope and large weir heights, shows numerical instabilitics and is thought to
be the combined effect of internal boundary conditions, flow rate. weir height and
significant non-linearity of lcngitudinal velocity profile. However, the free jet

trajectory is modeled satisfactorily.
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FIG. 3.1. Definition Sketch
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Chapter 4

A Physically Based Hydraulic Jump Model for
Depth Averaged Computations *

4.1 Introduction

The hydraulic jump is a transitional state between an upstream supercritical and
downstream subcritical flow, and for a given set of {low conditions has a fixed position
and length. For design purposes, an open channel flow model should ideally be capable
~f accurately predicting both the location and length of a hydraulic jump as a part of
general flow conditions. Most St. Venant equations models which presently allow
jumps, iowever, treat the jumps as thin shocks, using a dissipative, shock capturing

scheme adapted from the gas dynamics methods. The main emphasis is on suppressing

* Submitted for publication to the J. Hydr. Engrg., ASCE.
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the oscillations before and after the jump and maintaining the momentum balance
across the jump (Abbott et al., 1969). The jump location is well predicted but the jump
length is necessarily dependent on the spatial discretization, typically spread over one
to three intervals. Methods developed include finite difference with an explicit artificial
viscosity (e.g. Gharangik and Chaudhry, 1991; Younus and Chaudhry, 1994), or with
flux limiters (Jha et al., 1994; Garcia-Navarro et al., 1994) and Petrov-Galerkin finite
element schemes (Katopodes, 1984; Hicks and Steffler, 1992).

Gharangik and Chaudhry (1991), attempted to model the hydraulic jump using
both the St. Venant and Boussinesq equations. Sccond and fourth order finite
difference shock capturing techniques with added artificial diffusion were used to
numerically model these equations. The Boussinesq equations did not give an
improved solution while the fourth order scheme was found to be superior to the
second order method. The jump Jength was matched to experimental results but was
only two or three discretization intervals long. Younus and Chaudhry (1994)
incorporated a depth averaged k —¢€ turbulence model but found that the jump length
was primarily governed by the numerical diffusion coefficients chosen. It appears that,
regardless of the equations and overall numerical scheme, the jump length is still
governed by the artificial diffusion and the spatial discretization.

The St. Venant and Boussinesq equations (for sufficiently high upstream
Froude numbers) are well known to predict jumps of infinitesimal length, justifying the
shock capturing approach. The main limitatior: of thesc equations appears 1o be the
assumption of a uniform flow type velocity distribution which cannot gencerate the
turbulent stresses -~ ad total momentum flux necessary to spread the jump over its
observed length. Any improvement in jump modeling, therefore, must be based on
including more physics in the form of velocity, turbulence, and possibly pressure

distribution information.
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Narayanan (1975) and McCorquodale and Khalifa (1983) used the two-
dimensional Reynolds equations with an integral approach for solving hydraulic jumps.
An empirical relationship, based on the experimental studies of Rouse et al. (1958) and
Resch and Leutheusser (1972), was used to model the turbulent stresses. Madsen and
Svendsen (1983), also used an integral method with a one equation turbulence model
and were able to predict some of the turbulence characteristics within the jump. While
these studies were able to predict some of the detailed characteristics of hydraulic
jumps, they are too complex to be incorporated into general open channel flow models.

This study begins with an analysis of momentum conservation within a jump
which identifies that the important momentum flux mechanisms governing the jump
profile are the velocity distribution and the difference in longitudinal over vertical
turbulent stresses. A simplified algebraic stress turbulence model, assuming local
equilibrium of production and dissipation, is used to relate the turbulent stresses to the
velocity distribution. The velocity distribution is then evaluated using a moment of
longitudinal momentum equation, coupled with a simple linear velocity distribution
(Steffler and Jin, 1993). A single new momentum flux term is thereby developed which
includes one empirical parameter, related mainly to the turbulent length scale.
Comparison of numerica’ solutions with experimental jump profiles shows that a
unique value of this parameter gives acceptable results for jumps ranging in Froude
number from 2.3 te 7.0. A Petrov-Galerkin finite element scheme, with and without

numerical dissipation, is employed to solve these equations.
4.2 Momentum Conservation within a Hydraulic Jump

An analysis of momentum conservation within a hydraulic jump is undertaken

to identify the important physical mechanisms which determine the overall
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characteristic of jump length and profile. Consider a simple, classical, hydraulic jump
in a wide rectangular, horizontal channel as shown in Fig. 4.1. The longitudinal
coordinate is x and the vertical coordinate is z. At any point along the jump, the mean
(time averaged) flow depth is indicated by # and u, is the depth averaged mean
longitudinal velocity. The time averaged velocity components at any point are
indicated by u and w respectively. Section ! is upstream of the jump and section 2 is
downstream.

The depth averaged momentum equation can be derived by integrating the
Reynolds equation in the longitudinal direction over the depth of flow. The Licbnitz
rule and the kinematic surface condition are used to eliminate terms evaluated at the

surface. The resulting equation can be written as

9 foutdz+ 2] pdz - 2-Jo,d 4.1
—[pudz+— - T e restee et eee st ae s e et s s e sa e e been ettt .
ax(j)m z ax(J)p z ax();c, z=—1T, 4.1)

where p is the water density, p is the pressure, O, is the Reynolds normal stress, and

1, is the bed shear stress. Denoting the momentum flux integral as M, the pressure

integral as P and the stress integral as S, (4.1) can be integrated from section 1 to any

point x along the jump, resulting in

(M4 P=S8)= (M, + P, §)) = [TyX.coocererrsererersesesersmsssssssssssssssesesns(4.2)

For the end of the jump, at section 2, (4.2) becomes the usual jump momentum

equation

(M2 +P2—Sz)=(M,+P1—S,)—j‘dex .................................................................... (4.3)



Assuming uniform velocity and hydrostatic pressurr ‘istributions and neglecting the

contribution of the turbulent normal stresscs and the total bed shear force gives the

clementary jump cquation;

2
puélh,+m—=pu§2h2+l’12—=i’ ................................................................................ (4.4)

where F is the total specific force. An approximate (<1% error for F, > 2) solution to

(4.4) for the sequent depth ratio, f, is (Hager, 1992)

f="—2=«/§F,—l ..................................................................................................... (4.5)
h, 2

where F =u, /+[gh is the Froude number. For F; =7.5, f is very close to 10, which

is a useful scale in the following analysis.

Manipulation of (4.4) gives the following relative contributions of the

individual momentum balance terms.

M, f
L e et s 4.6
F f+2F; (4.6)
P M __f .
- “ -----------------------------------------------------------------

f F £ +2F;

M, f?

L ] et Rt R R R 4
F 14 2F; (*+8)

.............................................................................................
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Eq. (4.5) can be used to eliminate the sequent depth ratios so that the right hand side
depends on F, only. As a rough estimate for jumps in the 6 - 8 Froude number range,
take M,/ F=1, P,/ F=0, M,/ F=0.1,and P,/ F=0.9.

The next step is to estimate the contributions to the total specific force within
the jump. The mean momentum flux and pressure force contributions can be estimated
based upon measured profiles. The remainder gives an estimate of the turbulent stress
contribution. This estimate will give some idea of the turbulent intensity within the
jump. Consider the point along the jump where the depth is half of the final depth, /,.
This point will be close to the middle of the jurnp and likely in the vicinity of

maximum non-uniformity and turbulence. At this point

h

i e e et teee e uareaseisssessasasaaaeseateerartannran_—_niaanteasteaeaesaat arrirrnaerreees 4.10

7 (
hluo, 2

Uy =3—F7=— T (41‘)
vy f

The mean momentum flux contribution can be evaluated approximately by

means of the momentum flux correction factor, B, as in

Hager (1992) suggested a function that can be used as a reasonable approximation for
the velocity profile for jumps ranging in upstream Froude number from four to nine.

This can he expressed as

u-u 52\
< =[cos(——z-)] ............................................................................................ (4.13)
U, ~ U, 9 h




The subscripts indicate bed and surface velocities. Since an estimate of the depth
average velocity for the distribution from (4.11) is already available, only one of u, or
u, needs to be specified. Hager (1992) showed that the maximum backward surfuce
velocity occurs near the middle of the jump and is approximately equal in magnitude to

the downstream uniform velocity. Thus

....................................................................................

Using (4.11) with (4.13) and(4.14) gives an estimate for the maximum forward velocity

at the jump midpoint as

This result corresponds very well to the measured maximum velocities as shown in Fig.
2.11 of Hager (1992). From this distrikution B can be 2valuated and is found to be very

close 10 2.5. Now the total momentum flux of the mean flow can be estimated as

Thus for a Froude number of 7.5, the total momentum flux of the mean flow represenis
about 50 percent of the total specific force. Note that the relative contribution decreases
as the Froude number increases. Also note that this estimate makes sense only for

Froude numbers greater than about 5. Likely, for smaller Froude numbers, 3 should be

smaller than 2.5.
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The pressure force can also be estimated based on some presumptions about the
pressure distribution within the jump. The pressurc distribution is governed by the
vertical momentum equation, which can be expressed as

dw, w13 . do.

u— = + e ettt ————ae et ta et et a e n———na————._, 4.17
ax Y3 por ax ozt ('

where T, is the Reynolds shear stress and g is the acceleration due to gravity. The
first two terms of (4.17) represent the vertical acceleration. Since w is an order of
magnitude smaller than u, the first of thesc terms should be significantly larger than
the second. The first term will be positive near the beginning of the jump as the flow
begins to expand. Past the middle of the jump, this term will become negative as thic
flow straightens out into the subcritical parallel flow. It can be expected, therefore, that
in the vicinity of the n.iddic of the jump, this term is at a transition and should be close
to zero. In terms of curvature, the flow in the upstream half of the jump is concave
upwards while in the downstream half the flow is concave downwards. Near the
middle, at the maximum upward angle of flow, an inflection point exists where the
curvature, and therefore the acceleration, is zero.

Further assume that the longitudinal variation of shear stress and the density
variation due to air entrainment can be neglected. Both eff~:is would tend to lead to
reduced pressures, but the bulking effect of air entrainment would result in a slightly
higher integrated pressure force. As turbulence in the jump is strong, the normal stress

is retained. The approximate vcrtical momentum equation then becomes

0
g(p-—cz)=—pg ..................................................................................................... (4.18)
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Integration as usual leads to the pressure distribution

P =0 = mPEIH = 2] (4.19)
The pressure force contribution is therefore
h he h
P= J'pdz=pg—2—+jc-dz ........................................................................................ (4.20)
0 0

which indicates tha. the pressnre is ¢ffzctively hydrostatic, but reduced by the vertical

turbulence. Integration g,v¢ s ihe pressure 1orce as

. ‘ombin‘ng thc momentum and pressure contributiens results in

5 P, " h
M4+P-S=F="M +-5—[3,dz+ Ol (4.22)
f 4 0 0o~

from wiich the difference in magnitude of turbulent stresses can be deduced as follows

where the angle brackets indicate depth averages. For a Froude number of 7.5, the
stress difference appears to account for about 25% of the total specific force. This
magnitude may be more easily appreciated by using M; = P, = F and substituting the
velocity fluctuation correlations for the Reynolds stresses.
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3 -3 3 5 2
h<pu"' - pn.’-—) = (Z - ?Jphlu& .............................................................................. (4.24)

which can be written as

The turbulence must be highly anisotropic for this difference 15 exist. If it is assumed
that the vertical intensity is about half of the longitudinal (typical for turbulent shear
flows), then an estimate for the typical longitudinal fluctuation can be obtained in terms

of the depth ratio and inflow velocity.

r= 1T = 3__'5_ 4
U _V<u )~ (Z f)fuo‘ ................................................................................ (4.26)

For a Froude number of 7.5, the turbulent velocity is about 30 percent of the
inflow velocity. In terms of local velocity scales at the jump z:idpoint, the depth
averaged turbulent velocity is approximaiely 1.5 times the depth averzzed velocity or
avout half of the maximum velocity near the bed. These values are somewhat larger
than the-e reported in experimental studies. Rouse et al. (1958) indicated a value of
about 15 percent o inflow velocity for a Froude number of 6.0 while the above
esiimz.e is 25 percent. R nd Leutheusser (1972), also for a Froude number of 6.0,
showed about 30 percent for fully developed inflow but much less for undeveloped
inflow. The former exy-riments were performed in a closed c:-aduit which prevented
the large scale surface oscillations that are obscrve: in free jumps. The lauer

experiments were performed with « act fim probe -ay not have oeen accurate
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in flow regions with a high ratio of turbulence to mean flow velocities, particuiaily
where the flow direction was consiantly changing. The above estimates, while
approximate, indicate that there remains a need foi definitive turbulence measurements
in a hydraulic jump.

The main conclusion of this analysis is that the momentum transfer effects of
the non-ur:iform mean velocity distribution and the turbulent normal stress difference
arc both important components of the momentum balance within a jump. For a Froude
number of 7.5, these two mechanisms account for about 55 percent of the total
momentum flux. The key to a distributed jump model, therefore, is to express these
effects in terms of the usual mean flow properties and their gradients. An attempt in

this direction is introduced in the following section.

4.3 Depth Averaged Jump Model

The transient St. Venant equations for a wide rectangular channel, neglecting

lateral flows, can be written as

oh  dq

et et eer e nr s .
o ax “.27
dg (g’ 9 ghzw oJ _
8r+ax[h )+ax( > | ax—gh(So S ) vevveveesssmssserssssmsnseere e (4.28)

where 7 is time, g (= hug) is the discharge p~r unit v.:dth, §; «nd S, are the usual bed
and friction slopes respetively. ihe transient equations are used for generality anc to
facilitate an orderly development of steady state solutions. J represents the momentum

fluxes due to the non-uniform velocity distribution and the turbulent normal stresses.
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For generality, J should automatically become active in the presence of a jump and be
negligible elsewhere. Essentially, the purpose of this paper is to develop and test an
expression for /.

From the proceeding section J can be writlen as

J= h((?)—( w'2>)+ (T S e (4.29)

4.3.1 Velocity Distribution

To proceed, the velocity and turbulence distributions must be specified. For

simplicity, a crude lines - velocity profile,

U= +u,(2—;;—1) .................................................................................................. (4.30;

is assumed. The parameter y, is the velocity at th: surface in excess of the depth

averaged velocity. The corresponding momentum correction coefficient is then

The second part of thie jump fiux expression then becomes

(B-1hul = lh“, .................................................................................................... (4.32)
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4.3.2 Turbuience Model

Leaving the estimation of u for the moment, consider the turbulent stress
compongent of J. Since the anisotropy of the stresses is important, an algebraic stress
closure, albeit highly simplified, will be used. From the ASCE Task Committee on
Turbulence Models (1988}, assuming that the production of turbulence is

approximately equal to the dissipation, the turbulent siresses can be written as

i = k[—z-s,.j +A(%—Z J)] .............................................. SRR (4.33)

where i and j are tensor indices for the three coordinate directions, & s the turbulent

kinetic energy, 9 is the Kronscker delta (= 1fori=j,=0fori=j), Aisamodeling

constant and € is the rate of dissipation of turbulent energy. The components of

production of turbulent energy, 2, are given by

From the measurements of Rouse et al. (1958), turbulence production is greater
thar dissipation in the upstream part of the jur:p while dissipation is greater than
production in the downstream. Production equal to dissipation appears to be a
reasonable approximation near the middle of the jump and leads to considerable
simnlification. Further simplification can be obtained by consideration of the order of
magnitude of the velocity gradients in (4.34). If the lateral mean velocity and lateral

gradients are zero, estimates for the remaining gradients near the middle of jump are:
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0z h f h

ou 1k,

ox 5Sh }

Qfﬁ,_ﬁh_luon ............................................................................................ 4.35)
3z 5h f h

ow

§-~0

Clearly the vertical gradient of the longitudinal velocity is by far the largest for any

Froude number. By estimating that u’? ~ 2w’ ~3u’w’, then (4.34) can be simplified 10

—,—7311 —,z_aZl
e ZE2 U o U o e 4.36)
o ( 0z ax) (
0. =-w"? g’: .......................................................................................................... 4.37)
<
and
8220 = 0 (4.38)

The second term of (4.36) should be about half the size of the first term, as the size of
the stress partially compensates for the smaller gradient. In the following development

this term will be negiected, but an allowance will be made by allowing adjustment of a

model constant,
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The turbulent stresses can then be evaluvated as

Fz%k(l—A)+%iz-"—3€L—i"-i)(gg-)z .................................................................... (4.39)
—w_'is-i—k(l-—A) ........................................................................................................ (4.40)
and

e A s VK, 4.41)

The assumption of production equal to dissipation, as well as using only the largest of

the production terms, allows us to write

1%
— u r/ b
U W o S ) ettt e e s 4.42
u'w % ¢p 7 (4.42)

where L is a turbulent length scale and cp is a model constant. Substitution of (4.41)
allows evaluation of k and € which may ther be reintroduced into (4.39) -(4.41). The

final result can be expressed as

73



g ':—[fn%'(@i) ................................................................................................. (4.45)
oz |\ 9z
where
¥ 12
£’f,,=[—2-A(l—A)] 1“2— ............................................................................................. (4.46)
3 CD

is the effective mixing length. The constants a and b are, in principle, functions of A
only. Using A =0.25, for example, gives a=0.28 and b=0.14. In view of the gross
simplifications made, however, these constants will be allowed to be adjustable. In
particular, it is expected that a should be somewhat larger to account for the neglected
longitudinal gradient production term. The key point of the preceding analysis is the
final form of /4.43) - (4.45), wherein the turbulent stresses are separately related to the
principal velocity gradient.

An estimate for the average velocity gradient can be obtained dircctly form the

assumed distribation, (4.30), as

i m Ureedtimae (. Seeeie.seesusresatesl.ntscIesteNlaateseeteesta0astceRseIvasNeePrseEP RIS RIET ORIy

In additicm. i+ will be assumed that the average mixing length is a proportion, o, of

the flow de;
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Thus, simple expressions for the depth averaged turbulent stresses can be obtained

( ) BUORUP oo s s s e e (4.49)
<—> BDOZUT oo s s et s e (4.50)
and

(WY Z AOG Uy (4.51)

Substituting (4.32), (4.49), and (4.50) into (4.29) gives a relation for the jump

momentum flux in terms of the excess surf..ce velocity:

To complete the development, a model for the excess surface velocity is required.

4.3.3 Surface Velocity Model

A general equation for u,, derived from the moment of momentum principle, is
provided by Steffler and Jin 1993). Assuming that the vertical turbulence is the only
significant effect on the pressure distribution and neglecting the effect of bed stress, the

equation rcads

ou, Jugyt \dh 3 oh 6
_E)T]’L_a(.)xi:—(” )ax—;< >ax+ﬁ< Y 4.53)
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Using the turbulent stress relations (4.49) - (4.51), assuming steady state conditions and

that », reaches a maximum near the midpoint of the jump gives

2
% = %[—24|ul| + 1—52—(a - b)u,]u, ....................................................................... (4.54)

Three solutions are possible for u,. The first is simply u, = 0. Consideration of (4.53)

) . ou ou .
shows that this solution is stable for _é_o > 0, but unstable for -a—o < (), which is the
x Ae

jump condition. This equation appears to capture, in general form at least, the
significant difference between accelerating and decelerating flows.

Two further roots are also possible; one positive and one negative. There may
be some physical justification for a positive root, if it is interpreted as indicating a
separated jump or a jump with an undeveloped roller (Ha v, 1992). Such jumps scem
to occur with fully developed upstream flow conditions. Again, this is consistent with
(4.53), since the incoming flow would enter the jump with some positive u, which
would tend to grow. While qualitatively plausible, quantitative prediction would be
unreliable because the flow field is more complex than that of the classical jump and
many of the assumptions made would no longer be valid.

The negative root of (4.54) is the one corresponding to the classical jump

situation. This solution is

U = 4 U e S (4.55)
aé[%—%(a - )] ox

It should i noted that the velocity predicted by this equation is a hetter indication of
t. +  -rall velocity distribution thar. it is of the actual surface velocity. In particular,
w+.:2ce velocity estimate will tend to be higher than the actual due to the difference

76



between the assumed and actual velocity distribution shapes. Substituting (4.55) into

(4.52) yields:

J=

.........................................................................

1 2
(; +4(a- h)ao) ) g )2

r 2
a3[24 - %(a - b)] N

The turbulence constants can be collapsed into a single coefficient, K;, which will be

determined from numerical experiments. The jump flux model is then simply

2

J= Klir‘(%) ........................................................................................................ 4.57

-
Ead

The diffusive character of (4.57) is apparent when substituted into the St. Venant

momentum equation, (4.28). A second derivative of u, term arises wnich has a
negative sign set by the longitudinal gradient of u.

Eq. (4.57) is developed to .pply near the midcle of the jump where J is
maximum. As shown in the following scction, if (4.57) is used over the entire fump, a

value - © = --.7.4 gives good jump lengths but tends to predict an overly smooth,

rounded if jump profile. Slightly better results are obtained by a modificatic". which

allows K, to vary with the square of the water surface slope. While somewhat ad-hoc,
this modification is physically reasonable since it reduces the jump flux at the toe and

end of the jump. The mod:ed =il i

J= Kz(i}l) h3( 1-9) ............................................................................................ (4.58)
ox

»‘. -
\ OX
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As is also thown in the following section, K, =441 gives good results for both length
and profile shape for a!l jumps considered. The values of the constants appear to be
physically reascnuble; for example, a=4, b=1.5, and o, =0.23 give the above value
of K,. These constants give a reverse surface velocity about 30% larger than measured,

but this is expected due to the crude linear velocity profile assumed. The value of K|

2
also approximates the average of 441(-3&) over the length of the jump. Either of the
X

jump flux formulations is highly non-lincar and very sensitive to the longitudinai
gradients. Included in the general equation, they will have negligible effect except in
the vicinity of rapidly varying flows. Care should be taken, however, in regions of
rapid acceleration, to set the jump flux to zero. In additior, the sign of J should change

with flow direction.
4,4 Numerical Model

To test the proposed jump flux fermulations, a Petrov-Galerkin Finite Element
numerical formulation is used. The code is based on the Characteristic Dissipative
Galerkin (CDG-1D) finite element scheme of Hicks and Steffler (1992). The method
reduces to a standard Bubnov-Galerkin without any numerical dissipation when the
upwinding paramszter is set to zero. Linear interpolation functions for depth and
velocity are used. A fully implicit time stepping scheme is used to rapidly solve for the
final stcady state jump profiles from an arbitrary initial condition. The implicit set of
non-lincar algebraic equations at each time step is solved by a Newton-Raphson
iterative procedurc with analytical evaluation of the Jacobian derivatives. In running
the model, it was found that some care was necessary while the jump was forming and
moving. The Courant Number during this stage is limited to no greater than about five.
Once the jump is properly located, however, convergence is very rapid and very large
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time steps can be used. For boundary conditions, both depth and velocity are specified

at the upstream (supercritical inflow) section and depth is specified at the downstream

(subcritical outflow) section.

4.5 Experimental Verification

The experimental data from Gharangik (1988) is selected for calibration and

““ication of the jump flux model. These experiments, also reported in Gharangik and

ry (1991), were performed in a rectangular, horizontal, metal flume 14 m long,

4t w high and 0.46 m wide. Jump profiles for inflow Froude numbers ranging from

2.3 to 7.0 were measured using a point gauge with an accuracy of 0.3 mm. In modeling

these experiments, the element length is set to 0.061 m (0.2 ft.) which is one to two

times the supercritical flow depth. Manning's n varied from 0.0063 io 0.0077,
essentially to properly locate the jump for profile comparison.

Figs. 4.2 to 4.5 show the measured and calculated jump surface profiles for
inflow Froude numbers of 2.3, 4.23, 5.74, and 7.0. Results obtained using both jump
flux formulations, frem (4.57) and (4.58), are shown in these figures. In general, both
micthods give good estimates of the jump length and overall profile. Underprediction of
the downstream depih can be explained by bulking due to air entrainment in the
experiments which was not accounted for in the model. iIn all cases the depths matched
well a short distance further downstream. The values of the constants in the
computational models give very close results for the intermediate Froude numbers. The
simple model however, gives a slightly shorter jump at the high Froude number and a
slightly longer jump at the low Froude number. The modified model gives uniformly
close jump lengths for ail Froude numbers. The modified model also shows a

somewhat sharper transition ai the toe of the jump.
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Figs. 4.6 and 4.7 show the effect of spatial discretization on th: omputed
results for the modified mc "el. For the CDG scheme (upwinding parameter = (0.25), the
overa ‘le is not significantly affected until the element size exceeds the
downstream depth. The location of the jump toe shifts to the nearest node and the
profile becomes very sharply varied. Further increasing the element length past the
jump length gives some oscillations with a slight overshoot at the end of the jump. The
Bubnov-Galerkin scheme (upwinding parameter = 0) is more sensitive to the
discretization. The finest discretization (about one tenth of the downstream depth)
gives very good results with very small oscillations downstream of the jump. As the
discretization becomes coarser, these oscillations become stronger and the jump
location shifts upstream. At the coarsest discretization, oscillations upstream of the
jump become evident. The solution within the jump remains very consistent, atbeil
shifted in position. This is consisient with the modified jump flux model which
dramatically reduce the flux at the beginning and end of the jump. The unmedificd
model (not shov. 1) displayed significantly less difference in profile between the
dissipative and non-dissipative schemes.

The proposed jump model does not, in general, obviate the need for artificial
dissipation mechanisms. Depending on the resolution desired by the modeler, the jump
model may or may not be effective. combining both a jump model and artificial
dissipation would work well as long as it was undcrstood that accurate jump lengths
would only be obtained for sufficiently fine discretizations.

A profile of the total specific force along the channel computed using the
modified jump flux model for the 7.0 Froude number jump is shown in Fig. 4.8. The
St. Venant line includes the momentum flux based on the depth averaged velocity (i.c.
B = 1) and tho p:ssure force. The jump flux is therefore the difference between the

iotal anc the § . Venant lines. The slight oscillation in the total linc is attributable to
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numerical error in evaluating the jump flux from the nodal values of the variables. Inter
element fluxes are automatically conserved by the finite clement formulation used. The
magnitude and distribution of the jump flux is approximately as indicated by the initial
order of magnitude estimate. Away from the jump, the jump flux is entirely negligible,

despite being included in the calculation.

4.6 Conciusions

In this study, a new method for simulating hydraulic jumps in depth averaged
computat.ons 1s developed and presented. The model is physically based, using a
simplified algebraic stress turbulence closure and a moment of longitudinal momentum
equation for estimating the vertical distribution of longitudinal velocity. The model
takes the form of a jump momentum flux term which may be added to the usual St
Venant momentum equation. The model is based on conditions at the middic of the
jump but is easily modified to apply over the full jump length. A single constant, of
physically reasonable magnitude, is adequate to simulate all measured jumps. The
jump flux term can be used as a shock-capturing mechanism, since it becomes active
only in the presence of a jump and is entircly negligible clsewhere.

In developing this model, some interesting insights into the behavior of the
fluid flow within the jump have been gained. First, half or more of the total specific
force within the jump is carried by the difference in depth averaged turbulent normal
stresses and non-uniform momentum flux. Second, a flow instability, with a classical
or separated solution, is indicated by the velocity distribution analysis. As is obscrved,
small differences in inflow conditions may change the jump conditions. Third, rough
estimates of the relative magnitudes of the turbulent stresses and mixing length have

been obtained from the condition that the jump flux constant give the measured jump
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length. These estimates await detailed turbulence measurements for independent
verification.

The proposed jump model is incorporated into a finite element model for
illustration and verification, but may be used with any conservative numerical scheme.
Since the term becomes active only at jump length scalcs, it does not remove the need
for dissipative mechanisms in general models where the spatial discretization used may
be significantly larger. The jump flux model is easily adapted to two-dimensional
models as well. It may also be used as a first estimate for moving surges, and jumps on
slopes and may also be adapted to arbitrary channel sections. Further research w«nd

verification in these arcas are warranted, however.
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Chapter §

Summary and Conclusions

In this study the vertically averaged and moment (VAM) cquations, which
assume a linear longitudinal velocity distribution and quadratic pressure and vertical
velocity distributions, were investigated for modeiing rapidly varied open channcl
flows. These equaiions, by incorporating higher degree of vertical detail, provide 4
better representation of the flow when compared to the St. Venant and Boussinesq
equations. The vertical details incorporated allow for utilizing near bed velocity for the
bed shear stress and a turbulence closure model for evaluating turbulent stresses. Also,
these equations have the advantages of depth averaged models and can casily be
extended to account for lateral variations.

The VAM and VA (similar to the Boussinesq equations) equations were solved

numerically using a hybrid Petrov-Galerkin and Bubnov-Galerkin finite clement
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scheme, while the modificd St. Venant equations were modeled using the Petrov-
Galerkin finite elcment scheme.

As a first application, the VAM equations were applied to flow over curved
beds and the results were compared to the vertically averaged (VA) equations as well
as to the measured data. Three tests for flow over curved beds consisting of flow from a
horizontal 1o a steep slope (up to 60 degree) with a circular transition, flow over
symmetric and asymmetric bed profiles and flow over an idealized flip-bucket spillway
were conducted. In each case the simulated results from VAM and VA equations of
bed pressure and water surface profile were compared with the measured data. The
VAM cquations showed excellent agreement with the measured data for both water
surface and bed pressure profiles. The VA equations started to deviate from the
measured data for large flows and bed and water surface curvatures. The satisfzctory
performance of the VAM equations may be attributed to a higher degree of vertical
detail incorporated into the model.

Next, the VAM equations were applied to model rectangular free overfalls with
smooth and rough beds and to sharp crested weirs with sloping upstream face. To
modcl the free jet downstream of the overfall or weir, the VAM equations were used to
determine the lower nappe profile of the free jet while the bed pressure was forced to
atmospheric. At the boundary of the free jet and fixed bed, internal boundary
conditions of zero bed pressure and fixed bed elevation were specified.

For rectangular free overfalls with smooth and rough beds, the simulated
results. both for water surface elevation upstream of the overfall and the free jet
trajectory, were in excelient agreement with the measured results. For a smooth
horizontal rectangular free overfalls, the computed vertical velocity and pressure
distributions at the brink and upstream of the overfall were compared with the

measured data. The computed results for vertical velocity, although slightly lower,
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were generally in good agreement with the measured data. The computed pressure
distributions upstream of the brink agreed well with the measured data, while at the
brink the maximum pressurc was modeled accurately but the mecasured pressure
distribution could not be modeled accurately by the assuined quadratic pressure
distribution. The computed longitudinal velocity profiles, although crude, agreed well
with a two-dimensional potential model.

For weirs with upstream slope of 4:1 and 2:1, thc VAM cquations performed
satisfactorily in modeling the flow. However, for weirs with upstrcam slope of 45
degree, although the free jet trajectory was modeled accurately, the water surfuce
orofiles upstream of the weir showed numerical instability for iarger weir heights. This
numerical instability was believed to be the combined ecffects of flow rate, internal
boundary conditions and larger weir height.

Finally, a new method to simulate hydraulic jumps using the depth averaged St
Venant equations was developed. Using thc moment of longitudinal momentum
equation for estimating the vertical distribution of longitudinal velocity and a
simplified algebraic stress closurs model for turbulent normal and shear stiesses, a new
term known as the jump momentum flux was added to the St. Venant equations. A
single constant, of physically reasonable magnitude, was sufficicnt to model accurately
both the position and length of the jump for Froude numbers of 2.3 to 7.0. However,
the jump flux term does not eliminate the nced for a dissipative mechanism in the
numerical model. For the modified St. Venant equations, using the Characteristic
Dissipative Galerkin finite element scheme, the jump length was found to be
independent of the spatial discretization. As the jump flux term becomes active only in
the presence of the jump and is negligible elsewhere, it can be used for shock

capturing, moving surges and jumps on slopes.
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The present study demonstrates the successful application of the VAM
equations for rapidly varied open channel flow and provides an alternative in terms of
depth averaged modeling. A natural extension of the present model would be to
incorporate a turbulent closure model and apply these equations to moving surges and
other expanding flows. The present model could be used for movable beds, where the
ability to predict non-uniform bed shear stress may be of vital importance. Also, for
fish habitats studics, the present raodel can be used for the prediction of approximate
ncar hed velocity. Finally, the present one-dimensional equations could further be

developed o take into account the lateral variations.
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Appendix A

Model Development

The vertically averaged and moment (VAM) equations are modeled using a
hybrid Petrov-Galerkin and Bubnov-Galerkin scheme. In this section, details of the

numerical model applied are presented. The modeled VAM equations are:

oh 0q

R et F O OO P PRSP PUOUPP PP PPPPP PP PPRRY (A1)
or dx

P 2 2 = o -

99,0 9"  gh" hu hp 2hpy KTy 9% P0G Te_q (A2
or ox|{ h 2 3 2 3p p ox podx p
Q‘—w—a—(ﬁ)—J—(%—ﬂgﬁ)+i”—2§——6—(i+6,9§-@_J=0 ............. (A.3)
or ox\ h 2p\ox hox) hp ox hp\2 x
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W, =(%-u,)% ...................................................................................................... (A.4)

) =%’Il+(%+u,)8(25:h) .................................................................................... (A.S)
i-aa”: +qg—i+%agi“' B = Ottt (A.6)
i’é’."T’_Jng{_'--%%[hu,(wb —w,) -ﬁé’%+%%‘"f—%=o ............................... (AT)
B 2T - )+ = - ) [T - S )

p: = O....(A.g)

where

T=g, +g .................................................................................................................. (A9)
% = h;’; ............................................................................................................... (A.10)
w? —w2+‘1‘—2’:- ’1‘5 W'g"h +—216-(2w—wb-w,,)2 ................................................ (A.11)
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The above equations arc obtained using the following ascumed longitudinal

velocity, vertical velocity and pressure distributions

u=110+u1(21]—]) ................................................................................................... (A.l:,.)
w = Wy (1=1) W N1 = M) F WyT e s (A.13)
p=(pgh+ p )1 =)+ PadN(1 = M)t (A.14)

The above particular choice of a linear longitudinal velocity distribution and quadratic
vertical velocity and pressure distributions result in a system of equations, where
moment of continuity, longitudinal momentum and vertical momentum equations can
be used respectively for evaluation of averaged vertical velocity, longitudinal velocity
at the surface in excess of the mean and mid-depth pressure in excess of the average
pressure at the bed and surface. All the parameters of the above distributions are
perturbations to the assumed distributions for the St. Venant and Boussinesy cquations.
Thus the above sysiem of equations can easily be reduced to the St. Venant or
Boussinesq equations by forcing the appropriate perturbations to zero and climinating
the corresponding equations.

The first eight equations represent a closed system, where (A.1) to (A.8) arc used to
respectively evaluate h, g, u;, w,, w,, W, p, and p,. The vector @, (&, =18),
represents the above eight variables, where @, = h and @y = p,.

The above system of equations, following the method described in Celia and Gray
(1992), is found to be parabolic. However, the last five equations are mostly reactive
type of equations, that is, the dependent variable being evaluated from cach of these

equations do not involve the temporal or spatial derivative of that variable. Also,
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preliminary test conducted with the Bubnov-Galerkin finite element scheme showed
that some form of artificial dissipative mechanism was needed for solving thesc
equations without spurious oscillations. Thus, the first three equations are used to find
an equivalent Characteristic Dissipative Galerkin (CDG) finite element scheme
introduced by Hicks and Steffler (1992) for solving the St. Venant equations. This
scheme has the advantage of providing selective artificial dissipation for shock
capturing and modeling both progressive and regressive waves accurately.

Neglecting w,, w,, W, p;, and p,, and considering only the conservative term

(A.1) 1o (A.3) can be written as:

oh  ohu,
B e F U OO PRSPPI PPRP A.l15
ot ox ( )
ohuy, 0|, 2. gh* hu
| U o e [ S 0 1
o ' ox [ 0t (A-10

ou, . dugn,
o Gt
or  ox

.......................................................................................................

where u, = g/ h. The advection matrix for the above set of equations can be written as:

0 1 2O
A=|-uy+ul +gh 2u, -3—hu, .......................................................................... (A.18)
Ugt u
e

where bold letters represent vectors and matrices. For the above advection matrix, the

eigen values and eigen vectors in column are:
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A= 0 Uy —=C 0 [ (A.19)
0 0 Ug
i ]
1 1 1
M = uO + C uo -C uo ........................................................................... (A.2())
Uy u 2ul -3¢*
| A h 2hu,
where ¢ = \/ ui + gh. The advection matrix can also be written as
[A] = [MIIATIMI ™ o eeeeesssems s sesssssssssise s ssessaras s (A.21)
The upwinding matrix, as described by Hicks and Steffler (1992), is given by
U te 0 0
|u0 + Cl
uO C -1
w=[M] O 0 M e (A.22)
|Ilo - Cl
0 0 =
L ol
The elements of the upwinding matrix are:
1
W“ = 3 2[“(“] —CZ)(XI +7\12)——u0C(}\.l _7\,2)'*’2“] 13] ................................. (A 27!)
1
le - EE(AI _A.z) ................................................................................................... (A 24)
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2
T (TRt P 1o/ 0 (A.26)

Wza = ;u_‘; (UO + C)kl + (uo - C))\-z - 2“0;\43] ............................................................ (A.28)
ac

where A;, A, and A; are given by:

Ay 2 0 e (A.32)
|uo +c|

As = 0 T e e et et s e (A.33)
|“0 _Cl
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Setting u, to zero in the advection matrix leads to an approximate upwinding matrix

which is given by

W, =%(x, LR Y IS (A35)
Wi, =2ic(x1—x2) ................................................................................................... (A.36)
e Gl L Rt 7 SR (A37)
W,y = -2—12[(140 +c)A — (4o - C))\m] ........................................................................... (A.38)
Wis = Aareeeeeeevevvesessesmsssssssssssmasssssssass s s ssssssssessess s (A.39)

where ¢ = \/g_h and the rest of the elements of the approximate upwinding matrix arc
zero. For the VAM equations, the first three equations are solved using the CDG
scheme with both the approximate and the full upwinding matrix, while the rest of the
equations are modeled using Bubnov-Gaierkin scheme.

The application of the CDG scheme to the first threc equations produce the

following equations:
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. Sh .~ 0§ . Oi
AW, —+W,—=+W,;—
9ﬁ_£f_f~+_"£x_£( oy "o R x+[f,.c;§=0 ............. (A.40)
"ot dx 2 dx| .. 4 A e
(+W©E +WhE + WisE,
0
L o X R » i}
fiiél:_.(!-_f_i(i+ghh+ﬁ.‘i+h_ﬁl+%_f_6ij+f(ghazh+pl a“b_{_th]
ot dx\h 2 3 2p 3p p ox pox p "
oAxdf,( . oh o 9§ oiy
—"—"‘W "—'+W~; —'+W1 +W1E+W7E +W')
= dx( a5t W5+ Way 504 Wl + Wi B nEs _
L
a2 . A ma L
o g9 B i hpy 2oy RO (A41)
h 2 3 2p 3p Pl
If' -
2 a"x dfz(éﬁl) fid- ?ﬁ Pl ah +il3_z_a_':'____6_ %b+é E_;‘Er
or dx ox hox)| hpox hp x .
[x
oAxdf,( » Oh - 0§ & Oil
== f'[wq, L+ Wi a"+w31 <t +wg|E,+w3ﬁE,+w3;Q]
-‘0_ X -

while application of the Bubnov-Galerkin scheme to the rest of the equations results in

the cquations below:

L
N (} - p
- == o ) irritettenrassasssocesssncessonssrrcasosnsnsasscesacsctasttantarrrtsnsssesossase A4
ff,[ b (h u,)ax}ix 0 (A43)
0
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L

1ah~ oz 1ah2&, ~

O N 5
Jf[4 o 956 ox }" (A4
L ~
OhWw 3Gw 19 f[pa,n . %0z, P df[ R

dZ T A \h . — 0 I T 2 S B 720
ﬂf{ 5 " ox " 6anl “”)]+pax o (T p )
0

L
(‘ A Al 2 A ]
Wah“ a h* L hig - z
— —— — 7, - W + — m— —_ —
T ar | “h)} {q“ 6 Ut h)}()x
o [hg,. . o [m (- W, W —
fi “a{é(“’b‘“’h)}*'ax{ 10] (W‘*‘f'*'f)}‘hw dx=0_ (A.47)
__’;_% _a;e_a _ﬁ%_h%__z_“[;,
) pl ox ) 2pox 3p
[}

where f; is a part of the test function, Ax is the spatial discretization, and L represents

the length of domain. The new variables (with hat) arc defined as follows
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~ ~

where f; arc the basis functions and ®; are the nodal values of the unknowns. £, E,
and 1333 represent respectively the left hand side of (A.1), (A.2) and (A.3), in terms of
the new variables, without the temporal derivatives.

In the present study the internal turbulent stresses are neglected and will not be
considerced from this point onward. The above equations, (A.37) to (A.44) are split into
two parts, one containing the temporal derivatives only and the other containing the
rest of the equation. The temporal derivative part, wherein the time derivatives are
discretized using finite difference scheme, are respectively given by:

)-

{f,. +0aW 4+ (1- G)aW{’I}(’;"” —h"
O e e By I S —— (A.49)
aln)

+{oaWs! +(1-8)aW, Yar+ -a

[{oayy! + (1 - @)y, YA - A7)

R A £ e () 2o T i S — (A.50)

| +{oaz !+ (- @), (ar! i)

[{oouyy + (1~ By, J(A™ - ")

Sy= | [+HBoW! +U=0)WR (@™ =4")  Hrecrnrrn (A.51)

+{,+ 8005 + (1 - O, i - a7)
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S, = f[if,(;;z"” —,;”)]dr .................................................................................. (A54)

S, =j[f,(h"*‘w"+‘ ﬁ"ﬁ")]dx ................................................................................ (A.55)
-llz{eﬁ"“ (-7 (72" - 57"

Si= | £ ¥ eesee e (A.56)
ST G R R G

where S,(/ =1,8) represents a N, x1 vector, N, being the number of nodes per
element, 8 is the implicitness factor, in the above integrals e implics integration over

an element and o is given by

where  is the upwinding parameter. Hicks and Steffler (1990), through the stability
analysis found that the CDG-1D scheme is relatively insensitive to the value of
upwinding parameter and recommended a value from (.25 to 0.5.

The part of (A.37) to (A.44) without temporal derivatives are given hy:

K, = j[F, R 7 S 0 —— (A.58)

€
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K, = ”f«"z +a(W2,E, + szﬁ‘z + W23E3)]r1x ............................................................ (A.59)

K, = j [ﬁ3 ra(WyE + Wik, + W”E_—,)]dx ............................................................ (A.60)
K, = {ﬁ‘,,dx ............................................................................................................. (A.61)
K, = j Fqemmeeeemeeomeeeeeecees et censssssssinias (A.62)
K, = j Frol oo eeeeeeesms s ssesssss st ssssinas s s e sssass s (A.63)
K, = j FolX oo sv st (A.64)
K; = j FrgltX oo ek s (A.65)
where K, (/ =1,8) represents a N, X1 vector and ﬁ‘, to ﬁ‘a are given by:
fo= % e eeeee e se e e s e s oo et e e e et e et s et (A.66)
E =4 (Q;&A_Zﬁ;ﬁlz ”_l+2"’32)+f,( % , b1 9% 3) ........... (A.67)
del h 2 3 2 3p ox p ox hCE
R R o — e
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as follo

R, =§,

. q )03,
b=l = e P P A(\())
_Mh (h uljax] (
[ ; 3z, +h)
e I T B el PR POT OO PION A7T0)
" (h ') ox } (
’-A ;% I;z aﬁl Aﬁl al; ;A
e et b m AW [ ATl
_qax 6 ox 3 ox u} (
(oG Low 1, .0 ~3@)]
Y ox ox 6(Mb w,,)(u, ox axJ
o I (A.72)
hity o(w, —W,,) N g 9z, I3
|6 ox R:C? ox  p |
[ S ]:I\l‘l\] A A aé il‘(] a(“b_ﬁ’h) (Wb Wh) ,.al; ‘a([ ]
M )W Lyl
{q” (% "")} v 12 ox iz (Tox o
h "-a-(#+—l+—i’l)+l(#+—”+—ii) 72 9 25:7,21—’- L AAT3)
10 ox 3 3 10 3 3 ox ox
— ~2 - R
P TN
2hCs ox  5p  °

The gencral form of the residuals, with Ar being the temporal discretization, are

WS

+0AK ! +(1-0)AK] (for I =1,8)

..........................................................
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which represents the finite clement equivalent of (A.1) to (A.8). Each of the element of
R, represent a N, x 1 veetor. For the integraton over an clement, the indices i and j
take on a value from 1 to N,.

To cvaluate an analytical Jacobian, (A.46)-(A.53) and (A.55)-(A.62) arc
differentiated with respect to each of the unknowns. For the upwinding matrix the

differentiation of cach element with respect to each of the unknowns is as follows:

- > 3 arl 3 7 al

Wl] = .2[ u] )\16+ C~}b4 _E%CXS] ................................................................... (A 75)
~ g ~ l ‘; > 3g é 3 3 é an }

Wi =|-3W, +—<=gA ——77)\. = CAs P | e A.76
t ,: et 3 {2g Cach C 2pr ! 1 ( )
' 1] 31,z

Wi s = o[ =t G [ [ irreenienirenrieireae e ertesee st st e e st et st st sns st e srassnee AT7
1.2 .8‘[ 2h‘ 5:'fj ( )

- 2A 1 2

W1 _[ LW, +— ( 214,7&6)]fj ..................................................................... (A.78)

. 1 /-

le = 'i?()\s) .......................................................................................................... (A 79)

le.l =| - 2?: leJij ............................................................................................. (A.S())

~ i IA ~

Wpq= -é‘; w,z]f, ............................................................................................... (A.81)

@ hi, 2

Wis —a—é‘g—xﬁ ............................................................................................................ (A.82)
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o ~ u
Wl?.l = —-—CASZ—WH +—ig—z}\,6}f} ................................................................................. (A8
2 [ 21‘;1 oy l; > 1 .
W’—;q— - ‘Z.W’3+262}\‘(‘ fj ............................................................................... (Ah‘l)
W, = L[L o) 2o W+ S 94, -k (A.85)
21 ?Eq };2 1 5 A~ Uy ;;‘ 3 T I R R TR
I- 2(}2 A7 ";,.'7 < (}2 A ’%Q >
g3 oo - -3
Wopy =| — 2o Wy + qln 1,-(A86)
“¢ g 2 G5 _ a3 G243 83
-5 U —%hs—CA )+—rl (A.,A. ——A)\.,
h-‘(h‘ ) R \RT 28T
R G A C A L O
a9 = —x| =5 Uy —=C" A + =5 -ZA —Cl—) +=U | =5 A (T e (A.87)
21.2 ’%C3 [h" 1 2 5 h" h N § h 1 h" h} fj
2 3A1 L (}2 P A \A
i (=24, )| & ——2—0‘ Ao+ 7;2——(“ (—ity )hs
Wia= —-le Wzl'*",%—{T (A.88)
T (e (-
+2 00 —FAc = |+ 507 -—%)»,
h 1 h 5 6 h 1 { 6
- 17g- .2 ]
29 = TX _Al +C}\r ............................................................................................ (A89)
22 2C’_h 5 4
> g v .1 ( g5 . 8% )
W” =l = 29 +__: ——A_;\- +—:A L T ETETTT YT T TR PP R N (A()()
221 [ 2er Wtz Tprhs t gt ]f, )
. 171~
o lo Bl =—_A‘ 77\. S T T R Y AR R R R T T (Al‘)l
2.2 ZC[h S]fj )
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N T 1 (G 2
=AW, +—| LA ) e eetra e ar e easeanaeaa e b e reenaes (A.92)
23 [e—z SN 4}5
W, = [-‘ii(, B 8 [ eees oo seesseesssssssssssss s (A.93)
- 3¢ Lh J
~ -~ :} - ~ g -~
W-y-; 1 [—ng 23 + ?(Cls + h'2_é'lq )]fj ........................................................... (A 94)
. hia, ['1 A05
Wz“?'::i? ;;XG]f" ............................................................................................... ( )
W= | -2, 4 h (45 +ei<)+h—‘7L(l15)]f ....................................... (A.96)
213 =t phe s 17322\ 2 J j
L ‘“—-3-‘2)71 —39:-611] ................................................................. (A.97)
Wa 3h62[ (" 2¢ JHe TR
W —_ - g +'l‘ ‘i/ 13] (-3' )26—215(—'7@;8""—&;—8)} f .................. (A 98)
Al et ) apet |2 2 h 2kt J
UL PP ..(A.99)
Wi s = =73 —==CA :I g L T X RRTTTLIR L
.2 3h5~[ 2 /s
. 2% 1 P, 3(;',A}
LU VL. B0 TR 0. . W oo (A.100)
Wi [ (é '71) 31 3h5,{("1) 6 2h e 5 fJ
W, = i’z—.is ......................................................................................................... (A.101)
YT
N 7. A 1 .
Wooy =|-2LA (—&—+———)] oo (A.102)
i [ 2 2k 2h% fi
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. 1~ (1 @&
Wiz = {27‘,%5(3"1")]"(’ ................................................................................... (A.103)

Wiz = o R A omveeveeeeere s ssssssss s sssssse s sssssessss s sseasesss s e e (A.104)
T 3¢t )
- RN
Wy, = [—_3_6]‘7 gAG] f  evesmessssnssssnes s e s s s s s (A.105)
. 20, ~ 2 5
Wiao = —the - =2 eevmeeteesesesesisassisstraaareneeseas e s rn s antetetebarettaretset e esarens A.106)
32,2 [36" 67374 6]f} (
where
Ay = Ay R g s (A.107)
P = Ay = Aot s e (A.108)
;:'6 =5\'1+5&2 —'2iq ................................................................................................. (Al()())

W,, is the first element of the upwinding matrix, W), represents a derivative with
respect to nodal values of h and W, represents a derivative with respect to nodal

values of p,, which in this case is zero and is not reported. The cquations for E‘, 10 E,

and their derivatives with respect to each of the unknown are:

(A.110)
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S ——— (A.111)

R G -~ i B zp2 oh 2§ 3, 2hi, diy h 9p,
- = = —_——
¥  h ax 3 ox 2p ox

G 0 (2(] + )_@ﬁ 2qaq 2y dit;
9,

. -;1:5-+gh+ 3 ox k% % 3 ox
Ey= . ) . [ Y FE— (A.113)
Wb 2k &) 1o, 20, 2 28
o e T
2p 3p 2p dx 3p ox ox h°Ci
. 250n L2943, 2 2G df
2y = =St + =55 et B U O U PO RSO (A.114
- 2 9x hox hC? f h dx )
- 24, Oh  2h 0 2hi, df;
E .= S E T T b g e A.115
2 (3 x 3 ax]ff 3 dx (A1)
- 1 0h 10z ) h df;
E, S| s A.116
- (2p dox p ox /-fj 2p dx ( )
. 20h, 2hdf
s b et e A.117
Exs 3pox’  3p dx ( )
& _ g0, i 09 qu, ah op, b oh 4p, az 3
=120, ST ¢ T s sl PR < Mgt A.118
& hox hax h ox 2p ox hox) hp o RCE ( :
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q diuy _ i aq+2qu, oh
. i B 2p,\df, | h*ox hto F)
&l=[-i’71+—’”'—.+gxp—-)—fL ox hox a4 7R (A.119)
h* 2ph  hp Jdx 2 ah 4pw 84 9g°
“2ph? ox  h%pox i?‘é?/

S|l mm A [ R T e A 120
B (h ox h*ox KC: i & ( :
. gdf; (193 4 oh
E s ol B e e 1 T P T TTTIISTTIPIRD A.l121

MR dx (hax o ( )
~ 1 (df; 19h

e | o e e T o s s s A.122
B 2p(dx h axf’) ( )
. 402

e s et ee st e se st e et e sa AR e et A.123
EJ,B hp axfj ( )

Next, the derivatives of S, to S; and 1:“l to F, with respect to the nodal values of cach

of the unknown are presented:

{f +0oW! + (1 -0)aW), }f» +0aWy (h"” l;")
S, = S 7 S (A.124)
+OaW (g™ - §")+ oWy (a7 -y )
e
( BaW{',le(ﬁ"“—l; ) {E)ocW”+l +(l—6)aW{’z} £
=1 v U T T e e (A.125)
J | rooabiga(a ~ar) + ooz )

e
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QoW (A" - )+ QoW (67 - ")
S;:= T 2 (A.126)
’ {eaw,";‘ +(1-0)aWyy |, +OaWis (ar - i)
S, = {oosbii"+ a-0obi gy +0oWgi(ir i) (A.127)
| +00 W51 (6™" = ")+ oy (a7 ~ i)

fown h"“ A*)+{f, + 0aWs! + (1 - 0)oWs, Hf;
Szz—ﬂ s i)+ “ Vi) N (A.128)

- 1 ~n
+90LW§'2+3, 7" - " +60LW;73+ ) (u," T )

eavif;;‘;(ﬁ"“ —h")+9aW§_’{§(é”“ -4")
.......................... (A.129)
+{ooWzs! +(1-0)oW £, +BaWri (a7 ~ iy )

7]
[0
e
i
—_—
S

............................. (A.130)

72}
»
]
R
| ——————

{eaW;',‘” +(1 _e)aw';ll}fj +6a1’:/§'l+,’(ﬁ"” —i;"):|d’

+60¢W§'+}(fl"+l A")+90‘W§’3+11 (“1”l ‘71")

+OoW3 (3™ - §") + 0oy (ar ~ iy

J {eaw;,*l (At = i)+ {ooabzy + (1 - e)aWn}f}/
S (A.131)

. oW (A - ")+ BaWisi(3™ - 4") AL
3.3 +{f,» N GaW;_{‘ - 9)(xW33 }fj . GaW;';; (ﬁl"” _ &l") ................... .
S5 = [ fif HE e e (A.133)
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A 7 72— (A.135)
S, ¢ = j [h"*‘ f; fj]dx ............................................................................................... (A.136)
2y A an ] An An An+
Se, =in[%{9W"+l +(1-0)W"}; +'fj—g(w,,"’ ~wti lfj}lx ................. (A.137)
1 .n
s“:jf,[-_,; *‘fj]d: .................................................................................. (A.138)
12
1 on+
Sg < ff[ Pt ‘f,}t ..................................................................................... (A.139)
12
O (namst_ n2n (A.140)
88.6 = f,' Z(h —h )fj .......................................................................... .

s __df
F]2=—"Ex—fj ....................................................................................................... (A]‘“)
F ——ifif —iz-+ l;+éi+-ﬁl+g-f)—2 + f,f g-ai”———?—‘i ............. (A.142)
=T TS T Ty “N%ex RmCHTTT

dfi (24 29
Fz 2 = —ij (—hA—) f'fj(;;z_c‘:?) ....................................................................... (A ]43)
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. df, . {2hi
E,, =_£ij-—3&) ........................................................................................... (A.144)
o dfi [h), (135 A.145)
F2‘7— dxfj[zp)'*'f,fj(p ax) ....................................................................... ( . J
. df. . (2h
R e OO SO A.146
2.8 dx }[3p] ( )
[Pl ahf Pl df/)
An T2
ﬁ3,=_if1fj(_.‘l_}§l)+f, el ) (A.147)
' dx h* 4p1_f 2p2 df f
| hpox’ hp dx h“C*
A d 6§
F., =—-ifj( ) f,.fj(—?—g?J ..................................................................... (A.148)
o df,‘ é
F3.3 - _ij(;;\') ................................................................................................. (A.149)
- 1 (df; 10h
R LR e R | TSSO A.150
37 f:{ Zp(dx haxfj]} ( )
~ 4 of
Fa.azf'fj(;;_‘)’é;) ............................................................................................... (A.151)
~ 4 0z
Foi=f fj(;‘%—f) .............................................................................................. (A.152)
~ 10z
F,,=f fj(—;—fj ............................................................................................. (A.153)

114



Fia=fi fj(izk) ................................................................................................... (A.154)

ox
Fug = Fif oo smssssss s s sssssssss s s (A.155)
Fy = f,{—(%+a,)%+%i(%—};—) f,} ........................................................... (A.156)
Fsy = fif; i—%a(zg:};)} ..................................................................................... (A.157)
Fia=fif, __a(zg:ﬁ)} ........................................................................................ (A.158)
Fo§ = [if jrrerereeseeesssssssssmimsesessessessssimssmssssessss s s s (A.159)
F, =f,.[g—%+g%‘i’-fj +%‘(%§fj+ﬁ%]—ﬁfj] ........................................ (A.160)
Fyy= f,fj(g—i] .................................................................................................... (A.161)
Fgy= f{%%%g—ffj] .................................................................................. (A.162)
L S (A.163)
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FR 6 o e a
(- df;, ow 2§ oz
Fro= | WL+ S0 F, zg. S [ o (A.165)
[ _
- 1,. .\ 0h ~df; ) ho(w,—W,)
F =1, ‘g( A ,,)(af, ZJ)—E bax L3 % FR— (A.166)
r ~ . A
- 1{.0h -rou hii, df ;
B .= —g(u,a—x+ a_;Jff"s_lEL] ........................................................... (A.167)
. [1(. oh ;a0 hii, df;
Foo=f —6-(ul-5;+ —;?')fj+%]——d—::| .............................................................. (A.168)
(a‘ Adf.
Fo=f 5‘1—,’, qu) ....................................................................................... (A.169)
Fri=f, fj(—l) .................................................................................................... (A.170)
p
1 Ry g L 3 300 =) '
2{"'” 6 7 h)}dx 12 ox
(urb—u,,,)(éﬁ+a4f_)+ﬁa, _a_(_+ﬁ,,_+i,,_)f
B 12 dx 9x’7) 5 ox 3 3 )
81 T Ji A~
1(~ W, WY -0 . oh /7 T (A.171)
+E(W+Tb+-—3i)['?'5;]-fj+2u|$fj+2hulzx}—]
= 5° 0z
20,9 9%
] fi 2h*C? d f’ -pp“f’ ]
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5.: dx

3 Lof ho(W,-w,) § o bW Oh . ~df
i, =f,,[(w___h_ (Bo=i) g a;h]fj_w[ah f,+,,f_ff.z.)]...m.m>
R L &)

i; A ~ a% ’;2 a A' Ab A'h 1
o, R AT o G e .
83= P2 I I N AU CEALL AL O et (A. _)
B . - IS . d
+l(w+—’1+ﬂ) REINPI
10 33 dx J
hii, 0% .oh  ~0§ 1 ( » 9 . oh
AT p g+ hE |f 4 —| BP =L+ 2hi, —
X 6 ox’ ("ax <173 Pl
Fea=f; R A RO (A.174)
12 dx 30 dx 6 6 10 R
(hia, 05 . (.0h 04 1 (08, .r.08), |
—12= S rh22|f +—| B2 =L +2h
. 6 0 /i (q ox X /i 300 ox 'a; /i
Fes=1f . A (A.175)
5df, R4, df; AW, W .
+ﬁ_q__fz.+_}’__“l__f_f__h{ﬂ_ﬂ.__l_(2w_wb_@-h)}f‘
12 dx 30 dx 6 6 10 /]
[ 2 25 df. -~ O
ég—‘f,+——hl(’;'£+T16(h2%“—'+2hﬁl%ﬁ)fj
ﬁ8.6= i X x A (Al76)
N PR A N
—-h{2w +—5-(2w —-W, — W, )}fj
Foo=fif; -2 (A177)
8‘8 1] j 3p ----------------------------------------------------------------------------------------------- .
The derivatives of K, to K can now be wiitten as follows:
) W, E | + WiEy + Wy,E
K, = F,_,+o{ e 'fl%", P 3‘1) ............................................. (A.178)
+Wy 1B + Wip By + Wiy By

e
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J E, + Wi'é"’f szé“f WZ;’EB‘" ) ........................................... (A.179)
+W2LIEI + Wy By + Wy B,

K,, _f Fy + W"I?"+W32I§2'+w33é“ ] ............................................ (A.180)
+Wn lEl + Wy, By + Wiy E;

K4,—£l:“4',dx ........................................................................................................ (A.181)

K, = j Fg X oo (A.182)

K, = j Frg j oo ssss s s et (A.183)

K, = j Fp fl oo esisim s (A.184)

Ky, = j Fp X cooooooeeeeeeveeeeeeessssse s ssssss s e (A.185)

for 1=1,8, the above equations give derivative with respect to each of the eight

unknowns, where S, and K,  (forr,s=18), represent N, x N, matrices. The

Jacobian for an element is given by

=[S FOAKI e (A.186)

The above Jacobian represents a 8 X8 matrix, where each element of the matrix is

itsclf a N, x N, matrix. The element Jacobian matrices and residual vectors are
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assembled into a global re. dual vector and matrix, the left out boundary terms in

(A.37) to (A.39) are included and the system of equations is solved using Newton-

Raphson iterative technique.

This appendix outlines briefly the development of CDG-1D and Bubnov-
Galerkin finite element schemes as applied to the VAM cquations. Hicks and Steftler
(1990), documented in detail the development of both the CDG-1D and Bubnov-
Galerkin schemes for solving the St. Venant equations. The above authors also
performed in depth analysis for the stability, accuracy and convergence criteria of the
above schemes.

The tests conducted in this study, although steady, are solved as unstcady
problems. The following procedure is adopted for arriving at the final steady state
solution:

1. Identify the initial and boundary conditions.

2. Select spatial and time discretizations. Usually the spatial discretization is an order
of magnitude lower than the flow depth and the time discretization is such that the
Courant number is less than six.

3. To advance the solution to next time level, the Newton-Raphson iterative technique
is used to solve the resulting non-linear set of algebraic equations. The convergence
criteria is assessed using (2.17) and a tolerance of 10-6,

4. The convergence to the final steady state solution is also assessed by (2.17) with a
tolerance of 10-6. In this case the difference between the variable is taken at the two
consecutive time levels.

5. During the solution the time step is geometrically increased as soon as the

difference between the variables at two consecutive time levels falls below 10-2,
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