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Abstract

The present dissertation investigated the spontaneous production of the Spanish

alveolar tap and how the variability typical of spontaneous speech impacts the pro-

cess of spoken word recognition. Our corpus analyses found that intervocalic taps

vary in duration and intensity due to speech rate and phonetic environment. The

intensity drop during taps is also associated with changes in lexical frequency, with

higher-frequency words containing taps that are more likely to be reduced. These

findings indicate that properties at the word level are related to systematic variation

in Spanish tap production, aligning with similar findings in other languages. In the

corpus analyses, automated methods did not reliably measure duration, while the

same force-aligned boundaries were acceptable for measuring intensity differences.

After qualitatively and quantitatively documenting the substantial variability in tap

production, we designed an auditory lexical decision experiment to investigate how

the reduction of the tap impacts how L1 and L2 Spanish listeners recognize words.

In our initial planned analyses, we found that L1 listeners could exploit the advan-
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tage of a canonical pronunciation to facilitate recognition accuracy but that no such

effect was present for L2 listeners. When we changed our binary reduction variable

to a tap-type coding based on previous literature, we saw an inhibitory effect as-

sociated with highly reduced perceptual taps. Our exploratory analyses outlined a

potential confound between the expected production of the tap for specific words and

our variable of interest - reduction. These findings indicate that L1 and L2 listeners

recognize words faster when they contain taps that are more typical for that word

and that after controlling for this experimentally or statistically, phonetic reduction

is an inhibitory factor on spoken word recognition. Taken together, our production

and perception data indicate that the variability of Spanish taps is due to lexical and

phonetic variables and that word-specific patterns of variability in production shape

the process of spoken word recognition regardless of language background.
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Preface

The three body chapters of this dissertation are intended to be published as separate

research articles. Each chapter has its own introduction and conclusion. As first

author, I was responsible for the majority of the research. Benjamin V. Tucker

supervised these studies and provided support and input throughout the process,

from conceptualization to writing. Matthew Kelley provided computational support

and contributed to the writing process for Chapters 2 and 3.

Chapter 2 has been published as: Perry, S. J., Kelley, M. C., & Tucker, B. V.

(2023). Measuring and modelling the duration of intervocalic alveolar taps in Penin-

sular Spanish. In R. Skarnitzl & J. Volín (Eds.), Proceedings of the 20th International

Congress of Phonetic Sciences (pp. 699–703). Guarant International.

Chapter 3 has been published as: Perry, S. J., Kelley, M. C. & Tucker, B. V.

(2024). Documenting and modeling the acoustic variability of intervocalic alveo-

lar taps in conversational Peninsular Spanish. Journal of the Acoustical Society of

America, 155(1), pp. 294–305.
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Chapter 1

Introduction

Variation permeates every aspect of language. When it comes to speech, the variance

in the speech signal has been a central problem for theoretical accounts of speech

perception and production for decades (for a review, see Casserly & Pisoni, 2010).

While this variability exists even in the carefully produced ‘laboratory’ speech that

has been central to empirical speech science research, there is even more variation in

the spontaneous, conversational speech that we encounter on a daily basis (Tucker

& Mukai, 2023). Some of this variability in spontaneous speech is referred to as

phonetic reduction, whereby a sound is altered or deleted compared to how it would

be pronounced in more carefully articulated speech (Ernestus & Warner, 2011; John-

son, 2004; Warner, 2019). As this variation is ubiquitous in the speech we encounter

daily, explaining why it happens and how we process it is a core question in phonetic

research.

To illustrate the degree of variability possible in the speech signal, I provide two

examples of massive reductions, one in English and the other in Spanish. The English

example is taken from Warner (2019), which gives the example of the words Friday
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night being produced as [fôẼ:]. A more careful pronunciation of these words by the

same speaker could feasibly have been ["fôaIReI"naIt^]. The example from Spanish was

taken from the Nijmegen Corpus of Casual Spanish (Torreira & Ernestus, 2010) by

myself while inspecting the corpus for purposes related to the present dissertation. I

found an instance of the words hemos tenido (‘we had’) being produced as [mose"ni],

whereas a more careful production might of those words would be ["emoste"niDflo].

In both of these cases, listeners would be hard-pressed to correctly recognize these

words out of context, and phoneticians would not recognize the words based on

the phonetic transcription. And yet, given the context of the full sentence, many

can recognize the intended message easily, and indeed, both of these examples were

recorded during real communicative interactions.

Examples such as those presented in the previous paragraph are effective illus-

trations, but variability need not be so extreme to be considered reduction. The

shortening of words (e.g., Bell et al., 2009; Gahl et al., 2012; Seyfarth, 2014), syl-

lables (e.g., Aylett & Turk, 2004; Hilton et al., 2011), and segments (e.g., Cohen

Priva, 2015; Cohen Priva & Gleason, 2020; DiCanio et al., 2022; Warner & Tucker,

2011) is the most-studied form of reduction, likely due to the ease and universality

of measurement. Reduction is not just shorter speech, however, and other studied

patterns include vowel centralization (e.g., Aylett & Turk, 2006; Hernandez et al.,

2023; Munson & Solomon, 2004; Wright, 2004), consonant lenition (Broś et al., 2021;

DiCanio et al., 2022; Katz, 2021; Warner & Tucker, 2011), and syllable or segment

deletion (Hilton et al., 2011; Jurafsky, Bell, Gregory, & Raymond, 2001; Jurafsky,

Bell, Gregory, & Raymond, 2001). While reduction occurs in all languages, we have

evidence that patterns of reduction may vary cross-linguistically (Torreira & Ernes-

tus, 2011). This means that gathering information about phonetic variability in as

many languages as possible is of crucial importance if we are to tease apart language-
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specific trends from the general cognitive mechanisms of language that lead to the

observed phonetic variability.

1.1 Theoretical background

Theories and hypotheses that attempt to explain and account for the patterns of pho-

netic variability we observe, that is to say, why speech is sometimes more carefully

enunciated while other times it is more reduced, are often grouped into being based

on the talker or based on the listener (Gahl et al., 2012). Talker-oriented accounts

ascribe phonetic variation to cognitive factors such as the speed of lexical access dur-

ing speech production (e.g., Bell et al., 2009; Gahl, 2008), while the listener-oriented

accounts argue that talkers are prioritizing intelligibility or attempting to maintain

a constant transmission of information in order to facilitate speech perception (e.g.,

Aylett & Turk, 2004, 2006; Jaeger, 2010). Gahl et al. (2012) points out that these

accounts often have similar predictions, namely that high-frequency and predictable

parts of speech will be reduced. It is also worth pointing out that even listener-

oriented accounts must be based on the talker’s perception of listener needs, and it

is not clear to what extent this information is taken into account (Jaeger, 2010).

Instead of situating the present dissertation within one of the proposals described

above, this work is guided by the more general outline of H&H Theory (Lindblom,

1990). H&H Theory provides a general framework for viewing phonetic variability

and reduction that can account for why speech can vary from carefully articulated

hyperspeech to more reduced hypospeech, even within a single conversation. While

H&H Theory does provide less specific claims than more recent hypotheses, it is

compatible with many of them and has decades of empirical support. Below, I

provide a general overview of the theoretical assumptions of the theory, followed by
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a brief discussion of related hypotheses and empirical evidence.

In comparison with the dichotomy between production- and listener-driven vari-

ation described above, H&H Theory assumes that there are both production and

reception constraints active during speech production. On the production side, the

theory discusses both physiological and cognitive factors in production, with cog-

nitive factors not being discussed in depth. In terms of physiological constraints,

H&H Theory assumes that speech, like other forms of physical movement, obeys the

principles of economy of effort while also being inherently flexible or ‘plastic’. Recep-

tion constraints are divided into social and communicative. The social aspect allows

for well-attested variation according to social and cultural aspects of communication

(e.g., Ernestus et al., 2015; Labov, 1972; Sanchez et al., 2015; Wagner et al., 2015).

The communicative constraints are simple in that it is assumed that we give inter-

locutors enough information in the acoustic signal so that our speech is sufficiently

able to be discriminated in a given context. A key component of this perceptual

discrimination is that we do not assume all of the information required for successful

perception is located within the acoustic signal. The potentially competing con-

straints discussed above can lead to a continuum between hypo- and hyperspeech as

we produce speech as efficiently as possible while still being understood.

Since H&H Theory was proposed, the use of large data sets of spontaneous speech

has become commonplace, and findings from these studies have found several factors

associated with reduction. The findings of more reduction in more predictable or

frequent words (e.g., Bell et al., 2009; Jurafsky, Bell, Gregory, & Raymond, 2001)

as well as in words with few phonological neighbours (e.g., Gahl, 2008; Wright,

2004) is compatible both with cognitive constraints during production as well as

communicative constraints. While Lindblom (1990) mostly discusses physiological

effects in terms of economy of effort, there is an emphasis on the fact that speakers
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have a choice, with the example being given that decreased duration need not lead to

articulatory undershoot (Lindblom, 1963) if the speed of articulation (and therefore

effort) is increased (see Ennever et al., 2017, for a related proposal quantifying this).

Although the general finding associated with higher frequency is shorter duration,

some research has found more peripheral vowels in high-frequency words (Tomaschek

et al., 2018) and bigrams (D. Kim & Smith, 2019), with one explanation being that

the practice involved with saying high-frequency words leads to peripheral vowel

articulations being easier to complete (Tomaschek et al., 2018). D. Kim and Smith

(2019) discuss how even though they find temporal reduction at the word level, this

may not lead to uniform reduction within the word. This is consistent with findings

that not all parts of a word are equally important for successful recognition (van de

Ven & Ernestus, 2018).

Now that I have laid out a general theoretical framework through which the

present dissertation will view and discuss reduction phenomena, I turn to previous

work that is directly relevant to the present dissertation, which investigates the pho-

netic variability of the Spanish alveolar tap from the point of view of both production

and perception. In the following sections of this chapter, I will focus on reviewing

previous empirical work that has investigated stop-consonant variability, reduction

and spoken word recognition, as well as research looking at how second-language

learners produce and perceive reduction. This will provide the empirical foundation

that supports the planned dissertation, which is outlined in the last section of this

chapter.
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1.1.1 Variability in stop production

Many sounds that are described as stop-consonants in phonetic and phonological

descriptions are often realized quite differently in spontaneous speech (e.g., Barry &

Andreeva, 2001; Broś et al., 2021; Mukai, 2020; Torreira & Ernestus, 2011; Warner

& Tucker, 2011). Reduced forms, sometimes referred to in the literature as ‘lenited’,

are realizations that include fricatives, approximants, and deletions. This has been

documented across several languages and should be considered the ‘norm’ in spon-

taneous speech, not an exception. For example, Mukai (2020) found that 59% of

word-medial voiced stops in Japanese lacked a complete stop closure, with variation

in this percentage based on the place of articulation (35% for /d/, 83% for /g/). In

American English, Warner and Tucker (2011) reported that less than 40% of voiced

stops had a formant break in F2-F3, and that only a quarter of these stops had a

burst release. Broś et al. (2021), who collected data from Spanish spoken in Gran

Canaria, found that even voiceless stops, which unlike voiced stops in Spanish are

not reported to lenite phonologically (Hualde, 2005), were produced with voicing or

as approximants almost half of the time.

The general rates of stop-reduction reported for different languages are convinc-

ing evidence that reduced stops are everywhere (see also Barry & Andreeva, 2001).

Many factors have been associated with variation in stop reduction, but some of

the more consistent differences found in the literature are those whose effects stem

from articulation: speech rate and place of articulation. Increased speech rate is one

of the most robust predictors of reduction in general (Ernestus, 2014), and studies

have found increased reduction of stops as speech rate increases (e.g., Cohen Priva &

Gleason, 2020; Narayan, 2023), which is consistent with proposals that reduction is

due to articulatory undershoot (Lindblom, 1963). Similarly, studies which examine
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the reduction of multiple segments find that there are differences by place of artic-

ulation (Cohen Priva & Gleason, 2020; DiCanio et al., 2022; Mukai, 2020; Warner

& Tucker, 2011). While differences by place of articulation may be due to under-

shoot not affecting different points of the vocal tract equally, part of the difference

may also be how informative the different sounds are in the language. Cohen Priva

(2015) argued that a segment’s average informativity impacts how it is produced,

with segments that matter less for the discrimination of the intended meaning seeing

increased reduction.

Consistent with the theoretical assumption that information not present in the

acoustic signal is related to speech perception, several studies have investigated the

effects of word frequency and contextual probability on stop reduction. These effects

appear to be inconsistent, with some studies finding effects of word frequency but not

bigrams (e.g., Jurafsky, Bell, Gregory, & Raymond, 2001), while others find an effect

of bigrams but not word frequency (e.g., Warner & Tucker, 2011). More research is

needed if we are to discern when these variables are reliably related to reduction and

when they are irrelevant.

As with other stop-consonants, a wide degree of variation has been documented

in the Spanish tap for several dialects and speaker populations (Amengual, 2016;

Bradley & Willis, 2012; Henriksen, 2015; J. Y. Kim & Repiso-Puigdelliura, 2020;

Willis & Bradley, 2008). Most studies have employed a qualitative coding scheme

based on the visual interpretations of the tap’s presence in a spectrogram. The

most common categories included are true taps, approximant taps, and perceptual

taps. Examples of these different tap realizations are visualized in Figure 1.1. True

taps are stop-like taps that are produced with a clear stop closure and/or burst

release (Figure 1.1 A), consistent with textbook descriptions of the pronunciation

of this sound (e.g., Hualde, 2005). Approximant taps have a visible presence in
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a spectrogram, as the intensity drop is apparent in the colour gradient, but have

an unbroken formant structure (Figure 1.1 B). Perceptual taps are not visible on a

spectrogram, and instead, their presence is inferred based on a mild intensity drop

that is only visible in the waveform and/or the overlaid intensity curve (Figure 1.1

C).

(A) (B) (C)

Figure 1.1: Spectrograms depicting the three Spanish tap types most often coded
in previous literature. Panel A depicts a true tap, which contains a stop closure
and a burst release. Panel B depicts an approximant tap, with a visible presence in
the spectrogram but a continuant formant structure. Panel C depicts a perceptual
tap, without a clear visible presence in the spectrogram but an intensity dip present.
Overlaid on each spectrogram is the intensity curve, which is the largest for the true
tap and the smallest for the perceptual tap.

Experiments which have elicited speech through reading target words embed-

ded in carrier sentences find that true taps make up the majority of productions

(Amengual, 2016) while tasks such as picture naming see a more even distribution

of the variants (J. Y. Kim & Repiso-Puigdelliura, 2020). Elicited narration tasks

in two varieties of Spanish have found that highly-reduced perceptual taps make up

approximately half of all tokens (Bradley & Willis, 2012; Willis & Bradley, 2008).

Comparisons across studies do need to be taken with a grain of salt, as much of

the work on this sound has investigated heritage speakers, whose experience with

8



the language is known to be somewhat heterogeneous (Chang & Yao, 2016), and

factors related to differences in language experience have been argued to impact tap

production in heritage Spanish (J. Y. Kim & Repiso-Puigdelliura, 2020).

The evidence we have indicates that tap reduction is likely an extremely common

phenomenon in Spanish that changes according to speech style. However, we are un-

sure how this variability is shaped by cognitive and communicative factors, as the

focus of most studies looking at Spanish tap variability has been inter-speaker varia-

tion, such as comparing groups with different language backgrounds in the heritage

or L2 contexts (Amengual, 2016; Henriksen, 2015; J. Y. Kim & Repiso-Puigdelliura,

2020). The only findings related to intra-speaker tap variation we are aware of are

reported by J. Y. Kim and Repiso-Puigdelliura (2020), who found significant effects

of the phonetic environment on the intensity difference of taps in heritage speakers

of Spanish living in Southern California.

1.1.2 Phonetic variability and spoken word recognition

The process of how humans recognize the acoustic forms of words, referred to as

spoken word recognition, is far from a solved problem, as evidenced by the various

models that differ in their theoretical assumptions (e.g., see Weber & Scharenborg,

2012, and the references therein). There are, however, certain robust experimental

findings, as well as commonalities across models, that we must consider during ex-

perimentation and when interpreting our results. The first ‘settled’ matter in spoken

word recognition is that we do not wait for a word to end to recognize it; the process

begins immediately and automatically, and several potential candidate words can

be ‘activated’ in parallel (e.g., Luce & Cluff, 1998; Vroomen & De Gelder, 1997).

As the time-course of the speech moves forward, additional acoustic information is
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processed which matches with some words and not others, until one word is rec-

ognized over all other candidates. Several word-level properties not present in the

acoustic signal have been shown to impact spoken word recognition, consistent with

the assumptions of H&H Theory. Undoubtedly, the most well-known of these is lex-

ical frequency, and results from many languages indicate that more frequent words

are recognized faster and more accurately (e.g., Brysbaert et al., 2011; Ernestus &

Cutler, 2015; González-Alvarez & Palomar-García, 2016; Lõo et al., 2018; Tucker et

al., 2019). Consistent with the competition process that has been described above,

several studies have also found that words that sound like many other words are

recognized more slowly (Dufour & Frauenfelder, 2010; Gahl & Strand, 2016; Kelley

& Tucker, 2022; Luce & Pisoni, 1998), although data from Spanish indicates that

all languages may not behave the same way in this regard (Vitevitch & Rodríguez,

2005).

Studying spoken word recognition in an experimental setting differs in many

respects from how the process typically unfolds during one’s daily routine. The obvi-

ous differences include the fact that participants listen to recordings of an unfamiliar

voice while situated in an unfamiliar setting. Beyond this, several other types of

signal-independent information are conspicuously absent, as most experiments test

reactions to individual words, while most language recognition has the advantage of

additional context, which can facilitate predictive processing (e.g., Boudewyn et al.,

2015; Grüter et al., 2020; Kuperberg & Jaeger, 2016). Pertinent to viewing spoken

word recognition through the lens of H&H Theory, the talker in any given experi-

ment recorded the stimuli while being removed in time (and possibly space) from the

experimental participants. H&H Theory proposes that there is a feedback loop that

allows the talker to modulate the speech signal based on the perceived success of

communication, whereas this is not possible with recorded stimuli. This leaves only
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word-level properties – and general tendencies of adaptations from repeated motor

routines – present in the stimuli to impact the process of lexical retrieval. Exper-

imental investigation into how reduction impacts spoken word recognition involves

the manipulation of the signal-dependent information (i.e. the acoustics) while ex-

perimentally controlling for signal-independent information (lexical properties).

Phonetic reduction in an experimental setting has most often been related to

less successful spoken word recognition (Ernestus et al., 2002; Ernestus & Baayen,

2007; Mukai, 2020; Pitt, 2009; Ranbom & Connine, 2007; Tucker, 2011; Wanrooij

& Raijmakers, 2020). This is consistent with the view of reduction containing a less

robust acoustic signal and, therefore, transmitting less signal-driven information to

the listener. In contrast to these findings above, van de Ven and Ernestus (2018)

found that unstressed vowel deletion may facilitate recognition if additional context

is present.

The research on reduction normally compares a ‘reduced’ variant of the word to

what is sometimes referred to as a ‘canonical’ variant, i.e. the variant that would

typically be produced in careful speech and may be included in a dictionary transcrip-

tion. While some studies have found an advantage of the canonical over a reduced

variant (Pitt, 2009; Tucker, 2011), others have also found effects of variant frequency

(Pitt, 2009) or failed to find an advantage of the canonical variant once controlling

for frequency (Bürki et al., 2018) or experimental factors (Sumner, 2013). Variant

frequency is something that will likely vary by language and dialect. It is, therefore,

important to incorporate it into experimental studies of spoken word recognition in

order to see if a more general explanation can be found for cross-linguistic differ-

ences. It is easy to see how both reduction and variant frequency could be involved

in spoken-word recognition and how a ‘tug-of-war’ could arise: if the reduced variant

is also more frequent, the direct effect of the change in the acoustic signal may be
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confounded with variant frequency, potentially canceling each other out depending

on how the effects are examined.

1.1.3 Reduction and second-language learners

We purposely limited the scope of the previous sections to reporting research into

phonetic variability and reduction that has focused on adult, first-language speak-

ers. These speakers have substantial amounts of experience with the language, and

their acquisition process begins during infancy. In contrast, second-language speak-

ers of a language have an experience that is both qualitatively and quantitatively

different, with their acquisition starting after the use of another language was firmly

established. In this section, we will discuss the small but growing body of research

that investigates the production and perception of reduced forms by second-language

learners.

Studies have shown that L2 listeners have a hard time recognizing reduced speech

(Ernestus, Dikmans, & Giezenaar, 2017; Ernestus, Kouwenhoven, & van Mulken,

2017; Wanrooij & Raijmakers, 2021). These studies indicate that the difficulty asso-

ciated with reduction is larger for L2 listeners than for L1 listeners (Ernestus, Dik-

mans, & Giezenaar, 2017; Ernestus, Kouwenhoven, & van Mulken, 2017; Wanrooij

& Raijmakers, 2021), and that this difficulty persists even for those with advanced

proficiency in the L2 (Ernestus, Dikmans, & Giezenaar, 2017). This is not surprising,

as comparisons between adolescent and adult L1 speakers of German indicate that

teenagers are still improving with respect to recognizing reduced speech, even after

more than a decade of consistent language use and exposure (Wanrooij & Raijmakers,

2020). Explanations for why L2 listeners differ include reduced language experience

and input (Wanrooij & Raijmakers, 2021) with recent work by Morano et al. (2023)
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indicating that exposure to reduced word forms is critical for successful recognition.

We also have evidence that the sound system of the first language impacts their

processing of reduced speech in the second language (Ernestus, Kouwenhoven, &

van Mulken, 2017). Thus, the general picture painted for L2 speakers and reduction

is the following: they differ from L1 listeners in terms of their perceptual abilities,

properties of the L1 sound system can affect their performance in the L2, and in-

creased exposure improves their abilities in the L2. This is similar to theoretical

assumptions of segmental learning (Best & Tyler, 2007; Flege, 1995; Flege & Bohn,

2021; Van Leussen & Escudero, 2015), with the possible caveat that dealing with the

variability in spontaneous speech is a more difficult task.

While the patterns of results concerning L2 abilities and reduction look similar

to general theoretical assumptions, most popular models of L2 speech are concerned

with specific sounds (Flege, 1995; Flege & Bohn, 2021; Van Leussen & Escudero,

2015) or sound contrasts (Best & Tyler, 2007), and make no predictions regarding

phenomena such as gradient lexical effects on second-language segment production.

Speech research has historically been focused on the more carefully articulated ‘labo-

ratory’ speech rather than more natural spontaneous speech (Tucker & Mukai, 2023),

and this is especially true of L2 speech learning research (Zampini, 2008). However,

the Speech Learning Model and its revised version (Flege, 1995; Flege & Bohn, 2021)

assume that whatever processes or mechanisms lead to first-language speech percep-

tion and production are available for the second-language learner, so in principle, L2

learners should be able to follow similar patterns in production and perception to

the input they are exposed to, given enough time and exposure. Whether or not the

effects of frequency and predictability influence second-language speakers in a way

similar to first-language speakers is an unanswered empirical question.

Compared to the body of research looking at the L2 perception of reduction, the
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body of research investigating the production of reduced forms is smaller and largely

focused on suprasegmental aspects (van Dommelen, 2018). For example, it is well-

documented that L2 speakers generally have a slower rate of speech than L1 speakers

(e.g., Bradlow et al., 2011; MacKay & Flege, 2004). Work at the syllable level has

found that while both L1 and L2 speakers reduce, L2 speakers reduce less (Bradlow,

2022; Bradlow et al., 2011). Consistent with current theoretical proposals, work

at the segment level has found effects of L1 background on L2 segmental reduction

(Spilková, 2014). Of particular relevance to the present work, van Dommelen (2018)

looked at stop reduction in L1 and L2 speakers of English, finding reduction to be

frequent in both groups but with significant between-group differences in terms of

average acoustic realizations. Overall, it seems that L2 speakers do reduce, but may

do so less, or do so differently, than L1 speakers.

1.2 The present dissertation

The primary goal of this dissertation is to contribute observational and experimental

data to the body of research that investigates the patterns of phonetic variability

present in the world’s languages. This contribution is meant to document how the

Spanish tap varies in spontaneous speech, providing data from a variety of Spanish

where this has not yet been documented. We also investigate patterns of intra-

speaker variation of the Spanish tap, something which previous studies of the segment

have not focused on. We complement this analysis of spontaneous production data

with experimental data that investigates how the variation we find in spontaneous

speech impacts how both L1 and L2 Spanish speakers recognize words.

A secondary goal of this dissertation was to set the stage for future work on the

spontaneous production of the Spanish tap by L2 learners. Previous studies of the
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acquisition of this sound often analyze L2 productions evaluated against an idealized

‘canonical’ variant (e.g., Face, 2006; Herd, 2011; Patience, 2018) even though there

is evidence that other variants may be as frequent or more frequent than the more

careful pronunciation of the sound (Bradley & Willis, 2012; Willis & Bradley, 2008).

As L2 learners in situations of naturalistic acquisition will be exposed to this type

of variability in the input, a deeper understanding of the patterns present in the

spontaneous speech of L1 speakers, as well as how L2 learners are impacted by

this variation in spoken word recognition, would help better to contextualize future

results from analyses of spontaneous L2 productions.

The second chapter of this dissertation (published as Perry et al., 2023) investi-

gates variability in the duration of the Spanish alveolar tap in spontaneous speech

by analyzing a publicly available corpus. This chapter aims to investigate how lex-

ical and phonetic factors impact variability in the duration for the subset of to-

kens where the duration can be consistently measured. As duration could only be

hand-measured for approximately half of our tokens, this chapter’s secondary goal

is methodological. There are alternatives to manual measurements of duration, so

we evaluate three more automated methods to see whether or not they are reliable

approximations of hand-placed boundaries. This is important, as due to the large

amount of censored/missing data, the generalizability of the duration results to the

segment overall is compromised (the missing data mechanism is unclear, but likely

not Missing Completely at Random). Unlike manual markup of phone boundaries,

these other automatic measurement methods can use the acoustic signal to estimate

the onset and offset of all tokens in principle. This means that if the methods are

reliable, they would play a vital role in investigating the acoustic duration of the

Spanish tap.

Chapter 3 (published as Perry et al., 2024) complements our analysis of duration
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by documenting other types of acoustic variation in the Spanish tap in the same

corpus analyzed in Chapter 2. The first goal of this chapter is to document the

phonetic variability of a random subset of the corpus. The qualitative coding we

employed is based on visual spectrographic interpretation and was discussed earlier

in the present chapter (and shown in Figure 1.1). This coding facilitates comparison

with previous studies on the production of Spanish taps. These are accompanied

by descriptive statistics regarding duration and intensity differences based on these

coding categories. Our hope is that this reporting, together with the provided raw

data, will allow for future studies of Spanish taps to leverage this information in pilot

analyses or in defining informative prior models for analyses of future data.

The second goal of the study in Chapter 3 was to model the intensity difference

between the tap and surrounding vowels in order to understand potential patterns

of variability beyond durational differences. The modelling approach in this paper

attempts to reasonably approximate the data-generating process, which led to the

adoption of non-standard statistical models. Our predictors are the same ones ex-

plored in Chapter 2: a combination of lexical and phonetic variables that have been

associated with phonetic variability in other languages.

Chapter 4 complements the production data for our corpus analyses with per-

ceptual data of an experimental nature. Given that our production data, which

contains substantial amounts of reduction, came from real conversations where peo-

ple understood each other, we know that the variability of the tap doesn’t cause

communication breakdown in running speech. However, no previous studies have

examined how Spanish tap reduction impacts the recognition of isolated words, de-

spite variation in production being well-documented for some time. We investigate

how the phonetic variability of the tap impacts spoken word recognition using an

auditory lexical decision task. Two groups of listeners participated in this study: L1
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Spanish speakers and L2 Spanish speakers whose L1 was English. The goal is to

investigate the effect of reduction separately for both groups and compare the effect

of reduction across two populations whose experience with the language undoubtedly

differs along a number of dimensions.
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Chapter 2

Measuring and modelling the

duration of intervocalic alveolar

taps in Peninsular Spanish

This chapter has been published as:

Perry, S. J., Kelley, M. C., & Tucker, B. V. (2023). Measuring and modelling

the duration of intervocalic alveolar taps in Peninsular Spanish. In R. Skarnitzl &

J. Volín (Eds.), Proceedings of the 20th International Congress of Phonetic Sciences

(pp. 699-703). Guarant International.
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Abstract

Factors predicting acoustic variation in the production of Spanish taps have yet

to be investigated outside of their relationship to the tap-trill contrast. The present

study models the duration of alveolar taps with occlusions visible on a spectrogram

in spontaneous Spanish and compares durations measured by automated methods

to hand-placed boundaries. We model tap duration from the Nijmegen Corpus of

Casual Spanish (Torreira & Ernestus, 2010) with a combination of lexical, phonetic,

and phonological predictors. Results indicate a high degree of uncertainty regarding

the relationship between most of our predictors and tap duration. However, we

are confident that faster speech rates are associated with decreased duration. Our

automated measurements show deviations from hand-measured duration, indicating

a need to evaluate the performance of the automated methods in future research.

2.1 Introduction

Studies analyzing the duration of Spanish alveolar taps (hereafter taps) have gen-

erally focused on comparing productions across speaker groups (Henriksen, 2015),

investigating acoustic correlates of the tap-trill contrast (Bradley & Willis, 2012;

Willis & Bradley, 2008) or both (Amengual, 2016). The present study’s primary

goal is to augment our understanding of variation in tap production. We model

tap duration with phonetic, phonological, lexical, and predictability-related factors.

Our secondary goal is to compare tap durations based on experimenter markup to

three automated methods that measure duration with minimal researcher markup

and evaluate the methods’ impact on model estimates.
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In research on other languages, various predictors have been associated with

changes in duration at the segmental, syllabic, and word levels. Increased frequency

and predictability have been associated with decreased duration (Aylett & Turk,

2004; Bell et al., 2009). Duration differences by phonetic factors such as phonetic en-

vironment and speech rate have been attested (Cohen Priva, 2015; Warner & Tucker,

2011). Lexical stress and pitch accents have also been associated with changes in

stop closure duration (Cho & McQueen, 2005).

When measuring the duration of segments without an apparent onset or offset,

which includes many Spanish taps (Bradley & Willis, 2012; Willis & Bradley, 2008),

it is desirable to have a measurement method that applies to most realizations. One

alternative to human markup includes using boundaries placed by an acoustic model

through forced alignment, although this method has some known issues (Tucker &

Mukai, 2023). Another option is to use intensity to measure duration, which can

be done in various ways (Katz & Pitzanti, 2019; Kingston, 2008; Warner & Tucker,

2011). Before applying these methods to Spanish taps, we believe it is important to

compare them to hand measurement for tokens with visual cues to onset and offset,

where experimenter markup can be consistent.

2.2 Method

The data and the script documenting the analysis are available through the Uni-

versity of Alberta Education and Research Archive here: https://doi.org/10.7939/

r3-5k3f-4t63
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2.2.1 Data coding and measurement

We analyzed a random 10% sample of intervocalic taps from the Nijmegen Corpus

of Casual Spanish (Torreira & Ernestus, 2010), containing 20 conversations between

groups of three university students from Madrid, Spain. Of the 2,606 hand-coded

taps, 1,312 had occlusions visible in a spectrogram (‘True’ or ‘Approximant’ taps

following previous studies (Amengual, 2016; Bradley & Willis, 2012; Henriksen, 2015;

J. Y. Kim & Repiso-Puigdelliura, 2020; Willis & Bradley, 2008)).

Each tap’s duration was measured in four ways using a script in Praat (v 6.1.47;

(Boersma & Weenink, 2022)). The first method was the manual placement of bound-

aries, carried out by the first author. For stop-like taps, the onset was placed at the

beginning of the stop closure, and the offset was placed at the onset of periodic

energy after the burst release. For approximant taps, onset and offset were placed

where the spectrogram abruptly changed intensity. The second method used force-

aligned boundaries from the Montreal Forced Aligner (McAuliffe et al., 2017) trained

on the corpus under analysis. The third method took the tap onset and offset as the

midway points between the maximum intensities of the surrounding vowels and the

minimum intensity during the tap (Warner & Tucker, 2011). The final method placed

the onset and offset of the tap at the largest absolute values of the spline-smoothed

intensity slope in and out of the tap, using methods from Katz and Pitzanti (2019)

and Kingston (2008).

When using automated measurements, outliers that are likely measurement errors

are removed based on domain knowledge. To fairly compare methods, we removed

observations that we judged to have impossible values in any of the measurement

methods. Spanish taps have average durations below 50 ms (Bradley & Willis, 2012;

Willis & Bradley, 2008), and virtually all taps reported in Amengual (2016) were
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under 150 ms. Therefore, we removed nine observations with values of 200 ms or

more and seven with negative values. This left a total of 1,296 tokens for statistical

analysis.

2.2.2 Statistical analysis

To analyze tap duration, we fit four hierarchical Bayesian models (one for each mea-

surement method) with lognormal likelihoods using brms (v 2.18.0; (Bürkner, 2017))

in R (v 4.1.1; (R Core Team, 2021)). Priors were weakly-informative in the context

of Spanish taps, and their assumptions were assessed through prior predictive sim-

ulation. Following best practices (Kruschke, 2021), we checked our priors’ influence

on the posterior by using wider priors, which resulted in identical posteriors upon

visual inspection.

The population-level predictors for our models appear below. Group-level effects

were varying intercepts by speaker and correlated varying slopes for all population-

level effects by speaker. Unigram and bigram frequencies from the corpus under

analysis were added to counts from the Spanish OpenSubtitles corpus (Lison &

Tiedemann, 2016), and conditional probabilities derived therefrom. We extracted

speech rate (syllables/second), surrounding vowels, and lexical stress from force-

aligned text grids. Word length and content/function status were derived from the

corpus data file.

The following predictors were used in the models:

• Unigram freq. Log unigram frequency for word containing tap

• Bigram freq. prev. Log bigram frequency for word and previous word

• Bigram freq. fol. Log bigram frequency for word and following word
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• Cond. prob. prev. Conditional probability of the word based on previous

word

• Cond. prob. fol. Conditional probability of the word based on following

word

• Number of syllables Word length in number of syllables (log-transformed)

• Function word Sum-coded, difference between function (0.5) vs. content

words (-0.5)

• Local speech rate Log average speech rate of the utterance containing tap

(syllables/s)

• Prev. vowel Preceding vowel, treatment coded (/i,e,a,o,u/) with /e/ as ref-

erence level

• Fol. vowel Following vowel, treatment coded (/i,e,a,o,u/) with /e/ as refer-

ence level

• Prev. stress Sum-coded, unstressed (-0.5) vs stressed (0.5) previous vowel

• Fol. stress Sum-coded, unstressed (-0.5) vs stressed (0.5) following vowel

To measure the similarity between posterior distributions from the manual model

to those from the automated methods, we calculated overlap in the population-

level posteriors using the overlap() function from package bayestestR (v 0.11.0;

(Makowski et al., 2019)). We entered the overlap values as the dependent variable

in a hierarchical Beta regression predicting posterior overlap with the manual model

by method. We included varying intercepts for predictors with varying slopes by

method.

23



2.3 Results

For complete model summaries, the reader is directed to the materials hosted in the

repository, which include the saved models for convenience.

2.3.1 Descriptive comparison of methods

Figure 2.1 contains visualizations that compare manual duration to the three au-

tomated methods. In the top row (A, B, & C) are scatter plots between manual

measurements on the y-axis and each automated method on the x-axis. Marginal

density distributions are placed along the edge of the plots. All automated meth-

ods were weakly correlated with manual measurements. In Figure 2.1 D, we plot

the density distributions of the difference between the manual measurement and the

automated methods, subtracting the automated duration from the manual measure-

ment for each token. The red dotted line at zero is where the methods had the same

value.

2.3.2 Factors affecting duration

For the model of manual durations, we report in Table 2.1 the percentages of

each posterior that fell below, within, and above a Region of Practical Equivalence

(ROPE). A ROPE establishes a minimum effect size the researchers consider prac-

tically different from zero. We chose a ROPE of -0.05 to 0.05 for log-scale duration,

which for our model states that if the total effect of a predictor is less than ≈ 1.2ms,

then we consider the effect to be negligible. This approach allows us to consider

the evidence from our model in terms of the probability of both the existence and

direction of an effect. An effect below the ROPE is associated with shorter taps,
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Figure 2.1: Scatter plots for comparisons between the manually measured durations
and the durations taken from forced alignment (A), the midway method (B), and the
slope method (C). The density distribution of manual measurements are along the
right-hand y-axis of C. Pearson’s correlation coefficients are printed on the scatterplot
for each comparison. D displays density distributions of by-token differences.

and an effect above the ROPE signals an association with longer taps. For example,

our models suggest we cannot be sure if function words contain shorter taps than

content words, as roughly 68% of the posterior is within the ROPE, and 32% is be-

low it. We interpret this as a 2/3 chance that there is no difference in tap duration

for function words and a 1/3 chance that function words contain shorter taps. The

posterior distribution did not extend above the ROPE, meaning we are confident

function words don’t contain longer taps.
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Table 2.1: Percentages of posteriors from the model of manually-measured duration
that fall below, within, and above the established Region of Practical Equivalence.
The ROPE range of (-0.05, 0.05) was divided by the range of continuous predictors
to evaluate the total effect size.

Predictor % Below/Within/Above ROPE
Unigram freq. 2.8 / 26.1 / 71.0

Bigram freq. prev. 56.6 / 42.5 / 0.9
Bigram freq. fol. 17.3 / 76.2 / 6.5

Cond. prob. prev. 70.1 / 7.8 / 22.2
Cond. prob. fol. 91.8 / 7.2 / 1.0

Number of syllables 56.3 / 39.1 / 4.6
Function word 32.4 / 67.6 / 0.0

Local speech rate 98.9 / 1.1 / 0.0
Prev. vowel /i/ 0.0 / 10.0 / 90.0
Prev. vowel /a/ 4.7 / 95.3 / 0.0
Prev. vowel /o/ 23.8 / 76.1 / 0.1
Prev. vowel /u/ 22.4 / 73.3 / 4.3
Fol. vowel /i/ 0.0 / 0.0 / 100
Fol. vowel /a/ 0.7 / 93.0 / 6.3
Fol. vowel /o/ 0.0 / 40.2 / 59.7
Fol. vowel /u/ 83.1 / 15.7 / 1.3

Prev. stress 14.4 / 83.9 / 1.7
Fol. stress 5.3 / 93.4 / 1.3
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2.3.3 Modelling differences & posterior overlap

In Figure 2.2, we plot the population-level posteriors from the models fit to dura-

tions from the four methods. The mean of the posterior is plotted by shape, and

the two-stage lines visualize the most probable 80% and 95% of each posterior. The

posteriors for the same predictor from the four models show variable levels of over-

lap. For some predictors (e.g., previous bigram frequency), all methods have similar

posterior distributions. For others, there are larger differences between the meth-

ods, sometimes in a way that could change model interpretation as compared to

hand-measured duration or compared to other automated methods.

The posteriors from the Beta regression estimating overlap as well as group-

level standard deviations among the predictors are plotted by method in Figure 2.3.

We cannot be confident that any automated method overlaps more or less with our

manual model, although the Slope method had the highest estimated overlap (Figure

2.3 A). We are confident the Slope method showed less variability by predictor than

the other methods (Figure 2.3 B).

2.4 Discussion & Conclusions

The present study measured tap durations in conversational Spanish and modelled

this duration with several predictors. As many taps lack visible occlusions, we wanted

to evaluate alternative methods of measuring duration that could be applied to more

variable realizations. In predicting manually-measured taps, most predictors are

highly uncertain regarding the presence or direction of an effect, although we can

rule certain patterns out. Measurements from all automated methods correlated

similarly with manual measurements, and the Slope method had the lowest absolute
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Figure 2.2: Posteriors for population-level effects models of tap duration calculated
by four methods: manually-placed boundaries, force-aligned boundaries, using the
midway points of the intensity curve, and using the intensity slope. The thick line
corresponds to 80% of the posterior, and the extended, thin line corresponds to 95%.
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Figure 2.3: Posterior distributions of estimated overlap with model estimates from
manual durations. The thick lines correspond to 80% of the posterior and the ex-
tended thin line 95%. ‘A’ plots predicted overlap, zero meaning posteriors do not
overlap and one meaning posteriors are identical. ‘B’ plots the standard deviations
of group-level effects (variation across predictors).

error. The force-aligned durations were multiples of 10ms with a floor at 30ms. The

midway method had a similarly-shaped distribution to manual measurements but

with longer values, while the Slope method had clusters at multiple modes.

In our model of manually-measured tap duration, we can only generalize results

to taps that have a visible presence in a spectrogram. We only claim with confidence

that increased speech rate is associated with shorter taps, and that taps are longer

before /i/ than before /e/. Other specific effects show uncertainty regarding the

presence of a meaningful association, but effects in specific directions are incompat-

ible with our model. For some effects, large percentages of the posterior fall within

the ROPE, indicating the most likely interpretation should be that these predictors

are not associated with changes in tap duration.

When comparing estimates from our four models, the patterns of similarity and

difference varied depending on the predictor. For some, like speech rate, the effects

from all models are reliably negative, but some methods overestimate the effect’s

size, which is likely due to overestimating tap duration overall. If we consider our
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manual model the gold standard, other methods make both Type S errors (getting

the direction wrong) and Type M errors (wrong effect magnitude). This assumption

is reasonable, as retrodictive checks showed the manual model fit the data well, while

other models did not. Several predictors with posteriors centered around zero in the

manual model show reliably negative or positive effects in one or more automated

methods (e.g., Bigram freq. fol, Fol. stress). A potential explanation is that some

variables are related to intensity changes independent of duration.

From our model of posterior overlap, all automated methods had less than 60%

overlap with the manual model for an average predictor. This result is not reassuring,

although the slope method, which may have slightly more overlap, also showed less

variation across our predictors, possibly due to having wider posteriors than the other

methods. Based on these results, we cannot recommend these automated methods

be used to measure Spanish taps. We also must question the reliability of measuring

segment duration using intensity more generally, and recommend researchers evaluate

their measurement methods as standard practice.

Hand-correcting data is costly, but building knowledge on results skewed by mea-

surement error will be more so. Sharing hand-corrected data publicly will allow for

data to be used by the wider research community to answer research questions and

generate informative priors that allow them to use their data more efficiently.
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Chapter 3

Documenting and modeling the

acoustic variability of intervocalic

alveolar taps in conversational

Peninsular Spanish

This chapter has been published as:

Perry, S. J., Kelley, M. C., & Tucker, B. V. (2024). Documenting and model-

ing the acoustic variability of intervocalic alveolar taps in conversational Peninsular

Spanish. The Journal of the Acoustical Society of America, 155(1), 294-305
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Abstract

This study constitutes an investigation into the acoustic variability of intervocalic

alveolar taps in a corpus of spontaneous speech from Madrid, Spain. Substantial vari-

ability was documented in this segment, with highly reduced variants constituting

roughly half of all tokens during spectrographic inspection. In addition to qualita-

tive documentation, the intensity difference between the tap and surrounding vowels

was measured. Changes in this intensity difference were statistically modeled using

Bayesian finite mixture models containing lexical and phonetic predictors. Model

comparisons indicate predictive performance is improved when we assume two latent

categories, interpreted as two pronunciation variants for the Spanish tap. In inter-

preting the model, predictors were more often related to categorical changes in which

pronunciation variant was produced than to gradient intensity changes within each

tap type. Variability in tap production was found according to lexical frequency,

speech rate, and phonetic environment. These results underscore the importance

of evaluating model fit to the data as well as what researchers modeling phonetic

variability can gain in moving past linear models when they do not adequately fit

the observed data.

3.1 Introduction

The production of stop-consonants has been shown to be highly variable in a number

of languages, with segments that we would expect to have closures and burst-releases

being realized as fricatives, realized as approximants, or being deleted entirely (e.g.,

Broś et al., 2021; Davidson, 2011; DiCanio et al., 2022; Katz & Pitzanti, 2019; Mukai,
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2020; Torreira & Ernestus, 2011; Warner & Tucker, 2011). This variation is often

defined as phonetic reduction, a term that can refer to phonetic variation that is not

predictable through phonological processes. Research on phonetic reduction involves

both documenting the variation present in the sounds of the world’s languages and

attempting to develop insight into what factors may predict this variation. Other re-

duction phenomena include vowel centralization (e.g., Aylett & Turk, 2006), segment

deletion (e.g., Jurafsky, Bell, Gregory, & Raymond, 2001), and durational shorten-

ing (e.g., Bell et al., 2009; Pluymaekers et al., 2005; Seyfarth, 2014). As pointed

out by Tang and Bennett (2018), much of the research on this topic has been con-

ducted on English and Dutch. More research is needed to determine cross-linguistic

similarities and differences in patterns of reduction and the factors that may drive

them. The two main goals of the present paper are to document the variability of

intervocalic alveolar taps (hereafter taps) in a conversational corpus of Madrilenian

Spanish (Torreira & Ernestus, 2010) and to statistically model an acoustic correlate

of stop reduction in order to gain additional insight into what may predict variation

in Spanish tap production.

Broadly speaking, the theoretical motivation for the present study falls under

Hyper and Hypo-articulation theory (H&H Theory; Lindblom, 1990). H&H Theory

claims that the phonetic variability we observe stems at least partially from the fact

that we obey economy of effort in granting lexical access to interlocutors. A related

hypothesis that follows logically from H&H Theory is the Probabilistic Reduction

Hypothesis, which posits that more predictable parts of speech are more likely to

be reduced (Jurafsky, Bell, Gregory, & Raymond, 2001; Jurafsky, Bell, Gregory,

& Raymond, 2001). Another related hypothesis is the Smooth Signal Redundancy

Hypothesis (Aylett & Turk, 2004, 2006), which claims that phonetic variation stems

from attempts to maintain a constant flow of information while communicating. This
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leads to less informative syllables having shorter durations (Aylett & Turk, 2004) and

more centralized vowels (Aylett & Turk, 2006). We believe that currently, calculating

predictability in a way that integrates all sources of information available to humans

communicating is an intractable problem, as it would necessarily involve information

at all levels of linguistic analysis together with contextual information about the en-

vironment and interlocutor(s). Given this problem, it is perhaps unsurprising that

several variables have been operationalized to study predictability, such as lexical

frequencies, conditional probabilities, mutual information, relative entropy, and lan-

guage model probabilities (e.g., Aylett & Turk, 2004; Balling & Baayen, 2012; Bell

et al., 2009; Jurafsky, Bell, Gregory, & Raymond, 2001; Jurafsky, Bell, Gregory, &

Raymond, 2001).

Increased predictability, as operationalized by these measures, has been generally

associated with more reduced speech. This comes in the form of decreased duration

in syllables (e.g., Aylett & Turk, 2004; Tang & Bennett, 2018), words (e.g., Bell et al.,

2009; Seyfarth, 2014) and multi-word utterances (Tremblay & Tucker, 2011). Beyond

duration, increased predictability has been associated with higher rates of segment

deletion (Jurafsky, Bell, Gregory, & Raymond, 2001), more centralized vowels (Aylett

& Turk, 2006; Munson & Solomon, 2004; Wright, 2004), and less stop-like stops (e.g.,

Cohen Priva & Gleason, 2020; Warner & Tucker, 2011). However, some research

has reported the opposite, finding less reduced productions for more frequent or

predictable words (e.g., D. Kim & Smith, 2019; Tily & Kuperman, 2012).

3.1.1 Variation in Spanish tap production

Spanish taps have been documented to have variable productions across different

dialects and speaker populations (e.g., Bradley & Willis, 2012; Henriksen, 2015;
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J. Y. Kim & Repiso-Puigdelliura, 2020; Willis & Bradley, 2008). Research that

has elicited speech using narration and picture naming (e.g., J. Y. Kim & Repiso-

Puigdelliura, 2020; Willis & Bradley, 2008) reports higher rates of reduced taps than

studies eliciting productions with carrier sentences (e.g., Amengual, 2016), which

is consistent with the variation we would expect according to speech style (Tucker

& Mukai, 2023). Previous investigations into variation in Spanish tap production

have employed a qualitative coding scheme based on the visual interpretation of

spectrograms. While discretely categorizing speech productions can be problematic,

using a qualitative evaluation with clear guidelines can improve communication about

phonetic variability in written research (e.g., Davidson, 2016), and the coding scheme

used for Spanish taps has facilitated comparisons across several published studies

(Amengual, 2016; Bradley & Willis, 2012; Henriksen, 2015; J. Y. Kim & Repiso-

Puigdelliura, 2020; Willis & Bradley, 2008). First, if taps have a closure and/or

burst release, they are called ‘true taps’, visualized in Figure 3.1 A. Approximant taps

are denoted by a visible intensity change on a spectrogram, but with a continuous

formant structure, as in Figure 3.1 B. Perceptual taps have no visible intensity change

on a spectrogram but show a dip in amplitude in the intensity curve and waveform,

as in Figure 3.1 C. Deletions, a category not always included, show no evidence of

a tap, as shown in Figure 3.1 D. In addition to the categories above, some studies

code ‘non-tap productions,’ which are most often fricatives (J. Y. Kim & Repiso-

Puigdelliura, 2020).

Previous acoustic measurements of taps have largely come in the form of duration,

although as pointed out by previous studies (Amengual, 2016; Bradley & Willis,

2012), duration may be meaningful only for taps with a visible occlusion, as the onset

and offset of perceptual taps have no clear markers. Consistent with its categorization

as a tap, rather than a plosive, tap durations are relatively short. Average durations
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Figure 3.1: Spectrograms of the four main tap types in Spanish with intensity curves
overlaid. Right axis indicates intensity in dB. Right axes are constant across the
spectrograms to aid visual comparison. A shows a true tap. B shows an approx-
imant tap. C is a perceptual tap. D is a deleted tap, with no visible presence
in the spectrogram. All examples come from one male speaker. The stress of the
surrounding vowels was not controlled, leading to intensity differences.

are reported between 30-50ms (Amengual, 2016; Bradley & Willis, 2012; Willis &

Bradley, 2008) with the vast majority of productions being under 100ms (Amengual,

2016). Another acoustic correlate of stop variation is the intensity difference (IntDiff)

between the surrounding vowels and the minimum during the consonant. IntDiff has
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the advantage of being meaningful and interpretable in the presence of variation that

spans from clearly-articulated stop-like phones all the way to deletions (Warner &

Tucker, 2011). Similar measurements have been used in studies of other Spanish

sounds (e.g., Hualde et al., 2011), but to our knowledge J. Y. Kim and Repiso-

Puigdelliura (2020) is the only study that has used IntDiff to investigate variability

in Spanish taps. J. Y. Kim and Repiso-Puigdelliura (2020) found that IntDiff ranges

from 0-20 dB, with the majority of values under 15 dB. In their study, true taps had

larger average intensity drops than approximant taps, which in turn had a larger

drop than perceptual taps, with overlap between the categories.

While previous studies have given the field knowledge of the acoustic variation of

Spanish taps, previous work has focused on examining this variation in the context

of the tap-trill contrast (Bradley & Willis, 2012; Willis & Bradley, 2008), or looking

at between-group differences in terms of language experience in the heritage and L2

contexts (Amengual, 2016; Henriksen, 2015; J. Y. Kim & Repiso-Puigdelliura, 2020).

The present study approaches this variation from a phonetic and lexical point of view,

investigating the sort of variation that can occur within the same speaker in a single

conversation.

3.1.2 Study aims

As mentioned briefly above, the first goal of this paper is to document the variation

of Spanish taps in conversational speech. To maximize comparisons with previous

studies on Spanish taps, we use the categorical coding scheme from spectrographic

studies of Spanish taps conducted on speech samples from other dialects and pop-

ulations. For each qualitative category, we provide visualizations and descriptive

statistics of IntDiff, and, when appropriate, duration. Additionally, we provide raw
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and processed versions of our data in an online repository.

The second goal of the paper is to model our chosen correlate of stop reduction:

IntDiff. While modeling IntDiff using all predictors previously used by research

on reduction is not feasible in a single paper, we include a set of phonetic and

lexical predictors that have been shown to influence phonetic variation and reduction

patterns in other languages. We believe this constitutes a strong initial pass at

modeling this variability. While we did not initially plan on employing such models,

the present paper also makes a case for using Bayesian finite mixture models as a

flexible option for analyzing acoustic data in situations where linear models are not

appropriate.

3.2 Methods

The online repository includes the raw and processed versions of the data, the code

used to process and analyze the data, and supplementary documents discussing cer-

tain aspects of the data and analysis in further detail. See Section 3.6 for details.

3.2.1 The Nijmegen Corpus of Casual Spanish

The speech recordings analyzed for the present study are from the Nijmegen Corpus

of Casual Spanish (NCCSp; Torreira & Ernestus, 2010). This corpus contains record-

ings of monolingual speakers of Spanish from Madrid, Spain (N=52, 27 females &

25 males). The speakers, all university students between the ages of 19-25 years,

were recorded using head-mounted microphones in a sound-attenuated booth while

holding conversations in groups of three people who knew each other well. Eight

speakers were recorded on two occasions. Twenty conversations are included in the
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corpus for a total of 60 recordings of approximately 90 minutes each. A professional

company (Verbio Speech Technologies S.L.) orthographically transcribed the corpus,

and these transcriptions are included with the corpus as Praat text grids segmented

at the utterance level.

3.2.2 Automatic alignment

Segmentation of the audio files at the word and phone levels was done automatically

using the Montreal Forced Aligner (MFA; v1.0.1; McAuliffe et al., 2017). First,

a pronunciation dictionary was generated using the Spanish grapheme-to-phoneme

(G2P) model available with the MFA. This output a broad phonetic transcription of

every word in the corpus data file. The transcriptions output by the G2P model

were checked to ensure they were consistent with the Madrilenian dialect, and edited

if needed. This included, for example, changing many instances of the voiceless

alveolar fricative /s/ to the voiceless interdental fricative /T/, as the G2P model

was inconsistent with respect to the distinction between /s/ and /T/. As stress was

marked in the phonetic transcription for words with orthographically marked stress

but not for default stress patterns that did not contain orthographic accents, this

information was added to the transcriptions using a custom programming script to

ensure that the transcriptions of all words had lexical stress marked. We then aligned

the audio files using the train_and_align function from the MFA, which aligned the

audio files using the data itself, not employing a pre-trained acoustic model. This

was chosen as a better alternative than the available pre-trained acoustic model as it

was not documented which dialect(s) of Spanish was used to train the model, and the

NCCSp contains considerably more than the one hour of speech required to produce

desirable alignment.
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3.2.3 Acoustic analysis

Acoustic measurements were taken automatically from each tap in the corpus with a

custom script in Praat (Boersma & Weenink, 2022) using the force-aligned bound-

aries. The information extracted included the duration of the segment interval from

the MFA phone tier, the word identity, the previous and following segments, and pre-

vious and following words, in addition to the following intensity measurements. The

script measured the maximum intensity of the previous and following segments, the

minimum intensity during the tap, and the corresponding timestamps. This infor-

mation was used to calculate the intensity difference between the tap minimum and

the average of the surrounding vowels.

In addition to taking acoustic measurements, the script was written to save a

subset of tokens for the manual adjustment of force-aligned boundaries. Each token

had a 10% chance of being included in this subset. The full data-set of intervocalic

taps included 28,193 taps that were produced between two monophthong vowels,

with the script saving 2,786 tokens (9.88% of the data). Hand-correcting this subset

allowed for direct comparisons between the same acoustic measurements taken from

the force-aligned vs. hand-corrected boundaries, which also permits us to measure

the noise being introduced by using force-aligned boundaries and decide whether the

automatic measurements were reliable. This was also a manageable random sample

for hand-coding tap type following previous studies.

3.2.4 Hand-correction and coding

The hand-coding and boundary correction were performed by the first author. The

coding scheme closely followed previous work on Spanish taps (Amengual, 2016;

Bradley & Willis, 2012; Henriksen, 2015; J. Y. Kim & Repiso-Puigdelliura, 2020;
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Willis & Bradley, 2008). Taps containing a visible stop closure and/or burst re-

lease were coded as true taps. Taps containing a visible drop in intensity on the

spectrogram, but without a break in the formants, were classified as approximant

taps. Taps whose only evidence of existence was a drop in intensity visible in the

Praat intensity contour and the waveform were coded as perceptual taps. We also

coded as perceptual taps tokens where there was movement in F3/F4, even if there

was no visible intensity drop, as previous work indicates that this may be a relevant

perceptual cue for English flaps (Warner et al., 2009). Taps that were produced as

fricatives, as well as taps that did not fall into the other categories, were coded as

non-tap productions. If there was no intensity drop, no formant movement, or no

other visual or auditory evidence to indicate that any segment was produced, it was

coded as deleted. Regarding deletions, we do acknowledge that an apparent lack of

acoustic evidence does not mean that no articulatory movement took place. As such,

these segments may not have truly been deleted.

Of the 2,786 taps that were hand-coded, 1.5% were instances of the corpus’

orthographic transcription being incorrect. Due to some other reduction, 1.9% of

taps were not produced within an intervocalic environment. Noise interference, such

as loud laughing from another participant, was present in 2.9% of taps, and 0.1%

of recordings extracted were too short to extract acoustic information or code the

tap type. These observations were removed before calculating the percentages in the

results section. This left us with 2,606 tokens in the hand-corrected data, which was

93.5% of the original data.
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3.2.5 Calculation of other variables

We extracted unigram and bigram frequencies from the Spanish data included in

the OpenSubtitles corpus (Lison & Tiedemann, 2016) using a custom script. This

corpus is comprised of Spanish movie and television subtitles and contained approx-

imately 1.1 billion words at the time of download. To ensure that all words under

analysis had frequency counts, the unigram and bigram counts from the data we

extracted from the NCCSp were added to those extracted from OpenSubtitles. The

unigram and bigram frequencies were used to calculate the probability of the word

containing the tap occurring based on the previous and following words (following

Bell et al., 2009; Jurafsky, Bell, Gregory, & Raymond, 2001).

We wanted to include a measure of local speech rate in our models, and previous

studies have done this in varying ways. For example, Bell et al. (2009) analyzed

the Switchboard corpus and calculated speech rate based on the total length of the

conversation. Santiago and Mairano (2018) transformed all of their vowel durations

to z-scores per participant to account for speech rate. These methods do not give

information on how fast a speaker was talking at a particular moment, and we

expected the speech rate of each participant to vary considerably throughout the 90-

minute recording. We elected to get a measure of speech rate for each utterance to

account for how fast the speaker was talking when they produced the tap in question.

Using the utterance boundaries from the corpus and the output transcription from

the forced alignment, we calculated the speech rate for each utterance in syllables

per second using a script in Praat that divided the total number of vowels in each

utterance by the total duration.
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3.2.6 Statistical modeling

To analyze patterns in the variability of intervocalic taps, we fit a series of Bayesian

hierarchical regression models using the brms package (v2.18.0, Bürkner, 2017) in

R (v4.1.1, R Core Team, 2021). The dependent variable in these models was IntD-

iff. We did not statistically model tap duration for three main reasons. First, the

placement of force-aligned boundaries is limited to 10ms intervals, and these were

the only boundaries available for 90% of our data. Second, as mentioned by previous

research, there is no reliable way to manually measure the duration for taps without

visible occlusions (Amengual, 2016), which in our hand-corrected data was approxi-

mately half of all tokens, consistent with previous research (Bradley & Willis, 2012;

Willis & Bradley, 2008). Third, intensity-based measurements of duration that can

be applied more broadly deviate from hand-measured taps when there is a visible

occlusion, which calls their validity into question (Perry et al., 2023).

We began the modeling process by fitting linear models with Gaussian likelihoods,

which have been used to analyze IntDiff and other intensity-based measurements of

various segments in several languages such as English (e.g., Cohen Priva & Gleason,

2020; Warner & Tucker, 2011), Spanish (Hualde et al., 2011), and Basque (Hualde

et al., 2019). All models had varying intercepts by speaker, and our list of predictors

is as follows, with continuous predictors being centered and scaled:

• Unigram freq. Log unigram frequency for word containing tap

• Bigram freq. prev. Log bigram frequency for word and previous word

• Bigram freq. fol. Log bigram frequency for word and following word

• Cond. prob. prev. Conditional probability of the word based on previous

word
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• Cond. prob. fol. Conditional probability of the word based on following

word

• Number of syllables Word length in number of syllables (log-transformed)

• Function word Sum-coded, difference between function (0.5) vs. content

words (-0.5)

• Local speech rate Log average speech rate of the utterance containing tap

(syllables/s)

• Prev. vowel Preceding vowel, treatment coded (/i,e,a,o,u/) with /e/ as ref-

erence level

• Fol. vowel Following vowel, treatment coded (/i,e,a,o,u/) with /e/ as refer-

ence level

• Prev. stress Sum-coded, unstressed (-0.5) vs stressed (0.5) previous vowel

• Fol. stress Sum-coded, unstressed (-0.5) vs stressed (0.5) following vowel

Posterior predictive checks on our Gaussian model revealed it was badly misspec-

ified, i.e., the model’s assumptions were unambiguously violated. This can be seen

in Figure 3.2 A, where data generated by the Gaussian model appear in grey and

the observed hand-corrected data in black. To account for the general shape of the

data, we then fit models with a skew-normal likelihood (Figure 3.2 B), which was a

visual improvement during posterior checks and had better-estimated out-of-sample

predictive accuracy as estimated by the leave-one-out information criterion (LOOIC;

Vehtari et al., 2017). Despite these improvements, the model was still incapable of

generating the observed data. We decided to fit finite mixture models, which allowed
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us to model IntDiff with two distributions instead of one, accounting for the bimodal

nature of the data. These two distributions can be thought of as latent pronunciation

variants of the Spanish tap. Therefore, instead of modeling the mean IntDiff of all

taps together, we are modeling two means: one for a ‘reduced’ pronunciation variant

and another for an ‘unreduced’ variant.

Our first finite mixture model was comprised of two Gaussian distributions. This

model did a poor job of capturing the behavior of the left tail due to the strong

right skew created by the soft boundary of IntDiff at zero. We subsequently changed

the first component distribution to a skew-normal to account for this, which was

a large improvement, as evidenced by LOOIC. Our final model was a combination

of two skew-normal distributions, visualized in Figure 3.2 D, which was a small

improvement over the combination of a skew-normal and Gaussian (Figure 3.2 C).

The details regarding these comparisons, including the fitted models and LOOIC

estimates are included in the supplementary materials.

The priors for our finite mixture models were generally weakly-informative in the

context of Spanish taps. An exception to this was the priors on the intercepts of our

two distributions, which were chosen to fix what is referred to as a label-switching

problem (Jasra et al., 2005). This occurred because our two distributions overlapped,

which created bimodal posteriors as the sampler jumped between parameter values

for the two distributions. To allow the model to fit properly, we needed to use

domain knowledge in the form of non-exchangeable priors on the intercepts of the

two distributions (Betancourt, 2017) that state we expect the means of our reduced

and unreduced taps to be different. For further discussion of this issue and other

aspects of the modeling process, the reader is directed to our modeling supplement.

With finite mixture models, our predictors were now associated with changes in

the mean IntDiff for both reduced and unreduced taps. In addition, it is possible
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Figure 3.2: Posterior predictive checks visualized using density plots. Multiple sim-
ulated data sets from the fitted models are plotted in gray, and the observed hand-
corrected data is plotted in black. Top-left is a model with a Gaussian likelihood.
Top-right is a model with a skew-normal likelihood. Bottom-left is a mixture model
with skew-normal and Gaussian component distributions. Bottom-right is a mixture
model comprised of two skew-normal distributions.

in a finite mixture model to predict what are referred to as mixing proportions

(McLachlan et al., 2019). This can be thought of conceptually as a logistic regression

included as part of the overall model which estimates the probability of a tap being
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unreduced according to our predictors. We included this as if there are two variants of

the Spanish tap, it is plausible that our predictors could be related to the categorical

alternation between variants as well as gradient changes in IntDiff.

The modeling process described above was conducted with only the hand-corrected

data. As this data was responsible for choices made during the iterative model-

building process, we were concerned about over-fitting. To evaluate our model, we

randomly split the remaining 90% of the data into nine data sets comparable in

size to the hand-corrected data. This split was done because, for mixture models

exhibiting a label-switching problem, more data can overwhelm the priors used to

fix the issue (Betancourt, 2017).

Model comparison on these data sets indicated that moving from the skew-normal

and Gaussian mixture to a mixture of two skew-normal distributions was warranted.

So we proceeded with that model, comparing it to reduced models: one that only

contained phonetic variables, one that only contained lexical predictors, and a third

reduced model that only contained varying intercepts by speaker. We did this to gain

insight into whether Spanish tap variability was more predictable by lexical factors,

phonetic factors, or both.

In order to get estimates for our predictors that were informed by all of our data,

we entered the estimates from our hand-corrected model and eight cross-validation

models into a Bayesian meta-analysis (excluding one cross-validation model that

didn’t converge). We interpret our estimates against a Region of Practical Equiva-

lence (ROPE; Kruschke, 2018). This ROPE sets an upper and lower limit on effect

sizes that we would consider meaningfully different from zero, meaning we can con-

sider an effect to be practically null if our credible interval falls entirely within these

bounds.
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3.3 Results

We found a substantial amount of variability in Spanish tap production, echoing

previous findings. This variability is described and depicted in Section 3.3.1. We

also find that we can predict some of this variability using both lexical and phonetic

predictors, indicating that Spanish, like many other languages, shows both types of

patterns in speech production. Our models are reported in detail in Section 3.3.3.

3.3.1 Descriptive statistics

In the subset of our data that was hand-coded, true taps made up 21.6% of produc-

tions, approximant taps 28.8%, and perceptual taps 29.6%. Taps were deleted for

17.5% of cases and non-tap productions (mostly fricatives) made up the remaining

2.5%. The average duration of true taps was 28.8 ms (SD=8.2, range=10.0–81.3),

and the average duration of approximant taps was 24.9ms (SD=7.1, range=10.3–

65.7). These observations are plotted against IntDiff in Figure 3.3, where it can be

seen that the two variables are correlated (r=0.35), as previous findings would pre-

dict (Cohen Priva & Gleason, 2020), but that high and low IntDiff values are possible

for a large portion of duration values. The density distributions of IntDiff for the

four tap types are visualized in Figure 3.4, where we see the expected ordering of

IntDiff decreasing as taps become more reduced. The mean IntDiff of hand-corrected

data was 6.99 dB (SD=5.44, range=-1.23–34.35), and the mean IntDiff of the force-

aligned data (excluding observations that were hand-corrected) was 6.84 (SD=5.59,

range=-2.24–56.55).
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Figure 3.3: A scatter plot of manually-measured duration in milliseconds and IntDiff
in decibels for taps with a visible occlusion, i.e., true taps and approximant taps.

3.3.2 Evaluation of forced-aligned data

As approximately 10% of intervocalic taps had their boundaries hand-corrected, we

compared our measured values of IntDiff across the force-aligned and hand-corrected

boundaries. The measurements on the two sets of boundaries were almost perfectly

correlated (r = 0.98), and observations had the same value in 70.76% of cases. Most

errors were small; the 95% quantile range for the difference between measurements

spanned between -0.98 dB and 1.44 dB. Given this information, we were confident

that using our force-aligned data was preferable to ignoring the 90% of intervo-

calic taps from the corpus we did not hand-correct. Additional visualizations of

the comparison between force-aligned and hand-corrected data are available in the
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Figure 3.4: This figure shows separate density distributions of IntDiff in decibels for
each of the hand-coded tap types. The tap type is denoted by color and line type.

supplementary materials.

3.3.3 Modelling results

In this section, we present the results derived from the finite mixture model with a

likelihood comprised of two skew normal distributions, and its comparisons to other

models. Note that these models do not contain the two measures of conditional prob-

ability. Including these variables in the more complicated models often created model

fitting issues in the form of divergent transitions, possibly due to the concentration

of data in the low predictability areas. In fact, the sparsity of high-predictability

items may have made these effects unreliable and not worth interpreting, conver-

gence issues aside. On conditional probability, we suggest that future investigations
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Table 3.1: The percentages of tap types from the manual qualitative coding scheme,
rounded to 1 decimal point, that are found above and below 5.5 dB of IntDiff.

Tap type % below 5.5 dB % above 5.5 dB
True tap 1.5 39.5
Approximant tap 8 47
Perceptual tap 52.5 9
Deletion 36 0.5
Non-tap production 1.5 3.5

into this variable may be more successful with experimental data, where it can be

examined in a controlled way with several distinct lexical items.

Describing the two distributions

Our model’s estimated predicted performance improved by modeling IntDiff using

two distributions instead of one. Before we discuss model comparison and interpret

parameter values, we are going to analyze these two distributions in the context of

our hand-corrected data. In the density plot at the top of Figure 3.5, we plot the

two theoretical distributions from our fitted model. The vertical dashed line where

IntDiff equals 5.5 dB is the approximate location where observations from the two

distributions are equally probable. As this data was hand-coded for tap type, we

can look at the percentages of different hand-coded tap types above and below this

value of IntDiff, presented in Table 3.1.

So, where the reduced distribution is more likely, we see mostly perceptual taps

and deletions. To assess the idea that reduced taps were perceptual taps and dele-

tions while unreduced taps were true taps and approximants, we removed non-tap

productions from the data and then plotted the two empirical density distributions at

the bottom of Figure 3.5. We grouped together deleted and perceptual taps (green)

and approximant and true taps (blue). The high similarity between the two distribu-
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tions estimated by our model and the empirical distributions here support the idea

that there are two taps types in Spanish from the point of view of IntDiff. This is a

simplification, but we believe it is a useful one to make. It is possible that we could

improve our model by adding additional distributions, maybe even four, one for each

tap type plotted in Figure 3.4. However, two distributions were able to explain the

data adequately, and we did not want to increase model complexity without reason.

Comparison of sub-models

To learn about which types of factors were important for predicting variation in

Spanish tap production, we compared the model fit to hand-corrected data reported

in Section 3.3.4 to reduced models. We fit three reduced models: one with only

phonetic predictors, one with only lexical predictors, and one with only an intercept

that varied by speaker. Comparisons via LOOIC indicate that the full model had

better estimated out-of-sample predictive accuracy in the form of the expected log

predictive density (elpd) than both the phonetic model (elpd_diff = -31.6, se_diff

= 9.6) and the lexical model (elpd_diff = -53.2, se_diff = 12.1), indicating that the

model’s predictive power is improved by considering both phonetic and lexical factors.

The phonetic model was ranked second, but there was relatively weak evidence that

it outperforms the lexical model (elpd_diff = -21.7, se_diff = 13.7). All models

were improvements over the Intercept-only model. This is empirical support that

both phonetic-level properties (e.g., speech rate, surrounding segments) and lexical

information (e.g., lexical frequencies) are associated with variation in Spanish tap

production.
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Figure 3.5: Top: plotted are the theoretical density distributions for IntDiff from
our fitted finite mixture model with two skew-normal distributions. Bottom: plotted
are the empirical density distributions for IntDiff from the hand-corrected data, with
Deleted and Perceptual taps plotted in green and Approximant and True taps plotted
in blue. The vertical dashed black line is plotted at 5.5 dB in both plots.

3.3.4 Predictor estimates

For our set of population-level predictors, we can interpret how they are associated

with changes in three model parameters: the gradient changes in the mean IntDiff

of reduced taps and unreduced taps, as well as the changes in the probability of pro-
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ducing an unreduced tap. Thus, beyond the conditional means of two distributions,

we also have information about a categorical alternation. The estimates from the

meta-analyis are displayed in Figures 3.6, 3.7, and 3.8. We focus on interpreting

meta-analytic posteriors, as they make use of nearly an order of magnitude more

data and generally overlap with plausible values from the hand-corrected model.

For continuous predictors, the estimates have been multiplied by the range of the

predictor in the hand-corrected data to visualize the total change.

Our posteriors are visualized together with our ROPEs, plotted as a dashed

red line. Changes in mean IntDiff are visualized in decibels, and the ROPE for

these predictors has been set to the range between -0.5 dB and 0.5 dB. In other

words, effects resulting in a total change in IntDiff of less than half a decibel are not

considered meaningful in this context. This is motivated by two reasons. First, the

just noticeable difference for intensity is likely larger than 0.5 dB (e.g., Slade et al.,

2022). Second, the standard deviation of IntDiff was over 5, meaning 0.5 would be

considered a trivial effect size.

The ROPE for the probability of an unreduced tap is on the logit scale, and we

chose values between -0.2 and 0.2. Probability is not linear with the logit scale, but

this equates to saying that a change in log-odds that at most could equate to a 5%

change in the probability of an unreduced tap is something we consider too small to

be of practical significance for present purposes. If one wanted to incorporate any

of this information into a cognitive model of speech production, any change that is

reliably non-zero could be a meaningful component.

In our models, many predictors are associated with changes in the probability

of an unreduced tap being produced, visualized in Figure 3.6. We see differences

associated with the phonetic environment, lexical stress, speech rate, word length,

and unigram frequency. Speech rate, in particular, is associated with large changes
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in this probability, twice as large as any other predictor. If we take the posterior

mean, the change in the probability of an unreduced tap changes from 0.86 when

people are speaking at the slowest rates to 0.41 when people are speaking at the

fastest rate observed.

Unigram freq

Bigram freq. prev.

Bigram freq. fol.

Number of syllables

Local speech rate

Function word

Prev. stress

Fol. stress

Prev. vowel /i/

Prev. vowel /a/

Prev. vowel /o/

Prev. vowel /u/

Fol. vowel /i/

Fol. vowel /a/

Fol. vowel /o/

Fol. vowel /u/

−2 −1 0 1
Estimate (Change in log−odds of an unreduced tap)

Figure 3.6: Posterior distributions from the meta-analysis for changes in the prob-
ability of producing an unreduced tap, shown in log-odds. Draws from continuous
predictors were multiplied by the total range to visualize the total change between
the lowest and highest values. The shape is the mean of the posterior; the thick line
represents the most probable 80%, and the thin line represents the most probable
95%.

In contrast to the categorical alternation, most predictors were not associated

with meaningful changes in average IntDiff of reduced taps (Figure 3.7). The main

exception is speech rate, with faster speech being associated with increased reduction.

The effect of the following vowel being an /i/ as compared to an /e/ straddles the
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upper bound of our ROPE. This indicates that the model less than 80% confident

that the effect is meaningful.
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Figure 3.7: Posterior distributions from the meta-analysis for changes in average
IntDiff of reduced taps. Draws from continuous predictors were multiplied by the
total range to visualize the total change between the lowest and highest values. The
shape is the mean of the posterior; the thick line represents the most probable 80%,
and the thin line represents the most probable 95%.

Compared to the reduced taps, we are much more unsure of how our predictors

are associated with changes in unreduced taps. Figure 3.8 illustrates that many

posteriors from the meta-analysis overlap only partially with the ROPE. We are rea-

sonably confident that increased unigram frequency is associated with lower IntDiff

values, and that unreduced taps are more reduced before a following /u/ than before

a following /e/. We are more than 80% confident that increased speech rate leads to
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lower mean IntDiff values, but less than 95% confident.
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Figure 3.8: Posterior distributions from the meta-analysis for changes in average
IntDiff of unreduced taps. Draws from continuous predictors were multiplied by the
total range to visualize the total change between the lowest and highest values. The
shape is the mean of the posterior; the thick line represents the most probable 80%,
and the thin line represents the most probable 95%.

3.4 Discussion

The present study documented and modeled acoustic variation in the production of

intervocalic alveolar taps in a corpus of conversational Spanish from Madrid, Spain.

Similar to previous work on Spanish taps and stop-consonants in other languages,

there was a high degree of variability in the acoustic realizations, with stop-like

57



taps, approximants, and apparent deletions all being relatively common. We found

that statistical models that assumed two latent categories, which we interpret as two

pronunciation variants, improved our models’ predictive performance. We found that

both phonetic and lexical variables can help predict variation in intensity difference

(IntDiff) for Spanish taps.

Our descriptive analysis shows that our sample of Spanish taps is similar to

previous work along a number of dimensions. While previous studies have not focused

on conversational speech, studies using the most naturalistic elicitation methods (e.g.,

Bradley & Willis, 2012; Willis & Bradley, 2008) yielded percentages of different tap

types similar to the present study. Manually measured durations in taps with visible

occlusions are also consistent with measurements from other dialects and speaker

populations (Amengual, 2016; Bradley & Willis, 2012; Willis & Bradley, 2008). Our

distribution of IntDiff is also similar to the only other study we are aware of that has

measured this in Spanish (J. Y. Kim & Repiso-Puigdelliura, 2020), although we did

observe a larger overall range of values. This is not surprising as we analyzed more

tokens and speakers as well as a more casual speech style. In general, the data in our

sample is consistent with data reported from other dialects and speaker populations.

Our general result of increased reduction as word frequency increases adds to

the many studies with a similar effect (e.g., Jurafsky, Bell, Gregory, & Raymond,

2001; Pluymaekers et al., 2005). This finding is consistent with H&H Theory, as we

would expect familiarity with a word to influence how it is produced and recognized.

It is also consistent with claims of probabilistic reduction, as more frequent words

are more likely to occur in general. The effect of word frequency is also consistent

with the Smooth Signal Redundancy Hypothesis, as log word frequency was one

approximation of redundancy used by Aylett and Turk (2004). Exploring other

variables used as approximations of redundancy, informativity, and predictability
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would be a fruitful avenue for future research.

Some studies have found that high-frequency multi-word phrases are reduced in

production (Tremblay & Tucker, 2011) and processed faster (Arnon & Snider, 2010).

Our effects of bigram frequency were small, and while the 95% credible intervals

did not overlap with zero for predicting an unreduced tap, they did overlap with

the ROPE. Higher bigram frequency with the previous word was associated with

increased reduction, while higher bigram frequency with the following word was as-

sociated with decreased reduction. This could reflect the fact that these bigrams

function as a multi-word unit (Arnon & Cohen Priva, 2013; Kuiper et al., 2007), and

we see more reduction at the end of frequent two-word units, while enhancement oc-

curs at the beginning. Our finding of less reduction with increased bigram frequency

with the following word could also be a function of the level of measurement, and

previous findings of decreased word duration (e.g., Bell et al., 2009) if also present in

Spanish, may not entail reduction of all segments within a word as shown by findings

from D. Kim and Smith (2019) for English vowels.

Among our phonetic factors, we found increased reduction at faster speech rates,

consistent with articulatory undershoot (Lindblom, 1963). We also found more re-

duced variants following a stressed vowel than an unstressed vowel. As stress is

mainly related to F1 raising in Spanish (Hernandez et al., 2023; Torreira & Ernes-

tus, 2011), the lower position of the tongue or jaw means that, on average, a longer

distance would need to be covered when the previous vowel is stressed. Other differ-

ences based on the quality of the surrounding vowels support this idea, as a follow-

ing /i/ and preceding /u/ are also related to less reduction, while a preceding /a/

is associated with more reduction. As this effect of the phonetic environment was

inconsistent, happening only for certain high vowels, and the evidence is acoustic,

these articulatory explanations should be taken as preliminary.
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A second main finding of the present study is empirical support for two pronun-

ciation variants of the Spanish tap along the acoustic correlate IntDiff. The evidence

for this comes from the fact that a model assuming two latent categories provided

an improvement in the predictive accuracy of our model compared to models with a

single distribution. It is possible that there are more than two pronunciation vari-

ants, however, our goal was to create a parsimonious model that could account for

the data. Even our assumption of two pronunciation variants would be unnecessary

if a predictor could account for the observed bimodal distribution with a shift in the

mean of a single distribution. This effect would have to be approximately 8 dB, and

as none of our predictors had estimated effects this large, we have no hypotheses as

to what such a predictor could be. We make the claim of two variants along IntD-

iff, and believe an articulatory investigation into whether there are distinct tongue

movements would be a logical next step in testing this claim more generally.

A limitation of this study, shared with almost all studies that analyze spontaneous

speech, is that we did not appeal to a causal model when building and interpret-

ing our statistical models. This is problematic, as coefficients in multiple regression

may not estimate the same type of effect on the outcome (Westreich & Greenland,

2013) and therefore may not be intuitively interpretable. A shift toward causally

motivated analyses of spontaneous speech, as was done by Cohen Priva and Gleason

(2020), is appropriate given the observational nature of the data. Cohen Priva and

Gleason highlighted the clear advantage of causal models in having explicit scien-

tific assumptions drive analysis decisions and interpretation. Their simplified causal

model, which collapsed distinct factors (e.g., speech rate and word frequency) and

ignored the issues of unobserved confounds and measurement error, highlights the

difficulty of building causal models given the knowledge base of the field. Indeed,

even for pairs of variables with well-studied relationships, like frequency and word
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length, it would not be trivial to include them in a causal model, as some current

proposals have the link between them originating from an unconscious process of opti-

mal communication from an information-theoretic perspective (e.g., Ferrer-i-Cancho

et al., 2022; Kanwal et al., 2017). It is unclear whether this would be relevant to a

model of speech production or is a result of long-term cognitive pressures.

Although our interpretation of individual coefficients may be problematic, the

present study does provide evidence that both phonetic and lexical variables are

useful in predicting IntDiff. While prediction and causal inference are distinct tasks

(Arnold et al., 2020), we take this as evidence that some relationship exists between

our variables and tap variation, even if the specifics of the system render our co-

efficients uninterpretable. Further research into the networks of variables used for

modeling reduction would benefit from employing explicit causal models, as some

variables are used to calculate others (e.g., bigram frequency and conditional prob-

ability).

Prosodic variables are one of the other limitations of this study that future studies

could address. We did not prosodically annotate the corpus, and certain stressed

syllables may, in fact, have been de-stressed or stressed differently in our running

speech, and this was undoubtedly the case for some function words (e.g., pero).

Regarding function words, there are only four unique function words that contain

intervocalic taps, and as such the differences in tap production we find for function

words in this study should be interpreted cautiously.

The results of the present study are pertinent to another discussion involving

phonetic variability: the division between categorical alternations and continuous

reduction (or lenition) patterns. More of our predictors were associated with categor-

ical changes between pronunciation variants than gradient changes within variants.

We might be tempted to simplify and state that Spanish tap reduction is a cate-
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gorical alternation between pronunciation variants. In reality, we see both gradient

and categorical effects in our model. For Spanish taps, both types of variation are

happening, perhaps simultaneously. This was argued by Bürki et al. (2011) to be the

case for schwa deletion in French. Future perceptual studies investigating how this

type of categorical sub-phonemic variation impacts perception and word processing

would help shed light on the dynamics of the sound system as a whole.

Previous analyses of stop-consonant variability employing IntDiff have, implicitly

or explicitly, assumed it was a continuous reduction pattern during analysis. It is

difficult to know how often this assumption is supported by the data, or if gradient

and categorical patterns of stop variability occur for the same segment often cross-

linguistically. Spanish taps having two variants along IntDiff may be a rarity, and

a Gaussian likelihood may appropriately model variation in IntDiff for many stops

across many languages. It also may be that having multiple latent pronunciation

variants along continuous acoustic correlates is relatively common, and defaulting

to the same statistical models is preventing us from learning this. As reporting

and visualizing model diagnostics is not common, we cannot know how often IntDiff

requires a non-Gaussian likelihood to be modeled appropriately. It would be fruitful

to reanalyze previous data in order to see when statistical assumptions clearly depart

from the observed data. Doing so could potentially resolve contrasting findings

or uncover more nuanced patterns of acoustic variability, as the effects of various

predictors in our models depended on the model specification.

We see general utility in our modeling approach as a flexible option for modeling

acoustic correlates when distinct latent categories may apply. In hand-coded data,

such categories can be qualitatively analyzed, with categories being potentially added

as an independent variable to ameliorate poor model fits. However, for forced-aligned

data, which is common, finite mixture models allow us to let the model decide on
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the probability of an observation being in one category vs. others. This inclusion

of categorical and gradient effects on acoustic measurements could be applied to

diachronic sound change, looking at the shift towards one variant vs. the other and

the shift in baseline rates over time. This may be directly applicable to Spanish taps

in the coming years. The present study found higher lexical frequency is associated

with more reduced variants, similar to recent work on other varieties of Spanish,

which found a frequency effect for innovative trill variants (Pollock et al., 2023).

These findings are consistent with claims that lexical frequency is a potential driver

of sound change (e.g., Bybee, 2007; Bybee & Hopper, 2001; Hall et al., 2018), where

high-frequency words containing reduced variants lead to the reduced variant being

the default over time. In Spanish, a reduced tap could be an attempt at maintaining

the phonemic contrast with reduced trills in the intervocalic position. Future data

may shed light on how this potential change in progress develops.

3.5 Conclusion

The present study has documented and modeled Spanish tap variability in sponta-

neous, conversational speech. Our results echo previous findings of increased phonetic

reduction at increased frequency and speech rates. Our modeling approach indicates

that the Spanish tap has two pronunciation variants: unreduced taps that typically

have a visible occlusion on a spectrogram and reduced taps without such an occlu-

sion. Model comparisons indicate that lexical and phonetic variables help us predict

the acoustic variability of Spanish taps. Overall, our results contribute to the body

of knowledge regarding lexical and phonetic influences during speech production, as

well as depicting the type of variation in this sound that Spanish speakers encounter

on a daily basis.
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3.6 Data availability

The data and materials documenting the support of the findings of this study are

openly available in the University of Alberta’s Education and Resource Archive at

https://doi.org/10.7939/r3-66gq-mf49.
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Chapter 4

Word-medial tap reduction and

lexical processing in first- and

second-language Spanish listeners

4.1 Introduction

Spoken language is highly variable (e.g., Ernestus & Warner, 2011; Greenberg, 1999;

Johnson, 2004), and sounds that are characterized as stop-consonants in linguistics

are often realized differently in the spontaneous, casual speech that one encounters

daily. These realizations may include fricatives, approximants, and apparent dele-

tions, and work on stops in several languages has found this process, call reduction,

to be a common occurrence (e.g., Barry & Andreeva, 2001; Katz & Pitzanti, 2019;

Mukai, 2020; Warner & Tucker, 2011). As the variability associated with reduction

is ubiquitous in the speech we encounter daily (Warner, 2023), we cannot adequately

understand the processes involved in spoken word recognition without incorporating
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the variability we observe in spontaneous speech (Tucker & Ernestus, 2016). The

present study investigates how the reduction of word-medial alveolar taps (hereafter

taps) affects spoken word recognition in first-language (L1) and second-language (L2)

listeners of Spanish.

Spanish taps are highly variable across several varieties and speaker populations

(Bradley & Willis, 2012; Henriksen, 2015; J. Y. Kim & Repiso-Puigdelliura, 2020;

Perry et al., 2024; Willis & Bradley, 2008). Realizations of taps in these studies have

been qualitatively coded into discrete variants based on their visual appearance in

a spectrogram, visualized in figure 4.1. Variants include stop-like ‘true taps,’ which

have stop closures and burst releases (Figure 4.1 A), ‘approximant taps’ that have

a visible presence but without breaks in the formant structure (Figure 4.1 B), and

‘perceptual taps,’ which are nearly elided tokens without a visible presence in a spec-

trogram (Figure 4.1 C). Some studies also code deletions and non-tap productions

(e.g., J. Y. Kim & Repiso-Puigdelliura, 2020; Perry et al., 2024), which are not di-

rectly relevant to the present study. Research that has focused on analyzing elicited

narration data and spontaneous speech reports that perceptual taps and apparent

deletions make up approximately half of all taps that L1 Spanish speakers produce

(Bradley & Willis, 2012; Perry et al., 2024; Willis & Bradley, 2008). While this

sub-phonemic variation has been documented in production, we are unaware of any

studies that have investigated how this variability impacts the recognition of words.

There is a wide range of phonetic variability that can be considered reduction,

but reduced segments are generally less acoustically salient than their unreduced

counterparts. This can come in the form of decreased duration (e.g., Bürki et al.,

2011; Cohen Priva & Gleason, 2020; Warner & Tucker, 2011), more centralized

vowels (e.g., Aylett & Turk, 2006; Munson & Solomon, 2004; Wright, 2004), smaller

intensity drops during consonants (e.g., Perry et al., 2024; Warner & Tucker, 2011),
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(A) (B) (C)

Figure 4.1: Spectrograms of spontaneously produced taps from the Nijmegen Corpus
of Casual Spanish. The intensity curve is overlaid on each spectrogram using the
same scale, with decibel values indicated on the right vertical axis. Panel A is a true
tap, panel B is an approximant tap, and panel C is a perceptual tap.

and higher probabilities of being deleted (e.g., Jurafsky, Bell, Gregory, & Raymond,

2001). Many previous studies that have investigated how we process and recognize

reduced speech have found that reduction is an inhibitory factor (e.g., Ernestus et

al., 2002; Ernestus & Baayen, 2007; Mukai, 2020; Pitt, 2009; Ranbom & Connine,

2007; Tucker, 2011; Wanrooij & Raijmakers, 2020). This can come in the form of

slower and less accurate responses in lexical decision (e.g., Ernestus & Baayen, 2007;

Tucker, 2011), increased pupil dilation during lexical retrieval (Mukai et al., 2023),

and less accurate orthographic transcriptions of recorded audio (e.g., Ernestus et al.,

2002; Wanrooij & Raijmakers, 2020).

In contrast to the research findings on the inhibitory effects of reduction, some

research has also documented a facilitatory effect of reduction (McLennan et al.,

2003; van de Ven & Ernestus, 2018). van de Ven and Ernestus (2018) explain their

results through methodological differences, pointing out that studies finding an in-

hibitory effect of reduction generally investigate the recognition of isolated words,

while their study provided some of the surrounding context, which is known to aid
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the recognition of reduced forms (Ernestus et al., 2002). In contrast, the apparent

advantage of ‘casual’ over ‘careful’ pronunciations found by McLennan et al. (2003)

can be attributed to a terminological difference when looking at the phonetic prop-

erties of the stimuli used (Tucker & Mukai, 2023). Inhibitory effects of reduction for

the American English flap were reported by Tucker (2011) while McLennan et al.

(2003) found a facilitatory effect of casual (vs. careful) pronunciation in the same

phoneme. These two studies are not, in fact, in disagreement, because all items in

Tucker (2011) were flaps while McLennan et al. (2003) compared flaps to hyperartic-

ulated /t/ productions. This demonstrates the need for researchers to be clear about

the phonetic nature of the stimuli they are comparing, as determining what consti-

tutes a ‘reduced’ production of a segment is not always clear. For related reasons,

an acoustic analysis of the stimuli used in perception experiments helps contextual-

ize results and facilitate comparisons across different studies, as the same phonetic

‘label’ can correspond to a wide variety of acoustic measurements.

While there are several studies documenting the variability of Spanish taps, it is

not clear as to what should constitute a ‘reduced’ tap in Spanish. If we consider that

the tap can be produced with a stop closure and burst release, meaning the vocal

tract is completely obstructed, then any variant of this sound where that does not

happen could be considered to be reduced. A point in favour of this is that Amengual

(2016) found Spanish-dominant heritage speakers overwhelmingly produced true taps

in read speech elicited with carrier sentences. This shows that in a situation where

one would be most likely to enunciate carefully, a true tap is much more likely

than any other variant. A counterargument can be found in work on more natural

speech styles, which finds that true taps constitute the minority of productions (e.g.,

Bradley & Willis, 2012; J. Y. Kim & Repiso-Puigdelliura, 2020; Perry et al., 2024;

Willis & Bradley, 2008). Perry et al. (2024) found that true taps and approximant
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taps pattern together in terms of their intensity difference (IntDiff), while perceptual

taps and deletions were best characterized by a separate distribution, and interpreted

this as evidence that there are two pronunciation variants of the Spanish tap, at least

along the acoustic correlate of IntDiff. Based on this production data, perceptual

taps would count as reduced in Spanish, but approximant taps would not. Additional

support for the idea that approximant taps may not count as reduced is that the

duration of true and approximant taps are well-characterized by a single lognormal

distribution (Perry et al., 2023) and that J. Y. Kim and Repiso-Puigdelliura (2020)

coded both true and approximant taps as ‘target-like’ when looking at variation in

tap production by heritage speakers of Spanish from southern California.

Another factor related to phonetic variability that has been shown to impact spo-

ken word recognition is the frequency of occurrence of a pronunciation variant. In

spontaneous speech, and therefore in the input that language users are exposed to,

different possible realizations of segments occur at different frequencies (see Tucker

& Mukai, 2023, and references therein). The frequency of occurrence of a pronunci-

ation variant has been shown to be a facilitatory factor in a variety of experimental

tasks (e.g., Brand & Ernestus, 2018; Bürki & Frauenfelder, 2012; Bürki et al., 2018;

Connine et al., 2008; Pitt et al., 2011), with the general findings being faster and

more accurate responses for more frequent variants. Thus, there are two separate is-

sues concerning phonetic variability that we must consider when looking into spoken

word recognition. As researchers have observed reduction in all languages stud-

ied (Warner, 2023), and frequencies of pronunciation variants for different segments

occur at different rates for different languages (e.g., Broś et al., 2021; Warner &

Tucker, 2011), we need to gather empirical and experimental evidence from as many

languages as possible in order to tease apart how these two factors impact spoken

word recognition.
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So far, we have focused on how reduction is perceived and processed by L1 speak-

ers of the language. These are language users who have had substantial exposure to

the language that began early in life, where input may have differed (Dilley et al.,

2019). Compared to work on L1 listeners, there has been much less work done on how

L2 listeners perceive and process reduced speech. Findings generally indicate that

L2 listeners have a harder time recognizing reduced speech than L1 listeners (e.g.,

Ernestus, Dikmans, & Giezenaar, 2017; Ernestus, Kouwenhoven, & van Mulken,

2017; Wanrooij & Raijmakers, 2021). This is generally assumed to reflect a lack

of sufficient experience with the language (e.g., Morano et al., 2023; Wanrooij &

Raijmakers, 2021). Wanrooij and Raijmakers (2020) put forward evidence that even

L1 German adolescents perceived reduced speech less accurately than L1 German

adults, indicating that it can take a considerable amount of input and practice to

process reduced forms. When we consider the fact that classroom L2 learners may

be exposed to less reduced variants of words, the findings of a larger inhibitory effect

of reduction in L2 learners are not surprising.

Compared to work on reduction and L2 listeners, L2 and non-native spoken word

recognition, in general, has a much larger body of research (Warner, 2023). Studies

typically report that L2 listeners are slower and less accurate overall as compared to

L1 listeners (e.g., Díaz et al., 2012; Nijveld et al., 2022). Within L2 listeners, studies

on individual differences have shown that the speed and accuracy of recognition of

spoken language improve as their proficiency increases and their amount or length

of exposure to the L2 increases (see Grosjean, 2018, and references therein). Beyond

these overall differences, cross-linguistic effects on spoken word recognition are well

documented (e.g., Llompart et al., 2021; Weber & Cutler, 2004), which show that

properties of the L1 sound system impact how words are recognized in the L2.

The goal of the present study is to add to the body of literature regarding reduc-
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tion and spoken word recognition, offering data from Spanish, which is a language

that has received less attention in the literature. We also included L2 listeners in our

study, in order to add to the body of research on how reduced speech impacts lexical

access in L2 listeners and evaluate whether differences between L1 and L2 learners

in Spanish may be able to inform models of bilingual spoken word recognition. The

research questions that guide the present study are:

• RQ1: How does tap reduction impact the speed and accuracy of spoken word

recognition in L1 and L2 Spanish listeners?

• RQ2: Does accounting for specific tap realizations based on previous literature

lead to different patterns in reaction times and accuracy compared to assuming

all lenited variants are reduced?

• RQ3: Does predicting responses by a continuous measure of reduction (as in

Tucker, 2011) work better than a categorical variable?

Considering the frequency of reduced taps in Spanish, both L1 and L2 speakers

must learn to recognize words containing reduced taps in order to communicate suc-

cessfully. However, this doesn’t mean that words with reduced taps won’t take longer

to recognize or are not identified less accurately when heard in isolation, as demon-

strated by the research on the effect for L1 speakers (e.g., Ernestus & Baayen, 2007;

Tucker, 2011). Based on previous research, we expect words containing reduced taps

to be recognized more slowly and less accurately than words containing unreduced

taps (Ernestus et al., 2002; Ernestus & Baayen, 2007; Mukai, 2020; Pitt, 2009; Ran-

bom & Connine, 2007; Tucker, 2011; Wanrooij & Raijmakers, 2020), and this differ-

ence will be larger for L2 listeners (Ernestus, Dikmans, & Giezenaar, 2017; Ernestus,

Kouwenhoven, & van Mulken, 2017; Wanrooij & Raijmakers, 2021). Related to the
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second research question, we believe that it may be the case that we only see differ-

ences with perceptual taps, which are more highly reduced than approximant taps

and have been shown to pattern differently than true taps and approximant taps in

terms of their intensity difference (Perry et al., 2024). Regarding the third and final

research question, we have reason to believe that using a continuous measurement

of reduction, which is based on the acoustic signal, could be able to provide a more

fine-grained measurement of the stimuli, allowing us to predict responses better.

4.2 Methods

4.2.1 Participants

This study collected data from 168 participants who reported being L1 speakers of

either Spanish (n=83) or English (n=85). Participant recruitment began with direct

recruitment via email and moved to Prolific shortly thereafter. Four English L1

participants were removed for not indicating handedness properly at the beginning

of the study. We removed 4 Spanish L1 and 8 English L1 participants due to having

more than 16 non-responses in the data, a cutoff determined by examining the overall

distribution of missing responses per participant. We removed participants that

had an overall accuracy rate below 66%, which was the case for 18 English and

2 Spanish L1 participants. This accuracy cutoff was decided upon by looking at

the overall distribution of accuracy rates and wanting participants who were, in

general, responding correctly more often than not. It is also similar to the exclusion

criterion of 60% employed by Tucker et al. (2019). Employing more strict cutoffs

would exclude the majority of L2 listeners. Regarding the percentage of English

participants who were removed for low accuracy rates, the ethical protocol stipulated
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Figure 4.2: Plots of participant-level information regarding age at the time of the
experiment (A), overall accuracy for all items, including fillers (B), self-rated profi-
ciency in Spanish on a scale of 1-5 (C). D visualizes only L1 English participants’
Spanish age of onset, their length of exposure to Spanish, and their length of resi-
dence in a Spanish-speaking country.

clearly that participants would receive compensation regardless of their performance

or completion of the experiment, which we believe led to some participants either

not responding or guessing, that is to say, that they were not truly engaging in the

experimental task.

The participants whose data we analyzed (N=132) were Spanish L1 speakers

(n=77, 62 from Spain) and English L1 speakers (n=55, 38 from USA). Participant

age, overall mean accuracy, and self-rated proficiency in Spanish are visualized in

Figure 4.2 for all participants. Figure 4.2 D visualizes Spanish Age of onset, length
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of exposure, and length of residence in a Spanish-speaking country for the English L1

participants only. L1 Spanish participants were between 20 and 59 years of age at the

time of testing (mean = 35.6, SD = 10.4), while L1 English participants were between

19 and 73 years of age (mean = 33.7, SD = 13.8). Overall, in all items, L1 Spanish

participants had an average mean accuracy of 89.7% (SD = 5.4%), and L1 English

participants had an average mean accuracy of 78.7% (SD = 7.1%). All L1 Spanish

participants reported a self-rated proficiency of 5, while L1 English participants were

much more variable, with 74% of participants responding either 3 or 4, 9.5% with

a 2, and 16.4% with a 5. English L1 participants started learning Spanish between

birth and 62 years (mean = 13.0, SD = 10.6) and had been speaking Spanish between

2 and 54 years (mean = 20.7, SD = 11.5). Forty percent of L1 English participants

had never lived in a Spanish-speaking country, and the maximum number of years

was 24 (mean = 3.7, SD = 6.6). For additional details regarding the participants

whose data we analyzed, including handedness, country of origin, and whether that

participant was born or lived in Madrid, the reader is directed to supplementary

materials, where a participant-level data file is available.

4.2.2 Materials

Stimuli creation

The selection of target words began by taking bisyllabic words containing a word-

medial tap from the Nijmegen Corpus of Casual Spanish (Torreira & Ernestus, 2010)

in which the range of values for the intensity difference (IntDiff) between the average

of the surrounding vowels and the minimum during the tap was at least 5dB. This

meant we were sure these words were produced in casual speech with a fair amount

of variability. If two words came from the same lemma, one was randomly chosen
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to be included as a target word, although this did leave homophones in the list that

could have come from the same lemma. This process left us with 40 words we were

certain were produced variably, which we supplemented with an additional 13 words

containing word-medial taps. The target experimental items (n=48) for the present

study were those that were produced by our speaker during recording with a token of

a true tap and a token of either an approximant or a perceptual tap. Two words from

the initial list were not produced with a true tap, and three were never produced

as anything other than a true tap. Our real-word fillers were chosen by taking a

random subset of two-syllable words from the same corpus that did not contain an

intervocalic tap.

We generated our pseudowords using the Wuggy software (Keuleers & Brysbaert,

2010). We provided the software with the list of the two-syllable words from the Ni-

jmegen Corpus of Casual Spanish that were not used as fillers in order to generate

two-syllable pseudowords. We randomly chose a subset of the candidate pseudowords

generated by Wuggy after confirming that they were not in the dictionary. In ad-

dition to the pseudoword fillers, we flagged generated pseudowords that contained

word-medial taps. We included the same number of pseudoword distractors contain-

ing word-medial taps to prevent the presence of the tap from being a clue to the item

being a word. Half of these distractors contained reduced taps (approximant or per-

ceptual taps), and the other contained unreduced taps (true taps). The final counts

in each list were 48 real target words containing a word-medial tap, 48 pseudoword

distractors containing a word-medial tap, 152 real-word fillers and 152 pseudoword

fillers for a total of 400 trials.
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Stimuli recording and preparation

All stimuli for the auditory lexical decision task were recorded by a male L1 Spanish

speaker from Madrid residing in Canada at the time of recording. He was pre-

sented with all words and pseudowords in orthographic form and recorded using

a head-mounted microphone in a sound-attenuated booth. He was presented with

randomized lists of either words or pseudowords. For some lists, he was asked to

read out loud while clearly enunciating, while for others he was asked to read as

naturally as possible in order to get variation in his productions. Our filler items

included actual words carefully enunciated (n=76) and produced naturally (n=76),

as well as pseudowords produced carefully (n=81) and produced as naturally as pos-

sible (n=71). This was done to further obscure the variation in the pronunciation of

our target items by making both careful and natural pronunciations something that

varied constantly throughout all items heard by participants.

After the recording of our speaker, we had twenty target words where the to-

kens produced included all three pronunciation variants from previous production

research: true taps, approximant taps, and perceptual taps. As we considered the

possibility that differences might lie between true/approximant taps and perceptual

taps based on recent production studies (J. Y. Kim & Repiso-Puigdelliura, 2020;

Perry et al., 2024), we randomly assigned 10 of these to have approximants for the

reduced category while the other ten had perceptual taps for the reduced category.

This subset of 20 items was used for an additional planned analysis where we mod-

elled the three categories separately.

To create our experimental lists, we first placed all non-target items in random

order. Then, target items were placed between two pseudowords so that, no matter

the order of presentation, each target word would be preceded by a pseudoword.
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The Condition (Reduced vs. Unreduced) of each target item was counterbalanced

across lists 1 and 2, with each list having 24 reduced and 24 unreduced items. Lists

1 and 2 then had their order of presentation reversed to create lists 3 and 4. For

each participant, an experimental list was randomly assigned. For a full listing of

the words of each experimental list, the reader is directed to the supplementary

materials. The target items are listed in the appendix.

Acoustic analysis of target items

We visualize the results of an acoustic analysis of the stimuli in Figure 4.3 along

with a word frequency comparison between our target items and comparable words

from the Nijmegen Corpus of Casual Spanish. This included a qualitative coding

of each realized tap as either a true tap, approximant tap, or perceptual tap. After

manual coding and boundary placement were completed by the first author, acoustic

measurements were taken automatically using a custom script in Praat (Boersma &

Weenink, 2022). The IntDiff according to Condition and tap type are visualized in

Figure 4.3 A and B. Also plotted in these two panels is the density distribution of

IntDiff for two-syllable words from the Nijmegen Corpus of Casual Spanish, which

was taken from the data included in the supplementary materials from Perry et al.

(2024). In Figure 4.3 A, we see the mode of both the ‘reduced’ and ‘unreduced’

stimuli is larger than the mode from spontaneous speech data, while in Figure 4.3

B the perceptual taps more closely align with this peak. In comparison to IntDiff,

where we see differences by Condition and tap type, the overall word duration split

by these variables is quite similar (visualized in Figure 4.3 C/D). We also see the

lexical (unigram) frequency of our target items plotted against the lexical frequency

of all two-syllable words in the Nijmegen Corpus of Casual Spanish in Figure 4.3 E,
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where we see that the spread of our items covers a similar range compared to the

general distribution of words of this length.

Figure 4.3: Visualizations of item-level properties across conditions, with compar-
isons to corpus data when applicable. Panel A is a density plot split by Condition:
Reduced vs Unreduced taps. The gray dashed line in the density distribution of
IntDiff from two-syllable words from the corpus data. Panel B is the IntDiff from
the taps in our target stimuli split by the type of tap. TT are true taps, AT are
approximant taps, and PT are perceptual taps. The gray dashed line in the density
distribution of IntDiff from two-syllable words from the corpus data. Panels C and D
show the total word duration of the target stimuli split by Condition and tap type,
respectively.
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4.2.3 Procedure

Our auditory lexical decision experiment was run on a university server using jsPsych

(de Leeuw, 2015). Data collection began by contacting university departments in

Canada, the United States, and Spain, and asking them to forward the recruitment

email. Due to slow data collection, participant recruitment was moved to Prolific,

where data collection was completed. Participants first completed a short question-

naire that was designed to gather basic information regarding their Spanish language

background and self-reported proficiency.

4.2.4 Statistical analysis

In this section, we outline the planned analyses that were chosen before collecting

the data. The exploratory analyses that were conducted after seeing the results from

the analyses described below are described along with the results in Section 4.3.4.

Additional information on all analyses, including the data and code used to produce

them, are available in the supplementary materials.

The primary analysis involved analyzing reaction times and accuracy based on

Condition (unreduced vs. reduced) and L1 (Spanish vs. English) and included all of

our target words (N=48). For this first set of models, the unreduced taps were all true

taps, while the reduced category was comprised of approximant taps and perceptual

taps. We fit hierarchical generalized linear models in a Bayesian framework using

package brms (Bürkner, 2017) in R (R Core Team, 2021). Models of reaction times

for correct responses used a shifted lognormal distribution as the likelihood as in

Ciaccio and Veríssimo (2022), as this more closely resembles our assumptions about

human reaction times. Models of accuracy used a Bernoulli distribution with a logit

link as the likelihood in order to model the probability of a correct response. Priors
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for our models were based on prior predictive simulations that began with values

from similar models fit to data taken from the Massive Auditory Lexical Decision

database (Tucker et al., 2019).

The model predicting reaction times predicted the conditional mean by the inter-

action of Condition and L1 as the main predictors of interest, which were sum-coded

into the model. We also included word duration in milliseconds and word frequency

as control variables, which were both log-transformed. Group-level effects included

varying intercepts for listener and word, as well as correlated random slopes for

Condition by Participant and Condition and L1 by Word. In addition to predicting

changes in the conditional mean, we also predicted changes in the σ parameter, al-

lowing us to model non-constant variance. We allowed the variance of our lognormal

distribution to vary by L1, as we were not willing to assume a priori that the vari-

ability of L1 and L2 listeners was equal. We also included varying intercepts on σ by

Participant and Word, as we expected that the amount of variation in reaction times

would vary for different items and listeners. The model predicting accuracy included

the same specification as the model for the conditional mean of reaction time. Priors

for our model were weakly informative in the context of lexical decision, serving to

provide a small amount of regularization. The priors for the reaction time models

constrained the majority of expected reaction times to a reasonable range between

250 and 4000ms, while the priors for the accuracy model served to limit the model

to mostly being above chance. Both of the models described above were also fit with

an alternative set of priors that provided less information to the model, with the

resulting posteriors being highly similar across different sets of prior assumptions.

While we will include both L1 and L2 listeners in the same statistical models

during analysis, the primary function of the Spanish L1 group is not a control group.

We currently do not have empirical data on how phonetic variability of this sound
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impacts spoken word recognition for any group of listeners, so providing empirical

evidence for both groups is needed. As such, we include the interaction between the

L1 group and our experimental variable to allow for the interpretation of how reduc-

tion impacts each group separately. This is not to say we won’t look at comparisons

between groups in our model, as we do believe that the differences in language ex-

perience between L1 and L2 listeners is a valuable source of information for learning

about the general process of spoken word recognition.

Tap type analysis

As mentioned above, for twenty of our target words, our speaker produced tokens

of all three tap types: true taps, approximant taps, and perceptual taps. For these

twenty words, we randomly selected 10 of them to have approximant taps as the

reduced variant and the other 10 to have perceptual taps. We ran new versions of

the models from the previous section, swapping out Condition for tap type. We had

two reasons for conducting this analysis. The first was recent work on tap produc-

tion where true taps and approximant taps patterned together along the acoustic

correlate of IntDiff (Perry et al., 2024), in which the more reduced perceptual taps

and deletions were characterized as a separate pronunciation variant. The second is

that spontaneous productions have a peak in the distribution with low IntDiff values,

which our perceptual taps approximate but which our ‘reduced’ items do not. For

these reasons, we thought that differences in lexical processing may only be apparent

for highly-reduced perceptual taps.
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A continuous measure of reduction

The last facet of our planned analysis was removing our categorical coding of ‘Con-

dition’ for indicating whether a tap was reduced or not and replacing it with a

continuous measurement of reduction as was done by Tucker (2011). For this model,

the same models described in Section 4.2.4 were run, but with IntDiff replacing

Condition. IntDiff was the difference in intensity in decibels between the average

maximum of the two surrounding vowels and the minimum intensity during the tap.

This variable was scaled and centered before modelling.

4.3 Results

In this section, we provide the interpretation of the models that were fit to examine

how tap reduction affects spoken word recognition in L1 and L2 Spanish listeners. To

aid in this endeavour, we provide visualizations of model-based predictions that have

been back-transformed to more intuitively understandable units. We also report the

conditional effects from the model summaries, which are the effects for an average

item and listener. Where appropriate, we further probe interactions with the use

of package emmeans (Lenth, 2021), and provide the 95% highest posterior density

intervals for relevant contrasts as calculated by the emmeans() function. Many ad-

ditional details regarding the interpretation of these models, including visualizations

of posterior distributions, can be found in the modelling supplement.

4.3.1 Reduced vs unreduced

The initial models fit to analyze Condition contained 6,303 responses (accuracy

model) and 5,483 responses (reaction time model). The model-based predictions
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in Figure 4.4 are for an average item and participant. The predicted reaction times

in milliseconds by L1 and Condition are visualized in Figure 4.4 A. The predicted

probabilities of a correct response by L1 and Condition are visualized in Figure 4.4

B. We have a main effect of L1 for both reaction time and accuracy of spoken word

recognition. L1 English speakers respond more slowly than L1 Spanish listeners (β̂

= 0.12, 89% CI = 0.07–0.18) and with a lower probability of responding correctly

(β̂ = -0.86, 89% CI = -1.19 – -0.52). The main effect of Condition was uncertain

in both models, leaving us uncertain as to whether there was an effect in terms of

reaction time (β̂ = 0.00, 89% CI = -0.01–0.02) or accuracy (β̂ = -0.19, 89% CI =

-0.47–0.11).

The interaction between Condition and L1 in the reaction time model was uncer-

tain and centered at zero (β̂ = -0.00, 89% CI = -0.03–0.02), indicating we do not have

evidence that the effect of reduction was different for the two L1 groups. In contrast,

we are confident that the effect of reduction on accuracy was different for the two

groups (β̂ = 0.50, 89% CI = 0.19–0.81), with more than 99.9% of the posterior being

over zero. Further exploration of the interaction using emmeans showed that the

95% highest posterior density interval for the effect of Condition does not include

zero for the Spanish L1 group (lower HPD = -0.842, upper HPD = -0.0299) while the

same interval for the L1 English group straddles zero (lower HPD = -0.354, upper

HPD = 0.4727). We, therefore, have evidence that words containing unreduced taps

are recognized more accurately by L1 listeners and that their behaviour differs from

L2 listeners who do not show this effect.

83



Figure 4.4: Model-based predictions for the interaction between Condition and L1
group from the full model with all items. Values visualized the average effects. Plot
A reaction times back-transformed from log scale to milliseconds, visualizing model
predictions for an average word and participant. Plot B shows the probability of a
correct response back-transformed from log-odds to probability for an average word
and participant.

4.3.2 Tap type

The models fit to analyze tap type contained 2,627 responses (accuracy model) and

2,252 responses (reaction time model). Predicted reaction times by tap type and L1

are visualized in Figure 4.5 A. In this model, as with the initial model, we have a

main effect of L1, with L1 English listeners being slower to respond than L1 Spanish

listeners (β̂ = 0.19, 89% CI = 0.10–0.28). Pairwise comparisons between the three

levels of tap type, split by L1 group, are visualized in Figure 4.5 B, where we can

see that we are more than 95% confident that both L1 and L2 listeners are faster to

process words containing true taps as compared to perceptual taps. Based on the
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interaction terms in our model, we do not have evidence that the differences between

tap types differ according to L1 group (β̂Tap_type1:L11 = -0.03, 89% CI = -0.12–0.06,

β̂Tap_type2:L11 = 0.02, 89% CI = -0.09–0.13).

Predicted probabilities of a correct response by tap type and L1 group are visual-

ized in Figure 4.6 A. Echoing the results of the model with all items, we have a main

effect of L1, with L1 English listeners having a lower probability of a correct response

overall compared to L1 Spanish listeners (β̂ = -0.80, 89% CI = -1.23– -0.36).

For this model, we did have some weaker evidence that the differences between

tap type may be different for the two L1 groups (β̂Tap_type1:L11 = -0.56, 89% CI =

-1.14– -0.06, β̂Tap_type2:L11 = 0.66, 89% CI = -0.08–1.41). This can be seen in the

pairwise differences between the three tap types visualized in Figure 4.6 B, split

by L1 group. We are more than 95% confident that there is a difference between

true taps and perceptual taps in terms of recognition accuracy by both L1 and L2

listeners, and that L1 English listeners are more heavily inhibited by the presence of

a perceptual tap compared to an approximant tap.

4.3.3 A continuous measurement of reduction

As part of our planned analysis, we replaced Condition with a continuous measure-

ment of reduction: IntDiff, based on Tucker (2011), and fit the model to the full

data set. The main effect of IntDiff was uncertain and had the bulk of the posterior

near zero for both the reaction time model (β̂ = -0.00, 89% CI = -0.02–0.01) and

the accuracy model (β̂ = -0.02, 89% CI = -0.41–0.38). Additionally, the interaction

of IntDiff with L1 group was uncertain in both the reaction time model (β̂ = -0.00,

89% CI = -0.02–0.01) and the accuracy model (β̂ = -0.13, 89% CI = -0.36–0.09).
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Figure 4.5: Model-based predictions for the interaction between Condition and L1
group from the subset model with the 20 items. Values visualized are model pre-
dictions for an average item and participant. Plot (a) shows average reaction times
back-transformed from log scale to milliseconds. Plot (b) shows the probability of a
correct response back-transformed from log-odds to probability. In the legend, TT
is True tap, AT is approximant tap, and PT is perceptual tap.

4.3.4 Exploratory analysis

After conducting the planned stages of our analysis, we were left with two poten-

tially conflicting pieces of information that we attempted to delve further into with

exploratory models. The first was that we did not observe an effect of IntDiff, con-

trary to our expectations. The second was that we did observe an effect of tap type

in a subset of our items, and our acoustic analysis indicated that these taps differed

considerably in terms of IntDiff - an acoustic correlate that has been demonstrated

to be relevant to the perception of the English flap (Warner et al., 2009), which is

a similar sound in many respects. We fit two additional sets of models in order to
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Figure 4.6: A: Model-based predictions for the probability of a correct response be-
tween tap type and L1 from the subset model with the 20 items. Values visualized
are marginal effects back-transformed onto the probability scale. B: Pairwise com-
parisons between the three levels of tap type for each L1 group. In the legend, TT
is True tap, AT is approximant tap, and PT is perceptual tap.

explore these results further and attempt to provide additional focus for the direction

of future studies.

The first set of models explores the effect of what we will refer to as an ‘expected

production’, which can be thought of as a continuous variable related to variant

frequency. The expected production is based on the measurements of IntDiff from

spontaneous speech data and is calculated on a per-word basis. The idea for this

comes from the previous studies that have found effects of the frequency of occurrence

for pronunciation variants on word recognition (Bürki et al., 2018; Pitt, 2009). We

thought that if raw IntDiff values were not associated with changes in lexical access,

what may influence the recognition of these words is how frequent or typical the
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pronunciation of the tap was for each word in our stimuli. To evaluate this idea, we

compared the IntDiff value of each tap in our stimuli to measures of central tendency

for IntDiff from the same word in spontaneous speech using the publicly-available

corpus data from Perry et al. (2024).

In Figure 4.7, we see the distribution of IntDiff values from the Nijmegen Corpus

of Causal Spanish for two words from our stimuli: ‘caro’ (expensive) and ‘era’ (it

was). We also visualize three different measures of central tendency along with the

density distributions: the mean IntDiff, the median IntDiff, and the mode IntDiff as

estimated using the meanshift method as implemented in package modeest (Poncet,

2019). For relatively symmetrical distributions, like the one for the word ‘caro’, all

three measures are similar. For skewed distributions, the three different measures

can diverge, as is the case for the word ‘era’.

We calculated the absolute difference in decibels between the IntDiff in our stimuli

and the mean, median, and mode for their respective words. We then fit three models

predicting reaction time and three predicting accuracy, replacing Condition with the

measure of distance from the central tendency measure from the corpus. We included

only words for which we had at least 10 measurements from the corpus data, which

was 21 distinct words that are naturally skewed toward higher-frequency items (see

Appendix for a visualization of word frequency in different subsets). The accuracy

models were fit to a total of 2,758 observations and the reaction time models to 2,419

observations. As these models were exploratory in nature, we did not include varying

slopes.

The effect of distance from an expected production on reaction times and ac-

curacy according to which measure of central tendency was used are presented in

Figure 4.8. Across all three measures of central tendency, both English and Spanish

L1 listeners were slower to recognize productions that were farther away from the
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Figure 4.7: Two examples of the distribution of IntDiff values from intervocalic taps
in the Nijmegen Corpus of Casual Spanish. The mean, median, and estimated model
are plotted on the density distribution by color and line type.

expected production from the corpus. For each of the three models, the main effect

of distance from an expected production had more than 99.9% of the posterior on the

positive side of zero. Split by L1 group, the 95% highest posterior intervals estimated

by emmeans() did not include zero for either L1 English or L1 Spanish listeners. The

credible intervals for the interaction terms between the distance measure and the L1

group in the three models were also highly uncertain, indicating that we do not have

evidence that this effect differs across our two groups.
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Figure 4.8: The predicted effect of distance from an expected production on reaction
times (A, B, C) and accuracy (D, E, F) for an average item and listener. Panels A
and D show the effect of distance from the mean IntDiff, panels B and E from the
median IntDiff, and panels C and F from the mode.

In contrast, the evidence for the effect of these distance measures on accuracy is

weaker. The posteriors for the main effect of the distance from an expected produc-

tion do have a small amount of overlap with zero. Additionally, when we split by L1

group and estimate the effect of distance from an expected production separately,

almost all of the 95% HPD intervals include zero, with the exception of the distance

as calculated from the median for the English L1 group (lower HPD = -0.102, upper

HPD = -0.003).

After this set of models, we had some evidence that listeners responded to ex-

pected productions of a word faster. This provided a potential explanation for why

we did not see an effect of reduction in our first set of models, which included Con-

dition. If higher frequency pronunciation variants in specific words facilitate lexical

access, it may have been that our speaker produced many expected productions that
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we used for our reduced stimuli. Supporting this idea was the fact that, during

recording, we were only able to elicit an approximant tap or a perceptual tap from

our speaker, but not both, for the majority of words (28/48). This would mean that

there was a confound in our original sample of 48 items, as our speaker was producing

more expected productions for all words, including what we originally referred to as

reduced variants. If this were the case, our random assignment of tap type for the 20

words that were produced with a wider range of variability would have also blocked

the influence of the expected production on our stimuli. To evaluate this idea, we fit

another set of models that used raw IntDiff values of our stimuli, this time only using

the subset of items from our tap type analysis, replacing the categorical variable tap

type with the continuous measurement of IntDiff.

The predicted reaction times for an average participant and item are visualized

in Figure 4.9 A, and the predicted probabilities of accuracy in Figure 4.9 B. In our

subset of items, we do find a main effect of IntDiff, with more stop-like taps being

recognized faster (β̂ = -0.03, 89% CI = -0.05–0.02), with more than 99.9% of the

posterior being negative. The model is also more than 95% confident of the effect

being present for both L1 English and L1 Spanish listeners. The effect of IntDiff is

also present in the accuracy model, with words containing more stop-like taps being

recognized more accurately (β̂ = 0.27, 89% CI = 0.16–0.38), with more than 99.9%

of the posterior being positive. Like the reaction time model, the model is also more

than 95% confident of the presence of this effect for the two L1 groups separately.

4.4 Discussion

The present study investigated how phonetic reduction in word-medial alveolar taps

impacts spoken word recognition in Spanish for L1 and L2 listeners using an auditory
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Figure 4.9: The predicted effect of IntDiff for an average item and listener on reaction
times (A) and probability of a correct response (B) from the exploratory follow-up
analysis on the subset of items used for the tap type analysis. Predictions for L1
English listeners are plotted in green and L1 Spanish listeners are plotted in orange.

lexical decision task. We find that whether or not this phonetic variability impacts

spoken word recognition in Spanish partially depends on how we operationalize pho-

netic variability. We also find only limited evidence showing that the effect of this

variability differs between L1 and L2 listeners. In addition to our planned analyses,

we also communicate the results of an exploratory analysis that complements the

findings of the planned analyses and provides direction for future work.

Our first research question concerned how reduction impacts reaction times and

accuracy for both L1 and L2 listeners. In our initial analysis, we coded all taps that

were not strictly stop-like the same – as reduced variants of the tap. Under this

definition of reduction, we found no evidence for an effect of reduction on reaction

times for L1 or L2 listeners or for the accuracy of our L2 listeners. We did find an

effect of reduction for our L1 Spanish group, who showed a small inhibitory effect of

reduction on accuracy. This is consistent with previous studies that have found an

92



inhibitory effect of reduction (e.g., Ernestus & Baayen, 2007; Tucker, 2011). While

these findings are consistent with an inhibitory effect of reduction, we believe it is

useful to contextualize these findings with spontaneous and semi-spontaneous speech

data, where true taps may be a less common pronunciation variant overall (Bradley

& Willis, 2012; Perry et al., 2024; Willis & Bradley, 2008). That information, as

well as the fact that our ‘reduced’ category appeared less reduced on average than

we see in spontaneous productions, leads us to propose that we could interpret these

same results not as an inhibitory effect of reduction but as a facilitatory effect of

hyper-articulation, which the L1 listeners were able to benefit from, in contrast to

the L2 listeners.

For our second research question, we wanted to see if the qualitative coding

scheme employed by production studies of the Spanish tap provided a different in-

terpretation of our participant’s behaviour. In recording our speaker, we had the

option of choosing what variant (approximant vs. perceptual) would be used for a

‘reduced’ tap for less than half of our target words. When we did have a choice,

the reduced variant was chosen at random. The model that analyzed this subset

of items eschewed the binary coding from the first analysis in favour of using the

qualitative coding scheme that has been used by several production studies looking

into the Spanish tap (Bradley & Willis, 2012; Henriksen, 2015; J. Y. Kim & Repiso-

Puigdelliura, 2020; Willis & Bradley, 2008). Under this view of phonetic variability,

we see an effect of reduction on reaction times for both L1 and L2 listeners, but

only between the two ends of the spectrum (i.e., true taps and perceptual taps), and

no convincing evidence that the differences between tap types were different for the

two groups. For the accuracy model looking at tap type, we see a different qualita-

tive pattern emerge between the L1 and L2 groups, with some weak evidence from

the interactions that they might behave differently. L1 Spanish listeners showed
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the expected ordering of true tap > approximant tap > perceptual tap in terms of

predicted accuracy, and we were confident of the estimated difference between true

taps and perceptual taps. L2 English listeners instead were predicted to be most

accurate on approximant taps, then true taps, and then perceptual taps. A possible

explanation for this is related to variant frequency, as approximant taps are more

common than true taps (Perry et al., 2024).

Both of these analyses, taken together, indicate that L1 listeners are able to

process true taps quicker than perceptual taps, even though the reduced variant may

be more frequent (Bradley & Willis, 2012; Perry et al., 2024; Willis & Bradley, 2008),

and that there may be differences between L1 and L2 listeners regarding the different

pronunciation variants. This may stem from the fact that the lexical representations

of L1 and L2 listeners are most likely based on input that is both qualitatively and

quantitatively different. Our findings of a facilitatory effect for the true tap are

consistent with studies that have found a benefit for the ‘canonical’ pronunciation

variant (e.g., Pitt et al., 2011). The fact that we see it only for L1 listeners is

consistent with claims that lexical representations formed during early childhood may

have been based on input that contains more ‘canonical’ pronunciations than typical

adult-directed speech (Dilley et al., 2019). It is also consistent with the proposal

from Sumner (2013), who posited that when words are stored in multiple forms

within long-term memory, canonical forms may be stored with increased acoustic

detail, leading to faster lexical processing. It could be that L2 listeners do not store

this increased acoustic detail or that aspects of their shared bilingual sound system

prevent them from exploiting this detail for faster lexical retrieval.

We have seen that our decisions on the categorical coding of phonetic variability

determine what results we see in our items. Our final research question was related

to a desire to bypass this potentially false categorization of phonetic variability by

94



predicting reaction times and accuracy using a continuous measurement of tap re-

duction. We did not find evidence that IntDiff predicts either aspect of spoken word

recognition in Spanish when considering our full set of words, but we did see the

effect of IntDiff in the subset of our items that were produced with more variability

by our speaker and used for our tap type analysis, with more carefully articulated

tap being recognized faster and more accurately for both L1 and L2 listeners. As we

see it, there are two potential explanations for why we see this effect in the subset of

words but not for all items, and that these explanations are not mutually exclusive.

The first explanation for these differences appeals to the experimental control

of a potentially confounding variable. Randomizing which words were presented to

participants containing a perceptual vs. approximant tap may have controlled for

variant frequency. For the majority of our items, the ‘reduced’ variant was the only

variant produced by our speaker, other than a true tap, for that specific word. This

means that variant frequency may have impacted our study design indirectly and that

the randomization of variant type in this subset blocked the effect from confounding

with IntDiff. The second explanation has to do with the subset of words themselves.

As these words were produced in a wider amount of variability by our speaker, they

may share some property that makes them ideal for showing an effect of IntDiff

compared to other words.

The last part of our exploratory analysis was analogous to an analysis of variant

frequency but with a continuous acoustic correlate. Looking at the production of

taps through the lens of IntDiff, we looked at the distribution of this acoustic cor-

relate of tap variation in spontaneous speech and calculated what we refer to as the

expected production of the tap for each word. This is the value of IntDiff that is

estimated to be the most common (mode), or expected based on some other measure

of central tendency (mean or median). We find evidence that increased distance
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from this expected production is associated with slower reaction times but only weak

evidence that it is associated with decreased accuracy. The predicted effects of these

variables are consistent with research that has found an advantage for processing

more frequent variants of words (Bürki et al., 2018; Pitt, 2009). The presence of this

effect also provides additional context to our analysis of raw IntDiff values from both

the planned and exploratory models, indicating that lower IntDiff values may not

predict changes in the process of spoken word recognition by themselves, as those

values may be close to expected productions, which facilitates word recognition.

Taken together, our planned and exploratory analysis indicates that reduction im-

pacts the speed and accuracy of spoken word recognition only after experimentally

controlling for expected productions. Both of these effects being present simultane-

ously support the idea that models of spoken word recognition need to incorporate

detailed acoustic information that can be stored in long-term memory in relation to

specific lexical entries (e.g., Pierrehumbert, 2002). A limitation of the present study

is that it was not initially designed to test the effect of high-frequency or expected

productions of words, but we believe these results warrant further attention. A study

targeting expected productions would start with a corpus analysis to find a set of

words with a large range of expected productions and then systematically vary the

IntDiff presented to participants. In such a design, the distance from an expected

production could be changed to a non-linear interaction between the value of IntD-

iff in an expected production and the IntDiff value of the stimuli, allowing for the

distance to be evaluated visually and in both directions.

We turn now to a more focused discussion of the results of our L2 listeners. While

we found some specific differences between this group and the L1 listeners, which

we have discussed above, for many of the effects we observe similar patterns for

both L1 and L2 listeners. There are a few potential reasons for this, one of which
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is that the vast majority of our L2 listeners are L1 speakers of North American

English and, therefore, have the alveolar flap as a position-sensitive allophone in

their L1 (Warner & Tucker, 2011). In models of L2 speech learning like the revised

Speech Learning Model (Flege & Bohn, 2021) and the Speech Learning Model (Flege,

1995), the position-sensitive allophone is appealed to as the phonetic entity that

interacts between the two languages. While the similarity between to two sounds

should make learning the new sound difficult, it is possible that the English flap and

the Spanish tap are similar enough that any automatic perceptual routines English

speakers have in their L1 can be used in the L2 without creating problems for word

recognition. As flap reduction in English is ubiquitous (Warner & Tucker, 2011), any

such perceptual routine would already excel at processing and recognizing reduced

forms. Any follow-up study attempting to replicate these findings would benefit from

another L2 Spanish listener group whose L1 does not contain any segment closely

resembling the Spanish alveolar tap. Other aspects to consider would be providing

a detailed language background questionnaire to L2 listeners. As we argue here that

variation in language backgrounds between our L1 and L2 listeners is responsible for

some of the differences that we see, we should also see variation within the L2 group

based on similar differences, such as the age of onset of acquisition.

4.5 Conclusion

The present study has found evidence that tap reduction impacts both L1 and L2

spoken word recognition in Spanish as long as stimuli are sufficiently experimentally

controlled. We find inconsistent evidence of differences in our effects for L1 and L2

listeners. We argue that the differences that do exist may be due to qualitative and

quantitative differences in the input that result in different long-term representations
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of words but that English L1 listeners may be exploiting their L1 perceptual routines

to process phonetic variability in their L2. We also find a processing advantage for

pronunciation variants that are more likely to occur in spontaneous speech, indicating

the lexical representations are influenced by phonetic variability.
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4.6 Appendix

Target words:

barón, cara, caro, cera, cero, clara, claros, coro, cuero, cura, dará, dirá, dura,

era, flores, foro, fueran, gira, giran, hora, iris, juro, llora, loro, mira, moral, moro,

muera, muro, nariz, oral, oro, oros, paran, pared, pira, pura, quiera, rara, rieron,

será, tira, tirón, tiros, toro, vara, verás, virus

Figure 4.10: Panels A and B show estimated density distributions of word frequency
for different sets of words. Panel A shows a comparison between our target words and
all two-syllable words containing taps from the Nijmegen Corpus of Casual Spanish.
Panel B shows a comparison between all of our items and the two subsets of items
used for different analyses in the paper: the tap type analysis and the analysis of the
distance from an expected production.
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Chapter 5

General discussion and conclusions

The primary goals of this dissertation were to study patterns of phonetic reduction

in spontaneous productions of the Spanish alveolar tap and to experimentally inves-

tigate how such patterns impact the process of spoken word recognition in L1 and L2

Spanish listeners. The production side of this dissertation involved a corpus analysis

of spontaneous speech that qualitatively documented the variability through spectro-

graphic analysis and quantified this variability by measuring the acoustic correlates

of duration and the intensity difference (IntDiff) between the tap and the surround-

ing vowels. In our quantitative analysis, we were interested in how we could predict

variability in our acoustic correlates with a combination of phonetic variables related

to articulation (e.g., speech rate, phonetic environment, surrounding lexical stress)

and to variables at the lexical level (e.g., unigram and bigram frequencies, content

vs. function word).

After documenting the kind of variability that Spanish speakers encounter in

their daily interactions, we designed an auditory lexical decision experiment to in-

vestigate how that kind of variability impacts spoken word recognition. We collected
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this lexical decision data from L1 Spanish listeners and L2 Spanish listeners who

spoke English as an L1. Our planned analyses included comparing canonical ‘true

taps’ to other reduced variants, comparing all variants separately in a subset of our

items, and replacing categorical measures of phonetic variation with the continuous

measurement of IntDiff.

In the present chapter, I summarize the main findings of the corpus analysis and

the lexical decision experiment, after which we discuss how these findings inform

theories of phonetic variability in production and how it impacts spoken word recog-

nition. We will also discuss the methodological considerations raised by our studies,

including current practices in analyzing large amounts of acoustic data and inter-

preting regression coefficients from models fit to observational data. Throughout this

chapter, we will highlight the limitations of the current work and discuss how future

work may build on the research from the present dissertation.

A secondary goal of the present dissertation was to set the stage for future work

investigating the L2 production of the Spanish tap in spontaneous speech. Studies of

spontaneous speech and the patterns of variability we find are relevant to studies of

L2 production because this type of speech is likely to constitute the majority of the

input that L2 learners receive during naturalistic L2 acquisition. Furthermore, many

studies of L2 segmental production often analyze data in a way that is at odds with

the variability present in spontaneous speech. The implications of our studies on

future work on the Spanish tap in L2 contexts are discussed in depth in this chapter,

including recommendations for future research.
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5.1 Summary of findings

The corpus analysis from the present dissertation (chapters 2 & 3, published as Perry

et al., 2023, 2024, respectively) uncovered patterns of phonetic variability in the pro-

duction of Spanish taps that have not previously been reported. Our duration mod-

elling was limited to a subset of our hand-corrected data set due to methodological

limitations. Namely, we learned that we could not rely on automatic measurements

of duration, and those were the only measurements of duration present for 90% of

our data. Thus, our findings of decreased duration as speech rate increases, shorter

taps in words that are predictable based on the following word, and longer taps when

following or preceding an /i/ vowel can only be generalized to taps that have a visi-

ble occlusion on a spectrogram that a phonetician could consistently measure. This

hurts the generalizability of our results, as this was approximately half of our data,

and we know that this missing data is more likely to be missing at certain frequencies

and speech rates based on our subsequent analyses.

As part of modelling the duration of our taps, a methodological contribution was

also reported by Perry et al. (2023). We compared several methods of measuring tap

duration to hand-corrected boundaries. These automated methods included force-

aligned boundaries and two different methods for approximating the duration of a

segment based on intensity information. The automated forms of measuring dura-

tion did a poor job of approximating hand measurements, with two of the methods

drastically overestimating tap duration. Versions of our model fit to these automated

measurements differed substantially in their estimated effects. Based on our findings,

we were forced to make our inferences about variability in tap duration based only

on hand-corrected data.

In our modelling of the intensity difference of our taps (Perry et al., 2024), we
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were forced to abandon linear models for finite mixture models after the former could

not account for the observed data. The two distributions we estimated in our model,

which we referred to as the reduced and unreduced distributions, map closely to

our hand-corrected data in a way that indicates ‘reduced’ taps do not have a visible

presence on a spectrogram while ‘unreduced’ taps do.

We found that lexical frequency was related to changes in the IntDiff of Spanish

taps and that speech rate and the quality of the surrounding vowels were associated

with changes in both duration and IntDiff. Furthermore, our modelling of IntDiff

required two distributions to properly account for the data, and we found that more

of our predictors were related to changes in the categorical alternation between the

two distributions than to gradient changes within them.

We found patterns of variability in IntDiff that, in some ways, were similar to the

factors that affected the tap duration when a visible occlusion was present. This is the

case for the estimated effects of speech rate and the surrounding vowels. We also had

several predictors with non-negligible effects that predicted changes in IntDiff, but

that had highly uncertain effects on duration. Lexical frequency predicted gradient

reduction within unreduced taps in IntDiff, but we found an uncertain effect on the

duration of taps with visible occlusions.

Based on the set of phonetic and lexical predictors we used to model IntDiff, we

were unable to account for the bimodal nature of the data without the assumption

of two latent categories, which we interpret as two pronunciation variants of the

tap. This assumption drastically improved the predictive performance of our model

of tap variability. In interpreting our models, we found that phonetic variables like

speech rate and surrounding vowels were associated with changes in the probability

of realizing a reduced tap and gradient changes within each pronunciation variant.

While these patterns of variability in IntDiff had not previously been documented, the
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qualitative side of the corpus analysis revealed average rates of different pronunciation

variants to be relatively similar to previous work on the Spanish tap in other varieties.

This suggests that taps across different varieties of Spanish may be more similar than

they are different and that the findings of the present dissertation may apply to other

varieties as well.

Complementing the analysis of spontaneous speech in chapters 2 and 3, the fourth

chapter investigated how the types of tap variability we documented in our corpus

analysis impacted spoken word recognition using an auditory lexical decision ex-

periment. We gathered this experimental data from both first-language (L1) and

second-language (L2) speakers of Spanish, as research on reduction for non-native

speakers is an under-researched area of study. Our experimental stimuli were all real,

two-syllable Spanish words containing an intervocalic, word-medial alveolar tap. Our

initial analysis compared taps with a stop closure to those without, while a second

analysis on a subset of our items used the qualitative coding from previous produc-

tion studies. We also explored a continuous measurement of reduction, using the

IntDiff of the taps in our stimuli to try to predict responses.

Results from our planned analyses indicate that reduction is likely an inhibitory

factor in Spanish spoken word recognition when the words are presented in isolation.

We see differences between true and perceptual taps, the most and least reduced

versions, for both L1 and L2 listeners. In most of our models, we do not have

evidence that L2 listeners differed from L1 listeners regarding the effect of reduction

on how long it takes to recognize a word correctly. Still, we find some differences in

how reduction impacts accuracy, with L1 listeners benefiting more from unreduced

productions. When we replaced our reduced/unreduced variable with a continuous

measure of IntDiff, we saw no effect on recognition in either group.

In our exploratory analysis, we used the data from our corpus analysis in the
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previous chapters to look at the distribution of the intensity difference for the words

used as stimuli in our lexical decision experiment. We then calculated the distance

between the taps in our stimuli and the ‘expected production’ from the corpus. We

find that L1 and L2 listeners are slower to recognize words when they are produced

far away from an average or typical production. This indicated that our initial set of

48 items may have been influenced by this, which prevented us from seeing the effect

of IntDiff. A model of continuous reduction on the more controlled subset of words

that were produced more variably by our speaker showed that continuous reduction

is an inhibitory factor.

5.2 Probabilistic variation in speech production

The phonetic variability we documented in the Spanish taps is consistent with H&H

Theory along a number of important dimensions, but perhaps the most important

one is that we see modulations in the acoustic signal when there are changes in the

nature of the signal-independent information that is present. This signal-independent

information includes lexical frequency and the predictability of the word based on

surrounding words. In this section, these findings are discussed in terms of current

theoretical discussions regarding phonetic variability in speech production and how

it relates to phonological theory.

In our model of IntDiff variation (Perry et al., 2024), we have an effect of lexical

frequency on gradient changes in unreduced taps, with taps being less stop-like at

higher frequencies. In duration, however, we see either similar or longer taps as

frequency increases (Perry et al., 2023). If we accept both these things as true,

then it would be an example of phonetic reduction that is not due to articulatory

undershoot, contrary to the claim that durational shortening causes intensity changes
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(e.g., Cohen Priva & Gleason, 2020). If speakers put less effort into articulation

even though they are not producing the sound more quickly, we could take this as

evidence that the economy of effort is sensitive to changes in signal-independent

information, that the implicit knowledge that lexical discrimination will be easier

can affect intensity directly, and that this is not undershoot in the classical sense.

Articulatory undershoot, as first described by Lindblom (1963), is a phenomenon

whereby the acoustic properties of a sound are changed at increased speech rates

due to the speaker having less time to reach an articulatory target. It assumes that

the same target is aimed for but not reached due to temporal constraints, as the

speaker would have to articulate faster to reach the target in less time. In contrast,

tap reduction based on increased frequency may not be due to temporal constraints.

While this is not consistent with a single target, it has been argued that a ‘window’

of possible articulations may be a better analogy to viewing coarticulation (Keating

et al., 1990) and that this may be a better lens through which to view reduction

(Warner & Tucker, 2011). If there is a window containing an infinite amount of

possible articulations, then all you would need to incorporate our findings into this

claim is a mechanism where lexical frequency can modulate which parts of the window

are most probable.

There are two main problems with the evidence for this claim as it stands. First,

the reported effects of frequency on duration are from a modest amount of data that

was hand-measured, while the effect on the IntDiff on ‘unreduced’ taps is estimated

using an order of magnitude more data and based on a model-based inference of

what an unreduced tap is. While Perry et al. (2024) showed that the ‘unreduced’

distribution from the model was visually similar to the taps for which we measured

duration (Perry et al., 2023), we don’t know for sure that we are comparing the

same types of taps to each other. We did not explicitly model duration and IntDiff
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together at any point due to methodological constraints on measuring duration.

A future study of Spanish taps could be set up to test the relationships between

frequency, duration, and IntDiff explicitly. However, it will have to find a way to

deal with the missing duration information for a substantial portion of taps.

While we found lexical effects on tap production, there is some evidence that

phonetic variables may be more important in predicting tap reduction. Speech rate

had the largest effect on tap production, both in terms of intensity and duration

(Perry et al., 2023, 2024). This was unsurprising, as it is perhaps the most robust

predictor of reduction overall (Ernestus, 2014). In interpreting this effect and the

effect of the surrounding vowels, we proposed an explanation based on articulatory

factors. However, we did not measure articulation in our studies, and some acoustic

measurements map better to articulation than others (e.g., see Noiray et al., 2014,

and references therein). Future articulatory work could easily corroborate or refute

certain claims, such as our claim of two pronunciation variants of the tap in produc-

tion. I would consider this claim falsified, for example, if a smooth and continuous

increase in the minimum distance of the tongue blade from the alveolar ridge dur-

ing tap production leads to a bimodal distribution of IntDiff. This would indicate

that there are not two variants, and we observed an artifact stemming from acoustic

measurement.

I have just discussed our lexical frequency effect and physiological effects as if

they were separate sources of variation, and indeed, our study did control for various

phonetic constructs that are more closely related to articulation, such as speech rate

and the surrounding vowels. After controlling for these factors, we still see an effect

of lexical frequency on tap production. Exactly how frequency impacts the cognitive

processes of speech production is unclear. Still, in exploring the effects of cognitive

factors on speech production, it is important to acknowledge that they must affect
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acoustics through articulation (Tomaschek & Tucker, 2023), so controlling for enough

articulatory variables should always leave the effects of cognitive variables at zero.

Lexical frequency effects are one of psycholinguistics’ most studied and consistent

effects, but what mechanisms lead to these effects is still under debate. Older models

assume that the architecture of frequency effects boils down to counting, with fre-

quency effects accounted for by different resting activation levels (e.g., McClelland

& Rumelhart, 1981; Pierrehumbert, 2002; Van Heuven et al., 1998). In contrast,

Baayen (2010) argues that lexical frequency effects arise instead from the cognitive

process of mapping form to meaning, demonstrating that the effect of frequency

on visual word recognition can be broken down into several distinct facets. Many

more recent investigations have replaced frequency measures with variables taken

from discriminative models of the lexicon, showing frequency-like effects that are

based on a morphological model of mapping form to meaning (Schmitz et al., 2021;

Stein & Plag, 2021; Tomaschek et al., 2021). As far as I know, no work on vari-

ables derived from discriminative modelling has been applied to Spanish production

data, so expanding on the present work with this approach could offer alternative

interpretations of our frequency effect.

While the effect of frequency and morphology on speech production has typically

been concerned with cognitive processes (Bell et al., 2009; Tomaschek & Tucker,

2023), we have to consider that frequency effects afford the advantage of practice, as

high-frequency words have been spoken aloud many, many times (Tomaschek et al.,

2018). This should afford advantages to the motor planning and execution that are

separate from whatever effects frequency has on the cognitive aspects. In building a

more complete model of speech production, one would have to disentangle frequency-

related effects at the cognitive level with practice effects at the motor level, as well

as how these levels could interact over time.
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The data from our corpus study has ramifications for phonological theories, as

corpus-based studies contribute crucial information to our collective knowledge of

how the sound systems of different languages actually function (Ernestus & Baayen,

2011). The third chapter of this dissertation focused on phonetic variation in the

Spanish tap, and an in-depth discussion of the potential implications of our findings

to phonological theory was therefore not included. Now, however, we will discuss

how our findings of lexically driven subphonemic variation fit into current theories

of phonology and what future work on the Spanish tap we think should follow the

present dissertation.

Our finding of initial evidence for categorical subphonemic variation in the Span-

ish tap is consistent with the consensus that probabilistic variation must play a role

in phonological systems (Alderete & Finley, 2023) and that purely symbolic or ab-

stract accounts of phonology do not align with empirical speech data. It is similar

to findings from other languages that information related to the word (or lemma) is

active in the speech production system (e.g., Bell et al., 2009; Drager, 2011). A the-

oretical question raised by our production findings concerns whether the categorical

alternation between reduced and unreduced taps is an online phenomenon based on

lexical retrieval (e.g., Bell et al., 2009; Jurafsky, Bell, Gregory, & Raymond, 2001)

or whether there are two versions of the tap stored in long-term memory. These two

allophones would not be position-sensitive and are driven by word-level properties, so

it is unclear how they would be incorporated into existing models of phonology that

specify phonemic encoding at any level. In contrast, our data are easily explained

by one of the models proposed by Pierrehumbert (2002), which includes frequency

distributions of allophonic variation stored on a per-word basis. We can, therefore,

explain the categorical effects of our model as stemming from frequency-based al-

lophonic variation at the word level and the gradient effect of lexical frequency on
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IntDiff as stemming from the speed of lexical retrieval. This would indicate that

there is both phonetic and phonological variation in the Spanish tap attributable to

lexical frequency.

In building upon the current findings in Spanish tap production, the first steps

that should be taken are to replicate and consolidate the statistical model proposed

by Perry et al. (2024). I see two potential avenues in this regard. The first is

to replicate the findings of Perry et al. (2024) with another corpus of spontaneous

Spanish, and the second is to see if the findings hold up to a multi-verse style analysis

which explores other methods of measuring stop reduction (e.g., those used in Hualde

et al., 2011). An analysis of a different corpus could use the data from Perry et al.

(2024) as priors to identify models with more than two distributions and compare

their predictive accuracy. This would let us explore the idea of multiple pronunciation

variants along acoustic correlates and see if two is the optimal number. A multi-

verse style analysis showing that the pronunciation variants are present along other

acoustic correlates that purport to measure that same underlying construct would

provide clear support or highlight how researcher degrees of freedom impact the

interpretation of results (Coretta et al., 2023).

In any attempt to replicate these findings using another corpus of spontaneous

Spanish, we must consider that varieties of Spanish may differ along this dimen-

sion. There is no guarantee that the phonological system of Madrilenian Spanish

is consistent with the Spanish spoken elsewhere. The fact that corpora made up

of various speaker populations prevent the generalizability of analysis (Newmeyer,

2003) is important to consider, both for the present dissertation and for corpus pho-

netics more generally. What are we learning in comparing phonetic patterns across

populations that see only limited or unidirectional contact? Ernestus and Baayen

(2011) addresses the concerns of analyzing large corpora containing multiple varieties,
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claiming that mixed-effects models allow us to find what is common to all dialects

and speakers, which is misleading. While it is true that mixed-effects models can be

set up to estimate variation in an effect according to multiple dimensions, such as

dialect and individual speakers, their claim that the main slope of the fixed effects

allows for the generalizability of an effect across speakers and dialects is incorrect.

As most commonly reported, this effect will be for an average dialect and speaker

(i.e., the effect when all random effects are set to zero). While one could examine

the generalizability of an effect across speakers and dialects using these models, it

would require a much more careful inspection of the model. Relying on the estimates

from the fixed effects is insufficient. Given the by-speaker variability in the models

reported by Perry et al. (2024), a more in-depth inspection of statistical models used

in corpus phonetics may be warranted, allowing for a more complete look at the

generalizability of phonetic and phonological patterns.

5.3 Phonetic variability and spoken word recogni-

tion

Our auditory lexical decision experiment contributes experimental data from Spanish

to the research investigating how reduction and variant frequency influence spoken

word recognition. In contrast to studies that report an advantage of the unreduced or

canonical variant (e.g., Tucker, 2011) or studies that find no effect of reduction after

controlling for variant frequency (e.g., Bürki et al., 2018), the present study mirrors

the results of Pitt (2009), with findings consistent with a variant frequency effect

appearing alongside an advantage for unreduced taps. While intuitively, reduction

and variant frequency are different effects, it is important that we discuss how to
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tease apart these variables and how disparate findings may work together to inform

theories of speech perception and spoken word recognition.

As discussed in Chapter 4 of the present dissertation, the canonical variant ad-

vantage in lexical access, which in many cases is the same as what we would consider

the unreduced variant, has inconsistently been shown to have a facilitatory effect on

lexical access in the auditory modality. Arguments for why this is the case are varied,

with Sumner (2013) arguing for multiple lexical representations, with the canonical

variant containing more nuanced representations of acoustic information that more

heavily relies on bottom-up processing, while more casual speech processing is more

reliant on top-down information (note that this is consistent with H&H Theory).

A potentially complementary proposal by Dilley et al. (2019) raises the issue that

initial lexical representations are created during childhood for L1 speakers of a lan-

guage, and that child-directed speech contains many more canonical variants than

adult-directed speech.

H&H Theory proposes that speech perception is discriminative in nature. This is

consistent with recent computational work from Baayen et al. (2019), who propose

that the lexicon is fundamentally based on discrimination. While frequency effects

are easily accounted for by this model, it remains unclear exactly how it would ac-

count for a co-existing effect of the advantage of unreduced variants. We would have

to assume that those differences in the acoustic signal allow for easier discrimination,

which, as far as I am aware, is an unanswered empirical issue. Work from Warner

et al. (2009) seems to contradict this, as they found different levels of intensity re-

duction lead to similar discrimination between a VV sequence and a sequence with

an intervocalic tap.

How to answer the issue of whether or not canonical productions of words are

more easily discriminated from other candidates needs to be based on something
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other than listener behaviour if we are to avoid circularity in our argumentation,

something that has historically been an issue in phonological theory (Ohala, 1990).

As phonemes are an implausible entity in speech perception (Goldinger, 1998; Mit-

terer et al., 2018), this rules out using phonological neighbourhood density, as it

relies on abstract phonological units. While we could calculate a similar metric

based on allophones, this is also removed from the acoustic signal that listeners are

discriminating. Additionally, it is perhaps fruitless to argue for any linguistic unit

being cognitively ‘real’ (Samuel, 2020). As such, we should base any measurement of

discriminability on the acoustic signal. One option is adapting the distance measure

proposed by Kelley and Tucker (2022), which relies more directly on the acoustic sig-

nal. However, if we are to use it to calculate a measure of discrimination that works

as a reasonable approximation to the knowledge an adult language speaker has, we

need to calculate the acoustic distance using a large amount of acoustic data that

includes many varying productions of high-frequency words from several speakers.

If, after doing this, we see that canonical productions have a higher average acoustic

distance from all other words in the lexicon, this could be taken as evidence that

canonical productions provide more signal-dependent information to listeners that

aid in the discrimination task.

Turning back to our lexical decision data, we see that the distance from an ex-

pected production (a continuous version of variant frequency) impacts the speed of

lexical retrieval. Still, our results regarding the accuracy of identification were less

robust to researcher degrees of freedom. Perceptual work on the English alveolar

flap by Warner et al. (2009) may provide an explanation here. Warner et al. (2009)

found that introducing even the minimal amount of acoustic evidence that a flap

was present between two vowels led to almost perfect discrimination. Listeners only

needed small amounts of information that there was a tap present. Warner et al.
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(2009) collected but did not report reaction time data, but if it took longer for iden-

tification when there was less acoustic information, that would be consistent with

our data from the lexical decision, as well as consistent with the claim from Sum-

ner (2013) that different pronunciation variants are all equally able to activate the

relevant target. While this is clearly the case to some extent, as speakers are not

generally aware of pronunciation variants nor their impact on spoken word recogni-

tion, it may be the case that the speed of lexical retrieval of different variants is not

the same, even though the word will be recognized regardless.

The presence of both an advantage of unreduced taps as well as a continuous

version of variant frequency effects are interesting from a theoretical perspective,

but our lexical decision study was not intended to examine word-specific phonetic

properties, and this was a limitation that we will discuss in further depth here, along

with a proposal for a follow-up experiment. Our full set of items in our lexical

decision study was likely confounded due to a variant frequency effect stemming

from the fact that our recordings came from a speaker of the language and were not

synthetic in nature. Of the initial 53 tap-containing words that we presented our

speaker with, he produced 51 of them with at least one instance of a true tap (the

canonical variant). We also needed a ‘reduced’ category for our study of reduction,

but for 28 of the 48 words that were produced with a true tap and one reduced

variant, all reduced taps over several hours of recording and several repetitions of

the word were the same, and we had recordings of either an approximant tap or a

perceptual tap for that word. We only got all three variants for 20 words. Given our

production data, which shows that there may be probabilistic variation occurring

between two pronunciation variants based on word-specific properties, it is easy to

see how either abstract representations of the word or fine-phonetic detail in the form

of exemplars could impact our stimuli. A formalization of this confounding structure
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will be discussed in Section 5.5.

I propose here the outline of a study that could, in theory, tease apart reduction

effects and variant frequency effects. Any such study needs to start with a corpus

analysis. This is unavoidable, as the variant frequency effect itself stems from the

experience of the language user and must be based on data that the researcher

believes to be a representative sample of that experience. A further limitation of

studying this phenomenon is that it will always be biased towards investigating words

that are not low-frequency, as getting enough data to consider what an expected

production of a word is requires multiple tokens. These caveats aside, the corpus

study should begin by quantifying the variation at the word level for as many words

as possible so that experimental items can be selected that cover as large a range

as possible in the acoustic parameters of interest. To give a concrete example based

on the previous dissertation, this would mean finding words that have an expected

production of IntDiff ranging from approximately zero to as high as possible while

still having continuous coverage, as it would be undesirable to have a gap in the

coverage where one side of the gap is supported by very few lexical items.

After the corpus analysis is complete and the words are selected, the experimental

stimuli would be designed to vary along a grid, covering a greater amount of variation

in IntDiff than the items for the expected productions (so that each item can have

tokens both above and below an expected production). Using pseudo-spontaneous

speech from a real speaker would provide the benefit of ecological validity, but it also

may be exceedingly difficult to get an adequate range of productions. Synthesized

stimuli may be an acceptable alternative here, as it would allow for increased control

over the other aspects of the production. The analysis of such items, carefully con-

trolled in a two-dimensional grid, with expected production of IntDiff for the word

on the x-axis and the IntDiff of the stimuli on the y-axis, would be analyzed using
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a non-linear interaction term in a generalized additive mixed model (Wood, 2017).

Plotting the line where IntDiffexpected = IntDiffactual would allow for the effect of

the distance from an expected production to be visualized by the model instead of

calculated like was done in Chapter 4. This would also allow for a potential asym-

metry to be explored, as it is possible that being more reduced than an expected

production is not the same as being less reduced than an expected production.

We have so far focused on discussing the implications of our general findings

regarding how the variability of the tap impacts spoken word recognition, and now we

turn to a discussion of our L2 listeners. While most published studies find a difference

in how reduction impacts L1 and L2 listeners (Ernestus, Dikmans, & Giezenaar, 2017;

Ernestus, Kouwenhoven, & van Mulken, 2017; Wanrooij & Raijmakers, 2021), our

study found this only for some of our analyses. For others, the interaction terms

between L1 groups and other variables were centred near zero and highly uncertain.

We never found evidence that reduction impacts both groups in the same way, as this

would have required a much larger sample size. In our analysis of tap variant instead

of reduction, we saw that this difference may be due to a variant frequency effect

being different for L2 listeners. However, this was not borne out in the analysis using

expected productions from the corpus. As this should be similar in theory, it suggests

that further study into variant frequency effects in L2 spoken word recognition is

needed. Research into variant frequency effects in L2 learners is not common, as

pointed out by Llompart et al. (2021), who found that L1 variants of corresponding

sounds were important for variant frequency effects in L2 spoken word recognition.

If the effects of tap reduction are, in fact, similar in L1 and L2 listeners, why

would that be the case? The answer may lie in the similarity between the English

flap and the Spanish tap. The majority of our L2 listeners were L1 speakers of North

American English, which has the flap as a position-sensitive allophone. These are
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the units proposed to be active in L2 acquisition (Flege & Bohn, 2021), and as we

know, flap reduction is common in American English (Warner & Tucker, 2011), so it

may be that any automatic perceptual routines from the L1 can apply successfully

in the L2. While models of L2 speech learning would likely predict that these two

categories would become merged - distinguishing them would be highly difficult due

to the similarity - it might not matter for the accurate perception of this sound in

either language. This could be explored by including an additional group whose L1

does not contain the alveolar tap or flap as a position-sensitive allophone in a future

version of this study.

The presence/absence of the tap/flap in the L1 sound system should be a sufficient

control in terms of the assumptions of theoretical models which assume allophones are

interacting in a common phonetic space (Flege, 1995; Flege & Bohn, 2021). However,

there is another more general language factor that deserves to be considered, which is

the general prevalence and degree of stop reduction in the language. There is evidence

that languages can differ in terms of general tendencies of stop reduction (Torreira

& Ernestus, 2011), and it is plausible that general patterns of stop reduction in the

L1 could also influence patterns of word recognition in the L2. Ideally, then, the two

L1 groups would have languages that behaved similarly in terms of overall levels of

consonant reduction but with one language missing the tap/flap in the phonological

inventory. This would allow for a direct evaluation of theoretical models of L2 speech,

which assume that the phonetic categories that interact are allophones. It would also

be of theoretical interest to have two languages that differed greatly in terms of voiced

stop reduction, neither of which had a similar sound to the Spanish tap, in order to

explore how general processing adaptations from the L1 can be exploited (or not) in

the L2.

As this was an initial examination of how tap variability impacts spoken word
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recognition in L2 speakers, we focused on the broad population of self-identified

L2 speakers of Spanish and did not explore variation in this group according to

factors related to their experience with the language, which are known to affect

virtually every aspect of production and perception (see Flege & Bohn, 2021, and the

references therein). The data from our lexical decision experiment, which includes

information about when the participants started learning Spanish, how long they

have been speaking Spanish, their self-rated proficiency, and their time spent living

in a country where Spanish was the societal language, can be used as pilot data for

future studies of the phenomenon, providing a jumping off point that can be used in

simulations to investigate required sample sizes as well as for providing informative

priors for future investigations into this topic.

5.4 Implications for L2 speech learning

Although we did not investigate the L2 production of the Spanish tap, the findings

of our corpus analysis have implications for future studies of this sound, as well as

for theories of L2 speech learning more broadly. Models of L2 speech learning place

critical importance on the input received during the acquisition process (e.g., Flege,

1995; Flege & Bohn, 2021; Van Leussen & Escudero, 2015). Following these models,

the theoretical framing of many studies assumes that the input received by learners

interacts with pre-established phonetic categories to produce the various patterns we

observe in L2 production and perception. As the acquisition process is dependent

on the input, empirical evaluations of theoretical claims are diminished when there

is a misalignment between the properties of the input and our quantitative analysis

of L2 segment productions. I believe there is such a misalignment in some of the

literature investigating the acquisition of the Spanish tap by L2 learners.
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Several studies of the acquisition of the Spanish tap by L2 learners have analyzed

productions as either ‘target-like’ or not, with the most common definition of the

target being a single visible occlusion on a spectrogram (e.g., Face, 2006; Herd,

2011; Patience, 2018), although J. Y. Kim and Repiso-Puigdelliura (2020) coded

both true and approximant taps as the target. Using the canonical variant as the

target appears reasonable given the textbook description of this sound (Hualde,

2005), but is at odds with studies of semi-spontaneous speech from different varieties

of Spanish (Bradley & Willis, 2012; Willis & Bradley, 2008) as well as the data

analyzed in the present dissertation (Perry et al., 2023, 2024), where we only find

this occlusion present for half of all taps. We wouldn’t claim that L1 speakers only

produce target-like sounds half the time, and Chapter 4 of this dissertation provided

evidence that L2 Spanish listeners can recognize reduced forms fairly accurately. As

models of L2 speech generally assume that perception precedes and drives production

(e.g., Flege & Bohn, 2021), it is unclear how any analysis of L2 tap production can

provide meaningful results if reductions that are present in the input and accurately

perceived by L2 learners are deemed not target-like by researchers.

This issue is not restricted to Spanish, taps, or studies of L2 production that

categorize productions into target vs. non-target. Many studies of L2 segment

production are based on acoustic correlates, which can run into the same general issue

of making comparisons using laboratory speech without the added context of how

the segment’s acoustic correlates may differ in spontaneous speech and, therefore, the

input that L2 learners receive. If a comparison of laboratory speech between L1 and

L2 speakers finds a difference, but L2 speakers pattern closely to how that acoustic

correlate is produced in the spontaneous input they receive, this is simply evidence

that they differ in terms of producing the canonical variant in a situation where L1

speakers produce more careful speech. This would amount to a task effect and may
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not tell the whole story of the processes taking place during L2 speech learning.

A reasonable rebuttal to the points I’ve raised here would be that those who

are interlocutors with L2 speakers may adapt their speech (e.g., as seen in Lorge &

Katsos, 2019), leading to differences compared to spontaneous productions within

a group on L1 speakers. This is a fair criticism but does not escape the central

recommendation, which is to empirically quantify the input that your L2 learners

receive in order to properly evaluate how the properties of that input lead to their

patterns of perception and production on an individual level. Instead of generally

looking at L1 speech in the surrounding community, it may be more relevant to

look at the spontaneous speech of the L1 speaker with which your L2 participants

speak most often while interacting with your participant. While this adds practical

challenges, research on L2 speech will not be able to progress if the properties of

the input are not better defined than they currently are. This recommendation,

to empirically quantify the input received by participants, is similar to a recent

proposal from Flege (2021), which proposed sampling the input of interlocutors in

order to quantify the proportion of the input that may be received from other L2

speakers, affecting the formation and/or composition of phonetic categories. This

general argument also applies to spontaneous speech, as several acoustic correlates

are known to vary systematically between lab speech and spontaneous speech (e.g.,

Laan, 1997; Warner & Tucker, 2011).

Another finding of the present dissertation which has implications for L2 speech

learning is seeing the effect of distance from an expected production for specific words

in L2 listeners of Spanish. Current theoretical models of L2 speech either ignore

word-specific phonetics entirely (Flege, 1995; Flege & Bohn, 2021) or only appeal to

word recognition as a mechanism for driving error-driven learning (Van Leussen &

Escudero, 2015). While the evidence from our exploratory analysis still needs to be
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replicated, doing so would indicate that models of L2 speech learning which ignore

this acoustics-to-meaning mapping at the word level need to be updated, a position

supported by the fact that L2 phonological processing involving lexical information

diverges from the auditory processing of isolated sounds (Llompart, 2023).

5.5 Methodological considerations for research into

phonetic reduction

In addition to the theoretical contribution of the present dissertation, our work brings

up some methodological issues that the field as a whole needs to consider and address

if we are to improve the quality of the empirical evidence of reduction phenomena.

Ideally, these improvements would be paired with increased methodological trans-

parency, sharing the code and data that support the claims of a paper when it is

possible to do so. The rest of this section outlines the three main methodological

issues raised during the present dissertation and provides concrete suggestions on

how to address them. The first issue is the use of forced aligners in large-scale pho-

netic analysis, the second is defaulting to similar statistical models that don’t align

with theoretical knowledge, and the third is making inferences based on regression

coefficients estimated from observational data.

Perhaps the most important issue research on phonetic variability has to reckon

with is the widespread use of force-aligned boundaries for phonetic segmentation.

While the fact that this could skew results is not a new idea (e.g., see a discussion of

this issue by Watson & Evans, 2016), many large-scale analyses of phonetic data use a

scripting language to take acoustic measurements based on force-aligned boundaries

which have not been corrected (e.g., 13 of the 21 corpus studies published in the
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proceedings of the International Congress of the Phonetic Sciences 2023 that cited the

Montreal Forced Aligner did not hand-correct the output). While forced alignment

allows for fast analyses of large amounts of data, we need to exercise caution as a

field in trusting the results of analyses that do not provide empirical evidence that

this crucial stage is functioning as intended.

Evaluation of the performance of force-aligned software is completed by those de-

veloping the software (Kelley et al., 2023; McAuliffe et al., 2017; Yuan & Liberman,

2008) and by end-users wanting to verify performance or compare different aligners

(e.g., Gonzalez et al., 2020; Watson & Evans, 2016). The reality is that any single

investigation of an aligner’s performance may not provide the information needed

for a researcher to know if it will work well for the analysis at hand. The typical

evaluation method is to calculate and report distances between automatically-placed

boundaries and human-placed boundaries for a speech sample. Some work is more in-

depth, such as the comparison between aligners from Gonzalez et al. (2020), which

provides specific circumstances where certain aligners may be more likely to fail.

These analyses of boundary placement do not consider how measurements of for-

mants, intensity, or pitch systematically change after hand correction. The fact that

an aligner has worked better than others based on one set of criteria does not mean

it will be reliable for a given analysis. The evaluations of force-aligned boundaries in

the present dissertation provide a concrete example of the same boundaries, which

were unreliable for measuring duration, being highly reliable for measuring IntDiff.

My proposed solution is simple, but not easy. Every study that uses force-aligned

boundaries to take acoustic measurements should hand-correct a random subset of

the data and evaluate how their specific measurements of interest change when using

the force-aligned vs. the hand-corrected boundaries. This information should be

reported either in the paper itself or in an appendix so that readers are aware of how
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much additional noise the forced aligner was responsible for and whether it seems

likely to have biased the measurements. Unfortunately for researchers who deal

with large datasets, the increased sample size does not allow us to ignore the noise

introduced by forced alignment, and the increased sample size may only exacerbate

the issue of bias (for a discussion of this topic, see Kaplan et al., 2014). Speech

science should continue to use forced-aligned software as a tool for speeding up

research and leveraging big data, but we should not discount the benefit of smaller,

high-quality data sets that allow for increased confidence that the results are not due

to measurement error.

In our modelling of the duration and IntDiff of Spanish taps, we started with a

log-normal model (duration) and a linear (Gaussian) model consistent with previous

studies of these correlates. The log-normal model of duration was a good fit to the

hand-corrected data but showed severe misspecification when fit to the automated

measurements. As discussed in detail in Chapter 3, the linear model based on the

Gaussian distribution did not fit the data well, but the estimates of several effects

were consistent with previous literature. Defaulting to models often used by the field

for specific purposes, without verifying that the assumptions of that model are rea-

sonable, is related to a more general problem of not allowing theoretical assumptions

to dictate the model chosen to analyze the data.

An easy example to illustrate a disconnect between the model and the data-

generating process is linear or log-normal models of duration that are based on

force-aligned data. Let’s give the example of the log-normal model, which better

approximates duration in general (as duration can’t be negative and the variance and

the mean are often correlated). A log-normal model of segment duration assumes

that duration can be any non-negative number and that the duration entered into

the model is an accurate measurement. Most force-aligned duration data can only
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be a multiple of 10ms due to window advancement (Kelley et al., 2023; McAuliffe

et al., 2017; Tucker & Mukai, 2023), which means that, in the best case scenario,

the true duration is being rounded to the nearest 10ms value. There are models that

can deal with the issue of rounded data (e.g., Zhao & Bai, 2020), but as far as I’m

aware, they have never been used to address this issue.

Another ubiquitous example of scientific and statistical assumptions clashing is

analyses of reaction times where responses are nested within different words and

listeners. While there is currently a heavy emphasis placed on accounting for dif-

ferences in the conditional mean by word and by participant through the use of

mixed-effects models, the same models estimate a single number for the standard

deviation of the residuals. This means that all words and participants are assumed

to be equally variable with respect to reaction times, which is highly implausible. For

example, the density distributions for different words visualized in Baayen and Milin

(2010) show differences in the variability of reaction times, and visualizing reaction

time distributions per participant in the Massive Auditory Lexical Decision database

(Tucker et al., 2019) shows that the variability across different listeners is far from

constant.

Unlike the issue of not validating results derived from force-aligned data, this

issue does not have a simple solution. Building statistical models that are reasonable

approximations of the data-generating process, that have been informed by expert

knowledge, and that align theoretical assumptions of the phenomenon in question

with the mathematical structure of the model takes a substantial amount of time

and thought. There is no one-size-fits-all solution. However, given that the use

of complex statistical models in growing in the phonetic sciences (e.g., see papers

from special issue Roettger et al., 2019), it is important to remember that, in the

absence of theoretical assumptions that warrant increased complexity, models should
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be simple (e.g., Bates et al., 2015; Matuschek et al., 2017), although what constitutes

a simpler model also deserves greater thought that we currently give it (e.g., Falk

& Muthukrishna, 2023). In an ideal world, the data would be available in an online

repository along with the processing and analysis scripts so that other researchers

could re-run the models supporting a paper’s conclusion and explore how robust the

findings were to what they believed was a more appropriate set of assumptions. In

practice, this may not always be possible or feasible, and in some cases, making this

mandatory in all cases could propagate inequality along a number of dimensions (see

Whitaker & Guest, 2020, for a discussion of this). A more equitable starting point

in the absence of open data would be to mandate the sharing of model diagnostic

plots in an appendix so that readers can evaluate their own subjective belief in the

results of that model. The additional burden of such a requirement is minimal, as a

single line of code can often complete this.

The third systemic issue that needs to be addressed is the widespread use of multi-

ple regression models to analyze observational data in studies on phonetic reduction.

This issue was briefly discussed by Perry et al. (2024), but this is a fairly serious

limitation that deserves an expanded discussion. What follows is not a proper intro-

duction to modern approaches to causal inference (the reader is directed to Pearl,

2009; Pearl et al., 2016), but rather a brief discussion of how one type of causal model,

the Directed Acyclic Graph (DAG), can be used to motivate variables included or

omitted from statistical models of observational data, as was done by Cohen Priva

and Gleason (2020) for English consonants.

As the field of linguistics shifted to the use of multiple regression models from

ANOVA, it became general knowledge that adding additional variables to a regression

could statistically control for potential confounds. What is virtually never discussed

is that adding additional variables into a regression can also create confounds (for a
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thorough explanation of this, see McElreath, 2020). Whether a variable should be

added depends on the specifics of the system under study and for which variable of

the system you want to estimate the causal effect. A DAG is a graphical model of

the relationships between variables relevant to a certain system under study, which

has the key property that edges (arrows) connecting one variable to another can only

go in one direction.

To illustrate a DAG for phonetic reduction where we know that there are causal

relationships between variables (because we use them to calculate each other), we

take a closer look at variables related to frequency and contextual probability, which

have been used to study reduction (Aylett & Turk, 2004; Bell et al., 2009; Jurafsky,

Bell, Gregory, & Raymond, 2001; Jurafsky, Bell, Gregory, & Raymond, 2001). The

variables are word frequency (Freq), bigram frequency with the previous word (Bi-

gram), conditional probability based on the previous word (CondProb), and mutual

information with the previous word (MuInf). We also have our outcome construct

Reduction, which is a deliberate simplification only for illustration purposes, as well

as the frequency of the previous word (PrevWord), which is needed to calculate sev-

eral of the other variables. U is an unobserved confound between word frequency

and bigram frequency, as there is a strong relationship between the two variables,

the nature of which is unclear.

We now outline the individual relationships that underlie our DAG, which is

visualized in Figure 5.1. First, we have an unobserved variable U that is a joint

cause of both frequency and bigram frequency (Freq ← U → Bigram). We then

have mutual information with the previous word, which is calculated using bigram

information (Bigram → MuInf) along with frequency information of the word

(Freq → MuInf) and previous word (PrevFreq → MuInf). We know there

is a causal relationship present, as changes in any of these variables will result in
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changes in mutual information. Conditional probability is calculated using bigram

information and the frequency of the previous word (PrevFreq → CondProb ←

Bigram). As all of these variables have been claimed to be related to reduction,

we draw an arrow between all of them and Reduction (with the exception of the

previous word).

A DAG guides the variable selection process by providing sets of variables that

close the additional paths between the variable of interest and the outcome, isolating

the effect that we care about. While cause flows in one direction down the arrows,

information flows both ways. To isolate the direct causal effect of a variable, one

needs to block the paths, which can be done by controlling for the variable in your

model. Let’s say we wanted to examine the effect of lexical frequency on reduction.

To estimate this, we would need to control for Bigram, MuInf, and one of either

CondProb or PrevFreq, as either of those would close the path. If, however, we only

wanted to estimate the total (not direct) effect, any ‘downstream’ variables between

frequency and reduction can be left open. In this case, we could just control for

bigram frequency.

It is possible, given theoretical assumptions, to realize that a given causal effect

cannot be estimated from a given set of data. While causal models are something

that should be discussed openly in order to unite scientific theory and statistical

analyses, we may end up acknowledging that causal hypotheses (e.g., the Probabilis-

tic Reduction Hypothesis) are impossible to evaluate using spontaneous speech data,

as there are too many interconnected variables that have relationships that we do not

fully understand. If our goal is instead predicting phonetic variability, researchers

should stop reporting and interpreting individual regression coefficients altogether

and focus on comparing how models derived from different theories predict the data

we observe.
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Figure 5.1: A directed acyclic graph depicting the proposed relationships between
information-theoretic factors and reduction, as well as the relationships between
them.

The advantage of explicit causal models is not limited to observational data,

but can be useful to examining any system under study. The confound of variant

frequency in our investigation into how reduction impacts spoken word recognition,

discussed in Chapter 4, is visualized as a DAG in Figure 5.2. We wanted to study

the causal effect of reduction on spoken word recognition (Reduction → SWR),

but they had a common cause as variant frequency (expected production) impacted

both our reduction variable and the process of spoken word recognition (SWR ←

V ariant_frequency → Reduction).

In our study, the randomizing of which variant was selected in a subset of our

items broke the causal link between variant frequency and reduction, leading to an

effect of IntDiff in that subset of words when there was none present for all items

together. This is a good example of how randomization allows for the estimation of
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Figure 5.2: A simplified causal model of reduction and variant frequency effects in
spoken word recognition.

causal effects in experimental settings. As an illustration of statistical control, we

present the estimated effect of IntDiff for the subset of words used in the analysis of

expected productions, both with and without the distance from an expected produc-

tion included in the model. In Figure 5.3 A, the estimated effect of IntDiff without

controlling for variant frequency is a small positive effect of which we are slightly

uncertain. Figure 5.3 B shows the estimated effect of IntDiff from the same data

after controlling for variant frequency by including the distance from an expected

mean production in the model. After controlling for an expected production of the

word, we have a large negative effect of IntDiff, of which we are more than 99.9%

confident. It is important to point out that the ‘true’ direction of the effect is impos-

sible to discern based on the data; it has to be interpreted through our theoretical

assumptions.

Given the difficulties of making causal inferences from observational data, there
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Figure 5.3: Panel A shows the effect of IntDiff on reaction time without controlling for
the distance from an expected production of the word. Panel B shows the estimated
effect of IntDiff in an identical model where the distance from the mean IntDiff for
the word from the Nijmegen Corpus of Casual Spanish has been added. Lines in
both panels represent random draws from the 89% credible interval.

is a need for more studies of phonetic variation that follow the procedure of a ran-

domized controlled trial, randomly assigning participants from the same speaker

population into different groups, one or more of which are exposed to experimental

manipulation. Experimental elicitation of speech forms a spectrum from read speech

using carrier phrases to situations with unguided speech, such as map tasks and

sociolinguistic interviews. While these differ from conversational speech, I contend

that the most important aspects from the point of view of ecological validity are that

the talker is not reading nor repeating recorded stimuli and that they have not been

coached or trained to produce speech following specific phonological or syntactic pat-

terns. They must also be actively communicating with another person. Within these

parameters, there is clear room for experimental manipulation.
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I propose that solutions-based games, such as the map task (Anderson et al.,

1991; Van Engen et al., 2010), in which participants must communicate information

back and forth in service of a common goal, should be sufficiently spontaneous to

allow for any mechanism that is responsible for reductions in daily interactions to

be present in an experimental setting. The key components here would be initial

randomization into a control or experimental group and the properties of the objects

that are involved in the map task. As an example, let’s imagine the simplest case of

having only two descriptors and two objects for a total of four items. The descriptors

could be ‘red’ and ‘blue’ while the objects are ‘bike’ and ‘car’. In the control group,

there would be an equal amount of red and blue versions of each object, so the colour

imparts no information about the object itself. In the experimental group, there

would be a manipulated range so that, for example, red is 25% more likely for a bike

and blue is 25% more likely for a car. Long-term and repeated habituation into this

context over repeated experimental sessions could feasibly allow for an experimental

estimate of whether changes in predictability impact word duration. Any estimates

from such a paradigm could then be compared to estimates based on different causal

assumptions investigating spontaneous speech.

5.6 Conclusion

As was noted at the beginning of this dissertation, speech is highly variable. The data

and analyses presented here add to the body of research that views this variability not

as noise but as a window into the structure of language in the mind. We find lexical

information is responsible for variation in the production of the Spanish alveolar tap

in spontaneous productions, in addition to articulatory variables such as speech rate

and phonetic environment. In perception, we see that phonetic reduction can impact
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how both L1 and L2 listeners recognize words, as well as finding evidence for a version

of the variant frequency effect based on a continuous acoustic correlate, indicating

that the way that words are produced in everyday speech shapes how these words

are recognized, regardless of whether Spanish is your first or second language.
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