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Abstract

Compared to human vision, dynamic range (DR) is a limiting factor for mod-

ern cameras. While conventional complementary metal-oxide-semiconductor

(CMOS) image sensors are limited in their ability to capture DR, nonlinear

CMOS image sensors, e.g., with logarithmic (log) or linear-logarithmic (linlog)

responses, are able to capture high/wide DRs in single exposures at video rates.

Considering the drawbacks of such sensors, this thesis proposes and validates

new algorithms, for colour correction and demosaicking, that are specially de-

signed for nonlinear sensors where the response is a monotonic function of

stimulus, a property of log and linlog sensors. The proposed colour correction

has a nonlinear part, which employs cubic Hermite splines, followed by a lin-

ear part. To estimate relevant parameters, calibration with a colour chart is

required. The method is validated, through simulation, using a combination of

experimental data, from a monochromatic log sensor, and spectral data, from

the literature. The proposed nonlinear demosaicking uses weighted medians to

filter pixels exhibiting salt-and-pepper noise (SPN), a drawback of nonlinear

sensors, while determining a colour for each channel at every pixel. Variations

of the method are considered and evaluated. To produce mosaicked images for

testing, a Kodak true colour image set is subsampled, in a Bayer colour filter

array pattern, and SPN of varying densities is added. Results of the proposed

method are compared to those from a popular literature method. Finally, fu-

ture directions of this work are discussed, such as a fixed-point implementation

of both algorithms and ways to facilitate additional experimental results.
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Preface

Chapter 2 of this thesis has been published, after peer review of the entire

work, as Syed Hussain and Dileepan Joseph, “Spline-Based Colour Correc-

tion for Monotonic Nonlinear CMOS Image Sensors,” Proceedings of the IS&T

International Symposium on Electronic Imaging, 362 (2019).

In Chapter 2, Hussain was responsible for the design, implementation,

validation, and evaluation of the algorithm, with advice from Joseph. Hussain

was also responsible for writing the Apparatus and Method, the Simulation

Results, and the Conclusion sections. Hussain wrote the initial version of the

Introduction section, including the opening abstract. Joseph revised these

opening parts substantially, and edited the other sections.

The design, validation, and evaluation of the algorithm, proposed in Chap-

ter 3, was completed by Hussain, with advice from Joseph. Both Hussain

and Joseph implemented the algorithm independently. After he confirmed the

results were identical, Hussain employed Joseph’s implementation thereafter.

The chapter was written by Hussain, and edited by Joseph.

All other parts of the thesis were written by Hussain and edited by Joseph.

In particular, Joseph made significant edits to the Abstract.
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Chapter 1

Introduction

The class of complementary metal-oxide-semiconductor (CMOS) image sen-

sors offers high speed and functionality as an alternative to charge coupled

device (CCD) image sensors. One drawback to traditional CMOS image sen-

sors is that their dynamic range (DR) is relatively low compared to human

vision. Nonlinear image sensors have been shown to capture a wider DR than

linear CMOS image sensors at video rates. The benefits of high/wide dynamic

range (HDR) CMOS image sensors have the potential to make significant con-

tributions to various industries. However, nonlinear image sensors, such as

logarithmic (log) or linear-logarithmic (linlog) image sensors, tend to behave

differently than linear image sensors when encountering similar problems and

therefore need to be handled separately. Some of these problems can be ad-

dressed with image signal processing. In particular, because colour is such

an essential component of imaging, colour correction algorithms for nonlinear

image sensors need to be developed to properly handle the nonlinearity of the

sensor response. Additionally, demosaicking algorithms need to be revisited to

make them more suitable for producing colour images captured by nonlinear

image sensors.

1.1 High/Wide Dynamic Range Imaging

Image sensors capable of HDR imaging are a promising solution to improve the

DR of image sensors. Similar to how the imaging industry has largely migrated

from CCD image sensors to CMOS image sensors, the benefits provided by
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nonlinear CMOS image sensors have the potential to shift the focus of imaging

technology. Image sensors are used in a myriad of industries. The range of

applications can be extended tremendously, according to the literature, by

replacing traditional image sensors with HDR imaging technology.

1.1.1 Applications and Opportunities

In recent years, image sensors have become prevalent in society. As the technol-

ogy behind image sensors continues to improve, CCD image sensors are being

replaced by CMOS image sensors, allowing CMOS image sensors to become

the dominant imaging technology [4]. CMOS image sensors have tradition-

ally been favoured over CCD image sensors because they exhibit lower power

dissipation, more portability, and generally lower prices [13]. Consequently,

various applications, including cell phones, video cameras, digital single-lens

reflex (DSLR) cameras, are adopting CMOS image sensors [40]. However, one

distinct disadvantage traditional CMOS image sensors have is that they are

less sensitive to light than CCD image sensors of the same pixel size [5], [43].

Tomoyuki Suzuki, Senior Vice-President of Sony, stated in his plenary talk

at the ISSCC 2010 that the next step for CMOS image sensors is to exceed

human vision [40].

In order for this to be possible, improvements have to be made in several

aspects of image sensors. In their comprehensive review of modern cameras,

Skorka and Joseph found that the DR was the limiting factor compared to the

human visual system, followed by the dark limit [37]. The DR of an imaging

system is the range of luminances that the system can accurately capture, with

the dark limit defining the lower end of the range, and the bright limit defining

the upper end. Skorka and Joseph define the dark limit as the lowest luminance

at which the signal-to-noise-and-distortion ratio (SNDR) exceeds 0 dB, and

the bright limit as the highest luminance that does the same. Beyond these

limits, the system cannot accurately interpret the signals received by the image

sensors. Figure 1.1 shows a comparison of the performance of the human eye

versus several image sensors in regards to the DR and the dark limit. These

results indicate that the human eye is superior to most image sensors in both
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Figure 1.1: Dark limit and dynamic range of modern image sensors. Skorka
and Joseph show that most image sensors are well below the standard of the
human visual system in terms of dark limit and intra-scene DR. The marked
quadrant indicates which region performance would be superior to the human
eye. Taken from Skorka and Joseph [37].

aspects.

Figure 1.2 shows the range of intensities that may be encountered in the real

world, which is called the inter-scene DR. Considering that the intra-scene DR

can exceed 6 orders of magnitude [37], it becomes important to design pixels

that can accurately interpret incoming light signals over a high/wide DR of

intensities. The field of study that deals with designing and implementing

such imaging systems is known as HDR imaging. Properly handling HDR

data means information that may otherwise be lost is retained due to pixels

remaining unsaturated, as evidenced by Fig 1.3. Unsurprisingly, HDR imaging

has generated a lot of interest, as it promises a great deal of benefit in various

fields of application.

The medical imaging industry has benefited tremendously from the ad-

vances made in CMOS imaging technology. CMOS image sensors have be-
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Figure 1.2: Range of intensities possible in the real world. The response of the
human eye is given along with the HDR response of a log sensor. Taken from
Hoefflinger [15].

Figure 1.3: Images from a CCD camera and an HDR camera. The difference
in the quality of the two images shows the advantages of using HDR cameras.
Because pixels are not as easily saturated, more detail from the scene can be
captured. Taken from Hoefflinger [15].

come a viable option for real-time digital X-ray imaging, as opposed to the

traditional amorphous silicon (a-Si) flat panel imagers used previously. Gan-

guly et al. [11] describe an implementation of a CMOS X-ray detector that

is capable of operating at high/wide DR. CMOS X-ray imagers have several

advantages over a-Si flat panel imagers. These imagers have a faster readout

speed and lower noise. The lower noise allows for higher/wider DR, while the

faster readout results in quicker scanning, which is especially important for

procedures where the patient may have to hold their breath [45]. As opposed

to traditional X-ray imaging, which is a monochromatic operation, techniques

have been developed that create coloured two-dimensional X-ray images using
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Figure 1.4: Traditional and colourized X-ray. The image contains objects of
different materials. While the traditional method produces a grayscale image,
the dual-energy method is able to produce a coloured image that can correctly
differentiate between the different materials in the scene. Taken from Peter et
al. [32].

multispectral X-ray imaging. Peter et al. [32] develop a method of colorizing

a dental X-ray image by exposing the material to two different X-ray spectra.

By comparing the material’s response to the two different spectra, they were

able to classify, and colourize, different materials provided both X-ray spectra

were able to penetrate the samples. The possibility of combining multispectral

X-ray imaging with HDR X-ray image sensors would allow for greater range

and accuracy of classification of materials.

In addition, HDR CMOS image sensors have made promising contributions

to the automotive industry. With the advent of autonomous vehicles, it is in-

creasingly important that reliable and accurate data is available to the various

algorithms that govern the actions of the vehicles. Despite the reduced traffic

volume at night, about 46% of driving fatalities occur at night [14]. Dim light-

ing reduces human drivers’ abilities to avoid collision [33]. HDR imaging is

a promising solution. HDR cameras are more robust against saturation from

bright scenes. Fig 1.5 shows a possible scene viewed by a vehicle. The image

on the right, taken by an HDR camera, contains significantly more details than

the image on the left, which is taken by a linear camera. This highlights the

superiority of using HDR image sensors for automotive applications.
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Figure 1.5: Automotive camera vision using linear and HDR cameras. Auto-
motive algorithms depend on the information obtained from cameras to make
decisions about the actions of the vehicle. Proper information has to be given
to the algorithm in order to operate successfully. Taken from Hertel and Chang
[14].

A current alternative to using cameras in autonomous vehicles is LIDAR.

However, while LIDAR is more accurate, Stein et al. show that cameras are

sufficient in implementing adaptive cruise control (ACC) [38]. In addition,

a camera-based ACC system would be cheaper to bring to production com-

pared to a LIDAR-based system. Often, the main weakness cited for using

traditional CMOS image sensors is their inability to handle illumination vari-

ances, and their night vision difficulties [30]. HDR image sensors, however, are

significantly better at addressing these issues.

1.1.2 Technology and Challenges

It is possible to obtain HDR images using linear image sensors by taking mul-

tiple shots with varying exposure settings. However, this multiple sampling

method is best applied to static scenes. For dynamic scenes or video appli-

cations, motion artifacts will appear in the final result. Due to their linear

response to incoming light, linear image sensors are only capable of capturing

a limited DR, which results in poor quality images for scenes with a high/wide

DR [41]. Image sensors with a nonlinear response to incoming light have the

potential to capture HDR images in a single shot, because pixels are less

susceptible to saturation. In particular, image sensors with a log response

to incoming light have been developed that demonstrate DRs greater than

120 dB. However, a problem often associated with log sensors is that they
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Figure 1.6: Responses of linear and linlog image sensors. (a) A typical OECF
of a linear image sensor. (b) A typical OECF of a linlog image sensor. One
axis of the linlog graph is shown on a log scale. The DR of the image sensor
increases dramatically due to the log response after the knee point. Taken
from Kim [20].

have small voltage swings. This limited range of voltage output results in low

signal-to-noise ratios (SNRs). Lai et al. [25] developed a CMOS image sensor

that addressed this issue by increasing the voltage swing to 1 V. Improving

on this result, Campos et al. [8] showed an implementation of a log CMOS

image sensor with a voltage swing of 2.65 V over a range of 120 dB by using

up to four transistors in series.

Linear-logarithmic (linlog) image sensors are another popular type of non-

linear image sensor capable of high/wide DR. These image sensors extend the

DR of a linear image sensor by using a log response when the output value of

the pixel reaches a certain limit, and a linear response on the lower luminances,

which decreases the dark limit. Figure 1.6 shows a typical opto-electronic con-

version function (OECF) of a linlog sensor as well as a linear sensor. It is

evident from the figure that the DR is extended significantly due to the log

response. One drawback to this configuration is that it becomes very difficult

to model this type of response. In the literature, there are several examples of

image sensors that use the linlog architecture. Li et al. propose a pixel with

two modes: a linear response mode and a log response mode [24]. They report

a DR of 161 dB. Bae et al. use a similar dual-mode architecture to achieve a

DR greater than 106 dB [1]. Regardless of the particular configuration of the
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image sensor, nonlinear image sensors show strong potential for being able to

capture scenes with a high/wide DR.

Despite their numerous advantages, there are drawbacks to the log and

linlog CMOS image sensors. This class of imagers has been known to exhibit

high levels of fixed pattern noise (FPN), a spatial as opposed to temporal noise

that is the result of device parameter mismatch. Although all the pixels in the

sensor are made together, variations in the manufacturing process of the sensor

can cause each pixel to respond differently to the same stimulus. Correcting

FPN for a log image sensor can be done using a model of the image sensor

response. One such model is the offset, gain, and bias (OGB) model [18], which

requires parameters for the specific camera to be determined via a calibration

process. While this can be applied to log image sensors, linlog image sensors

have a more complicated response, which cannot be modeled as easily. In their

recent paper, Nascimento et al. [31] describe and implement a digital circuit

method that is able to perform FPN correction, on an arbitrary image sensor,

by using Li et al.’s [23] generic model. This model makes no assumptions

about the response of the image sensor except that it is monotonic, a desirable

property for any image sensor. The method uses a cubic Hermite spline to

interpolate between data points.

Whereas spline interpolation is non-monotonic, a cubic Hermite spline is

able to preserve the monotonic nature of the data [6]. As Fig 1.7 shows, spline

interpolation creates oscillations that destroy the monotonicity of the curve.

This would be problematic for an imaging system, which uses interpolation

to correct responses, so a cubic Hermite spline is the preferred interpolating

method. Li et al. use this approach to model the photometric response of

an arbitrary image sensor. They also show how the monotonicity property

suffices to develop an effective method for FPN correction. Nascimento et al.

implemented the FPN correction method using digital circuits, and showed

that their approach outperforms competing analog, mixed-signal, and digital

circuit methods in the literature.

Another type of noise that is associated with nonlinear image sensors is

salt-and-pepper noise (SPN). Traditionally, SPN occurs because there is some
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Figure 1.7: Spline versus cubic Hermite spline interpolation. Spline interpo-
lation results in a non-monotonic function, whereas piecewise cubic Hermite
spline, or pchip, interpolation is able to preserve the monotonicity of the data.
This is important when the interpolated data is a model for the response of
an image sensor, which is monotonic in nature. Figure based on MATLAB
example.

defect in the image sensor that causes a pixel to be always bright, or always

dark, regardless of the light conditions. These pixels have a largely different

response to stimulus than those in their local neighborhood [44]. Although it

is possible to detect and locate the exact pixels in the image that cause this

error, it is not the only solution in the literature. Instead, a noise reduction

algorithm can be applied to the entire image. SPN behaves differently in

nonlinear image sensors than it does for linear image sensors [31]. For linear

image sensors, SPN is a static noise. Pixels “stuck” at certain values can be

identified and corrected. However, for nonlinear image sensors, SPN becomes

dynamic. Pixels may appear defective at some luminances and become active

at different luminances. Unlike FPN correction, which requires calibration,

SPN correction can be implemented by applying a filter after other correction

algorithms have been implemented. Median filtering is an effective solution
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for SPN correction, as it uses the fact that defective pixels are outliers [22].

Nascimento et al. show that a median filter approach is not only feasible, but

efficient, in circuit-based methods for removing SPN.

With all the research being done with nonlinear image sensors, one area

that has not been given enough attention is colour. Integrating colour into

images is a logical next step for nonlinear image sensors. Colour is a core

aspect of visible-band imaging, yet research on nonlinear image sensors, for the

most part, focuses on the monochromatic case. Aside from producing more

visually pleasing images, colour also allows for more information to be encoded

into images being captured. Similar to FPN correction, colour correction is an

operation that requires a calibration process. For linear image sensors, colour

correction is the process of applying a linear matrix transform on a tristimulus

pixel value to convert the data from a device-dependent camera space to a

standard device-independent space. Calibration is required to determine the

parameters for the transform. This technique is insufficient for nonlinear image

sensors, as evidenced by previous work in the area by Joseph and Collins [19].

1.2 Image Processing Pipeline

Having the correct circuit configuration on an image sensor is not sufficient

in displaying a full HDR image. Images taken from a sensor have a series of

operations performed on them to optimize the images for a particular objective.

This series of operations, called the image processing pipeline, is performed by

circuitry in real time after the data from the image sensor is collected. Below,

we consider two operations that are integral to converting an image from a

grayscale image to a colour image.

1.2.1 Colour Correction

Raw data from an image sensor is collected as unsigned integers. The inter-

pretation of these integers is dependent on the circuitry of the image sensor.

The raw data is considered to be in camera space, which is a device specific

representation. A colour correction algorithm is used to transform the cap-
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tured images from the camera space to a standard, device independent, colour

space, e.g., CIE XYZ. From CIE XYZ, there are transforms that can alter

the data so that it can be displayed, or analyzed. Linear colour correction

is done using a 3 × 3 matrix to transform a tristimulus pixel value from one

space to another. The matrix is determined using a calibration process, where

images with known colours are shown to the camera. Using matrix operations,

a transform between the camera space and the CIE RGB space can be deter-

mined. The transform, in general, will not be a perfect transform because that

would imply that the colour filter array (CFA) transmission functions are a

linear combination of the CIE RGB functions.

This technique of colour correction cannot be applied directly to nonlinear

image sensors because the response of nonlinear image sensors can be very

different depending on the luminance. A relatively minor change in luminance

can change the output of the image sensor disproportionately. This will skew

the results of the linear transform. An alternate method is needed to handle

the nonlinear aspect of nonlinear image sensors. This thesis proposes a novel

technique to perform colour correction on images captured by nonlinear image

sensors. By separating the colour correction algorithm into nonlinear and

linear colour correction stages, this thesis shows that colour correction for

nonlinear image sensors is not only possible, but achieves excellent results.

1.2.2 Demosaicking

For standard CMOS image sensors, colour is incorporated by placing a CFA

over the image sensor, and then applying some form of interpolation to obtain

red, green, and blue values for all pixels in the sensor. Because each pixel

only captures one colour depending on the CFA, a demosaicking algorithm

is applied to estimate the missing colour components at each pixel location.

A common CFA used in CMOS image sensors is the Bayer CFA [7]. This

particular configuration is composed of a repeating block of four pixels: two

green pixels for every red and blue pixel. The green pixels are sampled twice to

reflect the higher sensitivity of the human visual system to the colour green.

Figure 1.8 shows a typical arrangement of the elements in a CMOS image
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Figure 1.8: A colour CMOS image sensor with a Bayer CFA. Incoming light
passes through either a red, green, or blue filter and generates a colour stimulus
pattern on the pixel array. Interpolation is required to realize a full colour
image. Adapted from Selek [35].

sensor. Demosaicking is a process that can, for the most part, be decoupled

from other processes in the image processing pipeline. It is generally performed

before data from the camera has been converted to a standard colour space.

As such, methods used for demosaicking linear CMOS image sensors can be

readily applied to nonlinear CMOS image sensors.

There are various methods of demosaicking suggested in the literature. Bi-

linear interpolation is a very simple form of demosaicking. Another simple

form is to use a nearest neighbours approach. However, a drawback to such

methods is that they may cause artifacts in the images [27], especially in re-

gions with sharp edges where colour gradients are high. In an effort to optimize

performance along edges, Kimmel [21] uses edge detection to specifically tar-

get areas with high colour gradients. The interpolation along these regions is

weighted by a function of the directional derivatives to reduce the effect of the
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large colour contrasts.

Due to its popularity, there are many methods proposed that consider only

the Bayer CFA in order to simplify the process. Malvar et al. proposes a

linear demosaicking algorithm that has been adapted by MATLAB for their

Image Processing Toolbox [27]. The method uses a sliding window algorithm

with weighted masks to compute a modified bilinear interpolation operation on

every pixel in the image. An important aspect of this work is that it is a simple

functional mapping, which allows it to be computationally efficient in addition

to being a linear mapping. Because previous algorithms search for regions

of high colour gradients, they involve selection in addition to nonlinearity.

Malvar et al. apply a corrective term to each interpolated pixel. The corrective

term is a measure of the change in luminance at the pixel. This allows the

interpolation at every pixel to be sensitive to edges in the image, without

explicitly performing edge detection.

While the techniques mentioned above are relevant for nonlinear image

sensors, it is important to consider that nonlinear image sensors suffer from

SPN. Demosaicking is inherently a spreading operation: it attempts to popu-

late a larger set using data from a smaller set. In the absence of SPN, this is

not problematic if done correctly. However, when SPN is present, demosaick-

ing algorithms can spread defective pixel values to other pixels, decreasing

the quality of the entire image. For nonlinear image sensors, it is important

to consider SPN when demosaicking to make sure only valid pixel values are

considered. This thesis proposes and validates a method of demosaicking that

simultaneously filters SPN. The method is validated against a leading lit-

erature approach, namely Malvar et al.’s method, and we show that in the

presence of SPN, our proposed method outperforms the competition.

1.3 Scope of Work

There are many aspects of HDR imaging that can be considered. This thesis

proposes and evaluates two methods whose ultimate goal is to display colour

images taken from nonlinear CMOS image sensors. Chapter 2 proposes a
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colour correction method for images taken by a monotonic nonlinear CMOS

image sensor. First, we explain the motivation for the proposed algorithm.

Next, we present a background for the work, as well as the ideas that the

proposed algorithm is based on. While the algorithm presented is applicable

to any type of monotonic nonlinear CMOS image sensor, this work validates

the proposed method using data from a log sensor developed by Mahmoodi

et al. [26]. Nevertheless, the algorithm makes no assumptions that the sensor

response is anything other than monotonic. Because we use a simulation-

based approach to validate our results, we build a model of an image sensor

containing all details relevant to our scenario. We then present a series of

results that show that our method is capable of performing colour correction

accurately.

In Chapter 3, we look at the challenges in demosaicking images captured

by nonlinear image sensors. First, we present the motivation for combining the

demosaicking and SPN filtering operations. We then go over the ideas upon

which the proposed method is built, before presenting our method. We also

present variations of the method to help explain its properties. For validation,

we test against the results of Malvar et al.

Finally, in Chapter 4, we conclude with summarizing our motivations, as

well as the methods presented in this thesis. We highlight the novelty and

significance of the methods presented, and we show that both methods are

successful in achieving the goals defined for them. Lastly, we discuss future

plans for the work presented in this thesis.
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Chapter 2

Colour Correction

Nonlinear complementary metal-oxide-semiconductor (CMOS) image sensor

(CIS) technology is capable of high/wide dynamic range (DR) imaging at high

frame rates without motion artifacts. However, unlike with linear CIS technol-

ogy, there is no generic method for colour correction of nonlinear CIS technol-

ogy. Instead, there are specific methods for specific nonlinear responses, e.g.,

the logarithmic (log) response, that are based on legacy models. Inspired by

recent work on generic methods for fixed pattern noise (FPN) and photometric

correction of nonlinear sensors, which depend only on a reasonable assump-

tion of monotonicity, this chapter proposes and validates a generic method for

colour correction of nonlinear sensors. The method is composed of a nonlinear

colour correction, which employs cubic Hermite splines, followed by a linear

colour correction. Calibration with a colour chart is required to estimate the

relevant parameters. The proposed method is validated, through simulation,

using a combination of experimental data, from a monochromatic log CIS, and

spectral data, reported in the literature, of actual colour filter arrays (CFAs)

and target colour patches.

2.1 Introduction

CISs have become the dominant imaging technology, with charge coupled de-

vices (CCDs) comprising less than 10% of the market share since 2010 [4].

Research in the area includes work on nonlinear sensors, such as log and linear-

logarithmic (linlog) ones [1], [3]. It is well known they can achieve a high/wide
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DR in single exposures at video rates and, with the work of Mahmoodi et al.

[26], also to realize a high peak signal-to-noise-and-distortion ratio (PSNDR).

Recent work on nonlinear sensors does not address colour specifically.

Brunetti and Choubey [3] alter the log sensor circuit to improve its sensitivity

in the dark. Meanwhile, Bae et al. [1] develop a variation of the linlog circuit

with two piecewise linear regions in the dark. Given that colour is an integral

component of visible-band imaging technology, one can safely assume from the

ongoing interest in nonlinear sensors that legacy work on colour correction in

such sensors is worth improving upon.

The main limitation of legacy work on colour correction, in nonlinear sen-

sors, is that it is specific to the classic log sensor. Methods by Hoefflinger [15]

and Joseph and Collins [19] rely on a classic model of the log sensor, developed

by Joseph and Collins [18] for FPN correction. While these colour correction

methods worked to some degree, they are not applicable to the variety of non-

linear sensors of interest today, including log sensor variations that deviate

from the classic model.

This chapter proposes a new approach to colour correction, which leverages

a model recently developed by Li et al. [23], using low-degree polynomials and

cubic Hermite splines, for FPN and photometric correction. Relying only on

the monotonicity of pixel responses, this model is so generic that it may be

applied to a wide variety of sensors, including log and linlog variations. Also,

Li et al. [23] showed that, when applied to Mahmoodi et al.’s log sensor [26],

FPN correction using the generic model was competitive with FPN correction

using the classic specific model.

One difficulty of working on this subject is the challenge of obtaining exper-

imental data from a nonlinear image sensor, i.e., an array of nonlinear pixel

sensors, having a CFA. Therefore, we adopt a simulation strategy here by

using monochromatic experimental data, from Mahmoodi et al.’s documented

image sensor [26], and spectral data from multiple literature sources, regarding

the quantum efficiency (QE) of photodiodes, the transmittance of a CFA, and

the reflectance of a wide variety of objects, to validate our proposed method.

We first summarize the apparatus of interest, i.e., a nonlinear sensor that
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obeys the assumptions laid out by Li et al. [23]. However, we extend Li et

al.’s model from a monochromatic to a colour scenario. Thereafter, the new

colour correction method is proposed, which entails a description also of colour

calibration. Because FPN is inherent to nonlinear sensors and Li et al.’s model,

we review FPN, its calibration, and its correction, focusing on implications for

colour calibration and correction.

Moreover, we present a suite of results to validate and evaluate the pro-

posed method, including two variations thereof. They include calibration with

Macbeth chart patches and testing with a large database of other patches. Not

only do we report median 1976 Commission Internationale de l’Éclairage (CIE)

L*a*b* (CIELAB) errors, including over a high/wide DR, but also their prob-

ability density functions (PDFs). Errors are broken down into luminance

and chromaticity parts, and are compared to just noticeable difference (JND)

thresholds.

We conclude the chapter by summarizing our motivation, apparatus, meth-

ods, results, and discussion. Our conclusion also highlights the novelty and

significance of this work—a generic method for the colour correction of non-

linear sensors.

2.2 Apparatus and Method

This chapter proposes and validates a method to correct colour for the class

of image sensors that are strictly nonlinear and monotonic in their response

to incoming light. It is intended to be implemented, in real time, as one

subsystem in a series of subsystems of an image processing pipeline. It is

designed to output images in the 1931 CIE XYZ (XYZ) colour space. These

may be easily transformed into other colour spaces.

Figure 2.1 illustrates a nonlinear imaging system, comprising a nonlinear

image sensor and an image processing pipeline for FPN and colour correction.

A transformation to the sRGB colour space, suitable for display, is indicated

at the output.

The proposed method has two stages. The first is calibration, which is
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Figure 2.1: The proposed colour imaging system. Dashed boxes indicate the
focus of our work. Nonlinear colour correction (NCC) is done before or after
demosaicking (DM). They are followed by linear colour correction (LCC).

performed once to establish parameters required in the correction stage. Cor-

rection is then performed, in real time on all frames, using a combination of

nonlinear and linear colour corrections. Assuming the image sensor uses a

CFA, demosaicking is also needed. Variations in the sequence of performing

the colour corrections and demosaicking yield different results.

Below, we first analyze relevant aspects of image sensors. Next, taking

nonlinear and linear parts separately, the proposed colour correction method

is explained, calibration included. For demosaicking, we simply use Malvar et

al.’s [27] algorithm.

2.2.1 Image Sensor

An imaging system views an object when a spectrum of light reflects off a scene

and hits an array of pixels. In a given pixel array, the circuit configuration

of the pixels will not vary, but due to variations in device manufacturing,

responses to identical input can vary from pixel to pixel. This is the basis of

FPN.

Considering FPN and nonlinearity, to describe the response of the jth pixel,

in an array of pixels, we can write:

yj = fj(xj) + εj, (2.1)

where fj is the opto-electronic conversion function (OECF) of the pixel, εj is a
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noise associated with each pixel that encapsulates temporal and quantization

noise, and xj is the stimulus.

The stimulus xj, of the jth pixel, depends on localized scene illumination

and object reflectance, as well as CFA transmission and photodiode sensitivity.

It can be modeled as follows:

xj =

∫ ∞
0

sj(λ)βj(λ)αj(λ)dλ, (2.2)

where sj, βj, and αj, which are functions of wavelength λ, are the illumination,

reflectance, and absorption spectra. Whereas xj and sj can have dimensions,

e.g., cd/m2 and cd/m2/nm, βj and αj are always dimensionless and range from

0 to 1.

Assuming R, G, and B represent, according to the CFA, the sets of pixels

with red, green, and blue colour filters, respectively, the absorption spectrum

may be modeled as follows:

αj(λ) =


TR(λ)Q(λ), j ∈ R,
TG(λ)Q(λ), j ∈ G,
TB(λ)Q(λ), j ∈ B,

(2.3)

where TR, TG, and TB are the transmission efficiencies of the red, green, and

blue colour filters, and Q is the quantum efficiency of the photodiode. They

are treated as constants because there are enough degrees of freedom, in (2.1),

to model FPN.

The proposed method requires that fj, the OECF in (2.1), be a mono-

tonic function. Monotonicity is a typical characteristic of any image sensor,

including linear, log, and linlog. Although we use data from a log sensor, for

validation purposes, the method is mathematically applicable to linlog and

other possible high/wide DR sensors. The success of the method depends

neither on the form of the OECF nor on its variation from pixel to pixel.

2.2.2 Nonlinear Correction

We assume FPN correction, shown in Fig. 2.1, is implemented using a polynomial-

based method our lab previously published [23]. In that paper, our lab also
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introduced a spline-based method for photometric correction. We amend and

extend those methods, in this chapter, to realize a nonlinear colour correction.

Considering the pre-demosaicking variation, shown in Fig. 2.1, nonlinear

colour correction follows FPN correction. During FPN calibration, an average

response is computed as follows:

ȳi =
1

n

n∑
j=1

yij, (2.4)

where yij is the response to a uniform stimulus xi, which varies, and n is the

number of pixels. The averaging, in (2.4), reduces the significance of εj, in

(2.1). The noise may be reduced further by averaging, for each stimulus xi,

over multiple frames.

Data points (xi, ȳi), from FPN calibration, are used to define F , an ideal

monotonic and nonlinear OECF, as follows:

ȳi = F (xi) ≡
1

n

n∑
j=1

fj(xi). (2.5)

Our FPN calibration also computes n low-degree polynomials Pj, which are

used to implement FPN correction as follows:

ŷj = Pj(yj) ≈ F (xj), (2.6)

where xj and yj are the stimulus and response, in (2.1), and ŷj is the corrected

response, i.e., the FPN correction output.

Our photometric correction computes an estimated stimulus, x̂j, using the

corrected response, ŷj, as follows:

x̂j = exp(S−1(ŷj)) ≈ F−1(ŷj), (2.7)

where S−1 is a cubic Hermite spline [6] fitted to the data points (ln xi, ȳi) in

the inverse direction. Logarithms are used to robustly deal with a high/wide

DR on the x-axis. Unlike a cubic spline, a cubic Hermite spline guarantees

monotonicity.

The stimulus xi, in (2.5), is constant for all pixels, for a uniform scene

imaged by a monochromatic sensor, because the absorption spectrum αj equals
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the quantum efficiency Q, in (2.3). However, for a uniform scene imaged by a

colour sensor, the stimulus must be represented by three constants, as follows:

xRi = si

∫ ∞
0

s0(λ)β(λ)TR(λ)Q(λ)dλ, (2.8)

xGi = si

∫ ∞
0

s0(λ)β(λ)TG(λ)Q(λ)dλ, (2.9)

xBi = si

∫ ∞
0

s0(λ)β(λ)TB(λ)Q(λ)dλ, (2.10)

where s0 is the normalized illumination spectrum, e.g., a D65 spectrum in

1/nm, and si its photometric intensity, e.g., in cd/m2. The R, G, or B super-

scripts indicate that the constants apply only to the red, green, or blue pixels,

respectively.

Consequently, our previous FPN and photometric methods must be per-

formed three times separately, once each for the red, green, and blue pixels.

Instead of (2.6) and (2.7), we obtain:

ŷj = Pj(yj) ≈


FR(xj), j ∈ R,

FG(xj), j ∈ G,

FB(xj), j ∈ B,

(2.11)

x̂j =


exp(S−1R (ŷj)) ≈ F−1R (ŷj), j ∈ R,

exp(S−1G (ŷj)) ≈ F−1G (ŷj), j ∈ G,

exp(S−1B (ŷj)) ≈ F−1B (ŷj), j ∈ B,

(2.12)

where FR, FG, and FB are ideal monotonic and nonlinear OECFs for red,

green, and blue pixels, respectively, and SR, SG, and SB are the cubic Hermite

splines for the same. The splines may easily be created in normal or inverse

directions, as indicated.

Thus, for the pre-demosaicking variation, the nonlinear colour correction

is given by (2.12). It operates directly on the result, given by (2.11), of FPN

correction. Each scalar x̂j represents either a red, green, or blue value. After

demosaicking, using the established algorithm by Malvar et al. [27], for each

pixel there is a red, green, and blue value, which we may represent by a vector

x̂j.

Alternately, for the post-demosaicking variation, shown in Fig. 2.1, demo-

saicking happens after FPN correction. The result of FPN correction is still
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a red, green, or blue scalar ŷj. It becomes a red, green, and blue vector ŷj

after demosaicking. Thus, instead of (2.12), the nonlinear colour correction is

as follows:

x̂j =

exp(S−1R (ŷR
j ))

exp(S−1G (ŷG
j ))

exp(S−1B (ŷ B
j ))

 ≈
F−1R (ŷR

j )
F−1G (ŷG

j )
F−1B (ŷ B

j )

 , (2.13)

where ŷR
j , ŷG

j , and ŷ B
j are components of the vector ŷj. The end result is a

vector x̂j for either variation in Fig. 2.1.

2.2.3 Linear Correction

The input of the linear colour correction, shown in Fig. 2.1, is always a tristim-

ulus vector, denoted x̂RGB
j , in the colour space of the nonlinear image sensor.

Because nonlinear aspects are already corrected, the proposed linear colour

correction proves identical to the colour correction of linear image sensors,

i.e.,

x̂XYZ
j = D̂−1x̂RGB

j , (2.14)

where x̂XYZ
j is the corrected tristimulus vector, in the standard XYZ colour

space, and D̂ is a 3× 3 matrix, which is invertible, that represents the under-

lying linear relationship.

Therefore, the novelty here is not in linear colour correction per se but

rather in its calibration process, i.e., how D is estimated, because that is

different compared to the linear image sensor case. One part of the calibration

process remains the same. We require an image yj of a standard colour chart,

e.g., a Macbeth chart, illuminated by a standard illuminant, e.g., D65. After

segmenting the image to isolate the colour chart patches, the true XYZ values,

xXYZ
j , of segmented pixels, j ∈ C, are known.

To estimate the unknown parameter D, we minimize a sum of square errors

(SSE), which is defined as follows:

SSE =
∑
j∈C

(ŷj − Yj)2, (2.15)
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where ŷj is the result, in (2.11), after FPN correction of the colour chart image

yj. For j ∈ C, Yj is defined as follows:

Yj =


SR(ln xR

j ) ≈ FR(xR
j ), j ∈ R,

SG(ln xG
j ) ≈ FG(xG

j ), j ∈ G,

SB(ln xB
j ) ≈ FB(xB

j ), j ∈ B,

(2.16)

where SR, SG, and SB are cubic Hermite splines that model ideal OECFs FR,

FG, and FB, as described previously, and xR
j , xG

j , and xB
j are components of

xRGB
j . Due to a final equation, i.e.,

xRGB
j = DxXYZ

j , (2.17)

the scalar SSE, in (2.15), depends on the matrix D.

As all relevant functions are differentiable, the gradient of the SSE with

respect to D, denoted ∇SSE , may be formulated. Using an established al-

gorithm, such as fminunc in MATLAB, which terminates when ∇SSE equals

the zero matrix, the SSE may be minimized. The matrix D̂ that minimizes

the SSE is then used, in (2.14), to implement the linear colour correction.

2.3 Simulation Results

This section summarizes the results of testing the proposed method, and dis-

cusses the results achieved. First, we present details on how a colour non-

linear image sensor is simulated. Next, we describe how the image sensor is

calibrated, and present the results of the calibration. Results of correction are

then presented, including performance over a high/wide DR.

2.3.1 Image Sensor

The method is validated using a simulated colour log image sensor based on

the model presented above. As with Li et al. [23], the OECF of the image

sensor is determined by taking several images of uniform scenes of constant

luminance.

Using literature data [10], [28], shown in Fig. 2.2, the stimulus xj is simu-

lated by evaluating (2.2) for each pixel, which has a colour filter on top of a
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Figure 2.2: Transmission and quantum efficiency data from the literature.
Red, green, and blue transmission efficiencies correspond to a Canon 5D CFA.
The photodiode quantum efficiency is from a standard CMOS process. We
use this data to help simulate a colour nonlinear image sensor.

photodiode, of the image sensor. The quantum efficiency Q(λ) is a measure

of the electron-hole pairs generated relative to photons, of a particular wave-

length, incident on the photodiode. The colour filters are used to limit the

wavelengths to a certain range and to weight them appropriately.

Assuming a standard Bayer CFA, we segment pixels into red (j ∈ R), green

(j ∈ G), and blue (j ∈ B) sets. Using data from a monochromatic log image

sensor, presented by Mahmoodi et al. [26], we compute red (SR), green (SG),

and blue (SB) cubic Hermite splines to model the ideal OECFs of red, green,

and blue pixels, respectively, for colour calibration purposes. Inverse cubic

Hermite splines are computed for colour correction.

As shown in Fig. 2.1, we focus on the colour correction part of a hypo-

thetical nonlinear imaging system, in this case a log imaging system. Using Li

et al.’s method, the FPN correction output, i.e., ŷj in (2.6), is for each pixel

equivalent to its ideal response, i.e., based on its ideal OECF, plus residual

noise. According to Li et al., the residual noise is proportional to the original
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noise εj, in (2.1), and is normally distributed with zero mean.

Consequently, for each pixel of our colour log image sensor, we simulate

the response to the stimulus as follows:

ŷj =


round(SR(xj) + εj), j ∈ R,

round(SG(xj) + εj), j ∈ G,

round(SB(xj) + εj), j ∈ B,

(2.18)

where εj is pseudo-random noise that is normally distributed, with a standard

deviation that matches that of the original log image sensor. Responses are

rounded, which introduces some quantization noise, because Li et al.’s FPN

correction preserves the 16-bit integer format of Mahmoodi et al.’s image sen-

sor.

2.3.2 Colour Calibration

Colour calibration is performed using the Macbeth chart, a standard colour

chart consisting of 24 square patches [29]. Spectral information of each patch

is known, along with its XYZ coordinates. Assuming 10× 10 pixels per patch,

we simulated the stimulus image of the Macbeth chart, the image after FPN

correction, and the image after colour correction. This was done using the

standard D65 illuminant at 104 cd/m2.

The results of the calibration can be checked qualitatively by converting

the true and corrected XYZ values to a displayable sRGB format [39], and

then viewing them next to each other. Figure 2.3 illustrates the Macbeth

chart, with the left half of each patch showing the corrected values, and the

right half the true values. Due to simulated image sensor noise, the left halves

exhibit a small pixel to pixel variation that cannot be seen.

To quantify errors, we use the CIELAB colour space due to its approx-

imation of perceptual uniformity [34]. We convert true and corrected XYZ

tristimulus values to CIELAB coordinates. Thereafter, the Euclidean dis-

tance, between the true and corrected CIELAB vectors, provides an estimate

of perceived colour difference. It may be compared to a JND of 2.3 [36]. Al-

though more accurate colour difference formulas exist, the Euclidean distance

in CIELAB space was chosen because of its simplicity.
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Figure 2.3: True and corrected Macbeth chart in sRGB colour space. The
right half of each patch shows the true colour, using the D65 illuminant at
104 cd/m2, while each pixel in the left half shows its corrected colour, which
varies imperceptibly due to noise, after calibration and correction.

Table 2.1 gives the median correction error ∆E, over all 24×10×10 pixels

of the Macbeth chart patches, after the calibration and correction. Results for

the chosen CFA are given, as well as for an ideal CFA that employs the XYZ

spectral functions.

The closer the actual CFA spectral functions are to a linear combination

of the ideal spectral functions, the better the results would be, even for linear

imaging systems. An improvement of the results when an ideal CFA is used,

as indicated in Table 2.1, means that non-idealities of the actual CFA play a

limiting factor, irrespective of the nonlinear response of the image sensor.

Figure 2.4 presents a detailed comparison of true and corrected coordinates

Table 2.1: Median CIELAB error of the Macbeth chart image. Using the
D65 illuminant, at 104 cd/m2, the median error after colour calibration and
correction was calculated. It was done for both system variations, in Fig. 2.1,
and an ideal CFA.

Simulated CFA ∆E (Pre-DM) ∆E (Post-DM)
Canon 5D 0.8545 1.3860
Ideal XYZ 0.2441 0.3336
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in CIELAB space. As six patches in the last row of the Macbeth chart have

low a*-b* coordinates, they crowd near the origin of the chromaticity graph.

While errors are primarily along the green-red axis, colour matching is good.

Recalling Fig. 2.1, two variations of the imaging system are considered:

pre-demosaicking and post-demosaicking. Whereas the colour calibration pro-

cess is the same for both, the impact of the variations may be analyzed, in

CIELAB space after colour correction, using the Macbeth chart. In fact, me-

dian correction errors for both variations are reported in Table 2.1. These

results imply that pre-demosaicking outperforms post-demosaicking.

Figure 2.5 shows the error after colour correction of the calibration image

over a high/wide DR. Although illumination intensity is varied, the colour

correction parameters are estimated only once, at 104 cd/m2 as before. In

addition to imaging system variations, results are shown for actual and ideal

CFAs.

It is evident, in Fig. 2.5, that the pre-demosaicking method outperforms the

post-demosaicking method at higher intensities. At lower intensities, however,

the reverse is true. In any case, errors are above the JND at lower intensities.

While this is partly because of non-idealities of the CFA, it may also be affected

by the relatively high dark limit of Mahmoodi et al.’s log image sensor [26], a

topic that is beyond the scope of this work.

2.3.3 Colour Correction

To validate the proposed method properly, it is important to test colour cor-

rection on images that were not used for colour calibration. To this end, the

Standard Object Color Spectra (SOCS), published by the International Or-

ganization for Standardization (ISO), was used [17]. This database contains

reflectance spectra of over 50,000 objects divided into various categories.

The ISO suggests categories of data that are especially suited for evaluat-

ing digital cameras. They are called “human faces,” “Krinov,” which concerns

buildings, “flowers,” and “leaves.” We used all 1,148 spectra, in these 4 cat-

egories, and simulated 10 × 10 pixel patches, as before. We focus on the

pre-demosaicking variation of the imaging system, for simplicity, with the ac-
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Figure 2.4: Luminance and chromaticity errors of Macbeth chart patches. Red
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indicate JND regions. Errors are computed after calibration and correction at
104 cd/m2. Each corrected coordinate represents a typical pixel.
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Figure 2.5: Median CIELAB error per intensity of Macbeth chart images.
Using the D65 illuminant, after calibration at 104 cd/m2, the median error
after colour correction was calculated at various intensities. Results are shown
for both system variations, in Fig. 2.1, as well as for an ideal CFA.

tual CFA. Finally, we used the 24 spectra of the Macbeth chart patches, for

calibration purposes, and the same D65 illuminant.

Differences, between true and corrected colours, are quantified once again

using the Euclidean distance in CIELAB space. Table 2.2 reports the median

error of all pixels in each category. Note that each patch has the same number

of pixels.

Considering that the JND is 2.3 in CIELAB space, Table 2.2 demonstrates

that the colour correction performs well, on median. Given the large number

of images per category, compared to the 24 patches of the Macbeth chart, we

can estimate a PDF across the images, per category, of the median error per

image. Such a result provides a comprehensive assessment of colour correction,

because a PDF determines all statistics of interest.

Figure 2.6 shows, for each category, the estimated PDF of the median error

per image. The JND is also indicated. Errors vary the most for the flowers

category, the only category with a significant error probability mass beyond the
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JND, even though the median error is better than that of the faces category.

Because the actual CFA was used in these results, its non-idealities are a

limiting factor, as implied previously with Table 2.1. If transmission efficiencies

of the red, green, and blue filters, multiplied by the quantum efficiency of the

photodiode, were made to closely follow a linear combination of ideal XYZ

matching functions, we would expect an improvement in the results.

Figure 2.7 shows the results of correction at varying intensities. As demon-

strated, the colour correction proves stable enough for high/wide DR applica-

tions involving a large variety of objects. Future work will investigate how to

improve performance at dimmer intensities. Possibilities include the improve-

ment of the colour filters and dark limit of the image sensor.

2.4 Conclusion

This chapter proposed a novel method for colour correction of nonlinear CMOS

image sensors, which are ideal for high/wide DR applications. The method

is neither limited by the specific nonlinear response, i.e., the specific OECF,

of the image sensor, nor by FPN, i.e., a variation of the OECF from pixel to

pixel due to device mismatch. The only requirement of the method is that the

OECF be a monotonic function of light stimulus.

The monotonic property of the OECF allows for cubic Hermite splines to

be constructed to allow calibration and correction of red, green, and blue pixel

responses. As with linear imaging systems, a 3 × 3 matrix is also involved.

Table 2.2: Median CIELAB error of simulated SOCS images. The median error
after colour correction was calculated using the D65 illuminant at 104 cd/m2,
after colour calibration using a Macbeth chart imaged under the same illumi-
nation.

Category Images ∆E
Faces 538 1.6440

Buildings 370 1.1273
Flowers 148 1.5242
Leaves 92 1.1379

30



0 1 4 52 3
Median CIELAB Error (ΔE)

0

0.5

1

1.5

2

P
ro

ba
bi

lit
y 

D
en

si
ty

JND (Photopic) 
Faces
Buildings
Flowers
Leaves

Figure 2.6: The PDF of median CIELAB error of simulated SOCS images.
Each SOCS category has enough images to estimate the PDF reasonably well.
All correction is performed, using the D65 illuminant at 104 cd/m2, after cali-
bration using a Macbeth chart imaged with the same illumination.

Colour correction is done after FPN correction using Li et al.’s method [23],

also from our research group. The two methods are complementary and both

are needed to realize a colour nonlinear imaging system.

Validation is done by simulating a colour log image sensor using data col-

lected in previous works. This image sensor is used to image a standard

Macbeth chart, for colour calibration and its validation, and 1,148 standard

objects, for colour correction and its validation. Results show that the pro-

posed method performs well, relative to the JND when errors are measured in

CIELAB space, for a large variety of standard objects.
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Figure 2.7: Median CIELAB error per intensity of simulated SOCS images.
The median error after colour correction, using the D65 illuminant at various
intensities, was calculated for each SOCS category, after colour calibration
using a Macbeth chart imaged with the same illuminant at 104 cd/m2.
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Chapter 3

Nonlinear Demosaicking

In order for nonlinear image sensors to gain a foothold in imaging technol-

ogy, they must be able to effectively display colour images. While classic

demosaicking techniques for linear image sensors are valid for nonlinear image

sensors, they are inadequate at handling problems that arise due to the nature

of nonlinear image sensors. One such problem is salt-and-pepper noise (SPN).

Although SPN is present in linear sensors, nonlinear image sensors behave dif-

ferently due to SPN and, as such, different techniques need to be implemented

to correct this effect. Extending from recent work on SPN filtering, this chap-

ter proposes and evaluates a novel method to demosaick images taken with

a Bayer colour filter array (CFA), while simultaneously filtering SPN. The

method relies on the use of weighted medians to filter erroneous pixel values

while determining a color for each channel at every pixel location. Several

variations of the proposed method are considered and evaluated. The Kodak

image set is subsampled in a Bayer CFA pattern to produce mosaicked images

for testing. SPN is introduced to the image data in varying densities to evalu-

ate performance. Results of the proposed method are compared to those from

a popular literature method.

3.1 Introduction

Colour imaging is an integral part of imaging technology. With complemen-

tary metal-oxide-semiconductor (CMOS) image sensors (CISs) becoming more

prominent, more research is being done on improving results beyond what typ-

33



ical CISs can produce. In particular, nonlinear CISs are showing promising

results, especially in increasing dynamic range (DR) at video rates [1], [26].

While nonlinear CISs have merit on their own, they must ultimately produce

colour images in order to be a viable alternative to linear CISs. Currently,

the majority of research pertaining to nonlinear CISs does not address the

challenges in producing colour images from these types of sensors. A recently

published work by Hussain and Joseph [16] shows how to calibrate and correct

colour for arbitrary nonlinear colour image sensors.

In order to fully render a colour image using the RGB model, demosaick-

ing has to be performed on the output of the image sensor. Depending on the

CFA used, this is typically an interpolation operation that aims to use neigh-

bouring pixel values to determine a value for each of the red, green, and blue

channel at every pixel location. Several methods exist in the literature about

how to perform this operation. The simplest form of demosaicking is bilinear

interpolation, where each colour channel is interpolated independently. This

produces significant artifacts as it disregards the high correlation between the

RGB channels [27].

Cok implements a method of demosaicking using an inter-channel depen-

dent model, using the idea that the ratio red/green (and blue/green) is con-

stant in the same locality [2]. This idea is not as accurate along edges, where

colour gradients can be varying quickly. Kimmel, along with others, have ap-

proached the problem of improving performance along edges by performing

directional gradients and edge detection to reduce the effect of channel ratios

along edges [21], [42]. More recent solutions use deep learning to perform de-

mosaicking. Gharbi et al. [12] implement both demosaicking and denoising

by training a neural network on a dataset containing images with challenging

image features. This method yields improved results, but comes at a cost of

increased complexity, requiring more expensive hardware to run in real time.

Malvar et al. propose a method of interpolation using simple linear fil-

ters that performs well compared to others discussed [27]. In addition to

performing well, the method is computationally efficient as it involves simple

convolution operations using weighted pixel values. Efficient computation is a
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favorable property because it would enable the algorithm to be implemented

as low-cost circuitry. Also, the demosaic function provided with MATLAB’s

Image Processing Toolbox implements Malvar et al.’s algorithm to demosaick

grayscale images, captured with a CFA, into colour images.

Because demosaicking is a self-contained module in the image process-

ing pipeline, its implementation is minimally dependent on how the image is

obtained. Demosaicking methods developed for linear image sensors are, in

general, applicable to nonlinear image sensors as well. As such, all the tech-

niques mentioned above are relevant for nonlinear image sensors. However,

due to their inherent nonlinearity, these image sensors behave differently to

phenomena encountered in their linear counterpart. One such phenomenon is

SPN. SPN is a type of noise that appears as excessively bright or dark spots in

the image due to faulty pixels retaining one value regardless of incoming light.

These stuck pixels can be corrected using a static correction method. For ex-

ample, Tan and Acharya [44] detect and store the locations of such defective

pixels to perform SPN correction. With nonlinear image sensors, however,

pixels may appear to be stuck at a certain range of luminances but, in fact,

may not be defective. In such instances, a dynamic filtering implementation

may be preferred to perform SPN correction.

Due to the niche aspects of nonlinear image sensors, not much in cur-

rent literature can be found about SPN correction for nonlinear CMOS im-

age sensors. Recently, in an award-winning paper, Nascimento et al. propose

and implement a median filtering approach to remove SPN [31]. They show

that, by implementing their method using low-cost field programmable gate

arrays (FPGAs), their approach is both effective and efficient in filtering SPN.

While their work discusses the complexity of filtering SPN from nonlinear im-

age sensors, it does not discuss how to implement this method for a colour

image.

This chapter proposes a new approach which leverages the median opera-

tor to simultaneously perform demosaicking and SPN filtering on images taken

by an arbitrary image sensor using the Bayer CFA. Relying on the robustness

of the median operator against outliers, we extend the work of Nascimento
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et al. to use a system of weighted medians to implement demosaicking, while

simultaneously removing SPN. Because median filters ignore the effects of

outliers, we make the reasonable assumption that, within a local region, there

is at most one defective pixel. A significant novelty of the proposed algo-

rithm is that while demosaicking it takes into account that not all of the pixel

values might be reliable. Because demosaicking is inherently a spreading op-

eration, one false pixel value can propagate the error over to multiple pixels.

By combining SPN filtering and demosaicking into one operation, we prevent

the spreading of incorrect information and reduce the blurring of edges.

We first present an overview of the proposed method. Due to the modular

nature of the problem, we discuss several variations of the proposed solution,

including combining portions of our work with that of Malvar et al.’s. Next, we

present our results to evaluate our method, and compare its performance with

that of Malvar et al.’s. Because Malvar et al.’s paper compares their method

to several others, we find it sufficient to compare our results to theirs. We

report PSNR errors in both absolute quantities as well as relative to Malvar et

al.’s results. Finally, we conclude the chapter by summarizing our work and

highlighting its novelty and significance.

3.2 Method and Variations

The basis of the proposed method is that in a set of values, the median of the

set is not affected by any outliers in the data. For a finite set of numbers,

the median is defined as the middle value that separates the greater half from

the lower half of the set. Because extremely high or extremely low values will

be pushed to one end of the set, the median can be a good measure of the

tendency of a set. Extending the idea of median, we use weighted medians to

interpolate missing colour components at every pixel location [9]. A weighted

median is defined for an ordered set of numbers x1, x2, ..., xn with positive

36



weights w1, w2, ..., wn, where
∑n

i=1wi = 1, as the kth element that satisfies:

k−1∑
i=1

wi ≤ 1/2, (3.1)

n∑
i=k+1

wi ≤ 1/2. (3.2)

In the case where two elements satisfy the above conditions, a new element

with a value equal to the mean of the two elements can be created, and assigned

a weight of zero. Assuming all the weights are rational, it is always possible

to represent the weights w1, w2, ..., wn such that they are all positive integers

W1,W2, ...,Wn, where

wi =
Wi

W1 +W2 + ...+Wn

. (3.3)

In this case, the weighted median can be understood as the unweighted median

of the set of numbers where each element xk is repeated Wk times.

For the purpose of our method, we require integer weights and, in partic-

ular, small integer weights, because we would ultimately like to extend this

work to an FPGA implementation based on the designs of Nascimento et al.

In accordance with their philosophy of achieving a fast and efficient algorithm,

we want small integer weights, Wi, to reduce the amount of logic and memory

required to implement the demosaicking with circuits. Nevertheless, a non-

uniform weighting approach is useful in demosaicking because it allows for

certain pixels to contribute more towards the median than other pixels.

In order to perform the SPN filtering and demosaicking, we first segment

the image into its three separate colour channels based on the Bayer CFA.

Initially, each channel is treated separately. We define local windows over

which to perform the weighted medians. These windows are displayed in

Fig. 3.1. Determining green pixel values requires the smallest window size

of 3 × 3 pixels due to the green channel being sampled at twice the rate of

the red and blue channels. For green at red or blue locations, we use equally

weighted medians because the Bayer CFA ensures that each red or blue pixel

is surrounded by four green pixels.
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Figure 3.1: Summary of masks to perform nonlinear demosaicking. The pixel
with the dark borders is the pixel being evaluated. Only relevant pixels are
numbered in each window. The number on a relevant pixel shows the weight
assigned to the pixel.

Unlike other demosaicking methods, we have an additional step where we

determine a green value for a pixel already containing a supposed “true” green

value. This is due to the underlying assumption of SPN filtering that every

pixel is at risk of being defective. Because each surrounding green pixel con-

sidered is equidistant from the central pixel, they are all weighted equally.

However, Fig. 3.1 shows that the mask assigns a weight three times that of

the surrounding pixels to the center pixel. This is done to reduce the amount

of blurring, while still being able to filter an outlier. As mentioned earlier,

we make the assumption that within our local region, at most one pixel is

defective. If the center pixel happens to be a non-defective pixel, its value will
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contribute more to the median than all the others. If the pixel happens to be

defective, however, then a weight of three ensures that it will not dominate

the median and the resulting final value of the pixel will be one of the four

surrounding non-defective pixels.

Determining pixel values for the red and blue channels requires increasing

the window size to a 5 × 5 pixel region. From Fig. 3.1, we can see that de-

termining red at red locations, or blue at blue locations, uses the full window,

including the four nearest pixels of the same colour. Similar to before, this

step weights the central pixel at three times the weight of the four surround-

ing pixels. Red or blue at green locations requires two masks because each

green appears either in the same rows or the same columns as the red or the

blues. Because the masks are rotations of each other, only one case is shown.

Following similar logic as before, the two pixels closer to the central pixel are

weighted more to reduce blurring, while still performing SPN filtering. Lastly,

red at blue locations, and blue at red locations, are treated the same way be-

cause the geometry is the same. Equally weighted medians are used because

of the equal distances between the surrounding pixels and the central pixel.

The method described thus far will be referred to as nonlinear demosaicking

1 (NLD1). At this point, it performs SPN filtering well, but it does not consider

any inter-channel dependencies. This leads to lower performance than desired

in demosaicking. An improvement on this method is to perform NLD1 on the

the green channel only and then define:

R′ = R−G, (3.4)

B′ = B −G, (3.5)

where G is the demosaicked green channel. We then perform NLD1 on the

red and blue channels only, as represented by R′ and B′, respectively. Finally,

the demosaicked green channel is added back to the demosaicked red and blue

channels, restoring R and B from R′ and B′, respectively. This improved

method is referred to as nonlinear demosaicking 2 (NLD2).

As mentioned previously, techniques developed for linear image sensors

can be applied to images taken by nonlinear image sensors. Therefore, if SPN
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filtering is considered separately, Malvar et al.’s method can be applied to

images taken by nonlinear image sensors. Consequently, a third variation of

the proposed method is to use some of the masks described above to only

perform SPN filtering on the separate channels, and implement desmosaicking

using Malvar et al.’s method. We refer to this method as SPN filtering 1

plus linear demosaicking (SPNF1+LD). A final variation we discuss is to

modify the SPNF1+LD method to use uniform weights in the SPN filter for

determining medians. This is similar to the SPN filter used by Nascimento et

al., notwithstanding our extensions for colour image sensors. We refer to this

method as SPN filtering 2 plus linear demosaicking (SPNF2+LD).

3.3 Results and Discussion

This section evaluates the proposed method and its variations. We use the

Kodak set of true colour images that is used by Malvar et al. [27], Kimmel [21]

and Wang et al. [42], as well as others, to evaluate demosaicking algorithms.

The Kodak true colour images are a set of 24 images of size 512× 768 pixels

each, with each pixel represented using 24 bits. We subsample the Kodak

images according to the Bayer CFA to produce the mosaicked red, green, and

blue channels for each image. We show absolute PSNR error relative to ground

truth, as well as results relative to Malvar et al.’s method. We present results

of tests where we vary the amount of SPN while measuring error. We also

present a table with our PSNR errors, broken down by colour channel, at a

typical SPN density.

The proposed method attempts to solve the problem of demosaicking when

the image contains SPN. We introduce SPN to the test images using the

imnoise function provided with MATLAB’s Image Processing Toolbox. This

function allows us to vary the density of SPN. Using the density parameter,

the imnoise function sets certain pixels in the image to zero, and others to the

maximum value of the image type, which for our data is 255. We evaluate our

method by running our algorithm on the first 15 images of the Kodak image

set. We use the first 15 images to be consistent with Malvar et al.’s published
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Figure 3.2: Absolute PSNR error relative to ground truth. As SPN density
increases, Malvar et al.’s method’s PSNR falls quickly. For high SPN the
overall quality of the image decreases substantially.

results.

After the various methods have been implemented,we determine the root-

mean-square error (RMSE) between the resulting image and the ground truth

from the Kodak image set. We present our results in the form of PSNR, so

they may be compared to Malvar et al.’s published results. The PSNR is

determined using the following equation:

PSNR = 20 log

(
255

RMSE

)
. (3.6)

From Fig. 3.2, we can see firstly that Malvar et al.’s method’s performance

drops immediately after SPN is introduced. This is a result of the demosaicking

process propagating erroneous pixel values. We are primarily interested in

the region under 5% SPN density. Higher SPN densities are of less interest

to us because the image quality becomes significantly lower. As expected,

NLD1 does not perform as well as NLD2 in the area of interest to us. We

see that SPNF2+LD performs better than SPNF1+LD in the higher SPN

density region, but worse in the lower density region. This is an expected
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Figure 3.3: Mean error relative to Malvar et al. in the green channel. Relative
to Malvar et al.’s method, SPNF1+LD performs well in the green channel.
We expect NLD1 and NLD2 to be identical in the green channel.

result because, with low SPN, equally weighted medians will increase blurring

as neighbouring pixels are favoured equally to the center pixel. However, when

SPN is present in larger amounts, SPNF2+LD performs better because it is

robust against at most two defective pixels in the window. This property is a

consequence of using uniform weights in the SPN filtering masks. When taking

the median of five pixels, more than two pixels would have to be erroneous

for the median to be an erroneous value. While being robust to two erroneous

pixel values is a desirable property, it comes at a cost of increased blurring.

Because we focus on lower SPN densities, it is evident that the weighted median

approach is more useful. Of relevance, the peak signal-to-noise ratio (PSNR)

of SPNF1+LD is equally high in this region.

We can also examine the individual colour channels to see how the errors are

distributed. These results are shown, in Figs. 3.3 and 3.4, relative to Malvar

et al.’s method. Results greater than zero indicate a surpassing of Malvar

et al.’s method. We expect to see identical results, in the green channel, for

NLD1 and NLD2 because the only difference between the two methods is the
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Table 3.1: Our results relative to Malvar et al. at 1% SPN density. The four
variations of the preferred NLD2 method are performed on the first 15 images
of the Kodak image set. The results are given relative to Malvar et al.’s results.

SPNF1+LD SPNF2+LD NLD1 NLD2
R G B R G B R G B R G B

1 3.4 3.1 3.5 0.3 -0.7 0.5 -0.3 2.1 -0.4 3.7 2.1 3.9
2 7.1 9.5 8.9 4.8 6.3 6.7 5.1 8.7 6.6 7.6 8.7 9.5
3 9.7 10.7 9.8 6.8 7.1 7.3 7.3 9.7 7.0 10.3 9.7 10.3
4 8.2 10.5 9.2 5.0 6.6 5.9 5.6 9.0 6.4 8.4 9.0 9.7
5 3.7 4.6 4.1 -0.3 0.0 0.0 0.4 2.9 0.3 4.5 2.9 4.5
6 4.8 4.8 4.9 1.2 0.6 1.5 1.2 3.7 1.1 5.1 3.7 5.0
7 9.0 10.3 9.2 6.0 6.7 6.3 6.1 8.9 5.9 9.8 8.9 9.9
8 2.3 1.5 2.1 -0.7 -2.2 -0.8 -1.7 0.8 -1.9 2.9 0.8 2.7
9 8.5 9.3 8.6 5.8 5.6 5.9 5.1 8.2 5.2 9.3 8.2 9.2

10 8.2 9.2 8.1 4.7 5.0 4.6 4.9 8.0 4.7 9.0 8.0 8.7
11 5.6 6.2 6.0 2.5 2.2 2.9 2.5 4.9 2.6 6.1 4.9 6.3
12 9.0 10.0 9.0 6.6 6.7 6.6 6.2 9.1 5.6 9.7 9.1 9.6
13 1.6 1.5 1.7 -2.2 -3.0 -2.1 -1.6 -0.2 -1.6 1.7 -0.2 1.6
14 5.3 6.5 6.0 1.9 2.2 2.6 2.4 5.1 2.5 6.0 5.1 6.3
15 7.7 10.0 8.5 5.6 6.7 6.4 5.7 8.9 5.3 8.5 8.9 9.3

calculation for the red and blue channels. Similar to what was observed in

Fig. 3.2, SPNF2+LD continues to do relatively well at higher SPN densities,

but due to the high SPN density, the resulting image has a significantly lower

quality. We can see, in Figure. 3.4, that NLD2 surpasses all other methods,

in the red and blue channels, at low SPN levels. At the lowest SPN densities,

NLD1 performs almost identically to SPNF2+LD.

Additionally, Tab 3.1 presents results for the various methods at an SPN

density of 1%. 1% is chosen as a reference SPN density because it is low

enough to produce quality images but high enough to show that a traditional

demosaicking method is insufficient. The table, similar to one presented by

Malvar et al., shows the performance of all the described methods at 1% SPN

density, relative to Malvar et al.’s results.

Finally, PSNR is not a complete measure of demosaicking. It is important

to look at the images to determine performance. From the set of images, we

selected an image and a region with high frequency components, as that is

where errors tend to occur. Figure 3.5 shows a visual comparison of the differ-
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Figure 3.4: Mean error relative to Malvar et al. in red and blue channels. NLD2
outperforms all the other methods at low SPN densities. In addition, both
NLD2 and SPNF1+LD surpass Malvar et al.’s method almost immediately.
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(a) (b)

(c) (d)

Figure 3.5: Comparison of demosaicking using different methods. (a) Original
image from the Kodak dataset. (b) Result of Malvar et al.’s algorithm in a
high frequency region at 0% SPN density. (c) Result of SPNF1+LD in the
same region at 1% SPN density. (d) Result of NLD2 in the same region at 1%
SPN density. NLD2 shows the clearest results, and also filters SPN the most
effectively.

ent techniques. The first image is the true colour image from the Kodak image

set, with a box around a region of interest. The second image is the region of

interest desmosaicked using Malvar et al.’s method at 0% SPN density. Be-

cause we have already shown that Malvar et al.’s method is not suitable with

SPN included, we only focus on the quality of its demosaicking. The third

and fourth images show the result of SPNF1+LD and NLD2, respectively,

at 1% SPN density. Comparing Fig 3.5(c) to Fig 3.5(d), it is evident that

SPNF1+LD is not as effective along edges as NLD2. We also note Fig 3.5(c)

depicts significantly more remnants of SPN, compared to Fig 3.5(d). As a final

note, we can see that although Fig 3.5(d) filtered SPN, there is not a stark

difference in quality between (d) and (b), which filtered no SPN.

From the results shown above, we can conclude that the most robust
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method to perform both demosaicking and SPN filtering is NLD2. We are

primarily interested in low SPN densities, as our model explicitly relies on

defective pixels being isolated outliers in very small neighbourhoods.

3.4 Conclusion

Due to increasing interest in the benefits of nonlinear image sensors, it is im-

portant to consider how previously defined techniques for performing image

signal processing are affected. One essential process that is required to pro-

duce a colour image is demosaicking. With the addition of SPN in nonlinear

image sensors, demosaicking methods for linear image sensors need to be re-

vised. This chapter developed a novel approach to perform demosaicking while

simultaneously performing SPN correction. We showed multiple variations of

the proposed method, including ones that incorporated Malvar et al.’s method.

This algorithm, which is implemented by MATLAB’s demosaic function, was

actually developed for linear image sensors. We show that, while it produces

good results at 0% SPN density, performance of this algorithm drops once

SPN is introduced.

As SPN is a phenomenon that is encountered in nonlinear image sensors,

it is necessary to revise traditional methods of demosaicking. Consequently,

we developed various methods and concluded that NLD2 outperformed all

other methods, maintaining a high PSNR when SPN was present in reasonable

quantities. NLD2 is the combination of applying weighted median filters and

considering inter-channel dependencies. It builds on NLD1 by performing

NLD1 first on the green channel, and then on the difference between the

green and red channel, and the green and blue channel. The green channel

component is added back to create the final result. This extra consideration

shows results superior to all other methods considered. We showed that classic

methods for linear image sensors were not suitable if SPN was present in even

small quantities. Lastly we looked at visual examples of how our proposed

method was robust against SPN and performed demosaicking at a standard

comparable to classic methods for linear image sensors.
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Chapter 4

Conclusion

Due to the limited dynamic range (DR) provided by linear complementary

metal-oxide-semiconductor (CMOS) image sensors, nonlinear image sensors

have started to become more relevant. These image sensors allow high/wide

dynamic range (HDR) images to be captured at video rates and have been the

subject of ongoing research. Colour is an essential aspect of visible-band imag-

ing. Colour algorithms developed for linear image sensors are not designed for

nonlinear image sensors. As such, new algorithms need to be investigated.

This chapter summarizes the two novel methods proposed in this thesis. A

colour correction algorithm for monotonic nonlinear CMOS image sensors was

developed, which uses a combination of linear and nonlinear techniques to per-

form colour correction. A nonlinear demosaicking algorithm was also devel-

oped, which performs demosaicking on an image captured with a Bayer colour

filter array (CFA) while simultaneously filtering salt-and-pepper noise (SPN).

Future works for this thesis are also presented. A fixed-point design of the

proposed algorithms would allow for real-time processing of images with an

FPGA implementation. A 3D printed camera body would allow for the device

to be portable, which can enable the collection of experimental results outside

lab of environments.

4.1 Summary and Contributions

Although there has been research done on improving noise in logarithmic (log)

and linear-logarithmic (linlog) image sensors, colour algorithms for nonlinear
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image sensors need to be investigated. Traditional techniques are not designed

to perform colour operations on images captured by nonlinear image sensors.

This thesis makes two contributions to the development of colour algorithms

for nonlinear image sensors. In Section 4.1.2, we review the colour correction

algorithm for nonlinear monotonic image sensors from Chapter 2, and high-

light its novelty and significance. In Section 4.1.3, we present a summary of

the nonlinear demosaicking algorithm developed in Chapter 3, along with the

contributions made to knowledge.

4.1.1 Motivation and Background

As the Senior Vice President of Sony, Tomoyuki Suzuki [40], said at the 2010

ISSCC, the next goal of CMOS image sensors is to outperform the human

visual system. In this effort, one significant bottleneck is the limited DR that

most linear CMOS image sensors have. With the aim to increase the DR of

imaging systems, significant research has been done on using nonlinear image

sensors. In particular, log and linlog image sensors have come out as promising

solutions. These image sensors are able to dramatically increase the DR of the

imaging system because they do not respond linearly to incoming light. Their

nonlinear response allows them to remain unsaturated at over a higher range

of luminances than linear image sensors. Various log and linlog image sensors

have been developed that report DRs greater than 120 dB [8], [24].

Advances in CMOS image sensor technology have had significant benefits

in a wide variety of industries. In the medical imaging field, CMOS X-ray

imagers have been developed, including HDR ones, that show improved per-

formance over traditional amorphous silicon (a-Si) flat panel detectors [11].

Improving on monochromatic X-ray imaging, techniques to colourize X-ray

images have also been developed [32]. The introduction of colour allows for

more information about the scene to be retained. Autonomous vehicle ap-

plications are a natural application of visible-band HDR imaging. Because

there is a large range of luminances encountered when driving, it is essential

that cameras remain unsaturated to provide continuous information to the

algorithms governing the operation of the vehicle. HDR image sensors are
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capable of handling a high/wide DR of luminances without saturation of pixel

responses.

Although nonlinear image sensors have numerous benefits over linear im-

age sensors, there are some challenges that need to be addressed. Because

nonlinear image sensors behave differently from linear image sensors when en-

countering the same stimulus, image signal processing techniques for linear

image sensors need to be refined to meet the needs of nonlinear image sensors.

In particular, colour algorithms need to be revised to make them more suit-

able for processing images captured by nonlinear image sensors. Linear colour

correction involves transforming data from a device-dependent camera space

to a standard colour space using a matrix transform. This technique is not

sufficient for nonlinear image sensors [19]. Moreover, traditional demosaicking

algorithms, which are necessary to render full colour images, can propagate

erroneous pixel values caused by SPN, which behaves differently in nonlinear

image sensors than it does for linear image sensors [31].

This thesis developed a novel colour correction algorithm for nonlinear im-

age sensors. The proposed algorithm, consisting of both a linear and nonlinear

colour correction stage, was validated using a simulation-based approach, and

showed results below the just noticeable difference (JND) threshold for a wide

variety of colour patches. Additionally, this thesis also presented a nonlinear

demosaicking algorithm for images captured with a Bayer CFA that was able

to, in the presence of SPN, outperform a leading technique mentioned in the

literature.

4.1.2 Colour Correction

Colour is an integral component of visible-band imaging. Therefore, methods

on colour correction for nonlinear image sensors need to be addressed. In recent

works involving nonlinear sensors, colour is not directly mentioned. Methods

have been developed that alter the log and linlog image sensor to improve

performance at darker luminances [1], [3]. A prominent feature of many works

on nonlinear image sensors is that they pertain to a specific sensor response

,i.e., log or linlog. Using a mathematical model to describe the behaviour of
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a log image sensor [18], methods have been developed to correct fixed pattern

noise (FPN) for the class of log image sensors [15], [19]. While these methods

perform well, they are not applicable to models that differ from the traditional

log model.

The motivation for this work was to develop and evaluate a method that is

capable of integrating colour into images taken by arbitrary nonlinear image

sensors. Therefore, the method presented in this thesis is applicable to a

wide variety of image sensors, as it does not make major assumptions about

what the response of the image sensor will be. This method is built on Li

et al.’s work on using low-degree polynomials and cubic Hermite splines for

FPN and photometric correction [23]. Relying only on the monotonicity of the

pixel response, Li et al.’s method was tested with data from a log sensor and

showed that FPN correction using the generic method was competitive with

FPN correction using the log model [23]. The restriction of monotonic image

sensors is reasonable, as monotonicity is a typical feature for many image

sensors.

Extending on this work, this thesis presented a novel method to perform

colour correction on images taken by arbitrary monotonic image sensors. The

proposed method is composed of two stages: a calibration stage that is re-

quired to establish parameters; and a correction stage that performs colour

correction on all frames captured by the image sensor. Correction is done by

using a combination of linear and nonlinear techniques. The proposed colour

correction method is intended to be implemented as a subsystem in an image

processing pipeline. In order for a full colour image to be displayed, the image

must be demosaicked to generate a tristimulus value of red, green, and blue

at every pixel. For this method, we used Malvar et al.’s algorithm [27], which

is implemented by MATLAB’s demosaic function.

Prior to colour correction, this method assumes that FPN correction is

performed using Li et al.’s method [23]. Li et al.’s method is calibrated by

taking pictures of a uniform background under varying luminances. In this

thesis, this calibration process is extended to the colour scenario by segmenting

pixels into red, green, and blue sets, and constructing a separate cubic Hermite
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spline for each set. Linear correction is performed by determining a 3 × 3

matrix that would convert the tristimulus value from the camera space to a

standard colour space such as CIE XYZ. This is a standard technique in colour

correction, so the novelty in this portion is not in the transformation itself,

but rather in how the matrix is determined.

Using data gathered from a standard colour chart, e.g., the Macbeth colour

chart, we capture images under varying intensities of a known illuminant,

e.g., the D65 illuminant. The true CIE XYZ values of the colour chart are

known. Using a sum of square errors (SSE) method, we can quantify the

error between the captured images and the “true” images. This error can

then be minimized using a standard optimization algorithm to determine the

optimal transformation matrix. Once calibration is completed, correction can

be implemented for every pixel in each captured frame.

Validation of the method using experimental data is difficult because a

nonlinear image sensor with a standard CFA is not readily available. As such,

we tested our design using a simulation approach. A nonlinear image sensor

was modelled using data collected from Mahmoodi et al.’s log sensor [26]. The

algorithm was calibrated using the Macbeth colour chart [29] and demosaicking

was done using Malvar et al.’s method.

Results of the validation are given as the median 1976 CIE L*a*b* er-

ror of all the pixels. We showed the results of our method on data taken

from a standard collection of object reflectances [17], using illuminant D65 at

104 cd/m2. Testing on the recommended categories, we showed that most of

the correction was accurate to below the JND of 2.3 [36]. We also showed the

results of varying illuminant intensities on colour correction. The results of

our experiment concluded that the method proposed works well, especially at

higher intensities, where colour errors were well below the JND.

A prominent feature of the proposed method is that it places minimal

restrictions on the type of image sensors it can be applied to. While others

have presented colour correction techniques tailored for specific classes of image

sensors [15], [19], this method is applicable to all nonlinear monotonic image

sensors. Despite the generic approach, the method performs very well under
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testing conditions.

4.1.3 Nonlinear Demosaicking

In addition to colour correction, demosaicking is another process that is re-

quired before a final colour image can be obtained. In order to display a colour

image, a tristimulus value of red, green, and blue must be determined for every

pixel location. This often requires an interpolation technique, as most image

sensors use a CFA to filter incoming light. Depending on the CFA used, there

are many techniques discussed in the literature to perform demosaicking.

Edges are a challenging problem for demosaicking algorithms, because they

contain high frequency data. Colour gradients can be varying quickly across,

edges whereas they are more gradual within local objects. Techniques have

been developed that perform directional gradients and edge detection to im-

prove performance along edges [21], [42]. Malvar et al. propose a method of

demosaicking using linear filters and convolution operations [27]. This method

is adopted by MATLAB in their demosaic function, as part of their Image

Processing Toolbox.

Demosaicking is largely a self-contained operation, in that there is mini-

mal dependency on other aspects of the image processing pipeline. As such,

many demosaicking methods developed for linear image sensors are applicable

to nonlinear image sensors as well. However, nonlinear image sensors, by de-

sign, behave differently than linear image sensors when encountering the same

phenomenon. One such difference is in the presence of SPN. SPN is a type

of noise that appears as excessively bright or dark spots in the image, due to

pixels being “stuck”. Static SPN correction methods can store the location of

such pixels and perform correction on the affected pixels [44]. For nonlinear

image sensors, however, SPN can gain a dynamic component, where pixels

appear to be “stuck” at certain luminances, but active at different luminances

[31]. In this case, a dynamic filtering method can be used.

In a recent award-winning paper, Nascimento et al. designed and imple-

mented a technique for filtering SPN in real time [31]. While this work shows

a promising solution to SPN filtering for nonlinear image sensors, it does not
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discuss SPN filtering for a colour image. In this thesis, we proposed and eval-

uated a method of performing demosaicking and SPN filtering simultaneously

for nonlinear image sensors. Extending the work of Nascimento et al., we use

a system of weighted medians to perform demosaicking on images containing

SPN. Because medians are robust against outliers, we make the assumption

that within a local region, there is at most one defective pixel. This is a reason-

able assumption, as most pixels in a pixel array are assumed to be operating

correctly.

In order to perform the SPN filtering and demosaicking, we first define a set

of weights which we apply to a local window. This window is kept as small as

possible to decrease blurring in the image. The weighted medians are applied

according to the colour channel being demosaicked, and a tristimulus value

for each pixel is determined. To account for the inter-channel dependencies,

the green channel is handled first. The weighted medians are then applied

to the difference between the red and green channel, as well as the blue and

green channel, rather than just the red and blue channels. The final red and

blue results are obtained by adding the green channel back. Because linear

demosaicking techniques are valid for nonlinear image sensors as well, we also

consider using Malvar et al.’s method along with our SPN filtering method to

see which method yields the better results.

Validation of this work is done by comparing our results to that of Malvar

et al.’s. Like Malvar et al. and others, we use the Kodak image set to test our

method. We present our results as peak signal-to-noise ratio (PSNR) relative

to ground truth, and relative to Malvar et al.’s results. By introducing SPN to

the Kodak image set, we show that while Malvar et al.’s method achieves a high

PSNR at 0% SPN, the performance of the algorithm decreases significantly

as SPN is introduced. We limit our focus to the region of SPN below 5% as,

beyond that, the quality of the images is significantly lower.

We also present a mean error, relative to Malvar et al.’s results, across

multiple images for each of the red, green, and blue channels. In addition,

similar to Malvar et al., we present a table of results at 1% SPN density to show

the relative performance of each proposed method. Finally, we present a visual
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result that illustrates the results of demosaicking along edges. Our results

conclude that our proposed method successfully filters SPN while performing

demosaicking. For SPN densities below 5%, we show that our method achieves

a high PSNR, along with good visual results along edges.

4.2 Future Work

In this thesis, two colour algorithms for nonlinear CMOS image sensors were

presented. First, a colour correction algorithm for arbitrary monotonic non-

linear CMOS image sensors was developed. The algorithm consisted of a non-

linear, as well as a linear, component to address the nonlinear nature of the

sensor response. Additionally, an algorithm for demosaicking was presented,

which was able to simultaneously filter SPN present in nonlinear CMOS im-

age sensors. This work can be extended in various directions. One immediate

extension is to join the two operations presented into one operation which com-

bines the properties of the two algorithms. Additionally, a fixed-point design

for the joint colour correction and nonlinear demosaicking algorithm can be

developed, which is more efficient for an FPGA implementation. To facilitate

gathering of experimental data, a 3D printed camera body can be constructed

to house the image sensor and necessary peripherals, allowing the camera to

be taken out of a laboratory environment.

4.2.1 Fixed-Point Implementation

The methods presented in this thesis were developed in MATLAB, which is

a high-level computing language. It uses floating-point numbers, meaning the

location of the decimal is not fixed. This, in general, allows for more accurate

calculations and a larger range of possible numbers. The drawback to floating-

point operations is that they are slower, and more computationally expensive,

than fixed-point operations. In an FPGA implementation, where efficiency and

low-power are desirable, a fixed-point implementation is preferred. However,

using fixed-point operations may introduce errors due to the fixed number of

bits for the integer and fractional parts of the number. By varying the binary
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Figure 4.1: An SPN filter implemented with digital circuits. This design can
be extended to implement our algorithm. Taken from Nascimento et al. [31].

point position and the total wordlength used, the error can be minimized.

During the colour correction calibration process, a 3 × 3 transformation

matrix is determined. The elements of this matrix need to be converted to a

fixed-point representation. For an accurate conversion, we would like to use a

large number of bits for the wordlengths tk, where 1 ≤ k ≤ 9. However, we

also want to minimize tk so as to use the least amount of memory and power

when performing operations. Similar to how the transformation matrix was

determined, the optimal parameters can be determined by defining a function,

which depends on the parameters tk, that computes the SSE between the

floating-point and the fixed-point representations. Finding a minimum of this

function would result in the optimal wordlengths.

A fixed-point implementation for Malvar et al.’s algorithm would require

a conversion of the mask weights that are used to perform the demosaicking.

However, in our nonlinear demosaicking algorithm, the mask weights are not

multiplicative. Rather, the weights are a measure of how many times the pixel

is used in the median calculation. As such, the only operation that needs to

be performed by the FPGA circuits is the median operation, rather than the

convolution operation used in Malvar et al.’s algorithm.

Nascimento et al. developed an SPN filter for an FPGA implementation,

as shown in Fig 4.1. This work can be modified to implement our algorithm by

introducing a method to repeat certain pixel values depending on the weight
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Figure 4.2: Prototype of camera body. A prototype of a camera body designed
in TinkerCad and 3D printed. The dimensions are set for a typical microcon-
troller board stacked with an FPGA board. An LCD screen is hooked onto
the body of the camera to view images in real time.

associated with the pixel. In addition, the colour channels would have to be

segmented according to the Bayer CFA. Segmenting the colour channels would

require handling each colour channel separately, which is convenient because

FPGAs can perform parallel computation, rather than just sequential. This

parallel processing would allow for faster operation of the algorithm.

4.2.2 Experimental Results

As mentioned previously, obtaining experimental data from nonlinear CMOS

image sensors is difficult because colour nonlinear cameras are not readily

available. A possible extension of this work is to develop methods that can

allow nonlinear image sensors to obtain colour experimental results outside of

lab environments. With the advent of maker culture, 3D printing is a promis-

ing tool that may allow technologies previously limited to lab environments to

enter an unthethered experimental stage of performance evaluation.
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Using a high-level computing language like MATLAB, this work shows a

preliminary proof of concept. With an FPGA implementation, along with a

suitable image sensor and colour filters, the work can be extended to be a func-

tional prototype of a colour nonlinear camera. However, in order to obtain di-

verse experimental results, the prototype must be portable enough to be taken

out of the laboratory. For this purpose, a camera body that houses the image

sensor, the FPGA, and all other necessary peripherals can be constructed.

The camera body should be able to protect all the electronic hardware from

outside elements, but still allow access to the hardware if required.

Figure 4.2 shows a prototype of a camera body that was designed to house

a Beaglebone board, along with an FPGA board stacked on top, in addition to

the image sensor. A piece to allow the lens to be attached was affixed in front

of a hole in the camera body to allow focused light to reach an image sensor.

A folding compartment containing an LCD screen was also attached to the

camera body, allowing the capturing and viewing mechanisms to be contained

in the same body.

Red, green, and blue colour filters may be purchased and screwed onto

the lens. This provides a simple way to produce colour experimental results.

After taking three pictures, selected pixels from each image may be combined

to create a mosaicked image for experimental tests of the proposed integrated

colour correction and nonlinear demosaicking algorithm.

The advantage of using 3D printing is that it is allows for cheap and fast

prototyping. The ease of designing and obtaining the printed parts ensures

that the focus of the research can remain on the functionality of the image sen-

sor components, and not on building the camera body. With a fully portable

design, the colour algorithms developed in this thesis can be evaluated using

real data in a relevant environment.
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