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ABSTRACT

In Chapter I the concept of localization in the
category of R-modules is discussed. Where R is a commutative
ring containing the multiplicative identity. In Section 1 the
concept of localization is defined and its interplay with
various other functors is discussed. In Section 2 we specialze
to the case R =Z and define the concept of localization at

a set P of primes.

In Chapter II, localization functor is defined on the
category of simple topological spaces, and its interplay with the
homotopy and homology functors is discussed in Section 1. In
Section 2 the existance problem is settled for the localization
of simple spaces. Section 3 contains various results on
localization, in particular it is shown how, upto homotopy type,

a space can be reconstructed from its localizations at the

primes 2, 3, 5, ... .

Chapter III contains some results on H-spaces.
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CHAPTER I
LOCALIZATION IN ALGEBRA
§1.1 LOCALIZATION OF MODULUES

1.1.1 Definition. Let R be a commutative ring with identity,
s ¢ R\{0} is called a miltiplicative set if 1 ¢ S, and

a,be S=>abes.

Define a relation ~ on the product set A x § by

(a,s) ~ (a',s") <==>53 ue$S with wu(s'a-sa') =o.
1.1.2 Proposition. ~ is an equivalence relation.

Proof. ~ is reflexive since 1 ¢ S, symmetry holds as {A,+}
is a group. To prove tramsitivity suppose (a,s) ~ (a',s") and

(a',s') ~ (a",s") to show (a,s) ~ (a",s") .

Now (a,s) ~ (a',s') <=> E} ue S with u(s'a-sa') =o
and (a's') ~ (a",s") <=>3v €S with v(s"a' - s'a") = o hence
vs"u(s'a - sa') = o and usv(s"a' - s'a") =o and as uvs' € S the

result follows by adding vs"u(s'a - sa') and usv(s"a' - s'a").

1.1.3 Definition. Let a/s denote the equivalence class contianing

(a,s) and let S-lA denote the quotient set A z S .

1.1.4 Remark. We have a map uy A~ S—lA defined by uA(a) = afl.

Note that Uy may not be one-to-one.

1.1.5 Note: for all te S a/s = tafts.

Proof is immediate as R is commutative.



1.1.6 {S-lA,+,.} is an R-module where + and . are defined as
follows:
(a/s) + (blt) = (tatsb)|st, r.(a/s) = (ra)ls

a,be A, s,teS, relkR,

Proof. + 1is well defined for let a/s = a'/s' and b/t =b'/t' ,

then 3 up,u, € 8 with uls'a = ulsa' and uzt'b = uztb' now

a'ls' + bt

(t'a+s'd')[s't' =

| I TIPS KT | Tt :
stuluz(t a'+s'b )Istuluzs t [using 1.1.5]

i

uzs't'(ta+sb)|stu1u s't!

Y 2

(tatsb) st = a/s + bt .
Similarly

r(a'/s') = ra'/s'

1 1
ru.sa’ |u,ss
1 ! 1

1

ru

1s'alulss' = ra/s = r(als)

so . 1is well defined. The rest is trivial 01 = 0|s for all

s € § is the zero element and =-(a/s) = (-a)|s.

1.1.7 Corollary. S-lR is an algebra over R with multiplication

-l . _
in S "R defined by (rllsl)(r2|sz) = (rlrz)l(sls2 .

1.1.8 Corollary. S_lA is an S_lR module with the operation

defined as (r/s)(a/t) = ral|st.

1.1.9 Definition. If f : A+ B is an R-module homomorphism

define 7Y :s7la - 57l by

S~1f(a/s) = f(a)ls .



Note that S “f is well defined for if a/s = a'/s’ Jue s with

us'a = usa' so

s'lf(a'/s') = f(a')/s’

usf(a')/uss' = f(usa')/uss'

1}

f(us'a)/uss' = us'f(a)/uss'

f£(a)/s = s“lf(a/s) .

i

1.1.10 Proposition. S-lf is an S—1R module homomorphism as well

as an R-module homomorphism i.e., the following diagrams are

commutative
-1 1x sl 1
RxS A RxS B
-1 7't -1
S A > S B
-1
1xS°f
s7lp « s71a > R« s7B
s > 57l
s

Proof. rS_lf(a/s) = r(f(a)|s) = rf(a)ls = f(ra)ls

slf[ra s] = 57 e(r(als)]

and

(r/t)S-lf(a/s) (rlt)(£(a)|s) = rf(a)|st = £(ra)lst

S_lf(ra/st) = S_lf[(rlt)(a]s)]



1.1.11 Remarks. (1) S_l can be regarded as an endofunctor in the

category of R-modules, or as a functor from the category of R-modules

to the category of S—lR—modules.

(2) We have a commutative diagram

RxA —— A

S_lR X S_lA —_— S_lA

*
1.1.12 Notation. 1) for all re R define r A~ A by

% *
r (a =ra. T is an R-endomorphism of A as R is commutative.
-1 % - -
2) forall reR S 1(r ) =Tt S 1A +$ lA
is defined by r*(a/s) = ra/s. 1, 1is an S—lR-endomorphism of S—lA.

-1, % . R |
1.1.13 Theorem. If T € S then r, =S (r):8 58 A

Proof. r*(a/s) = ra/s res

r;l(a/s) = alrs reS so rs€d.
1.1.14 Definition. An R-module A is called local away from S,
written local |S , iff

*
s :A+A isan isomorphism for all s € S .

1

1.1.15 A local |s<=>u 't A” s A 1is an isomorphism.

*
Proof. [=>], Supposé S & A+ A is an isomorphism for all

s ¢ S. To show u, is an isomorphism, where uA(a) = afl.



v

Now uA(a) =0=>a/l=0/1=>Js eS8 with sa=0,

% *
i.e., s(a) =0 so a=o0 as s is an isomorphism hence Uy is

a monomorphism.
-1 n
Further let a/s € S A now s : A+ A disomorphism => J!
*
beA with s (b) =a, i.e., sb=a now uA(b) = b/1 = sb/s = a/s

hence uy is epimorphism.

[¢<=]. Now suppose uy is an isomorphism, to show A

*
is local |S. Let s e S, comsider s : A~ A. Now

*

s(a)=0=>sa=o=>a/l=0/l=>uA(a)=0=>a=o, as u
*

is isomorphism it follows that s is monomorphism,

On the other hand let b € A, Consider b/s ¢ S—lA. Now

as u, A~ S—lA is an epimorphism E] ae A with uA(a) = b/s

i.e., with a/l =b/s. Further we have

n

uA(sa) = sa/l = s(a/1) = s(b/s) = sb/s

fl

b/l = uA(b) .

*
But as uy is isomorphism, this means that sa = b, i.e., sa=h.

* *
Hence s is an epimorphism. So s is an isomorphism and A is

local |S.

%
1.1.16 Note 1. A local lS <=>gs :A~+A is an isomorphism for

all s ¢S, Hence given s ¢S and be A J ae A such that

*
sa=b, i.e., sa=b. In other vords we can divide in A by

elements of S.

Note 2. by 1.1.13 s7LA is local |s.

Note 3. u B S_l(A) -+ S—l(S-lA) is an isomorphism.
S A



Note 4. S-lA is called localization o A away [rom S.

1.1,17 Theorem, The functors S_l(—) and (=) @RS_lR from the

category of R-modules and R-module homomorphisms to the category of

S_lR-modules and S-lR-module homomorphisms, are naturally equivalent.

-1

1
A«-+A.,>5,.RS R : uA by

Proof. Define ), : s

A (als) = ax 1/s

uA(a X:r/s) = rals

now Ak, is identity on generators a Xr/s of A !z?,i'R sk .

= (\- -1 =1 i
Hence )‘A My identity of A &R S "R. Also My )\A identity of
s

Further, it is easy to see that for f:A~+B the

following two diagrams are commutative.

A
s71a A, ARSTR

~

e F@1
sl > B & sl
‘g
- H -
S Lo« A A®S e
e £(x)1
s < s ® sr
Hp

Showing that both A and y are natural transformations of functors.



1,1.18 Remark. Consider the commutative diagram

u
A A > sl
A o o1
AQR———> A®S R
1QDu

R

1) u, is an isomorphism <==> 1(x U

2) R local |S <=> all R-modules are local |S.

is an isomorphism.

3) A local |§ <=> A and A@RS-lR are isomorphic
as S-lR—modules.
4) If A is local S then

1 1

STAZAZA®, SR

hence

sy~ sTh@s Tk

In particular

1 1

sIr ~ 57157 lR) > s'1R®R SR .

-1 s -1
B)@Rs RAXBX SR

5 5D, B e .

R

AXS B and so on.

[Lr3

1

1 -
(X\
Sl R S B.

"l ~ ") —1 ~ —l \ ~ -
STA@B) AR STB ST AR B S

1.1.19 Proposition. 1) If {Aa} is a directed system of R-modules
then S “(lim A) = lin (S_lAa) , i.e., localization |S commutes
o

with direct limits.



-1, . -1
) 5 (Dg Bz ®y 5 B,

i.e., localization IS commutes with arbitrary direct summation.

3) If 0+A Lyp-Lbc+0 is an exact

sequence of R-modules then

-1, -1,
058 i gy ST gheng

. -1
is an exact sequence of S ~R-modules.

Proof. 1) and 2) follow from 1.1.17 and the corresponding property
of tensor product. Also in 3) we only have to show that S—l(i) is
a monomorphism. Now S—li(a/s) =o0=>i(a)/s =0/l =>F ue S with
ui(a) =0 but i is a homomorphism, hence 0 = uvi(a) = i(ua) now
this gives va=0 as 1 is a monomorphism, but this means a/s = 0/1.

-1, . .
Hence S “i is momomorphism.

1.1.20 Notation. If P is a prime ideal of R then S = R\P is
multiplicative. For any R-module A, we write AP for S-lA and
say 'local at P' for "local |s". We also note that A, is an

RP-module.
1.1.21 Remark. In A, can "divide" by all elements not in P.

1.1.22 Examples. 1) 1If R is an integral domain {0} is a prime

ideal and $ 'R = R, = field of quotients of R.
2) If P=R then S = {1} and

s'1R=RR=R .

1.1.23 Remark.

in RP'

up t R~ RP takes P into the ideal of non-units



1.1.24 Theorem. Given an R-module homomorphism f : A > B, B
local [S, then 3 : S_lR—modules homomorphism ug S_lA + B such

that %%=f, as R-module homomorphisms.

Proof.

Define ug = (ugl) o (S_lf). Then

uu, = u .

-1 _o-1 B
£y 3 S f'uA = uB uBf = f

Also if g : slA+B is any other s R-module homomorphism with

gy, = f then as g(a/l) = uf(a/l) we have

glals) = g(1/s + a/l) = (1/s)g(a/l)

as 1l/s ¢ S-lR and g is an S-lR-homomorphism then

g(als) = (1/s) g(a/1) = (1/s) uf(a/l)

= uf(l/s . all) = gu;

This shows uniqueness of U

1.1.25 Definition. Amap £ : A +B with B local [S is called

wiiversal for localization |§ if and only if for any map g : A 7 C

with € local Is, 3! ﬁg : B> C with ﬁgf = g.

Note, 1) u, A S—lA is universal for localization IS.
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2) f:A~+B 1is universal for localization |s

=> u s'p + B is an isomorphism.

1.1.26 Theorem. Given a long exact sequence of R-modules

A TR T A T

such that except possibly for every third module, each module is

local |S, then every module is local |s.

Proof. Since localization IS is an exact functor, we have the follow-

ing commutative ladder with exact rows

S W W Y W
u
l n-1 \un Untl
1

- -1 -1
.+ (An-l) + S (An) + 8§ (An+1) P e

where we write un for uA
n

Now, except possibly for every third arrow, each vertical
map is an isomorphism, hence by the 5-lemma each vertical map is

an isomorphism.

1.1.27 Theorem. Given a commutative ladder of R-modules with exact

rows
o o
n nt+l
. An—l — An _ An+1 > e
fn—l l fnl fn+1 l
B B
n nt+l
+Bn-l_+ Bn - Bn+1 T

such that, except possibly for every third vertical map, each vertical
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map is the universal homomorphism {or localization IS, then all

vertical arrows are universal liomomorphisms for localization |S.

f

2’ £

n-1’ "ntl
are all local |S, hence by 1.1.26 all the

are universal, then

Proof. Assume fn- and fn+2

Bn-2’ Bn—l’ Bn+l’ Bn+2
Bn's are local |S.
Now consider the following diagram, where we write a;

for S-l(a ) and k. for u
n n

£
n
% )
e ?n-l e An T An+1"' .
u
- ? Uy nt
; !
; . , \
i %0 !i ; %okl -1
; B e, S (An) B R T . (An+1> B
! f kn+l\"'\
£ 1 k n :
l n n v n+l
N
Bn—l ' g Bn - > .Bn+l )
8n Bn+l
Now for all n, k u =f and u o =o' u .. Also as both
n n n nn n nl
fn-l and u_, are universal, kn—l is an isomorphism. Similarly
kn—Z’ kn+l and kn+2 are isomorphism,
We shall first show that the lower ladder is commutative,
i.e., Bk ., =ka' for all n. Now
n n-1 nn
Bnkn—lun-l ) ann—l ) fnan ) knunan
=k a'u
nn n~-1
but as u is universal, this gives

n-1
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- '
Bnkn—l knan .

Similarly by universality of u we get

- 1
Bn+1kn h kn+1an+l

i.e., the lower ladder is commutative, but kn-Z’ k k

n-1’ n+l’ kn+2

are all isomorphisms, hence kn is also an isomorphism, Hence by

universality of u we conclude that fn = knun is also universal.

1.1.28 Theoren. S_lTor(A,B) ~ Tor(S-lA,B) ~ Tor(A,S-lB)
:Tor(S—lA,S—lB) .
Proof, Let 0+*K*T>B~+o0 beafree presentation of B,

Then by definition we have the exact sequence

o+ Tor(A,B) > AXK+A®F+AXB>0 .
This on localization ]S gives exact sequence
0+ S_lTor(A,B) > s'l(A®1<) > s'l(A XF) » s'l(A XB) + o0
Also by 1.1.18 (5) we get a commutative ladder

0+ S—lTor(A,B) > s'l(A® K) + s'l(A x'F) + s‘l(A x'B) + o

! =

o Tor(s"lA,B) +§ TARK +s'1A®F + shawp o

na
ne

as all vertical maps are isomorphisms this gives isomorphism of kernels
S-lRor(A,B) ~ Tor(S—lA,B) . The rest follows from the fact that

Tor(A,B) ~ Tor(B,A) .
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§1.2 In this section we take R =Z and let P denote the set
of all primes in 2, together with zero, i.e., o e P. Any

subset P of P that we consider will contain zero.

1.2.1 Notation., Let P c® and let neZ
1) We write (n,P) =1 if (n,p) =1 for all p e .
2) Let <P\P> = {neZ, n = product of primes not in P} .
3) Note that as o ¢ P <P\P> is a multiplicative set
containing 1 as an empty product.

<1P\1>>'1 A .

n

4) Write AP

localization of A at P,

1.2.2 Note. 1) In AP we can divide by every integer n with
(n,P) = 1.

2) If P ={p}u{o}, then (p) is a prime ideal
in Z and

B = A0 by 1.1.20.

3) A = <P\o>-1 A~ ARQ

1.2.3 Examples.

D z,=%2, % =0

. 0 if p4?P
2) ("2, .
ZlpZ if pel
The proof is by induction on n.

First we show that the result holds for n = 1. Consider

the exact sequence

072 =1+ 1Z/pl+o
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where m(a) = pa.

This on localization gives exact sequence

m
o+ ZP —f+ ZP > (Z/pZ)P >0
where m*(a/s) = (pa)/s. Now if p ¢ P then m is an isomorphism
(1.1.13) hence (Z/pZ)P = 0, On the other hand if p ¢ P then
m*(ZP) = p(ZP) is a proper subgroup of Z,. Claim cosets of pZ,
in ZP are [0/1], [1|1], ..., [(p-1)/1] where we urite [i/s] for
(i/s) + pZp. For let afs ¢ 2y then (s,p) =1 and 53 integers

x,y such that px + sy =1, Now
als = a(pxtsy)/s = apx/s + ay/1

Now suppose ay = py' +r where o < T <p, then we get

als = apx/s + (py' + 1r)/1
= p(axty's)/s + r/1
y lals] = [z/1] o<r<p.

Also these cosets are distinct for if [r1/1] = [r2/1] 0 <1, <p
then r,/1+ pa/s) = 1,1+ pa,/s, this means J ues with
u(rz—rl)sls2 = up(szal - slaz) but (p,uslsz) =1 hence p/(rz—rl)

which means r2 = rl.

Induction Step. Assume the result holds for k < n. Consider thé

exact sequence
o+ 2/pl + z/p“+1z > Z/an >0

This gives the following commutative diagram with exact rows
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+
o + Z/pZ -+ Z/pn lz > Z/pnz + 0

" t unﬂl l .

0 2oy » @™ Dy » @Dy 0

Now if p ¢ P then by induction (Z/pZ)P and (Z/an)P are zero,
hence by exactness of bottom row so also is (Z/pn+1Z)P. 1f on the

other hand p ¢ P, then u and u are isomorphisms, hence by

5-lemma so is U1t

1.2.4 Lemma. Let Pl’PZ cP. If sel is such that (s,Pl n P2) =1

then we can factorize s uniquely as s = sl,szs where 8] € <P1\P2>,
5, € <P2 P1> and (s,P1 v PZ) =1,
Note that this implies (Sl’PZ) =1= (SZ’Pl) and

(sl,sz) =1= (slsz,s).
Proof. Trivial.

1.2.5 Lemma. Let G be any abelian group, and let Pl’PZ cp, then

a) P, cP,=>( cG

1

b) 0=G, <G =>P c?P, .
P2 1 2

Proof. a) Let Pl_C_ P2 then a/s € GPZ <==> (S’PZ) =1 => (s,Pl) =

=1<=>als et

Pl .

b) If G ${0) JaeG with 0=af/leG . Now
2 %

P, i P, => Jpe P such that p ¢ P, so alp € GP2 but

alp ¢ G so G, ¢G this contradiction establishes the result.
21 Bl

1.2.6 Corollary. P15P2 cp <= ZP2 < ZPl .
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G, is a ZP‘ module for all P' 2 P.

1.2.7 Corollary.
1.2.8 Theorem. ? ~Z as rings.
Define ¢ : Z ®Z ZP > ZP an :§ as follows:

Proof.
1 2 1

¢ is defined on generators by

o((als) ® (b/t)) = ab/st

, this makes ¢ an additive

and extended linearly to Z, &, Z
Pl Z P2

homomorphism,

Define § by

Y(als) = (als, R 1/ss)

where s = 5152§ is the unique factorization given in 1.2.4. Also
note that by 1.1.5 and as temsor product is taken over Z
I S = s = s X
a/s2 X' 1/ss 8/528(5 1/sl 1/s2s 5.a/s1 etc.
an) =1

¢ is well defined for (s,Pl) =1 (t,Pz) =1 = (st,Pl
hence ab/st € ZP . Also if af/s = a'/s' and b/t = b'/t' then
1"

as s'a=sa'" and t'D= th'

we have

o(a'/s' b /') ab'/s't' = sta'b'/s't'st

s'at'b/s't'st = ab/st

n

¢(als ®b/t) .

Finally ¢ is a ring homomorphism for

sl(al/s ®b/t)(a' /s’ ®b'/t")] =
¢laa'/ss' &bb'/tt'] = aa'bb'/ss'tt'

= (ab/st)(a'b'/s't') = ¢(a/s\§>b/t)¢(a‘/s' &p'/eh)
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y is well defined for if als =b/t el then
PlnP2

ta='sb and Y(b/t) = (b/t) ¥ (1/t,t)
= (szb/tzsz)ﬂ9 (s1§/s1§tli)
= (slgszb/sztz) ®) (l/slgtlE)
= (sb/s, ) @ (1/sy5£1)
= (ta/sztz)ti‘(llslétli)
= (¢t tals,t,) D (L/s;5t,1)
= (afs,) ® (1/s}8) = 4(als)

§ is an additive homomorphism for

y(a/s + b/t) = P(tatsb/st)
= [(ta+sb)/szt2] ® [1/slt1§?:]

(ta/szt2 + sb/sztz) Qb(llsltlgf)

n

[(als)) & (1)) + [0/t)) ® (U/eg))

= (a/s) + ¥(b/t)
y 'is also a multiplicative homomorphism for

¥(als + b/t) = y(ab/st) = (ab/s,t,) X (l/sltléE)
= (als, % 1/315) (b/t, ® 1/t1£)

= y(als) * Y(b/t)

Claim. ¢ = identity and ¢y = identity. Let (a/s) X (b/t) € ZPQS*ZP
1

SO

[(tals,t,) ® (1/slt1§E)]+[(sb/s2t2)®(1/slc1§E)]

2
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(s,Pl) =1-= (S’PlnPZ)

(t,Pz) =1-= (t,Plan)
hence in factorization s = slszg given in 1,2.4, had
5, € <P1\P2> s, € <P2\P >, but as (s,Pl) =1 we have s; = 1,
similarly t, =1, i.e., s =35 s t=tt, Now

2 2 1
yo(a/s x b/t) = y(ab/st)
= (ab/szt2)®(1/s1t1§?;)

= (ab/sz) ® (l/tlgf)

(as/5,5) ® (b/tléE)
= (a/szé) ® (b§/tl§E)

= (a/s) @ (b/t)

so Y¢ = identity.
Also  ¢y(als) = (j)(a/s2 & 1/515) = a/szslg = afs, hence

¢y = identity.

1.2.9 Construction. Let P cP, S ={s e 2,(s,P) =1} define

a partial order < in § by s, <s, <=>s., is a divisor of s

1-"2 1 2

<s.5, ¢85 hence {5, <} 1is a directed

Now for s 152

€S, S§,,8

1’52 1°%2

set.
Let G be any abelian group. Form a directed system of
groups {GS} indexed over S, where Gs =G for all s ¢ S.

If s, <s

158 define a homomorphism

)
$4°:6 =G6+0C =6
s S

51 % 2
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s, s, s,
by ¢ “(a) = (<) a, for a in G, mote that — 1is an integer.
s s s
1 1 1
S3 5 %3 s
It is easy to see that ¢ _~ ¢_ = ) and ¢ = identity.
S, 'S [ s
2 71 1
For the next lemma take G = Z.
1,2.10 Lemma. lim ZS > ZP

Proof. Let H = 1lim_Z_ , so there are maps ¢ :+Z +H such that
—_— —— s s s

S
for
558 & ¢22=¢s '
2 1 1
Define ws: ZS =7 ZP by ws(a) =afs ael. Then
s s s
Vg ¢52 (@) =¥ (8—2 a) =—2-a/s2 = als)
2 71 2 "1 1
= lJ;sl(a) .
s
e, Y. ¢2 =V
S, %1 %1
Now as

H=lin 2z 3! v:H>Z

such that w¢s = ws s € S. As each ws is injective so is V.

Also if afs ¢ ZP then afs = ws(a) = w[¢s(a)] so ¥ is onto.

Hence ¢ 1is an isomorphism.

1.2.11 Theorem. lim G
S

Proof. From the lemma we have

g .
lim 2 22,



Tensoring both sides with G we get
6 lim %:G@IP,
but

lim GS

G@g&ZS:Hm(G®%)=
Hence the result follows.

1.2,12 Definition. A square of abelian groups

is called a fibre square iff the following sequence is exact

<L.,L,> {3;5=1,}
o—+ A 12\3@0 1 2>D + 0

where
<Lphly> (@) = (Lja,L,a) e BEC
{jl’_jZ}(b’c) = jl(b) - jZ(C) ed .

.2.13 Lemma. If

A ——B A' — B
l J and l J
C — D ¢'— D'

are fibre squares, then so also is



Proof. Exactness of

o+A+B@EC+D+o0
and

o+A'+B'@C' D" +o
implies exactness of
o+ A@A > B+B)YDEC+C) D@D + 0

1.2.14 Lemma. If {As} {BS} {Cs} {DS} are directed families of

abelian groups, such that for each s

is a fibre square then so also is

lim A.S — lim BS

Proof. lim takes exact sequences into exact sequences.

21
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1.2.15 1f

is a fibre square then it is both a pull back and a push out.

Proof. First we show that the above diagram is a pull back, we

note that as the composite {Jl,-JZ} <il,12> =0 Jlil = 3ty
Now let h1 :X=+3B h2 : X+ C be such that

thl = JZhZ' Consider the following diagram

<i ’i > {] :"j }
o + A 1’2 3 O it SN

+

h !
1
' hpohy?
1
X

Now {jl,—jz} <h1,h2> = o hence as A 1is the kernel of

—' ! . =
{3,-3} 31 h: XA suchthat <ij,ip>h=<hjhy>,
ie., ih=h ad L= by

This h is unique for if there is also an h' : X >4

N PR s h! = 1 ' = = <i .1
with llh = h1 and 12h 9 then <il,12>h <h1,h2> <ippi,

But then as <il,iz> is monic, we get h' = h.
Now we show that the diagram is a push out. Let
kl :B~+Y and k2 : C~>Y be such that klil = k212. Consider

the following diagram
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%4

< 3i > {j s_j }
0o+ A ez, BEC L2 L a0

: |
i

'k
¢
{kl"kz} 1
|
12
Y

Now {kl,—kz] <il,i2>(a) = klil(a) - k212(a) =0 but
D = coker <il,iz> hence 3! k : D~+Y such that
k{jl?_jz} = {kl,-kz}. This gives kj; = k, and kj, = k.

Hence the diagram is a push out.

1.2.16 Theorem. Let P P2 cP then

1’

is a fibre square.

Proof.

Case I. G = Z. Suffices to show that

<i,i,> {3,,=3,)
© > Zp up = Z, ®2 L Zp gp. 0
1Y"2 1 2 1"

is exact where <il,iz>(a/s) = (afs,afs) and

{jl,-jz}(a/S,b/t) = (a/s) - (b/t)

(i) Exactness at ZPluPz : - As each of 11,12 is inclusion
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so is <i,,i,>.
1°72

(ii) Exactness at Z . Let cf/s el then

Plan PlnP2
(s, PlnPZ) =1 let 8= 3182§ be the unique factorization given
in 1.2.4. Consider the diaphantine equation (1) S1% - x2§y = c.
This always has integral solutions as (sl,szg) =1

which is a divisor of e¢. In fact if XY, are solutions of

S, X = X

1 2§y = 1 then all solutions of (1) are given by

X = X, + S,50 y = + sln

where n is an integer.

Now if x is a solution of (1) then consider

171
(x;/8,8, yl/sl) € Zp OzP
1 2

Then

{jl,-jz}(x/szg, y,/s) =

1

(xllszg) - (yllsl) = (slxl—szgyl)/slszg

c/s

50 {jl,-jz} is onto.
(iii) Exactness at Z, OZP

1 2
Firstly {jl,-jz} <il,iz>(a/s) = afs - a/s = 0,

Conversely if (a/s, b/t) € ker {jl,—jz} then (a/s) - (b/t) = o

i.e., (ta-sb)/st =0 hence ta-sb =0 i.e., als =b/t Z  ,Z
Pl P2

hence (s,Pl) =1=(s,P,) which implies (S'P1UP2) =1, Hence

als = b/t € Z and
PluP2
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<il,12>(a/s) = (a/s, a/s) = (a/s, b/t)

so ker {jl,-jz}g image <il,12> .

Case II. G =12/p"2 .

c PP, cP.uP, then

Now if p € PlnP 1'Fy

2 172

2/’ z) = 2z, = (Z/p'2)
PluP2 P1 P2

= (2/p"2) = z/p%
Plan

and we have just to show the exactness of

0> Z/paZ LN Z/paZ ® z/p“z <, Z/paZ + 0

where A(a) = (a,b) and d(a,b) = a-b. This is trivial

Next if

P € Pl\P2 < Pl ] P2

2%, = z/p%2 = (2/h"2)
P1 PluP2

and

"), =0 = (z/p%2)
P2 PlnP2

and we have to show exactness of
@, id o
0+2/pZ—12pZ+0~0

this is again trivial.
The case p ¢ P2\P1 is similar. Finally

p 4 P1 U P2 is also trivial.
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Case III. If G is a finitely generated abelian group then

c=®z®(Dzp"2)
P o

and the result follows from 1.2.13.

Case 1V, If G is any abelian group, then G 1is the direct
limit of its finitely generated subgroups and the result follows

from 1.2.14,

1.2.17 Corollary.

G ~ G X G
P,wP, = P G P
172 1 Plan 2
i.e., GP uP is fiber product over GP P of the groups
172 172
G and G
F1 )

Proof, The proof follows from 1.2.16 and 1.2.15,

1.2.18 Corollary. If P1 n P2 =0 then

1.2.19 Corollary. If G is any abelian group then

G ~ G

@

0 o
i.e., G 1is isomorphic to fibre product over G0 = GEQ of its

localizations at the primes.



CHAPTER II

LOCALIZATION IN THE CATEGORY OF TOPOLOGICAL SPACES

§2.1 In this section we discuss localization of a class of
topological spaces, and its interplay with homology and homotopy

functors.

2.1.1 Throughout this section P cPP will be a fixed set of primes
and zero, and 'localization' would mean "localization at P",

"Jocal' would mean "local at P".

Also our discussion would be confined to the class of

'simple' spaces defined below.

2,1.2 Definition. A simple space is a connected space having the
homotopy type of a CW complex, and an abelian fundamental group
which acts trivially on the homotopy and homology groups of the

universal covering space.

2.1.3 Definition. A space X is local if and only if T, (X) is

local, i.e., Hi(X) is local for all i > o.

2.1.4 Definition. Let X be any space, a localization of X is
amp u from X into a local space L such that u is
universal with respect to maps into local spaces, i.e., if L'

is any local space and if f : X > L' is any map then

3! ue i L L' such that
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We shall later establish that for any simple space X,
a localization (at P) u: X + XP does exist. Assuming existence

for a moment we establish

2.1.5 The Functorial Character of Localization. ILet f : X~ X'

be map of simple spaces. Let u : X -+ XP and u' : X+ Xé be
localizations, Since u 1is a localization and since X% is

local, u'f : X » Xﬁ induces uniquely a map fP P X Xé such that
u'f = fp u
It is easy to see that 1P =1 and that
(8 ) =g

Thus  ( )P is a functor from the category of simple spaces to a
category whose objects are local (at P) spaces and whose maps

are maps between local spaces.

2,1.6 Convention

1) By the statement "“f : X 25 Y localizes homology" we
mean that H*(Y) is local and that £, : H*(X) + H*(Y) is universal
for localization at P. [see 1.1.25]

2) "f :X+Y localizes homotopy" means that H*(Y) is local

and f# : H*(X) + H*(Y) is universal for localization.

2.1.7 Lemma. Let f : X+ X' be a map of simple spaces and
suppose that H,(X') is local, then f localizes homology if

and only if

Fepy ¢ Wy(D))p > E,ON),
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is an isomorphism.

Proof. The proof follows from Note 2 in 1.1.25.

2.1.8 Lemma. Consider the commutative diagram

where each vertical sequence is a fibration.

(i) If the spaces are comnected, Hl abelian and any two of
f, g, h localize homotopy then so does the third.
(ii) 1If Hl(B) acts trivially on the homology of fibre and

any two of f, g, h localize homology then so does the third.

Proof. (i) Apply 1.1.27 to homotopy exact sequence of fibrations.

(ii) is similar.

2.1.9 Let 1 be an abelian group.

1) An Eilenberg-MacLane complex K(li,n) is a topological
space having homotopy type of a CW complex, with exactly one
non-zero homotopy group Hn(K(H,n)) = 1.

2) We recall that X is called n-connected if and only if
Hi(X) =0 for all 1i<n.

3) Proposition. If X is (n-1)-connected then

H"(X,1) ~ Hom (H_ (0,1
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for proof of this and subsequent results see [5].

Taking 1 = nn(x) this gives an isomorphism
n
H (X,"n(x)) = Hom (Hn(X),Hn(X))

Now let h : Hn(X) > Hn(x) be the Hurewicz isomorphism. We define
the fundamental class of X 1i= inX as that element of

H“(x,nn(x)) which corresponds to h_1 in the isomorphism
n
H (X,ﬂn(x)) = Hom (Hn(x), Hn(X)) .

4) Now take X =K(I,n), so I = Hn(X). Writting Hi(H,n)

for Hi(K(H,n)) etc. we have an isomorphism
H'((,0),1) 3 Hom (H_(T,0),T)

5) i, the fundamental class of K(I,n) provides us with a
bijection

(X, ) «— [X, K(I,m)] .

For proof again see [5].
6) We also have a bijection [K(Nl,n), K(I',n)] «— Hom (I,N') .
~ Thus a homomorphism f : 1 ' induces a map

~

f : K(,n) + K(1',n)

such that (f#)n = f,
We now give a brief description of the right'side up and
upside down Postnikov systems for a space X. For details see [5]

and [6].

2.1.10 The right side up Postnikov system for X is a system
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(Xn’pn’qn’kn) constituting the diagram

) k
nt+l
> Xn+l —_— K(Hn+2,n+3)
jfil/////////
A ~. ‘ pn+l
e
Xl'l Tn—'“—) K(Hn+l,n+2)
where we write Hn for HH(X). The following conditions are to be
satisfied
(1) If X is n-connected then X=X = ... = X =* and
xn+l = K(Hn+l,n+l) .
(ii) Uy Hi(X) > Hi(Xn) is an isomorphism for i < n,
in other words Xn is n-equivalent to X. Also ni(xn) =0 for

i>n.
ca n+2
(iii) kn [Xn’K(Hn+1’n+2)] «—— H (Xn’Hn+l) is called the
2™ kfnvariant of .

(iv) P, * Xn > Xn-l is the principal fibration induced, by

the map kn-l’ from the path space fibration
K(Hn,n) =K +>PK+K= K(Hn,n+1)

i.e., Xn is the pullback of PK + K and Xn— + K,

1

(v) Naturality Condition. F : X X' induces maps {fi}

of the Postnikov system for X into that of X' such that

= ! = !
fn qn qn f fn-l pn pn fn
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We call fn the nth stage Postinkov decomposition of f,

2.1.11 The upside down Postnikov decomposition (Xn,pn,qn,kn) of

X. Let (Xn’pn’qn’kn) be the right side up Postnikov decomposition
for X described in 2.1.10.

Take X' = X and inductively define Xn+l and qn+1

by taking qn+1 : Xn+l > X to be the fibre of q, * X+ Xn' Note that
as Hi(X) ~ Hi(xh) for i <n and as Hi(Xn) =0 for i>n,
we have Hi(Xn+l) =0 for 1 <n and Hi(Xn+l) = Hi(X) for
i>ntl,

To define pn+l : anlh1 + X" we take the right side up
Postnikov decomposition of X% and note that (Xn)j =% for

j <n, and we take pn+1 to be the fibre of

n
kn X — K(Hn,n)

For maps f : X + X', we have a naturality condition
for the upside down Postnikov system as for the right side up

system.

2.1,12 Lemma. Let T be any group and let HP be its localization
at PcP, Let f :K(M,n) » K(HP,n) be any map, then f localizes

homology if and only if f localizes homotopy.

Proof. [==>] This is trivial for by Hurewicz theorem

Hn(K(H,n)) ~ 1 and Hn(K(HP,n)) ~ HP s
and

Hi(K(H,n)) =0 for i#n.

Thus
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fy : Hi(K(H,n)) —_ Hi(K(HP,n))

is zero for 1 # n and equal to f, for i=n. Thus if £
localizes homology then it localizes homotopy.

[<=] Assume f localizes homotopy, we have to show
that f localizés homology. We use induction on n.

Case I. [n=1] =2 so HP = ZP' In this case

K(z,1) = Sl

and Hl(Z,l) = Hl(K(Z,l)) =7, Hi(z,l) =0 for
i> 1., Also

Hy(2,1) = 1,(K(Z,1) = 2, .

Thus the map £, : Hi(n,l) + Hi(HP,l) is in fact a localization for
i =1 in which case it is just the map Z -+ ZP' Also for 1 >1

£, =0 is trivially a localiztion.
k
Case II. TN =2/pZ so

0 if p4¢P

1 if pd¢P

= =*
Thus if p ¢ P HP 0 K(HP,l) and

£, ¢ B (L) » H*(np,l) =0 ,
is the trivial map, hence is trivially a localization. If, on the
other hand, p ¢ P then HP = thus

f @ K(I,L) +» K(HP,l) = K(1,1)

is a homotopy equivalence and hence f, : H,(1,1) » H*(HP,l) is an

isomorphism and a localization.
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Case III. If 1 1is any finitely generated abelian group then
it is a direct sum of copies of Z and Z/ka. Now as the direct
sum of local groups is local, as direct summation commutes with

homotopy and as H, (X x Y) ~ H(X) ®H,(Y) . The result follows.

Case IV. If T dis any abelian group then it is the direct limit
of its finitely generated subgroups under inclusion, and the result
again follows.

This completes the inductive step for n = 1. Now assume
that the result holds for n = m-1 and consider the fibrations

f
Q(K) = K(II,m-1) ——l——+ K(HP,m—l) = QK(HP,m)

.

,
P(K) ———s PK(T
f

o

K=K(,m) ———— K(HP,m) .

po™)

By inductive argument fl localizes homology. Also as both
PK(ll,m) and PK(HP,m) are contractible f2 is homotopy trivial
and hence localizes homology trivially, therefore by 2.1.8 f3

localizes homology.

The main result of this section is

2,1.13 Theorem. Let f: X+ Y be a map of simple spaces. Then
the following are equivalent

(1) f is a localization (see 2.1.4).

(i1) f localizes integral homology (see 2.1.6).

(i11) f localizes homotopy (see 2.1.6).
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Proof. [ (iii) ==> (ii)] Assume f localizes homotopy, we have to
show that f localizes homology. We use induction on the nth stage
Postnikov decomposition of f, and shall show that fn : xn + Yn
localizes homology for all n. Then as £ ~ £, the result
would follow,

Induction starts by 2.1.12 as Xl = K(Hl(X),l) and
Yl = K(Hl(Y),l).

Now consider

A

K(,(M0,0) —— K(1_(D),0)

Xn —_— Y
I
n-1 n-1

As f localizes homotopy, so does f for
(f#)n = (f#)n and (f#)i =0 if i#n.

Hence by 2,1.12 f localizes homology., Also fn— localizes

1
homology by inductive argument. Hence by 2.1.8 fn localizes
homology.

[(ii) ==> (iii)] Assume f localizes homology, we have
to show that f localizes homotopy. Now as X and Y are
simple spaces Hurewicz theorem gives Hl(X) = Hl(X) , Hl(Y) = Hl(Y)
and £, = f#. Hence f# localizes Hl.

We now use the upside down Postnikov decomposition of f.

Consider first
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'
~\r
>~

1

e b —— kO (0,
\ £ -t Kt

2 vt — K M,D

1, _ . 1, . .
Now (k #)1 = (f#)l localizes Hl, and (k #)i o for 1#1
therefore kl localizes homotopy hence by 2,1.12 kl localizes
homology. Also £ 1ocalizes homology, hence by 2.1.8 fz localizes

homology. But now X2 and Yz are simply connected, so Hurewicz

theorem gives us that f2 localizes HZ' Further
Wy = (5, ¢ L = @ > 1) = B
#2 #2° 2 2 2 2

therefore £ localizes nz.
Now assume by induction that f' = f,...,fn localize

homology and that £ (hence f) localizes Hn and that kn—l

localizes homology.

. . ntl
To complete inductive step wWe have to show that £

and kn localize homology, and that fn+l (hence f) localizes

Hn+l'

Consider the nth and (n+1)5t stage in the upside
down Postnikov decomposition of f, in the following diagram the

rows are fibrationms.

+
S —— k(I (0),0)

\ [t \' o l 2

4
o ¥ ka0
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n . n = .
Now (k #)i =0 for i#n and (k #)n (f#)n H Hn(X) > Hn(Y),
f localizes Hn hence k" localizes homotopy, therefore by

2.1.12 k" localizes homology. Also ' localizes homology hence

+
by 2.1.8 £ 1 localizes homology. But Xn+1 is n-connected

+
hence by Hurewicz theorem £ 1 localizes 1 but

n+l’

nt+l

(£ nt+l

#)n+l ' ﬂn+l(X )

(Yn+1) -

Pory = U

= Hn+l(x) > 1 (Y)

ntl nt+l

Hence £ localizes Hn+ This completes the inductive step,

K
Hence proof of (ii) => (iii).

[(1) => (ii)] Assume f : X+ Y is a localization,
i.e., Y 1is local and for any local space Z and any map
gt X+2 | ug Y+ 2 such that ug f=g.

Now taking Z = K(II,n) where I is a local abelian

group, and n = 1,2,... we get bijections
H'(X,I) «— [X,K(T,n)] < [Y,K(,n)] <> H"(Y,0)

Now if we take 1 =Q = Z, and = Z/pZ = (Z/pZ)P

for p ¢ P, the above gives isomorphisms

* *
H (X,Q) 7 H (Y,Q)

* *
H (X,z/pz) ~ W (Y,Z/pZ) pebP
Universal coefficient theorem now gives us that the homomorphisms

f* : H*(X’Q) * H*(Y’Q)

£, @ H(X,2/p2) > U, (Y,2/p2)
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are isomorphisms.

Now using the Bockstein sequence
n n-1
0+2/pZz+2/pZ~+2/p "2-+0
the induced homology sequence ladder and the five lemma, we see that
£, 1 H (X,A/p"2) B (Y,2/"2)
*' * b p % s

is an isomorphism for p ¢ P.
Now we note that
, n
me ~ lim (2/p 2)
and

Wz & 2,
pel

and that lim_ and @ are exact functors, hence
£, ¢ H,(X,0/2,) + B, (1,0/2)

is an isomorphism. Now from the sequence o =+ ZP +Q-= Q/ZP + 0
we conclude that £, : H*(X,ZP) > H*(Y,ZP) is an isomorphism.
But as ZP is torsion free, universal coefficient theorem

gives us the following commutative diagram

H*(X,ZP) ~ H(X® Z,

Ll

H(Y,Z) = H () ©2,

and the result follows from 2.1.7.
[(i1) ==> (1)] We assume now that f, : H (X) H*(Y)

is a localization, and show that f : X +Y 1s universal for maps
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into local spaces L.

First note that we can regard £ @ X Y as an inclusion,

[taking mapping cylinder]. Hence given f : X~ Y and g: XL

the obstruction to uniquely extending g to ¥ lies in

*
H (1,337, (1)

yhere T,(L) peing local at P isa I module.

Now look at the commutative diagram

(pr<¥3)3x3

|

|

%
d T
o ( A (JZ‘X T+T wo d._« d
« ) H)woH «— (2 X)I+?H — ( z‘(az‘x)tn)nxa «— O

1

d_ e, d T+T
o<--(z(z‘;;) “gHuo dge 4 d b <~
yuoH «— (%) H (“z<(“z°x) H)IX4a o
(Pt ¥3)woH 3
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Now as f, is an isomorphism, so also are Hom(f*,id) and

*

Ext(f*,id) therefore it follows by the 5-lemma that
* % %
f :H((Y,2)—H (x,zP)

is also an isomorphism. Hence from the exact chomology sequence

of the pair (Y,X) with coeffients in Z  we get

P
i+

B l(Y,X,ZP) =0

for all i, Thus all obstruction groups are zero.

Hence g extends uniquely to Y, showing that £ is

universal.

2,1.14 Corollary. For a simple space X the following are equivalent.
(1) X is its own localization
(i1) X has local homology

(iii1) X has local homotopy.
Proof. The proof follows from 2.1.13 by taking f =1id : X + X.

2.1.15 Corollary. If £ : X+ X' is a map of local simple spaces

then the following are equivalent
(i) £ 1is a homotopy equivalence
(11) f induces isomorphism of local homotopy

(1ii) f induces isomorphism of local homology.
Proof. (i) ==> (ii) and (iii) 1is trivial.

[(i1) => (1)] Simple spaces have homotopy type of CW

complexes, for which homotopy equivalence is the same as weak
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homotopy equivalence (see [6], §7.6.24, p. 405),

[(11) <=> (iv)] This again follows from ([6], §7.6.25).

2.1.16 Proposition. H, (X)) ~H (X) ®Z, ~ H (X;2.) .
Zroposition «Xp) o Hy p = Hx\Asly

Proof. The last isomorphism follows from the universal coefficient

theorem for homology, as Z_ 1is torsion free.

P
We shall show

() = (0 @ 2,

Let u: X~ XP be localization, then by 2.1,13
u, ¢ H(X) > H*(XP) is also localization and hence universal, But
H (X) » H,(X) @2, is also universal. Hence the result follows
% % P

from uniqueness of universal objects.
2.1,17 Proposition. H*(XP) v IL(X) ®ZP .

Proof. The proof is similar to the proof of 2.1.16.

§2.2 In this section we shall show existence of the localization

functor for simple spaces.

2.2,1 Construction. Let S be an i-sphere for i > 1, and let
P cP. We shall construct a P-localization of §.
Let P' =P\P and S={ne <P'>}= {ne Z;(n,P) =1}

Let {sl,sz,...,} be any cofinal sequence in S. i.e., s, is

1

a divisor of s

i+l and for any s e S J i such that s is

a divisor of Si'

Let fn :5+8 be amap of degree s, Define Tn

A
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1 1 = = = U
inductively as follows T, é Tp=sxI, T, T, ¢ S xI

n
for n> 1. Thus T2 is obtained by identifying bottom of
T1 with top of § x I using the map fl. Tn+l is obtained by

identifying bottom of the last cylinder in Tn with top of S x I
using the map f . Milnor has called this construction "the
telescope construction". Note that for finite values of n, T

n

has the same homotopy type as S. Define

and define

by inclusion into the top of the first cylinder.
2,2,2 Claim. u: S+ T is a localization.

Proof. By 2.1.13 it is sufficient to show that u localizes

homology.

Now Hj(S) =0 if j#1i and Hi(S) = 7,

= =]
~~
=)
A
i
=2
~~
i
=
=
-3
g
ne

lim Hj(Tn)

W2

lim Hj(S)

ﬁj(T)=o if j#1i and

Hi(T) = lim Hi(S) =4m Z2~2, ,

—_— P

where this last isomorphism follows from 1.2.10. Thus H*(T) is
local at. P,

Now wu, : H,(S) » H(T) is either the zero map or is

*

]
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" Thus u, is a localization.

*

2.2.3 Notation. We write T = SP = S; and call it the
localization of the i-sphere S = Si. The cone on S; is called
a local (itl)-cell.

Note that we do not have any local O-sphere and hence

no local 1l-cell.

9.9.4 Definition. A local CW complex is built inductively from a

point or a local l-sphere by attatching local cells.

2.2.5 Theorem. If X 1is a CW complex with one zero cell and one
1-cell there is a local CW complex XP and a cellular map
u: X~ XP such that

(1) u induces bijection between cells of X and the
local cells of XP'

(ii) u is a localizationm.

Proof. We shall build XP inductively, with induction on the
(n)

dimension n of X. Let X denote the n-skeleton of X.

If n=2 i.e., if X is a 2-complex with X(l) =% then X

is a wedge of 2-spheres, X =1V Sz, and we take XP =V S§ ,

i.e., we take XP to be wedge of as many copies of Sg, we define

E=Vu:vsz+vs§

where u : 52 > Sé is defined in 2.2.1. Then this u satisfies

(i) and (ii).
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Next we note that if f : A~ AP is a localization
satisfying (i) and (ii), then so also is Lf : ZA » ZAP for in
this case (i) is clear, and to show (ii), i.e., to show that If

is a localization, we consider
(zf), @ H*(EA) = H*—l(A) -+ H*—I(AP) = H*(ZAP)

Thus (Zf)* localizes homology and hence by 2.1.13 If is a
localization,

Now we assume inductively that the theorem is true for
all complexes of dimension < n-1, and note that the n~dimensicnal
complex X is formed by attatching the n-cells, i.e., the cone

(n-1)

on V Sn-l, to the n-1 skeleton X by the map

f:V Sn-l > X(n—l)

Thus X is the mapping conme of £, and we consider the following
diagram, the top row of which is the Puppe sequence of the map £,

and the bottom row that of fP.

2.2.6
R P R I S Y
i oD 5i gD
n-1 (n-1) n_ n-1 n-1
VSP —§;+XP — XP — VSP = ):VSP - EXP >

i and u(n-l) are defined by inductive hypothesis and fP exists
because of the functorial character of localization. XP is the

coefibre of fP, ie.,
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X, = xr(,“'l) uoC( sg'l)
fP
and u 1s defined by plecing together the cone on i and u(n_l)
that is
_ n-1 R n-1 (n-1) n-1, _
u=u Ue(i) : X=X g c(Vs 7) » XP z c(v SP ) = Xf .
P

It is clear from the way u is defined as map of cofibres that it
respects identifications, hence it is well defined. Also as u(n~l)
induces bijection of cells so does u.

Now in the bottom row of the commutative diagram 2.2.6 all
spaces except possibly XP have local homology, hence by exactness
XP does also. Further all vertical maps localize homology except

possibly u, hence it does too, (1.1.26 and 1.1.27).

This settles the case of finite dimensional complexes.

If X 1is infinite dimensional then we have X = v X(n) and we
n
take XP =y X;n) and u= U u(n) . (1) and (ii) are then
n n

easily seen to be satisfied.
2,2.7 Corollary. Any simply connected space X has a localization.

Proof. Chose a CW decomposition X with one zero cell and no one
cells, and consider u: X~ iP defined in 2.2,5. Then

X~X~ XP gives localization.

2.2.8 Definition. A local Postnikov tower is a Postnikov tower
with the Xn's constructed inductively from a point using

fibrations with local K(M,n)'s, i.e., K(I,n) with T local.
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2,2.9 Theorem. If X = (Xn’pn’qn’kn) is any Postnikov tower
then there is a local Postnikov tower X' = (X;,pé,qa,k;) and

a Postnikov map u : X » X' which localizes homotopy groups.

Proof. We use induction on the number of stages in the Postnikov
tover X. Induction starts easily since the first stage is a point.
Assume now that we have localization upto the (n-l)St stage.
i.e., for m <n we have localization u Xm > X&.
Let Hn denote Hn(X) and let n; denote "n(X)P'

Then the universal map u : T+ 1T' = (I ). induces
n n n'P
K(u) : K(Hn,n+l) > K(H;,n+l)

where K(H;,n+l) is local as H*(K(Hé,n+1)) is local, Now

consider the diagram

un—l
1
K1 X1
K K
n n

1
K(Hn ,n‘l"l) W K(Hn ,n+l)

u is universal, and

n-1
. 1
K(u) kn : Xn-l > K(nn,n+l)
maps Xn—l into the local space K(Hé,n+l) hence

E R AR (IR (GAR )

that makes the diagram commutative. Now consider the following

diagram in which the vertical sequences are fibratioms.



u
) Q—— ey
n
L
X ..___n__.).x'
n-1 -1

| |

K(Hn,n) —_— K(Hé,n)

From the homotopy sequence of

1 1 1
Xh —* Xn—l — K(Hn,n)

we conclude that XA is local. Also in the commutative ladder

-+ H*(Xn) — H*(Xn—l) — H*(K(Hn,n)) — ...

LY. l Yh-14 l [

+ H*(XA)-———+ H*(X;_l)-———+ H*(K(Hé,n)) - ..

all vertical maps are localizations except possibly (un)# hence

it is too. Thus u Xn > Xé is a localization.
2.2.10 Corollary. Any simple space has a localization.

Proof. Choose a Postnikov decomposition for the simple space X,
localize the tower by 2.2.9 to obtain a local Postnikov tower

(Xé) then X' = X! is a simple space localizing X.

§2.3 In this section we list some results for local spaces.
2.3.1 Proposition. There is a bijection
i i
[SP,X] «—— [87,X]

for local spaces X.

47
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Proof. Let u: Si + S; be the localization map. Define

o+ (8,01~ [55,X] 1 y

by
¢(f)=uf for f:58 X

and

U(g) = gu for g:Sll,—rX.
The result follows.

2.3.2 Corollary. If X is local

i

P,X) i>1.

L&z (s

2,3.3 Theorem. If P P2_C_IP then

l’

—

XPluP2 1
—
%, %2,
is a fibre square.

Proof. It is sufficient to show that the following sequence is

exact.

I )+ (X ) @I (X, )+ IL( )+o
i Xplupz 1 xPl { XPZ i x1.>1nP2
but as Hi(XP) v ni(x) @ZP , it sufficient to show exactness of

0 +L(X) @ zPlUpz > (ni(x)®zpl) ® (“1(X)®sz) > ni(x)@zPlan >0
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or the exactness of

2.3.4
0+ L)z, 1,0z, O 1+ 1,0 >0 .
i PR, i p O%, T ZPlan

But by 1.2.16 the sequence
o> 12 — Z () 7. —r >0
By BB 20,

is exact, and as all these groups are torsion free, on tensoring with

i(X) we get exactness of 2.3.4.

2.3.5 Corollary. XP 4P ~ XP X XP

2.3.6 Corollary. X ~ X2 ; X3 X X5 ; X7

where we note that

L) z 1M ®Q

2.3.7 Theorem. (X x Y)P ~ XP X YP .

(39

proof. M ((X x ¥)p) 1,(X x ¥) @2,

~ [1,(X) @ 1,(1)] @7,

ne

(1,0 @21 ® [M,(1) @ Z)

W2

1,(p) @ (Y) = MK ¥,)

Thus

I (X x¥Y) — I ((X x Y)P)



and

(X x Y) — T, (X, x YP)
are both localizations . . by 2,1,13 so also are

XxY — (XxY)P ,
and

XxY — xP x YP N

and by uniqueness of universal object it follows that
(Xx¥)p = & x Y
2.3.7 Theorem. Xv Y)P ~ XP v YP .

Proof. The proof is the same as above using H, instead of I,.

50



CHAPTER III

LOCALIZATION AND H-SPACES

3.1.1 Definition. An H-space is a pointed space X with a
map m:XxX+X such that mj ~ V where j:XvX+XxX"

is the natural inclusion and V:XvX~+X is the folding map.
3.1,2 If X {is an H-space then so also is XP'

Proof. Let m: X x X+ X be multiplication, By 2.3.7 we have

amap A XP X XP + (X x X)P which is a homotopy equivalence,
and by 2.3.8 we have a map y @ XP v XP +(Xv X)P which is a
homotopy equivalence.

Define
ST
it remains to show that the composite
vl ok ok
is homotopic to the map
vV: XP v XP + xP .
Now

nj =m, Aj=m, jpu= (md)p u

2
<]

~ % n="v,

3.1.3 Theorem. Xo is an H-space <=> it is equivalent to a

product of Eilenberg-MacLane complexes.

51
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Proof. [<=] This is trivial as Eilenberg-MacLane complexes are
H-spaces.

[=>] By a theorem of Hopf we know that

*
~ H(S " x ... xS

*
H(X5Q

for nl,...,nr odd, which in turn is an exterior algebra on
r-generators which can be chosen to be primitive. Let Upseeesl
be the primitive generators of H*(XO;Q) with

n

(li e H i(XO,Q) — [XO’K(Q’nl)]

therefore we get H-maps

Py

o XO > K(Q;ni)

This gives the H-map
N r

(al X ... X ur)A : Xo + iEl K(Q,ni) .

This induces isomorphisms of homology and cohomology and as the
fundamental groups on both sides are abelian, it is a homotopy

equivalence, Therefore
~ K
X, = I K@Q,n,)
as H-spaces.
3.1.4 Corollary. 52 is an H-space <=> n 1is odd.

2n
Proof. [==>] It is sufficient to show that SOn is not an

2
H-space, but this 1s trivial as Son does not have the
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cohomology of an H-space.

[=> ] For this we first note that if n is odd then
Hm(Sn) is finite for m# n, (see [6], 9.7.7, p. 515). Hence

when we localize at {0} the Postnikov tower for Sin~1 ve get

* if k < 2n-1

2n-1

QK(Q,2n) = K(Q,2n~1) if k > 2n-1

.
Thus 5" 1~ k(@Q,2n-1) and the result follows from 3.1.3.

3.1.5 Theorem. X is an H-space <=> XP is an H-space for
each prime p and H*(Xp,Q) is isomorphic to H*(Xq,Q) as a

ring, for all primes p and q.

Proof. [=>] First we note that (Xp)o ~ Xo for all primes p.
Thus we can give two H—structureé to Xo’ one directly from the
H-structure of X, and the other via the H-structure of Xp, and the
equivalence (Xp)o ~ Xo is an H-space equivalence. Thus we have

ring isomorphism
H*((SP)O;Q) 2 B (X0
on the other hand by 2.1.16

H*((XP)O,Q) - H*(XP;Q Q)

Hy(X),Q)
This shows

H*(XP;Q) : H (X0 o H*(Xq;Q)
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{[<=] Assume that Xp is an H-space for each prime p

and

HOULQ) 3 B (X0
for all primes p,q. The isomorphism being a ring isomorphism
then (Xp)0 ~ (Xq)0 as H-spaces, since the H-space structure

on a rational space is determined by its Pontrjagin ring.
Thus we have compatible multiplications for the spaces
This induces H-space structure on the fibre

XZ’.X3’ XS’ cev o

product X.

3.1.6 Remarks.

(1) Let

il,i2 : IX =+ (IX) v (IX)
be embeddings. Make the Whitehead produce

[11,12] s L(X A X) > (ZX) v (ZX)

into a confibration to get

[1,1,]
L(XAX) —— (TX)v(IX) <1 [(IXVIX) U I(XAX)] = (ZX)x(EX)
o [yl
/
7/
V(i v i) .7
X £

Then V(i v i) extends to (IX) x (IX) 1if and only if

V(i vi)~hg<=>V{iv i)[il,iz] = %

<=> [1,1] =0 in [I(X A X),IX] .



(2) Y 1is an H-space
<=> V:I¥Y vIY 1LY

extends to (ZY) x (IY), and the obstruction to this extension is

the Whitehead product

[i,i] € [Z(Y A Y), TY] .

3.1.7 Theorem. 52n is an H-space <=> n = 1,2,4,

Proof. f{<=] If n=1,2,4 then SZn—l is an H-gspace hence
so also is Sgn_l.

[=>] First we recall the result proved by Adam that

SZn—l is an H-space <==>n=1,2 or 4, Now consider
2n-1 2n-1
S5 T8
First
Lan-1 2n-1
S2 E(S2 )
; 2n-1
hence by remark (2) in 3.1.6 52 is an H-space
. 2n-2 , 2n-2, 2n-1
<=> o= [i,i] ¢ [Z(S2 A S2 ),S2
bn-4  2n-2 4n-3  2n-1
= [ Sz ’ Sz ] - [Sz 3 Sz ]
2n-1 2n-1
2 My Gy ) Ll 3 6T @2y
now if i' : S2n~1 + SZn-l is the identity map then under the

isomorphism
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2n-1

2n-1
Ty G377 2 Ty 3 877 B2,

4n-3

[1,1] corresponds to [i',i'] ®1. Also Adams' result gives
(i'i'] =0 if n=1,2 or 4 and of order 2 otherwise. There-

fore [i,i] =0 <=> g = 1,2 or 4,

3.1.8 Theorem, Sgn-l is a loop space <=> n=1 or 2,

Proof, [<=] If n=1 or 2 SZn~l = S1 or S3 and these are

topological groups, therefore they have classifying spaces and are
themselves of the same homotopy type as the loops of the classifying

spaces.
[=>] Suffices to show that for n=4 § = 82 is
not a loop space.
AAssume that S; is a loop space, so it is an A space
[7], i.e., it has A.p structure for every prime p, and hence

has a projective p-space S; P(p) and
* +1
H (X,2/p2) = (2/p2)[x]/<F

where x H8(X,Z/pz) and %P # 0. Consider the mod p Steenrod

operation P4 (8] and [5] then P4 x=x # 0. Now by Adem
1.3 o . ) .

relations P~ P~ = -(3p-4) choosing p =3 this says

Pl P3 = -SPA N P4 in mod 3 arithmetic.

Now
P « 10x,2/32)
and as

X € HB(X,Z/3Z) = (z/3z)[x]/x4 = H*(X,Z/BZ)
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is non-zero only in dimensions that are multiplies of 8, therefore
H(X,2/32) = 0 and hence 0 # x> = P*() = PP(x) = 0 .

This contradiction proves the result.

Note. The above theorem implies that S7 does not even have an

2

A3-structure, i.e., it 1s not even a homotopy associative H-space.

3.1.9 Remark. The number of non-homotopic multiplications on

Sgn_l for n=1,2,4, is the order of
2n-1 2n-1  9p-1 2n-1
S =
TR A R O
2n-1
2 Mo S )®Z{2}

Therefore, if n =1 the number is IHZ(S') x Z{2ﬂ =1, If

n =2, then

né(s3) ®z, = z/122®z{2}

> (2/42@12/32) @z, -

Now Z{Z} is collection of all rationals with odd denominators,

i.e., in Z{Z} we can divide by any odd number. Hence

Z/32 Q2 0

{23~

and

(z/42) ®z{2}__~_ z/kz

lience the numer of nor-homotopic multiplications in S; is
order of 2/4z, i.e., 4.
Similarly as Ly (87) = 2/120z S; has 8 non-homotpic

multiplications.
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3.1.10 Theorem. Sin_l is an H-space for all odd primes p and

for all n > 1.

1,2 or 4 we see that Sl, 53 and S7 are H-spaces

hence so also are S1 S3 and S7.
| P

Proof. If n

Now for n > 4 we use a map

S2n—l . S2n-1 . S2n—l

which is of degree 2 on each factor, This gives rise to a map

b S2n-l < S2n-l N S2n—l
P p P

such that on each factor it is twice the identity map. This makes

sense as for n > 1, the suspension structure Ssn_l = ESﬁn-Z
induces a group structure on [SZn—l’ Ssn-l]. Thus the obstruction
to extending V(2 v 2) is zero, 1i.e.,
2n-2 2n-2 2n-1
0=1[2,2] ¢ S AS S
[2,2] [z(p p),p ]
2n-1, _ 2n-1
H4n-3(sp )= I[lm-3(S ) ® Z{p} )
_ 2n-1, . 2n-1
But [%2]-—.4[1,1] and Han_3(S } is finite and n&n-B(s ) C)Z{p}

ontains only p-torsion for odd p.

- - -
(1,11 =0 i.e., V1lvl): sf)“ 1y si“ 1+sp“ 1

2n-1 < S2n—1
p

S2n-1
P

extends to S , i.e., is an H-space.

3.1.11 Proposition. If Ssn-l is a loop space then p = 1(mod n),

where p is an odd prime.

Proof, If Sin-l is a loop space it admits A~ structure and
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hence Ap structure. Then 3 projective p-space X for Sin—l

and

Wz ~ @ A

where X € Hzn(X,Z/pZ) and £ #0. If Pn is Steenrod

p-operation, then

P x = £ #0 .

Thus
i *
P #0 in H (X;2/p2)

for some i. Let r be the smallest i with this property, i.e.,

r %
P 40 in H (X;2/p2)

but
PP =0 for i<r.

Further observe that H*(X;Z/pZ) is non-zero only in
dimensions which are multiplies of 2n. Now Ppr can be factored
in terms of secondary operations for r > 0. This means that the
action of Ppr will go through intermediate dimensions which will
be zero. Therefore since Ppr # 0 we conclude that r = 0, that
is P'#0 in H*(X;Z/pz). Now since H*(X;Z/pz) is truncated
polynomial algebra in x, it follows that J r such that
P' % # 0 that means dimension of P' X' is some multiple of 2n,

say 2nk. But dimension of

P' x* = 2nr + 2(p-1) .

Therefore
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2nr + 2(p~1) = 2nk

or
n(r-k) + (p-1) = 0

i.ee, p=1+n (r-k) that is

P =1 (mod n) ,
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