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Abstract 4 

Construction companies continuously seek to improve risk analysis techniques to determine the 5 

contingency of projects. Construction risk assessment relies on a group decision-making (GDM) 6 

process, whereby a heterogeneous group of experts provides their opinions in order to determine 7 

the probabilities and impacts of project risks. In this paper, risk probabilities and impacts are 8 

expressed as linguistic terms, which are then represented by fuzzy sets to account for the 9 

uncertainty in these assessments. Current GDM processes help experts obtain collective agreement 10 

through the use of a consensus-reaching process (CRP), which has several limitations, such as 11 

being a time-consuming procedure. The main contributions of this paper are to introduce a list of 12 

criteria and a set of metrics to evaluate risk assessment expertise. Additionally, this paper discusses 13 

the development of a method for weighting the importance of experts’ opinions according to their 14 

expertise levels. This research will also serve to improve GDM processes in construction risk 15 

assessment by introducing a structured framework that combines assessments from a 16 

heterogeneous group of experts through aggregation. 17 
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1. Introduction 20 

Construction projects take place in dynamic environments and involve constantly changing 21 

variables, which increases the amount risks to construction stakeholders. To manage risks, 22 

construction companies rely on risk analysis techniques and contingency determination 23 

procedures. Different techniques have been proposed to analyze risks, such as the probabilistic 24 

approach (Ezell et al. 2010) and the traditional deterministic approach (Modarres et al. 2016). The 25 

probabilistic approach includes methods such as decision tree analysis (Ahmed et al. 2007), fault 26 

tree analysis (Ardeshir et al. 2014), Monte Carlo simulation (MCS) (Salah and Moselhi 2015), 27 

failure mode and effect analysis (Mohammadi and Tavakolan 2013), and system dynamics 28 

(Nasirzadeh et al. 2008). However, lack of historical data stemming from the uniqueness of each 29 

construction project limits the applicability of probabilistic methods, such as the ones utilized in 30 

MCS, since it causes difficulties in the estimation of probability distributions for costs (Salah and 31 

Moselhi 2015). 32 

On the other hand, the deterministic approach analyzes risk through a single point estimate 33 

of potential impacts by assessing the probability and impact of risk and opportunity events (CII 34 

2012). The contingency determination procedure proposed by the Construction Industry Institute 35 

(CII) (2012) follows a deterministic (Level 2) approach for calculating risk severity as a product 36 

of the probability and impact of risk and opportunity events. However, due to the uncertainty 37 

inherent in risk analysis, it is challenging to assess the degree of exposure and the appropriate 38 

contingency when using only a single value to determine risk probability and impact in 39 

construction projects (Mak and Picken 2000, Elbarkouky et al. 2016). Consequently, input from 40 

experts is frequently involved in processes such as risk identification, probability and impact 41 

assessment, and contingency determination. 42 
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The acquisition and representation of domain knowledge from experts is a critical step in 43 

accurately assessing project contingency. Deterministic and probabilistic risk analysis techniques 44 

have limited capacity to account for the imprecision and subjectivity present in experts’ 45 

assessments (Ardeshir et al., 2014); in this context, fuzzy logic (Zadeh 1965) can serve as a 46 

valuable tool to handle subjectivity and imprecision inherent in human assessment. In order to 47 

account for subjective uncertainties in expert assessments, Elbarkouky et al. (2016) proposed an 48 

approach based on research conducted by CII (2012); instead of using single values for risk 49 

probabilities and impact, the proposed approach allows experts to provide their assessment using 50 

linguistic terms, which are in turn represented by fuzzy numbers. 51 

Involving experts in a group decision making (GDM) process with the purpose of achieving 52 

a common solution requires accounting for the heterogeneity with regard to experts’ backgrounds, 53 

points of view, and levels of expertise (Herrera-Viedma et al. 2014). Due to this heterogeneity, 54 

structured GDM processes are very important for achieving collective risk assessment and risk 55 

contingency estimation results. There are two approaches commonly used in GDM techniques, the 56 

consensus-reaching process (CRP) and the aggregation process. A CRP is a negotiation process 57 

conducted iteratively in multistage settings, where the experts discuss and change their opinions 58 

or preferences in order to reach a common agreement (Perez et al. 2014). However, CRP is a very 59 

time consuming and expensive procedure for construction companies. Also, since the aim of 60 

consensus is attaining group consent rather than achieving group agreement, full consent does not 61 

necessarily infer that the experts are in full agreement, which can lead to biased CRP results (Butler 62 

and Rothstein 2006). 63 

On the other hand, in an aggregation process, a heterogeneous group of experts individually 64 

assesses the problem and alternatives, and provides personal opinions as solution inputs (Cabrerizo 65 
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et al. 2010). In order to determine the influence of each expert’s opinion on the final decision, the 66 

common approach for addressing the heterogeneity of a group is to assign relative importance 67 

weights to each expert (Perez et al., 2014). Then, weighted aggregation operators are applied to 68 

combine heterogeneous experts’ opinions according to each expert’s importance weight. The 69 

aggregation process thus serves to facilitate GDM by helping to avoid the biases and discrepancies 70 

that are involved in reaching a collective solution during the CRP, which facilitates the group 71 

decision making process. 72 

In this research, a multi-step framework was developed to improve the construction risk 73 

assessment GDM process by implementing the aggregation process. The proposed framework 74 

combines the opinions of a heterogeneous group of experts, based on the experts’ importance 75 

weights, which are in turn derived from an evaluation of their expertise level in risk assessment 76 

contexts. The main contributions of this paper are as follows: to introduce a clear and consistent 77 

list of criteria, as well as metrics and scales to evaluate experts’ risk assessment expertise; to 78 

develop a method for weighting experts’ levels of importance in risk assessment; and to improve 79 

construction risk assessment GDM by introducing a structured framework that combines expert 80 

opinions through aggregation. 81 

This paper is organized according to the following structure. The first section covers results 82 

from, a literature review, which highlights gaps in construction risk assessment GDM research. 83 

Next, a method for evaluating the expertise levels of experts involved in construction risk 84 

assessment is proposed. A new method for assigning importance weights to experts using the fuzzy 85 

analytic hierarchy process (FAHP) is then presented. Next, experts’ importance weights are used 86 

in the aggregation process to determine the influence of each expert’s opinion on the final 87 

aggregated values for the probability and impact of risks and opportunities. The developed risk 88 
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assessment framework is then illustrated in a case study, and the most suitable aggregation operator 89 

is tested through sensitivity analysis. Finally, in the last section, conclusions and opportunities for 90 

future research are discussed. 91 

2. Literature Review 92 

This section outlines the gaps in construction risk assessment that are addressed in this research. 93 

First, a review of research on the evaluation of level of expertise in construction risk assessment 94 

is presented, followed by a review of previous methods for assigning relative importance weights 95 

to experts. 96 

2.1 Assessing experts’ levels of expertise in construction risk assessment  97 

Experts possess a large amount of background knowledge and often have cultivated a sensitivity 98 

to the relevance of their knowledge in various applications (Cornelissen et al. 2003). Thus, experts 99 

are able to provide quick access to information in decision-making contexts. However, there is 100 

little consensus in the literature on the definition of an expert. Past research has seen definitions of 101 

an expert as an “informed individual”, “specialist in field”, or “someone who has knowledge about 102 

a specific subject” (Baker et al. 2006). 103 

Although there is limited consensus on what an expert is, it should be emphasized that 104 

expertise is not related to whom each person is, but rather it concerns the attributes they possess 105 

(Sun et al 2008). Key qualification attributes related to the classification and assessment of 106 

expertise include knowledge, experience, ability to influence policy, educational background, 107 

professional reputation, status among his or her peers, years of professional experience, self-108 

appraisal of relative competence in different areas, and, where appropriate, publication record 109 

(Farrignton-Darby and Wilson 2006). All of these qualification attributes form criteria that 110 

determine the relevance and credibility of an individual in their field of expertise. However, there 111 
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is a lack of a clear and consistent list of criteria to evaluate expertise level for the purpose of 112 

construction risk assessment, including both quantitative and qualitative attributes. This research 113 

addresses the aforementioned gap by proposing a list of criteria, as well as scales of measure for 114 

evaluating level of expertise in construction risk assessment. 115 

2.2 Methods for assigning importance weights to experts 116 

There are several methods proposed in the literature for assigning importance weights to experts. 117 

For example, a moderator or manager may assign weights directly to the experts (Perez et al. 2011). 118 

Although this is a commonly used approach, it is highly biased towards the opinion of the 119 

moderator. In addition, consistency methods may be used, whereby weights are determined 120 

according to the consistency of the experts’ preferences (Perez et al., 2014). However, consistency 121 

methods are limited in that experts are evaluated according to their opinions and not in regards to 122 

their expertise. 123 

In construction, different methods have been applied in order to assess experts’ levels of 124 

expertise. For example, Elbarkouky and Fayek (2011a, 2011b) used fuzzy expert systems (FES) 125 

to determine experts’ importance weights based on their qualification attributes in order to 126 

aggregate experts’ opinions regarding roles and responsibilities in project delivery systems. In 127 

addition, Awad and Fayek (2012a, 2012b) used a multi-attribute utility function (MAUF) to 128 

determine the consensus weight factor for each expert, which were based on utility values and 129 

relative weight of experience measures; this approach was used in the context of contractor 130 

prequalification for surety bonding. However, both these approaches have limitations when 131 

dealing with a large number of criteria. 132 

In order to develop a method that assigns weights to experts based on their expertise level 133 

and that is also able to handle a large number of criteria, the research discussed in this paper 134 
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involved a two-step approach. First, a generalization of the analytic hierarchy process (AHP) 135 

(Saaty 1987), known as the fuzzy analytic hierarchy process (FAHP), was applied to determine 136 

the weight of each qualification criterion used to assess the experts; next, each expert’s relative 137 

importance weight was derived using the criteria weights provided by the FAHP. 138 

AHP is a logical and clear theory of measurement (Saaty 1987) that has been successfully 139 

applied in construction (Askari et al. 2014). Moreover, AHP is able to handle a large number of 140 

criteria by hierarchically reducing the number of necessary comparisons. However, standard AHP 141 

is unable to handle the uncertainties associated with expert’s assessment. To address this 142 

limitation, Buckley (1985) proposed FAHP, a generalized version of AHP that allows the experts 143 

to provide their assessment using linguistic terms, which are represented by fuzzy numbers. 144 

Aggregation operators are applied in order to use FAHP for the assessment of a group of 145 

experts as well as to obtain the experts’ relative importance weights. Though there are a wide range 146 

of aggregation operators that can be used, since the experts’ opinions are represented by fuzzy 147 

numbers, only fuzzy aggregation operators were considered for the purpose of this work. Several 148 

fuzzy aggregation operators have been proposed in literature, such as fuzzy weighted average 149 

(FWA) (Sadiq et al. 2004), fuzzy ordered weighted average (FOWA) (Yager 2004), fuzzy number-150 

induced ordered weighted average (FN-IOWA) (Merigó and Casanovas 2009), fuzzy weighted 151 

geometric operator (FWG) (Gohar et al. 2012), and fuzzy similarity aggregation method (FSAM) 152 

(Hsu and Chen 1996). However, the choice of aggregation operator is dependent on the 153 

application, and there are no clear guidelines on how to choose the most appropriate operator. For 154 

the purpose of this research, FWA, FWG, and FOWA operators were considered, since they have 155 

been successfully applied in construction risk assessment (Liu et al. 2013). 156 
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For FWA, FWG, and FOWA operators, consider 𝑛 fuzzy numbers, �̃�1, �̃�2, … , �̃�𝑛. Let 𝒘 =157 

(𝑤1, … , 𝑤𝑛), such that 𝑤𝑖 ∈ (0,1), and let ∑ 𝑤𝑖
𝑛
𝑖=1 = 1, be the weighting vector. Equations 1, 2, 158 

and 3 illustrate the FWA operator (Dong and Wong 1987; Xu and Da 2003), the FWG operator 159 

(Buckley 2001, Ramik and Korviny 2010), and the FOWA operator (Merigó 2011) respectively. 160 

FWA𝒘(�̃�1, �̃�2, … , �̃�n) = ∑ wi�̃�i
n
i=1   (1) 161 

𝐹𝑊𝐺𝒘(�̃�1, �̃�2, … , �̃�n) = ∏ �̃�𝑖
𝑤𝑖𝑛

𝑖=1  (2) 162 

𝐹𝑂𝑊𝐴𝒘(�̃�1, �̃�2, … , �̃�𝑛) =  ∑ 𝑤𝑗�̃�𝑗
𝑛
𝑗=1  (3) 163 

where 𝑏�̃� is the 𝑗th largest element of {�̃�1, �̃�2, … , �̃�𝑛}. These operators were also used to aggregate 164 

the probabilities and impacts of risks and opportunities in a later step of the proposed framework. 165 

3. Development of a framework for construction risk assessment through aggregation of 166 

heterogeneous experts’ opinions 167 

In order to develop a framework for construction risk assessment that aggregates experts’ opinions 168 

based on their expertise level, it is necessary to first determine how to assess expertise level in risk 169 

assessment. For this purpose, a list of relevant qualification criteria was developed specifically for 170 

construction risk assessment. However, since not all the qualification criteria have the same 171 

relevance in assessing expertise level, FAHP was used to determine weights for each criteria. Once 172 

the weights of the qualification criteria were determined, the experts involved in the decision-173 

making process were evaluated on the basis of their expertise to determine the weights of their 174 

opinions. Next, the experts provided their assessment on the probability and impact of risks and 175 

opportunities, which were then aggregated using the weights determined in the previous step. 176 

Finally, the aggregated assessment was used to obtain a final contingency value. Figure 1 177 

illustrates the steps of the proposed framework. 178 
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 179 

Figure 1. Steps in developing proposed framework for construction risk assessment. 180 

3.1 Step 1: Develop the list of criteria to assess level of expertise in construction risk assessment 181 

In order to develop a list of relevant qualification criteria to evaluate expertise level in construction 182 

risk assessment, a comprehensive list of qualification criteria was compiled from the literature 183 

(Hoffmann et al. 2007, Wang and Yuan 2011). Next, through a survey, the initial list of criteria 184 

was presented to eight experts in the field of construction risk assessment to obtain their level of 185 

agreement with each qualification criteria. 186 

The questionnaires asked experts about their level of agreement with each criteria and sub-187 

criteria using a rating scale from 1–5 (Table 1), to assess expertise level in risk assessment. After 188 

obtaining input from each of the eight experts, their opinions were aggregated. At this stage, the 189 

Step 1: Develop the list of criteria to assess 

experts in construction risk assessment

Step 2: Obtain relative importance weights of 

criteria using FAHP

Step 3: Assign experts' importance weights 

based on list of criteria 

Step 5: Calculate construction project's 

contingency  

Step 4: Aggregate construction experts' risk 

assessments based on experts' importance 

weights
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experts were considered homogenous since they had similar levels of expertise, and the majority 190 

prevailed. Those sub-criteria that did not have majority agreement from experts were removed. 191 

The final list of criteria was organized into seven categories, each of which contained 192 

between three to seven sub-criteria (i.e., qualification attributes). In total, 32 sub-criteria were 193 

selected to assess level of expertise in construction risk assessment (Monzer et al. 2017). The 194 

criteria categories and sub-criteria are shown in Figure 2. The questionnaires also asked experts 195 

for their level of agreement with the scale of measure for quantitative criteria, and the majority of 196 

the experts expressed agreement with its use in this context. However, for the qualitative criteria, 197 

the experts provided input for the reference variables. These reference variables (see Table 1 “crisis 198 

management” scale) were used to develop a predetermined rating scale from 1–5 to measure 199 

qualitative criteria. By utilizing a predetermined rating scale, it is thus possible to better quantify 200 

a qualitative sub-criterion and model the decision-making process more accurately (Marsh and 201 

Fayek 2010; Awad and Fayek 2012a). 202 
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 203 

Figure 2. Criteria for expertise in construction risk assessment. 204 

1.1 Total years of experience

1.2 Diversity of experience

1.3 Relevant experience

1.4 Applied experience

1.5 Varied experience

2.1 Academic knowledge

2.2 Education level

2.3 On the Job training

3.1 Current occupation in the company

3.2 Years in current occupation

3.3 Expertise self-evaluation

4.1 Average hours of work in risk per week

4.2 Risk management training

4.3 Risk management conferences experience

4.4 Risk identification and planning

4.5 Risk monitoring and control

4.6 Crisis management

5.1 Project size limit

5.2 Commitment to time deadlines

5.3 Commitment to cost budget

5.4 Safety adherence

5.5 Geographic diversity experience

6.1 Social acclamation

6.2 Willingness to participate in survey

6.3 Professional reputation

6.4 Enthusiasm and willingness

6.5 Risk conservativeness

7.1 Communication skills

7.2 Teamwork skills

7.3 Leadership skills

7.4 Analytical skills

7.5 Ethics

2. Knowledge

3. Professional 

Performance

4. Risk Management 

Practice

1. Experience

6. Reputation

5. Project Specifics

7. Personal Attributes 

and Skills

Criteria Sub-Criteria
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Table 1. Examples of criteria, including their variable types and description, for  205 

evaluating level of expertise in construction risk assessment. 206 

Criteria Sub-criteria Description  Range of values 

1. Experience 
1.1 Total years of 

experience 

Number of years expert has 

been working in his/hers 

discipline 

ℝ+ 

2. Knowledge 
2.1 Academic 

knowledge 

Number years of study in 

expert’s discipline 
ℝ+ 

3. Professional 

performance 

3.1 Current 

occupation in the 

company 

Occupation in company 

currently working for 

Project engineer, 

Senior engineer,  

Project manager, 

Manager, Senior 

manager 

4. Risk 

management 

4.2 Crisis 

management 

Experience handling the time 

phase of crisis (to be reactive 

or proactive), and having 

effective systems to 

prevent/control/manage crisis 

1. Reactive, very 

poor systems to 

prevent crisis 

2. Reactive, poor 

systems to 

prevent crisis 

3. Reactive, fair 

systems to 

prevent crisis  

4. Proactive, good  

systems to 

prevent crisis 

5. Proactive, very 

good systems to 

prevent crisis 

5. Project 

specifics 

5.1 Commitment 

to time deadlines 

Percentage of projects 

finished on time by all 

projects experts has been 

involved in 

[0, 100] 

6. Reputation 
6.2 Risk 

conservativeness 

Tendency towards 

conservative risk assessments 

1. Very 

aggressive risk-

taking, 2. 

Aggressive risk-

taking, 3. 

Moderate, 4. 

Conservative, 5. 

Very conservative 
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3.2 Step 2: Obtain relative importance weights of criteria using FAHP 207 

Once the list of qualification criteria was determined, the relative importance of each criterion for 208 

assessing level of expertise was evaluated. In this study, the FAHP was applied to derive the 209 

qualification criteria weights. 210 

FAHP presents a clear format for information elicitation in the form of pairwise 211 

comparison matrices; each entry 𝑎𝑖𝑗 of a pairwise comparison matrix represents how much more 212 

the element 𝑖 is preferred over element 𝑗 with respect to the parent criteria in the level above. In 213 

FAHP, the entries of the pairwise comparison matrices are fuzzy numbers; more specifically, they 214 

are commonly triangular fuzzy numbers (TFNs) (Van Laarhoven and Predrycz 1983, Chang 1996). 215 

TFNs are a special case of trapezoidal fuzzy number. A fuzzy number �̃� is said to be a trapezoidal 216 

fuzzy number if its membership function can be represented as shown below in Equation 4. 217 

𝜇�̃�(𝑥) =

{
 
 

 
 
(𝑥−𝑙)

𝑚1−𝑙
, when 𝑙 ≤ 𝑥 ≤ 𝑚1

1,when 𝑚1 < 𝑥 ≤ 𝑚2
(𝑢−𝑥)

𝑢−𝑚2
, when 𝑚1 < 𝑥 ≤ 𝑢

0, otherwise

 (4) 218 

where some 𝑙, 𝑚1, 𝑚2, 𝑢 ∈ ℝ: 𝑙 ≤ 𝑚1 ≤ 𝑚2 ≤ 𝑢. Hereafter, a trapezoidal fuzzy number is 219 

represented by the tuple (𝑙,𝑚1, 𝑚2, 𝑢) of its parameters. If 𝑚1 = 𝑚2 = 𝑚, the fuzzy number is 220 

said to be triangular fuzzy number, and it is represented by the tuple (𝑙, 𝑚, 𝑢) of its parameters. 221 

Consequently, a fuzzy scale based on TFNs is required. Table 2 displays a fuzzy linguistic 222 

scale for the pairwise comparisons (Demirel et al. 2008). In addition, for the reciprocity of the 223 

pairwise comparison matrices, the fuzzy inverse formula (Equation 5) is applied to represent the 224 

reciprocal TFNs. 225 

(𝑙,𝑚, 𝑢)−1 = (1 𝑢⁄ , 1 𝑚⁄ , 1 𝑙⁄ ) (5) 226 
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Table 2. Linguistic scales for pairwise comparison in the fuzzy analytic hierarchy  227 

process (FAHP) model (adapted from Demirel et al. 2008) 228 

Linguistic scale for relative importance 
Triangular 

fuzzy scale 

Reciprocal of 

triangular fuzzy 

scale 

Exactly the same (1,1,1) (1,1,1) 

Approximately the same importance (1/2,1,3/2) (2/3,1,2) 

Weakly more important (1,3/2,2) (1/2,2/3,1) 

More important (3/2,2,5/2) (2/5,1/2,2/3) 

Strongly more important (2,5/2,3) (1/3,2/5,1/2) 

Absolutely more important (5/2,3,7/2) (2/7,1/3,2/5) 

The fuzzy pairwise comparison matrices were developed based on the expert’s input. In cases 229 

where more than one expert is involved, it is necessary to aggregate their fuzzy pairwise 230 

comparison matrices for each of the hierarchical positions. Let �̃�𝑚 be the pairwise comparison 231 

matrix from the 𝑚th expert in a specific hierarchical position, as shown in Equation 6. 232 

�̃�𝑚 = [�̃�𝑖𝑗
(𝑚)] =

[
 
 
 
 (1,1,1) �̃�12

(𝑚) ⋯ �̃�1𝑛
(𝑚)

1/�̃�12
(𝑚) (1,1,1) … �̃�2𝑛

(𝑚)

⋮ ⋮ ⋱ ⋮

1/�̃�1𝑛
(𝑚) 1/�̃�2𝑛

(𝑚) ⋯ (1,1,1)]
 
 
 
 

 , 𝑚 = 1,… , 𝑑  (6) 233 

Next, the aggregated fuzzy pairwise comparison matrix �̃� was obtained by aggregating the 234 

respective entries of the experts’ fuzzy pairwise comparison matrices, as shown in Equation 7. 235 

�̃� =

[
 
 
 
 
 (1,1,1) 𝑓 (�̃�12

(1), … , �̃�12
(𝑑)) ⋯ 𝑓 (�̃�1𝑛

(1), … , �̃�1𝑛
(𝑑))

𝑓 (1/�̃�12
(1), … ,1/�̃�12

(𝑑)) (1,1,1) … 𝑓 (�̃�2𝑛
(1), … , �̃�2𝑛

(𝑑))

⋮ ⋮ ⋱ ⋮

𝑓 (1/�̃�1𝑛
(1), … ,1/�̃�1𝑛

(𝑑)) 𝑓 (1/�̃�2𝑛
(1), … ,1/�̃�2𝑛

(𝑑)) ⋯ (1,1,1) ]
 
 
 
 
 

    (7) 236 

where 𝑓 stands for the aggregation operator. One of the most commonly used aggregation 237 

operators for combining fuzzy pairwise comparison matrices is the fuzzy weighted geometric 238 

operator (FWG). In this research, the FWG operator (see Equation 2) was applied, since all experts 239 
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that participated in data collection possessed similar expertise levels (i.e. made up a homogeneous 240 

group), and thus were assigned equal weights. 241 

Once the aggregated fuzzy pairwise comparison matrices were obtained for all hierarchical 242 

positions, the FAHP was applied to determine the relative importance weights for each criterion 243 

and sub-criterion. Several FAHP calculation approaches are discussed in the literature (e.g., Van 244 

Laarhoven and Predrycz (1983), Buckley (1985) and Chang (1996)). The approach developed by 245 

Chang (1996) is commonly used, since it involves considerably simpler computational efforts than 246 

the other methods, and it has been successfully applied in many fields (Ding et al. 2008). Following 247 

the approach developed by Chang (1996), there are three main steps for obtaining the relative 248 

importance weights of the criteria and sub-criteria in FAHP, which must be performed for each 249 

fuzzy pairwise comparison matrix. First, for each element 𝑖, 𝑖 = 1, … , 𝑛, which is represented by 250 

the fuzzy pairwise comparison matrix, the value of the fuzzy synthetic extent  𝑆�̃� is computed by 251 

applying the algebraic operations of multiplication and summation to the TFNs, as shown below 252 

in Equation 8. 253 

�̃� = [
�̃�1
⋮
�̃�𝑛

] = [

∑ �̃�1𝑗
𝑛
𝑗=1 ⊗ (∑ ∑ �̃�𝑘𝑗

𝑛
𝑗=1

𝑛
𝑘=1  )

−1

⋮

∑ �̃�𝑛𝑗
𝑛
𝑗=1 ⊗ (∑ ∑ �̃�𝑘𝑗

𝑛
𝑗=1

𝑛
𝑘=1 )

−1
] =254 

[
 
 
 
 (∑ 𝑙1𝑗

𝑛
𝑗=1 , ∑ 𝑚1𝑗

𝑛
𝑗=1 , ∑ 𝑢1𝑗

𝑛
𝑗=1 ) ⊗ (

1

∑ ∑ 𝑢𝑘𝑗
𝑛
𝑗=1

𝑛
𝑘=1

,
1

∑ ∑ 𝑚𝑘𝑗
𝑛

𝑗=1
𝑛
𝑘=1

,
1

∑ ∑ 𝑙𝑘𝑗
𝑛
𝑗=1

𝑛
𝑘=1

)

⋮

(∑ 𝑙𝑛𝑗
𝑛
𝑗=1 , ∑ 𝑚𝑛𝑗

𝑛
𝑗=1 , ∑ 𝑢𝑛𝑗

𝑛
𝑗=1 ) ⊗ (

1

∑ ∑ 𝑢𝑘𝑗
𝑛
𝑗=1

𝑛
𝑘=1

,
1

∑ ∑ 𝑚𝑘𝑗
𝑛
𝑗=1

𝑛
𝑘=1

,
1

∑ ∑ 𝑙𝑘𝑗
𝑛
𝑗=1

𝑛
𝑘=1

)
]
 
 
 
 

 (8) 255 

where ⊗ represents the fuzzy arithmetic multiplication of the TFNs. 256 

Next, in the second step, the non-fuzzy values that represent the relative preference of one 257 

element over the others are calculated using the fuzzy synthetic extent values. Therefore, in order 258 
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to approximate the fuzzy priorities in the pairwise comparison matrices, it is necessary to compute 259 

the degree of possibility of �̃�i = (𝑙𝑖, 𝑚i, 𝑢𝑖)  ≥  �̃�j = (𝑙j,𝑚j, 𝑢j), as shown in Equation 9. 260 

𝑉(�̃�𝑖 ≥ �̃�𝑗) = {

1,               𝑖𝑓 𝑚𝑗 ≥ 𝑚𝑖

          0,              𝑖𝑓 𝑙𝑖 ≥ 𝑢𝑗
𝑙𝑖−𝑢𝑗

(𝑚𝑗−𝑢𝑗)−(𝑚𝑖−𝑙𝑖)
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,    𝑖, 𝑗 = 1,… , 𝑛𝑐 (9) 261 

In order for the degree of possibility for some TFN 𝑆�̃� to be greater than all 𝑛 TFNs 262 

in {�̃�1, … , �̃�𝑛𝑐}, it must be possible to represent the that TFN using the following equation (Equation 263 

10). 264 

 𝑉 = [

𝑣1
⋮
𝑣𝑛𝑐

] = [

min
𝑘∈{1,2,…,𝑛𝑐}

𝑉(�̃�1 ≥ �̃�𝑘)

⋮
min 

𝑘∈{1,2,…,𝑛𝑐}
𝑉(�̃�𝑛𝑐 ≥ �̃�𝑘)

] (10) 265 

Each component 𝑣𝑖 of 𝑉 represents the relative non-fuzzy weight of the 𝑖𝑡ℎ element over 266 

the other elements under consideration. However, these weights must be normalized in order to be 267 

analogous to the classical AHP criteria weights. Finally, in the third step, the vector V must be 268 

normalized using Equation 11 to get the final non-fuzzy normalized weight vector W. 269 

𝑊 = [

𝑤1
⋮
𝑤𝑛
] =

[
 
 
 
 
𝑣1
∑ 𝑣𝑖
𝑛

𝑖=1
⁄

⋮
𝑣𝑛

∑ 𝑣𝑖
𝑛

𝑖=1
⁄

]
 
 
 
 

 (11) 270 

The vector W is the weight vector with respect to the immediate parent element among 271 

the elements of the fuzzy pairwise comparison matrix. Let 𝑤𝐶1 , 𝑤𝐶2 , … , 𝑤𝐶7 denote the weights of 272 

the seven criteria in Figure 2, and let 𝑤𝑠𝑖𝑗, 𝑖 = 1,… ,7 and 𝑗 = 1,… , 𝑛𝐶𝑖, be the weight of sub-273 

criterion 𝑗 with respect to criterion 𝑖, where 𝑛𝐶𝑖 is the number of sub-criterion under criterion 𝑖. 274 
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3.3 Step 3: Assign experts’ importance weights based on list of criteria 275 

Once the qualification criteria and their relative importance weights are obtained, it is possible to 276 

determine importance weights for experts based on their level of expertise. First, each expert 277 

involved in the decision-making process is evaluated according to each sub-criterion in the list of 278 

criteria (Figure 2). The evaluation data is then normalized to the interval [0,1]. Next, the weights 279 

obtained for the criteria and sub-criteria are applied to calculate each expert’s score (𝐸𝑆𝑗), as shown 280 

below in Equation 12. 281 

𝐸𝑆𝑗 = ∑ ∑ 𝑤𝐶𝑖𝑤𝑆𝑖𝑘𝐼𝑆𝑖𝑘
(𝑗)𝑛𝐶𝑖

𝑘=1
𝑛
𝑖=1 , 𝑗 = 1,… , 𝑑  (12) 282 

where 𝐼𝑆𝑖𝑘
(𝑗)

 represents the normalized evaluation of the 𝑗th expert according to the 𝑘th sub-criterion 283 

of criterion 𝐶𝑖, 𝑤𝐶𝑖 is the weight of criterion 𝐶𝑖 and 𝑤𝑆𝑖𝑘  is the weight of 𝑘th sub-criterion of 284 

criterion 𝐶𝑖, as defined above in Section 3.2. In addition, 𝑑 is the number of experts, 𝑛 represents 285 

the number of criteria, and 𝑛𝐶𝑖 is the number of sub-criteria under criterion 𝐶𝑖. 286 

The experts’ scores cannot be directly used as weights since they are not normalized. 287 

Therefore, after the individual 𝐸𝑆𝑗 is calculated for all experts in the group, the importance weight 288 

(IW) of each expert is calculated using Equation 13. 289 

𝐼𝑊𝑗 = 
𝐸𝑆𝑗

∑ 𝐸𝑆𝑝
𝑑
𝑝=1

⁄  , j = 1,…,d (13) 290 

The importance weight 𝐼𝑊 of the experts is based on each individual’s level of expertise, 291 

and is also used weight the experts’ risk assessments. The higher an individual’s level of expertise 292 

is, the higher his/her importance weight will be, and consequently, the greater the impact of his/her 293 

assessment on the outcome of the risk analysis process. 294 
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3.4 Step 4: Aggregate experts’ risk assessments based on their importance weights 295 

In order to calculate the contingency of a construction project, the risk and opportunity events must 296 

first be identified. The experts’ assessments for both probability and impact are provided by means 297 

of linguistic terms, which are represented by trapezoidal fuzzy numbers (TFNs). Once all the 298 

experts’ assessments of each risk or opportunity event were gathered, they were aggregated into a 299 

unique value, reflecting the group’s opinion. The experts’ importance weights, 𝑰𝑾 =300 

(𝐼𝑊1, … , 𝐼𝑊𝑑), were used as the weight vector for the experts’ assessments to represent level of 301 

expertise, and a fuzzy weighted aggregation operator was applied. 302 

Let 𝐸 = {𝐸1, … , 𝐸ℎ} be ℎ risk or opportunity events identified across all work packages of 303 

a construction project. For each 𝐸𝑗 , 𝑗 = 1,… , ℎ, the experts must provide a linguistic assessment 304 

of the probability and impact of the event. Let �̃�𝑖
(𝑗)

 and  𝐼𝑖
(𝑗)

, 𝑖 = 1,… , 𝑑, be, respectively, the 305 

probability and impact assessments of event 𝐸𝑗 provided by the 𝑖th expert. Next, the aggregated 306 

probability value, �̃�(𝑗), and the aggregated impact value, 𝐼(𝑗), which represent the group’s opinion 307 

on the probability and impact of the event 𝐸𝑗 are given by 𝑓𝑰𝑾 (�̃�1
(𝑗)
, … , �̃�𝑑

(𝑗)
) and 308 

𝑓𝑰𝑾 (𝐼1
(𝑗)
, … , 𝐼𝑑

(𝑗)
), respectively, where 𝑓𝑰𝑾 stands for the fuzzy aggregation operator 𝑓, using 𝑰𝑾 309 

as the weighting vector. For example, if the FWA operator, which was presented in Equation 1 is 310 

used, then �̃�(𝑗) = FWA𝑰𝑾 (�̃�1
(𝑗)
, �̃�2

(𝑗)
, … , �̃�d

(𝑗)
) =  ∑ IWi�̃�i

(𝑗)d
i=1  and 𝐼(𝑗) =311 

FWA𝑰𝑾 (𝐼1
(𝑗)
, 𝐼2
(𝑗)
, … , 𝐼d

(𝑗)
) =  ∑ IWi𝐼i

(𝑗)d
i=1 . The aggregated probabilities {�̃�(1), … , �̃�(ℎ)} and 312 

impacts {𝐼(1), … , 𝐼(ℎ)} of all events are then used to obtain the project’s contingency in the next 313 

step of the framework. 314 
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3.5 Step 5: Calculate the contingency of a construction project 315 

In order to determine the contingency of a construction project, the severity of each event 316 

𝐸1, … , 𝐸ℎ, must be determined as a percentage value. The severity of a risk or opportunity event is 317 

given by Equation 14. 318 

�̃�𝑗 = �̃�
(𝑗) × 𝐼(𝑗)  , 𝑗 = 1,… , ℎ (14) 319 

where �̃�𝑗 denotes the severity of event 𝐸𝑗 and �̃�(𝑗) and 𝐼(𝑗) are the aggregated probability and 320 

impact of event 𝐸𝑗. Once the severity of each event is obtained, the net severity, �̃�, is calculated, 321 

as shown in Equation 15. 322 

�̃�𝑗 = �̃�𝑗 × 𝑈
(𝑗), 𝑗 = 1,… , ℎ  (15) 323 

where 𝑈(𝑗) is the cost of the work package, indicated as dollar value ($) associated with event 𝐸𝑗. 324 

Finally, the project’s contingency value, �̃�, is calculated, as shown in Equation 16. 325 

�̃� = ∑ �̃�𝑖𝑖∈𝐻𝑅 − ∑ �̃�𝑖𝑖∈𝐻𝑂    (16) 326 

where 𝐻𝑅 = {𝑖: 𝐸𝑖 is a risk event} and 𝐻𝑂 = {𝑖: 𝐸𝑖} is an opportunity event. 327 

Since the aggregated probability and impact, �̃�(𝑗) and 𝐼(𝑗), are fuzzy numbers, the 328 

operations shown in Equations 14 to 16 involve fuzzy arithmetic. There are two methods available 329 

for performing fuzzy arithmetic calculations: the -cut method and the extension principle. In the 330 

-cut method, interval arithmetic is performed at each -level cut of the fuzzy numbers to obtain 331 

the -cut of the output. On the other hand, the extension principle generalizes functions from the 332 

crisp domain to the fuzzy domain, allowing the generalization of conventional mathematical 333 

operators to be applied in the fuzzy domain. A more detailed discussion on fuzzy arithmetic can 334 

be found in Hanss (2005). 335 
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Considering that the project’s contingency, �̃�, is a fuzzy number, it is possible to obtain 336 

interval ranges for the contingency with different levels of confidence using the 𝛼-cut. The 𝛼-cut 337 

𝑉𝛼of �̃� represents the confidence interval of the contingency values at a confidence level of 1 − 𝛼. 338 

If a single crisp value for project contingency is desired, instead of obtaining the project 339 

contingency as a fuzzy number, defuzzification operators, such as center of area (COA), smallest 340 

of maxima (SOM), middle of maxima (MOM), or largest of maxima (LOM), can be applied. 341 

Generally, COA represents the output shape as the “center of gravity”. In contrast, SOM and LOM 342 

represent the smallest and the largest values of the project contingency when 𝛼 = 1; MOM is the 343 

middle value of the range of contingencies when 𝛼 = 1. 344 

In order to illustrate the developed framework, a case study of risk assessment on a real 345 

construction project is presented in the next section. The proposed framework was applied to 346 

process risk assessments from a heterogeneous group of experts, and the results were compared 347 

with a consensus-based approach and the Monte Carlo simulation approach. 348 

4. Testing and validating the construction risk assessment framework: Case study 349 

The proposed framework was applied in a case study to conduct the risk assessment of a wind farm 350 

power generation construction project in Kansas, USA. The risk assessment was based on the 351 

balance of plant (BOP) construction work packages (CWP), which were valued at approximately 352 

$65 million. The CWP consisted of eight work breakdown structures (WBS), ranging in cost from 353 

approximately $800 thousand to $16 million. The risk assessment involved a group of four experts 354 

who had more than 20 years of experience and held various managerial positions in a Canadian 355 

construction company located in Alberta. 356 

In order to apply the proposed framework to this case study, the same eight experts who 357 

participated in validating the list of criteria in Step 1(presented in Figure 2) were provided with 358 
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the refined list of criteria and sub-criteria. Next, for Step 2, each expert provided his/her pairwise 359 

comparison of the criteria and sub-criteria, which were collected using questionnaires. The criteria 360 

and sub-criteria questionnaires served to gather pairwise comparison data by asking questions such 361 

as, “How important is Knowledge when compared to Experience to evaluate expert’s risk 362 

assessment expertise?” The scales used are presented in Table 1. Once all the pairwise comparisons 363 

matrices were obtained, the fuzzy pairwise comparison matrices in each hierarchical position were 364 

aggregated using Equation 7, along with the FWG aggregation operator (Equation 2). Finally, 365 

Equations 8 to 11 were applied to each aggregated pairwise comparison matrix to obtain the 366 

relative importance weights of the criteria and sub-criteria. Table 3 shows hypothetical examples 367 

of the criteria and sub-criteria weights obtained through this procedure. The actual data for this 368 

case study are not presented in order to maintain confidentiality. Note that the weights of the sub-369 

criteria in this example are derived with respect to the parent criterion Experience (shown in Table 370 

3); these weights produce a sum of one when combined together. In addition, the weights of the 371 

criteria are derived with respect to the overall parent criterion, which is the goal (i.e., to assess 372 

level of expertise in risk assessment); these weights also produce a sum of one when combined 373 

together. 374 

Table 3. Hypothetical examples of sub-criteria and criteria weights obtained from  375 

the fuzzy analytic hierarchy process (FAHP) model. 376 

Criteria Weights Subcriteria Weights 

1.Experience 0.11 

1.1 Total years of experience 0.34 

1.2 Diversity of experience 0.22 

1.3 Relevant experience 0.28 

1.4 Applied experience 0.05 

1.5 Varied experience 0.11 

2.Knowledge 0.17 

2.1 Academic knowledge 0.25 

2.2 Education level 0.23 

2.3 On-the-job training 0.52 

0.14 3.1 Current occupation in the company 0.27 
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Criteria Weights Subcriteria Weights 

3.Professional 

performance 

3.2 Years in current occupation 0.32 

3.3 Self-evaluation of expertise 0.41 

 

 

 

4.Risk 

management 

practices 

0.23 

4.1 Average hours of work in risk per 

week 
0.11 

4.2 Level of risk management training 0.30 

4.3 Risk management conferences 

experience 
0.13 

4.4 Risk identification and planning 0.07 

4.5 Risk monitoring and control 0.15 

4.6 Crisis management 0.24 

5.Project Specifics 0.09 

5.1 Project size limit 0.30 

5.2 Commitment to time deadlines 0.27 

5.3 Commitment to cost budget 0.19 

5.4 Safety adherence 0.13 

5.5 Geographic diversity experience 0.11 

 

 

6.Reputation 

 

 

0.09 

6.1 Social Acclamation 0.31 

6.2 Willingness to participate in 

survey 
0.31 

6.3 Professional reputation 0.17 

6.4 Enthusiasm and willingness 0.12 

6.5 Risk conservativeness 0.09 

7.Personal 

attributes and 

skills 

0.17 

7.1 Communication skills 0.09 

7.2 Teamwork skills 0.17 

7.3 Leadership skills 0.40 

7.4 Analytical skills 0.10 

7.5 Ethics 0.24 

The criteria and sub-criteria weights were then used to calculate the experts’ scores (𝐸𝑆) 377 

and importance weights (IW) using Equations 12 and 13, respectively. The results are displayed in 378 

Table 4. 379 

Table 4. Case study participants’ scores and importance weights obtained from  380 

fuzzy analytical hierarchical process (FAHP) model. 381 

Expert 
Expert Score 

(𝐸𝑆) 
Importance Weight 

(IW)                                              

1 0.87 0.26 

2 1.07 0.32 
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3 0.79 0.23 

4 0.66 0.20 

Next, the experts’ assessments of probability �̃�𝑖
(𝑗)

 and impact 𝐼𝑖
(𝑗)
 , 𝑖 = 1,… , 4, were 382 

aggregated, resulting in aggregated probability �̃�(𝑗) and impact 𝐼(𝑗) values for each risk and 383 

opportunity event 𝑗, 𝑗 = 1,… , 17 in the project. The aggregation operators FWA, FWG, and 384 

FOWA, (shown in Equations 1 to 3) were applied, taking into consideration the weighting vector 385 

IW for each expert, as shown in Table 4. 386 

Once the aggregated probability �̃�(𝑗) and impact 𝐼(𝑗) of all 𝑗 = 1, … ,17 risk or opportunity 387 

events were obtained, the project’s risk contingency was calculated, . First, Equation 14 was 388 

applied to obtain the severity of each risk or opportunity event; next, Equation 15 was used to 389 

obtain the net severity of each event. Finally, Equation 16 was used to obtain the project’s 390 

contingency value. However, Equation 16 provides the project’s contingency value as fuzzy 391 

number, therefore an additional step was necessary to produce a more interpretable result. As noted 392 

in Section 3.5, the 𝛼-cuts or the defuzzification formulae can be applied in this context. For the 393 

purpose of comparison, the defuzzification strategy was used to obtain the project’s contingency 394 

value in this case study. 395 

To perform the necessary calculations involved in Step 5 of the framework, the Fuzzy 396 

Contingency Determinator© (FCD) software was utilized. FCD automates fuzzy arithmetic 397 

procedures to determine the risk contingency of a construction project, based on linguistic 398 

assessments of the probability and impact of risk and opportunity events (ElBarkouky et al. 2016). 399 

In order to validate the case study, the project contingency results of the proposed 400 

framework were compared with results produced using Monte Carlo simulation (MCS). MCS is 401 

used as benchmark, since it is commonly used in the field of construction risk assessment to 402 
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determine project contingency. The MCS project contingency value in this case study was 403 

calculated at P50, representing a confidence level of 0.5 (analogous to the 𝛼-cut confidence level 404 

discussed in Step 5). In addition, for the purpose of comparison, the experts were also asked to 405 

reach a consensus on the probabilities and impacts of the same risk and opportunity events 406 

previously assessed through the aggregation process. Therefore, the results of the proposed 407 

framework were also compared to the results of the consensus-reaching process. 408 

The error measure applied is the symmetric mean absolute percentage error (SMAPE). 409 

SMAPE addresses problems, including asymmetry and the impact of outliers, which are 410 

commonly associated with other error measurements, such as mean absolute error and root mean 411 

square error (Willmott and Matsuura 2005). The SMAPE ranges from 0% to 200%, and a value of 412 

0% implies perfect agreement between the two approaches being tested (i.e. the proposed risk 413 

assessment framework and MCS). The SMAPE measure is expressed in Equation 17. 414 

𝑆𝑀𝐴𝑃𝐸 =  
100

𝑛
 
|𝑃𝑖−𝑂𝑖|

(𝑃𝑖+𝑂𝑖) 2⁄
  (17) 415 

where 𝑃𝑖 is the project contingency value predicted by the model under consideration, and 𝑂𝑖 is 416 

the benchmark value. Again, in this case, the benchmark is the MCS P50 estimate. 417 

Many different combinations of fuzzy aggregation operators, fuzzy arithmetic methods, 418 

and defuzzification methods were tested for use in the proposed framework. Table 5 shows the 419 

SMAPE for these configurations against the consensus approach.  420 
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Table 5. Comparison of case study results using aggregation operators with results from  421 

Monte Carlo simulation using SMAPE error calculation. 422 

SMAPE values 

Defuzzification 

method 
α-cut 

Minimum 

t-norm 

Product 

t-norm 

Drastic 

t-norm 

Bounded 

t-norm 

CONSENSUS  

COA 95.78 95.78 86.00 72.78 74.93 

MOM 72.69 72.69 72.69 72.69 72.69 

SOM 43.22 43.22 43.22 43.22 43.22 

LOM 92.83 92.83 92.83 92.83 92.83 

FWA  

COA 110.53 110.53 107.60 104.20 104.40 

MOM 104.22 104.22 104.22 104.22 104.22 

SOM 84.98 84.98 84.98 84.98 84.98 

LOM 117.95 117.95 117.95 117.95 117.95 

FWG  

COA 68.46 68.46 46.88 8.00 19.57 

MOM 7.85 7.85 7.85 7.85 7.85 

SOM 45.89 45.89 45.89 45.89 45.89 

LOM 42.32 42.32 42.32 42.32 42.32 

FOWA  

COA 24.43 24.43 12.81 7.56 1.43 

MOM 0.08 0.08 0.08 0.08 0.08 

SOM 46.33 46.33 46.33 46.33 46.33 

LOM 0.20 0.20 0.20 0.20 0.20 

An analysis of the SMAPE results presented in Table 5 shows that using the FOWA 423 

operator with the MOM defuzzification formula in the proposed framework provides the smallest 424 

error with respect to the MCS risk contingency results (0.08), independently of the fuzzy 425 

arithmetic method used. In addition, it can be seen from Table 5 that both the aggregation operators 426 

and the defuzzification methods chosen have a great impact on the resulting SMAPE value. Also, 427 

different defuzzification formulae might be more appropriate for different aggregation operators. 428 

In general, the FWA aggregation operator results in the highest SMAPE values; during the analysis, 429 

all FWA values were higher than 80%. The FWG operator also exhibited poor performance in 430 

terms of SMAPE when compared to the FOWA operator: all FWG values were higher than 7%. 431 

The FWA and FWG results were thus not in agreement with the MCS results, and were considered 432 

unsuitable for use in the case study. 433 
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On the other hand, the fuzzy arithmetic methods do not greatly impact SMAPE values in 434 

most cases, except when the COA defuzzification formula is used. In the latter case, the impact of 435 

the fuzzy arithmetic method is considerable, and the method that provides the smallest error is 436 

either the extension principle using the drastic 𝑡-norm or the bounded 𝑡-norm, depending on the 437 

aggregation operator used. It should be noted that with the right choice of parameters, the proposed 438 

framework hugely improves the SMAPE in comparison to the best result obtained by the 439 

consensus approach: 0.08 as compared to 43.22. 440 

The findings of this case study show that applying the aggregation process to GDM in 441 

construction risk assessment provides results that are in higher agreement with the MCS project 442 

contingency values than are the results obtained through consensus. Furthermore, among the three 443 

aggregation operators tested, the FOWA demonstrated results with the highest MCS agreement 444 

for this specific case study, and the fuzzy arithmetic methods used did not affect the results when 445 

defuzzification formulae other than COA were used. The proposed risk assessment framework will 446 

assist researchers and industry leaders in advancing GDM approaches for construction risk 447 

assessment by providing a systematic, transparent, and flexible aggregation-based methodology. 448 

5. Conclusions and Future Research 449 

Assessment of risks and opportunities on construction projects is a very complex topic, and the 450 

process frequently involves multiple experts with different levels of expertise. This paper has 451 

proposed new risk assessment framework. The proposed framework provides a systematic, multi-452 

step methodology that assesses expertise level in construction risk assessment, and assigns weights 453 

to expert’s opinions according to their level of expertise. Experts’ opinions for both the 454 

qualification criteria assessment and the risk assessment are captured by linguistic terms, which 455 

are modelled using fuzzy numbers. For this reason, the framework is also able to process the 456 
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subjectivity and vagueness inherent in human assessments. 457 

The framework was applied in a case study of a real construction projects and compared 458 

with the results obtained by the MCS P50. The framework was able to obtain similar results to the 459 

MCS approach; however the proposed framework offers a quicker process and does not depend 460 

on the availability of historical data for probabilistic distribution estimation. The performance of 461 

the framework was also superior to that of the consensus process. Some guidelines for selecting 462 

the most appropriate aggregation operator and defuzzification formula were also discussed, which 463 

in the context of this case study were the FOWA operator and the MOM formula. 464 

In summary, the main contributions of this paper are as follows: to introduce a clear and 465 

consistent list of criteria, metrics, and scales to evaluate risk assessment expertise; to develop a 466 

method for weighting level of expertise in risk assessment; and to improve construction risk 467 

assessment GDM processes by introducing a structured framework that combines assessments 468 

from a heterogeneous group of experts through aggregation. 469 

Future research will explore expansion of the proposed framework to other construction 470 

applications that require expert assessments. This goal can be achieved by adjusting the list of 471 

criteria to assess expertise level in other fields, and by following the proposed rationale for 472 

assigning importance weights during the aggregation process in GDM. Future work will also 473 

include a comparison of the risk assessment framework results and the actual project contingency 474 

results to better validate the proposed framework. Another topic for future research includes the 475 

development of a method to adjust experts’ weights according to the work package under 476 

evaluation; for example, in the work package “underground collection”, experts that have a 477 

geotechnical background have higher levels of expertise and thus the weight of their assessments 478 

should be adjusted accordingly. 479 
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