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Abstract 

This thesis discusses the techno-economic planning and operation of energy storage systems 

in active distribution power systems. Energy storage systems (ESSs) can participate in multi-

services in the grid, such as energy arbitrage, renewable energy time-shifting, peak shaving, 

power loss minimization and reactive power support. The main objective is to enable the owner 

(a consumer or distribution company) to maximize profit while maintaining the power quality 

and respecting the operational constraints.  

In this thesis, energy storage planning is conducted by sizing and allocating both of stationary 

and mobile storage. With stationary storage sizing, the system operator owns the storage which 

increases the total profit by performing multi grid services including distribution system 

expansion, energy arbitrage, energy loss minimization, time shifting, and reactive power support. 

The optimization includes practical constraints for the battery dynamics, such as the state of 

charge, and the number of charging cycles. The power flow constraints are considered, and the 

bus voltage and branch ampacity are included. The sizing scheme includes other options, such as 

distributed generators, static VAr compensators, and other power-balancing services. The sizing 

scheme was tested by simulation on a real radial feeder in Ontario, Canada. The sizing problem 

was also investigated for mobile energy storage systems (MESSs). 

The second part of the thesis discusses the use of predictive energy management systems 

(EMSs) for different applications. First, a predictive EMS for a hybrid wind-battery system is 

discussed. The EMS provides more profit for the owner by including a practical method that 

considers the battery expended-life cost. The EMS determines the optimal charging cycles and 



iii 

 

state of charge that will achieve the maximum net profit for the hybrid system owner. A 

predictive EMS is also developed for a flywheel with a wind system. The flywheel regulates the 

hybrid system power and its rate to comply with the grid code. The EMS considers the flywheel 

power loss minimization as a factor in the optimization. A day-ahead EMS is designed for 

mobile storage to define the optimal dispatching buses and powers such that the distribution 

system owner’s profit is maximized. This objective is achieved by simultaneously performing 

power loss minimization, reactive power support, and energy arbitrage. Finally, the thesis 

demonstrates multi ESS participation in day-ahead markets by defining the robust operating 

zones in the distribution system.  The uncertainties of loads and renewable resources are 

considered to define the safe dispatch levels for the distributed storage. 

Comparative case studies, conducted on a real active distribution system in Ontario, Canada, 

showed the effectiveness of the proposed planning and EMS algorithms. 
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Chapter 1  

1 Introduction 

1.1 Research Motivations 

The world is moving toward the extensive utilization of renewable energy as a solution to the 

energy crisis. Growing electricity demand, increasing fuel prices, and greenhouse gas emissions 

have led us to turn to renewable energy resources (RESs) to solve these problems. 

Unfortunately, the intermittent nature of RESs leads to technical grid issues regarding the 

power quality, security, and reliability [1]. Due to the increasing penetration level of RESs, 

research shows that for every 10% wind penetration, a 2-4% balancing generation is needed for 

a stable operation [2]. Because most energy storage systems (ESSs) are green regulation sources 

with low carbon emission, they are a perfect tool for facilitating renewable energy integration in 

both distribution and transmission network, as well. ESSs can provide extra services for the 

grid, such as load shifting, energy arbitrage, power loss minimization, transmission, and 

distribution upgrade deferral (T&D upgrade deferral), and peak shaving [3], [4].  

The future of RESs growing might appear to depend on the use of ESSs; however, most 

ESSs have a significant capital cost, as was recently reported in [5]. For ESSs to be a viable 

solution for different grid services, optimal techno-economic planning, and operating schemes 

are a must. This thesis begins by investigating the optimal sizing and siting of ESSs to achieve 

optimum planning, whereas ESS operation is investigated by using some proposed energy 

management schemes.  
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1.2 Thesis Objectives 

This thesis aims at optimizing the planning and operation of some ESSs in the power system. 

On the one hand, the optimum sizing and allocation of an ESS prevent buying an oversized unit 

which reduces the capital cost. On the other hand, smart energy management decisions for ESSs 

increase their life spans and provide the optimum utilization of the system.  

First, the thesis objectives for the planning stage are summarized as follows. 

I. The planning scheme is intended to maximize the owner’s profit as long as the power 

system technical constraints are respected. The owner can be a utility company or a 

customer, depending on the application, whereas the technical constraints are the grid 

codes, which guarantee the power quality, system security, and reliability. 

II. Optimal sizing of the ESSs power and energy rating should be performed, and the 

best bus for each ESS should be allocated. 

III. ESSs should be designed to be multi-tasking by achieving different objectives 

simultaneously, such as energy arbitrage, energy arbitrage, reactive power support, 

energy losses minimization, and, finally, feeder upgrade cost deferral. 

IV.  The planning scheme should consider adopting other technologies along with ESSs, 

such as static VAr compensators (SVCs) or distributed generators (DGs), and also 

consider load shedding and RES power curtailment as options. 

V. The planning scheme should consider the prediction error in the futuristic data, such 

as the load variations, renewable resources intermittency, and energy prices 

fluctuations. Considering various scenarios improves the reliability of the input data, 

which leads to more accurate planning results.  
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VI. The planning scheme should optimize the ESS life span by considering the batteries 

state of charge and number of charging cycles. 

VII. The ampacity of the network branches should be kept below the rated values, and the 

voltage levels should remain within the allowable fluctuation level as permitted by 

the grid code. 

VIII. The previous objectives should be considered in planning mobile energy storage 

systems (MESSs) as well.  

Second, an effective and robust energy management system (EMS) is essential for an ESS. 

The thesis objectives for the EMS stage are as follows. 

I. To maximize the owner’s profit while respecting the grid code and the ESS operating 

limits. 

II. To make the EMS robust against predictions error and severe uncertainties. 

III. To enable the EMS to satisfy the previous objectives while considering the ESS life 

time constraints. 

IV. To design an EMS for different applications that represent stationary energy storage 

systems (SESSs) and mobile ones (MESSs). 

V. To design an EMS for different applications in short duration storage (seconds, 

minutes) and long duration storage (hours). 

1.3 Thesis Contributions 

The main thesis contribution is divided into two main parts. First, in the field of planning 

ESSs, this thesis makes two main contributions: 
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I. First, this thesis proposes a sizing and siting scheme for stationary ESSs (SESSs) for 

distribution system upgrade cost minimization. The T&D upgrade deferral is achieved 

along with other objectives, such as energy arbitrage, power loss minimization, and 

reactive power support.  

II. The second contribution is the novel planning scheme for mobile ESSs (MESSs) in the 

distribution system. This scheme includes MESSs for providing various grid services as 

well.  

In the field of ESSs operation, different energy management schemes are developed. 

I. For long-term storage, a model predictive EMS scheme is designed for a hybrid 

system. This system consists of a battery ESS (BESS) with a wind energy conversion 

system (WECS). The BESS shifts the WECS power into more profitable hours while 

taking the BESS expended-life cost into consideration. 

II. For short-term storage, a model predictive EMS is designed for another hybrid 

system. A flywheel energy storage system (FESS) is added to a WECS to reduce the 

curtailed wind power while respecting the grid code (regarding the power limit and 

rate). The proposed solution has the advantage of considering the FESS power loss 

minimization during operation. 

III. The MESS operation is studied by proposing a day-ahead EMS scheme that regulates 

the dispatchability level and optimal locations for an MESS for an incoming day to 

provide voltage support and trade energy simultaneously.   

IV. Finally, the thesis proposes a robust coordination framework for distributed ESSs for 

day-ahead operation. The framework defines the maximum allowable active power 
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levels (charge and discharge powers) for each ESS at each sample time such that no 

power quality violation occurs (voltage level and ampacity). 

1.4 Thesis Organization 

 

Figure 1-1 Thesis structure. 

As shown in Figure 1-1, the body of this thesis begins in Chapter 3, while Chapter 2 

discusses a current and up-to-date literature in the area of ESS planning and EMS. The thesis 

body is organized such that the planning topics are discussed before the EMS and operation 

topics. The planning of a stationary ESS for distribution system upgrade is discussed in Chapter 

3, followed by Chapter 4, which discusses MESS planning. 

The EMS topics are discussed in Chapters 4-8. Long duration storage is represented here by 

a BESS combined with a WECS for wind power time-shifting application. The EMS of such a 

system is explained in Chapter 5. For short duration storage, an example of a FESS with WECS 

is discussed in Chapter 6, where a model predictive EMS is designed. Chapter 7 deals with 

ESS

Planning

SESS (Ch. 3) MESS (Ch. 4)

EMS

SESS

Long Term 
Storage (Ch. 5)

Short Term  
Storage (Ch. 6)

Multi-ESSs (Ch. 7)

MESS (Ch. 8)
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multi-ESS operation in the distribution system. Finally, MESS operation for day-ahead is 

optimized in Chapter 8. Lastly, Chapter 9 draws the conclusion and suggestions for future work. 
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Chapter 2 

2  Literature Survey 

Optimal ESS sizing (power rating and energy capacity) is an important topic when it comes 

to adopting ESS for a certain grid service. ESS oversizing leads to unnecessarily high initial 

capital cost whereas under-sizing will not lead to the optimal profit desired for the ESS (due to 

the charging limitation or low capacity). Besides, optimal siting of ESSs is of high interest to 

enable effective reactive power support and efficient power loss reduction in the distribution 

system. Due to the foregoing reasons, the power research community has been investigating the 

ESS planning problem thoroughly and deeply in different ESS applications. The first part of this 

chapter demonstrates the current research effort in the area of ESS planning. 

The optimal operation of an ESS is achievable by an EMS that satisfies the ESS owner 

objectives. These objectives are economic (profit from energy market), technical (improve 

power quality) or both. Utilizing the knowledge of RESs, load and market predictions lead to a 

better management of the ESS in achieving the long-term objectives. The second part of this 

chapter discusses the current research effort in the area of predictive EMSs for both short and 

long duration storage. Furthermore, a literature survey on MESS day-ahead EMS and multiple 

ESS management is presented.   
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2.1 ESS Planning in Active Distribution Networks  

2.1.1 Stationary Energy Storage Systems Planning 

The ESS planning has been widely discussed in the literature over different grid levels using 

various optimization techniques. In the transmission system level, the work of [6] used the Tabu 

search for optimal sizing of ESSs to maximize the revenue of the system considering the ESS 

life cost. On the other hand, the authors of [7] proposed a three-level technique to define the 

optimal ESS sizes and locations as well. Whereas the work in [6] and [7] presented 

deterministic optimization algorithms for ac networks, the research in [8] revisited the sizing 

problem using a stochastic optimization algorithm with a dc power flow model. On the 

distribution system level, the framework in [9] proposed a stochastic optimization technique for 

sizing and siting of ESSs in the power distribution system. The objective function in [9] 

depends on the power quality measurements (voltage deviation, power loss, and feeders loading 

factors) instead of the ESS cost. The ESS sizing problem was investigated in a microgrid system 

[10] where the deterministic sizing problem maximizes the profit in both islanded and grid-

connected modes. A stochastic optimization version of [10] was discussed in [11] for an 

islanded microgrid as well. Further, the authors of [12] revisited the same problem after 

considering the battery exact efficiency model.  

Recently, ESS sizing for frequency regulation services has been attracted much attention. 

The discrete Fourier transform (DFT) was used in [13] to decompose the power imbalance 

signal into different frequency ranges (acting as pass-band filters) to size different ESS 

capacities (intra-hour, intraday and real time). The same technique was applied in [14] for an 

islanded microgrid, where the imbalance power spectrum was shared between a diesel engine 

and a fast regulating ESS. Whereas [13]- [14] do not consider the ESS cost, the authors of [15] 



9 

 

and [16] designed a search algorithm that tunes the frequency regulation bandwidth such that 

the ESS cost is minimal. The partial DFT was also adopted in [17] to overcome some 

drawbacks of the DFT, such as redundant computation of zero power elements, especially for 

photovoltaic (PV) power. 

To avoid ESS oversizing, the methods proposed in [18] and [19] use a multi-stage 

optimization to tune the optimal ESS size. On the one hand, the algorithm in [18] calculated the 

optimal ESS size based on hourly data, followed by a faster algorithm (with one minute-

sampled data) that takes into account the wind and PV curtailment to obtain the desired ESS 

regulation capacity. On the other hand, the framework proposed in [19] tracked the minute-by-

minute power imbalance regulating effect on the battery lifetime (as the total life cycles depend 

on their depth of discharge [20]). Regarding the parameters uncertainty, a probabilistic 

optimization was adopted to consider the wind power uncertainty distribution in the ESS sizing 

problem, such as in [21] and [22].   

Recently, utilizing ESSs in transmission and distribution (T&D) deferral cost was proposed 

in [23] using a probabilistic optimization. The algorithm of [23] used a genetic algorithm to size 

the ESS such that the future distribution network upgrade cost is minimal by services, such as 

minimizing energy losses, adopting energy arbitrage and reducing the feeder upgrade capacity. 

However, the ESS was not used in either reactive power support or regulation services, which 

provide better utilization of ESSs and defer possible investments in capacitor banks or SVCs.  

Chapter 3 in this thesis proposes a comprehensive planning technique for ESSs in 

distribution systems. This technique can be adopted by the distribution company (Disco) to 

judge the viability of using ESS as a mean of T&D cost deferral with other functions, such as 

energy arbitrage, reactive power support, and power loss reduction. 
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2.1.2 Mobile Energy Storage Systems Planning 

Whereas the research has been focusing mainly only on the planning of stationary ESSs, the 

sizing, and planning of an MESS has not yet been thoroughly investigated. On the power 

industry and research levels, the MESS has witnessed some interest lately. First, an MESS 

project was conducted by the Electric Power Research Institute (EPRI) in the USA [24], [25]. 

The project discussed designing a prototype MESS with a utility-scale size that uses the lithium-

ion technology for peak shaving. Some MESSs are also available commercially in 100, 1000 

and 5000 kW units produced or rented by some companies [26] for peak shaving and improved 

reliability applications. An example of an MESS prototype project is a 500 kW/1000 kWh 

project for the tea industry peak shaving in China [27]. Another project under investigation is 

the design a 500 kW/776 kWh MESS. This MESS uses an SCiBTM lithium-ion battery bank 

for peak shaving and voltage regulation in the distribution system. The project is located in 

Spain and is supported by the New Energy and Industrial Technology Development 

Organization (NEDO) in Japan [28]. The work in [29] investigated the MESS sizing problem to 

improve the power system reliability; however, it does not introduce a multi-tasking EMS for 

the MESS, and it does not consider the load and RES uncertainty.  

In Chapter 4, the problem of MESS sizing and allocation is investigated. Chapter 4 plans an 

MESS owned by a Disco. The Disco considers the operation of the MESS in multi-services, 

such as energy arbitrage, power loss reduction, and reactive power support services. The 

algorithm in Chapter 4 decides the MESS size and optimal buses to provide such services. 

2.2 Energy Management of Storage Systems 

After the optimal planning and successful installation of ESSs, the user has to decide the 

real-time operation strategy of the assets depending on their objectives and the storage type 
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(long- duration or short duration storage) and the storage technology (stationary or mobile). An 

ESS may be owned by either the customer or the utility. Detailed applications of ESS have 

reached 17 application categorized in [3]. These applications objectives vary from electric 

supply services, ancillary services, grid system services, end-user service and finally, RES 

integration. In this thesis, the focus is on the EMS development in the following ESS 

applications: 

 Wind power time-shifting (Chapter 5) as a typical application for long-duration 

storage. 

  Wind power grid integration (Chapter 6) as a typical application for short-duration 

storage. 

 Multi-services of MESS (energy arbitrage, power loss reduction and voltage support) 

as explained in Chapter 8. 

For ESSs integration, Chapter 7 defines the safe dispatching levels for multi-ESSs in the 

power distribution system. The following Subsections (2.2.1-2.2.4) provide a literature survey 

on each of the areas above. 

2.2.1 Predictive EMS of Hybrid WECS-BESS System 

There have been many concerns regarding the economic revenue of renewable sources in de-

regulated markets. Energy markets are either regulated markets (with fixed tariffs) or de-

regulated markets (with variable tariffs). In a de-regulated market, the energy price is high 

during peak hours, whereas it is low during off-peak hours. To maximize the WECS owner’s 

profit, the owner may invest in adding a BESS to store the wind energy to sell it back during 

peak hours [30], [31]. This makes the system “hybrid” and capable of performing wind power 
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time-shifting. A predictive EMS utilizes the future knowledge of both the energy price and 

WECS generation to choose the optimal times to shift the WECS power.  

Recently, predictive control of energy storage has gained research interest either on the lower 

control level (charging level) [32] or the energy management level [33], [34]. Further, the 

current development in the electrical vehicles industry [33], [35] has boosted this interest.  The 

model predictive control (MPC) was proposed in several studies for energy management of 

hybrid systems. In [36], an EMS was proposed as an MPC for an isolated hybrid power system 

composed of a WECS and BESS. The MPC aims at dispatching the WECS by regulating the 

BESS power to the desired set-point. The problem was formulated as minimizing a quadratic 

cost function of the power regulation error. However, the regulation constraints were taken as 

the BESS power limits and the state of charge (SOC). No constraints on the BESS daily number 

of cycles (DNC) were considered which may lead to an overcharging and rapid shortage in the 

battery life. A decentralized MPC for a PV, WECS and BESS stand-alone system was designed 

in [37]. The controller aimed at minimizing a multi-objective cost function that includes the 

power imbalance, depth of discharge (DOD) and the PV power during the incoming 24-hour 

period. Unfortunately, the choice of the weights of this cost function is empirical, which lacks a 

systematic design approach for different systems. Further, as the design model is nonlinear, 

non-convex optimization techniques were used to solve this problem. Because reaching a 

feasible solution is highly related to the weights of the cost function and the initial system 

conditions, a stopping criterion was used to skip the algorithm after a fixed number of iterations 

if no feasible solution is reached. In [30], an EMS was designed as an MPC for a hybrid system 

(PV+BESS). The controller aimed at maximizing the profit by exploiting the market diurnal 

price difference. In the case of violating the pre-contracted power commitment, a penalty is paid 
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by the system owner. This penalty was taken into account as a cost in the MPC problem. The 

work in [30] neglected the storage cost; however, this cost value is nontrivial and can change 

the overall control strategy [38]. Moreover, although the SOC and the BESS power constraints 

were considered, the DNC constraint was not included. Recently, this point was considered in 

[31]. The authors of [31] considered that the optimal DNC is fixed at one cycle/day. The 

charge/discharge periods were optimized using a two-stage iterative algorithm. However, the 

unity DNC is only optimal with special wind power and market patterns, and this is not the 

general case due to the high volatility of the market [39] and the variable daily wind power 

patterns. Depending on these patterns, it may be more appropriate to allow the DNC to vary 

from one cycle/day. 

To address the shortages above in the previous studies, Chapter 5 proposes an EMS for a 

hybrid power system composed of a WECS and BESS. The EMS is designed as a real-time 

MPC that maximizes the owner’s profit by performing wind power time-shifting [40] while 

considering the exact BESS expended-life cost.  

2.2.2 Predictive EMS of Hybrid WECS-FESS System 

The short-term storage can improve the wind power integration by improving wind power 

quality which is achieved by limiting the wind power maximum magnitude and ramp rate. A 

FESS is an effective short-duration storage with a high power density that enables covering 

peak loads for short times [41]. FESSs start to replace uninterruptable power supply (UPS) units 

that are combined with a backup diesel generator. FESSs can replace an expensive 15-minutes 

UPS system to provide a fifteen second ride-through until the diesel engine is synchronized with 

the system; thus, FESSs fulfill the same task with a remarkably reduced cost and with higher 

lifetime than the UPS system [42]. Not only FESSs provide a wide range of services in power 
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systems, but also they have many applications in the medical, transportation and, air aviation 

fields [43], [44]. Further, a FESS has a fast response time that makes it a perfect tool for 

improving the power quality, such as voltage sag correction [45]. Furthermore, the FESS has a 

very long life that can reach 20 years or 100,000 cycles in commercial systems [46].  

Because the FESS has a very long life and a rapid response, it is a perfect candidate for 

various power regulation services. In a DC microgrid, the authors of [47] used a flywheel for 

real-time model uncertainty compensation using active disturbance rejection control. The 

authors of [48] proposed a hybrid system composed of a FESS combined with a pumped hydro 

storage (PHS). The FESS provided a fast response by generating the high-frequency power 

signals components that cannot be accurately fulfilled by the slow PHS; thus, the total system 

accuracy was improved. On a higher level, some independent system operators (ISOs), such as 

the California ISO (CAISO), tested the FESS performance in regulating reserve services [49] 

and it showed a proven fast response time and an accurate tracking for the regulation signal. In 

the Pennsylvania-New Jersey-Maryland Interconnection (PJM), USA, the biggest FESS station 

with a 20 MW rated capacity is participating in the frequency regulation [50]. Recently, 

Temporal Power has started the commercial operation of a 2.0 MW FESS in Harriston, Ontario 

[51] as well.  

Economically speaking, the FESS has proven to be a viable solution in frequency regulation 

because it has the lowest net present value (NPV) when compared with other technologies, such 

as lead-acid batteries and coal stations [50]. The final application of FESSs is in the integration 

of RESs. A FESS was used to smooth the RES power in an isolated power network [52], and in 

a grid connected system [53], [54]. 
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Regarding the obstacles facing a FESS, the self–discharge losses (standby losses) may reach 

high levels [53] mainly due to windage losses [55]. Stand-by losses the main reason limiting the 

FESS to the short-period storage; however, with the rapid technology in magnetics, windage 

losses are reduced by using magnetic bearings carrying a shaft rotating in vacuum chambers at 

very high speeds [56]. A high-speed FESS, driven by induction machines, can operate in a very 

wide speed range (reaching 16,000 RPM in some practical systems [46]) via field weakening 

[57]. However, the FESS lifetime is depleted dramatically when the operating speed increases 

[58], [59]; therefore, a smart EMS is necessary to achieve optimum operation while considering 

such practical constraints. The work in [60] proposed a smart EMS for smoothing the output 

power of a wind turbine using a short-term prediction; however, the power loss minimization 

objective was not considered. 

Indeed, the FESS can be depleted very quickly if a poorly-designed EMS is adopted; thus, 

the work in [53] addressed this problem by reducing the FESS losses used with a wind farm for 

power smoothing. In [53], an offline nonlinear optimization algorithm was used to derive a 

relationship between the moving average wind speed and the optimal FESS operation speed to 

extend the lifetime of the FESS. The main disadvantage of this technique is the sensitivity to the 

process parameters where any change in the wind energy conversion system parameters 

demands a new solution. The same research team developed a multiple-task EMS for a FESS in 

[54], where the FESS was used for both frequency control and active power smoothing (APS). 

The grid-interfacing converter was switched between the two modes via the frequency 

regulation error threshold value, whereas the reactive power was always controlled to regulate 

the ac-side voltage magnitude. A fuzzy controller was designed for APS to decide the active 

power setpoint depending on the filtered wind power and the FESS speed. On the other hand, 
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the frequency control was manipulated by a lag compensator with a traditional power versus 

frequency droop gain. The main drawback in [54] is the expert design criteria and the use of a 

basic frequency regulation technique without participation in the regulating market. Further, the 

wind predictions were not used to improve the EMS of the FESS or boost its lifetime.  

To overcome the difficulties above, Chapter 6 proposes an EMS for a hybrid system 

composed of a WECS and a FESS in the transmission system. The FESS regulates the hybrid 

system output power such that the grid code is respected (maximum power and ramp rate limits) 

while minimizing the FESS standby losses and boosting its lifetime using the predicted wind 

power data. 

2.2.3 Robust Dispatch of Multiple ESS in Active Distribution Systems 

The lack of regulatory rules and grid codes for ESSs in different applications is one of the 

main challenges facing effective integration of ESSs in grid systems [3], [61]. Whereas an ESS 

acts as an electrical load or generator as viewed by the grid, the distribution network operator 

(DNO) needs to define the safe dispatchability zones of each ESS in the case of charge or 

discharge modes. Within these zones (named from now on as robust operating zone (ROZ)), the 

DNO should guarantee that system operational limits are respected under renewable generation 

and load uncertainties. On the other hand, because each ESS has a different stakeholder with 

different profit portfolios and dispatching agendas (e.g., energy arbitrage or renewable 

integration), the DNO should not interfere with the ESS commitment or impose a certain 

dispatching strategy on other assets. In addition to the challenges above, load and RES 

uncertainty makes the ROZ identification for ESS a complicated problem. 
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Recently, the dispatchability problem of ESSs in a power system with uncertain resources 

has gained a significant interest. Research effort in this area is divided into three groups. 

Group-A: This group considers the ac power flow model in the dispatching problem; 

however, the RES or load uncertainty is neglected (deterministic optimal power flow (OPF)). 

Group A has investigated the ESS effect on the power flow. The authors of [42] designed an 

EMS for a multi-storage system, including the power flow constraints, to optimize the charge 

and discharge periods. In [62], an active-reactive OPF problem for the same system was solved 

using nonlinear programming for profit maximization; whereas in [63], a Lagrangian relaxation 

was proposed for solving the OPF with ESS. Further, the OPF in the presences of ESSs was 

solved with dynamic programming using the Bellman recursive technique in [64]. Although the 

power flow constraints were considered in [65]- [64], the load and RES uncertainty were 

neglected. Further, the system was assumed to be owned by the same stakeholder, which is not 

always the case in distributed power grids (as supported by [66], [67] which investigated the 

independent ESS operation). Furthermore, the participation of ESSs in the reserve market was 

not considered. However, recent research has proven that participation the regulating reserve is 

one of the most profitable applications for ESSs [68], and the combination of energy and 

spinning reserve market participation improves the profit margin [4].  

On the other hand, the power flow has been investigated in ESSs planning for power system 

participation [69]- [70]. Whereas [69] focused on the planning of a dc lossless system [69], the 

authors of [70] proposed a multi-objective optimization for ESSs in an ac grid with a high 

penetration level of photovoltaic systems. The nonlinear optimization in [70] aimed at peak 

shaving and voltage regulation considering the ESS cost trade-off. 
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Group-B: This group uses different stochastic programming techniques to take into account 

the uncertainty of RESs and loads, but the ac power flow model is not considered. Further, the 

stochastic programming is based on the availability of stochastic data, and it requires a huge 

computational effort.   

There is no doubt that the uncertainties of RESs and loads raise serious concerns on power 

grid security and its technical constraints; thus, Group-B uses the stochastic programming to 

consider these uncertainties in the optimization problem. The work in [71] focused on ESS and 

wind integrations for time shifting. The wind speed and price uncertainties were considered 

using stochastic dynamic programming. Another ESS application that adopts stochastic 

programming was reported in [72] where the ESS was used for both energy arbitrage and 

reserve markets participation. Although the uncertainty was considered in [71]- [72], the power 

flow model was not added to the optimization where a single owner for all assets was assumed. 

Recently, the work in [66] investigated independently-owned ESSs participating in energy and 

reserve markets using stochastic programming; however, the power flow model was not 

considered. Unlike [66], the authors of [73] considered the dc power flow in the study of a 

stochastic security-constrained unit commitment of ESSs (or hybrid vehicles’ fleet) with wind 

energy. Unfortunately, unlike the dc power flow, the ac power flow models impose nonlinear 

constraints in the stochastic optimization. As a result, traditional linear programming techniques 

fail with such non-convex constraints. Another concern about the stochastic programming 

methods is related to the probabilistic nature of the optimization results [74] where many 

scenarios are needed to reach reliable results. Accordingly, these methods are computationally 

intensive [75]. Finally, the stochastic programming methods assume the availability of all 

probability density functions (PDFs) of system uncertainties which is not always the case. 
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Group C:  This is the most recent group which tries to solve the stochastic programming 

problems by using robust optimization (RO). Unfortunately, RO faces the problem of giving 

conservative decisions. Further, no RO work considered the ac power flow during operation so 

far. Recently, RO has gained wide interest in the literature as a reliable tool for optimization 

problems with uncertain disturbances [74]- [75]. In [75], RO was used for the unit commitment 

problem in a wind facility with hydro storage. The authors considered the wind uncertainty but 

with a deterministic load. The work in [76] addressed this problem via a multi-stage RO that 

considered both RES and load uncertainties. Recently, an adaptive RO was considered in [74], 

which presented a general RO scheme for solving the unit commitment problem with any 

uncertainty at any bus. Further, in [77], an energy management system that uses RO for 

maximizing the social profit of a microgrid by manipulating a distributed storage and demand 

side management scheme was proposed. A contingency-constrained unit commitment using RO 

was discussed in [78]. Three observations related to current RO applications need to be 

highlighted here. 

First, although the power balance and power rate limits were considered in [74]- [77], the 

power flow constraints were not considered because the problem is already bilinear due to the 

uncertainty polyhedral set constraints [74]; adding the power flow imposes additional nonlinear 

constraints leading to feasibility problems.  

Second, RO is very sensitive to the uncertainty set choice [79] because the optimization is 

always inclined to satisfy the worst-case scenario which is allocated at an extreme boundary of 

the polyhedral uncertainty set [74]. Thus, a conservative choice for the uncertainty set leads to 

very conservative commitment results. The uncertainty budget is a good way to manipulate the 

uncertainty set size; however, there are no enough techniques in the literature addressing the 



20 

 

budget choice criterion.  Finally, the work in [74]- [77] assumed a single stakeholder for all 

assets who has the right to decide the dispatch strategies of all assets. 

To overcome the drawbacks of RO and stochastic programming, Chapter 7 proposes a 

framework to facilitate ESSs participation in day-ahead markets under distribution system 

uncertainty taking the power flow constraints into consideration.  

2.2.4 EMS of Mobile Storage System 

Like stationary ESSs, mobile ESSs, such as electric vehicles (EVs), can provide various 

services to the grid as well. For example, although the demand response can provide high 

energy cost reduction (via load shifting to the off-peak hours) [80], combining EVs with 

demand response has proven to improve the power balance and demand response management 

results [81]. Using EVs is an effective solution for the renewable sources intermittency problem 

in microgrids [82]. Besides, when EVs are controlled to regulate the PV power intermittency, it 

leads to a significant cost minimization in PV-powered-charging stations [83]. Aggregated EVs 

in parking lots can participate in the vehicle to grid (V2G) and grid to vehicle (G2V) programs 

to reduce the energy cost via energy arbitrage [84] and/or participating in the reserve market 

[85].  

Unlike EVs, an MESS is a utility-scale storage bank (e.g., lithium-ion battery) owned and 

fully controlled by the utility company. The storage is mobilized by a truck and connected to the 

system at different stations. The advantage of transportability is the ability to deliver a localized 

reactive power support, power loss reduction, voltage regulation, dispersed RESs integration, 

and T&D upgrade deferral. Indeed, the MESS is a promising storage technology that will 

contribute to solve many problems in active distribution systems. Optimal scheduling and 
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energy management algorithms for an MESS in an active distribution system are not developed 

in the current literature; thus, Chapter 8 proposes a day-ahead EMS for an MESS owned by a 

Disco. The Disco uses the MESS for minimizing the day-ahead cost of the power imported from 

the grid. Further, the MESS provides a reactive power support for the system for voltage 

regulation at critical loads. 
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Chapter 3  

3 Stationary Energy Storage Systems Sizing and Allocation for 

Multi-Services in Active Distribution Systems 

3.1 Introduction  

Energy storage systems (ESSs) provide various power and ancillary services at the 

distribution system level [3], [4]. One of these services is the transmission and distribution 

(T&D) cost deferral. When an ESS is dispatched for peak shaving, it defers the upgrade 

investments required to increase the network current carrying capacity (including feeders and 

substations). An ESS also makes a profit due to the diurnal energy price variation (energy 

arbitrage [3]). The T&D cost deferral using ESSs was investigated in a study conducted by 

SANDIA in [86]; the study showed the economic benefits of using an ESS in T&D upgrade. 

Besides, an ESS, if optimally allocated and sized in the distribution network, represents a 

strategic reactive power reservoir. Further, a significant power loss minimization is possible via 

an ESS, especially in heavily-loaded long feeders (high R/X ratio).   

Still, this brings up the question of the viability of ESS services especially with the relatively 

high cost of some ESS technologies and shorter lifetime (e.g., batteries). Besides, in the case 

when an ESS is a viable T&D upgrade cost option, the optimal solution may combine different 

technologies; e.g., SVC, DG, and capacity upgrade along with the ESS option. This chapter is 

dedicated to investigating the sizing and allocation of these technologies to provide T&D 

upgrade deferral while providing multi-services for the distribution system owner (Disco). 
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The main contributions of the proposed planning scheme are as follow: 

1-  The uncertainty of parameters is considered by adopting different realistic daily time-

series scenarios for load, the wind, and PV and market price profiles. Further, K-mean 

Clustering technique is utilized for scenarios minimization to reduce the computational 

effort. 

2- Different technologies (ESS, DG, SVC, feeder’s upgrade) are considered in the planning 

scheme as T&D solutions. Thus, our cost/benefit analysis is more comprehensive and 

fair.  

3-  The planning scheme respects the power system constraints regarding the voltage level 

and feeder’s capacity which guarantees an acceptable power quality. 

4- ESS life constraints are well modeled during the planning horizon, including the state of 

charge and the total/daily numbers of cycles. 

5- ESS participates in Multi-tasks including; energy arbitrage, reactive power support, 

energy losses minimization, and finally feeder’s upgrade cost deferral. 

6- The comprehensive algorithm can compare different ESS technologies (portfolio) since 

it allows defining the ESS efficiency, the number of cycles, and its associated costs.   

Chapter 3 is organized as follows. Section 3.2 presents the problem formulation, including 

the objective function, and its constraints. Section 3.3 validates the proposed method using a 

case study on a real distribution feeder. The case study uses realistic wind, PV, market and load 

data to show the main contribution of this work. A case study is discussed in Section 3.4.  

Finally, the conclusions are drawn in Section 3.5.  
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3.2 Problem Formulation 

The distribution company (Disco) is an organization that makes a profit by delivering 

electrical energy from the transmission system to the final residential consumers via its 

distribution network. The main profit is the difference between the energy market wholesale 

buy price and the end-user sell price. A distribution network upgrade is required to adapt to the 

growing rate of loads and the increasing penetration of RESs. T&D upgrading includes 

increasing the current carrying capacity of feeders, substations upgrade (transformers), or even 

adding a reactive power source in case of weak grids. The assets upgrade represents a huge cost 

on the Disco which requires an unusual solution to bring the cost down. Adding an ESS can 

defer some T&D costs as reported in [86]. This work proposes an ESS sizing and allocation 

technique for upgrade cost minimization whereas ESSs are optimally dispatched for providing 

different services. The optimization aims at maximizing the Disco profit while maintaining an 

acceptable power quality level.  

Before discussing the cost function and presenting the operational constraints, the symbols 

terminology is explained. For any parameter 𝑥𝑏
𝑎(𝑖), x is the parameter/variable name (e.g., p: 

power, c: cost, v: rms voltage); a represents the technology description (e.g., ESS, DG, SVC), b 

is a time index (e.g., sc: scenario where a scenario here describes a daily profile for all 

exogenous inputs, y: year index, t: hour index); and finally, i is the location index (e.g., i; bus 

index, l: branch index). For example, 𝑞𝑠𝑐,𝑦,𝑡
𝑆𝑉𝐶 (𝑖) is the reactive power injected by the SVC 

located at bus i at the hour t of a day (scenario) sc of the planning year y. The cost function 

presents the Disco profit during the planning horizon as given in (3.1).    

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 (𝑝𝑟𝑜)

𝑝𝑟𝑜 = 𝑖𝑛𝑐− 𝑐𝑔𝑟𝑖𝑑−𝑐𝐸𝑆−𝑐𝑆𝑉𝐶−𝑐𝐷𝐺−𝑐𝑇&𝐷−𝑐𝑖𝑚𝑏
 

 (3.1) 
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The Disco profit (𝑝𝑟𝑜) results from the income resulting from selling energy to the end-

users. The expenses include the energy purchasing cost from the grid, the storage cost, SVC and 

DG investment costs, future T&D upgrade costs for the substations and feeders, and finally, the 

power imbalance cost that includes RESs curtailment or load shedding. As shown in Figure 3-1, 

the techno-economic model is an inter-connected system. The optimization decision variables 

are the SVC, DG, and ESS sizes/locations plus the power set points for SVC, DG, ESS, load 

shedding and wind/PV curtailment. The input data includes the wind, PV, and load expected 

powers. The power flow model calculates the branches’ powers which affect the T&D upgrade 

cost and the grid power needed; having all the previous inputs beside the cost of all assets 

results in the profit calculation as shown in (3.1). The following section demonstrates the 

models, constraints and cost models of different system components.   
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Figure 3-1 System model and interconnection between the technical system and the economic model 

for the planning optimization problem. 
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3.2.1 ESS Dynamic Model 

At any sample t, the ESS is either charging power ch or discharging power dc. The ESS 

power 𝑝𝐸𝑆 is the sum of these two powers as expressed in (3.2). The discharge power is 

negative whereas the charge power is positive; both are limited by the ESS rated apparent 

power 𝕊𝐸𝑆 as expressed in (3.2)-(3.4). The binary variable 𝑐𝑒𝑦,𝑠𝑐,𝑡
𝐸𝑆 (𝑖) guarantees that the 

discharge and charge powers are mutually exclusive at each sample time for each ESS. Further, 

when charging is enabled 𝑐𝑒𝑦,𝑠𝑐,𝑡
𝐸𝑆 (𝑖) = 1, the first constraints of (3.3), 0 ≤ 𝑐ℎ𝑦,𝑠𝑐,𝑡

𝐸𝑆 (𝑖) ≤ 𝕊𝐸𝑆(𝑖), 

is dominant because 𝕊𝐸𝑆(𝑖) ≤ 𝕊𝐸𝑆̅̅ ̅̅̅. When charging is disabled 𝑐𝑒𝑦,𝑠𝑐,𝑡
𝐸𝑆 (𝑖) = 0, the second 

constraint of (3.3) is dominant. A similar logic applies to the discharging constraint (3.4). 

Decomposing the constraints in this way (instead of 0 ≤ 𝑐ℎ𝑦,𝑠𝑐,𝑡
𝐸𝑆 (𝑖) ≤ 𝕊𝐸𝑆𝑐𝑒𝑦,𝑠𝑐,𝑡

𝐸𝑆 (𝑖)) enables the 

inclusion of both the operational and planning constraints in a mixed-integer linear forms 

instead of nonlinear ones.   

𝑝𝑦,𝑠𝑐,𝑡
𝐸𝑆 (𝑖) = 𝑐ℎ𝑦,𝑠𝑐,𝑡

𝐸𝑆 (𝑖) + 𝑑𝑐𝑦,𝑠𝑐,𝑡
𝐸𝑆 (𝑖) 

0 ≤ 𝑐ℎ𝑦,𝑠𝑐,𝑡
𝐸𝑆 (𝑖) ≤ 𝕊𝐸𝑆(𝑖) 0 ≤ 𝑐ℎ𝑦,𝑠𝑐,𝑡

𝐸𝑆 (𝑖) ≤ 𝕊𝐸𝑆̅̅ ̅̅̅𝑐𝑒𝑦,𝑠𝑐,𝑡
𝐸𝑆 (𝑖) 

−𝕊𝐸𝑆(𝑖) ≤ 𝑑𝑐𝑦,𝑠𝑐,𝑡
𝐸𝑆 (𝑖) ≤ 0 −𝕊𝐸𝑆̅̅ ̅̅̅(1 − 𝑐𝑒𝑦,𝑠𝑐,𝑡

𝐸𝑆 (𝑖)) ≤ 𝑑𝑐𝑦,𝑠𝑐,𝑡
𝐸𝑆 (𝑖) ≤ 0 

(3.2) 

(3.3) 

(3.4) 

The ESS instantaneous energy 𝐸𝑦,𝑠𝑐,𝑡
𝐸𝑆  is calculated dynamically from the ESS power whereas 

both the charge and discharge efficiencies are considered as in (3.5) such that ( 𝜂𝑐ℎ < 1, 𝜂𝑑𝑐 >

1). The notation 𝜂𝑑𝑐represents the reciprocal of the per-unit discharge efficiency. It is worth 

mentioning that an hourly sample rate is considered; thus the power equals the energy. The ESS 

energy is limited by its rated capacity in (3.6). The number of cycles 𝑁𝐸𝑆 is another expression 

used to count the absorbed and injected power from the ESS daily (in Watt-hours) as in (3.7). 

When a rated capacity 𝔼𝐸𝑆is absorbed and injected by an ESS, 𝑁𝐸𝑆 is incremented by 1× 𝔼𝐸𝑆. 𝑁𝐸𝑆 
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is daily controlled by (3.8) which limits the daily cycles to a 𝐷𝑁𝐸𝑆̅̅ ̅̅ ̅̅ ̅ cycle/day. The total number of 

cycles 𝑇𝑁𝐸𝑆̅̅ ̅̅ ̅̅ ̅𝔼𝐸𝑆(𝑖) represents the total energy traded during the ESS service life as in (3.9). For 

example, if each year is presented by four daily scenarios (one for each season), the probability 

of each scenario is 25% of the year days (𝜌𝑠𝑐 = 91 𝑑𝑎𝑦𝑠). At the end of each scenario (𝑡 =

24∀𝑠𝑐∀𝑦), the number of cycles 𝑁𝑦,𝑠𝑐,𝑡=24
𝐸𝑆   reflects the stored kWh from/to the system. Summing 

these amounts for all scenarios during all operation years leads to the total exchanged energy 

with the grid during the storage service time which is limited by the storage nominal number of 

cycles 𝑇𝑁𝐸𝑆̅̅ ̅̅ ̅. 

𝐸𝑦,𝑠𝑐,𝑡+1
𝐸𝑆 (𝑖) = 𝐸𝑦,𝑠𝑐,𝑡

𝐸𝑆 (𝑖) + (𝜂𝑐ℎ𝑐ℎ𝑦,𝑠𝑐,𝑡
𝐸𝑆 (𝑖) + 𝜂𝑑𝑐𝑑𝑐𝑦,𝑠𝑐,𝑡

𝐸𝑆 (𝑖)) 

0 ≤ 𝐸𝑦,𝑠𝑐,𝑡
𝐸𝑆 (𝑖) ≤ 𝔼𝐸𝑆(𝑖) 

𝑁𝑦,𝑠𝑐,𝑡+1
𝐸𝑆 (𝑖) = 𝑁𝑦,𝑠𝑐,𝑡

𝐸𝑆 (𝑖) +
(𝜂𝑐ℎ𝑐ℎ𝑦,𝑠𝑐,𝑡

𝐸𝑆 (𝑖) − 𝜂𝑑𝑐𝑑𝑐𝑦,𝑠𝑐,𝑡
𝐸𝑆 (𝑖))

2
 

0 ≤ 𝑁𝑦,𝑠𝑐,𝑡=24
𝐸𝑆 (𝑖) ≤ 𝐷𝑁𝐸𝑆̅̅ ̅̅ ̅̅ ̅𝔼𝐸𝑆(𝑖) 

∑∑𝜌𝑠𝑐𝑁𝑦,𝑠𝑐,𝑡=24
𝐸𝑆 (𝑖)

𝑠𝑐𝑦

≤ 𝑇𝑁𝐸𝑆̅̅ ̅̅ ̅̅ ̅𝔼𝐸𝑆(𝑖) 

(3.5) 

(3.6) 

 

(3.7) 

(3.8) 

(3.9) 

For ESSs allocation and sizing, a binary location variable 𝑧𝐸𝑆(𝑖) models the existence of an 

ESS station at certain bus i. The maximum desired number of ESS establishments is limited by 

(3.10). On the other hand, the maximum power and capacity ratings are upper bounded by 

(3.11)-(3.12). This sizing/allocation model has been adopted before in [9] . 

∑𝑧𝐸𝑆(𝑖) ≤ 𝑧𝐸𝑆

𝑖

, 𝑖 ∈ 𝒩𝐸𝑆 

0 ≤ 𝕊𝐸𝑆(𝑖) ≤ 𝑧𝐸𝑆(𝑖)𝕊𝐸𝑆̅̅ ̅̅̅ 

0 ≤ 𝔼𝐸𝑆(𝑖) ≤ 𝑧𝐸𝑆(𝑖)𝔼𝐸𝑆̅̅ ̅̅ ̅ 

(3.10) 

(3.11) 

(3.12) 
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Because ESSs will participate in reactive power support in the proposed planning 

framework, the reactive power is constrained by the power converter thermal capacity expressed 

in (3.13). Because (3.13) is a nonlinear constraint (a sphere domain with a variable radius 𝕊𝐸𝑆), 

it is linearized by a set of linear vectors 𝑓𝐸𝑆 that defines the ESS thermal capability domain 

𝜑𝐸𝑆(𝑖) as explained in (3.14). Further details on the linearized domain are given in [9].  

𝑝𝑦,𝑠𝑐,𝑡
𝐸𝑆 (𝑖)2 + 𝑞𝑦,𝑠𝑐,𝑡

𝐸𝑆 (𝑖)2 ≤ 𝕊𝐸𝑆
2
 

𝑓𝐸𝑆(𝑝𝑦,𝑠𝑐,𝑡
𝐸𝑆 (𝑖), 𝑞𝑦,𝑠𝑐,𝑡

𝐸𝑆 (𝑖), 𝕊𝐸𝑆(𝑖)) ∈ 𝜑𝐸𝑆 

(3.13) 

(3.14) 

The ESS initial capital cost in (3.15) includes its fixed cost 𝐹𝐶𝐸𝑆 (land, installation cost, etc.); 

ESS power conversion system cost 𝐶
𝐸𝑆

𝑀𝑊⁄ ;  and ESS storage cost 𝐶
𝐸𝑆

𝑀𝑊ℎ⁄  that stands for the 

battery bank price. The operation and maintenance costs 𝑂&𝑀𝐸𝑆 are calculated and transferred 

to the first year considering the interest rate 𝐼𝑅 during the project life y [9]; all operational future 

costs are referred to the year of investment as a common time reference for a correct judgement 

on the project cost/benefit analysis. If the inflation rate is significant, it can be included to 

calculate the effective interest rate as explained in [23]. It is worth mentioning that the energy 

constraint (3.6) allows a full battery discharge which may reduce its life time. As a 

compensation, an extension for the ESS capacity can be added by setting 𝛼𝑇𝑁 (e.g., set 𝛼𝑇𝑁 = 0.2 

for getting an equivalent life of  𝑇𝑁𝐸𝑆̅̅ ̅̅ ̅̅ ̅ at 20% minimum SOC). 

𝑐𝐸𝑆 =∑𝑧𝐸𝑆(𝑖)𝐹𝐶𝐸𝑆(𝑖) + 𝐶
𝐸𝑆

𝑀𝑉𝐴⁄ 𝕊
𝐸𝑆
(𝑖) + 𝐶

𝐸𝑆
𝑀𝑊ℎ⁄ (1 + 𝛼𝑇𝑁)𝔼𝐸𝑆(𝑖) +

∑ ∑ 𝑧𝐸𝑆(𝑖)𝑂&𝑀𝐸𝑆(𝑖)𝑖𝑦

(1 + 𝐼𝑅)𝑌−1
𝑖

 (3.15) 

3.2.2 Distributed Generation 

Distributed generators (DGs), e.g., a micro turbine empowered by natural gas or a diesel 

generator, are another possible investment option for T&D cost deferral. DGs power limit and 

allocation are stated in (3.16)-(3.19). When a DG is connected to the grid via a voltage-source 
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converter (e.g., fuel cell), the capability curve is linearized in a way similar to (3.14). If a DG is 

directly connected via an ac machine, the capability curve includes the rotor and stator current 

limits, and the stator ends iron heating limits. The capability curve is linearized as explained in 

[9] and the resulting linear vectors are expressed as 𝑓𝐷𝐺 in (3.19). 

∑𝑧𝐷𝐺(𝑖) ≤ 𝑧𝐷𝐺 , 𝑖 ∈ 𝒩𝐷𝐺

𝑖

 

0 ≤ 𝕊𝐷𝐺(𝑖) ≤ 𝑧𝐷𝐺(𝑖)𝕊𝐷𝐺̅̅ ̅̅ ̅ 

0 ≤ 𝑝𝑦,𝑠𝑐,𝑡
𝐷𝐺 (𝑖) ≤ 𝕊𝐷𝐺(𝑖) 

𝑓𝐷𝐺(𝑝𝑦,𝑠𝑐,𝑡
𝐷𝐺 (𝑖), 𝑞𝑦,𝑠𝑐,𝑡

𝐷𝐺 (𝑖), 𝕊𝐷𝐺(𝑖)) ∈ 𝜑𝐷𝐺(𝑖) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

Unlike ESSs, the DG cost includes a nontrivial running cost plus the capital cost; the 

installation 𝐹𝐶𝐷𝐺 , and the DG price 𝐶
𝐷𝐺

𝑀𝑉𝐴⁄  as in (3.20). The DG running cost is a quadratic 

function in the active power as expressed in (3.21).  

In (3.21),  at certain time t, if the DG is on, then 𝑆𝑆𝑦,𝑠𝑐,𝑡
𝐷𝐺 (𝑖) = 1. An initial running cost 

𝜃𝑦
$  is considered regardless of the DG power whereas the DG power (and quadratic power) 

affects the fuel consumption depending on the DG parameters (𝜃𝑦
$
𝑀𝑊2⁄

, 𝜃𝑦
$
𝑀𝑊⁄

). These 

parameters may vary yearly with the fuel average yearly price as well. Summing the operation 

costs for each sample t in each scenario Sc and after considering the scenario yearly probability 

of occurrence (𝜌𝑠𝑐) will result in the yearly DG running cost. Finally, repeating the same process 

for each year gives the DG total running cost during the planning period.  

 A piece-wise linearization for the DG cost is possible by dividing the operating power 

domain into g slices in (3.22)-(3.23) and linearizing each slice as in [87]. In the case of cost 
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linearization, the constraints in (3.23) are added to define the different linearization domains 

limits.  

𝑐𝐷𝐺 =∑𝑧𝐷𝐺(𝑖)𝐹𝐶𝐷𝐺(𝑖) + 𝐶
𝐷𝐺

𝑀𝑉𝐴⁄ 𝕊𝐷𝐺(𝑖) +
∑ ∑ 𝑧𝐷𝐺(𝑖)𝑂&𝑀𝐷𝐺(𝑖) + 𝑂𝐶𝑦

𝐷𝐺(𝑖)𝑖𝑦

(1 + 𝐼𝑅)𝑦−1
𝑖

 

𝑂𝐶𝑦
𝐷𝐺(𝑖) =∑∑𝜌𝑠𝑐∑𝜃𝑦

$
𝑀𝑊2⁄

(𝑝𝑠𝑐,𝑦,𝑡
𝐷𝐺 (𝑖))2

𝑡𝑠𝑐𝑦

+ 𝜃𝑦
$
𝑀𝑊⁄

𝑝𝑦,𝑠𝑐,𝑡
𝐷𝐺 (𝑖) + 𝜃𝑦

$𝑆𝑆𝑦,𝑠𝑐,𝑡
𝐷𝐺 (𝑖) 

𝑂𝐶𝑦
𝐷𝐺(𝑖) ≅∑∑𝜌𝑠𝑐∑∑ 𝛽𝑦

$
𝑀𝑊⁄

𝑝𝑦,𝑠𝑐,𝑡
𝐷𝐺𝑔 (𝑖) + 𝛽𝑦

$

𝑔
𝑡𝑠𝑐𝑦

𝑆𝑆𝑦,𝑠𝑐,𝑡
𝐷𝐺 (𝑖) 

𝑝𝑠𝑐,𝑦,𝑡
𝐷𝐺 (𝑖) =∑𝑝𝑦,𝑠𝑐,𝑡

𝐷𝐺𝑔 (𝑖)

𝑔

, 0 ≤ 𝑝𝑦,𝑠𝑐,𝑡
𝐷𝐺𝑔 (𝑖) ≤ 𝑆𝑆𝑦,𝑠𝑐,𝑡

𝐷𝐺 (𝑖)𝑝𝐷𝐺𝑔̅̅ ̅̅ ̅̅  

(3.20) 

 

(3.21) 

 

(3.22) 

(3.23) 

For a viable DG investment, the Levelized cost of its production ($/MWh) must be less than 

the grid price; otherwise, the optimization process will not consider such investment as a cost-

saving one. In some cases, DGs are owned by the consumers, which became allowed by most of 

the Discos. In such a case, the DG generation schedule is considered as an input for the power 

flow model without including DGs as an investment option in the planning scheme. It is worth 

mentioning that such a detailed model for the DG cost introduces many variables to the 

planning problem; thus, it is practical to consider such a model with a few number of DGs. 

When the number of DGs is large, modeling simplifications (such as considering a linear 

operating cost and neglecting start-up cost) are acceptable for the sake of problem 

simplification. 

3.2.3 Static VAr Compensator (SVCs) 

The SVCs can provide an efficient voltage regulation service by installing them at the far end 

buses in case of weak grids. Improving the voltage profile reduces the power loss and increases 
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the feeder current carrying capacity. The allocation and rating of SVCs are governed by (3.24)-

(3.26) whereas the SVC cost (capital and O&M) is stated in (3.27). 

∑𝑧𝑆𝑉𝐶(𝑖) ≤ 𝑧𝑆𝑉𝐶 , 𝑖 ∈ 𝒩𝑆𝑉𝐶

𝑖

 

0 ≤ ℚ𝑆𝑉𝐶(𝑖) ≤ 𝑧𝑆𝑉𝐶(𝑖)ℚ𝑆𝑉𝐶̅̅ ̅̅ ̅̅ ̅ 

−ℚ𝑆𝑉𝐶(𝑖) ≤ 𝑞𝑦,𝑠𝑐,𝑡
𝑆𝑉𝐶 (𝑖) ≤ ℚ𝑆𝑉𝐶(𝑖) 

𝑐𝑆𝑉𝐶 =∑𝑧𝑆𝑉𝐶(𝑖)𝐹𝐶𝑆𝑉𝐶(𝑖) + 𝐶
𝑆𝑉𝐶

𝑀𝑉𝑅⁄ ℚ𝑆𝑉𝐶(𝑖) +
∑ ∑ 𝑧𝑆𝑉𝐶(𝑖)𝑂&𝑀𝑆𝑉𝐶(𝑖)𝑖𝑦

(1 + 𝐼𝑅)𝑦−1
𝑖

 

(3.24) 

 

(3.25) 

(3.26) 

 

(3.27) 

3.2.4 Power Imbalance Solutions 

The power imbalance results from unexpected changes in loads or variations in the power 

generated by RESs. The system operator can use many tools to rebalance the power, like load 

shedding, RES curtailment, or up and down regulation by exporting/importing extra energy 

from grid/ESS/DGs. The load shedding is constrained by each bus load power as in (3.28) 

whereas the RES curtailment is limited by the RES power in (3.29). To avoid excessive load 

shedding, the constraint in (3.30) keeps the disconnected load energy below a certain level 𝔼𝑠ℎ𝑑̅̅ ̅̅ ̅̅   

that agrees with the power quality and reliability standards.     

0 ≤ 𝑝𝑦,𝑠𝑐,𝑡
𝑠ℎ𝑑 (𝑖) ≤ 𝑝𝑦,𝑠𝑐,𝑡

𝑙𝑜𝑎𝑑 (𝑖), 𝑖 ∈ 𝒩𝑙𝑜𝑎𝑑 

0 ≤ 𝑝𝑦,𝑠𝑐,𝑡
𝑐𝑢𝑟 (𝑖) ≤ 𝑝𝑦,𝑠𝑐,𝑡

𝑟𝑒𝑠 (𝑖), 𝑖 ∈ 𝒩𝑅𝐸𝑆 

∑∑𝜌𝑠𝑐∑∑𝑝𝑦,𝑠𝑐,𝑡
𝑠ℎ𝑑 (𝑖) ≤

𝑖𝑡𝑠𝑐𝑦

𝔼𝑠ℎ𝑑̅̅ ̅̅ ̅̅  

(3.28) 

(3.29) 

(3.30) 

The cost associated with load shedding 𝑐𝑠ℎ𝑑  in (3.31) represents a loss of energy sale priced 

at 𝑠𝑝𝑠𝑐,𝑦,𝑡, plus a penalty 𝑠𝑝𝑒𝑛𝑠𝑐,𝑦,𝑡paid by the Disco to the consumer for the loss of service, 

𝑠𝑝𝑒𝑛𝑠𝑐,𝑦,𝑡 is a time-variant penalty because the shedding time affects the customer comfort level 
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differently. Regarding the RES curtailment cost 𝑐𝑐𝑢𝑟, it may be modelled to include the levelized 

generation cost of the RES plus an environmental penalty for curtailing a clean power source 

(𝑐𝑝𝑒𝑛) as in (3.32).  

𝑐𝑠ℎ𝑑 =∑∑𝜌𝑠𝑐∑(𝑠𝑝𝑦,𝑠𝑐,𝑡 + 𝑠𝑝𝑒𝑛𝑦,𝑠𝑐,𝑡)∑𝑝𝑦,𝑠𝑐,𝑡
𝑠ℎ𝑑 (𝑖)

𝑖𝑡𝑠𝑐

 

𝑦

 

𝑐𝑐𝑢𝑟 =∑∑𝜌𝑠𝑐∑(𝑐𝑝𝑒𝑛)∑𝑝𝑦,𝑠𝑐,𝑡
𝑐𝑢𝑟 (𝑖)

𝑖𝑡𝑠𝑐𝑦

 

(3.31) 

 

(3.32) 

Finally, the total power imbalance cost is defined as in (3.33). 

𝑐𝑖𝑚𝑏 = 𝑐𝑐𝑢𝑟 + 𝑐𝑠ℎ𝑑 (3.33) 

3.2.5 Power Flow Model 

The power flow model for a radial distribution network consists of a single slack bus and a 

set of PQ-buses 𝑖𝜖𝒩𝑏𝑢𝑠, 𝑖 ≠ 0 that connects a group of branches 𝑙: (𝑖 → 𝑗) ∈ 𝜓. In the power 

flow model, the change in buses active and reactive power ∆𝑝𝑦,𝑠𝑐,𝑡
𝑏𝑢𝑠 (𝑖), ∆𝑞𝑦,𝑠𝑐,𝑡

𝑏𝑢𝑠 (𝑖) leads to a 

change in each node voltage amplitude and angle. For a set of buses 𝒩𝑏𝑢𝑠, the power is 

represented as the sum of RESs (after curtailment), load (after shedding), DGs, SVC and ESS 

powers as in (3.34)-(3.37). The injected power has a negative sign whereas the absorbed one is 

positive. The ESS discharge power is negative as well. The loads are assumed as a constant 

power type with a power factor 𝑝𝑓; thus the load reactive power is a constant ratio of the active 

power as 𝑞𝑦,𝑠𝑐,𝑡
𝐿𝑜𝑎𝑑 = 𝜆𝑦,𝑠𝑐,𝑡

𝑙𝑜𝑎𝑑 𝑝𝑦,𝑠𝑐,𝑡
𝐿𝑜𝑎𝑑 , 𝜆𝑦,𝑠𝑐,𝑡

𝑙𝑜𝑎𝑑 = tan (cos−1 𝑝𝑓). Further, the RES reactive power can be 

modeled by tuning 𝑞𝑠𝑐,𝑦,𝑡
𝑟𝑒𝑠  but in such a case, an apparent power for RES has to be added. 

𝑝𝑦,𝑠𝑐,𝑡
𝑏𝑢𝑠 (𝑖) = (𝑝𝑦,𝑠𝑐,𝑡

𝐿𝑜𝑎𝑑(𝑖) − 𝑝𝑦,𝑠𝑐,𝑡
𝑠ℎ𝑑 (𝑖)) − (𝑝𝑦,𝑠𝑐,𝑡

𝑟𝑒𝑠 (𝑖) − 𝑝𝑦,𝑠𝑐,𝑡
𝑐𝑢𝑟 (𝑖)) − 𝑝𝑦,𝑠𝑐,𝑡

𝐷𝐺 (𝑖) + 𝑝𝑦,𝑠𝑐,𝑡
𝐸𝑆 (𝑖) 

𝑞𝑦,𝑠𝑐,𝑡
𝑏𝑢𝑠 (𝑖) = (𝜆𝑦,𝑠𝑐,𝑡

𝑙𝑜𝑎𝑑 𝑝𝑦,𝑠𝑐,𝑡
𝐿𝑜𝑎𝑑(𝑖) − 𝜆𝑦,𝑠𝑐,𝑡

𝑙𝑜𝑎𝑑 𝑝𝑦,𝑠𝑐,𝑡
𝑠ℎ𝑑 (𝑖)) − 𝑞𝑦,𝑠𝑐,𝑡

𝑟𝑒𝑠 (𝑖) − 𝑞𝑦,𝑠𝑐,𝑡
𝐷𝐺 (𝑖) + 𝑞𝑦,𝑠𝑐,𝑡

𝐸𝑆 (𝑖) − 𝑞𝑦,𝑠𝑐,𝑡
𝑆𝑉𝐶 (𝑖) 

∆𝑝𝑦,𝑠𝑐,𝑡
𝑏𝑢𝑠 (𝑖) = −𝑝𝑦,𝑠𝑐,𝑡

𝑠ℎ𝑑 (𝑖) + 𝑝𝑦,𝑠𝑐,𝑡
𝑐𝑢𝑟 (𝑖) − 𝑝𝑦,𝑠𝑐,𝑡

𝐷𝐺 (𝑖) + 𝑝𝑦,𝑠𝑐,𝑡
𝐸𝑆 (𝑖) 

(3.34) 

(3.35) 

(3.36) 
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∆𝑞𝑦,𝑠𝑐,𝑡
𝑏𝑢𝑠 (𝑖) = −𝜆𝑦,𝑠𝑐,𝑡

𝑙𝑜𝑎𝑑 𝑝𝑦,𝑠𝑐,𝑡
𝑠ℎ𝑑 (𝑖) − 𝑞𝑦,𝑠𝑐,𝑡

𝐷𝐺 (𝑖) + 𝑞𝑦,𝑠𝑐,𝑡
𝐸𝑆 (𝑖) − 𝑞𝑦,𝑠𝑐,𝑡

𝑆𝑉𝐶 (𝑖) − 𝑞𝑦,𝑠𝑐,𝑡
𝑟𝑒𝑠 (𝑖) (3.37) 

In a distribution system with a low voltage-angle difference, many studies discussed the 

power flow relaxation and convexification [88], [89]. One of the power flow approximations in 

distribution systems uses the second-order cone programming as adopted before in [9] and [90]. 

Another simple linear technique depends on calculating the voltage Jacobian from the power 

flow (voltage sensitivity to active and reactive power) [91]. The advantage of the sensitivity 

technique is the resulting linear equality constraints that simplify the optimization problem, 

especially with a huge number of variables and constraints, like the present planning problem. 

The power loss sensitivity can be calculated as well [92], [93]. Before optimization, the initial 

total power loss 𝑖𝑝𝑦,𝑠𝑐,𝑡
𝑙𝑜𝑠𝑠 , 𝑖𝑞𝑦,𝑠𝑐,𝑡

𝑙𝑜𝑠𝑠  are calculated and the instantaneous loss sensitivity to the active 

and reactive power matrices 
𝑑𝑝𝑙𝑜𝑠𝑠

𝑑𝑃𝑏𝑢𝑠
|
𝑦,𝑠𝑐,𝑡

,
𝑑𝑞𝑙𝑜𝑠𝑠

𝑑𝑃𝑏𝑢𝑠
|
𝑦,𝑠𝑐,𝑡

are obtained. The total power loss is 

expressed as a sum of the initial power loss and the resulting losses due to any power change at 

any bus as in (3.38)-(3.39). Finally, the grid power (slack bus) is the sum of all buses power 

plus the total power loss  [6] as shown in (3.40)-(3.41). 

𝑝𝑦,𝑠𝑐,𝑡
𝑙𝑜𝑠𝑠 = 𝑖𝑝𝑦,𝑠𝑐,𝑡

𝑙𝑜𝑠𝑠 +
𝑑𝑝𝑙𝑜𝑠𝑠

𝑑𝑃𝑏𝑢𝑠
|
𝑦,𝑠𝑐,𝑡

∆𝑃𝑦,𝑠𝑐,𝑡
𝑏𝑢𝑠 +

𝑑𝑝𝑙𝑜𝑠𝑠

𝑑𝑄𝑏𝑢𝑠
|
𝑦,𝑠𝑐,𝑡

∆𝑄𝑦,𝑠𝑐,𝑡
𝑏𝑢𝑠  

𝑞𝑦,𝑠𝑐,𝑡
𝑙𝑜𝑠𝑠 = 𝑖𝑞𝑦,𝑠𝑐,𝑡

𝑙𝑜𝑠𝑠 +
𝑑𝑞𝑙𝑜𝑠𝑠

𝑑𝑃𝑏𝑢𝑠
|
𝑦,𝑠𝑐,𝑡

∆𝑃𝑦,𝑠𝑐,𝑡
𝑏𝑢𝑠 +

𝑑𝑞𝑙𝑜𝑠𝑠

𝑑𝑄𝑏𝑢𝑠
|
𝑦,𝑠𝑐,𝑡

∆𝑄𝑦,𝑠𝑐,𝑡
𝑏𝑢𝑠  

𝑝 𝑦,𝑠𝑐,𝑡
𝑔𝑟𝑖𝑑

= 𝑝𝑦,𝑠𝑐,𝑡
𝑏𝑢𝑠 (𝑖 = 0) = ∑ 𝑝𝑦,𝑠𝑐,𝑡

𝑏𝑢𝑠 (𝑖) + 𝑝𝑦,𝑠𝑐,𝑡
𝑙𝑜𝑠𝑠

𝑖,𝑖≠0

 

𝑞 𝑦,𝑠𝑐,𝑡
𝑔𝑟𝑖𝑑

= 𝑞𝑦,𝑠𝑐,𝑡
𝑏𝑢𝑠 (𝑖 = 0) = ∑ 𝑞𝑦,𝑠𝑐,𝑡

𝑏𝑢𝑠 (𝑖) + 𝑞𝑦,𝑠𝑐,𝑡
𝑙𝑜𝑠𝑠

𝑖,𝑖≠0

 

(3.38) 

 

(3.39) 

 

(3.40) 

 

(3.41) 

Because the total power loss is represented in the grid power expression, the branches power 

is calculated by the power balance expression in (3.42)-(3.43) which indicates that the branch 

power equals the branch output bus power plus the power transferred to other branches 
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connected to it [90]. The branch capacity is limited by (3.45), where the apparent power of the 

feeder 𝑠 𝑠𝑐,𝑦,𝑡
𝑓

(𝑙) is limited by the nominal feeder thermal capacity 𝕊𝑓(𝑙) after considering a 

reserve capacity fr to account for uncertainties. A feeder extension is possible by adding a 

capacity extension 𝕔𝑓𝑚  that is associated with the feeder upgrade method m; each method has a 

different capacity extension that is enabled by the variable 𝑧𝑓𝑚(𝑙).  

A linearized version of the constraint (3.45) is given in (3.46). It is worth mentioning that 

linearizing (3.44) leads to convexifying the optimization problem at the price of adding more 

variables and less accuracy for the capability function. For instance, Figure 3-2 compares the 

constraint domain of the original capability curve (circle as in (3.44)); when this nonlinear 

function is linearized around more operating points (twenty instead of eight for example), the 

linearized constraints almost coincide with the circle. However, the number of constraints 

increases from eight into twenty. As a result, this trade-off should be considered when 

linearizing any nonlinear function. A similar concept applies to the constraints (3.14), (3.19). 

𝑝𝑦,𝑠𝑐,𝑡
𝑓 (𝑙) = 𝑝𝑦,𝑠𝑐,𝑡

𝑏𝑢𝑠 (𝑗) + ∑ 𝑝𝑦,𝑠𝑐,𝑡
𝑓 (𝑘)

𝑘:(𝑗→𝑛)∈𝜓

, 𝑙: (𝑖 → 𝑗) 

𝑞𝑦,𝑠𝑐,𝑡
𝑓 (𝑙) = 𝑞𝑦,𝑠𝑐,𝑡

𝑏𝑢𝑠 (𝑗) + ∑ 𝑞𝑦,𝑠𝑐,𝑡
𝑓 (𝑘)

𝑘:(𝑗→𝑛)∈𝜓

, 𝑙: (𝑖 → 𝑗) 

𝑠 𝑦,𝑠𝑐,𝑡
𝑓 2

(𝑙) = 𝑝 𝑦,𝑠𝑐,𝑡
𝑓 2

(𝑙) + 𝑞 𝑦,𝑠𝑐,𝑡
𝑓 2

(𝑙), 𝑙: (𝑖 → 𝑗) 

‖𝑠 𝑦,𝑠𝑐,𝑡
𝑓 (𝑙)‖ ≤ 𝕊𝑓(𝑙) +∑ 𝑧𝑓𝑚(𝑙)𝕔𝑓𝑚

𝑚
(1 + 𝑓𝑟𝑓)⁄

𝑓𝑙(𝑝 𝑦,𝑠𝑐,𝑡
𝑓 (𝑙), 𝑞 𝑦,𝑠𝑐,𝑡

𝑓 (𝑙)) ≤ 𝕊𝑓(𝑙) +∑ 𝑧𝑓𝑚(𝑙)𝕔𝑓𝑚
𝑚

(1 + 𝑓𝑟𝑓)⁄
 

(3.42) 

 

(3.43) 

 

(3.44) 

(3.45) 

(3.46) 

Regarding the voltage level, the initial voltage 𝑖𝑣𝑠𝑐,𝑦,𝑡 is first calculated before optimization. 

After calculating the voltage sensitivity 
𝑑𝑣(𝑖)

𝑑𝑃𝑏𝑢𝑠
|
𝑦,𝑠𝑐,𝑡

,
𝑑𝑣(𝑖)

𝑑𝑄𝑏𝑢𝑠|
𝑦,𝑠𝑐,𝑡

, the nodal voltage magnitude is 

given and limited in (3.47)-(3.48) as a function of the buses power change. Finally, the Disco 
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income 𝑖𝑛𝑐 from selling energy depends on its retail selling tariff 𝑠𝑝 𝑦,𝑠𝑐,𝑡 as in (3.49). Some 

companies adopt a fixed monthly tariff like EPCOR-Alberta, and others have an on-peak/off-

peak tariff, such as Hydro One-Ontario.  

 

Figure 3-2 Linearized capability curves for a circle with a different number of linearizing lines. 

𝑣𝑦,𝑠𝑐,𝑡(𝑖) = 𝑖𝑣𝑦,𝑠𝑐,𝑡 +
𝑑𝑣(𝑖)

𝑑𝑃𝑏𝑢𝑠
|
𝑦,𝑠𝑐,𝑡

∆𝑃𝑦,𝑠𝑐,𝑡
𝑏𝑢𝑠 +

𝑑𝑣(𝑖)

𝑑𝑄𝑏𝑢𝑠
|
𝑦,𝑠𝑐,𝑡

∆𝑄𝑦,𝑠𝑐,𝑡
𝑏𝑢𝑠  

𝑣 ≤ 𝑣𝑦,𝑠𝑐,𝑡(𝑖) ≤ �̅� 

(3.47) 

 

(3.48) 

On the other hand, the Disco buys energy from the wholesale energy pool with a market 

price 𝑏𝑝𝑦,𝑠𝑐,𝑡  expressed in (3.50). The T&D cost 𝑐𝑇&𝐷 includes the sum of each feeder l (with a 

length 𝑙𝑒𝑓 ) upgrade cost 𝑈𝐶
𝑓𝑚

𝐾𝑀⁄
 to a higher capacity model m. Further, the substation is 

upgraded to a rating similar to its connected feeder l=1 but with a different upgrade cost as in 

(3.51). 
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𝑖𝑛𝑐 =∑∑𝜌𝑠𝑐∑𝑠𝑝𝑠𝑐,𝑦,𝑡∑𝑝𝑠𝑐,𝑦,𝑡
𝐿𝑜𝑎𝑑(𝑖)𝜏

𝑖𝑡𝑠𝑐𝑦

 

𝑐𝑔𝑟𝑖𝑑 =∑𝜌𝑠𝑐∑∑𝑏𝑝𝑠𝑐,𝑦,𝑡𝑝𝑠𝑐,𝑦,𝑡
𝑔𝑟𝑖𝑑

𝑡𝑦𝑠𝑐

𝜏 

𝑐𝑇&𝐷 =∑𝑧𝑓𝑚(1)

𝑚

𝑈𝐶𝑠𝑢𝑏𝑚 +∑∑𝑧𝑓𝑚(𝑙)

𝑚

𝑙𝑒𝑓(𝑙)𝑈𝐶
𝑓𝑚

𝐾𝑀⁄

𝑙

 

(3.49) 

 

(3.50) 

 

(3.51) 

By subtracting the income from the grid energy cost ( 𝑖𝑛𝑐 − 𝑐𝑔𝑟𝑖𝑑 = ∑ 𝜌𝑠𝑐(𝑠𝑝𝑠𝑐,𝑦,𝑡 −𝑠𝑐,𝑦,𝑡

𝑏𝑝𝑠𝑐,𝑦,𝑡)∑ 𝑝𝑠𝑐,𝑦,𝑡
𝐿𝑜𝑎𝑑(𝑖)𝜏𝑖 − 𝑏𝑝𝑠𝑐,𝑦,𝑡𝑝𝑠𝑐,𝑦,𝑡

𝑙𝑜𝑠𝑠 ), the optimization aims at reducing the energy losses cost 

automatically when it maximizes the Disco profit. 

Indeed, ESSs are apparently sized/allocated to participate in different services 

simultaneously: energy arbitrage that takes advantage of the diurnal price difference (𝑏𝑝𝑠𝑐,𝑦,𝑡); 

energy losses minimization depending on its purchase value 𝑏𝑝𝑠𝑐,𝑦,𝑡𝑝𝑠𝑐,𝑦,𝑡
𝑙𝑜𝑠𝑠 ; reactive power 

support (imposed by the constraint (3.48); T&D upgrade reduction (in order to minimize 𝑐𝑇&𝐷), 

and finally, regulating reserve services (for reducing 𝑐𝑖𝑚𝑏)) . The final upgrade problem is 

represented as a mixed-integer quadratic problem as stated in (3.52) whereas the profit is 

presented in (3.1).  

max
𝕊,ℤ,𝑥𝑠𝑐,𝑦,𝑡 

𝑝𝑟𝑜

𝑠. 𝑡.

{
 
 

 
 

𝐸𝑆𝑆 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑎𝑙 𝑚𝑜𝑑𝑒𝑙: (3.2) − (3.12)&(3.14)

𝐷𝐺 𝑝𝑜𝑤𝑒𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: (3.16) − (3.19)

𝑆𝑉𝐶 𝑝𝑜𝑤𝑒𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠; (3.24) − (3.26)

𝑝𝑜𝑤𝑒𝑟 𝑖𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒: (3.28) − (3.30)

𝑃𝑜𝑤𝑒𝑟 𝑓𝑙𝑜𝑤 𝑚𝑜𝑑𝑒𝑙: (3.34) − (3.43)&(3.46) − (3.48)

 

(3.52) 

 

The optimization variables consist of the rating set 𝕊 (contains any technology rating 𝕊 =

{𝕊𝐸𝑆, 𝕊𝑓 , 𝕊𝐷𝐺 , ℚ𝑆𝑉𝐶}), the allocation binary set that includes the locations, on/off decisions in 

the entire problem  ℤ = {ℤ𝐸𝑆, ℤ𝐷𝐺 , ℤ𝑆𝑉𝐶 , ℤ𝑓}, and any dispatch variable of the form  𝑥𝑠𝑐,𝑦,𝑡, such 

as power or voltage.  
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For each year y, the daily scenario changes from season to season, from month to month and 

even from working days to weekends (e.g., as depicted in Figure 3-5 for the first-year daily 

scenarios). 

Considering 365 daily scenarios per year or even more than 365 by assuming an 𝑘 possibility 

for each daily scenario such that ∑ ∑ ∑ 𝜌
𝑘,𝑠𝑐𝑘𝑠𝑐 = 1𝑦 , the previous assumptions will lead to an 

enormous problem size. As a result, and without loss of generalization, this work uses a 

scenarios minimizations technique using the k-means method similar to the one adopted in [9]. 

First, each day 𝑛 is represented by a realization 𝑅𝑒𝑛that consists of PV, load, wind and price 

normalized data where (𝑅𝑒𝑛, 𝑛 = 1:𝓃 dimension is  1×96 in case of hourly sampled data. By 

setting the number of desired scenarios to J, the k-means clustering approximates all the 𝓃 

realizations by a 𝐽 centroids (𝒸𝑠𝑐 , 𝑠𝑐 = 1: 𝐽). The Euclidian distance of each realization is 

𝑑𝑁𝑠𝑐 = ‖𝑅𝑒𝑁 − 𝒸𝑠𝑐‖2 defines the belonging factor (the membership value) of each realization 

𝑅𝑒𝑁 to a certain centroid 𝒸𝐽. Finally, 𝑑𝑁𝑠𝑐 is used to calculate the probability of each 

centroid 𝜌
𝑠𝑐

. 

Regarding the quality of this approximation, Figure 3-4 shows the per unit (pu) Euclidean 

distance of each realization of the first year (shown in Figure 3-5) with the ten approximating 

scenarios. The sum of all distances from a realization to all scenarios is equal to one. Although 

four scenarios (1, 4, 6, and 9) can approximate the realizations accurately because they are very 

close to most of the scenarios (their mean pu distance to all realization is less than 0.05 pu and 

consequently they have a higher probability 𝜌
𝑠𝑐

 ), these scenarios, still, have a long distance to 

some special realizations (e.g., days with an unusual load profile or volatile market). Such 

uncommon realizations are well fitted by the other scenarios that have a very close distance to 

them while they are far away from most of common realizations.  
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3.3 Case Study 

This section validates the proposed planning scheme by testing it for upgrading a real rural 

radial feeder in Ontario-Canada, owned by Hydro One (the Disco) [94] as shown in Figure 3-3. 

 

Figure 3-3 Single line diagram for the distribution feeder under study. 

 The 30 kilometers feeder has a substation capacity of 16 MVA; it consists of 41-buses with 

16 kV voltage-level. Per Hydro One rules, the customers can have their own DGs up to 10 

MVA [94], thus the Disco here is not investing in the DGs; however, the DG expected 

generation will be considered as an input in the planning process. Three Diesel generators 

(customer-owned) that operate daily during peak-hours (5:8 pm) are assumed. The rated power 

for DGs and RESs is given in Table 3-1 whereas the feeder impedances are given in [94]. A 

realistic residential load profile (as measured by the PJM in 2014 [95] is used to simulate the 
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load as depicted in Figure 3-5-a; each season has a unique load profile with higher peak during 

summer. A 4% yearly load growth is assumed during this study; thus, the nominal load is 

expected to reach 22.77 MVA in ten years. Two PV plants are added to the system with a real 

PV radiation taken from [96], shown in Figure 3-5-b with longer generation hours during 

summer that reduce gradually while moving toward winter. The PV generation is assumed to 

have the same growth rate as the load [9] whereas the wind generation capacity is fixed. Three 

wind facilities are dispersed on the feeder to make the total RES penetration of this feeder 37% 

calculated as a ratio between the maximum RES output to peak load. A real wind generation is 

considered [97] as depicted in Figure 3-5-d. It is worth mentioning that winter days are windier 

than summer days, especially during late night hours. The buy price of Ontario (HOEP: hourly 

Ontario Energy Price) is provided by the Independent Electricity System Operator (IESO) in 

[98] and depicted in Figure 3-5-c. It is very important to notice that some days have a very high 

price difference which indicates that energy arbitrage will be a successful investment in such a 

market.  

It is assumed that the Disco considers an energy billing price 20% more than the HOEP 

average price. Due to the enormous problem size and number of states, the yearly realizations 

are minimized to ten scenarios per year; this results in a total hundred scenarios for the whole 

planning horizon. The wind generation curtailment is penalized by 100$/MWh and load 

shedding by 150$/MWh with maximum 30-minute load shedding period/year. These high 

values are chosen by trial and error to avoid over-curtailment and over-load shedding during the 

optimization process; otherwise these options, which remarkably affect the system reliability in 

a negative way, would be preferred by the optimization algorithm than the upgrade ones. 
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Figure 3-4 PU distance of first year (365 realization) to the 10 scenarios (centroids) depicted as + 

sign, the mean distance of each scenario is shown as solid red line, while the confidence levels are 

depicted by black line with a confidence level shown a s a box.   
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Figure 3-5. Yearly input data(a) PU load profile (b) PU PV generation (C) hourly market buy price 

(HOEP) (d) PU wind generation. 

For T&D upgrade, five upgrade models are considered with a capacity upgrade difference of 

one MVA. The substation and feeders cost is taken from [23]. A 20% feeder capacity is added 

as a reserve. Regarding the SVC cost, it varies dramatically depending on the voltage level [99]; 

a medium-voltage level cost is adopted as reported by Hydro One in [99]. Four battery 

technologies, with the cost details reported in [100], are considered to decide the best ESS 

portfolio. The number of cycles/day for an ESS depends on the minimum to maximum buy 

price ratio [20]. For example, if the ESS charged energy levelized cost is 50$/kWh, the energy 

arbitrage is profitable only if the energy price difference is greater than 50$. In this example, it 

is assumed that 250 cycles/year are profitable for energy arbitrage, which results in 2500 life 

cycles needed during the planning period. If the battery technology has less life cycles, a 

replacement cost is calculated, and if the technology has more life, the battery value is 

calculated as a second-use one after the service time. Regarding the ESS converter replacement, 
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a DC-AC converter has a long lifetime that may reach 12 years [101] due to switches low 

failure rate and the use of reliable film capacitors. As a result, no ESS converter replacement 

cost is considered in this 10 years planning project. 

It is also possible to just define the maximum number of cycles during the planning period 

without imposing a daily number of cycles (by omitting constraint (3.8)). In such a case, the 

optimization decides the optimal daily number of cycles according to the market profile. 

Further, the total number of cycles constraint may be omitted as well; however, a life cycle 

dependent ESS cost model should be considered in the objective function [20] (nonconvex 

optimization needed). One may argue that ten years’ market predictions are not that accurate; 

thus, it is safer to assume a maximum one daily number of cycles and the total life cycles 

instead of possible ESS oversizing that may result from misleading long-horizon predictions. In 

both cases, it is the designer choice according to their philosophy (optimistic or conservative) 

and their trust of provided predictions. 

 As a general case, all buses are considered as candidates for ESSs and SVCs (𝒩𝐸𝑆 = 𝒩𝑆𝑉𝐶 =

𝒩𝑏𝑢𝑠). However, in this study, ten buses along the feeders are chosen as candidates for ESSs and 

SVCs as shown in Table 3-1.  

 

Table 3-1 Planning input data. 

RES, DG rating 𝑝𝑤𝑡1 = 2𝑀𝑊, 𝑝𝑤𝑡2 = 𝑝𝑤𝑡3 = 1.5𝑀𝑊, 𝑝𝐷𝐺1 = 1 𝑀𝑊 

𝑝𝑝𝑣1 = 𝑝𝑝𝑣2 = 0.5 𝑀𝑊, 𝑝𝐷𝐺2 = 𝑝𝐷𝐺3 = 0.5 𝑀𝑊  

ESS Lead-Acid Na-

S 

Zn-

Br 

Li-

ion 

𝐶
𝐸𝑆

𝑀𝑉𝐴⁄  $/ MVA installed 400 350 400 400 
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𝐶
𝐸𝑆

𝑀𝑊ℎ⁄  $/ MWh installed  330 350 400 600 

𝜂 80% 75% 70% 85% 

Life cycles 2000 cycles 3000 3000 4000 

𝑣 = 0.95, �̅� = 1.05, , 𝑠𝑝 = 0.9$ 𝐾𝑊ℎ⁄ , 𝜏 = 1, 𝐼𝑅 = 3%, 𝑌 = 10, 𝑆𝑐 = 10,

 𝕊𝐸𝑆̅̅ ̅̅ ̅ = 3 𝑀𝑉𝐴, 𝔼𝐸𝑆̅̅ ̅̅ ̅ = 15𝑀𝑊ℎ, 𝐹𝐶𝐸𝑆 = 𝐹𝐶𝑆𝑉𝐶 = 5000$, 𝐶
𝑆𝑉𝐶

𝑀𝑉𝐴𝑅⁄ = 143𝐾$

𝐷𝑁𝐸𝑆̅̅ ̅̅ ̅̅ ̅ = 1, 𝑇𝑁𝐸𝑆̅̅ ̅̅ ̅̅ ̅ = 2500,  𝑧𝐸𝑆 = 4,  𝑧𝑆𝑉𝐶 = 5, 𝑂&𝑀𝐸𝑆 = 𝑂&𝑀𝑆𝑉𝐶 = 500$ 𝑦⁄

𝑈𝐶𝑠𝑢𝑏𝑚 = [300,400,500,600,700] 𝐾$, 𝑈𝐶
𝑓𝑚

𝐾𝑀⁄ = [151,152,153,154,155]𝐾$

 𝑚 = 5, 𝑓𝑟𝑓 = 20%, 𝕔𝑓𝑚 = [1,2,3,4,5] 𝐾𝑉𝐴,𝒩𝐸𝑆 = {4,6,9,12,22,25,28,35,39,40} 

 

 

3.4 Results Discussion 

Four battery technologies (T1 to T4) are compared in this study. To show the importance of 

considering the reactive power support of ESSs in the upgrade scheme, two cases are compared: 

P1: planning ESS with Q support, and P2: planning ESS without Q support (as in [23]). The 

optimization results are shown in Table 3-2 and depicted in Figure 3-6 for eight case studies 

(four technologies each with and without Q support). The problem was solved with the Gurobi 

solver [102] using a 3.30 GHz AMD six-core processor. The solver gap from the global optimal 

is recorded as 1.98%. Each problem was solved in about 670,000 iterations that lasted for 9 

hours and 12 minutes.   

The cost and planning data provided in Table 3-1 Planning input data is the main drive for 

the optimization algorithm under different technologies. First, the converter cost is almost the 

same for the four batteries; thus it only affects the compromise between having a higher ESS 

power rating verses having a higher SVC rating for reactive power support (this point will be 

discussed in details later). Second, the storage cost is the main factor for considering the energy 

arbitrage investment. The energy arbitrage is also affected by the price difference volatility as 

shown in Figure 3-5-c. For achieving the desired 2500 cycles/10 years, a replacement cost for 
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the lead-acid ESS is required which makes this technology remarkably expensive. For the Na-S 

ESS, 500 cycles are still available for the battery, which results in a second-use battery income 

which can be transferred as a discount in the price as well. The third ESS technology (Zn-Br) 

has a higher storage cost than the Na-s ESS; further, the Zn-Br ESS has the lowest charging 

efficiency among the four cases. The final competitor is the Li-ion ESS with the highest 

charging efficiency; although it has the highest life time as well, the Li-ion ESS has an 

extremely expensive storage cost (almost double the lead-acid ESS for double lifetime and 

higher efficiency). 

The advantage of enabling Q support is providing some deferral cost for the SVC option but 

at the price of occupying a part of the ESS converter capacity. The terminologies used in Table 

3-2 are defined as follows. First, the T&D deferred cost is the difference between the T&D 

upgrade cost for the 10th year maximum load without considering other technologies and the 

T&D upgrade cost for the 10th year load with considering ESS/SVCs. Second, the arbitrage 

benefit is the total ESS time-shifted energy value ∑𝑏𝑝𝑠𝑐,𝑦,𝑡𝑝𝑠𝑐,𝑦,𝑡
𝐸𝑆 . Third, the maximum load 

reduction represents the grid power reduction after solution compared to the original one. 

Finally, the losses saving is the value difference between the energy purchased from the grid 

and the total energy sold to customers.  

Table 3-2. Optimization Results with different ESS technologies, and services (T1:T4) (P1 is shown 

with white background whereas P2 is grey). 

 T1:Lead-Acid T2: Na-S T3: Zn-Br T4: Li-ion 

ESS 

Buses, 

Power 

Bus [28] [4,28,40] [28,39,40] [28,39,40] 

0.016 MW ≅ 0 

 

[1.11,0.57, 

1.38] MW 

[0.016,0.26,0.07] 

MW 

[0.016,0.15, 

0.22] MW 
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(MW), 

Capacity 

(MWh) 

Total: 3.06  Total: 0.346 Total: 0.386 

0.017 MWh ≅ 0 [2.23, 1.5, 

4.07] MWh 

Total: 7.8 

[0.03,0.54,0.17]  

MWh 

Total: 0.74 

[0.03,0.37, 

0.56] MWh 

Total: 0.96 

Bus [28] [28,40]  [28,39,40]  [28,39] 

0.016 MW ≅ 0 [0.016, 

1.075] MW 

Total: 1.09 

[0.23,0.37,0.1] 

MW 

Total: 0.7 

[0.21,0.39] MW 

Total: 0.6 

0.017 MWh ≅ 0 [0.05,3.35] 

Total: 3.4 

[0.8,1.12,0.29] 

Total: 2.21   

[0.86,1.35] 

Total: 2.21   

ESS Cost 21.5K$ 3.35M$ 409 K$ 538 K$ 

21K$ 1.379 M$ 1.04 M$ 1.08 M$ 

SVC 

Buses, 

Power 

(MVAr) 

 

Buses:[4,9,28,39,40] [4,9] 

 

[4,9,28,40] 

 

[4,9,28,40] 

 

[5,1.5,0.53,.06,1.3]M

VAr 

Total: 8.44 

[5,0.54] 

MVAr 

Total: 5.54 

[5,1.6,0.55,1.1] 

MVAr 

Total: 8.25 

[5,1.61,0.55,1] 

MVAr 

Total: 8.16 

[4,9,28,39,40] [4,9,28,39,40] [4,9,28,39,40] [4,9,28,39,40] 

[5,1.52,0.55,0.06,1.3] 

Total: 8.45 

[5,1.75,0.56,0.03,1.29] 

Total: 8.63 

[5,1.58,0.51,0.01,1

.31]  Total: 8.41 

[5,1.6,0.55,0.01,1

.36]Total: 8.52 

SVC Cost 1.224 M$ 0.812 M$ 1.194 M$ 1.185 M$ 

1.227 M$ 1.25 M$ 1.22 M$ 1.33 M$ 

T&D 

COST 

3.233 M$ 2.646 M$ 2.921 M$ 2.979 M$ 

3.233 M$ 2.745 M$ 2.848 M$ 2.919 M$ 

T&D 

deferred 

cost 

339K$/9.5% 927K$/26% 652/18.24% 594K$/16.6% 

339K$/9.5% 827K$/20% 714KS/20% 654 K$/18.3% 
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Losses 

min.  value 

3.97M$/66% 4,4M$/68.5% 4.05M$/67.38% 4.06M$/67.5% 

3.97M$/66% 4.23M$/68 % 4.04 M$/67.2% 4.1M$/67.75% 

Arbitrage 

benefit 

6.1K$ 2.313M$ 222 K$ 312 K$ 

6.3 K$ 0.95 M$ 565.3K$ 650 K$ 

Peak-load 

reduction 

10% 18.9% 13.47% 13.87% 

10% 18.83% 13.43% 14.14 % 

profit 46.12M$ 46.819 M$ 46.36 M$ 46.4 M$ 

46.11M$ 46.2 M$ 46.26 M$ 46.24 M$ 

3.4.1 Economic Discussion  

The ESS investment share depends on its MWh cost as shown in Figure 3-6-a; more than 

three million Dollars are invested in the Na-S ESS (T2) compared to twenty thousand in the 

lead-acid ESS (T1) (almost none). A higher investment in the ESS leads to a higher ESS rated 

power thus to cope with the higher capacity. A smaller SVC size is required when the ESS rated 

power increases. For example, a total 5.54 MVAr-SVC is needed in T2 as compared to 8.44 

MVAr-SVC in T1 (about 3 MVAr difference). This result is interesting especially when 

noticing that the ESS converter size in T2 is higher by approximately 3 MVA than that in the T1 

case. Regarding the T&D cost, ESSs with higher capacities can achieve better peak shaving and 

consequently lead to lower T&D costs as shown in Figure 3-6-a, and higher T&D deferral as in 

Figure 3-6-b.  
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Figure 3-6 Sizing results for different ESS technologies in case of P1 (Q support) (a) different 

technologies cost share (b) different incomes from the investment. 

Regarding the power loss saving, a non-significant difference is noticed between ESS 

technologies. In fact, the power loss minimization is dependent on the voltage profile. Because 

the voltage deviations are kept within ∓5% in all cases, the power loss savings with different 

ESS technologies are very close. On the other hand, the energy arbitrage income depends on the 

ESS capacity (MWh); whereas T2 has 7 MWh more capacity (more or less) compared to other 
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technologies, T2 harvests two million Dollars extra income from energy arbitrage (shown in 

Figure 3-6-b). 

The T&D upgrade should not convey a profit in the first place; this is the case with T1 (lead-

acid) where the total cost exceeds the income. This means that the Disco will pay a part of their 

energy trading profit (𝑖𝑛𝑐 − 𝑐𝑔𝑟𝑖𝑑) to cover the T&D upgrade costs. This is not the case with 

other technologies (T2-4) where the Disco is actually making a profit from sources like energy 

arbitrage and losses saving. 

 A key result here is that energy arbitrage is the main element for considering the ESS option 

in the first place. Actually, the ESS cost may exceed the feeder upgrade cost; however, the 

energy arbitrage income still makes the ESS a competitive solution. Let us consider a flat price 

market; in such a case, the energy arbitrage income will be zero, and no ESS will be invested 

(e.g., case T1) except of course if the ESS cost is diminished dramatically. Further, the 

correlation between the peak load and the peak market price is vital because it facilitates the 

operation of an ESS for peak shaving (needed for T&D deferral) and energy arbitrage (needed 

for extra income) simultaneously. Luckily, this correlation was proven in [67] where the ESS 

was found, in most of the time, performing peak shaving automatically although it was managed 

for energy arbitrage. 
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Figure 3-7 Comparison between total ESS size (MVA) to SVC size (MVAR) in two case (A) ESS 

provides Q support (case P1) (B) SVC only provides Q support (case P2). 

3.4.2 ESS/SVC Rating, Reactive Power Support Options 

 It is worth noticing that the MVA cost of any ESS is more than double of the SVC-MVAr 

cost. As a result, the profitable energy arbitrage ESS technologies will require a bigger 

converter size and consequently, it will participate more in Q support. This appears clearly in 

the case of the lead-acid ESS (T1); in both P1, and P2, a full Q support source from an SVC is 

considered due to the high cost of the lead-acid battery (unattractive in energy arbitrage). For 

T3, T4, the ESS MWh cost is still high leading to a lower MVA size. On the contrary, the Na-S 

ESS (T2) represents 36% of the installed power rating (sum of the MVAr of SVCs plus the 

MVA of ESSs) in the network (in case of P1). This confirms the viability and effectiveness of 

using ESSs for Q support when ESSs are equipped with batteries providing a profitable income 
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(e.g., such as energy arbitrage, here). For T2, in case of P2 (no reactive power support), the ESS 

size is reduced to be 11% of the installed capacity because all reactive power support comes 

from the SVCs. Although the ESS MVA cost gets lower, the total profit of the Disco is 

619,000$ higher when the ESSs participate in Q support. This is clear in the profit of T3 and T4 

as well where the profit in case P1 is always greater than P2. 

3.4.3 ESS and SVC Locations 

Before discussing the results of the ESSs/SVCs chosen locations, it is worth mentioning that 

the sizing and siting problem is power flow-based in the first place, which means it depends on 

the feeder impedances, loads and RESs characteristics and distribution. The case study feeder 

has two major loads at the feeder beginning and one at the feeder end as shown in Table 3-3, 

other loads are less than 500 kW. Also, there are also two large wind farms near the feeder ends 

(bus 40 and bus 29).  

Table 3-3 Biggest five loads in the Radial feeder 

Bus index (i) 3 8 41 6 36 

𝑅𝑎𝑡𝑒𝑑  𝑝𝑙𝑜𝑎𝑑(𝑖) 𝑀𝑊 6.4 3.18 2.16 0.9 0.8 

Power factor - 

lagging 

0.976 0.947 0.951 0.87 0.8 

  

For the case T1, an SVC is located at the feeder start (bus 4) close the heaviest load and PV1 

station; another large SVC is needed near the feeder end (bus 40) which is heavily loaded and 

has a wind turbine WT3. A smaller SVC exists at the other feeder end as well (bus 28) close by 

the other wind turbine (WT2). It is noticed that the SVC locations are the same whenever the 
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ESS does not participate in Q support (P2 policy); however, this is not the case in P1 (ESS 

provides Q support).  

In case of P1, the SVCs were located mainly at the feeder start where the ESS units were 

sited at the feeder end. This is an important result here because ESSs provide peak shaving 

service during energy arbitrage, and they are best located at the feeder end to defer more feeder 

upgrade cost. This is the case of T2, T3 and T4 where a storage is always located at bus 28 

whereas the other is located at bus 40 (or 39). In all cases, a 5 MVAr SVC is always needed at 

the feeder start (Bus 4).  

It very important to emphasize again that assets allocations change with the feeder topology 

and loads distribution and SVC/ESS converter cost; thus a total different results may occur with 

a meshed system for instance. 

3.4.4  ESS for T&D Deferral, Competitive or Not? 

Due to its reasonable cost and moderate efficiency, the Na-S ESS was proven to be a 

competitive T&D upgrade deferral technology. Conducting energy arbitrage is a key factor for 

providing extra income from the market and achieving peak shaving simultaneously. The strong 

correlation between peak shaving and energy arbitrage was proven before in [67]. Further, this 

result agrees with the current International Renewable Energy Agency (IRENA) report [103]. 

The report showed that the Na-S ESS has the highest capacity worldwide (400 MW). The Li-ion 

ESS comes in the second place followed by advanced lead-acid (higher lifetime).  

Adopting the Na-S ESS increased the profit by 1.5 % (708,000$) compared to just using 

SVCs with feeder upgrade (e.g., compared to case T1). On the one hand, the profit increase may 

look trivial and indecisive for the Disco to take the risk of adopting a new technology. On the 
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other hand, this profit can increase dramatically with the reduced ESS cost in the future. As 

supported by the IRENA report [103], it is expected that the Li-ion storage cost will drop to 200 

$/kWh by 2020; the thing that will make the Li-ion ESS the first candidate for different 

transmission and distribution services. Further future scenarios, such as copper price increase, 

can significantly increase the potential of ESSs because the feeder upgrade cost will be 

outrageous, especially for long radial feeders. 

3.5 Conclusion 

A comprehensive sizing and allocation scheme for ESSs, SVC and DGs for distribution 

system upgrade was presented in this chapter. The proposed optimization algorithm aimed at 

maximizing the utility profit by allowing ESSs to participate in multiple grid support functions 

that include minimizing the T&D deferral cost, conducting energy arbitrage, minimizing the 

power loss, and providing reactive power support. A case study on a real radial feeder was 

conducted using realistic power and market price data. The study compared different ESS 

technologies. Given the current cost of ESSs, the energy arbitrage income was found to be a key 

factor in considering the ESS investment. Combined with other services, such as reactive power 

support, the energy storage option represented a profitable T&D deferral tool. The Na-S battery 

proved to be a competitive system upgrade option.   
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Chapter 4  

4 Mobile Energy Storage Sizing and Allocation for Multi-Services 

Grid Support 

4.1 Introduction 

A mobile (transportable) energy storage system (MESS) is a localizable storage device that 

can provide various services at different buses of the system. Controlling the MESS active 

power is used for load leveling, load shifting, losses minimization or energy arbitrage. 

Controlling the MESS reactive power is used for voltage regulation at different grid locations. 

Because bulk power converters have cheaper per-unit cost, an MESS may cost less than multi- 

SESSs. Further, the mobility of MESSs enables a single unit of functioning as multiple 

stationary units. The problem of sizing an MESS and locating its seasonal stations (buses) is not 

investigated in the literature. Chapter 4 of this thesis proposes an MESS sizing and allocation 

technique taking variables variations into account (load variations, renewable resources 

intermittency, and market prices fluctuations). The sizing problem has a mixed-integer 

nonlinear form; thus, a hybrid optimization technique is developed based on both the particle 

swarm algorithm (PSO) and mixed integer convex programming. Besides, a dynamic model for 

the MESS is adopted for the capacity and lifetime constraints. A network power flow (for 

voltage level and feeders’ ampacity) is considered in the problem formulation as well. To 

validate the proposed solution, a case study is conducted on a real 41-bus radial feeder in 

Ontario, Canada and using real renewable, load, and market data. This Chapter starts with the 

problem formulation in Section 4.2. The proposed sizing algorithm is explained in Section 4.3. 
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A case study compares stationary and mobile storage is investigated in Section 4.4. Final 

conclusions are drawn in Section 4.5.    

It is worth mentioning that this chapter has similar objectives and tools as Chapter 3, 

however, the main difference is the movability of the MESS and modeling it.  

4.2  Problem Formulation 

4.2.1 Mobile Storage System Structure 

VSC

DC/DC

C

DC-link Voltage
control

Current
control

Operator

Battery

CB1 MW/3 MWh

Current
control

Is Vdc

Qt

Pt
Xt

L

DC/AC

Buck-boost 

 
Figure 4-1 MESS structure. 

Before discussing the sizing problem, the MESS structure is explained briefly. As shown in 

Figure 4-1, an MESS consists of an ESS carried on a truck. On the one hand, the ESS is an 

array of battery cells (e.g., lithium-ion) which can connect to the grid via a dc/dc/ac 

bidirectional VSC. The dc/dc converter is a current-controlled buck-boost controller. The 

current controller regulates the bidirectional power according to the set point provided by the 

operator via changing the dc/dc current controller set point. On the other hand, the dc/ac 

converter transfers the power to (from) the grid via regulating the dc-link voltage [104]. In the 
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dq-frame, the dc-link voltage controller generates the VSC-direct current set point whereas the 

operator tunes the reactive power via changing the quadrature current set point, which can also 

be controlled autonomously to regulate the terminal voltage, without the operator interference. 

Further details on the design of the current and dc-link voltage controllers can be found in 

[104]. On the other hand, the operator must define the truck desired bus (station 𝑥𝑡) at each 

sample so that the driver moves the MESS to this station. It is worth mentioning that the direct 

connection of an MESS to a medium voltage network involves special commissioning 

procedures; thus, it is preferred to be connected to a low-voltage network or equipping each 

MESS station with a low-voltage terminal via a distribution transformer. An MESS is an 

investment conducted by a Disco. The Disco aims at profit maximization while maintaining an 

acceptable power quality level (e.g., voltage level). To fulfill this objective, the optimization 

problem must consider the participation of the MESS in the following grid-support services:1) 

Energy arbitrage. 2) Power loss minimization. 3) Voltage regulation.   

4.2.2 MESS Planning Cost Function 

 The cost function presents the Disco profit during the planning horizon as given in (4.1). 

The cost function 𝑝𝑟𝑜 is calculated for each time sample 𝑡 indexed in an operation year 𝑦 in a 

certain operation scenario 𝑠𝑐. Each operation scenario 𝑠𝑐 has a certain probability 𝜌𝑠𝑐 such 

that ∑ 𝜌𝑠𝑐𝑠𝑐 = 1 . A scenario represents a different load, PV, wind and load power and market 

prices combinations. 

𝑀𝑎𝑥(𝑝𝑟𝑜 = 𝑖𝑛𝑐 − 𝑐𝑔𝑟𝑖𝑑 − 𝑐𝑀𝐸𝑆) 

𝑖𝑛𝑐 =∑𝜌𝑠𝑐∑∑𝑠𝑝𝑠𝑐,𝑦,𝑡∑𝑝𝑠𝑐,𝑦,𝑡
𝐿𝑜𝑎𝑑(𝑖)𝜏

𝑖𝑡𝑦𝑠𝑐

 

𝑐𝑔𝑟𝑖𝑑 =∑𝜌𝑠𝑐∑∑𝑏𝑝𝑠𝑐,𝑦,𝑡𝑝𝑠𝑐,𝑦,𝑡
𝑔𝑟𝑖𝑑

𝑡𝑦𝑠𝑐

𝜏 

(4.1) 

(4.2) 
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𝑐𝑀𝐸𝑆 = 𝐶𝑡𝑟𝑢𝑐𝑘 +∑𝑧𝑀𝐸𝑆(𝑖)𝐹𝐶𝑀𝐸𝑆(𝑖) + 𝐶
𝑀𝐸𝑆

𝑀𝑉𝐴⁄ (𝕊𝐸𝑆)𝕊𝐸𝑆

𝑖

+ 𝐶
𝑀𝐸𝑆

𝑀𝑊ℎ⁄ (1 + 𝛼𝑇𝑁)𝔼𝑀𝐸𝑆 +∑
𝑂&𝑀𝑦

𝑀𝐸𝑆

(1 + 𝐼𝑅)𝑌−1
𝑦

 

(4.3) 

 

 

 

 

(4.4) 

The Disco profit results from the income 𝑖𝑛𝑐 coming from selling energy to the end-users as 

in (4.2). This income results from selling the load power 𝑝𝑠𝑐,𝑦,𝑡
𝐿𝑜𝑎𝑑  with a sell price 𝑠𝑝𝑠𝑐,𝑦,𝑡 that 

depends on the Disco tariff. Each Disco buys the power 𝑝𝑠𝑐,𝑦,𝑡
𝑔𝑟𝑖𝑑

 from the energy market for a 

variable wholesale buy price 𝑏𝑝𝑠𝑐,𝑦,𝑡 that witnesses a big change from off-peak to peak hours, 

depending on the market volatility.  An MESS can perform a load shifting to reduce the cost of 

the purchased energy 𝑐𝑔𝑟𝑖𝑑 to increase the profit as in (4.3). Maximizing the profit means 

reducing the power loss cost as will be explained later. Finally, 𝑐𝑀𝐸𝑆 is the MESS capital and 

running cost that consists of five parts as in  

 

(4.4):  

1. The truck capital cost (𝑇𝐶). 

2.  The MESS stations cost 𝐹𝐶𝑀𝐸𝑆 that includes a fixed cost for each station 

constructed and preparation at a certain bus i. 

3. The energy storage (ES) power cost 𝐶
𝑀𝐸𝑆

𝑀𝑉𝐴⁄  that represents the capital cost for 

purchasing the power conversion system of the battery. This cost varies with the 
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converter size with a nonlinear function as shown in Figure 4-2. The data are adapted 

from the average power conversion source cost provided in the EPRI report [105]. 

4. The ESS battery bank cost that represents the storage element cost 𝐶
𝑀𝐸𝑆

𝑀𝑊ℎ⁄ . It is 

worth mentioning that if an extension is desired for the battery, its cost can be 

considered by setting the parameter 𝛼𝑇𝑁; this maybe the case to reach a certain 

number of cycles TN because the battery life is a function in the minimum state of 

charge (SOC) [20]. 

5. The MESS operation and maintenance costs 𝑂&𝑀𝑀𝐸𝑆 are calculated yearly and 

transferred to the first year depending on the interest rate 𝐼𝑅 during the project life y 

[9]. If the inflation rate is significant, it can be included to calculate the effective 

interest rate as explained in [23]. The maintenance cost includes the expected truck 

and ESS periodical maintenance cost, whereas the operation cost includes the MESS 

driver stipend and the truck yearly commute cost (gasoline cost, oil change cost, 

etc.).  

 

Figure 4-2 Power conversion system cost versus rated power. 
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4.2.3 MESS Model 

The MESS modeling is different from the stationary ESS in that it should be allocated at a 

single station as given in (4.5). The constraint in (4.5) states that at any instant t in a planning 

year y of a particular scenario sc, the location of the MESS 𝑥𝑠𝑐,𝑦,𝑡
𝑀𝐸𝑆 (𝑖) is unique at a single station 

of the MESS stations that belongs to the buses set 𝒩𝑀𝐸𝑆. Another important factor is the 

number of daily trips DT conducted by the MESS which is expressed in (4.6). If an MESS 

stayed the whole day at the same station i=a, then ∑ 𝑥𝑠𝑐,𝑦,𝑡
𝑀𝐸𝑆 − 𝑥𝑠𝑐,𝑦,𝑡−1

𝑀𝐸𝑆24
𝑡=1 = 0 ∀𝑖 which means 

that no trips are made. On the other hand, if the MESS moved from a station a to another one b 

at a time 𝛼, then |𝑥𝑠𝑐,𝑦,𝛼+1
𝑀𝐸𝑆 (𝑎) − 𝑥𝑠𝑐,𝑦,𝛼

𝑀𝐸𝑆 (𝑎)| = |𝑥𝑠𝑐,𝑦,𝛼+1
𝑀𝐸𝑆 (𝑏) − 𝑥𝑠𝑐,𝑦,𝛼

𝑀𝐸𝑆 (𝑏)| = 1 which means that 

DT is accumulated by one each time a transition is made. The daily number of trips is upper 

bounded in (4.7). It is worth mentioning that there is a transit or delay each time the trip is 

made, however; adding an exact delay model significantly complicates the problem; thus, an 

instantaneous transition is assumed and the delay effect is investigated later. 

∑𝑥𝑠𝑐,𝑦,𝑡
𝑀𝐸𝑆 (𝑖)

𝑖

= 1 ∀𝑖 ∈ 𝒩𝑀𝐸𝑆 

𝐷𝑇𝑠𝑐,𝑦,𝑡=24 =
∑ ∑ |𝑥𝑠𝑐,𝑦,𝑡

𝑀𝐸𝑆 (𝑖) − 𝑥𝑠𝑐,𝑦,𝑡−1
𝑀𝐸𝑆 (𝑖)|𝑖

24
𝑡=1

2
 

𝐷𝑇𝑠𝑐,𝑦,𝑡=24 ≤ 𝐷𝑇̅̅ ̅̅  

(4.5) 

 

(4.6) 

(4.7) 

The stations location and sizing of an MESS is expressed in (4.8)-(4.10). The binary variable 

𝑧𝑀𝐸𝑆(𝑖) indicates that the bus i is chosen to host an MESS station. The number of stations is 

limited in (4.8), whereas the station maximum power 𝕊𝑀𝐸𝑆 ̅̅ ̅̅ ̅̅ ̅is upper bounding the MESS rated 

power 𝕊𝑀𝐸𝑆 in (4.9). The MESS maximum allowable capacity 𝔼𝑀𝐸𝑆̅̅ ̅̅ ̅̅ ̅ is expressed in (4.10) .  
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∑𝑧𝑀𝐸𝑆(𝑖) ≤ 𝑧𝑀𝐸𝑆  ∀𝑖 ∈ 𝒩𝑀𝐸𝑆

𝑖

 

0 ≤ 𝕊𝑀𝐸𝑆 ≤ 𝑧𝑀𝐸𝑆(𝑖)𝕊𝑀𝐸𝑆̅̅ ̅̅ ̅̅ ̅ 

0 ≤ 𝔼𝑀𝐸𝑆 ≤ 𝑧𝑀𝐸𝑆(𝑖)𝔼𝑀𝐸𝑆̅̅ ̅̅ ̅̅ ̅ 

(4.8) 

(4.9) 

(4.10) 

The MESS power consists of two mutually exclusive terms; the charging power 𝑐ℎ𝑠𝑐,𝑦,𝑡
𝑀𝐸𝑆  

(positive) and discharging power 𝑑𝑐𝑠𝑐,𝑦,𝑡
𝑀𝐸𝑆  (negative) as shown in (4.11). The MESS is only 

allowed to charge or discharge at a certain station i if it exists at this station and within the rated 

power limit as in (4.12)-(4.13). The reactive power injected/absorbed at any bus for voltage 

regulation purposes is similarly constrained in (4.14). Finally, the converter thermal limit is 

defined in (4.15). It is worth mentioning that the constraints (4.12)-(4.15) are nonlinear because 

both 𝕊𝑀𝐸𝑆and 𝑥𝑠𝑐,𝑦,𝑡
𝑀𝐸𝑆 (𝑖) are decision variables.   

𝑝𝑠𝑐,𝑦,𝑡
𝑀𝐸𝑆 (𝑖) = 𝑐ℎ𝑠𝑐,𝑦,𝑡

𝑀𝐸𝑆 (𝑖) + 𝑑𝑐𝑠𝑐,𝑦,𝑡
𝑀𝐸𝑆 (𝑖) 

0 ≤ 𝑐ℎ𝑠𝑐,𝑦,𝑡
𝑀𝐸𝑆 (𝑖) ≤ 𝕊𝑀𝐸𝑆𝑥𝑠𝑐,𝑦,𝑡

𝑀𝐸𝑆 (𝑖) 

−𝕊𝑀𝐸𝑆𝑥𝑠𝑐,𝑦,𝑡
𝑀𝐸𝑆 (𝑖) ≤ 𝑑𝑐𝑠𝑐,𝑦,𝑡

𝑀𝐸𝑆 (𝑖) ≤ 0 

−𝕊𝑀𝐸𝑆𝑥𝑠𝑐,𝑦,𝑡
𝑀𝐸𝑆 (𝑖) ≤ 𝑞𝑠𝑐,𝑦,𝑡

𝑀𝐸𝑆 (𝑖) ≤ 𝕊𝑀𝐸𝑆𝑥𝑠𝑐,𝑦,𝑡
𝑀𝐸𝑆 (𝑖) 

𝑝𝑠𝑐,𝑦,𝑡
𝑀𝐸𝑆 (𝑖)2 + 𝑞𝑠𝑐,𝑦,𝑡

𝑀𝐸𝑆 (𝑖)2 ≤ 𝑥𝑠𝑐,𝑦,𝑡
𝑀𝐸𝑆 (𝑖)𝕊𝑀𝐸𝑆2 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

Regarding the capacity sizing, the MESS capacity at any time sample is defined as an 

integrator of the power injected/absorbed at any station i. Both the charging and discharging 

efficiencies 𝜂𝑐ℎ, 𝜂𝑑𝑐  are considered as well in (4.16). The MESS capacity is upper-bounded by 

its rated value in (4.17). The number of cycles 𝑁𝑀𝐸𝑆 is another integrator that counts the MESS 

energy at/from any bus i as in (4.18). When a rated capacity 𝔼𝑀𝐸𝑆 is totally absorbed and 
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injected by the ESS, 𝑁𝑀𝐸𝑆  is incremented by 1× 𝔼𝑀𝐸𝑆. The total ESS number of cycles 𝑇𝑁𝐸𝑆̅̅ ̅̅ ̅̅ ̅ is 

imposed by (4.19).  

𝐸𝑠𝑐,𝑦,𝑡+1
𝑀𝐸𝑆 = 𝐸𝑠𝑐,𝑦,𝑡

𝑀𝐸𝑆 +∑(𝜂𝑐ℎ𝑐ℎ𝑠𝑐,𝑦,𝑡
𝑀𝐸𝑆 (𝑖) + 𝜂𝑑𝑐𝑑𝑐𝑠𝑐,𝑦,𝑡

𝑀𝐸𝑆 (𝑖))𝜏

𝑖

 

0 ≤ 𝐸𝑠𝑐,𝑦,𝑡
𝑀𝐸𝑆 ≤ 𝔼𝑀𝐸𝑆  

𝑁𝑠𝑐,𝑦,𝑡
𝑀𝐸𝑆 = 𝑁𝑠𝑐,𝑦,𝑡−1

𝑀𝐸𝑆 +
∑ (𝜂𝑐ℎ𝑐ℎ𝑠𝑐,𝑦,𝑡

𝑀𝐸𝑆 (𝑖) − 𝜂𝑑𝑐𝑑𝑐𝑠𝑐,𝑦,𝑡
𝑀𝐸𝑆 (𝑖))𝜏𝑖

2
 

∑𝜌𝑠𝑐∑∑𝑁𝑠𝑐,𝑦,𝑡=24
𝐸𝑆

𝑡𝑦𝑠𝑐

≤ 𝑇𝑁̅̅ ̅̅ 𝔼𝑀𝐸𝑆 

(4.16) 

(4.17) 

(4.18) 

 

(4.19) 

4.2.4 Final Optimization Problem 

Regarding the power flow, the same constraints in (3.34)-(3.48) are adopted here. Further, in 

the case of using DGs, SVCs or power imbalance solution, the operation constraints can be 

easily added from Section 3.2.  

To focus on the MESS sizing problem. It is considered as the only technology under study. 

The final optimization problem is shown in (4.20). 

max
𝕊𝑀𝐸𝑆,𝔼𝑀𝐸𝑆,𝕫𝑀𝐸𝑆,𝕩𝑀𝐸𝑆,ℙ,ℚ,𝕧

(𝑝𝑟𝑜)

𝑠. 𝑡. {
𝑀𝐸𝑆𝑆 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑎𝑙 𝑚𝑜𝑑𝑒𝑙: (4.5) − (4.19) 
𝑃𝑜𝑤𝑒𝑟 𝑓𝑙𝑜𝑤 𝑚𝑜𝑑𝑒𝑙: (3.34) − (3.48)

 

(4.20) 

 

The decision variables of this problem include the MESS rated power and 

capacity 𝕊𝑀𝐸𝑆 , 𝔼𝑀𝐸𝑆, and the MESS stations set 𝕫𝑀𝐸𝑆. Other variables that result from the 

optimization process represent the system operation nature during the different scenarios, years 

and samples. These variables help the operator to study the system performance under the 

planning decision results. These variables include the instantaneous MESS location set  𝕩𝑀𝐸𝑆 =

⋃ 𝑥𝑠𝑐,𝑦,𝑡
𝑀𝐸𝑆  (𝑖)𝑆𝑐,𝑦,𝑡,𝑖  and similarly, the active, reactive power, and voltage sets: ℙ𝑀𝐸𝑆 =
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⋃ 𝑝𝑠𝑐,𝑦,𝑡
𝑀𝐸𝑆  (𝑖)𝑆𝑐,𝑦,𝑡,𝑖 , ℚ𝑀𝐸𝑆 = ⋃ 𝑞𝑠𝑐,𝑦,𝑡

𝑀𝐸𝑆  (𝑖)𝕧𝑀𝐸𝑆 = ⋃ 𝑣𝑠𝑐,𝑦,𝑡
𝑀𝐸𝑆  (𝑖)𝑆𝑐,𝑦,𝑡,𝑖𝑆𝑐,𝑦,𝑡,𝑖 , and the battery 

dynamics, such as the capacity and number of cycles. The final sizing problem (4.20) is a mixed 

integer nonlinear problem due to the MESS constraints (4.12)-(4.15). Further, the cost function 

is a nonlinear function of the storage rated-power-dependent cost as shown in Figure 4-2. Next, 

Section 4.3 presents the proposed algorithm to solve this problem.  

4.3 Proposed Algorithm 

To convert the problem (4.20) from a mixed-integer nonconvex problem (due to constraints 

(4.12)-(4.15) and the nonlinear converter cost) into a convex one, the following technique is 

proposed. First, the particle swarm optimization is utilized to detect the optimal MESS rated 

power (𝕊𝐸𝑆) and stations optimal locations (𝕫𝑀𝐸𝑆). Using all these variables into (4.20), the 

problem will be converted into a mixed-integer convex programming problem which can be 

solved easily to find the optimal capacity. This technique mixes the artificial intelligence 

method with the gradient-based optimization. The PSO is a smart iterative search method that 

changes the decision variables (swarm positions) to optimize (minimize or maximize) a certain 

criterion [106]. In this chapter, the PSO changes the MESS rated power and locations such that 

the profit is maximized. The proposed algorithm is described in the following steps. 

The PSO generates a random initial population of particles 𝕐(𝑗 = 0) which is defined by M 

particles size as in (4.21). Each particle at certain iteration j, 𝑦(𝑗) consists of the MESS rated 

power 𝕊𝑚
𝑀𝐸𝑆(𝑗)  with its associated cost and a proposed locations set 𝕫𝑚

𝑀𝐸𝑆(𝑗)as in (4.22). 

𝕐(𝑗) = [𝑦1(𝑗), 𝑦2(𝑗),… , 𝑦𝑚(𝑗), … 𝑦𝑀(𝑗)]

𝑦𝑚(𝑗) = [𝕊𝑚
𝑀𝐸𝑆(𝑗), 𝕫𝑚

𝑀𝐸𝑆(𝑗)] → 𝑐𝑚 
𝑀𝐸𝑆

𝑀𝑉𝐴⁄ (𝑗)
 

(4.21) 

(4.22) 
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To maintain the particles limits, the following constraints in (4.23)-(4.24) are imposed on all 

particles to keep the rated power within the allowable range and define the locations binary sets. 

0 ≤ 𝕊𝑚
𝑀𝐸𝑆(𝑗) ≤ 𝕊𝑀𝐸𝑆̅̅ ̅̅ ̅̅ ̅

𝕫𝑚
𝑀𝐸𝑆(𝑗)𝜖{0,1}

 
(4.23) 

(4.24) 

For each particle, the associated profit is calculated by solving the mixed-integer convex 

problem in (4.25). The problem is the same as the one in (4.20) after the following 

modifications. A) The MESS location set becomes a parameter decided by each particle. B) The 

nonlinear constraints (4.12)-(4.15) become convex (linear or quadratic) after considering the 

MESS rated power a constant parameter. C) The rated power cost is calculated from an 

interpolation table follows Figure 4-2. Now, this problem can be efficiently solved by solvers as 

GUROBI [102]. The resulting capacity is also saved for each solution after solving (4.25) as 

expressed in (4.26) 

max
𝔼𝑀𝐸𝑆,𝕩𝑀𝐸𝑆,ℙ,ℚ,𝕧

(𝑝𝑟𝑜𝑚(𝑗) = 𝑝𝑟𝑜(𝑦𝑚(𝑗), 𝑐𝑚 
𝑀𝐸𝑆

𝑀𝑉𝐴⁄ (𝑗)))

𝑠. 𝑡.

{
 
 
 
 

 
 
 
 
𝑀𝐸𝑆𝑆 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑎𝑙 𝑚𝑜𝑑𝑒𝑙: (5) − (7), (10), (11), (16) − (19) 

𝑃𝑜𝑤𝑒𝑟 𝑓𝑙𝑜𝑤 𝑚𝑜𝑑𝑒𝑙: (3.34) − (3.48)

ℤ𝑀𝐸𝑆 = 𝕫𝑚
𝑀𝐸𝑆(𝑗)

0 ≤ 𝑐ℎ𝑠𝑐,𝑦,𝑡
𝑀𝐸𝑆 (𝑖) ≤ 𝕊𝑚

𝑀𝐸𝑆(𝑗)𝑥𝑠𝑐,𝑦,𝑡
𝑀𝐸𝑆 (𝑖)

−𝕊𝑚
𝑀𝐸𝑆(𝑗)𝑥𝑠𝑐,𝑦,𝑡

𝑀𝐸𝑆 (𝑖) ≤ 𝑑𝑐𝑠𝑐,𝑦,𝑡
𝑀𝐸𝑆 (𝑖) ≤ 0

−𝕊𝑚
𝑀𝐸𝑆(𝑗)𝑥𝑠𝑐,𝑦,𝑡

𝑀𝐸𝑆 (𝑖) ≤ 𝑞𝑠𝑐,𝑦,𝑡
𝑀𝐸𝑆 (𝑖) ≤ 𝕊𝑚

𝑀𝐸𝑆(𝑗)𝑥𝑠𝑐,𝑦,𝑡
𝑀𝐸𝑆 (𝑖)

𝑝𝑠𝑐,𝑦,𝑡
𝑀𝐸𝑆 (𝑖)2 + 𝑞𝑠𝑐,𝑦,𝑡

𝑀𝐸𝑆 (𝑖)2 ≤ 𝑥𝑠𝑐,𝑦,𝑡
𝑀𝐸𝑆 (𝑖)𝕊𝑚

𝑀𝐸𝑆(𝑗)2

𝔼𝑚
𝑀𝐸𝑆(𝑗) = {𝔼𝑀𝐸𝑆|arg {max𝔼,𝕩

 

(𝑝𝑟𝑜𝑚(𝑗))}}

 

(4.25) 

 

 

 

 

(4.26) 

 

At each iteration J; the local and global best positions are updated as follows:  

𝑦𝑙𝑜𝑐(𝑗 = 𝐽) = {𝑦𝛽(𝐽)|𝑝𝑟𝑜𝛽(𝐽) > 𝑝𝑟𝑜𝑚(𝐽)∀𝑚}

𝑦𝐺𝑙𝑜(𝐽) = {𝑦𝛼|𝑝𝑟𝑜𝛼 > 𝑝𝑟𝑜𝑚(𝑗)∀𝑚, ∀𝑗 ≤ 𝐽}
 

(4.27) 

(4.28) 
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Depending on the iteration J, the new inertia 𝜔 and speed vectors 𝑉 are found from (4.29)-

(4.30), the speed is inclined to both the local and global best positions depending on the 

factors 𝑐1, 𝑐2. Finally, the speed is used to update all particles positions as shown in (4.32) after 

checking its limits in (4.31) 

𝜔(𝑗) = 𝜔𝑚𝑎𝑥 −
𝜔𝑚𝑎𝑥 −𝜔𝑚𝑖𝑛

𝐽
𝑗

𝑉𝑚(𝑗 + 1) = 𝜔(𝑗)𝑉𝑚(𝑗) + 𝑐1𝑟1(𝑦
𝑙𝑜𝑐(𝑗) − 𝑦𝑚(𝑗)) + 𝑐2𝑟2(𝑦

𝐺𝑙𝑜(𝑗) − 𝑦𝑚(𝑗))

−𝑉𝑚 ≤ 𝑉𝑚(𝑗 + 1) ≤ 𝑉𝑚
𝑦𝑚(𝑗 + 1) = 𝑉𝑚(𝑗 + 1) + 𝑦𝑚(𝑗)

 

(4.29) 

(4.30) 

(4.31) 

(4.32) 

Step 2 is repeated as long as the stopping criterion is not triggered. There are two stopping 

criteria. First, if the maximum number of iterations 𝑗 ̅ reached. Second, if the profit percentage 

change stayed within a pre-calculated tolerance zone 𝜀 for a certain number of iterations 𝛾 as 

explained in (4.34). 

𝑗 ≥ 𝑗̅

∆𝑝𝑟𝑜𝐺𝑙𝑜(𝑗: 𝑗 + 𝛾) ≤ 𝜀, 𝑗 + 𝛾 ≤ 𝑗̅
 

(4.33) 

(4.34) 

 

 

Finally, if the stopping criterion is achieved, an optimum sizing and allocation decision is 

reached. Figure 4-3 shows the flowchart of the proposed optimization framework.  
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Start j  =0

Initial particle position 

update current participles position, 
check the limits

Calculate the corresponding Disco Profit,   
Rated power cost for all particles 

Update the local, global best positions

Find the new inertia and the particles 
speeds , check speed limits

j =j +1 
reach stopping 

criterion

Optimum MESS 
size/ locations  

are reached

END

 No YES

Calculate the associated MESS capacity for 
the best Particle 

 

Figure 4-3 Hybrid optimization scheme for MESS Sizing and allocation. 

It is worth mentioning that the resulting profit is not the actual profit. In reality, the MESS 

transit period is not zero, and every time the MESS moves from a station a at instant 𝜆 heading 

to another station b at time k, it will stay in transit for a period 𝜏𝑎𝑏𝑘 (depends on the station 

locations and transit time) until it reaches its destination at instant 𝜆 + 𝜏𝑎𝑏𝜆. The set of time 𝒩𝑡𝑟 

expressed in (4.35) indicates that the MESS is in transit. If the MESS is in transit, that means 

that the Disco has to buy (or sell) the MESS scheduled energy from the grid till the MESS 

reaches its next destination (b). Thus, the grid purchased cost is adjusted and the real profit 

ℛ𝑝𝑟𝑜 is calculated as in (4.36). 
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𝒩𝑡𝑟 = {[𝜆, 𝜆 + 𝜏𝑎𝑏𝜆]|𝑥𝑠𝑐,𝑦,𝑡
𝑀𝐸𝑆  (𝑎) = 𝑥𝑠𝑐,𝑦,𝑡+1

𝑀𝐸𝑆  (𝑏) = 1∀𝑎 ≠ 𝑏, 𝑎, 𝑏 ∈𝒩𝑀𝐸𝑆

ℛ𝑝𝑟𝑜 = 𝑝𝑟𝑜 −∑𝜌𝑠𝑐∑ ∑ 𝑏𝑝𝑠𝑐,𝑦,𝑡𝑝𝑠𝑐,𝑦,𝑡
𝑀𝐸𝑆

𝑡∈𝒩𝑡𝑟𝑦𝑠𝑐

𝜏  

(4.35) 

(4.36) 

4.4 Case Study 

The MESS sizing algorithm is applied to the system described in Section 3.3 and shown in 

Figure 4-1. There exist three DG units that operate daily during peak-hours (5:8 pm). The rated 

power for DG units and RESs is given in Table 4-1. A daily realistic residential load profile is 

adopted (as measured by PJM [95]) and depicted in Figure 4-4 (a). Two PV plants (PV1, PV2) 

have a generation profile used from [96] as shown in Figure 4-4(b), whereas three wind 

facilities (WT1, WT2, WT3) are dispersed on the feeder. The energy price is taken from [107]. 

Typical wind profiles in [108] are used and shown in Figure 4-4(d). The total RES penetration 

of this feeder reaches 37%. The energy sell price is assumed to a fixed monthly tariff as adopted 

by the distribution utility company (e.g., [109], [110]). Twelve years’ historical market, power 

data are used as real scenarios (realizations) to cover the whole planning horizon, scenarios are 

derived as explained in Section 3.2. 
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Figure 4-4 Single line diagram for the distribution feeder under study. 

Regarding the MESS, the lithium-ion battery is adopted due to its high energy intensity, high 

efficiency, and long life. The battery technical and economic data are taken from [100]. The 

storage life cycles are 3000 life cycles during the planning period. The power conversion cost 

follows Figure 4-2, whereas the yearly operation and maintenance cost is assumed 12 k$/year 

(assuming a part-time driver with two hours duty daily), and the truck capital cost is assumed 50 

k$. For MESS stations allocation, ten buses are chosen as candidates as given in Table 4-1; only 

three buses are allowed as MESS stations. The PSO parameters are set using a trial and error 

approach, and the population size was found to provide an adequate computational time for this 

particular problem. For defining the MESS daily number of trips 𝐷�̅�, the minimum value is 

desirable given that it achieves the maximum profit and guarantees a feasible solution. Here, 𝐷𝑇̅̅ ̅̅  

was found to be four. The sizing problem of the MESS using the proposed algorithm is solved 

by the Gurobi solver in 6 hours and 35 minutes using a 3.30 GHz AMD six-core processor. The 

solver gap from the global optimal is recorded as 0.39%.   
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Table 4-1 Optimization input parameters. 

RES, 

DG units  

rating 

𝑝𝑤𝑡1 = 2𝑀𝑊, 𝑝𝑤𝑡2 = 𝑝𝑤𝑡3 = 1.5𝑀𝑊, 𝑝𝐷𝐺1 = 1 𝑀𝑊 

𝑝𝑝𝑣1 = 𝑝𝑝𝑣2 = 0.5 𝑀𝑊, 𝑝𝐷𝐺2 = 𝑝𝐷𝐺3 = 0.5 𝑀𝑊 

𝒩𝑀𝐸𝑆 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = {4, 6, 9, 12, 22, 25, 28, 35, 39, 40} 

MESS 

Data 

𝑣 = 0.95, �̅� = 1.05, 𝜏 = 1, 𝐼𝑅 = 3%, 𝑌 = 12, 𝑆𝑐 = 48,

 𝕊𝑀𝐸𝑆̅̅ ̅̅ ̅̅ ̅ = 5 𝑀𝑉𝐴, 𝔼𝐸𝑆̅̅ ̅̅ ̅ = 15𝑀𝑊ℎ, 𝐹𝐶𝑀𝐸𝑆 = 5000$,

𝐶𝑡𝑟𝑢𝑐𝑘 = 50𝐾$, 𝐷𝑇̅̅ ̅̅ = 4, 𝛼𝑇𝑁 = 20%

𝐷𝑁𝑀𝐸𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅ = 1, 𝑇𝑁𝑀𝐸𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅ = 3000,  𝑧𝑀𝐸𝑆 = 3, 𝑂&𝑀𝑀𝐸𝑆 = 12𝑘$ 𝑦⁄

𝐶
𝑀𝐸𝑆

𝑀𝑊ℎ⁄ = 600 𝐾$, 𝜂 = 0.85

 

PSO 

Data 

𝐽 = 200, 𝑐1 = 𝑐2 = 2,𝜔𝑚𝑎𝑥 = 0.9, 𝜔𝑚𝑖𝑛 = 0.1

𝑀 = 10, 𝛾 = 8, 𝜀 = 0.25%, 𝑉𝑚 = [0.5 ∗ 𝑜𝑛𝑒𝑠(10,1); 1 ]
 

 

Two cases are compared in Table 4-2 during the whole operation period, which includes the 

MESS and stationary ESSs (SESSs). The SESS sizing and allocation is same as the MESS with 

changing the size, allocation constraints with theses used in [9]. Because the MESS is a 

centralized ESS, it has a higher power rating which yields a less per unit power-converter cost. 

It is interesting how the SESS has a higher converter total cost although its aggregated power 

rating is less that in the MESS. The saving in the power converter cost alone reached 200 k$ 

which is the main reason in the profit privilege of the MESS. Because the optimal MESS size is 

higher than the equivalent SESS size, the MESS has managed to gain greater arbitrage benefit 

and was capable of achieving higher losses reduction because it improves the voltage profile. 

Further, a significant maximum load reduction is reached which may defer the substation or 

feeder upgrade cost as well. The MESS has achieved 1.38 times the equivalent SESS profit. 

Regarding the MESS stations allocations, three locations are selected by the optimization 

algorithm; one near the feeder substation {bus 9}, while the other two at the end of each lateral 

(buses 28, 40). This result makes senses because the MESS is supposed to provide a reactive 
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power support for voltage regulation at the weakest buses. Regarding the optimality of the 

resulting MESS sizing, Figure 4-4 compares the profit with different MESS power ratings. It 

can be concluded that the proposed algorithm has managed to define an optimum solution. 

Table 4-2. Optimization Results With different ESS Technologies. 

 MESS Stationary-ESSs 

Rated power 3250 kVA 727, 595, 1500 kVA: 2822 kVA (Total) 

Capacity 6381.3 kWh 1455, 1190, 3000 kWh:  5645 kWh (Total) 

Optimal locations 9 (St.1), 28 (St.2),  40 (St.3) 28, 39, 40 

Power converter cost 418,220$ 618,300$ 

Battery bank cost 3,828,780$ 3,387,000$ 

Total Storage cost 4,247,000 $ 4,005,300 $ 

Losses reduction 47.22% 45.17 % 

Max. Load reduction 4.38% 4.39 % 

Saved losses 2,092,500 $ 1,985,600 $ 

Arbitrage profit 2,919,800 $ 2,570,800 $ 

Total profit 10,138,000$ 9,923,500 $ 

Profit increase 765,400 $ 550,900 $ 

 

To monitor the dynamic performance of the MESS that results from the sizing discussion, a 

winter day scenario is shown in Figure 4-6. During this scenario, the MESS shifts late night 

energy to the afternoon peak hour to achieve arbitrage profit as shown in Figure 4-6 (b). 

Regarding the MESS location transitions, first, the MESS provides a leading reactive power 

support at the far end of the feeder (Station 3 or bus 40) then it moves to bus 9 to start charging. 

The reason for this transition is reducing the power loss by choosing a charging location near 

the main substation. The second transition is made to bus 28 (Station 2) near WT3 where the  
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Extra wind power is saved for peak hours. After charging the surplus wind energy, the MESS 

moves to the feeder end (at Station 3 located at bus 40) where the MESS performs voltage 

regulation with energy arbitrage (discharging stored off-peak energy during the peak hour).  

The number of the MESS trips is kept four as given in the optimization constraints and 

depicted in Figure 4-6(d). Besides, the capacity is upper-bounded by the rated value, and the 

number of charging cycles is one as shown in Figure 4-6(e).  
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Figure 4-6. Summer day scenario results (a) Energy buy and sell prices (b) grid purchased power 

(after/before) MESS (c) MESS active and reactive Powers (d) MESS location (station). (e) Capacity and 

daily number of cycles. 

It is worth mentioning that MESS positioning strategy will change if it does not participate in 

voltage regulation (omit constraint (48) and instead, add SVCs or capacitors); this is all up to 

the DNO who may prefer different energy management strategies for the MESS. It should be 

noted that these results are mainly due to the advantage of cheaper bulk power converter cost 

and generally speaking, it cannot always be generalized that the MESS is a better investment 

option than the SESS. In fact, a separate cost-benefit analysis for each technology should be 

conducted to decide the optimal option for a given system. Further, the MESS has some 
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reliability disadvantage due to its transition from a station to another (transition delay). Finally, 

the MESS cannot always guarantee a successful replacement for a large number of SESSs, as 

more than one MESS can be required to have different positions in enormous power systems. 

This point will be investigated in future research.  

4.5 Conclusion 

This chapter proposed a sizing and allocation algorithm for a mobile energy storage system 

in the distribution system. The optimization aimed at maximizing the utility profit by 

considering the participation of the MESS in multi grid-support services including energy 

arbitrage, voltage regulation, and power loss minimization. The sizing constraints included the 

battery life cycles and dynamic capacity, and the feeder voltage levels and ampacity. Load and 

renewable energy variations were modeled via considering different scenarios in the sizing 

scheme. Further, a size-dependent cost for the power converter was adopted which is more 

realistic and practical. The sizing algorithm was tested by a case study on a real radial feeder 

using realistic power and market price data. The study results showed that using the MESS may 

yield a higher profit than stationary ESSs due to its low bulk power conversion cost while 

providing multi-tasking as in multi-stationary ESSs. Future research will consider the same 

problem with multi mobile storage units with more sophisticated transit delay models.  
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Chapter 5  

5 EMS of a Hybrid Wind-Battery Energy Storage System via 

Model Predictive Control 

5.1 Introduction  

This chapter presents a market-oriented energy management system (EMS) for a hybrid 

power system composed of a wind energy conversion system (WECS) and a battery energy 

storage system (BESS). The EMS is designed as a real-time model predictive control (MPC) 

system. The EMS dispatches the BESS to achieve the maximum net profit from the deregulated 

electricity market for the owner (RES energy time shifting). For net profit maximization, the 

EMS aims at expanding the BESS lifetime by applying typical and practical constraints in the 

MPC problem on both the daily number of cycles (DNC) and depth of discharge (DOD). These 

constraints are vital because the BESS life is a function in both the DNC and the DOD. The 

MPC constraints optimizer is designed to tune these lifetime constraints optimally to achieve 

the maximum market revenue with a minimal expended-life cost. The effectiveness of this work 

is verified by comparison with a conventional MPC used in previous works. A simulation study 

is conducted using a real wind power and market data in Alberta, Canada. The new 

contributions of this work to the research field are:  

1) A detailed storage cost is calculated and considered in the optimization problem. 

Further, the expended-life cost, which is a function in the DNC and DOD, has also examined 

for obtaining an accurate and practical economic cost function.   
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2) The trade-off between the DNC and DOD constraints and the daily profit is investigated.  

3) An MPC constraints optimizer is designed to tune the DNC and DOD constraints such 

that the net profit is maximized. The optimizer is maneuvered by the compromises between the 

battery expended-life cost and the expected profit from the market.   

4) Adding the expended-life cost (ELC) converts the optimization into a non-convex 

problem and the proposed constraints optimizer manages in convexifying the problem.   

5) The applicability of the proposed EMS is valid for all types of BESSs and is extendable 

to other areas, such as microgrids, hybrid vehicles storage planning or vehicle to grid (V2G).   

5.2 Hybrid WECS-BESS Description  

In this section, the hybrid system is briefly described including the structure of the power 

and control circuits. The system under investigation is composed of a WECS and a lead-acid 

BESS as depicted in Figure 5-1.  

 

Figure 5-1 The hybrid system structure. 
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5.2.1 Wind Energy Conversion System (WECS)  

The WECS is assumed to be a directly connected permanent-magnet synchronous generator 

(PMSG). The PMSG is connected to the grid via an ac/dc/ac converter composed of two 

voltage-source converters (VSCs) coupled by a dc-link [104]: the stator-side (ac/dc) converter 

and the grid-side converter (dc/ac). The stator-side VSC controls the electrical torque of the 

PMSG to achieve the maximum power point tracking (MPPT). Another task for the stator-side 

VSC is flux regulation via control of the generator direct-axis current. Flux regulation may be 

used for magnetizing the PMSG in the case of demagnetization (due to aging, temperature, etc.). 

In this system, the direct-axis current is regulated to zero to reduce the Ohmic losses.   

On the other hand, the grid-side VSC transfers the harvested power from the dc-link to the 

grid by regulating the dc-link voltage to the nominal value. Another task for the grid-side VSC 

is reactive power compensation. In this work, the unity power factor is set, and no reactive 

power injection to the grid occurs; however, the system owner can exploit the reactive power 

control for ancillary services brought to the grid (e.g., for voltage regulation in case of weak 

grids). In the EMS, the WECS is modeled as an exogenous input that can be predicted from the 

wind speed. By neglecting the fast electrical dynamics of the generator and assuming an ideal 

MPPT, the WECS power is calculated as a first-order filter as follows [111], [112];  

𝑃𝑤 =
𝑃𝑚𝜂𝑤

𝜏𝑤𝑛𝑑𝑠 + 1

          𝑃𝑚 = 0.5 𝜌𝑐𝑝(𝜆)𝐴�̅�𝑤
3
 

(5.1) 

(5.2) 

where 𝑃𝑤, 𝑃𝑚, 𝑠, 𝜂𝑊, 𝜏𝑤𝑛𝑑, 𝜌, 𝑐𝑝, 𝜆, 𝐴, 𝑉�̅� are the WECS harvested electrical power, WECS 

mechanical power, Laplace transform operator, WECS efficiency (including shaft and gears, 

generator, power converter and cable efficiencies), the drivetrain time-constant (e.g., ratio 
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between the shaft inertia and friction), air density, power coefficient, tip speed ratio, rotor disk 

area and the effective wind speed across the rotor disk. Further details are explained in [111]. 

The dominant dynamics of the WECS are modeled as a first-order filter with 𝑃𝑚 representing the 

input disturbance to the system [112] 𝜏𝑤𝑛𝑑 is assumed to be 1.5 s and 𝜂𝑤 = 0.9. 

5.2.2 Battery Energy Storage System (BESS)  

The BESS consists of an array of lead-acid cells. The array terminal voltage is determined by 

the number of series cells in the same string, whereas the total current is the sum of the parallel 

strings currents. The reader is referred to the IEEE Standard 485 [113] for more information on 

the BESS sizing. The BESS is connected to the grid via a dc/dc/ac bidirectional VSC. The dc/dc 

converter is a current-controlled buck-boost controller. The current controller regulates the 

charging (discharging) power according to the set point provided by the EMS. On the other 

hand, the ac/dc converter transfers the power to (from) the grid via regulation of the dc-link 

voltage [104]. Further, the system owner can exploit the reactive power control for ancillary 

services brought to the grid for reactive power support; however, the proposed work does not 

investigate the participation in these services, which may require certain BESS rating 

requirements [40]. All controllers above (current, MPPT and voltage controllers) are relatively 

fast (have very wide bandwidth) with respect to the EMS speed. Thus, the internal dynamics of 

all these are constant from the EMS point of view. As a result, the battery storage dynamics are 

only considered in the EMS design model. 

Any battery has a non-linear time-variant model due to sophisticated parasitic chemical 

losses and the unmodeled temperature-dependent dynamics [114], [115]. The authors of [115] 

derived a system identification model for the lead-acid battery using experimental 

measurements over ten years of experimental results. The resulting model is a third-order state 
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space model (the states are the ambient temperature, the battery current, and the battery charge). 

The authors of [36] used the model given in [115] assuming an ambient temperature operation 

and zero parasitic losses. The resulting battery model is a third-order linearized model, and the 

simplified battery is shown in Figure 5-2. A comparison with the nonlinear battery model shows 

SOC error below 5% [36] and voltage error between 5% and −9%. As a result, the derived 

BESS model in [36] is accurate enough to represent realistic BESS dynamics, particularly for 

supervisory energy management controllers, and, therefore, it is adopted in this work. 

{
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(5.3) 

 

In (5.3),  𝐼𝑐𝑎𝑝, 𝐼𝑏𝑎𝑡, 𝑃𝑏, 𝑆𝑂𝐶, 𝑄, �̅�2  and 𝐸𝑚 are the capacitor current, the battery current, the 

battery power, the state of charge (SOC=1−DOD), the battery rated charge and the open circuit 

voltage, operating point current, respectively. On the other hand, 𝑅0, 𝑅1, 𝑅2, 𝐶1, 𝜏1 are battery-
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Figure 5-2 Simplified battery model. 
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based parameters derived for the equivalent electrical model for the lead-acid battery [36] .The 

reader is referred to [36] for the proof and further details. Further, the work in in [116] derives 

an accurate Li-ion battery model.  

5.2.3 Hybrid System State-Space Model  

The total power injected to the grid (𝑃𝑔) is the sum of the WECS and BESS power (negative 

in case of discharge):  

                                     𝑃𝑔(𝑡) = 𝑃𝑤(𝑡) − 𝑃𝑏(𝑡). (5.4) 

A complete state-space model for the hybrid system is now reached after discussing the BESS 

and WECS models. The discrete version of the resulting model is presented as follows, 

assuming a sampling time Ts:  

     𝑋𝑡(𝑘 + 1) = 𝐴𝑋𝑡(𝑘) + 𝐵𝑈(𝑘) + 𝐵𝑑𝑈𝑑(𝑘)

             𝑌𝑡(𝑘) = 𝐶𝑋𝑡(𝑘) + 𝐷𝑑𝑈𝑑(𝑘)

𝑈𝑑(𝑘) = [𝑃𝑚]

𝑌𝑡(𝑘) = [𝐷𝑂𝐷, 𝑃𝑔, 𝑃𝑏]′

𝑋(0) = 𝑋0.

 

(5.5) 

 

As shown in (5.1) and (5.3), the hybrid system is modeled as a fourth-order state-space 

linearized model with a state vector (𝑘). The controlled input (𝑘) is the battery charging 

current rate provided by the EMS, whereas the exogenous input (𝑘) is the wind power. The 

outputs are the DOD and the battery and grid powers. The system is completely controllable 

and observable because the controllability and observability matrices have full ranks. The 

open-loop system model is depicted in Figure 5-3.  
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Figure 5-3 The system open-loop model. 

5.3  Economic Perspective of Energy Management  

5.3.1 Electricity Market Regulations for Renewables  

Electricity market analysis is a key research topic of its own. We will briefly focus here on 

the renewable energy regulations in both regulated and de-regulated markets. As mentioned 

earlier, the regulated market is a fixed tariff system; however, renewable sources may get a 

fixed tariff in de-regulated markets, because some governments have started to motivate 

investors by providing incentives for renewable sources like photovoltaic (PV) and WECSs. 

For instance, there was a fixed feed-in-tariff issued in 2010 by the Ontario power authority, 

Canada, by adopting a fixed feed-in tariff rate of 0.44 CAD/kWh for renewable resources 

[117]. This policy helped the investors to easily anticipate the projected profits and payback 

periods of their investments. As a result, the PV installed capacity has increased by 218% in 

Ontario within just one year [117]. 

In contrast, in other deregulated markets where renewable sources have no fixed tariff, the 

energy price depends on the difference between the supply and demand. Sometimes, the 
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electricity market can be very volatile and highly unanticipated [39]. Further, the de-regulated 

market behavior changes during different seasons and between working days and weekends 

[118]. Some countries have a daily de-regulated market where the market closes on a day-ahead 

energy commitment. In contrast, other countries run a continuous market with gate closure 

where an energy commitment is made periodically each fixed time before the actual delivery. 

After gate closure, no other bids are allowed, and the committed energy must be delivered to the 

participants [30]. Gate closure has distinct values from one country to another. For instance, a 

gate closure occurs each five minutes in Australia and Nord Pool Spot, each hour in the United 

Kingdom and some United States regions, each four hours in Spain [30] and each two hours in 

Alberta, Canada. The failure of energy commitment after gate closure leads to power-system 

imbalance; thus, the system operator must compensate this imbalance using the available 

spinning reserve. The compensation cost is collected as a penalty from the participants who 

failed to fulfill their energy commitment (mainly PV and WECS facilities). In Alberta, different 

regulations exist for WECS integration [119], [120]. A WECS does not bid in the market 

because it is non-dispatchable; thus, the wind energy is traded with the current existing price 

market (price-taker) [119]. Further, each WECS must declare its system wind power limit 

(SWPL) to the Alberta Electric System Operator (AESO). The SWPL is updated to the AESO 

each 20 minutes [119] and the exported wind power should not exceed 115% of the stated 

SWPL [120]. An EMS controls the SWPL by wind energy curtailment techniques [120]. 

5.3.2 Energy Storage Cost Calculation  

The storage cost study should be comprehensive to include all initial and running costs. This 

study was investigated before in [38]; however, it assumed a fixed DOD and DNC operation. 

Thus, in this section, we will modify the rules of [38] by adding the BESS expended-life 
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constraints in [121]. Here, the cost is divided into two categories: first, a fixed storage cost 

(SC) that includes power converters, balance of operation, replacement cost and maintenance 

costs; second, a BESS expended-life cost (ELC) that depends on the depletion in the storage 

unit cost due to the EMS. For ensuring a profitable hybrid power system, an optimal sizing for 

BESS is required to determine the rated power and capacity of the BESS. The optimal sizing of 

a Lead-acid BESS was discussed before in [122]. By adopting the technique in [122], or any 

other technique, it is possible to determine the power and capacity of the BESS; these values 

determine the annual capital cost of the project (excluding storage cost) as follows [38]:  

               𝐴𝐶𝐶 = (𝑃𝐶𝑆 + 𝐵𝑂𝑃)𝐶𝑅𝐹
               𝐵𝑂𝑃 = 𝐵𝑂𝑃𝑢𝑄
                    𝑃𝐶𝐶 = 𝑃𝐶𝐶𝑢𝑃𝑟

              𝐶𝑅𝐹 =
𝑖𝑟(1 + 𝑖𝑟)𝑦

(1 + 𝑖𝑟)𝑦 − 1

 

(5.6) 

(5.7) 

(5.8) 

 

(5.9) 

where 𝐴𝐶𝐶, 𝑃𝐶𝐶, 𝑃𝐶𝐶𝑢, 𝐵𝑂𝑃, 𝐵𝑂𝑃𝑢, 𝐶𝑅𝐹, 𝑦, 𝑃𝑟, and 𝑖𝑟 are the annual capital cost, power 

converter (total $ and per-unit $/kW) cost, balance of plant (total $ and per-unit $/kWh) cost, 

capital recovery rate, the project lifetime in years, BESS rated power, and the interest rate, 

respectively. The expended-life (EL) of a lead-acid BESS is a function in both the DOD and 

DNC and calculated as follows [121]:  

𝐸𝐿(𝑁,𝐷𝑂𝐷) =
𝑁

𝑁𝑡(𝐷𝑂𝐷)
  

𝑁𝑡(𝐷𝑂𝐷) = 𝑎 ∗ 𝐷𝑂𝐷 + 𝑏

 

(5.10) 

 

(5.11) 

 

where 𝑁𝑡 is the battery total number of cycles as a function of the DOD, and a and b are 

constants depending on the battery type, characteristics and the total number of cycles at the 

nominal DOD (taken 3200 cycle here) [121]. The 𝐷𝑂𝐷 has different forms for other types of 

batteries (Lithium-Ion or NiMH batteries) which are stated in [121]. The relation between the 

expended-life with the DOD and DNC is depicted in Figure 5-4.  
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Figure 5-4 Relation between expended-life (EL), No. of cycles and DOD. 

The expended-life cost (𝐸𝐿𝐶) for the BESS, using it N- cycles with DOD, is estimated as:  

                 𝐸𝐿𝐶(𝑁, 𝐷𝑂𝐷) = 𝑆𝑈𝐶 ∗
𝑁

𝑁𝑡(𝐷𝑂𝐷)
($)

                 𝑆𝑈𝐶 = 𝑆𝑈𝐶𝑢 ∗ 𝑄

 

(5.12) 

(5.13) 

where 𝑆 and 𝑆𝑈𝐶𝑢 are the storage unit total $ and per-unit $/kWh cost, respectively. Note that 

the ELC is calculated on a daily basis and depends on the achieved DNC and DOD. The yearly 

expended-life (YEL) is estimated in (5.14) assuming D working days yearly, with the yearly 

average number of cycles 𝑁𝑎𝑣𝑔 given as  
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                              𝑌𝐸𝐿 =
𝑁𝑎𝑣𝑔𝐷

𝑁𝑡(𝐷𝑂𝐷𝑎𝑣𝑔)
  (pu/year). (5.14) 

Assuming a fixed yearly number of cycles, given the YEL, the battery replacement times 

(BRT) during the project lifetime (y years) is predictable from the desired period of service and 

the depletion period for the battery bank. Further, the wearing period of the BESS (WP) is 

estimated easily as the time of years to reach 100% depletion as in (5.16).    

                  𝐵𝑅𝑇 = 𝑌𝐸𝐿 ∗ 𝑦 − 1 

                𝑊𝑃 =
1

𝑌𝐸𝐿
 (𝑦𝑒𝑎𝑟𝑠)

 

(5.15) 

(5.16) 

In the case of a non-integer BRT, it is rounded up and the project lifetime is extended. In 

such a case, y is updated and equation (5.9) is re-calculated. After deciding the BRT, the annual 

replacement cost (ARC) is calculated, given the future BESS cost (𝐹𝐵𝐶) [38]:  

  𝐴𝑅𝐶 = 𝐶𝑅𝐹 ∗ 𝐹𝐵𝐶 ∗ 𝑄 ∗∑(1 + 𝑖𝑟)−𝑗∗𝑊𝑃

𝐵𝑅𝑇

𝑗=1

 

(5.17) 

Finally, the storage cost is obtained from the ACC, ARC and the annual operation and 

maintenance cost (𝑂&𝑀𝐶), given the annual discharged energy (ADE) [38]:  

  𝑆𝐶 =
𝐴𝐶𝐶 + 𝑂&𝑀𝐶 + 𝐴𝑅𝐶

𝐴𝐷𝐸
($/𝐾𝑊ℎ)                       

     𝐴𝐷𝐸 = 𝑄𝑁𝑎𝑣𝑔𝐷
 

(5.18) 

(5.19) 

5.4 Proposed Energy Management System Design  

This section explains the proposed EMS, which is designed to achieve multiple objectives. 

First, the primary objective of the EMS is to maximize the profit of the hybrid system owner 

from the deregulated market. The EMS utilizes the available forecast of wind power and 

market prices for profit maximization (energy arbitrage). In this work, the prediction horizon is 

taken as an hourly forecast for the incoming 24 hours; however, different time frames and 
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sampling intervals are also applicable depending on the data availability and the market 

operation. Second, the EMS must dispatch the BESS within acceptable safe power and energy 

constraints. Third, the EMS must maximize the BESS lifetime by adopting the minimal DNC 

and DOD as long as a feasible solution exists. Finally, the EMS is only allowed to increase the 

DOD or DNC if a potential profit higher than the ELC exists. For real-time utilization of the 

changing market price and wind power forecast, an MPC is utilized to design the EMS. The 

motive of using the MPC will be briefly explained in the upcoming subsection, and then the 

problem formulation is discussed. Finally, the proposed constraints optimizer is designed.   

    

5.4.1 A Glance over MPC  

A finite horizon MPC is used as an EMS [123].  The MPC is a control technique that is 

helpful in case of knowing the controlled output desired trajectory for the incoming prediction 

horizon (𝑛𝑝).  

Thus, the controller predicts the output of the system for this horizon (iteratively using the state-

space model) at the current instant, assuming ideal modeling, as follows:  

𝕪 = [𝑌(𝑘|𝑘), 𝑌(𝑘 + 1|𝑘),… , 𝑌(𝑘 + 𝑛𝑝|𝑘)] (5.20) 

It should be noted that 𝕪 is a function in the control action vector (𝕦) and the predicted state 

vector (𝕏). The MPC generates the control action for the incoming control horizon 𝑛𝑐 as 

follows:  

𝕦 = [𝑈(𝑘|𝑘), 𝑈(𝑘 + 1|𝑘), … , 𝑈(𝑘 + 𝑛𝑐|𝑘)] (5.21) 

It is worth mentioning that the control horizon must be less than, or equal to, the prediction 

horizon. The MPC is an optimal controller which decides the value of 𝕦 that optimizes a certain 
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objective function. The calculations of (𝕪, 𝕦) from the state-space model in (5.4) are explained 

in [123]. The main motives for using MPC in this work are formulated in the following [123]. It 

utilizes the knowledge of the future trajectory (e.g., market price and wind power predictions) in 

optimizing the short-term control decision (e.g., BESS power). Furthermore, the MPC is an 

optimal controller that minimizes a particular cost function over the incoming time window (𝑛𝑝 

𝑜𝑟 𝑛𝑐), (e.g., the net profit). The cost function serves multiple objectives (output tracking, 

control effort minimizing, etc.). The constraints of the optimization process may include the 

states, input, input rate and output limits; thus, the MPC guarantees a safe operation for the 

plant with allowable operating margins and a bounded input–output stability (e.g., the energy, 

DNC and power constraints in this work). The MPC has been proven to be robust and effective 

in many industrial applications [124]. On the other hand, the MPC is very sensitive for 

unmodeled dynamics and process disturbances. An effective way to overcome this issue is to 

adopt the receding horizon policy [123]. The receding horizon policy states that the control 

action is only implemented in the current instant. The prediction horizon window is then shifted 

by one step when new measurements are available and this process is repeated for each sample. 

5.4.2 Problem Formulation  

The market price forecast and expected wind power are assumed to be predictable for the 

incoming prediction horizon (𝑛𝑝):  

𝕔(𝑘) = [𝐶̅(𝑘|𝑘), 𝐶̅(𝑘 + 1|𝑘),… , 𝐶̅(𝑘 + 𝑛𝑝|𝑘)]

𝕦𝑑(𝑘) = [�̅�𝑑(𝑘|𝑘), �̅�𝑑(𝑘 + 1|𝑘), … , �̅�𝑑(𝑘 + 𝑛𝑝|𝑘)]
 

(5.22) 

(5.23) 

where (𝑘) is the market prediction at the instant 𝑘𝑇𝑠. Using the upper accent (e.g., 𝐶̅(𝑘|𝑘)) 

indicates that the expected price and wind power contains a prediction error. In fact, the actual 

price and wind power can be formulated as follows:  
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𝐶(𝑘) = 𝐶̅(𝑘) + �̃�(𝑘)

𝑈𝑑(𝑘) = �̅�𝑑(𝑘) + �̃�𝑑(𝑘)
 

(5.24) 

(5.25) 

where 𝐶 (𝑘), 𝑈 𝑑(𝑘) are the energy prices and wind power prediction errors at instant (𝑘), 

respectively. Because there is no way to estimate the wind power and the market behavior 

exactly, we assume that the prediction error is a Gaussian white noise (with zero mean value), 

and the estimated values are the expected values:  

𝐸(𝐶(𝑘)) = 𝐶̅(𝑘)

𝐸(𝑈𝑑(𝑘)) = �̅�𝑑(𝑘),   𝑘 → ∞
 

(5.26) 

(5.27) 

The EMS objective is to maximize the gross profit, which equals the net of energy bought by 

(or sold from) the grid during the incoming horizon, minus the storage cost during this horizon:  

𝑃𝑟𝑜 =∑ 𝐶̅(𝑘)𝑃𝑔(𝑘)𝑇𝑠 −∑ 𝑃𝑏𝑑(𝑘)
𝑇𝑜+𝑛𝑝𝑇𝑠

𝑘=𝑇𝑜

 𝑇𝑠
𝑇𝑜+𝑛𝑝𝑇𝑠

𝑘=𝑇𝑜

𝑆𝐶

𝑁𝐸𝑇. 𝑃𝑟𝑜 = 𝑃𝑟𝑜 − 𝐸𝐿𝐶

 

(5.28) 

(5.29) 

where 𝑃𝑟𝑜, 𝑁𝐸𝑇. 𝑃𝑟𝑜, 𝑃𝑏𝑑, and 𝑇𝑜 are the projected gross profit, the net profit for the incoming 

horizon, the discharged power from the BESS and the initial time index, respectively. The 

BESS energy is negative if it is exported to the grid, whereas it is positive if it is imported. The 

gross profit is a convex problem solved efficiently by the branch and bound solver. On the other 

hand, the net profit acts as a non-convex problem because it includes the ELC (a nonlinear 

function in the DNC and DOD). Thus, optimizing the net profit represents a challenging 

optimization problem that may lead to feasibility problems. As a result, the gross profit is 

optimized whereas the net profit is taken into consideration by designing the constraints 

optimizer which will be discussed next. The discharged power is expressed as follows:  

                                          𝑃𝑏𝑑(𝑘) =
|𝑃𝑏(𝑘)| − 𝑃𝑏(𝑘)

2
 

(5.30) 
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Equation (5.30) gives zero in case of battery charging or standby operations ((𝑘) ≥ 0), 

whereas it gives the absolute value of the battery power in case of discharging only. In the case 

of using a one-hour sampling time and the energy price is given in $/kWh, one can replace 𝑇𝑠 by 

one as follows:  

𝑃𝑟𝑜 =∑ 𝐶̅(𝑘)𝑃𝑔(𝑘) −∑ 𝑃𝑏𝑑(𝑘)
𝑇𝑜+𝑛𝑝𝑇𝑠

𝑘=𝑇𝑜

𝑇𝑜+𝑛𝑝𝑇𝑠

𝑘=𝑇𝑜

𝑆𝐶 
(5.31) 

 

The problem constraints are on the BESS power, DOD and DNC. First, the BESS power 

must be within the allowable limits during charging or discharging. This constraint is 

formulated as follows:  

𝑃𝑏(𝑘) ≤  𝑃𝑏(𝑘) ≤ 𝑃𝑏̅̅ ̅(𝑘)∀ 𝑘𝜖[𝑇𝑜 , 𝑇𝑜 + 𝑛𝑝𝑇𝑠] (5.32) 

where  𝑃𝑏̅̅ ̅(𝑘), 𝑃𝑏(𝑘) are the upper and lower limits of the power at instant k. It is very 

important to define the available rating of the BESS at each sample in the incoming prediction 

horizon. If a scheduled maintenance for the full BESS is carried out from [𝑇𝑚𝑠, 𝑇𝑚𝑒] (e.g., 

maintenance for the main circuit breaker), the BESS power limits 𝑃𝑏̅̅ ̅(𝑘), 𝑃𝑏(𝑘) must be set to 

zero during this period. On the other hand, if a partial maintenance for some strings of the 

array (e.g., partial capacity test) from [𝑇𝑚𝑠, 𝑇𝑚𝑒] is required, the BESS working power must be 

modified in this period. The second constraint is on the DOD in order to charge (or discharge) 

the battery with the permissible capacity.  

 𝐷𝑂𝐷(𝑘) ≤  𝐷𝑂𝐷(𝑘) ≤ 𝐷𝑂𝐷̅̅ ̅̅ ̅̅ (𝑘)∀ 𝑘𝜖[𝑇𝑜 , 𝑇𝑜 + 𝑛𝑝𝑇𝑠] (5.33) 
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The DOD has a lower limit 𝐷𝑂𝐷 that is probably zero, which means the BESS has a full 

capacity. On the other hand, the upper limit is recommended by the manufacturer (usually 70–

80%). The lower limit prevents the BESS overcharging whereas the upper limit restrains the 

deep discharge of the BESS. It should be noted that battery lifetime is very sensitive to the 

DOD as given in (10). As a result, the value of max. DOD is optimized later in this section. The 

final constraint is on the DNC, and this constraint is formulated as follows. First, the battery 

status (BS) is calculated as a sign function for the BESS power:  

   𝔹𝕤 = [𝑠𝑖𝑔𝑛(𝑃𝑏(𝑘)),… , 𝑠𝑖𝑔𝑛(𝑃𝑏(𝑘 + 𝑛𝑝))]

   𝔹𝕤 = [𝐵𝑆1, 𝐵𝑆2, … , 𝐵𝑆𝑛𝑝]
 

(5.34) 

 

The output of the sign function is 1, 0, and −1 if the BESS is charging, in the standby mode, 

or discharging, respectively. The change of the BESS state is detected by calculating the 

difference of (5.34). 

        ∆𝔹𝕤 = [𝐵𝑆2 − 𝐵𝑆1, … , 𝐵𝑆𝑛𝑝 − 𝐵𝑆𝑛𝑝−1]  
(5.35) 

The sum of all elements of the vector ∆𝔹𝕤 equals the number of states change (NSC) between 

the charge and discharge states. It should be noted that if the BESS is in standby, this does not 

affect the NSC when taking the sum of (35). The number of cycles (N) equals half the NSC. 

The DNC is bounded by an upper limit (�̅�) in (5.37).  

                                      𝑁 = 0.5 ∑ |∆𝐵𝑆𝑗|

𝑛𝑝−1

𝑗=1

                                          

  𝑁 ≤ �̅�

 

(5.36) 

 

 

(5.37) 

Now, the final MPC optimization problem is stated after defining the cost function in (28) 

and the operational constraints in (5.32)-(5.33), and (5.37). Given the initial states value, the 
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market price prediction (5.22) and the expected wind power horizon (5.23), and all the 

constraints limits over the incoming prediction horizon, the final problem (𝜆) optimizes the 

gross product as in (5.38):  

𝜆

{
 
 
 

 
 
 

𝑀𝑎𝑥𝕦(𝑃𝑟𝑜)

𝑠. 𝑡.

{
 
 

 
 
𝑋𝑡(𝑘 + 1) = 𝐴𝑋𝑡(𝑘) + 𝐵𝑈(𝑘) + 𝐵𝑑𝑈𝑑(𝑘)

𝑌(𝑘) = 𝐶𝑋𝑡(𝑘) + 𝐷𝑑𝑈𝑑(𝑘) 𝑋𝑡(0) = 𝑋0
𝑃𝑏(𝑘) ≤  𝑃𝑏(𝑘) ≤ 𝑃𝑏̅̅ ̅(𝑘)

𝐷𝑂𝐷(𝑘) ≤  𝐷𝑂𝐷(𝑘) ≤ 𝐷𝑂𝐷̅̅ ̅̅ ̅̅ (𝑘)

𝑁 ≤ �̅�
∀ 𝑘𝜖[𝑇𝑜 , 𝑇𝑜 + 𝑛𝑝𝑇𝑠]

 

(5.38) 

 

This problem is solved in real time, i.e., for each 𝑇𝑠, when all the predictions and constraints 

are updated. The receding horizon policy is adopted; thus, only (𝑘|𝑘=1) is applied in the real 

process.  

The question arising now is how to choose the DNC and DOD constraints of the MPC 

problem (𝜆) such that it achieves the optimal profit and lifetime saving (maximum net profit).   

5.4.3 MPC Constraints Optimizer  

The net profit, as given in (5.29), is divided into two parts. First, the gross profit, which 

includes all income subtracted from the fixed cost is a linear function that increases with the 

DOD and DNCs. On the contrary, the second part, which represents the depleted lifetime 

(ELC), is minimized with the minimal DNC and DOD as stated in (5.10). Further, the ELC 

needs a non-traditional nonconvex optimization, causing a feasibility problem. Although the 

ELC has a significant value, eliminating it from the optimization problem improves feasibility. 

To overcome this problem, an MPC constraints optimizer is proposed. As given in (5.12), the 

ELC is only a function in DNC and DOD. Thus, employing an upper limit on the DNC and 

DOD inherently leads to imposing an upper ELC limit. If one can find the optimal operating 
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limits (max DOD and max DNC) that result in the worst ELC 𝐸𝐿𝐶 ≤ 𝐸𝐿𝐶(𝐷𝑂𝐷̅̅ ̅̅ ̅̅ , �̅�) and always 

guarantee maximal net profit, then we can optimize the gross profit instead of the net profit. 

Therefore, the MPC constraints optimizer is a search algorithm for max DOD and max DNC or 

by other means (𝐸𝐿𝐶̅̅ ̅̅ ̅) that leads to the maximum net profit. This process is done offline (given 

the day-ahead predictions). When optimal max DOD and max DNC are detected, the real-time 

MPC uses them to optimize the gross profit, but now it is inherently guaranteed that the worst 

case ELC is considered. Figure 5-5 shows the tuning mechanism of the optimizer and its effect 

on the net profit.  

Constraints optimizer

wind
prediction

Pool 
price

Net 
profit

DNCmax

DODmax

-

ELC

+
Profit calculation

 

Figure 5-5 The constraints optimizer mechanism. 

There is no doubt that the optimal lifetime occurs with the minimal DNC and DOD, as stated 

in (5.10). For achieving such a goal, the upper limit on both the DOD and DNC must be 

tightened as much as possible. On the other hand, by tightening the constraints 𝐷𝑂𝐷̅̅ ̅̅ ̅̅  𝑎𝑛𝑑 �̅�, not 

only the gross profit is minimized, but the feasible solution set is also narrowed and the global 

optimal profit may be allocated outside this set, which is not optimal. 
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This chapter proposes an MPC constraints optimizer for both 𝐷𝑂𝐷̅̅ ̅̅ ̅̅  𝑎𝑛𝑑 �̅� that continues 

tightening the constraints as long as the gross profit reduction is less than the expended-life cost. 

In other words, the optimizer is a profit-oriented trainer for the constraints that aims at detecting 

the constraints that maximize the net profit; these constraints are used later in the real-time 

MPC. At each iteration, the optimizer fixes the DNC and DOD constraints and measures the net 

profit. Second, it changes one of the constraints and reads the new net profit; the gradient of the 

net profit surface guides the optimizer to the direction of the optimal constraints over the 

permissible constraints plain. Assuming that the optimal constraints set 𝜓𝑜𝑝𝑡 belongs to a 2D 

plain composed of 2 sets (ℕ,𝔻): 

                 𝐷𝑂𝐷̅̅ ̅̅ ̅̅
𝑜𝑝𝑡𝜖𝔻,𝔻 = [𝐷𝑂𝐷̅̅ ̅̅ ̅̅

𝑚𝑖𝑛, 𝐷𝑂𝐷̅̅ ̅̅ ̅̅
𝑚𝑎𝑥]

                  �̅�𝑜𝑝𝑡𝜖ℕ,ℕ = [�̅�𝑚𝑖𝑛, �̅�𝑚𝑎𝑥]

𝜓𝑜𝑝𝑡 = (�̅�𝑜𝑝𝑡, 𝐷𝑂𝐷̅̅ ̅̅ ̅̅
𝑜𝑝𝑡) = 𝜓(𝑚𝑎𝑥 (𝑁𝐸𝑇. 𝑃𝑅𝑂))

 

(5.39) 

(5.40) 

(5.41) 

The constraints optimizer detects 𝜓𝑜𝑝𝑡 via this two-stage algorithm (A, B). These stages 

represent the offline training that is repeated daily as soon as the day-ahead market prices are 

announced.  

5.4.4 Constraints Optimizer Algorithm  

Stage A (Detecting  �̅�𝑜𝑝𝑡)  

1. At k=T0=0; given the predictions 𝕔(𝑘), 𝕦𝑑(𝑘), and the battery initial SOC0; set 𝜓 =

(�̅�𝑚𝑎𝑥, 𝐷𝑂𝐷̅̅ ̅̅ ̅̅
𝑚𝑎𝑥). 

2. Calculate the storage cost by calculating 𝑆𝐶 in (5.18). Solve the MPC problem (𝜆) in 

(5.38) to find the gross profit. By calculating the corresponding ELC from (5.12), the net 

profit is reachable as in (5.29).  
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3. Skip to step (8) if  �̅�𝑜𝑝𝑡 is reached; otherwise continue. 

4. If this is the first ith iteration, then skip to step (7), otherwise continue. 

5. If the problem is feasible, and 𝑖 ≤ 𝑖𝑚𝑎𝑥, 𝑖𝑚𝑎𝑥 = �̅�𝑚𝑎𝑥, go to step (6). Otherwise, either 

�̅� = 0 or the problem is stuck at an infeasible solution. In both cases, the previous choice 

is the best available one (�̅�𝑜𝑝𝑡 = �̅�(𝑖 − 1)), then stage B is initiated. 

6. Calculate the difference in the net profit, if this difference is positive, we skip to step (7); 

this means that tightening the DNC improves the net profit. On the other hand, if the 

difference is negative, then the previous solution provides the maximum net profit, and set 

(�̅�𝑜𝑝𝑡 = �̅�(𝑖 − 1)) then skip to stage B (go to step 8).  

7. Tighten the DNC constraints as follows: �̅�(𝑖) = �̅�(𝑖) − 1, update the constraints set 𝜓𝑖𝑗, 

then jump to step (2)  

Stage B (spotting max optimal  𝐷𝑂𝐷̅̅ ̅̅ ̅̅
𝑜𝑝𝑡)  

8. Set the MPC constraints at 𝜓 = (�̅�𝑜𝑝𝑡,   𝐷𝑂𝐷̅̅ ̅̅ ̅̅
𝑚𝑎𝑥), back to step (2). 

9. If this is the first jth iteration, then skip to step (12), otherwise continue. 

10. If the problem is feasible, and 𝑗 ≤ 𝑗𝑚𝑎𝑥  ( 𝑗𝑚𝑎𝑥 =
𝐷𝑂𝐷̅̅ ̅̅ ̅̅ ̅𝑚𝑎𝑥−𝐷𝑂𝐷̅̅ ̅̅ ̅̅ ̅𝑚𝑖𝑛

𝛼
, where 𝛼  is the 𝐷𝑂𝐷̅̅ ̅̅ ̅̅  

search sensitivity (resolution)), go to step (11). Otherwise, the algorithm reached 𝐷𝑂𝐷̅̅ ̅̅ ̅̅ =

𝐷𝑂𝐷̅̅ ̅̅ ̅̅
𝑚𝑖𝑛 or it is stuck at an infeasible solution and, in both cases, the previous choice is the 

best available one (𝐷𝑂𝐷̅̅ ̅̅ ̅̅
𝑜𝑝𝑡 = 𝐷𝑂𝐷̅̅ ̅̅ ̅̅ (𝑗 − 1)) and 𝜓𝑜𝑝𝑡 is reached. 
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11. Calculate the difference in the net profit, if this difference is positive, skip to step (12); this 

means that tightening the DOD improves the net profit. On the other hand, if the difference 

is negative, then the previous solution provides the maximum net profit and (𝐷𝑂𝐷̅̅ ̅̅ ̅̅
𝑜𝑝𝑡 =

𝐷𝑂𝐷̅̅ ̅̅ ̅̅ (𝑗 − 1)) is set. Accordingly, t 𝜓𝑜𝑝𝑡 is reached.  

12. Tighten the DOD constraints as follows: (𝐷𝑂𝐷̅̅ ̅̅ ̅̅ (𝑗) = 𝐷𝑂𝐷̅̅ ̅̅ ̅̅ (𝑗 − 1) − 𝛼). 𝛼-choice is 

considered a tradeoff between the computational effort and the accuracy of reaching the 

optimal value (e.g., the smaller the 𝛼, the more precise  𝐷𝑂𝐷̅̅ ̅̅ ̅̅
𝑜𝑝𝑡 but with a higher number 

of iterations). Update the constraints set 𝜓𝑖𝑗, then jump to step (2). 

 

Figure 5-6 Flow chart of constraints optimizer and MPC operation. 
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As discussed earlier, the search for the optimal constraints is like the search for the co-

ordinations of the set 𝜓𝑜𝑝𝑡 in a 2D space. Stage A represents a vertical search for �̅̅̅�𝑜𝑝𝑡. While 

 �̅̅̅�𝑜𝑝𝑡 is detected, Stage B is initiated by adopting a horizontal search for 𝐷𝑂𝐷̅̅ ̅̅ ̅̅
𝑜𝑝𝑡. Once 𝜓𝑜𝑝𝑡 is 

reached, it is used to initiate the real-time MPC that enforces the optimal constraints 𝜆(𝜓𝑜𝑝𝑡).  

Real-Time Operation  

To deal with disturbance changes (prediction error in the wind and market data), in each 

new sample, the MPC is applied with the pre-tuned constraints (𝜓𝑜𝑝𝑡) and the receding control 

policy is applied as follows. The new predictions for market and wind data are first updated; 

these data have less prediction error as they are short-term forecasts. At each new sample k, the 

prediction horizon is decided such that it finishes at the end of the day; (e.g., 𝑛𝑝 =
24∗60∗60

𝑇𝑠
− 𝐾 

) where 𝑇𝑠  is in seconds. Knowing the initial number of changes from charge to discharge ∆𝔹𝕤 

already done from the day start (∑𝑇𝑘=
−

0
1 ∆𝔹𝕤𝑘) and the current SOC, the MPC updates its 

initial conditions and manages to keep the desired optimal operation (𝜓𝑜𝑝𝑡) until the end of the 

day (k=24 hr). The flowchart in Figure 5-6 explains the MPC constraints optimizer.  

The optimality of the MPC constraints optimizer is guaranteed as both the ELC and gross 

profit are monotonically increasing functions in DNC and DOD. Thus, the resulting net profit 

surface (which is the difference between the ELC and gross profit) has a single maximum that 

can be easily detected by the proposed searching technique, without being trapped in the local 

optimum. Another big concern is the constraints optimizer robustness. In other words, how 

much the wind and pool price prediction errors will affect the optimizer decisions. Actually, 

with a reasonable prediction error (e.g., 10–15%), it is found that the optimizer has low 

sensitivity to such uncertainty.  
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5.5 Case study: Alberta Electricity Market  

This study simulates a 5.0 MW WECS connected with 1.0 MW / 3.0 MWh BESS, as shown 

in Figure 5-1, in Alberta, Canada. The BESS rating is chosen to be 20% of the WECS power 

[122], the capacity is chosen to store up to the rated BESS power for up to three hours. With a 

series (2.135 V – 500 Ah) battery, the BESS bank consists of 562 in 5 parallel strings to get the 

desired rated capacity; the system has a 1200 voltage dc-link [36]. With the sample time chosen 

as one hour because the pool price provided by Alberta Electric System Operator (AESO) is the 

average hourly price [125]. In this work, an agreement between the market participant (system 

owner) and the grid operator (here; AESO) of updating the market predictions hourly is 

assumed; however, the system owner can adjust the sample time to adapt to the existing update 

rate of the prediction data as provided by the grid operator. At the end of the day, the system 

owner is paid the difference between the generation and consumption by the system operator 

according to each hour price.  

Further, the prediction horizon (equals the control horizon) is taken for the next 24 hours. As 

a result, the problem 𝜆 is solved 24 times a day as long as new pool prices, wind power 

predictions and initial conditions are updated at each sample. The battery maximum DOD is 

70% to achieve 3200 total number of cycles/life whereas the maximum DNC is set to 4 

cycles/day in the constraints optimizer. 
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Figure 5-7 Simulation results for 3 cases (A, B, C) to evaluate three different controllers (MPC1, 2, 

3). 

5.5.1 Comparative Simulation Results   

 A comparison between three different MPC approaches used in energy management of hybrid 

systems is conducted to evaluate the effectiveness of the proposed algorithm:  

 MPC1: An MPC without DNC constraints and fixed SOC constraint (e.g., same 

management strategy as proposed in [36] and [30]). It should be noticed that MPC1 

is a modified version of the MPC in [36] as it maximizes the profit instead of 
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minimizing the power fluctuations; however, MPC1 has the same constraints and 

model as in [36]. 

 MPC2: An MPC with fixed single DNC and fixed SOC constraint (e.g., strategy 

used in [31]). MPC2 emulates the same energy management strategy used in [30].  

 MPC3: The proposed MPC with constraints optimizer. The simulation is conducted 

on real pool price data taken from the Alberta electricity market in Canada [125]. 

The test data represents three days with different market patterns and their 

associated wind power during the second week of December 2010.    

 

Figure 5-8 net profit change for each MPC controller in the three case studies. 

Three cases are investigated to evaluate the performance of the three MPC controllers. 

Simulation results are shown in Figure 5-7, whereas a results summary is given in Table 5-1. 

All controllers respect the BESS power and SOC limits.  
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Table 5-1 Simulation Results. 

   MPC1  MPC2  MPC3  

Case A  DNC  0  0  0  

Net-profit ($)  1,420$  1,420$  1,420$  

Case B  DNC  3  1  1  

Net-profit ($)  17,276.8$  17,678.2$   17,678.2$   

Case C  DNC  3  1  2  

Net-profit ($)  8,992$  8,777.7$  9,167$  

 

Case A: This case represents a flat market profile with a low maximum to minimum pool 

price ratio. The performance of all controllers is the same in this case.   

All controllers have decided to stop BESS operation (DNC=0) as the market revenue cannot 

cover the operation cost.  

Case B: This case represents a single-peak market pattern; however, there is a smaller peak 

for just a single hour at t=8. MPC1 targets the maximum profit without considering the ELC. 

Thus, it charges the battery three times and achieves the minimum net profit because it has a 

large ELC. On the other hand, MPC2 is constrained by a maximum daily single cycle, which 

luckily fits that market pattern. As a result, it achieves the maximum net profit. Finally, MPC3 

is manipulated by the constraints optimizer that detects the maximum net profit at a single 

cycle. The constraints optimizer has compared the revenue of discharging at the small peak at 
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t=8; however, the revenue does not cover the cost of the extra cycle. Thus, the optimal DNC is 

chosen as one.  

Case C: This is a double-peak market pattern. For MPC1, blinded from the DNC cost, it 

detects a fake maximum profit with three cycles. On the contrary, MPC2 is limited by the 

maximum single cycle constraint. As a result, it reaches a local maximum profit less than the 

profit associated with two cycles. Finally, MPC3 is guided again by the constraints optimizer 

which has achieved the maximum net profit of the three controllers (4.4% greater than MPC2, 

2% higher than MPC1). Figure 5-8 shows the net profit surface versus the DNC and DOD.   

Considering the computational effort, the constraints optimizer computational time is 

suitable for the sampling time. It is found that the average iteration time for solving the MPC 

problem 𝜆 using MATLAB is 0.486 s on a 3.3 GHz-6 core processor; then the maximum 

iterations time equals 𝑖𝑚𝑎𝑥 ∗ 𝑗𝑚𝑎𝑥 ∗ 0.486. In our case, with 𝛼 = 0.01 and �̅�𝑚𝑎𝑥 = 4, the 

maximum time is about 136 s, which is about 4% from the sampling time.  

5.5.2 Constraints Optimizer Sensitivity to Prediction Error  

This study compares the behavior of the constraints optimizer to gauge its sensitivity to pool 

price and wind prediction errors. Two cases are compared. The first assumes a 1-hr sampled 

data, whereas the second case assumes the same set sampled at 15-min. The inter-samples 

error range is 30%, as shown in Figure 5-9. 

Table 5-2 Optimizer results in two different sample times. 

Net Profit �̅�= 1 �̅�= 2 �̅�𝑜𝑝𝑡 

𝑇𝑠= 60 𝑚𝑖𝑛 17,678$ 17,077$ 1 

𝑇𝑠= 15 𝑚𝑖𝑛 17,409$ 16,836$ 1 
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Figure 5-9 shows that, even with such a big difference in the data set, both cases have the 

same number of cycles. This is also supported by the results in Table 5-2, which shows that the 

optimizer has considered the same maximum DNC in both cases (which is one). Because the net 

profit has decreased (when  �̅� moved from one to two), �̅�𝑜𝑝𝑡 is found to be one in both cases. 

Thus, the optimizer shows low sensitivity to such a prediction error.  

 

Figure 5-9 Optimizer results at different sample times. 
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5.6 Conclusions  

This chapter addressed the development of a comprehensive market-oriented EMS via MPC 

for a hybrid power system (WECS with BESS). The MPC aimed at maximizing the daily profit 

by dispatching the BESS. The real-time optimization process was based on receiving the 

market price and wind power predictions in each new sample. For expanding the BESS 

lifetime, constraints on the power rating, the DOD and the DNC were included. The MPC 

constraints optimizer tightened the DNC and DOD constraints to achieve the maximum profit 

with the minimal expended-lifetime cost. Real wind power and market data of the Alberta 

province showed that the proposed MPC constraints optimizer had reached the optimal profit 

with the minimal sacrifices in the BESS life. Comparison with other two MPC techniques 

showed that the proposed MPC always managed to achieve the maximum net profit for the 

system owner.   
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Chapter 6  

6 EMS of a Hybrid Wind – Flywheel Energy Storage System via 

Model Predictive Control  

6.1  Introduction  

The maximum power and power ramp rate are important grid codes for renewable energy 

resources (e.g., wind farms) in transmission systems. The RES power curtailment regulates the 

RES maximum power and ramp rate; however, adding an energy storage system (ESS) can 

time shift surplus wind energy instead of curtailing it.  The flywheel energy storage system 

(FESS) has the advantages of high efficiency and long lifetime; however, it has non-negligible 

standby losses and its lifetime is reduced exponentially as the rotating speed increases. 

Considering such practical constraints, this chapter presents an EMS for a hybrid power system 

composed of a wind farm with a FESS. The FESS time shifts the surplus wind energy to 

respect the grid codes and reduce wind curtailment; meanwhile, the EMS aims at minimizing 

the FESS standby losses and boosting its lifetime using the predicted wind power data.   

The proposed EMS is composed of two cascaded controllers. The first controller is a linear 

model predictive controller that defines the long-term FESS power set-point. The second 

controller is a real-time adaptive hysteresis controller that compensates for the wind power 

prediction error. Simulation results showed that the proposed EMS manages to minimize the 

losses significantly as compared to a conventional EMS. Further, a hardware-in-the-loop test is 

used to validate the results in a real-time environment. The contributions of this study to the 

research field are:   
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• Designing a multi-objective MPC-based algorithm that aims at maximizing the power 

imported from the hybrid system to the grid under typical grid code constraints while 

reducing FESS losses and boosting its lifetime. 

• Converting the MPC optimization problem from a mixed-integer nonlinear programming 

(MINLP) problem into a convex one with global optimum and guaranteed feasibility; the 

latter is more suitable for real-time control and optimization without loss of accuracy.  

• Developing an adaptive online hysteresis controller that is tuned by the MPC algorithm 

to compensate for the prediction error; therefore, a robust MPC optimization with 

robustness against prediction error is yielded.  

• The proposed two-stage EMS is a multi-sample-rate algorithm that serves the 

optimization goals while compensating inter-samples and predictions errors.  

6.2 Problem Formulation  

This work aims at designing an EMS for a hybrid system composed of a large wind farm 

with a FESS. The hybrid system must respect the grid code regarding the maximum output 

power and its rate. Instead of an excessive wind curtailment, a FESS facilitates short-term 

storage for this energy to increase the hybrid system generation while respecting the grid code. 

The wind turbines are controlled via a maximum power point tracking (MPPT) algorithm to 

harvest the maximum wind power. Assuming an ideal MPPT and a zero pitch angle, the steady-

state wind turbine power is calculated as follows [111]: 

𝑃𝑤(𝑡) = 0.5 𝜂𝑊𝜌𝑐𝑝(𝜆𝑜)𝐴𝑣𝑤(𝑡)
3  (6.1) 

where 𝑃𝑤 , 𝑡, 𝜂𝑊, 𝜌, 𝑐𝑝, 𝜆𝑜 , 𝐴, 𝑉𝑤 are the WECS harvested electrical power, time index, WECS 

efficiency (including shaft and gears, generator, power converter and cables efficiencies), air 
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density, power coefficient, optimal tip speed ratio, rotor disk area and the effective wind speed 

across the rotor disk, respectively. 

Many transmission system operators (TSOs) demand the WECS owners to commit in 

advance a maximum generated power (𝑃𝑤(𝑡)), with a rate (∆𝑃𝑤). This commitment is updated 

periodically depending on the market. For example, in Alberta-Canada, the WECS owner 

updates the maximum power to the TSO every 20 minutes [120]. Other markets, such as the 

Spanish market [30], require an advance commitment and impose a penalty as well in case of 

violation. The power transferred to the grid according to the grid code (𝑃𝑔𝑐(𝑡)) is 

𝑃𝑔𝑐(𝑡) = {𝑃𝑤(𝑡)|𝑃𝑤(𝑡) ≤ �̅�𝑤(𝑡), −∆�̅�𝑤 ≤ ∆𝑃𝑤(𝑡) ≤ ∆�̅�𝑤 }

∆𝑃𝑤(𝑡) = 𝑃𝑤(𝑡) − 𝑃𝑤(𝑡 − 1)
 

(6.2) 

(6.3) 

As given in (6.2)-(6.3), the wind power magnitude and rate are limited by the grid code 

regulations [126]. The power curtailment is used to achieve this target by limiting the up-ramp 

rate and maximum magnitude. Extra energy is exported from the grid in case of sudden wind 

power drop. The curtailed power is calculated as: 

𝑃𝑐(𝑡) = 𝑃𝑔𝑐(𝑡) − 𝑃𝑤(𝑡)
  (6.4) 

An effective way to reduce 𝑃𝑐(𝑡) is to add a FESS. An EMS controls the FESS active power 

set-point as shown in Figure 6-1. A conventional EMS defines both the curtailed wind power 

and the FESS active power, given the wind generation as follows: 
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𝑀𝑎𝑥 (𝑃𝑔(𝑡))

𝑃𝑔(𝑡) = 𝑃𝑤(𝑡) − 𝑃𝑓(𝑡) + 𝑃𝑐(𝑡)
 

−𝑃𝑟𝑒 ≤ 𝑃𝑔(𝑡) ≤ 𝑃𝑤(𝑡)

−∆�̅�𝑤 ≤ ∆𝑃𝑔(𝑡) ≤ ∆𝑃𝑤
−𝑃𝑤𝑟 ≤ 𝑃𝑐(𝑡) ≤ 0

−𝑃𝑓 ≤ 𝑃𝑓(𝑡) ≤ 𝑃𝑓
0 ≤ 𝑆𝑂𝐶(𝑡) ≤ 1

𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡 − 1) +
𝑃𝑓(𝑡)

𝜂𝑓𝐸𝑓 

𝐸𝑓 = 0.5𝐽(𝜔𝑟
2
− 𝜔𝑟

2)

 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

(6.9)  

(6.10) 

(6.11) 

(6.12) 

(6.13) 

 

where 𝑃𝑔(𝑡), ∆𝑃𝑔(𝑡), 𝑃𝑟𝑒 , 𝑃𝑤𝑟 , 𝑃𝑓(𝑡), 𝑆𝑂𝐶(𝑡), 𝜂𝑓 , 𝐽, 𝜔𝑟 , 𝜔𝑟 are, respectively, the hybrid system 

total power exported to the grid measured at the point of common coupling (PCC) and its 

change; the reserve power imported from grid; the WECS rated power; the FESS output power; 

the FESS state of charge; the FESS overall round trip efficiency; the FESS inertia; and the 

FESS maximum and minimum mechanical speeds.    

The problem (6.5) shows the EMS strategy that aims at hybrid system power maximization. 

Equation (6.6) represents the power balance equation measured at the PCC with the grid. The 

power exported (or imported) from or to the grid 𝑃𝑔(𝑡) equals the available wind power minus 

the curtailed wind power (𝑃𝑤(𝑡) + 𝑃𝑐(𝑡), 𝑃𝑐(𝑡) ≤ 0 ) minus the FESS power 𝑃𝑓(𝑡), it is worth 

mentioning that the FESS has a negative and positive power during the discharge and charge 

modes, respectively. In the stand-by mode, the power equals zero. The grid code is embedded in 

constraints (6.7) and (6.8) that define the maximum system generated power and its rate, 

respectively. The curtailment power is constrained in (6.9) as a negative power up to the wind 

farm rated power 𝑃𝑤𝑟 . The FESS is represented as an integrator. It has two constraints that 
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represent the power limits in (6.10) and the state-of-charge (SOC) in (6.11). The SOC is the 

integration of the per-unit power as given in (6.12) taking into consideration the FESS 

efficiency 𝜂𝑓 (including converter and cables losses), whereas (6.13) calculates the FESS rated 

capacity 𝐸𝑓 that depends on the FESS inertia (J) and the FESS maximum and minimum 

mechanical speeds (𝜔𝑟 , 𝜔𝑟). Problem (6.5) charges the FESS up to its limits when wind power 

exceeds the constraints (6.7) and (6.8). On the other hand, it fully discharges the FESS when the 

wind power is less than the expected value. It is a linear programming problem (LP) that can be 

easily solved online in a real-time fashion (with a sample time in the range of seconds); 

however, it does not take into consideration the following points: 

1- minimizing the standby losses of the FESS; 

2- utilizing the knowledge of predicted short-term wind speed in the management decisions 

to improve the overall hybrid system performance; 

3- taking into consideration the FESS number of cycles as the FESS life is affected 

significantly by its operating speed. 

This chapter presents an improved EMS that considers these points. To address these 

problems, a detailed model for the FESS is required.      
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6.2.1 FESS Model 
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Figure 6-1 Hybrid system structure.  

The storage station is composed of a number of smaller FESS units connected in parallel. 

There have been already commercial FESS units with up to 250-kW power and 15-min 

commitment time for each unit [46] (62.5 kWh). A commercial 20-MW station is already in 

service for frequency regulation in the PJM system [46]. In the case of wind power smoothing, 

the sizing of the FESS is taken no more than 10% of the WECS size [53]. As the FESS is a 

relatively expensive technology, a maximum 10% of WECS rating is a reasonable choice [18]. 

A FESS unit has a permanent-magnet synchronous machine (PMSM) with high speed. Each 

unit is connected via a back-to-back converter to the PCC as shown in Figure 6-1. The grid-side 

converter is controlled to regulate the dc-link voltage. Further, the reactive power can be 

controlled for voltage control at the PCC in the case of a weak grid [104]. On the other hand, 

the EMS defines the active power set-point for the FESS-side inverter. The FESS-side inverter 

is current-controlled in the dq-frame as explained in [53]. The direct-current set-point is set to 
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zero to reduce losses [104], while the quadrature current set-point is controlled to manipulate 

the electric torque as follows: 

𝑇𝑒
∗ =

3

2

𝑝

2
𝜓𝑝𝑚𝑖𝑠𝑞

∗ =
𝑃𝑓
∗

𝜔𝑟
 

(6.14) 

where 𝑇𝑒 , 𝑝, 𝜓𝑝𝑚, 𝑖𝑠𝑞
∗ , 𝑃𝑓

∗, 𝜔𝑟 are the FESS electric torque set-point; PMSM number of pole pairs; 

PMSM flux and the stator quadrature current set-point; the FESS power set-point; and the FESS 

mechanical speed, respectively. The current controller is a proportional-integral (PI) controller 

that defines a quadrature stator voltage set-point. A pulse-width modulation (PWM) scheme 

embeds the voltage set-point into switching pulses for the inverter. Neglecting the fast inverter 

switching dynamics, the inverter acts as an amplifier with a gain equals half the dc-link voltage. 

Further details are given in [104]. Since this work focuses on EMS that works with a sample 

time in range of several seconds, all the current closed-loop dynamics is modeled as a low-pass 

filter [27] as expressed in (6.15). 

𝐼𝑠𝑞(𝑠) =
𝐼𝑠𝑞

∗(𝑠)

𝜏𝑖𝑠 + 1
 

(6.15) 

where 𝐼𝑠𝑞 , 𝑠, 𝜏𝑖 are the stator quadrature current; Laplace transform variable; and the time-

constant of the closed-loop current control dynamics. The electric torque manipulates the 

machine mechanical speed according to the following shaft dynamic equation [53] as given in 

(6.16). 

𝑇𝑒(𝑠) − 𝑇𝑙(𝑠)

𝜔𝑟(𝑠)
=

1

𝐽𝑠 + 𝐵
 

(6.16) 

where 𝐵,  𝑇𝑙 are the friction and mechanical torque, respectively. The output power (𝑃𝑓) is the 

deference between the air-gap power (𝑃𝑔𝑎𝑏) and the power loss (𝑃𝑙𝑜𝑠𝑠) [53]. It is worth 
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mentioning that the power loss in the FESS are mainly due the windage losses that produces a 

drag force proportional to the square of rotational speed. Further, eddy currents produce another 

drag force which is proportional to the rotational speed [55]. The hysteresis loss is neglected 

here as it decays exponentially with the speed [55] because current FESSs operate at very high 

speeds. The stator copper loss is also addressed and it depends on the quadrature current (as the 

direct current is zero at steady state) and the stator resistance 𝑟𝑠. Total power loss is stated in 

(6.18). A practical way to measure the losses constants 𝑐1, 𝑐2 can be done by a simple technique 

as follows; the FESS operates at different speeds, and at each operating speed, the power loss is 

measured in steady state (as the difference between the gap and output powers). By mapping the 

power loss in the desired speed domain, a simple quadratic curve fitting technique can be 

adopted to estimate 𝑐1, 𝑐2 (e.g., least square error). The power loss calculation depends on the 

mode of operation (standby, charging or discharging) which is modeled here by the sign of the 

FESS power set-point (𝑖). If the FESS is accelerating, then the output power is reduced by 𝑃𝑙𝑜𝑠𝑠 

as shown in (6.17). In the standby mode, there is still a windage loss in the machine. Finally, in 

the discharge mode, the output power is still reduced by the power loss. Therefore, the power 

flow in the FESS can be described as follows: 

𝑃𝑓 = 𝑃𝑔𝑎𝑏 − 𝑖𝑃𝑙𝑜𝑠𝑠 + (1 − 𝑖)𝑃𝑙𝑜𝑠𝑠

𝑃𝑙𝑜𝑠𝑠 = 𝑐1𝜔𝑟
2 + 𝑐2𝜔𝑟 + 1.5𝑟𝑠𝑖𝑠𝑞

2 𝑃𝑔𝑎𝑏 = 𝑇𝑒𝜔𝑟

𝑖: {
1, 𝑃𝑓

∗ ≥ 0 

0, 𝑃𝑓
∗ < 0

 

(6.17) 

(6.18) 

(6.19) 

The SOC is calculated using (6.20), whereas the number of charging cycle (N) is defined by 

(6.21). 𝑁 will increase by one each time the FESS fully charges and discharge the full 

capacity(𝐸𝑓). 
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𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡 − 1) +
𝑃𝑓(𝑡)

𝐸𝑓 
= ∫

𝑃𝑓(𝑡)

𝐸𝑓 
𝑑𝑡

𝑁(𝑡) = 𝑁(𝑡 − 1) +
𝑖(𝑡) 𝑃𝑓(𝑡) − (1 − 𝑖(𝑡)))𝑃𝑓(𝑡)

2�̅�𝑓
= ∫|

𝑃𝑓(𝑡)

2𝐸𝑓
| 𝑑𝑡 

 

(6.20) 

(6.21) 

The hybrid system model is shown in Figure 6-2.  
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Grid code

 

Figure 6-2 Hybrid system nonlinear model 

The system can be presented as a state-space fourth-order model from (6.14)-(6.21). The 

control inputs are the FESS power set-point 𝑃𝑓
∗ and the curtailed wind power 𝑃𝑐. The expected 

wind speed 𝑣𝑤 is considered as a known forecasted input, whereas the prediction error �̃�𝑤 is an 

unknown disturbance. The model outputs include the grid power value and its rate, FESS output 

power 𝑃𝑓, FESS power loss 𝑃𝑙𝑜𝑠𝑠, SOC, and N. 

�̇� = 𝐹(𝑋, 𝑖, 𝑈)
𝑌 = 𝐻(𝑋, 𝑖, 𝑈, 𝑈𝑑)

𝑋 = [𝑖𝑠𝑞 , 𝜔, 𝑆𝑂𝐶,𝑁]
𝑇

𝑈 = [𝑃𝑓
∗, 𝑃𝑐]

𝑈𝑑 = [�̃�𝑤]
𝑌 = [𝑃𝑔, ∆𝑃𝑔, 𝑃𝑓 , 𝑃𝑙𝑜𝑠𝑠, 𝑆𝑂𝐶, 𝑁]

 

(6.22) 

(6.23) 

(6.24) 

(6.25) 

(6.26) 

(6.27) 
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6.2.2 The Proposed Control Structure  

 To utilize the knowledge of future expected wind speed �̅�𝑤, a finite-horizon model 

predictive controller is used to optimize the future controlled inputs 𝑃𝑓
∗, 𝑃𝑐 according to a certain 

objective function. Because the maximum wind power is updated each commitment 

period 𝑇𝑐𝑜𝑚, the prediction horizon is chosen as 𝑛𝑝 =
 𝑇𝑐𝑜𝑚

𝑇𝑠1
  where 𝑇𝑠1 is the sampling time of 

the expected wind speed. 𝑇𝑠1 is in the range of minutes to provide a long prediction period with 

low number of samples. Now, the operational control problem can formulated as 

𝑀𝑖𝑛 (𝛼∑ 𝑃𝑙𝑜𝑠𝑠(𝑘𝑇𝑠1)
𝑛𝑝

𝑘=1
−∑ 𝑃𝑔(𝑘𝑇𝑠1)

𝑛𝑝

𝑘=1
)

𝑋(𝑘𝑇𝑠1 + 𝑇𝑠1) = 𝐹(𝑋(𝑘𝑇𝑠1), 𝑖(𝑘𝑇𝑠1), 𝑈(𝑘𝑇𝑠1), 𝑈𝑑(𝑘𝑇𝑠1))

𝑌(𝑘𝑇𝑠1) = 𝐻(𝑋(𝑘𝑇𝑠1), 𝑖(𝑘𝑇𝑠1), 𝑈(𝑘𝑇𝑠1), 𝑈𝑑(𝑘𝑇𝑠1))

𝑌(𝐾𝑇𝑠1) ≤ 𝑌

{
 
 

 
 𝑃𝑟𝑒 ≤ 𝑃𝑔(𝑘𝑇𝑠1) ≤ 𝑃𝑤(𝑇𝑐𝑜𝑚)

−∆𝑃𝑤 ≤ ∆𝑃𝑔(𝑘𝑇𝑠1) ≤ ∆𝑃𝑤
0 ≤ 𝑆𝑂𝐶(𝑘𝑇𝑠1) ≤ 1

𝑁(𝑇𝑐𝑜𝑚) ≤ 𝑛

𝑈(𝐾𝑇𝑠1) ≤ 𝑈 {
−𝑃𝑓 ≤ 𝑃𝑓

∗(𝑘𝑇𝑠1) ≤ 𝑃𝑓
−𝑃𝑤𝑟 ≤ 𝑃𝑐(𝑘𝑇𝑠1) ≤ 0

    𝑣𝑤(𝑘𝑇𝑠1) ⊆ [𝑣𝑤(𝑗𝑇𝑠2), 𝑣𝑤(𝑗𝑇𝑠2 + 𝑆𝑅)], 𝑆𝑅 =
𝑇𝑠1
𝑇𝑠2

, 𝑗 = 𝑘×𝑆𝑅 ∀𝑘

 

(6.28) 

(6.29) 

 (6.30)  

(6.31)  

(6.32)  

(6.33)   

(6.34) 

 (6.35) 

 (6.36) 

 (6.37) 
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The objective function given in (6.28) is a multi-objective function that maximizes the exported 

power to the grid under typical grid code constraints while minimizing the flywheel losses. The 

setting of the weight α defines the EMS inclination to power loss minimization by reducing the 

FESS activity or total system power generation. By increasing α, the EMS focuses more on 

losses minimization and vice versa as shown in Figure 6-3. 

Figure 6-3 Optimization objectives at different cost function weight. 

Figure 6-3 shows the relation between the energy losses in a 100 kW/6.6 kWh FESS unit and 

a 1.0-MW WECS for a 20-min time window. The values of 𝛼 = 0 to 𝛼 = 100 are tested with 

an increment of 10. The optimal value (Pareto-point) is the one that gives the minimum losses 

while yielding the maximum output power. This value is found as 𝛼𝑜𝑝 = 40. It is worth noting 

that the optimal value of  𝛼 depends on the expected wind power during the incoming horizon. 

Thus, the operator can conduct a periodic test for 𝛼, 𝛼 ∈ [𝛼, 𝛼] in each commitment 

period 𝑇𝑐𝑜𝑚. A simple recursive search can detect the optimal weight that achieves the 
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maximum exported power such that the losses is minimal or 𝛼𝑜𝑝 = {𝛼 ∈ [𝛼, 𝛼]|{�̅�𝑔|𝑃𝑙𝑜𝑠𝑠}}. 

Another simpler suboptimal technique is that the operator makes a constant choice for 𝛼 that 

reflects the operator’s preferences for power minimization. 

The state-space model is discretized with a sampling time Ts1 as given in (6.29), (6.30). The 

inequalities (6.31)-(6.34) represent the output constraints whereas (6.35)-(6.36) are the input 

constraints. In (6.31), the power exported to the grid is upper bounded by the maximum WECS 

power committed with the grid at this time (Tcom), and the down limit is the maximum allowed 

grid support in case of wind down-ramp that cannot be handled by the FESS. Equation (6.32) 

defines the grid code rising and falling power ramp rates. The SOC limits are given by (6.33), 

and the number of cycles at the end of the commitment period is given by (6.34). The FESS 

power constraint is expressed by (6.35). Finally, the curtailed wind power is defined as a 

negative power up to the rated WECS Pwr as given by (6.36). The optimization problem (6.28) 

is a nonconvex problem that is solved in this work by two model modifications. First, the 

nonlinear state-space model converts the optimization into a nonlinear mixed integer problem 

that faces feasibility problems and has no guaranteed global minimum. This problem is solved 

later in this chapter by converting the system into a time-variant linear model without loss of 

accuracy. Second, the wind speed data has a prediction error which affects the results optimality 

(that is why many works do not include weather forecasts in EMS decisions, e.g., [127]). 

Further, the predicted wind speed data is discretized using a large sample rate (e.g., 5 minutes); 

in reality, the wind speed changes significantly during this time window. Equation (6.37) 

models this change as the wind speed 𝑣𝑤(𝑘𝑇𝑠1) is defined as a set of wind speeds during the 

same time window if a smaller sample time 𝑇𝑠2 is considered (e.g., 1 s). In other words, 

[𝑣𝑤(𝑗𝑇𝑠2), 𝑣𝑤(𝑗𝑇𝑠2 + 𝑆𝑅)] is the inter-samples wind speed set during the bigger time window 
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𝑘𝑇𝑠1, where SR is defined as the sample times ratio. Such uncertainty-related problems are 

addressed by a faster online adaptive hysteresis controller  

6.3 The Proposed Control Algorithm 

6.3.1 Hybrid System Linearization 

To convert the optimization problem into a convex one suitable for online operational 

control, a linear state-space model is required. The nonlinear model has an integer state 

represented by the sign of the FESS operation mode. To obtain a linear model, the integer state 

is converted to a constant, and then a time-variant linearized model is driven. The integer state 

(i) depends on the absolute value of (𝑃𝑓
∗) as given in (6.19). To find a constant integer that 

indicates the FESS mode of operation, the following approach is proposed. It is known that the 

FESS is only allowed to operate in the charge mode when the wind power is greater than the 

maximum allowable power. On the contrary, the FESS is allowed to operate in the discharge 

mode when the expected generated wind power is below the maximum grid power. As a result, 

the relation between the expected wind power and the maximum one (both known for the 

incoming horizon) gives a sufficient relation to identify the FESS operating mode, and in such a 

case, the integer variable i is generated as in (6.38). equation (6.38) models the FESS state as a 

charging when the expected wind power is higher than the maximum power, and vice versa. 

   𝑖(𝑡): {
1, �̂�𝑤(𝑡) ≥ 𝑃𝑤(𝑡)

0, 𝑃𝑤(𝑡) < 𝑃𝑤(𝑡)
 

(6.38) 

Now, a linear model of (6.22) and (6.23) can be reached by linearizing the power loss 

relation in (6.18). The system identification technique is adopted for this purpose because it is 

practical, reliable and accurate modeling method [128]. 
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Figure 6-4 Hybrid system time-variant linearized model. 

The system identification process is implemented by exciting the system using a time-series 

consisting of two thousand random inputs with a magnitude between the maximum and 

minimum FESS power 𝑃𝑓
∗𝜖[−𝑃𝑓 , 𝑃𝑓]. Because the EMS dynamics is in the range of minutes, a 

sample-time of one second is used in the identification process. The identification data set is 

divided into training data (70% of the data set), and system validation data (30% of the data set) 

[128]. The identification process is repeated at different initial FESS speeds 𝜔0 to derive 

different models. It is found that the dc-gain of the linearized system transfer-function changes 

in these models; however, the system dynamics (poles and zeros) are the same; this finding 

makes sense because the model has static nonlinearities in the output (Wiener model) [31]. 

Thus, the power loss can be easily determined by tuning the model gain as a function of the 

initial FESS speed. 
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Figure 6-5 Linearized model performance. 

The FESS resulting system can be easily formulated as a time-variant linear model that 

depends on 𝜔0 and 𝑖 values as in (6.39)-(6.43). 

𝑃𝑔𝑐(𝑡) = 𝑃𝑐(𝑡) + 𝑃𝑤(𝑡)
  (6.39)  

 

�̇�𝑓 = 𝐴𝑓(𝑡)𝑋𝑓 + 𝐵𝑓(𝑡)𝑈𝑓
𝑌𝑓 = 𝐶𝑓(𝑡)𝑋𝑓

{𝐴𝑓 , 𝐵𝑓, 𝐶𝑓}(𝑡) = ∅(𝑖(𝑡),𝜔0)

𝑈𝑓 = 𝑃𝑓
∗ 𝑌𝑓 = [𝑃𝑓 𝑃𝑙𝑜𝑠𝑠]

 

 (6.40) 

(6.41) 

 (6.42) 

 (6.43) 
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where ∅ is a look-up table array that generates the system linearized model depending on the 

mode of operation and initial speed. By considering the wind power instead of the wind speed, 

the overall system can be expressed as a linear model as shown in Figure 6-4. By comparing 

different identification models performances, it is found that a third-order model gives the best 

fitting with a fitting accuracy of 93.1%. Figure 6-5 compares the results of the linearized model 

(6.40) and the nonlinear model (6.22). After augmenting the other linear states with the 

linearized FESS model, a complete state-space model is reached. 

The linearized model converts the MPC into a convex problem as shown by (6.44). First, 

given the expected and maximum WECS power, np linearized models are calculated for each 

sample in the coming horizon as shown by (6.45), (6.46). Further, the prediction error is 

assumed zero as this error is compensated by a faster controller that will be explained later. 

Because the MPC control action compensates for the expected disturbance �̂�𝑤, the generated 

MPC set-points are designated as follows 𝑈 = [�̂�𝑓
∗, �̂�𝑐]. Further modifications for the input 

constraints are also considered, where the curtailment is only allowed if the expected WECS 

power is greater than the maximum as given by (6.54). The FESS is allowed to charge in case of 

over maximum WECS power and vice versa; however, it can operate in the standby mode in 

both cases as expressed in (6.51),(6.52). 
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𝑀𝑖𝑛�̂�𝑓
∗,�̂�𝑐

 (𝛼 ∑ 𝑃𝑙𝑜𝑠𝑠(𝑘𝑇𝑠1)
𝑛𝑝
𝑘=1

− ∑ 𝑃𝑔(𝑘𝑇𝑠1)
𝑛𝑝
𝑘=1

)

𝑋(𝑘𝑇𝑠1 + 𝑇𝑠1) = 𝐴(𝑘𝑇𝑠1)𝑋(𝑘𝑇𝑠1) + 𝐵(𝑘𝑇𝑠1)𝑈(𝑘𝑇𝑠1)

𝑌(𝑘𝑇𝑠1) = 𝐶(𝐾𝑇𝑠1)𝑋(𝑘𝑇𝑠1) + 𝐷𝑈(𝑘𝑇𝑠1)

𝑌(𝐾𝑇𝑠1) ≤ 𝑌

{
 
 

 
 𝑃𝑔𝑠 ≤ 𝑃𝑔(𝑘𝑇𝑠1) ≤ 𝑃𝑤(𝑇𝑐𝑜𝑚)

−∆𝑃𝑤 ≤ ∆𝑃𝑔(𝑘𝑇𝑠1) ≤ ∆𝑃𝑤
0 ≤ 𝑆𝑂𝐶(𝑘𝑇𝑠1) ≤ 1

𝑁(𝑇𝑐𝑜𝑚) ≤ 𝑛

𝑈 (𝐾𝑇𝑠1) ≤ 𝑈 {
−𝑃𝑓(1 − 𝑖(𝑘𝑇𝑠1)) ≤ �̂�𝑓

∗(𝑘𝑇𝑠1) ≤ 𝑃𝑓𝑖(𝑘𝑇𝑠1)

−𝑃𝑟𝑖(𝑘𝑇𝑠1) ≤ �̂�𝑐(𝑘𝑇𝑠1) ≤ 0

 

(6.44) 

(6.45) 

(6.46) 

(6.47) 

 (6.48) 

 (6.49)  

 (6.50) 

 (6.51)  

 (6.52) 

 

6.3.2 Adaptive Hysteresis Controller (AHC) 

For prediction and WECS inter-samples error compensation, a change in the control 

action ∆𝑈(𝑗𝑇𝑠2) = [∆𝑃𝑓
∗, ∆𝑃𝑐] is required. Adaptive control for an ESS was discussed before in 

[34] for distributed storage of a dc microgrid to achieve SOC balance. The adaption was applied 

for the droop coefficients. In this study, an additive corrective control action is proposed. This 

update in the control action is generated by the AHC; however, as this controller works with a 

faster sampling rate, it may affect the original MPC constraints and optimal solution. To 

overcome this problem, the  condition (6.54) must be fulfilled. 

𝑈(𝑗𝑇𝑠2) = [
𝑃𝑓
∗(𝑗𝑇𝑠2)

𝑃𝑐(𝑗𝑇𝑠2)
] = 𝑈 (𝑘𝑇𝑠1) + ∆𝑈(𝑗𝑇𝑠2) = [

�̂�𝑓
∗(𝑘𝑇𝑠1)

�̂�𝑐
∗(𝑘𝑇𝑠1)

] + [
∆𝑃𝑓

∗(𝑗𝑇𝑠2)

∆𝑃𝑐
∗(𝑗𝑇𝑠2)

]

𝑆. 𝑡.  𝑌(𝑗𝑇𝑠2) ∈ [𝑌(𝑘𝑇𝑠1), 𝑌((𝑘 + 1)𝑇𝑠1)] ∈ 𝐻𝑌𝑆, 𝑘 =
𝑗

𝑆𝑅

 

   

(6.53) 

 

(6.54) 

As given in (6.53), the final control action consists of two parts: the main part is from the 

MPC long-term controller 𝑈  (𝑘𝑇𝑠1), and the second part is a compensation for WECS 



118 

 

prediction error generated by AHC ∆𝑈(𝑗𝑇𝑠2). In case the compensation error is zero, the 

condition (6.54) is always satisfied, and the AHC generates zero. 

Condition (6.54) guarantees that the AHC correction will not significantly change the outputs 

of process, since the outputs at any intersample 𝑗𝑇𝑠2 should be located between the previous and 

next value as expected by the MPC problem (6.44) known here as the hysteresis limits. For 

example, at 𝑗𝑇𝑠2 = 630 s (𝑇𝑠2 = 1 s), the AHC can produce a control action such that the 

current outputs are within the MPC hysteresis values; 𝑌(𝑗𝑇𝑠2) ∈ [𝑌(10𝑇𝑠1), 𝑌(11𝑇𝑠1)], 𝑇𝑠1 =

1 𝑚𝑖𝑛. If this is not the case, then a different control action is required to bring the current 

output within the hysteresis limits again as will be explained later. It is worth mentioning that 

the hysteresis can be given some flexibility which means that the output can diverge slightly 

from the optimal solution given by the MPC. This is possible by modifying the condition (6.54) 

to be as follows: 

𝑌(𝑗𝑇𝑠2) ∈ [𝑌(𝑘𝑇𝑠1) − 𝜆, 𝑌((𝑘 + 1)𝑇𝑠1) + 𝜆] ∈ 𝐻𝑌𝑆(𝑘𝑇𝑠1)  (6.55) 

As noticed, the output is allowed to diverge outside the optimal MPC solution by a tolerance 

(𝜆). The next step is how to design the AHC that guarantees that 𝑌 ∈ 𝐻𝑌𝑆.This section is 

composed of two parts. First, Section 6.3.3 investigates different uncertainty modes and 

how ∆𝑈(𝑗𝑇𝑠2) is calculated. Second, Section 6.3.4 discusses how the AHC satisfies the MPC 

constraints by fulfilling (6.54). 

6.3.3 Uncertainty Modes 

The actual wind power can have six different positions, defined here as six modes if 

compared to the expected value of wind power 𝑃𝑤(𝑡) and the maximum wind power 𝑃𝑤(𝑡) as 

shown in Figure 6-6. 
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Figure 6-6 Relation of actual wind power with expected, maximum power. 

 In the first mode (M1), the real wind power 𝑃𝑤 is greater than the expected wind power �̂�𝑤 

and the maximum wind power 𝑃𝑤. In such a case, the extra wind power (e.g. the prediction 

error �̃�𝑤) is stored in the FESS, as described by (6.56). 

𝑀 = {𝑀1∀𝑃𝑤(𝑗𝑇𝑠2) > �̂�𝑤(𝐾𝑇𝑠1) > 𝑃𝑤(𝐾𝑇𝑠1)}

∆𝑃𝑓1
∗ (𝑗𝑇𝑠2) = �̃�𝑤(𝑗𝑇𝑠2) = 𝑃𝑤(𝑗𝑇𝑠2) − �̂�𝑤(𝐾𝑇𝑠1)

 
 (6.56) 

In the second mode (M2), the real wind power is less than the expected wind power but it is 

still greater than the maximum wind power. In such a case, the FESS is required to be charged 

to a level less than the nominal value. If the difference between the real wind power and the 

maximum wind power is less than the nominal FESS set-point, then a reduction in the charge 

power is required. This process is described by (6.57). 

𝑀 = {𝑀2∀𝑃𝑤(𝐾𝑇𝑠1) < 𝑃𝑤(𝑗𝑇𝑠2) < �̂�𝑤(𝐾𝑇𝑠1)}

∆𝑃𝑓2
∗ (𝑗𝑇𝑠1) = (�̃�𝑤(𝑗𝑇𝑠2)|�̂�𝑓

∗(𝐾𝑇𝑠1) > 𝑃𝑤(𝐾𝑇𝑠1) − 𝑃𝑤(𝑗𝑇𝑠2))
 

 (6.57) 

In the third mode (M3), the real wind power is less than the expected wind power and the 

maximum wind power. In such a case, the FESS is required to change from the charge to 
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discharge mode till the total hybrid system power is maximum. This process is described by 

(6.58). 

𝑀 = {𝑀3∀𝑃𝑤(𝐾𝑇𝑠1) < 𝑃𝑤(𝐾𝑇𝑠1) < �̂�𝑤(𝐾𝑇𝑠1)}

∆𝑃𝑓3
∗ (𝑗𝑇𝑠2) = −�̂�𝑓

∗(𝑘𝑇𝑠1) − [𝑃
𝑤
(𝐾𝑇𝑠1) − 𝑃𝑤(𝑗𝑇𝑠2)]

 
 (6.58) 

In the fourth mode (M4), the real wind power is less than the expected wind power and the 

maximum wind power. In this case, the expected wind power is less than the maximum wind 

power. Thus, the FESS is in the discharge mode. In M4, The FESS can discharge more till the 

hybrid system power reaches its maximum. This process is described by (6.59). 

𝑀 = {𝑀4∀𝑃𝑤(𝑗𝑇𝑠2) < �̂�𝑤(𝐾𝑇𝑠1) < 𝑃𝑤(𝐾𝑇𝑠1)}

∆𝑃𝑓4
∗ (𝐾𝑇𝑠2) = �̃�𝑤(𝑗𝑇𝑠2)

 
 (6.59) 

In the fifth mode (M5), the real wind power is less than the maximum wind power but more 

than the expected wind power. In this case, the expected wind power is less than the maximum 

wind power. Thus, the FESS is in the discharge mode. In M5, The FESS can discharge less till 

the hybrid system power reaches its maximum. This process is described by (6.60). 

𝑀 = {𝑀5∀�̂�𝑤(𝐾𝑇𝑠1) < 𝑃𝑤(𝑗𝑇𝑠2) < 𝑃𝑤(𝐾𝑇𝑠1)}

   ∆𝑃𝑓5
∗ (𝑗𝑇𝑠2) = (�̃�𝑤(𝑗𝑇𝑠2)|𝑃𝑓

∗(𝐾𝑇𝑠1) < 𝑃𝑤(𝐾𝑇𝑠1) − 𝑃𝑤(𝑗𝑇𝑠2))
 

 (6.60) 

Finally, in the sixth mode (M6), the real wind power is more than both the maximum and 

expected wind powers. In this case, the expected wind power is less than the maximum wind 

power. Thus, the FESS is in the discharge mode. In M6, the FESS changes its mode to charge 

the extra wind power. This process is described by (6.61). 

𝑀 = {𝑀6∀ 𝑃𝑤(𝑗𝑇𝑆2) > �̂�𝑤(𝐾𝑇𝑠1) > 𝑃𝑤(𝐾𝑇𝑠1)}

∆𝑃𝑓6
∗ (𝑗𝑇𝑠2) = [𝑃𝑤(𝑗𝑇𝑠2) − 𝑃𝑤(𝐾𝑇𝑠1)] − 𝑃𝑓

∗(𝐾𝑇𝑠1)
 

 (6.61) 
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6.3.4 The Two-stage Controller 

Only one of modes (6.56)-(6.61) is enabled at any time. The total FESS is calculated and 

limited by the FESS thermal limit in (6.35). However, ∆𝑃𝑓
∗ may lead to undesired changes in the 

controlled outputs Y. It is very important to make sure that the outputs will be within the 

predefined limits determined by the MPC controller to guarantee optimum solution. Generally 

speaking, the outputs change ∆𝑌(𝑗𝑇𝑠2) due to the AHC correction ∆𝑃𝑓
∗(𝑗𝑇𝑠2) at steady-state 

depends on the system dc gain ℍ(𝑘𝑇𝑠1) as in (6.63) which depends on the linearized FESS 

model. 

∆𝑌(𝑗𝑇𝑠2) = ℍ(𝑘𝑇𝑠1)∆𝑃𝑓
∗(𝑗𝑇𝑠2)

ℍ(𝑘𝑇𝑠1) = lim
𝑧→1

𝐷(𝑘𝑇𝑠1) + 𝐶(𝑘𝑇𝑠1)(𝑧𝐼 − 𝐴(𝑘𝑇𝑠1))
−1
𝐵(𝑘𝑇𝑠1)

 
(6.62) 

(6.63) 

where A, B, C and D are extracted from (6.42), assuming zero disturbance and I is a unity 

matrix. The AHC applies the following rule to guarantee overall system operation within MPC 

optimal constraints: 

{

𝑌(𝐾𝑇𝑠1) + ∆𝑌(𝑗𝑇𝑠2) > 𝐻𝑌𝑆: {𝑃𝑓(𝑗𝑇𝑠2) = �̂�𝑓
∗
(𝑘𝑇𝑠1)  

𝑌(𝐾𝑇𝑠1) + ∆𝑌(𝑗𝑇𝑠2)𝜖𝐻𝑌𝑆: {𝑃𝑓(𝑗𝑇𝑠2) = �̂�𝑓
∗
(𝑘𝑇𝑠1) + ∆𝑃𝑓 

∗
(𝑗𝑇𝑠2)∀ℍ

𝑌(𝐾𝑇𝑠1) + ∆𝑌(𝑗𝑇𝑠2) < 𝐻𝑌𝑆: {𝑃𝑓(𝑗𝑇𝑠2) = �̂�𝑓
∗
(𝑘𝑇𝑠1),ℍ < 0 

 

   

(6.64) 

The control law (6.64) means that the compensating control action ∆𝑃𝑓
∗(𝑗𝑇𝑠2) is applied if 

and only if all the resulting controlled outputs are within their allowable domain or hysteresis 

limit (𝑌(𝐾𝑇𝑠1) + ∆𝑌(𝑗𝑇𝑠2)𝜖𝐻𝑌𝑆) or if this control action will direct the outputs back to 𝐻𝑌𝑆 

depending the output sensitivity to this input. For example, without loss of generality, let us 

consider that Y is the SOC and the input is ∆𝑃𝑓
∗(𝑗𝑇𝑠2) which has positive sensitivity (positive DC 

gain) with respect to the SOC. In case 𝑆𝑂𝐶 < 𝐻𝑌𝑆, the allowed control action is charging to 



122 

 

increase the SOC. In this case, the SOC is within the allowable HYS, and vice versa in case of 

discharging.  

Finally, both charging and discharging are allowed if 𝑆𝑂𝐶𝜖𝐻𝑌𝑆. The number of cycles also 

has a positive sensitivity with the charging power and it follows the same rules. After the final 

FESS power is calculated by (6.64), the curtailed power value is used to respect the maximum 

grid code power given in (6.2) after replacing Pw by Pw-Pf. The final curtailment power is 

calculated as follows: 

𝑃𝑐(𝑗𝑇𝑠2) = 𝑃𝑔𝑐(𝑗𝑇𝑠2) − [𝑃𝑤(𝑗𝑇𝑠2) − 𝑃𝑓(𝑗𝑇𝑠2)] 
  (6.65) 

Figure 6-7 shows the proposed EMS block diagram in the two-stage control framework.  

MPC
Problem (46)

Uncertainty 
modes

Eq. (58)-(63) 

Grid code power
Eq. (2)

AHC eq. (66)

Expected wind 
prediction and 
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maximum power Hysteresis limits

Expected wind power

Max wind  power

Real wind 
power

∆𝑷𝒇𝒊
∗
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MPC controller 

Real time AHC 

𝑷𝒘 

 

Figure 6-7 the proposed EMS structure. 
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6.4 Case Study 

In this case study, a 150 MW wind farm is participating in the power market in the Alberta 

transmission system- Canada. The Alberta system operator (AESO) requires that the wind 

facility updates its maximum power limit every 20 minutes. Further, the ramp-rate should not 

exceed 10% of the rated plant power per minute [129], [120]. The prediction horizon is taken as 

20 minutes (each commitment period). A typical wind speed profile is generated by TurbSim 

[130], a wind simulator developed by the National Renewable Energy Laboratory (NREL). A 

Great Plains Low-Level Jet (GP-LLJ) turbulence model is used with a mean wind speed of 7 

m/s-normal turbulence intensity sampled each 6 seconds [130]. The resulting wind profile is 

applied on a doubly-fed induction generator-based wind farm Simulink model developed by 

Hydro-Quebec [131]. The resulting wind power profile represents the real wind power profile. 

By averaging this profile each 1 minute, the expected wind power is calculated, and this data is 

assumed to be known for the MPC. The prediction error is the difference between the real wind 

power and this averaged value. Distribution for perdition error is shown in Figure 6-8 for a data 

set of 400 samples. As shown in Figure 6-8, the prediction error range is about ∓15%. For the 

MPC, the prediction horizon is taken as 𝑇𝑠1 = 60 s, 𝑛𝑝 = 20, when the AHC works at a sample 

rate 𝑇𝑠2 = 6 s. 

A 15 MW/1 MWh FESS station is added to the system which is composed of 100 kW units. 

To enhance the lifetime of the FESS, it is only allowed to have one cycle each commitment 

period 𝑁=1, which means 72 cycle per day. The FESS model parameters are taken from [53] 

with a higher inertia as shown in Table 6-1.  
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Figure 6-8 Wind power prediction error distribution. 

The FESS can operate up to the charge/discharge rated power continuously for 4 minutes for 

providing energy coverage of 20% of the commitment period. 

 

Table 6-1 parameters of a single FESS unit 

�̅�𝑟 = 31 𝐾𝑟𝑝𝑚     𝜔𝑟 = 15.5 𝐾𝑟𝑝𝑚 

                       𝐽 = 6.076 𝐾𝑔𝑚2  𝑟𝑠 = 8𝑚Ω  

𝑃𝑟 = 100 𝐾𝑤 𝑐1 = 9×10−5𝑤𝑠2/𝑟𝑎𝑑2 𝑐2 = 0.175𝑤𝑠/𝑟𝑎𝑑 
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Figure 6-9 Simulation results comparing the performance of the traditional EMS (C1) and the 

proposed MPC-based EMS (C2). 

The AHC updates its hysteresis limits from the MPC each minute and generates 10 

corrections per minute. The hysteresis setting gives a tolerance  𝜆 = 2% for deviation from the 

optimal solution.  

To show the advantages of the proposed MPC-based EMS, it is compared to the traditional 

EMS that is calculated in a real-time fashion based on the formulation in (6.5)-(6.13). Figure 6-

9 shows the performance of the traditional EMS (C1) and the proposed MPC-based EMS (C2). 

Different powers are shown in Figure 6-9. In Figure 6-9(a), the expected wind power is plotted 
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by the blue dotted line whereas the maximum WECS is plotted by the red line. The simulation 

is conducted for two commitments periods (40 minutes), and actual wind power is measured 

each 6 s. It should be noted that the wind power has a high ramp rate at 𝑡 = 1200 s which is 

followed by a sudden drop in power. Furthermore, in the first commitment period, the wind has 

two peaks exceeding the maximum, typically at 𝑡 = 0 and 300 s. Similarly, in the second 

commitment period, two peaks occur at 𝑡 = 1200 and 1800 s. The controller C1 has managed 

to maximize the power exported to the grid slightly than the controller C2 as shown in Figure 6-

9(b) during the starting period of the commitment period; however, C2 decided to keep the 

FESS idle (standby) during this early period. The main reason for this performance is the 

lifetime constraints embedded in C2 where it aims at maximizing the power without over-acting 

on the FESS. Figure 6-9(c) shows that the proposed controller (C2) charges the FESS late at 𝑡 =

300 s to discharge this energy back at the wind power gap at 𝑡 = 600 s. On the other hand, the 

traditional controller (C1) keeps charging and discharging to regulate the WECS power to the 

maximum.  

Further, this can be noted in Figure 6-9(d) which shows that the curtailed wind power is 

higher in (C2) than (C1) due to the higher activity of the FESS in case of C1. However, this 

difference is only 1% regarding the energy exported to the grid. 
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Figure 6-10 FESS internal dynamics- a comparison between (C1) and (C2). 

Figure 6-10 shows the internal dynamics for the FESS in both cases. As C1 keeps operating 

the FESS all the time, it leads to early acceleration for the FESS (fast actuator saturation) as 

depicted in Figure 6-10 (a). As a result, the FESS has reached its maximum capacity earlier in 

C1 than C2; this is observed in Figure 6-10(b) where C1 starts charging at t=0, whereas C2 

starts charging 500 s, later. The power loss has increased dramatically in C1 as compared to C2 

as shown in Figure 6-10(c). The latter keeps the FESS in the idle mode till the second peak of 

the wind power. Further, the number of cycles with C1 exceeds the two cycles limit with 20% 

whereas C2 keeps it 20% below the limit as shown in Figure 6-10(d). A similar performance 
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occurs in the second commitment period when C2 managed to pick-up the ideal charging and 

discharge times given the operational constraints. On the other hand, C1 keeps operating the 

FESS in all cases. The energy loss has dropped from 155.7 kWh with C1 to 117.3 kWh with C2. 

That is 24.7% reduction in the losses. 

 The AHC has changed the MPC power as depicted in Figure 6-9(c) according to the 

prediction error. The AHC is limited by output variables, such as the SOC that is depicted in 

Figure 6-11.  For instance, in the idle periods (e.g., t= [0, 300] s), no control action is allowed 

by the hysteresis controller to keep the SOC and N within limits. Figure 6-10 (b) shows that the 

AHC managed to direct the FESS SOC to follow the set-points produced by the MPC. Further, 

in other time periods, compensation for prediction error is allowed as shown in the period t= 

[2100, 2400] s. To sum up, the proposed EMS managed to reduce the FESS losses and boost its 

lifetime while dealing with prediction errors and compensating for their effect without diverging 

from the optimal solution generated by the MPC algorithm.  

 

Figure 6-11 AHC limits for SOC. 
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6.5 Validation study 

To show the effectiveness of the control algorithm and its applicability in a real-time 

environment, an HIL setup, for the hybrid system shown in Figure 6-2 is used.  The OPAL-RT 

(OP 5600) real-time simulator [111] is used in this study. The simulator can adequately model 

different RESs and ESSs dynamics [132], [133], and [134]. Figure 6-12 shows the laboratory 

set-up. The HIL simulates a 1.0 MW wind farm connected with a 100 kW/0.69 kWh FESS.  A 

lower FESS capacity is adopted to capture the significant system dynamics during a relatively 

short experimental period.    

 

Figure 6-12 Opal-RT (OP 5600) real-time simulator set-up (1- OPAl-RT OP5600 real-time simulator, 

2- analog output module OP5330, 3- local host-PC, 4- a digital oscilloscope). 

The HIL test system is divided into four subsystems. The WECS is represented by the 

aerodynamic and the electro-mechanical models. A dedicated processor in the OPAL-RT 

simulator calculates the WECS power. The power is sent as an input to the controller with a 
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time step of 5 ms. The average power electronic converter model is used, which is very suitable 

for EMS studies [133].  The controller consists of two parts, the MPC, and the AHC. The MPC 

has a 125 s prediction horizon. The MPC optimization is solved by the Matlab solver on the 

local PC to fulfill the long-term optimization objectives. The MPC results are sent to the real-

time simulator via a Simulink interface with the RT-LAB. The MPC results include the SOC 

hysteresis-limits to the AHC. Second, The AHC is solved by a dedicated master processor on 

the OPAL-RT with a time step of 100 ms. The AHC calculates the power set point for the 

FESS. The FESS is modeled on a third slave processor with a 5 ms sample rate to calculates the 

FESS dynamics with an average power converter model. These dynamics are used as a feedback 

signals for the AHC and given as measurements for different interfaces, such as Simulink data 

sinks or digital oscilloscopes. Both the FESS and WECS dynamics are calculated in a real-time 

fashion due to the high processing speed of the simulator. Figure 6-13 depicts different 

subsystems in the HIL setup. 

WECS
Model

Adaptive
Hysteresis
Controller

FESS
Model

MPC controller

Simulink
interface

Local-PC MATLAB

Core-1
Core-2 Core-3

MasterSlave Slave

Digital Oscilloscope

 

Figure 6-13 System description and different process interfaces. 
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The standard vector control scheme is adopted in the PMSM drive system of the FESS, 

which facilitates fast control characteristics over the drive system torque. The closed-loop 

torque response is dictated by the closed-loop current response. The system responses are 

measured by a four-channel digital oscilloscope (Agilent DSOX2004A). Key system variables 

are shown in Figure 6-14. 

The wind profile generated in a 25-s period as illustrated in figure 6-14(a). The expected and 

maximum wind power profiles are also shown in Figure 6-14(a). The output power of the FESS 

is provided in Figure 6-14(b). The hysteresis limits for the SOC, which are generated by the 

MPC algorithm, are shown in Figure 6-14(c). The hysteresis limits are desired to be bounded 

between 𝑆𝑂𝐶𝑚𝑖𝑛, 5% < 𝑆𝑂𝐶𝑚𝑖𝑛 < 7% and 𝑆𝑂𝐶𝑚𝑎𝑥, 20% < 𝑆𝑂𝐶𝑚𝑎𝑥 < 35%, which are 

depicted by the red and blue lines in Figure 6-14(c), respectively. The resulting real-time SOC 

profile is shown by the green line in Figure 6-14(c). Knowing the SOC limits and the difference 

between real and expected wind powers, the AHC generates the FESS power set point in real-

time, which is used to generate the torque command of the PMSM drive system. The resulting 

FESS power loss profile is shown in Figure 6-14(d). 

As shown in Figure 6-14(b), the wind power starts with a value that it less than the maximum 

wind power; i.e., 𝑃𝑤 < 𝑃𝑤. Because the initial SOC lies within the SOC limits, the AHC allows 

the FESS to discharge till point (0) where 𝑃𝑤 > 𝑃𝑤. In such a case, the AHC charges the FESS 

with this surplus wind power (𝑃𝑤 − 𝑃𝑤). At point (1), the wind power decreases below the 

maximum value (𝑃𝑤 < 𝑃𝑤); thus the FESS is discharged till point (2). Although 𝑃𝑤 < 𝑃𝑤, the 

AHC prevents further discharge for the FESS to stay inside the SOC limits provided by the 

MPC to satisfy the optimization problem in (6.44). The FESS stays in the stand-by mode until a 
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jump in the wind power occurs again; i.e., 𝑃𝑤 > 𝑃𝑤. In this case, the FESS is fully charged with 

this excessive wind power until it reaches point (3). Between points (3) and (4), a drop in the 

wind power occurs. As a result, the EMS changes the FESS mode from charge to discharge 

during this period. From point (4) to (5), the wind power climbs up to the maximum limit again. 

Thus, the FESS mode is changed by the EMS back to the charge mode. Although 𝑃𝑤 > 𝑃𝑤 after 

point (5), the AHC keeps the FESS in the stand-by mode to respect the SOC upper limit. After 

the upper limit is updated and the wind power drops below the maximum power as well, the 

FESS starts discharging again. The proposed EMS managed to track the wind power changes in 

real-time, while keeping the FESS dynamics within the optimal operational region provided by 

the MPC to minimize the FESS losses while respecting the grid integration codes.   
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Figure 6-14 Real-time simulation results with time scales; a- wind power (100 kW/Div.); b- FESS 

power (20KW/Div.); c- SOC  (5%/Div.) d- power loss (0.35 kW/div.) 

6.6 Conclusion 

This chapter presented a two-stage real-time EMS for a hybrid system composed of a FESS 

connected with a WECS. The EMS used an MPC-based algorithm to respect typical grid codes 

while minimizing the FESS losses and boosting its lifetime. The proposed technique converted 
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the MPC optimization problem from a nonlinear mixed integer into a linear convex problem 

without loss of accuracy. The AHC realized the second stage. The AHC was tuned by the MPC 

to ensure optimum operation under uncertainties associated with wind power perdition errors. 

The proposed EMS was compared with a traditional EMS on a typical 150-MW WECS. 

Furthermore, the real-time performance of the proposed EMS was validated in an HIL test 

bench. The proposed EMS managed to reduce the FESS losses by 25% as compared to the 

conventional EMS while compensating for the prediction errors and respecting the grid 

integration codes.  

.   
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Chapter 7 

7  Multi Energy Storage Robust Operation in Active Distribution 

Network  

7.1 Introduction 

This chapter discusses the day-ahead operation of multi ESSs in a distribution system with 

RESs. The chapter presents a tool to robustly allocate the allowable operating zones of active 

power margins for multi ESSs without violating typical distribution system constraints. This 

tool helps ESSs to manage their energy independently without violating the power system 

constraints. The main contribution is considering the power uncertainties (loads and renewable 

energy) without taking very conservative decisions. For defining robust operating zones (ROZ) 

for ESSs; first, a fuzzy expert relaxes the uncertainty domain. Second, a particle swarm 

optimization (PSO) algorithm detects the worst-case power uncertainty. Finally, the ROZ for 

each ESS that maintains safe system operation limits (voltage limits and branches ampacity) is 

obtained. 

7.2 Problem Formulation 

The typical energy management problem for any ESS ES is as follows: 

Max
𝑝𝑠𝑘

(𝔽(𝑝𝑘
𝐸𝑆)) 

𝑠. 𝑡. {
𝜃 𝑘+1
𝐸𝑆 = 𝕊(𝜃𝑘

𝐸𝑆, 𝑝𝑘
𝐸𝑆), ‖𝜃𝑘

𝐸𝑆‖ ≤ 𝜃𝑘
𝐸𝑆̅̅ ̅̅ ̅

0 = 𝜙𝑘(𝑝𝑘
𝐸𝑆, 𝜃𝑘

𝑔
, ℙ𝑒𝑥), ‖𝜃𝑘

𝑔
‖ ≤ 𝜃𝑘

𝑔̅̅̅̅

 , 𝐸𝑆𝜖𝒩𝑠, 𝑘𝜖𝒩𝑘 

(7.1) 

(7.2) 

(7.3) 
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As shown in (7.1), the ESS aims at optimizing a certain cost function 𝔽(𝑝𝑘
𝐸𝑆) which can be 

the ESS owner profit maximization by means like energy arbitrage, load shifting or even 

renewable energy integration [3]. Optimizing 𝔽(𝑝𝑘
𝐸𝑆) depends on choosing the optimal future 

ESS dispatch power 𝑝𝑠𝑘. The future horizon can be minutes, hours, or even days. Without the 

loss of generality, we assume day-ahead operation example. The optimization problem has two 

constraints sets. First the ESS dynamical model 𝕊(𝜃𝑘
𝑔
) in (7.2) that includes the storage states 

𝜃𝑘
𝑔
, such as (energy and power level, state of charge (SOC) and number of charging cycles). 

Energy storage states are limited in (7.2) (e.g., the state of charge is less than one, and the power 

is less than the converter rating). The second model is the grid power flow model 𝜙𝑘. The 

power flow model is a static model that relates each bus active and reactive power to the nodal 

voltage and angle. The grid controlled variables (expressed here as 𝜃𝑘
𝑔

 and include the buses 

voltages and branches currents) depend on the storage power plus other exogenous power ℙ𝑒𝑥, 

such as RES and load power. The grid variables are limited as in (7.3) to keep the voltage and 

current levels within limits.  

Two main problems face the optimization problem (7.1). First, the exogenous power ℙ𝑒𝑥  is 

uncertain due to RESs and load prediction errors. Second, the problem (7.1) is solved by each 

ESS independently; in case of different ESS owners, this will require a complete knowledge of 

the distribution system model 𝔾 and other resources day-ahead dispatch (ℙ𝑒𝑥) which is not very 

practical assumption. The proposed framework proposes the following. 

1- Assuming that the system operator (DNO) has predictions of the RESs and load profiles, it 

will robustly calculate, for each ESS, the maximum power limits (for the day ahead) such 

that condition (7.3) is robustly fulfilled. These limits are defined here as the ROZ. 
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2- Each ESS owner can manage the asset independently by solving (7.4) with no need to 

know the whole system model (by only knowing the ROZ as provided in (7.6)). 

Max
𝑝𝑠𝑘

(𝔽(𝑝𝑘
𝐸𝑆)) 

𝑠. 𝑡. {
𝜃𝑘+1
𝐸𝑆 = 𝕊(𝜃𝑘

𝐸𝑆, 𝑝𝑘
𝐸𝑆), ‖𝜃𝑘

𝐸𝑆‖ ≤ 𝜃𝑘
𝐸𝑆̅̅ ̅̅ ̅

𝑅𝑂𝑍𝑘
𝐸𝑆 ≤ ‖𝑝𝑘

𝐸𝑆‖ ≤ 𝑅𝑂𝑍𝑘
𝐸𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅ , 𝑘 = 1: 24

  

 (7.4) 

 (7.5) 

 

 (7.6) 

 

3- The owners of ESSs and RESs can co-operate together in time-shifting services or energy 

arbitrage under the proposed framework. 

7.3 Robust Operating Zones Generation 

From the previous discussion, the target is to find the ROZ which is defined in (7.7) and (7.8). 

The ROZ represents a supremum and infimum limits for the ESS power imposed by the grid 

model such that the grid states (voltage level and branches current) are within limits. For 

example, 𝑅𝑂𝑍𝑠𝑘  may represent the maximum ESS discharge power such that the voltage level 

does not exceed 1.05 pu.  

𝑅𝑂𝑍𝑘
𝐸𝑆 = (sup𝑝𝑘

𝐸𝑆 |‖𝜃𝑘
𝑔
‖ ≤ 𝜃𝑔𝑘̅̅ ̅̅̅) 

𝑅𝑂𝑍𝑘
𝐸𝑆 = (inf 𝑝𝑘

𝐸𝑆 |‖𝜃𝑘
𝑔
‖ ≤ 𝜃𝑔𝑘̅̅ ̅̅̅)

 
 

 (7.7) 

 (7.8) 

 

Assuming the power uncertainty 𝑝𝜖 [ 𝑝, 𝑝] has a Gaussian probabilistic distribution (driven 

from the historical prediction error data). For defining the uncertainty lower and upper limits 

(ULL: 𝑝) and (UUL: 𝑝), if an uncertainty cumulative distribution function (𝜓) is available, ULL 

and UUL may be taken at a (95%) confidence level (CL) with values 𝑈𝑈𝐿 = arg(𝜓𝑘
𝑏 =

95%) , 𝑈𝐿𝐿 = arg(𝜓𝑘
𝑏 = 5%). These values for (UUL, ULL) are widely used in risk-based 

decisions [135]; however, other ranges are also considered, such as 99.9%-CL or 90%-CL, etc. 

The power at each bus b and future time k (𝑝𝑘
𝑏) is expressed in (7.9)-(7.11). The uncertain bus 
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power is expressed in (7.10) whereas the certain part is given in (7.11).  Assuming a constant 

power load, the load reactive power is expressed as �̂�𝑘
l = 𝜆𝑙�̂�𝑘

𝑙  where is  𝜆𝑙 =

tan (cos−1 𝑝𝑜𝑤𝑒𝑟 𝑓𝑎𝑐𝑡𝑜𝑟) . If a RES is assumed to operate at unity power factor, then 

𝜆𝑟 equals zero. However, if a RES is desired to participate in voltage control, another control 

variable is added to the process 𝑞𝑘
𝑟𝑒𝑠. Finally, if distributed generators (DGs) exist in the system, 

they can be added as a control variable as 𝑝𝑘
𝐷𝐺 , 𝑞𝑘

𝐷𝐺. Without loss of generality and to focus on 

ESSs in this work, it is assumed that RESs have a unity power factor  𝜆𝑟𝑒𝑠 = 0, and the system 

has no DGs.   

𝑝𝑘
𝑏 = �̂�𝑘

𝑏 + 𝑝𝑘
𝑏 𝑞𝑘

𝑏 = �̂�𝑘
𝑏 + �̃�𝑘

𝑏

�̂�𝑘
𝑏 = 𝑝𝑘

𝐸𝑆 + �̂�𝑘
𝑙𝑜𝑎𝑑 + �̂�𝑘

𝑟𝑒𝑠 �̂�𝑘
𝑏 = 𝑞𝑘

𝐸𝑆 + 𝜆𝑙�̂�𝑘
𝑙𝑜𝑎𝑑 + 𝜆𝑟�̂�𝑘

𝑟𝑒𝑠 

𝑝𝑘
𝑏 = 𝑝𝑘

𝑙𝑜𝑎𝑑 + 𝑝𝑘
𝑟𝑒𝑠 �̃�𝑘

𝑏 = 𝑞𝑘
𝐸𝑆 + 𝜆𝑙𝑝𝑘

𝑙𝑜𝑎𝑑 + 𝜆𝑟�̃�𝑘
𝑙𝑜𝑎𝑑

 
∀𝑏 = 𝑠 = 𝑙 = 𝑟, 𝑏𝜖𝒩𝑏 𝑠𝜖𝒩𝑠, 𝑘𝜖𝒩𝑘 , 𝑙𝜖𝒩𝑙 , 𝑟𝜖𝒩𝑟 

 

(7.9) 

(7.10) 

(7.11) 

 Let us define the uncertainty domain 𝒟 that combines the uncertainty in each bus power. 

𝒟 = {𝑝𝑘
𝑏𝜖ℝ𝑛𝑏×𝑛𝐾|𝑝𝑘

𝑏𝜖 [ 𝑝𝑘
𝑏 , 𝑝𝑘

𝑏] ∀ 𝑏𝜖𝒩𝑏 , ∀ 𝑘𝜖𝒩𝑘} 
                  (7.12) 

The system power flow is a network that links a set of buses 𝑏𝜖𝒩𝑏 by a set of branches 𝑡 ∈

𝒩𝑡 as explained in Section 3.2.5. Given the uncertainty domain D, RESs and load expected 

values, two optimization problems (7.13, 7.17) define the ROZ. These problems are solved for 

each sample 𝑘 ∈ 𝒩𝑘.  
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𝑅𝑂𝑍𝑘
𝐸𝑆 = 𝑝𝑘

𝐸𝑆

|

|
max 𝑝𝑘

𝐸𝑆,𝑞𝑘
𝐸𝑆(∑

𝑝𝑘
𝐸𝑆

𝐶𝐸𝑆

𝑛𝑠

𝐸𝑠=1

) 

𝑠. 𝑡. {

(7.9) − (7.12), 𝜙𝑘(𝒟) ∶ { (3.42) − (3.48)

𝑝𝑘
𝐸𝑆2 + 𝑞𝑘

𝐸𝑆2 ≤ 𝐶𝐸𝑆2

0 ≤ 𝑝𝑘
𝐸𝑆 ≤ 𝐶𝐸𝑆

𝑅𝑂𝑍𝑘
𝐸𝑆 = 𝑝𝑘

𝐸𝑆

|

|
min 𝑝𝑘

𝐸𝑆,𝑞𝑘
𝐸𝑆(∑

𝑝𝑘
𝐸𝑆

𝐶𝐸𝑆

𝑛𝑠

𝐸𝑠=1

) 

𝑠. 𝑡. {

(7.9) − (7.12), 𝜙𝑘(𝒟) ∶ {(3.42) − (3.48)

𝑝𝑘
𝐸𝑆2 + 𝑞𝑘

𝐸𝑆2 ≤ 𝐶𝐸𝑆2

−𝐶𝐸𝑆 ≤ 𝑝𝑘
𝐸𝑆 ≤ 0

 

 

(7.13) 

(7.14) 

(7.15) 

(7.16) 

 

(7.17) 

(7.18) 

(7.19) 

(7.20) 

 

The objective function (7.13) aims at maximizing the per-unit discharge power participation 

of all ESSs. The resulting ESS active power represents the ROZ upper limits. The reason for 

dividing each ESS active power on the apparent power (𝐶𝐸𝑆) is the fair participations of 

reactive power support from different ESSs as they have different sizes; otherwise, the large 

ESS units will have higher weights in the objective function. However, it should be noted that 

reactive power support is also location-based where one cannot guarantee equal VAr 

participation from different ESSs. Whereas (7.14) represent the power system model which is 

uncertain in the bus power as in (7.12), the constraint (7.15) defines the apparent power limit 

𝐶𝐸𝑆 of each ESS, and (7.16) guarantees the operation of ESS in the discharge mode. Similarly, 

the maximum ESS charging power (𝑅𝑂𝑍𝑘
𝐸𝑆) is driven by solving (7.17). Unlike problem (7.13), 

the constraint (7.20) enforces the ESS to operate in the charging mode. Problem (7.13) 

considers the ESS as a generator from the power flow point of view (that is why it is a 

maximization problem). On the other, problem (7.17) considers the ESS as a load, and this is 

the reason for minimizing the power to reach the maximum allowable charged power without 

violating the power system constraints.  
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Problems (7.13) and (7.17) are still uncertain because the power flow, model 𝜙𝑘 is a function 

in the uncertainty set 𝒟 that offers infinite uncertainty combinations for each bus power. The 

choice of different uncertainty sets dictates the choice of 𝑝𝑘
𝑏 in (7.9) and hence the 𝑅𝑂𝑍 results. 

Different choice criteria for 𝑝𝑘
𝑏 are depicted in Figure 7-1-a. If deterministic optimization is 

applied, then the uncertainty is neglected 𝑝𝑘
𝑏 = 0. On the other hand, techniques, such as robust 

optimization can include the worst case uncertainty (WCU), such as 99.9% of the uncertainty 

domain. The WCU provides a robust solution for all the other uncertainty combinations 

within 𝒟 and is located at one of the 𝒟 vertices [74]; however, the WCU represents a 

conservative solution. One possible solution is to reduce the uncertainty domain size from 𝒟 to 

a less conservative (relaxed) one 𝒟𝑓 via an uncertainty budget. An example for uncertainty 

budget is reducing the confidence level from 99.9% into 95% as shown in Figure 7.1(a); 

however, this technique is still not immune against all uncertainty possibilities.  

The proposed framework relaxes the uncertainty domain according to its resulting risk on the 

system as shown in Figure 7.1(b). This solution acts more conservatively (e.g., like robust 

optimization) with the risky uncertainty, whereas it relaxes the uncertainty domain when the 

uncertainty does not represent any harm on the system constraints. For instance, risky over-

generated power uncertainty that shifts the voltage level more than 1.05 pu or the current level 

over the ampacity limit is fully considered. The ROZ generation is formalized in a three-stage 

framework as explained in the following.  
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𝒑 𝒃𝒌 

𝒑 𝒃𝒌 

𝑷(𝒑 𝒃𝒌) 

Deterministic Optimization 

95% Confidence level

99.9% Confidence level

High risk over-generation

High risk under-generation

low risk uncertainity

(a)

(b)

𝑷(𝒑 𝒃𝒌) 

 

Figure 7-1(a) Different uncertainty sets definition techniques (b) proposed risk-based uncertainty 

definition technique. 
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Figure 7-2 ROZ generation framework. 

The proposed framework finds the ROZ in three stages as depicted in Figure 7-2. In Stage 

(A), given the uncertainty domain 𝒟, it is relaxed to 𝒟𝑓. In Stage (B), the PSO detects the worst 

case uncertainty within 𝒟𝑓. Finally, in Stage (C), the full active power participation of all ESS 

in both full charge and discharge scenarios with the WCU are tested. In case of no grid code 

violation, each ESS can be fully discharged 𝑅𝑂𝑍𝑘
𝐸𝑆 = 𝐶𝐸𝑆 and fully charged 𝑅𝑂𝑍𝑘

𝐸𝑆 = 𝐶𝐸𝑆. 

Otherwise, the ROZ are defined by solving (7.13) and (7.17) after knowing the WCU to 

calculate 𝑝𝑘
𝑏.  
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7.3.1 Stage A: Uncertainty Set Relaxation 

In this stage, the uncertainty budget is calculated. It is considered as a weight for the 

uncertainty set for reducing the conservatism of results due to extreme case uncertainty. An 

uncertainty budget here is evaluated according to the uncertainty associated risk. In other words, 

the less risky the uncertainty is, the more relaxed the uncertainty domain is. Further, the risk 

probability is another factor in this process. This technique emulates the popular risk 

management strategies that depend on two main factors to make decisions: the risk level and 

the risk probability. The risk of the uncertainty focuses on its effect on voltage level, and a risk-

based-budget value is assigned, accordingly. For instance, if we study a bus voltage variation 

for a wind turbine (with ∓20% power variation), normally it is windy with light load during 

late night. As a result, extra wind generation is riskier on the bus voltage. Thus a high budget is 

assigned for the UUL and lower for the ULL, and vice versa during peak hours (under-voltage 

hours). On the other hand, for load uncertainty, the uncertainty budget maximizes the ULL 

during overvoltage times, and vice versa during peak load hours (under-voltage). To quantify 

the risk of uncertainty on the voltage level, the power with voltage relation is driven from the 

famous voltage sensitivity matrix (the power flow inverse Jacobian). Assuming unity power 

factor RES and constant power factor load, relation (7.21) is driven. 

𝜕𝑣𝑘
𝑏 = Λ𝑏𝑝𝜕𝑝𝑘

𝑏 + Λ𝑏𝑞𝜕𝑞𝑘
𝑏  ∀ 𝑏𝜖𝒩𝑏 , ∀ 𝑘𝜖𝒩𝑘

𝜕𝑣𝑘
𝑏 = 𝜕𝑝𝑘

𝑏(Λ𝑏𝑝 + Λ𝑏𝑞𝜆𝑙)
 

(7.21) 

 

For studying the active power uncertainty at a bus b and a time k, critical power uncertainty 

(CPU) limits [𝜕𝑝𝑘
𝑏 , 𝜕𝑝𝑘

𝑏] are calculated in (7.22). It is worth noting that CPU is a function in 

both the bus voltage in the deterministic case 𝑣𝑏𝑘(0) = arg (∅𝑘(𝒟 = 0)) and bus voltage 
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sensitivity. The upper CPU 𝜕𝑝𝑘
𝑏  leads to a maximum overvoltage at the bus b, while the lower 

CPU 𝜕𝑝𝑘
𝑏 leads to under voltage limits in load buses sets and vice versa for lower CPU. 

        𝜕𝑝𝑘
𝑏 =

𝑣 − 𝑣𝑘
𝑏(0)

Λ𝑏𝑝 + Λ𝑏𝑞𝜆𝑙
𝜕𝑝𝑘

𝑏 =
𝑣 − 𝑣𝑘

𝑏(0)

Λ𝑏𝑝 + Λ𝑏𝑞𝜆𝑙
   

     
 

(7.22) 

The uncertainty risk is calculated by comparing CPU and the uncertainty set limits. Further, 

if different uncertainties PDFs are available, the risk probability is reachable. Calculating the 

uncertainty budget from the uncertainty risk and the risk probability is not a straightforward 

process; however, it is a logic process that can be efficiently solved by using logic rules. 

Therefore, a fuzzy expert is proposed to tune the uncertainty budget limits using the risk and its 

probability. The proposed fuzzy inference system has four inputs;  

 First; the UUL risk 𝑅𝑈𝑈𝐿𝑘
𝑏 . It is the difference between the UUL and the maximum CPU. If 

the uncertainty is higher than the critical power, the risk has a higher positive value which 

means a higher risk, and vice versa. 

        𝑅𝑈𝑈𝐿𝑘
𝑏 = 𝑝𝑘

𝑏 − 𝜕𝑝𝑘
𝑏

     
 

(7.23) 

 The second input is ULL-risk 𝑅𝑈𝐿𝐿𝑘
𝑏 . It is the difference between ULL and minimum CPU. 

Both inputs are represented in per-unit. 

 𝑅𝑈𝐿𝐿𝑘
𝑏

=𝑝𝑘
𝑏−𝜕𝑝𝑘

𝑏  (7.24) 

 Finally, the third and fourth inputs are the risk probabilities’ values. As both 𝜕𝑝𝑘
𝑏 , 𝜕𝑝𝑘

𝑏 are 

deterministic, the risk probabilities are calculated from their CDF as follows; 𝜓(𝑅𝑈𝑈𝐿𝑏𝑘) =

𝜓 (𝑝𝑘
𝑏
) and 𝜓(𝑅𝑈𝑈𝐿𝑘

𝑏 ) = 𝜓(𝑝
𝑘
𝑏). If an uncertainty CDF is available for the uncertainties, then the 

risk probabilities exist; otherwise, these probabilities are assumed as one (which means they 

are unconsidered) and in such a case, the rule size shrinks from nine to three. That means that 
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the expert can still work without an exact CDF data.  Each input is represented in the domain 

of discourse by three membership functions [136], while the outputs are the uncertainty budget 

limits Γ𝑘
𝑏 , Γ𝑘

𝑏 which have five Gaussian membership functions, each within [0,1]. The expert 

system has 18 rules given in Table 1 (first three rows are for the upper limit Γ𝑘
𝑏, whereas the 

last three rows are for the lower limit Γ𝑘
𝑏). 

Table 7-1 Fuzzy expert rules. 

                                         𝑅𝑈𝑈𝐿𝑘
𝑏

       

 𝜓(𝑅𝑈𝑈𝐿𝑘
𝑏

) 

positive zero Negative 

Low probability V-Low Low Medium 

Medium probability Low Medium High 

High probability Medium High V-High 

                                  𝑅𝑈𝐿𝐿𝑘
𝑏

 

 𝜓(𝑅𝑈𝐿𝐿𝑘
𝑏

) 

negative zero Positive 

Low probability V-Low Low Medium 

Medium probability Low Medium High 

High probability Medium High V-High 

 

An easy way to define uncertain variable 𝜉 (given its uncertainty range [𝜉, 𝜉] and its average 𝜉) 

is by using a triangular membership function centered at 𝜉, which expands by two linear lines to 

the points (𝜉, 𝜉): however, if the CDF is given, other non-uniform presentations are possible. 

Further details for deriving a membership function for an uncertain variable is given in [137], 

while fuzzy risk management applications in power system restoration is discussed in [138].The 

expert outputs are the weights of uncertainty budgets, which relax the original uncertainty set 𝒟 

to get a filtered or un-conservative new set 𝒟𝑓.  

             𝒟𝑓 = {�̃�𝑘
𝑏𝜖ℝ𝑛𝑏 ×𝑛𝑘|�̃�𝑘

𝑏𝜖 [Γ𝑘
𝑏 𝑝𝑘

𝑏 , Γ𝑘
𝑏 𝑝𝑘

𝑏] ∀ 𝑏𝜖𝒩𝑏 , ∀ 𝑘𝜖𝒩𝑘}
 

     
 

(7.25) 
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It is worth mentioning that the derived surface from Table 7-1 is a non-unique and sub-optimal 

solution; however, it is derived using logic rules and empirical trials. As a future work, a 

learning algorithm will be investigated to train the membership function parameters. It should 

be noticed that other criterion rather than voltage level may be adopted to study the uncertainty 

risk, such as voltage stability as adopted in [139], however, it is assumed that RES penetration 

is not so high such that it threatens the voltage stability. 

7.3.2  Stage B: Worst-Case Uncertainty Detection 

Stage-B aims at defining the WCU over the relaxed uncertainty set 𝒟𝑓 using PSO. Not only 

does PSO have a long history with power system applications, but also it has the following 

advantages [140]. First, the fitness function is the gauge of the solution quality without the need 

for complex calculations, such as gradient or matrix inversion calculations that may be 

infeasible. This reduces the computational complexity and relaxes the continuity and convexity 

conditions needed in gradient-based methods. Second, PSO is easily merged with other 

optimization techniques (such as semi-definite programming in this chapter). Further, it can 

escape local minima, as the scattered population results guide the solution. Finally, PSO is 

preferred over other evolutionary algorithms for its simplicity, low memory requirement, and 

fewer parameters tuning. On the other hand, like other heuristic algorithms, the solution may 

have long calculation times depending on the population size and the initial position; however, 

with the current developments in high-performance computing tools, less computational time is 

achievable. Due to the aforementioned reasons, PSO is adopted as a WCU detector (𝑑∗) at 

uncertainty domain 𝒟𝑓 hyper-plane. Each particle of the swarm-population  𝑋𝑘
𝑗(𝜏) is a vector 

with dimension 1×𝑛𝑏 represents the power uncertainties combination j calculated at future 
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sample time k at the PSO iteration 𝜏. The total population size equals 𝐽×𝐾.  𝒟𝑓 represents the 

population search domain or the particles limits:  

      𝑋𝑘
𝑗(𝜏) = �̃�𝑘

𝑏 = [�̃�1𝑘
𝑏𝑗(𝜏),… , �̃�𝑘𝑛𝑏

𝑏𝑗 (𝜏)] , 𝑋𝑘
𝑗
(𝜏)𝜖 𝒟𝑓

  (7.26) 

To detect the worst power uncertainty, the PSO maximizes a fitness function that represents 

the sum of voltage deviation at all buses (penalty function 𝑓𝑉𝑘) in (7.27). 

          

max (𝑓𝑉𝑘)∀𝑘

𝑓𝑉𝑘 = ∑
1

1 + 𝑒−𝛼(𝑣−𝑣𝑘
𝑏 )
+

1

1 + 𝑒𝛼(�̅�−𝑣𝑘
𝑏 )
+ 𝛽(𝑣𝑘

𝑏 − 𝑣𝑟)
2

𝑛𝑏

𝑏=1

 

(7.27)  

 

(7.28) 

The penalty function consists of three parts: two sigmoid functions represent a very high 

penalty for violating the desired voltage range and, the third part is a quadratic function that 

penalizes the voltage deviation from the nominal 1.0 pu. Two remarks need to be highlighted 

here. First, the choice of voltage deviation penalty function is not unique; however, the selection 

of the function in such a shape assigns the voltage deviation a low penalty within the 

permissible voltage zone but a much higher penalty for working outside this zone. Second, other 

penalty functions are added easily, such as the branch ampacity limits (represented by the sum 

of sigmoid functions centered at each branch maximum current or the power loss. 

At a certain iteration 𝜏, after the penalty function is calculated for all J-particles, the local and 

global best positions are updated and the new velocity vector is calculated for each particle as in 

(7.29) . For solution quality, PSO must fulfill two important criteria: first, a high exploration at 

the start of the search, and second, a deep exploitation to avoid trapping in a local-suboptimal 

later [140]. Thus, a high speed for particles exploration is gained via high initial inertia that 

reduces monotonically with the iterations progress to achieve higher exploitation later as in 
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(7.30). Next, the particles positions are updated as in (7.31). The reader is referred to [141] for 

further details about PSO. 

 𝜔𝑘(𝜏) = 𝜔𝑚𝑎𝑥 −
𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛

𝑀𝑎𝑥. 𝐼𝑡𝑒𝑟
𝜏 (7.29) 

𝑉𝑘
𝑗
(𝜏 + 1) = 𝜔𝑘(𝜏)𝑉𝑘

𝑗
(𝜏) + 𝑐1𝑟1(𝑃𝑏𝑒𝑠𝑡𝑘

𝜏 − 𝑋𝑘
𝑗
(𝜏)) + 𝑐2𝑟2(𝐺𝑏𝑒𝑠𝑡𝑘

𝜏 − 𝑋𝑘
𝑗
(𝜏)) (7.30) 

𝑋𝑘
𝑗
(𝜏 + 1) = 𝑉𝑘

𝑗
(𝜏 + 1) + 𝑋𝑘

𝑗
(𝜏) (7.31) 

Finally, the stopping criterion is achieved in two cases; first, the convergence case happens if 

the fitness function settles at a certain value within the predefined tolerance zone. This must 

happen for a predefined number of iterations to guarantee convergence and avoid trapping in a 

local minimum. Second, in an emergency case, it happens if the number of iterations exceeds 

the maximum number (𝜏 ≥ 𝜏). After a stopping criterion is reached, the WCU is defined as the 

global best position as 𝑊𝐶𝑈𝑘 = 𝐺𝑏𝑒𝑠𝑡𝑘. 

 Figure 7-3 depicts an example of a two -bus system with uncertain powers 𝑝1𝑘, 𝑝2𝑘  the 

probabilistic distribution of the uncertainty is presented by two different Gaussian distributions. 

The uncertainty domain 𝒟 is explained in the uncertainty space as follows  𝒟 =

{(𝑝1𝑘, 𝑝2𝑘)𝜖ℛ
2×1|𝑝𝑏𝑘𝜖 [ 𝑝𝑏𝑘, 𝑝𝑏𝑘] ∀ 𝑏𝜖{1,2}}

 .  After applying stage A to define the uncertainty 

risk via fuzzy expert, the domain is relaxed to 𝒟𝑓 =

{(𝑝1𝑘, 𝑝2𝑘)𝜖ℛ
2×1|𝑝𝑏𝑘𝜖 [ Γb𝑝𝑏𝑘, Γb̅𝑝𝑏𝑘] ∀ 𝑏𝜖[1,2]}. Stage (B) detects the worst case uncertainty 

(WCU) and found it at one of the vertices as depicted in Figure 7-3. This point is less 

conservative than the original WCU.  
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Figure 7-3 WCU detection flowchart. 

7.3.3 Stage C: ROZ Determination 

After detecting the WCU, a power flow test with full ESS discharge power participation is 

conducted with the WCU. If any of the power system constraints is violated, the WCU is set in 

(7.9) as 𝑝𝑏𝑘 = 𝑊𝐶𝑈𝑘. Next, problem (7.13) is solved to define the maximum discharge ROZ. 

Similarly, the maximum charge power is found from solving (7.17). To guarantee the feasibility 

of these problems, the reactive power reservoir from ESSs must manage to keep the voltage 

within allowable margins. If a non-feasibility problem is faced, then the ESS cannot provide 

adequate reactive (and active) power support for the network and the system operator must start 

a load shedding scheme; renewable energy curtailment plan or add extra VAR support in the 

network. 

7.4 Case Study 

The case study investigates the effect of RES uncertainty on ESS ROZ shape. In this study, 

we consider the radial feeder described in Section 3.3.  The RES profiles are historical data 
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from Alberta system Operator (AESO). All BESS and, RES ratings are given in Table 7-2. 

Different RES and load operating profiles are shown in Figure 7-4 as per unit of each asset 

rating, whereas  Figure 7-5 shows the voltage surface in the base case (no BESS participation 

and zero RES uncertainty).  

 

Figure 7-4 RES and load day-ahead profile with uncertainty. 

Table 7-2 RES, BESS rating. 

Rat

ings 

𝑝𝑊𝑇1 = 2𝑀𝑊, 𝑝𝑊𝑇2 = 1.5𝑀𝑊, 𝑝𝑊𝑇3 = 1.5𝑀𝑊, 

𝑝𝑝𝑣1 = 0.5𝑀𝑊, 𝑝𝑝𝑣2 = 0.5𝑀𝑊, 

𝑝𝐵𝐸𝑆𝑆1 = 1𝑀𝑊/3𝑀𝑊ℎ, 𝑝𝐵𝐸𝑆𝑆2 =

2𝑀𝑊/6𝑀𝑊ℎ  

 

 

Simulations study the effect of uncertainty domain choice 𝒟 on the ROZ and voltage 

violation. Four cases with different conservatism degrees are compared here: 

a. Deterministic case (𝓓𝟏): the RES and load uncertainty are unconsidered (as in [65]- 

[64]); 𝑈𝑈𝐿1 = 𝑈𝐿𝐿1 = 0 
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b. Uncertainty budget (𝓓𝟐); in this case, the fuzzy expert defines the uncertainty budget, 

given ULL, and UUL as 𝑈𝑈𝐿2 = arg(𝜑𝑖𝑘 = 95%) , 𝑈𝐿𝐿2 = arg(𝜑𝑖𝑘 = 5%) ,𝒟2 = 𝒟𝑓 

c. No-budget case (𝓓𝟑), same as (𝒟2) without uncertainty budget 𝑈𝑈𝐿3 = arg(𝜑𝑖𝑘 =

95%) , 𝑈𝐿𝐿3 = arg(𝜑𝑖𝑘 = 5%),   

d. Six-sigma case (𝓓𝟒); most conservative but highest robustness case considering 99.99% 

of the uncertainty domain under the famous six-sigma rule. No uncertainty budget is 

assumed here. This emulates the robust optimization techniques used in Group-

c: 𝑈𝑈𝐿4 = arg(𝜑𝑖𝑘 = 99.99%) , 𝑈𝐿𝐿4 = arg(𝜑𝑖𝑘 = 0.01%). 

 

 

Figure 7-5 Voltage profile at base case. 

To validate the resulting ROZ (four sets corresponding to the domains above), it has been 

tested on one hundred different uncertainty scenarios. In each scenario, both BESS1 and BESS2 

obeyed the ROZ as given by the system operator and shown in Figure 7-8, in all simulations. In 
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where BESS1 acts as hybrid system combined with PV1. It time-shifts PV1 peak noon-power to 

sell it during peak hour. BESS2 trades energy arbitrage it fully charges at a cheaply priced 

energy at (k=5:7) to discharge it back during peak hours.   

 

Figure 7-6 Desired BESS power profiles without ROZ.  

The previous two dispatches are conducted within a hundred different uncertainty power 

flow scenarios, with distributions shown in Figure 7-7. The system operator does not have to 

know the exact CDF. However, the uncertainty limits are required to define 𝒟. 

 

Figure 7-7 RES, load uncertainty distribution for 100 scenarios each has 24 hours sample (total 2400 

uncertain sample points). 
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Given 𝒟𝑖, 𝑖 = 1: 4, we calculate ROZ from (24) and (28) for each case of the different four 

strategies. These ROZ are compared Figure 7-8. ROZ at each case is send to the ESSs to upper 

limit the desired dispatch power depicted in Figure 7-6. 

 A comparison is conducted between the four cases by testing the hundred different 

uncertainty scenarios generated from Figure 7-7. Further, the comparison is repeated at various 

RES penetration levels (20, 30 and 40%). No contingency is assumed in all simulations. The 

results are investigated from two perspectives. First, the network sound operation represented 

here by buses’ voltage violations. This is represented here by the count of [over-voltage (OV) or 

under-voltage (UV)] during the 100 scenarios. No ampacity violation occurs; thus they are not 

included in the comparison. On the other hand, The ESS-owner cares about the ROZ size, as a 

higher ROZ-size means a higher operation margin and profit. The ROZ-size is calculated 

𝑅𝑂𝑍𝑆𝑠 =
∫ (𝑝𝑠𝑘−𝑝𝑠𝑘)𝑑𝑘
𝑛𝑘
𝑘=0

∫ 2𝑆𝑠𝑑𝑘
𝑛𝑘
𝑘=0

∀𝑠 ∈ 𝒩𝑠. 

A comparison between the gross violations (OV, UV) over the 100 different scenarios is 

shown in Table 7-3. It compares the four ROZ cases corresponding to the various uncertainties.  

 

Table 7-3. ROZ size and voltage violations in 100 scenarios. 

 20%-RES  30%-RES 40%-RES 

OV U

V 

ROZ2 OV UV ROZ2 O

V 

U

V 

ROZ2 

𝒟1 133 47 98.2% 88 45 98% 43 41 97.6% 

𝒟2 7 3 95.7% 7 1 95.7% 6 1 95.3% 

𝒟3 6 2 95% 6 0 95.3% 5 1 94.9% 

𝒟4 0 0 92.9% 0 0 92.9% 0 0 92.1% 
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Figure 7-8. ROZ limits for BESS1, 2 at 30% RES-penetrations. 

As expected, the deterministic case 𝒟1 achieves the highest ROZ size but with the highest 

number of violations on all penetrations (all apparent power is committed as active power while 

reactive power support is not enough for voltage regulation to heal the uncertainty effect). On 

the other hand, the six-sigma case 𝒟4 results in a zero voltage violations but it achieves the 

lowest ROZ size for all ESSs. As a result, the ESSs cannot fully operate to its up active power, 

to provide the needed reactive power support. For the proposed uncertainty budget 𝒟2 and the 

no-budget case 𝒟3, the number of violations is very small (a maximum of ten times violations 

occur during the 100 scenarios in a 41-bus system); however, the ROZ size in the case of 𝒟2 is 

always greater than in 𝒟3. As a result, the proposed framework has managed to boost the ROZ 

size without big sacrifices in the power system security. On the other hand, the RES penetration 

effect is clear on the ROZ-size, for a higher RES penetration, higher reactive power support is 
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required from the ESSs. As a result, the active power limits decreases (ROZ size diminishes 

with RES penetration).  

7.5 Conclusions 

This chapter presented a framework to define the ROZ for the power converters interfacing 

distributed energy storage units. The technical constraints included permissible voltage level 

and branches ampacity. The main work contribution is considering the power uncertainty while 

reducing the results conservatism. The ROZ was calculated in three stages. First, a fuzzy-based 

technique relaxes the uncertainty domain. Second, a PSO-based detection algorithm was 

designed to determine the worst case uncertainty. Finally, a convex power flow problem defined 

the ROZ. The proposed framework was tested on a real 41-bus radial feeder using different 

uncertainty scenarios. Four uncertainty sets with different conservatism levels were compared. 

The results showed that the proposed technique managed to boost the ESS participation with a 

very low voltage and ampacity violations.   
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Chapter 8 

8 Mobile Energy Storage Scheduling and Operation in Active 

Distribution Systems 

A mobile (transportable) energy storage system (MESS) can provide various services in 

distribution systems including load leveling, peak shaving, reactive power support, renewable 

energy integration and transmission deferral. Unlike stationary energy storage units, a mobile 

energy storage system can move between different buses by truck to provide various local 

services within the distribution feeder. This chapter proposes a day-ahead EMS for an MESS 

that aims to minimize the cost of the power imported from the grid. The MESS does not only 

shift renewable energy power to load peak hours but also can provide localized reactive power 

support. Given day-ahead predictions for load and RES power, the EMS decides the optimal 

MESS stations in the feeder and its operating power. Next, a particle swarm optimization-based 

algorithm is developed to tune the moving time of the MESS according to a transit delay model. 

The applicability of the proposed scheduling and operation algorithms is tested on a radial 

distribution feeder. 

8.1 Problem Description 

8.1.1 Motivation 

Still, with the increasing number of RESs dispersed in the system, a large number of ESSs is 

needed to support the grid stability and reliability. This may result in an infeasible investment 

from the economic point of view for two main reasons. First, the high cost of most of ESSs and 
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its relatively low lifetime. Second, the ESS cost diminishes with its rating; thus, a significant 

number of ESSs is way much expensive than a single unit with the same ratings. According to 

[105], the ESS power conversion system per-unit cost varies from (1,800$/kW) for a 5 kW 

station compared to (300$/kW) for a 2 MW one as shown in Figure 8-1. As a result, a 

significant saving is achievable if a single bulk ESS can replace a large number of smaller 

ESSs. However, distributed ESSs provide some localized services that a single centralized ESS 

cannot provide, such as voltage regulation or power loss minimization. An MESS solves this 

problem because an MESS is a single ESS that can be plugged into the system at different 

locations during different times, it can provide different localized grid services in a way much 

cheaper than multi stationary ESSs (SESSs). The advantage of transportability is the ability to 

deliver a localized reactive power support for voltage regulation, power loss reduction, 

dispersed RESs integration, and last but not least, transmission and distribution upgrade 

deferral. 

Indeed, aggregated EVs look like a cheaper similar solution for providing grid services 

exactly like the MESS. A similar solution where the network operator does not have to invest 

any initial cost, however; aggregated EVs in parking lots have both power and energy 

uncertainty due to their uncontrollable availability time [84] which question the reliability of the 

service. Besides, it requires a high number of EVs to give the same power rating equivalent to a 

single MESS truck. Finally, not all the EVs owners will be willing to participate in grid services 

[83].  

This study does not claim by any mean that an MESS will always prove to be financially 

attractive than aggregated EVs or SESSs. Rather, a feasibility study that compares all the 
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different technologies should be conducted for a given system to select the best option from the 

technical and economic perspectives. 

 

Figure 8-1 Power Conversion System cost versus size. 

8.1.2 MESS Model 
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Figure 8-2 Radial feeder with multi-MESS stations. 
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 Figure 8-2 shows an example of a radial feeder. The feeder has RESs set 𝒩𝑟 at different 

locations of the feeder, such as wind energy conversion systems (WECS) and photovoltaic 

(PV). Furthermore, other dispatchable resources (such as microturbines, small diesel engines, 

etc.) may exist at different buses and defined by the set 𝒩𝑔. Moreover, the feeder has a load set 

𝒩𝑙 with some smart houses (net-zero houses) that may use a rooftop PV, heat pumps, electric 

storage, and electric vehicle. RESs have different profiles that can be forecasted efficiently 

using both numerical and physical techniques (e.g., [65]). Moreover, electrical loads can be 

accurately predicted for the day-ahead operation planning [142], [143]. It should be emphasized 

that even with a 10-15% power prediction error, a day-ahead EMS cannot reach an optimal 

solution; rather, day-ahead EMS provides a sub-optimal solution. To compensate for the 

forecast error, a real-time controller is required to adjust the EMS solution depending on actual 

system measurements. For instance, a day-ahead EMS decides the reactive power setpoint; 

however, due to unpredictable real-time changes (sudden load change, faults or outages, RES 

intermittency, etc.), the actual reactive power is tuned by a real-time on-line voltage controller 

that measures the bus voltage and tunes the reactive power accordingly. This multi-level control 

scheme has been adopted widely in the literature, such as in [28]. In power system dispatch, the 

system operator adopts the same strategy when it comes to frequency control. The operator 

measures the frequency deviation and the power imbalance to decide the area control error 

(ACE), then the operator starts adjusting its day-ahead schedule by dispatching its reserve 

resources in real-time accordingly to compensate the ACE [29].      

The DNO can schedule an MESS to move between different positions for multi-services. 

Different MESS positions (𝒩𝑠 ={1,2,..,𝓈}) define the buses at which the MESS can be 

connected to the system which will be designated as the MESS-stations. Figure 8-3 depicts the 
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structure of an MESS which consists of two parts: the ESS and the truck. The ESS consists of 

an array of battery cells (e.g., lithium-ion).  
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Figure 8-3 Mobile energy storage system description. 

While the battery bank terminal voltage is determined by the number of series cells in the 

same string, the total current is the sum of the parallel strings currents. The reader is referred to 

IEEE standards 485 [113] for further sizing details. The ESS is connected to the grid via a 

dc/dc/ac bidirectional VSC. The dc/dc converter is a current-controlled buck-boost controller. 

The current controller regulates the charging (discharging) power according to the set point 

provided by the EMS. When the EMS sends the active power set point at time k (𝑃𝑠𝑘) to the 

dc/dc current controller, the controller calculates the current set point 𝐼𝑠𝑟𝑒𝑓 by dividing the 

power on the battery bank voltage (𝑉𝑠𝑘);  𝐼𝑠𝑟𝑒𝑓𝑘 =
𝑝𝑠𝑘

𝑉𝑠𝑘
 .The current controller is a proportional-

integral (PI) controller that regulates the battery current by manipulating the modulation index 

of the buck-boost converter [104]. On the other hand, the dc/ac converter transfers the power to 

(from) the grid via regulating the dc-link voltage [104]. In the dq-frame, the dc-link voltage 

controller decides the VSC-direct current set point whereas the EMS controls the reactive power 

𝑞𝑠𝑘 via changing the quadrature current set point. Further details on the design of the current 
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and dc-link voltage controllers can be found in [104]. A fast charging module is also available 

in some commercial versions [144].The truck path is also controlled via the EMS. The driver 

requires a schedule for the MESS stations that include the station number 𝓈 and the transition 

time to this station 𝑡𝑠.  To sum up, the DNO needs to design an EMS system for an MESS that 

generates two set of outputs. Firstly, the EMS calculates the ESS active and reactive power at 

each sample. Second, the EMS defines the desired station at each time and the transition time to 

this station. Next, the EMS design is explained in details.  
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Figure 8-4 System techno-economic model structure. 

8.2 Energy Management System 

To design the EMS for an MESS, a complete techno-economic model, as depicted in Figure 

8-4, is required. The technical model is composed of three subsystems: 

 1) the transit delay model that describes the commute time between two stations; 



162 

 

 2) the power flow model that relates (the buses voltage, line current, and power loss) to the 

MESS power and positions (e.g., as in Section 3.2.5); 

 3) the ESS dynamic model that represents the battery dynamics. The economic model 

defines different costs of all resources that are reflected in the EMS objective function. 

8.2.1 Transit Delay Model 

The delay model depends on both time and stations positions. For a set of station𝑠 𝒩𝑠, the 

distance between stations is defined by the distance matrix 𝐷𝑖𝑠𝑡 with a zero diagonal, any 

element 𝑑𝑖𝑗∀𝑖, 𝑗 ∈ 𝒩𝑠 define the distance between stations (𝑖, 𝑗). In case 𝑑𝑖𝑗 = 𝑑𝑗𝑖, then the 

MESS uses the same road between two stations (𝑖, 𝑗).  

 𝐷𝑖𝑠𝑡 = [
0 ⋯ 𝑑1𝓈
⋮ ⋱ ⋮
𝑑𝓈1 ⋯ 0

] 
 (8.1) 

The traffic congestion delay 𝑡𝑐𝑖𝑗𝑘 is a time and location dependent index can give an 

indicator [145] for the traffic delay. 𝜏𝑖𝑗𝑘is the commute time (in samples) from a station i to j at 

time k ∈ 𝒩𝑘which is composed from three parts: the commute time, traffic congestion delay and 

installation time 

  𝜏𝑖𝑗𝑘 = 𝑟𝑜𝑢𝑛𝑑(
𝑡𝑐𝑖𝑗𝑘 + 𝑑𝑖𝑗𝑉𝑎𝑣𝑔 + 𝑡𝑖𝑛𝑠

𝑇𝑠
 )∀𝑖, 𝑗 ∈ 𝒩𝑠, 𝑘 ∈ 𝒩𝑘, 𝑖 ≠ 𝑗 

 (8.2) 

In (8.2), 𝑉𝑎𝑣𝑔 is the average truck speed, 𝑡𝑖𝑛𝑠 is the MESS installation time (the connection of 

an MESS to the grid at the station). 𝑇𝑠 is the sample time in minutes. For the sake of the 

modeling, let us define the Boolean matrix 𝕫 ∈ ℛ𝓈×𝒦, where each element 𝑧𝑖𝑘 equals one if the 

MESS exists at station i at sample time k. Next, let us define the Boolean vector 𝕐 ∈ ℛ𝒦 that 

represents the delay model. If the MESS is in transit at a sample T due to moving from a station 
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i to reach another one j after an 𝜏𝑖𝑗𝑇 samples of transition delay: 𝑧𝑖𝑇 = 𝑧𝑗𝑇+𝜏𝑖𝑗𝑇 = 1, 𝑖 ≠ 𝑗 ∀𝑖, 𝑗 ∈

𝒩𝑠. Then 𝑦𝑘+𝑙 = 1, 𝑙 ∈ [1, 𝜏𝑖𝑗𝑇], 𝑘 = 𝑇 In order to define 𝑦𝑘, all previous transit conditions that 

will lead to a future transit delay are modelled. By this way, 𝑦𝑘 is expressed as a sum of 

minimum terms that represent all possible previous transits as shown in Figure 8-5.  

start
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Figure 8-5 Transit delay model generation. 

An example for defining 𝑦𝑘 for three stations is depicted in Figure 8-6. In this example, three 

MESS stations exist; thus at any transit instant T, the nonzero transitions depend on the current 

MESS station and the next MESS destination with the following transition delay 𝜏12𝑇 =

1 𝜏23𝑇 = 2 𝜏13𝑇 = 3 𝜏𝑖𝑗𝑇 = 𝜏𝑗𝑖𝑇. As shown in Figure 8-6, there are six possible transition 

scenarios at this sample time (2 possible transitions from each current station). Any transition 
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scenario occurs if both the current and destination stations equal one (𝑧𝑖𝑘 = 𝑧𝑗𝑘+𝑙 = 1 →

𝑧𝑖𝑘 ∩ 𝑧𝑗𝑘+𝑙 = 𝑧𝑖𝑘+1𝑧𝑗𝑘 = 1). Finally, the aggregation of all possible transitions for a certain 

transit time T is defined as follows 𝑦𝑇+1 ∪ 𝑦𝑇+2 ∪ 𝑦𝑇+3 = (𝑧1𝑇𝑧2𝑇+1 ∪ 𝑧2𝑇𝑧1𝑇+1) ∪

(𝑧2𝑇𝑧3𝑇+2 ∪ 𝑧3𝑇𝑧2𝑇+2) ∪ (𝑧1𝑇𝑧3𝑇+3 ∪ 𝑧3𝑇𝑧1𝑇+3). These six possible transitions are depicted by 

the dotted lines in Figure 8-6. Further, when applying the same concept during each time 0 ≤

𝒌 ≤ 𝓚 and aggregating all the results, this will lead to a complete transition delay model.  

Z1(T+1)

Current Station

Destination Station

Time

T

T+1
Z2(T+1) Z3(T+1)

Z1T Z2T Z3T

T+2
T+3

 

Figure 8-6 Transition scenarios example for a three MESS station at sample k. 

The delay model is described as follows: 

𝒩𝑠, 𝑘𝜖𝒩𝑘

{
 
 

 
  ∑𝑧𝑖𝑘

𝑖

= 1

∑ ∑ |𝑧𝑖𝑘 − 𝑧𝑖𝑘−1|𝑘𝑖

2
≤ 𝑁𝑡𝑟𝑖𝑝𝑠

 𝕐 = {𝑦1, 𝑦2, 𝑦𝑘 … , 𝑦𝒦}

 

 (8.3) 

(8.4) 

(8.5) 

Equation (8.3) states that the MESS truck can only be at one station i at any sample k. In case 

of multiple MESS units, the right-hand side of (8.3) is replaced by 𝑁𝑚𝑒𝑠𝑠 which is the total 

number of MESS trucks; this case will be investigated in future studies. Equation (8.4) 

constraints the maximum number of trips that an MESS can make per day (𝑁𝑡𝑟𝑖𝑝𝑠) which equals 
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half the number transitions. In case the MESS moved at time k from a station i to be at station j, 

then 𝑧𝑖𝑘 = 0, 𝑧𝑖𝑘−1 = 1, 𝑧𝑗𝑘 = 1, 𝑧𝑗𝑘−1 = 0 and the sum of the difference at sample k is 

calculated as ∑
|𝑧𝑖𝑘−𝑧𝑖𝑘−1|

2
= 1𝑖 , which means one trip is made. However, if the MESS stays at 

station i at samples k and at k-1, then ∑
|𝑧𝑖𝑘−𝑧𝑖𝑘−1|

2
= 0𝑖  which means no trips are made. Finally, 

(8.5) is a set of equalities that represent the transit flag 𝑦𝑘. 

The power flow model is given by equations (3.34) to (3.48). It is worth mentioning that 

other linearization techniques for the power flow are also possible as long as it provides a 

convex constraint; otherwise, nonconvex optimization is needed to solve the EMS problem.  

8.2.2 MESS Dynamic Model Considering the Transit Delay 

The final part of the technical model is the ESS dynamics including the ESS power, total 

number of cycles N, and the state of charge (SOC) which are expressed in (8.6)-(8.8). 

In this model, we assume that anytime, there is always an ESS at each station s; however, the 

constraint in (8.3) states that the MESS can be located at one unique station. Thus, the condition 

for injecting discharge (𝑝𝑑ℎ𝑠𝑘) or importing charge power( 𝑝𝑐ℎ𝑠𝑘)  at a certain bus s at time k is 

that the MESS exists at this station (𝑧𝑠𝑘 = 1), and the MESS is not at transit state (𝑦𝑘 = 0). 

These conditions are modelled by (8.6). Equation (8.7) expresses the SOC as an integrator. The 

SOC equals one if the accumulated charge reaches the rated energy of the storage �̅�𝑠. The 

charge and discharge efficiency is considered as 𝜂𝑐ℎ, 𝜂𝑑ℎ, respectively. As one MESS is 

assumed at each bus, the total SOC is the sum of all stations ESS SOC at a certain time. A 

similar technique is used for calculating the number of cycles 𝑁𝑘 that is assumed as an 

integrator as well. The number of cycles is incremented by one each time a full charge is 

absorbed by the MESS and injected again to the grid as expressed in (8.8).  
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 𝑝𝑠𝑘 = (𝑝𝑐ℎ𝑠𝑘 + 𝑝𝑑ℎ𝑠𝑘)𝑧𝑠𝑘(1 − 𝑦𝑘)

 

𝑆𝑂𝐶𝑘+1 =∑𝑆𝑂𝐶𝑠𝑘 +
𝑇𝑠

�̅�𝑠
 (𝜂𝑐ℎ𝑝𝑐ℎ𝑠𝑘 + 𝜂𝑑ℎ𝑝𝑑ℎ𝑠𝑘)𝑧𝑠𝑘(1 − 𝑦𝑘)

𝑠

𝑁𝑘+1 =∑𝑁𝑠𝑘 +
𝑇𝑠(𝑝𝑐ℎ𝑠𝑘 − 𝑝𝑑ℎ𝑠𝑘)

2�̅�𝑠
𝑧𝑠𝑘(1 − 𝑦𝑘)

𝑠

∀𝑘𝜖𝒩𝑘, 𝑠𝜖𝒩𝑠, 𝜂𝑐ℎ < 1, 𝜂𝑑ℎ > 1

 

 (8.6) 

 (8.7) 

 

(8.8) 

The dynamic ESS constraints are stated in (8.9)-(8.12). While constraints (8.9) and (8.10) 

define the charge and discharge powers as positive and negative power limited by the thermal 

limit of the MESS, constraint (8.11) limits the apparent power of the MESS to be upper 

bounded by the rated MESS apparent power (𝑆̅) at any time. The discrete variable 𝑐𝑒𝑘 

guarantees that charging and discharging are mutually exclusive. If 𝑐𝑒𝑘 equals one, the charging 

limits are between rated power and zero while discharge power is zero. On the other hand, 

setting𝑐𝑒𝑘 to zero allows discharging and limits charging power to zero. The SOC is limited in 

(8.12) between the desired minimum SOC 𝑆𝑂𝐶 and one to avoid deep discharge and 

overcharging that may reduce the battery life dramatically. Further, the number of cycles at the 

end of the day is limited by (8.13) as the battery life is a countable number of cycles. 

0 ≤ 𝑝𝑐ℎ𝑠𝑘 ≤ �̅�𝑠(𝑐𝑒𝑠)

− �̅�𝑠(1 − 𝑐𝑒𝑠) ≤ 𝑝𝑑ℎ𝑠𝑘 ≤ 0

𝑝𝑠𝑘
2 + 𝑞𝑠𝑘

2 ≤ 𝑆̅

𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶𝑘 ≤ 1

𝑁𝒦 ≤ 𝑁
∀ 𝑏𝜖𝒩𝑏 , 𝑡𝜖𝒩𝑡 , 𝑘𝜖𝒩𝑘

 

(8.9) 

(8.10) 

(8.11) 

(8.12) 

(8.13) 

8.2.3 Original EMS Problem 

The EMS objective is maximizing the day-ahead profit for the DNO by minimizing the 

imported energy cost from the grid (energy arbitrage). It is assumed that the MESS is an asset 

owned by the DNO to provide both reactive power support and maximize net profit. RESs are 
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owned by different parties, and they are paid a fixed feed-in-tariff (FIT) as a motivation by the 

government for clean energy, such a case exists in several markets, such as Ontario, Canada 

[146]. RESs are operated according to the maximum power point tracking strategy; the DNO 

buys this energy from RESs owners with the regulated FIT (𝐶𝐹𝐼𝑇) . The day-ahead cost of 

buying RESs energy is given in (8.14). On the other hand, conventional distributed generators 

(DGs) owned by the DNO, such as microturbines or diesel engines, have an operating cost 

(𝐶𝐷𝐺). A quadratic cost function, as defined in (8.25), precisely represents the operation costs of 

DG units [90]. In (8.15), ϕ𝑔$/(𝑘𝑊ℎ )2, 𝛽𝑔($/𝑘𝑊ℎ), 𝛾𝑔($) are constants that depend on the 

generator type. 

Start α  =0

Initial particle position 

update current participles position, 
check the limits

Calculate the corresponding transit sets  
for all particles 

Update the local, global best positions

Find the new inertia and the particles 
speeds , check speed limits

α =α +1 reach stopping 
criterion

Optimum transit 
set is reached

END

 No YES

Calculate the corresponding real profit for 
each set 

 

Figure 8-7 Stage 2 structure (PSO profit maximizer). 
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𝐶𝐷𝐺 = ∑∑𝜙𝑔(𝑝𝑔𝑘𝑇𝑠)
2
+ 𝛽𝑔(𝑝𝑔𝑘𝑇𝑠) + 𝛾𝑔

ℊ

𝑔=1

𝒦

𝑘=1

𝐶𝑟𝑒𝑠 = ∑∑𝑝𝑟𝑘𝑇𝑠𝐶𝐹𝐼𝑇

ℜ

𝑟=1

𝒦

𝑘=1

 

  

 (8.13) 

 

 (8.14) 

The MESS cost 𝐶𝑚𝑒𝑠𝑠 includes both the truck operating cost 𝐶𝑡𝑟𝑢𝑐𝑘 and the ESS cost 𝐶𝑒𝑠𝑠 as 

in (8.15). Firstly, the truck operating cost (8.16) includes a fuel cost and labor cost. While the 

fuel cost is modelled as a worst case cost (the multiplication of maximum distance (in km) by 

the number of the trips by the fuel consumption cost 𝐹𝐶 ($/𝑘𝑚)), the truck labor cost 𝑡𝑙𝑐 

includes the daily stipend of the truck driver and technicians. Secondly, (8.17) models the ESS 

cost as a levelized cost (𝐶𝑘𝑤ℎ$/𝑘𝑊ℎ 𝑐ℎ𝑎𝑟𝑔𝑒𝑑). This cost is adopted before for ESS in [38]. 

However, the capital cost is modified to include the truck capital cost and ESS maintenance cost 

that includes the truck maintenance cost. 

𝐶𝑚𝑒𝑠𝑠 = 𝐶𝑡𝑟𝑢𝑐𝑘 + 𝐶𝑒𝑠𝑠
𝐶𝑡𝑟𝑢𝑐𝑘 = 𝐹𝐶×𝑁𝑡𝑟𝑖𝑝×max(𝐷𝑖𝑠𝑡) + 𝑡𝑙𝑐

𝐶𝑒𝑠𝑠 = ∑∑𝑃𝑐ℎ𝑠𝑘𝑇𝑠𝐶𝑘𝑤ℎ

𝓈

𝑠=1

𝒦

𝑘=1

 

 (8.15) 

 (8.16) 

(8.17) 

The final cost item is the grid power cost 𝐶𝑔𝑟𝑖𝑑 that is the multiplication of the expected pool 

price (buy price) 𝐵𝑃𝑘($/𝑘𝑊ℎ) and the grid energy 𝑃𝑔𝑟𝑖𝑑𝑘𝑇𝑠 as shown in (8.18). This cost has a 

negative value (becomes income) in case the distribution system exports surplus energy to the 

grid. The income of the DNO is generated from daily selling energy to the loads with the sell 

price 𝑆𝑃𝑘($/𝑘𝑊ℎ) as given in (8.19).  Finally, the profit is the difference between the income 

and the costs (MESS operating cost, DG running cost plus RES energy purchasing cost) as 

shown in (8.20).    
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 𝐶𝑔𝑟𝑖𝑑 = ∑𝑇𝑠𝐵𝑃𝑘𝑃𝑔𝑟𝑖𝑑𝑘

𝒦

𝑘=1

, 𝑃𝑔𝑟𝑖𝑑𝑘 = 𝑃𝑏𝑘, 𝑏 = 0

𝑖𝑛𝑐 = ∑∑𝑇𝑠𝑆𝑃𝑘𝑃𝑙𝑘

ℒ

𝑙=1

𝒦

𝑘=1

𝑝𝑟𝑜 = 𝑖𝑛𝑐 − 𝐶𝑔𝑟𝑖𝑑 − 𝑐𝑚𝑒𝑠𝑠 − 𝐶𝐷𝐺 − 𝐶𝑟𝑒𝑠

 

  

(8.18) 

(8.19) 

 

(8.20) 

The final optimization problem is expressed as follows  

max
𝑝𝑐ℎ𝑠𝑘,𝑝𝑑ℎ𝑠𝑘 ,ℤ,𝑞𝑠𝑘

(𝑝𝑟𝑜)

𝑆. 𝑡. (3.34) − (3.48)& (8.3) − (8.13),
 

 (8.21) 

The problem in (8.21) is a mixed integer nonconvex problem that may face a feasibility 

problem and does not guarantee to reach a global optimal solution in a certain time. In Section 

IV, this problem will be converted to a mixed integer convex problem using the proposed two-

stage EMS. 

8.3 Two-Stage EMS  

To convert the problem in (8.21) into a mixed integer convex problem, the following 

suboptimal two-stage solution is proposed. Firstly, the problem is solved assuming 

instantaneous MESS transit; this problem calculates the MESS designated stations and its transit 

times (given the previous assumption). Secondly, a particle swarm algorithm optimizes the 

transit periods of the first stage without changing the MESS stations.  

8.3.1 Stage 1 (Instantaneous Transit EMS) 

The delay model 𝕐 given in (8.5) is a nonlinear sophisticated Boolean expression that 

depends on both the truck transit time and stations ℤ. Assuming that 𝕐 = 0 or MESS can move 

instantaneously from a station to another will reduce the problem complexity on the price of 

sub-optimality, this part will be discussed later. The MESS model is expressed as a linear set of 
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equalities as in (8.22)-(8.24). This is possible after modifying the power limits constraints and 

adding a reactive power constraint in (8.27). This simple modification states that the MESS can 

charge or discharge at any station and time (s, k) if and only if it exists at this station or 𝑧𝑠𝑘 = 1. 

Otherwise, the power limits is set to zero. These limits affect all ESS dynamics as given in 

(8.22) - (8.24). Equation (8.22) defines the total power as a sum of charge and discharge power. 

Equation (8.23) represents the dynamic energy equation with the power taking into account the 

charging and discharging efficiencies. Equation (8.24) calculates the instanuous number of 

cycles. While (8.25)-(8.27) limits the active and reactive power.  

 𝑝𝑠𝑘 = 𝑝𝑐ℎ𝑠𝑘 + 𝑝𝑑ℎ𝑠𝑘

 

𝑆𝑂𝐶𝑘+1 =∑𝑆𝑂𝐶𝑠𝑘 +
𝑇𝑠

�̅�𝑠
 (𝜂𝑐ℎ𝑝𝑐ℎ𝑠𝑘 + 𝜂𝑑ℎ𝑝𝑑ℎ𝑠𝑘)

𝑠

𝑁𝑘+1 =∑𝑁𝑠𝑘 +
𝑇𝑠(𝜂𝑐ℎ𝑝𝑐ℎ𝑠𝑘 − 𝜂𝑑ℎ𝑝𝑑ℎ𝑠𝑘)

2�̅�𝑠
𝑠

0 ≤ 𝑝𝑐ℎ𝑠𝑘 ≤ �̅�𝑠𝑧𝑠𝑘
− �̅�𝑠𝑧𝑠𝑘 ≤ 𝑝𝑑ℎ𝑠𝑘 ≤ 0

−�̅�𝑧𝑠𝑘 ≤ 𝑞𝑠𝑘 ≤ �̅�𝑧𝑠𝑘

 

(8.22) 

(8.23)   

 

(8.24) 

(8.25)    

(8.26)  

(8.27) 

Now, the instantaneous EMS problem is expressed as: 

max
𝑝𝑐ℎ𝑠𝑘,𝑝𝑑ℎ𝑠𝑘 ,ℤ,𝑞𝑠𝑘

(𝑝𝑟𝑜)

𝑆. 𝑡. {

𝑖𝑛𝑠𝑡𝑎𝑛𝑒𝑜𝑢𝑠 𝑡𝑟𝑎𝑛𝑠𝑖𝑡 𝑚𝑜𝑑𝑒𝑙: (8.3) − (8.4)

 𝑝𝑜𝑤𝑒𝑟 𝑓𝑙𝑜𝑤 𝑚𝑜𝑑𝑒𝑙: (3.34) − (3.48) , 𝐷𝐺 𝑚𝑜𝑑𝑒𝑙 (3.16) − (3.19)

𝐸𝑆𝑆 𝑚𝑜𝑑𝑒𝑙:  (8.9) − (8.13)& (8.22) − (8.27)

 
 

 (8.28) 

  

Now, the problem in (8.28) is a mixed-integer convex problem that is solved efficiently using 

the available commercial solvers, such as GUROBI [102]. It is worth mentioning that problem 

(8.28) represents a finite-horizon model predictive control problem because the overall system 

is aggregated as a single state space dynamic model. At each sample time 0 ≤ 𝒌 ≤ 𝓚, the 

model is regressively used to derive the future outputs as a function in the model expected states 
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and the future control action along the prediction horizon [123]. The inputs of the state-space 

model are the MESS power and locations [𝑧𝑖𝑘, 𝑝𝑠𝑘 , 𝑞𝑠𝑘], whereas the system states are the SOC 

and number of cycles [𝑆𝑂𝐶𝑠𝑘, 𝑁𝑠𝑘]. Finally, the controlled outputs are any constrained variable 

in the system, such as [𝑆𝑂𝐶𝑘, 𝑁𝑘, 𝑝𝑠𝑘, 𝑞𝑠𝑘, 𝓅𝑡𝑘 , … ] . 

8.3.2 Stage 2 (PSO Profit Maximizer) 

The resulting profit from Stage 1 is not the actual profit. In reality, the MESS transit period is 

not zero, and every time the MESS moves from a station i at instant 𝜆 heading to another station 

j, it will stay in transit for a period 𝜏𝑖𝑗𝑘 defined by (8.2) till it reaches its destination at instant 

𝜆 + 𝜏𝑖𝑗𝜆. The set of time indices that define that the MESS is at transit state is 𝒩𝜏:   

𝒩𝜏 = {[𝜆, 𝜆 + 𝜏𝑖𝑗𝜆]|𝑧𝑖𝜆 = 𝑧𝑗𝜆−1 = 1∀𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈  (8.29) 

Now, if the MESS is at transit, that means that the DNO has to buy (or sell) the MESS 

scheduled energy from the grid till the MESS reaches its next destination. Further, the MESS is 

not operating during transit periods, thus its operating cost 𝐶𝑒𝑠𝑠  should not be considered as 

well. The real profit ℛ𝑝𝑟𝑜 when the transit set 𝒩𝜏 is taken into account is 

ℛ𝑝𝑟𝑜 = 𝑝𝑟𝑜 + ∑ ∑ 𝑇𝑠𝐵𝑃𝜆𝑝𝑠𝜆
𝑠∈𝒩𝑠

+ ∑ ∑ 𝑃𝑐ℎ𝑠𝜆𝑇𝑠𝐶𝑘𝑤ℎ
𝑠∈𝒩𝑠𝜆𝜖𝒩𝜏𝜆𝜖𝒩𝜏

 
 (8.30) 

It is worth mentioning that if 𝑝𝑠𝜆 < 0, which means the MESS is discharging at this time; 

however, as the MESS is in the transit state, this energy ∑ 𝑇𝑠𝑝𝑠𝜆𝑠∈𝒩𝑠
is exported from the grid 

with a price 𝐵𝑃𝜆 at this time. On the contrary, if the MESS is supposed to be charged at this 

time, the surplus system energy is sold to the grid with this time price (or even worse, RESs 

energy can be curtailed in case the voltage level or thermal current levels are violated). Further, 

the ESS cost is excluded from the profit calculation during time periods flagged in 𝒩𝜏. Not 
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only, is the profit and power system is affected by the delay, but also the ESS dynamics as well. 

For instance, the real SOC (ℛ𝑆𝑂𝐶) after considering the transit delay is defined as in (8.31). 

The SOC is normally calculated in the non-transit case, while it stays fixed during transit as the 

ESS is in the stand-by mode. Other ESS dynamics, such as the real number of cycles ℛ𝑁 is 

calculated as in (8.32). 

{
ℛ𝑆𝑂𝐶𝑘+1 =∑ℛ𝑆𝑂𝐶𝑠𝑘 +

𝑇𝑠

�̅�𝑠
 (𝜂𝑐ℎ𝑝𝑐ℎ𝑠𝑘 + 𝜂𝑑ℎ𝑝𝑑ℎ𝑠𝑘)

𝑠

, 𝑘 ∈ 𝒩𝑘 −𝒩𝜏

ℛ𝑆𝑂𝐶𝑘+1 = ℛ𝑆𝑂𝐶𝑘, 𝑘 ∈ 𝒩𝜏

{
ℛ𝑁𝑘+1 =∑ℛ𝑁𝑠𝑘 +

𝑇𝑠(𝜂𝑐ℎ𝑝𝑐ℎ𝑠𝑘 − 𝜂𝑑ℎ𝑝𝑑ℎ𝑠𝑘)

2�̅�𝑠
𝑠

, 𝑘 ∈ 𝒩𝑘 −𝒩𝜏

ℛ𝑁𝑘+1 = ℛ𝑁𝑘, 𝑘 ∈ 𝒩𝜏

                        

 

  

(8.31) 

 

(8.32) 

One needs to make sure that the transit set will not lead to ESS dynamic constraint violation. 

For instance, one transit set can move the MESS very early from discharge stations and very 

late from charging station, thus an overcharge may occur and vice versa. One solution to this 

problem is keeping a reserve in the capacity (e.g., the SOC limits are chosen from 20 to 90 %) 

to account for possible uncertainties.  

The PSO optimizer defines optimum transit delay set 𝒩𝜏 that maximizes the real profit 

without violating the ESS dynamics. Firstly, each particle 𝑥𝑛 represents a different transit set 

𝒩𝜏
𝑛 by changing the transit time 𝜆𝛼

𝑛 , where n is the index for the particle in the population, and 

𝛼 is the index for the transit time. Normally, the number of transits is less than or equal 𝑁𝑡𝑟𝑖𝑝𝑠 

𝑥𝑛 = [𝜆1
𝑛, 𝜆2

𝑛, . . , 𝜆𝑁𝑡𝑟𝑖𝑝𝑠

𝑛 ]

𝒩𝜏
𝑛 = {[𝜆1

𝑛, 𝜆1
𝑛 + 𝜏𝑖𝑗𝜆1𝑛], [𝜆2

𝑛, 𝜆2
𝑛 + 𝜏𝑖𝑗𝜆2𝑛]. . [𝜆𝑁𝑡𝑟𝑖𝑝𝑠

𝑛 , 𝜆𝑁𝑡𝑟𝑖𝑝𝑠

𝑛 + 𝜏𝑖𝑗𝜆𝑁𝑡𝑟𝑖𝑝𝑠
𝑛 ]

𝜆𝛼 −𝑀 ≤ 𝜆𝛼
𝑛 ≤ 𝜆𝛼 +𝑀, 1 ≤ 𝛼 ≤ 𝑁𝑡𝑟𝑖𝑝𝑠

 

 (8.33) 

 (8.34) 

 (8.35) 
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As shown, the particle 𝑥𝑛 is a randomly generated vector for the transit and is bounded by 

that defines the maximum shift in the transit time within a band [−𝑀,𝑀]. The swarm 

population 𝕏 is then defined with a population-size 𝓃 particles, each has a corresponding transit 

set defined in (8.36). 

𝕏 = {𝑥1, 𝑥2…𝑥𝑛 …𝑥𝓃}

ℕ = {𝒩𝜏
1,𝒩𝜏

2…𝒩𝜏
𝑛…𝒩𝜏

𝓃}
 

 (8.36) 

 (8.37) 

The real profit is calculated for each particle, and the local and global best particle positions 

are allocated. At each iteration 𝛼, after the profit is calculated for all 𝕩 set-particles, the local 

and global best positions 𝑃𝑏𝑒𝑠𝑡(𝛼), 𝐺𝑏𝑒𝑠𝑡(𝛼) are updated and the new velocity for the next 

sample (𝑉𝑛(𝛼 + 1)) for each particle n is calculated as in (8.39). For solution quality, the PSO 

algorithm must fulfill two important criteria: first, a high exploration at the start of the search, 

and second, a deep exploitation to avoid trapping in a local-suboptimal later [140]. Thus, a high 

speed for particles exploration is gained via high initial inertia that reduces monotonically with 

the iterations progress in order to achieve higher exploitation later. This is possible by updating 

the PSO inertia 𝜔(𝛼) as in (8.38) starting from the desired minimum value 𝜔𝑚𝑖𝑛 at the first 

search sample and reaching its peak 𝜔𝑚𝑎𝑥  at the maximum iteration value 𝑀𝑎𝑥. 𝐼𝑡𝑒𝑟. Next, the 

particles positions are updated as in (8.40). The reader is referred to [140] for further details on 

the PSO algorithm. Finally, the stopping criterion is achieved in two cases. Firstly, the 

convergence case happens if the fitness function (real profit) settles at a certain value within the 

predefined tolerance zone. 

𝜔(𝛼) = 𝜔𝑚𝑎𝑥 −
𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛

𝑀𝑎𝑥. 𝐼𝑡𝑒𝑟
𝛼

𝑉𝑛(𝛼 + 1) = 𝜔(𝛼)𝑉𝑛(𝛼) + 𝑐1𝑟1(𝑃𝑏𝑒𝑠𝑡 − 𝑥𝑛(𝛼)) + 𝑐2𝑟2(𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑛(𝛼))

𝑥𝑛(𝛼 + 1) = 𝑉𝑛(𝛼 + 1) + 𝑥𝑛(𝛼)

 

 (8.38) 

 (8.39) 

 (8.40) 
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This must happen for a predefined number of iterations to guarantee convergence and avoid 

trapping in a local minimum. Secondly, the stopping criterion in satisfied if the number of 

iterations exceeds the maximum iteration numbers (𝛼 ≤ 𝛼). Figure 8-7 shows the PSO 

algorithm structure.  
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Figure 8-8 Radial feeder under study. 

8.4 Case Study 

To validate the proposed EMS, a detailed simulation study is conducted on a radial system 

described in Section 3.3. The system is owned by Hydro One, Ontario which has a fixed 

electricity tariff to its customers that only changes only from winter to summer [147].The tariff 

adopts the time-of-use pricing policy with two peaks periods (7:11 am, 5:7 PM). Other rates, 

such as delivery rates, regulatory charges are considered here as well [147]. On the other hand, 

the DNO (here Hydro One) buys energy from Ontario independent system operator ISO (IESO) 

for the wholesale energy market price (deregulated market). This price is known as hourly 

Ontario energy price (HOEP) [98]. The real HOEP in February 2015 is considered here as given 
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in [98]. The HOEP and DNO tariff (buy and sell prices) are shown in Figure 8-9(c). RESs’ 

owners are paid a feed-in-tariff (𝑐𝐹𝐼𝑇) decided by IESO as given in [148], and it is presented in 

table 8-1. No utility-owned DGs exist in the system under study; however, DGs can be easily 

dispatched by considering their active and reactive power limits, and, power rate constraints as 

detailed in [90].  

The MESS optimal sizing is conducted in Chapter 4. The storage cost is 600 K$/MWh and 

the conversion system cost is 350K$/MW [100], while the operation and maintenance cost for 

MESS are assumed to be 12k$/year including the ESS and the truck, the truck cost is assumed 

to be 50K$. After making stochastic sizing using these input data, an optimal size of the MESS 

is found to be 3250 kVA/6381.3 kWh which equals 4.247 Million $. The MESS efficiency and 

cost parameters are stated in Table 9-1.  According to [29], lithium-ion batteries have an energy 

density of 0.25 kWh/kg and the power density is 0.5 kW/kg. Applying that in our MESS case 

results in a 32-ton load which is a suitable load for a tow truck with an acceptable cost [149]. 

The MESS is assumed to participate 250 cycles/year with results in a 3000 cycle per its 

lifetime (here 12 years), Assuming more cycles makes the profit negative, and the whole 

investment becomes void especially when a replacement cost will be considered. The distance 

between different stations is given in Table 9-1. Finally, for the MESS delay model, the traffic 

congestion delay is used to emulate the traffic congestion pattern in freeway of a large North 

American city. Although the traffic events and the scheduled road maintenance are given on a 

real-time basis for Ontario Canada from [150], the exact transit delay data in Ontario is not 

available for public. As a result, this case study uses the transit delay data of Los Angeles, USA 

as a sample of the traffic congestion pattern in freeways in large North American cities. The 

data is represented in Figure 8-9(d). In case the DNO has an estimation for the transit delay, 
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then the EMS problem is solved as instant transition EMS problem and a suboptimal solution 

can be obtained. 

 

 

 

Figure 8-9 Day-ahead input data. (a) Load profile. (b) RESs profiles. (c) Wholesale market and sell 

prices. (d) Traffic congestion delay. 

For the given system inputs shown in Figure 8-9, the EMS problem is solved as in Section 8.2, 

and the results are shown in Figure 8-10, whereas the voltage profile after and before using the 
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MESS is depicted in Figure 8-11. The main objective is maximizing the DNO profit through 

energy arbitrage and power loss minimization; thus as shown in Figure 8-10 (b), the MESS has 

been charged during the lowest buy prices times (4-6 am) till reaching full capacity. 

Table 8-1 Input data for the EMS. 

RES Ratings 𝑝𝑊𝑇1 = 2𝑀𝑊, 𝑝𝑊𝑇2 = 1.5𝑀𝑊, 𝑝𝑊𝑇3 = 1.5𝑀𝑊, 

𝑝𝑝𝑣1 = 0.5𝑀𝑊, 𝑝𝑝𝑣2 = 0.5𝑀𝑊, 𝑐𝐹𝐼𝑇 = 128 $/𝑀𝑊ℎ 

Delay model 𝑑12 = 16.87 𝑘𝑚, 𝑑13 = 19.92 𝑘𝑚, 𝑑23 = 16.83 𝑘𝑚 

𝑉𝑎𝑣𝑔 = 40𝑘𝑚 ℎ𝑟⁄ , 𝑡𝑖𝑛𝑠 = 5 𝑚𝑖𝑛𝑠. , 𝑇𝑠 = 10 𝑚𝑖𝑛𝑠. 

EMS 𝑆𝑂𝐶0 = 0.5, 𝑆𝑂𝐶 = 0.2, 𝑁𝑡𝑟𝑖𝑝𝑠 = 3,𝑁 = 1 

𝑣 = 0.95, 𝑣 = 1.05, 𝑁0 = 0, 𝜂𝑐ℎ = 0.75, 𝜂𝑑ℎ = 1.33 

𝐹𝐶 = 0.4 $ 𝑘𝑚⁄ , 𝐶𝑘𝑤ℎ = 221 $ 𝑀𝑊ℎ⁄ , 𝑡𝑙𝑐 = 25 $ ℎ𝑟⁄  

PSO 𝑀 = 30 𝑚𝑖𝑛𝑠. , 𝜔𝑚𝑎𝑥 = 0.9, 𝜔𝑚𝑖𝑛 = 0.1, 𝛼 = 2000,
𝐶1 = 2, 𝐶2 = 2,𝓃 = 10

 

 

The MESS is partially discharged during the first price peak at 8 am. It continues being 

charged at 9 am when the prices fall. It is worth mentioning that at 9 am; the battery is not 

charged with full power as reactive power support is needed at this time to boost the voltage to 

the minimum allowable level as depicted in the reactive power curve in Figure 8-10(b). Next, at 

noon, where the second price peak exists, the MESS is fully discharged. After that, no 

significate price difference exists that deserves another MESS charge and the state of charge is 

settled at the minimum 20% level as in Figure 8-10(d). It should be noted that the price 

difference should be at least greater than the charging cost  𝐶𝑘𝑤ℎ to make charging 
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economically viable (which does not happen again after 2 pm). Moreover, the number of cycles 

allowed in this study is one; thus the total charged energy is less than the rated capacity and the 

maximum number of cycle is less than one as in Figure 8-10(d). Finally, as the profit is the only 

objective function here (energy arbitrage strategy), charging times are driven by the energy 

price, unlike peak shaving whereas discharging hours are always located at peak hours. It is 

noticed that the grid exported power is reduced during the high energy price as depicted in 

Figure 8-10(c).  

Regarding reactive power support, during late night, the power generated by wind turbines is 

very high while the line is lightly loaded (see Figure 8-9). As a result, the voltage profile 

increases above the limits (105%) during this time as shown in Figure 8-11, particularly in the 

feeder end (bus 41). As a result, the first chosen location for the MESS is near these buses 

(Station-3) as shown in Figure 8-10(a). During this time the energy price is minimal, and the 

MESS is fully charged. In the morning (7-8 am), the MESS discharge during the first peak hour, 

and then it changes its location to Station-1 (bus 9) where it recharges back (8-9 am). The 

reason behind this location change is that charging at Station-1 (the nearest to grid) provides the 

lowest power loss, further charging at Station-3 (bus 40) will lead to a further voltage drop at 

the feeder end. The second transition occurs after charging as shown in Figure 8-10(a) when the 

MESS goes back to Station-3 (bus 40) to discharge fully during the second peak hour (11 am-12 

pm). After that, the SOC and number of cycles limits are reached as shown in Figure 8-10 (d), 

thus zero active power is kept until the end of the day, however; the MESS keeps providing 

reactive power support for keeping acceptable voltage limits. A final transition is made to 

Station-2 around 2 pm. As noticed from Figure 8-10, the wind power plant (WT2) near Station-

2 drops to zero at the same time; thus a leading reactive power is needed at this far end feeder. 
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Thus, the MESS made this final transition from Station-3 into Station-2 where the voltage to 

reactive power sensitivity is higher than Station-3.  

 

Figure 8-10 EMS results (a)MESS Position (b) MESS active power and reactive power set (c) Grid 

power and (e) SOC and Number of cycles. 

Regarding Stage 2 (the PSO profit maximizer), the optimizer changes the transition time 

from (8, 9 and 14) into (8&9:30 and 13:30). For the first and second transitions, the PSO keeps 
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them the same as if the MESS left Station-3 earlier than 8 am, it will miss discharging during 

the peak hour which will result in a big profit reduction. 

For the second transition, if the MESS leaves Station-1 before 9 am, it will not be fully 

charged which will reduce the profit in the future; however, if it stays longer at Station-1, the 

traffic congestion delay will reduce from its 9 am peak as depicted in Figure 8-9 (d). Finally, for 

the final transition (from Station-3 into Station-2), the PSO optimizer changes the transition 

time from (2 pm into 1:30 pm) to end the ride (approximately 30 minutes ride with delays) 

before the traffic congestion increases after 2 pm.   It is worth mentioning that the PSO results 

agree with the traffic delay profile in Figure 8-9 (d); thus, the PSO optimizes the transition 

times to decrease the MESS delay and, therefore, maximizing its service period.  

 

Figure 8-11 Voltage profile after and before using the MESS. 

To sum up the results, Table 8-2 compares the techno-economic aspects after and before 

using the MESS services (system with no storage at all and system that invests in an MESS). 
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Firstly, the MESS managed to provide a logistic localized reactive power support to keep the 

voltage level within allowable limits which improves the power quality. Secondly, regarding 

losses, the losses has been decreased by 5.5%. It is worth mentioning that the objective function 

is the difference between the energy bought from the grid and that sold to loads. Thus the power 

loss is inherently minimized in the objective function with a weight depending on the energy 

prices at each instant. Thirdly, the net profit has increased by 3.1% as compared to that without 

including the profit from the localized reactive power support that defers adding one or two 

capacitor banks to this feeder.  

Table 8-2 System performance comparison. 

 No MESS With MESS 

Voltage level 𝑉𝑚𝑎𝑥 = 1.062, 𝑉𝑚𝑖𝑛 = 0.89  

 

𝑉𝑚𝑎𝑥 = 1.04, 𝑉𝑚𝑖𝑛 = 0.956 

 

Power loss 8.1863 𝑀𝑊ℎ 7.7277 𝑀𝑊ℎ  

Profit 14,320$ 14,760$ 

Regarding enhancing the voltage profile, a good example appears when we focus on the 

voltage at the worst case bus (bus-41) as shown in Figure 8-12. Bus 41 is a heavily loaded bus 

(2.14 MW) with a big wind farm nearby (WT3 located in bus 40). Station-3 is located at bus 41. 

However, the reactive power is injected at various stations according to Figure 8-10 (a). 

As shown in Figure 8-12 (a), the wind power (WT3) exceeds bus-41 load till 5:00 am that 

results in over voltage (as shown in Figure 8-12 (c)). Because an overvoltage occurs, the MESS 

produces lagging reactive power from 0:00 till 4:00 (as shown in Figure 8-12 (c)) leading to 

reducing the voltage magnitude to the allowable margin. Moving to hours 4:00 till 6:00, the 
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reactive power is almost zero (limited by the converter apparent power limit), however, the 

MESS is full charging active power that leads to overvoltage prevention as well. From (8:20 till 

22:20), the wind power is below the load and the voltage level (V41) goes below the 0.95 pu as 

depicted in Figure 8-12 (c). Consequently, the MESS has to produce leading reactive power to 

keep the voltage above the minimum level and reduce the power loss as well in the whole 

network (which cause indirect profit increase). 

 

Figure 8-12 Worst case bus voltage comparison (a) Bus 41 load profile and WT3 generation (b) 

MESS active and reactive power (C) Bus 41volt with and without MESS reactive power support. 

The second case study discusses a crucial issue which is boosting the power system 

reliability by providing an on-line backup energy reservoir for sensitive loads; here the MESS 
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acts as an uninterruptible power supply (UPS). This is possible by solving the same economic 

EMS problem after imposing UPS constraints that guarantee that the MESS has enough energy 

(minimum SOC greater than the required energy) and the MESS is sited at the desired location. 

If a fault occurs, the MESS switches off into UPS mode till the service is continued again. The 

UPS constraints are summarized in (55-56).    

𝑆𝑂𝐶 +
𝐸𝑈𝑃𝑆

�̅�𝑠
≤ 𝑆𝑂𝐶𝑘 ≤ 1

𝑧𝑠𝑘 = 𝑧𝑈𝑃𝑆

∀𝑘 ∈ [𝑇𝑢𝑝𝑠
𝑠𝑡𝑎𝑟𝑡 , 𝑇𝑢𝑝𝑠

𝑒𝑛𝑑] 
(8.41) 

(8.42) 

The UPS constraints assume that the MESS is required to provide a reserve energy EUPS for 

a certain period [Tups
start, Tups

end] while locating the MESS at the position 𝑧𝑈𝑃𝑆.  

The main case study is repeated but with the assumption that a critical load exists at station 

three from hours 17 till 23. The required energy reservoir is (𝐸𝑈𝑃𝑆 = 1250 kWh) which 

represents 20% of the battery capacity; thus the SOC should not go below 40% at the pre-

mentioned hours. A comparison between the economic MESS and the resulting UPS 

constrained (after imposing constraints 55-56) is shown in Figure 8-13. 
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Figure 8-13 Comparison between reliability-based EMS with economic EMS. (a) Station position of 

MESS. (B) MESS state of charge. 

In the UPS-constrained EMS, the MESS starts charging early to reach the required 40% SOC 

by hour 17. At time 21:50, the main supply is disconnected, and the MESS starts acting as a 

UPS till the service is resumed by 22:40. When the MESS returns again to the normal mode 

after hour 23, it discharges the whole energy to go back to the minimum SOC of 20%. The 

MESS has also stayed at Station-3 till hour 23; then it moved to Station-2 after (similar to the 

economic EMS case). 

Finally, it worth noticing that these results mainly depend on the market prices, the load and 

RES profiles. Thus, in other days with no big market price difference, it is not economical to 

operate the MESS [20]. Finally, Using the MESS in voltage support is optional in case of long 

feeders where the transformer tap changer setting cannot guarantee an acceptable voltage at the 

far end. 
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8.5 Conclusion 

A day-ahead EMS for an MESS was presented in this chapter. The EMS objective function 

aimed at maximizing the DNO day-ahead profit and regulating the voltage level. The proposed 

EMS dispatched the MESS and allocated its station in the system. A traffic delay model was 

developed between different stations. Using a two-stage optimization technique, firstly, the 

problem was solved as a mixed-integer convex problem, and secondly, a PSO-based algorithm 

was developed to optimize the transit times to maximize the profit. A case study on a real 41-

buses radial feeder with real data of RESs and loads was used to validate the results. The 

proposed EMS successfully fulfilled all the optimization process objectives in an adaptive 

manner that fitted the time-varying nature of renewable resources in modern active distribution 

grids.  
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Chapter 9 

9 Conclusions 

9.1 Thesis Summary  

This thesis discussed the optimal planning and energy management of energy storage 

systems in the power system. The primary objective in both the planning and operation phases 

was to maximize the profit of the owner (either a consumer or utility) while respecting the 

different system technical constraints. To achieve these objectives, various optimization 

techniques were utilized to guarantee feasible optimal decisions.  

Different storage systems were investigated in this thesis (short and long period storage, 

stationary and mobile storage).  The thesis began investigating stationary storage planning in 

Chapter 3. The planning scheme aimed at using ESSs for distribution system upgrade. ESS was 

intended to provide multi-services by conducting T&D deferral, energy arbitrage, power loss 

minimization and providing reactive power support, simultaneously. A case study using a real 

radial feeder data is conducted. The results showed that energy arbitrage income was vital for a 

viable ESS investment. Further, given the current market costs, NA-S battery was found to be a 

competitive system upgrade option. Results also show that ESS was an effective upgrade tool 

when sited at the feeder end close to big loads combined with SVCs (for reactive power 

support) sited at the feeder start close to both big loads and/or RESs.  



187 

 

Chapter 4 discusses mobile energy storage planning in active distribution systems. To 

achieve the same objectives as those in Chapter 3 (except for T&D deferral), a size-dependent 

cost for the power converter was adopted in the planning process.  The study results showed 

that using the MESS may yield a higher profit than that yielded by stationary ESSs, due to its 

low bulk power conversion cost. 

Regarding operation phase, Chapter 5-8 focused on the energy management of different 

storage systems. First, Chapter 5 presented a predictive EMS for a hybrid power system 

(WECS with BESS). This EMS maximized the owner’s daily profit by dispatching the BESS 

for wind energy time-shifting. To expand the BESS lifetime, constraints on the power rating, 

the DOD and the number of charging cycles were included.  This technique achieved the 

optimal profit with a minimal sacrifice in the BESS lifetime guaranteeing the maximum net 

profit. 

Chapter 6 presented a predictive EMS for a short-term storage hybrid system. The system 

consisting of a FESS connected with a WECS. The EMS used an MPC-based algorithm to 

respect typical grid code, minimize the FESS losses, and increase the system lifetime. By 

comparing the proposed EMS with a traditional EMS, the case studies show that the proposed 

controller has managed to reduce the FESS losses up to 25%.   

Chapter 7 presented a framework to define robust operating zones for multi-ESSs for day-

ahead. The technical constraints included permissible voltage level and branch ampacity. This 

work c main contribution is to consider the power uncertainty while reducing the results 

conservatism. When the ROZs were tested under different uncertainty scenarios, the results 

showed that the proposed technique increased the ESS participation with a very low voltage and 

ampacity violations.   
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Finally, Chapter 8 proposed a novel EMS for mobile storage. This EMS minimized the cost 

of power imported from the grid and not only shifted renewable energy power to load peak 

hours but also it provided localized reactive power support. The proposed EMS managed to 

provide the optimal locations and dispatch power for an MESS which achieved a profit for the 

utility, taking into account the truck transit delay. 

9.2 Future work 

The following research directions can be followed as an extension out of this thesis. 

1) The utilization of ESSs in distribution system extension. Savings in the extension cost 

can be achieved by reducing the feeders’ sizes in futuristic expansions; moreover, ESS-

multi-services enables reactive power support with the peak shaving process.  

2) The application of the developed EMSs to hybrid systems with short and long duration 

ESSs. 

3) The inclusion of a detailed transit delay model in the planning process of MESSs. 

4) The extension of the proposed planning and operation algorithms to multiple MESSs. 

 Whereas the ESS cost will decrease in the future, more ESSs are expected to join the power 

systems for multi-services. This development will make all the suggested studies very useful for 

viable control and sizing strategies for ESSs. 
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