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Abstract 

Dementia is a clinical state, characterized by symptoms indicative of deterioration of memory and 

cognitive functions that interferes with social or occupational functioning. According to 2018 

statistics, around 50 million people are living with dementia, and this number will increase to 131.5 

million by the year 2050. Furthermore, the financial burden of dementia in the global economy 

was around 1 trillion US$ in the year 2018. Among different forms of neurodegenerative dementia, 

Alzheimer’s disease (AD) is the most common, accounting for up to 60-80% among all dementias. 

AD proceeds through a precursor stage, known as Mild Cognitive Impairment (MCI), between 

healthy ageing and full dementia. Subjects with MCI, however, may or may not progress to AD or 

related dementia. Contemporary diagnosis of AD is based on clinical examinations and cognitive 

grading, but definitive diagnosis is currently possible only following autopsy or, rarely, biopsy. 

Despite massive investment in the search for therapies of AD, all clinical trials of AD indicate a 

current lack of effective drug therapies for AD dementia. This may be due to excessive damage to 

brain prior to clinical symptom onset, or to insufficient understanding with respect to diagnosis 

and disease progression. In addition, evidence in the literature has been inconsistent with the 

classification of AD patients from normal ageing, and the relationship between body fluid 

metabolite concentrations and severity of AD dementia. 

This PhD investigation sought to synthesize evidence from the existing literature by using 

systematic review and meta-analysis procedures for additional knowledge contributing to 

improved diagnosis, prognosis, and prediction of AD dementia. The investigation addressed three 

questions (i) Is differential diagnosis of Alzheimer’s disease versus healthy ageing possible based 

on body fluid metabolites? (ii) Do concentrations of ante-mortem body fluid metabolites correlate 

with severity of Alzheimer’s disease dementia? (iii) Can we predict age at onset of Alzheimer’s 
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disease dementia from concentrations of body fluid metabolites? In addition, a systematic 

investigation of neuroimaging studies was carried out to assess the evidence for possible 

neuroimaging-based differential diagnosis and prediction of AD dementia from healthy ageing and 

other related dementia. 

In conclusion, this doctoral investigation found that the cerebrospinal fluid CSF amyloid beta (Aβ) 

(1-42), hyperphosphorylated tau (P-tau) and total tau (T-tau) protein concentrations were 

significantly different in AD patients’ than healthy controls. In addition, there are some other 

biofluid metabolites that are being extensively investigated as potential biomarkers for AD 

research. Furthermore, none of these biofluid metabolites have been found to be predictive for both 

the severity of dementia and age at onset for AD. Some of the CSF biomarkers such as Aβ 

oligomers, norepinephrine, and pyruvate concentrations demonstrate a significant predictive 

information about AD dementia severity, but based on the small number of studies with relatively 

small patient sample size, these findings may not be generalizable to the broader AD patient 

population and further research is needed. In addition, this systematic investigation also indicates 

a large variation of methodology across studies, which needs to be considered in future clinical 

research.     
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Preface 

This thesis is an original work by Manoj Malik, the Ph.D. candidate. Because this thesis follows a 

paper-based format, there is occasional repetition of some information in different chapters. 

Chapter 2 will be submitted for publication in 2019 as: Malik M, Brown M, Juhas M, Benoit J, 

Greenshaw A: A systematic review and meta-analysis on differential diagnosis of AD dementia 

from normal healthy controls using the antemortem levels of biofluid. 

Chapter 3 will be submitted for publication in 2019 as: Malik M, Brown M, Juhas M, Benoit J, 

Greenshaw A: A systematic review and meta-analysis on prediction of AD dementia from the 

biofluid metabolites concentration. 

Chapter 4 will be submitted for publication in 2019 as:  Malik M, Brown M, Juhas M, Benoit J, 

Greenshaw A: Systematic review on Predicting the age at onset of AD dementia from biofluid 

metabolites level. 

Chapter 5 Chapter 4 will be submitted for publication in 2019 as: Malik M, Brown M, Juhas M, 

Lind J, Benoit J, Greenshaw A:  A systematic review on differential diagnosis and prediction of 

AD dementia using systematic review of neuroimaging literature. 

Each chapter contains a reference list specific to the references cited in that Chapter. The thesis 

also contains a comprehensive bibliography at the end of the document, which are the references 

from the entire thesis. 
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Chapter 1: Dementia and Alzheimer’s disease 
 
 
1.1 The History of Dementia and Alzheimer’s disease 

In ancient history, from as early as 2000 BC, Egyptians believed that the heart and the diaphragm 

were the major physical components of mental life. They also thought that a major memory 

disorder could occur in older age (Boller and Forbes, 1998)⁠. Around 630–560 BC, Solon, an 

Athenian statesman, wrote that judgement may be “impaired by physical pain, violence, drugs, 

old age or the persuasion of a woman’” (Boller and Forbes, 1998)⁠. Furthermore, many ancient 

scholars [including Plato, Horatius, Aulus Cornelius Celsus, Aretheus, Hippocrates and Galen] 

considered concepts related to dementia, ageing, neurological and mental disorders [for a review, 

see (Boller and Forbes, 1998⁠)]. This evidence and many other historical reports have suggested 

that  dementia-related concepts had their origins in prehistoric time and terms like “amentia, 

imbecility, morosis, fatuitas, anoea, foolishness, stupidity, simplicity, carus, idiocy, dotage and 

senility [but not dementia] were used to name, in varying degree, states of cognitive and 

behavioural deterioration leading to psychosocial incompetence” (Berrios, 1994)⁠. The word  

'dementia', arising from the Latin demens [relating to the concept of madness or insanity], was 

first reported in “the vernacular in Blancard's popular Physical Dictionary (1726) as an 

equivalent of 'anoea' or' extinction of the imagination and judgement” and its adjective form 

“demented” is reported by the Oxford English Dictionary as used in this sense since 1644 

(Berrios, 1994)⁠. Of note, the Oxford English dictionary reports earlier uses of the words 

dementia and demented in the more general context of reference to unspecified madness [e.g. 

“Dementia 1598   J. MOSAN tr. C. Wirsung Praxis Med. Vniuersalis I. xii. 130 

(heading)   Of Melancholia or Dementia, a woonderfull madnesse”; and “Demented 1545   G. 

javascript:void(0)
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Joye Expos. Daniel (v.) f. 90v   He was thus demented and bewitched with these pestilent 

perswasions.” From U of A libraries OED database]. 

However, the early modern description of dementia was first written by a French psychiatrist Dr. 

Philippe Pinel (1745–1826) as “démence” in the year 1797 (Boller and Forbes, 1998)⁠. Since 

then, many reports suggested the evolutionary concept of dementia until nineteenth century (see 

reviews (Berrios, 1994; Boller and Forbes, 1998).The dementia of Alzheimer's disease (AD) was 

first described by the great neurologist Dr. Alois Alzheimer in the year 1906 (Hippius and 

Neundörfer, 2003)⁠. Dr. Alzheimer investigated a female patient named Auguste Deter (~ 50 

years), who was suffering from “sleep disorders, disturbances of memory, aggressiveness, 

crying, and progressive confusion” (Hippius and Neundörfer, 2003)⁠. After the death of Auguste 

Deter in 1906, the post-mortem analysis of her brain suggested many amyloid plaques and 

neurofibrillary tangles in the cerebral cortex, which are now considered as pathological 

hallmarks of AD (Hippius and Neundörfer, 2003)⁠. Extracellular deposition of amyloid plaques in 

the brain is produced from the misfolded protein amyloid beta (Aβ), while the intracellular 

deposition neurofibrillary tangles (NFT) is due to hyperphosphorylated tau proteins, which may 

impede or prevent communication and signalling between neurons, eventually leading to death 

[see reviews (Lane et al., 2018; Querfurth and LaFerla, 2010)⁠]. Although, these abnormal protein 

depositions in the brain are not the only causes for AD pathogenesis, they currently identify AD 

as a distinct neurodegenerative disorder among different forms of cognitive disorders, which may 

later lead to dementia (Jack et al., 2018)⁠.  

There are several risk factors for development of AD (Reitz et al., 2011) ⁠, among them increased 

age is considered as the greatest risk factor (Guerreiro and Bras, 2015)⁠. Furthermore, many 

studies suggested that the neurotransmitters like acetylcholine (ACh), serotonin, noradrenaline, 

javascript:void(0)
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Glutamate, Dopamine, and γ-aminobutyric acid (GABA) including their respective transporters 

and receptors play a crucial role in AD, based on the postulate that their imbalance, in whole or 

part, may contribute to cognitive impairment and determine the severity of symptoms in AD (for 

recent review: Strac et al., 2015⁠).  

Neurotransmitters are endogenous chemicals that enable communication between neurons by 

transmitting signals across synapses (Sudhof, 2014)⁠. All neurotransmitter-related clinical trials in 

the domain of AD suggest the involvement of different neurotransmitters in the pathophysiology 

and clinical symptoms of AD (Cummings et al., 2017; Francis, 2005; Reddy, 2017; Strac et al., 

2015). For example, the neurotransmitter acetylcholine plays an important role in  learning and 

memory (Hasselmo, 2006)⁠ and the cholinergic hypothesis states that the dysfunction of 

cholinergic neurons in the brain contributes to cognitive deficits as observed in AD patients 

(Craig et al., 2011; Francis et al., 1999)⁠. 

There are several other distinct forms of dementia such as vascular dementia, dementia with 

Lewy bodies (DLB), mixed dementia, fronto-temporal lobar degeneration (FTLD), Parkinson’s 

disease (PD), Creutzfeldt-Jakob disease, and normal pressure hydrocephalus, that have their own 

proposed underlying pathogenic causes and characteristics (see Alzheimer’s Association, 2018; 

Camicioli, 2004)⁠.  

 

1.2 Alzheimer’s disease (AD) and scope of the problem 

AD dementia is symptomatically characterized by progressive impairment of memory and other 

cognitive functions such as disorientation, confusion, communication, judgement, and 

disturbances in motor functions like speaking, swallowing and walking (Alzheimer’s 

Association, 2018; McKhann et al., 1984). However, the symptoms vary from individual to 
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individual, and sometimes it is very challenging to distinguish between normal ageing associated 

cognitive changes and early stages of AD (Alzheimer’s Association, 2018; Fjell et al., 2014)⁠. 

Most incidence of AD occurs sporadically in old age and hence, old age is believed to be the 

greatest risk factor of AD (Guerreiro and Bras, 2015)⁠ among other risk factors (Crous-Bou et al., 

2017)⁠. Sporadic AD occurs after age of 65 years, known as later age of onset (LOAD), and 

accounts more than 90% of clinical cases (Bertram and Tanzi, 2004; Prince et al., 2013)⁠. The age 

of 65 years as a cut-off point has no particular biological significance rather a sociological 

partition with regard to employment and retirement age (Rossor et al., 2010)⁠.  

Only around 1-6% cases of AD developing through genetic mutation are identified as the familial 

form of AD (FAD), and the symptoms in FAD cases appear between 30 to 65 years, and hence, it 

is called early onset of AD (EOAD) (Cruts and Van Broeckhoven, 1998; Piaceri et al., 2013; 

Shea et al., 2016). FAD is generally attributed to the expression consequences of autosomal 

dominant mutation of three genes, including amyloid precursor protein (APP) gene on 

chromosome 21, presenilin-1 (PS1) gene on chromosome 14, and presenilin-2 (PS2) gene on 

chromosome 1 (Bateman et al., 2011; Brouwers et al., 2008; Piaceri et al., 2013). Furthermore, 

the apolipoprotein E (APoE) gene on chromosome 19 is also associated with LOAD in both 

familial and sporadic forms of AD (Holtzman et al., 2012; Verghese et al., 2011). The APoE gene 

has three alleles including APoE Ɛ2, APoE Ɛ3 and APoE Ɛ4, and the inheritance of APoE Ɛ4 

allele yields a three-times higher risk of developing AD than other forms (Holtzman et al., 2012)⁠. 

Likewise, subjects' carrying two copies of APoE Ɛ4 gene have an 8-12-fold increased risk of AD 

development (Holtzman et al., 2012; Loy et al., 2014)⁠. In addition, an increased number of 

copies of APoE Ɛ4 genes may also decrease the mean age of onset of dementia symptoms from 

84 years to 68 years, and individuals with the homozygous condition of ApoE Ɛ4 are at risk of 
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expressing AD by the age of 80 years (Corder et al., 1993)⁠. It is of great interest that Down's 

syndrome (DS) patients (Asim et al., 2015)⁠ are also at a high risk of EOAD due to the presence 

of three copies of chromosome 21 with AAP gene (Goedert, 2015)⁠. In fact, AD patients typically 

survive with a mean duration of only 8.5 years after the diagnosis with dementia symptoms 

(Francis et al., 1999)⁠. 

According to the World Alzheimer Report (2018), It has been estimated that around 50 million 

people were living with dementia globally in the year 2017, and this number will exceed 75 

million and then  131.5 million by the years 2030 and 2050 respectively (International, 2018)⁠. 

However, the prevalence of AD accounts for only up to 60-80% among all dementia cases 

(Alzheimer’s Association, 2018)⁠. Currently, around 5.7 million Americans are living with AD as 

per recent US statistics (Alzheimer’s Association, 2018)⁠. According to the Alzheimer’s society of 

Canada, (http://alzheimer.ca/en/Home/About-dementia/What-is-dementia/Dementia-numbers) 

around 564,000 Canadians are currently living with dementia. The globally financial burden of 

dementia was around 818 billion United States Dollar (USD) in 2015 and this amount will 

exceed 1 trillion USD by 2018 (Wimo et al., 2017)⁠.In the year 2018, the total financial burden 

for the US dementia population, who are greater than the age of 65 years is reported as around 

$ 277 billion USD (Alzheimer’s Association, 2018)⁠. Similarly, the total annual cost of the 

Canadians living with dementia was around $10.4 billion Canadian in 2016 

(http://alzheimer.ca/en/Home/About-dementia/What-is-dementia/Dementia-numbers). Clearly, if 

AD dementia is neither diagnosed nor treated properly with new strategies to halt or delay the 

onset of disease, it will impose an increasingly severe burden on the global economy, both from a 

human suffering and a fiscal perspective. 

 

http://alzheimer.ca/en/Home/About-dementia/What-is-dementia/Dementia-numbers
http://alzheimer.ca/en/Home/About-dementia/What-is-dementia/Dementia-numbers
http://alzheimer.ca/en/Home/About-dementia/What-is-dementia/Dementia-numbers
http://alzheimer.ca/en/Home/About-dementia/What-is-dementia/Dementia-numbers
http://alzheimer.ca/en/Home/About-dementia/What-is-dementia/Dementia-numbers
http://alzheimer.ca/en/Home/About-dementia/What-is-dementia/Dementia-numbers
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Figure 1.1 Amyloid precursor protein processing. Aβ = Amyloid beta, α = Alpha secretase 

enzyme, β = Beta secretase enzyme, γ = Gama secretase enzyme, sAPPα = secreted amyloid 

precursor protein α, P3 = P3 peptide,  AICD = amyloid precursor protein intracellular domain. 

Adapted from: Arbor et al. (2016). 

The exact cause of AD remains elusive, however, abnormal accumulation of the Aβ plaques and 

NFTs is the most well-characterized pathological feature of AD, among different 

neurodegenerative diseases leading to dementia (Jack et al., 2018)⁠. The Aβ plaques are produced 

from the amyloid precursor protein (APP) and deposited extracellularly, while the NFTs are 

made up of hyperphosphorylated tau proteins and deposited inside the neurons (Jack et al., 

2018). Evidence suggests that the APP metabolism occurs in two alternative pathways in 

different pathological condition and normal physiological process (Arbor et al., 2016). As 
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illustrated by the Arbor et al., (2016), APP is processed through the amyloidogenic and 

nonamyloidogenic pathways by the actions of α, β, and γ-secretases enzymes. In AD, the APP 

processes through the amyloidogenic pathway by the actions of β-secretase and γ-secretase (see 

Figure 1.1) leading to the formation of Aβ plaques, while in the nonamyloidogenic pathway the 

APP is cleaved by the α-secretase and followed by the γ-secretase enzymes, which prevent the 

formation of Aβ peptides [see details in review (Arbor et al., 2016)]. Similarly, Tau protein is a 

soluble microtubule-associated protein that stabilizes microtubules in neurons and other cells 

(Johnson, 2004)]. In AD pathology, these axonal proteins become highly phosphorylated [see 

Figure 1.2) by the actions of different kinases leading to the formation phosphorylated tau, and 

finally, it accumulates intracellularly in the form of NFTs [see detail in review (Johnson, 2004)].  

 

 

Figure 1.2 Tau phosphorylation in both physiological and pathological condition. Figure adapted 

from the review by Johnson (2004). 
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1.3 Mild Cognitive Impairment (MCI) 

Mild cognitive impairment (MCI) is a precursor stage of AD and of other related dementias 

(Petersen, 2011)⁠. MCI is a clinical condition in which individuals with MCI show mild changes 

in memory and other cognitive functions like “thinking” abilities, that can be noticed by the 

family members and friends, but they are able to carry out daily life activities with a reasonable 

degree of competence (Alzheimer’s Association, 2018; Petersen et al., 2014). People with the 

MCI condition are classified into two subtypes based on neuropsychological test performance, 

those are amnestic MCI (aMCI) and non-amnestic MCI (naMCI) (Petersen et al., 2014)⁠.  The 

aMCI patients perform poorly on neuropsychological tests of episodic memory (Tulving, 2002)⁠, 

while patients with naMCI perform poorly on other cognitive domains of neuropsychological 

tests than memory, such as executive functions, language or visuo-spatial abilities (Petersen et 

al., 2014)⁠. In addition, MCI patients have impairments in single to multiple cognitive domains 

and therefore, the above MCI groups may be further classified into four possible subtypes, such 

as (i) aMCI-single domain, (ii) aMCI-multiple domain, (iii) naMCI-single domain and (iv) 

naMCI-multiple domain (Petersen et al., 2014)⁠. People with MCI conditions are at a higher risk 

of developing AD or other forms of dementia than normal ageing individuals without MCI 

(Alzheimer’s Association, 2018)⁠. For example, a meta-analysis on 41 longitudinal studies of 

MCI subjects found that an average of 38% progressed to AD or other dementias after more than 

5 years (Alzheimer’s Association, 2018; Mitchell and Shiri-Feshki, 2009). The authors also 

reported that most people with MCI conditions remain stable after 10 years on follow-up from 

the initial diagnosis (Mitchell and Shiri-Feshki, 2009)⁠. Similarly, a recent systematic review 

suggested that around 32% of subjects with unspecified MCI or aMCI conditions progressed to 

AD dementia within 5 years (Alzheimer’s Association, 2018; Ward et al., 2013). Therefore, early 
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diagnosis of people with MCI condition, who are greater risk of developing AD or other 

dementia is a key target of current research (Alzheimer’s Association, 2018)⁠. 

 

1.4 Diagnostic Guidelines for AD 

The traditional diagnostic criteria of AD were reported by the National Institute of Neurological 

and Communicative Disorders and Stroke–Alzheimer’s Disease and Related Disorders 

Association (NINCDS-ADRDA) in 1984 (McKhann et al., 1984)⁠. According to these 1984 

guidelines, based on the level of evidence, AD dementia was divided into three separate 

nosological entities: probable AD, possible AD and definitive AD (McKhann et al., 1984)⁠. Of 

these, the most accurate clinical diagnosis of AD in living patients was considered as probable 

AD, based mainly on the clinical judgement of a doctor’s investigation of a patient’s symptoms 

[see diagnostic guidelines (Cummings, 2012; McKhann et al., 1984)]. However, the definitive 

diagnosis of AD was, and is, based on autopsy or biopsy evidence of Aβ plaques and NFTs with 

probable AD causes  (McKhann et al., 1984)⁠. Interestingly, a study with 208 possible AD and 

432 probable AD patients found no group differences in clinical outcomes for dementia (Villareal 

et al., 2003)⁠. The 1984 diagnostic guidelines of AD were revised in 2011(Jack et al., 2011; 

McKhann et al., 1984, 2011)⁠. The revised guidelines described AD in three stages: an early 

preclinical stage, an intermediate stage called MCI, and the final stage of AD dementia [see 

(McKhann et al., 2011)⁠].  

As with many clinical disorders, there are alternate guidelines for diagnosis of AD, including the 

Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) and the 10th revision of the 

International Classification of Diseases (ICD-10) International Work Group criteria (IWG) that 

have been reported to define AD [see review (Cummings, 2012)⁠]. Of these, the NINCDS-
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ADRDA diagnostic guidelines of AD have become the most extensively used guidelines for AD 

dementia research because of their very high sensitivity and specificity (Zhu et al., 2010)⁠ based 

on post-mortem confirmation of AD diagnosis than other sets of diagnostic criteria [see 

(Cummings, 2012; Husain and Garrett, 2005)]. Most recently, the National Institute on Ageing-

Alzheimer’s Association (NIA-AA) updated the 2011 guidelines of AD, and now defines AD as a 

continuum starting with underlying brain pathological processes (Jack et al., 2018)⁠. According to 

these 2018 guidelines, AD is defined by its pathological process, that can be characterized by 

post-mortem analysis, diagnosis for living AD patients using biomarkers (Biomarkers 

Definitions Working Group, 2001; Jack et al., 2018). AD biomarkers are categorized in three 

general groups known as AT(N), which were based on the kind of pathological processes that 

each group contributes (Jack et al., 2018)⁠. The biomarker category “A” stands for aggregated Aβ 

plaques or associated pathologic state, that can be observed in low concentrations in CSF Aβ42, 

Aβ42/ Aβ40 ratio; or cortical amyloid Positron Emission Tomography (PET) ligand binding 

(Catafau and Bullich, 2015; Jack et al., 2018). Likewise, the “T” category biomarker is for 

aggregated hyperphosphorylated tau (P-tau) proteins such as NFTs or associated pathologic 

indicators, that are elevated in CSF or cortical tau PET ligand binding (Jack et al., 2018; 

Okamura et al., 2014). Finally, the “(N)” category of biomarker stands for measures associated 

with is neurodegeneration or neuronal injury of the brain, and the reason for putting parenthesis 

in this category because neurodegeneration or neuronal injury may not be specifically related to 

AD (Jack et al., 2018)⁠. Furthermore, neurodegeneration or neuronal injury can be assessed with 

increased CSF total tau protein (T-tau) (Ferreira et al., 2014)⁠, fluorodeoxyglucose (FDG)PET 

hypometabolism (Shivamurthy et al., 2015)⁠, and atrophy on magnetic resonance imaging (MRI) 

(Frisoni et al., 2010; Jack et al., 2018). However, these guidelines were intended only for 
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research purposes to generate and test new hypotheses focusing on the interactions among 

different pathologic states, rather than the clinics (Jack et al., 2018)⁠. 

1.5 Treatment of AD 

Six drugs were approved by the United States Food and Drug Administration (FDA) to treat for a 

symptomatic relief of AD dementia (Alzheimer’s Association, 2018)⁠. These medications fall into 

two categories, cholinesterase inhibitors and a N-methyl D-aspartate (NMDA) antagonist (Casey 

et al., 2010)⁠, including rivastigmine, galantamine, donepezil, tacrine, memantine, and donepezil 

combined with memantine (Alzheimer’s Association, 2018).⁠ While memantine is a NMDA 

antagonist, the other drugs are all cholinesterase inhibitors, (Casey et al., 2010)⁠.  

Cholinesterase inhibitors increase cholinergic transmission by cleaving the enzyme 

acetylcholinesterase (AChE), that hydrolyses the neurotransmitter acetylcholine (Ach) [see 

review (Anand and Singh, 2013)] ⁠. Similarly, the NMDA receptors are a kind of glutamate 

receptor (Traynelis et al., 2010)⁠, which is believed to be involved in Ca2+  toxicity in AD, that 

may lead to the death of brain cells [see review (Olivares et al., 2012⁠)]. Therefore, memantine is 

used to block the NMDA receptors to regulate the glutamatergic system in an attempt to enhance 

cognitive and memory impairments (Olivares et al., 2012)⁠. However, all these drugs are used for 

partial symptomatic relief rather than as disease modifying therapies for AD, and the efficacy of 

these drugs varies from patient to patient to a limited period (Alzheimer’s Association, 2018)⁠. In 

addition, although more than 244 drugs were clinically tested in between 2002-2012 for the 

treatment of AD dementia, none of them was approved by the US FDA except memantine 

(Alzheimer’s Association, 2018; Cummings et al., 2014). Furthermore, some evidence also 

suggested that non-pharmacologic therapies like physical exercise and cognitive stimulation 

(Aguirre et al., 2013; Farina et al., 2014; Groot et al., 2016)⁠ may be effective for the 
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enhancement of memory and cognitive functions in some AD patients. However, currently, none 

of these pharmacologic and non-pharmacologic therapies proved to be effective for AD dementia 

treatment (Alzheimer’s Association, 2018). This may be because of excessive damage in to brain 

prior to the appearance of the clinical symptoms (Sperling et al., 2014)⁠, or to insufficient 

understanding with respect to AD diagnosis and disease progression. Therefore, the main 

objective of this present investigation is to synthesize evidence from the existing literature, 

which will provide useful additional knowledge contributing to improved diagnosis and 

prognosis, prediction of AD dementia by using systematic review and meta-analysis procedures.  

Meta-analysis is a statistical method for combining results of an investigated research question(s) 

from the different studies to synthesize more precise estimates of true effect size (Button et al., 

2013; Rosenthal and DiMatteo, 2001a). It is widely used in clinical and applied research of 

medicine, education, psychology, criminal justice and in the basic sciences for evaluation of 

research evidence across studies (Borenstein et al., 2009).  

An effect size is a measure of strength and association between variables (Button et al., 2013).⁠ 

For example, a standardized mean difference (SMD) between two variables is an effect siz; a few 

other forms of effect sizes are also investigated in meta-analytic procedures [see (Rosenthal and 

DiMatteo, 2001a)⁠].  

Similarly, a systematic review is a qualitative synthesis of evidence on an investigated question 

from the literature in a systematic way (Dijkers, 2015; Haidich, 2010; Rosenthal and DiMatteo, 

2001b).  

Unlike meta-analysis and systematic review, a scoping review is a review of literature to address 

the key concepts or phenomena by qualitative integration of relevant evidence without a 

systematic process (Dijkers, 2015)⁠. 
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1.6 The present PhD Investigation 

As mentioned in an earlier section, meta-analysis is a statistical method for integrating existing 

evidence from multiple studies in the form of effect size (Button et al., 2013; Rosenthal and 

DiMatteo, 2001a). The findings of AD research evidence are inconsistent across the body of 

published data, and significantly vary from study to study. The main goal of this meta-analytic 

investigation of AD literature is to estimate the true effect size across the body of data as 

accurately as possible, and to quantify the existence of variability (Borenstein et al., 2009). 

Research in the field of AD is very wide and it includes many advanced investigations in areas 

like neuroimaging, genetics, immunology, biofluids, and other forms of data such as text data 

and speech data etc. It was not possible to incorporate all areas of investigation in this PhD 

investigation. Therefore, the scope of this thesis was defined as classical biofluid metabolites in 

AD. In addition, we also performed a systematic investigation of neuroimaging studies that used 

machine learning algorithms to attempt classification of AD from healthy controls and MCI at 

group levels and the individual level. All other areas of AD research are beyond the scope of this 

PhD investigation. Therefore, in addition to the question of classification of AD from controls in 

neuroimaging studies mentioned above, additional research questions were restricted to the 

following for biofluid metabolites: (i) Is differential diagnosis of Alzheimer’s disease and normal 

ageing possible based on the body fluid metabolites? (ii)  Do the antemortem body fluid 

metabolites correlate with the severity of Alzheimer’s disease dementia? (iii) Can we predict age 

at onset of Alzheimer’s disease dementia from body fluid metabolites?  

Therefore, this PhD dissertation comprises: 
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(i) A systematic review and meta-analysis on differential diagnosis of AD dementia from 

normal healthy controls using the antemortem levels of biofluid such as cerebrospinal 

fluid, blood, serum, plasma, urine, etc.  

(ii) A systematic review and meta-analysis on prediction of AD dementia from the 

biofluid metabolites concentration.  

(iii) A systematic review of predicting the age at onset of AD dementia from biofluid 

metabolite levels.  

(iv) A systematic review for differential diagnosis and prediction of AD dementia using 

systematic review of neuroimaging literature.  

Hopefully, this work will offer valuable knowledge for better diagnosis, prognosis and 

prediction of AD dementia, and may open new windows for future research. 
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Chapter 2: Ante-mortem biofluid biomarkers of Alzheimer’s disease: A systematic review 

and meta-analysis on differential diagnosis of Alzheimer’s disease from healthy ageing. 

 

2.1 Introduction 

Dementia comprises a group of neurodegenerative disorders that are characterized by decline in 

memory, disturbances in language use, changes in behaviour and other cognitive functions, 

which interferes with social or occupational functioning of peoples’ daily life activities 

(Chertkow et al., 2013; Qiu et al., 2009a). The prevalence of dementia in 2010 was about 36.5 

million globally, and this prevalence will exceed 115.4 million by 2050 (Prince et al., 2013)⁠. 

However, in western countries the incidence of dementia in the male population may be 

decreasing (Lane et al., 2018)⁠. Although, the exact cause of this decline is yet not fully 

understood, it may be due to better management of vascular risks (Lane et al., 2018)⁠. In 

forthcoming years, the prevalence of dementia in low- and middle-income countries is expected 

to increase most, because of increased prevalence of cardiovascular disease, hypertension and 

diabetes (Lane et al., 2018)⁠. The global financial burden of dementia was around 818 billion 

US$ in 2015, which was an increase of 35% over the 2010 cost of 604 billion US$, these costs 

may have crossed the threshold of US$ 1 trillion by the year 2018 (Wimo et al., 2017)⁠. 

Among the different forms of dementia (Camicioli, 2004; Shaik and Varma, 2012), Alzheimer’s 

disease or Alzheimer’s dementia (AD) is the most common, accounting for up to 50-75% of all 

dementia cases (Fiest et al., 2016; Qiu et al., 2009b; Reitz and Mayeux, 2014). The vast majority 

of AD cases appears sporadically, and it’s prevalence nearly doubles after the age of 65, every 5 

years (http://www.alzheimers.net/resources/alzheimers-statistics/).Therefore, old age is generally 

considered as the greatest of risk factors in this context (Crous-Bou et al., 2017)⁠. Sporadic AD 

symptoms, which develop after age of 65 years known as later age of onset (LOAD), accounts 

http://www.alzheimers.net/resources/alzheimers-statistics/
http://www.alzheimers.net/resources/alzheimers-statistics/
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for more than 90% of cases (Bertram and Tanzi, 2004; Prince et al., 2013)⁠. By contrast, around 

1-6% cases of AD develop due to gene mutations and constitute the familial form of AD (FAD) 

The symptoms usually appear earlier than sporadic AD, typically between 30 to 65 years and are 

referred to as early onset of AD (EOAD) (Cruts and Van Broeckhoven, 1998; Piaceri et al., 2013; 

Shea et al., 2016). The FAD cases are mainly caused by the autosomal dominant mutation of 

three genes: amyloid precursor protein (APP) gene on chromosome 21, Presenilin-1(PS1) gene 

on chromosome 14, and Presenilin-2(PS2) gene on chromosome 1 (Brouwers et al., 2008; Piaceri 

et al., 2013)⁠. In addition, another gene called  apolipoprotein E (APoE) gene on chromosome 19, 

is also associated with the LOAD in both familial and sporadic forms of AD (Holtzman et al., 

2012; Verghese et al., 2011). The APoE gene has three alleles such, APoE Ɛ2, APoE Ɛ3 and 

APoE Ɛ4, and the individuals who inherit a single copy of APoE Ɛ4 allele have a three-fold high 

risk of developing AD than those who inherit other forms of the APoE gene (Holtzman et al., 

2012)⁠. Similarly, individuals carrying two copies of APoE Ɛ4 gene have a further increased risk 

(up to 8-12 fold risk) of developing AD (Holtzman et al., 2012; Loy et al., 2014)⁠. Furthermore, 

increased copy number of APoE Ɛ4 genes also decreases the mean age at onset of dementia 

symptoms from 84 years to 68 years (Corder et al., 1993)⁠. Interestingly, Down's syndrome (DS) 

patients also manifest a high risk of EOAD due to the presence of three copies of chromosome 

21 with the AAP gene (Goedert, 2015)⁠. Typically, AD patients may survive with a mean duration 

of 8.5 years after appearance of dementia symptoms (Francis et al., 1999)⁠. 

Generally, AD precedes through a transition stage called the mild cognitive impairment (MCI) 

stage, that is an intermediate stage between normal healthy ageing and advanced forms of 

dementia symptoms (Petersen, 2011)⁠. Patients with MCI are classified as amnestic MCI (aMCI) 

and non-amnestic MCI (naMCI) according to their performance on neuropsychological tests 
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(Petersen et al., 2014)⁠. Patients with aMCI perform poorly in the episodic memory domain 

(Tulving, 2002)⁠, whereas naMCI patients perform poorly on other cognitive domains, such as 

executive functions, language or visuo-spatial abilities rather than memory (Petersen et al., 

2014)⁠. Based on the impairments in single to multiple cognitive domains, MCI patients may be  

categorized into four possible subtypes, such as (i) aMCI-single domain, (ii) aMCI-multiple 

domain, (iii) naMCI-single domain and (iv) naMCI-multiple domain (Petersen et al., 2014)⁠. 

Patients with aMCI condition are conventionally believed to be at the prodromal stage of AD, 

however, it may progress to other dementia types like logopenic aphasia, posterior cortical 

atrophy, frontal lobe-dysexecutive presentation of AD (Mitchell and Shiri-Feshki, 2009; 

Petersen, 2016; Souza et al., 2013). Interestingly, a meta-analysis (Mitchell and Shiri-Feshki, 

2009)⁠ on progression of MCI patients to AD, vascular dementia (VaD) and other dementia types 

(Camicioli, 2004; Shaik and Varma, 2012)⁠ suggests that the MCI condition remains stable after 

10 years of follow-up from the initial diagnosis. As noted above, some MCI patients progress to 

AD, VaD and other forms of dementia, and some remain stable. Currently, we can’t accurately 

predict who will progress to AD and related dementias from the MCI stage, and we still don’t 

fully understand why some MCI patients remain stable for long time periods. Therefore, 

predicting AD from MCI, and understanding their relative disease causes and symptoms would 

allow, in future, the targeting of disease-modifying therapies, risk-modifying strategies and 

psychosocial management (Ritchie et al., 2014)⁠.      

2.2 Neuropathology of AD 

Although, the exact cause of AD is not fully understood yet, the abnormal accumulation of β-

amyloid (Aβ) plaques and neurofibrillary tangles (NFTs) defines AD as a unique 

neurodegenerative disease among different disorders (Jack et al., 2018)⁠. Extracellular depositions 
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of Aβ plaques and intracellular NFTs in the brain are well established characteristics of AD 

pathology (Ballard et al., 2011),⁠ and these pathological processes begin around 15-20 years 

before the onset of clinical symptoms (Villemagne et al., 2011)⁠. NFTs are the aggregates of 

hyperphosphorylation of a microtubule-associated protein known as tau proteins (Noble et al., 

2013)⁠, that contribute to the second major pathological hallmark of AD. However, many 

neurological disorders and other forms of dementia also show similar kinds of pathological 

conditions known as tauopathies (Irwin, 2016)⁠. There are many hypotheses that have been 

proposed for mechanisms of AD pathogenesis, such as (i) Aβ-amyloid hypothesis, (ii) tau 

hypothesis (iii) Aβ-amyloid oligomers hypothesis, (iv) Presenilin hypothesis, (v) Ca2+ 

dysregulation hypothesis (vi) Lysosome hypothesis, and (vii) Inflammation hypothesis (see 

recent reviews (Du et al., 2018; Kocahan and Doǧan, 2017)). Although all these hypotheses offer 

an explanation for the underlying mechanism of AD pathology, however, the failure of all 

clinical trials to date (Anderson et al., 2017; Cummings et al., 2017) and the identification of 

similar kinds of disease pathological processes in other neurological disorders and related 

dementia undermine their potential explanatory power to some extent. For example, a recent 

review suggests that approximately 20-40% of normal ageing individuals show AD-like 

pathological conditions with normal cognition (Fjell et al., 2014)⁠. In addition, many studies have 

also suggested the lack of or very weak correlation between the Aβ deposition and cognitive 

impairment and cerebral atrophy (Kocahan and Doǧan, 2017)⁠. 

2.3 Biomarkers of AD 

A biomarker is a “characteristic that is objectively measured and evaluated as an indicator of 

normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic 

intervention” (Biomarkers Definitions Working Group, 2001)⁠. However, there is a constant 
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evolution of the biomarker definition in clinical sciences, that is particularly used in disease 

diagnosis in terms of medical signs and symptoms, surrogate endpoints, clinical endpoints and 

validation (Strimbu and Tavel, 2010). Biomarker(s) for disease diagnosis will be very useful for 

the clinics if they offer very high accuracy or sensitivity and specificity (Zhu et al., 2010)⁠. 

According to the 2018 National Institute on Ageing—Alzheimer’s Association (NIA-AA) 

research framework definition of AD (Jack et al., 2018)⁠, the putative AD biomarkers are labelled 

in three general groups known as AT(N), which are based on the kind of pathological processes 

that each group relates to. The biomarker category “A” stands for aggregated Aβ plaques or 

associated pathologic state, that are low in CSF Aβ42, Aβ42/ Aβ40 ratio or cortical amyloid 

Positron Emission Tomography (PET) ligand binding (Catafau and Bullich, 2015; Jack et al., 

2018). Similarly, the “T” category stands for aggregated hyperphosphorylated tau (P-tau) 

proteins as NFTs or associated pathologic state, that are elevated in CSF or cortical tau PET 

ligand binding (Jack et al., 2018; Okamura et al., 2014). Likewise, the “(N)” category of 

biomarker stands for neurodegeneration or neuronal injury of the brain, and the reason for 

putting parenthesis around the N in this category is because such neurodegeneration or neuronal 

injury need not be specifically due to AD (Jack et al., 2018)⁠. Furthermore, the neurodegeneration 

or neuronal injury can be assessed with increased CSF total tau protein (T-tau) (Ferreira et al., 

2014)⁠,fluorodeoxyglucose (FDG) PET hypometabolism (Shivamurthy et al., 2015)⁠, and atrophy 

on magnetic resonance imaging (MRI) (Frisoni et al., 2010; Jack et al., 2018). However, each of 

these biomarkers of AD has its own strengths and weaknesses in terms of disease diagnosis, 

progression and prediction (Johnson et al., 2012; Stefani et al., 2013). A recent review (Gaugler 

et al., 2013)⁠ of systematic reviews and meta-analyses in this area suggested that the CSF tau has 

a sensitivity of 73.3 -100% and specificity 70.0 - 92.4% for diagnosis of AD, when compared 
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with the neuropathological clinical criteria for AD, while various PET imaging modalities 

showed similar range of sensitivity (80-100%) and specificity (62-90%). In addition, numerous 

studies have been published on differential diagnosis of AD from other forms of dementia with 

very high sensitivity and specificity [see (Chen et al., 2017; Ferreira et al., 2014; Kandimalla et 

al., 2013; Mo et al., 2015; Paterson et al., 2018; Van Harten et al., 2011)] ⁠. Although, a plethora of 

publications reported on the biofluid biomarkers for differential diagnosis of AD, due to inter 

laboratory variability in biomarkers measurement (Mattsson et al., 2013; Watt et al., 2012)⁠, it is 

quite challenging to set up a cut-off point of biomarker levels for discriminatory diagnosis. In the 

present investigation, we performed meta-analysis of studies reporting biofluid metabolite 

concentrations in AD and healthy control subjects in attempts to provide a biomarker-based 

differential diagnosis AD dementia from healthy ageing subjects. We analyzed reports for 

different types of biofluids including CSF, blood, plasma, serum, urine and saliva. 

2.4 Methodology 

2.4.1 Literature search strategy 

We conducted this systematic review and meta-analysis as per the Preferred Reporting Items for 

Systematic Reviews and Meta-analyses (PRISMA) guidelines (Moher et al., 2009)⁠. We searched 

the PubMed data base (https://www.ncbi.nlm.nih.gov/pubmed/) from July 1, 2012, to September 

5, 2018 [within the last 6 years] of recent novel biomarkers, that have been investigated in the 

AD dementia literature. In addition, numerous recent systematic reviews and meta-analyses have 

been reported on body fluid biomarkers of AD targeting differential diagnosis (please see: Chen 

et al., 2017; Ferreira et al., 2014; Lai et al., 2017; Mo et al., 2015; Olsson et al., 2016; Ritchie et 

al., 2017, 2014; Van Harten et al., 2011)⁠. Therefore, we focused only recent [last 6 years] of 

studies for our systematic review and meta-analysis.  
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Our search keywords were ("biomarkers" OR "diagnosis" OR "prognosis" OR "prediction" OR 

"classifier") AND ("CSF" OR "cerebrospinal fluid" OR "blood" OR "serum" OR "protein" OR 

"amyloid beta" OR "tau") AND ("accuracy" OR "sensitivity" OR "specificity" OR "ROC" OR 

"receiver operator characteristic") AND ("Alzheimer’s" OR "mild cognitive impairment" OR 

"normal ageing"). We limited our search to human species studies written in English. We 

included only summary estimates of metabolite concentrations from those peer reviewed articles. 

However, no grey literature sources were assessed. The PubMed data base search retrieved a 

total of 476 articles, those were screened by two independent reviewers (M.M & A.G). We 

included a total of 51 articles for our systematic review and meta-analysis based on our study 

inclusion and exclusion criteria (see details below as well as the study selection Flowchart 2.1). 

Final inclusion and exclusion of studies were decided independently by the two reviewers. 

However, if any discrepancies appeared between the reviewers in study selection, these cases 

were discussed between the two authors until full agreement was reached. In those cases, where 

the disagreement was not resolved between the two reviewers, we discussed with a third 

independent reviewer.  

2.4.2 Inclusion Criteria 

• Original peer-reviewed studies published between July 1, 2012, and September 5, 2018. 

• Only human species English language studies were included. 

• Studies performing differential diagnosis of Alzheimer’s disease dementia from healthy 

ageing using antemortem cerebrospinal fluid (CSF) or peripheral body fluid metabolites. 

• Use of clinical diagnosis criteria for AD, the National Institute of Neurological and 

Communicative Disorders and Stroke (NINCDS) and the Alzheimer’s Disease and 

Related Disorders Association (ADRDA) by McKhann et al. (1984)⁠. 
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• AD patient group must be compared with a healthy control group (HC). 

2.4.3 Exclusion Criteria 

• All animal studies, meta-analyses, review articles, letters, comments, case reports, and 

unpublished articles. 

• Studies did not mention the sample size of each subject group or included fewer than ten 

individuals or reported data in a format other than the mean metabolite’s concentration 

with standard deviation (SD) or standard error of mean (SEM) (Altman and Bland, 2005; 

Olsson et al., 2016). 

• Studies only presenting post-mortem or autopsy or neuroimaging data. 

• When a healthy control group (HC) included participants with other neurological diseases 

or psychiatric disorders. 

2.4.4 Data extraction 

From each of the included studies, we recorded the following information: 

(i) The first author and the year of publication. 

(ii) Study design/setting (i.e. longitudinal or cross-sectional). 

(iii) Sample size  

(iv) Mean/median age 

(v) Mean/median MMSE score 

(vi) Classification or diagnostic accuracy or sensitivity and specificity or receiver 

operating characteristic (ROC) area under curve (Zhu et al., 2010)⁠. 

(vii) Types of assays used for measuring biomarkers. 

(viii) The mean ± SD or SEM of metabolite(s) concentration and the sample size (n) of AD, 

healthy control (HC) groups. 
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In those cases, where a study provided more than one cohort of data and for machine learning 

studies which presented results for training and testing data sets separately (Falahati et al., 2014)⁠, 

we considered each cohort or set as a single study and coded that study by study first author’s 

name and year of publication with cohort 1 as C-1, cohort 2 as C-2, and cohort 3 as C-3, 

depending on the number of cohorts or sets. For example, in our analyses, a study (Molinuevo et 

al., 2013)⁠ provides data in both AD and controls on three cohorts. So, we coded each cohort from 

that study as Molinuevo et al., 2013 (C-1), Molinuevo et al., 2013 (C-2), and Molinuevo et al., 

2013 (C-3). In addition, when a study reported metabolite concentrations that were analyzed with 

more than one assay, we chose a commercial assay in preference to an in-house assay for 

selection of only one assay (Olsson et al., 2016)⁠. The metabolite data from the CSF and 

peripheral blood of were meta-analyzed separately. However, the plasma and serum same 

metabolite data were meta-analyzed together (Olsson et al., 2016)⁠. Most of our included studies 

were cross-sectional, whereas very few studies included longitudinal measurements with clinical 

follow up. In longitudinal studies, we took only baseline measurement data to meta-analyze with 

cross-sectional data (Olsson et al., 2016)⁠. Some studies reported metabolite concentrations using 

different units than those used in the majority, Such units were converted into one unit format in 

each category of analyses (Ritchie et al., 2014)⁠. Finally, we conducted meta-analysis if there 

were at least two studies available in each category of metabolite (Olsson et al., 2016; Valentine 

et al., 2010)⁠. 

 

2.4.5 Statistical analyses 

Standardized mean difference (SMD) or Cohen’s d (Faraone, 2008; Rosenthal and DiMatteo, 

2001a) with 95% Confidence interval (CI) and P-value (Cumming and Maillardet, 2006)⁠ were 
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calculated for each analysis. We employed the random effects model to our analysis because of 

variability in inter laboratory estimation of biomarker concentrations (Mattsson et al., 2013; 

Noble et al., 2008; Watt et al., 2012) and participant demographics across the world (Borenstein 

et al., 2010; Diener et al., 2009; Hedges and Vevea, 1998)⁠. The random effects model is more 

conservative and fit to the real world data for generalization of findings to a targeted population 

(Diener et al., 2009)⁠. The evidence of publication bias was assessed qualitatively by the Egger’s 

test to create a Funnel plot by plotting standard error and SMD of means (Egger et al., 1997)⁠. We 

decided to create the funnel plots if at least three studies were available in each category of 

analysis. Graphical visualization of the Funnel plots showing symmetrical distribution of studies 

is indicative of no publication bias. Furthermore, we also assessed the fail-safe  number (Duval 

and Tweedie, 2000; Rosenthal and DiMatteo, 2001b)⁠ for only statistically significant results to 

estimate the number of studies with negative or null effects that are potentially missing in the 

literature, which would have been contributed to non-significant results. Finally, we quantified 

the heterogeneity across the sampling studies by using the I-squared (I2) test, that suggests “the 

percentage of total variation across the studies that is due to heterogeneity rather than chance” 

(Higgins, 2003)⁠. I2 values vary from 0% to 100%., A value of 0% suggests no observed 

heterogeneity, while increasing values (I2 > 50% as large and I2 > 75% as very large) indicate 

increasing heterogeneity (Higgins, 2003; Lai et al., 2017). A P-value less than 5% (P < 0.05) was 

indicative of significant heterogeneity across the studies (Lai et al., 2017)⁠. We used the Cohen’s 

d criterion for interpreting our results as small (SMD = 0.2), moderate (SMD = 0.5) and large 

(SMD ≥ 0.8) effect sizes (Cohen, 1988; Faraone, 2008). A negative value of effect sizes in all of 

our analyses indicates higher biomarker concentration in the control group, while positive values 

suggest higher concentration in the AD group (Lai et al., 2017)⁠. 



31 

All the statistical analyses were performed by the comprehensive Meta-Analysis Version 3.0 

software package (https://www.meta-analysis.com/) (Bax et al., 2007; Borenstein et al., 2009). 

2.5 Results 

A PubMed search identified 676 initial studies, and the abstracts were screened for eligibility. Of 

these, the full text of 186 articles was assessed for eligibility, and 490 non-relevant studies were 

excluded, (See Flowchart 2.1 for study selection.). 135 of the 186 studies were excluded because 

(i) the control group included other psychiatric or neurological disorder patients or did not follow 

diagnostic criteria or had a sample size <10 (total n = 64), and (ii) statistical reporting or data 

format or had no relevant data for analysis (n = 71). Finally, only 51 studies (Total; AD patients = 

4509, and HC = 4202 subjects) met our stringent study inclusion and exclusion criteria (See table 

2.1 for all included studies). As mentioned earlier, we conducted meta-analyses of studies if the 

metabolite concentration of AD and HC groups was reported in at least two studies (see table 2.2 

for summary of meta-analyses studies and results). We first meta-analyzed, the CSF studies of 

Aβ1-42 concentration in pg/ml (total studies; n =25), P-tau181 concentration in pg/ml (total studies; 

n = 22), T-tau concentration in pg/ml (total studies; n =19), and the heart type fatty acid binding 

protein (hFABP) concentration in pg/ml (total studies; n = 2). The majority of CSF studies 

reported the concentration of Aβ1-42, P-tau181, T-tau metabolites level together. Therefore, the 

same CSF studies included in each category of biomarker analysis repeatedly, and hence, the 

total number of studies are more than the included studies.  

A total of 41 studies met our inclusion and exclusion criteria in plasma, serum and urine 

categories of metabolites. Likewise, the CSF studies, the majority of peripheral plasma and 

serum biomarkers studies also provided data on Plasma Aβ 1-42 (total studies; n =9), plasma Aβ 1-

40  (total studies; n = 8) and plasma T-tau (total studies; n = 3). In addition, we also meta-analyzed 
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the plasma and serum biomarkers together for each category (details are discussed in later 

sections). 

 

All our meta-analyses results are shown in forest plots (Lewis, 2001)⁠ by computing the overall 

effect sizes (i.e. standardized mean difference or Cohen’s d) across the sampling studies with 

95% CI, and p-values (Cumming and Maillardet, 2006; Faraone, 2008). A P-value less than 0.05 

(P < 0.05) was considered statistically significant for all of our examined hypotheses. 

 

 

 

Flowchart 2.1 Study selection process. 
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Table 2.1 Characteristics of studies (total; n = 51) that met our inclusion criteria 

 

Study 1st Author and 
year of publication 

CSF/blood/ 
Plasma/Seru
m/ Urine   

Sample size(n) in 
each group 

Assay type Reported 
maximum 
classification/ 
prediction 
accuracy(ACC)
/SN & SP/ROC 
in AUC (in %) 

(Lin et al., 2018) Plasma  HC = 32 
AD = 32 

ELISA SN 81.25% 
SP 61.62% 

(Zhu et al., 2018) Serum HC = 51 
MCI = 139 
AD = 51 

ELISA SN 92.1% 
SP 74.5% 

(Wang et al., 2017) CSF and 
Plasma  

HC = 24 
AD = 24 

ELISA AUC = 0.97 

(Kouzuki et al., 2018) CSF HC =40 
MCI=34 
AD = 40 

ELISA AUC = 0.656 

(An et al., 2017) CSF  HC= 29 
AD =24 

ELISA AUC =0.896 

(Jiang et al., 2016)⁠ Plasma HC=128 
AD=110 

ELISA SN 69.1% 
SP 74.2% 

 
(Niemantsverdriet et 
al., 2016)⁠ 

 
CSF   

HC=100 
sMCI=38 
pMCI=47 
AD = 72 

ELISA SN 87.5% 
SP 87% 

(Siotto et al., 2016)⁠ Serum HC=58 
AD=84 

Immunoturbidi-
metric method 

AUC= 0.88 
 
 

(Spiegel et al., 2015)⁠ CSF   HC=87 
AD=28 

ELISA SN 85% 
SP 92% 
 

(Kim et al., 2015)⁠ Plasma   HC=46 
AD=100 

ELISA AUC=0.76 

(Jiao et al., 2015)⁠ CSF and 
Plasma 

HC=129 
AD=156 
PD=79 
Stroke=83 

ELISA 
 
 
 
 

SN 72.5% 
SP 75.3% 
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Study 1st Author and 
year of publication 

CSF/blood/ 
Plasma/Seru
m/ Urine   

Sample size(n) in 
each group 

Assay type Reported 
maximum 
classification/ 
prediction 
accuracy(ACC)
/SN & SP/ROC 
in AUC (in %) 

(Li et al., 2015)⁠ CSF   HC=120 
MCI=21 
AD=16 

ELISA SN  93% 
SP  93% 

(Khan et al., 2015)⁠ CSF HC=88 
MCI=142 
AD=65 

Multiplex assay 
ELISA 

ACC=77.1% 

(Ma et al., 2016)⁠ Urine    HC=118 
AD=121 

ELISA AUC=0.926 

(Madeira et al., 2015)⁠ CSF   HC=10 
AD=21 
DP=9 
HP=9 

ELISA SN 92.9% 
SP 85.7% 

(Coart et al., 2015)⁠ CSF HC=109 
AD=96 

ELISA AUC=0.975 
 

(Peng et al., 2015)⁠ Plasma HC=113 
AD=113 

ELISA ACC=76.1% 

(Haris et al., 2015)⁠ CSF HC=17 
MCI=17 
AD=27 

Multiplex assay 
ELISA 

AUC=0.83 

 
(T. Wang et al., 2015)⁠ 

Plasma HC=81 
aMCI=116 
AD=97 

ELISA ACC=83.7% 
 

(Spellman et al., 2015)⁠ CSF HC=85 
MCI=134 
AD=66 

Spectrometry 
assay, 
bicinchoninic 
acid assay 

AUC=0.79 

(C. Wang et al., 2015)⁠ Serum and 
Urine   
 
 

HC=90 
MCI-ST=68 
AD=64 

ELISA SN 96% 
SP 95% 

(Laske et al., 2015)⁠ CSF and 
Serum 

HC=54 
AD=64 

ELISA, 
Chemiluminesc-
ence assay. 

ACC=91.4% 
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Study 1st Author and 
year of publication 

CSF/blood/ 
Plasma/Seru
m/ Urine   

Sample size(n) in 
each group 

Assay type Reported 
maximum 
classification/ 
prediction 
accuracy(ACC)
/SN & SP/ROC 
in AUC (in %) 

(Nazeri et al., 2014)⁠ Plasma   HC=49 
MCI=300 
AD=85 

Multiplex 
immunoassay 

SN 93% 
SP 92% 
 

(Lautner et al., 2014)⁠ CSF   HC=251 
sMCI=399 
MCI-AD=287 
AD=309 
OD=99 

ELISA AUC=0.91 
 
  

(Edwards et al., 2014)⁠ Serum HC=137 
AD = 129 

Electrochmilum
-inescence assay 

ACC=92% 

(Schmidt et al., 2014)⁠ CSF   HC=32 
AD=32 

ELISA AUC=0.977 
 

(Krishnan and Rani, 
2014)⁠ 

Blood    HC=40 
VaD=35 
AD=30 

ELISA AUC=0.911 

(Jinbiao Zhang et al., 
2014)⁠ 

Plasma HC= 120 
aMCI=32 
AD=90 

ELISA AUC =0.90 

(Apostolova et al., 
2014)⁠ 

CSF HC=111 
MCI=182 
AD=95 

Multiplex 
immunoassay 

ACC=87% 
 
  

(Marksteiner et al., 
2013)⁠ 

Plasma   HC=63 
MCI=51 
YC=15 
AD=76 

ELISA AUC=0.732 
 
AUC=0.777 

 
(Wang et al., 2014)⁠ 

Plasma   HC=122 
aMCI=54 
AD=97 
 

ELISA SN 80% 
SP 69.6% 

 (Hu et al., 2014)⁠ Blood HC=116 
AD=116 

ELISA 
 
 
 
 

SN 68% 
SP 72% 
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Study 1st Author and 
year of publication 

CSF/blood/ 
Plasma/Seru
m/ Urine   

Sample size(n) in 
each group 

Assay type Reported 
maximum 
classification/ 
prediction 
accuracy(ACC)
/SN & SP/ROC 
in AUC (in %) 

(Maftei et al., 2013)⁠ CSF and 
Serum 

Serum donors: 
HC=42 
AD=45 
CSF donors: 
HC=29 
AD=39 

ELISA  AUC=0.97 

(Abraham et al., 2013)⁠ CSF   HC=21 
MCI=23 
AD=23 

Multiplex 
immunoassay 

 AUC=0.89 

 
(Korff et al., 2013)⁠ 

 
CSF 

HC=110 
MCI=187 
AD=92 

ELISA AUC=0.719 
  

 
(L.-H. Guo et al., 
2013)⁠ 

CSF   HC=92 
sMCI=76 
pMCI=73 
AD=69 

Multiplex 
immunoassay 

ACC=67% 
  

(Molinuevo et al., 
2013)⁠ 

 CSF HC = 103 
AD = 238 

ELISA SN 88.6% 
SP 85% 

(Zhang et al., 2013)⁠ Plasma   HC=120 
aMCI=98 
AD=153 
VaD=53 

ELISA AUC=0.92 

(Mangialasche et al., 
2013)⁠ 

Plasma   HC=86 
MCI=86 
AD=81 

HPLC ACC=98.2% 
 

(Guo et al., 2013)⁠ CSF and 
Plasma   

HC=58 
AD=109 

Multiplex 
immunoassay 

SN 89.36% 
SP 79.17% 
 

(Olsson et al., 2013)⁠ CSF   HC=65 
AD=96 
sMCI=81 
MCI-AD=61 
MCI-VaD=19 
MCI-others=9 

ELISA 
 
 
 
 
 
 

AUC = 0.89 
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Study 1st Author and 
year of publication 

CSF/blood/ 
Plasma/Seru
m/ Urine   

Sample size(n) in 
each group 

Assay type Reported 
maximum 
classification/ 
prediction 
accuracy(ACC)
/SN & SP/ROC 
in AUC (in %) 

(Alsadany et al., 2012)⁠ Blood    HC=25 
AD=25 

ELISA AUC=0.966 
 

(Laske et al., 2013)⁠ Serum   HC=82 
AD=82 

ELISA ACC=90% 

(Öztürk et al., 2013)⁠ Blood HC=133 
AD=197 

Automated 
analyzer 

AUC=0.720 

(López et al., 2013)⁠  Blood HC=33 
MCI=18 
AD=36 
 

HPLC, 
Immunoturbidi-
metric assay 

AUC=0.803 

(Llano et al., 2013)⁠ Plasma   HC=58 
MCI=360 
AD=109 

Multiplex 
immunoassay, 
Luminex assay 

AUC=85.3% 
 
  

(Chiu et al., 2012)⁠ Plasma   HC=26 
MCI=16 
AD=18 

Immunomagnet-
ic reduction 
method 

SN 85.3% 
SP 88.5% 

(Kuyumcu et al., 
2012)⁠ 

Blood   HC=175 
AD=241 
 

Automated 
analyzer 

AUC=0.787 

(Soares et al., 2012)⁠ CSF and 
Blood 

HC=58 
MCI=396 
AD=112 

Multiplex 
Immunoassay, 

AUC= 0.80 

(Han et al., 2012)⁠ Plasma HC=116 
AD=112 
VaD=85 
OND=30 

ELISA AUC=0.94 

(Wolz et al., 2012)⁠ CSF    HC = 116 
AD = 103 

Multiplex 
immunoassay 

ACC=87% 
  

 
Table legends: AD = Alzheimer's disease, VaD = Vascular dementia, OD= Other dementia, 

OND= Other neurological disorder, PD=Parkinson's disease, DP=Depression, BC=Breast cancer, 

FTD= Frontotemporal dementia, HC=Healthy control, YC = young control, HP= Hydrocephalus, 
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SN= Sensitivity, SP= Specificity, MCI=Mild cognitive impairment, aMCI = amnestic MCI, 

sMCI=Stable MCI, pMCI=Progressive MCI, nMCI= non-progressive MCI, MCI-ST= 

Maintaining an MCI status after 2 years, ROC= Receiver operating characteristic, AUC= Area 

under curve, ACC= Accuracy, ELISA = enzyme-linked immunoabsorbent assay, HPLC= high-

performance liquid chromatography. 

 

Table 2.2: Meta-analyses of studies measuring biofluid metabolites concentration in AD 

versus HC subjects 

Name of 
metabolite 

Number 
of studies 

N (AD/HC) SMD (95% CI) P-value I-
squared 
(%) 

P-value 
for 
heteroge
neity 
 

CSF  Aβ 1-42 25 1686/1684 -1.659 (-1.849 to -1.470) <0.001 79.818 <0.001 
 

CSF P-tau181p 22 1422/1469 1.084 (0.959 to 1.028) <0.001 28.712 0.003 
 

CSF T-tau 19 1313/1279 
 

1.251 (1.152 to 1.351) <0.001 16.133 0.257 

CSF hFABP 2 165/157 0.819 (0.589 to 1.050) <0.001 0 0.518 
 

Plasma Aβ 1-42 9 
 

869/832 -0.009 (-0.388 to 0.371) 0.964 92.964 <0.001 
 

Plasma Aβ 1-40 8 
 

839/792 0.192 (-0.051 to 0.434) 0.121 82.313 <0.001 
 
 

Plasma T-tau 3 
 

283/291 -0.235 (-0.992 to 0.522) 0.543 94.313 <0.001 

Plasma 
Albumin 

4 551/419 -0.402 (-0.719 to -0.086) 0.013 80.199 0.002 

Plasma IL-6 2 194/107 -0.652(-0.893 to -0.410) <0.001 0 0.587 
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Name of 
metabolite 

Number 
of studies 

N (AD/HC) SMD (95% CI) P-value I-
squared 
(%) 

P-value 
for 
heteroge
neity 
 

Plasma 
creatinine 

4 570/386 -0.179(-0.686 to 0.328) 0.490 92.035 <0.001 

Serum copper 3 145/116 1.186(0.192 to 2.186) 0.019 91.614 <0.001 
 

Plasma sTNF-
α receptor-1 

4 325/322 1.472(0.798 to 2.145) <0.001 92.526 <0.001 

Plasma sTNF-
α receptor-2 

2 243/240 0.583 (0.400 to 0.767) <0.001 0 0.487 

Urine  AD7c-
NTP 

2 185/208 2.271 (-1.778 to 6.321) 0.272 99.386 <0.001 

 

Table legends: AD = Alzheimer’s disease, Aβ = Amyloid beta protein, T-tau = total tau, P-tau = 

phosphorylated tau, CSF = cerebrospinal fluid, IL= Interleukin, CI = confidence Interval, HC = 

healthy controls, hFABP = heart type fatty acid binding protein, N = sample size, SMD = 

standardized mean difference, sTNF = Soluble tumour necrosis factor, AD7c-NTP = Alzheimer-

associated neuronal thread protein. 

 

2.5.1 CSF Aβ 1-42 concentration in AD and HC subjects 

In this category of analysis, a total of 25 studies met our study inclusion criteria. Of these, one 

study (Molinuevo et al., 2013)⁠ reported data of AD and HC groups in three cohorts. So, this 

study appears three times on the forest plot (See Fig 2.1) with three different cohorts as C-1, C-2 

and C-3. A total of 1686 AD patients and 1684 healthy control subjects’ data were meta-analyzed 

by the random effects model. We found a statistically significant average large effect size of 

SMD = -1.659 (CI: -1.849 to -1.470; P < 0.001), suggesting the CSF Aβ1-42 concentration (pg/ml) 

significantly reduced in AD patients than HC subjects (see Fig 2.1). We examined the evidence 
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of publication bias by creating a funnel plot (see Fig 2.2) and it shows a minimal publication 

bias. In addition, we also examined that the study heterogeneity by I2 test. The I2 value is around 

79.81% with P < 0.001, which indicates a large percentage of variation across the included CSF 

Aβ 1-42 studies are due to study heterogeneity.  

 

Figure 2.1: Meta-analysis of CSF Aβ1-42 concentration in AD and HC subjects. Calculated effect 

sizes are expressed in standardized mean difference (SMD) with 95% confidence interval (CI). 

Negative value indicates higher concentration in HC subjects, C = cohort. 

 

Study name Statistics for each study Std diff in means and 95% CI

Std diff Lower Upper 
in means limit limit p-Value

Niemantsverdriet et al., 2016 -2.394 -2.788 -1.999 0.000
Spiegel et al., 2015 -1.202 -1.655 -0.749 0.000
Kim et al., 2015 -1.501 -2.093 -0.910 0.000
Jiao et al., 2015 -1.481 -2.090 -0.873 0.000
Li et al., 2015 -1.235 -1.777 -0.693 0.000
Khan et al., 2015 -1.328 -1.681 -0.974 0.000
Madeira et al., 2015 -2.381 -3.350 -1.412 0.000
Coart et al., 2015 -1.609 -1.925 -1.294 0.000
Haris et al., 2015 -1.668 -2.368 -0.968 0.000
Spellman et al., 2015 -1.361 -1.717 -1.005 0.000
Lautner et al., 2014 -2.008 -2.212 -1.805 0.000
Apostolova et al., 2014 -1.295 -1.596 -0.993 0.000
Maftei et al., 2013 -1.948 -2.416 -1.480 0.000
Abraham et al., 2013 -2.035 -2.764 -1.307 0.000
Guo et al., 2013(a) -1.417 -1.765 -1.068 0.000
Molinuevo et al., 2013(C-1) -1.627 -2.022 -1.232 0.000
Molinuevo et al., 2013(C-2) -1.615 -2.313 -0.917 0.000
Molinuevo et al., 2013(C-3) -1.549 -2.058 -1.039 0.000
Guo et al., 2013(b) -3.133 -3.596 -2.670 0.000
Olsson et al., 2013 -1.732 -2.099 -1.365 0.000
Soares et al., 2012 -1.240 -1.591 -0.889 0.000
Wolz et al., 2012 -1.047 -1.330 -0.764 0.000
Wang et al., 2017 -2.073 -2.756 -1.391 0.000
Kouzuki et al., 2018 -1.187 -1.663 -0.712 0.000
An et al., 2017 -2.122 -2.797 -1.447 0.000

-1.659 -1.849 -1.470 0.000
-4.00 -2.00 0.00 2.00 4.00

Higher in HC Higher in AD

Meta-analysis

CSF Abeta (1-42) levels in AD and HC
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Figure 2.2:  Funnel plot depicts the publication bias of CSF Aβ 1-42 concentration in AD and HC 

studies. 

 

Finally, we assessed the Rosenthal’s fail-safe N to determine the number of studies with a null 

effect that would be required to provide a non-significant result (P > 0.05). We found that N = 

9109 studies with null results that would be required to indicate no statistically significant 

difference between CSF Aβ 1-42 concentration in AD patients and HC subjects. 

 

2.5.2 CSF P-tau181p concentration in AD and HC subjects 

To examine the difference of CSF P-tau181p concentration (pg/ml) in AD and HC subjects, we 

meta-analyzed the data from a total of 22 studies (which met our study criteria) comprising of 

1422 AD patients and 1469 HC subjects by using the random effects model. We found a 

statistically significant overall large effect size of SMD = 1.084 (CI: 0.959 to 1.208; P < 0.001), 

which indicates increased levels of CSF P-tau 181p in AD patients than HC subjects (See Fig 2.3). 

-4 -3 -2 -1 0 1 2 3 4

0.0

0.1

0.2

0.3

0.4

0.5

St
an

da
rd

 E
rr

or

Std diff in means

Funnel Plot of Standard Error by Std diff in means



42 

The evidence of publication bias was assessed by creating a funnel plot (see Fig 2.4), that 

suggests no publication bias in this category of analysis. Furthermore, we examined the study 

heterogeneity across the studies by I-squared test and found that I2 = 50.86 % with P = 0.003, 

which indicates a very minimal study heterogeneity across the sampled studies. In addition, we 

calculated the Fail safe N, and found that N = 3403 studies with a null effect would be required 

to indicate no statistically significant difference between CSF P-tau181p concentration in AD 

patients and HC subjects. 

 

 

Figure 2.3: Meta-analysis of CSF P-tau181p concentration in AD and HC subjects. Positive value 

indicates higher concentration in AD patients, C = cohort. 

 

Study name Statistics for each study Std diff in means and 95% CI

Std diff Lower Upper 
in means limit limit p-Value

Niemantsverdriet et al., 2016 0.949 0.630 1.268 0.000
Spiegel et al., 2015 1.462 0.997 1.928 0.000
Kim et al., 2015 1.236 0.666 1.806 0.000
Jiao et al., 2015 1.729 1.085 2.372 0.000
Li et al., 2015 0.827 0.296 1.357 0.002
Khan et al., 2015 1.030 0.689 1.371 0.000
Madeira et al., 2015 0.397 -0.375 1.170 0.313
Coart et al., 2015 0.981 0.691 1.272 0.000
Haris et al., 2015 0.586 -0.033 1.205 0.064
Spellman et al., 2015 1.088 0.744 1.432 0.000
Lautner et al., 2014 1.004 0.827 1.180 0.000
Schmidt et al., 2014 1.652 1.085 2.220 0.000
Apostolova et al., 2014 1.030 0.738 1.321 0.000
Abraham et al., 2013 1.094 0.460 1.729 0.001
Guo et al., 2013(a) 1.041 0.708 1.373 0.000
Molinuevo et al., 2013(C-1) 1.235 0.859 1.611 0.000
Molinuevo et al., 2013(C-2) 1.527 0.835 2.218 0.000
Molinuevo et al., 2013(C-3) 1.193 0.708 1.678 0.000
Guo et al., 2013(b) 1.364 1.013 1.715 0.000
Olsson et al., 2013 0.808 0.481 1.135 0.000
Kouzuki et al., 2018 0.345 -0.096 0.787 0.125
An et al., 2017 1.868 1.221 2.515 0.000

1.084 0.959 1.208 0.000
-3.00 -1.50 0.00 1.50 3.00

Higher in HC Higher in AD

Meta-analysis

CSF P-tau181p levels in AD and HC
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Figure 2.4:  Funnel plot depicts the publication bias of CSF P-tau 181p concentration in AD and 

HC studies. 

 

2.5.3 CSF T-tau concentration in AD and HC subjects 

To calculate the overall standardized mean difference of CSF T-tau concentration (pg/ml) in AD 

and HC groups, we meta-analyzed data from 19 studies (which met our study criteria) 

comprising 1313 AD patients and 1279 subjects by using the random effects model. We found a 

strong statistically significant effect size of SMD = 1.251 (CI: 1.152 to 1.351; P < 0.001), 

suggesting a higher concentration of CSF T-tau levels in AD than HC subjects (See Fig 2.5).  

As shown on the forest plot (Fig 2.5), all the included studies favour one direction of effect with 

P-values less than 0.001 (P < 0.001). Therefore, the CSF T-tau protein is a strong biomarker that 

is used appropriately in routine clinical practice. Publication bias was assessed by creating a 

funnel plot across the sampling studies in this category (See Fig 2.6), and which suggests a very 
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minimal publication bias. Furthermore, the I-squared test revealed that I2 = 16.133% with P = 

0.257, suggesting a very small study heterogeneity.  

Similarly, the fail-safe number test indicated that N = 3448 studies with a null effect would be 

required indicate no statistically significant difference between CSF T-tau concentration in AD 

patients and HC subjects. 

 

 

 

Figure 2.5: Meta-analysis of CSF T-tau concentration in AD and HC subjects. Positive value 

indicates higher concentration in AD patients, C = cohort. 

Study name Statistics for each study Std diff in means and 95% CI

Std diff Lower Upper 
in means limit limit p-Value

Niemantsverdriet et al., 2016 1.541 1.197 1.884 0.000
Jiao et al., 2015 0.793 0.223 1.363 0.006
Li et al., 2015 1.578 1.024 2.132 0.000
Khan et al., 2015 1.271 0.920 1.622 0.000
Madeira et al., 2015 1.224 0.396 2.052 0.004
Coart et al., 2015 1.183 0.886 1.481 0.000
Haris et al., 2015 0.975 0.335 1.615 0.003
Lautner et al., 2014 1.253 1.071 1.434 0.000
Schmidt et al., 2014 1.774 1.195 2.352 0.000
Apostolova et al., 2014 1.219 0.921 1.517 0.000
Maftei et al., 2013 1.615 1.171 2.060 0.000
Abraham et al., 2013 1.375 0.717 2.032 0.000
Guo et al., 2013 (a) 1.190 0.852 1.528 0.000
Molinuevo et al., 2013(C-1) 1.034 0.667 1.402 0.000
Molinuevo et al., 2013(C-2) 1.555 0.862 2.248 0.000
Molinuevo et al., 2013(C-3) 1.249 0.761 1.738 0.000
Guo et al., 2013 (b) 1.156 0.814 1.497 0.000
Olsson et al., 2013 0.895 0.565 1.225 0.000
An et al., 2017 1.586 0.966 2.205 0.000

1.251 1.152 1.351 0.000
-3.00 -1.50 0.00 1.50 3.00

Higher in HC Higher in AD

Meta-analysis

CSF T-tau levels in AD and HC
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Figure 2.6:  Funnel plot depicts the publication bias of CSF T-tau concentration in AD and HC 

studies. 

 

2.5.4 CSF heart type fatty acid binding protein (hFABP) concentration in AD and HC 

subjects 

To examine the standardized mean difference of CSF hFABP concentration (pg/ml) between AD 

and HC subjects, only two studies met our inclusion criteria. A total of 165 AD patients and 157 

healthy control subjects’ data were meta-analyzed using the random effects model. The meta-

analysis revealed a large effect size of SMD = 0.819 (CI: 0.589 to 1.050; P < 0.001), suggesting 

higher concentrations of CSF hFABP in AD patients than HC subjects (See Fig 2.7). Although, 

the effect (SMD) is large and highly statistically significant, as we included only two studies 

with low sample size, it is quite challenging to estimate the average effect. Therefore, more 

studies with high sample size are required to confirm that CSF hFABP concentration is higher in 

AD than HC subjects. We did not examine the publication bias and Fail-safe N for this analysis 
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because of only including two studies. However, the I2 test indicated (I2 = 0% with P = 0.518) 

that there is no study heterogeneity between these study samples. 

 

 

Figure 2.7:  Meta-analysis of CSF hFABP concentration in AD and HC subjects. Positive value 

indicates higher concentration in AD patients. 

 

2.5.5 Plasma Aβ 1-42 concentration in AD and HC subjects 

To estimate the overall effect size (i.e. the SMD), we included 9 studies (meeting our study 

criteria) comprising of 869 AD patients and 832 HC subjects’ summary data meta-analyzed with 

the random effects model. We found a very negligible effect size of SMD = -0.009 (CI: -0.388 to 

0.371; P = 0.964), indicating no difference between plasma Aβ1-42 concentration in AD and HC 

subjects (See fig 8). As the results were not statistically significant (as P = 0.964) it is 

meaningless to consider measuring the average mean difference of plasma Aβ1-42 concentration 

in AD and HC subjects. As shown on the forest plot (See Fig 2.8), the included studies are 

scattered across the no-effect line (where the SMD = 0), that indicates the literature is very noisy 

with contrasting results. 
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Figure 2.8: Meta-analysis of plasma Aβ1-42 concentration in AD and HC subjects. Negative value 

indicates higher concentration in HC subjects. 

 

 

 

Figure 2.9: Funnel plot depicts the publication bias of Plasma Aβ 1-42 concentration in AD and 

HC studies. 
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The evidence of publication bias was assessed with the funnel plot (see Fig 2.9), that indicates 

major publication bias among the studies. In addition, we measured study heterogeneity by using 

I-squared test and found that I2 = ~ 93% with P < 0.001, which suggests a very large variation of 

results (i.e. the heterogeneity) across the sampling studies. We did not asses the Fail-Safe number 

for this analysis because the meta-analysis result is not statistically significant (P = 0.964). As 

indicated in earlier sections, the Fail-safe number test is used in the case of statistically 

significant results to calculate the number of non-significant findings that may not be published 

in literature, which would render the meta-analysis results non-significant (P > 0.05). 

 

2.5.6 Plasma Aβ1-40 concentration in AD and HC subjects 

To test the hypothesis of a standardized mean difference of plasma Aβ1-40 concentration (pg/ml) 

between AD and HC subjects, only eight studies were included in this analysis (meeting our 

study  criteria). A total of 839 AD patients’ and 792 HC subjects’ data were meta-analyzed using 

the random effects model. Our meta-analysis found an average small effect size of SMD = 0.192 

(CI: -0.051 to 0.434; P = 0.121), suggesting a very small increased level of plasma Aβ1-40 than 

HC groups (See Fig 2.10). However, such results were not statistically significant (P = 0.121), 

and hence, there is insufficient evidence to calculate the group level difference (i.e. the SMD) in 

plasma Aβ1-40 concentration between AD and HC groups. As this is a possible small effect, there 

is a question as to whether further research would be useful to consider an average true effect 

size of plasma Aβ1-40 protein concentration between these two groups in relation to biomarker 

analysis. That said, even small differences may be important for identifying underlying 
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mechanisms of pathological change – this remains an empirical question but is unlikely to 

represent a clinically relevant opportunity. 

 

Figure 2.10: Meta-analysis of plasma Aβ1-40 concentration in AD and HC subjects. Positive value 

indicates higher concentration in AD patients. 

 

 

Figure 2.11: Funnel plot depicts the publication bias of Plasma Aβ1-40 concentration in AD and 

HC studies. 
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The publication bias was assessed by the funnel plot (see Fig 2.11) method, and the same 

suggests the variation among the sampling studies due to unsymmetrical distribution on the 

forest plot.  

In addition, we examined the study heterogeneity by using I-squared statistics and found the I2 = 

~82% with P < 0.001. The I2 value suggests very large percentage of variation of results among 

the sampling studies and this value is highly statistically significant. We did not calculate the 

Fail-safe number for this analysis because our meta-analysis result was statistically non-

significant. 

 

2.5.7 Plasma T-tau concentration in AD and HC subjects 

To measure the standardized mean difference of plasma T-tau concentration (pg/ml) between AD 

and HC groups, we included only three studies that met our study criteria. A total of 283 AD 

patients’ and 291 healthy control subjects’ data were meta-analyzed by using the random effects 

model. 

 Our meta-analysis results found a small effect size of SMD = -0.235 (CI: -0.992 to 0.522; P = 

0.543) (see Fig 2.12), suggesting a very small decreases level of plasma T-tau in AD patients 

relative to HC subjects. However, the difference was not statistically significant as the P > 0.05. 

Currently, it is not possible to calculate a true effect size for plasma T-tau proteins in AD and HC 

groups due to insufficient evidence in the literature. Further studies would be required to measure 

the true effect. 
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Figure 2.12: Meta-analysis of plasma T-tau concentration in AD and HC subjects. Negative 

value denotes higher concentration in HC group. 

 

 

Figure 2.13: Funnel plot depicts the publication bias of plasma T-tau studies. 

The funnel plot (see Fig 2.13) indicates a major publication bias among these studies. The I-

squared statistical test rendered the I2 = ~94% with p < 0.001, that indicates a very large study 

heterogeneity due to variation among the results of included studies. We did not examine the 
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Fail-safe number for this analysis because all our meta-analysis results were statistical non-

significant. 

 

2.5.8 Plasma Albumin concentration in AD and HC subjects 

To measure the standardized mean difference of plasma albumin concentration (g/dL) between 

the AD and HC groups, we identified four studies that met our study criteria. A total of 551 AD 

patients’ and 491 HC subjects’ summary data were meta-analyzed by using the random effects 

model. We found a moderate effect size of SMD = -0.402 (CI: -0.719 to -0.086; P = 0.013) (see 

Fig 2.14), suggesting a lower concentration of plasma albumin levels in the AD group relative to 

HC. Although, the results of this analysis are statistically significant (as P = 0.013), due to the 

small number of studies with low sample sizes it is very difficult to calculate the average 

standardized mean difference between these two groups. Again, further research would be 

necessary to determine standardized mean difference. 

 

Figure 2.14: Meta-analysis of plasma albumin concentration in AD and HC. Negative value 

denotes higher concentration in HC group. 

The publication bias was assessed with the funnel plot (see Fig 2.15), it suggests that there is 

evidence of publication bias as the sampled studies are not symmetrically distributed on the 
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forest plot. Furthermore, we examined the I-squared statistics to measure the study heterogeneity. 

We found the I2 = ~80% with P = 0.002, which indicates a very large percentage of variation of 

results among the included studies. As the results of this meta-analysis are statistically 

significant, the Fail-safe number was calculated, and we found that the Fail-safe N = 38, 

indicating that 38 studies with a null effect are required to indicate, on the basis of our results, 

that there is no significant difference of plasma albumin levels between AD and HC groups. 

 

 

Figure 2.15: Funnel plot depicts the publication bias of Plasma albumin studies. 

 

2.5.9 Plasma interleukin 6 (IL- 6) concentration in AD and HC subjects  

To examine the standardized mean difference of plasma IL-6 concentration (pg/ml) between AD 

and HC groups, we selected only two studies based on our study selection criteria. A total of 194 

AD patients’ and 107 HC subjects’ data were meta-analyzed using the random effects model. We 

found an overall moderate effect size of SMD = -0.652 (CI: -0.893 to -0.410; P < 0.001) (see Fig 

2.16), suggesting a higher concentration of IL-6 in HC than AD groups. Although, our meta-
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analysis results are supported with statistical significance (P < 0.001), due to the inclusion of 

only two studies with very low sample size, the results might not be generalizable in the larger 

population.  Hence, we require more evidence for calculation of the true effect size. We did not 

assess the publication bias in this analysis because of two studies. However, the study 

heterogeneity was examined with the I -squared test and found that the I2 = 0% with P = 0.857. It 

indicates there is no variation of results between these two studies. 

 

Figure 2.16: Meta-analysis of plasma IL-6 concentration in AD and HC. Negative value denotes 

higher concentration in HC group. 

 

2.5.10 Plasma creatinine concentration in AD and HC subjects 

To examine the overall effect size of plasma creatinine concentration (mg/dL) between AD and 

HC groups, we included only three studies based on our study selection criteria. A total of 570 

patients’ and 386 HC subjects’ summary data were meta-analyzed using the random effects 

model. We found an average effect size of SMD = -0.179 (CI: -0.686 to 0.328; P = 0.490) (see 

Fig 2.17), suggesting higher levels of plasma creatinine in HC than AD groups. However, this 

meta-analysis result was not statistically significant (P = 0.490), and therefore, more studies are  
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Figure 2.17: Meta-analysis of plasma creatinine concentration in AD and HC. Negative value 

indicates higher concentration in HC groups. 

 

 

Figure 2.18: Funnel plot depicts the publication bias of Plasma creatinine studies. 

 

required to calculate the true effect size of plasma creatinine concentration between these two 

groups. In addition, we assessed the publication bias using the funnel plot (see Fig 2.18), which 

Study name Statistics for each study Std diff in means 
and 95% CIStd diff Lower Upper 

in means limit limit p-Value

Kim et al., 2015 0.367 0.015 0.718 0.041
Ozturk et al., 2013 -0.640 -0.865 -0.415 0.000
Kuyumcu et al., 2012 -0.659 -0.859 -0.459 0.000
Lin et al., 2018 0.349 -0.145 0.842 0.166

-0.179 -0.686 0.328 0.490

-1.00 -0.50 0.00 0.50 1.00

Higher in HC Higher in AD

Meta-analysis of plasma creatinine levels in AD and HC
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indicates a major publication bias as none of the sampled studies are inside the funnel plot. 

Furthermore, the study heterogeneity was examined by using the I-squared test, and we found 

that I2 = ~92% with P < 0.001, indicating a very large percentage of variation among these study 

results. Finally, we did not assess the Fail-safe N test because our meta-analysis results are 

statistically non-significant. 

 

2.5.11 Plasma copper concentration in AD and HC subjects 

To measure the average effect size of plasma copper concentration (mg/L) of AD and HC groups, 

we sampled only three studies comprising 145 AD patients and 115 HC subjects. We meta-

analyzed the summary data of these individuals’ using the random effects model.  

We found a large overall effect size of SMD = 1.186 (CI: 0.192 to 2.181; p = 0.019) (see Fig 

2.19), suggesting a very high concentration of plasma copper levels in AD than HC groups. 

However, due to only three studies with very low sample size, this result may not be 

generalizable in the larger population. Therefore, more evidence is necessary to estimate the true 

effect size.  

Publication bias was assessed by the funnel plot (see Fig 2.20), and it demonstrates very high 

publication bias as none of the studies followed the symmetrical distribution. The I-squared test 

for study heterogeneity revealed that the I2 = ~ 92% with P < 0.001, which indicates a very large 

percentage of variation among the sampled study results. Finally, the Fail-safe N test found that 

the N =37. Thirty-seven studies with a null effect are required to render the current meta-analysis 

results as non-significant (P  > 0.05) as assessed with the Fail-safe N test. 
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Figure 2.19: Meta-analysis of plasma copper concentration in AD and HC. Positive value 

indicates higher concentration in AD group. 

 

 

 

Figure 2.20: Funnel plot depicts the publication bias of Plasma copper studies. 
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2.5.12 Plasma soluble TNF-α receptor 1 concentration in AD and HC subjects 

To measure the overall effect size of plasma soluble TNF-α receptor 1 concentration (pg/ml) in 

AD and HC, we included only three studies based on our study inclusion criteria. However, one 

study (Laske et al., 2013)⁠ provided data in the two cohorts. So, the same study appeared twice in 

our analysis as Laske et al., 2013 (C-1) and Laske et al., 2013(C-2) (see Fig 20). A total of 325 

AD patients’ and 322 HC subjects’ data were meta-analyzed by the random effects model. Our 

meta-analysis results showed an average large effect size of SMD = 1.472 (CI: 0.798 to 2.145; P 

< 0.001), suggesting a very high concentration of plasma TNF-α receptor 1 in AD than HC 

groups (see Fig 2.21). However, more studies would be needed to confirm this effect in a larger 

sample size compared to our analysis.  

 

Figure 2.21: Meta-analysis of plasma TNF-α receptor 1 concentration in AD and HC. Positive 

value indicates higher concentration in AD group. 

The funnel plot was created for assessment of publication bias (see Fig 2.22), it indicates a very 

high publication bias as all the sampled studies did not follow the symmetrical distribution the 

funnel plot analysis. Therefore, more studies are required to calculate a true effect size of the 

plasma TNF-α receptor 1 concentration between AD and HC groups. In addition, we examined 

the study heterogeneity by using the I-squared test and found that I2 = ~ 93% with P < 0.001. The 
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I-squared value in this analysis suggests a very large study heterogeneity among the results of 

sampled studies. Finally, the Fail-safe N test yielded N = 208. Indicating that 208 studies with no 

effect wold be required to indicate no statistically significant difference between the plasma 

TNF-α receptor 1 concentrations in AD and HC groups. 

 

 

Figure 2.22: Funnel plot depicts the publication bias of plasma soluble TNF alpha receptor 1 

studies. 

 

2.5.13 Plasma soluble TNF-α receptor 2 concentration in AD and HC subjects 

To examine the overall effect of plasma soluble TNF-α receptor 2 concentration (pg/ml) between 

AD and HC subjects, we selected only two studies based on our study selection criteria. A total 

of 243 AD patients and 240 HC subjects’ data were meta-analyzed with the random effects 

model. The meta-analysis found that an average medium effect size of SMD = 0.583 (CI: 0.400 

to 0.767; P < 0.001) (see Fig 2.23), suggesting a high concentration of plasma TNF-α receptor 2 

in AD than HC groups. Though, the result is statistically significant, but because of only two 
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studies with very small sample size it is not possible to measure the true effect size of plasma 

TNF-α receptor 2 levels between AD and HC groups. Therefore, more studies are required to 

confirm this effect. The funnel plot for publication bias and the Fail-safe number were not 

examined because of two studies. However, we measured the study heterogeneity by using the I-

squared test and found the I2 = 0% with P = 0.487, suggesting no variations of the results among 

sampled studies. 

 

 

Figure 2.23: Meta-analysis of plasma TNF-α receptor 2 concentration in AD and HC. Positive 

value indicates higher concentration in AD group. 

 

2.5.14 Urine AD7C-NTP concentration in AD and HC subjects 

 To measure the overall effect size of urine Alzheimer-associated neuronal thread protein (ng/ml) 

(AD7c-NTP) between AD and HC subjects, we sampled only two studies based on our stringent 

study selection criteria. A total of 185 AD patients and 208 HC subjects’ summary data were 

meta-analyzed by using the random effects model. We found an average large effect size of SMD 

= 2.271 (CI: -1.778 to 6.321; P = 0.272) (see Fig 2.24), suggesting a high concentration of urine 

AD7c-NTP in AD than HC groups. Although, the effect size is very large, but such is not 

supported with hypothesis significance testing (as the P = 0.272). In addition, because of only 
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two studies with very low sample size, it is not possible to calculate the true effect size of urine 

AD7c-NTP concentration in AD and HC subjects. Therefore, more studies are required to 

estimate the effect interest. We did not examine the publication bias and the Fail-safe number 

because of two studies. However, we assessed the study heterogeneity using the I-squared test 

and found the I2 = ~ 99% with P < 0.001, which indicates a very large study heterogeneity due to 

the findings of the sampled studies. 

 

Figure 2.24: Meta-analysis of urine AD7c-NTP concentration in AD and HC. Positive value 

indicates higher concentration in AD group. 

 

2.6 Discussion 

Our meta-analysis results provide a comprehensive analysis of available high-quality recent 

studies of CSF, blood and urine metabolites of AD patients and HC subjects. Our results on core 

CSF biomarkers found that the Aβ1-42 concentration was significantly reduced in AD patients, 

while the T-tau and P-tau181p levels were elevated in AD relative to HC subjects’, these findings 

remain consistent with the other groups’ results (see Ferreira et al., 2014; Olsson et al., 2016). 

The reduced levels of Aβ1-42 proteins in CSF of AD patients may be due to deposition of most of 

the produced amounts in the form of neuritic plaques inside the brain (Murphy and Levine, 
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2010)⁠. By contrast, the increased levels of CSF T-tau and P-tau in AD patients may be due to 

excess production of soluble phosphorylated tau proteins from the intraneuronal compartment of 

brain because of hyperphosphorylation of tau proteins (Noble et al., 2013)⁠. All these three 

established CSF biomarkers of AD were measured by the conventional assays such as 

Innogenetics, Ghent, Belgium kit or INNOTEST Phospho-Tau (181) kit or INNOTEST ABeta 42 

or INNOTEST the multiplexing INNO-BIAAlzBio3 (Ritchie et al., 2017)⁠. However, recent 

studies suggest a large inter laboratory variation in the measurement of biomarkers in AD using 

research grade assays (Mattsson et al., 2013; Watt et al., 2012)⁠.  

In addition to these established CSF biomarkers, we also found support for the claim that the 

hFABP level in CSF is significantly elevated in AD (see Fig 2.7 in the results section). hFABP is 

a cytosolic long chain fatty acid transport protein that is predominantly expressed in the heart, 

adipose tissue, kidney and neurons (Colli et al., 2007; Ockner et al., 1972)⁠. Although, it is not an 

established biomarker for AD pathological condition, but due to reported high concentrations in 

the AD group compared with HC subject (large effect size), this metabolite could be a useful 

biomarker, if future studies replicate the same effect. 

Unlike the CSF Aβ and tau core biomarkers of AD, none of the Plasma biomarkers levels of Aβ 1-

42, Plasma Aβ1-40, and Plasma T-tau were significantly different from HC subjects (see table 2.2). 

Furthermore, none of these metabolites’ effect sizes achieved statistical significance, and 

therefore, are not candidate biomarkers for the differential diagnosis of AD from HC.  

Our findings are consistent with other previous meta-analyses of earlier studies which were not 

included in our analysis (Shanthi et al., 2015; Song et al., 2011).  
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In addition, many inflammatory markers were found to be elevated in AD than HC controls. 

Central nervous system inflammation is, beyond age, considered one of the major risk factors of 

sporadic AD, and neuroinflammation may produce several inflammatory products such as 

interleukins, TNF-α, homocysteine, Interferon gamma(γ), high sensitivity C-reactive protein 

(hsCRP) and several others that are quickly released into the blood stream (Delaby et al., 2015; 

Heneka et al., 2015)⁠. Th present analysis supported evidence for two types of TNF-α molecule, 

namely soluble TNF-α receptor 1 and soluble TNF-α receptor 2, to be significantly elevated in 

AD compared to the HC subjects. Elevated levels of soluble TNF receptors are associated with 

the conversion of MCI to AD by stimulating Aβ production and other AD related pathological 

processes (Buchhave et al., 2010; Diniz et al., 2010). Our meta-analysis results on these elevated 

inflammatory molecules were consistent with other groups’ prior findings (Lai et al., 2017; 

Swardfager et al., 2010). However, our analysis supported evidence for the observation that 

plasma IL-6 concentration was significantly reduced in AD than HC groups, which contradicts 

other groups’ results (Lai et al., 2017; Swardfager et al., 2010). Lai et al. (2017), conducting a 

recent  meta-analysis of the serum IL-6 concentration with 40 studies comprising of 2295 AD 

patients and 2498 HC subjects found a significant elevated level of IL-6 in AD than HC subjects 

(Lai et al., 2017)⁠. The author of the study estimated an average effect size of 0.522 (CI: 0.240 to 

0.804; P <0.001) (Lai et al., 2017)⁠. Similarly, another meta-analysis examined the peripheral 

blood IL-6 concentration by combing 14 studies comprising of 985 AD patients and 680 HC 

subjects, and found an overall increased level of IL-6 in AD than HC individuals (Swardfager et 

al., 2010). The average effect size of that meta-analysis was 2.86 (CI: 1.68, 4.04; P < 0.00001) 

(Swardfager et al., 2010). In addition, that meta-analysis included a cell culture study (Richartz 

et al., 2005) that reported diminished level of IL-6 in the AD patients. By contrast, our meta-
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analysis on the plasma IL-6 found higher concentrations in HC than AD patients (see Fig 2.16). 

It may be that because of our stringent study criteria we included only two studies (within the 

time period) (L. Guo et al., 2013; Nazeri et al., 2014). Our criteria were appropriately stringent 

and diagnostic criteria used NINCDS-ADRDA (McKhann et al., 1984). The meta-analyses that 

do not agree with our findings included studies that did not use NINCDS-ADRDA diagnostic 

criteria. In addition, their investigated HC group comprised subjects with hypertension, diabetes, 

coronary heart disease, elevated cholesterol, alcohol use, and also reported data other than mean 

and standard deviation or standard error of mean format (Lai et al., 2017). Therefore, we decided 

to perform a meta-analysis of the IL-6, combining studies, that were included in the very recent 

meta-analysis by Lai et al. (2017). Lai and colleagues (2017) performed meta-analysis on the IL-

6 level in HC and AD groups by combining 40 studies published before September 2016 (Lai et 

al., 2017). We assessed those 40 studies with our study inclusion and exclusion criteria (see 

methods section for our study inclusion and exclusion criteria), unfortunately, only 7 studies 

(Baranowska-Bik et al., 2008; Bonotis et al., 2008; Bozluolcay et al., 2016; Kamer et al., 2009; 

Licastro et al., 1997; Rubio-Perez and Morillas-Ruiz, 2013; Zhang et al., 2003) met our criteria. 

Finally, we recorded the summary data of IL-6 concentration from 9 studies [2 studies from our 

investigation, and 7 from (Lai et al., 2017)]. A total of 272 AD patients’ and 332 HC subjects’ 

data were meta-analyzed together by using the random effects model. Our meta-anlysis results 

found a very small effect size of SMD = 0.174 (CI: -0.342 to 0.689; P = 0.509) (see Fig 2.25), 

suggesting no difference between the IL-6 concentration in AD and HC group. Therefore, more 

studies would be required to estimate the true effect size for IL-6 level in HC and AD group. 

The publication bias was assessed by the funnel plot (see Fig 2.26) method, suggesting a large 

variation amnong the sampling studies. In addition, we found the I-squared value = 89.667%, 
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with P < 0.001. We did not estimate the Fail-safe number because the result of our analysis was 

statistically not significant.  

 

 

Figure 2.25: Updated meta-analysis of plasma IL-6 concentration in AD and HC subjects. 

Positive value indicates higher concentration in AD patients’. 

In summary, our methods have conformed some strong results for established biomarkers 

indicating that our approach is valid. There remains possibility a statistical error in the outcome 

of meta-analysis. 

 

Our findings also supported a reported imbalance of plasma levels of copper, albumin and 

creatinine. Interesting, the plasma copper level was significantly elevated in AD patients than HC 

subjects (see Fig 2.19), while the plasma albumin significantly reduced in AD patients (see Fig 

2.14). 

Study name Statistics for each study Std diff in means and 95% CI

Std diff Lower Upper 
in means limit limit p-Value

Nazeri et al., 2014 -0.676 -1.037 -0.316 0.000
Guo et al., 2013 -0.632 -0.957 -0.306 0.000
Baranowska-Bik et al., 2008 1.396 0.917 1.874 0.000
Bonotis et al., 2008 0.403 -0.224 1.030 0.208
Bozluolcay et al., 2016 0.836 0.283 1.390 0.003
Kamer et al., 2009 -0.573 -1.260 0.114 0.102
Rubio-Perez et al., 2013 0.098 -0.383 0.579 0.689
Zhang et al., 2003 0.026 -0.464 0.516 0.917
Licastro et al., 1997 0.871 -0.025 1.767 0.057

0.174 -0.342 0.689 0.509
-2.00 -1.00 0.00 1.00 2.00

Higher in HC Higher in AD

Meta-analysis of plasma IL-6 levels in AD and HC
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Figure 2.26: Funnel plot depicts the publication bias of plasma IL-6 level in HC and AD for 

updated studies. 

 

The imbalance of biometal homeostasis, particularly copper, has been associated with AD (Siotto 

and Squitti, 2018)⁠. Due to a high concentration of copper metal in plasma of AD, the serum 

albumin level is decreased likely because of a copper and albumin interaction, and this may 

contribute to the development of AD (Shore et al., 1984; Siotto and Squitti, 2018). For one of our 

meta-analyses on urine AD7c-NTP levels that metabolite appeared to be very high, but the effect 

was not statistically non-significant in AD patients compared to the HC subjects (see Fig 2.24).  

AD7c-NTP is a protein predominantly found in the long axonal processes of neurons, and an 

increase in urine concentration may have been attributed to excess damage of cortical neurons in 

the early stage of AD dementia (Zhang et al., 2014)⁠. Although, this protein concentration in urine 

is very high AD patients, but it is not currently included in the AD biomarkers list because of 

insufficient evidence in the literature, and the production of AD7c-NTP by neurodegeneration is 

not only specific to AD dementia.  
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It is notable for this meta-analysis we only included recent studies (period between July 2012 to 

September 2018). This decision was made to assess evidence for biomarkers that did not overlap 

with prior meta-analyses available at the start of this work. 

 

We excluded many studies because of our stringent study inclusion and exclusion criteria 

particularly on data reporting format. In addition, we included studies published on the same 

cohort data set that are measured once [i.e. the ADNI data set (http://adni.loni.usc.edu/)]. Inter-

laboratory variation of assays measuring metabolite concentrations remains very high (Mattsson 

et al., 2013; Noble et al., 2008; Watt et al., 2012)⁠. It is perhaps not surprising, therefore, that our 

indicator of study heterogeneity in the majority of our analysis is very high. The number of 

studies in each category of analysis (except the CSF core biomarkers of AD) is very low with 

small sample sizes. Finally, we did not compare any intermediate or subgroup analysis of the 

MCI and AD (i.e. mild, moderate and severe AD) in this analysis. 

 

2.7 Conclusion 

Our findings on CSF indicate that Aβ1-42, T-tau and P-tau181P are the metabolites that discriminate 

between AD and HC groups with high accuracy. Such findings confirm analysis of previous 

studies in the literature, and these similarities confirm that our approach is both effective and 

valid. In addition, the CSF hFABP is an emerging biomarker, which is elevated significantly in 

AD groups when compared with HC group and warrants further research.  

All of our analyses on  studies including different plasma Aβ and tau proteins level in AD and 

HC groups did not find any significant differences. Therefore, currently, there is no rationale for 

considering them as current of potentially future biomarkers of AD. Although, some 
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inflammatory related cytokines were found to be significantly elevated in AD compared to HC 

groups, we observed very high study outcome heterogeneity, indicating a need to be further 

investigate these with larger AD cohorts. All of these examined peripheral biomarkers may not 

be only specific to AD dementia. As noted above, the overlapping disease pathology and 

phenotypic symptoms among different forms of dementia may influence these biomarkers. 

Therefore, more research is required for classification of the particular clinical characteristics 

and underlying pathological conditions between AD and non-AD dementia cases. 
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Chapter 3: Ante-mortem biofluid metabolite concentrations and their relationship with the 

severity of Alzheimer's disease dementia: A systematic review and meta-analysis 

 

3.1 Introduction 

Dementia is a clinical condition characterized by deterioration of memory and cognitive 

function, which interferes with social or occupational functioning of an individual (Chertkow et 

al., 2013)⁠.  Among the different types of dementia, Alzheimer's disease (AD) is the most 

prevalent form, comprising up to 75% of all dementia cases in elderly (Qiu et al., 2009)⁠. It has 

been estimated that 36.5 million people were affected with dementia globally in 2010 and this 

number will exceed 115.4 million by 2050 (Prince et al., 2013)⁠. The global costs of dementia 

were US$ 818 billion in 2015, an increase of 35% of US% 604 billion in 2010 and these costs 

will exceed the threshold of US$ 1 trillion by 2018 (Wimo et al., 2017)⁠. Accumulation of Aβ 

plaques and neurofibrillary tangles (NFT) in the brain are well established neuropathological 

hallmarks of AD (Querfurth and LaFerla, 2010). However, around 20-40% of normal ageing 

individuals and other disease conditions show similar kinds of AD brain pathology (Fjell et al., 

2014)⁠. Interestingly, the brain pathological conditions in AD appear around 15-20 years before 

the clinical symptoms appear (Villemagne et al., 2011)⁠, and the mean duration of survival is 

around 8.5 years from the onset of clinical symptoms (Francis et al., 1999)⁠. 

Generally, AD appears sporadically in old ages and its prevalence nearly doubles in every 5 years 

after the age of 65 (http://www.alzheimers.net/resources/alzheimers-statistics/) and hence, age is 

considered the greatest risk factor. The sporadic cases of AD, which develop after age of 65 years 

known as later age of onset (LOAD), and accounts for more than around 90% of total AD cases 

(Bertram and Tanzi, 2004; Prince et al., 2013)⁠, while about 1-6% of cases of AD develop before 

the ages of 30 to 65 years and are called early onset of AD (EOAD) (Cruts and Van 
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Broeckhoven, 1998; Piaceri et al., 2013)⁠. EOAD appears mainly due to autosomal dominant 

mutation of three genes called familial AD and the genes are amyloid precursor protein (APP) 

gene on chromosome 21, presenilin-1(PS1) gene on chromosome 14, and presenilin-2(PS2) gene 

on chromosome 1, which comprises around 5% of total cases of AD (Brouwers et al., 2008; 

Piaceri et al., 2013)⁠. In addition, the apolipoprotein E (APoE) gene on chromosome 19 is also 

associated with the LOAD in both familial and sporadic forms of AD by decreasing the mean age 

of onset from 84 years to 68 years (Corder et al., 1993)⁠. The APoE gene has three alleles such as 

APoE Ɛ2, APoE Ɛ3 and APoE Ɛ4 and people with single copy of inherited APoE Ɛ4 allele have 

three fold high risk of developing AD in comparison to other forms of APoE gene, and persons' 

who carry two copies of APoE Ɛ4 gene, the risk AD increases up to 8-12 fold, while the ApoE ε2 

allele decreases the risk of AD (Holtzman et al., 2012; Liu et al., 2013; Loy et al., 2014)⁠. 

Furthermore, people with Down's syndrome (DS) are also associated with high risk of EOAD 

because DS is a genetic disorder caused by the presence of three copies of chromosome 21 with 

AAP genes, which plays an important role in production of amyloid-beta (Aβ) in AD (Goedert, 

2015)⁠. 

3.2 Mild Cognitive Impairment 

AD proceeds through the mild cognitive impairment (MCI) stage, which is considered as a 

transition stage between normal ageing and advanced forms of dementia (Petersen, 2011)⁠. 

Interestingly, not all the MCI patients progress to AD or other forms of dementia and they remain 

stable in this condition after 10 years follow up from the initial diagnosis (Mitchell and Shiri-

Feshki, 2009)⁠. Patients with MCI are again classified into two subtypes based upon the 

performance of neuropsychological tests, such as amnestic MCI (aMCI) and non-amnestic MCI 

(naMCI) (Petersen et al., 2014)⁠.  The aMCI patients perform poorly on neuropsychological tests 
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of episodic memory (Tulving, 2002)⁠, while patients with aMCI perform poorly on other 

cognitive domains of neuropsychological tests than memory, such as executive functions, 

language or visuo-spatial abilities (Petersen et al., 2014)⁠. In addition, the MCI patients have 

impairments in single to multiple cognitive domains and therefore, the MCI patients could be 

further classified into four possible subtypes, such as (i) aMCI-single domain, (ii) aMCI-multiple 

domain, (iii) naMCI-single domain and (iv) naMCI-multiple domain (Petersen et al., 2014)⁠. 

Conventionally, the aMCI is generally considered as a prodromal stage for AD, but it might 

progress to other forms of dementia such as logopenic aphasia, posterior cortical atrophy, frontal 

lobe-dysexecutive presentation of AD (Petersen, 2016)⁠. 

3.3 Contemporary diagnosis of the AD and MCI 

Conventionally, diagnosis of AD was based on the National Institute of Neurological and 

Communicative Disorders and Stroke (NINCDS) and the Alzheimer’s Disease and Related 

Disorders Association (ADRDA) (Jack et al., 2011; Mckhann et al., 1984), and other diagnostic 

criteria such as the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV), the 10th 

version of the International Classification of Diseases(ICD-10), and the International Work 

Group criteria (IWG) (Cummings, 2012; Cummings et al., 2013). In addition, the first clinical 

characterization of MCI patients was first reported by (Petersen et al., 1999)⁠ and subsequently 

inducted into the clinical research setting for assessment of progression to MCI or AD (Jack et 

al., 2011; Petersen, 2016; Petersen et al., 2014). Although, the above-mentioned diagnostic 

criteria are considered as a “gold standard” for diagnosis of AD in living people, sometimes these 

diagnostic guidelines may give false-positive and false-negative results. For example, a recent 

study (Edmonds et al., 2016)⁠ suggests a 7.1% of false-negative rate for MCI patient diagnosis on 

conventional diagnostic criteria. After all, the definitive diagnosis of AD is only possible 
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following autopsy (McKhann et al., 1984)⁠. Traditional ante-mortem diagnosis AD is based on 

clinical symptoms (McKhann et al., 1984)⁠, however, by that time much damage already 

happened to the brain (Villemagne et al., 2011)⁠.The failure of all clinical trials of AD therapies 

(Anderson et al., 2017; Cummings et al., 2017) indicates a current lack of effective drug 

therapies for AD dementia. Hence, the National Institute on Ageing and Alzheimer’s Association 

(NIA-AA) has  redefined AD on the basis of biological construct rather than clinical symptoms, 

it says “The term “Alzheimer’s disease” refers to an aggregate of neuropathologic changes and 

thus is defined in vivo by biomarkers and by post-mortem examination, not by clinical 

symptoms” (Jack et al., 2018)⁠. However, this new definition of AD is not intended specifically 

for the clinics but is offered appropriately for clearer understanding of disease etiology from the 

biomarkers point of view.   

3.4 Investigated research questions 

 Findings from previous autopsy confirmed studies on AD suggest that there is an association 

between neuropathological changes and AD dementia severity (Arriagada et al., 1992; Bierer et 

al., 1995; Nelson et al, 2013). However, claims for such an association with living AD patients’ 

has been inconsistent in some studies. In other words, there is a lack of precise evidence on the 

strength of association between the antemortem biofluid metabolite levels and AD dementia 

severity, to the best of our knowledge.  

 

In the present work, we explored:  

(i) The strength of relationship between biofluid metabolites concentration and severity 

of AD dementia.  

ii) Methodological variations across the studies for clinical application.  
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Investigated biofluids included: 

cerebrospinal fluid (CSF) 

blood 

plasma 

serum 

urine  

Included studies focussed on analysis of research-identified metabolite concentrations and 

severity of AD dementia. Antemortem AD patients were diagnosed as probable AD or possible 

AD as per the NINCDS-ADRDA criteria (McKhann et al., 1984)⁠. Severity of dementia is 

defined as an impairment in global cognition, which can be assessed with any standard 

neuropsychological test batteries such as the Mini-Mental State Examination (MMSE) score or 

the Clinical Dementia Rating score (CDR) or the Blessed Dementia Scale  and others (Blessed et 

al., 1968; Folstein et al., 1975; McKhann et al., 1984; Sheehan, 2012). 

 

3.5 Methods 

3.5.1 Literature search strategy and study selection 

We performed this systematic review and meta-analysis according to the Preferred Reporting 

Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines (Moher et al., 2009)⁠. We 

searched PubMed data base (https://www.ncbi.nlm.nih.gov/pubmed/) for the maximum number 

of relevant studies published between July 1, 1984 [time of establishment of current AD 

diagnosis criteria by (McKhann et al., 1984; Olsson et al., 2016)] to September 5, 2018 by using 

the keywords ("fluid biomarkers" OR "CSF" OR "cerebrospinal fluid" OR "blood" OR "serum" 

OR "urine" OR "protein" OR "amyloid beta" OR "tau") AND ("Alzheimer’s" OR "mild cognitive 
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impairment") AND severity. We limited our search only to human species studies written in the 

English language. We did not include any grey literature sources and only summary estimates of 

peer reviewed articles were used. These searches retrieved a total of 1722 studies, which were 

screened by two independent reviewers. We selected studies for our meta-analysis if they met the 

following inclusion and exclusion criteria. 

3.5.2 Inclusion Criteria: 

• Original peer-reviewed studies published between July 1, 1984 to September 5, 2018. 

• Only human species English language studies were included. 

• Studies analyzing the relationship between the antemortem cerebrospinal fluid or 

peripheral body fluid metabolites concentration and the severity AD dementia. 

• Use of clinical diagnosis criteria for AD, the National Institute of Neurological and 

Communicative Disorders and Stroke (NINCDS) and the Alzheimer’s Disease and 

Related Disorders Association (ADRDA) by (McKhann et al., 1984)⁠. 

• AD patients’ group must be compared with a healthy control group (HC). 

3.5.3 Exclusion Criteria 

• All animal studies, meta-analyses, review articles, letters, comments, case reports, and 

unpublished articles. 

• Studies that did not report: 

◦ the correlation coefficient value as an index of effect size measure of the association 

between the biofluid metabolites concentration and severity of AD dementia. 

◦ sample size of each subject groups of equal to or greater than ten individuals. 

◦ report data in a format which can’t be convertible in relation to effect size. 

• Studies only presenting post-mortem or autopsy or neuroimaging data. 
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• Healthy control group (HC) comprises participants with other neurological diseases or 

psychiatric disorders. 

 

Final inclusion and exclusion of studies were decided independently by the two reviewers (M. M 

& A. G). Any discrepancies in sampling of studies were discussed between the two authors until 

full agreement was reached, and if such was not resolved between the two reviewers, we took the 

outcome of three votes including the opinion and vote of a third reviewer. 

3.5.4 Data extraction and quality assessment 

From the included studies, we recorded the following information: 

(i) the first author and the year of publication.  

(ii) study design/setting (i.e. longitudinal or cross-sectional) 

(iii) sample size 

(iv) mean/median age 

(v) mean/median MMSE score 

(vi) mean/median measured metabolite concentrations of both the AD and HC groups 

(vii) AD dementia severity outcome values (i. e. the statistical test results showing the 

relationship between the biofluid metabolites level and dementia severity). 

The strength of association between dementia severity and biofluid metabolites level was 

reported in different effect size (ES) formats (Rosenthal and DiMatteo, 2001)⁠:  

(i) Spearman’s correlation coefficient (rs) and Kendell’s tau (Kt) are both non-parametric 

rank correlation for measuring strength of relationship between two variables (i.e. 

dementia severity and biofluid metabolites concentration.) (Xu et al., 2013)⁠. 
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(ii) Pearson product–moment correlation coefficient or partial correlation (r) (Lee 

Rodgers and Alan Nice Wander, 1988)⁠. 

(iii) Standardized beta weights (β) from linear or multiple regression model for predicting 

the dementia severity on metabolites concentration (Nagelkerke, 1991; Nathans et al., 

2012)⁠. 

(iv) Coefficient of determination (R2) from linear regression model (Nagelkerke, 1991)⁠. 

(v) P-value (du Prel et al., 2009)⁠ as an effect size measure of association between these 

two variables. 

Data for individual metabolites from CSF and from peripheral blood of were meta-analyzed 

separately. Articles reporting each metabolite data from the plasma and serum were meta-

analyzed together (Olsson et al., 2016)⁠. While the majority of our included studies are cross-

sectional, a very few studies are longitudinal measurements with clinical follow up. In the case 

of longitudinal studies, we took only baseline measurement data to meta-analyze with a cross-

sectional data approach (Olsson et al., 2016)⁠. We decided to perform meta-analysis if there are at 

least two studies available in each category of metabolite (Olsson et al., 2016; Valentine et al., 

2010)⁠. For any study that used different scales for grading of dementia severity in AD patients, 

we changed the sign (i.e. direction of the relationship) of the effect sizes into one direction, 

which will be equivalent on other scales. For example, both the MMSE and CDR scales (Robert 

et al., 2010)⁠ are used in the assessment of dementia severity in AD patients. Subjects with higher 

scores (above 24 points) in the MMSE scale are considered in the normal cognition range, while 

lower scores (below 24 points) are cognitively impaired. However, in case of the CDR scale the 

AD patients with higher scores (0.5 to 3 points) are considered cognitively impaired, and lower 

scores (0.5 to 0 points) are cognitively normal. So, both the scales measure the dementia severity 
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in AD patients, but the scores in these scales are in opposite direction. Hence, signs were 

changed in one direction to make consistent overall effect sizes that are measured on different 

scales. 

3.5.5 Calculation of effect sizes 

The majority of studies included in this meta-analysis report their effect sizes (i.e. the strength of 

association between metabolite concentration and severity of AD dementia) in the form of 

Spearman’s correlation coefficients (rs). In addition, we had very few studies that report in the 

format of Pearson r, and β weights or bivariate regression slopes or R2 in the linear regression 

model. Interestingly, we did not have a single study that reports the effect size in the form of 

standardized β weights that are derived from the multiple regression models or chi square (χ2) 

(Rosenthal and DiMatteo, 2001)⁠. Combining studies with different effect size measures like 

Pearson’s r, Spearman’s rs, Kendell’s tau (KT) are problematic because of the relative parametric 

and non-parametric nature of assumptions concerning data distributions. For example, both the rs 

and KT are non-parametric rank order correlations having larger standard errors than r, and hence, 

for more accurate results, these effect size measures should not normally be combined with the 

Pearson r (Hunter and Schmidt, 2004)⁠. However, this is feasible when there are enough studies 

available for conducting a coefficient of correlation meta-analysis (Field, 2001; Hunter and 

Schmidt, 2004; Rosenthal and DiMatteo, 2001)⁠. So, we did not omit these studies that report the 

strength of relationship in different effect sizes index because it might increase the sampling 

error (Rosenthal and DiMatteo, 2001)⁠. Therefore, various transformations were performed on 

different effect size categories to combinable format, which can be cumulated across the studies.  

As noted earlier, the majority of our included studies report their effect sizes in rs  format, and for 

more a conservative approach of converting parametric statistics to non-parametric, we used the 
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Spearman’s correlation coefficients in our meta-analysis. Both the Pearson r and Kendell’s tau 

were approximated to Spearman’s correlation coefficient (Chalkidou et al., 2012; Gilpin, 1993; 

Rupinski and Dunlap, 1996). Similarly, studies reporting effect sizes in R2 format, we just took 

the square root of R2 (Hunter and Schmidt, 2004) ⁠ and, if a study did not report direction of 

relationship (i.e. positive or negative correlation), we determined directionality by looking at 

reported metabolite concentrations and the scale used for measuring dementia severity. Likewise, 

very few studies that report β weights as an index of effect size derived from the bivariate 

regression model, those are equal to correlation coefficient r. In addition,  if a study only reports 

P-value as the strength of relationship between two variables, those are converted and combined 

with other included studies (Rosenthal and DiMatteo, 2001)⁠. After all appropriate conversions, 

the Fisher’s Z- transformation was performed to convert each correlation coefficient into a 

distribution that is approximately normal, and the pooled Z- scores were than back-transformed 

to the overall correlation coefficients (Chen et al., 2013; Field, 2001)⁠. We used Cohen’s criteria 

for interpreting our results to small (rs = 0.10), medium (rs = 0.30) and large (rs = 0.50) the effect 

sizes (Cohen, 1988)⁠.   

We employed a random effects model for our analysis because of likely differences in the patient 

populations and methodological variations in different laboratories across studies (Borenstein et 

al., 2010; Diener et al., 2009; Hedges and Vevea, 1998)⁠. Such models are more conservative and 

are a better fit to real world data for generalization of findings to a targeted population (Diener et 

al., 2009)⁠. We used Egger’s test to create a Funnel plot by plotting standard error against Fisher’s 

z (Egger et al., 1997)⁠. We chose to create the funnel plots if at least three studies are available in 

each category of analysis. Graphical visualization of the Funnel plot showing symmetrical 

distribution of studies is indicative of no publication bias. We did not perform the fail-safe N and 



95 

trim-and-fill (Duval and Tweedie, 2000; Rosenthal and DiMatteo, 2001)⁠ to estimate the number 

studies with negative or null effects that are potentially missing in the literature, which would 

have been contributed to non-significant results; because (i) most of our results are statistically 

non-significant, and (ii) after applying inclusion and exclusion criteria to potential studies for 

inclusion, our final analysis included a small number of studies are available in each category of 

analysis. 

We used the Comprehensive Meta-Analysis Version 3.0 software program (https://www.meta-

analysis.com/) for all our analyses (Bax et al., 2007; Borenstein et al., 2009).   

3.6 Results 

 The initial PubMed search retrieved 1722 articles, and the abstracts of each study were screened 

for eligibility. Thirteen hundred and forty-four articles were excluded because of those studies 

were studies on animals, failed to analyze the relationship between biofluid metabolites 

concentration with severity of dementia, or presenting only neuroimaging data. Only 378 studies 

were assessed fully for eligibility with our study inclusion and exclusion criteria as noted earlier. 

Of these, 161 studies report only post-mortem data, 86 did not follow the standard diagnostic 

criteria, or had a sample size of less than 10, or the control group comprised other 

psychiatric/neurological disorder. In addition, 48 studies did not perform the relevant analysis or 

failed to report effect sizes, 57 studies were single studies (see Table 3.3 for single study 

characteristic details) or had a statistical reporting problem.  

 

Finally, 26 studies (20 cross-sectional and 5 longitudinal) were included in our analysis. Out of 

that set, 18 studies examined CSF metabolite relationship to severity of AD, while 10 studies 

analyzed the relationship between blood metabolite levels and severity of AD dementia.  Of 
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these, two studies (DeKosky et al., 2003; Oishi et al., 1996) reported data on both the CSF and 

blood biomarkers. In addition, many studies reported data on multiple metabolites that in 

relationship to AD severity (See Table 3.1 & Table 3.2 for included study characteristic details).  

In the CSF category, we conducted meta-analysis on eight metabolites comprising total of AD n 

= 678 patients. Analyzed CSF metabolites were CSF Aβ42 (7 studies), t-tau (7 studies), P-tau (3 

studies), Aβ oligomers (2 studies), α1-antichymotrypsin (ACT; 2 studies), Pyruvate (2 studies), 

Insulin (2 studies) and norepinephrine (2 studies). Similarly, in the blood biomarkers category, 

we performed meta-analysis on four metabolites comprising a total of AD n = 826 patients. 

These metabolites were 1,6-Diphenyl-1,3,5-hexatriene (DPH; 2 studies), ACT (3 studies), Brain-

derived neurotrophic factor (BDNF; 3 studies) and interleukin-18 (IL-18; 2 studies). Details of 

these studies were discussed in the latter sections. 

All results are depicted in the form of forest plots (Lewis, 2001)⁠ derived by computing the 

overall effect sizes (Button et al., 2013; Crombie, 2013)⁠ with 95% confidence interval (CI), and 

p-values (Cumming and Maillardet, 2006)⁠. P-values of less than or equal to 0.05 (P < 0.05) were 

considered statistically significant for e of our examined hypotheses. 
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Table 3.1: Characteristics of included CSF metabolite studies 

 

Study first author’s name 
& year of publication. 

Sample size (n)  
of AD & HC 
groups only 

Investigated 
metabolites 
recorded for our 
analysis only &   
study design 

Scales used for 
assessing 
dementia 
severity in AD 
patients 

Strength of 
relationship 
between CSF 
metabolite levels 
and severity of 
dementia in AD 
patients only. 

 
(Jagust et al., 2009)⁠ 

AD =10 
HC = 11 
 

Aβ42 , P-tau, t-tau 
 
ADNI data set, 
Longitudinal 

MMSE R = 0.01 for 
Aβ42. 
 
R =  0.28 for P-
tau 
 
R = 0.26 for t-
tau. 

 
(Riemenschneider et al., 
2000)⁠ 

AD = 75 
HC = 30 
 
 

 
Aβ42 
Cross-sectional 

 
MMSE 

 
*r = 0.332 for  
Aβ42 

 
(Andreasen et al., 1999)⁠ 

 
AD = 53 
HC = 21 

 
Aβ42 
Longitudinal 

 
MMSE 

 
**rs= - 0.02 for  
Aβ42. 

 
(Mulder et al., 2002)⁠ 

 
AD = 20 
HC = 20 
 

 
Aβ42, t-tau, 
Cross-sectional 

 
MMSE 

  
*r = 0.13 for 
Aβ42. 
* r =  0.37 for t-
tau. 

 
(Rosén et al., 2012)⁠ 

AD = 75 
HC= 65 

Aβ42, Aβ40, P-tau, 
t-tau, 
Cross-sectional 

MMSE **rs = 0.12 for 
Aβ42, 
**rs = 0.12 for t-
tau 
* r = 0.16 for P-
tau 
* r = -0.08 for 
Aβ40. 

 
(Vemuri et al., 2009)⁠ 

AD = 98 
HC = 109 

Aβ42, P-tau, t-tau. 
ADNI data set. 
Cross-sectional 

MMSE **rs = 0.03 for 
Aβ42, 
**rs =-0.13 for t-
tau 
**rs = -0.09 for 
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P-tau 
Study first author’s name 
& year of publication. 

Sample size (n)  
of AD & HC 
groups only 

Investigated 
metabolites 
recorded for our 
analysis only &   
study design 

Scales used for 
assessing 
dementia 
severity in AD 
patients 

Strength of 
relationship 
between CSF 
metabolite levels 
and severity of 
dementia in AD 
patients only. 

 
(Lin et al., 2009)⁠ 

 
AD = 28 
HC = 21 

 
Aβ42, t-tau 
Cross-sectional 
 

 
MMSE 

 
**rs = 0.005 for 
Aβ42 
**rs = -0.279 for 
t-tau 

(Riemenschneider et al., 
1996)⁠ 

AD = 22 
HC = 19 

t-tau 
Cross-sectional 
 

MMSE ** rs = -0.203 
for t-tau 

(Munroe et al., 1995)⁠ AD = 24 
HC = 14 

t-tau 
Longitudinal 
 

MMSE *r = -0.03 for t-
tau 

(Santos et al., 2012)⁠ AD = 14 
HC = 12 

Aβ oligomers 
Longitudinal 
 

MMSE **rs = -0.65 for 
Aβ oligomers. 

(Fukumoto et al., 2010)⁠ AD = 18 
HC = 25 

Aβ oligomers 
Longitudinal 
 

MMSE *r = -0.402 for 
Aβ oligomers 

(Oishi et al., 1996)⁠ AD = 10 
HC = 10 

ACT, 
Norepinephrine 

MMSE **rs = -0.19 for 
ACT 
**rs = -0.49 for 
Norepinephrine. 
 

(DeKosky et al., 2003)⁠ AD = 34 
HC = 16 

ACT MMSE, CDR, 
etc. 

* r = -0.30 for 
ACT levels 
 

(Parnetti et al., 2000)⁠ AD = 41 
HC = 44 
 

Pyruvate MMSE **rs = -0.81 for 
Pyruvate. 
 

(L. Parnetti et al., 1995)⁠ AD = 30 
HC= 23 
 

Pyruvate MMSE *r = -0.41 for 
Pyruvate. 

(Molina et al., 2002)⁠ AD = 27 
HC = 16 
 

Insulin MMSE *r = -0.15 for 
insulin. 
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Study first author’s name 
& year of publication. 

Sample size (n)  
of AD & HC 
groups only 

Investigated 
metabolites 
recorded for our 
analysis only &   
study design 

Scales used for 
assessing 
dementia 
severity in AD 
patients 

Strength of 
relationship 
between CSF 
metabolite levels 
and severity of 
dementia in AD 
patients only. 

(Craft et al., 1998)⁠ AD = 25 
HC = 14 

Insulin MMSE *r = 0.52 for 
insulin. 
 
 

(Elrod et al., 1997)⁠ AD = 74 
HC = 42 

Norepinephrine MMSE *r = -0.43 for 
Norepinephrine. 

 Total AD = 678 
Total HC = 512 
  

   

 
Table legends: AD = Alzheimer’s disease, ADNI = Alzheimer's Disease Neuroimaging 

Initiative, ACT = α1-antichymotrypsin, Aβ = Amyloid beta, BDNF = Brain-derived neurotrophic 

factor,  HC =Healthy Control, MCI = Mild Cognitive Impaired, MMSE = Mini Mental State 

Examination, CDR = Clinical Dementia Rating, DPH = 1,6-Diphenyl-1,3,5-hexatriene, P-tau = 

hyperphosphorylated tau, t-tau = total tau, IL = Interleukin, OD = Other Dementia, *r = 

Pearson’s correlation coefficient, **rs = Spearman’s correlation coefficient,  KT = Kendell’s tau, 

R2 = Coefficient of determination, R = Strength of relationship between metabolite levels and 

severity of AD derived from the linear regression analysis, β = Beta coefficient from linear 

regression analysis. P = P-vale., TARC = Texas Alzheimer’s Research Consortium. 
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Table 3.2: Characteristics of included blood metabolite studies 

 

Study first author’s name 
& year of publication. 

Sample size (n)  
of AD & HC 
groups only 

Investigated 
metabolites 
recorded for our 
analysis only &   
study design 

Scales used for 
assessing 
dementia 
severity in AD 
patients 

Strength of 
relationship 
between blood 
metabolite levels 
and severity of 
dementia in AD 
patients only. 

(Zubenko et al., 1987a)⁠ AD = 24 
HC = 36 
 

Platelet DPH MMSE *r = -0.73 for 
DPH anisotropy 

(Zubenko et al., 1987b)⁠ AD = 51 
HC =50 
 

Platelet DPH MMSE *r = -0.60 for 
DPH anisotropy. 

(DeKosky et al., 2003)⁠ AD =359 
HC = 113 

Plasma ACT MMSE P = 0.0075 for 
plasma ACT. 
 

(Hinds et al., 1994)⁠ AD = 36 
HC =16 

Serum ACT MMSE *r = 0.06 for 
serum ACT. 
 

(Oishi et al., 1996)⁠ AD = 10 
HC = 10 

Serum ACT MMSE **rs = -0.24 for 
serum ACT. 
 

(Siuda et al., 2017)⁠ AD =134 
HC =80 
 

Serum BDNF MMSE **rs = -0.01 for 
serum BDNF. 

(Laske et al., 2006)⁠ AD =30 
HC = 10 
 

Serum BDNF MMSE KT = 0.486 for 
serum BDNF. 

(O’Bryant et al., 2009)⁠ AD = 99 
HC = 99 
  

Serum BDNF 
TARC data set 

MMSE, CDR P = 0.72 for 
serum BDNF. 
 

(Chen et al., 2014)⁠ AD = 53 
HC = 53 

Serum IL-18 MMSE **rs = -0.356 for 
serum IL-18. 
 

(Bossù et al., 2008)⁠ AD = 30 
HC = 25 

Serum IL-18 MMSE *r = -0.407 for 
serum IL-18. 
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Flowchart 3.1 Study selection process. 

 

3.6.1 Effect CSF Aβ1-42 levels on severity of AD dementia 

To test the hypothesis concerning the relationship of CSF Aβ1-42 levels on severity of AD 

dementia, we estimated the overall effect size across seven studies (two longitudinal) comprising 

359 AD patients. We found a non-significant average effect size (in random meta-analytic 

method) of rs (Spearman correlation coefficient) = - 0.032 (CI: -0.180 - 0.118, Z = -0.419, P = 
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0.675) suggesting no effect on disease severity. There is insufficient evidence to examine the 

relationship between CSF Aβ1-42 concentrations and severity of AD, and hence, more research is 

required to confirm the strength of that relationship if it exists. 

 

 
 
Figure 3.1: Forest plot of the overall correlation coefficient for CSF Aβ1-42 levels on severity of 

AD dementia. 

 
 
 

All the seven studies included in this meta-analysis indicate a non-significant or negligible 

relationship between CSF Aβ1-42 levels and severity of AD, as it is depicted on the above forest 

plot (Figure 3.1) that the confidence intervals of each study touch the no-effect line. By contrast, 

one study (Riemenschneider et al., 2000)⁠ suggests a significant medium effect (rs = - 0.345) on 

this forest plot. The authors of the above study reported a Pearson correlation coefficient value (r 

= 0.332; P = 0.026) without any sign, which suggests a positive correlation between CSF Aβ1-42 

levels and severity of AD, however, we corrected this typographical error by analyzing the raw 

Study name Correlation and 95% CI

Correlation p-Value

Jagust et al., 2009. 0.010 0.979
Riemenschneider et al., 2000. -0.345 0.002
Andreasen et al., 1999. -0.020 0.888
Mudler et al., 2002. 0.136 0.573
Rosen et al., 2012. 0.120 0.306
Vemuri et al., 2009. 0.030 0.770
Lin et al., 2009. 0.005 0.980

-0.032 0.675
-1.00 -0.50 0.00 0.50 1.00

Meta-analysis

CSF Abeta(1-42) levels on severity of AD dementia
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data (i.e. CSF Aβ1-42 levels were reduced significantly in AD group and the severity of dementia 

is assessed with the MMSE scale) (Riemenschneider et al., 2000)⁠. In addition, another study 

(Nitsch et al., 1995)⁠ met our study inclusion criteria in this category, but we did not include in 

our analysis because it does not specify the particular type of Aβ concentration which correlates 

with  AD severity. We created a funnel plot using Egger’s test to assess the publication bias by 

plotting the standard error against Fisher’s Z (Fisher, 1925; Stuck et al., 1998).⁠The funnel plot 

(Figure 3.2) shows very minimal publication bias. 

 

Figure 3.2: Funnel plot depicts very minimal publication bias for CSF Aβ1-42 studies on severity 

of AD. 

3.6.2 Effect of CSF total tau (t-tau) protein levels on severity of AD dementia 

To examine the effect of CSF t-tau protein concentrations on AD severity, we calculated average 

effect size across seven studies (AD; n = 277). Our analysis found a non-significant effect size of 

rs = -0.018 (CI: -0.179 - 0.143; Z = -0.220; P = 0.826) on cognitive functions of AD group. All 

the seven studies included in this analysis show statistically non-significant effects close to zero, 

while one study (Mulder et al., 2002)⁠ indicates a medium effect size, but it is not statistically  
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Figure 3.3 Forest plot of the overall correlation coefficient for CSF t-tau levels on severity of 

AD dementia 

 

    Figure 3.4: Funnel plot depicting no publication bias for CSF t-tau studies on severity. 

Study name Correlation and 95% CI

Correlation p-Value

Lin et al., 2009. -0.279 0.152
Riemenschneider et al., 1996. -0.212 0.348
Munroe et al., 1995. -0.031 0.887
Jagust et al., 2009. 0.271 0.462
Rosen et al., 2012. 0.120 0.306
Vemuri et a., 2009. -0.130 0.203
Mulder et al., 2002 0.385 0.094

-0.018 0.826
-1.00 -0.50 0.00 0.50 1.00

Meta-analysis

CSF t-tau levels on severity of AD dementia
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significant. In addition, we did not include one study in our analysis because the authors reported 

a significant correlation between CSF t-tau levels and severity of AD assessed in the ADAS-cog 

scale, however, such correlation between these two variables was not found in the MMSE scale 

(Wallin et al., 2006)⁠. It is quite evident from the above analysis (Figure 3.3) that CSF t-tau 

protein levels are not correlated with severity of AD, and the overall effect is not significant. In 

addition, a funnel plot (Figure 3.4) indicates no publication bias. 

 

3.6.3 Effect CSF phosphorylated tau protein (p-tau) levels on severity of AD 

To test the strength of relationship between CSF p-tau protein levels and severity of dementia, 

three studies met our inclusion criteria (AD; n =183). Our analysis did not find any significant 

difference with average effect size (rs) = 0.051 (CI: -0.161 - 0.260; Z = 0.470; P = 0.639). 

 

 

Figure 3.5 Forest plot of the overall correlation coefficient for CSF P-tau levels on severity of 

AD dementia. 

Study name Correlation 
and 95% CI

Correlation p-Value

Rosen et al., 2012. 0.167 0.153
Vemuri et al., 2009. -0.090 0.379
Jagust et al., 2009. 0.292 0.426

0.051 0.638

-1.00 -0.50 0.00 0.50 1.00

Meta-analysis

CSF P-tau levels on severity of AD dementia
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It is intuitively difficult to make any confident statement about the strength of relationship 

between CSF p-tau levels and severity of with only three studies. Hence, more studies will be 

required to measure the strength of association between CSF p-tau metabolite concentrations and 

severity of AD dementia. 

 

 

Figure 3.6 Funnel plot showing no publication bias for CSF P-tau studies on severity of AD. 

All three studies included in this analysis (Figure 3.5) did not show any significant relationship 

between these two variables, and all effect sizes are scattered around the zero-effect line. In 

addition, three more studies (Fellgiebel et al., 2009; Ravaglia et al., 2008; Wallin et al., 2006) 

met our inclusion criteria, however, we did not include in our analysis because (i) the authors of 

study (Wallin et al., 2006)⁠ reported that there is a strong positive correlation between CSF p-tau 

and severity of cognitive impairment in AD patients as assessed by the Alzheimer's Disease 

Assessment Scale-cognition sub-scale (ADAS-Cog) (Rosen et al., 1984)⁠, however, they failed to 

find any positive  correlations between CSF biomarkers and severity of AD using the MMSE 

scale. (ii) Similarly, the study (Ravaglia et al., 2008)⁠ performed correlational analysis between 
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CSF p-tau levels and MMSE scores (r = -0.33; p=0.006), but it did not give details of the AD 

group investigated. (iii) Likewise, another study (Fellgiebel et al., 2009)⁠ examined the strength 

of relationship between CSF p-tau levels with AD severity by combing an AD and MCI group 

together. The funnel plot (Figure 3.6) shows no publication bias for this category of analysis. 

 

3.6.4 Effect of CSF Aβ Oligomers concentration and severity of AD 

For this analysis, only two longitudinal studies met our inclusion criteria (AD; n = 32). We 

observed a strong negative correlation rs = - 0.526 (CI: -0.748 - -0.197, Z = -2.979, P = 0.003) 

between CSF Aβ oligomers level and severity of AD dementia. Although, our analysis resulted in 

a statistically significant association between these two variables, with only to two studies and 

very small sample sizes, the analysis is inconclusive. In addition, one study from the above 

 

 

Figure 3.7 Forest plot of the overall correlation coefficient for CSF Aβ oligomers level on 

severity of AD dementia. 

Study name Correlation and 95% CI

Correlation p-Value

Santos et al., 2012. -0.650 0.010
Fukumoto et al., 2010. -0.417 0.085

-0.526 0.003

-1.00 -0.50 0.00 0.50 1.00

Meta-analysis

CSF Abeta oligomers level on severity of AD dementia
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Analysis (Figure 3.7) shows a statistical non-significant effect because the CI is crossing the 

zero-effect line (Fukumoto et al., 2010)⁠.Therefore, more studies are necessary to replicate this 

effect. We did not assess the publication bias as there were only two studies to assess. 

 

3.6.5 Effect of CSF alpha-1-antichymotrypsin levels (ACT) levels on AD dementia 

To examine the effect of CSF ACT levels in cognition of AD dementia, only two studies met our 

inclusion criteria (AD; n = 44). We did not find a significant difference by averaging effect size rs 

= - 0.290 (CI: -0.549 - 0.019; Z = -1.842; P = 0.06) (Figure 3.8). Therefore, more studies are 

required to examine the effect of CSF ACT levels on AD severity. We did not assess the 

publication bias for this analysis because there were only two studies in this analysis. 

 

Figure 3.8 Forest plot of the overall correlation coefficient for CSF ACT levels on severity of 

AD dementia. 

 

3.6.6 Effect of CSF pyruvate levels on severity of AD dementia 

To assess the average effect size of CSF pyruvate levels on severity of AD, we again had only 

two studies (Parnetti et al., 2000, 1995) that met our criteria (AD; n = 71). We found a strong 

Study name Correlation 
and 95% CI

Correlation p-Value

Oishi et al., 1996. -0.190 0.611
DeKosky et al., 2003. -0.312 0.072

-0.290 0.066

-1.00 -0.50 0.00 0.50 1.00

Meta-analysis

CSF ACT levels on severity of AD dementia
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significant negative correlation (rs) = -0.661 (CI: -0.898 - -0.129; Z = -2.342; P =0.019) (Figure 

3.9) between these two variables. However, both the studies were published by the same group, 

and in order to confirm this strong negative correlation between CSF pyruvate levels and severity 

of AD dementia, its replication by other groups will be necessary. Publication bias was not 

assessed for this group because of two studies. 

 

 

Figure 3.9 Forest plot of the overall correlation coefficient for the CSF pyruvate levels on 

severity of AD dementia. 

 

3.6.7 Effect of CSF Insulin levels on severity of AD dementia 

To examine the effect of CSF insulin levels on severity of AD dementia, again, only two studies 

met our inclusion criteria (AD; n = 52). We found a non-significant average effect of rs = 0.215 

(CI: -0.480 – 0.745; Z = 0.578; P = 0.563). One study (Craft et al., 1998)⁠ reported a strong 

positive correlation (rs = 0.537; P = 0.005) between CSF insulin levels and severity AD, while 

other one (Molina et al., 2002)⁠ suggests no significant relationship (see Figure 3.10). So, the 

Study name Correlation 
and 95% CI

Correlation p-Value

Parnetti et al., 1995. -0.420 0.020
Parnetti et al., 2000. -0.810 0.000

-0.661 0.019

-1.00 -0.50 0.00 0.50 1.00

Meta-analysis

CSF pyruvate levels on severity of AD dementia
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overall effect is statistically not significant, and hence, more evidence is required to measure the 

effect of CSF insulin levels on severity of AD dementia. 

 

Figure 3.10 Forest plot of the overall correlation coefficient for the CSF insulin levels on 

severity of AD dementia. 

 

3.6.8 Effect of CSF norepinephrine concentrations on severity of AD dementia 

For this category of analysis, we estimated the combined effect size of CSF norepinephrine 

concentrations on severity of AD. Ultimately, only two studies met our study selection criteria 

(AD; n = 84).  

We found a significant medium average effect size rs = - 0.450 (CI: -0.609 - -0.257; Z = -4.281, P 

< 0.001), suggesting a medium negative correlation between CSF norepinephrine levels and 

severity of AD dementia (Figure 3.11). Although, the above analysis shows a significant 

negative correlation between these two variables, it requires more evidence because of only two 

studies. 

 

Study name Correlation 
and 95% CI

Correlation p-Value

Molina et al., 2002. -0.156 0.441
Craft et al., 1998. 0.537 0.005

0.215 0.563

-1.00 -0.50 0.00 0.50 1.00

Meta-analysis

CSF insulin levels on severity of AD dementia
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Figure 3.11 Forest plot of the overall correlation coefficient for the CSF norepinephrine levels 

on severity of AD dementia. 

 

3.6.9 Effect of plasma alpha-1-antichymotrypsin levels (ACT) levels on severity of AD 

dementia 

To examine the average effect of Plasma ACT levels on AD severity, three studies met our 

inclusion criteria (AD; n = 405). Our analysis found a significant effect size of (rs) = -0.126 (CI: -

0.221- -0.028; Z = -2.521; P = 0.012), suggesting a small effect. From the above forest plot 

(Figure 3.12), two studies (Hinds et al., 1994; Oishi et al., 1996)⁠ reported the effect sizes in the 

form of correlation coefficient, while other one (DeKosky et al., 2003)⁠ reported in the form of p-

values. Although, the overall effect size shows a negative correlation between plasma ACT levels 

and severity of AD, but with two included studies (Hinds et al., 1994; Oishi et al., 1996) we did 

not find any significant difference. Therefore, it requires more evidence to confirm the effect of 

plasma ACT levels on cognitive functions of AD patients. Publication bias was not found in this 

analysis (see Figure 3.13). 

Study name Correlation 
and 95% CI

Correlation p-Value

Elrod et al., 1997. -0.446 0.000
Oishi et al., 1996. -0.490 0.156

-0.450 0.000

-1.00 -0.50 0.00 0.50 1.00

Meta-analysis

CSF norepinephrine levels on severity of AD dementia
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Figure 3.12 Forest plot of the overall correlation coefficient for the Plasma ACT levels on 

severity of AD dementia. 

 

 

Figure 3.13 Funnel plot depicting publication bias for plasma ACT levels on severity of AD 

studies.  

Study name Correlation 
and 95% CI

Correlation p-Value

Hinds et al., 1994. 0.062 0.721
Oishi et al., 1996. -0.240 0.517
DeKosky et al., 2003. -0.141 0.007

-0.126 0.012

-1.00 -0.50 0.00 0.50 1.00

Meta-analysis

Plasma ACT levels on severity of AD dementia
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3.6.10 Effect of plasma Brain-derived neurotrophic factor (BDNF) levels on severity of AD 

To test the effect of plasma BDNF levels, only three studies (AD; n =263) that met our inclusion 

criteria. We found a non-significant average effect size of (rs) = 0.231 (CI: -0.135 – 0.542; Z = 

1.242; P = 0.214). As it is shown on the above forest plot (Figure 3.14), two studies (O’Bryant et 

al., 2009; Siuda et al., 2017) indicated no relationship of plasma BDNF levels to cognition, while 

other one (Laske et al., 2006)⁠ reporting a large positive correlation between these two variables. 

It is quite clear from the above analysis, that there is a large variation in effect sizes, and hence it 

requires more evidence to examine the true effect of plasma BDNF levels on severity of AD 

patients. 

 

Figure 3.14 Forest plot of the overall correlation coefficient for the Plasma BDNF levels on 

severity of AD dementia. 

In addition, another study (Konukoglu et al., 2012)⁠ which met our inclusion criteria, but we did 

not include in our analysis because it reports two correlation coefficient values between serum 

BDNF levels and the MMSE scores of two AD patient groups: (i) AD group without treatment 

Study name Correlation 
and 95% CI

Correlation p-Value

Siuda et al., 2017. -0.010 0.909
Laske et al., 2006. 0.667 0.000
O'Bryant et al., 2009. 0.036 0.721

0.231 0.214

-1.00 -0.50 0.00 0.50 1.00

Meta-analysis

Plasma BDNF levels on severity of AD dementia
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(AD; n = 22; r = 0.422;  P < 0.01), and (ii) AD group treated with cholinesterase inhibitors (CEI) 

(AD+ CEI; n = 32; r = -0.357; P < 0.005). In our study inclusion and exclusion criteria, we did 

not consider drug treated AD patients as an excluding criterion. This is the first study 

(Konukoglu et al., 2012)⁠, we have come across, which reports a strong effect of CEI on cognitive 

functions of AD patients. 

 

 

  Figure 3.15 Funnel plot depicting publication bias for plasma BDNF studies. 

In addition, it is quite evident in the literature that none of the drugs were proved to be effective 

for AD patients (Anderson et al., 2017; Cummings et al., 2017). Therefore, we excluded this 

study from our analysis (Konukoglu et al., 2012)⁠.  

The funnel plot (Figure 3.15) indicates a variation in study findings. 

 

3.6.11 Effect of abnormal platelet membrane fluidity on AD severity 

To examine the effect of 1,6-Diphenyl-1,3,5-hexatriene (DPH; as a measure of abnormal platelet 

membrane fluidity) on severity of AD, two studies met our study inclusion criteria (AD; n = 75) 
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(Zubenko et al., 1987a, 1987b)⁠.We found significant combined effect size of (rs) = -0.661 (CI: -

0.774 -  -0.507; Z = -6.602; P< 0.001), suggesting a strong negative correlation between 

abnormal platelet membrane fluidity and cognitive functions of AD patients (see Figure 3.16). 

Such effects need to be replicated by other groups because both the studies were published by the 

same group. Hence, more evidence from other groups is necessary to confirm this effect. 

 

 
 
Figure 3.16 Forest plot of the overall correlation coefficient for the Platelet membrane fluidity 

on severity of AD dementia. 

 
3.6.12 Effect of serum Interleukin-18 (IL-18) levels on severity of AD dementia 
 
We examined the overall effect of serum IL-18 levels on severity of AD dementia. Two studies 

met our inclusion criteria (AD; n = 83). We found a significant overall effect size of (rs) = -0.380 

(CI: -0.553 - -0.174; Z = -3.506; P < 0.001), suggesting a medium negative correlation with 

severity of AD (see Figure 3.17). Because of only two studies with a relatively small group of 

AD patients, it is difficult to estimate the true combined effect size for these two parameters. 

Hence, more studies are required to examine the true effect of serum IL-18 on severity of AD 

dementia. 

Study name Correlation and 95% CI

Correlation p-Value

Zubenko et al., 1987 (a). -0.745 0.000
Zubenko et al., 1987 (b). -0.618 0.000

-0.661 0.000

-1.00 -0.50 0.00 0.50 1.00

Meta-analysis

Platelet mebrane fluidity on severity of AD dementia
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Figure 3.17 Forest plot of the overall correlation coefficient for the serum IL-18 levels on 

severity of AD dementia. 

  

Study name Correlation 
and 95% CI

Correlation p-Value

Chen et al., 2014. -0.356 0.008
Bossu et al., 2008. -0.422 0.019

-0.380 0.000

-1.00 -0.50 0.00 0.50 1.00

Meta-analysis

Serum IL-18 levels on severity of AD dementia
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Table 3.3: Characteristics of single arm studies 

Study first author’s name 
& year of publication. 

Sample size (n)  
of AD & HC 
groups only 

Investigated 
metabolites 
recorded for our 
analysis only &   
study design 

Scales used 
for assessing 
dementia 
severity in 
AD patients 

Strength of 
relationship 
between 
CSF/blood 
metabolite 
levels and 
severity of 
dementia in 
AD patients 
only. 

(Nitsch et al., 1995) 
 
 

AD = 19 
HC = 10 

CSF Aβ BDS *r = -0.666 
for CSF Aβ 

 
 
(Costa et al., 2011)⁠ 

 
AD = 18 
HC = 15 

 
CSF galanin and 
α-MSH 

 
MMSE 

**rs = 0.53 
for CSF total 
and 
complexed 
IgG galanin 
autoabs. 
 
**rs =  0.5 for 
CSF levels of 
free IgG α-
MSH 
autoAbs 

 
(Comi et al., 2010)⁠ 

 
AD = 67 
HC = 69 
 

 
CSF Osteopontin 

 
MMSE 

 
**rs = 0.58 
for CSF 
Osteopontin. 

 
(Arlt et al., 2008)⁠ 

 
AD =80 
HC = 80 

 
CSF ADMA 
 
Plasma 
triglycerides 

 
MMSE 

 
**rs = 0.26 
for CSF 
ADMA. 
 
**rs = -0. 28 
for Plasma 
triglycerides. 

(Lavados et al., 2008) AD =13 
HC = 12 

Redox-active CSF 
iron 

CDR-TBS  R2 = 0.7839 
(negative) for 
Redox-active 
CSF iro 
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Study first author’s name 
& year of publication. 

Sample size (n)  
of AD & HC 
groups only 

Investigated 
metabolites 
recorded for our 
analysis only &   
study design 

Scales used 
for assessing 
dementia 
severity in 
AD patients 

Strength of 
relationship 
between 
CSF/blood 
metabolite 
levels and 
severity of 
dementia in 
AD patients 
only. 

(Peskind et al., 2001)⁠ AD = 68 
HC = 28 

CSF S100B MMSE *r = 0.322 for 
CSF S100B. 
 

(Minthon et al., 1997)⁠ AD = 34 
HC = 40 

CSF Somatostatin 
and Neuropeptide 
Y 

MMSE **rs = -0.42 
for CSF 
somatostatin. 
 
 

(L Parnetti et al., 1995)⁠ AD = 31 
HC = 11 
 

CSF and Serum 
NSE 

MMSE R2 = 0.36 
(negative) for 
CSF NSE 
 

(Pomara et al., 1989)⁠ AD = 15 
HC =10 

CSF CRF-LI GNI *r = 0.62 for 
CSF CRF. 
 

(Xue et al., 2012)⁠ AD = 56 
HC = 20 

Plasma endothelial 
microparticles 

MMSE **rs = -0.603 
for CD31+ / 
CD42- 
counts. 
 
**rs = -0.582 
for CD62e+ / 
CD42- 
counts. 
 
**rs = -0.340 
for CD31+ / 
CD42+ 
counts. 
 

(Desideri et al., 2008)⁠ AD = 120 
HC = 40 

Plasma soluble CD 
40 ligand 

MMSE 
 
 

**rs = -0.574 
for CD 40 
levels. 
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Study first author’s name 
& year of publication. 

Sample size (n)  
of AD & HC 
groups only 

Investigated 
metabolites 
recorded for our 
analysis only &   
study design 

Scales used 
for assessing 
dementia 
severity in 
AD patients 

Strength of 
relationship 
between 
CSF/blood 
metabolite 
levels and 
severity of 
dementia in 
AD patients 
only. 

(Scali et al., 2002)⁠ AD = 40 
HC = 36 

Neutrophils 
CD11b and 
fibroblasts PGE 2. 

ADL **rs = 0.354 
for CD 11b 
basal values. 

(Nilsson and Gustafson, 
2004)⁠ 

AD =85 
HC = 51 

Plasma 
homocysteine 

Berger scale **rs = 0.42 
for plasma 
homocysteine
. 
 

(Velayudhan et al., 2012)⁠ AD = 270 
HC = 50 
 

Plasma 
transthyretin 
levels. 
Machine learning 
study 

MMSE R2 = 0.2 
(positive) for 
transthyretin. 

(Muck-Seler et al., 2009)⁠ AD = 74 
HC = 49 

Platelet serotonin 
level and MAO-B 
activity. 

MMSE **rs = 0.299 
for serotonin. 
 
**rs = 0.327 
for MAO-B 
activity. 
 

(Laske et al., 2008)⁠ AD = 30 
HC = 20 

Plasma soluble 
Glycoprotein VI 
and β- 
thromboglobulin. 

MMSE KT = 0.271 
for 
Glycoprotein 
VI. 
 
KT = 0.214 
for β- 
thromboglobu
lin. 
 

(Merched et al., 2000)⁠ AD = 56 
HC = 59 

Serum 
Apolipoprotein AI 
(Apo AI) 
 

MMSE R = 0.50 for 
serum Apo AI 
levels. 
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Study first author’s name 
& year of publication. 

Sample size (n)  
of AD & HC 
groups only 

Investigated 
metabolites 
recorded for our 
analysis only &   
study design 

Scales used 
for assessing 
dementia 
severity in 
AD patients 

Strength of 
relationship 
between 
CSF/blood 
metabolite 
levels and 
severity of 
dementia in 
AD patients 
only. 

(Konukoglu et al., 2012)⁠ AD = 22 
AD + CEI group   
= 32 
HC = 20 

Serum BDNF MMSE **rs = 0.422 
for BDNF 
levels of AD 
group. 
 
**rs = -0.357 
for BDNF 
levels of AD 
+ CEI group. 
 

(Hye et al., 2014)⁠ AD = 476 
HC = 452 

Plasma proteins : 
ApoE, CFH, 
NCAM, Aβ 40, 
A1AcidG, 
Clusterin. 
Machine learning 
study 

MMSE *r = -0.15 for 
ApoE. 
 
*r = -0.104 
for CFH. 
*r = -0.114 
for NCAM. 
*r = -0.161 
for  Aβ 40. 
*r =  -0.135 
for A1AcidG. 
*r = -0.135 
for clusterin. 

(O’Bryant et al., 2013)⁠ AD = 284 
HC = 557 

Serum C-reactive 
protein. 

MMSE β = -1.26 for 
C-reactive 
protein. 

(Song et al., 2015)⁠ AD = 121 
HC = 43 

Serum haptoglobin MMSE **rs = -0.301 
for 
haptoglobin 
levels. 

(Murialdo et al., 2000)⁠ AD = 25 
HC = 12 

Serum Insulin like 
growth factor-1 
(IGF-1) 
 

MMSE KT = 0.287 
for IGF-1 
levels. 
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Study first author’s name 
& year of publication. 

Sample size (n)  
of AD & HC 
groups only 

Investigated 
metabolites 
recorded for our 
analysis only &   
study design 

Scales used 
for assessing 
dementia 
severity in 
AD patients 

Strength of 
relationship 
between 
CSF/blood 
metabolite 
levels and 
severity of 
dementia in 
AD patients 
only. 

(Kálmán et al., 1997)⁠ AD= 41 
HC = 24 

Serum Interleukin-
6 (IL-6) levels 

MMSE **rs = 0.48 
for IL-6 
levels. 
 

(Chao et al., 1994)⁠ AD = 19 
HC = 22 

Serum TGF-β 
levels 

GDS *r = 0.45 for 
TGF-β levels. 
 

(Hatanaka et al., 2015)⁠ AD = 72 
HC = 53 

Plasma dROM 
levels 

MMSE **rs = -0.332 
for dROM 
levels. 
 

(Galbusera et al., 2004)⁠ AD = 52 
HC = 15 

Plasma lipid 
peroxidation 
measured by 
TBARS assay. 
 

MMSE R2 = 0.21 
(positive) for 
plasma 
TBARC 
levels. 

(Huang et al., 2015)⁠ AD = 110 
HC = 50 

Plasma VCAM-1, 
ICAM-1 and E-
selectin levels 

CDR sum of 
box scores 

*r = 0.258 for 
VCAM-1 
levels. 
*r = -0.001 
for ICAM-1 
levels. 
*r = 0.070 for 
E-selectin 
levels. 
 

(Choi et al., 2011)⁠ AD = 61 
HC = 35 

Plasma chitinase 
3-like 1 protein 
(CHI3L1) levels 
 

MMSE **rs = 0.225 
for  CHI3L1 
levels. 

(Smith et al., 2011)⁠ AD = 34 
HC = 34 

Plasma Feutin-A 
and TNF-α levels 

MMSE **rs = 0.504 
for Feutin-A 
levels. 
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**rs =  -0.363 
for TNF-α 
levels. 
 

Study first author’s name 
& year of publication. 

Sample size (n)  
of AD & HC 
groups only 

Investigated 
metabolites 
recorded for our 
analysis only &   
study design 

Scales used 
for assessing 
dementia 
severity in 
AD patients 

Strength of 
relationship 
between 
CSF/blood 
metabolite 
levels and 
severity of 
dementia in 
AD patients 
only. 

(Kim et al., 2008)⁠ AD = 51 
HC = 57 

Plasma soluble 
fractalkine levels 

MMSE *r = 0.347 for 
fractalkine 
levels. 
 
 

(Wang et al., 2008)⁠ AD = 36 
HC = 10 

Plasma β-carotene, 
leutin, RBC DHA, 
LDL-cholestrol 
levels. 

MMSE **rs = 0.43 
for leutin 
levels. 
**rs = 0.37 
for β-carotene 
levels. 
**rs = 0.34 
for RBC 
DHA levels. 
**rs = -0.38 
for LDL-
cholestrol 
levels. 
 

(Goodenowe et al., 2007)⁠ AD = 256 
HC = 68 

Serum 
Ethanolamine 
plasmalogen level 

ADAS-cog R2 = 0.99 for 
Ethanolamine 
plasmalogen 
levels. 
  

(Zoia et al., 2005)⁠ AD = 10 
HC = 10 

Fibroblast cell 
culture: EAAT 1 
expression, EAAT 
1 mRNA 

MMSE R2 = 0.4881 
for EAAT1 
expression. 
R2 = 0.6904 
(negative) for 
EAAT1 
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mRNA. 
 

Study first author’s name 
& year of publication. 

Sample size (n)  
of AD & HC 
groups only 

Investigated 
metabolites 
recorded for our 
analysis only &   
study design 

Scales used 
for assessing 
dementia 
severity in 
AD patients 

Strength of 
relationship 
between 
CSF/blood 
metabolite 
levels and 
severity of 
dementia in 
AD patients 
only. 

(Pratico et al., 2000)⁠ AD = 14 
HC = 10 
 

CSF  8,12-iso-
iPF2alpha-VI 
levels   

MMSE 
 
 
 
 
 
 

R2 = 0.15 
(negative) for  
8,12-iso-
iPF2alpha-VI 
levels. 

(Kokkonen et al., 2017)⁠ AD = 115 
HC = 40 

Serum Bullous 
Pemphigoid 180 
(BP180) 
 

MMSE **rs = -0.287 
for BP180 
levels. 

(Zhuang et al., 2016)⁠ AD = 78 
HC = 39 

Serum ACE 
activity 

MMSE **rs = -0.29 
for ACE 
activity. 
 

(Bulati et al., 2015)⁠ AD = 35 
HC = 15 
 

Cell culture: B cell 
ligands 

MMSE R2 = 0.536 
for CD19+ 
absolute 
number. 

(Schmidt et al., 2013)⁠ AD = 33 
HC = 33 

CSF Melanin-
concentrating 
hormone (MCH) 
levels 
 

MMSE *r =  -0.362 
for MCH 
levels. 

(Valenti et al., 2013)⁠ AD = 25 
HC = 22 

Blood Glutaminyl 
Cyclase levels 

MMSE **rs = -0.607 
for 
Glutaminyl 
Cyclase 
mRNA levels. 
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Study first author’s name 
& year of publication. 

Sample size (n)  
of AD & HC 
groups only 

Investigated 
metabolites 
recorded for our 
analysis only &   
study design 

Scales used 
for assessing 
dementia 
severity in 
AD patients 

Strength of 
relationship 
between 
CSF/blood 
metabolite 
levels and 
severity of 
dementia in 
AD patients 
only. 

(Öztürk et al., 2013)⁠ AD = 197 
HC = 133 

Red cell 
distribution width 
(RDW) 
percentage. 
 

MMSE *r = -0.453 
for RDW 
percentage. 
 

(Khalil et al., 2012)⁠ AD = 39 
HC = 20 
 

Serum and HDL 
mediated 
cholestrol efflux 
percentage. 

MMSE R2 = 0.17 
(negative) for 
serum 
mediated 
cholestrol 
efflux. 
R2 = 0.11 
(negative) for 
HDL-
mediated 
cholestol 
efflux. 

(Armentero et al., 2011)⁠ AD = 20 
HC = 20 

Peripheral protein 
kinase B 
expression 

MMSE *r = -0.584 
for protein 
kinase B 
expression. 
 

(Chaves et al., 2010)⁠ AD = 54 
HC = 66 

Serum S100B and 
NSE levels 

MMSE **rs = -0.35 
for S100B 
levels. 
**rs = -0.48 
for NSE 
levels. 
 

(Hogervosrt and Smith, 
2002)⁠ 

AD = 66 
HC = 62 

Serum Folate and 
Estradiol levels 

MMSE B = -0.92 for 
serum folate 
levels. 
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Study first author’s name 
& year of publication. 

Sample size (n)  
of AD & HC 
groups only 

Investigated 
metabolites 
recorded for our 
analysis only &   
study design 

Scales used 
for assessing 
dementia 
severity in 
AD patients 

Strength of 
relationship 
between 
CSF/blood 
metabolite 
levels and 
severity of 
dementia in 
AD patients 
only. 

(Leblhuber et al., 1999)⁠ AD = 24 
HC = 14 

Serum neopterin 
levels 

MMSE **rs = -0.435 
for neopterin 
levels. 
 

(Fischer et al., 1997)⁠ AD = 41 
HC = 19 

Serum transferrin 
and ferritin levels 

MMSE **rs = 0.411 
for transferrin 
levels. 
**rs = -0.420 
for ferritin 
levels. 
 

(Zhu et al., 2018) AD =51 
HC = 51 

Serum haptoglobin CDR **rs = 0.354 
for serum 
haptoglobin 
levels. 

(Dysken et al., 1992)⁠ AD = 55 
HC = 41 
 

Peripheral 
lymphocyte counts 

MMSE *r = 0.19 for 
lymphocyte 
counts. 

 
Table legends: Aβ = Amyloid beta, AutoAbs = autoantibodies, ApoE = Apolipoprotein E, 

ADMA = Asymmetrical dimethylarginine, ADL = Activities of Daily Living, BDS = Blessed 

dementia scale, BDNF = Brain-derived neurotrophic factor, CD = cluster of differentiation, CDR 

=  Clinical Dementia Rating, CFH = Compliment factor H, CDR-TBS = CDR- Total box score, 

CRF-LI = Corticotropin-releasing factor-like immunoreactivity, CEI = cholinesterase inhibitors,  

dROM = diacron reactive oxygen metabolite, GNI = global neuropsychological impairment, 

GDS = Global Deterioration Scale,  MSH = melanocyte-stimulating hormone, MAO-B = 

monoamine oxidase type B, NSE = neuron-specific enolase, NCAM =Neural Cell adhesion 
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molecule, PGE 2 = prostaglandin-E2, TGF-β = Transforming growth factor β, TBARS = 

Thiobarbitururic acid reactive substance,  *r = Pearson’s correlation coefficient, **rs = 

Spearman’s correlation coefficient,  KT = Kendell’s tau, R2 = Coefficient of determination, R = 

Strength of relationship between metabolite levels and severity of AD derived from the linear 

regression analysis, β = Beta coefficient from linear regression analysis. B value = strength of 

association between two variables derived from multiple regression, P = P-value, VCAM-1 = 

vascular cell adhesion molecule-1, ICAM-1 = Intracellular cell adhesion molecule-1, TNF-α = 

Tumor necrosis factor-α,  RBC = Red blood cell, LDL = Low density lipoprotein, DHA= 

docosahexaenoic acid, ADAS-cog = Alzheimer’s Disease Assessment Scale-Cognitive Subscale,  

EAAT = Excitatory amino acid transporter, mRNA = messenger Ribonucleic acid,  ACE = 

Angiotensin converting enzyme. 

 

3.7 Discussion 

To the best of our knowledge, our analysis provides the first quantitative examination of 

literature describing the relationships of both CSF and blood biomarkers and cognitive functions 

in AD dementia. Across 26 included studies comprising of total 1504 AD patients, we did not 

find any significant effect of the core biomarkers (Lai et al., 2017; Olsson et al., 2016) on the 

severity of AD. However, some of the CSF biomarkers such as Aβ oligomers (AD = 32; average 

rs = -0.526; P =0.003), norepinephrine (AD = 84; average rs = -0.450; P = 0.001) and pyruvate 

(AD = 71; average rs = -0.661; P = 0.019) indicate a strong inverse correlation with severity of 

AD. Similarly, some blood-based biomarkers such as plasma ACT (AD = 405; overall rs = -

0.126; P = 0.012), serum IL-18 (AD = 83; rs = -0.380; P = 0.001), and abnormal platelet 

membrane fluidity (Zubenko et al., 1987a)⁠ (AD = 75; rs = -0.661; P = 0.001) demonstrate a 
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significant predictive relationship with the severity of AD. Although, these analyses demonstrate 

a significant predictive relationship of AD dementia severity, based on the small numbers of 

studies with relatively small patient sample size that met our study criteria,  it is not clear that 

these findings are generalizable to the broader AD patient population and further research is 

needed. 

Previous meta-analyses on differential diagnosis of AD from normal ageing show significant 

group level differences in both CSF and peripheral biomarkers (Kokkinou et al., 2014; Lai et al., 

2017; Olsson et al., 2016; Zhang et al., 2014). Such biomarkers may prove useful for 

distinguishing AD patients from HC. Nevertheless, our analysis of evidence for these biomarkers 

with respect to dementia severity indicates that there is insufficient evidence in the literature to 

make definitive statements. In addition, the failure of all the clinical trials to date, targeted to 

underlying pathology AD (Anderson et al., 2017; Cummings et al., 2017), indicate a current lack 

of effective drug therapies for AD dementia. This may be due to excessive damage in to the brain 

prior to clinical symptom onset (Villemagne et al., 2011), or to our insufficient understanding 

with respect to diagnosis and disease progression. Although, abnormal aggregation protein 

clumps define AD as a unique kind of neurodegenerative disorder in the brain (Jack et al., 2018)⁠, 

similar patterns of disease pathology and presentation of clinical symptoms in some other forms 

of dementia and normal ageing are also evident in the literature (Fjell et al., 2014; Raz et al., 

2016). Finally, some of our investigated biomarkers in both CSF and blood indicate a significant 

inverse correlation with the severity of AD. Again, future studies are needed to clarify the 

relevance of these findings. 

Our meta-analysis has several limitations: (i) we may have missed some published studies 

analyzing the strength association of between biofluid markers and dementia severity, (ii) we 
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only included studies published in English (iii) we included two studies from the ADNI data set, 

which measured raw data from same samples as other studies, (iv) we did not assess any grey 

literature. It is interesting to note in the context of this form of analysis, with an appropriate 

reliance of the quality of study design and reported data, that our study criteria only allowed 

inclusion of 20% of identified studies for our analysis: because of inadequate statistical 

reporting, existence of only single studies and other methodological problems. 

 

3.8 Conclusions 

This meta-analysis, which was conducted by quantitative examination of literature from July 

1984 to September 2018, combined effect sizes across 26 studies that measured the strength of 

relationship between biofluid markers on the severity of AD dementia, we found there is 

insufficient evidence in the literature for predicting dementia severity from biofluid biomarker 

concentrations. However, some of our results indicate a strong correlation between some 

biomarker levels and cognitive functions in AD patients. These effects need to be confirmed by 

additional future research. 
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Chapter 4: Biofluid metabolites concentration and their relationship with the age at onset 
of Alzheimer's disease dementia: A systematic review 

 
4.1 Introduction 

Among different kinds of dementia, Alzheimer's disease (AD) is the most common, and 

comprises around 72% of all dementia cases (Qiu et al., 2009)⁠. Abnormal protein aggregations in 

the brain define AD as a unique neurodegenerative disorder among different forms of dementia 

(Jack et al., 2018)⁠. These protein clumps are extracellular deposition of amyloid beta (Aβ) in the 

form of senile plaques, and intracellular deposition neurofibrillary tangles (NFT), which is made 

up of hyperphosphorylated tau proteins (Armstrong, 2009)⁠. AD precedes through an intermediate 

stage called mild cognitive impairment (MCI) (Petersen, 2016)⁠, which is the transition stage 

between normal healthy controls and full dementia. Interestingly, all the MCI subjects do not 

progress to dementia or AD even after 10 years of follow-up (Mitchell and Shiri-Feshki, 2009)⁠. 

Therefore, now the MCI, has gained much attention in the research domain to better understand 

the AD mechanism and progression.   

The majority of AD cases appears sporadically in the population, with age of onset of 65 years or 

older known as late-onset of AD (LOAD), typically sporadic cases are seen in the late 70’ 

through the 80’s (Kukull et al., 2002) and hence, increasing age is generally considered as the 

greatest risk factor for dementia (Fiest et al., 2016; Shea et al., 2016). The cut-off point of 65 

years old is however, a sociological partition with regard to the employment and retirement age, 

which has no particular biological significance on this cut-off point (Rossor et al., 2010)⁠. 

Similarly, those AD cases which occur before the age of 65 years are generally considered as the 

early-onset of AD (EOAD) (Wu et al., 2012)⁠. The rate of EOAD is around 6.1% (Zhu et al., 

2015)⁠, and these EOAD cases are mainly because of the genetic mutation of three genes such as 



  144 

presenilin 1 (PSEN1), presenilin (PSEN2), and amyloid precursor protein (APP) (Shea et al., 

2016)⁠. Recent systematic reviews and meta-analyses suggest that the patients with mutation of 

PSEN 1 gene have earliest age of onset at 43.3 ± 8.6 years, while patients with PSEN 2 and APP 

gene mutations have later age of onset with longer disease duration (Ryman et al., 2014; Shea et 

al., 2016). In addition, another gene named apoliporotein E(APoE) gene on chromosome 19 is 

associated with LOAD of both the familial and sporadic cases of AD (Reitz and Mayeux, 2014; 

Tanzi, 2012).There are three allelic variants of the APoE gene (ApoE ε2, APoE ε3, and ApoE ε4) 

and people with ApoE ε4 are at major genetic risk for LOAD, whereas APoE ε2 is associated 

with longevity and a lower risk of AD (Suri et al., 2013)⁠. However, the most recent meta-analysis 

on the effect of APOE ε3/ ε4 genotype and gender on the risk of AD suggests that both the men 

and women are at equal odds (Bland and Altman, 2000)⁠ of developing AD, but interestingly, 

women are at increased risk for early ages (Neu et al., 2017)⁠. 

To date, there are many systematic reviews and meta-analyses on the effect of genotypes, gender 

and environmental factors for risk of developing AD in both EOAD and LOAD cases (see: 

(Farrer et al., 1997; Killin et al., 2016; Neu et al., 2017; Ryman et al., 2014; Shea et al., 2016)⁠). 

However, there is a current lack of systematic review and meta-analysis on the relationship of 

biofluid metabolite levels and age at onset of AD dementia.  

As biofluid metabolites are among important ante-mortem markers AD, we decided to 

investigate whether there is evidence in the literature for a relationship between age at onset of 

AD dementia and biofluid metabolite concentrations. Age at onset of AD dementia is defined as 

the early or late onset of AD dementia (i.e. only sporadic AD cases) without genetic mutation of 

familial AD cases (Rossor et al., 2010; Tanzi, 2012). Different types of biofluid biomarkers 

including cerebrospinal fluid (CSF), blood, serum, plasma, urine, and saliva were included in our 
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analysis. Only clinical studies analyzing the relationship between the biofluid metabolites level 

of living AD patients and age at onset of AD were included. The antemortem diagnosis of AD 

patients is based on the National Institute of Neurological and Communicative Disorders and 

Stroke and the Alzheimer's Disease and Related Disorders Association (NINCDS-ADRDA 

criteria for probable AD or possible AD (McKhann et al., 1984)⁠. 

4.2 Methods 

We conducted this systematic review and meta-analysis according the Preferred Reporting Items 

for Systematic Reviews and Meta-analyses (PRISMA) statement (Moher et al., 2009)⁠. We 

searched the PubMed database (https://www.ncbi.nlm.nih.gov/pubmed/) from July 1, 1984 (the 

first diagnostic criteria of AD were reported by McKhann et al., (1984)) to September 5, 2018 for 

the maximum number of relevant studies (McKhann et al., 1984; Olsson et al., 2016)⁠. We used 

the search words ("age of onset” OR “early onset" OR “late onset” OR "correlation") AND 

(“biomarker” OR "CSF" OR "cerebrospinal fluid" OR "blood" OR "serum" OR “urine” OR 

"protein" OR "amyloid beta" OR "tau") AND ("accuracy" OR "sensitivity" OR "specificity" OR 

"ROC" OR "receiver operator characteristic") AND ("Alzheimer’s" OR "mild cognitive 

impairment" OR "normal ageing"). We restricted our search to the human species peer reviewed 

studies, which are written in English language only. A total of 357 studies were recorded, and out 

of that, only 15 studies were selected through the abstract screening. In addition to that, we had 

also included 17 articles from references list searching. After that, full text of all the 32 articles 

was assessed independently by the two reviewers (M.M & A.G) for the eligibility of quantitative 

synthesis. Any disagreements between the two reviewers were resolved by discussion with a 

third reviewer, until the final agreement was reached. Finally, the studies were selected if they 

met the following inclusion and exclusion criteria. 



  146 

4.2.1 Inclusion Criteria 

 

• Original peer-reviewed studies published between July 1, 1984 to September 5, 2018. 

• Only human species English language studies were included. 

• Studies analyzing the relationship between the biofluid metabolites concentration with 

the age at onset of AD dementia. 

• Use of clinical diagnosis criteria for AD, the National Institute of Neurological and 

Communicative Disorders and Stroke (NINCDS) and the Alzheimer’s Disease and 

Related Disorders Association (ADRDA) (McKhann et al., 1984)⁠. 

• AD patients’ group must be compared with a healthy control group (HC). 

 

4.2.2 Exclusion Criteria 

 

• All animal studies, meta-analyses, review articles, letters, comments, case reports, and 

unpublished articles. 

• Studies did not report the correlation coefficient value as an index of effect size measure 

of the association between the biofluid metabolites concentration and age at onset of AD 

dementia or the sample size of each subject groups or fewer than ten individuals or report 

data in a format which can’t be convertible. 

• Studies only presenting post-mortem or autopsy or neuroimaging data. 

• When a healthy control group (HC) comprises participants with other neurological 

diseases or psychiatric disorders. 
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4.3 Results and discussion 

The PubMed data base search retrieved 357 records, and the abstracts of all the records were 

screened for eligibility. Three hundred and forty-two articles were excluded because they were 

studies on animals or did not analyze the relationship between biofluid metabolites concentration 

and age at onset of AD dementia, presented only neuroimaging or post-mortem data, were 

reviews or meta-analyses.  

In addition, 17 studies were included from our previous systematic review and meta-analysis on 

biofluid metabolite levels and severity of AD dementia. Consequently, the text of 32 studies was 

assessed fully for inclusion eligibility for meta-analysis with our study inclusion and exclusion 

criteria as mentioned above. Of these, 6 studies had control groups, which comprised other 

psychiatric or neurological disorders, 20 studies did not perform the relevant analysis or had 

statistical reporting errors. Finally, only 6 studies (with total 128 AD patients and 111 healthy 

controls) met our inclusion criteria for quantitative synthesis of data. Out of seven studies, 3 

studies measured the relationship between CSF biomarker levels and age at onset of AD 

dementia, 3 studies performed such analysis using possible blood biomarkers, and one study 

assessed the same on both CSF and blood metabolites (See details in Table 4.1). Unfortunately, 

all these studies differed from each other in terms of category of metabolites and body fluids. 

Valentine et al. (2010) has suggested that to conduct a meta-analysis for a logical conclusion, we 

need at least two studies in the same category of biomarkers (Valentine et al., 2010)⁠. Hence, we 

were not able to perform meta-analysis to get an overall effect size (Rosenthal and DiMatteo, 

2001)⁠ because of insufficient data in each category of biomarkers. 

A myriad of clinical studies has been published on potential body fluid biomarker levels in AD, 

MCI, and healthy controls (HC) subjects to examine possible differential diagnosis (see recent 
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meta-analyses: Lai et al., 2017; Olsson et al., 2016). Unfortunately, very few studies have 

focussed on the relationship between age at onset of AD with body fluid biomarkers. During our 

systematic review of literature from July 1, 1984 to March 15, 2018, we found the first study, 

which was published by Alom and colleagues in 1990⁠. That study was conducted on 20 AD 

patients and 19 HC subjects to investigate the relationship of CSF neuropeptide Y levels with age 

at onset of AD and degree of cognitive impairment (Alom et al., 1990)⁠. The authors reported that 

AD patients had lower mean concentrations of CSF neuropeptide Y levels than the HC group. 

However, they did not find any significant correlation (Pearson r = 0.22; P > 0.05) between 

levels and age at onset in AD patients (Alom et al., 1990)⁠. Similarly, a CSF insulin study on AD 

and HC subjects, found that there are no significant differences in overall insulin levels between 

these two groups (Molina et al., 2002)⁠. The authors performed correlational analysis between 

CSF insulin levels and age at onset of AD patients, and found no significant correlation (Pearson 

r = 0.01) between these two variables (Molina et al., 2002)⁠. However, another study (with sample 

size of AD = 37, HC = 32) from the same group reported significant negative correlations 

between CSF taurine levels and age at onset of AD (Pearson r = -0.34; P< 0.05), while CSF 

histidine levels had a medium positive correlation (Pearson r =0.44; P< 0.05 ) with the same 

variable of age at  onset of AD (Molina et al., 1998)⁠. The strength of correlation for small (r = 

0.10), medium (r = 0.30) and large (r = 0.50) is based on Cohen’s criteria (Cohen, 1988)⁠. 

Likewise, another study (sample sizes AD = 16, HC = 13) claimed that reduction of platelet 

enzyme phospholipase A2 activity correlates (Spearman r = 0.43; P < 0.10) with the early onset of 

illness in AD patients (Gattaz et al., 1996)⁠. A medium strength correlation was reported between 

phospholipase A2  activity and early onset of illness in AD patients (Cumming and Maillardet, 
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2006)⁠ ⁠. The remaining study that our review identified (sample sizes AD =12, HC = 13) claimed 

that platelet membrane fluidity is correlated (Pearson r  

Table 4.1: Characteristics of age at onset of AD included studies 

Study first author’s 
name and year of 
publication 

Sample size (n) 
of AD and HC 
group only 

Investigated 
metabolites 

Effect size matrix for 
prediction coefficient or 
correlation between age at 
onset of AD and 
metabolites level 

(O’Brien et al., 1996)⁠ AD = 16 
HC = 18 

Cortisol response  
(HPA axis activity) 

*r = 0.73 for HPA axis 
activity (Peak cortisol 
level) 
 

(Alom et al., 1990)⁠ AD = 20 
HC = 19 

CSF neuropeptide Y *r = 0.22 between CSF 
neuropeptide Y and age at 
onset. 
 

(Molina et al., 2002)⁠ AD = 27 
HC = 16 

CSF insulin *r = 0.01 between CSF 
insulin levels and age at 
onset. 
 

(Molina et al., 1998)⁠ AD = 37 
HC = 32 

CSF taurine, 
histidine 

*r = -0.34 for CSF 
taurine. 
*r = 0.44 for CFS 
histidine. 
 

(Gattaz et al., 1996)⁠ AD = 16 
HC = 13 

Platelet PLA2 **rs = 0.43 for platelet 
PLA2 activity and EOAD 
 

(Piletz et al., 1991)⁠ AD =12 
HC = 13 
 

Platelet membrane 
fluidity (as measured 
by low DPH 
anisotropy) 

*r = -0.057 for membrane 
fluidity and age at onset 

 Total AD = 128 
 
Total HC = 135 

  

 
Table legends: AD = Alzheimer’s disease, CSF = Cerebrospinal fluid, HC = Healthy controls, 

HPA = hypothalamic-pituitary-adrenal (HPA), IL = Interleukin, *r = Pearson’s correlation 
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coefficient, **rs = Spearman’s correlation.  PLA2 = Phospholipase A2, DPH = 1,6-diphenyl-

1,3,5-hexatriene,).  

= -0.057; P = 0.026) with age at onset of AD (Piletz et al., 1991). For each of these cases 

described above, our included studies have very low sample size and are not sufficient evidence 

to determine accurate effect sizes: these findings must need to be replicated before any 

significant weight may be placed on the significance of their findings. 

 

 

Flowchart 4.1 Study selection process. 
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4.1 Conclusion 

Our systematic review of literature indicates clearly that there is a paucity of evidence for 

estimating the relationship between age at onset of AD dementia and biofluid metabolite levels. 

Although six studies were identified that attempted to examine the strength of relationship 

between these variables, it is not possible to calculate the average effect size by meta-analytic 

methods because of single category studies. For meta-analytic synthesis of evidence in terms of 

calculating the average effect size, we need to have at least two studies in the same category 

(Valentine et al., 2010)⁠. Due to insufficient evidence in the current state of literature, it is not 

possible to predict the age at onset of AD dementia of sporadic cases from body fluid 

biomarkers. More research is required in the context of predicting age at onset of AD dementia 

from biomarkers. Future investigations into the important question of whether body fluid 

metabolites correlate with age at onset of AD may provide additional knowledge that will 

contribute to improved diagnosis and prognosis, particularly in relation to early prediction of AD 

dementia. 
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Chapter 5: A systematic review on neuroimaging biomarkers of Alzheimer's disease: an 

overview towards early diagnosis, classification and prediction of course of illness 

 

5.1 Introduction 

Dementia is a condition characterized by the loss of memory and other cognitive abilities which 

affects individuals’ daily life activities (Rowe & Villemagne, 2013)⁠. Among different forms of 

dementia (Camicioli, 2004; Shaik & Varma, 2012), Alzheimer's disease (AD) accounts up to 50-

75% (Fiest et al., 2016; Qiu et al., 2009b; Reitz and Mayeux, 2014), and is considered as a 

"major killer” in the elderly (Katzman, 2008)⁠. AD was first described by Dr. Alois Alzheimer 

more than a century ago, however, the abnormal protein deposits associated with AD were 

isolated over the past three decades (Goedert, 2015)⁠. According to the World Alzheimer Report 

2018, It has been estimated that around 50 million people are lived with dementia in 2017, and 

this prevalence will exceed 131.5 million in 2050. The worldwide financial burden of dementia 

was around 818 billion US$ in 2015, and this amount is predicted to exceed 1 trillion US$ by 

2018 (Wimo et al., 2017)⁠. Although, the exact cause of AD is still unclear, the extracellular 

accumulation of beta-amyloid (Aβ) and intraneuronal tau proteins in the form of plaques and 

neurofibrillary tangles (NFT) respectively, defines AD as a distinct type of neurodegenerative 

disorder that leads to dementia (Armstrong, 2009; Goedert & Spillantini, 2006; Hyman et al., 

2012; Jack et al., 2018)⁠. AD appears mainly sporadically, and the sporadic form accounts up to 

90% or more of incidence, at a later age of onset (Bertram & Tanzi, 2004). Around 5% of AD 

cases develop through genetic mutation (Cruts & Van Broeckhoven, 1998)⁠. AD dementia that 

appears symptomatically before the age 65 years is generally considered as early age at onset of 

AD (EOAD) (Shea et al., 2016; X.-C. Zhu et al., 2015), which is mainly caused by the autosomal 
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dominant mutation of three genes:  the amyloid precursor protein (APP) gene on chromosome 

21, the presenilin-1(PS1) gene on chromosome 14, and the presenilin-2(PS2) gene on 

chromosome 1 (Brouwers, Sleegers, & Van, 2008)⁠. The late onset of AD (LOAD) typically 

develops after age of 65, and hence, old age is the greatest risk factor for sporadic cases of AD 

(Guerreiro & Bras, 2015)⁠. In addition, the apolipoprotein E (APoE) gene on chromosome 19 

expresses three alleles: APoE Ɛ2, APoE Ɛ3 and APoE Ɛ4. The inheritance of APoE Ɛ4 allele is 

associated with the late onset of AD in both familial and sporadic cases (Neu et al., 2017)⁠ by 

decreasing mean age at onset from 84 to 68 years (Corder et al., 1993)⁠. Furthermore, people with 

Down's syndrome (DS) are also associated with high risk for early onset of AD because DS is 

caused by the presence of three copies of chromosome 21 with AAP genes, which plays an 

important role of Aβ production in AD (Goedert, 2015)⁠. 

AD progresses through an intermediate stage known as the Mild Cognitive Impairment (MCI), 

which is characterized by a clinical condition of cognitive and memory impairment without 

affecting significantly to the individuals' daily life activities (Petersen et al., 2009)⁠. MCI is 

further classified into two subcategories namely amnestic (aMCI) and non-amnestic (nMCI) 

(Petersen et al., 2014)⁠. Individuals’ with aMCI show clinically significant memory impairment as 

noticed by self and their family members of increasing forgetfulness, which does not meet the 

criteria for diagnosis of dementia or AD (Petersen et al., 2009)⁠. Similarly, people with nMCI 

show subtle impairment in attention, languages, or visuospatial functions, but not impairment of 

memory, and may further progress to other forms of dementia such as frontotemporal lobar 

degeneration or dementia with Lewy bodies (Molano et al., 2010; Petersen, 2009)⁠. Brain damage 

in AD is an ongoing process, which may begin 20 or more years before clinical symptoms appear 

(Jack et al., 2009; Reiman et al., 2012; Villemagne et al., 2013)⁠. The main clinical symptomatic 
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hallmark of AD and some MCI is a deficit of episodic memory (Carlesimo & Oscar-Berman, 

1992; Jack et al., 2011)⁠. Episodic memory is the ability to encode, retain and retrieve content of 

autobiographical experiences of a person’s daily life, and it is supported both in animals and 

humans by the medial temporal lobe (MTL) including the hippocampus with other cortical and 

sub-cortical structures (Bonnici, Chadwick, & Maguire, 2013; Dickerson & Eichenbaum, 2010)⁠. 

The conventional clinical diagnosis of AD is based on  the guidelines of the National Institute of 

Neurological and Communicative Disorders and Stroke (NINCDS) and the Alzheimer’s Disease 

and Related Disorders Association (ADRDA) (McKhann et al., 1984)⁠, and it has been revised 

and modified into separate diagnosis and research criteria based on specific patterns of cognitive 

and structural or biological changes on AD pathology (Dubois et al., 2010; Jack et al., 2018; 

Mckhann et al., 2011). In addition, the Alzheimer's Disease Assessment Scale-Cognitive 

Behaviour section (ADAS-Cog) is considered as the “gold standard” for diagnosis of MCI but 

sometimes it gives false-positive and false-negative results (Edmonds et al., 2015; Hobart et al., 

2013; Posner et al., 2013). For example, a longitudinal study by Edmonds et al., (2016)⁠ 

comprising of 520 individuals from the Alzheimer's Disease Neuroimaging Initiative (ADNI) 

(http://adni.loni.usc.edu/), who were originally identified as "cognitively normal" based on ADNI 

diagnostic criteria (Petersen et al., 2010)⁠ identified 37 subjects as the MCI based on the actuarial 

neuropsychological diagnostic criteria (Bondia et al., 2014)⁠. Finally, the authors concluded that 

the false-negative rate of MCI is 7.1% and the impact of "missed" cases of MCI could affect the 

clinical practice, research studies, and clinical trials of suspected AD (Edmonds et al., 2016)⁠. 

Currently the absolute diagnosis of AD can only be confirmed at autopsy, or rarely – brain 

biopsy (Vinters, 2014)⁠. 
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The inaccessibility of living human brain tissue for diagnosis of AD underscores the proposal 

that in vivo imaging modalities have an advantage for better understanding of this disease’s 

underlying pathological process by serving as a “window in the brain” (Johnson, et al., 2012). In 

this systematic review, we assessed the utility of multimodal neuroimaging biomarkers for 

diagnosis and distinguishing AD patients from the normal ageing controls and MCI subjects. We 

also consider the prediction of the course of illness in AD from MCI. 

5.2 Imaging biomarkers in AD brain pathology 

A biomarker or biological marker can be defined as a characteristic which is measured and 

evaluated as an indicator of normal biological processes or pathological processes or to detect the 

pharmacological responses to a specific therapeutic intervention (Biomarkers Definitions 

Working Group, 2001)⁠. There are five biomarkers have been constructed to be used in clinical 

trials and in advanced diagnostic criteria. These biomarkers fall into two categories such as the 

beta amyloid (Aβ) plaque biomarkers and tau-related neurodegeneration biomarkers (Clifford & 

Holtzman, 2013)⁠.Three out of five biomarkers are imaging measurements while the other two are 

cerebrospinal fluid (CSF) protein analytes. Amyloid beta (Aβ) deposition related biomarkers are 

(i) decreased concentration of CSF Aβ42 due to progressive deposition in the brain, and (ii) 

positron emission tomography (PET) for amyloid imaging. However, other the three biomarkers 

are tau protein related neurodegeneration such as (i) increased level of CSF total tau (t-tau), (ii) 

hyperphosphorylated tau (p-tau), and (iii) atrophy on structural magnetic resonance imaging 

(MRI) or hypometabolism of flurodeoxyglucose (FDG) on PET (Clifford & Holtzman, 2013; 

Jack et al., 2018).In addition, the functional magnetic resonance imaging (fMRI) and diffusion 

tensor imaging (DTI) modalities are being extensively investigated as potential biomarkers in 
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research domain. The main goal of these biomarkers is to demonstrate the pathological condition 

of AD by measuring the Aβ plaques and NFT in brain and CSF.  

Each of the five biomarkers mentioned above, constructed for use in clinical trials and in 

advanced diagnostic criteria biomarker types, has a unique pattern of strength and weakness in 

disease diagnosis and prediction, and sometimes these biomarkers may lead to misdiagnosis. 

This is probably due to the similar spatiotemporal evolution of AD, healthy ageing and other 

related dementia (Johnson et al., 2012)⁠. For instance, around 20 - 40% of healthy elderly non-

demented individuals have similar functional pathology to AD with decline in episodic memory 

and other cognitive abilities such as mental speed and executive function (Fjell et al., 2014; Jack 

et al., 2010)⁠. Therefore, the classification of normal ageing subjects from the early stages of 

dementia is quite challenging, and it needs to be understood very clearly for better understanding 

of pathological process, progression and clinical symptoms underlying AD. 

5.3 Receiver operating characteristic (ROC) curve 

The goals of AD biomarker research include the pursuit of indicators for ante-mortem diagnosis 

and early prediction of onset of disease with high accuracy, sensitivity and specificity. To achieve 

this in the field of neuroimaging, signal detection methodology is being widely employed using 

parameters derived from receiver operator characteristic (ROC) curves to achieve estimates of 

these quantities (Zhu, Zeng, & Wang, 2010)⁠. The ROC curve displays diagnostic test accuracy 

expressed in sensitivity (i.e true positive rate) against 1-specificity (i.e false positive rate). This is 

illustrated by the confusion matrix of figure from Zhu, Zeng, & Wang (2010). 

For example, results from a diagnostic test aiming to measure occurrence of a disease could 

represent a true positive (TP), true negative (TN), false negative (FN) or false positive (FP) 
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decision. The TP indicates the presence of disease, while the TN indicates absence of the disease 

(Zhu, Zeng, & Wang, 2010). Similarly, if the diagnostic test result indicates presence of a disease 

in a person who actually doesn’t have the disease that is a FP result. The reciprocal case applies 

for FN case (Zhu, Zeng, & Wang, 2010). All these confusion matrix quantities are mostly used to 

describe the SN, SP and accuracy of a diagnostic test [see details Table 5.1, adapted from (Zhu, 

Zeng, & Wang, 2010)].  

 

Table 5.1 Confusion matrix. TP = true positive, TN = true negative, FN = false negative, FP = 

false positive. 

SN = TP/TP+FN (Number of true positive assessment)/(Number of all positive assessment). 

SP = TN/TN+FP (Number of true negative assessment)/(Number of all negative assessment). 
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Accuracy = TN+TP/TN+TP+FN+FP (Number of correct assessments)/Number of all 

assessments). 

The ROC area under the curve (AUC) represents the accuracy of a diagnostic test by plotting the 

SN (i.e true positive rate) in y-coordinate against 1-SP (i.e false positive rate) in x-coordinate 

(see Fig 5.1). The ideal coordinates (0, 1) represent the performance of a diagnostic test that 

perfectly classifies the presence or absence of a disease condition in a population with 100% 

sensitivity and 100% specificity. When such classification only achieved 50% SN and 50% SP 

by the diagnostic test is called random classification. The cut-point in the ROC space (i.e AUC) 

represents the trade-off between SN and SP for increasing SN of a diagnosis while 

accompanying with the decreased of SP (Zhu, Zeng, & Wang, 2010). 

 

Figure 5.1 Receiver operating characteristic curve. Adapted and modified from (Zhu, Zeng, & 

Wang, 2010).  
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5.4 Methodology 

For this systematic review, we identified relevant studies in the PubMed data base 

(https://www.ncbi.nlm.nih.gov/pubmed/). We searched studies from July 01, 1984 to January 

September 5, 2018 using the key words ("biomarker" OR "machine learning" OR "classifier") 

AND ("accuracy" OR "sensitivity" OR "specificity" OR "ROC" OR "receiver operator 

characteristic") AND ("diagnosis" OR "prognosis" OR "prediction") AND ("magnetic resonance 

imaging" OR MRI OR fMRI OR "functional magnetic resonance imaging" OR PET OR 

"positron emission tomography" OR "diffusion tensor imaging" OR DTI OR "magnetic 

resonance spectroscopy" OR MRS OR "Single-photon emission computed tomography" OR 

SPECT) AND ("alzheimer's" OR "mild cognitive impairment" OR "normal ageing"). We limited 

our search to English language studies involving human species only. A total of 248 initial hits 

were returned, and out of these, we selected only 145 studies based on our following inclusion 

and exclusion criteria. MCI has not been considered as a main comparator group in the majority 

of this thesis. In this systematic analysis of evidence from neuroimaging there is a considerable 

amount of data describing MCI – AD contrasts. For this reason, this section of the thesis includes 

comparative analysis of MCI where appropriate. 

5.4.1 Inclusion criteria 

(i) Only peer reviewed neuroimaging studies published between July 01, 1984 [first reported 

AD diagnostic criteria (McKhann et al., 1984)⁠] to September 5, 2018. 

(ii) Studies reporting accuracy or sensitivity and specificity or receiver operating 

characteristic (ROC) area under the curve (W. Zhu, Zeng, & Wang, 2010)⁠.  

(iii) Studies classifying AD, MCI and healthy controls (HC) or discriminating between aMCI 

https://www.ncbi.nlm.nih.gov/pubmed/
https://www.ncbi.nlm.nih.gov/pubmed/
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vs nMCI or predicting progression of conversion to AD or MCI. 

5.4.2 Exclusion criteria:  

(i) Studies only report fluid biomarkers data or autopsy data. 

(ii) All meta-analyses or conference proceeding or review articles or animal model studies. 

(iii) Studies did not report numerical data of accuracy or sensitivity and specificity or 

receiver operating characteristic (ROC) area under curve or sample size in subject 

groups. 

 In addition to the selected studies, we have also cited many background studies, meta-analysis 

and systematic reviews. All selected studies are reported in tabular (see details Table 5.1) form 

after the SPECT imaging in AD section. 

5.5 Structural MRI in AD: 

MRI is a non-invasive imaging method for acquiring brain images and can be configured to be 

sensitive to various aspects of brain structures like water, fat, and iron etc. It is one of the 

constructed neuroimaging biomarkers widely used in clinics and in the research domain to assess 

atrophies in AD specifically grey matter volume changes the brain and also monitors the pattern 

of disease progression (Clifford & Holtzman, 2013)⁠. Brain atrophy in AD is thought to be caused 

by the deposition Aβ protein, which may ultimately lead to the death of neurons and glial cells 

and considered as a major contributor in the AD pathology (Johnson et al., 2012)⁠. The earliest 

site of Aβ deposition occurs and follows by five distinct neuroanatomical phases in the brain 

such as neocortex, allocortex, diencephalic-striatal-basal forebrain, brain stem, and cerebellum 

with most advanced Aβ pathology (Thal et al., 2002). Conversely, a study by Jack et al, (2010)⁠ 

suggested that Aβ deposition might be a less sensitive biomarker for tracking disease progression 
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in AD. However, the earliest site of NFTs deposition occurs in the trans-entorhinal region 

followed by neocortical association areas and subcortical nuclei, and then spreads to other areas 

of MTL (Braak & Braak, 1991)⁠. Furthermore, a recent review (Fjell et al., 2014)⁠ revealed that 

brain atrophy in AD progresses by entorhinal cortex and hippocampus in the MTL, then extends 

to other association areas in medial parietal, lateral temporal and frontal regions, finally spreads 

out to all regions of cortex. The annual atrophy rate of MCI people is much higher than normal 

people and it increases with the people who further develop to AD as suggested by the above 

study. The rates of atrophy difference in different parts of the brain like whole-brain, entorhinal 

cortex, hippocampus, temporal lobe volumes, and ventricular enlargement are highly correlated 

with changes in cognitive performances and offer validated markers for tracking disease 

progression (Frisoni et al., 2010)⁠. For example, MTL atrophy can simply be assessed by visual 

inspection of T1-weighted coronal section (a standard structural MRI image), and it offers 

around 80-85% of sensitivity and specificity to distinguish from AD patients to cognitively 

normal individuals, but it provides slightly lower sensitivity and specificity for diagnosis of 

aMCI (Frisoni et al., 2010)⁠. Another autopsy confirmed cohort study (Burton et al., 2009)⁠ on 

visual rating of MTL atrophy shows high diagnostic accuracy with sensitivity of 91% and 

specificity of 94% among AD, dementia with Lewy bodies (DLB) and vascular cognitive 

impairment (VCI).  Furthermore, Schuff et al., (2009)⁠ demonstrated that normal subjects with 

APOE ε4 carrier have a faster hippocampal loss than non-carriers and the accelerated 

hippocampal loss may be an indicator of AD pathology. Likewise, another study (Mcdonald et 

al., 2009)⁠ demonstrated that the progressive cerebral atrophy in AD is not uniform throughout the 

brain, and the clinical impairment stage is associated with increased atrophy rates in neocortical 

areas, early stage with medial temporal cortex, and finally in the later stage the atrophy rates are 
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larger in prefrontal, posterior temporal, parietal and cingulate cortex. However, there is a wealth 

of evidence which suggests that many psychiatric disorders like major depression, borderline 

personality disorder and post-traumatic stress disorder etc. are associated with reduced 

hippocampal volume (Frodl et al., 2006; Hickie et al., 2005; Schmahl et al., 2009). 

5.6 Diagnosis of AD with structural MRI: Prediction of conversion 

Two promising biomarkers of AD, structural MRI and CSF protein concentrations, respectively, 

provide early predictive information about the conversion of MCI to AD, but structural MRI has 

slightly better prediction of conversion from aMCI to AD than CSF biomarkers (Vemuri, 

Weigand, & Trojanowski, 2009)⁠. It is well accepted that all AD patients’ progress through an 

MCI stage and some may remain in this transitional stage until death. However, irreversible 

brain damage in AD is an ongoing process, which may begin 20 or more years before clinical 

findings appear (Villemagne et al., 2013)⁠. Therefore, there has been a lot of interest in prediction 

of AD from the prodromal stage for early diagnosis and targets for therapeutic interventions to 

halt or delay the progression. A meta-analysis (Y., Z.-X., & Wei, 2009)⁠ demonstrated that MTL 

atrophy has around 72.8% sensitivity and 81% specificity for predicting conversion of aMCI 

patients to dementia. Another meta-analysis (Karow et al., 2010)⁠,which included 826 AD patients 

and 1027 elderly cognitively normal subjects, found that MTL atrophy was the strongest change 

observed in AD dementia. In addition, hippocampal volume reduction of 20% is already present 

at a mild stage of AD as estimated by the above study. Furthermore, another meta-analytic study 

(Schroeter et al.,  2009)⁠ involving 1351 patients and 1097 healthy control subjects showed that 

early AD affects structurally the (trans-) entorhinal and hippocampal regions, and functionally, 

the inferior parietal lobules and precuneus. Therefore, the most reliable predictor of AD from 

aMCI appears to be atrophy in the (trans-) entorhinal area/hippocampus and 
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hypometabolism/hypoperfusion in the inferior parietal lobules (Schroeter et al., 2009)⁠. However, 

the annual conversion rate of AD from aMCI is around 10-15%, while only 1-2% normal elderly 

persons progress to AD (Petersen, 2009)⁠. Furthermore, Fischer et al., (2007)⁠ reported the 

conversion rates of AD from aMCI and nMCI are 48.7% and 26.8% respectively. In addition to 

that, people with MCI show a high probability of developing to full AD after 2.5 years and both 

the subtypes of MCI develop frequently to AD and related dementia. Moreover, a meta-analysis 

(Mitchell & Shiri-Feshki, 2009)⁠ on progression of MCI to AD and to related dementia reported 

that 50% of people with MCI convert to dementia, and the annual conversion rate is 

approximately 7% to dementia and AD and 2% to vascular dementia. Interestingly, the other half 

of the people with MCI will not progress to AD after 10 years as suggested by the above study. 

Another study, however, suggested that approximately 80% of aMCI subjects progress to 

dementia within 6 years (Petersen, 2004)⁠. 

A number of studies have been published with reference to hippocampal atrophy rates in normal 

ageing (NA), MCI, and AD to monitor and predict the disease progression. A meta-analysis 

(Barnes et al., 2009)⁠ on 595 AD patients and 212 matched controls demonstrated that the 

annualized hippocampal volume loss rates for AD patients and normal controls (mean age of 69-

83 years) were estimated to be 4.66% and  1.41% respectively within 95% of the confidence 

interval (CI). However, an MRI study (Sluimer et al., 2009)⁠ demonstrated that hippocampal 

atrophy rate is the best classifier of MCI and control groups, while whole brain atrophy rate 

discriminates AD from MCI groups. Finally, the authors stated that regional hippocampal 

atrophy rates are the strongest predictors of AD progression. In a recent meta-analysis 

(Tabatabaei-jafari, Shaw, & Cherbuin, 2015)⁠ on cerebral atrophy of MCI patients revealed that 

the volume reduction is higher in different brain areas: such as 2.2-fold higher in the 
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hippocampus, 1.5-fold in the entorhinal cortex, and 1.8-fold in the whole brain. However, 

atrophy rates may vary with different methodological considerations. For instance, an ADNI 

study (Mouiha et al., 2011)⁠ of 683 subjects used Surgical Navigation Technologies (SNT) and 

FreeSurfer software, and the authors found that the monthly whole hippocampal atrophy rate of 

different subject groups on FreeSurfer is AD = 0.77% (standard deviation (SD) = 0.84), MCI = 

0.49% (SD = 0.79) and Control = 0.12% (SD = 0.87); while in STN these rates are AD = 0.59% 

(SD = 0.33), MCI = 0.40% (SD = 0.32) and Control = 0.22% (SD = 0.20) . In contrast, the 

annual atrophy rates in normal healthy older adults are found to be 0.2–0.5% for gross brain 

volume reduction, 0.79–2.0% for the hippocampus, and 0.3–2.4% for the entorhinal cortex (Fjell 

et al., 2014). 

5.7 Machine learning Approach 

A great deal of work has been reported on machine-learning techniques such as support vector 

machines (SVM) for disease diagnosis, transition prediction and treatment prognosis from 

structural and functional brain images of AD, MCI, and normal healthy ageing subjects with high 

accuracy. A specific set of algorithms is used to train the SVMs on well-characterized data such 

as normal ageing and AD brain scans to test the new scans against a training set for automatic 

classification of different groups such as MCI, AD and NA with high sensitivity and specificity 

(Klo et al., 2008)⁠. A linear SVM study included 85 pathologically proven AD patients, 91 normal 

ageing subjects and 19 frontotemporal lobar degeneration (FTLD) patients, and the authors 

compared each subject group on the basis of grey matter segmentation of the whole brain and 

antero-medial lobe volume of interest for analysis (Klo et al., 2008)⁠. By using the SVM 

classification in confirmed AD-patients versus controls group, up to 95% AD cases were 

correctly classified with 95% sensitivity and 95% specificity. Considering the grey matter of the 
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antero-medial lobe volume of interest analysis, up to 90% AD cases were correctly classified 

with 85% sensitivity and 95% specificity (Klo et al., 2008)⁠. Furthermore, for classification 

between mild AD versus controls of the whole brain images, up to 81.1% cases were classified 

correctly with 60.6% sensitivity and 93.0% specificity, and when this analysis was restricted only 

to the MTL, it further increases accuracy to 85.6% with sensitivity of 75.8% and specificity of 

91.2% (Klo et al., 2008)⁠. Finally, the classification between AD versus a FTLD group showed 

89.2% cases were correctly identified by using whole brain analysis with sensitivity of 94.7% 

and specificity of 83.3% (Klo et al., 2008)⁠. Likewise, another machine-learning cohort 

study(Mitchell et al., 2009), included 107 non-demented non-depressed subjects initially, and 

then sub-classified into 22 pure aMCI subjects, 54 multi-domain MCI (mdMCI) subjects, 10 

nMCI subjects and 21 “worried well” subjects. After 2 years of follow up study, 59% of mdMCI 

progressed to dementia with only 5% improved, and 18% of pure aMCI progressed and 41% 

improved. In the case of  nMCI subjects, 70% were improved (Mitchell et al., 2009).⁠ Similarly, 

another recent SVM study(Long et al., 2016)⁠ reported on the classification of MCIs from healthy 

controls by examining the MRI data from 29 MCI patients and 33 healthy controls. In that study, 

the authors classified the MCIs and normal controls with an accuracy of up to 96.77%, 

sensitivity and specificity were 93.10% and 100 respectively. The above study also found the 

most discriminating features for classification mainly on the default-mode network associated 

areas like hippocampus, parahippocampal gyrus, posterior cingulate gyrus and middle frontal 

gyrus, and subcortical regions such as lentiform nucleus and the amygdala (Long et al., 2016)⁠. 

However, due to the small sample size of many studies, fine-grained interpretation of results may 

not be warranted as it may undermine power (Schnack & Kahn et al., 2016).  
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In the past decade, many quantitative studies in AD have been published on voxel-based 

morphometry (VBM) in contrast with a region of interest (ROI) approach. Briefly, VBM is a data 

analysis technique for MRI, which detects regional grey matter, white matter concentrations, 

cerebrospinal fluid partitions, and anatomical standardization between different subject groups 

by voxel-wise comparison in an automated fashion (Ashburner & Friston, 2000; Matsuda, 2013)⁠. 

However, a VBM meta-analytic study suggested that the grey matter reduction in the left 

hippocampus and parahippocampal gyrus is more in aMCI patients who convert to AD, and 

therefore, left MTL atrophy appears to be the most consistent neurostructural biomarker for 

predicting conversion AD from aMCI (Ferreira et al., 2011)⁠. In addition, MTL structures like 

amygdala, hippocampus, and thalamus may be preserved in normal ageing, while cortical 

regions like frontal and insular areas are frequently atrophied in normal ageing (Matsuda, 2013)⁠.   

In summary, structural MRI has the potential to detect significant brain changes in different 

stages of AD and related dementia with high accuracy as explained earlier. Furthermore, Harper 

and colleagues recently published a study on MRI visual rating scales in the diagnosis of 

dementia by evaluating 184 subsequently post-mortem confirmed cases (Harper et al., 2016)⁠ and 

the study distinguished each pathological group from controls with an accuracy of 0.86-0.97 in 

relation to area under receiver-operator curves. However, atrophy in MTL is considered as a key 

marker for diagnosis of AD and early prediction from the MCI stage. In addition, the progressive 

atrophy rate in the whole brain, hippocampus and MTL is significantly more than the normal 

ageing, and these different patterns of atrophy could offer helpful predictive information about 

the conversion to AD from the MCI stage. Conversely, it has been well documented that some 

normal healthy older individuals possess AD-like neuropathology. Consequently, it is sometimes 

quite challenging to use MRI to distinguish normal ageing, MCI and AD patients. In addition, 
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perhaps surprisingly, an earlier MCI study for comparison of structural MRI and the cognitive 

assessment tests for prediction of AD from its prodromal stage suggested that the cognitive 

assessment tests produce a better prediction of probable AD from aMCI than the volumetric 

measurement of the whole brain, ventricle, entorhinal cortex, or hippocampus (Fleisher et al., 

2008). Therefore, there are some pitfalls in structural MRI, which undermine the accuracy of 

diagnosis and prediction of AD. Johnson and colleagues (2012) described some of the limitations 

in the structural MRI (Johnson et al., 2012),these are (i) It cannot directly detect the involved 

proteins, (ii) It cannot assess brain function, (iii) Progressive pattern of cerebral atrophies may 

also be found in related dementia and other diseases, (iv) Study variability due to inter scanner 

variations and differences in patient sample, (v) Lack of enough longitudinal studies. Therefore, 

by combining all other biomarkers might offer utmost accuracy of early diagnosis, prediction of 

conversion and prognosis of AD. 

5.8 Functional MRI (fMRI) in AD 

Functional magnetic resonance imaging (fMRI) is a non-invasive neuroimaging technique, 

which measures the brain activity by detecting tissue perfusion, blood-volume changes, or 

changes in the concentration of oxygen in the form of blood oxygenation level–dependent 

(BOLD) contrast mechanism (Logothetis, 2008)⁠. It is an indirect measure of neuronal activity 

during certain tasks, and the BOLD responses are believed to reflect neuronal activity due to 

changes in the concentration of blood oxyhemoglobin to deoxyhemoglobin ratio (Logothetis et 

al., 2001). As mentioned earlier, a symptomatic hallmark of AD is the deficit of episodic memory 

and other cognitive functions, and is supported by hippocampus and MTL, but in contrast, 

musical memory is well preserved in many AD patients (Stelzer et al., 2015) ⁠. Therefore, the 

majority of previous fMRI studies on AD and MCI mostly focused on the hippocampus and 
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related areas of MTL to show different activation patterns in various episodic memory tasks. 

However, AD patients show decreased activity in hippocampal and parahippocampal regions 

during episodic memory encoding tasks relative to normal subjects (Dickerson & Sperling, 

2008)⁠. In a quantitative meta-analysis (Schwindt & Black, 2009)⁠ on fMRI and PET studies of 

episodic memory activation in AD demonstrated that control subjects show consistently greater 

activity in several regions, including MTL and frontal pole, while patients show increased 

activity in ventral lateral prefrontal cortex and other regions. Furthermore, a recent meta-analysis 

(Terry et al., 2015)⁠ of fMRI studies including total 409 subjects (healthy older adults (HOA) = 

200, MCI = 131, and AD = 89) on the activation pattern associated with episodic memory in AD, 

MCI and HOA explained that the MCI subjects show greater activation in the cerebellum 

compared to the HOA, where as AD patients show hypoactivation in MTL. In addition, HOA 

subjects show more activation in the right hippocampus than the AD patients. Finally, the authors 

suggested that more evidence is required before considering hyperactivation of MTL as an early 

biomarker of AD. Several fMRI studies have reported decreased MTL activity in MCI subjects 

and genetic at-risk subjects compared to normal subjects, while many other studies showed 

increased MTL activity in symptomatic individuals, who are at risk for AD dementia (Johnson et 

al., 2012; Sperling, 2011)⁠. Furthermore, a subgroup of MCI subjects when compared to a 

clinically stable group showed greater activation in MTL, who further progressed to cognitive 

decline over 2.5 years of follow up (Dickerson et al., 2004)⁠. Another longitudinal MCI study (5.9 

years of follow up) (Miller et al., 2008)⁠ on hippocampal activation for the prediction of degree 

and rate of cognitive decline found that greater hippocampal activation predicts greater degree 

and subsequent rate of cognitive decline. In addition, results from whole-brain analysis suggest 

that the hippocampal formation is the only brain region where its activation predicts cognitive 
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decline and many factors known to be affecting cognitive decline within MCI, including baseline 

level of clinical impairment, age, education, and hippocampal volume (Miller et al., 2008)⁠. 

Likewise, another study (Dickerson et al., 2005)⁠ suggested that the MCI group shows 

hyperactivation in the MTL and the hippocampus compared to normal controls, whereas the AD 

patients show hypoactivation in the hippocampus and the entorhinal cortex. However, the above 

study hypothesized that the MTL hyperactivation is an early course of prodromal AD and it 

subsequently decreases as the disease progresses (Dickerson et al., 2005). Furthermore, another 

meta-analysis (Nellessen et al., 2014)⁠ on episodic memory related brain activation patterns in AD 

suggested that the MCI subjects show hyperactivation within the right hippocampus during 

memory encoding, while the left hippocampus and the fusiform gyrus show hypoactivation 

during retrieval tasks. In contrast, the AD patients show increased activation in the precuneus 

(PCU) during memory encoding, whereas the right hippocampus shows hypoactivation during 

retrieval tasks (Nellessen et al., 2014)⁠. 

5.9 Resting-state fMRI in AD 

The use of resting-state fMRI (rsfMRI) focussing on the default mode network (DMN) is an 

interesting approach in fMRI to study brain connectivity in various neuropsychiatric disorders 

without any external stimuli, and it is very useful measure of critical brain functions such as 

movement, vision, audition, language, episodic memory, executive function, and salience 

detection (Greicius, 2008; Greicius et al., 2004; Krajcovicova et al., 2014)⁠. In rsfMRI, the 

subjects do not have to perform any tasks, but instead, they are asked to stay quiet inside the 

scanner with closing their eyes for several minutes to localize the functional connectivity 

between different areas of the brain at rest (Greicius, 2008; Vemuri et al., 2012)⁠. An early study 

on AD reported that the prominent coactivation of the hippocampus in all groups of subjects 
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suggests that the DMN is closely associated with episodic memory processing. (Greicius et al., 

2004)⁠ In addition, AD patients show decreased resting-state activity in the posterior cingulate 

and hippocampus, and this disrupted DMN could be used as an early AD biomarker with 

sensitivity of 85% and a specificity of 77% (Greicius et al., 2004)⁠. Furthermore, a recent 

machine learning ADNI study (Khazaee et al., 2016)⁠ reported on rsfMRI  classification of AD, 

MCI, and healthy control (HC) subjects and achieved 93.3% of accuracy on automatic 

classification. In addition, the authors estimated hub nods (brain networks) and the numbers 

found to be 12, 10, and 9 for HC, MCI and AD respectively, which indicates AD patients may 

have more disruption in brain networks as the disease progresses. Moreover, AD selectively 

seems to disrupt highly connected hubs of the brain network such as the medial and lateral 

prefrontal cortex, parietal cortices, insula, and thalamus, and this alteration in brain networks 

tightly correlates with the patients’ cognitive performance (Dai et al., 2015)⁠. Conversely, a 

longitudinal study (Sheline et al., 2010)⁠ including 100 cognitively normal subjects suggested that 

the APOE Ɛ4 allele also disrupts the rsfMRI connectivity of the precuneus to several other 

regions in the absence of amyloid plaques or decreased CSF Aβ42.  However, the first voxel-

level quantitative meta-analysis (Jacobs et al., 2013)⁠ on default mode connectivity in 1196 AD 

patients and 1255 controls demonstrated that the subcortical areas of the brain act as a modulator 

between DMN connectivity and task-related activation. In addition to that, the MCI stage shows 

disrupted DMN function in the ventral posterior cingulate cortex (PCC) and the precuneus 

(PCU) leading to compensatory task-related increased deactivation in AD. Finally, they 

concluded that AD is a syndrome that starts by damage in neural networks and followed by 

cognitive deficits (Jacobs et al., 2013)⁠. Furthermore, a recent meta-analysis (Lau et al., 2016)⁠ on 

rsfMRI of aMCI patients has shown that regional resting-state functional connectivity is 
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disrupted more in aMCIs than controls, including the posterior cingulate cortex, right angular 

gyrus, right parahippocampal gyrus, left fusiform gyrus, left supramarginal gyrus and bilateral 

middle temporal gyri. 

In summary, both fMRI and rsfMRI are promising neuroimaging techniques for detecting brain 

changes in cognitive tasks and at rest. By synthesizing previous research evidence, it is clear that 

the pattern of brain activity is significantly different in AD, MCI and HOA subjects. Disruption 

of DMN functional connectivity and reduced MTL activity are already present in the MCI stage. 

In addition, the hypoactivation of MTL and the hippocampus is observed in latter stages of 

dementia. Based on these results, rsfMRI of the DMN in relation to brain connectivity might 

have the potential for the early stage diagnosis of AD and prediction of conversion from the 

prodromal stage of dementia with more than 90% accuracy.  

However, there are some pitfalls associated with fMRI studies (Johnson et al., 2012). For 

example: (i) It is quite problematic for severely cognitive impaired subjects, (ii) It is very prone 

to wrong interpretation of results due to subjects head motion and physiological noises (iii) Inter-

individual variability in cognition-related activity in different brain regions, and (iv) It can not 

directly detect the involved neuropathology of AD. 

5.10 Diffusion Tensor Imaging (DTI) in AD 

DTI is a non-invasive neuroimaging technique, which allows detection of white matter integrity 

and the magnitude and degree of anisotropy in tissues by reflecting water retention capacity 

across the fiber tracts in the brain of healthy controls as well as the disease suspected subjects' 

(Alexander et al., 2007)⁠. Fractional anisotropy (FA) and mean diffusivity (MD) measure the 

directional flow of water molecule and average diffusion of water in the white matter 
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respectively (Alexander et al., 2007; Oishi et al., 2011),⁠ which are mainly analyzed in AD 

studies. In addition to grey matter volume changes, the white matter abnormalities in AD and 

MCI patients, particularly in the MTL and associated areas involved in episodic memory 

impairment have been demonstrated (Stebbins & Murphy, 2009)⁠. However, a DTI meta-analysis 

(Sexton et al., 2011)⁠ suggested that the FA value of AD and MCI patients decreases in all white 

matter regions except parietal, occipital and internal capsular regions, while the MD value 

increases in all regions in AD and MCI except occipital and frontal regions in case of MCI. 

Moreover, a meta-analysis (Clerx et al., 2012)⁠ on comparison of DTI and the MTL atrophy 

measurements in AD. In their study, the authors included 2791 and 8122 subjects for DTI and 

MRI studies respectively, and they found that the MTL atrophy differentiates significantly 

between AD and controls [effect size (ES) of 1.32 –1.98], MCI and controls (ES of 0.61–1.46). 

However, in DTI studies, the total cingulum FA value best discriminates between AD and 

controls (ES of 1.73) and the parahippocampal cingulum FA between MCI and controls (ES = − 

1.17) (Clerx et al., 2012).In addition, the hippocampal MD value best discriminates between AD 

and controls (ES = −1.17) and between MCI and controls (ES = −1.00) (Clerx et al., 2012).⁠ 

Finally, they concluded that the MD values of the frontal, parietal, occipital and temporal lobe 

have more discriminating power than FA values, and the ES of MTL atrophy measurements is 

equal or greater than the DTI measurements. In contrast, a prospective study (Fellgiebel et al., 

2006)⁠ has shown that the hippocampal MD is superior to the volumetric measurements and the 

increased MD value of the left hippocampus predicts conversion of MCI to dementia with in 18 

months. However, another study (Chua et al., 2009)⁠ has reported that the DTI of posterior 

cingulate cortex differentiates between MCI and cognitively normal subjects with an accuracy of 

85.1%. 



  177 

To date, a few machine-learning DTI studies have been reported for the prediction of conversion 

from MCI to AD. For example, a recent machine-learning study (Dyrba et al., 2015)⁠ on 

comparison of MRI and DTI data has suggested that DTI provides better prediction accuracy in 

than grey matter volumes in the prodromal stages of AD with a maximum accuracy of 77%. 

Furthermore, another machine-learning study (Dyrba et al., 2013)⁠ by the same group included 

137 patients with clinically probable AD and 143 healthy elderly controls demonstrated that the 

SVM classifies AD and normal controls with an accuracy of 80% for FA and 83% for MD. In 

addition, a DTI study has demonstrated that the cognitively normal elderly subjects' with APOE 

Ɛ4 allele positive show decreased cognitive performance as well as grey and white matter 

changes in the medial temporal cortex than APOE Ɛ4 allele negative individuals' (Honea et al., 

2009). Interestingly, a multicenter study (Li et al., 2013) ⁠included 53 early-stage AD and 30 

normal aging volunteers for differentiating early-stage AD and normal aging reported that the 

bilateral MD values of hippocampus and pallidum, and of the right thalamus and caudate are 

significantly increased in the early-stage of AD (P < 0.05). In their study, the authors classified 

early-stage AD and normal aging using the MD values of bilateral hippocampi and pallidums, 

and combination of two imaging modalities (such as MRI and DTI) with an accuracy of 84.7% 

and 93.1% respectively. 

In summary, DTI provides promising results for diagnosis and prediction of conversion AD from 

the early stages. Furthermore, the neuroanatomical structures such as cingulum bundle, fornix 

and corpus callosum are more susceptible to early disease processes (Acosta-Cabronero & 

Nestor, 2014)⁠. In addition, the MTL and associated areas involved in episodic memory are also 

affected much before clinical symptoms of AD appear. However, increased MD and decreased 

FA values in the hippocampus and MTL could value as a potential biomarker for early predicting 
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the AD. Due to advancement of the machine-learning and its application into the neuroimaging 

studies of AD, it is now, therefore, possible to predict the disease with certain accuracy. In 

contrast, multiple overlapping pathologies of AD and similar neuropathological conditions of 

normal ageing contribute to misclassification of AD, MCI, healthy controls and related dementia 

by using DTI. Therefore, further investigation is required before considering DTI as a potential 

biomarker to be used in clinics for early diagnosis, classification and predicting the conversion 

AD from MCI with more than 95% accuracy. 

5.11 Flurodeoxyglucose positron emission tomography (FDG-PET) in AD 

FDG-PET is an established in vivo biomarker for AD, which is used to measure the pattern of 

glucose metabolism in the brain as an indicative of synaptic activity (Segobin et al., 2015)⁠. PET 

imaging using FDG as a glucose analog to vizualize the pattern of cerebral metabolism in normal 

healthy aging as well as disease conditions (Shivamurthy et al., 2015).⁠ Several FDG-PET studies 

have been reported on the pattern of cerebral glucose metabolism in AD, MCI and normal aging 

(NC), and well the pattern of FDG uptake and metabolism shows much tighter correlation with 

autopsy (Johnson et al., 2012)⁠. However, a recent review (Kato et al., 2016)⁠ has demonstrated 

that the AD patients show hypometabolism in the brain areas such as parieto-temporal 

association area, posterior cingulate or precuneus and the hypometabolism in the inferior parietal 

lobe, posterior cingulate and precuneus predicts the conversion of MCI to AD. In contrast, 

normal ageing shows hypometabolism in the anterior cingulate and anterior temporal lobe, along 

with regional atrophy (Kato et al., 2016)⁠,while the aMCIs show less severe hypometabolism of 

glucose in the posterior cingulate cortex as compared to AD and the lateral parietal cortex does 

not show any abnormalities in glucose metabolism in case of the aMCIs (Shivamurthy et al., 

2015)⁠. In addition, a 12-month longitudinal FDG-PET multi-regional study (Gray et al., 2012) ⁠ 
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including 321 ADNI participants achieved the classification accuracy 88% between AD vs NC, 

while this value reduced to 68% when they performed the discrimination between stable MCI 

(sMCI) and progressive (pMCI). Furthermore, the above study was replicated by Rodrigues & 

Silveira, (2014)⁠, where they  conducted their study by including 223 subjects from ADNI on the 

whole brain voxel-based morphometry instead of defined regions of analysis. The replicated 

study (Rodrigues & Silveira, 2014)⁠ achieved 92.6% of classification accuracy between AD vs 

normal control, and 70.2% for MCI vs normal controls. However, a recent multi-modality study 

(Xu, Wu, Chen, & Yao, 2015)⁠ of three imaging modalities such as volumetric MRI, FDG-PET, 

and Florbetapir PET performed the classification of AD, MCI and NC. The authors of the study 

included 113 AD patients, 110 MCI patients and 117 NC subjects from ADNI and achieved 

classification accuracy of 94.8% for AD vs. NC, 74.5% for MCI vs. NC, and 77.8% for pMCI vs. 

sMCI (Xu et al., 2015)⁠. 

Over the past few years, there has been increasing interest in application of machine learning 

algorithms in classification and predicting the conversion of AD from MCI. For instance, in a 

meta-analytic study (Zhang et al., 2012)⁠ on the comparison of diagnostic accuracy of FDG-PET 

and Pittsburgh Compound B (PiB) PET suggested that both the FDG-PET and PiB-PET have the 

potential of predicting conversion of AD from MCI. However, FDG-PET yielded diagnostic 

accuracy of 78.7% sensitivity and 74.0% specificity, while PiB-PET shows 93.5% sensitivity and 

56.2% specificity (Zhang et al., 2012)⁠. Moreover, in an FDG-PET conversion study (Mosconi et 

al., 2004)⁠ demonstrated that the regional glucose metabolic rate of the inferior parietal cortex 

predicts conversion to AD with an accuracy of 84%, whereas an APOE Ɛ4 positive aMCI subject 

group provides excellent discrimination relative to aMCI APOE Ɛ4 negative nonconverters: with 

100% sensitivity, 90% specificity, and 94% accuracy. Finally, the authors concluded that the 
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combination of APOE Ɛ4 genotype and FDG-PET might improve the prediction of conversion 

accuracy (Mosconi et al., 2004). Likewise, another ADNI conversion study on FDG-PET 

(Landau et al., 2010)⁠ including 200 cognitively normal older subjects, 400 MCIs and 200 early 

AD patients showed that 17.2% of MCI people convert to AD annually. In addition, the MCI 

subjects with abnormal FDG-PET and episodic memory are 11.7 times more likely to develop 

AD as suggested by the authors of this study with an accuracy of 76%, sensitivity of 82% and 

specificity of 70% (Landau et al., 2010)⁠. In addition, a recent multicenter longitudinal study (Ito 

et al., 2015)⁠ has shown the potential of 18-FDG-PET in predicting the development AD with 

MCI for a period of 3 years. In their study, the authors included 114 MCI patients from 9 

participating institutions and found that 47% of MCI patients progressed to clinical diagnosis of 

probable AD. Furthermore, the visual assessment of PET scans during 3-year follow-up for 

predicting the conversion of AD from MCI offered a diagnostic accuracy of 68%, while the 

optimized PET score showed promising predictive information of the AD from MCI with in 2 

years and the overall diagnostic accuracy was 83%, with sensitivity of 70%, and specificity of 

90% (Xu et al., 2015)⁠.   

In summary, the FDG-PET is a valid biomarker of AD and it provides robust information about 

the brain metabolism in AD and related dementia. As described previously, the FDG-PET 

findings in AD suggest the hypometabolic pattern of glucose particularly in the parieto-temporal 

association area, posterior cingulate or precuneus in the brain could be used as a biomarker for 

diagnosis with an accuracy ranged from 80% to 95%. The pattern of FDG hypometabolism not 

only provides predictive information about AD, but also may discriminate between different 

subject groups with normal cognition, MCI and clinical AD (Montagne et al., 2016)⁠. Despite of 

FDG-PET's greater accuracy rates in the diagnosis of AD and MCI, an autopsy is required for 
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confirmation of AD cases. In addition, there are certain limitations of FDG-PET studies in AD 

(Johnson et al., 2012) including:⁠ (i) FDG-PET scans are relatively expensive and its scanners are 

less available, (ii) It involves intravenous injection of radioactive substances, and (iii) its 

metabolism pattern can't directly indicate AD-related brain pathology and  seen in some 

cognitively normal individuals and non-AD related dementia. 

5.12 Amyloid PET in AD 

Amyloid PET is one of the validated biomarkers of AD neuropathology for the human brain. 

Briefly, the amyloid PET is a molecular imaging techinque that uses different radionuclides as 

ligands for amyloid imaging (Jack, Barrio, & Kepe, 2013; Klunk et al., 2004; Quigley, Colloby, 

& Brien, 2011)⁠. The first human amyloid specific tracer was 11C-Pittsburgh Compound-B (PIB), 

which was reported by Klunk et al., (2004)⁠. In their study, the authors analyzed 16 mild AD 

patients and 9 controls with PIB and found that the AD patients showed over 1.5 fold increase of 

PIB retention in the frontal cortex, parieto-temporal cortex, occipital cortex and the striatum than 

controls (Klunk et al., 2004)⁠. After the major breakthrough of PIB ligand, several fluorine-18 

(18F) labelled amyloid compounds like Florbetapir, Flutametamol, Florbetaben and AZD-4694 

have been developed to trace amyloid plaques [see reviews: (Adlard et al., 2014; Jack et al., 

2013; Mathis et al., 2012)]. The main function of these amyloid tracers is to detect cerebral β-

amyloidosis and show only postive signal to amyloid pathology and negative signals to prion 

pathology, α-synucleopathy and pure tauopathy (Burack et al., 2010; Drzezga et al., 2008; 

Villemagne et al., 2009). In addition, an amyloid positive PET scan refers to the presence of 

moderate-to-frequent plaques, while a negative scan indicates few-to-no amyloid plaques on 

neuropathological examination of the human brain (Ossenkoppele et al., 2015)⁠. However, a 

longitudinal study period from May 22, 1985 through October 15, 2008) of 135 elderly cognitive 
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normal individuals suggested smaller volumes in the hippocampus, temporal neocortex, anterior 

cingulate, and posterior cingulate of PIB positive (+) subjects than PIB negative (-) subjects 

(Storandt et al., 2009)⁠. Further investigation of these PIB(+) subjects showed impairment in 

episodic memory as well as working memory and visuospatial abilities associated with 

increasing Aβ levels and reduced hippocampal volume (Storandt et al., 2009)⁠. Moreover, MCI 

subjects with PIB(+) are more likely to convert to AD than PIB(-) subjects, and are significantly 

associated with clinical diagnosis, age, and APOE genotype (Okello et al., 2009; Ossenkoppele 

et al., 2015)⁠. In contrast, around 30% cognitively normal and 60% MCI subjects showed PIB+ in 

amyloid PET imaging, further confirmed in autopsy studies, which also suggest similar kind AD 

pathology in MCI subjects [see review: (Jack et al., 2013)]. In recent years, there is promising 

evidence on amyloid imaging for the diagnosis and prediction of AD from MCI. For instance, a 

recent Cochrane study (Zhang et al., 2014)⁠ on evaluating the diagnostic test accuracy of 11C-PIB 

scans of MCI patients, who progress to AD dementia has revealed the sensitivities between 83% 

to 100% and specificities between 46% - 88%. In their study, the authors meta-analyzed 247 

participants, and found that 112 subjects progressed to AD dementia. Despite having good 

sensitivity in their study, Zhang et al., (2014)⁠ recommended not to use 11C-PIB in MCI subjects 

in clinical practice because of lack of defined thresholds for determination of test positivity and a 

high cost-effective investigation. Moreover, another meta-analysis on 352 MCI subjects for 

predicting the accuracy of Aβ imaging of MCIs to AD conversion demonstrated that sensitivities 

between 83.3% to 100% and specificities between 41.1% to 100% (Ma et al., 2014)⁠. In addition, 

the latest meta-analysis (Morris et al., 2016)⁠ on 18F amyloid PET tracers such as Florbetapir, 

Flutametamol, and Florbetaben revealed no difference in diagnostic accuracy of the three beta-

amyloid radiotracers for the diagnosis of AD. Furthermore, the authors of that study suggested all 
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these amyloid tracers work better when used to classify between AD and healthy controls 

(Morris et al., 2016)⁠. 

In summary, amyloid PET is a valuable imaging technique for diagnosis of AD by demonstrating 

amyloid tracer retention in the brain. Visual analysis of 18F-labelled amyloid PET scans achieves 

a sensitivity of 90% and specificity of 85% for discriminating AD from normal controls, while 

quantitative analysis offers a sensitivity of 90% and specificity of 84% (Morris et al., 2016). 

Although, Aβ imaging achieves high sensitivity for prediction of AD from MCI, the specificity 

remains low as compared to sensitivity and some cognitively normal individuals have the same 

kind of pathology. Furthermore, predictive accuracy increases when using APoE genotyping 

combined with amyloid PET. Despite considering amyloid PET imaging a validated biomarker 

for AD, there are some limitations in its application(Johnson et al., 2012)⁠. These are (i) It is not a 

good surrogate biomarker of the progression AD from the early dementia stages. (ii) It is a costly 

technique for measurement of Aβ42, when compared with CSF Aβ42 measurements. (iii) It can't 

assess the function of the human brain. (iv) A negative amyloid PET scan can't indicate anything 

about non-AD dementia etiology, but MRI and FDG-PET might provide information about 

frontotemporal or vascular pathology of the brain. 

5.13 Magnetic Resonance Spectroscopy (MRS) in AD 

Magnetic resonance spectroscopy (MRS) is a non-invasive in vivo imaging technique that 

provides information about changing biochemical metabolites in the brain (Currie et al., 2013)⁠. 

By using MRS, the commonly detected metabolite concentrations are N-acetylaspartate (NAA), 

myo-Inositol (mI), choline (Cho), creatine (Cr), glutamate, and glutamine (GLx). Each of these 

metabolite concentrations in the brain is associated with different neurodegenerative disorders. 

However, the metabolite ratios such as NAA/Cr, Cho/Cr, mI/Cr, mI/NAA, NAA/mI, and GLx/Cr 
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are commonly assessed in AD. In an early MRS autopsy study, comparing AD patients and 

normal subject's brain showed that a decrease in NAA metabolite level (Klunk et al., 1992).⁠ The 

low concentration of NAA level is correlated with plaque and tangle density and also regarded as 

a neuronal marker, synthesized in mtochondria (Graff-Radford & Kantarci, 2013; Wang et al., 

2015)⁠. In addition to reduced NAA level, the Cho concentration is increased in AD and it may be 

due to break down of glycerophosphocholine and phosphocholine present in cellular membrane 

(Klein, 2000)⁠. Presymptomatic subjects with APoE Ɛ4 status have shown decreased levels of 

NAA/mI and NAA/Cr ratios, around 10-25% compared to normal controls (Godbolt et al., 

2006)⁠. Furthermore, with reference to Cr and mI concentrations in AD, Cr levels are thought to 

be stable and hence used as a reference, while mI is elevated due to increased activation and 

proliferation of glia (Graff-Radford & Kantarci, 2013; Wang et al., 2015)⁠. Interestingly, a novel 

MRS study has been reported on the brain antioxidant glutathione (GSH) level for discriminating 

AD, MCI, and HC in the frontal cortex and the hippocampus (Mandal et al., 2015)⁠. In their 

study, the authors discriminated AD from HC with an accuracy of 100% (sensitivity of 100% and 

specificity of 100%) by measuring the bilateral hippocampal GSH level, discriminating HC from 

MCI with an accuracy of 93.1% (sensitivity of 87.5% and specificity of 100%) in left 

hippocampal GSH level, and MCI from AD with an accuracy of 96.3% (sensitivity of 91.7% and 

specificity of 100%) in GSH levels of the bilateral frontal cortex (Mandal et al., 2015).⁠ 

Over recent years, numerous studies have been investigated and reported on using MRS 

technique to distinguish AD patients from MCIs and controls. However, a recent meta-analysis 

comprising 1282 AD patients and 1519 HC subjects suggested that AD patients have reduced 

NAA levels in the posterior cingulate (PC) and bilateral hippocampus compared to controls 

(Wang et al., 2015)⁠. In addition, the PC of AD patients show decreased NAA/Cr ratio, while the 
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mI/Cr metabolite ratio is elevated, but unfortunately, the authors did not assess this quantitatively  

(Wang et al., 2015).⁠ Some MRS studies reported on distinguishing AD from controls with a high 

sensitivity of 90% in the temporo-parietal region and a 95% specificity in the medial occipital 

lobe (Graff-Radford & Kantarci, 2013; Kantarci et al., 2002)⁠. Moreover, NAA/Cr ratio of the PC 

cortex discriminates AD from MCI with a sensitivity of 80% and specificity of 65% (Kantarci et 

al., 2002)⁠. However, a cohort MRS study of 53 MCI patients demonstrated that NAA/Cr ratio 

predicted AD from MCI with a sensitivity of 100% and specificity of 75%, with a positive 

predictive value of 83% and a 100% negative predictive value (Modrego, Fayed, & Pina, 2005)⁠. 

In addition, Fayed et al., (2012)⁠ reported that the NAA/Cr ratio of the PC gyrus predicts AD from 

MCI with a sensitivity of 82% and a specificity 72%, which correlates with clinical scales of 

dementia. Furthermore, a meta-analyis comprising of 607 MCI patients and 862 healthy controls 

revealed that consistent metabolite changes in the PC cortex, hippocampus, and the peritrigonal 

white matter are observed in MCI patients, and NAA level may be the most reliable metabolite 

for discriminating MCI from  healthy controls (Tumati, Martens, & Aleman, 2013)⁠. 

In summary, the MRS is an imaging tool, which could be used in diagnosis AD and MCI by 

interpreting the metabolite ratios in the brain. As described above, NAA is a neuronal marker that 

appears to be reduced significantly before clinical symptoms appear. In addition, mI level is 

increased particularly in the occipital, temporal, parietal, and frontal areas of AD patients. 

Furthermore, the NAA/Cr ratio of the PC cortex best discriminates AD from MCI and controls, it 

also predicts AD from MCI with high accuracies. Despite recent advances in MRS, there are 

certain pitfalls such as lack of standardized methodology, overlap of spectral patterns between 

different pathologies (i.e low specificity), lack of reimbursement, and lack of treatment options 
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in most dementias (Gao & Barker, 2014).⁠Therefore, more research is needed to validate MRS as 

a potential biomarker for AD. 

5.14 Single-photon emission-computed tomography (SPECT) in AD 

Single-photon emission computed tomography (SPECT) is a functional nuclear imaging 

technique that provides different physiological and pathological information of the living brain 

through cerebral blood flow measurement (Yeo et al., 2013)⁠. SPECT imaging requires injection 

of a single-photon emitting radionuclide to the patient’s blood stream, and after its radioactive 

decay a photon is emitted and detected by the gamma-camera (Knoll, 1983; Piccinelli & Garcia, 

2016; Theodore, 2017). The radionuclides technetium-99m (99m-Tc) and iodine-123 (123-I) are 

mainly used in SPECT imaging. For brain SPECT imaging, two most commonly used tracers are 

99mTc-hexamethylpropyleneamine (99mTc-HMPAO) and 99mTc-ethylcysteine dimer (99m Tc-

ECD), which distribute in the brain to assess regional cerebral blood flow (rCBF) (Yeo et al., 

2013)⁠. Perfusion SPECT studies in AD are based on the specific regional pattern of 

hypoperfusion, which corresponds to glucose consumption and reflects neuronal activity (Knoll, 

1983)⁠. Numerous SPECT studies have been reported in AD for diagnosis, discriminating AD 

from healthy ageing and other forms of dementia, and predicting AD from MCI. AD patients 

exhibit reduced cerebral blood flow in the temporal and parietal association cortex, the posterior 

cingulate cortex, the precuneus areas, and the frontal cortex in more advanced cases of AD, while 

subjects with MCI show hyperperfusion, particularly in the posterior cingulate, which could be 

used as a risk factor for developing AD (Knoll, 1983)⁠. Interestingly, MCI subjects compared to 

cognitively normal controls show 23% less rCBF in the mesotemporal regions and 17% in the 

anterior cingulum, while no further reduction of rCBF is observed in mild AD (Luckhaus et al., 

2008). ⁠The rCBF of amygdala is reduced to 20% in MCI subjects compared to normal controls 
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and it further declines to 28% in mild AD cases (Luckhaus et al., 2008)⁠. Furthermore, another 

comparison study reported by the same research group examined different patterns of rCBF 

between mild AD and MCI (Luckhaus et al., 2010)⁠. Reduced brain volume in both the right and 

left amygdala and the right hippocampus was observed, but interestingly no apparent changes in 

rCBF of these brain regions were shown. The authors did not find any correlation between the 

hippocampal and amygdalar brain volumes with regards to rCBF in both MCI and mild AD 

(Luckhaus et al., 2010)⁠. Furthermore, a systematic review (Yeo et al., 2013)⁠ on diagnostic utility 

of 99m Tc-HMPAO and 99m Tc-ECD SPECT imaging in dementia suggested a discrimination 

between AD vs FTD with sensitivity of 79.7% and specificity of 79.9%, AD vs VaD with 

sensitivity of 74.5% and specificity of 72.4%, AD vs DLB with a sensitivity of 70.2% and 

specificity of 76.2%, and finally AD vs HC with sensitivity of 76.1% and specificity of 85.4%. In 

addition, many machine learning studies on classification of AD from HC and MCI using 

SPECT imaging have been published. For example, a SPECT study of 91 subjects using the 

SVM classification achieved an accuracy of 92.31% for distinguishing AD from HC (López et 

al., 2009)⁠. Likewise, another SVM study on SPECT imaging comprising of 41 healthy controls 

and 38 suspected AD patients performed a classification accuracy of 98.6% with a sensitivity of 

97.3% sensitivity and a specificity of 100% (Chaves et al., 2009)⁠. 
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Table 5.2 Characteristics of included studies                          

Study 1st author 
name and year of 
publication 

Sample size (N) 
in each group  

Techniques Comparison/ 
Prediction of AD 

Reported Max. 
Accuracy (%)/ 
ROC/AUC 

 

Zhang et al. (2018)⁠ HC = 183 
MCI = 296 
AD = 129 

MRI AD vs HC 0.92  

Valenzuela et al., 
(2018) 
 

HC = 59 
cMCI = 74 
ncMCI = 74 
AD = 87 

MRI AD vs HC 94.4%  

Fang et al. (2018)⁠ HC = 190 
MCI = 305 
AD = 335 

MRI AD vs HC 
 

96.54%  

Tan et al. (2018)⁠ HC = 540 
AD = 411 

MRI AD vs HC 83.33%  

Choi and Jin. (2018)⁠ HC =182 
cMCI= 79 
ncMCI = 92 
AD = 139 

FDG-PET 
Amyloid-PET 

AD vs HC 
  
Prediction of AD 
from MCI 

96% 
 
84.2% 

 

Belathur Suresh et al. 
(2018)⁠ 

HC = 269 
HC = 137 

MRI AD vs HC 90.32%  

Park et al. (2017)⁠ HC = 41 
AD = 57 

MRI 
RsFMRI 

AD vs HC 91.7% 
 

 

Wu et al. (2017)⁠ HC = 47 
MCI = 99 
AD = 62 

Amyloid PET AD vs HC  86.1%  

Kim and Lee. (2017)⁠ HC = 208 
cMCI= 69 
ncMCI = 281 
AD = 160 

MRI AD vs HC 
 
MCI vs HC 

92.84% 
 
78.28% 

 

De Marco et al. 
(2017)⁠ 

HC = 50 
MCI = 50 

MRI 
RsfMRI 

HC vs MCI 94%  

Li et al. (2017)⁠ HC = 117 
MCI = 110 
AD = 113 

MRI 
FDG-PET 
Amyloid PET 

AD vs HC 
 
HC vs MCI 

98.5% 
 
82.8% 

 

Mathotaarachchi et 
al. (2017)⁠ 

sMCI = 230 
pMCI = 43 

Amyloid PET sMCI vs pMCI 84% 
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Study 1st author 
name and year of 
publication 

Sample size (N) 
in each group  

Techniques Comparison/ 
Prediction of AD 

Reported Max. 
Accuracy (%)/ 
ROC/AUC 

 

Doan et al. (2017)⁠ HC = 31 
HCY = 324 
MCI = 78 
SCI = 38 
AD = 137 

MRI AD vs HC 0.93  

Chen et al. (2017)⁠ HC=54 
MCI = 54 

DTI 
fMRI 

HC vs MCI 78.70%  

Bouallègue et al. 
(2017)⁠ 

HC = 157 
SMC =95 
MCI = 301 
AD = 124 

Amyloid PET 
CSF markers 

Diagnosis of AD 85%  

Hojjati et al. (2017)⁠ cMCI = 18 
nc MCI= 62 
 

RsfMRI cMCI vs ncMCI 91.4%  

Long et al. (2017)⁠ HC = 135 
sMCI =132 
pMCI = 95 
AD = 65 

MRI HC vs AD 
 
pMCI vs HC 

96.5% 
 
91.74% 

 

Beheshti et al. (2017)⁠ HC = 162 
sMCI = 65 
pMCI = 71 
AD = 160 

MRI HC vs AD 
 
sMCI vs pMCI 

94.73% 
 
75% 

 

Suk et al. (2017)⁠ HC = 226 
sMCI = 226 
pMCI = 167 
AD = 186 

MRI HC vs AD 
 
 
sMCI vs pMCI 

90.28% 
 
 
73.28% 

 

(Shi et al., 2018)⁠ HC = 52 
cMCI = 43 
ncMCI = 56 
AD = 51 

MRI 
PET 

HC vs AD 
 
cMCI vs ncMCI 

97.13% 
 
78.88% 

 

Ortiz et al. (2016)⁠ HC=229 
MCI=401 
AD= 118  

MRI AD vs HC 
sMCI vs AD 
HC vs MCI 

0.90 
0.84 
0.83 

 

Martinez-Murcia et 
al. (2016)⁠ 

HC=180 
AD=180 

MRI AD vs HC 90.9%  

Harper et al. (2016)⁠ HC=73 
AD=101 
DLB=28 
FTLD=55 

MRI AD vs HC 92%  
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Study 1st author 
name and year of 
publication 

Sample size (N) 
in each group  

Techniques Comparison/ 
Prediction of AD 

Reported Max. 
Accuracy (%)/ 
ROC/AUC 

 

Suppa et al. (2016)⁠ aMCI=198 MRI Prediction of AD 
from aMCI 

0.79  

Zhang et al. (2016)⁠ HC=98 
AD=28 

MRI AD vs HC 92.81%  

Ardekani et al. 
(2016)⁠ 

HC=22 
pAD=43 

MRI AD vs HC 97%  

Lu et al. (2015)⁠ HC=75 
AD=70 

FDG-PET AD vs HC Sen.88.89% 
Spe. 90% 

 

Wang et al. (2015)⁠ HC=98 
AD=28 

MRI AD vs HC 93.05%  

Dukart et al. (2016)⁠ HC=122 
AD=144 
sMCI=265 
cMCI=177 

MRI, FDG-
PET, Amyloid-
PET 
Neuropsychol
ogy 
Genetics 

 
sMCI vs cMCI 

87%  

Anandh et al. (2016)⁠ HC=55 
MCI=30 
AD=30 

MRI AD vs HC 
 
MCI vs AD 

98.45% 
 
97.31% 

 

Coupe et al. (2015)⁠ HC=225 
AD=192 
sCN=309 
cCN=37 

MRI sCN vs cCN 72.5%  

Zheng et al. (2015)⁠ HC=189 
AD=198 
MCI=163 

MRI AD vs HC 
AD converter vs 
non-converter 

92.11% 
 
79.37% 

 

Xie et al. (2015)⁠ HC=64 
aMCI=64 

MRI 
DTI 

HC vs aMCI 83.59%  

Palmqvist et al. 
(2015)⁠ 

HC=268 
MCI-AD=98 

amyloid-PET 
CSF bimarker 

HC vs MCI-AD 
(with PET only) 

0.92  

Xu et al. (2015)⁠ HC=117 
MCI=110 
AD=113 

MRI 
FDG-PET 
amyloid-PET 

AD vs HC 
MCI vs HC 
pMCI vs sMCI 

94.8% 
74.5% 
77.8% 

 

Schreiber et al. 
(2015)⁠ 

MCI=104 amyloid-PET 
(Visual 
analysis) 

MCI to AD 
conversion (rate of 
conversion= 15.2% 
within a mean of 1.6 
years 

Sen. 79% 
Spe. 96% 
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Study 1st author 
name and year of 
publication 

Sample size (N) 
in each group  

Techniques Comparison/ 
Prediction of AD 

Reported Max. 
Accuracy (%)/ 
ROC/AUC 

 

Gorji and 
Haddadnia, (2015)⁠ 

HC=148 
MCI=172 
AD=180 

MRI AD vs MCI 
 
HC vs MCI 

94.88% 
 
95.59% 

 

Beltrachini et al. 
(2015)⁠ 

HC=21 
MCI=29 

Rs fMRI 
Cognitive tests 

HC vs MCI 0.9559  

 Sui et al. (2015)⁠ HC=48 
AD=59 
MCI=43 

Rs fMRI HC vs MCI 81%  

Martínez-Torteya et 
al. (2015)⁠ 

HC=469 
MCI=893 
AD=280 

MRI, FDG-
PET 
Cognitive 
tests, etc 

HC vs AD 
HC vs MCI 
MCI vs AD 

0.85 
0.79 
0.80 

 

Liu et al. (2015)⁠ HC=14 
MCI=12 
AD=14 

MRI 
amyloid-PET 

AD vs HC 
 
MCI vs HC 

1.00 
 
0.89 

 

Mandal et al. (2015)⁠ HC=49 
MCI=41 
AD=40 

MRS  
MCI vs HC 
 
MCI vs AD 

Sen. 87.5% 
Spe. 100% 
 
Sen. 91.7% 
Spe. 100% 

 

Khazaee et al. (2015)⁠ HC=20 
AD=20 

fMRI HC vs AD 100%  

Farzan et al. (2015)⁠ HC=30 
AD=30 

MRI HC vs AD 91.7%  

Cheng et al. (2015)⁠ HC=52 
cMCI=43 
ncMCI=56 
AD=51 

MRI 
FDG-PET 
CEF 

MCI vs NC 
 
MCI vs AD 
 
cMCI vs ncMCI 

86.41% 
 
82.71% 
 
79.4% 

 

Challis et al. (2015)⁠ HC=39 
MCI=50 
AD=27 

Rs fMRI HC vs aMCI 
 
AD vs aMCI 

79% 
 
97% 

 

Cheng et al. (2015a)⁠ HC=52 
cMCI=43 
ncMCI=56 
AD=51 

MRI 
PET 
CSF 

Prediction of 
conversion of MCI 

 
80.1% 

 

Zhang et al. (2015)⁠ HC=24 
MCI=36 

Rs fMRI HC vs MCI 87.5%  
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Study 1st author 
name and year of 
publication 

Sample size (N) 
in each group  

Techniques Comparison/ 
Prediction of AD 

Reported Max. 
Accuracy (%)/ 
ROC/AUC 

 

Prestia et al. (2015)⁠ pMCI=29 
sMCI=44 

MRI 
FDG-PET 
CSF 

Prediction of AD 
(FDG-PET) 

Sen. 100% 
Spe. 36% 

 

Dyrba et al. (2015)⁠ HC=25 
MCI-Aβ42(+) 
=35 
MCI-Aβ42(-) 
=35 

MRI 
 
DTI 

MCI-Aβ42(+) vs 
MCI-Aβ42(-) 
 
HC vs MCI-
Aβ42(+) 

68% 
 
 
77% 

 

Liu et al. (2015)⁠ HC=128 
pMCI=117 
sMCI=117 
AD=97 

MRI AD vs HC 
 
pMCI vs sMCI 

92.51% 
 
78.88% 

 

Apostolova et al. 
(2015)⁠ 

PiB SUVR ≥ 1.5 
=  41 
 
PiB SUVR< 1.5 
= 19 

amyloid-PET 
 
CSF 

Progression of MCI 
to AD 
(with PiB-PET) 

71%  

Ito et al. (2015)⁠ MCI=114 MRI 
FDG-PET 

Prediction of AD 
from MCI 

83%  

Hall et al. (2015)⁠ SCI= 231 
MCI=544 

MRI 
CSF 
Cognitive tests 

Predicting AD 
progression to AD 

75%  

Kaneko et al. (2014)⁠ PiB(-) = 22 
PiB(+) =40 

amyloid-PET PiB(+) vs PiB(-) Sen. 0.925 
Spe.  0.955 

 

Raamana et al. 
(2014)⁠ 

HC=42 
sd-aMCI= 38 
md-aMCI= 32 

MRI HC vs md-aMCI 
HC vs sd-aMCI 
sd-aMCI vs md-
aMCI 

0.74 
0.67 
0.67 

 

Lebedev et al. (2014)⁠ HC=225 
aMCI=165 
AD=185 

MRI 
APoE 
genotyping 

HC vs AD 
 
MCI to AD 
conversion 
 

Sen. 88.6% 
Spe. 92.0% 
 
Sen. 83.3% 
Spe. 81.3% 

 

Moradi et al. (2015)⁠ HC=231 
AD=200 
pMCI=164 
sMCI=100 
uMCI=130 

MRI 
Cognitive tests 

pMCI vs sMCI 
 
pMCI vs sMCI 
(with MRI only) 

0.9020 
 
0.7661 
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Study 1st author 
name and year of 
publication 

Sample size (N) 
in each group  

Techniques Comparison/ 
Prediction of AD 

Reported Max. 
Accuracy (%)/ 
ROC/AUC 

 

Farhan et al. (2014)⁠ HC=48 
AD=37 
 

MRI AD vs HC 93.75%  

Prasad et al. (2015)⁠ HC=50 
eMCI=78 
lMCI=38 
AD=38 

DWI HC vs AD 
HC vs eMCI 
HC vs lMCI 
eMCI vs lMCI 

78.2% 
59.2% 
68.2% 
63.4% 

 

Eskildsen et al. 
(2015)⁠ 

HC=231 
sMCI=238 
pMCI=161 
AD=198 

MRI Prediction of 
conversion of AD 

72%  

Suppa et al. (2015)⁠ AD=44 
non-AD=35 
Intermediate 
AD=21 

MRI Diagnosing AD in 
the whole sample 

84%  

Willette et al. (2014)⁠ HC=93 
MCI=162 
AD=65 

MRI HC vs AD 
MCI vs AD 
sMCI vs pMCI 

94.3% 
81.4% 
80% 

 

Nazeri et al. (2014)⁠ HC=49 
MCI=300 
AD=85 

MRI 
Plasma 
proteomics 

HC vs AD 
 
prediction of AD 
from MCI 

Sen. 93% 
Spe. 92% 
 
94% 

 

Han et al. (2014)⁠ HC=33 
AD=89 

MRI AD vs HC 
(70-74 yrs. group) 

0.88  

Li et al. (2014)⁠ HC=142 
MCI=141 
AD=80 

MRI HC vs AD 
 
HC vs MCI 

82.84% 
 
61.53% 

 

Ivanoiu et al. (2015)⁠ HC=31 
SCI=21 
aMCI=27 
naMCI=12 

MRI 
FDG-PET 
amyloid-PET 
Neuropsychol-
ogical tests 

HC vs MCI 
(combining all 
biomarkers) 

Sen. 72 
Spe. 84% 

 

Hye et al. (2014)⁠ HC=452 
nMCI=169 
cMCI=51 
AD=467 

MRI 
Plasma protein 
analysis 
Genotyping 

predicting 
progression to AD 
 
 

 
87% 

 

Young et al.(2014)⁠ HC=92 
MCI=129 
AD=64 

MRI 
CSF 
Cognitive tests 

HC vs AD 
HC vs MCI 
Predicting AD from 

99% 
76% 
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MCI 77% 
Study 1st author 
name and year of 
publication 

Sample size (N) 
in each group  

Techniques Comparison/ 
Prediction of AD 

Reported Max. 
Accuracy (%)/ 
ROC/AUC 

 

Li et al. (2014b)⁠ HC=15 
AD=21 

MRI 
DTI 

HC vs AD 94.3%  

Tong et al. (2014)⁠ HC=231 
sMCI=238 
pMCI=167 
AD=198 

MRI HC vs AD 
 
sMCI vs pMCI 

89% 
 
79% 

 

Bron et al. (2014)⁠ HC=32 
early AD=32 

MRI 
ASL 

HC vs early AD 
(combining both 
modalities) 

91%  

Guerrero et al. 
(2014)⁠ 

HC=309 
sMCI=114 
pMCI=116 
early-MCI=229 
AD=106 

MRI HC vs AD 
 
pMCI vs sMCI 
 
HC vs eMCI 

86% 
 
71% 
 
65% 

 

Apostolova et al. 
(2014)⁠ 

HC=111 
MCI=182 
AD=95 

MRI 
CSF 
Genotyping 

HC vs AD 
HC vs MCI 
MCI vs AD 

0.85 
0.79 
0.70 

 

Segovia et al. (2014)⁠ sMCI=20 
MCI-AD=26 

PET 
Neuropsychol-
ogical tests 

Diagnosis 
(combining both 
biomarkers) 

89%  

Ferrarini et al. (2014)⁠ HC=75 
MEM=31 
MEMnos=31 

MRI HC vs MEM 
 
HC vs MEMnos 

0.66 
 
0.64 

 

Steenland et al. 
(2014)⁠ 

HC=191(no-
conversion =163 
+ conversion to 
AD/MCI=28) 

MRI 
CSF 
Neuropsychol-
ogical tests 

prediction of 
progression to 
MCI/AD 

 
65% 

 

Zhang et al. (2014)⁠ HC=117 
MCI=187 

MRI Diagnosis of MCI Sen. 80.2%  

Dubey et al. (2014)⁠ HC=191 
sMCI=177 
cMCI=142 
AD=138 

MRI 
Proteomics 

HC vs AD 
HC vs MCI 
HC vs cMCI & AD 

87.225% 
67.729% 
89.771% 

 

Trzepacz et al. 
(2014)⁠ 

cMCI=20 
ncMCI=30 

MRI 
PiB-PET 
FDG-PET 
Genotyping 

Prediction of AD 
from MCI 
(combining MRI 
and PiB-PET) 

 
76% 

 



  195 

Study 1st author 
name and year of 
publication 

Sample size (N) 
in each group  

Techniques Comparison/ 
Prediction of AD 

Reported Max. 
Accuracy (%)/ 
ROC/AUC 

 

Adaszewski et al. 
(2013)⁠ 

HC=137 
ncMCI=61 
cMCI=142 
AD=108 

MRI Diagnosis of 
HC 
AD 
cMCI 
 

 
80.30% 
73.5% 
63.7% 

 

Park et al. (2013)⁠ HC=30 
MCI=30 
cMCI=12 

MRI HC vs MCI 
prediction of 
conversion to AD 

0.73 
 
83% 

 

Liu et al. (2013)⁠ HC=138 
cMCI=97 
sMCI=93 
AD=86 

MRI HC vs AD 
cMCI vs AD 
cMCI vs sMCI 
 predicting 
conversion to AD 

0.90 
0.57 
0.66 
 
0.68 

 

Dyrba et al. (2013)⁠ HC=143 
AD=137 

DTI HC vs AD 0.83  

Yang et al. (2013)⁠ HC=17 
MCI=18 
AD=17 

MRI HC vs AD 
 
HC vs MCI 

94.12% 
 
88.89% 

 

Tosun et al. (2013)⁠ HC=46 
MCI=215 

MRI 
PiB-PET 
Genotyping 

prediction of 
amyloidosis in MCI 

0.88  

Martínez-Murcia et 
al. (2013)⁠ 

SPECT data set: 
HC=41 
Possible AD =29 
Probable AD =22 
Certain AD =4 
FDG-PET data 
set: 
HC=101 
AD=95 

 
SPECT 
FDG-PET 

AD vs HC 
(with SPECT) 
 
 
AD vs HC 
(with FDG-PET) 

96.9% 
 
 
 
 
91.3% 

 

Yan et al. (2013)⁠ HC=98 
Suspected 
AD=100 

MRI 
 
 

HC vs AD 0.90  

Thiele et al. (2013)⁠ HC=70 
AD=71 
FTD=31 

FDG-PET HC vs AD between 89%-
98% 

 

Liu et al. (2014)⁠ HC=229 
MCI=225 
AD=198 

MRI HC vs AD 
 
HC vs MCI 

92.0% 
 
85.3% 
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Study 1st author 
name and year of 
publication 

Sample size (N) 
in each group  

Techniques Comparison/ 
Prediction of AD 

Reported Max. 
Accuracy (%)/ 
ROC/AUC 

 

Prestia et al. (2013)⁠ Prodromal 
AD=24 
sMCI=51 

MRI 
FDG-PET 
CSF 

predicting 
conversion to AD 
(with only MRI) 

Sen. 46% 
Spe. 76% 

 

Diciotti et al. (2012)⁠ HC=29 
mild AD=51 

MRI HC vs mild AD 86%  

Liu et al. (2012)⁠ HC=227 
MCI=220 
AD=196 

MRI HC vs AD 
 
HC vs MCI 

between 0.87- 
0.91 
0.79-0.85 

 

Illán et al. (2012)⁠ HC=41 
AD=56 

SPECT HC vs AD 92.78%  

Choo et al. (2012)⁠ pMCI=26 
sMCI=51 

FDG-PET 
CSF 
Genotyping 
Neuropsychol-
ogical tests 

Prediction of 
progression to AD 
(with FDG-PET) 

0.83  

Lunnon et al. (2013)⁠ HC=266 
MCI=257 
AD=258 
 

MRI 
Blood 
biomarkers 

HC vs AD 
(with MRI only) 

76.0%  

Eskildsen et al. 
(2013)⁠ 

HC=226 
MCI=862 
AD=194 

MRI HC vs AD 
 
Predicting AD from 
MCI 
 

92.0% 
 
73.5% 

 

Sabuncu and Van 
Leemput, (2012)⁠ 

HC=150 
AD=150 

MRI 
 
 

HC vs AD 0.93  

Vandenberghe et al. 
(2013)⁠ 

HC=25 
MCI=20 
probable AD 
= 20 

MRI 
amyloid-PET 

HC vs AD 
(amyloid-PET visual 
reads) 
 
HC vs AD 
(with MRI) 

100% 
 
 
 
85.2% 

 

Chaves et al. (2012)⁠ SPECT data: 
HC=41 
Possible- AD=30 
probable-AD=22 
Certain-AD=4 
FDG-PET : 

SPECT 
 
FDG-PET 

HC vs AD groups 
(with SPECT 
imaging) 
 
 
HC vs AD 

92.7% 
 
 
 
 
90.11% 
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HC= 75 
AD=75 

(with PET imaging) 

Study 1st author 
name and year of 
publication 

Sample size (N) 
in each group  

Techniques Comparison/ 
Prediction of AD 

Reported Max. 
Accuracy (%)/ 
ROC/AUC 

 

Yu et al. (2012)⁠ cMCI=25 
ncMCI=38 

MRI 
FDG-PET 
CSF 
Cognitive tests 
Genotyping 

Predicting aMCI to 
AD(all biomarkers) 
 
with MRI only 

81% 
 
 
78% 

 

Grydeland et al. 
(2013)⁠ 

HC=71 
AD=78 

MRI HC vs AD 0.79  

Westman et al. 
(2012)⁠ 

HC=111 
MCI=162 
AD=96 

MRI 
CSF 

HC vs AD 
(by combining all) 
HC vs MCI 
 
Predicting AD from 
MCI 

91.8% 
 
77.6% 
 
58.6% to 
66.4% 

 

Toussaint et al. 
(2012)⁠ 

HC=80 
sMCI=40 
cMCI=40 
probable-AD=80 

FDG-PET HC vs pAD 
 
sMCI vs cMCI 

92% 
 
80% 

 

Shao et al. (2012)⁠ HC=21 
mild-AD=17 
AD-MCI=23 

DTI HC vs AD 
HC vs AD-MCI 
mild AD vs AD-
MCI 

95% 
90% 
85% 
 

 

O’Dwyer et al. 
(2012)⁠ 

HC=40 
MCI=33 

DTI HC vs MCI Sen. 93.0% 
Spe. 92.8% 

 

Liu et al. (2012a)⁠ HC=229 
MCI=225 
AD=198 

MRI HC vs AD 
 
HC vs MCI 

98.80% 
 
87.85% 

 

Farzan et al. (2011)⁠ HC=30 
AD=30 

MRI HC vs AD 90%  

Wolz et al. (2011)⁠ HC=231 
sMCI=238 
pMCI=167 
AD=198 

MRI HC vs AD 
 
 
sMCI vs pMCI 
 
 
HC vs pMCI 

Sen. 93% 
Spe. 85% 
 
Sen.67% 
Spe. 69% 
 
Sen. 86% 
Spe. 82% 
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Study 1st author 
name and year of 
publication 

Sample size (N) 
in each group  

Techniques Comparison/ 
Prediction of AD 

Reported Max. 
Accuracy (%)/ 
ROC/AUC 

 

Aksu et al. (2011)⁠ HC=180 
MCI=300 
AD=120 

MRI Prediction of MCI to 
AD 

between 0.75 
to 0.83 

 

Dai et al. (2012)⁠ HC=22 
AD=16 

MRI 
Rs fMRI 

HC vs AD 89.74%  

Zhang and Shen, 
(2012)⁠ 

HC=50 
cMCI=43 
ncMCI=48 
AD=45 

MRI 
FDG-PET 
CSF 

HC vs AD 
HC vs MCI 
cMCI vs ncMCI 

0.933 
0.832 
0.739 

 

Padilla et al. (2012)⁠ SPECT data: 
NOR=41 
AD=56 
FDG-PET: 
HC=52 
MCI=114 
AD=53 

SPECT 
FDG-PET 

NOR vs AD 
(with SPECT) 
 
HC vs AD 
(with FDG-PET) 

91.42% 
 
 
86.59% 

 

Graña et al. (2011)⁠ HC=25 
AD=20 

DTI HC vs AD 97%  

Mattila et al. (2011)⁠ HC=199 
sMCI=190 
pMCI=154 
AD=163 

MRI 
CSF 
Cognitive tests 

Predicting 
conversion of MCI 
to AD 

75.5%  

Jack et al. (2011)⁠ sMCI=173 
AD converter 
=135 

MRI Predicting 
progression of MCI 
to AD 

0.678  

Chincarinicor et al. 
(2011)⁠ 

HC=189 
ncMCI=166 
cMCI=136 
AD=144 

MRI HC vs AD 
HC vs cMCI 
ncMCI vs cMCI 

0.97 
0.92 
0.74 

Abdulkadir et al. 
(2011)⁠ 

HC=266 
probable- 
AD=191 

MRI HC vs probable-AD 87 

Nho et al. (2010)⁠ HC=226 
MCI=389 
AD=182 

MRI HC vs AD 
Predicting MCI to 
AD conversion 

90.5% 
 
72.3% 

Costafreda et al. 
(2011)⁠ 

HC=88 
MCI=103 
AD=71 

MRI Predicting MCI to 
AD conversion 

80% 
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Study 1st author 
name and year of 
publication 

Sample size (N) 
in each group  

Techniques Comparison/ 
Prediction of AD 

Reported Max. 
Accuracy (%)/ 
ROC/AUC 

 

Ewers et al. (2012)⁠ HC=101 
MCI-AD=58 
MCI-non-AD 
=72 
AD=81 

MRI 
CSF 
Neuropsychol
ogical data 

HC vs AD 
cMCI vs ncMCI 
MCI-AD vs MCI-
non-AD. 
Predicting 
conversion to AD 

79.7% 
68.5% 
76.3% 
 
 
68.5% 

Hinrichs et al. (2011)⁠ HC=66 
MCI=119 
AD=48 

MRI 
FDG-PET 
Neuropsychol
ogical data 

HC vs AD 
(with imaging data) 
Predicting MCI to 
AD 
(with imaging 
biomarkers) 

0.876 
 
 
 
0.9737 

Polikar et al. (2010)⁠ HC=36 
AD=37 

MRI 
EEG 
FDG-PET 

HC vs AD 
(with all imaging 
modalites) 

80.08% 

Wee et al. (2011)⁠ HC=17 
MCI=10 

DTI HC vs MC 88.89% 

Karow et al. (2010)⁠ HC=80 
MCI=156 
sdMCI=69 
AD=68 

MRI 
FDG-PET 

HC vs AD 
(with MRI & FDG-
PET) 
 
AD vs MCI 
(with MRI & FDG-
PET) 

0.899 & 0.706 
 
 
0.751 & 0.626 

Zhuang et al. (2010)⁠ HC=252 
aMCI=96 
naMCI=69 

DTI HC vs aMCI 74.8% 

Cuingnet et al. 
(2011)⁠ 

HC=162 
cMCI=76 
ncMCI=134 
AD=137 

MRI HC vs AD 
 
 
HC vs cMCI 

Sen. 81% 
Spe. 95% 
 
Sen. 57% 
Spe. 96% 

Koch et al. (2012)⁠ HC=21 
MCI=17 
AD=15 

Rs fMRI HC vs AD 97.2% 

Luckhaus et al. 
(2010)⁠ 

HC=12 
MCI=30 
AD=15 

Perfusion-
weighted MRI 

HC vs AD 
 
MCI vs AD 

100% 
 
0.894 
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Study 1st author 
name and year of 
publication 

Sample size (N) 
in each group  

Techniques Comparison/ 
Prediction of AD 

Reported Max. 
Accuracy (%)/ 
ROC/AUC 

 

Fritzsche et al. 
(2010)⁠ 

HC=15 
MCI=18 
AD=15 

MRI HC vs AD 
cMCI vs ncMCI 
 
Prediction of AD 
from MCI 

90.0% 
83.3% 
 
77.8% 

Hinrichs et al. (2009)⁠ HC=82 
AD=77 

MRI 
FDG-PET 

HC vs AD 
(with both the 
modalities) 

81.00% 

Huang et al. (2010)⁠ HC=67 
MCI=116 
AD=49 

FDG-PET HC vs AD Sen. 88% 
Spe. 88% 

López et al. (2009)⁠ HC=41 
Possible AD=27 
Probable AD=19 
Certain AD=4 

SPECT HC vs AD 92.31% 

Chaves et al. (2009)⁠ HC=41 
Suspected 
AD=38 

SPECT HC vs AD 98.3% 

Chua et al. (2009)⁠ HC=153 
aMCI=55 
naMCI=41 

DTI HC vs aMCI vs 
naMCI 

Sen. 80% 
Spe.60.3% 

Hinrichs et al. 
(2009a)⁠ 

HC=94 
AD=89 

MRI 
FDG-PET 
Neuropsychol
ogic-al data 

HC vs AD 
(with MRI) 
 
(with FDG-PET) 

82% 
 
 
84% 

Salas-Gonzalez et al. 
(2009)⁠ 

HC=41 
Probable AD=38 

SPECT HC vs AD 99% 

Chupin et al. (2009)⁠ HC=166 
MCI=294 
AD=145 

MRI HC vs AD 
 
 
MCI vs HC 
 
 
cMCI vs ncMCI 

Sen. 80% 
Spe. 79% 
 
Sen. 63% 
Spe. 63% 
 
Sen. 65% 
Spe. 68% 

Davatzikos et 
al.(2009)⁠ 

HC=175 
MCI=15 
AD=56 
 

MRI HC vs AD 0.89 
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Study 1st author 
name and year of 
publication 

Sample size (N) 
in each group  

Techniques Comparison/ 
Prediction of AD 

Reported Max. 
Accuracy (%)/ 
ROC/AUC 

 

McEvoy et al. (2009)⁠ HC=139 
MCI=175 
mild AD=84 

MRI HC vs AD 89% 

Misra et al. (2009)⁠ cMCI=27 
ncMCI=76 

MRI cMCI vs ncMCI 81.5% 

Klöppel et al. (2008)⁠ HC=34 
AD=52 
FTLD=19 

MRI HC vs AD 95% 

Duchesne et al. 
(2008)⁠ 

HC=75 
Probable- AD=75 

MRI HC vs AD 92% 

Fritzsche et al. 
(2008)⁠ 

HC=27 
MCI=16 
AD=25 

MRI HC vs MCI Sen. 81% 
Spe. 80% 

Herholz et al. (2002)⁠ HC=110 
Probable- 
AD=395 

FDG-PET HC vs AD Sen. 93% 
Spe. 93% 

          
Table legends: HC = healthy controls, sCN = stable cognitively normal, cCN = converter CN,  

MCI = mild cognitive imapirment, DLB = dementia with lewy bodies, FTLD = frontotemporal 

lobar degeneration, FTD = frontotrmporal dementia, pAD = probable AD, aMCI = amnestic 

MCI, sMCI = stable MCI, cMCI = converter MCI, ncMCI = non-converter MCI, MCI-AD = 

mild cognitive impairment who later developed AD dementia, sd-aMCI = single domain aMCI, 

md-aMCI = multi domain aMCI, uMCI = unknown MCI, eMCI = early MCI, lMCI = late MCI, 

CSF = Cerebrospinal fluid, ROC =  receiver operating characteristic curve, AUC = area under 

curve, MRI = Magnetic resonance imaging, PET = positron emission tomography, FDG-PET = 

fluorodeoxyglucose PET, fMRI = functional magnetic resonance imaging, Rs fMRI = resting 

state fMRI, DTI = diffusion tensor imaging, DWI = diffusion weighted imaging, MRS = 

magnetic resonance spectroscopy, ASL = arterial spin labeling, EEG = electroencephalogram, 

Aβ42(+) = beta amyloid positive, Aβ42(-) = beta amyloid negative, PiB = Pittsburgh compound 
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B, SUVR= Pittsburgh compound Bstandard uptake value ratio, SCI = subjective cognitive 

impairment, MEM = individuals with memory deficits, MEMnos = individuals with memory 

deficits not otherwise specified, NOR = subjects not affected by AD,  Sen. = sensitivity, Spe. = 

specificity. 

 

5.15 Conclusion 

AD is a multifaceted disease with pathological hallmarks of beta amyloid plaques and 

neurofibrillary tangle. The use of structural, functional, and molecular neuroimaging biomarkers 

in the AD brain could provide better disease diagnosis, prognosis and prediction. As discussed 

above, no single imaging technique could achieve 100% classification accuracy because of their 

unique strengths and weaknesses. In addition, the overlapping symptomatology and pathological 

conditions among different forms of dementia and some normal individuals are quite challenging 

for absolute antemortem diagnosis of AD diagnosis and prediction. Although combining all the 

imaging techniques could provide high accuracy in classifying AD from HC, high cost and 

limited availability preclude this for regular clinical use. MCI is a prodromal stage for all AD, 

but all the MCI patients do not progress to AD or other dementia even after 10 year of follow up 

investigation (Mitchell & Shiri-Feshki, 2009)⁠. In addition, the clinical diagnosis of MCI is 

challenging and associated with a high rate of misdiagnosis because of overlapping symptomatic 

and pathologic characteristics like healthy ageing. Therefore, there is an urgent need of 

biomarker(s) for early detection or prediction of AD or related dementia, particularly from the 

MCI stage, which could be a key target for therapeutic intervention to halt or delay the onset of 

AD.  
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Chapter 6: Conclusion and future directions 
 

6.1 Summary of findings 

The key goals of this PhD thesis were  

(i) To assess the diagnostic value of biofluid markers for classifying AD dementia from 

normal ageing with systematic review and meta-analysis procedure of the recent 

literature (Chapter 2). 

(ii) To assess the predictive value for Alzheimer’s disease (AD) dementia of body fluid 

metabolites using systematic review and meta-analysis methods (chapter 3). 

(iii) To investigate the relationship between age at onset of AD dementia and biofluid 

markers with a systematic review process (Chapter 4).  

(iv) To assess the utility of neuroimaging techniques for differential diagnosis of AD 

dementia from healthy ageing, and for predicting the progression of AD dementia from 

the mild cognitive impairment (MCI) stage with a systematic review of literature 

(Chapter 5). 

 

In chapter 2, we investigated the differences of peripheral body fluid metabolite concentrations 

between AD patients and healthy ageing individuals (HC) using systematic review and meta-

analysis procedures (Borenstein et al., 2010; Hedges and Vevea, 1998)⁠. Our meta-analysis 

confirmed that the well-established CSF biomarkers of AD such as Aβ1-42,T-tau and P-tau181p 

proteins level were significantly different from healthy controls. CSF Aβ1-42 levels were found to be 

significantly decreased in AD patients relative to healthy individuals. In addition, our meta-analyses 

supported reports that CSF T-tau and P-tau181p levels are significantly elevated in AD patients 

relative to healthy control subjects. Our findings confirm other groups’ findings on the established 

CSF biomarkers for differential diagnosis of AD versus HC [see (Ferreira et al., 2014; Olsson et al., 
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2016)]. In addition, our results support the claim that another CSF metabolite called heart type fatty 

acid binding protein (hFABP) is significantly elevated in AD groups relative to the HC group. 

Furthermore, our analysis of studies on plasma Aβ and tau proteins concentrations did not support 

any significant differences between AD and HC groups. Our analysis also supported the proposal 

that some inflammatory related cytokines (Turner et al., 2014)⁠ may be significantly elevated in AD. 

Unlike the other cytokines, we found support for the observation that IL-6 concentrations were 

significantly reduced in AD group relative to healthy controls, which contradicts some previous 

findings (Lai et al., 2017; Swardfager et al., 2010). This contradictory result may be due to the fact 

that we included only two studies (Guo et al., 2013; Nazeri et al., 2014) with total 194 AD patients 

and 107 HC subjects for our analysis based on published results from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) (http://adni.loni.usc.edu/) cohort. In addition, there are many 

emerging biomarkers were reported in the literature, but due to limited studies and very high study 

heterogeneity (Higgins and Thompson, 2002)⁠ across the laboratories, those findings are not clearly 

supported. Therefore, more research is necessary for classification of AD and non-AD dementia 

and healthy controls with using body fluid metabolites. 

 

In chapter 3, we examined the relationship between antemortem biofluid marker concentrations and 

their relationship with the dementia severity. Different types of biofluid, including cerebrospinal 

fluid (CSF), blood, serum, plasma, and urine, were investigated. The majority of our findings were 

statistically non-significant. The established body fluid biomarkers of AD dementia are:  

1 Reduced concentration of CSF  amyliod beta 1-42 (Aβ1-42) protein 

2 Increased concentration of CSF total tau (T-tau) and phoshorylated tau (P-tau181p) 

proteins (Alzheimer’s Association, 2018; Blennow et al., 2012)⁠.  

From our analysis, none of these established CSF biomarkers seem to predictive of AD dementia 

based on differences in concentration.  

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
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CSF Aβ1-42,T-tau and P-tau181p protein levels also  did not show any significant correlation with 

severity of AD dementia. However, the analysis supported the claims that some other CSF 

metabolites including Aβ oligomers, norepinephrine, and pyruvate may be negatively correlated 

with the severity of AD dementia. These metabolite concentrations were inversely correlated with 

the severity of AD dementia, but due to the small number of studies with  low sample sizes in the 

included study set, these findings may not be generalizable to a  larger population.  

Similarly, our analysis supported some reports of changes in blood-based metabolites, including 

plasma alpha-1-antichymotrypsin (ACT), serum interleukin-18 (IL-18) concentrations and 

abnormal platelet membrane fluidity. These showed a statistically significant inverse correlation 

with the severity of AD. Although, some of our analyses of biofluid metabolites suggest significant 

effects, because of insufficient numbers of studies, small sample sizes, study design and inter 

laboratory variations (Mattsson et al., 2013; Noble et al., 2008; Watt et al., 2012), these findings 

may not also generalize more broadly. Therefore, our systematic investigation of AD dementia 

severity from the body fluid metabolites indicates that there is insufficient evidence in the literature 

to quantify the effect (Rosenthal and DiMatteo, 2001)⁠. In addition, there are many single studies 

claiming correlations between peripheral biofluid metabolites and AD dementia severity, that need 

to be replicated with larger sample sizes. Based on our current analysis, further research is 

necessary to attempt to extend and confirm some of these findings. 

 

In chapter 4, our aim was to predict the age at onset of sporadic AD dementia from biofluid 

metabolites by using the systematic review and meta-analysis procedure. Therefore, we examined 

the relationship between different types of body fluid metabolites and age at onset of AD dementia.  

Unfortunately, we found only 6 studies that met our study inclusion and exclusion criteria, which 

reported inconsistent results. It was not possible to quantify the effect sizes using meta-analytic 

methods because each study analyzed the strength of relationship age at onset of AD dementia with 
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different metabolites. To reach a firm logical conclusion of findings using meta-analysis method, 

we need to least two studies in the same category (Valentine et al., 2010)⁠.Therefore, we were not 

able  to measure the average effect size between these two variables. Hence, our investigation into 

the literature suggests that there is insufficient evidence for measuring the strength of the 

relationship between age at onset of AD dementia and body fluid metabolites concentration. 

Therefore, more research is necessary for attempts at predicting age at onset of AD dementia from 

peripheral biomarkers. 

 

In chapter 5, we discussed the diagnostic accuracy (Leeflang et al., 2008)⁠ of major neuroimaging 

techniques for classifying AD dementia from controls by a systematic review process. We mainly 

focused on the machine learning (Falahati et al., 2014; Pellegrini et al., 2018)⁠ literature  on 

magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), positron 

emission tomography (PET), diffusion tensor imaging (DTI), magnetic resonance spectroscopy 

(MRS), and Single-photon emission computed tomography (SPECT) (Ferreira and Busatto, 2011; 

Valkanova and Ebmeier, 2014). Neuroimaging studies reported classification accuracy or sensitivity 

or specificity or receiver operating characteristic (ROC) area under curve (Zhu et al., 2010)⁠ were 

targeted. We found that studies combined application of different neuroimaging techniques perform 

better diagnostic classification accuracy between AD and healthy controls (more than 95% 

accuracy). However, some small sample size machine learning studies reported 100% accuracy, 

which may not be generalizable in lager population (Schnack and Kahn, 2016)⁠. We also found 

many studies that reported very high sensitivity (more than 95%) for classification between AD and 

HC, but their specificity remains very low. In addition, due to the overlapping pathological 

conditions among different kinds of dementia and some normal individuals it is quite challenging 

given our current knowledge set, to even theoretically approach differential diagnosis of AD from 

healthy controls with 100% sensitivity and specificity. Although, the combination of multiple 
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neuroimaging techniques offers a very high accuracy in classifying AD from HC, but due to high 

cost and availability, it is not possible to incorporate into all clinical settings. 

 

6.2 Conclusion and future direction 

AD dementia is a multifaceted neurodegenerative disease with pathological hallmarks of beta 

amyloid plaques and neurofibrillary tangle. Although, these protein clumps are not the causal for 

AD pathogenesis, their accumulation in the brain defines AD as a unique neurodegenerative 

disorder (Alzheimer’s Association, 2018)⁠. Symptomatic hallmarks of AD dementia vary from 

patient to patient, including impairment of episodic memory and other cognitive functions.  

It is of great interest that AD pathogenesis may begin over a decade before the onset of clinical 

symptoms, and the symptoms gradually deteriorate from preclinical to intermediate and clinical 

conditions. The intermediate stage of dementia is called mild cognitive impairment (MCI), where a 

person with MCI, while exhibiting some decline in cognition, may be functionally active enough to 

carry out daily life activities. Evidence suggests that the individuals with MCI condition are high 

risk of developing AD or other forms of dementia. However, studies also suggest that all the MCI 

subjects do not progress to AD or related dementia even 10 years after initial diagnosis (Mitchell 

and Shiri-Feshki, 2009; Ward et al., 2013). Therefore, the early diagnosis of dementia or AD 

particularly from MCI stage would be very helpful for development of therapeutic intervention for 

attempted enhancement of cognition by physical or mental activities (Farina et al., 2014; Groot et 

al., 2016) to halt or delay the onset of deteriorating dementia symptoms. In addition, the early 

diagnosis of MCI subjects would not only enable the researchers to carry out  important clinical 

trials, but also these affected individual future patients can make legal, financial and end-of-life 

plans, while they are cognitively intact (Alzheimer’s Association, 2018)⁠. 
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The findings of AD research in the literature are inconsistent, and it significantly varies among 

studies. The main objective of this PhD investigation was to estimate the true effect size across the 

large volume of data as accurately as possible, and to quantify the existence of study variabilities in 

the AD literature by using systematic review and meta-analytic methods. Meta-analysis is a 

statistical method for combining different studies to get the highest level of evidence from the 

literature, and now, it is widely used in clinical and applied research for the evaluation of evidence, 

policy making, grant applications, and many other fields as well (Borenstein et al., 2009). Our 

meta-analytic methods confirmed the analysis of previous studies in literature, and these parallel 

findings confirm that our approach is both effective and valid. Unfortunately, very few studies met 

our study inclusion criteria from the literature. The majority of studies was excluded because of 

data format, limited statistical reporting, and considering neurologically disordered individuals’ as a 

healthy control for their comparative analysis with AD group. Our meta-analysis only examined the 

group level differences in the metabolite concentration, and predicting AD dementia from the 

metabolite concentration, which may not be generalizable in the individual level. We did not 

perform meta-analysis on subgroups’ level like the MCI, aMCI, naMCI (Petersen et al., 2014), and 

comparison among different forms of dementia (Camicioli, 2004). We did not perform any analysis 

on moderator variables like age, sex, gender, and years of education, that may influence our 

findings. Despite an extensive search, we may have missed some potential studies in the literature, 

which may affect our results. Many studies with small sample size are not reliable and false 

positive findings may be high (Button et al., 2013). In addition, we combined high quality studies 

with low quality studies (Rosenthal et al., 2001), that may influence the true effect size. Therefore, 

future research should continue to examine these pitfalls for better AD diagnosis, prognosis and 

early prediction based on biomarkers. 
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To date, more than 244 drugs were clinically tested in between 2002-2012 for the treatment of AD 

dementia, but unfortunately, none of them proved to be effective (Alzheimer’s Association, 2018; 

Cummings et al., 2017). However, only six drugs, namely the rivastigmine, galantamine, donepezil, 

tacrine, memantine, and donepezil combined with memantine are currently being used to treat for a 

partial symptomatic relief of mild to moderate AD dementia patients’ (Alzheimer’s Association, 

2018)⁠. Majority of disease modifying pharmacological interventions for AD treatment were 

targeted to Aβ peptide fragments. Among those, the passive immunotherapy through monoclonal 

antibodies targeting to different Aβ species is the most elaborately studied and continually being 

developed to treat AD (van Dyck, 2018). Briefly, there are two types of Aβ immunotherapies for 

AD, such as the active and passive immunotherapy (van Dyck, 2018). In active Aβ immunotherapy, 

a segment of Aβ or a similar antigen is administered to the patients’ body to stimulate the immune 

response to produce own antibody against Aβ (van Dyck, 2018). Although, initial clinical trials 

worked in many patients’, but due to adverse side effects and lack of immune response or 

inconsistent, particularly in elderly patients’, it was however, terminated [see details in (van Dyck, 

2018)]. By contrast, in passive immunotherapy for AD, the preformed monoclonal antibodies are 

administered into the patients’ body to boost the immune system for the purpose of clearing Aβ 

plaques or to prevent the Aβ aggregation (van Dyck, 2018). It is a high cost associated procedure 

because it requires repeated production and injection of antibodies (van Dyck, 2018). 

Unfortunately, all the clinical trials targeted to passive immunotherapy of Aβ have failed, and a 

possible explanation for the failures of all these trials that they all were set in the late stage of AD 

process (Petersen et al., 2014;van Dyck, 2018). Therefore, new clinical trials are going on 

particularly targeting preclinical and prodromal stages of AD (Petersen et al., 2014), and hopefully, 

the findings may open new avenues for AD research [see details (van Dyck, 2018)]. Furthermore, 

in future, if research ethics regulations allow, development of another advanced gene editing 
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method called the clustered regularly interspaced short palindromic repeats (CRISPR) [see recent 

review (Adli, 2018)] may be useful for treating familial forms of AD.   

Recent advanced computational methods in the domains of machine-learning, data mining, and 

artificial intelligence, with advanced algorithms and advanced statistical models, are proving to be 

very useful tools for disease diagnosis, predictions of course of disease transition prediction and 

treatment prognosis (Klo et al., 2008;Young et al., 2018). Interestingly, these algorithms recognize 

data patterns in the training set and perform classification on new data sets (i.e. testing set) at the  

individual case level (Klo et al., 2008;Young et al., 2018). Future work should continue with these 

advanced techniques for improved public health through automatic disease diagnosis, the 

possibility of this leading to new clinical treatment options and yielding information that will lead 

us to a better understanding of disease processes.      
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