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ABSTRACT

This thesis pursues an extensive study on the
application of a multivariable generalized minimum variance
(GMV) self-tuning controller to a single-machine-infinite-bus
(SMIB) power system, The nonlinear characteristics of a
synchronous generator system are discussed from the viewpoint
of multi-input/multi-output system, and the multivariable
self-tuning controller is designed for such a system, Digital
simulations show that the self-~tuning algorithm used in this
thesis can cope well with Qide operating conditions of a
synchronous generator system, A theoretical analysis of the
convergence property of the multivariable GMV self-tuning
algorithm in a deterministic environment is pursued. It is
further proved that such a multivariable GMV self-tuning
power system is always stable even in a stochastic

environment,
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A = matrix

IAll = induced norm of matrix A
D = moment of inertia, lb-ft?
det = determinant
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E(') = expectation value

F = turbine power fraction
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y*(t+kit) = optimal estimation of y(t+k) at time t
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CHAPTER 1
GENERAL INTRODUCTION
1.1 Introduction

As indicated by the title of this thesis, the aim of
this project is to develop a multivariable self-tuning, or
adaptive, controller for power systems and prove its
stability. The importance of this topic is brought into focus
by reviewing control strategies which are in use presently in

power systems.,

It has long been recognized that a synchronous generator
can be modeled by a set of nonlinear equations. However, it
is difficult to analyze and synthesize controllers for such a
system by using the nonlinear model directly. Therefore, a
linearized model is needed if the principle of linear
feedback control is used(28,35], sych a linearized model of a
power system is a coupled two-loop system. To further
simplify the design procedure of controllers it is common to
treat the coupled loops as two individual ones i.e. speed
loop (or frequency loop) and voltage loop (or excitation
loop). Then the controller in the speed loop, which is

usually called Governor (GOV), and the controller in the



ypi;ﬁéa looé;’wbich is uguglly called the Automatic Voltage
kegulatq:‘(AVR), are tuned based on classical feedbaék
control theory such as Bode plots, root locus technique, or
Nyquist criterion, etc.[29/31], The GOV functions as either a
shaft speed controller or abpower controller deﬁending on the
mode of generator operation. The AVR is used to regulate
terminal voltage through controlling the excitation of the
generator. In many situations a Power System Stabilizer (PSS)
ié needed to reduce the oscillations caused by load
disturbances or short-circuit faults, etc. The basic function
of the PSS is to offer damping torque to cancel or reduce the
effect of negative damping torque caused by the excitation
loop and other factors such as powér angle, weak transmission
and load characteristics., These controllers are widely used
in power systems at present and have simple structures due to
relaxed design constraints based on small-signal analysis and
intuitive concepts. These PSS configurations cannot achieve

satisfactory control results for a wide range of operating

conditions.

To improve the control quality much work has been done
since 1970's with many interesting results by applying linear
optimal feedback control to power systems, especially to the
excitation controll46-51] 1t seems, however, that it is not
very practical when it is applied to a real power system. The
reasons perhaps are, in part, the complexity of the theory

and the difficulty in accessing state variables. But the most



important reason fcr lack cf acceptance in pcwer engineering
is that the linear quadratic optimal centroller dces not

offer good control for wide operating ranges of generators.

It is known that both the classical feedback controller
and the linear quadratic optimal controller are established
on the same assumption that an explicit deterministic
mathematical model of the system to be controlled is
available. The nonlinear features of a power system cause the
linearized system parametess to change in response to
different operating points. Some of the parameters may even
have large deviations from the assumed operating point, These
characteristics cannot be modeled in the design stage of the
fixed parameter controllers because the nature of the
variations is random and the system is nonlinear. This
indicates that on-line parameter identification will be
helpful. It is also important for a control policy to involve
the random nature of the power system environment. Adaptive
control (or self-tuning) theory has the required
characteristics needed for good performance in the power
system environment. This technique identifies the system
parameters and calculates an optimal control action subject
to certain design criteria based on the identified parameters
at each sampling steps. Therefore, it can "chase" the changes

of the system parameters.



- ‘_3g§gd;qh on ngﬁgive @ontrg; began in ﬁhg par;§ 1950}?.
Unfq:;unaﬁe;y,_the;g.wgg not much progress until 197Qf§‘dpe
to the lack of appropriate hardware as well as‘adeéuate
theory for analysis. The interest in adaptive control was
renewed in 1970's. "The progress in control theory during the
previous decade contributed to an improved understanding of
adaptive control. The rapid and revolutionary progress in
microelectronics has made it possible to implement adaptive
regulators simply and cheaply"([52], since 1970 several
excellent surveys on adaptive control theory and applications

have been published, such as Landaul7l] (1974) and Astrom!52]

(1983),

Research on applications of adaptive control to power
systems began in the early 70's. Among the studies on the
application of adaptive control in power syStems, references
[1~26] deal mainly with the synchronous generator controls.
Most of them were concentrated on adaptive excitation control
such as self-tuning AVR or self-tuning pssil,11,14,20,25],
These adaptive AVR's and adaptive PSS's are designed on the

basis of single-input/single-output (SISO) system models.

Bonanomi et al.[l] (1980) use the technique called "gain
scheduling adaptive control" to design an AVR. There are five
pairs of off-line calculated gains stored in a look-up table,
and the controller will pick-up one of them from the table

based on the identified levels of real power, var power and



terminal voltage at 8 fixed period: Outhred et al, [13]
(1972), Malik et al. l161 (1978), Irving et al.l9] (1977) use
model reference adaptive control to design AVRs; Ghosh et
al.[4:5]1 (1984, 1985), chen et al.[2,3] (1986) employ the
pole-placement and pole-shifting self-tuner for the
excitation control; Sheirah et al.[22] (1978), Ledwichl[l12]
(1978), Kanniah et al.[11,12]) (1984) design their exciters by
using adaptive minimum variance controller; And Xia et
al.[25] (1983), Romero et al.[21] (1986) applied self-tuning
generalized minimum variance controller to their exciters.
All of the research was supported by corresponding simulation
results. As a power system is inherently a coupled multi-
input/multi-output (MIMO) system, Hanus et al.[8] (1983) and
Yokokawa et al.[26] (1987) developed their combined GOV and
AVR self-tuning controllers. Hanus et al. developed a digital
multivariable self-tuner by using a modified pole-assignment
techniqué. However, divergence or instability of the
controlled system was observed in his simulation studies.,
Therefore, the problem with his algorithm is that it cannot
ensure the convergence of the controlled system. Yokokawa et
al. developed a multivariable self-tuning controller based on
a state-space model. The system reactances are estimated
through a Kalman filter, then a state feedback gain matrix
subject to a linear quadratic performadce index is solved on-
line by solving the discrete matrix Riccati equation. The
optimal controller works effectively in reducing long-period

oscillations of the generator. It is a rélatively slow



glg@:ithn‘;,‘_resu;ting in uﬁdqtes of the qétimql fpedb_ack
matrix every 3 or ¢ secohds. Also the stochastic
characteristics are not modelled in their work. Therefore,
further p:obing ;nto the many phases of multivariable
adaptive control and the deriviation of a more practical,
simpler adaptive controller for a power system presents an
interesting development challenge and would also be of

practical benefit to improving power system controller

performance,
1.2 S8cope of the thesis

The main objective of this thesis 1is concerned with the
multivariable self-tuning control of synchronous generators
to minimize the variance of specified "quality"” variables of

the plant,

To meet this objective, an extensive study of a power
generation system based on the MIMO system representation was
pursued. This is discussed in Chapter 2. The nonlinear model
of a turbine-synchronous generator system used in simulation
studies of the multivariable self-tuning controller is
discussed. The coupling effect between the excitation and the
speed loops, and a transfer function matrix for the

linearized model is discussed in Section 2.3.



Chaptef 3 deals with the multivé:igble se;f-tunip?
controller to minimize the vériance of the outputs of‘the
synchronous generator systems. Section 3.2 is used to
introduce the basic theory of a multivariable self-tuning
controller, called Generalized Minimum Variance (GMV) self-
tuning controller. Section 3.2.1 presents the GMV controller
for a MIMO system with known parameters, and Section 3.2.2
then develops it into the self-tuning algorithm. In Section
3.3, the multivariable GMV self-tuning controller for the

generator systems is developed for the stochastic case.

Convergence analysis of the power system with
multivariable GMV self-tuning controller is described in
Chapter 4, It first proves the convergence property of the
multivariable GMV self-tuning controller for deterministic
MIMO systems, then shows a system with unit time delay
subject to a stochastic environment is equivalent to the
deterministic case, and finally concludes that a power system
with the suggested self-tuner is stable under certain

conditions.

Chapter 5 offers comprehensive simulation results. The
nonlinear model discussed in Chapter 2 is used to simulate
the single-machinre-infinite-bus (SMIB) system. A variety of
operation conditions is simulated to test the multivariable
GMV self-tuning controller, and comparision with a SMIB

system with properly tuned conventional controllers is made.



Chapter 6 provides a summary of the thesis, conclusions,

and suggestions for further research.



CHAPTER 2
MATHEMATICAL MODELS OF SYNCHRONOUS GENERATOR
2.1 Introduction

It is important to investigate the mathematical model of
a plant for the purpose of control. There are two kinds of
synchronous machine models, i.e., non-linear and linear. For
power system control analysis the linear model is very often
used. However, the linear model used in power system studies
is treated as two independent loops when GOV and AVR are
tuned. Therefore, a study of the synchronous machine on both
non-linear and linear models from the multivariable system
viewpoint will be pursued in this chapter. All the symbols
used in this chapter are. included in the definitions listed

in the nomenclature.
2.2 Yon-linear model

Under the assumptions that there &sre no amortisseur
windings and that the resistances and saturation are
negligible, a synchronous machine connected to an infinite
(or very large) bus can be described by the following set of

non-linear equations(34] in p,u.,



vq = pwd-%w (2.2.1)

vg = §¢§+wa§o (2.2.2)
V4 = Preld-%Xeigpd +Esind +reig (2.2.3)
Vq = PXelgtxeidpd +Ecosd +reig (2.2.4)
Vd = Igda-*did (2.2.5)
Vq = -Xqiq (2.2.6)
Mp20 = Tm-Wqiq+Wqiq-D (pB-1) (2.2.7)
Ved = Igg- (xg-%q) ig (2.2.8)
Efd = I£d+TdoPVed | (2.2.9)
vel = vgl+vg? (2.2.10)

If it is further assumed that voltages pVY4q, PVqs PXeiq:

pXeiq are negligible compared with other terms and pO=w.=1,
elqg ]

with these assumptions, Eqns.(2.2.1) through (2.2.4) and

Egn.(2.2.7) become,

vVd = “Vq (2.2.11)



vq = Vg . (2.2.12)

Vq = Ecosd +xgiq +reiq (2.2.14)
Mp2@ = Tp-Wqiq+Wglg (2.2,15)

This is a set of formulae frequently used in modelling

synchronous generators(45], By defining,

E' = Yeg (2.2.16)
s = -1 (2.2.18)

a set of nonlinear equations describing a synchronous
generator supplying power to an infinite bus (SMIB) system is

derived,

8 = wgs (2.2.19)
. 1 ' ‘
S = & (Tp-Te-Ds) (2.2.20)
1 . .
El = mi— - (x4~ -E .2.21
q = i [Bra-(xa=xq) ta-Eq] (2.2.21)

11._



t12h

VA = #Qié (2.2.22;
vq = Eq=Xdig (2.2.23)
Te = Eqiq (2.2,24)
iq = (Egr-iio(sﬁ) (xﬂ*'zxg) _ 2:' Esind - (2.2.25)
e+ (Xg+xq) et (Xg+xq)
{Eg-Ecosbirg  (xg+xg)Esind (2.2.26)

iq = +
q rez+ (XQ'H(q) e rez"' (xe"'Xq) e
Ve = Vvd2+vq2 (2.2.27)
Eq = Eqt(xg-xg)iq = vq¥xqlq (2.2.28)
The prime-mover of a steam turbine can be described by,

Ty = ;1- (Fhpug=Tn) (2.2.29)
(~]

where ug is the control signal of mechanical power, i.e., the

turbine valve opening.

Expressions (2.2.19) through (2.2.29) will be used to
simulate the turbine-synchronous-generator system in this

thesis. The parameters used in simulation studies are given



[ [

1y Sy
St

© in Appendix A. If practical linitations of the steam valve

and exciter are taken into account a block §iagram‘fcr the
nonliﬁé#? @odel of SMIB system can be drawn as‘in Figure
2.2.1, where ug and ug are taken as input gignals, ® and vy
output signals of the system, ia and ig are determined by
Eqns. (2.2.25) and (2.2.26). It is obvious that suéh a system

is a two-input/two-output system,
2.3 Linearized Model

As the linear SMIB modél is frequently used in control
analysis, it will be briefly discussed in this section.

A linear model of a turbine-SMIB system can bhe derived
from Egns,.(2,2,19) through (2.2.29),. Choosing a fixed
operating point, and using Taylor expansion around the chosen
operation point, one can easily linearize the nonlinear model

as shown in Figure 2,.3.1.

In Figure 2.3,1, shaft speed ® and terminal voltage Ve

are arranged to be the two outputs. The constants K1~K5'are

defined as follows,

EqQE
k; = Jg-Q-[resinaone*rx&) cosdg ] +

140
+ig§‘g[(xq-xé)sinﬁo-re(xq-x&)cosﬁo]
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(x=+xg)(xg-xd)]
2 Ii*iq0[ A

, T
B ey,

kg = Qi;§~ﬂsu£(x@+xq)sin80-recosao]

A

q[rﬂzgsin89+(x=+xd)EQc038Q]
ks = VtO

a0 é[rﬁEQCOSSQ-(x=+xg)EQsinSQ]

V0 A

where

A= re2+(Xe+x'd) (Xq+Xe)

It is helpful to mention the effects of changing

operating point on the constants Kj~Kg. Figure 2.3.2 shows

the locus of Ki~Kg (except K3) for the simulated system of

the thesis when real power P and reactive power Q change,

Obviously they change along with the loading conditions, and

K even changes its sign under heavy loading conditions.



K1

0'6 4  § [ L] 1 [ 1 ¥
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

REAL POWER
(a)

Fig.2.3.2 (a~e) The effects of changes of loading conditions
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o Though Figure 2 3 1 cffers a good view of the SMIB
system, it is still difficult to find the general coupling

expression between the two loops. Reference [34] analyzes the

coupling‘phenomenbn and the transfer function matrix is

derived there. It is a 4th-order system with no'pure~time
delay. This indicates that a 4th-order multivariable self-
tuning controller with one-step time delay for adaptive

control will be adequate for a SMIB system,



CHAPTER 3

MULTIVARIABLE SELF-TUNING CONTROL OF
SYNCHRONOUS GENERATOR SYSTEMS

3.1 Introduction

If an explicit system model with invariant properties is
available, classical feedback control theory or modern
contibl theory can then be used to design controllers for
this system. For example, if the parameters Kj~Kg were not
changing with the load condition, the transfer function
matrix in reference [34] could be used for design purposes,
However, if the parameters of a system model are unknown, or
changing slowly over a long period, the design techniques for
the fixed model pérahetets are then no longer suitable. The
self-tuning (or adaptive) control uses on-line identification
techniques, and therefore, allows the optimal controller to
be updated when the system is subjected to randdm

disturbances over a wide operating range.

There are a variety of self-tuning control strategies
and on-line identification techniques documented in the
literature. This thesis does not intend to discuss all of the
self-tuning control strategies systematically. Instead, it

will concentrate on the generalized minimum variance self-

21



tuning strategy and will apply it to the power system
cpnsidered_ in this thesis. a geng#gl discussion on
multivariablg Generalized Minimum Variance (GMV) control for
known parameter systems will be undertaken in Section 3.2.1,
and an extension of this strategy to include self-tuning is

presented in Section 3.2.2.

The principle of GMV control strateqgy was first
introduced by Clarke and Gawthrop[56] in 1975 for SISO
systems. Koivo[70] extended this technique to MIMO systems in
1980. A self-tuner of power system based on Clarke-Gawthrop-
Koivo's multivariable GMV controller with variable forgetting
factor is developed in Section 3.3, The convergence property
of Clarke-Gawthrop self-tuning controller in SISO case was
discused by Tsiligiannis et al. in 1986[80], But the
convergence analysis for MIMO case is not available in
literature. A proof for the convergence and stability of the
multivariable GMV STC is presented in Chapter 4.



3.2 Multivariable Self-Tuning Controller

3.3.;» Multivariable Generalized Minimum Variance

Controller

Consider a MIMO system, with m inputs and m outputs,
described by an AutoRegressive Moving-Average mcdel with

external inputs (ARMAX),

Mg lyy(t) = B(g~hu(t-k)+€(q~1)&(t) (3.2.1)

where,

output vector y(.)eRM
input wvector u(.)eRM

noise vector &(.)eRM

and {&(')} is a sequence of independent equally distributed

random signals with zero mean value and covariance,

E{§()§()T} = diag (02...02)

q~! is the backward shift operator , i.e.,

g ly(t) & y(t-1)



2 4
qnqu‘}s‘the time delay. Matrix polynomials A, B, and € are :
defined as,

“(q-l) - I*‘lq-l*" s +Anq”R, Aje€RMXM
B (q’l) = ’°+qu'l+ v .,.3nq-n, Bie RIMXM

C(q-l) = I+c1q-l+v . '+-cnq-n, cieamxm

where By is non-singular and det([C(q~l)] has its zeros

strictly outside of the unit circle on the g-l-plane. It is

assumed that coefficlent matrices Ay, By and Cj are known a

priori,
The cost function to be considered is of the form,

Je)=e { || st hy(e+-RiaHyg(t) || 2+ 1l Qg Liuce) [ 2}
" (3.2.2)

where 8(q~l)er™Xm, R(q~l)eRMXM, and Q'(qg-l)eRMXM are

polynomial matrices, and 8(q~1) satisfies,

s(g~l) 1

8(q-1)

where,

s(q™1) = 1+s;q 145,724 -«



yd(t)enm is the reference vector, end notation II || means

Euclidean norm as defined in the Nomenclature, and Ilzllz-x x.

The k~step-ahead predictor of Eqn.(3.2.1) is derived in
Appendix B and is given by Eqn. (B.8),

v e+t =8q Lt [F by BB hume ] 3.2.3)
The polynomial matrices €(q~1)-1, F(q~l) and E(q~!) can be
calculated by using the relationships of (B.1) through (B.4)

in Appendix B. Thus y"(t+klt) can be calculated based on the

data up to time t,
{y(t) yit=1) ++v u(t) u(t=1) ++-}

There is a prediction error existing between the true value
of y(t+k) and the predicted value of y*(t+k|t). This error

can be calculated by using Eqn, (B.7) in Appendix B,
@ (t+K) =y (t+k) -y* (t+k | t)

=(I+B1q 1+, . 4B 197K 1) E (L +k) ©(3.2.4)

or,

@ (t+k) =E (t+k) +B1§ (t+k=1) +. . . +By_1E(t+1) (3.2.5)



e

It is obvious that the prediction error d(t+k)',is

uncorrelated with y* (t+klt).

To find the optimal control which minimizes the cost
function of Eqn.(3.2.2), Eqn.(3.2.4) is substituted inte

Eqn.(3.2.2) yielding,

sr=e{ || stqg~Y) [y* (t+kIt) +@ (t+k) 1-R(q Ly yq(t) || +

+llQtqgtrue) || 2} (3.2.6)

Since {§(g"l)e(t+k)} is uncorrelated with {8(q~1)y*(t+i|t)}
and {R(q"L)yq(t)} (i=1,+++,k), J(t) can be expressed as,

Je) =] 8(q iy (t+kit) -Rig~ D yg(t) || 2+

+ll@tahruce) | 2+5 { llsaLiert+k) || 2}

Taking partial derivative of J(t) with respect to u(t) and

equating it to zero leads to the optimal control strategy,

(L) _ 2[as(q'1)y* (t+kit)

T
=1y y* - -1
du (t) du (t) ] [s(q Yy* (t+kit) -R(g~Lyyq(t) ] +

+2(Q9) 7@ (g"yu(t)

"
o



:' 82 observing thatmso-I,
Bf [8(a L y* (t+k 1£)-R(q L) yg (£) ] + (@) %0 (gL u(t) =0  (3.2.7)

The control u(t) can be calculated by using Eqn. (3,2.7). The
control vector forms an admissible control law, i.e.,, the
control at time t is a function of the observed outputs up to

time t and the previous controls up to time t-1,

Clarke and Gawthrop introduced an "auxiliary" output
into the controlled system[56], and Koivo extended this
concept to MIMO case. This concept is helpful in developing
the self-tuning algorithm and in showing that the optimal
control in Eqn.(3.2.7) is equivalent to minimum variance

control,
Define a matrix polynomial
Q@) 4 @) "ty (al) (3.2.8)
and an auxiliary output vector,
®(t+k) & 8(q hy(t+k)-R(q™ 1) yq(t) +Q(q L)u(t) (3.2.9)
Then the k-step-ahead predictor of the auxiliary output is,

O% (t4k1t) =8 (q L) y* (t+kIt) -R(q" L yg (0)+Q(q~Diu(e)  (3.2.10)



“°”7?§§5
;54'#59 prédicﬁioh er§o£‘of é(t¥k) is
é(t+ki - ¢(£+k)-d$*(t+k|t)
= 8(q™1) [y(t+k) -y* (t+k|t)]
=8(q~1)e(t+k) (3.2.11)
Now define é cost function of the form,

Je) =5{ lI®wn |2} (3.2.12)

then it is obvious that this is a minimum variance
control (53] problem. Substituting the relationship (3.2.11)

into J(t) leads to,

gty = e{ [ @* esxit)+ece+i || 2}

Notice that @*(t+k|t) is uncorrelated with the prediction

error €(t+k). The above expression can be written as ,

gie) = 5{ lo*w+xit) |2} +e { e+ |12} (3.2.13)

Since e(t+k) is unaffected by u(t), the minimum J(t) happens

only when the following fact holds,
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W

O* (t+kit)=0 | (3.2.14)'4

Eqn.(3.2.14) is equivalent to Eqn.(3.2.7). Therefore it can

be used to calculate the optimal control u(t).

3.2.2 Self-Tuning Multivariable Generalized Minimum

Variance Controller

In Section 3.2.,1 the multivariable GMV controller is
derived for the systems with known parameters. If the
polynomial matrices A(q~1), B(q~l) and €(q~l) are unknown, a
self-tuning algorithm has to be developed, This subsection
will be used to describe this identification algorithm,

3.2.2.1 Self-Tuning Algorithm

Substituting the predictor given by Eqn,.(B.8) in
Appendix B into EqQn. (3.2.10) implies that,

O* (t+k[t)=8(q~1)E(q-1)-1 [i(q'l)y(t)+i(q'1>a<q'1>u<c) ]-
-R(q™ 1) yq(t) +@(q 1 u(t) (3.2.15)

Since the matrix polynomial 8(q~1) is defined as (see

Ean. (3.2.2)),



s(gl) 4 sg )2

8(q~1l) and é(q‘l) are commutative, therefore, Eqn. (3.2.15)

can be written as,

E(q L) O* (t+kIt)=a(q L)y (t) +B(qDu(t) +B(g~ L yg(t)  (3.2.16)

where,

o>

a(q-l) = s(g=LH)F(q71)
Bia~l) £ s(qg~l)E(q~1)B(q~1) +&(q~1)Q(q~1)

-C(q~hHr(q-l)

(1]>2

B(g~1)

These polynomial matrices will be estimated on-line, so the
notation - will be used to express the estimated parameters,

The data vector, or regressor, %(t) is defined as,

x(t)?T 4 [y(t)'r y-1T - u(t)T u(t-1)7T ...
Va ()T yg(t-1)T -] (3.2.17a)

and parameter matrix @(t) as,

Ot) =[0¢0) -+ Bty ] (3.2.17b)



or,
A e AR A A qn
8ct) = [agee) ayeer «v Boce) Byt) +ov Bo(e) By(e) +ov ]

where the column vectors 6i(t), i=1,2,:++,m, are of the form,

esec caa
.a

6yc0) =[a% () «or afut) i @l () cee @l (6) i e

Bhyte)  oor Bha(e) i oo

§B°il(t) cre B e

A A v A Iy . T
2 S PULINETRIS NI U NERRIS CYNTI AT

The relationship derived from Egn.(3.2.11) can then be

expressed component-wise as,

Dy (t+k) =Y (t+k|t) +84 (t+k) (3.2.18)

or,

Oy (£+k) =% (£) T8 (£) +ey (t+k) + [ 1-644 (q71) ] @% (t+k1t)-

-igjéij(q'l)d’*iwfkut) (3.2.19)

and the control law is determined by setting



% (£) T (£) =0 o @3.2.200

However, it should be noticed that for the case of €(q-l)xI,
Eqn.(3.2.19) indicates that ®*(t+k|t) is correlated with

X(t). Therefore, if the least-squares estimate is used, the

estimation will be biased. But since the control law sets

d* (t+k | t) equal to zero, the last two terms in Eqn. (3.2.19)

will vanish. If C(q~1l)=I, then €(q~1)=%, Eqn.(3.2.19) becomes

Dy (t+k) =x (t) T8, (£) +e4 (£+k) (3.2.21)

It is obvious that the components of %(t) are uncorrelated

with ej (t+k). Therefore, the least-squares estimation is

unbiared,

The control law calculated from Eqn. (3.2.20) is,
=-I\ -1 A - A - A 3
u(t)=-B, [igoaiy(t i)+i§1[31u(t i)»rigohiyd(t 1)] (3.2.22)

3.2.2.2 Parameter Estimation



o e
_ 'ro identify the parameter matrix Q(t) in Eqn (3 2 17b),
tvtn estimato: ‘has to. be used.,It is well known that thei
recursive parameter identification (o: estimatcr) plays a
crucial role in adaptive control. 1In fact, the convergence
troperty of an on-line estimator is the key in the proof of
Stability of a ‘self-tuning algorithm. Therefore, there are a
variety of identification schemes for adaptive control
developed in the literature. Of the many identification

techniques, the recursive least-squares (RLS) is perhaps the

best known and most widely used in self-tuning control.

The Dbasic least-squares estimation is derived by

minimizing the following cost function with respect to 0y,

N
2
J(Gi)1£A[¢i(t)-a(t-k)T91] 1=1,2,,m (3.2.23)

and the resultant estimation law for a MIMO system in the

recursive form is,

8y (e+1) =B (t) +X(t) [0 () -x(t-k)%;(t) ] ,1=1,2, o m (3.2.24)

This iteration can be explained by the following expression,

new parameter| [previous parameter]+[algorithm] [prediction}
estimates estimates gain error



- It is clear that larger "algorithm gain will give ‘lazger
podifigatiqq.on the new estimatgd Parameters. The standard

RLS algorithm gain K(t) is given by,

K(t) =P (t)x(t-k) [14%(t=k) TP (t) x(t-k) ] - (3.2.25)
where the covariance matrix Pp(t) satisfies,

- R (tzzgt-kzagt-kﬂutz]
Pt+1) ["t’ 1+% (£=K) T (t) % (E-k) / (3.2.26)

with A=1,

It can be observed that if the initial value of P(0) is
considered to be the same for all parameter vectors, the
corresponding algorithm gain R(t) will alsoc be the same for
all estimators. Thisg gives a significant saving in

computations[54],

This standard RLS algorithm has good convergence
pProperties. However, the basic difficulty with this algorithm
is that the covariance matrix P(t+l) in EQn. (3.2.26) will
gradually decay to a small value and therefore the algorithm
does not retain its alertness or adaptivityl77], tnig is
easily seen from the second term on the right of

EQn. (3.2.26). This term is always positive or zero, so P(t)



gg:§ smql;er anglpggllgx_gsh;ime}p:qgrgqseé,_Smaller‘th)

means‘smaller algorithm gain R(t) in Eqn.(3.2.25).

It is logical to consider modifying the covariance
matrix P(t) b9 setting A<l. This algorithm is usually called
RLS with Exponential Data Weighting in the literature because
it is the resultant recursive form of the optimal estimation

which minimized the cost function below,

N
2
J(Gi)'t;ok”"‘[¢i(t)-a(t-k)rﬂi(t)] , i=1,2,c00,m (3.2.27)

This algorithm works well when the controlled system is
excited properly., Otherwise it will lead to covariance matrix

P(t) wind-up.

Fortescue et al,[64] (1981) modified the fixed forgetting
factor RLS algorithm, changing constant A to a time varying

quantity A(t). This algorithm is called RLS with variable
forgetting factor, and it has the following property: A(t)
will be set to a small value when the prediction error 0 (t)-
x(t-k)Téi(t) is large, and go to 1 when the prediction error
is zero. The introduction of A(t) will be able to maintain
the alertness of the algorithm, and avoid the wind-up
phenomenon for small data vector. Yet an upper bound for P(t)

has to be imposed in case a small A(t) causes exponential

increment. For RLS with a variable forgetting factor



Ceda Rl ey iy

g}gp‘:;itptp‘ "Eqn.  (3,2.26) is replaced by | the fc‘lvl'cvi‘lng‘

Pk R R I o S

‘relationships,

P : o 5
Z [osmr-=e-0Te ]

=1-= — 3.2.2
M) . [1+x(t-k) TP (t-1)%(t-k) ] O ( 8)
wit) = [T-R(t)x(t-k)T]p(t-1) (3.2.29)

M) (¢ LEACOIN(E)]

P(t)={Alt) A(t) | (3.2.30)

W(t) otherwise

where ¢ is a constant to be chosen to ensure A(t)>0 for all

t, and C is a constant of the upper bound of P(t),.

Eqn. (3.2.28) has been modified to the MIMO system case.
A(t) will decrease when any one of the predictionAerrors

i (t)=0y (t) -x(t-k)réi (t), i=1,2,++,m, increases.

3.3 Multivariable Self-Tuning Controller of

Syanchronous Generator Systems

The basic theory of multivariable GMV self-tuning
controller is discussed in the previous section. This section
will be used to discuss how to form a self-tuner for

synchronous generator systems,



3.3.1 System Model

~ Since the ARMAX model is based on the inpﬁticutput‘
characteristics of physical plants, it is widely tsed in
engineering. It is a kind of stochastic linear vector
difference equation. The multivariable self-tuning controller

discussed in Section 3.2 is based on such a model.

It has been mentioned in Section 2,.3.2 that a thermal
ﬁurbine synchronous generator connected to an infinite bus
can be described by a 4th-order transfer function matrix with
no pure time delay. The fact suggests that a 4tN-order ARMAX
model with two-input/two-output will be adequate for such a

SMIB system, i.e.,

A l)y(t)=B(q~l)u(t-1)+E(t) (3.3.1)

where,

&(q-l)=I+Ilq°1+A2q'2+h3q'3+l4q‘4, AiEszz
B(q~1)=Bo+8;q"1+Byq~2+B3q~3, B e R2*?

Bo*0
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49#'>wvyi(t) . ?F:A:Q»kﬁi(t) ¢ 11i*Lﬁ'~§1(tj'f.,’
ye s i ], w(e) o, E(e)= T
| va(t)d Luy(t) L&

y(t), u(t) and &(t) are the samples of corresponding variable

at instant t, and

yi(t) = w(t), the generator shaft speed
yp(t) = v, (t), the generator terminal voltage
uq (L) = ug(t), the turbine valve opening

uy(t) = uf(t), the field exciter voltagé

{&(t)} is a white noise sequence

It should be pointed out that an under-parameterized model

could be used in practice, because it saves significant

computing time for MIMO systems.
3.3.2 Cost TFunctions and Choice of Q(q~1)

The GMV self-tuning algorithm is designed to minimize
the cost function given in Eqn.(3.2.2). To apply it to a
power system, one first considers the choice of matrices
R(g-l), 8(q71) and Q'(g~1l). For simplicity and fast response

of the system, R(q~l) and 8(gq~1l) are usually chosen as unit

matrices,




R(q71)=8(q~1)=T

A different Q'(q'l) will put a diffe;gn;vpenalty on control
actions. This is importﬁnt for real industrial plants because

nearly all real systems have limitations‘on control signals,

For example, the valve opening and field voltage of a =

generator are limited to certain ranges. Excessive control
actions should be avoided for such systems. To achieve this,
a careful choice of Q'(q~l) is helpful. However, it is more
convenient to choose Q(q~l) given in Eqn.(3.2.9) directly in
practice, instead of Q'(q~l), The relationship between the

two matrices is given by Eqn.(3.2.8). If considering the fact
that the coefficient matrix By is usually dominated by its

diagonal elements under a careful ordering, i.e.,

m
0 0
I‘iil >F—1|nijl
i)
one can derive the following relationship from Eqn(3.2.8),

Q'(q71) mdiag(d; -+ dQ(q7L) (3.3.3)

where dis i=1,+++,m are constants. Thus, if,

vi 0 |
Q(q-1) (3.3.4)
0 v,



v Py e
Qg L) =(1-g~Hl = " | S (3.3.5)
, L0 vad S

then the corresponding cost functions for a power system will

be,
2 [[v1 o 2
J(t)=E) || y(t+k) ~yq(t) || “+ e () (3.3.6)
0 va
or,
. 2
2 vi O
J(t)=B) || y(t+k) =yq(t) || “+ . jAu(t) (3.3.7)
. 0 vz
where,

ydl(t)-m;(t) the shaft speed reference signal

ydz(t)-vr(t) the terminal voltage reference signal

The difference between these two choices of Q(g~1l) is that
the one in Eqn.(3.3.5) puts integration action into the
system, so that the control action will eliminate the steady
state error in output vector y(t) subject to step changes in

Yq(t). To see this, one can employ the closed-loop

characteristic equation. It bas been shown in Section 3.2




that the‘contrcl law sets Cb" (t+k|t) to zero in Eqn (3 2 14) .

For a power system it means that,
Y*(E+11t) ~yq () +Q(q~ 1) u(t) =0

w(E)=0(q™1) " [yg(t) -y* (e+11e) | (3.3.8)

For the system in Eqn.(3.3.1), the optimal prediction of
y*(t+l]t) is, '

Y (E+1lit) =y (t+1) =& (t+1) (3.3.9)
Thus Eqn. (3.3.8) can be written as,
u(t)=Q(q™) T [yq () -y (£+1) +E (£41) ] (3.3.10)

Substituting the above expression into Eqn. (3.3.1) leads to

the closed-loop behavior,
= [a(q-1 “1ya(q-1)"1] g(e~11acaq-1) -1
yt+) =la(qg-2) +B(q-1)Q(q-1) B(g"1)Q(q~1) "ty (t) +
—17~i -
+la@ @ ee ) "] " 1) gg-1) e+

(3.3.11)



| The first term on the right-hand side describes the response
‘behavior to input signals. If Q(g"}) takes the form of
th;(3.3,5), there wiil be an inteérator}l/ki-é'l) between
&(tfl) and &d(t). However, no such a segment exists between

y(t+l) and &(t+l). It is also interesting to note that the

closed-loop characteristic equation is described by,
det [a(q~1)+B(qg" 1@~ " ] =0

or,

det [A(q~1)Q(q~1)+B(q~1) ] =0 (3.3.12)

It is clear that the choice of Q(q~l) will influence the
system stability. Assuming that Q(q~1) takes the form of
Eqn. (3.3.4), and B(q~1) is minimum phase, then small or zero
Vi and V2 will ensure the stability of the system. However, if

B(g~1) is non-minimum phase, i.e., det(B(g~1l)] has some zeros
inside the unit disk on g~ l-plane, V; and VvV, should take
values large enough to ensure that there are no eigenvalues
within the unit circle. Although it is assumed that A(q'l)
and B(q‘l) are unknown for a self-tuning controlled system,
the above analysis gives the users directions on how to

choose Q(g~1) in practice.



: ra3ﬁf
For the specific application to power systems both the
forms of Q(q‘l) in ‘Eqns. (3.3.4) and (3.3.5) are not adequate.

Instead, a combined form should be taken, i.e,,

' ‘V1 0 |
Q(q-1) (3.3.13)
0 Vz(l‘q-l)

By using this form of Q(q~l), an integrator is installed into
the excitation loop. But there is no integrator installed
into the shaft speed control loop through the self-tuner in
order to avoid saturated ug(t), the opening of the turbine

valve, when subjected to a step change in reference signal

Oy (t) . This characteristic is caused by the fact that the
system frequency is fixed in a SMIB system, and it cannot be
changed by regulating the single generator. Therefore, the
function of the regulator in the frequency loop is to control

electric power, as mentioned in Section 1.1.
3.3.3 Self-Tuning Algorithm
Based on the multivariable GMV self-tuning theory

discussed in Section 3.2, the self-tuning algorithm for a

power system will be derived in this subsection.

Using the notations in Appendix B, one can derive the

following relationship,



B(q1)=E(q"1)=B(q~1)=T

r (cj‘l) =F (q~1) =-q[A(q1) ~1]

Thus the degree of the polynomial matrices a(q~l) and B(q-l)
in Eqn.(3.2.16) satisfy the following,

degree { @(q-1) } =~degree {A(q-1) }-1

(3.3.14)
degree { B(q~1) } =degree {B(q~1) } (3.3.15)
degree {H(q~1) } =0 (3.3.16)

i.e., the parameter matrix é('t) can be expressed as,

6ty =[B0) Bty ]

8[(10 a; oy a3 BO Bl 62 B3 ho] (3.3.17)

where the column vectors 61(1:) and ﬁz(t) can be further

written in detail,

A0 A0 i oAyl Ay i A3 a3 ' a0 a0
él(t)-[au Q1o : Q33 Q75 ¢ o0 @ @35 11 P12

T
1 a1 cR3 R3 20 20
11 P12 ¢ 1 Py Py by, hlz] (3.3.18)



62(':)'[%1 @22 @ @2y @33 @ -+ @ Gy U3y : Pyy Py
: : : . T :
1 ar ! PR3 A3 I A0 A0 '
21 P22 ¢ cor 1 P2y P22 : By, hzz] (3.3.19)

Consequently, the data vector should be defined as,

x(t)“’-[yl(t) y2(t) gyl(t-l) y2(t-1)

Y1(t=3) ya(£=3) fug(t) up(t) fug(t=1) up(t=1) i oo

uy (t-3) uy(t-3) §yd1(t) ydz(t)] (3.3.20)

where y;(t), yz(t), uj(t) and uzlt) are defined in Section
3.3.1; Yq, (t) and Yd,(t) in Section 3.3.2. The self-tuning

algorithm using the choice of initial conditions r(0), 61(0)

and 62(0) can then be summarized as follows at sampling

instant t:

(1) Read new outputs y,(t)=m{t) and y2(t)=vy (t), setpoints
ydl(t) and ydz(t);

(2) Compute ®(t),



it

C ®(t) =y (t) ~ya(t) +R(g D u(t-1) . @32y

(3) Shift the data to right in vector =(t) of Eqn.(3.3.20)
and thus put y(t) and y4(t) into the appropriate locations;

(4) Update parameter vectors 61(t) and 62 (t) by using RLS

with variable forgetting factor given in Eqns.(3.2.24),

(5) Calculate new control vector u(t) by,

A 3 A 3 A A
u(t) =-B°'1[;§o oy (t-i) ’12-:1 Biu(t-i) +hovd(t)] (3.3.22)

(6) Renew data vector &(t) by putting wu(t) into

Eqn. (3.3.20);
(7) Set t=t+l and go back to step (1).

If Q(g~1l) takes the form described in Eqn.(3.3.4) in step (2),
the auxiliary output @(t) will be,

@y (t)=yy (£) ~yg, (t) +Viuy (£-1) (3.3.23a)

and,
Dy (t) =y, (L) ~Yd, (t) +Vousy (t-1) (3.3.23b)



If Q(a"}) uses the form described in Eqn.(3.3.13), ®(t) will

be,

@y (t) =yy (t) =yg, (£) +Viuy (E-1) (3.3.24a)

D2 () =yz (t) =ya, (£) +V3 [up (t=-1) —up (t-2) ] (3.3.24b)

3;3.4 Constants in the Self-Tuning Algorithm

There are fdur constants appearing in the self-tuning
algorithm discussed in the previous subsection. It is helpful

to have a brief discussion of them.

The constant O appearing in Eqn.(3.2.28) is used to
ensure A(t)>0 for all t. If A(t)<0 for some t, the
covariance matrix P(t) would not be positive definite

anymore, and consequently, the algorithm will become

divergent., Thus, a larger ¢ will ensure the convergence of
the algorithm. However, a large O will also result in a large
A(t) which means less alertness in the identification phase.

Therefore, the choice of 6 is a compromise between the two

constraints.

The constant C in Egn.(3.2.30) is a switch for

controlling the upperbound of the trace of P(t) matrix. To



‘ | e
kagp;thg alertness of the algorithm, C can be chosen very

‘large (say 105),

The constants Vi and Vv, in Eqn.(3.3.13) will affect the
pPenalty on control actions and the closed-loop poles of the

controlled system. Therefore, much attention should be paid

to the choice of vi and vy for a specific power system. If the
controlled system is non-minimum phase, V; and Vv, should take

large values; otherwise, small v; and V2 will keep the system

stable.

3.3.5 Initial Conditions

To start the algorithm, initial values of P(0) and é(O)

are needed. Because of the good convergence property of the
RLS algorithm, the initial choice of é(O) is not crucial.

Therefore, there is much freedom in choosing P(0) and é(O) as

long as one makes sure that ﬁo(O) is non-singular. As a

common selection, the following ranges are proposed,
P(0)=(10~100)2

where I is a unit matrix of dimension 18x18, and

a 1 0
Bo (0)
0 1



o-

0 -

i-O, 1!273

i=1,2,3

e



CHAPTER 4

CONVERGENCE ANALYSIS oFr
THE MULTIVARIABLE SELF-TUNING CONTROLLER FOR POWER SYSTEMS

As mentioned previously the proof for convergence of the
stochastic multivariable self-tuning algorithm discussed in
the previous chapter is still an op:in problem. Instead of
trying to give a proof on the convergence of the GMV self-
tuning controller for stochastic MIMO system with arbitrary
time delay, this thesis will address the convergence analysis
of a deterministic MIMO system. It will also be proven that a
stochastic MIMO system with unit time delay is equivalent to
a deterministic system, and lastly, the stability proof of

the self-tuning controller for power systems will be derived.

4.1 Convergence Analysis of Deterministic
Multivariable Generalized MNinimum Variance Self-Tuning
Controller with Variable l'ozqottipq Tactor

It was mentioned in the previous chapter that the proof
of the generalized minimum variance self-tuning controller
for deterministic siso system was not given until 1986 by
Tsiligiannis and Svoronos[80], In this section the author
will prove the convergence property of the deterministic

multivariable GMV self-tuning controller with variable

50



forgetting factor for the MIMO systems. This algorithm is the

deterministic version of the one discussed in Section 3.3.2,

The system to be controlled is described by the linear

vector difference equation,

Alqhyy(t)=B(qg~ 1) u(t-k) +d (4.1.1)
where,

y(t)eRM

u(t)eR™

deR™, a constant vector

A(q-1)=1+glq-l+...+anq-n

3(q‘1)=30+91q-1+. . .+3n_1q-n+l' | Bo I #0

k ==~ time delay, k21

n --- order of the system

The coefficients matrices Aj and Bj are unknown and kX and.n

are known. A quadratic cost function takes the form of,

J(t)=%||8(q'1) [y(t+k)-ya] |l 2+-§-I| Q@™ [u(t)-ug] | (4.1.2)



}Qhﬁtﬂ ?14’;)}isgi'diigohalzﬁclyhémiai ﬁétrix witﬁ;‘.'
8§(0)=80=2

and Q'q-1) is a polynomial matrix, yqeR™ is a set point
vector, and uUqeR™ is a control vector corresponding to yq. If
ugq is unknown in some applications , one can choose Q' (1)=0
to delete it. Comparing Eqn.(4.1.2) with Eqn.(3.2}2) one can
also notice that it takes R(g~1)=8(gq~l). This choice is

realistic in many applications.

The optimal control which minimizes Eqn. (4.1.2) sets,

@' (t+k)=8(1)yq (4.1.3)

where,
@' (t+k) =8(q~ L)y (t+k) +Q(q~1) [u(t) -ug] (4.1.4)
Q(a~hamd "t T (g1 (4.1.5)
y(t+k)=a(q~l)y(t) +f(g~LHu(t) +8 (4.1.6)
a(q=1)=F(q~1) =ag+eyq-l+ - c+a,_1q 0+1 (4.1.7)

B(q~l)=B(q~1)B(q 1) =Po+B1q~1+ - ' +Bpik-29~Pk+2 (4.1.8)

3= B(1)d
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'l(q'l) and r(q'l) are the unique pclynomial matrices

satisfying,
:-Mq-l)uq-l) +q~ky (é'l) : t4.1.9)
B(q™1)=Z+Byq 1+ o 4By qk+l (4.1.10)
F(Q 1) =Fg+P1q~14e v o 4P q D+ (4.1,11)

Eqn.(4.1.6) is called k-step ahead predictor, and a(q-l) and
B(g~1) are polynomial matrices. In the self-tuning case,
A(q~1l), B(q~l) and d are unknown, so a(q-l), B(q=l) and §

have to be estimated on-line. The ST controller will set,

D' (t+k(t)=8(1)yq (4.1,12)

where,

@' (t+k1t)=8(q"1) [a(q~lyy(t) +B(qDru(t) +8] +@(q-1) [uit)-ug]

(4.1.13)

which is the optimal prediction of ®'(t+k) based on the
information collected up to and including sampling instant ¢t.
Sometimes this is referred to as suboptimal control in the
literature because the estimated parameters are used instead

£ the "true" parameters.



| The estimation of coefficient matrices G(q~l) andfi(q-l),
as }wel'.i gs' 8,’ uses recursive ;e;;g-ggug,,: "’:it,h \‘iﬁri:a‘ble‘"'v'

forgetting factor (Fortescue et al., 1981) in this thesis.
Defining data vector =(t) as,

x(t)=[y(t)T y(t-1)T ++. ye-n+1)T u(t)T +-+ ult-n-k+2)T 1]

)
"

- [Yl(t) Tt Ym(t) § y1(t=1) *++ yp(t=1) g v

Y1(E=n+1) oor yp(t=n+l) : up(t) cee up(t) i ee

T
fug (b-n-k+2) * * ‘up(t-n-k+2) : 1] (4.1.14)

and parameter matrix,

At) =[000) v Gty ]

or,

A

A A A A A T
e(t) -[ao(t) Tl (B) Bo(t) o Bryxes (B) 8] (4.1.15)

where,



The column vectors 0;(t), i=1,2,:':,m, are of the form,

But) = [a% ) - alper i oo fae o a“'l(t)

o : : S
Boil (t) .. 'Boim(t) E e oo n+k'2(t) .. 'ﬁn+k 2(t) si]

Eqn.(4.1.6) can then be expressed as,

y(t)=0(t) T (t=k) (4.1.16)

or in component form,

yi (£) =By (&)= (t=k), 1=1,2,...,m (4.1.17)

The self-tuning algorithm is,

(1) €5 (t)=yj (t) =% (t-k) T, (£-1), i=1,2,...,m

(2) w(t-1)=%(t-k)TP(t-1) % (t-k)

P(t-1)x(t-k)

(3) (&) ==ty




(4) By (t) =By (t-1)+R(t)ey (L), i=1,2,...,m

G(l+w(t-1))

(5) N(t)=
2
i}-;-lei (t)

O —a constant to ensure N(t)>1

1
(6) l(t)*l-N(t)

(1) wit)=[1-R(t)x(t-k)T]p(t-1)

w(t) if trace[WSt;]Sc
P(t)= A(t) At)
wi(t) otherwise

C --- a constant

Before proceeding with the convergence analysis of the

algorithm it is convenient to give the following definitions,

64 (t)=0,-8; (t) | i=1,2,...,m (4.1.18)

- l(t) if t—ra_ge_MSC .

A(t)= At) o (4.1.19)
1 otherwise

ej (t)=yj (t)-vq, i=1,2,...,m (4.1.20)
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The analysis of convetgence is based on the two assumptions

below.

Assumption 4.1.1 The value of k in che diagonal
interactor matrix q-%I and upper bound of the system order n
are known, AAA
Assumption ¢.1.2 Choose diagonal polynomial matrices

8(q~1) and Q(q~1) off-line such that the polynomial matrix
g(q L) =A(q"1)Q(q1) +B(q~1)8(q~1) (4.1.21)

satisfies

det [£(q~1) ] =0 V iqis1 AAA

Also, the following lemmas are necessary in proving the

convergence property,

Lemma 4.1.1 If

. lyw 12
t—ee by (t)+bs(t)o(t)To(t)

(4.1.22)

where {bj(t)}, {b2(t)} are real scalar sequences, {yty }

and {o(t)} are real vector sequences. Then subject to

(i) 0<bj(t)<K<eo and 0<b, (t) <K<oo, V¥ t20, and



i
(1) lloct) [ Scy+cy max [ly(t) | where 0Scy<es, 0<Cp<oo
0

<t<t

it follows that

Lim [lye) || =0
t oo

and {Ilo(t)” } is bounded. AAA

[proof]

This lemma is an extension from lemma 3.1 in reference

{ HY(t)” } is a bounded Séquence, then, by

th

[67]. I

condition (ii), {Ilc(t)” } is a bounded sequence too. Thus,

by Eqn.(4.1.22) and condition (i), it follows that

vim llye) || = o
t —oo

Now assume that { ”Y(t)” } is unbounded. It follows that

there exists a sub-sequence {tp} such that

Lim [l y(ty) || = oo
tn—yoo
and,
Iy <y |l VtsSt,

Along the sub-sequence {tp}, it has
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i IIY(tn)|l
[y (tn) +ba (tn)c(tn)‘o(tn) 1372

| yetq) |l

[k+x [[o(ty ]| 2] 272

y(to) |
K1/2+K1 o |l

My |l
KL/ 24R1/2 [ [ep+co Tyien I ]

Therefore,

Lim Lycep) |l
tmeses [ D1 (E) +bp (tn) O (ty) 10 (Eg) ] 272

1
2 Li ——
tnt-r-)nm Kl/z . C Kl/z A Kl/z
Ty I Myeen) |2
CZKI/Z
>0

This is a contradiction to Eqn.(4.1.22), hence the assumption

that { Hy(t)” } is wunbounded is false. Therefore the

conclusion in Lemma 4.1.1 is true.
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pﬁ@anAC,;,z }”squg;:ip matrix P(t) satisfies,

(1) Positive definite for all t; L
(11) n1e(e)n s-c, 0<C<eo AAA

[proof)

(1) The definition of the covariance matrix P(t) gives the

conclusion if P(0) is chosen to be positive definite.

(ii) Based on the fact that P(t) is symmetric, the induced
norm [I®(t) |l will satisfy the following equality from Lemma

C3 in Appendix C,

IPCE) I = Amax(P (t)] (4.1.23)

Choose Amax[P(0))SC, and suppose

o || sc, 1=0,1,2,...,t-1 (4.1.24)
then if

trace [W(t Sc 4.1.25

--27&7L-11- (4.1.25)

is satisfied in step (7) of the self-tuning algorithm, the

norm of P(t) will satisfy



SN R 1 L'.’i:’“ v
el ——X(t) W) i

or,

1
S =y t
n®(e) h M e) race([W(t)]

or,

IP(t) I sSC (4.1.26)

If, on the other hand,

trace[W(t)] > ¢ 4.1.27
l(t) ( 3 . )

then,

P (t-1)% (t~k) 3 (t=k) TP (£-1
1+ (t-k) TP (t-1) (t~k)

P(t)=P(t-1)-
or, by matrix inversion,

P(t)~l=p(t-1)"l+x(t-k)x(t-k)T (4.1.28)

Hence, the following inequality is true for any vector z€RP

p=m(2n+k+1),

2T (t) "1z 2 gTp(t-1)-1lg

’
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Now choose gvagjthegeigeqvectqrVcorregponding_t9 the minimum

eigenvalue of )(t);l, then from the above inequality,

Amin [#(t)'ll TILE Xmin[i(t-l)'l] "™

or
Amin [P(£)=1] 2 Apyp [P(E-1)-1]) (4.1.29)

Noting the fact that P(°*) is a real symmetric matrix, it

leads to,

Amax (P ()] S Amay[P(t-1)] (4.1.30)

or, by noting Eqn. (4.1.24),

e(e)ll s ¢ (4.1.31)

Thus the conclusion in (ii) is true.

Lemma 4.1.3 In recursive least-squares estimation the

function,

vilt) = 8; (£)Te ()18, (t)

is a bounded, nonnegative, nonincreasing function for any
A(t)>0([67], AAA
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[Proofi

By the definition of A(t) in Eqn.(4.1.19), P(t) at step (7)

in the self-tuning algorithm can be written as,

- - k)7
pee) = Lo [ BUELIE(CEk X (o ] » -1 (4,1.32)
Alt)

By the definition of Eqn.(4.1.18), and subtracting 6i(t-1)

-~

from 6, (t) gives,
0; (£)=8 (t-1)- [Bi(t)-ei(t-l)]
=0; (£-1)-K(t)ey ()
P(e-l)x(t-k

=0, (t-1)- oo % (£-k) T8y (t-1)

Pgt-lzxgt-kzugt-sz]~
I- T+w(t=-1) 0; (t-1), i=1,..0m (4.1.33)

Noting Eqn.(4.1.32) one can arrive at,

83 (t)=A(t)P(t)P (t-1) ~28; (t-1) (4.1.34)

or expressed as,

P (t) 103 (t)=A(t)P (t-1) 20, (£-1) (4.1.35)



Noting the definition of Vi (t) in Lemma 4.1.3 whié:h gives‘ thé' s
following fact, |

vy (t-1) = 8; (.-1)Tp(£-1)"18, (£-1)

and also the facts in Eqns.(4.1.34) and (4.1.35), one can

have,
- - poed -~ T ~
vy (t)=A(t) vy (E-1)=A(t) [ei (t)-0; (t-l)] P(t-1)~104 (t-1)

e 0. (£=1)Ts (+= )78, (-
--Mt)gi(t 1) T (t-k) % (t=-k) ei (t-1)
l+w(t-1)

Recognizing ei(t)-s(t-k)Téi(t-l), one can express the above

relationship as,

2
- () e
vy (t)-A(t) vy (£-1) Mt)l+w(t 1) (4.1.36)

Thus the following relationship holds,

vy (£)=vy (E-1) =-l(t)1—;3m+l(t) vy (£-1) =v; (£-1)

- g (t
=- l(t)m [1-Mt) ] vy (t-1) (4.1.37)

Noting the facts below,
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(1) P(t) is positive definite;
(ii) vy (t)zo and
(1ii) 0<A(t)S1;

one can draw the following conclusion from Eqn.(4.1,37),

Vi (t)=vy (t-1) SO (4.1.38)

This gives the conclusions in Lemma 4.1.3.

Lemma 4.1.4 Consider the system,

g(g l)v(t)=g(q~l)p(t)

where €£(q-!) and g(q~1l) are polynomial matrices in the

backward shift operation., €(q~l) is stable, i.e.,, all its
roots are outside the closed unit disc on the g-l-plane. V(t)

and p(t) are real vector sequences. Then,

(1) There exist positive constants kj and ky such that,

lvie) | Sxq+kp max [ pew) ||
0S¢St

(11) 1£  Lim | p(t) || =0, then,
t9e »

Lim || vie) || =9, AAA
Lt oo



[Proof]

The results are obvious if it is viewed as a forced
multivariable linear system with input vector p(t) and output
vector V(t).

Lemma ¢.1.5 The following is true,

(1) &y ()= (t-k) 70y (£-1) 1=1,2,...,m

(1) Sy (Y [ey 618y (-1 Tx(t-k) | +0; (q-1)d; (£-k) =0

(111) Sy(g7Y) [ey (t) gy () - (t-k) Tay (t) ] +Q; (=1 Ty (t=k) =0

where,
W p(t-r)m(t-k-r+l
ag(r) = 3 BECHEEED), (oorr
Gi(t) = ui(t)-udi AAA
[Proof]
(1) g (t) = vy (t)-%(t-k) 70, (£-1)

= x(t-k)? [ei-éi t-1) ]



- 2t %, (1)
(1) ej(t) = yi(t)-yqy
= Oiru(t-k)'ydi
ife.,
8Tk (t-k) -ey (£) = yq,

Multiplying the above equation by Si(q'l) and noting Ydi is a

constant, one can get,

S;(q7Y) [0;Tx (t-k)-eq (t) ] = S3(1)yqy (4.1,39)
From Eqns, (4.1.12) and (4.1.13) it can be deduced that,
S3 (1) yq =@y (t+kit)
;si(q'l)éi(t-k)’x(t-k)+Qi(q'l)ﬁi(t-k) (4.1.40)

~ombining Eqn.(4.1.39) with Eqn.(4.1.40) and rearranging it

one has the result of (ii).

(iii) Noting that,



;iét)-éi(ﬁéi;+;;£$;if£; i-l;z,;..,ﬁ
one can end up with,

0-6, (£)=0,-8; (t-1)-K(t)e, (t)
i.e.,

0, (t)=04 (t-1) =K (t)ey (t)

-6, (e-y) RAESLEER)

1+w(t-1)
Therefore one can use direct substitution to get,

6y (t-1) =6, (t-p)-BiEzdlElE=kol), () (4.1.41)

l+w(t=-2)

By (t-k+1) =y (-k) -BAESRIBLEZRIL), (),

l+w(t=-k)

Thus it follows that,

k
) A P(t-r)x(t-k-r+l

1+w(t-r)

=§i (t-k)-'i(t)[ i=1,2,..',m (4'1042)



“  §§f
| Pre-multiplyipg the abpve equatioh‘by x(t-k)', and noting the
‘relation (i) in Lemma 4.1.5, one gets,

gy (t) =% (t-k) T8y (t-k) ~x (t-k) Tay (t)

Adding ej; (t) on both sides of the above equation and

rearranging it, one can have,
ey (£) =% (£=k) T8 (t-k)=ey (£) -4 (£) -%(t=-k) Tay (t)

Multiplying the last equation by S;(t) and adding Qi (q"})uj (t~-

k) on both sides, one ends up with,
S; (t) [ei (t)-n(t-k) Téi (t=k) ] +Qi(q'1)ﬁi (t-k)
=5, (t) [eq (t) -e4 (t) -x(t-k) oy (£) ] +Q4 (q~1)T; (E-k)

The left side of the last equation equals to zero by the

result in (ii), so
sy (t) [eg (t) -2y (£) =n(t-k) Tay (t) ] +Q4 (g7 Ty (£-Kk) =0
This is the result in (iii).

Lemma 4.1.6 The following is true for the self-tuning
algorithm,



.70

lew 2 W
Hr ey < O AdA

[Proof]
Noting 0<i(t)51, it is true from Eqn.(4.3.36) that
vy (t) SA(t) vy (t-1) Svy (t-1) Vt>1

Assuming that vy (t) decreases to a small value'vfzo as t-—oo,

i.e.,

Lim vy (t) = v.*
£ —yoo i i

then,

Lim [vi(t)-i(t)vi (t-l)] = [l-i.(t) ] vi* '
t oo
Now aoting that,
[13) ] vi* 20 (4.1.43)

and,

vi(t)-A(t)v; (t-1) S 0 (4.1.44)



one can get the following conclusion from the above two

equations,

Lim [Vi (t)’i(t)vi(t'l)] = 0 (4.1.45)
t—yoe

Noticing the relationship in Eqn.(4.1.36), Eqn.(4.1.45) can

be expressed as,

[ 3 s-(t)2 ]
éfﬁ; - (t);:t;g:;r = 0 (4.1.46)

or

g2
éfﬁ;l+w(t-l) =0 i=1,2,...,m

This leads to the result in this lemma.

Lemma 4.1;7 It is true that

Lim lla(t) )l =0

L)oo
where a(t)=[aq(t) “c @p(t) JER™AM  ang a8; (t) is the same
as defined in Lemma 4.1.5. AAA

[Proof]
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By the definition of &y (t), its norm has the property belcw,
}f P(t-r)e({t-k-r+l Qiit-r+1) “
=2  {l+w(t-r)]11/2  [1+w(t-r))1/2
k V IIé (t-r+1) ||
gY lB(t-r)x(t-k-r+l) | jator LI
r=2 [1+w(t-r) )1 [1+w(t-x)]1/2

hageer =]

Note that the first term on the right-hand side satisfies,

IP(t-r)x(tok-r+1) 12 1B (t-r) |2 |Ixiz-k-r+1) 1|2

1+w(t-r) w(t~r)

< AP(t-x) 12 ||%(t-k-r+1) |12
Amin(P(t=1)] l1®(t-k-r+l) (|2

< ¢
Amin (P (t-1)]

< oo

ce
Apin[P(t-1)]

Express as C'2, it thus has,

X ey (e-x+1) ||
! s
|ay(e) || < rgz ¢ [1+w(t-r)]1/2

By using Lemma 4.1.6 one has

Lim |[a3(t) || =0
)
Hence a(t) -0 as t—=e. This leads to the conclusion of Lemma

4.1.7.
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Lemma 4.1.8 The tracking error and input dynamics are
described by,

[acq=1)+B(a1)8(q~1)Q(q-1) 1] e (t)
=B(q71)8(q"1)Q(q™1) " [e(t) +a(t) T (t-k) ] (4.1.47)

[8(q~1)+a(q~1)8(q~1) "1Q(q-1) ] § (t-k)

=A(q~1) [e(r) +a(t) Te(t-k) ] (4.1.48)
where a8(t) is defined in Lemma 4.1.7. AAA
[Proof]

The steady state version of the system equation around a

specific operating point can be uritten as follows,
A(q l)yy = B(g 1) uy+d
and subtracting it from Eqn. (4.1.1) yields,

Aa D [y(t)-ygq] = B(q™1) [u(t-k) -ug]
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i.e.,
Alg lye(t)-B(q~1)d (t-k) =0 (4.1.49)
Note that item (iii) in Lemma 4.1.5 can be written in vector

form,

8(q-1) [e(t)-e(t)-a(t) Tx(t-k) ] +Q(q~1) 4 (t-k) =0 (4.1.50)

where 8(q~1l) and Q(q~!) are diagonal polynomial matrices. Pre-
multiplying Eqn.(4.1.49) by B(q"1)"! and Eqn.(4.1.50) by
Q(q‘l)'l, then adding them together gives,

Q(q~1) 718 (q-1) [e(t)-e(t) -a(t) Tx(t-k) ] +B(q~1) "1A(q~1) @ (t) =0
(4.1.51)

Rearranging the above expression and noting the fact that,
Q(q~1)"18(q-1)=8(q-1)Q(q~1) " (4.1.52)
one can derive the expression in Eqn. (4.1.47).

Pre-multiplying Eqn.(4.1.49) by S(q-1)a(gq~1)~! ang

adding Q(g~1)u(t-k) on both sides, one gets,

[s(a1)acqg~1)"1B(q 1) +Q(q 1) ] & (t-k) =8 (q~1) @ (t) +Q (q1) & (£ k)
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‘ . o , (4.1.53)
From the fact of (iii) in Lemma 4.1.5, it follows that,

S(q'l)o(t)+Q(q‘1)6(t-k)=8(q'1)[e(t)+a(t)wx(t-k)] (4.1.54)

Substituting Eqn. (4.1.54) into Eqn. (4.1.53) gives,

[s(q'1>A(q'1)'1n(q-1)+q<q-1)]G(t-k)=3(q’1)[e(t)+a<t)Ta(t-k)]
(4.1.55)
This leads to the result in Eqn.(4.1.48),

Lomma 4.1.9 Let {g(t)}, {w(t)) be real vector sequences,

{a(t))} real matrix sequence and

Lim |la(t) || =0 ' (4.1.56)
t—doe
then,
llg(t) | Sky+ky max || w(t)+a (1) Ta(T) || (4.1.57)
0StSt

for fixed kj, k220 implies that there exist constants k3,

k420 such that,

llz(t) Il Sk3+kg max || w(t) || | (4.1.58)
0SSt

AAA

[(Proof]



From condition Eqn. (4.1.57) it follows that,

max || s(v) || Sk1+ky max ||v(t)+a(t)Tl(t)”
0StSt 0SSt

Skit+ky max ||v(t)||+k2 max || a(t)Te(v) ||
0StSt 0StSt

Since |la(t) ||=0 as t—)oo there exists a tp such that,
K st V t2

and let,

M = max Ilkzl(t)Tz(t)”
0StSt,

be a constant, the last inequality can be expressed as,

max lll(t)” Ski+ka 2&2 ||v(t)||+ max Ilkza(t)Tz(t)l|+

0StSt TSt 0StSt,
+ max | k28 (0 T2 (v |
tpS1St
Or,
max || 2(0) | € (k14 +kp max [lw(o) [ +5 max_ [z (0 ||

0StSt 0StSt tnS1St
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or, S T -
max_|[s(v) || S2(ky+M)+2kp max || w(t) || (4.1.59)
thStSt 0SSt

Now let,

max ||l(t)||-N (a fixed constant)

0StSt,

then,
max |80 || S2(ky+M)+N+2k; max [winy || (4.1.60)
0StSte 0S¢St

Defining k3=2(ki+M)+N, and kg=2ky, it follows from the

inequality of Eqn.(4.1.60) that Eqn.(4.1.58) holds.

The convergence property of the algorithm can now be pursued

based on the previous lemmas.

Theorem 4.1 Subject to the assumptions (4.1.1) and (4.1.2)

77

the self-tuning controller applied to system of Eqn.(4.1.1)"

leads to,

Limy(t) =
t_m&' Yd (4.1.61)

AAA

[Proof]
Noticing the facts that,

dget {a(qg 1) +B(q~1)8(q-1)Q(q-1) "1}



 =det {A(q1)0(q"1) +B(q~1)8(q-1) } der {g(q-1) )
avnd._:_;__; ; v '
det {;'A(é'l) +§(q‘1) s(a) Yol }

=det {A(q'l)mq'l)m(q'l)s(q'l) }det {8(q-1)"1}

it follows from lLemmas 4.1.4, 4.1.8 and assumption 4.1.2

that,
lle(t-k) | Skg+ky max || e(%) +a (%) T (2-k) || (4.1.62)
0StSt-k
and'
16 e-k) | Sxg+k5 max [l eco)+a (T (r-k) || (4.1.63)
0S7St-k :
Since, ,
lle(t-k) Il = |ly(t-k)-yq ||
or,

Ny (e-k) 0l S fle(t-k) I+ | yq ||

it follows from inequality Eqn.(4.1.62) that,

Iy (t=k) Il Sko+kz max [l e(o)+am T (k) || + | yq ||

0StSt
Ski+ky max || €t +a (1) Tx(t-k) || (4.1.64)
0StSt
where,
1] ]
k1=ko+ || ya ||
Also,

U (t-k)=u(t-k)-ug
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i.Q.,

N te=k) 1S Il §(e-k) Il + ] wa |
it follows from inequality Eqn. (4.1.63) that,

8 E=k) Il Sky +k3 max || e(v) +a (%) Tx (t-k) | (4.1,65)
0StSt

where,

k1 =kg + | ug |

Noticing that data vector x(t-k) is composed of y(t-i) and
u(t-j) it follows that,

Hx(t-k)llslly(t-k)lh*Hy(t-k-l)l|+-"+Hy(t-k-n+1)H
Hlla(t=k) ll+++ +|lu(t-2k-n+2) || +1

from ineéualities of Eqns.(4.1.64) and (4.1.65), and using
the sequential substitution, it leads to,

] '
ll®(t-k) || Sn [k1+k2 max || e(t)+a (1) Ta(-k) || ]+
0SSt

+(n+k-1)[k1"+k;_!' max [ €(1) +a (%) Tx(t-k) || ]+1
0S1St

or,

1% (t-k) I Sky+kp max | e(t)+a () T (-k) || (4.1.66)
0S1St



80
with, A
ky=nky + (n+k-1) k1 +1
kg=nkg+ (n+k-1) k3

From Lemma 4.1.7,
Lim lla(t) lI=0 (4.1,67)
£ =)oo

the following relationship is true based on the fact of
Eqn.(4.1,67) and Lemma 4.1.9,
% (t=k) | Sk3+kg max || ec®) || - (4.1.68)
0StSt

It follows from Lemma 4.1.2 that,
wit-1)=%(t-k)TP(t-1) % (t-k)

SCx(t-k)Tg(t-k) (<.1.69)

Using the facts of Eqns.(4.1.60), (4.1,69) and Lemma 4.1.6

and comparing the notations used in Lemma 4.1.1 one can find

that,
bj(1)=1
bz (t)=C
so the conditions in Lemma 4.1.1 are satisfied. This leads

to,

Lim | e(t) || =0 (4.1.70)
t o0 .



and,

I%(t=k) Il is bounded. (4.1.71)
Since, o
e +ace)T=ie-x) Il S llece) | +nae) ni=ie-x) |
and,

Lim { llece) [l +nace) nnxe-x)n} = o
t—joo

the following holds,

Lim { [let)+a(e)®e(t-x) || } = 0
L—oo _

By Lemma 4.1.8 the above expression means that the following

is true in Eqn. (4.1.47),
Lim |l@(t) || = 0 (4.1.72)
t =00 )

This leads to the conclusion in this lemma by noting
e(t)=y(t)-yq.

4.2 Convergence DProperty of the Multivariable
Generalized Mianimum Variance Self-Tuning Controller
with Variable Forgetting Pactecr for Power System in

Stochastic Environment

In the last section the convergence property of the
multivariable GMV ST controller with variable forgetting

factor in a deterministic environment was proved. However,



the ﬁ;ggf pfAtbq_cpqvgtgencg ?:Qéexpy of the discussed
glgcri:hmrin”g stochastic environmgnt has not béen sblved‘gt
thi; stage. This problem will not be solved for the general
case, but in ;his section the author will prove the

convergence property of the algorithm for the regulator

problem (i.e, yq is a constant vector) in a stochastic

environment for systems with a unit time-delay diagonal

interactor matrix q-lI,
Lemma 4.2.1 For the regulator problem, a stochastic system
with diagonal interactor matrix q~lI is equivalent to the

deterministic case except a dc offset vector exists in the

estimated parameter matrix if the rultivariable GMV STR is
used. AAA

[Proof]
A sytem with unit time delay can be expressed by ARMAX model,
Aq iyt =q~1B(q L u(t) +e (g~ 1) E(t) (4.2.1)
where;
E(t)ERM, white noise vector

C(q~1) =I+clq"l+ ++ 0 4+Cpq D



N (R R ¥ .

'Defining an innovation sequence {i(t)},
§(t+1) 8y (£+1) -9 (£+1) =E (£41) (4.2.2)
where §(t+1) is the optimal prediction of y(t+l) at time t,

yields the following relationship,

c(a~h) [y(e+1)-g(e+1) I =€(q-1)E (£+1) (4.2.3)

or, noting the relationship in Eqn. (4.2,1),

cqhye+i=qe(q b -aq=1) Jy(t) +B(q-1)u(t)

or,

vie+l) =q[e(q~1) -a(q-1) Jy) +Big=Yyuit)+q [T-6(q-1) ] v (t)

(4.2.4)
The aﬁxiliary output in GMV ST is defined as,
(t+1)=8(q"1) g (t+1) +Q(q- L) u(t) (4.2.5)
or »
d(t)=s(q-l)g(t) +@(q~1)u(t-1) (4.2.6)

Substituting Eqgn. (4.2.4) into Eqn.(4§2.5), adding and
subtracting q[I-C(q~1)1Q(g"l)u(* " ., and using Eqn. (4.2.6),

give,

$(t+1) =g Dy (e) +B(aue) +n(q L die) (4.2.7)



where,
a(q-l)=q8(q~1) [e(q~1)-a(q~1) ]
=qo+a1q-l+. . .+%_1q-n+1+. .o

Bigmhy=8(g~h)B(q 1)+Cig~)Q(q~1)

=B0+qu-1+"'+ﬂn_lq'n+l+...
n (q-1)=Q[I'C (q"l) ]=’n1+. . .+nnq—n+1
Defining the following data vector and parameter matrix and
using extended RLS[66], polynomial matrices a(q~1), B(q~1)

and N(q~l) can be estimated on line,

x()=[yOT yE-1T o we)T we-nT - T -] T

(4.2.8)
A A A A A A A T
Ot) =[a° a, .- BO Bl... n, nz...] (4.2.9)
For the regulator problem the GMV control sets,
(t+1)=8(1)yq (4.2.10)

thus if substituting &(t;, H(t-1), -+ by 1 in Eqn.(4.2.8),

and consequently substituting Ny, Ny, °*+ by a column vector

A A

d in Eqn.(4.2.9), then § satisfies,

84



B=[1-C(1)18(1) yg (4.2.11)

and it is a constant vector, This means that for the
regulator problem the adaptive GMV algorithm developed in a
stochastic framework coincides with the deterministic
algorithm with a "one" in the data vector to account for dc

offsets. This ends the proof of Lemma 4.2.1,

Proposition 4.2 The synchronous generator system using
the multivariable GMV self-tuning controller with a variable

forgetting factor as designed by Eqns. (3.28) through (3.30)
is stable provided Assumption 4.1.2 is satisfied. AAA

[Proof]

Noting that the synchronous generator system has a unit time-
del#y diagonal interactor matrix q~lI (or in other words
"with no pure time delay") in discrete time domain, and
combining Theorem 4.1 and Lemma 4.2.1, one comes to the

result given in this proposition.
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CHAPTER 5

SIMULATION STUDIES OF MULTIVARIABLE
SELF-TUNING CONTROL TO A THERMAL SYNCHRONOUS GENERATOR SYSTEM

5.1 Introduction

The algorithm of the multivariable self-tuning
controller and its convergent property have been discussed in
Section 3.3 and Chapter 4, It is proved that a power system
with multivariable GMV self-tuning controller is stable in a
stochastic environment provided polynomial matrices §(q~1)
and Q(q~1) are carefully chosen to meet Assumption 4.1.2, In
this chapter an extensive simulation study of this self-
tuning algorithm will be undertaken. The computer simulation
of a SMIB system is based on the non-linear model discussed
in Chapter 2. A single-line diagram of the simulated SMIB
system is shown in Figqure 5.1.1, where the local bus B] of a
thermal-turbine~-synchronous-generator is connected to an
infinite bus Bj through two parallel short transmission

lines. In Figure 5.1.1, bj~byg are breakers. The parameters of

the simulated SMIB system are given in Appendix A.

The installation of the multivariable GMV self-tuning

controller to this SMIB system is shown in Figure 5.1.2. The
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outputs ®W(t) and ve(t) are sampled and two uncorrelated
Gaussian noises §;(t) and §3(t) are added to them, and fed
into the estimator at every sampling instant, The estimated
parameter vectors él(t) and 62(t) are used to calculate the
control actions ug(t) and ug(t). The signals ug(t) and ug(t)
are used to control the turbine valve and the field voltage
respectively. At the same time, they are fed into the

estimator to renew the data vector. The initial conditions

P(0) and é(O) are used to start the algorithm. The command

signal yd(t), e.g., ®r(t) and ve(t), is read by the sstimator

at every sampling step.

Simulation studies will include the effects of different
weighting functions Q(q‘l), and the behaviors of the adaptive
controlled system to various load disturbapces, e.g., three
phase fault, transmission line switching and electrical power

disturbance.

A comparison with conventional controllers will also be
made. To make the comparison between adaptive and
conventional systems, the same SMIB system is used for both
cases. Figure 5.1.3 depicts the diagram of the conventional
power system with properly tuned GOV and AVR. The parameters

of GOV and AVR are given in Appendix A.

During the simulations, a sampling time T=0.05 sec. is

used. Gaussian random noise vector {&(t)} with zero mean
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value and Cov{ﬁ(t)}-‘diag(0.000l,0.000l) is generated by

using the Fortran subroutine GGNSM of the International

Mathematical and Statistical Library (IMSL).
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$.2 The Effect of Different woiqm:ind Matrix Q(q~1)
on Steady State IError

5.2.1 Introduction

It has been mentioned in Section 3.3.2 that the choice
of weighting matrix Q(q'l) will affect the steady-state error
of the outputs. In this section the simulation results will

be used to show the previous analysis.

5.2.2 Weighting Matrix @Q(q~1) for Equivalent
Integral Action

The simulation results shown in Figure 5.2.1 are
obtained by using a $0.1 p.u. step change in v, (t) at
operating point P=0.8 p.u., Q=0.3 p.u.. Initial values of the
covariance matrix and parameter vectors are taken to be the
same as those introduced in Section 3.3.5. The polynomial

matrix Q(g~1l)=diag(0.1, 0.01(1-q~1)].

As mentioned previously, if integration action i3 to be
installed in the excitation loop, Q(q'l) should take the form
of Eqn.(3.3.13). Thus there will be no steady-state error

existing in vy (t) for step change in reference signal ve (L),

This is shown by the simulation result in Figure 5.2.1b,
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The estimated parameters of &i(t), Bi(t), gi(t), the
variable forgetting factor A(t) and the trace of P(t) matrix
are also given in Figure 5.2.1. It can be okserved that the
algorithm has good convergence properties for parameter

estimation, and A(t) keeps varying along with the prediction

error.,

It should be pointed out here that though the

identification shown in Figure 5.2.1 was done with noises

E1(t) and &(t), it does not mean that the identification
could be only performed with the applied signals &;(t) and
éz(t). It can be done in a deterministic environnment, i.e.,
with &1(t)=8,(t)=0, as long as there exists system
disturbances, such as changes in reference signals, or load
disturbances. The identification with system disturbances in

a deterministic case will be shown in Section 5.4.
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5.2.3 Weighting Matrix Q(q~l) without Integration
Action

If Q(g~1) takes the form of Eqn.(3.3.4), there will be

no integration action in the excitation loop. Therefore, a

steady-state error in ve(t) is expected for a step change in
Ve (), Figure 5.2.2 shows the simulation results, where
Q(q~l)=diag(0.1, 0.01). All running conditions are the same
as in Figure 5.2.1, i.e., the operating point is at P=0.8
p,u., Q=0.3 p.u., sampling time T=0,.05 sec.,, and the same

initial values as given in Section 3.3.5. By comparing the

terminal voltage v¢(t) with reference signal vy (t) in Figure

5.2.2b, one can notice the steady-state error in vg(t).
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5§5.2.4 Comments

In this section, two simulation studies were done. They
were used to show the effect on the steady-étate error of
terminal voltage vi (t) by choosing different weighting matrix
Qg 1. Figure 5.2,1 shows the control result with equivalent
integration action in Q(g~l), while Figure 5.2.2 shows the
céntrol result without equivalent inEegration action in

Q(g~1l). Since there is no steady-state error existing in

terminal voltage vy (t) for a step change in reference signal
vy(t) in Figure 5.2.1, this type of control action may be
beneficial provided that the excitation-loop bandwidth is
maintained. A multivariable GMV STC with integral control in
terminal voltage loop will be used in the subsequent

simulations.
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5.3 The Rounlatirg Nsility of the Gﬂv s.lz-Tuninq

Controller fos Systenr Disturbanced

5.3.1 Intraoduction

There is a variety of disturbances existing in a power
system., For example, mechanical torque disturbance,
transmission line switching, three-phase fault, etc.. The
term "system disturbance”" 1is used to represent these
disturbances in this thesis. In this section, two simulations
will be undertaken to test the regulating ability of the
multivariable GMV self-tuning controller of power system. One
simulation is subjected to a step change in reference
frequency signal ®,(t), and another simulation is subjected
_to a three-phase fault applied at the generator bus. The

reason for cataloging the system responses to a step change

in wp(t) into system disturbance is that a SMIB system

subject to a step change in ®,(t) is equivalent to mechanical

torque disturbance, as pointed out in Chapter 1.

The simulations in this section are done at operating
point P=0.8 p.u., Q=0.3 p.u. as in the previous section.
Sampling time is also taken as T=0.05 s=2c., and applied noise

signals are the same as mentioned in Section 5.1.
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5.3.2 Disturbance of Step Change in Wp (t)

It was pointed out in Chapter 1 that the controller
(GOV) in the frequency loop works as a power regulator for
the SMIB sysﬁem. Can this characteristic be maintained by the
multivariable GMV self-tuning controller? Simulation results

shown in Figure 5.3.1 illustrate the control property of the

GMV STC for é step disturbance in Wy (t) .

The time responses shown in Figure 5.3.1 are the records
of the SMIB system with multivariable GMV self-tuning
controller subject to #0.01 p.u. step changes in frequency
reference signal W, (t). The function of the GMV STC behaving
as a power regulator can be seen from Figures 5.3.1la and
5.3.1c, where ®(t) is maintained at 1 P.u., and mechanical
torque Ty shows %0.09 p.u. step changes corresponding to step
changes in @p(t). Terminal voltage v (t) in Figure 5.3.1b
shows that it is maintained at the level of reference signél
vp(t)=1.0 p.u.. Obviously, the self-tuning SMIB system is

stable under the disturbance of step changes in @, (t), and it

works as a power regulator as expected.
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5.3.3 Three Phase TFault Disturbance

A three phase fault is applied at terminal voltage bus
By, shown in Figure 5.1.1, in order to simulate the
regulating ability of the multivariable GMV self-tuning
controller. The fault occurs at sampling step 100 and lasts
for 0.1 sec.. The operating'point and running conditions are
the same as mentioned in Section 5.3.1. Time responses of the
three phase fault disturbance are shown in Figure 5.3.2., It

shows that a stable control is achieved,

Figure 5.3.3 shows the time responses of W(t) and v¢ (t)

subject to the three-phase fault for the SMIB system with
conventional GOV and AVR controllers under the same operating
condition as used in Figure 5.3.2. It is evident that the
self-tuning control system damped the shaft speed oscillatioﬁ

efficiently by comparing Figure 5.3.2a with Figure 5.3.3a.
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5.3.4 Comments

In Section 5,3, the SMIB system with multivariable GMV
self-tuning controller subject to two kinds of system
disturbances was investigéﬁed. For the mechanical torque
disturbance caused by step changes in ;eference signal o (t),
the simulation shows that the GMV self-tuning controller can
function as a power regqulator, and achieves a stable control
system. For the three-phase fault disturbance, the self-
tuning system achieves not only a stable system, but also a
well damped time response of W(t). However, the simulations
were carried out at one operating point in this section. A
wide range of operating points are needed fo test the
stability of the SMIB system with GMV self-tuning controller.

This will be described in the following section.
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5.4 Comparison With Conventional Controllers
5.4.1 Introduction

Simulations in previous sections have shown that the
multivariabie GMV STC with variable forgetting factor can
work satisfactorily with the power system at a specific
operating point (P=0,8 p.u. and Q=0,3 p.u.) with a noisy
background. In this section, simulation studies for the GMV
self-tuning system on different operating points subject to
different system disturbances will be undertaken. At the same
time, a comparison with conventional GOV and AVR for the
corresponding running condition will be conducted, All
simulations in this section will be done in a deterministic

environment,

Before making the comparison studies, it is helpful to
investigate the characteristic of the identification in a
deterministic environment, i.e., with §&;(t)=f,(t)=0. Aas
mentioned earlier, the identification can be done in the
deterministic case, provided there exists a system
disturbance or step change in command signal. A simulation is
made ‘to show the identification result in a ceterministic
case. A 0.1 p.u. step change in reference signal v, (t) is
applied at sampling step 10, and the trajectories of the

identified system parameters are recorded. They are shown in



Figuré 5.4.1, It is clear that the convergence of these

patameters is achieved.

The next section shows a comparison between the GMV STC
and the properly-tuned conventional GOV and AVR made on the
same SMIB system, The block-diagram of the two systems have
been shown in Figures 5.1.2 and 5.1.3, and the parameters of

GOV and AVR are listed in Appendix A.
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5.4.2 , Conplruoal Botnou auv STC and c«:mvontional

Controller syotoms

Simulations on different operating points subject to
different system disturbances for the self-tuning power
system will be conducted in this subsection, To investigate
the benefits of the self-tuning system, simulations for
convéntional controllers will be also taken in parallel, and

comparison will be made for each case,

Time responses shown in Figure 5.4.2 are the simulation
results of transmission-line switching., This kind of system
disturbance causes a change in system configuration. Breakers
b3 and bg shown in Figure 5.1.1 were pulled off at step 100,
and re-closed at step 300. The operating point is at P=0,6

pP.u., Q=-0.3 p.u.. Figure 5.4.2a shows the time response of
the shaft speed ®(t) of the SMIB system with GMV STC, while

Figure 5.4.2c shows the time response of the shaft speed w(t)
of the SMIB system with conventional GOV and AVR. Comparing
the two responses, one can notice that the damping on shaft

oscillation is effectively improved in the self-tuning case.
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If cpmpa:ing'the steady-state errors of the terminai'
voltage during the period of 100~300 steps (one of the
transmission lines was draped.;n this period) shown in
Figures 5.4.2b and 5.4,2d, one can notice that the error is

smaller for the self-tuning system than for the conventional

system.
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Figure 5.4.3 shows the time responses for both GMV STC
systém and conventional system subject to three-phase fault
at.operating point P=1.0 p.u. and Q=0.5 p.u.. The fault is
applied at the terminal voltage bus and lasts for 0.1 sec..
Figure 5.4.,3a shows the shaft speed of the GMV STC system and
Figure 5.4.3c shows the shaft speed of the conventional GOV
and AVR system., The self-tuning system shows improved damping
on the oscillation of the generator shaft speed compared to

the conventional system,
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Finally, the responses of the GMV self-tuning system and
conventional system to step electrical power disturbances are
simulated at operating point P=0.8 p.u. and Q=-0.3 p.u.,. A
sericl step electrical power disturbance of +0.025, -0.05,
+0.1 and -0.075 p.u, was applied at sampling steps 100, 400,
700 and 1000 respectively. The electrical power Po for both
self-tuning and conventional cases are shown in Figures
5.4.4a and 5.4.4d respectively. One can notice that the
oscillation in electrical power Pé is reduced as compared
with the conventional case., Therefore, as a consequent
result, the oscillation of shaft speed for the self-tuning
system is also reduced by comparing Figqures 5.4.4b with

5.4.4e.

The terminal voltage in Figure 5.4.4c shows that there
is no.Steady-state error for the step electrical power
disturbances for the self-tuning system. However, the record
shown in Figure 5.4.4f indicates that the steady-state error
of the terminal voltage always exists for the conventional

system in this test.
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5.4.3 Comments

Several simulations were made for both GMV self-tuning
.system and conventional system in this section, The
simulations were done over a wide operating range and subject
to different system disturbances. Through these simulations
and comparisons, it is reasonable to conclude that the SMIB
system with multivariable GMV self-tuning controller achieves
more accurate control of shaft speed and terminal voltage
than the SMIB system wit. c-onventional GOV and AVR. As for
the damping on shaft oscillations to various disturbances in
deterministic case, the simulated GMV STC system has achieved

effective improvement over a conventional system.



CHAPTER 6
CONCLUSION AND RECOMMANDATIONS

This chapter puts forward some general conclusions on
the results of this thesis and suggests some possible future

research work.
6.1 Conclusions

This thesis is entirely devoted to the development of a
multivariable GMV self-tuning controller for power systems.
The reason for choosing adaptive control strategy for a power
system is that a power system is nonlinear, time varying, and

works in a stochastic environment.

The main contributions of this thesis can be summarized

as follows:

1. The multivariable generalized minimum variance adaptive
control theory was applied to a power system, and a practical

self-tuning algorithm was derived.

The basic theory on GMV self-tuning control was proposed
by Clarke and Gawthrop for single-input/single-output (SISO)

systems in 1975, and it was extended to multi-input/multi-
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output (MIMO) system by Koivo in 1980, ~This thesis
introduces the basic theory of MIMO GMV STC in the first part

of Chapter 3, and then develops the STC algorithm for a power

system in the second part of Chapter 3.

2. This thesis extends the Recursive Least-Squares (RLS)
estimation with variable forgetting factor to the MIMO case.
The variable forgetting (VF) factor algorithm was proposed by
Fortescue et al. in 1981 for the SISO case. The purpose of
introducing a VF factor into the RLS is to keep the alertness
of the identification through "regulating" the covariance

matrix.

3. A major contribution of this project is the development
of the proof for the deterministic convergence property of
the multiva:iable GMV self-tuning controller. This result is

given in Theorem 4.1 of Section 4.1.

4, It is further proved in this project that for the
regulator problem a stochastic system with diagonal
interactor matrix of unit time-delay with GMV self-tuning
control is equivalent to a deterministic system with a dc
offset in the estimated model. This result is given by Lemma

4.2.1 in Section 4.2.

5. Based on Theorem 4.1 and Lemma 4.2.1 the thesis

concludes the stability of the power system with
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multivariable GMV self-tuning controller under the condition

of Assumption 4.1.2.

6. Extensi&e computer simulation studies on a SMIB system
were undertaken to test the derived multivariable STC, and
comparisons with cohvehtional, or classical, controllers were
made. In the simulation phase a set of nonlinear equations
was used to represeht turbine-generator system connected to
an infinite bus through short transmission lines. All
simulatiohs show that the power system with multivariable GMV
STC can achieve satisfactory control results, and, in
general, offers better control performance than‘a system with

conventional controllers.
6.2 Recommendations for Iurther Studies

Although this thesis presents extensive studies on the
application of multivariable adaptive controllers to a single
power system there is still considerable work to be done
before considering the installation of such a controller on a
real system. It is suggested that further studies be made

before proceeding with on-site tests:

First, the behavior of the multivariable GMV STR in a
multi-machine system should be investigated. This thesis only
investigated the performance of a SMIB system with

multivariable GMV self-tuning controller. However, a modern



157

power network is a large system with multi-generatgrs.
Therefore, it is important to know what is the behavior of a

controller in such a complex circumstance.

Further improvements on the démping property of the
self-tuning controller for power systems are required. As
can be noted in the‘ simulatibn studies, the self-tuning
system has achieved much improvement of system damping in
most cases compared with the conventional system. However,
there is only limited improvement on damping the shaft speed
oscillation for electrical power disturbance. It will be an
interesting project to study how to increase the damping
ability of the multivariable STC., It will not only be helpful

for power system control, but also offer guidance for other

applications.
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APPENDIX A

PARAMETERS OF SIMULATED SMIB SYSTEM

Generator parameters (in'p.u.):

%g=1.6  x'4=0.32 xg=1.55 M=1.5 D=1,0

Fhp=1.0 1=0.1 T'90=5.0

Transmission line parameters (in p.u.):

re=0.0 Xe1=Xe2=2Xe Xe=0.1

Limitations on control signals (in p.u.):

Upss € [‘0.12,0-12]

GOV parameters:

kg=2.5 Tg=0.1

AVR parameters:

ke=50 Te=0.05
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APPENDIX B

- OPTIMAL K-STEP-AHEAD PREDICTOR OF MIMO SYSTEMS

A k-step-ahead predictor can be obtaincd from

Eqn. (3.2.1) by use the Diaphantine equality,

c(gl) = A(ghHE(g ) +q~kp(q-1) (B.1)
where

B(q~l) = I+Byiq~l+.. +Bp_q1q -kt

y(q-l) = '0+qufl+...+rn_lq-n+l

Introduce the polynomial matrices i(q‘l) and i(q‘l) given by,
B Hrql = FghE@ (B.2)

where detE(q~1)=detE(q-1) and E(0)=2[54], E(q~1l) and F(q-l)
always exist but is not unique. In addition, define a

polynomial matrix E(q‘l)

~

C(a-l) & B(g~L)A(q~L) +q kT (q~1) (B.3)

for which,
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C(g~LiB(q~l) = B(g~l)e(q~) (B.4)
Writing Eqn. (3.2.1) as,

Alg~l)y(t+k) = B(q 1 u(t) +C(q=1) E(t+k) (B.5)

and pre-multiplying it by i(q‘l), it ends up with,

E(q~a(g 1)y (t+k) =B (q-1)B(q-1)u(t) +B(q-1)e(q~1) E(t+k)

Using Eqns.(B.3) and (B.4), the following relation is

obtained,

Cla Dy (e+k) =F (q-1) y(t) +E(q~ 1) B(q-1)u(t) +&(q-1) & (q=1) & (t+k)
(B.6)
Pre-multiplying by é(q‘l)'l, the above equation can be

expressed as ,
v+ =€@ 7 [F gy +E@Bial)ue) ] +
+[2+B1q7 2+ - 4B 1 q K1 B (k) (B.7)

Therefore, the optimal estimate of y(t+k) at time t, or k-

step-ahead predictor, is,

y*(t+k|t)=5(q‘1)'1 [f(q‘l)y(t)+ﬁ(q‘1)8(q‘1)u(t)] (B.8)



171

If the quantity of y*(t+jlt) with jsk is wanted, a j-step-

ahead predictor can be expressed as(71],
y e+t =€@h ™ [F@Dye)48y (@ Dute+i-x) ] ,0cisk (3.9)
where
€ (q 1) =By (g HA(g™1) +q~ Iy (q™ D)
Gy(gh)=B4(q~1)B(q™1) (B.10)

This j-step-ahead predictor is required by the form of the

cost function, because y*(t+jit) is also needed for jsk.



APPENDIX C

CONCEPT AND RELATED PROPERTIES OF INDUCED NORM

Definition Let " . ” be a given norm on RM., Then for each
matrix A€RPXN, the quantity |IAll is defined by

Al = sup LBEL (C.1)
Yo lxl
XERN

is called the induced norm of A corresponding to the vector
norm | - . AAA

Lemma C1 The induced norm of AER™A corresponding

Euclidean norm of a vector is given by
i
ANy = [Apay (ATA) ]2 (C.2)

where,

Amax (ATA) =maximum eigenvalue of ATA. RV

(Proof] From the definition of the induced norm, the

following relationships are true,
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HETE A
NaNe = (supih{n”-)z

=TATAx
(i‘i% —~ ) (C.3)

Since ATA is real and symmetric, its eigenvalues are real and

non-negative., Let A be the diagonal matrix of eigenvalues of

ATA so that ATAX=XA, where X is the modal matrix of ATA,

whose columns comprise the eigenvectors of ATA, and it is

qcrthogonal.

Let %=Xg. Since XTX=Y it follows that
XTATAX=2TAs

Thus Egqn. (C.3) becomes,

1AN2 = sup( L
Sup 'T'

= sup (C.4)
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Eqn. (C.4) can be simplified to,

nan? = sup § 042y | (C.5)
where 0320 and iglﬂi-l.

Choosing the 91 corresponding to the largest positive ki to
be unity and all the remainder to be zero maximizes igleixi.

Since all the eigenvalues of ATA are non-negative, the largst

positive eigenvalue of ATA is its spectral radius Apay (ATA).

This proves the lemma.

Lemma C2 The following inequality is true for an

induced norm of matrix A,
HAI S IAN = (C.6)

AAA

[Proof] It can be concluded from the definition of induced

norm directly,

Al = sup JJI-I’;—"”'-L
Xx0

Thus it is true that
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Then the result of Lemma C.2 follows.

Lemma C3 If A=AT, then the induced norm of A

corresponding to Euclidean norm of a vector is,
HAN = Apax (D) ) (c.7)

AAA

[Proof] If A=AT, then

and the result follows the fact that if A is an eigenvalue of

A, A2 will be an eigenvalue of A2,



