
Characterizing (un)successful open source blockchain projects and their
testing practices

by

Luisa Fernanda Palechor Anacona

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Software Engineering and Intelligent Systems

Department of Electrical and Computer Engineering
University of Alberta

© Luisa Fernanda Palechor Anacona, 2022

Abstract

The most well-known blockchain applications are cryptocurrencies, e.g., Ether and

Bitcoin, which both sum a market cap of more than 560 billion US dollars. Besides

cryptocurrency applications, programmable blockchain allows the development of dif-

ferent applications, e.g., peer-to-peer selling of renewable energy from smart grids,

digital rights management, and supply chain tracking and operation. These appli-

cations can be developed and deployed on the blockchain through smart contracts,

which are small programs that run on the blockchain under particular conditions.

As bugs in blockchain applications (in particular, cryptocurrencies) can have large

financial impact, it is important to ensure that these applications are well-developed

and well-tested. However, currently software development and testing practices of

blockchain projects are largely unstudied. In this thesis, we study data from GitHub

and CoinMarketCap to understand the characteristics of successful and unsuccessful

blockchain projects and reveal the testing practices in Solidity projects with the aim of

helping developers to identify projects from which they can learn, or should contribute

to.

In the first part of the thesis, we study data from CoinMarketCap and GitHub

to gain knowledge about the characteristics of successful and unsuccessful blockchain

projects. We build a random forest classifier with 320 labelled projects and met-

rics from 3 dimensions (activity, popularity, and complexity). We found that a large

number of stars and a project’s age can help distinguish between successful and un-

successful projects. Additionally, we found that code cloning practices tend to be

common in unsuccessful projects written in Python, C++, Java and Solidity.

ii

In the second part of the thesis, we explore how quality is addressed in blockchain

applications by studying how 139 open source Solidity projects are tested. We show

that core development team members are the developers who usually contribute to

testing files, leaving external contributions rare. In addition, our results indicate

that only functional testing is practiced among the majority of Solidity projects, with

Truffle and Hardhat being the tools commonly used to test Solidity smart contracts.

Moreover, security testing is a practice rarely conducted, and performance testing is

not conducted at all. We finally found that audits by a third party are common in

several smart contracts.

Future researchers and developers can use our findings to understand what char-

acterizes successful and unsuccessful blockchain projects and be aware of the testing

practices developers conduct in open source blockchain projects.

iii

Preface

The research of this thesis has been conducted in the Analytics of Software, GAmes,

and Repository Data (ASGAARD) lab led by Dr. Cor-Paul Bezemer.

Chapter 3 of this thesis has been published as “L. Palechor and C. Bezemer, 2022.

How are Solidity smart contracts tested in open source projects? An exploratory

study. 2022 IEEE/ACM International Conference on Automation of Software Test

(AST) (p. 165-169)” [1]. I was responsible for the collection and cleaning of data,

building and analysis of models, and manuscript composition. Dr. Bezemer was the

supervisory author and was involved in concept formation and manuscript composi-

tion.

iv

Acknowledgements

I would like to thank my supervisor Dr. Cor-Paul Bezemer for giving me the op-

portunity to endeavour this research project. Dr. Bezemer ’s guidance and support

throughout this journey have contributed to the success of this research project. I

have learned about performing and presenting research in an accurate, responsible,

and efficient manner, thanks to Dr. Bezemer. I greatly appreciate all your help dur-

ing my MSc. studies.

I would like to thank Dr. Marek Reformat and Dr. Edmond Lou for being part of

my thesis examiners.

Thanks to all the Asgaardians who assisted me academically and non-academic

through my studies; especially I would like to thank Finlay for our deep talks in the

lab.

Last but not least, I would like to thank my parents and my brother for their unwa-

vering support. I am very grateful to my fiance, Cristhian, for all the encouragement,

patience, humour and love every step of the way.

v

Table of Contents

1 Introduction and Background 1

1.1 Introduction and Background . 1

1.2 Blockchain . 4

1.2.1 Blockchain Cryptoassets . 6

2 Can we predict whether a blockchain project will be successful using

software engineering metrics? 8

2.1 Introduction . 9

2.2 Background . 12

2.2.1 Blockchain Cryptoassets . 12

2.2.2 CoinMarketCap . 12

2.2.3 Code cloning . 13

2.3 Related Work . 13

2.3.1 Software engineering metrics 13

2.3.2 Code cloning in blockchain . 14

2.4 Methodology . 14

2.4.1 Gathering data . 14

2.4.2 Identifying important metrics for successful projects 19

2.4.3 Collecting historical data of metrics 19

2.4.4 Identifying similar blockchain projects 19

2.5 Preliminary analysis . 20

vi

2.6 RQ1. What are the most important metrics that characterize successful

blockchain projects in CoinMarketCap? 22

2.6.1 Motivation . 22

2.6.2 Approach . 24

2.6.3 Findings . 30

2.7 RQ2. How does development activity change across time in blockchain

projects? . 32

2.7.1 Motivation . 33

2.7.2 Approach . 33

2.7.3 Findings . 34

2.8 RQ3. How similar are blockchain projects to each other? 36

2.8.1 Motivation . 36

2.8.2 Approach . 37

2.8.3 Findings . 39

2.9 Threats to validity . 41

2.9.1 Construct Validity . 41

2.9.2 Internal Validity . 41

2.9.3 External Validity . 42

2.10 Conclusion . 42

3 How are Solidity smart contracts tested in open source projects?

An exploratory study 44

3.1 Introduction . 45

3.2 Background and related work . 46

3.3 Methodology . 47

3.3.1 Gathering data . 47

3.3.2 Identifying test files for smart contracts 48

3.3.3 Identifying configuration files 49

vii

3.4 RQ1. Who are the developers involved in testing Solidity smart con-

tracts? . 49

3.4.1 Motivation . 49

3.4.2 Approach . 49

3.4.3 Findings . 50

3.5 RQ2. What are the preferred tools and testnets for testing Solidity

smart contracts? . 51

3.5.1 Motivation . 51

3.5.2 Approach . 51

3.5.3 Findings . 51

3.6 RQ3. What types of tests are performed on Solidity smart contracts? 53

3.6.1 Motivation . 53

3.6.2 Approach . 54

3.6.3 Findings . 54

3.7 Threats to validity . 55

3.7.1 Internal validity . 55

3.7.2 Construct validity . 55

3.7.3 External validity . 56

3.8 Conclusion . 56

4 Conclusions & Future Work 57

4.1 Conclusion . 57

4.2 Future Work . 58

Bibliography 59

viii

List of Tables

2.1 The metrics used in the random forest model to classify successful

projects . 17

2.2 P-values and Cliff’s deltas of the differences between successful and

unsuccessful project metrics from activity, popularity and complexity

domain. 20

2.3 Mean optimism values for precision, recall, F1-score and AUC. 28

2.4 The ranking of the most important metrics in the random forest clas-

sifier, divided into statistically distinct groups using the Scott-Knott

Effect Size clustering. 30

2.5 Number of projects containing at least one file in the studied code lan-

guages and the percentage of cloned projects grouped by programming

language. 39

3.1 Testing tools used by Solidity open source projects. 52

ix

List of Figures

1.1 Example of blockchain application flow 5

2.1 Overview of our methodology. 15

2.2 Distribution of 12 metrics across successful and unsuccessful projects.

The y-axis label Succ and Unsucc stand for successful and unsuccessful

projects, respectively. Blue and orange distributions represent data for

successful and unsuccessful projects, respectively. 21

2.3 Overview of the steps we follow to build the random forest classifier. . 23

2.4 Hierarchical cluster of metrics as stated by squared Spearman correla-

tions coefficients. Read dotted line represents the threshold of |p2| =

0.7. 24

2.5 Metric importance value for all 9 metrics studied in the random forest

classifier. 29

2.6 The optimism-reduced value distribution for performance metrics of

our random forest: Precision, Recall, F1-score and AUC. 32

2.7 Change in the number of commits for successful and unsuccessful projects

in six-month periods. The blue color represents the distribution of

commits in unsuccessful projects, and the orange indicates successful

projects. The median of the number of commits in each semester is

represented by the black dash in each box. 34

x

2.8 Change in the number of contributors for successful and unsuccessful

projects in six-month periods. The blue color represents the distri-

bution of contributors in successful projects, and the orange indicates

unsuccessful projects. The median of the number of contributors in

each semester is represented by the black dash in each box. 35

2.9 Percentage of file similarity for file pairs belonging to different projects

written in C, C++, Solidity, Python and Java. 38

3.1 Overview of the steps taken in our methodology. 48

3.2 Portion of test developers who are core developers. 50

3.3 Number of testnets per project. 52

3.4 Popular testnets within OS projects. 53

xi

Chapter 1

Introduction and Background

1.1 Introduction and Background

Blockchain is a decentralized technology that records transactions between parties

[2]. Those transactions are listed or chained in data blocks and are replicated on each

of the network’s nodes. The process of adding a new transaction to the blockchain

includes a consensus between the nodes of the network to agree on the present state of

recorded transactions. This process can be executed without the intervention of any

trusted third party. Therefore, blockchain provides a trusted decentralized network.

The field of application in blockchain is very broad. The core of this technology is

a database of transactions or information that can be used in any kind of application

domain. A programmable blockchain allows the deployment of applications on the

top of the blockchain. For example, Ethereum, one of the most popular blockchain,

can deploy and run applications via smart contracts.

Studies have focused on many blockchain-application domains proposing solutions

to existing challenges that traditional applications face. For example, in the public

sector, blockchain-based voting systems have been proposed and implemented in some

countries to overcome voter access and voter fraud [3]. Likewise, supply chain man-

agement issues, such as data manipulation and single point of failure, are being faced

with blockchain-based traceability solutions to improve supply chain transparency [4].

The health care sector is researching new ways of improving and simplifying the shar-

1

ing of health record information using blockchain [5]. In education, studies are ex-

ploring ways to share academic credentials using blockchain-based applications that

guaranteeing integrity without consulting the issuing institution [6]. Financial in-

dustry, which is the most popular sector on implementing blockchain applications

which has a total market capitalization of $961B, focuses on developing cryptoassets

or digital assets to prove ownership, e.g., tokens and cryptocurrencies [7]. The men-

tioned blockchain applications demand a high-quality software development to ensure

security, reliability and integrity of the data.

Open source projects have implemented different blockchain applications, but lit-

tle is known about the software activities conducted in this domain. We investigate

characteristics of successful and unsuccessful projects to better understand how soft-

ware metrics can describe these projects. We further investigate the testing practices

developers conduct.

In this thesis, we focused on extracting valuable insights from blockchain projects

available on GitHub. In particular, we concentrate on projects listed on the top

and bottom of CoinMarketCap and the software metrics which characterize them.

Additionally, we studied open source blockchain projects developed in Solidity to

identify the types of testing these projects perform. We conducted the following

studies:

Research Study 1: Can we predict whether a blockchain project will be

successful using software engineering metrics? (Chapter 2)

Motivation: In the last few years, a large number of cryptocurrencies have been

deployed in different blockchain networks. Some of these cryptocurrencies are worth

a few cents of dollars while others worth hundreds of dollars; it is unknown how

software metrics can describe these projects.

We want to identify the software development activities performed by developers

in open source blockchain projects and, at the same time, understand the software

engineering metrics that better describe successful projects. Using this knowledge,

2

we want to predict early on when a project will become successful and provide helpful

information to investors and developers interested in either, contributing or investing

in a particular project.

In this study, we collected data from 320 open source blockchain projects hosted

on GitHub. We classify them as successful or unsuccessful based on their market cap

position. Extracting data about projects’ activity, popularity, and complexity, we

build a random forest model to determine the characteristics of the successful and

unsuccessful projects.

Findings: The most important findings of this study are that software metrics are

valuable to classify if a project is successful or not but cannot predict whether a project

will become successful. The number of stars, project age and programming language

are the most important metrics for our random forest model to classify successful and

unsuccessful projects. In other words, a successful project may likely be popular and

perform software maintenance activities. However, since these metrics do not provide

historical information, we cannot use them to predict when a project will become

successful. We also found that the number of commits and contributors has been

decreasing since 2015 in both successful and unsuccessful projects. We found that

this downtrend may be related to code cloning practices among the projects. Finally,

unsuccessful projects are usually clones, especially in projects with files written in

Solidity, Python, Java and C++.

Research Study 2: How are Solidity smart contracts tested in open

source projects? An exploratory study (Chapter 3)

Motivation: We found in Chapter 2 several projects, in particular unsuccessful

projects are clones.

According to Göde [8], most clones are rarely changed. We want to further study

the software development activities of the blockchain projects in a narrow domain,

i.e., smart-contract-based projects. To further study software development activities

in blockchain projects, we investigate the state of smart contract testing in open

3

source projects because, similar to traditional applications, testing is a vital phase of

the software development process.

Ethereum-based applications have been susceptible to multiple attacks, e.g., DAO

and Roni attacks [9, 10], where losses rose to more than $60M in 2016 and $600M in

2022, respectively. Therefore, high-quality applications could potentially avoid bugs

that lead to massive losses.

Ethereum smart contracts development has limited development support from the

open source testing community compared to the support for traditional applications.

Studies have shown that developers complain about open source development tools

because these tools do not satisfy their needs [11–13].

We investigate the state of the smart contract testing in open source projects by

analyzing 139 smart contract projects written in Solidity. We provide an analysis of

the developers working on the tests, the testing frameworks and testnets used and

the type of conduct tests.

Findings: We found that 80% of the test developers were also part of the core team

of the studied projects. In addition, 50% of the projects tested their smart contracts

mainly using functional frameworks. Less than 10% of the projects performed security

testing, and none ran traditional performance testing.

The outcomes of the first study are helpful for future researchers to understand

how software metrics characterize successful and unsuccessful projects, which could

help developers decide which open source project to contribute to. These findings

could also help future researchers in blockchain project classifiers and code similarity

in blockchain projects.

1.2 Blockchain

A blockchain is a list of ordered transactions organized into linked lists of blocks.

These blocks are usually linked to their predecessor by cryptographic hashes.

A blockchain system comprises a network of distributed servers or nodes that

4

RobertRobert MaryMary

Figure 1.1: Example of blockchain application flow

contain a complete or partial copy of the blockchain data structure, and a network

protocol to specify rights, obligations, and methods of communication, verification,

validation, and consensus among the nodes.

According to the users that participated in the blockchain network, the blockchain

could be classified as private or public. In private blockchain, the participation

of new nodes in the network must be approved by others. In contrast, in public

blockchain, anyone could join the network without approval. This means that in

public blockchains, nodes could enter and leave the network without any required

permission, verify data added to the blocks and process new transactions while re-

ceiving incentives from the network [2].

One of the blockchain applications includes notary services (proof of ownership).

Figure 1.1 shows a conceptual example of Robert buying Mary’s house using a

blockchain application. Say Robert and Mary agree on the house price and targets

accounts. The blockchain has a record that proves Mary owns the house; then, the

final goals of the transactions are Mary having the payment and Robert the house

ownership. After Robert transfers the amount to buy the house in an agreed ac-

count, e.g., Mary’s account, the blockchain application validates Robert’s payment

and Mary’s balance. If the transaction for the house payment is correct, the applica-

tion will transfer the ownership of the house. Otherwise, the transaction is rejected

(the house ownership won’t be transferred) if the payment is incorrect.

Some advantages of using blockchain are that data cannot be manipulated due to

their immutability characteristic and that the time to finish some processes could be

5

reduced. For example, in the mentioned scenario, selling a house could become faster

since there is no need to have third parties such as a lawyer, notary, or public registry.

1.2.1 Blockchain Cryptoassets

Financial innovations are focused on blockchain applications, mainly in the cryp-

toassets. A cryptoasset is a blockchain application created to prove ownership of an

asset. The cryptoassets, deployed in a blockchain public network, can securely send

and receive transactions from other accounts. The types of cryptoassets include [7]:

Tokens: There are utility tokens and security tokens. Utility tokens are used to

probe access rights to services or products. These tokens can be used to buy a product

or service from a particular blockchain network. Utility tokens are usually used for a

started business to raise money through a sale or an auction in an initial cryptoasset

offering. In Ethereum, the utility tokens are implemented by standards, e.g. the

ERC-20, which defines how to implement standard tokens and how to access the

token’s data to secure transfer tokens and get the confirmation of the balance [14].

On the other hand, security tokens refer to investments. Security token value is

derived from an external and tradeable asset. Moreover, these tokens are subject

to Federal laws that govern security. Examples of security tokens are shares of a

company’s ownership or intellectual property.

Non-fungible Token (NFT): These cryptoassets are tokens that cannot be repli-

cated and record the ownership of a unique object such as a house, song, digital

image, or video. In Ethereum, the ERC-721 defines an interface to track and transfer

NFTs [15].

Cryptocurrency: or digital currency, is the most popular cryptoasset. Similar to

real currency, this asset can be used as digital money to buy products. These assets

can also be used in trading markets to exchange for other cryptocurrencies or stored

as valuable assets.

The remainder of this thesis is organized as follows: Chapter 2 presents our study

6

on successful and unsuccessful blockchain projects, development activity trends, and

project similarities. Chapter 3 presents our exploratory study on Solidity smart con-

tracts, and the testing approaches developers take in practice. Finally, Chapter 4

concludes this thesis and highlights our findings and the potential future research

directions.

7

Chapter 2

Can we predict whether a blockchain
project will be successful using
software engineering metrics?

Blockchain is a recent technology with many fields of applications. One of the hottest

topics in this domain is financial applications, whose market cap is moving more than

2B dollars. This billion-dollar market is supported by software applications running

in distributed blockchain networks. We intend to learn about these projects’ soft-

ware development activities to understand what characterizes a successful project

that leads to millions of dollars in revenue. Distinguishing a blockchain project cate-

gorized as successful based on the market cap using software metrics is an unexplored

field. We use data from 320 GitHub blockchain projects and identify the most im-

portant metrics among 3 categories (activity, popularity, and complexity) that best

explain a successful blockchain project by building a random forest model. We study

how commits and contributors’ activity change across time and analyze similarities

between code written in C, C++, Solidity, Java or Python.

Our study reveals the most important metrics for the model are the number of

stars, project age and main programming language. Commits and contributors have

a downtrend for successful and unsuccessful projects, and one possible reason is that

there are similar projects in our dataset. We found at least 80% similarity between

projects in 41.1% of the C++, Python and Solidity projects, 68.3% of the C projects

8

and 80.9% of the Java projects.

2.1 Introduction

Storing data using chained data blocks and cryptography across a blockchain network

assures immutable applications which provide trust without the involvement of a third

party. The blockchain network is composed of decentralized nodes that are in charge

of data processing, validation and storing data that circulates in the blockchain.

Blockchain-based applications are experiencing massive growth and revenue. Par-

ticularly, the financial sector. This sector is the most popular field in blockchain hold-

ing, as of June 2022, with a total market cap of $1.2T [16]. One type of blockchain

financial application is the cryptocurrency or digital currency. Digital currencies

such as Bitcoin (BTC) and Ethereum (ETH) have a market cap of $560B and $212B,

respectively, as of June 2022 [16], which makes them the top two most successful

blockchain projects. Cryptocurrencies are the revolution of the financial sector, in

particular banking, because they do not require external authorities to operate, the

fees are arguably reduced, and there are no geographic limits.

Cryptocurrencies market cap varies from coin to coin. Predicting a successful

cryptocurrency ahead of time can help developers and investors decide on which

project to work on.

Many studies have investigated metrics to identify open source project success

from different software engineering metrics. Subramanian et al. [17] and Stewart [18]

studied project success by analyzing the impact of restrictive open source licenses

on developer and user interests. Midha [19] investigated the success of open source

projects through project popularity and developer activity metrics. Daniel and Stew-

art [20] studied the impact of software coupling and interactive discussions on the

success of an open source project. Crowston [21] explored metrics to study how pop-

ularity, community size (i.e. number of active contributors to the project), and the

time taken to fix bugs affect the open source project success and show that these

9

metrics are strongly correlated. Even though previous studies have focused on iden-

tifying open source projects, none have used software metrics to identify successful

open source blockchain projects.

In this chapter, we leverage software metrics to identify successful blockchain

projects. Since blockchain projects are programs built on software development, soft-

ware engineering metrics can provide valuable information about their software life

cycle. We want to study the association of these metrics to predict the blockchain

project’s success.

We study 13 metrics from open source blockchain projects to understand the char-

acteristics that explain blockchain projects’ success from a software perspective. For

example, the number of stars, commits, files, and primary programming language.

We study the correlation between the metrics and build a random forest model to

determine if a project is successful or not. We define successful projects based on the

market cap ranking provided by the standard price tracking source, CoinMarketCap.

From CoinMarketCap, we collect blockchain projects metadata including the mar-

ket cap ranking position to define successful and unsuccessful projects. We selected

GitHub projects, mine their repositories, and perform data analysis to answer the

following questions:

RQ1. What are the most important metrics that characterize successful

blockchain projects in CoinMarketCap?

Motivation: Some cryptocurrency become successful, while others never reach

the top positions in the CoinMarketCap rank. With this research question, we want

to investigate across 13 metrics and 3 dimensions, i.e., activity, popularity, and com-

plexity, the relation between software engineering metrics and the success of a project.

Findings: We found that number of stars, project age and programming language

were the three most important metrics. These results mean that successful projects

tend to be more popular and tend to have more development activity when compared

to unsuccessful projects.

10

RQ2. How does development activity change across time in blockchain

projects?

Motivation: The results of research question 1 show some metrics can charac-

terize successful projects. Since we are interested in predicting early on whether a

project will be successful, we further study if these metrics can provide meaningful

information across time to make these predictions.

Findings: We found a downtrend in the number of commits and contributors for

successful and unsuccessful projects. For this reason, even though results in research

question 1 showed the metrics that characterize successful and unsuccessful projects,

it becomes infeasible to predict a project’s likelihood of success.

RQ3. How similar are blockchain projects to each other?

Motivation: Since the results of research question 2 show development activity

decreases over time, we want to investigate if this trend results from new projects

copying files from other projects. We believe cloning practices may be related to this

trend since previous studies have revealed that clones in software projects might not

change across time [8, 22] and others have shown that cloning files are very common

in Ethereum smart contracts [23].

Findings: We found projects in our dataset are similar to at least one other

project in more than 40% of the cases when comparing projects in either C++,

Python, Solidity, C or Java.

These study will bring knowledge about the GitHub blockchain projects and their

software metrics which can help developers to understand this technology better.

Chapter outline: We organize the remainder of this chapter as follows: In Sec-

tion 2.2 we provide background information on Blockchain application and CoinMar-

ketCap. Section 2.3 gives an overview of related work. Section 2.4 explains our

methodology. Section 2.5 shows our preliminary analysis. Results for the 3 research

questions in Section 2.6, 2.7 and 2.8. In Section 2.9, we identify threats to validity.

Finally, we conclude the chapter with Section 2.10.

11

2.2 Background

This section provides background about blockchain financial applications or cryptoas-

sets, CoinMarketCap, and code cloning.

2.2.1 Blockchain Cryptoassets

A Cryptoasset is a blockchain application created to prove ownership of an asset. The

cryptoassets, deployed in a blockchain public network, can securely send and receive

transactions from other accounts. The types of cryptoassets include [7]:

Tokens: There are utility tokens and security tokens. Utility tokens are used

to probe access rights to services or products. These tokens can be used to buy a

product or service from a particular blockchain network. Utility tokens are usually

used for a started business to raise money through a sale or an auction in an initial

cryptoasset offering. In Ethereum, the ERC-20 interface defines how to implement

standard tokens and how to access the token’s data to secure transfer tokens and get

the confirmation of the balance [14].

Non-fungible Token (NFT): These cryptoassets are tokens that cannot be repli-

cated and record the ownership of a unique object such as a house, song, digital

image, or video. In Ethereum, the ERC-721 defines an interface to track and transfer

NFTs [15].

Cryptocurrency: or digital currency, is the most popular cryptoasset. Similar to

US dollars, this asset can be used as digital money to exchange products. These

assets can also be used in trading markets to exchange for other cryptocurrencies or

stored as valuable assets.

2.2.2 CoinMarketCap

CoinMarketCap is a website that provides information about the capitalization of

cryptoassets. The data provided by CoinMarketCap includes a cryptoasset rank

based on the total number of coins circulating and their current price on the market.

12

2.2.3 Code cloning

Clones are segments of code that are "extremely similar" or identical. Bellon et

al. [24] proposed the following cloning classification in order to distinguish between

the different code cloning types:

• Type-1 Clone: identical pieces of code except for differences in whitespace, and

comments.

• Type-2 Clone: pieces of code syntactically identical, but variable, type, or func-

tion identifiers are altered.

• Type-3 Clone: a copied piece of code with further modifications, e.g., added,

altered or removed a few statements.

2.3 Related Work

2.3.1 Software engineering metrics

Researchers have used process metrics and product metrics to capture information

about the quality of software.

• Software process metrics are related to the timescale measure in the software

development process [25]. Examples of these metrics are the number of commits

in a release duration or the number of developers who changed a file in the same

time frame [26].

• Software product metrics measure deliverables or artifacts of the development

process, e.g., the size or complexity of the code. Some examples of software

product metrics are lines of code, number of methods, or comment to code

ratio [25, 26]

In a previous study, Rahman suggested that code metrics are less stable and less

portable than process metrics [26]. Therefore, we primarily focus on development

process metrics in this study.

13

Software metrics in blockchain: Blockchain previous studies have paid attention

to development process metrics. For example, Choi et al. studied the maintenance

effort in 592 blockchain projects by looking at 32 features grouped in metrics for

developers’ engagement, metrics for popularity and metrics for code updates. Among

the features, they studied the number of watchers, stars, forks, issues, commits, and

contributors [27]. They found that 48% of the projects in their dataset were not

updated for the last six months, and 36.4 % of the projects disappeared.

Osman et al.studied 481 Bitcoin-related projects on GitHub to analyze the Bitcoin

ecosystem [28]. The authors studied trends based on software metrics, e.g., the num-

ber of watchers, forks, commits, and contributors, to analyze popularity, maturity,

activity and code equality. Their findings suggested the health of the majority of

their studied projects is assessed as low risk.

2.3.2 Code cloning in blockchain

Kondo1 et al. used the Deckard tool to Ethereum smart contracts to study code

cloning in Ethereum [23]. They used study different type of clones and found that

more than 79% of the studied contracts were clones. They also compared the smart

contracts to the OpenZeppelin project, which is a framework that offers well-tested

smart contract templates, finding identical code blocks between the studied contracts

and the ones from OpenZeppelin.

2.4 Methodology

In this section, we introduce the methodology of our study on identifying successful

and unsuccessful blockchain projects. Figure 2.1 gives an overview of our study.

2.4.1 Gathering data

We collected the blockchain project data from two different sources, CoinMarketCap

and GitHub APIs. From the CoinMarketCap we extracted data about successful and

14

Collecting historical data of metrics

Extract commit
history

Commits and contributors
historical data

Identifying similar blockchain projects

Identify cloned files Cloned projectsIdentify projects with
high similarity

Gathering Data

GitHub

Collect metrics from each
project

320 GitHub repositories
of blockchain projects

9,226 active projects

Collect files with a .c, .cpp,
.sol, .java or .py extension

from each project
Filter GitHub projects

Select top 10% and
bottom 10% of the

GitHub projects

 CoinMarketCap

RQ3. How similar are blockchain
projects against each other?

RQ2. How does development activity
change across time in blockchain

projects?

RQ1. What are the most important
metrics that characterize successful

blockchain projects in
CoinMarketCap?

Identifying important metrics for successful projects

Important metricsBuild Random
forest classifier

Extract important metrics
from the random forest

Figure 2.1: Overview of our methodology.

15

unsuccessful projects, and from GitHub, we gathered metrics we analyzed from each

project.

CoinMarketCap is one of the most reliable price-tracking websites for blockchain

cryptocurrencies, and its API has RESTful JSON endpoints to gather data about

blockchain projects. This source has been used to extract blockchain data by Oliva et

al. in their previous study [29]. From this source, we extracted metadata from active

blockchain projects such as the blockchain project name, the blockchain network

where the project was deployed, and the URL of the source code. Additionally, to

get an insight about the success of each blockchain project, we obtained the rank

available in CoinMarketCap. This rank refers to the relative position the project has

in the market at a certain point and, it is calculated by using the cryptocurrencies

price and the number of coins or tokens available for trading. We gathered data from

9,226 blockchain projects as of January 2022.

To collect software metrics from each project we use the information of the source

code URL. 48% of the source code URLs provided from CoinMarketCap were empty,

49% pointed to GitHub; and 3% pointed to other types of repositories such as GitLab,

BitBucket, or blockchain web explorers such as Etherscan. Since we were interested

in open source projects and GitHub had most of the open source projects mentioned

in CoinMarketCap, we selected only the projects stored on GitHub. There were 4,508

projects stored on GitHub.

We were focused on collecting software metrics from blockchain projects, then we

only kept projects mapped to the GitHub repository because they provided informa-

tion about the development work of open source projects. We removed 20 projects

pointed to gist.github.com, 7 projects pointing to gitbub.com, 2,576 projects pointing

to a GitHub organization and, 8 projects of which the repository no longer existed.

We ended up with 1,897 projects.

CoinMarketCap provided data with different projects sharing the same GitHub

repository URL. For example, the cryptocurrencies Koda Cryptocurrency and Bitcoin

16

both point to /bitcoin/bitcoin GitHub repository. In this case, we easily infer which

cryptocurrency has the wrong URL but to avoid bias, we filtered out projects that

shared GitHub repository URLs.

Since we were interested in studying the characteristics of successful projects, we

sorted the records based on the project’s rank and selected the top 10% and bottom

10% of the projects. In the chosen projects, the lowest rank for the 10% top was

1,418, and the highest rank for the 10% bottom was 7,096. We ended up with 320

projects.

Table 2.1: The metrics used in the random forest model to classify successful projects

Category Metric Value Description

Activity Mean # of
commits per
month

Numerical The number of commits in a
GitHub repository may determine
how active a project is and, at the
same time, provide understand-
ing about the maintenance the
project receives [30]. We would
expect to see more commits per
month in successful projects.

of days since
last commit

Numerical A short period may indicate de-
velopers are still working on fixing
bugs or creating new features for
the projects; in contrast, a longer
period may suggest the project’s
abandonment. A longer period
might be a characteristic of un-
successful projects.

Project age Numerical The experience acquired in a
project, measured as the number
of days from the first commit un-
til the last one, might be positive
correlated with the project’s qual-
ity and, arguably, the project’s
success.

continued on next page

17

continued from previous page

Category Metric Value Description

Mean of the #
of releases per
month

Numerical The number of releases provides
insight into the new features, and
bug fixes a project has delivered
to its users. We investigate how
this number is related to success-
ful projects, instinctively thinking
successful projects would have a
lower number of releases.

Popularity Mean # of
contributors
per month

Numerical Popular projects are more likely
to receive pull requests from con-
tributors [31].

of watchers Numerical The number of watchers or de-
velopers who want to know the
details of the activity involved
in a GitHub project have been
consider a measure of popularity
in previous studies [32, 33]. We
would expect successful projects
having more number of watchers

of forks Numerical The number of forks as a met-
ric of popularity has been used
in previous investigations [32–
34]. We would expect successful
projects will be forked more times
compared to unsuccessful ones.

of stars Numerical Number of stars has been used as
a popularity metric in different
studies [34–36].

of opened
issues

Numerical

of closed
issues

Numerical

Complexity Length of
readme file

Numerical

of files in the
repository

Numerical

Main program-
ming language

Categorical

We cloned 320 projects and extracted metrics related to the activity, popularity,

and, complexity to analyze the characteristics of successful projects and study how

they differ with unsuccessful projects. Activity metrics measure the software devel-

opment contributions within each projects. Popularity metrics inform about how

much interest developers have in the project. Complexity metrics collect how large a

18

project is in terms of files. Table 2.1 presents the description of the metrics used.

2.4.2 Identifying important metrics for successful projects

We used the collected metrics to build a random forest model and obtain the most im-

portant metrics for the model to classify successful and unsuccessful projects through

the model’s built-in feature importance.

2.4.3 Collecting historical data of metrics

Having cloned the GitHub projects, we extracted the commit history from each

project through git commands. We obtained both commits and contributors’ his-

torical information from commits historical data.

2.4.4 Identifying similar blockchain projects

To identify similar blockchain project, we first identify files written in C, C++, So-

lidity, Java and Python. We grouped files under the same extension using regular

expressions, i.e., .c, .cpp, .sol, .py, and .java.

We analyzed type-1 clone using the diff Unix command. We used these command

because it is able to measure how similar a file is against another file by comparin line

by line of each of the files, and because diff is language-agnostic. We contemplated

clone detection tools such as Deckard and JPlag, but these tools did not meet the

expectations to reach the goals of this study. The JPlag tool did not support the

analysis of projects written Solidity. The Deckard tool supported Solidity but did not

analyze the similarity between completed Solidity files. Instead, this tool analyzes

code similarity only in code fragments.

We categorized cloned and non-cloned files based on the file pairwise similarity

distribution. Our similarity metric is the percentage of cloned files in a project across

all project combinations.

19

Table 2.2: P-values and Cliff’s deltas of the differences between successful and un-
successful project metrics from activity, popularity and complexity domain.

Metric p− value Cliff’s delta

of commits per month (mean) <1.3x10-11 medium
of days since last commit =0.057 negligible
Project’s age <2.2x10-16 large
of releases per month (mean) =1.4x10-11 medium
of contributions per month =1.241x10-15 large
of watchers <2.2x10-16 large
of forks <2.2x10-16 large
of stars <2.2x10-16 large
of opened <2.12x10-13 medium
of closed issues <9.52x10-08 small
Length of readme file =1.85x10-11 medium
of files in the repository <8.41x10-13 medium

2.5 Preliminary analysis

Table 2.1 presents the description of the 13 metrics used in this study. We calculate

basic statistics about these software metrics for successful and unsuccessful projects.

From this analysis we get an overview of the activity, popularity, and complexity of

the successful and unsuccessful projects on GitHub.

We calculate the Wilcoxon Signed-Rank test to evaluate if the successful and un-

successful project distributions are significantly different. In addition, we used Cliff’s

delta effect size [37] d to quantify the difference between the distributions, using the

thresholds mentioned by Romano et al. [37]: negligible if |d| ≤ 0.147; small if 0.147

<|d| ≤ 0.33; medium if 0.33 <|d| ≤ 0.474; and large if 0.474 <|d| ≤ 1.

Figure 2.2 shows the distribution of the 12 metrics across 3 domains when analyzing

successful and unsuccessful projects. We found that the distributions for successful

projects were different from unsuccessful projects, except # of days since last commit

(p− value = 0.057), after compute the Wilcoxon Signed-Rank test. Table 2.2 shows

20

102 103

Project age

Succ.

Unsucc.

700.0

0.0

(a) Project age

100 101 102

#of commits per month (mean)

Succ.

Unsucc.

28.7

3.0

(b) Commits per month

100 101

of contributions per month(mean)

Succ.

Unsucc.

3.0

1.0

(c) Contributors per month

100 101

of releases per month (mean)

Succ.

Unsucc.

1.0

0.0

(d) Releases per month

102 103

of days since last commit (mean)

Succ.

Unsucc.

252.0

259.0

(e) Days since last commit

100 101 102 103

of closed issues

Succ.

Unsucc.

1.0

0.0

(f) Closed issues

100 101 102 103 104

of forks

Succ.

Unsucc.

23.0

0.0

(g) Number of forks

100 101 102 103

of opened issues

Succ.

Unsucc.

5.0

0.0

(h) Opened issues

100 101 102 103 104

of stars

Succ.

Unsucc.

55.0

0.0

(i) Number of stars

100 101 102 103 104

of watchers

Succ.

Unsucc.

55.0

0.0

(j) Number of watchers

100 101 102 103 104

of files

Succ.

Unsucc.

380.0

3.0

(k) Number of files

101 102 103

Length of readme file (mean)

Succ.

Unsucc.

41.5

2.0

(l) Length of readme file

Figure 2.2: Distribution of 12 metrics across successful and unsuccessful projects. The
y-axis label Succ and Unsucc stand for successful and unsuccessful projects, respec-
tively. Blue and orange distributions represent data for successful and unsuccessful
projects, respectively.

21

the p−value for Wilcoxon Signed-Rank tests and the effect size ranges from negligible

to large.

Unsurprisingly, the median values of watchers (Figure 2.2j), forks (Figure 2.2g) and

stars (Figure 2.2i) are higher in successful projects, meaning that successful projects

tend to be more popular than unsuccessful projects. Both open and closed issues in

GitHub are low across most projects. Even though the distributions of the number

of open and closed issues are statistically different, the effect sizes are medium and

small.

In this preliminary analysis, we found the selected metrics provide meaningful

information to distinguish between the two project categories.

2.6 RQ1. What are the most important metrics
that characterize successful blockchain projects
in CoinMarketCap?

In this section, we present the motivation, approach, and results of research question

1.

2.6.1 Motivation

Previous studies [17–21] have investigated the success in open source projects through

software engineering metrics. We want to understand how software development

activity, popularity and complexity explain the success of a cryptocurrency blockchain

project. The findings can lead us to the metrics that could predict ahead of time which

cryptocurrency will succeed.

To study the metrics that best distinguish successful projects from unsuccessful

ones, we developed a random forest model to determine, from the metrics that we

chose, what are the best that explain a successful blockchain project. The approach

that we followed is shown in Figure 2.3. Below we detail each step.

22

13 metrics

Feature importance

Compute Scott-Knott
Effect size clustering

Metric importance
rank

Calculate the optimism
bias for each bootstrap

sample

Performance
evaluation measures

Evaluation of the random forest classifier

Compute the
optimism-reduced

performance measures

Correlation analysis

Remove metrics with
Spearman

coefficients>=0.7

Calculate metric
importance measure
for each bootstrap

sample

Redundancy analysis

Remove redundant
metrics

Modeling the random forest classifier
Build the random forest

model with 1,000
bootstrap samples

9 metrics

10 metrics

Figure 2.3: Overview of the steps we follow to build the random forest classifier.

23

co
de

_l
an

gu
ag

e

la
st

_c
om

m
it_

d

n_
is

su
es

_c
lo

se
d

n_
is

su
es

_o
pe

n

n_
fo

rk
s

n_
w

at
ch

er
s

n_
st

ar
s

m
ea

n_
re

le
as

es
_m

n_
fil

es

m
ea

n_
co

nt
rib

ut
or

s_
m

m
ea

n_
co

m
m

its
_m

pr
oj

_a
ge

_d m
ea

n_
re

ad
m

e_
le

ng
th

ow
ne

r_
ty

pe

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

S
pe

ar
m

an
 ρ

2

Figure 2.4: Hierarchical cluster of metrics as stated by squared Spearman correlations
coefficients. Read dotted line represents the threshold of |p2| = 0.7.

2.6.2 Approach

Correlation analysis: This analysis is performed to identify and remove strongly

correlated metrics. Correlated variables can affect the model’s performance (overfit-

ting) and reduce the statistical significance of the variables. In this step, we analyze

pairwise metrics that are strongly correlated and filter one of them out to better study

the importance of the metrics within the model.

We perform the Spearman correlation test in R using the package Hmisc (Harrell

Miscellaneous) and the varclus function. The varclus function allowed us to ob-

tain the squared Spearman correlation coefficients to identify monotonic relationships

between variables [38].

To identify a strong correlation between metrics, we use the value 0.7 as the Spear-

man correlation coefficient’s threshold following a suggestion of prior research [39]. If

24

the Spearman coefficient is equal or higher than the threshold, we define the metrics

as strongly correlated. Figure 2.4 shows the Spearman correlation coefficients across

the metrics.

After executing the Spearman correlation test, we found the # of stars and #

of watchers were strongly correlated metrics (|p|2 > 0.7). These were also strongly

correlated with the # of forks. We filtered out # of watchers and # of forks. In

addition, we found the mean # of contributors per month and project age were

strongly correlated. We removed the mean # of contributors per month to avoid

overfitting. After this step, we had ten remaining metrics.

Redundancy analysis: Following the correlation analysis, we performed the re-

dundancy analysis to filter out metrics that can potentially interfere with other in-

dependent variables. In other words, we checked if the linear combination of metrics

explained any of the remaining ones. We used the redun function from the Hmisc

package in R to remove redundant metrics. The redundancy results show the # of

open issues can be predicted by the linear combination of the other 9 metrics. We

removed the # of open issues.

Modeling the random forest classifier: We select the random forest classifier

because other studies [36, 40] have demonstrated it performs well on software engi-

neering data. The random forest algorithm is an ensemble of individual decision tree

algorithms [41], which provides a straightforward interpretation and understanding

of the model.

In practice, the random forest uses groups of metrics, e.g., mean # of contributors

per month, # of files, and # of stars in different random subsets of training data to

learn under which conditions a project is likely to succeed. We consider 9 metrics,

i.e., # of commits per month (mean), # of days since last commit, # of releases per

month (mean), # of contributions per month, # of stars, # of closed issues, length

of readme file, and # of files in the repository, as the independent variables.

We define the likelihood of having success as the dependent variable. Moreover,

25

our model has the following possible outcomes:

• True Positives (TPs): the successful projects correctly detected.

• False Negatives (FNs): the successful projects wrongly classified as unsuccessful

projects

• True Negatives (TNs): the unsuccessful projects correctly classified.

• False Positive (FPs): the unsuccessful projects wrongly classified as successful

projects

We trained the random forest model and evaluated its performance by measuring

the following metrics:

Precision: The ratio of blockchain projects correctly classified as successful over

projects distinguished as successful. A high precision value means the random forest

model can accurately classify successful projects across all observations.

Precision = TP/TP + FP

Recall: This metric is the portion of the projects correctly classified as successful

over the total successful projects. Recall measures the capacity of the model to detect

successful projects correctly; a high recall value means more successful projects are

detected.

Recall = TP/TP + FN

F1-score: The F1-score is used to represent the combination of Precision and

Recall in a single metric [41] through the calculation of the harmonic mean of these two

metrics. The F1-score penalizes low values for either Precision or Recall. Therefore,

high F1-score values only can be obtained when both recall and precision are high.

F1 = 2 ∗ (precision ∗ recall)/(precision+ recall)

Area Under the Curve (AUC): This metric measures how capable the classifier

is in discriminating between successful and unsuccessful projects. The area under the

curve of the true positive rate (the portion of the projects correctly classified as

26

successful) against the false positive rate (the portion of successful projects wrongly

classified) is known as AUC. The AUC interval is between 0.5 and 1. An AUC of 1

means the classifier can always correctly classify a project; conversely, an AUC of 0.5

means the classifier is no better than a random classifier. We evaluate the AUC value

using the “performance” function from the ROCR package in R.

Bootstrap aggregation: We implemented bootstrap aggregation to reduce vari-

ance. Bootstrap is the process of taking repeated samples with replacements from the

original dataset. The bootstrap samples have a significant overlap with the original

data. Two-thirds of the original data points come out in each bootstrap dataset.

Therefore, some data points may appear multiple times, and others may not.

To avoid performance overestimation of the classifier, we calculated the optimism

in the bootstrap sample as defined by Efron [42]. The optimism of the performance

estimation is calculated as follows:

• We considered the size of each bootstrap dataset as the exact size of the original

dataset, 320 projects.

• We build the random forest model using 1,000 different bootstrap datasets and

the original dataset.

• We calculate the random forest performance metrics defined above for each

bootstrap dataset and their model, i.e., precision, recall, F1-score, and AUC. In

addition, we compute the same metrics for each model and the original dataset.

• We compute the difference between the performance measures of the original

sample and the performance measures of the bootstrap sample, and we define

the difference as the optimism bias.

We calculated the optimism mean of the 1,000 optimism bias calculated in the

previous step; the results of the mean optimism values are shown in Table 2.3. The

27

Table 2.3: Mean optimism values for precision, recall, F1-score and AUC.

Precision
optimism

Recall
optimism

F1-score
optimism

AUC
optimism

4.0× 10− 4 5.0× 10− 3 2.2× 10− 3 3.4×10−2

small optimism values mean the random forest model is very stable, and the likelihood

that the initial classifier overfits the data is reduced.

The optimism-reduced performance measures for precision, recall, F1-score mea-

sure and AUC are calculated by subtracting each measure’s optimism mean from

their corresponding measure for the original data sample.

Important metrics in the model: We calculated the importance of metrics in

the random forest classifier using the permutation measurement. The permutation

metric importance concept was first introduced by Breiman [43] as the quantification

of the effect on the random forest model accuracy of randomly reshuffling each metric.

We used the importance function (scale=F) from the randomForest package in R.

During the bootstrapping process, the classifier computes and stores two different

error rate values: the error rate by using the testing data and the error rate after

randomly permuting each of the 9 metrics at a time in the testing data. The classifier

then computes the difference and averages the values over all trees. The change in

the error rate evidences how much model performance drops when the values of a

metric are permuted. The higher the error rate difference obtained by permuting a

metric, the higher the importance of the metric.

After obtaining the measured importance of the metrics, we executed the Scott-

Knott Effect size clustering (SK-ESD) to compute the metrics’ importance rank based

on their effect size [44, 45]. These ranks determine the order of importance of metrics

in distinguishing successful projects.

28

Importance

0.0 0.1 0.2

n_stars

proj_age_d

code_language

mean_contributors_m

last_commit_d

n_files

mean_readme_length

n_issues_closed

mean_releases_m

Figure 2.5: Metric importance value for all 9 metrics studied in the random forest
classifier.

29

Table 2.4: The ranking of the most important metrics in the random forest classifier,
divided into statistically distinct groups using the Scott-Knott Effect Size clustering.

Rank Metric Importance

1 n_stars 0.184
2 proj_age_d 0.106
3 code_language 0.066
4 mean_contributors_m 0.060
5 last_commit_d 0.058
6 n_files 0.053
7 mean_readme_length 0.034
8 n_issues_closed 0.019
9 mean_releases_m 0.010

2.6.3 Findings

Number of stars, project age and primary code language are the top 3

most important metrics in the random forest model. Table 2.4 shows all the

metrics ranked by their importance scores, as determined by the Scott-Knott test.

Figure 2.5 illustrates the metric importance values of the studied metrics.

The classifier uses the number of stars to distinguish between successful and unsuc-

cessful projects. Unsurprisingly, the number of stars has a higher median number of

stars in successful projects when compared to unsuccessful projects. In other words,

successful projects are more popular compared to unsuccessful projects.

Project age is the second most important metric in the random forest classifier.

Figure 2.2 shows that the median project age is 0 days for unsuccessful projects

and 700 days for successful projects. This result suggests that making changes on

unsuccessful projects, i.e., adding, modifying, or removing the source code, are not

common tasks in at least 50% of the unsuccessful projects. On the contrary, 50%

of the successful projects commit up to 700 days after the GitHub project creation.

In other words, software maintenance activities that help projects improve or correct

issues are not common in at least 50% of the unsuccessful projects.

30

We also observed 68% of the successful projects first committed on GitHub before

2020 and 8% of the unsuccessful projects first committed on GitHub before the same

year. These results mean that since 2020, 92% of the unsuccessful projects have

been created. This result could be related to the boost cryptocurrency markets had

after the WHO identified of a worldwide pandemic. Cobert et al. [46] suggested

that substantial investment flows entered cryptocurrency markets, which may have

an association with the number of new cryptocurrency projects.

The third most important metric is code language. We noticed that 64% of the

unsuccessful projects had Solidity as the primary programming language versus 17%

of the successful projects; 18% of the successful projects had JavaScript as the primary

programming language compared to 3% of the unsuccessful ones. Having Solidity

as the main code language could indicate a project containing only smart contract

files and lacking deep testing within the project. Solidity can be used to test smart

contracts, but frameworks working with JavaScript provide more options for both

unit and integration testing, i.e., using the HardHat testing framework.

The random forest classifier distinguishes between successful and un-

successful projects with an AUC of 0.95. This result suggests the 9 proposed

metrics have significant explanatory power as the random forest classifier accurately

distinguishes between successful and unsuccessful projects. In addition, the random

forest model has a precision of 0.88, a recall of 0.86, and an F1-score of 0.87.

The distributions of the random forest’s performance measures minus the corre-

sponding optimism bias are presented in Figure 2.6.

31

Precision Recall F1−score AUC

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 2.6: The optimism-reduced value distribution for performance metrics of our
random forest: Precision, Recall, F1-score and AUC.

Summary

In our dataset, a successful project could be characterized by the number of

stars, project age and code language are the most important metrics, which

means successful projects tend to be more popular and more active than un-

successful projects. Finally, JavaScript is more used as a first language in

successful projects which may be an indication of testing activity.

2.7 RQ2. How does development activity change
across time in blockchain projects?

In this section, we present the motivation, approach, and results of research question

2.

32

2.7.1 Motivation

The results of research question 1 show that the number of stars, project age and main

programming language are the most important metrics that characterize successful

projects. In this research question, we further investigate whether these metrics can

provide meaningful information to predict beforehand whether a project will become

successful. Therefore, we analyze historical data from commits and contributors of

the projects between 2009-08 and 2022-01.

2.7.2 Approach

We used the commit information provided by the git log command to obtain both

commits and contributors’ information and analyze the evolution of software devel-

opment in our dataset in 6-month periods, starting in January or July.

First, we grouped commits executed in the same semester to obtain the trends

of commits and contributors across time. For each period, based on the git log

information, we computed the total number of commits and contributors per project

per semester.

We excluded data from the periods 2009-08 to 2009-12 and 2022-01 since we cannot

complete 6-month periods with them, and this may affect the analysis.

We study the statistical significance of the trends by executing the Cox-Stuart

test [47] using the median of the commits in each period. The Cox-Stuart test tests

the null hypothesis that there is no trend. The alternative hypothesis is there is a

trend in the data (decreasing or increasing). By dividing the observations in half, the

Cox-Stuart test compares them using a sign test. The null hypothesis is rejected if

the p-value is less than or equal to 0.05.

We ran the Wilcoxon-signed-rank test [48] to analyze if the distribution of historical

successful project data was statistically different from the distribution of historical

unsuccessful project data. The Wilcoxon-signed-ranked test has been used to evaluate

the null hypothesis of two non-parametric distributions being identical. We calculated

33

2010-07

2011-07

2012-07

2013-07

2014-07

2015-07

2016-07

2017-07

2018-07

2019-07

2020-07

2021-07

Date

1

10

100

1000

10000

Nu
m

be
r o

f c
om

m
its

Unsuccessful projects
Successful projects

Figure 2.7: Change in the number of commits for successful and unsuccessful projects
in six-month periods. The blue color represents the distribution of commits in un-
successful projects, and the orange indicates successful projects. The median of the
number of commits in each semester is represented by the black dash in each box.

Cliff’s delta d to quantify the difference between the mentioned distributions using

the same thresholds used in research question 1.

2.7.3 Findings

The number of commits and number of contributors has a downtrend

for both successful and unsuccessful projects starting from 2014-07 and

2015-01, respectively. Figure 2.7 and Figure 2.8 shows respectively the number of

commits created and contributors active every semester. We observed that the num-

ber of commits decreases after 2014-07 (p-value = 0.0078125) for success projects and

decreases after 2015-01 for unsuccessful projects (p-value = 0.03125). For example,

from 2014-07 to 2021-07, the median of the number of commits per semester falls

from 1613 to 90 commits (1523 commits difference) in successful projects and from

1849 to 3 commits (1846 units commits difference) in unsuccessful projects.

Similarly, the number of contributors decreases after 2014-07 for successful projects

34

2010-07

2011-07

2012-07

2013-07

2014-07

2015-07

2016-07

2017-07

2018-07

2019-07

2020-07

2021-07

Date

1

10

100

Nu
m

be
r o

f c
on

tri
bu

to
rs

Unsuccessful projects
Successful projects

Figure 2.8: Change in the number of contributors for successful and unsuccessful
projects in six-month periods. The blue color represents the distribution of con-
tributors in successful projects, and the orange indicates unsuccessful projects. The
median of the number of contributors in each semester is represented by the black
dash in each box.

35

(p=0.0078) and after 2015-07 for unsuccessful projects (p-value = 0.0156).

There is no significant statistically difference between the medians of the commits in

successful and unsuccessful projects (p-value = 0.68), however, there is a statistically

significant difference in the median number of for contributors (p-value = 0.04882).

The obtained results suggest that software maintenance activity for the studied is

decreasing in the last years few years in the studied projects. Since previous studies [8,

22, 49–51] have revealed that duplicated code has a tendency to be modified less

frequently than non-duplicated code, we believe the downtrend could be related to

code cloning.

In addition, the downtrend in the number of commits and contributors could be

related to forked projects. In our dataset, there are 9 projects forked from /bit-

coin/bitcoin GitHub project. Since Bitcoin was first released in 2009, more than a

decade ago, these forked projects could not be as active as they were before 2014.

Summary

There has been a downtrend in the number of commits since 2014 and the

number of contributors since 2015. We suggest that the decrease in the devel-

opment activity may be related to cloning practices since previous studies have

shown that clones usually are not actively maintained by developers.

2.8 RQ3. How similar are blockchain projects to
each other?

In this section, we present the motivation, approach, and results of the research

question 3.

2.8.1 Motivation

In research question 2, we found a downtrend in commits and contributors’ activity.

We investigate if the reason for this behaviour is related to code cloning activities since

36

https://github.com/bitcoin/bitcoin
https://github.com/bitcoin/bitcoin

researchers [8, 22, 49–51] have demonstrated cloned code change less than non-cloned

code.

2.8.2 Approach

We studied the projects’ similarity by analyzing the source code similarity of the files

written in C, C++, Solidity, Python, and Java. To compare code similarity between

the source code files of the different projects, we executed the diff -u command. We

ended up using the Unix command because, to the best of our knowledge, there is not

one clone detection tool available that supports clone file detection per a completed

file when analyzing files in the studied programming languages. By using the diff

-u command we identified type-1 clones. Next are the details steps we followed:

First, we grouped files under the same extension using regular expressions. We

executed the grep command to identify the files under .c, .cpp, .sol, .py, and .java

extensions across all projects. We were interested in the code similarity between files

when comparing the source code lines; we removed comments and empty lines using

the CLOC tool.

After this step, we counted the number of lines of each file and filtered out files

with no lines.

We execute diff -u on all file pairs written in the same programming language

but belonging to other projects. When comparing file A from project X against file B

from project Y, we calculated how similar file A is compared to file B by computing

the percentage of the number of equal lines from file A found in B divided by the

total number of lines in file A. A file similarity result of 100% means that file A was

identical to file B (but not necessarily the other way around). We calculated the file

similarity of each project file against the files of the other projects and stored the

results of all the result file pairs. Figure 2.9 illustrates the distribution of the file

similarity percentage across all projects.

We defined a similarity percentage cutoff based on the file similarity distribution to

37

0 20 40 60 80 100
Percentage of file similarity

Fil
e

pa
ir

sim
ila

rit
y

Figure 2.9: Percentage of file similarity for file pairs belonging to different projects
written in C, C++, Solidity, Python and Java.

categorize cloned files. We look for a bimodal distribution that allows us to classify the

clone and non-clone files. We analyzed thresholds based on the file similarity starting

at 40% because Figure 2.9 shows a reasonable cutoff at this point. The file similarity

of 99% of the file pairs is equal to or less than 40%. We use the threshold at 75% to

accurately determine if a file was a clone or not. If the file similarity is higher than

75%, we classify the file as a clone; otherwise, if a file similarity percentage is equal

to or less than 75%, we determine a non-clone file. We ended up with 264,497,022

(99.93% of the total file pairs) non-cloned file pairs and 180,226 (0.07% of the total

file pairs) cloned files.

Next, we calculate the project similarity of each project pair. In this step, we

counted the number of files cloned and non-cloned for each project pair and program-

ming language. We counted the cloned files only once. We computed the percentage

of the project similarity as the percentage of the number of files cloned in a project

divided by the total number of files of the project.

We define a cloned project in the case of having a project similarity greater than

80%

We computed the Pearson’s chi-squared test (χ2) to analyze if the distribution of

projects’ success and clone project had a statistical relationship. The null hypothesis

38

Table 2.5: Number of projects containing at least one file in the studied code languages
and the percentage of cloned projects grouped by programming language.

Programming languages # of projects % of cloned projects

Java 47 81%
C 60 68%
C++ 56 41%
Solidity 191 41%
Python 79 41%

we test was the successful projects are independent from cloned projects and there is

no relationship.

2.8.3 Findings

At least 41% of the projects are clones in the studied languages. Table 2.5

illustrates the number of the projects containing at least one file written in the studied

programming languages, and the percentage of the projects with high similarity when

analyzing cloned files in Java, C, C++, Solidity and Python. Java has the highest

percentage of cloned projects. After manually reviewing files written in Java, we found

Java files are mainly used to implement the digital signatures under the elliptic curve

(Secp256k1) to ensure the integrity of messages created in the blockchain protocol.

38 projects use Java to build the elliptic curve for public key cryptography. We

checked their Java files and noticed the pattern secp256k1 as part of their name, i.e.,

NativeSecp256k1.java.

Similar to Java, C projects are also used to implement the secp256k1. Likewise, C

files implement cryptography hash functions and a key-value storage library, i.e., the

LevelDB library developed by Google.

78% of the C++ cloned projects have between 168 to 333 cloned files. The high

number of C++ similar files results from a blockchain protocol implementation. For

example, the project /decenomy/pny has 328 files written in C++ and is 99.7% sim-

39

https://github.com/decenomy/pny

ilar to /birake/birakecoin (and vice-versa). When manually comparing the main.cpp

between the projects, we only noticed a difference in the cryptoasset name printed

on the messages. Similar case to the blockchain.cpp file.

Python files are mainly used for testing, e.g., to perform functional testing for

transactions, permissions, and authentication for json-rpc connections; these files are

stored in the project under functional, qa, and test paths.

We found 21 cloned projects common in C++ and Python. For example, 3

projects (/infinitecoin-project/infinitecoin, /supaafrikan/jolofcoin, /aspireorg/gasp)

which have median of 96.6% project similarity when comparing the file pairs in C++,

have more than 99% project similarity when comparing their 113 Python files. Simi-

larly, /nodestats-ns/nodestats and /dequant-project/dequant have 99.2% project sim-

ilarity when comparing C++ files, and share 100% project similarity when comparing

their 50 Python files.

34 Solidity projects have 100% project similarity with other project. These projects

have the characteristic of having only 1 Solidity file. These files might be the result

of using templates to develop smart contracts, i.e., templates from OpenZeppelin to

create cryptocurrencies.

Successful projects are related to low project similarity and unsuccessful

projects to high project similarity in Solidity, Python, Java and C++. We

applied Pearson’s chi-squared test (χ2) to the project similarity categories (cloned and

non-cloned project) found in successful and unsuccessful projects and obtained that

the relation between project similarity and project success was statistically significant

for Solidity (p<.0001), Python (p<.0016), Java (p<.0015) and C++ (p<.03); how-

ever, we accept the null hypothesis, there is no relationship between project similarity

and project success for C projects (p=0.7).

40

https://github.com/birake/birakecoin
https://github.com/infinitecoin-project/infinitecoin
https://github.com/supaafrikan/jolofcoin
https://github.com/aspireorg/gasp
https://github.com/nodestats-ns/nodestats
https://github.com/dequant-project/dequant

Summary

41% of the projects are clones of the studied projects. We found that code reuse

from other sources to create their own projects is prevalent in cryptocurrency

projects. Some of the clones we found are related to libraries that implement

digital signatures used in blockchain, but other clones explored in C++ and

Solidity are related to the creation of cryptocurrency projects.

2.9 Threats to validity

2.9.1 Construct Validity

Our approach studies similarities between projects taking into account one version

of the project. We do not study similarities across historical project versions. Our

results overlook code cloning that might occur before.

In this study, we rely on the diff command even the diff command allows com-

paring two files line by line and reports equal lines written in the files, this command

is not intended to be a clone detector. We considered broadly-used clone detection

tools, i.e. the Deckard and JPlag tools, but we discarded them because the Deckard

algorithm performs the similarity analysis based on code blocks instead of projects,

and the Jplag tool does not support Solidity programming language.

2.9.2 Internal Validity

Our data is limited by the accuracy of CoinMarketCap and GitHub APIs, and rele-

vant projects may be excluded from our analysis, for example, projects listed in the

CoinMarketCap rank without the source code URL or projects that share the source

code URL.

An additional threat to the internal validity of our study is we only studied the

top 15% and bottom 23% of the ranked blockchain projects that were on a GitHub

repository. However, the top 15% and the bottom 23% ensure a clear contrast between

successful and unsuccessful projects. In addition the selected projects are not close

41

to the median number of the total projects in the rank, avoiding the uncertainty of a

project being successful or unsuccessful.

An additional threat to the internal validity of our study is we chose 75% of file

similarity as the threshold to decide if the file was cloned. We analyzed the number

of file pairs at 70% and 80% cutt and obtained a similar number of file pairs, the

variation between 70% and 80% was 0.015% of the total number of file pairs. We did

a similar analysis for the threshold to define cloned project 80%.

2.9.3 External Validity

We rely on CoinMarketCap rank collected on January 2022 to define a success-

ful and unsuccessful project. However, the CoinMarketCap rank is susceptible to

change according to the market capitalization of the cryptocurrencies. Therefore,

new blockchain projects with different characteristics may be encountered. In addi-

tion, we only consider open source projects on GitHub. More extensive studies are

needed to see whether our findings can be generalized to other types of projects.

Our study focuses on financial applications (cryptocurrencies); other domains, i.e.,

smart grid applications, may not reflect our findings.

2.10 Conclusion

Even if we can distinguish between successful and unsuccessful projects using a ran-

dom forest model, we cannot predict when a project will become successful. In this

chapter, we study 320 blockchain projects from GitHub to understand how 13 soft-

ware metrics characterize successful and unsuccessful projects finding that number of

stars, project age, and main programming language are the most important features.

To complement the analysis, We studied trends from historical data of commits and

contributors, and analyzed the code similarity in our projects. The most important

findings of this chapter are:

• A random forest classifier can distinguish successful from unsuccessful projects

42

by using metrics from different domains, i.e., activity, complexity and popular-

ity.

• Even the majority of the projects first commit after 2017, there is a downtrend

in the number of commits and contributors analyzed every six months.

• Our results suggest that the downtrend could be related to projects with high

similarity in our dataset.

Based on our findings, we suggest future work to investigate how the classifier is

affected when the application type is taken into account. We didn’t include the type

of application, e.g., implementation of a protocol, wallet or token. Researchers could

create recommendations for code reuse based on the type of application.

43

Chapter 3

How are Solidity smart contracts
tested in open source projects? An
exploratory study

Smart contracts are self-executing programs that are stored on the blockchain. Once

a smart contract is compiled and deployed on the blockchain, it cannot be modified.

Therefore, having a bug-free smart contract is vital. To ensure a bug-free smart

contract, it must be tested thoroughly. However, little is known about how developers

test smart contracts in practice. Our study explores 139 open source smart contract

projects that are written in Solidity to investigate the state of smart contract testing

from three dimensions: (1) the developers working on the tests, (2) the used testing

frameworks and testnets and (3) the type of tests that are conducted. We found that

mostly core developers of a project are responsible for testing the contracts. Second,

developers typically use only functional testing frameworks to test a smart contract,

with Truffle being the most popular one. Finally, our results show that functional

testing is conducted in most of the studied projects (93%), security testing is only

performed in a few projects (9.4%) and traditional performance testing is conducted

in none. In addition, we found 34 projects that mentioned or published external audit

reports.

44

3.1 Introduction

Academic and industrial attention in the blockchain technology has exploded in re-

cent years. Blockchain is a decentralized, distributed technology that enables trust

between entities without the involvement of a third party by storing permanent and

unalterable blocks that ensure the integrity of the stored data. New data can be

stored on the blockchain in several ways, one of them being through smart contracts.

A smart contract is a self-executing script of which the proper execution is given when

predefined conditions are met [52].

Ethereum is the most popular blockchain that stores smart contracts, with Solidity

being the most popular high-level language for defining these contracts. Solidity is

still a relatively immature language that is changing rapidly [53]. The rapid changes in

Solidity add challenges to smart contract development and make it hard to thoroughly

test smart contracts. Testing smart contracts is essential as bugs in smart contracts

can lead to large financial losses (as demonstrated by the DAO bug which resulted in

a loss of $60M [9]). Similar to traditional software development, our expectation is

that the quality and thoroughness of the test suite of a smart contract is associated

with the quality of the smart contract itself.

Several studies have proposed solutions for improving the quality of smart con-

tracts [54–59]. In addition, there exist a small number of open source development

platforms, e.g., Truffle [60] and Hardhat [61], to support the development and test-

ing of smart contracts. However, three surveys [11–13] revealed that open source

developers grumble about the lack of support for testing smart contracts compared

to that for testing traditional applications.

In this chapter, we perform an exploratory study on how Solidity smart contracts

are tested in open source projects. We studied 139 Solidity open source projects from

GitHub repositories focusing on the following research questions:

RQ1. Who are the developers involved in testing Solidity smart con-

45

tracts? We found that mainly the core developers of a project are responsible for

testing smart contracts, even though there are usually several non-core developers

that contribute to the rest of the project.

RQ2. What are the preferred tools and testnets for testing Solidity

smart contracts? We observed that Truffle and Hardhat are by far the most used

tools for testing smart contracts. Few projects used other tools, in particular those

stemming from academic research.

RQ3. What types of tests are performed on Solidity smart contracts?

Smart contracts running in blockchain is a recent revolutionary technology. As in

traditional applications, testing is essential to guarantee high-quality development.

However, smart contract testing is affected by new technical challenges, e.g., the

decentralization and immutability features. This research question shows smart con-

tracts are tested mostly by functional test cases.

The remainder of this chapter is organized as follows. Section 3.2 discusses back-

ground concepts and related work. In Section 3.3, we describe our exploratory study

setup and methodology. Section 3.4, 3.5 and 3.6 present our study results for each of

our research questions. Section 3.7 discusses the threats to the validity and Section 3.8

concludes our study.

3.2 Background and related work

Blockchain and smart contracts. Blockchain is a decentralized, distributed tech-

nology that allows secure transactions to be made between entities without requiring

a third party (such as a bank). An important property of a blockchain is that records

(blocks) cannot be altered once they are added to the blockchain. The most famous

example of blockchain technology is the Bitcoin currency which runs on the Bit-

coin blockchain. However, recently other implementations of blockchain have become

popular, with the Ethereum blockchain [62] being the most notable example.

Ethereum is open source and allows users to develop their own programs that

46

run on the blockchain. An example of such a program is a smart contract, a self-

executing script (often written in Solidity) that executes in the Ethereum Virtual

Machine (EVM) once the specified conditions in the contract are met. For example,

the ownership of a house is transferred once a certain amount of money is transferred

into the account that is specified in the contract. The performed transactions consume

computational effort in the EVM that is measured in gas units. Since gas fees are paid

in Ether (the Ethereum currency), gas represents real money. Hence, any transaction

on the Ethereum blockchain costs money.

Testnets. To test a blockchain application, testnets can be used. Testnets are

public blockchains that permit developers to test smart contracts in a staging envi-

ronment with free gas. The most popular testnets for Ethereum are Kovan, Rinkeby

and Ropsten, which allow to test smart contracts’ functionalities and interactions in

an EVM. Several EVM-based testnets exist that mimic the Ethereum blockchain but

at the same time differ in technical configurations.

Tools for testing smart contracts. Most of the proposed testing tools focus on

the security of smart contracts (e.g., MythX [63], SmartCheck [64], ContractFuzzer [54],

Harvey [65]), Madmax [66], Securify [67], Slither [58], Manticore [56], Echidna [68],

and, ReGuard [57]. Only a few frameworks focus on other aspects of testing smart con-

tracts such as their functionality (e.g., Truffle [60], Hardhat [61], dapp.tools [69],

and Brownie [70]).

3.3 Methodology

In this section, we explain the methodology of our exploratory study, which is depicted

by Figure 3.1.

3.3.1 Gathering data

We queried the GitHub API to collect open source Solidity projects using a custom

query in August, 2021. To ensure mature and active Solidity projects were considered,

47

Manually identify
configuration files

Identifying configuration files

Gathering data

3,270 Test files

Select files which paths include:
/test/, */script/*, *mock*,

*.scpec.ts, *t.sol

Manually identify test
files

Identify test files
through keywords

 GitHub

RQ1. RQ1. Who are the developers
involved in testing Solidity smart
contracts?

RQ3. What types of tests are performed
on Solidity smart contracts?

139 Solidity repositories

RQ2. What are the preferred tools and
testnets for testing Solidity smart
contracts?

Manually extract testing tools
and testnets

Select Solidity projects

Filter out non-related files

Identifying test files for smart contracts

Figure 3.1: Overview of the steps taken in our methodology.

we limited our search to Solidity projects with at least ten stars and one hundred

commits, likewise, we only considered non-archived projects. After these steps our

dataset had 199 Solidity projects. Finally, we manually reviewed the Solidity projects

and filtered out projects that were not intended for smart contract development. We

excluded tutorials, repositories with no description, and testing frameworks, libraries

and tools. At the end of this step, we obtained 139 repositories that contained at

least one smart contract.

3.3.2 Identifying test files for smart contracts

The next step is to identify the test files in the projects. We were interested in

actual test files and other files that reveal information about how testing is done in

Solidity projects. To create our dataset, we first used heuristics to identify test files

in each Solidity project. We included files that matched at least one of the next

patterns: */test*/*, */script/*, *mock*, *.spec.* or *t.sol*. Second, the first

author reviewed the obtained files and kept the files that provided data about the unit

and integration testing, performance test cases and used testing tools. We ended up

having 3,270 test files in our dataset. In addition, we manually reviewed the names

of the folders in each project to make sure that we did not overlook relevant files. If

we came across additional files that contained relevant information about the testing

process, such as Makefile that specify the used testing framework, we considered

48

those for RQ2 and RQ3 as well.

Finally, we reviewed YAML files to analyze if the test was performed within a

continuous integration (CI) pipeline. We recorded the testing script and the CI tool

name that was used.

3.3.3 Identifying configuration files

We manually identified configuration files for testing tools (e.g., truffle.js). Our

final dataset is available online [71].

3.4 RQ1. Who are the developers involved in testing
Solidity smart contracts?

In this section we present the motivation, approach and findings for our research

question 1.

3.4.1 Motivation

We study which developers are involved in smart contract testing to get a better idea

of how this task is approached in open source projects. Our hypothesis is that this

type of testing is not a popular contribution to make for open source contributors.

3.4.2 Approach

We used the same metric as in our prior work [72] to identify if developers working on

testing are core developers of a project. First, we ran the git command git shortlog

-s -n HEAD to identify the developers that committed to each test file. Second, we

determine the top-n developers working on the project, where n was the total number

of developers coding test files. We identify these n developers as the core developers

of the project. Finally, we calculated the ratio between the total number of developers

working on the tests and the top-n developers of every project.

49

0.8

0.00 0.25 0.50 0.75 1.00
Ratio of developers in the project

C
or

e
te

st
 d

ev
el

op
er

s
Figure 3.2: Portion of test developers who are core developers.

After obtaining the (test) developers names, we manually deduplicated them. For

example, in the /balancer-labs/balancer-core project we merged the records for “fer-

nandomartinelli" and “fernando martinelli" as they clearly point to the same person.

In total, we merged 11% of the developers because they contributed to the profile

under different names.

To compare the distributions, we utilized the Wilcoxon signed-rank test. The

Wilcoxon signed-ranked test is a non-parametric statistical test of which the null

hypothesis states that two input distributions are identical. We used Cliff’s delta d

to quantify the difference between the distributions, using the thresholds mentioned

by Romano et al. [37]: negligible if |d| ≤ 0.147; small if 0.147 <|d| ≤ 0.33; medium if

0.33 <|d| ≤ 0.474; and large if 0.474 <|d| ≤ 1.

3.4.3 Findings

In the studied projects a median of 80% of the test developers was also

part of the core team. Figure 3.2 shows the portion of test developers who are core

among the total of test developers. We observe a median of 0.80 for test developers

who are part of the core team. This result suggests that testing smart contracts is

a responsibility of core developers and having contributions from external develop-

ers is unlikely. The Wilcoxon signed-rank test shows that the two distributions are

significantly different with a large effect size.

50

https://github.com/balancer-labs/balancer-core

3.5 RQ2. What are the preferred tools and testnets
for testing Solidity smart contracts?

In this section we present the motivation, approach and findings for our research

question 2.

3.5.1 Motivation

Investigating which tools and testnets developers use to test smart contracts reveals

which testing approaches developers take in practice. Moreover, even though all stud-

ied contracts are intended to end up on the Ethereum blockchain or any blockchain

that adopts EVM as its smart contract runtime, for testing this is usually avoided

as executing transactions over an EVM-compatible blockchain is not free (i.e., be-

cause of the gas consumption). Instead, developers can use testnets which are public

blockchain networks to test the smart contracts in a real-world environment.

3.5.2 Approach

We investigated which testing tools and testnets are used by the studied projects by

manually reviewing their configuration and script files.

3.5.3 Findings

69 (50%) of the studied projects use Truffle for testing. Table 3.1 shows

that the most used testing frameworks are Truffle, Hardhat and dapp.tools which

are mainly used for unit testing. Contrary, the least used testing tools in our data

are Manticore, Embark and Solgraph.

48 (34.5%) of 139 projects do not provide information about using test-

nets as part of their testing process. This result suggests that these projects

might test the smart contracts in a private blockchain without interaction with ex-

isting smart contracts, e.g., a private blockchain offered by Truffle, Hardhat or

dapp.tools. Another explanation is that testnets are used but configured locally,

51

Table 3.1: Testing tools used by Solidity open source projects.

Tool Description # of projects

Truffle Testing framework 69
Hardhat Testing framework 54
dapp.tools Testing framework 15
Waffle Testing framework 8
Slither Security analysis 6
Jest Testing framework 5
Brownie Testing framework 4
Echidna Security analysis 4
pytest Testing framework 3
Mythx Security analysis 2
Cetora Security analysis 2
Manticore Security analysis 1
Embark Testing framework 1
Solgraph Security analysis 1

e.g., within an integrated development environment (IDE). Such configuration would

imply that the tests are not intended for automated execution, e.g., in a CI pipeline.

While the median number of used testnets is 1, several projects test their

smart contracts on more than one testnet. Figure 3.3 depicts the distribution

of the number of testnets per project.

The /sushiswap/sushiswap project uses 13 testnets for testing its smart contracts,

1

0 5 10
of testnets in project

of

 te
st

ne
ts

Figure 3.3: Number of testnets per project.

52

https://github.com/sushiswap/sushiswap

kovan
rinkeby

ropsten
goerli

mumbai bsc fuji
heco

moonbeamokex xdai
arbitru

m
0

10

20

30

40

%
 o

f t
he

 P
ro

je
ct

s

Figure 3.4: Popular testnets within OS projects.

/sushiswap/shoyu uses 8, /nftfy/nftfy-v1-core 7, and 3 projects perform their tests on

6 testnets. These projects all support smart contracts in multiple EVM-compatible

blockchains (such as Polygon, xDAI, Binance, Huobi, Avalanche Fuji (testnet),

okexchain, arbitrum and celo).

55 (39%) of 139 projects use Kovan and 48 (34%) use Rinkeby. Figure 3.4

shows the distribution of used testnets in the studied projects. The Kovan, Rinkeby

and Ropsten testnets are the most popular. This is not surprising since these testnets

are meant to test smart contracts in Ethereum which was the first blockchain to

support smart contracts.

3.6 RQ3. What types of tests are performed on So-
lidity smart contracts?

In this section we present the motivation, approach and findings for our research

question 3.

3.6.1 Motivation

Applications running in smart contracts are enhanced by features like decentraliza-

tion and immutability. However, building a bug-free smart contract given these new

features is tricky. This research question investigates which tests developers conduct

53

https://github.com//sushiswap/shoyu
https://github.com/nftfy/nftfy-v1-core

on smart contracts to overcome these challenges.

3.6.2 Approach

We manually went through the identified test files and classified the type of test as

either a functional, security or performance test. We did not come across any other

types of tests in the studied projects.

3.6.3 Findings

9 (6.5%) projects do not provide details about how they test their smart

contract(s). After inspecting each of these projects, we did not find test-related code.

We highlight, however, that 3 of the reviewed projects may include test files privately.

For example, the /PancakeBunny-finance/Bunny project contains audit report files

which specify the code coverage index for 4 smart contracts, the test report of 95

scenarios and a vulnerability analysis report. Furthermore, the gitignore file in

the /yieldyak/smart-contracts project defines “test” within the list of untracked files.

Finally, the /nftfy/nftfy-v1-core project includes a CI file that points to tasks related

to testing the smart contracts of the project, e.g., truffle test.

130 (93.5%) of the projects in our data include functional testing as part

of the testing strategy. Our results corroborate the findings of prior research [11,

12].

57 (41%) of the studied projects develop Solidity mocks to test the

smart contracts by creating presumed scenarios. The mocks we found in the

studied projects were developed to either override, add or reset internal functions

to simulate particular scenarios within the blockchain application. For example, the

/88mphapp/88mph-contract project has 5 mock files, that inherit from the ERC20

smart contract. Every mock file initializes the smart contract in a different way to

simulate and test different scenarios.

81 (58%) of the studied projects include testing in the CI pipeline. We

54

https://github.com/PancakeBunny-finance/Bunny
https://github.com/yieldyak/smart-contracts
https://github.com/nftfy/nftfy-v1-core
https://github.com/88mphapp/88mph-contract

noticed that the CI tools used were Actions, TravisCI, and CircleCI, similar to

traditional open source projects. We also found 3 projects that include security

testing in their CI pipeline.

13 (9.4%) projects conduct security tests. We observed that fuzzy testing

and audit reports are used to test the security of smart contracts. 9 (6.5%) of the

projects conduct fuzzing testing by feeding the code with random and erroneous

data. These projects attempt to execute test cases multiple times while changing a

particular parameter’s value. As a consequence, multiple sequences of transactions

are generated and reviewed automatically.

34 (24.5%) of the studied projects include audit reports performed by

third parties. The audit reports have different formats across projects, but overall,

they show the smart contracts’ potential vulnerabilities and provide recommendations

for improvements. For example, the audit report for the /balancer-labs/balancer-core

project discusses a vulnerability that allows assets to be stolen.

None of the projects implement traditional performance testing. We did

not find traditional performance tests (e.g., execution time) for the smart contracts.

However, we did find 41 (29.5%) projects that report gas consumption in their tests.

3.7 Threats to validity

3.7.1 Internal validity

We filter the Solidity projects based on their number of stars and number of commits

to measure maturity. Future studies should investigate if our findings would vary for

a different set of projects.

3.7.2 Construct validity

Our manual review of the test files for smart contracts could be biased. Similarly,

there are testing tools that have command-line interface (CLI) options available that

allow developers to test their smart contracts without leaving a trace in the source

55

https://github.com/balancer-labs/balancer-core

code repository. As a result, the numbers in our study may be lower estimates.

3.7.3 External validity

Our results are limited to Solidity projects and may not generalize to other languages

for writing smart contracts. In addition, we focus on open source projects only.

Future studies should extend our study to include other languages and proprietary

projects.

3.8 Conclusion

This chapter analyzes how Solidity smart contracts in 139 open source projects are

tested. We found that testing files for smart contracts do not receive many contri-

butions from developers who are not already part of the core development team of a

project. In addition, we found that functional testing is the most common for smart

contracts, followed by security testing. The most popular testing tools are Truffle

and Hardhat, and several projects use a third party to conduct an audit of their smart

contracts.

56

Chapter 4

Conclusions & Future Work

4.1 Conclusion

In this thesis, we studied the million-dollar blockchain applications, the cryptocur-

rencies. We found that even though these applications have a large financial market,

software development activity is limited.

• In Chapter 2, we studied the success of GitHub blockchain projects based on the

market cap rank obtained from CoinMarketCap to understand their character-

istics. We found that popularity and activity can distinguish between successful

and unsuccessful projects. In other words, having a large number of stars and

maintaining the projects after their creation explain successful projects.We also

found that commits and contributors for the studied projects are decreasing

over time. Finally, we found unsuccessful projects are similar to other projects

(similarity between 80% to 100%).

• In Chapter 3, we explored how smart contracts written in Solidity tested their

smart contracts. Our study showed that contributing to testing the Solidity

smart contracts is not a prevalent task among external contributors; core de-

velopers mainly modify the smart contracts’ test files. Additionally, we found

developers used open source tools like Truffle and HardHat to test the contracts,

and developers used Kovan and Rinkeby to test functionalities with other con-

57

tracts in an EVM environment. Finally, our results evidenced that most of the

projects use functional testing. Many projects implement continuous automa-

tion pipelines to include their test cases. Different types of testing, i.e., security

and performance testing, are conducted by very few or no projects.

4.2 Future Work

We list the potential future research directions in the following list:

• studying the characteristics of successful applications on domains dif-

ferent from open source We studied a project classifier using public metadata

from CoinMarketCap API. However, enterprises solutions may have a different

state of the software development activities in blockchain projects. For exam-

ple, study supply chain applications deployed in private blockchain, such as

Hyperledger.

• Studying the promotion-as-a-service on GitHub and the impact on

open source blockchain projects We found the number of stars was an

important metric for classifying successful projects. However, there are accounts

on GitHub that conducted advertising services in GitHub, e.g., performing paid

star and fork operations on repositories. Future studies should investigate the

impact on this type of service on open source blockchain projects.

• Studying the state of smart contract testing with other languages

Following Solidity, Vyper is also a popular language for developing smart con-

tracts. Future studies should contemplate studying the testing state by different

programming languages.

58

Bibliography

[1] L. Palechor and C.-P. Bezemer, “How are solidity smart contracts tested in
open source projects? an exploratory study,” in 2022 IEEE/ACM International
Conference on Automation of Software Test (AST), 2022, pp. 165–169.

[2] X. Xu, I. Weber, and M. Staples, Architecture for blockchain applications. Springer,
2019.

[3] N. Kshetri and J. Voas, “Blockchain-enabled e-voting,” IEEE Software, vol. 35,
no. 4, pp. 95–99, 2018. doi: 10.1109/MS.2018.2801546.

[4] J. Sunny, N. Undralla, and V. M. Pillai, “Supply chain transparency through
blockchain-based traceability: An overview with demonstration,” Computers &
Industrial Engineering, vol. 150, p. 106 895, 2020.

[5] A. Hasselgren, K. Kralevska, D. Gligoroski, S. A. Pedersen, and A. Faxvaag,
“Blockchain in healthcare and health sciences—a scoping review,” International
Journal of Medical Informatics, vol. 134, p. 104 040, 2020.

[6] D. J. Skiba et al., “The potential of blockchain in education and health care,”
Nursing education perspectives, vol. 38, no. 4, pp. 220–221, 2017.

[7] W. Spaeth and T. Peráček, “Cryptocurrencies, electronic securities, security to-
ken offerings, non fungible tokens: New legal regulations for “crypto securities”
and implications for issuers and investor and consumer protection,” in Devel-
opments in Information & Knowledge Management for Business Applications,
Springer, 2022, pp. 217–238.

[8] N. Göde and R. Koschke, “Frequency and risks of changes to clones,” in Proceed-
ings of the 33rd International Conference on Software Engineering, ser. ICSE
’11, New York, NY, USA: Association for Computing Machinery, 2011, 311–320,
isbn: 9781450304450. doi: 10.1145/1985793.1985836. [Online]. Available: https:
//doi.org/10.1145/1985793.1985836.

[9] Etherscan. “Thedao smart contract.” (2022), [Online]. Available: http://etherscan.
io/address/0xbb9bc244d798123fde783fcc1c72d3bb8c189413#code.

[10] R. Newsletter. “Community alert: Ronin validators compromised.” (2022), [On-
line]. Available: https://roninblockchain.substack.com/p/community- alert-
ronin-validators.

59

https://doi.org/10.1109/MS.2018.2801546
https://doi.org/10.1145/1985793.1985836
https://doi.org/10.1145/1985793.1985836
https://doi.org/10.1145/1985793.1985836
http://etherscan.io/address/0xbb9bc244d798123fde783fcc1c72d3bb8c189413#code
http://etherscan.io/address/0xbb9bc244d798123fde783fcc1c72d3bb8c189413#code
https://roninblockchain.substack.com/p/community-alert-ronin-validators
https://roninblockchain.substack.com/p/community-alert-ronin-validators

[11] J. Chen, X. Xia, D. Lo, J. Grundy, and X. Yang, “Maintenance-related concerns
for post-deployed ethereum smart contract development: Issues, techniques, and
future challenges,” Empirical Software Engineering, vol. 26, no. 6, pp. 1–44,
2021.

[12] P. Chakraborty, R. Shahriyar, A. Iqbal, and A. Bosu, “Understanding the soft-
ware development practices of blockchain projects: A survey,” in Proceedings
of the 12th ACM/IEEE International Symposium on Empirical Software Engi-
neering and Measurement, ACM, 2018, isbn: 9781450358231.

[13] A. Bosu, A. Iqbal, R. Shahriyar, and P. Chakraborty, “Understanding the mo-
tivations, challenges and needs of blockchain software developers: A survey,”
Empirical Software Engineering, vol. 24, no. 4, pp. 2636–2673, 2019.

[14] F. Vogelsteller and V. Buterin. “Eip-20.” (2015), [Online]. Available: https://
eips.ethereum.org/EIPS/eip-20.

[15] W. Entriken, D. Shirley, J. Evans, and N. Sachs. “Eip-721: Non-fungible token
standard.” (2018), [Online]. Available: https://eips.ethereum.org/EIPS/eip-721.

[16] CoinMarketCap. “Today’s cryptocurrency prices by market cap.” (2022), [On-
line]. Available: https://coinmarketcap.com/.

[17] C. Subramaniam, R. Sen, and M. L. Nelson, “Determinants of open source soft-
ware project success: A longitudinal study,” Decision Support Systems, vol. 46,
no. 2, pp. 576–585, 2009.

[18] K. J. Stewart, A. P. Ammeter, and L. M. Maruping, “Impact of license choice
and organizational sponsorship on success in open source software development
projects,” Information System Research, vol. 17, no. 2, pp. 126–144, 2006.

[19] V. Midha and P. Palvia, “Factors affecting the success of open source software,”
Journal of Systems and Software, vol. 85, no. 4, pp. 895–905, 2012.

[20] S. Daniel and K. Stewart, “Open source project success: Resource access, flow,
and integration,” The Journal of Strategic Information Systems, vol. 25, no. 3,
pp. 159–176, 2016.

[21] K. Crowston, J. Howison, and H. Annabi, “Information systems success in free
and open source software development: Theory and measures,” Software Pro-
cess: Improvement and Practice, vol. 11, no. 2, pp. 123–148, 2006.

[22] N. Göde and J. Harder, “Clone stability,” in 2011 15th European Conference on
Software Maintenance and Reengineering, IEEE, 2011, pp. 65–74.

[23] M. Kondo, G. A. Oliva, Z. M. J. Jiang, A. E. Hassan, and O. Mizuno, “Code
cloning in smart contracts: A case study on verified contracts from the ethereum
blockchain platform,” Empirical Software Engineering, vol. 25, no. 6, pp. 4617–
4675, 2020.

[24] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Comparison and
evaluation of clone detection tools,” IEEE Transactions on Software Engineer-
ing, vol. 33, no. 9, pp. 577–591, 2007. doi: 10.1109/TSE.2007.70725.

60

https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-721
https://coinmarketcap.com/
https://doi.org/10.1109/TSE.2007.70725

[25] M. Scotto, A. Sillitti, G. Succi, and T. Vernazza, “A relational approach to soft-
ware metrics,” in Proceedings of the 2004 ACM Symposium on Applied Com-
puting, ser. SAC ’04, Association for Computing Machinery, 2004, 1536–1540,
isbn: 1581138121. doi: 10.1145/967900.968207. [Online]. Available: https://doi-
org.login.ezproxy.library.ualberta.ca/10.1145/967900.968207.

[26] F. Rahman and P. Devanbu, “How, and why, process metrics are better,” in
2013 35th International Conference on Software Engineering (ICSE), IEEE,
2013, pp. 432–441.

[27] J. Choi et al., “Attack of the clones: Measuring the maintainability, originality
and security of bitcoin’forks’ in the wild,” arXiv preprint arXiv:2201.08678,
2022.

[28] K. Osman and O. Baysal, “Health is wealth: Evaluating the health of the bitcoin
ecosystem in github,” in 2021 IEEE/ACM 4th International Workshop on Soft-
ware Health in Projects, Ecosystems and Communities (SoHeal), IEEE, 2021,
pp. 1–8.

[29] G. A. Oliva, A. E. Hassan, and Z. M. J. Jiang, “An exploratory study of smart
contracts in the ethereum blockchain platform,” Empirical Software Engineer-
ing, vol. 25, no. 3, pp. 1864–1904, 2020.

[30] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating github for
engineered software projects,” Empirical Software Engineering, vol. 22, no. 6,
pp. 3219–3253, 2017.

[31] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov, “Quality and pro-
ductivity outcomes relating to continuous integration in github,” in Proceedings
of the 2015 10th joint meeting on foundations of software engineering, 2015,
pp. 805–816.

[32] A. S. Badashian and E. Stroulia, “Measuring user influence in github: The
million follower fallacy,” in Proceedings of the 3rd International Workshop on
CrowdSourcing in Software Engineering, 2016, pp. 15–21.

[33] W. Ma, L. Chen, Y. Zhou, and B. Xu, “What are the dominant projects in the
github python ecosystem?” In 2016 Third International Conference on Trust-
worthy Systems and their Applications (TSA), IEEE, 2016, pp. 87–95.

[34] K. Aggarwal, A. Hindle, and E. Stroulia, “Co-evolution of project documenta-
tion and popularity within github,” in Proceedings of the 11th working confer-
ence on mining software repositories, 2014, pp. 360–363.

[35] H. Borges and M. T. Valente, “What’s in a github star? understanding repos-
itory starring practices in a social coding platform,” Journal of Systems and
Software, vol. 146, pp. 112–129, 2018.

[36] H. Borges, A. Hora, and M. T. Valente, “Predicting the popularity of github
repositories,” in Proceedings of the The 12th International Conference on Pre-
dictive Models and Data Analytics in Software Engineering, 2016, pp. 1–10.

61

https://doi.org/10.1145/967900.968207
https://doi-org.login.ezproxy.library.ualberta.ca/10.1145/967900.968207
https://doi-org.login.ezproxy.library.ualberta.ca/10.1145/967900.968207

[37] J. Romano, J. D. Kromrey, J. Coraggio, J. Skowronek, and L. Devine, “Explor-
ing methods for evaluating group differences on the nsse and other surveys: Are
the t-test and cohen’sd indices the most appropriate choices,” in annual meeting
of the Southern Association for Institutional Research, Citeseer, 2006, pp. 1–51.

[38] Datacamp. “Varclus: Variable clustering.” (2022), [Online]. Available: https :
//www.rdocumentation.org/packages/Hmisc/versions/4.7-0/topics/varclus.

[39] H. C. Kraemer, G. A. Morgan, N. L. Leech, J. A. Gliner, J. J. Vaske, and R. J.
Harmon, “Measures of clinical significance,” Journal of the American Academy
of Child & Adolescent Psychiatry, vol. 42, no. 12, pp. 1524–1529, 2003.

[40] L. Guo, Y. Ma, B. Cukic, and H. Singh, “Robust prediction of fault-proneness
by random forests,” in 15th international symposium on software reliability en-
gineering, IEEE, 2004, pp. 417–428.

[41] A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and Tensor-
Flow: Concepts, tools, and techniques to build intelligent systems. O’Reilly Me-
dia, 2019.

[42] B. Efron, “How biased is the apparent error rate of a prediction rule?” Journal
of the American statistical Association, vol. 81, no. 394, pp. 461–470, 1986.

[43] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[44] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto, “The im-
pact of automated parameter optimization on defect prediction models,” IEEE
Transactions on Software Engineering, vol. 45, no. 7, pp. 683–711, 2018.

[45] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto, “An em-
pirical comparison of model validation techniques for defect prediction models,”
IEEE Transactions on Software Engineering, vol. 43, no. 1, pp. 1–18, 2016.

[46] S. Corbet, Y. G. Hou, Y. Hu, C. Larkin, B. Lucey, and L. Oxley, “Cryptocur-
rency liquidity and volatility interrelationships during the covid-19 pandemic,”
Finance Research Letters, vol. 45, p. 102 137, 2022.

[47] D. R. Cox and A. Stuart, “Some quick sign tests for trend in location and
dispersion,” Biometrika, vol. 42, no. 1/2, pp. 80–95, 1955.

[48] F. Wilcoxon, “Individual comparisons by ranking methods,” in Breakthroughs
in statistics, Springer, 1992, pp. 196–202.

[49] K. Hotta, Y. Sano, Y. Higo, and S. Kusumoto, “Is duplicate code more fre-
quently modified than non-duplicate code in software evolution? an empirical
study on open source software,” in Proceedings of the Joint ERCIM Workshop
on Software Evolution (EVOL) and International Workshop on Principles of
Software Evolution (IWPSE), 2010, pp. 73–82.

[50] J. Krinke, “Is cloned code more stable than non-cloned code?” In 2008 Eighth
IEEE International Working Conference on Source Code Analysis and Manip-
ulation, IEEE, 2008, pp. 57–66.

62

https://www.rdocumentation.org/packages/Hmisc/versions/4.7-0/topics/varclus
https://www.rdocumentation.org/packages/Hmisc/versions/4.7-0/topics/varclus

[51] J. Krinke, “Is cloned code older than non-cloned code?” In Proceedings of the
5th International Workshop on Software Clones, 2011, pp. 28–33.

[52] N. Szabo, “The idea of smart contracts,” Nick Szabo’s papers and concise tuto-
rials, vol. 6, no. 1, 1997.

[53] Ethereum. “Solidity v0.8.11.” (2021), [Online]. Available: https://docs.soliditylang.
org/en/v0.8.11/.

[54] B. Jiang, Y. Liu, and W. K. Chan, “Contractfuzzer: Fuzzing smart contracts for
vulnerability detection,” in Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, ACM, 2018, 259––269, isbn:
9781450359375.

[55] Y. Lu, X. Mao, Z. Li, Y. Zhang, T. Wang, and G. Yin, “Does the role matter?
an investigation of the code quality of casual contributors in github,” in 23rd
Asia-Pacific Software Engineering Conference (APSEC), IEEE, 2016, pp. 49–
56.

[56] M. Mossberg et al., “Manticore: A user-friendly symbolic execution framework
for binaries and smart contracts,” in 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE), 2019, pp. 1186–1189.

[57] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe, “Reguard: Finding
reentrancy bugs in smart contracts,” in IEEE/ACM 40th International Confer-
ence on Software Engineering: Companion (ICSE-Companion), 2018, pp. 65–
68.

[58] J. Feist, G. Grieco, and A. Groce, “Slither: A static analysis framework for smart
contracts,” in IEEE/ACM 2nd International Workshop on Emerging Trends in
Software Engineering for Blockchain (WETSEB), IEEE, 2019, pp. 8–15.

[59] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart con-
tracts smarter,” in Proceedings of the ACM SIGSAC conference on computer
and communications security, 2016, pp. 254–269.

[60] C. S. Inc. “Truffle suite.” (2022), [Online]. Available: https://trufflesuite.com/.

[61] N. L. LLC. “Hardhat - ethereum development environment for professionals.”
(2022), [Online]. Available: https://hardhat.org/.

[62] V. Buterin, “A next-generation smart contract and decentralized application
platform,” white paper, vol. 3, pp. 1–36, 2014.

[63] ConsenSys. “Consensys mythx.” (2021), [Online]. Available: https://mythx.io/.

[64] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E. Marchenko,
and Y. Alexandrov, “Smartcheck: Static analysis of ethereum smart contracts,”
ACM, 2018, 9––16, isbn: 9781450357265.

[65] V. Wüstholz and M. Christakis, “Harvey: A greybox fuzzer for smart contracts,”
in Proceedings of the 28th ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering,
ACM, 2020, pp. 1398–1409.

63

https://docs.soliditylang.org/en/v0.8.11/
https://docs.soliditylang.org/en/v0.8.11/
https://trufflesuite.com/
https://hardhat.org/
https://mythx.io/

[66] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smaragdakis,
“Madmax: Analyzing the out-of-gas world of smart contracts,” Commun. ACM,
vol. 63, no. 10, 87––95, 2020, issn: 0001-0782.

[67] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and M. Vechev,
“Securify: Practical security analysis of smart contracts,” in Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security,
ACM, 2018, pp. 67–82.

[68] G. Grieco, W. Song, A. Cygan, J. Feist, and A. Groce, “Echidna: Effective,
usable, and fast fuzzing for smart contracts,” in Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis, ACM,
2020, 557––560, isbn: 9781450380089.

[69] dapp.tools. “Dapp.tools.” (2022), [Online]. Available: https://dapp.tools/.

[70] Brownie. “Brownie - brownie 1.17.2 documentation.” (2021), [Online]. Available:
https://eth-brownie.readthedocs.io/en/stable/.

[71] L. Palechor and C. Bezemer. “How are solidity smart contracts tested in open
source projects? an exploratory study.” (2022), [Online]. Available: https://doi.
org/10.5281/zenodo.5862800.

[72] P. Leitner and C.-p. Bezemer, “An exploratory study of the state of practice
of performance testing in java-based open source projects,” in Proceedings of
the 8th ACM/SPEC on International Conference on Performance Engineering,
ACM, 2017, pp. 373–384, isbn: 9781450344043.

64

https://dapp.tools/
https://eth-brownie.readthedocs.io/en/stable/
https://doi.org/10.5281/zenodo.5862800
https://doi.org/10.5281/zenodo.5862800

	Introduction and Background
	Introduction and Background
	Blockchain
	Blockchain Cryptoassets

	Can we predict whether a blockchain project will be successful using software engineering metrics?
	Introduction
	Background
	Blockchain Cryptoassets
	CoinMarketCap
	Code cloning

	Related Work
	Software engineering metrics
	Code cloning in blockchain

	Methodology
	Gathering data
	Identifying important metrics for successful projects
	Collecting historical data of metrics
	Identifying similar blockchain projects

	Preliminary analysis
	RQ1. What are the most important metrics that characterize successful blockchain projects in CoinMarketCap?
	Motivation
	Approach
	Findings

	RQ2. How does development activity change across time in blockchain projects?
	Motivation
	Approach
	Findings

	RQ3. How similar are blockchain projects to each other?
	Motivation
	Approach
	Findings

	Threats to validity
	Construct Validity
	Internal Validity
	External Validity

	Conclusion

	How are Solidity smart contracts tested in open source projects? An exploratory study
	Introduction
	Background and related work
	Methodology
	Gathering data
	Identifying test files for smart contracts
	Identifying configuration files

	RQ1. Who are the developers involved in testing Solidity smart contracts?
	Motivation
	Approach
	Findings

	RQ2. What are the preferred tools and testnets for testing Solidity smart contracts?
	Motivation
	Approach
	Findings

	RQ3. What types of tests are performed on Solidity smart contracts?
	Motivation
	Approach
	Findings

	Threats to validity
	Internal validity
	Construct validity
	External validity

	Conclusion

	Conclusions & Future Work
	Conclusion
	Future Work

	Bibliography

