

The research reported herein was conducted under Contract
N00014-67-A~0321-001, Office of Naval Research, U. S. Navy,
Task No. NR348-005

at the

University of North Carolina
at Chapel Hill

AUTOMATED ANALYSIS OF LANGUAGE

1969-1970

Report on research for the period
March 1, 1969 - August 31, 1970

Sally Y. Sedelow, Principal Investigator
Martin Dillon, Consultant
Gerald Fisher, Consultant
Walter Sedelow, Consultant
Walter Smith, Consultant
H. William Buttelmann
John B, Smith
David Wagner

The views, conclusions, or recommendations expressed in this
document do not necessarily reflect the official views or
policies of agencies of the United States Government.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED.

Copyright (© 1970, by Sally Yeates Sedelow

Reproduction of this document in whole or in part is permitted
for any purpose of the United States Government

o

1 September 1970 1

AUTOMATED ANALYSIS OF LANGUAGE
STYLE AND STRUCTURE
1969 - 1970

Report on Research for the Period
March 1, 1969 - August 31, 1970

Sally Yeates Sedelow, Principal Investigator

ABSTRACT

This report summarizes work directed toward comprehensive
computer-based characterization of natural language text. A
general-purpose thesaurus has been keypunched and proofread,
and corrections are now being made; this work is preliminary
to an effort to determine the structure of the thesaurus and,
in general, to construct parametric models of thesauri.
Preliminary approaches to the design of a statistical
package for natural language analysis are also described;
these approaches include a program to provide data formats
for any type of language analysis. A User's Manual for the
PL/I, S/360 1ist-structure and ring-8§tructure VIA packages
is also included in this report.

1 September 1970 3

PREFACE

I would like to thank the staff of the Information Systems
Branch, Office of Naval Research, for their unfailing helpfulness
on matters connected with this contract. Thanks are also due to
the Departments of English and Computer and Information Science
for a reduced teaching load, permitting work on this research,
and to the Office of Research Administration for assistance with
administrative detail. I am also grateful to the secretaries in
the Department of Computer and Information Science for getting

the report into reproducible form and overseeing its circulation.

1 September 1970 5

TABLE OF CONTENTS

Page
Preface . v + v 4 4 4 4 4 4 4 e s e s b e s s e e s e 3
I. Survey of the Automated Analysis of Language Project,
March 1, 1969 - August 31, 1970 7
A, Introduction . . « v ¢ ¢ ¢ ¢ o e 6 s e s s 4 s e s e 7
B. Summary of First Year's Work « ¢« + & ¢ o« . 8
C. Plans for Future . . ¢ ¢ « ¢ o ¢« o o o s o o o s s 13
D. Extended Discussions . . « « ¢ « + ¢ « o o s s 0 s 15
1. Thesaurus Research « v ¢ & & & o & o o 15
2. Preliminary Design Considerations of a Language
Analysis Support Package + .« + . & 18
3. Design Requirements for a Generalized Data-
Formatting Package ¢« « ¢« o « « o o & 38
4, A Design for a General Statistical Analyzer for
Natural Language TeXtS . + « o+ o o o s o s o 75
IT. Program Documentation « « v + ¢ v ¢ ¢« o o o o 85
A. Updated User's Manual for PL/I, S/360 VIA 85
1. Part T & v v ¢ 6 v 6 v o o o o s s 0 s e a0 e s 89
2, Part IT . . v ¢« v v o o o & s o o o o o o o 0 s 100
B. PREFIX--Revigsed Version . . . ¢« . . « + « « ¢« &« « o & 131
II1. Professional Activities of Project Personmel 136

IV. Appendix: Brief Description and Listing for Preliminary
Data-Formatting Program . . . « « o & ¢ + o« « o+ o & 148

1 September 1970 7

I. Survey of the Automated Analysis of Language Project,

March 1, 1969 -~ August 31, 1970

A. Introduction

The Automated Analysis Language project is directed toward
developing a system of programming packages for the analysis of
natural language. The broad goal of the project is to use the
computer to characterize comprehensively a non pre-edited natural
language text, Comprehensive characterization would imply that
the style of any text so analyzed could be generated by the com-
puter in accordance with the parameters for that text. Such
complete characterization would permit identification of
individual authors or speeches as well as permit the description
of the content of their remarks. In addition, characterization of
written or spoken texts from a specific culture, or subculture,
would permit generalizations about language usage of a given group
of people. Such generalizations should have real impact upon, for
example, the verbal structuring of diplomatic documents or upon
the interpretation for intelligence purposes of verbal materials.
Although linguists have explored a few aspects (e.g., word lengths,
sounds utilized) of similarities and differences among languages,
there has been no major effort to look comprehensively at such
patterns and then explore their implications for verbal interaction
among nations and groups of nations. The importance of sophistication

about language in a world where much action either consists of

1 September 1970 8

language or is precipitated by language cannot be overemphasized.
With the advent of the computer—-especially interactive computing--
the possibility of both extended study of language and of fast
analysis of given sections of written or spoken text is more
immediate.

It is the long-term aim of this project to develop analytical
procedures which can themselves interact to perceive both the
definitive and idiosyncratic elements in a given text. That is,
given the results of one analytical procedure, automated decision-
making algorithms would indicate which procedure should be next
executed. To effect any such interdependence upon a large scale,
much research is needed upon the properties and behavior of
language, as well as upon the statistics needed to describe those
properties and behavioral aspects. This project has been attempting
to develop computer-based procedures which will facilitate such
research; the procedures already developed are also being applied to

current information analysis needs.

B. Summary of Past Year's Work

For clarity, the research of the past year should be set in
the context of the earlier work connected with this project. The
initial emphasis was upon developing a package of programs which

would perform what a political scientist would call content

1 September 1970 9

analysis,l what a literary scholar might call thematic analysis, or
what an intelligence officer might term information analysis. This
program package, called VIA, was first programmed in FORTRAN and TAC,
the assembly language, for the Philco 2000, and has subsequently
been reprogrammed in PL/I for IBM's System 360, A major addition to
the PL/I VIA is a version that uses rings rather than the lists used
in the FORTRAN version and an alternate PL/I version. A ring-
structure version seemed desirable for several reasons: 1. Linked
lists may give a sense of hierarchy when none is intended; 2. Be-
cause the ring does not imply a hierarchy, it would seem sensible
to key a search on all elements in a ring; thus, a concept which
might be lost in the list-structure version because the word
heading the list does not occur with frequency sufficient to ex-
ceed some threshold might well be retained in the ring-structure
version because the frequency of all the words in the ring does
exceed the threshold.2

In order to link together the semantically-related words
revelatory of significant content or themes, the VIA programs re-
quire inputs of semantically-related words. Until the past year,

these inputs had to be compiled by the person using the programs;

1For a discussion of the programs from this point of view, see
the chapter by S. Y. Sedelow and W. A. Sedelow in The Analysis of
Communication Content, ed. George Gerbmner, et al, John Wiley and
Sons, Inc., 1969.

2The design of the ring-structure VIA is described in detail
by William Buttelmann in the reports of 1967-68 and 1968-69 for
this project. The PL/I list-structure version is outlined in
the report for 1968-69.

1 September 1970 10

that is, given computer output showing all words grouped together
by root and the frequency of occurrence of all words in that group,
the human being chose certain of those groups as worthy of further
investigation and hand-compiled the lists which keyed further
searches and linkages. Although such hand-compilation is not
onerous for the scholar primarily interested in a few texts, it is
quite impractical for the information analyst who must constantly
deal with new texts. The desire to automate the compilation of
semantically-related words led to research on several general-
purpose thesauri.3 The result of that research was a decision

to keypunch Roget's International Thesaurus so that it might be

studied further with a view toward modifying it to serve as the
dictionary for the development of lists of semantically-related
words. This past year, a research assistant proof read the
keypunched version for errors and at the present the list of
ordered pairs (category - word) generated from the thesaurus is
being corrected.

Because it is difficult to test extemsively the ring-
structure VIA without an available thesaurus in computer-
accessible form, work on it has been in abeyance while the
Thesaurus has been proofread. A recent test run using a portion
of the Thesaurus indicates that some minor modifications to the
program have somewhat reduced the enormous quantity of output

produced by the first runs of the ring-structure VIA; at present,

3For a description of this research see Gerbner, op. cit.,
and this project's research reports for 1966-67 and 1967-68.

1 September 1970 11

it is impossible to provide a direct comparison because the first

runs did not use the computer-accessible version of Roget's Inter-

national Thesaurus and we anticipate that the use of the

Thesaurus will increase the size of the output relative to that
produced with other input. Nonetheless, it seems clear that
further pruning algorithms must be devised, possibly in connection
with an interactive version of the program. Preliminary tests of

the list-structure VIA using Roget's International Thesaurus

would suggest that the output will be sufficiently great to be
informative yet not so great as to be difficult to comprehend.
Although these statistics are subject to revision, it is at
least suggestive to note that an earlier run using the word ACID
to key the search produced an attached list with two words and
the test run using Roget's produced an attached list of sixteen
words. Because none of the words on the attached list also
served as a search key no additional linked lists were produced
in either case.

The effort to describe the structure of Roget's International

Thesaurus, itself, has also awaited the correction of the key-
punched version. We have, however, discussed approaches to the
task which are described by David Wagner later in this report.
Briefly, we are concerned with the degree of connectivity, with
"growth rate"” (e.g.. what is the rate of expansion in terms of
tokens, as well as types, from any given word), with bias as
implicit in the words in the Thesaurus (as compared with other
word 1ists) as well as implicit in the words functioning as nodes

in the thesaurus. Optimum methods of providing an index for

1 September 1970 12

such a thesaurus are also of interest.

Much of our energy this past year has been devoted to consider-
ing the design of a statistical package for natural language
analysis; this consideration, in turn, prompted us to explore the
design of data formats which would be suitable for any form of
language analysis. This effort was collaborative, involving
personnel associated with a NASA project for which W. A. Sedelow
was Principal Investigator, as well as involving colleagues and
graduate students in the Departments of English and Computer and
Information Science. Some of the questions raised and conclusions
reached are described in a sequence of papers later in this report
by Martin Dillon, Gerald Fisher, and John Smith. Professor
Dillon discusses the desirability of a taxonomy which would
provide a way of classifying the diverse data bases and quanti-
tative approaches which have been used in the analysis of textual
material. This discussion is based upon a sizable inventory of
verbal measures compiled as part of the NASA project, Professor
Fisher describes the data formats which were devised to serve
as the basis for any natural language analysis. A first imple-
mentation of these formats in PL/I was undertaken as an MA Thesis
in the Department of Computer and Information Science by Joe
Ragland. A brief:description and-a listing
of his program are included as part of this report. A proposed
design of a statistical analyzer is described by John Smith. As
envisioned, the analyzer would assume data to be in the formats
described in Professor Fisher's article and run its programs off

that data.

<

1 September 1970 13

To the best of our knowledge, there has been no effort com-
parable to our attempt to attack comprehensively the problems
associated with the development of a statistical package for
natural language analysis. It is clear that we have made only
a beginning, yet the manhour input entailed by that beginning
has been impressive. It is our hope that other researchers
in this field will read the papers by Dillon, Fisher, and Smith,
and provide feedback which will enable us to improve the design
and eventual implementation of these programs.

Because the Principal Investigator for this project is moving
to the University of Kansas, a final effort of the past year was
to leave a PL/I S/360 version of VIA resident at the University
of North Carolina so as to be accessible to other researchers.
Arrangements have been made with the Institute for Research in
Social Science at the University of North Carolina to run the
1969-70 version of VIA for those who request that service.
Although it partially overlaps sections of earlier reports, it
seemed desirable to include in this report a complete User's
Manual for the 1969-70 version of VIA. The User's Manual appears

on pp. 85.

C. Plans for Future

The move to the University of Kansas will provide the
opportunity to design appropriate sections of the language

analysis programs for a time~sharing enviromment. Within the

1 September 1970 14

VIA package, the ring-structure VIA is a prime prospect for
interactive computing; because William Buttelmann, the designer
and implementer of the ring-structure VIA, will also be on the
Computer Science faculty at the University of Kansas, the pros-
pects for pursuing this particular project are very good. In
addition to the ring-structure VIA, other programs would seem
especially suited to an interactive mode. For example, MAPTEXT,
a graphic display program which will in time be related to the
statistical analysis package as well as to VIA, would lend
itself to interactive computing. Uninteresting displays could
be aborted and those that looked promising expanded.

VIA support programs will be implemented and further work
will be devoted to the design and implementation of data
formats for a statistical analysis package. The package, it-
self, will then be the next order of business.

David Wagner will continue work on models of thesauri as
part of a doctoral dissertation. In addition to Roget's

International Thesaurus, other computer-accessible reference

works will be assembled with a view toward comparative studies
and, ultimately, mutually advantageous modifications.

The association of the Principal Investigator with a depart-
ment of Linguistics, as well as with Computer Science, will
facilitate further research on problems associated with rigidities
of usage, both syntactic and semantic, which will have implications
for much language analysis. For example, Gerald Salton has dis-

covered that within certain subclasses of documents, syntactic

1 September 1970 15

parsing did not significantly improve relevant document
retrieval--presumably because of rigid, patterned usage of
potentially ambiguous terms. Our own analysis of translation

of Soviet Military Strategy has produced similar results.

1. Thesaurus Research
by

David Wagner

We have barely begun the long range research thrust to
develop an adequate model of our machine-accessible thesaurus
and to explore possible methodologies which would yield
parametric models of thesauri and measures of similarity and
dissimilarity between these models. In this section, I will
indicate what has been done to date. To aid in the clarity
of this exposition I will shift my metaphor to that of graph

theory and use the words nodes, labels and arcs. A node will

capture the essence of a thesaural category, a label associated
with a node will represent the list of all phrases which are
members of that category, and an undirected arc connecting two
nodes, say nl and n2, will signify a non-empty intersection
between categories whose nodes are nl and n2. With this
paradigm certain questions have rather immediate answers, at
least conceptually. One will certainly be led to ask if the
thesaurus is totally connected or, if not, what the structure
is of the several subclusters or subthesauri out of which the

thesaurus is constructed. From the graph theory one would

1 September 1970 16

conceptually construct a logical tramsition matrix, T, with n
rows and n columns whére n is the number’of-thesaural categories,
and where a 1 at the intersection of row i and column j signifies
that there exists an arc connecting nodes i and j, or, translating
back into the thesaural metaphor, that at least one word belongs
to both category i and category j. Now since there is a sequence
of arcs of length 2 leading from node nl to n3 just in case there
exists some node n2 with arcs connecting nl and n2 as well as n2
and n3, one can easily conclude that T2 (where T*T is the matrix
logical product) contains a 1 in exactly those entries for which
a path of length 2 comnnects the corresponding row and column
nodes. Therefore T" indicates all pairs of nodes connected

by a sequence of arcs of length m. Finally, the graph is totally
connected if Tn_l contains only 1l's (+1° matrix) and since the
main diagonal of T contains only l1's, the graph is totally con-
nected only if there is some integer m<n with ™ a 1° matrix.
Therefore by computing Tl, T2"'Tn_l one can decide whether the
thesaurus is totally connected and if not, by locating certain 1
submatrices, find all totally connected subthesauri.

The system of programs necessary to implement the above con-
ceptual description is operational and has been applied to several
test thesauri. As additional information, these programs
generate a plot which depicts the rate of expansion for the
input thesaurus; or what is the same information, the plot dis-
plays the relative number of disconnected node pairs. We expect
this plot to resemble a negative exponential with a small time

t/T

constant (e— , where T is small and t is in units of depth or

1 September 1970 17

length of connecting path).

We expect to derive such measures as the expected number of
arcs emanating from a node, expected arc length between word
pairs, maximum depth, etc. All of these measures can be seen
as being incorporated into a parametric model of thesauri.

Although still very much in the realm of exploratory research,
an approach to clustering using nonmetric multidimensional scaling
may prove to be quite interesting. Essentially this methodology
provides a spatial distribution of a set of given words with the
spatial distance related to the categorical distance between the
given words. This categorical distance, d, may be defined by:

d(pl,p2)=0 if pl=p2

d(pl,p2)=1 if pl, p2 co-occur in a thesaural category

d(pl,p2)=n if there is a sequence of categories

pl,p2,**°pn, with pl a member of pl

p2 a member of pn and

a set of arcs such that pl is connected to pn

and n is the smallest such integer.
Using this pseudo distance measure (ordinal distance or relative
distance) defined upon pairs of words, the non metric multi-
dimensional scaling methodology locates the set of words in a
high order space. From such a scattering of words, one can
redefine thesaural categories by a clustering technique which
would collect together those words located in a hypersphere of
a given radius centered at a given point. By a suitable defini-

tion of the origin of the spheres and their radii, one could

1 September 1970 18

effect widely ranging transductions of the original thesaurus,
varying from more tightly packed categories to more loosely
packed categories. ' At least for computational purposes, one
would like to be able to characterize a thesaurus by a small
number of categories; this methodology could effect that trans-
duction.

It is important to recognize that the ordinal distance
given above is only one of many conceivable choices. Other
choices might involve a normalized cardinality for intersecting
expansions (that is, the number of words in common to the set
of categories reachable by an arc sequence of a certain length
from given word pairs). It is hoped that this thrust will also

illuminate the disambiguation problem.

2. Preliminary Design Considerations of a Language
Analysis Support Package
by

Martin Dillon

The purpose of these remarks is to provide an overview of a
programming system for obtaining the widest possible range of
basic measures from natural language text, with capability for
assembling the measures into a convenient format for analysis.
General design criteria include: the input data, natural language
text in machine readable form, minimally encoded, of potentially
millions of words; transformation of this material into files

suitable for efficient, selective processing; a facility for

1 September 1970 19

maintaining the text files in a form suitable for more advanced
analysis; a facility for deriving all required measures from
them and maintaining both in a form suitable for more advanced

processing.

Background

A list of outstanding problems and questions posed by the
analysis of natural language a decade ago would, but for numerous
additions, remain unchanged today. Despite a growing number of
investigators, more sophisticated use of techmology, and an
ability to reduce vast amounts of data to manageable proportiomns,
the fundamental principles of natural language, its development
and use, have resisted precise formulation. Few would deny that
an adequate "explanatory model" has yet to be developed and that
progress has been primarily in the discovery of how broadly based
are the difficulties, how deeply they run and how strongly they
resist resolution. Perhaps the most outstanding failures fall in
the areas of mechanical translation and information retrieval:
each has had the encouragement of utility and substantial financial
backing; each has drawn on the talents of skilled interdisciplinary
teams; and each has failed to achieve a satisfactory solution while
substantially contributing to our understanding of the problems
posed.

Such failures, and the failure of linguists generally to
produce a satisfactory model of language behavior, have led us to
reexamine the bases of language analysis and to produce a tool

capable of supporting fundamental language research. It should

1 September 1970 20

be noted that the systemization to be discussed lacks, in Thomas

Kuhn's sense, the influence of a '"paradigm'" (The Structure of

Scientific Revolutions) drawn from linguistic theory. Of the two

primary paradigms in current linguistics, the structural as

typified by Zellig Harris in Structural Linguistics, usually

referred to as descriptive or taxonomic linguistics, and the
algebraic model developed primarily by the transformationalists

following Chomsky (initially in Syntactic Structures), the work

described here would seem to be more akin in spirit to the
former. Despite polemicists on both sides, however, the
approaches are complementary but not exhaustive, and it is
likely that an acceptable paradigm must be comprised of their
synthesis. It is toward this goal that we aim.

Prior to designing this language analysis support package
(1LASP), a literature search was undertaken to identify as many
variables of.interest as possible. A basic resource was Language

and Language Behavior Abstracts which lists language research by

discipline (24, ranging from anthropology to speech pathology)
amounting to some 8,000 titles a year. Underrepresented in this
journal, and particularly in its early years, are the fields of
literary analysis, information storage and retrieval (not listed
at all), readability research, content analysis. These were
supplemented through other sources. Measures were sought with
these properties: of interest to language characterization
construed as broadly as possible; basic (as opposed to derived

or determined from statistical theory, like factor analysis or

1 September 1970 21

correlations); capable of automatic derivation from machine
readable text. An attempt was made to group and order these
measures to disclose underlying unities and patterns, both for
clarification and to aid in the design effort.

Figure 1 represents a preliminary taxonomy of substantive
language areas which was constructed to aid in this effort.
While far from satisfactory, this taxonomy was highly useful,
indeed essential, in relating diverse research efforts under one
frame. (Lack of such global organizational tools is one of the
more serious afflictions of language research, and seriously
hampers interdisciplinary communication.)

Among the uses to which this frame is being put are:
identifying the concerns of different fields engaged in language
research; introducing some consistency and coherence into the
massive amount of research already performed; and directing
attention to areas which have been ignored for whatever reason.

The purpose of presenting Figure 1 in this context is to
clarify the design features of the system under development,
their origins and the extensions planned. (Complete interpre-
tation of the table requires a consideration of Figure 2 and the
approaches listed in Figure 3. The combination of these three
tables defines for our purposes what we mean by LASP.) The
column headings indicate the goal of the research, interpreted
more by the size of the unit under investigation than definitions
related to linguistic theory (though used here with approximately
their normal meaning). That is, SEMANTICS refers to units of

word size or smaller; SYNTAX to units of sentence size or smaller;

1 September 1970 22

DISCOURSE to units beyond the sentence. Contrary to what one may
suppose, even these fundamental distinctions must be accepted
heuristically, and cannot be maintained strictly. Consider, for

1

example, an investigation dealing with a word-sized unit 'a'. If
a text is examined to determine its semantic characteristics
(whatever is meant), it would be listed under column I. If, how-

'a' is to

ever, the purpose of investigating the behavior of
characterize the text, the study would be listed under column three.

Distinctions defizﬁd across rows are also broadly heuristic.
Their intent, between (1) and (2), is to distinguish studies by
the amount of a priori knowledge brought to bear in the analysis.

In the rows under (1) would appear studies depending on minimal
knowledge, deriving categories or structure from basic statistics
within the text itself; under (2) would be listed those studies
which assume defined categories or structure as a basis of the
analysis. Typical examples of a priori categories are: SEMANTICS,
synonymous classes of content words in retrieval studies; SYNTAX,
words classed by parts of speech; and DISCOURSE, the content
categories of general inquirer studies. Structural assumptions
come into play in the use of thesauri in SEMANTICS and parsers in
SYNTAX.

Eventually, an annotated bibliography will be produced with a
similar organization. For the present, typical entries have been
prepared to clarify the logic of the table as it is being used to
classify works from the fields under consideration. 1In the

Figure itself, the numbers in the entries imply substantial contri-

butions from the fields listed in the legend; verbal descriptors

1 September 1970 23

give typical measures. The bibliography is referenced by fields,
with the code at the left indicating where each work would fall
in the table.

In order to understand the verbal tags in Figure 1, the
implications of Figures 2 and 3 must be examined. Figure 2
represents in tabular form the units of analysis. Row descriptors
indicate the units themselves, moving from the smallest to the
largest; column headings indicate what the count would be related
to. Column-row intersections with an X imply potentially meaningful
measures. The measures themselves would depend on which of the

"models" listed in Figure 3 was being used.

The easiest to consider is the first, Descriptive measures by

hierarchy. This entry can be interpreted as referring to frequency
distributions based on suitably defined row-column intersections.
Under Semantic measures in Figure 2, for example, typical distri-
butions would be word counts based on number of characters,
phonemes, syllables, and morphemes. Under Syntax, typical distri-
butions would be phrase or sentence counts based on the number of
characters, phonemes, syllables, etc. All of these measures would
fall in row l.i of Figure 1 as basic counts. It should be noted
that the basic counts of Semantics are included in those of
Syntax, and those of Syntax included under Discourse (Descriptive
measures can apply, of course, to units defined a priori, or
derived from the text by appropriate measures.)

Approaches 2 and 3 in Figure 3, Secuential dependency and

Structural constraints, have two interpretations here. They can

1 September 1970 24

be used to derive classes of units, which would be classified under
row 1.ii and iii of Figure 1; and they can be used with previously
defined classes, in which case the measures would fall under 2.ii.
In either case, there seems to be no reason why they could not be
applied to all units presented in Figure 2. Approaches 4 and 5

are somewhat special. Linear Measures have been used in conjunction

with stylistic investigations and are treated in earlier reports.

The entry labelled Classifications can best be interpreted as the

defined approach of structural linguistics.

Finally, considering the three tables together, all combinations
of Figures 2 and 3 imply measures which can be used to clarify the
substantive areas of Figure.l, though with two general difficulties.

" First it is not clear how measures in larger units can apply to
smaller ones; how do sentences determine semantics, discourse meas-
ures affect sentences? It is clear they are dependent, but diffi-
cult at present to infer clear relationships, or interpret any which
could be inferred. Second, some of the statistics which can be ob-
tained have marginal or problematic value (not as many as one might
at first suppose, though many may be redundant, i.e., derivable from
some one or more others, either directly or empirically).

Before detailing the program design which will provide some of
the measures defined by these three tables, some general remarks
are in order to relate this large body of implied measures to
current concerns and current research directions. First, the
emphasis here has been solely on intratext measures (as is apparent
in Figure 3). No attempt either here or in the program design has

been made to incorporate techniques for testing hypotheses, drawing

2]

1 September 1970 25

inferences, obtaining comparative statistics, etc. Packages which
perform such analyses are commonly available: the task of the
system will be to produce the data reguired as input to such
packages.

No estimate has been calculated for the total number of
reasonable language measures which are implied by the three tables.
If we consider, as an example, the substantive area comprised in
IT.1.i,ii,iii, using techniques derived from model 5, operating with
units 1 through 10, we have, essentially, descriptive linguistics
and an unmanageably large number of items to work with. Or,
consider using Markov properties in conjunction with unit 8
(words) to construct an approximate grammar. Two-word dependencies
lead to an n x n matrix (largely empty) where n is the number of
words in the language. And two word d;:;ndencies are demonstrably
inadequate. Using model 3, Structural Constraints, what one would
ideally like to have is some estimate of the entropy of a language,
based on its sentences, not, as has been worked out, the estimated
entropy of various of the units 1-4. But this would require
enough text to obtain accurate estimates of the likelihoods of
occurrence of individual sentences, surely out of the question.

By any criteria, the number of measures which must be
considered significant is enormous. It is easy, but probably
false, to say that so few measures can be rejected as having no
interest because of our yet primitive grasp of the nature of
language. While one must acknowledge that the state of the art
in language analysis is comparable to that of chemistry prior to

Medeleyev's construction of the periodic table —- there gathering

1 September 1970 26

data without reference to a general scheme or theory was the only
available strategy -- it seems equally clear that such a generally
acceptable scheme would not immediately reduce useful measures
to some small number. Language incorporates chemistry, many
chemistries, and much more besides. Some sense of scale may be
obtained if one were to consider the task of reducing the techniques
and methods of all science to a schema which displayed their indi-
vidual logical natures, their range of applications, their levels
of confidence, and their interrelationships. The task of reducing
language to a representative schema is no less formidable.

Thus there is little likelihood of drastic simplification in
the number and relationships of quantifiable language variables

in the near or distant future.

=Y
Programming considerations

There are two operational assumptions which underlie the
design of the system: maximal incorporation of available measures
defined by meaningful combinations of I, II, and III; and the
potential of applying them to large amounts of text (millions of
words), retaining in files all information necessary to add,
delete, or combine selectively any and all measures, eventually
in an experimental mode interactively.

Such a program is a large order, only a small part of which
will be available in the foreseeable future, though it is being
designed with the long range goal in mind. There are five
essential parts to such a system, each critical in the success

of achieving the long range goal:

1 September 1970 27

1.) a geﬁeral text processor, which accepts as input minimally
coded natural language text and a description of its coding conven-
tions, and produces as output an appropriately transformed and
formatted file for use in subsequent processing.

2.) a well-conceived set of files for both textual data and
statistical information, capable of being updated in alil parts
economically, and operated on by a variety of analysis sub-
programs, each of which adds to or modifies some portion of the
files in well-understood ways.

3.) an integrated statistical package with facilities for
performing any combination of the counts implied by 3 on any
combination of the units listed in 2, using the facilities and
goals listed in 1, on any portion of the files produced by the
text processor or on outputs of the statistical package itself.

4,) a second statistical facility, employing comparative
techniques to operate on the output of (3).

5.) a facility for user interaction through which he
describes in a natural and efficient way what parts of the
available facilities he wishes to employ on what portions of
the text and what he wants to do with the output. (This in-
cludes, interactively or in batch mode, producing histograms
or graphs of measures on hard copy or on CRTs.)

A programming system incorporating the above facilities
is a major effort both in the design phase and in the actual
programming. Much of the design work has been done in the past

year, and every effort has gone into assuring that whatever

1 -Beptember 1970 28

preliminary programming is done will be compatible with the

long range plans. Such a system, when completed, it is fair to
say, will offer an invaluable tool to all investigators involved
in natural language analysis. Indeed, one could probably make

a good case for asserting that such a facility is essential

for continued and orderly growth in knowledge of language
processes by offering a context for communicating results, sharing
data, and providing a means to involve subject knowledgeable

people without programming capability to perform analyses.

Future Directions

Design specifications for existing program parts are
presented elsewhere in this report. What remains is a word
about what the next phase of development should bring. Given
an adequate data file definition, which we beliewe we have,
and an organization of processing steps capable of realizing
design goals, there are three areas which require further con-
sideration and development, and such improved knowledge can
only come about through experimental use of a prototype of the
full system. These areas are the user language for communication
with the system, the required statistical routines beyond those
outlined above, and the most useful form for the analyst output
(to be contrasted here with the output stored in the permanent
data files):summary statistics, thresholding capabilities,
graphic output, and the like. Each of these is a major effort
in itself and each, in various ways, requires more experience

with the kinds of research the package is being developed to

1 September 1970 29

support. The first, for example, requires a fine trade-off
between the precision required of such languages in their oper-
ation and the convenience of users unsophisticated in the
formalisms of programming languages: like all such special purpose
languages, it must have strong subject orientation, but retain
precision, logical clarity, and consistency. The other two
depend on what proves useful.

Beyond programming considerations, it is clear that the
efforts sketched here to unify the gathering and interpretation
of language statistics into some general frame must be pursued.
In addition to adding detail to the substantive taxonomy (Figure
1) through an extensive annotated bibliography drawing from
those fields engaged in such research (currently being prepared),
and perhaps modifying or extending it at the same time, some
effort should be directed toward drawing out the theoretical
implications of the network of concerns manifested in the total
field. VWhere has the emphasis been placed and why? What are the
points of stress, where are the lacunae? 1Is it possible to
relate the variety of statistical models being pursued into some
theoretical frame? Is there some coherent way to integrate such
models into one comprehensive model of human communication? All
of these questions, some premature perhaps, are worth pursuing
and can only be pursued from a perspective as broadly defined
as possible. One major goal of the work being described here is
to encourage such thinking and provide a point of departure for

it.

30

1 September 1970

S9OU9TOS UOTIEITUNWNIO)

A8o10yodsqg
sOT3STn3urToyoLsqg
sOT3sTN3uUL]

O~ 0

uorilrsinboe 98en3ue]

sTsATeue ju23uo) °

1eA®Ta391 pue 28Bi03S UOTjEWIOIUT
stsiTeue AiexelTT

~ N M T

(PT®13gqns 10 pT@T3) pudlda]

JO 32U21INnd200D
8‘ce‘e

. *5103102UU0D
- S9TJ10893BO JU23IUOD

-~ ~ggTI08978D 3U3JUOD "

rsaTouspuadap TRANIONIAIS
pue yosads jo siyaed
8°Lf9‘c vz T

*S98SBTO TBANIONIIS
‘yoseds jo saaed

*satouspuadop 398
TeT3uauodwod ‘Tanesayl
L'9°%°e‘z 1

*s3es juauoduod

‘sjoox ‘sausydioun

1eIn3ioniais °IT

*3x93 £q 3unod oFseq
896z T

Qou9juss ‘asneyd
‘aseayd £q 3unod OTSEq

896wz 1

*paon‘ijoox £q junod OFseq
8°9°¢ w1

89°ce 1 89°¢%°T T L°9°G g T |TEOTa0893ED T
TIoTad v °¢C
*safouapuadap

so1ouapuadap sseld 2aIn3onils ‘piom sdunto ‘saa3snyo
896z 1 RN A AR 8°9°G¢ % T Tean3oniis °“ITT

*92U21INDD00D *20U31IND200D

£q sosneTO piom *saouajuas ‘saseiyd £q sosseTd paom
8°9°¢‘z T 89°¢w e T 8°9°G HgZ T | TEoTaO0B93BO °IT

oTIseq °T

oT34ATeUE BuUTalS °I

95In0dsStq °III

xXejluls °I1

sorjuBWeS °T

AWONOXVI HATLNVLISINS

*1 @an314g

31

1 September 1970

LT T]

LT - B B I S SR S T o B o

o I I B

LT TS T o T < T T B T B

T T < T T T - A -

ST B A B S S

2
1

LT

LT o T B T B - - -

LS T T T A S S

EOTIE o T T - B T I

O
—

s
—l

~
—

el

o~
—

~
~

o
~

[N SHEE ST o T T -

O MK X K XK K X

PR R) KM

O XN KX
Cal ST AEE S S

¢ d4fiold

RS IR

O = N M g n W
N o~ o~ = - o~

= &N ™M ¢ " O~ 0 O

s3Ttun zoleR
sydea8eaeg
%Hmuuﬂn$MI
EEBliChlicT
sosnet)
soseayd
SWwoTpl

s19s Ai10893e)

spaopM
s300y
S9XTIINg

SoxXII91d

sawaydaoR
S9TqeTT4S
sauwLuoyyg

Saajoeaey)

9S81IN02SIQ

Xejuhsg

SOTjuUBWSS

JIseg

1 September 1970 19

FIGURE 3 -~ ANALYTTCAL YOOELS

Descriptive measures by hierarchy

frequency distribution of defined units

Sequential dependency

Markov properties of defined units

Structural constraints

information theoretic properties of defined units

Linear measures
serial properties of text (instantaneous or

cumulative) for defined units

Classifications
grouping of units through the distribution of

their environments

1 September 1970 33

BIBLIOGRAPHY

General works are those which contain methodological, global
or other noncategorical support. Major works are those which
could be inserted in many places since they use a number of
measures or techniques; they are listed without a link to Figure 1.
Other entries use primarily the method implied by their point of
entry, appearing to the left in the margin, of the taxonomy
related to Figure 1.

General

Bailey, R.W. and D.M. Burton, S.N.D. English Stylistics:
A Bibliography. Cambridge, Mass.: The M.I.T. Press, 1968.

Bendix, E.H. '"Componential Analysis of General Vocabulary:
a Semantic Structure of a set of Verbs in English, Hindi,
and Japanese.'" International Journal of American
Linguistics, Vol. 32, no. 2, Part II (April 1966). Also,
The Hague: Mouton, 1966,

Botha, Rudolf P. The Function of the Lexicon in Transforma-
tional Grammar. The Hague: Mouton, 1968.

Herdan, G. The Calculus of Linguistic Cbservations. The
Hague: Mouton, 1962.

Quantitative Linguistics. Washington: Butterworths,

1567,

. Type~Token Mathematics. The Hague: Mouton, 1960,

Lenneberg, E. Biological Foundations of Language - section
on color. New York: John Wiley and Sons, 1967.
Pp. 337-370.

Meetham, A.R. Encyclopedia of Linguists -~ Information and
Control. Oxford: Pergamon Press, 1969.

Marcus, Solomon. Algebraic Linguistics; Analytical Models.
New York: Academic Press, 1967.

Milic, L.T. Style and Stylistics -- an Analytical
Bibliography. New York: The Free Press, 1967.

Sedelow, S.Y. and W. A. Sedelow, Jr. "A Preface to Computa-
tional Stylistics." Reprinted from The Computer and
Literary Style, Kent Studies in English, No. 2. This
article originally appeared as SDC document SP-1534,
February 1964.

1 September 1970 34

Sokol, R.R. and P,H.A. Sneath. Principles of Numerical

Taxonomy. San Francisco and London: W. H. Freeman, 1963.

1. Literary Analysis

Burwick, F. L. '"Stylistic Continuity and Change in the
Prose of Thomas Carlyle.” 1In Statistics and Style.
L. Dolezel and R.W. Bailey (Eds.) New York: American
Elsevier, 1969, Pp. 178-196.

Carroll, John B. '"Vectors of Prose Style." 1In
Statistics and Style. L. Dolezel and R.W. Bailey
(eds.) New York: American Elsevier, 1969, Pp. 147-
155,

Dolezel, L. and R. W. Bailey. Statistics and Style.
New York: American Elsevier, 1969.

Miles, Josephine. Eras and Modes in English Poetry.

Berkeley and Los Angeles: University of California
Press, 1964,

Milic, Louis T. A Quantitative Approach to the Style of
Jonathan Swift. The Hague: Mouton, 1967.

TI1.2.1 Mosteller, F. and D. L. Wallace, "Inference in an
Authorship Problem; A Comparative Study of Dis-
crimination Methods Applied to the Authorship
of The Federalist Papers.'" Presented at a session
of Special Papers invited by the Presidents of the
American Statistical Association, The Biometric
Society, and the Institute of Mathematical Statis-
tics at the statistical meetings in Minneapolis,
Minn., September 9, 1962,

Sebeok, Thomas A. Style in Language. Cambridge, Mass.,
and New York: The M.I.T. Press, 1960,

1.1.11 Yule, George U. The Statistical Study of Literary
Vocabulary. Cambridge, Mass.: The M.I.T. Press,
1964,

2. Tnformation Storage and Retrieval

1.1.iii Bonner, R.E. '"On Some Clustering Techniques.'" IBM
and Journal of Research and Development, Vol. 8§, no. 1
IIT.1.44i (January 1964).

Doyle, L.B. '"The Microstatistics of Language." In-
formation Storage and Retrieval, Vol. 1, no. 4
(November 1963).

1 September 1970 35

5. Linguistics

Akhamanova, 0.S., et. al. Exact Methods in Linguistic
Research. Berkeley and Los Angeles: University of
California Press, 1963.

Allerton, D. J. "The Sentence as a Linguistic Unit."
Lingua, Amsterdam, Vol. 22, no. 1 (19€9), pp. 27-46.

I.1.ii Card, William and Virginia McDavid. '"English Words at

and Very High Frequency.'" College English, Vol. 27
I1.2.1 (1966), pp. 596-604.

IITI.1.1 Dewey, Godfrey. Relative Frequency of English Speech
and Sounds. Cambridge, Mass.: Harvard University

ii Press, 1923.

I1.2.i Earl, L.L., B.V. Bhimani and R.P. Mitchell. "Statistics
of Operationally Defined Homonyms of Elementary Words."
Mechanical Translation, Vol. 10:1, no. 2 (1967),
pp. 18-25.

II1.1.ii Harris, Zellig S. String Analysis of Sentence Structure.
The Hague: Mouton, 1962.

. Methods in Structural Linguistics. Chicago:
The University of Chicago Press, 1951. (Reprinted
as Structural Linguistics, 1961.)

I.2.1i Harwood, F.W. and A.M. Wright. 'Statistical Study of
English Word Formation." Language, Vol. 32 (1956),
pp. 260-273.

I1I.1.i Hultzen, L.S. et. al. Tables of Transitional Frequencies
of English Phonemes. Urbana: University of Illinois,
1964.

Kucera,.H. and W.N. Francis. 'Computational Analysis of
Present Day American English. Providence, R.I.:
Brown University Press.

IT1.2.ii Lakoff, George. 'Instrumental Adverbs and the Concept
and of Deep Structure.'" Foundations of Language, Vol. 4,
11.2.41 no. 1 (1968), pp. 4-29.

I.1.ii Resnikoff, H.L. and J.L. Dolby. 'The Nature of
Affixing in Written English." Mechanical Translation,
Vol. 9, no. 2 (June 1966).

IIT.1.ii Sedelow, Sally Yeates. Stylistic Analysis: Report om the
Third Year of Research. Santa Monica: Systems
Development Corporation, Report TM-1908/300/00, 1967.

1 September 1970 36

I.2.ii Simmons, R.F. and J.F. Burger. A Semantic Analyzer for
English Sentences. SDC (SP-2987), January 1968.

II.1.ii Spang-Hanssen, Henning. 'Sentence Length and
and Statistical Linguistics.'" Structures and Quanta:
I11.1.1 Three Essays on Linguistic Description. Copenhagen,
1963.

I.2.ii White, J. H. The Methodology of Semantic Analysis with
Special Application to the English Preposition.
SP series (1339). Santa Monica: Systems Development
Corporation, 1963.

I.2.ii Zimmer, Karl E. "Affixal Negation in English and Other
Languages; an Investigation of Restricted Productiv-
ity." Supplement to Word, Vol. 20.

6. Psycholinguistics

I1.2.i Brown, Roger. ''Linguistic Determinism and the Parts of
Speech." Journal of Abnormal and Social Psychology,
Vol. 55 (1957), pp. 1-5.

1I1.2.i Eiferman, R. 'Negation: A Linguistic Variable." Acta
Psychologica, Vol. 17 (1960), pp. 258-273.

Gardner, J.W. '"Psycholinguistics: A Survey of Theory
and Research Problems.'" JASP, Vol. 49 (1954), supp.

Schlesinger, I.M. '"Sentence Structure and the Reading
Process." (Jan. Linguarum, Series Minor 69) The
Hague: Mouton, 1968.

7. Psychology

II1.2.i Boder, David P. '"The Adjective-Word Quotient: A Contri-
bution to the Psychology of Language.' Psychological
Record, Vol. ITI (1940), pp. 309-343.

Deese, James. The Structure of Associations In Language
and Thought. Baltimore: Johns Hopkins, 1966.

Hunt, E.B. Concept Learning: An Information Processing
Problem. New York: Wiley, 1962.

I11.2.i Miller, G. A. '"Some Psychological Studies of Grammar."
American Psychologist, Vol. 17, no. 11 (November
1962), pp. 748-762.

1 September 1970 37

8. Communication Science

III.2.1 Barber, Charles L. 'Some Measurable Characteristics of
Modern Scientific Prose.'" Contributions to English
Syntax and Philology, ed. by Frank Behre.
Gothenberg, 1962, pp. 21-43.

11.2.i Earl, L. L. (Lockheed Palo Alto Research Lab., Calif.)
"Automatic Determination of Parts of Speech of
English Words." Mechanical Translation, Vol. 10,
no. 3-4 (1967), p. 53-67.

Gerbner, George, et. al. The Analysis of Communcation
Content. New York: Wiley, 1969.

III.1.i, Shannon, C. E. '"Prediction and Entropy of Printed
ii, and English." Bell System Technical Journal, Vol. 30,

iii p. 50.
11I.1.i, Shannon, C. E. and W. Weaver. The Mathematical Theory
ii, and of Communcation. Urbana: University of Illinois
iii Press, 1949.

II.2.i Stolz, W. S. Syntactic Constraint in Spoken and
Written English. 1964 Doctoral Dissertation
(Philosophy-Mass Communications), University of
Wisconsin.

1 September 1970 38

3. Design Requirements for a Generalized
Data Formatting Program
by

Gerald Fisher

Our plan for a statistical package led us to investigate
the basic data structure formats such a package would require.
After considerable discussion we decided that a generalized
program was needed. This program would provide not only the
units for statistical analysis but also the basic computer
representation of text for the VIA system. Speed, modularity,
and adaptability to diverse research goals were the guiding
design criteria. The concepts of the design, if not the
program itself, should be valuable to other researchers in the
program itself, should be valuable to other researchers in the
text processing area. Although the program design is oriented
toward an 0S/360 implementation, the specifications could easily
be changed to suit the operating environment of any medium or
large scale computer. It is now generally recognized that
operating systems are integral to the specification of high

level programming languages and applications programs. Although

1 September 1970 39

there is considerable diversity in the operating systems
presently in use, it should nevertheless be possible to adapt
the concepts described herein to systems other than 0S/360.

The work reported here represents the joint efforts of
S. Sedelow, G, Fisher, M. Dillon, J. Smith and D. Wagner. A
preliminary version of the program has been written by Joe
Ragland, an M.S. student in Computer and Information Science,
under the direction of G. Fisher as part of his Master's Thesis.
A listing of his program appears in an appendix to this report.
The design of the control card language reported herein (but not
implemented in the preliminary version) is due in large measure
to William Blair, a student of the University of North Carolina;
Mr. Blair performed this work as a course project for a
Computer Science course in text processing taught by Gerald
Fisher.

This report is in two sections. The first delineates the
specifications of the generalized program. The second describes
the preliminary implementation achieved by Joe Ragland.

The purpose of the program is to produce a machine readable
'index' of an input text. The term general is used because the
program is really only a utility routine. Hopefully, it will
be used by many people, each specifying a different combination
of options to the program, to produce the exact type of index
desired. The actual processing of the text will be accomplished
in programs which have as input the output of the general

index program.

L September 1970 40

Conceptually the input text is viewed as a stream of characters
in which meaningful units are separated by user defined delimiters.
Each unit is calied a category. Categories may be arranged into
one or more independent groupings called hierarchies. These may
be used to signify logical groupings, such as sentence, paragraph,
and chapter, or physical groupings, such as line number and page
number. In the text a category 1s marked by the presence of
delimiters appropriate to that category. Units at the lowest or
base level are called "words" or "tokens'". It should be noted,
however, that it is possible to consider individual characters or
analogous units the "base" level by specifying the null string (')
as the delimiter for the base category (see example on page 59).
The index program divides the input stream into tokens and in
sequence associates with each one its relation to the user
selected hierarchies, an indication of the word type, and a pointer
to the list of occurrences for that word type.

There are two types of input to the program: program control
and input text specifications, and the input text(s). The output
of the program consists (logically’of four files. These are:

(1) the Token file, which contains the text tokens in their

linear order.

(2) the Type Index file, which contains in alphabetical order

each type together with a list of pointers to each
occurrence (token) of that type.

(3) the Type Glossary file, which is essentially identical to

the type index file except that the list of pointers is

not present.

1 September 1970 41

(4) the Group Index file, which contains pointers to the

rightmost token in each group of every category except
the base category.

For each execution of the program, certain parameters are
specified by the users: these may be constant throughout the
entire run or may vary for each text processed, Utilizing the
output of the program it is possible, for example, to determine
very quickly and efficiently whether or not the text contains

a certain type and to enumerate all tokens representing that

type.

Example

To make these ideas concrete we consider a simple and
artificial example. We assume the text to be presented to the

machine as a stream of characters. The text to be indexed is as

follows:
AA B C B C AA . D B A .. AA A
B $$$ A B . AA D .. D $8§ ¢¢¢

In this example there are two independent hierarchies. The
first represents the logical organization of the text while the
second represents its physical arrangement. The base category
uses a blank to delimit tokens; this category 1s the only one
assumed to belong to each hierarchy. It is not numbered or named.

The category and hierarchy specifications would be as follows:

1 September 1970 42

Hierarchy Category Delimiter Set
BASE BLANK
1 1 (SENTENCE)
1 2 (PARAGRAPH)
1 3 (CHAPTER) $$$
2 1 (VOLUME) cee

The manner in which this control information is given to the pro-

gram will be delineated below. The output produced would be as

follows:
TOKEN FILE

length token type pointer cC
2 AA 6 0000
1 B 7 0000
1 C 8 0000
1 B 7 0000
1 C 8 0000
2 AA 6 0000
1 . 2 0000
1 D 9 1000
1 B 7 1000
1 A 5 1000
2 ‘e 3 ‘1000
2 AA 6 0100
1 A 5 0100

1 B 7 0100

1 September 1970 43

TOKEN FILE (continued)

length token type pointer cC
3 $$$ 4 0100
1 A 5 1010
1 B 7 1010
1 . 2 1010
2 AA 6 0010
1 D 9 0010
2 .. 3 0010
1 D 9 1110
3 $$$ 4 1110
3 cee 1 0000

TYPE INDEX FILE

length type freq. occur.
3 ¢ee 1 24
1 3 2 7,18
2 . 2 11,21
3 $8% 1 23
1 ' A 3 10,13,16
2 AA 4 1,6,12,19
1 B § 2,4,9,14,17
1 C 2 3,5

1 D 3 8,20,22

1 September 1970 44

TYPE GLOSSARY

length type freq.
3 cece }
1 . 2
2 .. 2
3 $$$ 1
1 A 3
2 AA 4
1 B 5
1 c 2
1 D 3

GROUP INDEX FILE

hier. cat, token numbers
1 1 7,11,15,18,21,23,24
1 2 11,15,21,23,24
1 3 15,23,24
2 1 24

The field designated "length''contains the token or type length.
The field "type pointer" gives the rank of the token in the Type
file. Thus, the token "AA" occurs sixth in the Type list.

The field labeled "CC" serves to indicate category changes.
This field is a bit string of length equal to the number of
categories (excluding the base category). In this example there are
four categories besides the base category. Each position in this

string corresponds to one of these categories. Thus, the first

1 September 1970 45

position is used to indicate changes in the SENTENCE category, the
second changes in the PARAGRAPH category, etc.

The field labeled '"occur'" in the Type Index file is a vector
of extent equal to the frequency. This vector contains in order
the ranks of the type in the Token file. These ranks are called

the linear numbers or linear occurrences of the type in the text.

Thus, the word type "AA" occurs as the first, sixth, twelfth
and nineteenth text tokens.

Note that the use of linear numbers instead of the complete
indexing information (i.e., sentence number, paragraph number,
chapter number, and volume number) results in greater storage
efficiency. The cost, however, is that the Group Index file must
be created. This file indicates for each category the linear
numbers of the rightmost token for each instance of that category.
For example, the first sentence ends at linear position 7, the
second at position 11, etc. When used in conjunction with the
Type Index file, the Group fiile facilitates the construction of
a complete index.

In this example all delimiters are treated as tokens. 1In
general this is not desirable since a delimiter is frequently ex-
traneous to the text and introduced only for the purpose of
classification. Thus, we distinguish between natural and un-
natural delimiters. A natural delimiter is one such as a period,
that is to be treated as a token and assigned a linear number.

An unnatural delimiter such as $$, is used to force a category
change but is not retained in the Token file. The DELIMITER

control card, to be described below, contains a parameter for

1 September 1970 46

distinguishing between natural and unnatural delimiters.

Overall Program Structure

The general data formatting programs consists of four basic

routines. The first of these is the Input Specification Processor.

By means of control cards the user specifies the text, hierarchies,
categories, delimiter sets, and other control information to the
program., The input specification processor interprets this con-
trol information and modifies the program accordingly. The Text
Scanner is the second routine. This part of the program separates
the text tokens and delimiters. Each token (and natural delimiter)
is assigned a linear number and a bit string, called the category
change (or CC) indicator which signals by alternation changes in
category grouping. The token, together with its linear number

and CC indicator, is fed to a general sorting program. The

linear number of the rightmost token of each category is also sent

to the sort. The third step is the First Token Sort. The tokens

are sorted into alphabetical order and the sorted file is used to
construct the Type Index, Type Glossary, and Group Index files.
The Token file is rewritten but appended to each token record is
its type pointer. The fourth step is a Second Sort of the Token
file. This sort puts the file back into linear order. 1In the
final phase of the sort, the linear number is deleted from the
token record. The entire process is repeated for each input text
to be processed. A detailed description of these steps and the
job and program control statements which might be used for their

execution in an 0S/360 environment follows.

1 September 1970 47

Input Specification Processor

The general index program is controlled by job control state-
ments and program statements. Program control statements are read
from a data set defined by the SYSIN DD statement. Usually this
data set will be located in the input stream, and the DD statement

defining it would appear as follows:

//SYSIN DD
DUMMY

Program control statements

/%

Tt is possible to have no program control statements. In that
case, the SYSIN DD statements may be omitted entirely, or DUMMY
coded, resulting in utilization of default options as indicated

in the discussion of the individual program control statements.

Program Control Statements

Program control statements are coded in a manner similar
to that for the 0S/360 system utilities. The reader may wish to
refer to the IBM Systems Reference Library publication Utilities,
form GC28-6586, Appendix C.

Program control statements have the following standard
format:

name operation operand (comments)

1 September 1970 48

The name symbolically identifies the control statement and can
be omitted at the discretion of the user, When included, the name
must begin in column one and can consist of one to eight alphameric
characters, the first of which must be alphabetic, and must be
followed by one or more blanks.

The operation specifies the type of control statement. It
must be preceded and followed by one or more blanks.

The operand consists of one or more positional or keyword
parameters separated by commas. The operand field must be
preceded and followed by one or more blanks.

If desired, comments may be written in a control Statement,
but they must be separated from the last parameter of the operand
field by at least one blank.

Program control statements are coded on cards or card images.
Columns 73 through 80 are ignored. The control statement must be
contained in columns 1 through 71. A control statement that is
longer than 71 characters may be continued onto as many additional
cards as necessary. Continuation may be indicated in several
ways. The operand may be interrupted in column 71 and a nonblank
character placed in column 72. The operand may be interrupted
after a comma and a nonblank character in column 72,0r column 72
may be left blank. Note that if the last character of the operand
is not a comma (whether or not it is in column 71) the continuation
must be explicitly indicated by a nonblank character in column 72,
else the control statement will be interpreted as one which is
exactly 71 characters long. The continued portion of the control

statement must begin in column 16 of the following card; columns 1

1 September 1970 49

to 15 must be blank. Comments may be placed on any card containing

a complete or partial control statement.

FIRSTONE INDEX MAXDELIM=30,LENGTH=20, STORAGE=SIZEC

CATEGORY TYPE=BASE DEFINITION OF BASE CATEGORY

DELSI DELIMITERS SINGLE='"#$%"()*+@¢2/., 13", *
BLANK=YES

PARAGPH CATEGORY NAME=PARAGRAPH

DELS2 DELIMITERS BLANK=NO, '###','$$$"'="NEWPGH'

Notation for Defining Control Statements

The hyphen (-), underscore (), braces ({}), brackets ([1), or
symbol (1), and ellipsis(...) are used to define control statements
but are never written in an actual statement. Upper case letters
and words, numbers, and the apostrophe ('), asterisk (*), comma (,),
equal sign (=), parenthesés (()), and period (.) are written in
an actual control statement exactly as shown in the statement
definition. Lower case letters and words appearing in a statement
definition represent variables for which specific information is
substituted in an actual statement., Stacked items represent
alternatives; only one should be selected. Hyphens join lower
case letters and words to form a single variable, e.g., text-ddname.
An underscore indicates the default option. Braces and brackets
group related items, such as alternmatives. However, brackets indi~
cate optional items; everything within brackets may be omitted. An
éllipsis indicates that the preceding item or group of items may be

repeated more than once in succession.

I Heptember 1970 50

Program Control Statements
The following are the types of control statements accepted by

the Input Specification Processor:

The INDEX Statement

The INDEX statement is used to request that a text indexing
operation be performed' and to specify the maximum length and
maximum number of delimiters, and the amount of storage that the
index program may use. The statement is coded as follows:

[name] INDEX MAXDELIM=n,LENGTH=m,[,STORAGE=(to be defined later)]
[,LISTDD=1istddname]

If the INDEX statement is not present, then no CATEGORY or

DELIMITERS control statements can appear.

MAXDELIM=n
Specifies that a maximum of n delimiters will be specified
in subsequent DELIMITERS control statements. If this limit is

exceeded the program will not continue execution.

LENGTH=m

Specifies that the maximum length of any literal that will be
specified in subsequent DELIMITERS control statements ism. If a
delimiter is specified that is longer than this length, the
remaining characters will be ignored, and a warning message issued.
The maximum length that is permitted is implementation defined but
normally would not be more than 53 (see description of DELIMITERS

control statement).

1 September 1970 51

STORAGE=(to be defined later)

Specifies that the index program is to use no more than the
indicated amount of storage. (This will have to be fudged since
PL/I does not allow conditional storage allocation requests. When
implemented, the correspondence between core used and, say, the
dimension of some dynamically allocated variable will have to
be empirically determined.) If this parameter is absent, the

program will attempt to use all available storage.

LISTDD=listddname

Specifies that the DDNAME to be used for the message dataset
is listddname. If omitted, SYSPRINT is assumed. If nullified, no
listing is produced.

A possible embellishment is to permit any of the options of
the INDEX statement to be specified in the PARM field of the EXEC
statement. This would serve two purposes: (1) if no INDEX state-
ment were provided (e.g., //SYSIN DD DUMMY or no //SYSIN DD state-
ment at all), these options could be specified, and (2) the options
specified in the PARM field could override the normal defaults (if
any), setting new ones for a whole batch of INDEX'S (unless explicitly

specified on the INDEX statement).

The CATEGORY Statement

The CATEGORY statement is used to specify up to sixteen
additional categories for text processing. If used, all CATEGORY
statements must follow the INDEX statement, and come before all
TEXT statements. There are two versions of the CATEGORY statement

which are coded as follows:

1 September 1970 52

1) [namel CATEGORY TYPE=BASE
Specifies the base category. It is not necessary to code a
CATEGORY statement for the base category unless one wishes to pro-
vide a DELIMITERS statement to override the default values assumed
when no DELIMITERS statement 1s coded. This version of the
CATEGORY statement indicates that the specifications on the
following DELIMITERS statement (if any) are to apply to the base
category.
2) [name] CATEGORY NAME=category-name[,HIERARCHY=n]
Specifies an additional category other than the base category.
Any subsequent DELIMITERS control statement applies to this

category.

NAME=category-name

Specifies the category name. For example, NAME=PARAGRAPH.
This operand must be present when the second version of the
category statement is used, and must consist of one to twenty

alphameric characters.

HIERARCHY=n

Specifies that the designated category is a member of hier-
archy n. If this keyword is omitted, then 1 is assumed. The
hierarchy numbers specified on successive CATEGORY control state-
ments must be not more than one greater than the previous one or
an error will be signaled and the program will not continue
execution. (Note that the hierarchy number of the base category

is effectively zero.) The maximum hierarchy number is 16.

1 September 1970 53

The DELIMITERS Statement

The DELIMITERS statement specifies the category delimiter set.

If this statement is omitted, then defaults may be provided depend-
ing upon the hierarchy number and the implementation conventions.
This statement, if used, must immediately follow the CATEGORY
statement to which it refers. The statement is coded as follows:
[name] DELIMITERS SINGLE='...string of characters...'

BLANK={YES | N0}

{"xxxxxx'[="yyyy']...}

[PICTURE="zzzzzz"']
SINGLE='...string of characters...'

Specifies that each character enclosed within the apostrophes

is to be considered individually as a natural delimiter. The

maximum length of this string is implementation defined, but should
not necessarily be dependent upon the LENGTH parameter of the INDEX
statement. If it is desired to include an apostrophe, it must be
represented as two consecutive apostrophes.

For the base category only, it is possible to specify
SINGLE='"', that is, nullify the natural delimiter set. This
specification causes the program to treat each letter (character)
as a token. Note that BLANK=YES may still be specified. Indeed,
any of the delimiter specification options described below are
compatible with SINGLE='', Whenever more than one delimiter is
specified, the program will always scan for delimiters in order
of decreasing length. Treating the blank as a token may be
useful in certain instances where the format of the text has been

altered, or it is simply desired to consider blanks to be tokens.

1 September 1970 54

BLANK={YES N0}

specifies whether or not the blank character is to be consid-
ered a category delimiter. If this operand is omitted then NO is
assumed. YES would normally be specified only for thg TYPE=BASE
category. (This operand is necessary because the text might have
been altered from the conventional format of texts for various
valid reasons, and blanks do not delimit tokens.,) If BLANK=YES,
the blank character will be considered an unnatural delimiter.

However, there is an exception to this described below.

T YXKXXX
specifies that the string 'XXXXXX' is to be considered a
category delimiter. The string 'XXXXXX' will be treated as a
natural delimiter, and can be of any length up to the implemen-
tation defined maximum (but not exceeding that specified on the
INDEX control statement). In particular, strings of length one
and the null string may be specified. Specification of the null
string is equivalent to SINGLE=''., 1If the string is the blank

character, then the blank is viewed as a natural delimiter.

[='yyyyyy']

specifies that the string 'YYYYYY' is to replace the string
'XXXXXX' in the TOKEN file., If 'YYYYYY' is the null string, then
the delimiter 'XXXXXX' is not to appear as a token - i.e., it is
an unnatural delimiter. The replacement string is optional.
The specification ' ' ='' is equivalent to BLANK=YES. The

]

specification '$$$'="' implies that $$$ is an unnatural delimiter.

o

1 September 1970 55

PICTURE='ZZ2Z2Z'

Specifies that the delimiter contains variable alphanumeric
information. A variable digit is coded by a "9", a letter by a
"V"., Constants are enclosed in parentheses. Thus,
PICTURE="'(MILT)9999' signifies that any text string composed
of the string "MILT" followed by four digits is a delimiter.
This feature can be used for numbering lines of poetry.

Default options will be implementation defined for all
categories (including the base category); consequently, the

use of DELIMITERS statements is optional.

The TEXT Statement

The TEXT statement is used to identify the texts that are
to be processed and the data sets onto which the index program
output is to be written. The statement may also be used to
specify margins for text retrieval. The statement is coded
as follows:

[name] TEXT [FROMDD=text-ddname,TODD=(token-file-ddname,
type-index~file-ddname,text-glossary-ddname,
group-index-ddname) ,]

[NAME=textname,]
[LENGTH=n,]
[FIELD=(length,left-margin,right-margin)]

FROMDD=text-ddname

Specifies the DDNAME of the data set from which the program
is to read the input text. TIf this operand is specified then

the TODD operands must be also. If omitted, the default name

TEXT is supplied.

1 September 1970 56

TODD=(token-file-ddname, type-index-file-ddname, text-glossary-
ddname, group-index~-ddname)

Specifies the DDNAMES of the data sets that the program is
to use for the four output index data sets. If this operand is
specified then the FROMDD operand must also be given. If

omitted, defaults of (TOKEN,TYPE,GLOSSARY,GROUP) are used.

NAME=textname

Specifies that the text name is to be textname. If there
are blanks in the textname then it must be enclosed in
apostrophes. If this operand is omitted the input DDNAME is

used.

NAME=#*
Specifies that the first logical record of the text

dataset is to be interpreted 'as the text name.

LENGTH=n

Specifies the maximum token length to be admitted is n.
Tokens in the input text longer than n characters will be split
into two or more '"tokens" of the maximum length. If this

operand is not specified then a default will be provided.

FIELD=(length,left-margin,right-margin)

Specifies the length of a logical record in the input text
dataset and the limits of scan for text, Since the input text
file is processed by STREAM I/0 this parameter need not be
specified unless the left or right margins are not 1 and length,

respectively. If not specified, defaults of (80,1,80) are

1 September 1970 57

supplied. The program will read length bytes and extract text

from positions left-margin through right-margin for processing.
For example, a specification of FIELD=(400,1,320) and an input
text dataset actual LRECL of 80 would result in every fifth

logical record (e.g., card) being skipped.

The END Statement

The END statement is used to terminate all processing. Its
use is optional. If coded, any control cards after it will not
be processed. The statement is coded as follows:

[name] END optional information/comments

Examples
The following example illustrates the simplest procedure that
can be executed by the general index program.
//INDEXIT JOB (acct.info),'pgmr.name',MSGLEVEL=(1,1),REGION=44K
//STEP1 EXEC PGM=GENINDX
//STEPLIB DD DISP=SHR,DSNAME=your .program.library
//SYSPRINT DD SYSOUT=A,SPACE=(space information),
// DCB=(RECFM=VBA,LRECL=137 ,BLKSIZE=1648)
/ / TEXT DD DISP=SHR,DSNAME=input.text.dsname
//TOKEN DD DISP=(,PASS),DSN=&TKNFIL,UNIT=SYSDA,
// SPACE=(space information),DCB=(DSORG=DA,OPTCD=R,BLKSIZE=nn)
/ /[TYPE DD DISP=(,PASS) ,DSN=&TYPNDX,UNIT=SYSDA,
// SPACE=(space information),DCB=(DSORG=DA,BLKSIZE=nn,
// KEYLEN=max-token-length+l)
//GLOSSARY DD DISP=(PASS) ,DSN=&GLOSRY,UNIT=5YSSQ,

// SPACE=(space information),LABEL=(,SL)

1 September 1970 58

//GROUP DD DISP=(,PASS),DSN=&GROUP,UNIT=SYSDA,
// SPACE=(space information) ,DCB=(DSORG=DA,BLKSIZE=??)
//SYSIN DD DUMMY

/!

Input Specification Example

The following example illustrates the processing of more than
one text with varying specifications.
//EX2 JOB (acct.info), 'pgnr.name' ,MSGLEVEL=(1,1) ,REGION=A4K
//STEPONE EXEC PGM=GENINDX,PARM = 'LISTDD=0UTPUT'
//STEPLIB DD DISP-SHR,DSNAHE-your.progtam.library
//OUTPUT DD SYSOUT=A,SPACE=(space information),
!/ DCB=(RECFM?VBA,LRECL-137,BLKSIZE-1648)
//TEXTL DD *
this is the text name for the first text to be processed!
1/ DD DISP=SHR,DSNAME=STORED.TEXT1
//TOKEN1 DD DISP=0LD,DSNAME=TEXTI.NEW.TOKENFIL
//TYPE1 DD DISP=0LD,DSNAME=TEXT1 ,NEW,TYPEFIL
//GLOSS1 DD DISP=0LD,DSNAME=TEXT1.NEW.GLOSSARY
//GROUP1 DD DISP=OLD,DSNAME=TEXT1.NEW.GROUPFIL
//TEXT2 DD DISP=0LD,UNIT=(2400,2,DEFER) ,LABEL=(,NL),
// VOL=(,RETAIN,2,,SER=(TAPEO1,TAPE02)),
// DCB=(RECFM=FB,LRECL=130,BLKSIZE-2600,EROPT-ACC)
//TOKEN2 DD DISP=(,PASS),DSN-&TOKEN,UNITb2314,SPACE-(CYL,(5)),
// DCB=(DSORGSDA,OPTCD-R,BLKSIZE-IG)
//TYPE2 DD DISP=(,PASS),DSN=4TYP ,UNIT=2314,SPACE=(CYL, (5)),

// DCB=(DSORG=DA,BLKSIZE=nn,KEYLEN'IG)

<

1 September 1970 59

//GLOSS2 DD DUMMY,DCB=BLKSIZE=69 (to prevent undefined file on OPEN)
//GROUP2 DD DISP=(,PASS),DSN=&GRP2,UNIT=2314,SPACE=(TRK, (10,2)),

// DCB=(DSORG=DA, BLKSIZE=?? ,KEYLEN=20)

//SYSIN DD *

RUNTWO INDEX MAXDELIM=20,LENGTH=13,STORAGE=SIZEA

BASECAT CATEGORY TYPE=BASE

BASDLIM DELIMITERS BLANK=YES,SINGLE='"#$%&%~/,ss4=""/%" "%/"

CAT1 CATEGORY NAME=PARAGRAPH

PGHDLM DELIMITERS '$§$'=""'

CAT2 CATEGORY NAME=XXXXXXXX,HIARCHY=2

XXD1LM DELIMITERS '$$$85S8'=""

TEXT1 TEXT NAME=%* LENGTH=12,FROMDD=TEXT1, TODD=(TOKENL, TYPEL,
GLOSS1,GROUP1) ,FIELD=(80,2,72)

TEXT2 TEXT NAME='THIS IS TEXT # 2',LENGTH=15,FROMDD=TEXT2,
TODD=(TOKEN2 , TYPE2 ,GLOSS2,GROUP2) ,
FIELD=(130,22,117)

END THIS WAS RUN # 2
//STP2 EXEC PGM=.,. to process the output files

/!

Text Scan Processor and Sorts

The second basic routine is the text scan processor. This

routine is the most critical factor in the overall performance
of the program. It is probable that it will run CPU~limited on a

Model 75. The purpose of the text scan processor is to locate

1 September 1970 60

tokens in the input text, assign them a iiﬁear pumber and a
category change indicator, and pass them to the first token
sort. If enough core is available, processing can be
expedited by passing the tokens directly to the 0S/360 sort
program via the PL/I facilities. This will .increase the core
requirements by approximately 30K bytes, and the sort program
DD statements will have to be added to the job step. The
advantage of doing it this way is that a sort routine will not
have to be written to handle the expected large volume of text.
The 0S sort program will sort all of the data in a small regiom.

As a token is located, its-'token record is immediately
sent to the sort program. When a non-base category change
occurs, this is noted and sent to the sort in appropriately
coded form for the eventual placement of this data into the
Group Index file. This file will be written when the sort is
finished. The text scan processor signals the sort routine that
all records have been passed. The Token- and Group Index file
records are then sorted. As they return from the sort program,
four processes occur: First, the Group Index file is written;
Next, the occurrences of types are noted and the Type Index file
is written; Third, the Type Blossary file is written; Finally,
each sorted token record with its newly inserted type pointer is
written into the Token file.

Thus, after the first token sort is complete, the Type
ndex file, the Type Glossary file, and the Group Index file are
completed. The Token file has been written, but it is not in

linear order. It must be re-sorted in order to get it back into

1 September 1970 61

original text order., This roundabout process is necessary because
at the time that the Token file could have been written in linear
order, the Type Index file pointer was not available. Re-sorting
is the simplest way to get it back into order.

The next process is to send the token records back to the sort
routine. This process is termed the second token sort. The OS
sort program is again invoked, except that this time it is
directed to read the input records from an existing disk data
set, namely the Token file, by passing the DDNAME of the Token
file to the sort program instead of obtaining the input records
via a PL/I procedure as in the first token sort. Having the
sort program obtain the input records directly is desirable
because the records are already on disk and having the PL/I
program read them and pass them to the sort program in a
procedure would simply be wasted effort. As the resorted token
records return, the Token file is rewritten, this time dropping
the linear numbers since it is now in correct order.

The program is now finished. All files are closed and
control is returned to the input specification processor. If

there is another TEXT control card, the process begins again.

File Processing

As noted previously, there are four output files. One, the
Type Index file, is obviously a candidate for REGIONAL(3)
organization. The Type Glossary file may be a simple sequential
file. It can be located on any 'SYSSQ'" device, tape being a good

candidate if disk space is at a premium because of the Token

1 September 1970 62

and Type Index files. Alternatively, REGIONAL(l) organization can
be used., The Group Index file is a special case. It could just
as well be sequential, but our preference is to make it REGIONAL(3)
for the same reasons that the Type Index file is REGIONAL(3), and
access the category records using the category name specified on
the CATEGORY control card as the key. It is desirable to

place the (logical) Group Index file physically with the ype
Index file, that is, as a prefix to the Type Index file. Under
certain circumstances this may not be feasible. In particular,
the Group Index file records and keys must fit onto the data set
which is to contain the Type Index file. Since the maximum size of
any block must be specified, placing the Group Index records onto
the Type Index file could require a larger maximum blocksize
(BLKSIZE) specification, and the length of the keys (KEYLEN) of
the file would be the maximum of the length of category names
(which is 20) and the maximum token length+l. If one wished to
store only 12 byte tokens he would be wasting 37% of the avail-
able space on a 2314 track in order to store an extra 21 bytes per
Type Index record (see discussion below). This is, however, the
worst case. It is much simpler, we feel, to place housekeeping
information on a single, separate file, e.g., put all "header"
records and the Group Index file on a separate REGIONAL(3)
dataset; although not efficient in terms of storage, it is
preferable in terms of program complexity and CPU processing time.
This data could be accessed once, and the file closed, then
reopened every time another access was needed, and the program

would run faster and use less core than otherwise. In order to

1 September 1970 63

make a definite choice on this particular subject, it would be
helpful to perform some empirical tests.

The Token file is designed to be a sequential file processed
by STREAM I/0. REGIONAL(l) is an alternative choice for this
file. Unfortunately, this mode of organization would require more
storage (since fixed length records must be used).

The Type Index and Group Index files present an unusual
application of REGIONAL(3) organization. Usually when one uses
a REGIONAL(3) file, there is some obvious relationship between
what is going into it and where it should go, i.e., the track
or region number. But in this case REGIONAL(3) is being used
only because a DIRECT file with variable length records is
needed. There is no real need to control the physical placement
of any particular record., So what really needs to be done here
is to write (create) the Type Index data set 'consecutively,"
packing the records onto the disk just as they come. But a
REGIONAL(3) data set cannot be created with a CONSECUTIVE file
as can a REGIONAL(l) data set. This inability to use a
consecutive file appears to be a problem because the program is
forced to specify a region number - which is something it does
not really know how to do, since it cannot know how many records
will fit onto one track - they are, after all, variable in length.

The solution to this problem takes advantage of the fact
that region numbers are automatically incremented -- once. When
an attempt is made to write a record to a region (track) that has
become filled, the operating system will increment the region

number automatically, that is, write it onto the next track

1 September 1970 64

(region). Subsequently, when the same WRITE .statement is executed
again —- specifying the same (old) region number -- the PL/I KEY
condition (sequence error; ONCODE = 53) is raised. When the KEY
condition occurs, the program must do three things. First, the
region number pointer(s) in the Token file for the previous Type
Index file record (which had its region number incremented
automatically) must be updated. This updating simply involves
delaying the writing of the Token file records until the next

Type Index file record has been successfully written. Second,

the program variable for the region number must be updated. Third,
the interrupted WRITE must be reissued, with the now updated region
number, ON UNIT processing consists of up-dating the region
number, up-dating the region number pointers in all the token
records for the last type, and branching to the offending WRITE
statement.

To search the Type Index file for a particular type it is not
necessary to know the region number. Simply specifying a region
number of 0 (1 if region number 0 contains header data) will cause
the entire file to be searched. For a large file, this could be
quite slow (approximately 1.6 minutes for a whole 2314 disk pack).
If REGIONAL(l) organization is used for the Type Glossary,
significant search time reductions for the Type Index file will
result if the region number of the type is stored with the Type
Glossary record. Another alternative is to store in the Group
Index file a table containing the last type written in each
region (track). This table would be relatively small and could

be rapidly searched.

-

1 September 1970 65

It should be noted that the use of REGIONAL(3) for the Type
Index file has one disadvantage. The word itself is recorded
three times: once in the data itself, again for the key area of
the record, and once more for the key area of the block (which
contains just one record). The last two cannot be disposed of.
The type should, therefore, be eliminated from the Type Index
record, since to read it, the word itself is required as the key
unless the file is being read sequentially; in the latter case
the KEYTO option will retrieve the key of the type index record

being read.

Qutput Record Formats

(1) The Text Header Record

This record contains the control information given in the
input specification cards and various counts useful for subse-
quent processing. Precise formating and location are implementa-
tion defined. It seems best to locate this header information in
the Group Index file. However, there may be advantages to pre—r
fixing each file with some portion or all of the header record.
The record should contain the following:

(1) Text Name

(2) # of Tokens

(3) # of Types

(4) Max. Token Length

(5) # of Categories (other than base-category)

(6) Vector of Category Names

(7) # of Hierarchies

1 September 1970 A6

(8)

(9)

(10)

(11)

A hierarchy vector of extent cqual to the number of
categories -- cach clement to contain the hierarchy
number of the corresponding category.

A vector with frequencies for each category.

A ddname table - a table containing the ddnames of all
output files for this text.

.t
Type Index region table (optional) - a vector whose i h

entry is the kev of the last type recorded on the ith

region.

(2) The Token Record

The Token file should contain the following:

1)
(2)
(3)
(4)
(5)

Type pointer
Region # (optional)
CC indicator
Token length

Token

The Region # field contains the region number of the word type.

Thus fields (1) and (2) enable one to address directly the type

index record corresponding to a given token.

Although the Token file is to be processed as a stream file,

it is possible to avoid time and space-consuming data conversions.

All fields can be written in A-format and processed with the

UNSPEC built-in function. The Token record could be processed in

PL/TI as follows:

del

1 token_record,
2 convert

3 type ptr fixed(15,0) bin,

or

1 September 1970 67

3 region # fixed(15,0) bin,

3 cc_ind bit (16),

3 token_len fixed(15,0) bin,

2 token char(maxtoklen) var,
str char__ (8)__ defined convert;
/* maxtoklen is the maximum token length */
/* str overlays the convert structure and
eliminates data conversion */

get file (tok) edit (str,token) (a(8).a(token len));

/* This reads the token record into the structure token-record.
No data conversions are performed and no extra processing
steps are required - furthermore when processed in this way,
a token record requires token lent+8 bytes instead of token

len+28 bytes - a substantial saving. */

(3) The Type Index Record

Type file records should contain the following:

(1) Type length

(2) rType

(3) Type frequency

(4) Vector of indices (linear occurrences) of this type.
Fields (1)-(3) require no explanation. Field (4), however, will
necessarily present implementation difficulties. If the Type
Index file is sequential (not the preferred alternative), then
an extra temporary file will be needed to build the vector of
indices (at least for words with large frequency). The reason

for this is simply that it is most desirable to have the type

1 September 1970 68

frequency precede the vector of indices. If the file is DIRECT
and REGIONAL(3) organization is used, this difficulty does not
arise. FHowever, it will be necessary at times for a single type
index record to span several logical (and perhaps even physical)
data set records., This must happen since it is necessary to
bound in advance the logical record length of the Type Index
data set. Consequently, there will be a bound on the dimension
of the vector of indices, a bound which surely will be exceeded
by some word types. When this happens, several logical data set
records must be used to represent a single type index record.
Thus, the implementation will require an additional character
position in the record key to indicate the sequence of the

logical data set record within the Type Index record.

(4) The Type Glossary Record

This record will contain fields (1)-(3) of the Type Index

record.

(5) The Group Index Record

This record will contain the following:

(1) The Hierarchy number

(2) The Category number

(3) The number of Category Changes

(4) The Vector of rightmost indices for the Category.
All of the considerations given above for the Type Index record

apply to field (4) of this record.

1 September 1970 69

A Preliminary Version of the General Data Formating Program

In this section we describe the preliminary version of the
program written by Joe Ragland. The ideal version discussed above
was not fully designed when the programming effort began and the
parallel theoretical and practical work complemented each other
nicely. We quickly realized that the first routine, the input
specification processor, would entail considerable programming
time and yet would not significantly affect expected program
execution time. For this reason it was decided to employ, for
the most part, the input specifications used by the already

existing VIA INDEX program.

Category Restrictions

s

Emphasis was placed on the efficient handling of large
prose texts. Thus the set of delimiters for the base category
is restricted to the blank character. All punctuation marks,
such as the comma, the quotation mark, etc., are assumed to be
separated by one or more blanks. The blank itself is comnsidered
an unnatural delimiter. Eight non-base categories and two
hierarchy levels are allowed. The first four categories are
used for logical text groupings, while the last four are used
for physical groupings. Explicit category names are not present.
Implicitly, the first two denote sentence and paragraph
respectively. The categories and their delimiter sets are as

follows:

1 September 1970 70

Hierarchy Category Delimiters

1 1 (Sentence) £.,2,"

1 2 (Paragraph) {..}

1 3 (Chapter) {$$s}

1 4 (Volume) {$8ss}

2 5 (Line) {¢}

2 6 (Page) {eel}

2 7 {¢eel

2 8 {cecl

Each delimiter is assumed to be surrounded by one or more blanks.
No interpretation is provided for categories seven and eight.
There appeared to be no need for more than eight categories and
two hierarchies. Moreover, the restriction to eight categories
allowed the use of one byte (or character position) to represent
the CC indicator bit string. All delimiters except the sentence
delimiters are considered unﬁatural and are not retained in the
token file. The paragraph delimiter, however, is réptaced with
1o

the sentence delimiter '.' whenever a paragraph change is not

immediately preceded by a sentence delimiter.

Text Parameters

For each text to be processed, a text header card must be
present on SYSIN. This entire card is retained as part of the
header record that prefixes each output file. The text itself
need not be on the SYSIN data set. One of the parameters that
may be specified on the EXEC card is the input text file ddname.

if no ddname is present, SYSIN is assumed. The other parameters

1 September 1970 71

passed in this way are TLEN, CDMGIN, and SIZE. The parameter
TLEN gives the maximum token length; the default is TLEN=18.
CDMGIN=(XX,YY) specifies that the input text logical records
are to be scanned from XX to YY. The default is CDMGIN=(1,72).
The SIZE parameter gives the amount of storage available for
the 0S/360 SORT program. The default is SIZE=44000. Because
of the 0S/360 sort requirements, TLEN must exceed 10 and SIZE

must be at least 30000,

Program Structure

The program is composed of three external procedures - viz.,
DETEXT, SORT1, and SORT2. At present the program also contains

a listing routine for testing purposes.

The DETEXT Procedure

This main procedure scans the PARM string from the EXEC
card and determines program options. It then calls SORT1 and

SORT2.

The SORT1 Procedure

This procedure performs the following functions: text
scanning, first token sorting, and type index, group index,
and type glossary building. The 0S/360 sort is dynamically
invoked within this procedure. As the text is scanned, token
records and group index records are sent to the sort. The
sorted output is used to write out all files except the token
file. The procedure is essentially as described above.

There is one important difference, however. It was deemed

1 September 1970 72

more expedient to use only sequential files in this preliminary
implementation. This cheice necessitated the use of.a tempotary
file to hold the vector of indices whenever: the extént of this
vector exceeded 100. The need for doing this for the Group
Index file was obviated by a decision to change the group

index record format to one in which the category number

precedes each of its rightmost linear numbers.

The SORT2 Procedure

This procedure performs the second token sort and writes
out the token file in final form. An attempt was made to pass
the DDNAME of the temporary token file when invoking the sort
in order to avoid passing the records themselves to the sort.

As indicated above this appears to be the most efficient method.
However, technical difficulties were encountered and it was

decided to pass the records to the sort.

Record Formats

The record formats employed differ somewhat from those
described above. They are as follows:

(1) Header Record

This record is 134 bytes long and precedes each file

produced.
Field Format
file name (e.g., 'TOKEN') A(5)
rext id A(80)
maximum Token Length F(3)

total number of tokens F(6)

1 September 1970 73

Field Format

number of occurrences:

category 1 F(5)
category 2 F(5)
category 8 F(5)

(2) Type Index Record

Field Format
Token Length A(2)
Token A(token length)
Frequency A(2)
Vector of indices A(4) (Frequency)

Note that internal representation of numeric information is

preserved and conversion avoided through the use of A-format
and overlay defining., Thus, internally token length is fixed
(15,0) and each index is fixed (31,0). These records can be
read using the technique illustrated above in the discussion

of the Type Index record.

(3) Type Glossary Record

Field Format
Token Length A(2)
Token A(Token Length)

Frequency A(2)

1 Septemher 1970 74

(4) Group Index Record

Field Format
Category number A(1)
Tolkon nunber A(H)

(5) Token Record

Field Format
Type pointer A(2)
CC indicator A(1) (internal repre-
sentation of B(8))
Token length A(2)
Token A(token length)

Note again that in all of these records the internal representation
of the fields is preserved in the external representation of the
record on a data set. Fach of the four files, the Token file,

the Type Index file, the Group Index file and the Type Glossary
file, is sequential and designed for stream processing. The

Token file is in linear text order. The Type Index and Glossary
files are in alphabetical order. The Group Index file is in
category number order. Each file is prefixed with the header
record. Particular DDNAMES have been assigned. These are TOKEN,
TYPE, GLOSS, and INDTAB. The name INDTAB is for the Group Index

file. The other name associations are obvious.

Storage and Time Estimates

As of this writing the program is in the final testing phase
and consequently no exact data are available. However, some
remarks can be made. First, the storage requirements were

larger then expected. A considerable amount of space is

I September 1970 75

required for buffers and the sort program if efficient running
times are to be achieved. We do not yet know the optimum trade-
off point, but it does seem that 44K is appropriate for the sort and
that a 7200 byte blocksize is best for fast input/output. This
entails the use of approximately 100K bytes.
Preliminary timing estimates show that the program is
indeed fast. A text of 175,000 words can be completely processed
in less than 25 minutes on a Model 75. A text of 20,000 words

was processed in 4 minutes.

4., A Design for a General Statistical Analyzer
for Natural Language Texts
by

John B. Smith

If we assume the desirability of making a number of statis-
tical measures over a text of natural language, we are faced with
the question of what such an analyzer should look like. 1In this
discussion I shall examine some of the general problems inherent
in a procedure of this kind and then suggest what some of the
characteristics of a computer program to make these counts should
be.

First, we must infer what sorts of counts or measures are
likely to be wanted. Many of these will fall into several
fundamental categories. These include determination of whether

or not a unique string occurs in a text: a count of the number

1 September 1970 76

of times such a string occurs in the text; and perhaps a linear
distribution of'its occurrences over the text, or certain sub-
sections of the text. Next we may want to group several such
strings into categories and determine the presence of the
category in the text, its frequency, and/or its linear distri-
bution. Also, we may desire individual counts and distributions
of the elements of the category, but these statistics represent
only repetitions of the first class of measures mentioned.
Thirdly, we may wish to determine the existence of particular
configurations of categories, the frequency of occurrence of
these configurations, and, again, their distributions. This
third class of measures may be "simple," applying only to
sentences - for example, syntactic analysis; or it may be
extensive and attempt to define the entire semantic structure
of a text in terms of associations or linkings among a set of
categories. No assumptions are made concerning the population
over which these measures are taken; therefore, inherent is
the possibility of comparing various texts, canons, even
languages when such amalgamations are viewed as independent
categories. Thus, it should be possible to place most, if not
all, statistical measures into this taxonomy. The practical
result is that a program that can make the kinds of measurements
we have described should have enormous flexibility. The
program described below represents one attempt at defining such
generality into a workable system,

There are five basic sections of the Analyzer. A driver

program allocates resources, determines analytic methods, and

1 September 1970 77

"oversees" the operation of the entire complex. Input and output
functions are handled by independent modules. Analysis requests
are scanned by a module that establishes logical control vectors
to be used by the driver program, Finally, there are a number of
analytic modules that perform a variety of functions including
making various counts, searching for associative tendencies among
elements and categories, and mapping of elements onto thesaural-
like semantic structures., Not all of these analytic methods will
be available from the start, but because of their modularity they
can be added as they are written and as research needs expand and
change. TFor each analysis module, there will be a separate
request analyzer subprogram to examine the parameters necessary
to define a particular run request. Each of the five major
divisions of the program will be described in detail below.

The master control program or driver program manages the
individual subroutines and the allocation of resources. Upon
initiation of the program, its first task is to pass control
to the run request analyzer which either reads a card from the
card reader or receives a line of input from a remote terminal.
Upon completion of the run request analysis, this program is
returned a control vector indicating the various text analytic
modules to be used, individual control vectors for them, control
information for input data sets to be used, and the particular
configuration of output display facilities requested. From a
consideration of the number and kind of individual statistical
measures to be made, the driver allocates various arrays,

structures, banks of counters, etc. as permissible from resources

1 September 1970 78

available. If analysis is to be performed on only a portion of a
text or data set, this information is set up in logical form for
the input program. Data sets are then opened and control passed
to the input routine. After this step, control is passed back

and forth between the input routine and the analysis modules until
the analysis is complete or the ends of the data sets are reached.
At this time the driver again assumes command and establishes any
control necessary for post-analysis processing such as sorting,
accumulating frequencies from scratch data sets, etc., The Output
program then takes control, performs the "housekeeping" functions
described above, and prepares the final printed or graphic display
of the results of the analysis as well as machine-readable data
sets of these values. If the program is being run in the conver-
sational mode, output is directed to the terminal and the driver
waits for additional instructions: if not, the driver terminates
operation.

The second phase, the run request analyzer, consists of
several modules that are brought into operation according to the
specific analytic modules called for. 1In explaining this process,
I shall use for an example the request analyzer associated with
the COUNT analysis program that compiles a number of counts or
distributions over a text. This particular analyzer is called in
when the keyword COUNT appears on a run request card. What
follows is a series of requests for specific distributions defined
in terms of four major kinds of parameters. (In effect, the set
of these parameters and the ordering procedure that determines

how they can be arranged amounts to a fourth level 'user language'.)

1 September 1970 79

The first two parameters specify a particular alphabet or set of
symbols to be used and the name of a dictionary in which text
words exist in terms of the symbols of this alphabet. For
example, the alphabet could be the set of phonemes for English and
the dictionary, "TEXT,PHONEME," could contain the text expressed
in these phonemic symbols. Logically, the dictionary entry could
refer to a subprocedure or algorithm that converts the character
representation of a word into the appropriate alphabet-symbol
representation. More will be said below in the discussion of the
Input procedure concerning the assumed data format of the
dictionary.

The third level of parameters specifies the linear dimensions,
if any, to be used in the analysis. These values are used to
develop distributions such as words per sentence, nouns per 500
words of text, etc. Within this level are five specific parameters
that are arranged as follows: n(xl,yl)(xz,yz)XN. Starting from the
inside and working out, the (xl,yl) refers to the upper limit of
an index hierarchy for which counts are developed, Assume, for
example, that the scheme of INDEX including counts for volume,
chapter, paragraph, sentence, and word-in-sentence had been used
for hierarchy one; then (1,3) would refer to the paragraph level.
If this were the only parameter specified, the program would
develop all distributions of the hierarchical scheme below this
level: namely, character/word, words/sentence, character/sentence,
words/paragraph, sentences/paragraph, etc. If the ordered pair
(x2’y2) had been specified, then only those counts between the two

levels would have been made., For example, (1,3)(1,4) would

1 September 1970 80

develop the distribution for sentences/paragraph only. The
symbol X may be used if only a particular count is desired.
((1,4)X would result in a count of words/sentence.) Without
the second hierarchical level specified, the basic unit is
assumed to be words; however, if the second level is indicated
in conjunction with X, that unit is taken as the "atom" for
the distribution. Thus (1,2)(1,4)X would result in the
distribution of sentences/chapter only.

The last symbol in the sequence, N, is used if counts are
to be normalized. If one were studying the distribution of
function words over sentences, he would most likely wish to
have this distribution normalized between 0 and 1 so that he
could determine the relative, not absolute, placement of this
category of words. Thus the position in the sentence when such
a word appears is divided by the length of the sentence, thereby
giving the relative proportion of the way through the sentence --—
or normalized distribution -- at the occurrence of these function
words. Finally, the first symbol, n, specifies that a group of
elements is to be used as the basis of the distribution. If
nothing else follows n, the unit is assumed to be words. Thus,
"500" would imply that counts are to be made for each 500-word
unit of text. 5(1,3) would indicate that hierarchical counts
are to be accumulated for each five paragraph blocks of text.

The fourth level of parameters is similar to the third
but allows the user to partition his distribution into several
separate sets of counts. For example, the user could obtain

separate distributions of function words per sentence for

1 September 1970 81

sentences of length 1-10 words, 11-20, 21-30, etc. This facility
may reveal important conditional characteristics of certain
stylistic features that vary according to particular textual
dimensions. The general format of this level of parameters is
m(x3,y3)(x4,y4). As before, the (x3,y3)(x4,y4) terms specify
the units and appropriate level at which these units apply. M
specifies the multiple size., Thus 50(1,3) would indicate that
paragraph counts are to be broken into distributions based upon
50 word units. Separate distribution would be maintained for
paragraphs of fifty words or less, paragraphs of 51-100 words,
etc. Similarly, 10(1,3)(1,2) would indicate that separate
distributions are to be kept on the basis of the number of
sentences per paragraph: i.e., paragraphs of 1-10 sentences,
11-20 sentences, etc.

Obviously, not all of these four levels of parameters will
necessarily be used all of the time: and, indeed, not all combi-
nations are meaningful to the analyzer. For example, there can be
no fourth level partitioning of counts unless level three is
defined for a particular analysis. A rough guide to admissible
combinations and the kinds of counts they develop is indicated
by the table on the following page in which a "1" indicates that
a parameter of some kind is present for that level and a "0"
implies the absence of that level parameter. Similar to this
kind of organization, additional request analyzers will be
developed for other processing modules.

The input phase of the program is kept logically independent

1 September 1970 82

to allow the user to adapt his data sets to the format requdred for
analysis. The program is set up to take as input combinations of
the output data sets from the INDEX program described elsewhere in
this report. From those data sets, the INPUT subprocedure prepares
data lists in fixed formats required by the analysis modules. For
example, a distribution of the frequency of occurrence of phonemes
over a text would require that the INPUT program first pass to
COUNT a type list of phonemic symbols. Then, as the data is read,
it would construct lists of text words defined in those same symhbols.
COUNT would in turn analyze these lists. Similarly, if hierarchical
counts are being made, the input program would pass:-a text-ordered
list of logical vectors (00011, etc.) that indicate what positions
in the hierarchy are changing with a particular text word or
punctuation mark. If the user's data is in a different format from
that provided by the INDEX package, he can substitute his own INPUT
module to accept his data set and produce the necessary lists of
data required by the analysis modules.

The analysis phase of the program is kept modular to allow
for growth of the system. Most immediate plans call for the
development of the COUNT procedure, discussed briefly above; how-
ever, it is likely that after the completion of that procedure a
VIA analyzer for semantic associations and a principal component
analysis program for developing tendencies among words or groups
of words to appear in close proximity in a text or some section
of a text will be adapted to this modular design. Since COUNT
is the analysis procedure that is most likely to be developed first,

more discussion of its operation is in order.

1 September 1970 83

As mentioned in the description of INPUT, COUNT takes as its
input an ordered list of data. On that list, according to the
control parameters passed to it by the driver program, COUNT
accumulates several kinds of statistical measures. First, if an
alphabet is specified, it establishes a bank of counters corre-
sponding to that list of symbol-types. Then as the text is passed
to it in terms of those symbols, it increments the appropriate
counter., For example, if the text word were "a t", the counter
for 2 would be incremented by one as would the counter for t.

If some type of hierarchical count is being made, COUNT receives

a text-ordered list of logical bits that indicate what level of the
hierarchy is changing with the current text word. TFor example, if
the text word was a "." that happened to end a paragraph and if

the indexing hierarchy established was for volume, chapter,
paragraph, sentence, and word in sentence, then the logical vector
would be (00111) indicating that word, sentence, and paragraph
counts all change with this symbol. COUNT would, in turn, increment
the appropriate counters for each of these levels.

The third major function of this procedure is to maintain
separate distributions for various textual parameters. This function
is handled by outputting the data accumulatéd into a temporary data
set corresponding to the appropriate partition. If, for example,
the data is to be partitioned according to paragraph length in
multiples of ten sentences, there would be a temporary data set
for counts for paragraphs of length 1-10, one for 11-20, etc.

It would then be the responsibility of the OUTPUT procedure to accumu-

late these individual counts and print out or otherwise display the

1 September 1970 84

results.

OUTPUT has four major functions. Its primary responsibility is
to display in an efficient and effective format the statistical counts
developed by the analysis procedures. This may be in list form or it
may be the plotted output of line graphs, histograms, etc. Secondly,
it should store these data in a machine-readable form so that they
may be used in subsequent analyses. Formats should be written onto
the data sets themselves in a form that the INPUT procedure may
analyze and use and thus relieve the researcher of many of the
headaches of file manipulation and compatibility. Thirdly, in some
analyses, temporary data sets were created. 1In these cases the
OUTPUT program will sort these records, if necessary, accumulate
counts, and then display and store the results. Finally, in
analyses that require additional utilities -- such as principal
component analysis -- the OUTPUT procedure will prepare the counts
accumulated in a format that can be used by the utility, write this
data along with card images of required control statements onto a
temporary data set, and then pass control to the system for
execution of the utility program.

Because of the modularity of this package, it should provide
enormous flexibility for the user, With it, he will be able to
accumulate the large number of parametric values necessary to
test actively complex models of style and content so that these

areas may move from speculation into validated implementationms.

1 September 1970 85

VIA
(s/360 PL/I)

User's Manual

H. William Buttelmann
John Smith

David Wagner

1 September 1970 86

PART 1I.

3.

PART II.

4.

5.

10.

CONTENTS

INTRODUCTION

VIAl - Data Preparation
Introduction
Programs . « « + o & &
2,1 INDEX
2.2, SORT
2.3 PREFIX
2.4 SUFFIX
Activation
VIA2 - Data Analysis .
Introduction
SELECT

MAPTEXT . . +« « « & + &«
LIST

BLDLIST .

RING « « o + &

BLDRING . .+ « « + + « &

Page

87

89
89
90
90
95
96
96
98
100
100
100
104
107
110
112

128

1 September 1970 87

0. Introduction

VIA (Verbally Tndexed Associations) is a computer programming
system to aid the researcher in analyzing natural language text
for stylistic patterns. The system is being developed as part
of a research project in the techniques of language analysis.
The philosophy and development of the VIA system is discussed
in detail in the annual reports of this project.

It is the purpose of this manual to provide a succinct
collection of the information the user of VIA must have in
order to execute and effectively use the system implemented
in PL/I for the IBM System/360 family of computers. For more
detailed information, the user should consult the project's
annual reports. The procedures described in this manual
have been used long enough to become fairly static, but the
user should keep in mind that the entire system is still being
developed. One may wish to contact personally project personnel
for recent information.

Input to the system is natural language text coded with
a minimum of keying conventions on punched cards or card-image
records. The output differs considerably for various parts
of the system, but in general it is intended to display
information in such a way that stylistic patterning can be

indicated.

1The development of this system is part of a research
project under the direction of Professor Sally Yeates Sedelow,
Departments of Computer Science and Linguistics, University of
Kansas. The research is funded under a grant from the Office
of Mavel Pesearch.

1 September 1970 88

The system is separated into two phases, VIAl and VIA2. VIAl
is a data preparation phase, which performs indexing, root-
association, and counting functions, and optionally eliminates
function words. VIA2 is a collection of analysis packages

which use different techniques for analyzing the prepared data.

1 September 1970 89

PART T

1. Introduction

The VIAl package takes as input natural language text with
a minimum of conventional symbols, in the form of punched
cards or card images on some other medium. Output takes different
forms as each program in the package is executed: for example, the
first program produces a token data set of logical records con-
taining indexing information (where in the text "this”
occurrence of a word is located), and a later program produces a
token data set of logical records which optionally provides
indexing information and obligatorily groups together by root
content words in the text (e.g., mad, madly, and madness would
be grouped together and identified by a unique number). These
data sets can be used for various forms of statistical and
content analyses.

As indicated, the package consists of several independent
programs that can be run together as steps of a single job,
or they may be run individually as separate jobs. For texts of
more than ten thousand words the latter method is recommended
to reduce the time required for a single job. This separation
of jobs will reduce the possibility of lost effort due to
system failure and will also result in faster turn-around. For
medium size jobs - 10 to 30 thousand words - it is often
possible to combine several steps into a single job and thus

reduce the total number of jobs to be run.

1 September 1970 90

The basic programs in the package are INDEX, SORT, PREFIX,
and SUFFIX; following SUFFIX, the user may select either the
package of programs comprising the ring-structure version of VIA
or the list-structure version or the single program MAPTEXT.
Part I of the User's Manual describes the basic programs and

Part II the alternative analysis packages.

2. Programs
2.1. INDEX

INDEX is a multifaceted indexing program that takes as input
80 character punched cards or card images on some other medium such
as magnetic tape. Provisions are made for input from a variety of
natural language sources. General processing modes exist for
prose, poetry, both verse and prose plays, and transcription of
spoken text: there is a special processing mode for long poems,

such as Milton's Paradise Lost, which may be divided into books,

or cantos, or something analogous, as well as lines--because

Paradise Lost is the one such case with which INDEX has dealt,

this mode is called MILT. It is assumed that text will be

found in columns 1-71 of each card image. A hyphen for the
continuation of a word should be placed in column 72. Page
numbers may be placed in columns 73-75, and if the user wishes to
put sequence numbers on his data cards - in case the deck is
dropped - he should do so in columns 76-80. All elements that
are to be recognized by the computer as independent must be

separated by spaces. This convention implies, in addition to

1 September 1970 91

words, all punctuation marks are to be separated by blanks.
For example, the ending of the last sentence would be punched
" separated by blanks ." . Textual:division and paragraphs in
PPOSE or lines in POET are indicated by other conventional
markers. These will be discussed below.

Output for all processing modes consists of 56-character
logical records containing indexing information and the word
or punctuation mark itself. A printed listing of this
output may be obtained by putting 'PRINT=VES' as the PARM
value on the EXEC card (cf. card 3 of Example B). If no
printed listing is desired, use 'PRINT=NO'. 1If the processing
mode is PLAY, stage directions can be included in the data set by
using the statement, 'STAGE=YES' in this same statement.
'STAGE=NO' will result in the omissions of these portions of
input text. See below for how to indicate stage directions.

PROS is the processing mode for prose text. It will be used
as the main example in this discussion. In addition to being
blank delimited, as discussed above, the text should have the
following markers for major textual division:

Paragraph: end of paragraph is indicated by a double

period (..) instead of the single period
for the last sentence. Paragraph ending
with some other mark of punctuation, such as

!, should include the punctuation mark,

? or
followed by a space and a double '..".

Chapter: end of chapter is indicated by $S§.

1 September 1970 92

Volume: end of volume is indicated by $$$S$.

Page: (Optional) place appropriate number in columns 73-75.

Sequence: (Optional) place appropriate number in columns

76-80.

The index numbers for volume, chapter, and page as well as
the sequence number may (at any point of data) be set to begin
with a user-specified value by placing in the data set a card with
a '$', the appropriate index level and the value to which this
counter is to be set. For example, if the user wishes to begin
his paragraph counter with paragraph five then he should insert a
card with 'SPARAGRAPH 0005' on it. Similar updating procedures
apply for most processing modes.

The Output record will have the following format:

(Length in bytes)

6 3 3 4 5 3 3 1 8 2 18
|L W Pl I L
INEAR VOL- |CHAP- {PARA-~ SEN-: 0 A D PRE- E WORD
R G I FIX N
UME TER GRAPH TENCE D B 0 c
IN TEXT | # # # # TR 'fl
N
SENT.

The prefix field is used by the PREFIX program following the sort
if prefix information is desired. Otherwise the field may be
used by the researcher for categorizing information or for what-
ever use he may have in subsequent programs. The idiom flag

will be set to 1 if the WORD represents a group of words used as
a single, idiomatic expression; otherwise, it will be zero (0).

This feature is not operative at present. The length field

1 September 1970 83

contains the number of characters in the WORD. Thus, an actual

output record might look like this:

34 1 1 1 3 4 12 0 - 2 at

In this example, the word at appears as the 34th word in the
text; and it is the fourth word in the third sentence of
paragraph one, chapter one, volume one, of the text. Also, it
is found on page twelve; it is not an idiom, and it is of length
two.

For storage of his output, the user should provide a data set
on some medium such as tape or disk with the ddname OUTPUT,.

MILT is the special processing mode for Paradise Lost and

analogous texts. Input should be blank delimited, one line per
card image. If a line is continued from one card to the next,
indicate this with an "@" in column 72. Volume numbers should
be placed in columns 73-74, and sequence numbers in columns
76-80, if used.

Paragraphs (if used) are indicated by double periods (..).

Books or chapters are indicated by $$§.

Volume is as indicated in columns 73-74.
No update facilities exist for this processing mode. Printout
and sequence checking are indicated as in PROS. Output is
identical to that from PROS except that volume is usually one,
line number replaces sentences, and word in sentence becomes

word in line. Again, the user should supply an output data set

1 Seprember 1970 94

for logical output records.

PLAY is the processing mode for prose plays. Printout,
and sequence checking are indicated as before. If stage
directions are to be included in the data set, use YSTAGE=YES',
otherwise 'STAGE=NO'. Regardless of whether or not they are
to be included, they should be punched with an asterisk
preceding each word; for example, (*lights *dim *slowly %)

Index information generated is act, scene, paragraph,
sentence, word in sentence.

Paragraph is indicated by double periods (..).

Scene is indicated by $$$.

Act is indicated by $$$5.

Act and Scene can be reset by using $ACT ### or $SCENE ##.

Output records are as before except that act replaces
chapter and scene replaces paragraph. The user should provide
an output data set.

VPLA should be used for plays that are written in verse.
Printout and sequence checking should be indicated as described
on pages 2 and 3. If stage directions are to be included in the
data set then place 'STAGE=YES' on the EXEC card. As was the
case for PLAY, stage directions should be punched with an
asterisk (*) preceding each such word regardless of whether
or not they are to be included in the output data set. Data
should be punched with one line of text per card.

Index information generated is volume, act, scene, line,
and word in line. Scene and act are indicated as for PLAY.

Act and Scene numbers can be reset as in PLAY.

1 September 1970 Q5

As before, the user should provide an output data set.

POET is the processing mode for poetry. Text should be
punched one line of poetry per card. If a line must be continued
from one card to another, place an 'at' sign (@) in column 72.
If the poetry is stanzaic, then the user must place a number
which indicates the stanza in columns 73-75. Sequencing
numbers, as before, should be placed in columns 76-80. Indexing
information generated will be stanza, line, and word-in-line.

No updating facilities exist for this mode. Volume, chapter,
and page will all appear with the value one (1) in the output
data set. As before, the user should provide an output data set.
SPOK is a processing mode for transcription of oral
discourse. Indexing information generated will be for series,
session, speaker, sentence, and word in sentence. Series,
session, and speaker counters can be reset by inserting a
card on which '$', level, and the desired number have been
punched. For example, '$SPEAKER 003' would set the speaker
counter at an initial value of three.
Within the data itself the following conventions hold:
A change in SPEAKER is indicated by double periods (..).
A change in SESSION is indicated by $$§.
A change in SERIES is indicated by $$$$.

As before, page numbers and sequence number should be

placed in columns 73-75 and 76-80 respectively.

2.2. SORT

Both PREFIX and SUFFIX assume input data records that have

1 September 1970 96

been sorted into alphabetical order and which are in the format
created by INDEX. Thus the same sort procedure may be used
prior to either of these programs. It is recommended that the
researcher use one of the utility sorts maintained at his
installation. The catalogued procedure set has been defined

so as to anticipate 250,000 tokens. If this estimate of the
number of tokens is sufficiently wrong, then the user may change
that value by redefining the SORT FIELDS which is input to the

sort.

2.3. PREFIX

The current version of PREFIX is a revised version of that
described in last year's annual report. It takes as input the
sorted output of any of the textual modes of the INDEX program.
After determining that a word has a legitimate English PREFIX,
the program creates a duplicate data record of that word but
with the prefix placed in the eight-character PREFIX field
included in the format of the INDEX data set. The remainder
of the word--without prefix--is then placed in the WORD
portion of the record. Thus, the data set is enlarged by
duplicate forms of the stems of prefixed words. This data set,
if it is to be processed by SUFFIX, must be sorted with the

same SORT utility used after INDEX.

2.4, SUFFIX
SUFFIX is a program that groups words having the same root.

It does not "strip" the various suffixes from such words but

n

1 September 1677 o7

leaves them as they appear in the text and indicates that they have
the same root by assigning to each record for each word-token in a
root group the same number, called a matchcount (MATCNT). Thus, for

example, all records for complete, completely, and completing, etc.

might have the MATCNT, 536. This number has only relative meaning.
The next root-group, in alphabetical sequence, would have the
MATCNT 537, etc. By this number one can determine words that

have the same root form but which differ in ending, thereby
facilitating analyses such as semantic and thematic studies which
may not involve syntax.

Input is assumed to be 56-character logical records, sorted,
from either PREFIX or INDEX. Output will be 69-character records,
identical to input records except for the addition of the MATCNT
number, the number of word tokens for each MATCH group and the
number of tokens for each unique word type. This record has the

following format.

(Length in bytes)

6 3 3 4 5 3 3 1 5 4 4 8 2 18
Llv]|cl|lPp|s|w [p]|1 M| M |T P | W W
I|lo|lu|aAa|lE|O |a]|D Al A |¥ R | O 0
N|L R|N|R [G6]1I T| T |P E | R R
E AlT|D |[E|oO c| ¢ |E F | D D

G| E M N | H- I
A R|N|TI |[# T F X
R Al C|N F F | R L
P | E |SENT L R | E N

H A E | Q.

G Q

These records are output in MATCNT order. Under MATCNT, individual

records are further ordered according to alphabetical order of word

1 September 1970 98

and then the linear position of each occurrence of the word type
in the text.

If the user wishes to eliminate function words from this data
set he may do so by using 'FUNCT=NO' on the EXEC card. Similarly,
punctuation marks may be deleted by stating '"PUNCT=NO'. Otherwise
they will be included, with all function words grouped together with
a MATCNT of 99998 and all punctuation marks with 99999. Unless
'"PRINT=NO' is included, a printed copy of the output will be
produced.

As before, the user must supply an Output data set on some
medium. It is mandatory that the user include a heading to be
printed at the top of each page of printed output. This heading
may identify the particular text being processed or contain any
other information that the user wishes to include. It should be
punched on a single card which is placed after the card

'//S.HEADING DD *!

3. Activation of VIAl

The standard operation of VIAl uses INDEX, SORT and SUFFIX.
The JCL to execute this is:

// (JOB card)

//JOBLIB DD DSN=UNC.IS.F2312.SEDELOW.VIALIB,DISP=SHR
// EXEC VIAl

//T.INPUT DD - (DD information for input to INDEX)
//S.0UTPUT DD (DD information for output from SUFFIX)

//S .HEADING DD *
If the user wishes to include PREFIX in the VIAl data preparation,

he should use the following JCL:

o

1 September 1970 99

// (JOB card)

//JOBLIB DD

// EXEC VIAl,PREFIX=EVEN
//1.INPUT DD . . .

//S.OUTPUT DD . . .

//S .HEADING DD *

To provide run time parameters to INDEX, the EXEC card should be
modified to read as follows:

// EXEC VIAl,PARM.I='(INDEX parameters)'
or // EXEC VIAl,PREFIX=EVEN,PARM.I='(INDEX parameters)'
If it is desired to save the output data set' from INDEX, the
following DD card should also be included:

//1.0UTPUT DD (DD information for INDEX output)
To execute only INDEX and save the output, use the following JCL:

// (JOB card)

//JOBLIB DD . . .
// EXEC VIAl,PARM.I='. . .',ONLYI=ONLY
//1.0UTPUT DD . . .
//1.INPUT DD . . .
Example A.

In this example, the standard VIAl (without PREFIX) is executed.
In the run time parameters to INDEX, PROS is specified as the
processing mode and a printed copy of the output is requested.
The input text is in the DD* card deck following the JCL.

// (JOB card)

//JOBLIB DD DSN=UNC.IS.F2312,SEDELOW.VIALIB,DISP=SHR
// EXEC VIAl,PARM.I='PROC=PROS,PRINT=YES'
//I.INPUT DD *] ' i |

(input text cards)
/*
//5.0UTPUT DD (DD information for output)

//S .HEADING Db *
(heading card)
/*

1 September 1970 100

Example B.

The same run as that of Example A, but including the use of
PREFIX, would require the following JCL:

// (JOB card)

//JOBLIB DD DSN=UNC.IS.F2312,SEDELOW.VIALIB,DISP=SHR
!/ EXEC VIAl,PREFIX=EVEN,PARM.I='PROC=PROS,PRINT=YES'
//1.INPUT DD *
(input text cards)
//S .OUTPUT DD (DD information for output)

//S . HEADING DD *
(heading card)
/*

PART II

4, Introduction

VIA2 is composed of the three independent procedures MAPTEXT,
LIST, and RING, and the utility procedures BLDLIST and BLDRING.
In addition there is a subroutine mechanism, called SELECT, which

occurs in several of the procedures and is documented separately.

5. SELECT

5.1. Function

SELECT is the mechanism employed by the VIA2 subsequences
MAPTEXT, LIST and RING to select those sections of text to be
processed by the respective programs. SELECT is used only after
the text has been processed by INDEX so that associated with each
token of the text is the indexing quadruple I = (V,C,P,S).

The interpretation of I is dependent upon which processing option

1 September 1970 101

(PROC) was chosen for INDEX and could be:

i). 4if PROC = Volume
Chapter
Paragraph
Sentence
Volume (usually 1)
Chapter or Books
Paragraph
= Sentence
Act

= Scene
Paragraph
Sentence
Volume
Act

Scene

= Line

= Volume

= Chapter
Stanza

= Line

= Series
Session
Speaker
Sentence

PROS then

ii). 1if PROC

MILT then

]

iii). if PROC = PLAY then

iv). if PROC = VPLA then

v). 1if PROC = POET then

vi). 1if PROC

SPOK then

A
c
P
S
\
C
P
S
\)
C
P
S
\
C
P
S
V
C
P
S
v
c
P
S

For example, if the text is an instance of oral discourse
and hence INDEX was run in the SPOK mode, then the level P
would correspond to the Speaker index.

The user must define those intervals of text to be processed
as well as specify the level of indexing to be consulted
for the text selection. Because the indexing is hierarchical to a
depth of 4 the user must include the specification of all levels
which cover the level of interest.

The specification language enables the user to select either
a single section of text or else a connected sequence of sections
of text or else combinations of the above two. The single section
of text is selected by specifying to the required level the

particular values that the indexing parameters must achieve in

1 September 1970 102

order for that section to be processed. The collection of indices
must be enclosed by parentheses and separated by commas. For
example, a single sentence could be isolated by the entry
(1,3,4,5) which specifies volume 1, chapter 3, paragraph 4,
sentence 5. Likewise a single chapter could be isolated by the
entry (3,2) which specifies volume 3, chapter 2.

The specification language contains constructs with which
to specify a connected sequence of text sections. The form
of this type of specification is (sl, s2) where both sl and s2
are specifications for single sections of text. The interpre-
tation is to include that portion of text which lies inclusively
between the text whose indexing parameters are sl and the text
whose indexing parameters are s2.

A complete specification is then a sequence of comma-
separated entries of either type with the requirement that each
entry be to the same level of specificity and that the level
be that of the LEVEL parameter of the EXEC card. Furthermore,
the entries must begin in column 1 of "a data card and if a
continuation beyond column 71 is required, then the program

expects an * to be punched in column 72.

5.2. Activation
This mechanism is activated by supplying the processing
program with a run time parameter by:
MAPTEXT=EVEN,PARM.M='LEVEL=%,.,."'

// EXEC VIA2,RING=EVEN,PARM.R='LEVEL=%,,..'
LIST=EVEN,PARM.L='LEVEL=%,...'

1 September 1970

where *

to
to
to
to
to

o>

The

is to be one of

103

process the entire text

process on the
process on the
process on the
process on the

following three

of the language and the

Example

from MAPTEXT:

To specify that the

and that

the text is to

volume level

chapter level

paragraph level

sentence level

examples should make clear the nature

activation of the mechanism.

selection is to be on the paragraph level

be selected from volume 2, chapter 3,

paragraphs 7 - 12; volume 3, chapter 4, paragraph 6; and volume

7, chapter 2, paragraphs 3-33:

/]

(JOB card)

//JOBLIB DD DSN=UNC.IS.F2312,SEDELOW.VIALIB,DISP=SHR
// EXEC VIA2,MAPTEXT=EVEN,PARM.M='LEVEL=P,...'

//M.SYSIN DD *
(€2,3,7),(2,3,12)),(3,4,6), 3
((7,2,3),(7,2,33))
(remaining M.SYSIN cards for MAPTEXT)

/*

Example from LIST:

To specify that the entire text is to be processed:

/1l

(JOB card)

//JOBLIB DD DSN=UNC.IS.F2312,SEDELOW.VIALIB,DISP=SHR
// EXEC VIA2,LIST=EVEN,PARM.L='LEVEL=A'

Example from RING:

To requést that volumes 1,5,7 and 9-11 be selected for

processing:

1 September 1970 104

// (JOB card)

//JOBLIB DD DSN=UNC.IS.¥2312,SEDELOW,VIALIB,DISP=SHR
// BXEC VTAZ,RTNC=EVEN,PARM.R='LEVEL=V,...'
//R.SYSIN DD *

(1),(5),(7),((9), (11))

(remaining x.5Ys1w cards for RING)

/:‘:

5.3. Notes

The text selection always assumes that in the case where
LEVEL is not defined on the EXEC card that its value will be
A, and hence will process the entire text and will not expect
to find additional input on the SYSIN dataset.

The mechanism contains an intermal sort, so that the
specifications may be entered in any order. However, whenever
a request is of the form (sl,s2) then the indexing parameters
specified by sl must occur in the text prior to the indexing

parameters specified by s2.

6. MAPTEXT

6.1. Function

MAPTEXT is a VIA2 program which provides a mechanism for
isolating stylistic patterns within a text by printing special
graphics for designated keywords. MAPTEXT scans a user-supplied
input text and substitutes for each occurrence of a user-
defined keyword its respective single replacement character and
substitutes a period (.) for all other words. The resulting
print-out therefore consists of lines of periods with single

replacement characters interspersed, thereby generating a

1 September 1970 105

visual representation of possible stylistic patterns. MAPTEXT
aligns the printed output so that sentences always begin a
new line, and it provides indexing information at the extreme

right of each printed line.

6.2. Options

Because one may find it to be preferable to define stylistic
patterns as a function of root group distribution rather than as
a function of type distribution, MAPTEXT provides an option
which implements this facility. If this option is selected (by
specifying ROOT GROUP=YES as the PARM.M value on the EXEC card)
all of the words in a root group (i.e., with the same match
count number) form an equivalence class and the replacement
action applies to every word in the class.

MAPTEXT provides for the activation of text selection as
documented in SELECT. The input (on dataset M.SYSIN) to the
text selection mechanism must preceed that defining the pair

(replacement character, word).

6.3, Activation
MAPTEXT, being a subsequence from the VIA2 catalogued
procedure, is activated by the JCL:

// (JOB card)
//JOBLIB DD DSN=UNC.IS.F2312,SEDELOW.VIALIB,DISP=SHR
// EXEC VIA2,MAPTEXT=EVEN
//M.INPUT DD (DD information for the output dataset from
INDEX)
//M.SYSIN DD *
(parameter cards for SELECT, if any)

¢ W
Cy . W
cC ‘W
n n

1 September 1970 106

where each C_i is a replacemeut character for the word Wi.

As stated earlier, this module has two options which are
controlled by the variables ROOT GROUP and LEVEL whose values
are transmitted by the PARM.M field on the EXEC card. The
default values (ROOT_GROUP=NO,LEVEL=A) will result in the
entire text being processed and in performing the character
substitutions on the basis of exact token matching.

MAPTEXT expects that the M.SYSIN dataset will be defined

and will contain:

i). the specification of the text intervals to be processed
if the level value is not A.
ii). a list of pairs (C,W) where C is the (single) replacement
character for the word W (whose length is no greater than
18 characters). Each C is to be punched in column 1 of a
data card and its corresponding W is to begin in column
5 of the same card.

Therefore the following JCL and data will result in the

substitution of W for all occurrences of WAR and P for all

occurrences of PEACE in the entire text:

// (JOB card)

//JOBLIB DD DSN=UNC.IS.F2312.SEDELOW.VIALIB,DISP=SHR

// EXEC VIA2 ,MAPTEXT=EVEN

//M.INPUT DD (DD information for the output dataset from

INDEX)
//M.SYSIN DD *
W WAR
P PEACE
/%

The JICT and data provided helow will result in MAPTEXT

substituting P for all occurrences of the root group of PEACE

(PEACE ,PEACEABLE ,PEACEFUL, etc.) and W for all occurrences of

1 September 1970 107

the root group of WAR (WAR, WARRED, WARRING, etc.) in only chapter
1 of volume 1 of the input text:

// (JOB card)

//JOBLIB DD DSN=UNC.IS.F2312.SEDELOW.VIALIB,DISP=SHR

// EXEC VIA2,MAPTEXT=EVEN,PARM.M='ROOT GROUP=YES,LEVEL=C'
//M.INPUT DD (DD information for the output dataset from

INDEX)
//M.SYSIN DD *
(1,1)
W WAR
p PEACE
/*
6.4. Notes

The VIALl catalogued procedure has been defined so that the
output dataset from INDEX is not saved and hence the user of
MAPTEXT must provide a JCL override to define I.OUTPUT in such
a way as to make it available as the INPUT dataset to MAPTEXT.
This override to VIAl is effected by supplying the card:

//I.OUTPUT DD (DD information for the output dataset from
INDEX with LRECL=56)

7. LIST
7.1. Function

LIST is the VIA2 subsequence which prints out a text
specific thesaurus from a given text and a given list thesaurus.
The list thesaurus takes the form of a list of ordered pairs
(primary word, secondary word). More specifically, from a
thesaural tree defined to a maximum depth of five described
as a list thesaurus, these programs prune the tree so that
the label of each node either occurs in the text or a word with

the same match count as the label occurs in the text. Consider

1 September 1970 108

the following example:

Suppose we had the thesaural tree (to a depth of 5), where

A,B,C,D,E,F are all words not necessarily in the input text

A
B
C
D
E
F

B
c
D

This is the tree that would result from the list thesaurus
of ordered pairs:

(A,B) (a,0) (a,p) (D,E) (D,F) (F,A)
Now suppose that the text contained no word with the same
match count as that of C or F but it did contain words with
the same match count as A,B,D,E; the tree which would result

would then be:

E.
There are two avenues available to the researcher who uses
LIST. He may either prepare his own list thesaurus of ordered
pairs or he may supply just a list of primary words and enable

the sequence of programs (see the section entitled BLDLIST)

1 September 1970 109

which will extract the list thesaurus from this list of primary
words by using a ring thesaurus which is stored on disk. 1In
either case the list of thesaural associations must be ordered
so that the concatenations of primary word with secondary word

forms an alphabetically ordered list.

7.2, Options

LIST provides for the activation of text selection as

documented in SELECT.

7.3. Activation

LIST, being a subsequence from the VIA2 catalogued
procedure, is activated by the JCL (which requests processing
of the entire input text because PARM.L='A'.)

// (JOB card)

//JOBLIB DD DSN=UNC.IS.F2312.SEDELOW.VIALIB,DISP=SHR

// EXEC VIA2 ,LIST=EVEN,PARM.L="A"

//L.INPUT1 DD (DD information for the list thesaurus)

//L.INPUT2 DD (DD information for the output dataset
from SUFFIX)

If the researcher wished to process with LIST only paragraph
17 of chapter 12 of volume 3 then he should code:

// (JOB card)

//JOBLIB DD DSN=UNC.IS.F2312.SEDELOW.VIALIB,DISP=SHR

// EXEC VIA2,LIST=EVEN,PARM.L="P'

//L.INPUT1 DD (DD information for the list thesaurus)

//L.INPUT2 DD (DD information for the output dataset
from SUFFIX)

//L.SYSIN DD *

(3,12,17)

7.4. Notes
It is important to observe that a subtree will sprout only

from those nodes whose labels are primary words so that

1 September 1970 110

secondary branching will occur only in the case that a secondary
word is also a primary word (as in the case of F and A from the
introductory example). Therefore if the list of ordered pairs
which makes up the list thesaurus is not sufficiently rich to
include several intersections of the secondary word set with

the primary word set, the resulting output ééy be somewhat

trivial.

8. BLDLIST

8.1. Function

BLDLIST is the VIA2 subsequence which generates a list
of ordered pairs of the form (primary word, secondary word)
from a user-supplied list of primary words such that one
ordered pair is created for each secondary word that occurs
in a thesaural category (currently we are using Roget's

International Thesaurus) with a primary word. Consequently,

if the stored thesaurus was:

Category 1: A,B,C
Category 2: C,D,E
Category 3: E,F.

and if C was the single user-supplied primary word, then the
list thesaurus would be:

(C,4A)
(C,B)
(€,C)
(C,D)
(C,E)

The list is subsequently sorted so that the concatenates (primary

word, secondary word) form an alphabetically ordered sequence.

1 September 1970 111

The typical usage would request the execution of LIST
immediately following the execution of BLDLIST, but this
sequencing is not mandatory; consequently, this mechanism
can be used to generate a list thesaurus independently of

the LIST processing system.

8.2. Activation

BLDLIST, being a subsequence of VIA2, is activated by the
JCL:

// (JOR card)

//JOBLIB DD DSN=UNC.IS.F2312,SEDELOW.VIALIB,DISP=SHR

// EXEC VIA2,BLDLIST=EVEN

//BL.SYSIN DD *

(list of primary words)

/*
The list of primary words must be such that one word is

punched per card with the word beginning in column 1 and

having no more than 18 characters.

8.3. Notes
If the user needs to save the list of ordered pairs
generated by BLDLIST then he should code:

//BL.OUTPUT DD (DD information for the list of ordered
pairs with LRECL=40)

Typically the user will follow BLDLIST with LIST. The
VIA2 catalogued procedure is defined in such a way that
L.INPUT]1 is the same dataset as BL,OUTPUT, so that the

activation of the sequence BLDLIST, LIST would become:

1 September 1970 112

// (JOB card)

//JOBLIB DD DSN=UNC.IS.F2312.SEDELOW.VIALIB,DISP=SHR

// EXEC VIA2,BLDLIST=EVEN

//BL.SYSIN DD *

(list of primary words)

// EXEC VIA2,LIST=EVEN

//L.INPUT2 DD (DD information for the output dataset
from SUFFIX)

9. RING

9.1. Function

RING is the package of VIA2 programs which uses a given
ring-structured thesaurus to identify verbal associations in
or with a text. The text must first be processed by VIAl.
The thesaurus may be provided in either of two ways: the user

may use the copy of Roget's International Thesaurus2 which is

provided in ring-structure format as part of the VIA system,
or the user may supply his own specialized thesaurus using
the package of programs BLDRING (cf. Section 10 of this
manual).

The function of RING is to compare the text (or a section
of text) with the thesaurus and, choosing certain elements
as key linguistic units, to search the thesaurus for words or
phrases associated with each key. A printout is produced
which represents in graphic form the relationships identified

by the thesaurus search. The choice of the key search elements,

2

Permission to convert Roget's International Thesaurus into
machine readable form and to wuse it in this research was given
by Thomas Y. Crowell Co., publishers.

1 September 1970 113

the depth to which the search in the thesaurus is allowed to
wander, and various search pattern techniques, are under the

control of the user.

9.2. Usage Considerations; Data Sets Provided by the User

To execute RING the user must provide the text, the initial
thesaurus, text selection parameters for SELECT (if any), a
TEXTSECT card, and ANALYSIS request cards. This section contains
the information sufficient to enable the user to provide these
data and to understand the use of RING. A summary of the data

sets provided by the user is given in Section 9.2.6.

9.2.1. Text, Text Selection Parameters, and TEXTSECT card

The entire text should first be processed by VIAl. Even if
the user intends to analyze the text in sections using multiple
runs of RING -- or other program packages of VIA2 =- the whole
text should be processed once by VIAl, This will ensure that
global textual information will be correct, and will also
provide a less expensive 'rerun point" for analysis runs. The
primary output text of VIAl,S.OUTPUT, is the dataset to be used
for R.INPUT.

The subprogram called SELECT (cf. Section 5) is incorporated
in RING. The parameter cards for SELECT are the first cards in
the R.SYSIN data set. The entire collection of text extracted for
one run is called a 'text section', whether or not it is
contiguous. By means of a TEXTSECT card, which follows thg

selection parameter cards in the R.SYSIN data set, the text

1 September 1970 114

section is assigned a number. The TEXTSECT card has the
following format:

TEXTSECT=n [,MSGPARM="LIST'];[character string]
n is a decimal integer which is the number of the current section
of text. The optional parameter MSGPARM='LIST' requests the
printing of warning messages produced by RING during the text-
thesaurus comparison phase. Generally, these messages note
garbled text, the inability of the program to establish any
associations with a textual word not in the thesaurus, or a
lack of sufficient space in the scratch-pad area of the
thesaurus (cf. Section 9.2.2). The default for this parameter
is 'NOLIST', which suppresses message printing. A count
of the messages that would have been printed is given. The
optional character string following the semicolon will be
printed as a heading at the top of the first page of output.
Examples:

TEXTSECT=1 ,MSGPARM="LIST"' ;FROST - ENTIRE TEXT

TEXTSECT=2 ;SECTION 2 OF JOYCE: PORTRAIT. 5/9/70
If several runs of RING are made on different text sections the
TEXTSECT numbers provide a means of identifying each section to
the program, which retains certain text-specific information by
section. TEXTSECT numbers must be assigned sequentially in

order of processing. If only one run is to be made on a text,

the TEXTSECT number should be 1. After selection, the text

section is condensed into a type data set.

1 September 1970 115

9.2.2. Thesaurus
The thesaurus is composed of the four data sets RT.THSCTL,

RT.VOCAB, RT.DRCTRY, and RT.THES. Roget's International

Thesaurus is provided by default. Alternatively, the user may
provide his own thesaurus. To do so, the VIA2 utility pro-
cedure BLDRING (Section 10) should be used to construct the
four data sets from a thesaurus prepared by the user. This
work should be completed before RING is executed. In the
subsequent execution of RING, overriding DD cards for the
user's own thesaurus must be included in the JCL.

As the text section is compared with the thesaurus, certain
text-specific information is recorded in a "scratch-pad'" area in
the VOCAB data set of the thesaurus. This information includes
frequency in the text section and the earliest TEXTSECT number
of the sections in which the word appears. Also entered are
words from the text not in the thesaurus which have a root
identical to some word already in the thesaurus. To facilitate
reruns, prior to processing, the scratch-pad information is
examined and only information related to text sections with
numbers less than the current TEXTSECT number is retained.

For this reason the sequential assignment of TEXTSECT numbers is
essential. Since the smallest permissible TEXTSECT number is 1,
using that number will ensure a clean scratch-pad area, and it
should always be used for the first section of text processing.

If two or more users are concurrently using the same

thesaurus, it is necessary only for each user to keep his own

private copy of the RT.VOCAB data set, since the other data sets

1 September 1970 116
of the theasurus are never modified.

9.2.3. Analysis and ANALYSIS cards

The primary output of RING is a printout arranged so as to
indicate the patterns of verbal relationships defined by the
thesaurus. The data are displayed in the form of a tree-
structured graph, where the nodes of the tree are verbal
entities (words and phrases) and thesaural category designators.
A separate tree is printed for each key search element, with
the key element as the root of the tree. Each path in the
tree represents a path in the search of the thesaurus. This
method of displaying the results of the thesaurus search makes
it possible to indicate a sense of the 'closeness'" of semantic
association and to indicate indirect associations induced by
some common direct association: two elements are directly
associated if they appear as adjacent nodes on some path in the
tree.

The tree is printed with the root at the top left of a page,
branching to the right, with each level of the tree a different
column on the page. The column immediately to the right of the
root contains the labels of all the categories comtaining the
root. In the next column to the right is printed, beneath each
category, the remaining words and phrases in that category. This
column then, contains all verbal elements directly related to
the root, and the intervening category labels show in what sense
the relation stands. This process is repeated with each new word

and phrase as the root of its subtree. Each successive column of

1 September 1970 117

categories and words represent s another level in the depth
of the thesaurus search and thus another level remoteness from
the root.

As an example consider the following thesaurus:

CATGRY 1: AUTHENTIC, AUTHORITATIVE, ORTHODOX

CATGRY 2: CANONICAL, CATHOLIC, ORTHODOX

CATGRY 3: AUTHENTIC, GENUINE, BONE FIDE

CATGRY 4: AUTHORITATIVE, DOGMATIC, OPINIONATED

A search keyed on AUTHENTIC would producde the following tree:

AUTHENTIC
CATGRY 1
AUTHORITATIVE
CATGRY 4
DOGMATIC
OPINIONATED
ORTHODOX
CATGRY 2
CANONICAL
CATHOLIC
CATGRY 3
BONA FIDE
GENUINE

A variety of methods for choosing search keys and a variety of
modes for searching the thesaurus are available. For example, the
user may specify a particular word as a search key, or he may
instruct the program to make every word that occurs in the text
a number of times exceeding a user-defined threshold a search
key. He may choose search keys based on word root or thesaurus
category membership. The user may specify that thesaurus searches

be limited to words in the text, he may permit words not in the

1 September 1970 118

text, or he may choose one of several compromises between these
extremes.

Parameters for controlling the choice of search keys and the
modes of searching the thesaurus are contained in the ANALYSIS
cards entered in the R.SYSIN data set following the TEXTSECT
card. Each Analysis card causes the selection of one or more
search keys and each search key causes the initiation of a
thesaurus search which will result in the printing of one tree.
Up to 100 ANALYSIS cards is permitted per run. Following the
last ANALYSIS card a card with the words GO AHEAD must appear
in the R.SYSIN data set. If it is missing, RING will terminate
after updating the scratch-pad area of the thesaurus and
generating the search keys. Eliminating the GO AHEAD card thus
provides an economical means of rerunning to update the
thesaurus and search key file, without initiating thesaurus
searches.

The format of ANALYSIS cards is as follows:

ANALYSIS n,TYPE='n"[,optional parameter listl];

n is an arbitrary decimal integer identifying the analysis and
will be used to identify all printout associated with this
analysis. m is the number 1, 2, 3, or 4. This parameter is
used to designate the procedure for selecting search keys.

The remaining parameters are MODE, THRESHOLD, CAT, WORD, DEPTH,
and KEYLIST. The four types of key generation are:

TYPE='1' - Frequent categories. Every category occurring in the

text more than a specified number of times is to be

used to key a search. The number of times to be used

1 September 1970 119

as a threshold must be specified by a THRESHOLD parameter
in the same card. The program will sum the number of
occurrences in the text of every word in each thesaurus
category. If a word occurs in more than one category,
its total will be added to each. Every category whose
total number of occurrences is equal to or greater than
the threshold, will be used to key a search. This type
of analysis is lengthy, but enables the system to choose
significant content in the text, even though it is not
identified by the high frequency of any particular word,
because the significance is based on the high

occurrence of categories.

TYPE='2' - Frequent roots. Every root occurring in the text

more than a specified number of times is to be used

to key a search. The number of times to be used as
the threshold must be specified in the THRESHOLD
parameter, The program will total the number of
occurrences of every MATCNT in the text. If the total
for a MATCNT is equal to or greater than the threshold,
every word in the MATCNT will be used to key a search.
This is done by generating a KEY entry for each word
in the MATCNT. This type of analysis is somewhat
faster than type 1. The system chooses significant
content in the text based on the frequency of word

*
roots.

1 September 1970 120

TYPE='3' - Category. The category must be specified by a CAT
parameter in the same card. It will be used to key
a search. No count considerations are used. This
type of analysis is much faster than the previous
types and is useful for searching for relationships
to a particular category, howe;er obscure.

TYPE='4' - Word. A particular word must be specified by a WORD
parameter. It will be used to key a search. This
type of analysis is as fast as TYPE 3, and is useful
for searching for relationships to a particular word,
however obscure. The word need not be in the text,
but if not, must be in the thesaurus. Thus, for
example, this type of analysis, combined with search
mode D, may be used to find all words in the text
related to that on the parameter card.

The MODE parameter:

MODE = 'x'

specifies the mode of thesaurus search used in the SPRINT

program. X must be one of the letters A, B, C, D, or E.

If the MODE parameter is omitted or incorrectly specified,

mode A will be taken by default and a message printed to that

effect. The modes are best described in terms of the tree-

shaped output showing the word and category relationships.

The five modes are:

MODE = 'A' - Text limited. All nodes are in the text. As the

program searches down a path of related words in

the thesaurus, it will abandon that path as soon

1 September 1970 121

as it encounters a word not in the text. The path
down to that point will be printed.

MODE # 'B' - Text oriented. Root and leaves are in the text.

If the root is not in the text, nothing is printed.
If it is, each path is pursued until no new words
can be found that are in the text. The path is
printed up through the last textual word encountered.
Thus, this word becomes a leaf of the tree. Inter-
mediate nodes may or may not be in the text.

MODE = 'C' - Text rooted. Root in the text. Only the root is
required to be in the text. Each path is printed
down through the number of levels specified by the
DEPTH parameter. This kind of search is used to
look for words, in or out of the text, that are
related to the root, a word or category in the text.

MODE = 'D' - Text related. Leaves in the text. This mode is

similar to mode B, except that the root is not
required to be in the text. This kind of search
is used to look for words in the text related to
a given word or category, whether or not it is in
the text.

MODE 'E' - Subthesaurus. The entire subthesaurus rooted at the

key is printed, down through the depth specified in
the DEPTH parameter. Nothing is required to be
in the text.

The THRESHOLD parameter:

THRESHOLD = 'n'

1 September 1970 122

is only used in type 1 and type 2 analyses. n specifies the
frequency threshold.
The CAT parameter:

CAT = 'category'
is only used in type 3 analyses. Every word in the category
specified becomes a search key.
The WORD parameter:

WORD = 'word'
is only used in type 4 analyses. The word specified becomes a
search key whether or not is is in the text. The word must be
in the thesaurus, or no relationships will be found and no output
will appear.
The DEPTH parameter:

DEPTH = 'n'
specifies the depth of search that is to be made in the thesaurus.
n must be an integer 1 through 9. Search depths greater than 9
will be reduced to 9 by the syntax checking routines of RING
and a message to that effect will be printed. If the DEPTH
parameter is omitted or incorrectly specified, a depth of 3 will
be taken by default and a message to that effect will be printed.
The KEYLIST parameter:

KEYLIST = 'option'
is used to specify whether a listing of the keywords for this
analysis is requested. The options are LIST and NOLIST. NOLIST
is default. If LIST is specified, RING will primt a listing

of all keys generated for the ANALYSIS request.

1 September 1970 123

Examples of ANALYSIS request cards:
ANALYSIS 1, TYPE ='2',MODE = 'D', THRESHOLD = '100',
DEPTH = '4';

ANALYSIS 2, TYPE

'1', THRESHOLD = '50';

ANALY¥SIS 3, TYPE

'4', MODE = 'D', DEPTH

19l .

KEYLIST = 'LIST', WORD 'MIND';

ANALYSIS 4, TYPE

'3', CAT = '100.1';

For ANALYSIS 1, search keys will all be words whose roots
occur 100 times or more in the text section. Thesaurus searching
is limited to a depth of 4, and the tree printout is to be pruned
so that all leaves of the tree are in the text. The search key
and intermediate nodes need not be in the text.

For ANALYSIS 2, search keys are the words of each category
that appears 50 times or more in the text section. Thesaurus
searching is limited to a depth of 3 by default, and the default
search mode of 'A' means that only words in the text sectiom
will be printed.

For ANALYSIS 3, the word MIND is to be the only search key.
Thesaurus searching will go to the maximum depth permitted, 9
levels, and the search mode is the same as the mode of ANALYSIS 1.
The printed tree will show all words in the text associated
with the word MIND, and it will show all such associations. A
copy of the search key record will be printed, as requested by
the KEYLIST parameter.

For ANALYSIS 4, search keys will be all words in Category
100.1. The search depth is 3 by default and the search mode 'A'

by default, meaning that only words in the text will be printed.

1 September 1970 124

9.2.4. Search Keys for a Sequence of Runsg

When a sequence of runs is made on different sections of text,
a permanent file of the search keys is created by merging the new
keys generated for each section with the keys from previous
sections. For this purpose the data set RK.NEWKEYS should be
saved after each run. The user accomplishes this by overriding
the DD card for the RK.NEWKEYS file. The data set RK.NEWKEYS of
a run is a new input data set RK,OLDKEYS to the next run in the

sequence. An example is provided in the section on JCL.

9.2.5. Printing Conventions

The following printing conventions are used in the printout
trees. All words not in the text are enclosed in parenthesés.
If a word is occurring for the first time in the current section
of text, it is preceded by a dash line. If the method of
saving search keys described in Section 9.2.4 is used, roots
which qualified as search keys in some earlier section of text
but do not qualified as keys in the current section, are
nevertheless used to generate a thesaurus search; the root is
marked with an asterisk. If the root also qualifies as a search
key in the current text section it is marked with a period
instead. To reduce the amount of output, when a category appears
more than once at the deepest level of a tree, its words are
printed only the first time it appears; thereafter, only the
category designator is printed. At the conclusion of each tree
printout, a summary of all categories appearing in the tree is

provided.

1 September 1970 125

9.2.6. Summary of Data Sets

Required:

R.INPUT - The input text, previous output from VIAl (S.OUTPUT)
R.SYSIN - Parameter cards for SELECT

TEXTSECT card

ANALYSIS cards

GO AHEAD card

Optional: (use to define private thesaurus)

RT.THSCTL
RT.VOCAB
RT.DRCTRY
RT.THES

thesaurus

Optional: (use when search keys are to be recirculated with
successive runs)

RK.OLDKEYS - Search keys output from previous run
RK.NEWKEYS - Search keys output from current run

9.3. Activation
The usual JCL to execute RING using the standard system
thesaurus. Search keys are not saved.

// (JOB card)
//JOBLIB DD DSN=UNC.1S.F2312,.SEDELOW.VIALIB,DISP=SHR
// EXEC VIA2,RING=EVEN,PARM.R="'(SELECT parameter)'
//R.INPUT DD (DD information for S.OUTPUT)
//R.SYSIN DD *

(parameter cards for SELECT)

(TEXTSECT card)

(ANALYSIS cards)

(GO AHEAD card)
/*

The JCL to execute RING using a private thesaurus supplied by

the user. There ig an innut file of search keys and the updated

file of search keys is saved:

1 September 1970 126

// (JOB card)

//JOBLIB 1)) J

// EXEC . .

//R.INPUT DD i o

//R.SYSIN DD *

/*

//RT.THSCTL DD (DD information
//RT .VOCAB DD (DD information
/ /RT.CRCTRY DD (DD information
//RT.THES DD (DD information
//RK .NEWKEYS DD (DD information
//RK.OLDKEYS DD (DD information

The following example shows JCL for

on three sections of text. The systems

BR.THSCTL)
BR.VOCAB)
BR.DRCTRY)
BR.THES)

new file of keys)
old file of keys)

for
for
for
for
for
for

a sequence of three runs

thesaurus is used. The

file of search keys is recirculated, but not kept after the

final run. In this example each rumn is

could be steps of one job.

//RUN1 (JOB card)
//JOBLIB DD . ..
// EXEC .
//R.INPUT DD .
//R.SYSIN DD *

(parameter cards for SELECT)
TEXTSECT=1;
(ANALYSIS cards)

GO AHEAD
/*
//RK.NEWKEYS DD DSN=(user's data
//RUN2 (JOB card)
//JOBLIB DD . e e
// EXEC . . .
/ /R.INPUT DD . . .
//R.SYSIN DD *®

(parameter cards for SELECT)

TEXTSECT=2;

(ANALYSIS cards)

GO AHEAD
/*
/ /RK . NEWKEYS
/ /RK .OLDKEYS

DD DSN=(user's data
DD DSN=(user's data

a separate job, but they

set # 1).

set # 2). . .
set # 1), . . *

1 September 1970 127

//RUN3 (JOB card)

//JOBLIB DD . . .
!/ EXEC . . .
//R.INPUT DD . . .
//R.SYSIN DD *

(parameter cards for SELECT)
TEXTSECT=3
(ANALYSIS cards)
GO AHEAD
/*
//RK.OLDKEYS DD DSN=(user's data set # 2). . .

9.4. Individual Program Functions

RING consists of the following sequence of steps in the
cataloged procedure VIA2:

R - PL/I program PRERING

PRS - system sort

RT - PL/I program THESAUR
RS - system sort

RK - PL/I program KEYUP
RST - PL/I program SPRINT

PRERING is composed of the SELECT function (cf. Section 5)
and a set of code which condenses the selected token data set
into a type data set. The first system sort sorts the output
text section into alphabetical order on type.

The remaining steps are documented in detail in the 1968-1969
annual report of this research project. We provide a brief
description of the function of each here. THESAUR reads the
ANALYSIS cards, generates the search keys, and performs the
text-thesaurus comparison. The second sort sorts the search
keys. KEYUP merges the new search keys with any previous keys
and marks special keys. SPRINT reads the search keys, searches

the annotated thesaurus, and prints the resulting trees.

1 September 1970 128

10. BLDRING

10.1, Function

BLDRING is the sequence of VIA2 programs used to create the
four data sets of a ring-structured thesaurus from a thesaurus
prepared by the user. The user provides the input thesaurus as
a list of ordered pairs and the storage space and DD cards for

the output thesaurus data sets.

10.2. Input Data
The input thesaurus is a file of 80-character records of the

form:

category|, {word
cc: 1 8 910 80

Before being input to BLDRING, the file should be sorted into
index order -- that is, with word as major sort field and
category as minor sort field. This data set is the file BR.ORGNX.

For example, the sample thesaurus of Section 9.2.3 would be
entered as follows:

CATGRY 1,AUTHENTIC
CATGRY 2,AUTHENTIC
CATGRY 1,AUTHORITATIVE
CATGRY 4 ,AUTHORITATIVE
CATGRY 4,BONA FIDE
CATGRY 3,CANONICAL
CATGRY 2,CATHOLIC
CATGRY 4,DOGMATIC
CATGRY 3,GENUINE
CATGRY 4,0PINIONATED
CATGRY 1,0RTHODOX
CATGRY 2,0RTHODOX

In addition to the thesaurus, the user must enter a card in

the BR.SYSIN file containing the block sizes of the three data sets

1 September 1970 129

BR.VOCAB, BR.DRCTRY, and BR.THES. This card is the only card
in the BR.SYSIN file. 1Its format is:

VBLKSIZE=n, ,DBLKSIZE=n ,TBLKSIZE=n

1° 2 33

where n., is the block size of BR.VOCAB and must be a multiple of 36,

1

n, is the block size of BR.DRCTRY and must be a multiple of 16,

2

and n3

These numbers must agree with the BLKSIZE figures in the DD cards

is the block size of BR.THES and must be a multiple of 8.

of their respective files. A recommended choice for all three
block sizes is the approximate size of one disc track, subject to
the factor constant. On the IBM Model 2314 disk, one could specify

VBLKSIZE=727 2, DBRLKSIZE=7280 and TBLKSIZE=7288."

10.3. Efficiency Considerations

If the thesaurus is very large (above 10,000 entries) or if the
user plans a significant amount of computing with it, he should
investigate the issue of optimum block sizes for the thesaurus.

The utility programs VBLKSIZE and OPTBS are available for this
purpose. These programs are documented in the annual report of
this project for the year 1968-1969. This problem has been solved

for the standard system thesaurus.

10.4. Activation

The JCL necessary to activate BLDRING is the following:

1 September 1970 130
// (JOB card)
//JOBLIB DD DSN=UNC.IS.F2312,SEDELOW.VIALIB,DISP=SHR
// EXEC VIA2,BLDRING=EVEN
/ /BR.ORGNX DD (DD information for input thesaurus)
//BR.THSCTL DD (DD information for output thesaurus)
/ /BR.VOCAB DD (DD information for output thesaurus)
//BR.DRCTRY DD (DD information for output thesaurus)
/ /BR.THES DD (DD information for output thesaurus)
//BR.SYSIN DD *

VBLKSIZE=nl ,DBLKSIZE=1:12 s TBLKSIZE=n3 3

/*

1 September 1970 131

B. PREFIX -- Revised Version

By John B. Smith

The PREFIX program described in detail in Automated Language

Analysis: 1967-1968 has been revised during the past year. As a

result, the logic has been greatly simplified -- the program is
less than half as long as the first version -- and the run time
reduced. Before discussing the revised algorithm, I shall
describe briefly the data structures and the logic of the
earlier version of PREFIX: however, the reader is urged to con-
sult last year's annual report for a more detailed description
and listing of the program.

The earlier version of PREFIX was basically a table-lookup
procedure based upon a list of English prefixes, a list of
words accompanying each list, and a key. A word that has
initial letters that match a prefix does not necessarily have
a legitimate prefix. For example, the word ate does not
consist of the at prefix and a stem. Consequently, it was
necessary to associate with each prefix additional information
in the form of a list of words that indicated when a word with
matching initial characters is or is not a legitimate prefixed
word. Our task would have been simpler if we could have
included in this list all words that are exceptions to the rule.
This procedure would work well for the prefix in -- there are

only some two to three hundred words listed in the Random House

Dictionary that contain these initial letters but which are

1 September 1970 132

not prefixed words. However, the exceptions for the prefix a
are voluminous. The technique that was employed was to use
either an exception or an inclusion list -- whichever is
shorter -- and to indicate the kind of list by a key. Thus,
associated with each prefix is a list of either exceptions

or inclusion words and a key indicating the kind of list.

To optimize processing time, it was decided to assume
that text words would be passed in alphabetical order against
the alphabetized list of prefixes, resulting in the need for
only one pass of both lists. This works well except when one
prefix is "contained in" the succeeding prefix -- that is,
when the first prefix is shorter in length than the prefix
that follows it and when it matches the prefix that follows it
character by character. For example, a is "contained in" ab,
ad, etc. In this case, words with legitimate a prefixes may
come after words with ab prefixes: atypical would come after
all words with ab, ad, anti, e%c., prefixes. To solve this
problem a list of these "troublesome" prefixes was kept and
after "normal" processing failed to reveal a prefix, the
prefixes on this list were tested. The result was a procedure
of some three hundred statements and fairly complex logic.

A simple and more elegant solution to the problem was
found by using truth-table logic. (A truth table is matrix
representation of all possible combinations of values for
relevant parameters and the resulting logical condition.) 1In
the case'of PREFIX there are three relevant parameters: the

initial letters of a word match or don't match an English

1l September 1970 133

prefix, the word is or is not found in the associated CLUD list,
and the CLUD list is an inclusion or exclusion list. The
following table (Table # 1) summarizes all possible combinations
of these factors and indicates whether or not the word has a
legitimate prefix. Ones indicate that the parameter or condition
is "true" or present; a zero indicates that the condition is not
met.

Clearly, a word has a prefix only in those cases in which
the initial letters match, But more significantly, it is
meaningless to test for this condition until a check of the CLUD
list and its accompanying key is made. To facilitate this
procedure, a different data organization was used. The
CLUD list was sorted alphabetically and a pointer attached to
indicate the associated prefix and key (see Table 2). The
complete text can thus be processed with a single pass against
the alphabetized CLUD list. A scan of the CLUD list reveals
whether a text word is on the list or not. The main processing
procedure then branches into two simple nested conditional
logic paths, If the word is found, then a test of the associated
key is made. If it is a one, indicating an inclusion list, a
test for prefix match is made. If all three tests are successful,
then we can say that the word has a legitimate English prefix.
On the other hand, if the text word is not found in the CLUD
list, a quick search of the prefixes beginning with the same
letter of the alphabet as the text word is made. Those, and only
those, prefixes with a key of zero are tested against the initial

letters of the word. If a match is found, we can conclude that

1 September 1970 134

Initial Letter CLUD KEY Has Prefix?
Match Match
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1
Table 1
Prefix List CLUD List
PREFIX KEY L/—\ PTR | CLUD WORD }
. . PTR | CLUD WORD \
PREFIX KEY

Table 2

1 September 1970 135

the word has a prefix.

Thus, by changing the data representation, the processing
algorithm is greatly simplified. Resulting processing time
for a text of some 100,000 word-tokens is reduced from 8-10
minutes to 6-8 minutes, a 20-257 increase in efficiency.
PREFIX is now catalogued in the VIAl sequence. For instructions
on how to use it, see the User's Manual included in this

report.

1 September 1970 136

III. Professional Activities

of Project Personnel

Sally Y. Sedelow

Publications:

"Report by the Committee on Courses and Curricula for the Con-
ference on Computer Technology in the Humanities," in Report

of the Conference on Computer Technology in the Humanities,

ed. L. D. Ohle, University of Kansas, pp. 27-33. See also
Appendix C, pp. 49-59, and, with Walter Sedelow, Appendix D,
pp. 61-63.

"Computer Education for the Humanist," Proceedings of Symposium

Introducing the Computer into the Humanities Curriculum,

IBM Manual # 320-1044, IBM, Poughkeepsie, N.Y., 1970.

Also printed in Proceedings, Symposium on Computers in

Undergraduate Curricula; North Carolina Educational Computing

Service, November, 1969, pp. 24-30.
"The Computer in the Humanities: A Contradiction?” Computers in

Undergraduate Education, ed. William Viavant, University of

Utah, 1969, pp. 123-139.
"Categories and Procedures for Content Analysis in the Humanities,"

The Analysis of Communication Content, ed. Gerbner, et. al.,

John Wiley & Sons, Inc., 1969, pp. 487-499. Co-Author with

Walter A. Sedelow, Jr.

1 September 1970 137

Review, Louis T. Milic, A Quantitative Approach to the Style of

Jonathan Swift, Style, Spring, 1969, pp. 205-207.

Automated Language Analysis, Report on research for the period

March 1, 1968 to February 28, 1969, Contract N0OO 14-67-A-0321,
Office of Naval Research, University of North Carolina.

DDC # AD 691-451, 286 pp.

Papers/Seminars/Addresses/etc.:

*Speaker, ''Computer Systems to Facilitate Research in the
Humanities,”" Virginia Polytechnic Institute, as Distinguished
Visting Scholar, May, 1970.

*Speaker, 'Computer Education for the Humanist," Symposium: Com-
puters in Undergraduate Curricula, North Carolina Educa-
tional Computing Service, November, 1969.

*Speaker, ''Computer-Aided Analysis of Humanistic Aftifacts,"
University of British Columbia, September, 1969,

*Speaker, 'VIA and MAPTEXT: Programs for Stylistic Analysis,"
University of Alberta at Edmonton, September, 1969,

*Speaker, '"Teaching Computing to the Humanist,'" IBM Program for
Deans of Humanities and Liberal Arts, Poughkeepsie, New
York, August, 1969.

*Speaker, "A Curriculum for the Humanist," IBM Symposium on
Introducing the Computer into the Humanities, Poughkeepsie,
New York, June, 1969.

*Speaker, 'Communicating with the Computer About Humanistic
Research,'" State University of New York, Conference at

Brockport, April, 1969.

1 September 1970 138

*Speaker, "Computer-Aided Research in the Humanities,"
Virginia Polytechnic Institute (Distinguished Visiting
Scholar), May, 1970;

Clarke College, Iowa. (ACM/NSF Visiting Scientist
Program.), May, 1970;

University of Kansas, February, 1970;

University of Nebraska at Omaha, (ACM/NSF Visiting
Scientist and Program), December, 1969;

University of New Mexico, November, 1969;

Maryville College, Tennessee, (ACM/NSF Visting Scientist
Program) ,October, 1969;

University of California at Berkeley, June, 1969.

*Speaker, 'Computer-Aided Stylistic Analysis,"

Omaha, Nebraska, ACM Chapter, December, 1970;
University of Illinois, May, 1969;

Colgate University, Hamilton, New York, April, 1969;
State University of New York at Buffalo, April, 1969.

*Speaker, '"The Computer and Liberal Education,"

Virginia Polytechnic Institute, (Distinguished Visting
Scholar), May, 1970;
Lawrence University, (ACM/NSF Visting Scientist Program),
April, 1970.

Activities:

*Member, Technical Area Committee 7 on "Science and Humanities,"

for Fifth IFIP Congress, Ljubljana, Yugoslavia, 1971.

1 September 1970 139

*Consultant, ACM College Consulting Service, 1970- .

*Visiting Scientist, National Science Foundation, Association for
Computing Machinery Visiting Scientist Program, 1969-1970.

*Proposal Evaluation, National Endowment for the Humanities, 1969- .

*Member of Board of Directors for the Rhetoric Society of America,
1969- .

*Consultant, Coordinated Science Laboratory, Cognitive Memory Pro-
ject, University of Illinois, May 19-23, 1969.

*Chairman, Curriculum Section, ACLS/NSF Conference on Computing
Technology in the Humanities, University of Kansas, September 2-6,
1969.

*Consultant, University of New Mexico, November 29-30, 1969.

*Proposal Evaluation, Canada Council, 1968~ ,

*Member of Advisory Panel, National Science Foundation's
Institutional Computing Services Section, 1968- .

*Chairman, Special Interest Committee on Language Analysis and
Studies in the Humanities, Association for Computing Machinery,
1968-1970.

*Field Reader of Proposals, U.S. Department of Health, Education,
and Welfare, 1966- .

*Co~Editor, Computer Studies in the Humanities and Verbal

Behavior, 1966- .

1 September 1970 140

Martin Dillon

Publications:

"advanced Basis Selection for A Class of Large Linear

Programming Problems," Ninth Annual Southeast Regional

Conference of the ACM, May, 1970.

Papers/Seminars/Addresses/etc.:

"linear Programming Applications in Library Management,"
School of Library Science, University of North Carolina,

March, 1969.

"A Contextual Theory of Meaning," Computer Science Department,

Purdue University, March, 1969.

Gerald A. Fisher, Jr.

Publications:

"A Computer Investigation of Verbal Characteristics of

Effective Classroom Lecturing,”" American Educational

Research Association Journal 6 No. 4, November, 1969.

Co-author with Jack Hiller and Walter Kaess.

"Program for Essay Analysis,” in The Analysis of Essays by

Computer, E. B. Page and D. H. Paulus, Final Report,
Project #6-1318, pp. 199-242. Co-author with Mary Ann

Fisher.

1 September 1970 141

"A Parsing Program' in The Analysis of Essays by Computer,

E.B. Page and D. H. Paulus, Final Report, Project

#6-1318, pp. 252-263.

Papers/Seminars/Addresses/etc.

Paper, "On the representation of Formal Languages Using
Automata on Networks,'" Tenth Annual Symposium on
Switching and Automata Theory, Kitchmner-Waterloo, October,
1969.

Paper, 'Current Perspectives in Automated Content Analysis,"
ACM National Conference, San Francisco, August, 1969,
Co-author with Jack Hiller and Donald Marcotte.

Paper, "A Computer Investigation of Verbal Characteristics
of Effective Classroom Lecturing," American Educational
Research Association Conference, Chicago, February, 1968,

Participant, NSF Summer Research Conference in Automata and
Computational Complexity, Plattsburgh, New York, June
23-28, 1969.

Instructor, Study Institute on Computer-Aided Language
Analysis in Education, American Educational Research
Association, Chicago, February, 1968.

Instructor, Summer Institute for Humanistic Computation,

Lawrence, Kansas, June-August, 1970.

1 September 1970 142

Walter A. Sedelow, Jr.

Publications:

*German edition of "Stylistic Analysis'" (from Automated

Language Processing) in Literary Science and Linguistics:

Results and Perspectives, edited by Jens Ihwe for Verlag

Gehlen. Forthcoming.

*The Librarians Speaking, University of Georgia Press, 1970,

pp. 130-141. (Interviewed and edited by Guy R. Lyle).
*"A Suggested Program for . . . Training in Computer-Aided

Research in the Humanities,'" Report of the Conference on

Computer Technology in the Humanities, Lawrence, Kansas:

University of Kansas, June, 1970, pp. 61-63. Co-author
with Sally Y. Sedelow.
*"Categories and Procedures for Content Analysis in the

Humanities," in The Analysis of Communication Content:

Developments in Scientific Theories and Computer

Techniques, George Gerbner, et. al., ed., New York:

John Wiley and Sons, Inc., 1969, pp. 487-499. Co-author
with Sally Y. Sedelow.

*"Computers in the Social/Behavioral Sciences,'" in Proceedings

of the Park City Conference; Computers in Undergraduate

Education, Vol. I, Salt Lake City: University of Utah,

September 1969, pp. 210-212.

1 September 1970 143

*Editor, "Concepts in Human Sciences Education," Proceedings

of the Park City Conference; Computers in Undergraduate

Education, Vol. II, Salt Lake City: University of Utah,
September 1969, pp. 26-79.

*"History as Language,'" Computer Studies in the Humanities

and Verbal Behavior, Vol. I, No. 4, December 1968,

“ (Published in September 1969.)

*Book Review, Review of Burton R. Pollin, Godwin Criticism,

A Synoptic Bibliography (Toronto: University of Toronto

Press, 1967), in American Journal of Edonomics and Sociology,
January, 1970, Vol. 29, No. 1, pp. 108-112,
*Book Review, Review of Norman Birnbaum and Gertrud Lenzer,

eds., Sociology and Religion, A Book of Readings (New York:

Prentice~Hall, 1969.), Amherst Alumni News, Vol. XXII, No.

2, pp. 36-37.
*Series Editor, The Free Press/Macmillan Company, 1968- .

*Associate Editor, Social Forces, 1966-70.

*Board of Editors, Computer Studies in the Humanities and

Verbal Behavior.

Professional Experience:

*Professor, Sociology and Computer Science, University of
Kansas, 1970- .

*Professor, Sociology and Computer and Information Science;
and Research Professor, Institute for Research in Social

Science, University pf North Carolina at Chapel Hill, 1968-70.

1 September 1970 144

*Dean, School of Library Science, University of North

Carolina at Chapel Hill, 1967-70.

Activities:

*Referee, Technical Papers, Fall Joint Computer Conferemce, 1970.

*"Language Analysis by Machine" and "The Intersection of Computer
Science," N.S.F., Summer Institute in Numerical and Statistical
Methods of Digital Computing . . . , University of Missouri at
Rolla, July 8, 1970.

%"Current Issues in the Sociology of Science,'" IBM Management
Study Program, Research Triangle Park, North Carolina,

March 17, 1970.

*"The Computer and Undergraduate Education," Rollins College,
Winter Park, Florida, January, 1970, (N.S.F. Visiting
Scientist Program.)

*Member, Interdisciplinary Committee for a UNC-CH Operations
Research and Systems Analysis Curriculum, 1969- .

*Chairman, Section on Informational and Social Aspects of
Advanced Technology, and Steering Committee Member, "Sciences
in Interaction: A NASA-Related University Program in the Life,
Physical, and Social Sciences," 1969- .

*Principal Investigator, "Computer—-Aided Analysis of Inter-
disciplinary Discourse Barriers,'" NASA Project 325-NAS-4-401.

*Visiting Scientist, National Science Foundation/Association
for Computing Machinery Visiting Scientist Program, 1969-70.

*Conferee, re Computing and the Social Sciences, University of

Nebraska at Omaha, December 1969.

1 September 1970 145

*Review Panel Member, Research and Studies Program, Office of
Science Information Service, National Science Foundation,
December 1969.

*Conferee, re Computing and the Social Sciences, University of
New Mexico, November 1969.

*Invited Participant, National Science Foundation/American
Council of Learned Societies' Conference on Computer
Technology in the Humanities, University of Kansas, September
1969.

*Member, Steering Committee of the Special Interest Committee
for Social Science Computation (SICSOC) of the Association
for Computing Machinery (ACM), June 1969- .

*Consultant, Jacksonville (Illinois) State Hospital,

February 1968-70.

*Member, Faculty Council Committee on University Self-Study
Subcommittee on Professional Schools, University of North
Carolina, Chapel Hill, 1968-69.

*Member, American Council of Learned Societies' Committee
on Information Technology, February 1968- . (Also Sub-
Committee on Funding, 1969- .)

*Consultant, Computer-Aided Linguistic Analysis Project
(sponsored by the U.S. Office of Naval Research), University
of North Carolina, Chapel Hill, March 1967- .

*Member, University Research Council Sub-Committee for the
Social Sciences and Professional Schools, University of

North Carolina, Chapel Hill, 1967-70.

1 September 1970 146
*Member, Committee on University Government, University of
North Carolina, Chapel Hill, 1967-70.

*Trustee, International Social Science Institute, 1966- .

Walter L. Smith

Publications:

(Jointly written with William E. Wilkinson) "On branching

processes in random environments," Ann. Math. Statist. 40:

814-827 (1969).
"gome remarks on a distribution occurring in neural studies,"

Essays in Probability and Statistics, pp. 707-732, edited

by R. C. Bose, et. al., U.N.C. Press, Chapel Hill (1970).

"A contribution to the theory or remnants,' Proceedings of the

37th Session of the International Statistical Institute,

Book 2, pp. 368-370, London (1969).

"Some results using general moment functioms," Journal of the

Australian Mathematical Society, Vol. X (1969), pp. 429-441.

H. William Buttelmann

Publication:
"Syntax-Semantics Systems as Structure Manipulation Systems:
Phrase Structure Grammars and Generalized Finite
Automata', Ph.D. Dissertation, University of North

Carolina at Chapel Hill, July 1970.

1 September 1970 147

Papers/Seminars/Addresses, etc.

*Lecture, ''Structure Manipulation Systems,"

Ohio State University, .March, 1970;

University of Kansas, March, 1970;

Rice University, April, 1970.

*Participant, NSF Symposium in Mathematics, Morehouse

College, September, 1969.

John B. Smith

Publication:

"PREFIX," in Sally Yeates Sedelow, Automated Language

Analysis: 1968-1969.
"Principle Component Analysis: A Discussion," in

Sedelow.

Professional Activities:

*Degrees: Ph.,D., U.N.C., August 1970.

*Participant: Conference on Humanistic Computation,"
Kansas University, September 1970.

*Research Assistant, Institute for Humanistic

Computation, Kansas University, June 1970 - August 1970.

1 September 1970 148

APPENDIX A
Program Documentation of DETEXT - A Text
Decomposition and File

Creation Program Set

by

Joe R. Ragland

1 September 1970 149

Operation and Use of DETEXT .

DETEXT was designed to allow flexibility in using the program.
As a result, optional parameters with default values have been
provided to control and specify environmental criteria relative to

a particular application of the program.

EXEC Card Parameters
Certain specifications must be provided as key-word parameters
through the PARM option of the execute card. If the parameters are
not present default values will be assumed in each case.
The parameters are as follows:
SIZE Amount of core to be given to the 0S/360 sort
program (in addition to the PL/I DETEXT program).
Default SIZE is 44K bytes.
CDMGIN=(xx,yy) Specifies the margins to be used in scanning
input text cards or card images from the text
input file. CDMGIN=(1,72) is the default value.
TLEN Maximum token length to be scanned. Tokens
longer than TLEN will be truncated on the right.
TLEN=18 characters is the default.
INPUT Indicates the DD name of the DD card from which

text input is to be read. SYSIN is the default.

EXEC Card Example

//TRUN EXEC PGM=DETEXT,PARM='SIZE=56000, INPUT=TEXTIN'

The resulting options are SIZE=56K, CDMGIN=(1,72), TLEN=18 and

INPUT=TEXTIN would be a dataset specified by a dd Statement of

1 September 1970 150

the form //TEXTIN DD .

Text Input

Text input consists of a title for the text and the text
prose itself. The title (a single card) is always input from
the standard SYSIN dataset. The text may or may not be input
from this dataset. 1If the DD name specified by the INPUT
parameter is other than SYSIN then it is necessary to provide
a single card as SYSIN to be used as title identification. If
the INPUT parameter takes the SYSIN default or if INPUT speci-
fies SYSIN then text cards follow the title in the SYSIN
dataset. However, in this case only, a blank card must be
inserted between the title card and the first card of the
text. This blank card is not necessary if INPUT specifies a
dataset other than SYSIN. If the blank card is omitted then
the first text card is ignored.

Text input may be terminated by inserting a card with
$$$8$ punched in columns 1-5. 1In the absence of this card,
input text scanning will continue until the end-of-file

condition occurs on the dataset named by the INPUT parameter.

Specifying DETEXT Run Datasets

The four output files (TOKEN, TYPE, GLOSS, INDTAB) and
one temporary file (POINTER) must be specified by DD statements
at execution time. PL/I stream I/0 is used for the TOKEN,
TYPE, GLOSS and INDTAB files. Record I/0 is used with the

POINTER file. For a given run the TOKEN and TYPE files will

1 September 1970 151

require significantly more space than the GLOSS and INDTAB files.
The stream I/0 files should specify DCB=(BLKSIZE=720Q,RECFM=¥)’
for 2314 disk and DCB=(BLKSIZE=3600,RECFM=V) for 2311 disk.

The temporary file POINTER should be specified as
DCB=(RECFM=FB,LRECL=400). The BLKSIZE should be 7200 or 3600
as appropriate.

In addition to the above files, certain other datasets must
be included. Specifically these are the SORTWKOl, SORTWKO2,
SORTWKO3, SORTLIB, and SYSOUT datasets for the sort., For this
particular application of the 0S/360 sort only three sort work
areas are desired. Finally, the standard PL/I print dataset,

SYSPRINT, must be defined.

DETEXT Run Example

//GEN JOB - — :
!/ EXEC PGM=DETEXT,PARM='TLEN=22,CDMGIN=(1,80)"
//SYSPRINT DD SYSOUT=A

/ / TOKEN DD UNIT=DISK,SPACE=(CYL,(5,3)),DCB®(BLKSIZE=7200,RECFM=V)
//TYPE DD UNIT=DISK,SPACE=(CYL,(5,3)),DCB=(BLKSIZE=7200,RECFM=V)
/ /GLOSS DD UNIT=DISK,SPACE=(CYL,(1,1)),DCB=(BLKSIZE=7200,RECFM=Y)
// INDTAB DD UNIT=DISK,SPACE=(CYL,(1,1)),DCB=(BLKSIZE=7200,RECFM=V)
//POINTER DD UNIT=DISK,SPACE=(TRK,(5,3)), *
// DCB= (RECFM=FB, LRECL=400,BLKSIZE=7300)

//SORTWKO1 DD UNIT=DISK,SPACE=(TRK,200,,CONTIG)
//SORTWKO2 DD UNIT=DISK,SPACE=(TRK,200,,CONTIG)
//SORTWKO3 DD UNIT=DISK,SPACE=(TRK,200,,CONTIG)
//SORTLIB DD DSN=SYS1l.SORTLIB,DISP=SHR
71sYSOUT DD SYSOUT=A
//SYSIN DD *
DETEXT TEXT 1ID CARD

(Blank card)
FIRST TEXT CARD

$5$$5
/*

1 September 1970 152

In the above example, text input is from the SYSIN dataset
(by default option), the maximum token length is 22 characters,
input scanning is from column 1 through column 80 and 44,000 bytes

is to be given the 0S/360 sort for processing.

/% a1la awbuhd cUa avdho =/ Sle-wnubae‘dlhauha=L l bt
tuhd fuMd < i 9t
tli—ca’idts il ’u) udSuus=¢’l C L Lt
SL-1 Y et fd) slbuns=1l S0U dapnd u=-¢X¥ al L L (43
Sl Watbtr’d)aubuns) aauha=ca 1 1 it
Sty te b u) bdbuns) £A3UNI=Ln fud Neha (=% ol 1 be
/% NUswdU LibdVh ubbo Addhd *»/ s =NaYmbos ‘a) 2TUNI=L i Ll
tOhd At addasihS=ates i L ¢
Si— e ot %u) babuus) AdUNL=Y fuu Ndhae U=t1 ol l <.
/% NUlwoU d415 GLYVULLS dud %DdbD »/ P {a=H2i5,d)XBUNI=L i [y
UNE S (Aot el dasuns=Nale 21— 0o’ 0 2 (o4 %0) adSHNS) ATUNI=X%20U wablld 0=-1 41 i 91
/% AULLaU HwYha't NddUs aUd 20d kD =/ L (e=NaTas ‘a)raldhi=r l [
tefa b lhdial by’ e=d i ni
tud¥dS UL OY Ndhh u={ku¥d) HIONG'D di L i
/% 4114 wUdNL 01UVdad =/ Sy NISASs=dildNL i Ll
/e SKiYAYW GHVD LT0Vdad s/ *ZL=TT 1 =11 8 b
/% 4415 AUVLULS WILVadU »/ 000nN=24is i b
/% nlYA&1 Ndhwow LTUV4EA =/ tbl=Nalw L L
tuadid Ad¥NI” NdTa TDQ i Y
tavA (u) a¥HD wudhI 71D2Q Y 4
La'11d (duaw’NENOL) °(ZTH)a¥HD 4 124 i ©
tLva (Gn) d¥iD h¥Ya 100 i £t
Sy s eNg)INILING L) BVHO W50l ON il i 4
\bdi!'l!&}&.ib’i&&l&b&ii&.Qil_’&lliﬂl*ilblllii&&l’*i&iG}{Gib*ll&b.{i*{&
* *
* Geol ‘Uc alm *
* 60LLe "D °h “xdua YIOLNVILe HOdYabdda *
* GLl¢l AUB *0 “u *
* bddMas AUILYuLdhUD SdaawlSHaALND S'IONVIdw *
* dhvabl¥d b aol taChuli¥ *
* *
* *w¥dvuda SIhd aC'laadd UL SalwlTIDNd »
¢ HdwldhUD SNIGLAUNA HU4 BAWNdD NUOLLYILAKOD SHlwiSudAlNU d4'1LKEIHG *
* dhd UL RULWVIDAdad¥ S1H SSdbdXa UL SAhSIH HIhwh¥ Ghd »*
» *
» *udhSId4 W ulvsdy *dU a0 NOlwodwsG dabha HIUND *
* 111k 13a¥hHD ot YN1Tuabo hedUN a0 ALLSusAsNhD dba LY aDN41DS *
* NUlwV¥hoUdNi GANY HawlhdwUD Mi aseBal °S°h dhiw oUa Sandhaelil3d Y *
* ahe abl whawliladlia IVIwdla NI NaLLlds Sta kbadudu Sihae *
* *
» “Likvaalt b1 aN1ISAL *
»* wildhi batue aOa dwWwlih uu daid Llidha *
» “wiabkddl S1 wl=ha’ll =
* *Uabh ad Uw HubHNET NddUw wlWiabw Na 1w *
* cLlltasd W1 L ’L)=R1bwuy *
* ‘WAhd U4 SUBVS LldAL UNINRYIS dUd SNavdVw (Aa*ag) =nlbnud *
* Teaub LYE/SU abe ShINNLL GNv UNsCTIUE dOa *
s lwladau L sUsdiuut Ni) aTHYL1IVAV aalld ol dedd aL1h »
» *
* TOM0UTI0a Y SNUiwdy Hawdkbate aNiwdasdd SahU NOLLDab »
Ed *
* ‘hveblao UhklGiIhe «Tld AV MilwidSuuhUoad bLAad ¥ 2LAdldG #
* »
G‘Iilédldiuohdd&&}!6!4&4!&&!&ldi%li&&l&{i&i&i’ll*&lh{!Q*&li’!*’l&i_’lu&\
P ihstn) SAULLaU thaia) JUdd *daaadu i

/% ashtadbee MUk - 981G%ILE sila 5 wllwlSouhUddu wrdy - Lrdddl a/
LhaN 'laAdT whiS

/w achbuoUbe NAVR = LnlUddibn alis ¥ KRIiLidLuaUIIL whrauw = wadaau »/

$LXELAU GNE *duaS

C{haTL)ISTT 1%V

S{r.AGW) 2aad as L2

VAINITILal1S)TLeUSs S0

t{aaw)dala 16010 S{NAdCL) aTid ablTiu

C{EVLUNL) d'lid aS0TD L5507 dTIa dS5LTu

CluhdNL’21% LT a0 45 N Tu) LLBLS TTYD

$dSVa dua
",‘.¢~.>=»>.c»xu.‘.,nVu.ﬂ..n.n.«..p=.-chyv~,¢,=.<..>=vu.c~ymv

aF:c7H~.HE:c2h—-.’..Nﬁ-.--pp-vu?FCrGU—.mran..mrhw.vkkmb 1.4

fowda’i)
(NATL® s =ha i :58Y¥ ANud Slhi UdSH SNULwdU -- L HOISudA daddlabe)eIua ohd
/% Ual 1HUS Ul 3hG HetNaT NEYOL hhwiNIk SLI 1L %/ C{LL*NaTl) R¥K=NaTe
1lev¥ds
tUpa Sy’) aubHUS=LLabha

Sp=(a s (uti’a) adsbls) Aaldhl=a
t0oU NdhL C=%1 aas

%St

duU¥d 4% debuaoUcu NaVh = Shatosht @daa o Wdeabiunboot waeo

~ A

wLoe

L b

- - - -

- -

tadall

>

whuws

0L

SST

St) Aty
en) uvii) Qiaadd

C{tLkhaldl) evul) Shalicac
Pilu’bt) AaVNLIL Uaila)aadhg

faclha®auwia’ lu’tt) AeVile Gaasas

SLf L) AdWNIY Gaara’(¢nravdo® tut)avlio)Avula LuaSabl

tHG)ave. ludxur 1uu
hati Jaaird «tDuwau
At)dViio Uialab
Slawha iod
ceVbaka
ol

\GG.'.}O{’lQibiibbiﬁllbll&i&&&!&&&ib&ib&#biblﬂ..il&&lCi&!ﬂ&&il!i&!’l.&

»

*
*
»
*
*
*
*
*
»
L d
*
*
*
-
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
-
*
*
*
*
*
*
»
»
*
*
*
*
*
*
»

(n)y

sulnua (v

casztuhl N ALUbaa vl
“Sdwaa

(YRR
(v
Nala) ¥
(A
tn)y

sudrias

ted v
(HLUNGL hNadOL) ¥
(YR

ddwh10u Ndavw

gabwhh A8LUdLND

Ad SUcuudu xdUhi
Ll av UabJaa odlidhb

UdUdal dddw vl dadbhlua

YhI4lS Lib-y
ha hUuw
HwUNd'T Na 20w

CUN tddulb-whdw b¥dbhad
INdXUu Abu ddUbu ¥halv NI SUBUDAY NahLw
*Sdwafl ttil ad UdUlda ddluhan

aokdaaldov dU ADNaulaHda

NdhUw
hwNdT NadUa

thadld An 830d0 Vhdlw NI SdaUJodd S50L71Y

(n)v
(h)y
(n)v
(YRR
N aUL) ¥
(Y% B

(bablhal

SNa Ll AE sadoau Yhdd

5IONaabliodU
Lhusia ‘lseddu Y)
NadUu whkialhk

*SdwAb Wl du Je0Jad wdGVEB

(Ladd) NUILISUL =ONdLdUDIU

2 NUIwWISUd adhdaobllov
I MulLiSUd adNdudfiSOU
aJN3dELLIJU 44U AJNalLUZHa

NadOw
nwuiha’l NadUC

al Suabldab duaw

"Luwhb BEL au UabJal wdlVab

U bdtuwi.N dba UNIAIY
SNadUL aU bdbhba Tiwud ‘ (Sawad o)
‘(Lalab Ub) Gl Laaw ‘{Sdwab &)
L515M0) UAY hdud wawd¥d¥nd NI ae¥ SubLdaw salVah aH L

W) v GNY AdY¥Nad Gadld

Gohda UWEOK—TTLd 40 JaabNh

yabh=-dlvn

Ccuwls anl ab LUANlwsUb sL4 A'lia
‘wachau alVaau
ferce abund WVas Lu aunGadude b

sthdulbuin uhy

Ardbbaedls

LU laa

wU JaubNL dna L1

Uhy Jalnu

wbSLU v

dhw Sa
(ch¥

(TyNia) abulny

(dkdl) NdXU

(Tehia) 55079

{I¥Naa) agdw

"AuUbaLk) hova 4u

(1io¥a SawAbt 4)

SdanhilN
ha Uha'l
Lw¥N a1id 40
YA LYS!

‘MUdat SLV¥waLa 4714 adae Ml

uddavwn

LS5l wava ella

‘4 eliaJdubg

hSIudVita UNY
‘Shadde Lduhk LA

SLLuOYy

PP IEI O I I S S S R IR IR S SR AR N AR R R A A AR A A IR L I IR R B

il.l’&l&l&dd&db&’ill&l’O&O&l&&&bl&il%&lG&lil&*l!’*’lid'!{&i&i&#il&ll\

/% Ld'laa UTabu ubh¥

/% talla uirsihu Gek

Shaatd wiUS

[
Suaauvd wblbd

tlabani’¢11n
‘aliuNi NVOS

Ld calivadUaa —

‘whiuhi

‘aulSNalad i fhad
LwbUb

YU Lu

us
»/

adbdalilu

Lsan TeAaTl wauS

Luwbud #»/

Li

961

abvu

PLa¥3) uabhi (WaMOANilalls Ulad
S
PUG hehe C1<a aa
Seti-l SNGDS
SUha
tllosuwha) Nalhawaa
t{Z1) ouNSaH1 T1L¥D
Sitdl=al
tUzAbl NdHe WI=NI al
ts a=hal
Sl WAI)xUa) uaSduS=8i1

/% Sasoedlda AdUbs Nebwas 3/

/% bawhlUa haadUs dDVuwdd =/
/% aabhbh ALUDaLED LOVawad x/ S (al)aui) wiSullS=iSda
/e iNdSEuu Sdialhd XHUNL 41 wSEL #/ 10U Nahd L=MS1 21
/% w805 Ol Sududad S5Vu #/ * {lLthaid) e¥nl) SNduLdl DUde *Sbikd
tUNa *aULS
(e 10aSHRIINSRL STs LubUS) 4317 dIas wua
LUl Nadw 91=2GOuda 4l
P lobtaha’Slwha®dtiovda *aels U Taiaa’uuilds)ueaSdnl TIVC
tp=01 (edlvuha) 3T1duNa MO
Su=L1’AaVhh
LEauUL0UU00 1 =howtl “€ubliblitl=aOg fi=1 221=0C *tl=Xx
/% HALNUUDU NaROL t¥ahil =/ HVES |
t0=dwdaNnt twhadbd (wVLUNI)alia hacu
S lelbaNi) dTall (VLVGAL) a1ld wdaU
tGeNo=0H
/% W8YD 8ad¥ab wrdd LLANL »/ taaod (lug)¥) (Levd)wIad (N1SAS) 8'1la wed
e (shledila)=hluRal’d=aaad ddLOa8 1=GTalea
/% o¥dS T0bahUD #/ S0 0B’ H L fv’HD vl be®) =5uTdId weld 1=0Taies
tLthdTu=ca
NdTw=la
t{pdalt 8 “{E)allGNL “lUM
tUa0dab T¥NbawhI wfINI aTIe YLVANI T4
t(B)wiw HOIVT 100
tlb)uliw Buy €
‘ (halw)iVho LSaa ¢
“¢) u¥hd hal o
‘(n) avnl NIT ¢
UanYLlTeNG GD2udNa L
Cu03dwina 44U \LtA41L) vno D3cand 1.3
Sl tar) vk 2o LU
Plestiulu, wus?aallCuvlbuda‘Bacut o
~m.(CLPCf:r..r.zcrc———r..a.ccrccwrp..u.ccccrgr—.
.r.rcrccccp..r.ccccccc—..a.cgrcccer.vA«»F»?» tt)est \Ul)ma
L PPy PSP PN
123 sttt st Tvaaithd () avtho (eidu 136G
/% Lalo awVN dLraw whana 7 ttuk)avnl Un 1lu
Cyotts ashudie lea’ld) ki Tou
Sufit) AaYhia Garaa (gud’n) sou
tasblia useald AKSa 14
SGUR) LY BD aali ‘s&wS Ushladu (R)BV¥RD (LCL) e S {uun) evnd LlwS Ud
S{u’ltlachiviu UaArals dold ‘aLinaiu uaale halae Tou
tlublaend uaV¥d o
LANd 1) a¥VhD wuhk(D lou
falh \k)ednd Lhadhi Gou

“y226% 00 adsata’

s beada Gailo wueh “ubsabe weud ‘Glichs Bvob Lo swhGldvad

Lt o e

whabh

leci s

R s m NI A

- - -

La
Lo
hs

ty

=

[
(X7
[]
Ln
an
nn
n
Ln
bt
b
Yt
St
Gt
6C
Le
9¢
1 Y4
| 14
£c
Lc
(124
61
sl
L

Yt

nt
t

[

G

rver oo

laha’t whaS

%/

]

th 4cdumby IR SN HTEY T AN [4 Cel
‘hlmaad 4 bll
{Dablna) ndLdaY 4 x4
SZL) LHEYSanl 1IVD [4 LceL
Sl=x ¢ 9cl
SU=ab¥m < (¥4}
/% @UWYDILAL dDualNab-au-uUNa 4AY¥S / SHa¥hi=Naltik Z fcl
Sk’ 400) ELSBNS=48534 [4 [AN
t lawa) JadSNL= (NIT) D8dSAL 4 (441
L {nd) vdasan= (K31 DaaShu ¢ 174
Sltdwa=dlY llulha 4 L
caruvd0000IL s=dIdVvl < vib
SUNT S [sl
S1=3al1 9 ¢ Lt
SN C 4 5Lt
Sl) a) (ull i) wsda (lwdl)Aul)onland olbd . ¢ Gl
SL=Ab1 cLthi=ma ¢ C £l
St Wil dwduha= UL ewdtl ‘UL Nadu b ed i 4 Gl
${LCLLowt) sdSELS=b 11 < tvl
th Ld L=l b C bJl
tu=hil 4 LIl
/% 8U aAlSLloxa #/ Slosubllus’hla¥1%ulb) luba=0bld 13 Yul
LwlOdfia ub O Nabs BaluLUbLIUVI=HIwYT 21 SLbaul Z nul
SUha L < tul
nC.lv.m % C [AN] Y
SURhd SNVOS Ow LY cL=a t 4 6o
/s 0dlikhildu Slhw &laU &/ 0L d&714 ¢ ¢ bb
tUhd fL0ULG Ve Lo 2a%a=ave £ C So
/3LNdASdbtd Laa oN3S UM »/ *UU Ndhae u=Xd¥mw 5 " " s=hUuw di adTla C % to
tdha tubiudia Ll Wb € C lo
/% eluboIuhi aDNILNAS-auU-UNd wab */ fL=xdlw t C (o
tuu Nahw BaJULLLUGL o= WL L) wu sl 4 C bo
L wu b hOUNI=RDLYT < ¢ Ld
LoU watd (L) L=ina’l *Auu) uuSuOS 41 i ¢ %)
UL UL LS ow ¢ fio
tebawl vl UL Nane s¥s =< (11 %20i) uddund as ¢ Co
/% ashawhal dU uha aue wSadl »/
/% NaaUw aU hwdha'l 51 ha »/ Sl=n=ai 4 lo
/% GLUB 40 naYNd'L 51 b= #/ {1tAaTo’t-Utx)hia=a < Go
/% whaw U Uha dud LSdad s/ ShNihdauw Gw UY N3AKC 132323 8=4Ua ol ¢ 6L
S L0 LN L) b SELS= (% ALl swt slid ¢ e
/% wAaw ol Stawwda L-1 ad GaU3dodae AAVab ¥ aflb abl »/
H Y i ¢ 9L
Sakob Ua 0Y L ¢ SL
tCi=r i s e
S tlanw’iith)aanza S C t L
tledi’0avo)uwsdls= a4 sabulis i ¢ L
/% wAad 51 Ua¥D aU wdalhivdel #/ SUL ANand (=1 ol ¢ (L
/% Sxabhbiibu ahaodiub x/ thiuo JUu LY Nabl =1 al (e b
/% %oVU wadNh Uh1s 2/ Sle 32 01i1%0edl) aabBUS) aBdnl=L ¢ LYy
SLYi-C=ad 3 Yy
‘UNa i ¢ ()
/% UdlLow Laadulbia soa5Ab Noub L=l 2/ thimtdaw UL Ui nars L=la Lo i N t
/% AMAU whe Uadlhil Nibe &Ua dVad Slnw a7/ S1=a . N4E cilulEr Haa as L « (%]

wba ik dedzl dhwS

/% Saaioe Ulibt UAV “ahdave wevt ‘wiubas V0D cw oadlbladial T obeabi ows

£l

. ®
SLtha=N [ool
Y L 4 Lol
tiebdt) hUba (w3whibd) 3. suldh L 4 Yyl
Ly=h - l=hbu L 4 fiol
/e a'lia La SeawhlUd RUiawadl %/ t0u Nione wul=h di 4 (418
/% NaaOL Slba sU & HVabhll ands =/ tnil=N) s 4 Lot
t{y) (lilloaeunu)wi@d (MaXUu) da1ld Lhd [4 Golb
/% B'lia duAw Uk dddhild = Tl #/ t (1) DdashL={17) OddSKN Z 6Lt
tuNd i [4 gLl
S lhed) vdaShis (wi) Jadshl fatdesadmtd =R NLYL L [4 SLL
W ¥ 4 4 uLl
sL=bSu < Z gL
Sy =) L=k Gw L=Hh UG WNDZ))0lud (adawldTla elic Flalb ¢ [4 ZLh
tuNa t 4 _»"
Suhz n 4 [
S luon) ¥) (daue) wita (FdAwdalid whu i c 694
t ladly) OuNe léecihNlUd)dlld Uhae f c 89l
SL ad L=an OU t 4 L9
SGAd fteln Lé LY P luswNibd)elad 35010 v € [313
SN1Usn ledihIud) 4TIdGNa NO 3 Z 9
lgawhila) d114 3SC10 t z [X,
/% UeSh alia 8dwhlUd 41 L=85u »/ tuG Ndhd L=Mbc dI ¢ 4 651
SRV L)Y HZ)Y) (Oa‘udW0D wl) bita (650T8)3Tha wlic 4 [4 854
S 02 vl lead WP QI V) Wa'ude0d ‘e T wiud (3 aw)dlas wua 4 r4 LSl
S{L1) DauSAU=al ra 4 95t
/% 313a 3éad N1 AdNOL 40 Rauls = T »/ cpti=T 4 4 ssSi
£ (1) 2daSA=(0a) DadSND 4 4 L 19}
/% AMNU AudNa dbSasz NU 0=Na 3/ SUU NEHw L=hI 44 i [4 st
/% oiwhuOJ AJhautiaa 5i 1 %/ 20U abie f1+1=1 Naki SakuJd=dbalb 4l 4 6wl
/% Sualudu Gohouwdd SwhLUo a ¥/ SLTA=2 Z 17 -1%
SUNJ I Z el
theland b [4 98l
S{n) DdwSakl T1vo i P4 (14}
Svf (L) ¥) (hi1%ws5d6)witGa (BWLIGNA) 2Tle whu " z LT
/% SGaUoat adubi kid ¢ 1=Nhal »/ LU0 Ndhw o+ e=Nal a1 Z r4 1%
tic)aV¥hd Wa‘e111) T34 [4 (%13
t(p)Lld dOu C
‘ineledaihd dbaa ¢
®{¢) athd Nalt (
4 () a¥no N1IT €
Yodbwbt ddu GaNYITENL WaawlO L
et ne 1) denl Jdacawd idu < Cul
/% SLaUdal Uawaud nBlisia »/ t(cdawllu) Dusd StiNa i bElL
GLINg GNd [BEL
thibDlad 4 Lel
${p)DavwSada 11D [4 St
/% udGian wTla aadni o/ Do) d ted e e)atlug) Vs)
vlb ue =it 0O L) bwduina) ~n.tm.rn>..r-r:.->DC?M;F...C.U tdV¥euns) alia diig rA Gil
/% wduVaoh &ade SSULTL w/ tliula tod “tyla’tida’ (v’ sl y)
(o La L=11 Lu VL) dwoUki) *adn’Nalifun’ss5C1osldaua (55070} 4T1la whd 4 tEl
/% wIU¥an a'dia Loaa %/ il a tedfl9dldttedatlupd i is) vl
(e Ll L=ii OU AL1) ewlUND) “Lun’bala’ln’s adhws)elus (ddAl) aTad wla P4 tel
/s 0ddV¥an alia haabu »/ T {iu)a ler i) a’tda’tiori ts))
(le Le L=0L Lu phpvc(LLV»v.uEh~:kHE.c:..7&&CF..FHru (haalw)alld ald < cel

LSan TIA3T whu$

mrte s teids Lilnd LhE fomad.w waus ‘wlena A¥oS Ue satbudiod - lecus o/

LLdUS GA3 ales 3 tie
‘GEuha dka < [4%4
chdlLadd < [(YY4
/% I'INS walsS Tendla o/ tlb) Dd¥LaHl T11V¥D C (1] ¥4
tlgddmaval e als 25010 4 (X1 4
Slth) v U-M) (lL-N Uw L=Nd UG WINN)) dwsue tdadw) aTio wlid :7401H < bul
HI] i C [X'r4
SUNd [4 s YUl
Ctioun) V) (adid) wita (ddaw) dlia wlla < < Y4
tldd k) Uuhl laddN1dddd'ila LVaw 4 4 LDY4
SLoat Ll=mh UU 1 4 £t 02
PCiIn Ve UY (u2uN10u) uT1a0GN3 NU L [4 (4414
S {uadh ald) a'lia d45UT0 § ra vue
/% Lablh wlid aawNlGd al L=Mbu »/ *0d Naha L=hSu al 4 bol
S N L) vl) v) Wataunuo’ll)elua (55U ETLS LN ¢ Lol
St v (v e V) (udauwUd’widdads tdaALddlla Lud Z 9ol
t{a1) oadSan=11 [4 Sol
/4aih0 LdNahuat GaUoba w581 NO acdn 55V¥a »/ S {1 Dadshn=1(04) S3ubhi 4 fiol
Ui sNobadE i < Zol
tin)la¥bakl TI¥D i 4 Lol
/% LaUb Uw UaSSYd SuaUldda & = uad 3/ 204 Nabe dad>a da « tudl
LSah T=icl ¢ ad>
sa tersa ulibnu UNYV Conadus waldh Cabons Loob o cae oot = e %

/o Lowify d11ldlna wao =/ Si=11 (NzAU) 'T1AUAS KL ‘ 51
usta L LT
HN A._—rn__.vn:lcrn;.knwn>r gduldt e=UuTdlad [£
/% TUBLAUD Lol ali adVk =/ Sy WWlHu’n®i)=5171d1d4 180S +=UTas i [
totNdIL=la : [
/s d3UVah &4lid NANUL UYdL »/ S{ine 1) v) lub) wiuad (A4NOL) dT18 ddL 1 ot
t{L)d¥hD 8 10U i 6
t(¢) dvHD 11 ¢
‘(y)ilg doE T
‘ (haTL) u¥HD LSd¥ €
* (Z)d¥HO N3 ¢
“ {n)d¥uO N1T C
‘UaklT¥ND ADd6lNT)
*i0ddakd ddu (e+N311) BYHD DdEiNd 104 b 6
${nti)HdvHO ad 1040 ! L
S AMVANIEG Udald N3MD “(0%1¢) ABYNIH GdXId 3ZIS 110G) 9
S {{etNaTd) u¥hD) SNEOLAY SLd 10T i g
S(u’lL)AUYALL CdX1ld dUDwdd *(iw)8¥ED w1314y ‘ (0E)BYHD (145 T ! L]
tsobbs d84lDId 14 T i £

$({0°LE)AdYNIY GaXId) AMwWNE DUNSAHI
* (AdlNa®AdINd ‘0’1t) AEYNIE GdAld
S (UfLe) AdYNIE UBXid’(Zn)dVED Y (CE) UYHD) AMLNE GLESIHT 14 i 4
/420 8RBERRR RN EERE XN SRS Oli60'Q&Gi&ii.ﬁh&{&&d.&&ib!bQGGQQG!’GO'!!Q'!“
»

(HuOMal NdNUL)Y NERUL

<)y BauUNET NENUL

Wy ynNlals wld-b

(YAR | GE0UDab ddae UL HHLN1Od

*3dLaU Lide 1YNIDIAU NI STaudaa K3ANLL
*Salat ntL avL dauldd H3UVahR Lhadlio SY

tedy Ua023b adil UL dduhald

(1) INIULS lib-b

s0dLtlds (nd 1) ¥ NdXOw

[N hduha'l NadUw

(n)y *ON baudu-wadd d¥aklil

*NadOu Ab HaGhu VYHal¥ Na SuaUlald ANasdle
*Salab BLl au UHUOAY badvdh llaNl SV

*adLYZLY¥D HOV3 40

SAINANELIOU dU dauklN akwe ualAlY (HoVa S3LA6 &) SUEABRLE
whuid *(Saldbs 4) SNaduw dC bddwbd ‘(Sduan £) EIDMET NadOw
Wumli¥h ‘ {5diab ub) ui wXxad ‘Sdadb 9) (AaXOws aU 4S515K0D
GAY maUd daddvaVHO NI HaVl SUeuddb udGvdb 3de “AuVNIE
Uidla GaUM-TTLd 40 J3abAlL whe Si An)¥ GNV a3 VAId Gaxld
QuUR—&TVE &0 DJauSNl dhe S1 (&) v “PUlab SevhdCd 31T7ld FHL Na

fSwihila aTia NadUa
*Uhluuls

YddaV GlauUal Sa asabalh LZG30 uVadi'i ande "84l 80 lXad
TENLLIHU CeNi waUS UMY SGLabdsd nanvl dhuxl Ouw dthaddudd ¥ 3ZwH0S

PRI N IR I I A R A N R R AR R K R R

»
*
*
*
*
*
»
*
*
»
»
*
»
»
»
-
*
*
»
»
*
»
*
»
-
»
»
*
»
*

u.;oo-¢couu¢¢cu0.o¢¢&ac4.0;;5;4..«&;-;;a&a-..u.u»ua¢§¢¢0¢uolauu¢u.4¢\
Cinalu’3 £i5)DVBL ZaElS 3
/% tadub wade ‘l¥N.Llau Uwhl 20Vu bioale adud Ui ad bladObd = CwluS »/
LSak TIAET dhas
091

4UVu /8 Lauvey wAhae Q¥h1latu vehi Boit LAAXUL wuld Uw cabuadilee - cubtlbdb #/

LZadUS Uk s (%}
tgtd a@aa ¢ [4]
'nE0LAY 4 iw
t (p)DUVSanI TIVD [4 ow
SUNAT) DAaSHL) VA L) v LY) Y) (ASdu’Na’l’d*T1)AIGE (NA¥OL) 4’114 10d ¢ 6€
L {god) dddsn= () dDadskn z 14

tleduubd 171 ¢

*(g)liy €od €

* (NdTa) u¥HD LSab T

“{Z)UVYHD M4l €

‘{n)d¥dd hil ¢

238100 430 QANLICINNG GOdawhO |
4 (o+¥Na1l) WY HD DJ4uanu 124U ¢ Lt
t(038400)D08d ‘atd 3 9
tGld unad F4 9t
INEDLEY F4 (13
t (¢) Du¥sSEHL T11¥D F4 te
/e 83UYAH aTia A4NUL adiaB 3/ S (it d) V) (uk) wida NadOL)a1Id dba 4 t
t(Nai0w)d11Id ES01D

NGRS F4 ¥
H T i 4 (iT%
$(O4HLNa) NEOIIY i z ['Y4
t (L) oBNSdHL 1IND § Z <
/% n3dUd aTlaUda NO L=L4 »/ SHULSY] UL 09 HEHL =11 d1 i Z Y4
S ((ptNaie) ¥) (Dadlnd) L1Ga (Asdul)dlla 1dL 8 4 1 YA
L A6 L=h OU C [14
/% wEUSL Lu SNedUL SSYd »/ & LlbtTNJTL) a¥uD) 3 hdbudd DOH8d 341d 1 [X4
Sdka *d0i1S i I (¥4
S ILESSdIONSNG SYM LwulSe) IS47L dINS whid i I ol
20U Nabw 91=dGJ13d¥ da i sb
lota’6id®dddata’acls’ulasas ‘0145) duwdSakl 114D i Rt

LSe b 13A37T owhdS

Y4 duvu /% aatul wadd IWNILiaU ULNi 2DVE SNaabe 4405 Uw ablLddldue = Cwals »/

Sl v (1) a) tawae’ i) wits WYauha) 2Taa wil

.
LYYV

b Use | Aa L=1 LU

thuaw Uw LY tevwlGnideliatiel AU

Cvtusdb V) len®salaa
St v) lund wadd

Aabnia)diattd old
luvaub L) iisa wat
PLae ela faltad

SUNd

tityda)2 Wit (L)ad te)a) (%%l L) uive dixS uld

(Oadd) DddSuO=)

S lz) v () ¥) (oddd ‘x0d) 1143 (SS0T9) aTId L2E

${na1) DdaStku=1

SU(Z)Y) Wha'l) 1104 (8S0TU)d11d watl

sJuo

L Ga L A6 V=1 W

$23aNL UL 0D (SS0U1u)d'liadNa NO

t(v*dlas’y) (uB®,3114
t(tneL)v) (up)lraa

SS0T94) Li0d uhid
(ssu19)d11d 139
tal¥a whid 5019
tuMNd
tuha

tilwda’) x) (M) diva Lla
t{aed) vdaShu={KR} DaaShu
t((n) ¥) tdwd) Lita (ddAL) alia wad

15

Lw +=1 CQ

Sly)d® WA IV WIn’ () a) r*40e’P)LIda al¥S wila
t(Uadd) SIaSNu= 4} DdaShu
S{e) v) ¥) (0dud?Yuu) Lida (daad) 3Tid w3
$(NaT) D14SAG= () DIdSNL
()) (naT) 11GE (daAd) 3114 43S
SU0IL LL L A8 L=1 LU
t{y%uins®y) (GH’43T1a adhws)dlva dla

S iinti) ¥) (db) 1143

(ddaw)alld 4ad

501y UL UY (\dakl)&11adkd KO

tduvd I0d *3udld
SGANT

S At e At (el) A’ ty)a) UL el a)uits J1M5S wlid

\wc) IEdSNL=n

t{n) VaaSNLU="LE
Sle) ¥) (10L) Lata (NENUL) 114 4dD
S{Nnal) SdaShe=r
SV) v 2 W) (haT%u’ea) 316a (nax01) 4113 widb
Iuudl La LAt =1 Lo
tdcacd ve LY \NIBUL) 3TIdANs MO

tle’uins’y) WEralia

S) v) (und wiud

t (adAw) a'lid Naal :
tigVaunl)dlla Nawv

S lLtaVhd o

NE2Uwe) 110d ulic
(Naald) 8114 LEE
(NEN0L)ATia bacU
S50 1u) 3Tia hacO

tabV¥u ifa
‘{plwiu 808 T
tledavnd ad 10

t{u’ly) AbYNIE CGaals N 120
CAacthIn Gerld MTa T

.

() abbo cia ‘dva tuut)avnd dua “(T)u¥ho Nal

vt bl a¥dd uh 120
(¢)a¥nd Ldud

Tou
\Na‘id) 20bd suSiT

/% 53lad UawbVoaNab abL LhN1dLiT GvaisalVa aolGuba UL duliGaouse = dbil 7/

4] dUVa /% Ldiag LowVoabel wU LhawbaT lvieab¥d aondlac e zenudlten

-

—e e NN

- - -

PPFP"—'_,..-..F.—-,—.—,-,.,_',_,_F...,_p,.._P,.PF.-,_,—PPPPP.—PP,.'..—P,_,-,r,_

La
Lo

Sy
1.,
s
[49
is
0s

gn
is
st
"
£ty ¥
n
(%]
o
6t
£
LE
9t
SE
(13
(13
(43
[22
ot
6C
8Z
9z
st
'z
€7
(X4
(X4
1Y 4
61
1%
L
si
L 13
€L

Lol el ol ol - o N - Al g
-

-~

1Sak 12437 dkaS

wba's

*/

/% Laila Caslvadbhas

tASIT GAd Shadl

SuNd
Sl a’)a’ W)a) W) aiuva dlns dba
${Bwu) DaushL=i

SU UNILLLL Tvlia¥a cdlduad CL dalllauteu

- -

.‘R*

