oot ¢

AUTOMATED LANGUAGE ANALYSIS
1967 - 1968

Report on research for the period

March 1, 1967 - February 29, 1968

The research reported herein was conducted under Contract NOOO14-67-
A-0321, Office of Naval Research, U. S. Navy, Task No. NR 348-005

at the
Department of Information Science
University of North Carolina at
Chapel Hill

Distribution of this Document is Unlimited

The research reported herein was conducted under Contract N00014-67-
A-0321, Office of Naval Research, U. S. Navy, Task No. NR 348-005

at the
Department of Information Science
University of North Carolina at
Chapel Hill

AUTOMATED LANGUAGE ANALYSTIS

Report on research for the period
March 1, 1967 -~ February 29, 1968

Sally Y. Sedelow, Principal Investigator
Walter A. Sedelow, Jr., Consultant
Walter L. Smith, Consultant
Joan N. Bardez
H. William Buttelmann
William G. Hickok

Joan Peters

Terry Ruggles

The views, conclusions, or recommendations expressed in this document do not
necessarily reflect the official views or policies of agencies of the United
States Government.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Copyright (c) 1968, by Sally Yeates Sedelow

Reproduction of this document in whole or in part
is permitted for any purpose of the
United States Government.

1 March 1968

Automated Language Analysis

1967 - 1968
Report on Research for the Period
March 1, 1967 - February 29, 1968
by

Sally Yeates Sedelow

ABSTRACT

This report describes current research associated with

the automated language analysis project. The focus of

the research is upon the delineation of patterns formed

in the linguistic coding of information; this delineation
is called stylistic analysis. The report describes
research on thesauri, especially research upon comparisons
of possible input thesauri upon methods of enlarging input
thesauri, and upon the possible use of input thesauri for
the resolution of semantic ambiguity. The report also des-
scribes a new ring-structure version of the VIA program
which produces text-specific thesauri. Work on statistical
approaches to the analysis of strings is also described.
The report contains extensive documentation for the PL/1
implementations of the INDEX, SUFUN, and SUFFIX sections

of the VIA program, as well as a description of the program
design for the ring-structure version of VIA.

1 March 1968 3

PREFACE

We would 1like to thank the people and organizations who have supported
this research during the past year. The members of the Information Systems
Branch, Office of Naval Research, have provided advice and administrative
support. Various offices within the University of North Carolina at Chapel
Hill, especially Research Administration and Contract Administration, have
helped to manage the administration of the contract. The computation
facilities at TUCC (Triangle Universities Computation Center) and at UNC,
Chapel Hill, have, of course, been vital to this project. We would also
like to thank for their support the academic departments at UNC, Chapel Hill,
with which project personnel are associated. Special thanks go to the
Information Science Department for providing the assistance necessary for
publishing this report and other documents associated with this contract;
Mrs. Sallie Clotfelter has been most consistently associated with this phase
of the project and we wish to express our gratitude to her for her good

assistance.

1 March 1968 5

IT.

II.

ITI.

Iv.

TABLE OF CONTENTS

Preface . ¢« ¢ ¢ ¢« ¢« ¢ o o o 4 o s o s e e

Survey of the Computer-Aided Language Analysis Project
March 1, 1967 - February 29, 1968.

Introduction . « ¢« ¢ ¢ ¢« ¢ 4 ¢« 4 4 e 4 e
Work During Past Year « . « .« &
A. Research on Thesauri« « .

B. Ring-Structure Version of VIA

C. VIA Reprogramming. . . . « « « .+ « . .
D. Statistical Procedures
Program Documentation.
Introduction . . . « « « ¢ ¢« v v 4 4 o . .

Documentation for INDEX, SUFUN, and SUFFIX .
A. User's Section, General Introduction .

B. Program Documentation
C. Flowcharts « ¢ ¢ ¢ ¢« ¢« ¢« o o o &

Documentation of the Ring Structure VIA . .

A, Introduction . « + ¢ ¢ ¢« ¢ o o o o o
B. Data Sets . v ¢ ¢ ¢ ¢ o o o o o o
C. Programs . . « ¢« ¢ o o o o « o o o o o &

D. Flowchart« « « ¢ v & ¢« « « « &
Professional Activities of Project Personnel

Appendix (Program Listings).

19

27

30

34

34

35

35

48

58

85

85

85

91

106

107

112

1 March 1968 6

Survey of the Computer-Aided Language Analysis Project,

March 1, 1967 - February 29, 1968

I. INTRODUCTION

The general goal of this research project on automated language analysis
is to develop a set of computer programs which will characterize as completely
as possible, the style of any string of language under examination. For this
research, style is defined as "the patterns formed in the linguistic encoding
of information'; style may be said to consist of patterns of word choice as
well as of patterns of types of words, punctuation, groupings of words, etc.
The ability to characterize style implies that one author can be distinguished
from another, one sub-culture from another, one culture from another, and
the like.

The utility of the capacity to make such distinctions is wide-ranging.
If one author or speaker can be distinguished from another, then interpola-
tions or modifications of a given statement which might represent shifts in
policy or attitude can be detected. The distinction of cultures and sub-
cultures is useful both for the information gain inherent in the process of
distinction, and for the uses to which an awareness of stylistic distinctions
can be put. It may well be that basic cultural, political, and military mis-
understandings derive, in part, from ignorance of stylistic distinctions
among communication patterns. An example of such a distinction -- in this

case a recognized distinction -- is given by Jagjit Singh in his recent

publication, Great Ideas in Information Theory, Language and Cybernetics.

Singh points out that in Western languages, there is a "great deal of

1 March 1968 7

dichotomizing; terms go in pairs, with meaning reference to opposite

extremes (good-evil, black-white, clean-dirty, strong-weak and so on). 1In

the Chinese, there is much less dichotomizing and the language has few pairs

of opposites. Consequently, what may seem to be a stark contradiction to a
Western mind may not be so to a Chinese."1 The identification of such major
stylistic differences, as well as more subtle ones, is, thus, of real impor-
tance for officlals engaged in diplomatic efforts as well as for those concerned
with the analysis of information.

Thus far our efforts to delineate style have concentrated upon patterns
of word choice and the distribution of such patterns, as well as interrelation-
ships among patterns. The two programs which have been used for this research
are VIA and MAPTEXT. Thorough descriptions of the programs and of the purposes
for which they have been used are available in a number of research reports
and articles. 2Briefly, VIA produces what we have called text-specific thesauri
and MAPTEXT produces abstract representations of any specified linguistic
element or elements. We have used MAPTEXT to accept as input, output from the
VIA program in order to display graphically the spatial dynamics of word

patterns in a given text. As we reported in the Third Annual Report, the use

of MAPTEXT in this way facilitated the quick recognition of a major rhetorical

1Page 4, Dover Publications, Inc. New York, 1966.

2Stylistic Analysis, First Annual Report, SDC Document TM 1908/100/00,
March 1, 1965; Stylistic Analysis, Second Annual Report, SDC Document

TM 1908/200/00, March 1, 1966; Stylistic Analysis, Third Annual Report,

SDC Document TM 1908/300/00, March 1, 1967; Updating of THESAUR Program,
SDC Document TM 1908/009/00, December 17, 1965; "A Preface to Computational
Stylistics," Computer and Literary Style, edited by Jacob Leed, Kent State
University Press, 1966, pp. 1-13. Co-author with Walter A. Sedelow, Jr.;
"Stylistic Analysis,'" Automated Language Processing: The State of the Art,
edited by Harold Borko, John Wiley and Sons, 1967. Co-author with Walter
A. Sedelow, Jr.

1 March 1968 8

pattern having to do with references to conventional and nuclear warfare

in Soviet Military Strateg1.3

II. Work during Past Year

The project work during this past year has been concentrated upon four
major areas: 1. Research on thesauri; 2. Conceptualization and design of
a new procedure, based on ring structures, for clustering words in the VIA
programs; 3. Re-~programming VIA for the 360 system and PL/l; 4. Initiating
research on statistical descriptions of string input.

A, Research on thesauri. (This section is based upon the research of
Sally Y. Sedelow assisted by Joan Peters.)

The necessity for research on thesauri has evolved from our desire to
automate fully the VIA program. As VIA now operates, an input text (either a
written text or transcribed oral discourse) is read into the computer, indexed,
sorted alphabetically, and then sorted by root. At this juncture in the pro-
gram, a computer printout is provided which shows each word type appearing in
the text, which shows these types grouped according to root, and which indicates
where in the text each token of the word type appears. A frequency count for
each root group is also provided. Given this printout, the researcher or
information analyst then decides which among the root groups in the printout
he would like to explore further by looking for words in the text which are

semantically associated with the given root groups. Having made this decision,

3For this research we used two translations of V. D. Sokolovsky's Soviet
Military Strategy: I. Dinerstein D., Goure and Wolff, Prentice-Hall, Inc.
1963; II. Translation Services Branch, Foreign Technology Division, Wright-
Patterson AFB, Frederick A. Praeger, Inc. 1963.

1 March 1968 9

the information analyst then manually consults textual context, thesauri, and
synonym dictionaries for words which are semantically or ideationally associated
with words in the root groups he has already designated. The words manually
selected by the information analyst are then submitted to the next phase of
the VIA program, THESAUR, which looks for these words in the text and, when
they occur, links them to the appropriate root group. If any of these
newly linked words happens to be a part of one of those root groups earlier
designated by the information analyst as worthy of further research, the
computer goes on to search the text for words associated with that root group,
and so on down through five levels. These lists are based on the manually pro-
vided first level list, but through the additional levels provided by the com-
puter words are brought together into new clusters not specified by the human
researcher or information analyst. Although the manual search does not require
an enormous amount of time and it may well be useful to have the option of
providing words manually, it is nonetheless desirable to eliminate the neces-
sity of a manual search. The only way it can be eliminated is to have avail-
able a thesaurus which the computer can consult after the text has received
its initial sorts and frequency counts.

Recognizing the need for a thesaurus presents no difficulty, but pro-
viding the thesaurus is another matter. An enormous amount of work has
already gone into special purpose thesauri used for information retrieval of
medical information, legal information, chemical informatiomn, etc. Our goals,
however, require an all-encompassing, general-purpose thesaurus. The existing
thesauri which come closest to being general purpose are, of course, the var-

ious versions of Roget's Thesaurus. Accordingly, we have conducted research

on two versions of Roget's Thesaurus, but we have also initiated research on

ways of altering and enlarging existing thesauri. One other related research

1 March 1968 10

project involving thesauri has also been undertaken. This project is an
exploration of the possibility of using a thesaurus, once available, in
computer-accessible form to resolve or help resolve semantic ambiguities.
An initial effort directed toward the comparison of thesauri was
described in last year's annual report. Comparisons of the results of VIA

runs using, respectively, Webster's Dictionary of Synonyms, Roget's Univer-—

sity Thesaurus, and Roget's International Thesaurus, suggested that the out-

put from the runs using words from the Dictionary of Synonyms would be too

spare to be useful, whereas the output from runs using Roget's University

Thesaurus was too inclusive to be useful. For example, the University
Thesaurus linked such words as analysis, page, metric, and line to a category

headed by the word dead. Among these three reference works, the International

Thesaurus seemed to produce the most useful output. The output from runs

using the International Thesaurus was considerably more comprehensive than

that produced by Webster's Dictionary of Synonyms, but it did not include the

large number of seemingly extraneous words produced by the rums using the

University Thesaurus. The results described in the report on the third year

of research were, however, highly tentative because just a few words (espe-
cially DEAD and DECLINE) had been examined in exhaustive detail. To indicate

the magnitude of the task, it is worth noting that Roget's University Thesaurus

produced a list of 2,452 words, (using the word DEAD as the primary or key word)

for VIA's operation on a chapter of Soviet Military Strategy; Roget's Inter-

national Thesaurus produced 268 words under the category, DEAD. This past

summer, we examined VIA's output for comparative runs on twelve other words:
DECREE, DEFLECT, DELIBERATE, DELUSION, DEVELOP, DEVISE, DISARRAY, DISASTER,
DISTRICT, DOUBLE, and DRILL. Our investigations provide our earlier conclu-

sions with firmer support.

1 March 1968 11

Differences both in formating and indexing between the University

and International Thesauri account most heavily for the discrepancies

between the outputs of VIA rums using, respectively, the University and

International Thesauri. The University Thesaurus does not subsection cate-

gories as does the International Thesaurus. For example, the index for

the word DEATH in the University Thesaurus refers to a category which

includes both nouns and verbs in a great range of meanings. The index for

DEATH in the International Thesaurus sub-divides on the basis of meaning

and syntax; the indexed section for DEATH as a noun in the International

Thesaurus contains 26 entries as opposed to the single all-inclusive cate-

gory of about 221 entries in the University Thesaurus. Thus the format,

itself, of the University Thesaurus, results in a wider retrieval net. The

indices of the two thesauri reflect the difference in formating-. In the

International Thesaurus, a typical entry might read "lifeless 407.24". The

analogous entry in the University Thesaurus is "lifeless 360." Clearly, the

International Thesaurus index is referring to a sub-section (.24) of a main

entry (407; the entry in this case happens to be DEAD) while the index in the

University Thesaurus is referring to a complete category.

In addition to these format-defined differences between the indexing
methods of the two thesauri, there are many reflections of the eclecticism of
the editors of those particular editions. Our work this summer again

supported our earlier observation that the International Thesaurus tends to-

ward indexing on more abstract terms, while the University Thesaurus includes

terms which are rather more precisely focused, often upon human manipulation.

For example, under the word DECREE, the International Thesaurus refers to the

headings JUDGMENT, COMMAND, and LEGALITY; the University Thesaurus refers

to these words as headings, but also to the heading, LAWSUIT. Or, as another

1 March 1968 12

example, the International Thesaurus under DELUSIONS, has ALLUSION,

DECEPTION, PSYCHOLOGY, AND PSYCHOTHERAPY; the University Thesaurus refers

to INSANITY and SELF~CREDULOUS. Furthermore, it is rather often the case
that the index entries which do occur in common in both thesauri, do not
refer to the same words in the thesaurus proper. For example, although
the heading is indexed in both thesauri under DEVELOP, the word ADVANCE

is indexed by EVOLUTION in the International Thesaurus but not in the

University Thesaurus. Rather, the word ADVANCE is indexed by the head-

ing INCREASE in the University Thesaurus. In summary, we might note that

our examination of VIA runs turned up 34 words which occur in both thesauri
and could have appeared under a common heading in both thesauri, but in-
stead occurred under disparate headings. Perhaps it is also worth under-
lining the obvious here —-- the number of words for which we had compara-
tive VIA runs totaled just 14. The disparities between the headings
indicated by the indices would doubtless seem overwhelming were a more
extensive study undertaken.

There seem to be several other important distinctions between the

two thesauri. For example, any given word in the International Thesaurus

is likely to appear in more categories than it does in the University Thesaurus.

Furthermore, the categories in which the word might appear in the University
Thesaurus may seem of more limited scope than the categories in the Inter—

national Thesaurus (e.g. a word which might appear under the heading LAWSUIT

in the University Thesaurus as opposed to LEGALITY in the International

Thesaurus.) Thus, the International Thesaurus seems to emphasize more diver-

sified, and at the same time, more general denotations of words than doc-

the University Thesaurus. The index of the University Thesaurus does not even

contain certain rather common word forms, such as CONCEPT.

1 March 1968 13

Our experiments with these thesauri and the Dictionary of Synonyms

were constrained by the need to use computer time efficiently and therefore,
by some concomitant research requirements. Hence, the words chosen for the

comparative runs were words appearing in one translation, and not the other,

of Soviet Military Strategy, because we were looking for patterns of word
choice which might distinguish one translation from the other. These con-
straints notwithstanding, it would seem apparent that if there were a serious

interest in using the International Thesaurus as a basis for a general-pur-

pose, computer-accessible thesaurus, a rather thorough study of indexing
technique and indexing bias would be appropriate. We intend to make some
further effort in that direction manually, but a comprehensive study demands

that the International Thesaurus be available in computer-accessible form.

The cross referencing systems used in a thesaurus could then be explored in
considerable depth.

In the absence of a computer-accessible general thesaurus, indexing
bias could be further explored with the help of the VIA program. For example,
one might designate a certain number of primary words used in disparate types

of text (e.g. the word STATE as used in Soviet Military Strategy, Hamlet, etc.)

to see just what the retrieval net of a given indexing term seems to be. If
one indexing category tends to pick up a large number of other categories, or
primary words, the degree of relevance of the primary words thus retrieved to
the main indexing category might be investigated with particular care. Such
an approach would have the advantage of moving toward an operational definition
of indexing bias through a comparative testing and examination of groups of
words retrieved from any given text.

Our exploration of possible ways of interplaying a textual word, its

context, and a thesaurus, to enrich a thesaurus have really just begun. The

1 March 1968 14

task of building a thesaurus is so onerous and time-demanding that it would
seem desirable to find a way of using an interactive computer program to

assist with the enlarging of a thesaurus. Enlarging such a thesaurus might
take two directions: 1. the addition of words to a thesaurus base which is
used for the examination of any text; 2. the provisional addition of technical
terms to categories or, indeed, the addition of technical categories as well,
to a thesaurus, with the provision that such words would be used just for re-
trieval purposes in appropriate technical areas. The desirability of having

a general purpose thesaurus to which one can add one or several technical

thesauri has been demonstrated by our own work on Soviet Military Strategy.

There are many rather technical terms in Soviet Military Strategy having to

do with methods of warfare. It would be useful to have a technical thesaurus
to cope with the many special terms connected with, for example, nuclear war-

fare. A thesaurus such as Roget's International Thesaurus is rather strong

on a value, attitudinal vocabulary, but relatively weak on a technical,
scientific vocabulary. If one could have consistent access to the former
vocabulary and access, at need, to the latter vocabulary, one would have a
very strong research tool for the analysis of content, idea, etc.

We are interested in seeing whether when a given word does not appear in
a thesaurus a word in its immediate context does appear and, if so, whether
the originally specified word can be added to the thesaurus category of the
context word. An example, might be the word ICBM in the context, ICBM
MISSILE. If the word MISSILE already appeared in the thesaurus, ICBM might
be added to that category for special-purpose retrieval. Joan Peters has
begun an explgration of such possibilities. She has examined the permuted

and subject index to Computing Review for 1964-65 for terms from the areas of

automatic control, electronics, and mathematics, which might, or might not

1 March 1968 15

appear in Roget's International Thesaurus. She has then investigated the

thesaurus to see which among these words do, indeed, already appear in the
thesaurus; next, she has looked up the dictionary definitions for each of
the words. This work has resulted in two lists: first, a list of words

that occurred in the International Thesaurus but needed to be added to

other categories because, for example, their automatic control denotations

were not included in the International Thesaurus and second, a list of

words that occurred nowhere in the International Thesaurus. Next she will

go to the context of the words on her list to see whether words in the
context would help classify and place the unlisted words into appropriate

categories in the International Thesaurus. If she is able to find good

leads in the context, the next problem is to locate cues which would enable
this entire process to be automated. A workable solution, if this approach
seems at all promising, may be to use a graphic display which would enable
a human being to make the final decisions as to the classification of a
given word.

Another related research project is our effort to determine whether a
computer-accessible thesaurus might help in the resolution of ambiguities.
The question here is whether for words such as STATE, which have multiple
meanings, it would be possible to interplay textual context and thesaurus
entries to resolve ambiguities without resorting to a parser. Or, if a
parser were required, could it be a simplified version? Or, if an elaborate
parser were required, could the text-thesaurus interplay make ambiguity
resolution much better than any automated procedure currently in existence?

So far as the VIA output is concerned, the problem of ambiguity arises

1 March 1968 16

when a word such as STATE appears in a cluster of words. Sometimes it is
possible to determine rather accurately the meaning of an ambiguous word by
gsimply looking at the words associated with it in the output. For example,

if the word GENERAL appeared and the words associlated with it were COMMON,
USUALLY, and WIDESPREAD, one might assume that GENERAL did not have military
connotations in the given text, but rather was used in some such phrase as IN
GENERAL. The output, however, does not always resolve ambiguities and we have
been considering ways of solving this problem. The fastest and most efficient
way to deal with words of very low frequency would simply be to print out the
context for such words. Supplying contexts for words of very high frequency,
however, is not so efficient. It takes a good deal of time, relatively speak-
ing, to examine the context for two hundred occurrences of a given word type.
One method of using a thesaurus to deal with high frequency ambiguous words
might be to have the computer program examine the context of an ambiguous

word and use the thesaurus to establish the part of speech for the contextual
words. For example, if the word STATE followed MILITARY and the phrase
MILITARY STATE were followed by a verb such as DEMANDED, STATE would pretty
clearly be used as a noun. For words of very high frequency, the program
might print out a summary of contextual frames. For example, the frame,
adjective STATE verb, might occur 100 times. Such frames, combined with the
associated words appearing in the output, might provide all the information
needed in some instances -- most notably, those instances in which the major
ambiguity coincides with a part of speech distinction, e.g., a word such as
SHIP, which has one main denotation as a noun and a quite different denota-
tion as a verb. 1In many cases, however, as noted in earlier research reports
for the project, semantic ambiguity does not necessarily coincide with

syntactic ambiguity. For example, the word AID has much the same meaning

1 March 1968 17

when used either as a noun or a verb. For purposes of content or information
analysis, such gyntactic ambiguity is not of major importance. Words
associated with AID, used either as a noun or verb, would very probably be
highly similar.

Syntactic frames, therefore, although they would have the advantage over
a straight parser of being based upon a specific text and therefore, very
probably, not exhibiting all the possible syntactic frames a parser would
produce4 would not seem to solve such semantic ambiguities as STATE used
in the phrases MILITARY STATE or SOVIET SOCIALIST STATE as opposed to its
use in the phrases, STATE OF MIND or STATE OF A NATION. To solve this
latter kind of problem it may well be that a combination of grammar rules and

a thesaurus or a printout of context types would be most helpful. An example

of a context type would simply be the phrase STATE OF THE. If the word STATE
were being used to mean condition, it might very often occur in that specific
context. Therefore, the context would printed out just once with an accompany-
ing frequency of occurrences of that type. Or, one could again use syntactic
frames, grouping all occurrences of the word STATE followed by a preposition
followed by an article (e.g. STATE OF THE, STATE OF A,) or of a preposition
followed by a pronoun (STATE OF HER, STATE OF HIS). For these syntactic
frames, the thesaurus, alone, would not be adequate because thesauri do not
include so-called function words. Nor would one wish to burden a thesaurus
with such words. Rather, one would use a separate dictionary of the approxi-
mately three hundred and fifty such words which serve as syntactic markers

in a sentence.

4Cf. the comments on syntactic rigidity on pages 62 - 68 of the Second

Annual Report.

1 March 1968 18

We have collected a good deal of empirical data as to what sorts of
frames will resolve the ambiguity of specific words. Before operational
generalizations can be made about this data, more research should be di-
rected toward determining syntactic and semantic rigidities in different
kinds of texts. By rigidities, we mean that once a word is used as a cer-
tain part of speech or for a given meaning, it tends to be used that way
repeatedly in a given text. We have found very strong evidence of such
rigidity in Soviet Military Strategy and Gerald Salton has spoken of such
rigidities5 in the technical literature which has served as a test for his
SMART System. It would seem possible, for example, that a computer program
could be so designed that for a highly rigid usage (for example, the word

ARMED in the phrase ARMED FORCES in Soviet Military Strategy) the most

informative and efficient procedure would be simply to print out the word
within its context type. For more varied uses, syntactic contexts might
be preferable. We plan, next, to direct our attention to the question of
rigidity in less technical documents and texts, and we will then make an
effort to generalize our empirical data so that we may test some of the

general theories outlined above.

5In remarks made at the National Conference on Content Analysis, The
University of Pennsylvania, November 16-18, 1967.

1 March 1968 19

B. Ring-Structure Version of VIA. (By William Buttelmann)

This section describes a second version of VIA (Verbally Indexed
Associations), a thesaurus-building program. The initial version of VIA is

described in TM 1908/100/00, Stylistic Analysis: First Annual Report,

1 March 1965, and TM 1908/009/00, Updating of THESAUR Program, 17 Decem-

ber, 1965.

This version of VIA incorporates two major technological changes
in the system structure. First, the thesaurus is organized as a ring
structure, instead of the previous tree structure. For the notion of the
use of ring structures for natural language analysis, we are indebted to
the DEACON Project.6 The ring structure is more general than the tree and
is precisely the structure of current printed thesauri, whereas the tree
structure is an approximation to it. Second, the programs are written to
take advantage of the large data file random-access capabilities of third
generation computers. This means 1) that they are designed to operate on
a very large text, with a very large thesaurus (on the order of 1 million en-
tries) and 2) that the text-analyses, and thesaurus searches and comstruc-
tions have been designed with flexibility of searching in mind (e.g. omne
may use the system to look for content relationships in the text, either
with other words in the text or with content categories in the thesaurus,
but not in the text; and one may use the system to generate microthesauri
specific to a given text - the latter capability belongs also to the
earlier VIA; the former does not.). Finally, this system has been built with

an on—line time-shared version in view.

6James A. Craig, Susan C. Berezner, Homer C. Carney, and Christopher
R. Longyear, "DEACON: Direct English Access and Control," in Proceedings

Fall Joint Computer Conference, 1966, pp. 365-380.

1 March 1968 20

All the capabilities of the earlier VIA remain. In addition, this
version has the ability always to print the words actually occurring in
the text, even though they do not appear in the thesaurus, so that the
comment (DIFFERENT FORM APPEARS IN THE TEXT) will never appear in the

output.

General Description of Systems Programs

The new version of VIA is structured in three sections: "index";
"data preparation''; '"thesaurus search and construction'. The programs are
written in PL/1l, and were developed on the IBM S/360 Model 75. Since PL/1
is a problem—oriented language which is designed to be machine independent,
the system can presumably be run on any machine configuration which has a
PL/1 compiler and a random-access memory extension (such as a disk).
Alternately, it can be run with a more limited thesaurus (on the order of
one to ten thousand words) in a machine of appropriate memory capacity.

1. Index

The first main section of the program formats the input text into

variable length records, each consisting of one textual word and index

information showing where the word in the text occurred. The input

text is acceptable in stream form.

2. Data Preparation

This section prepares the text and the thesaurus for the
thesaurus search-and-print done in Section 3. 1In addition, analysis
requests are processed here, and a table of search keys which
initiate the searches in Section 3 is built,

The first phase, SORDIT, sorts the text records into alphabeti-

1 March 1968 21

cal order. The remainder of the section is a program that performs
a number of functions more or less in parallel. Function words in
the text are deleted. Roots of content words in the text and in
the thesaurus are identified and words with the same root are
matched. Text words not in the thesaurus are added to the thesaurus.
Analysis requests specifying parameters for thesaurus-text searches
are batched and sorted on type. The requests are examined for any
types which require word frequency counts, and if they are found the
counting is done. The counts are entered in the thesaurus, so that
subsequent passes of the text are not needed. Finally, the list of
analysis requests are processed, and from them a table of search keys
is generated. This table contains keywords that initiate thesaurus
searches and/or microthesaurus construction. For each section of
text, the key word table is updated; thus, new key words are iden-
tified by section. In the thesaurus, a record is kept noting the
text section when a word first appears; thus, new content relation-
ships are identified by section. The key word table and the word
appearance record in the thesaurus provide the information for
building the microthesaurus.

The algorithms for this program are described in detail in
Part III of this report. In particular, the root-identifying
routines comprise the program, SUFFIX, described in the First
Annual Report; they are used unchanged, except for reprogramming
into PL/1.

Much of what was done in the previous THESAUR program is now

done here.

1 March 1968 22

One of the most important changes in the new version of VIA is
the increased power of the system to identify statistically significant
thematic content, chiefly because of the ring structure of the thesaurus.
The primitive form of the first VIA identified significant content by
simple word count. A quick sophistication of this method allowed the
detection of words with the same root through the development of the
match count (MATCNT) by the SUFFIX program. This made it possible to
identify significance on the basis of the sum of the frequencies of all
words with the same root. More often however, thematic sameness is a
broader classification than root equivalence: words with different roots
may signal the same theme; words with the same root may signal different
themes. The relationships depend both on the orientation of the author
of the text and the viewpoint of the analyst. One may wish to vary his
choice of such relationships from analysis to analysis. The specification
of thematic similarity is precisely what the thesaurus categories are in-
tended to do. Given the rings of categories, it is now possible to identify
significant thematic content based on the total of frequencies of all words
in each category.

The obvious advantage of a category-based count over a root-based
count is that significant content may be the accumulative effect of the
occurrences of several roots, no one of which occurs frequently enough to
be detected by the root-based method. The disadvantage is the cost of
extra processing time on the computer. (Of course, it is not necessary that
the categories in the master thesaurus be formed on the basis of thematic
criteria. The categories of the master thesaurus are a priori to any text
analysis, and one may choose a thesaurus organized any way he likes.)

A significant improvement in the counting mechanism would be to use

1 March 1968 23

frequencies relative to normal usage. This requires tables of words and their
frequencies, tabulated from random samples of the language taken from a very
large population. Regrettably such tables are not, in general, available.
The capabilities of the earlier VIA are retained in this versionm.
Since the significant themes are the basis for the choice of key words
that cue the thesaurus searches, there is now considerable flexibility
in the methods for choosing key words. The following is a summary of the
four methods available:
Type 1 - (Frequency by category). Each category is examined, If
the total of the frequencies of all words in the category
exceeds a specified threshold, then each word in the
category becomes a key word.
Type 2 - (Frequency by root). Each root is counted. If the total
of the frequencies of all the words having that root exceeds
a specified threshold, then each word having that root be-
comes a key word.
Type 3 - (Category). The analyst may simply designate a category
as a key. Each word in the category then becomes a key word.
No frequency considerations are made. This kind of search
is relatively fast and can be used to look for all words
related to a particular theme, whether or not the theme is

represented with high frequency in the text.

1 March 1968 24

Type 4 - (Word). The analyst may simply designate a key word. No
frequency considerations apply. This kind of search is
very fast and can be used to look for all words related
to a particular word, whether or not the word occurs fre-
quently in the text.

The reader should investigate the combinations of four analysis types and

five search modes to become aware of the possibilities available.

1 March 1968 25

3. Thesaurus Search and Construction

This section is the program THESAUR which searches the thesaurus
for content-word and word-category relationships keyed by the table
of search keys. All the textual information needed to direct the
search has been entered into the thesaurus by the data preparation
section, so no further references to the text file are needed.

THESAUR consists chiefly of a recursive subprocedure which,
keyed by a key word from the table, searches through the thesaurus
to find all the semantic categories containing the key word. Thus,
in each category, it uses each related word to key another level of
gsearch. This process occurs through five levels of searching.
Because of the cyclic, or "ring" structure of the thesaurus, certain
redundancies are inevitable. For example, every word is related to
itself. More intricately, two or more words in several categories
together will cause the search to return eventually to the first
category and thus repeat itself. Such redundancies are recognized
by the program and suppressed.

The resulting printed output is equivalent in appearance to that
of the earlier version of VIA, except that great flexibility is
allowed in the kind of searching (and consequent microthesaurus con-
struction) that is done. This flexibility comes from the fact that
the base thesaurus contains many words not in the text. Some of
these, however, are related to words in the text, and it may be impor-
tant to know them. Thus, for example, it is possible to request a
search for all words related to a given key word, even though the key
word itself is not in the text at all. Also, for example, it is pos-

sible to ask for words in the text that are related in the thesaurus,

1 March 1968 26

even if the words that establish the link are themselves not in the
text. These options are controlled by the search parameters speci-
fied in the analysis request cards. (See pp. 923-97 for the format
of the ANALYSIS Requests.) To describe fully the search options
available, it is first necessary to describe the printout in more
technical language:

The shape of the printed output for a search based on a single
key word is called a ''tree" . The key word is the 'root" and the
words at the lowest level of search (at the farthest right on the
paper) are called '"leaves'. Each word or semantic category that is
used as a branch point for further searching is called a ''mode".
The root and leaves are also nodes.

There are, then, five search modes one may choose:

a. Text limited —-All nodes are in the text:

As the program searches down a path of related words,
it will abandon that path when it encounters the first word
not in the text.

b. Text oriented - Root and leaves are in the text:

If the root is not in the text, nothing is printed. If
it is, each path is pursued until no new words can be found
which are in the text. The path is printed only through the
last textual word. Thus, it becomes a leaf. Intermediate
nodes may or may not be in the text.

c. Text rooted - Root in the text:

Only the root is required to be in the text. All

other modes may or may not be. Each path is printed down

through five levels. This kind of search would be used to

1 March 1968 27

look for words, in or out of the text, that are related to
words in the text

d. Text related -~ Leaves in the text:

This mode is similar to b, except that the root is
not required to be in the text. This kind of search would
be used to look for words in the text related to a given
word, whether or not it is in the text.

e. Thesaurus ~ Whole subthesaurus:

Nothing is required to be in the text. Thus, the
whole section of the thesaurus related to the key word is
printed.

In all modes (except a) words not in the text are enclosed in
parentheses.

C. VIA Reprogramming

The replacement of the Philco 2000 at the System Development Corpora-
tion, the original home of this contract, by computers in the IBM System 360,
and the projected transfer, now completed, of the contract to the University
of North Carolina, which also has System 360 computers, necessitated re-
writing the programs used for this research. Because we had wanted the pro-
grams to be accessible to as many research scientists and scholars as
possible, we had used FORTRAN, insofar as possible, in the initial versiouns
of the programs. FORTRAN is by no means an ideal language for the manipula-
tion of verbal data, but we assumed it would be improved to make up for its
deficiencies in that area. The announcement of the development of PL/1,
which does have good facilities for manipulating verbal data, combined with
the prospect of little improvement in FORTRAN in this regard, resulted in

our decision to shift to PL/1l as the programming language for the language

1 March 1968 28

analysis programs. The use of PL/l means that we do not have to shift to
a machine-oriented language for character manipulation; using FORTRAN on
the Philco 2000 we were forced to write significant subsections of the
programs in TAC, the Philco 2000 assembly language. The decision to
switch to PL/1 resulted in a delay in making the programs operational
because of the considerable slippage in the release of PL/1l compilers;
other difficulties were experienced because the early releases of PL/1
represented considerable modification of the initial descriptions of the
language.

Terry Ruggles of the System Development Corporation and William
Hickok of the Information Science Department at the University of North
Carolina at Chapel Hill have been responsible for the reprogramming. The
new indexing program, the entry and exit to the IBM package sort using
variable length records, and the SUFUN and SUFFIX programs are all opera-
tional. THESAUR, the last phase of the VIA program, has been coded but not
tested. Plans for the MAPTEXT program will be described in Part III of
this section.

The index program has been redesigned so as to cope with texts in
prose, poetry, and dramatic forms, as well as with transcriptions of oral
discourse. The specifications for the program, as well as the indexing
formats, are described in detail in the section of this report devoted to
Program Documentation. Our goal has been to write an indexing program
with the flexibility to meet a wide range of research needs. Our own
research has necessitated the ability to index all the written forms of
text mentioned above and we envisage the need for indexing transcriptions
of meetings, conversations, etc. In addition to our own requirements, we

have had requests for the program which, taken together, would demand the

1 March 1968 29

entire range of its current capacities.

Variable length records are output from the PL/1 INDEX program to
auxiliary storage. This output procedure is of interest because it means
that we need allocate just the space required for a given word and its
associated index. In the Philco 2000 FORTRAN version of this program, we
were forced to allot an amount of space equal to the longest word for all
indexed words, without regard to word length. For example, the word I
and the word COMMUNICATION would both require the same storage space. The
use of variable length records, as can be seen, saves significant auxiliary
storage especially when processing lengthy texts.

The 0S/360 utility sort package is used in the VIA package to
sequence alphabetically the INDEX program's output. To handle the sort on
the variable length control field composed of the varying length word, a
standard exit, E15, is taken during the initial sort assignment phase.

At this exit the records are padded to provide the sort's requested fixed
length control field. On the sort's final merge phase, another exit is
taken, E35, again to provide the varying length record for auxiliary storage.

The program that groups words by root has been divided into two parts,
SUFUN and SUFFIX. SUFUN takes care of all the preliminaries to the actual
examination of the text and grouping of words by root. SUFUN, therefore,
sets up the tables of legal suffixes, the table of exceptions, and the
table of function words. Function words are words such as OF, AND, A, THE,
etc. —-- the words whose primary role in a sentence is syntactic rather than
semantic. All words in the text, including function words, are indexed.
But only non-function words are grouped according to root and, as a rule,
only the indices for non-function words are printed out. Therefore, it is

in the SUFFIX portion of the VIA package that content words are separated

1 March 1968 30

from function words. Both SUFUN and SUFFIX are described in this report
under Program Documentation.

D. Statistical Analysis of Strings

Word-length character strings have been of demonstrable value for the
discrimination of the style of one author from that of another. The work

of Mosteller and Wallace upon The Federalist papers7 and of Ellegard upon

the Junius letters8 depended upon patterns of word choice as definitive
clues to authors' identities. We, too, have paid some attention to word
length strings when distinguishing between the two translations of Soviet

MilitaryﬁStrategyg. We would like, however, to deal with character strings

not defined by word boundaries in an effort to detect other kinds of graphic
patterns, and (when possible) their implicit phonological patterms. Our
goal is simply to deal with strings beginning with length two up through
as many characters as can be managed -- which may coincidentally occur
within word boundaries, which may coincide with word boundaries and which
may run across word boundaries. Such patterns of character succession
(including punctuation and spaces) may not only comprise in themselves dis-
criminants among styles, but they may also ameliorate problems associated
with parsing and other structural descriptions of language.

The statistical problems connected with describing and predicting

these strings are considerable. Professor Walter L. Smith, of the University

7Frederick Mosteller and David L. Wallace, Inference and Disputed Author-
ship: The Federalist, Addison-Wesley Publishing Co., Inc., Reading, Mass-
achugetts, 1964,

8Alvar Ellegard, A Statistical Method for Determining Authorship: The
Juniug Letters, 1769-1772, Goteborg, 1962.

9See pages 68 - 71 in the Second Annual Report.

1 March 1968 31

of North Carolina's Statistics Department, has begun to formulate approaches
to the task and Joan Bardez and William Hickok have been working on computer
programs which will record and produce frequency counts for strings of up
through twelve characters (including spaces and punctuation); the texts on
which the programs have been tested are approximately 150,000 words in
length, with an average word length of just under four characters. Fur-
ther reports on the programs and statistical procedures used will be made

as this basic research progresses.

III. Plans for Further Research and Development of
the Computer—Aided Language Analysis Project

In this brief summary, we will pull together references made in
other parts of the report to projected development, and we will also de-
scribe several proposed undertakings which are not mentioned elsewhere in
the report.

A. Research and Development connected with VIA.

Research on thesauri will continue. That research especially directed
toward the elimination of the one manual search now used in VIA includes
work on indexing bias in existing thesauri and work on methods for computer-
assisted enlargement of existing thesauri. Although a full-scale study of
indexing bias will await the availability of existing general-purpose
thesauri in computer-accessible form, some preliminary work on indexing bias
has already been done and can be pursued further. Comparative runs using

Webster's Dictionary of Synonyms, Roget's University Thesaurus, and Roget's

International Thesaurus have already been used as a way of exploring dis-

tinctions among indices. Next, we will try using common terms omn different
types of texts in order to explore in depth the retrieval net of a given

indexing term. Work begun this past year on the exploration of computer-

1 March 1968 32

assisted enlarging of a thesaurus will continue. The development of pro-
grams for a visual display console will be part of this effort.

Related thesaurus research includes the search for methods of using
a thesaurus for resolution of semantic ambiguities, and exploration of
the possibility of constructing a thesaurus from a large computer-acces-
sible dictionary. The reason for attempting to use a thesaurus for the
resolution of ambiguity in some of the words included in VIA's output
is that a thesaurus is called upon in the last phase of VIA (THESAUR) and
will, therefore, already be available on a random-access storage device.
Also, we have thought that because a thesaurus is organized on the basis
of semantic associations, it might be possible to resolve ambiguities
more easily with a thesaurus than, for example, with a conventional
dictionary. Some of the leads we might follow are described on pp. 15-18
of this report. We want to explore the possible use of a large diction-
ary for thesaurus construction, in part because several dictionaries are
already available in computer-accessible form and no general-purpose
thesaurus is available, and in part because a dictionary tends to be
compiled by a considerable number and range of scholars. Thus we would
avoid the consistency of bias which might well exist in the indices and
structure of thesauri, since their structure is directly attributable
to a small number of scholars.

The reprogramming of the basic VIA program in PL/1l should be com-
pleted this year. INDEX and the SUFFIX package (SUFUN and SUFFIX) have
been checked out and are operational. THESAUR has been preliminarily
coded, but more coding is needed as well as complete checkout.

The heart of the ring-structure version of VIA has been coded in

PL/1, but not checked out. The input/output procedures have been

1 March 1968 33

designed but not coded. This phase of the ring-structure VIA should be
completed within the next few months. Next, its text handling capacity will
be increased to include word phrases. The possibility of setting up the
ring-structure VIA so that it may be used in an on-line, time-sharing

mode with a visual display console will also be explored.

B. Research and Development Connected with MAPTEXT.

We have not yet recoded MAPTEXT in PL/l, in part because we want to
redesign the program so as to include a greater variety of graphing options
and in part because we want to provide a visual display console mode for
the program's operation. An implementation of MAPTEXT in PL/1 should be
available by.the end of this year.

C. Research and Development Connected with String_Analysis.

Exploration of statistical approaches (e.g. Markov chains) to the
characterization of free-format strings will continue. The development of
computer programs to support the research will include the capacity for

the general analysis of transitional probabilities.

-

1 March 1968 34

PROGRAM DOCUMENTATION

I. Introduction

This section of the report provides documentation in words, flow-
charts, and program listings for the operational portions of the VIA
package as well as for the ring-structure version of THESAUR. The latter
is included because of its prospective interest to researchers who may be
using the VIA package. The earlier version of THESAUR, which will also
be available in PL/l, is not described here because the PL/l version has
not been tested out and the logic of the program remains as it was des-

cribed in the First Annual Report and in the subsequent document, Updating

of THESAUR. The thoroughness of the documentation represents our effort

to make these programs accessible to other research scientists and scholars
with a minimum of effort on their part. We have received a great many
requests for these programs from people whose preferences in program docu-
mentation range from words to program listings. Were it not for the exten-
sive documentation we have been able to provide through these reports, the
cost in time to both the researchers working on this project and to those
wishing to use the programs, would have been enormous; alternatively, the
programs would simply be inaccessible to others.

The documentation for this report of the INDEX, SUFUN, and SUFFIX
programs, as well as some program design and coding, has been provided by
William Hickok. The initial work on these programs in terms of design and
coding of Terry Ruggles, of the System Development Corporation, has also
been a major part of this effort and we wish to acknowledge that indebted-
ness. Although he is not a co-author of the documentation, he is certainly

a co-author of the programs described.

1 March 1968 35

II. Documentation for INDEX, SUFUN, and SUFFIX

by
William Hickok

A. User's Section, General Introduction

This section of the document contains user information for three
of the stylistic analysis programs. The three programs are: 1) INDEX,
which distinguishes and indexes individual words and punctuation in
free format text; 2) SUFUN, which builds a historical data set of suffix
endings, exception words, and function words to be used in conjunction
with 3) SUFFIX, which identifies content words in the text indexed by
INDEX and groups words by root, using a procedure based upon possible suffix
endings.

The programs have been written in PL/1l and are operational on the IBM/
360 computer operating under the Operating System. Each of the above pro-
grams will be covered in detail in the following text of this section.

2.1 INDEX Program

The INDEX program produces a data set containing indexed textual
words and/or punctuation marks. Each word/punctuation mark may be indexed
as to volume, chapter, paragraph, sentence, and word within sentence loca-
tion.

2.1.1 Textual Input Record Format

Input to the program is via eighty-character input records. Input
record format will be described by input positioms.

Positions 1 to 71 - Input record positions 1 to 71 are used to

contain free format textual data in the form of words and/or

punctuation marks. Each word and/or punctuation mark is delineated

1 March 1968 36

by a blank. For example, the phrase
TOM SAID, "GO TO THE STORE".

would be entered onto a data processing card beginning in position

one as

TOM SAID , " GO TO THE STORE " .

Position 72 - Position 72 is blank or contains one of the follow-

ing special characters:
1. Dash (-) signals a continuation of a word between succeeding
input records. If a complete word does not end in position 71,
enter the dash in position 72, and continue the word beginning
in position 1 of the following record. The word counter will be
incremented only once.
2. Commercial "at" sign (@) signals a continuation of a sen-
tence between succeeding records. This operator is valid only
for type processing POET or MILT. All other types of proces-
sing will cause the operator to be ignored. The placing of
this operator in position 72 causes sentence counters not to
be incremented. This option is necessary because a line of
poetry (either in the form for which the only major structural
feature is the line or in the form indicated by MILT -- which
may be divided into books, or cantos, or something analogous,
as well as lines) may well run over onto a second printed line
even though the initial line and the run-over comprise just
one poetic line.
3. Pound Sign (#) signals the continuation of both the word and
sentence between input records. Use of this operator will

cause the word counter not to be reset and the sentence counter

1 March 1968 37

will not be incremented. This operator is valid only for
type processing POET or MILT.

Positions 73 and 74 - If type processing is MILT the program expects

to find a volume number in two-digit format in positions 73 and 74.

The index for Paradise Lost, the work for which the MILT option is

currently being used, gives the book number in columns 73 and 74
and the line number in columns 75 - 78. For example, 110232 would
refer to Book 1l, line 232. The line number may be right-justified
in columns 75 - 80, if the programmer prefers.

Positions 75 - 80 - These input record positions are for use in se-

quencing of the input records. Any combination of character/digits

may be used providing they form a logical collating sequence. The

collating sequence is not program checked.

Under type of processing, OPLA (Out-of-Sequence Play: for a play such
the Ginn & Company, Kittredge edition of Hamlet, in which the printed line
numbers and the number of lines referenced on the page seem not to corres-
pond) positions 1 - 68 contain free format input data, positions 69 - 72
contain a play line number which is equated to a sentence number, and posi-
tions 73 - 80 may be used for sequencing.

2.1.2 Program Control Key Words

The INDEX program recognizes two types of key words; 1) processing
key words, those key words specifying how data is to be processed by the

program and, 2) textual key words which are used with passages which have

been excerpted from longer texts (such as sections of Hume's History of
England) to indicate the location of the excerpt within the text as a

whole.

1 March 1968 38

2.1.2.1 Processing Key Words

Processing key words are passed to the program through a Job Control

Language (JCL) parameter character string or the first input record of
the input data set. Position notation is used, i.e., the program expects

to find key words at specified locations within the character string. Each

processing key word will be discussed according to its position.

Positions 1 - 4 - Type of Processing - These positions contain a

code indicating which type of processing is to be performed. Seven
type processing key words are allowed. Entry of other than one of
the following key words will cause the program to terminate. The
processing key words recognized are:
FRST - This key word must be passed to the INDEX program
through the JCL parameter field when all key words are to be
found on the first record of the input data set.
PROS - This key word should be used for normal textual data.
The volume, chapter, paragraph and sentence indexing counters

are reset and incremented by textual key words contained in

the text. (See Section 2.1.2.1). Indexed words and/or punctua-
tion are written as they are distinguished on the input records.
The word continuation symbol is recognized (input record
position 72) but the line and word/line continuation symbols

are ignored. The latter two symbols are used just with POET

and MILT.

PLAY - This key word causes processing in the same manner

as PROS, but with the addition of the processing key word,

'STAGE DIRECTION'. Stage directions are processed as though

normal text (refer to 2.1.2.2 for STAGE DIRECTION key word

1 March 1968 39

format). When stage directions are processed, they appear
contiguously in the output because each stage direction is
preceded by an asterisk. This asterisk remains affixed as
the first character of the word.

SPOK - This key word causes processing in the same manner

as PROS. However, different textual key words are recognized

for resetting counters. (Refer to Section 2.1.2.2)

POET - This key word causes printing of the complete input
record rather than individual words and/or punctuation as
they are recognized in the input record. A check is not made

for textual key words. The inclusion of textual key words

in the input text will cause them to be indexed in a normal
manner. Volume, chapter and paragraph index counters are
each to the value one. The sentence counter is incremented
each time an input record is read. The word counter is re-
set each time the sentence counter is incremented. Word,
sentence, and word/sentence continuation symbols in input
record position 72 are recognized.

MILT -~ MILT is a special case of POET. General processing
is the same except the volume indexing counter is set via
data in positions 73 and 74 of the input record.

OPLA - The use of OPLA causes the program to print-out the
entire record as with POET. However, the sentence indexing
counter is reset from input record positions 69 - 72 and the
PLAY textual key words are recognized including stage direc-
tions when the processing key word STAGE DIRECTION has been

specified.

1 March 1968 40

Positions 6 - 10 - print control.

These positions follow a comma, which occurs after the processing key

word and indicate whether or not the indexed words or punctuation marks
are to be printed.

PRINT - indicates that textual data is to be printed.

NOPRT - indicates that textual data is not to be printed.
If these positions are blank, no printing is assumed.

Program control information such as index counter reset values and
ending summary messages are printed independent of the print control key
word.

Positions 12 - 26 - stage directions.

These positions follow a comma after the print control key word.
Specifying the key word STAGE DIRECTION will cause the processing of stage
directions (and/or punctuation) as though they were textual words. When the
processing key word is PLAY or OPLA the omission of this key word will cause
stage directions to be ignored.

Examples for use of processing key words:

1) To process Prose, to print textual data as processed, and to
introduce the key words through the JCL parameter field, the

0S/360 JCL EXEC card would be: (where 'XXXX' indicates

catalogued procedure to

// EXEC XXXX,PARM.GO="PROS,PRINT" 1 = . .cuted.)

utilizing the first input record to contain processing key
words, the JCL EXEC card would be:

// EXEC XXXX,PARM.GO='FRST'
and the first input record would contain, beginning in column 1

PROS ,PRINT.

1 March 1968 41

2) To process a play, not printing textual data, but processing
stage directions, information furnished through JCL would be

// EXEC XXXX,PARM.GO='PLAY,NOPRT,STAGE DIRECTION'

2.1.2.2 Textual Key Words

Textual key words are of two types:
1) those key words used to reset indexing counters
2) those textual key words used to increment indexing
counters,

Reset Key Words

Key words used to reset indexing counters are prefaced by a dollar
sign, followed by the counter name that is to be reset, followed by a
value that the counter is to be reset to. Only one key word may appear
on an input record. Input positions after the reset value are ignored
and not processed. If processing key word is PROS, four reset key words
are allowed:

$VOLUME followed by a decimal integer, XX, will reset the volume
to that value.

$CHAPTER XXX will reset the chapter indexing counter to any value
up through 3 decimal digits.

SPARAGRAPH XXX will reset the paragraph indexing counter to any
value up through 3 decimal digits.

$SENTENCE XXXXX will reset the sentence indexing counter to any
value up through 5 decimal digits.

For processing key word PLAY or OPLA, two reset key words are allowed:

$ACT XXX will reset the chapter indexing counter to any value up
through 3 decimal digits.

$SCENE XXX will reset the paragraph indexing counter to any value
up through 3 decimal digits.

The volume indexing counter will equal the value one.

1 March 1968 42

If the processing key word is SPOK, for spoken word, three reset key

words are allowed:

$SERIES XX will reset the volume indexing counter to any value
up through two decimal digits.

$SESSION XXX will reset the chapter indexing counter to any value
up through three decimal digits.

$SPEAKER XXX will reset the paragraph indexing counter to any value
up through three decimal digits.

For processing key words other than the four specified above, the textual

key words to reset indexing counters are ignored. If textual key words
appear in the text they will be treated as normal textual data and be

indexed.

Increment Key Words

If the processing key word is PROS, the normal end-of-sentence

punctuation, e.g. period, question mark, quotation mark, will increment
the sentence indexing counter. When the sentence indexing counter is
incremented, the word indexing counter is reset to ome. If the processing
key word is PROS, PLAY, or SPOK a double period will increment the paragraph
counter by one, reset the sentence indexing counter to one, and reset the
word indexing counter to one. Three dollar signs in a row within the text
will increment the chapter indexing counter by one, reset the paragraph
indexing counter, sentence indexing counter and the word indexing counter
to one. Similarly, four dollar signs in a row will increment the volume
indexing counter by one, reset chapter, paragraph, sentence, and word
indexing counters to one. In all cases the double period, three dollar
sign , and four dollar sign notation will be changed to a single period

before outputting as text.

1 March 1968 43

2.1.3 Qutput Record Format

Output from the indexing program is variable length, 26-84 character
records. Each record contains one word and/or punctuation mark and its
associated indexing information. Record format is as follows:

Positions 1 - 4 - Four-byte variable count field. This field con-

tains in binary format, the length of the entire variable length
record.

Positions 5 and 6 - Two-byte length of the indexed word.

Positions 7 - 9 - Two-byte Volume number.

Positiongs 10 - 12 - Three-byte Chapter number.

Pogitions 13 - 15

Three-byte Paragraph number.

Positions 16 - 20

Five-byte Sentence number.

1

Positions 21 — 25 - Two -byte Word number within sentence.

Positions 26 — 84 - Variable length word.

Output of variable length records is accomplished by using the PL/1
PUT STRING function which converts the indexing counters from internal
packed decimal format to character-string format. A call to the subroutine
PUTOUT, written in assembly language, computes the length of the entire
character formatrecord including the four-byte variable length count field
and outputs the record.

2.2 SUFUN Program

The SUFUN program produces a data set containing linked suffix pairs,
exception words associated with a suffix pair, and function words. Function
words are defined as those words and/or punctuation marks which are not to

be considered as content words.

2.2.1 Suffix pair, exception word, and function word input format

The program expects to find all suffix pairs and associated exception

1 March 1968 44

words prior to function words. Each input record contains one suffix pair.
The suffixes of the suffix pair must be separated by at least one blank.
The first suffix of the pair must begin in input position one (e.g. card
column 1). When the first suffix of the pair is a blank, input position
one must be blank with the second suffix beginning in or after input
position two. The maximum length for each suffix of the pair is eight
characters.

Exception words associated with the suffix pair are on the input
records (e.g. IBM card) immediately following the suffix pair record. One
exception word is allowed per input record. An exception word is denoted
by the word EXCEPT beginning in input position one, followed by a blank,
followed by the exception word. The maximum length of an exception word
is eighteen characters. The number of exception words associated with a
suffix pair may vary from one pair to the next; however, the total number
of exception words that may be introduced is one-thousand.

An exception to the exception list does exist and is known as the
'"Letter Rule'. The letter rule has been introduced to speed processing
within the SUFFIX program. The letter rule says that if the final letter
of the two words being examined for possible common root does not match
the letter introduced as an exception word, the program assumes there is
not a legal suffix regardless of the suffix pair and does not look at any
further exception words associated with the suffix pair.

The exception word is introduced by the word EXCEPT in input position
one of the input record, followed by a blank, followed by the word LETTER,
followed by the letter in question. For example: EXCEPT LETTER R means
that if the final matching letter in the two words being examined is an

R, the suffix pair is legal, unless an exception is found.

1 March 1968 45

Suffix pairs and associated exception words may be introduced to the
SUFUN program in any order. The program sorts and links words, suffixes,
and exception words before producing the output data set.

In the present program configuration, function words must follow
after all suffix pairs and associated exception words. The input record
immediately preceding the first function word input record must contain
as a single character string'FUNCTIONWORDS'beginning in input position one.
Succeeding input records contain one function word per record. Each word
may be up to eighteen characters in length. A maximum of two-hundred
function words is presently allowed. Words may be in any order and are
sorted before writing to the output data set.

2.2.2 Output Record Format

Six record formats are present in the output data set. All records are
twenty characters in length. Figure 1 is a pictorial representation of the
Data Set layout showing the order in which the record formats occur in the data

set.

Format 1: #First Suffixes, # Second Suffixes,
Exception words

Format 2: % First Suffixes
Figure 1
Format 3: Second Suffixes SOEUE DA Set
Representation
>
Format 4: {» Exception Words
Format 5: # Function Words

Format 6: S Function Words

1 March 1968 46

1. Number of unique Suffix 1, Suffix 2 and Exception words.
Format:

Positions 1 - 3: number of unique suffix 1's of suffix pair.
Positions 4 - 6: number of unique suffix 2's of suffix pair.
Positions 7 - 10: number of exception words.
Positions 11 - 20: blank.

2. Unique first suffixes of suffix pair. Number of records equals
count found in Positions 1 -~ 3 of record type 1.
Format:
Position 1: length of suffix.
Positions 2 - 4: index to second suffix of pair.

Positions 5 - 12: first suffix, varying in length.

Positions 6 - 20: varying blank.

3. Second suffix of suffix pair. Number of suffixes equals count
contained in Positions 4 - 6 of record type 1.
Format:

Position 1: length of suffix

Positions 2 - 5: location of first exception word in exception
list associated with suffix pair. Contains '@’
if no exception words are associated.

Positions 6 - 13: second suffix, varying in length.

Positions 7 - 20: blanks, varying in number.

4. Exception words. Number equals count contained in Positions 7 - 10

of record type 1.

Format:

Positions 1 - 2: exception word length.

Positions 3 - 20: exception word, varying in length

Positions 4 - 20: blanks, varying in number.

5. Number of function words.
Format:

Positions 1 - 3: number of function words.

Positions 4 - 20: blank.

1 March 1968 47

6. Function words. Number present equals count found in Position
1 - 3 of record type 5.
Format:
Positions 1 - 2: length of function word.

Positions 3 - 20: function word varying in length.

Positioms 4 - 20: blank, varying in length.

2.2.3 Printed Output

The program prints the sorted first suffix and its associated suffix
and the sorted exception words associated with the suffix pair. Next it

prints function words sorted in ascending alphabetical collating sequence.

2.3 SUFFIX Program

The SUFFIX program compares indexed words produced in the INDEX pro-
gram to function words prepared by the SUFUN program, eliminating indexed
words considered function words. The remaining words are considered content
words. Succeeding content words are compared character by character under
the assumption that at the point of deviation the remaining characters are
a possible suffix pair. This possible suffix pair is then used as entry
into suffix tables and if a match is found and the word is not an exception
word the two content words are considered to have a common root. Content
words with common roots are assigned an equal match identification number.

2.3.1 Suffix pair, exception words and function word input record format

Refer to Section 2.2.2 for input record formats.

2.3.2 Indexed word and/or punctuation marks input format
Refer to Section 2.1.2 for the format of the indexed word input record.

The indexed words are sorted before introduction to the SUFFIX program.

1 March 1968 48

2.3.3 Output Record Format

Output for the SUFFIX program is variable length, 17 to 74
character records. Each record contains one unique content word
and its associated frequency of occurrence and match count. Record
format is as follows:

Positions 1 - 4 - four bytes containing the variable count field.

This field contains in binary format, the length of the entire
variable length record.

Positions 5 and 6 - two bytes containing the length of the content

word.

Positions 7 - 11 - five bytes containing the match count linking

words with possible common roots.

Positions 12 ~ 16 - five bytes containing the frequency count for

the number of occurrences of the content word in the processed
text.

Positions 17 - 74 - these positions contain the varying length

content word. A content word may be up to 58 characters in length.

B. Program Documentation

This portion of the report details program operation: A general
explanation of the VIA package appeared in Section A. Here we expand on that
explanation, providing descriptive material for each of the three programs
previously discussed and their major subroutines. To help the user in under-
standing these programs, a flowchart for each is included. TFor those

interested in greater detail, program listings are provided.

1 March 1968 49

3.1 INDEX Program

For a graphic representation of the INDEX program infecrmation flow,

refer to Figures 3.1 - 3.4. These flowcharts present a comprehensive

explanation of the program.
The program first initializes all indexing counters and opens the
data sets used by the program before processing keywords passed through
JCL or the first input record of the input data set. An error in specifica-

tion of processing keywords will cause the program to terminate. After set-

ting indexing counters whose initial values are dependent upon the type of

processing keyword, the subroutine, FORM, is called. The subroutine FORM

reads an input record and separates out textual words and/or punctuation
marks from free format text using blanks as word delimiters. That is,
characters between blanks comprise an indexable word.

On entry into FORM, the word length counter NUMC is set to zero and the
field which will contain the word is set to blank. The input record position
pointer is tested for a value equal to 72 and if equal, input record position
72 is tested for the word, sentence, or word/sentence continuation symbols.
If one of these three symbols is found, the appropriate processing "switch™
is set on. If the position pointer is greater than 72, a new input record
is read. When the processing key word contained in the field UHLAB is equal

to the value POET or MILT the word and sentence continuation processing

switches are tested. If they are on, the word and/or sentence indexing

A processing switch is a field in the program whose value is set to
@ or 1 to denote an on or off condition. The field value may be
tes ted by subsequent program statements, thus acting as a switch.

1 March 1968 50

counters are not incremented. If these processing switches are set on
and UHLAB value equals SPOK, the word and/or sentence indexing counters are
not incremented.

The subroutine proceeds to scan the input record. A blank in an input
position will cause a RETURN to the calling program with all input positions
prior to the blank concatenated to form a textual word. Upon return to the
main processing routine, the textual word is tested for equality with any of

the textual key words which results in resetting any or all indexing

counterg. If the word is a key word, a branch is taken to the appropriate
indexing counter reset routines via the use of the PL/l variable table
capability.ll
The textual word is written to an output data set using the sub-
routine PUTOUT (refer to Figure 3.4) This subroutine is written in
360 Operating System assembly language. When called, it is passed the
address of the character string containing the converted indexing counters
and indexed word. The subroutine opens the output data set the first time
it is called. It computes the length of the variable length record using
the constant value of 18 for the length of the indexing portion of the
record and the value contained in NUMC for the length of the indexed
word. The constant CNST is passed as the first two bytes of the passed
character string. On succeeding calls, the PUTOUT routine writes a

record containing an indexed word. This subroutine closes the output

data set when called via CALL CLSEOUT.

11When the textual key word is an incrementing key word, its value is
changed to a single period before the values in the indexing counters
are converted to character format.

1 March 1968 51

On return from the PUTOUT subroutine, various counters are incremented.
Incrementing is dependent upon the type of processing specified and the

textual key word encountered as a textual word.

The program branches back to the label, L1, when NOPRT has been
specified as a processing key word and another textual word is separated out by
the subroutine FORM. When PRINT is specified, the program prints the
indexed word without indexing information before branching to Ll. In the
case of MILT, POET and SPOK type processing, the entire input record is
printed when read by the subroutine FORM and when PRINT is specified.
Summary information is printed when an END-OF-FILE condition is
encountered on the input data set. This information is printed regardless
of the processing key words; the program then proceeds to close the input
and output data sets before terminating.

3.2 SUFUN Program

The function of the SUFUN program is to link the first and second
suffixes of a suffix pair with associated exception words, and to process
function words; this information is used as input to the SUFFIX program.
To conserve internal and external storage facilities, SUFUN eliminates
duplicate first suffixes while maintaining the proper relationships to
second suffixes and associated exception words. SUFUN constructs a table
structure of first suffixes, second suffixes, and exception words from
input records before proceeding to process functionm words. After proces-
sing suffixes, function words are input and sorted. Figures 3.5 and 3.6
portray the SUFUN program information flow.

SUFUN begins by initializing counters and opening input and out-
put data sets. SYSIN contains the input records, SYSPRINT is the printer,

and the output data set is SUF.

1 March 1968 52

A call to the subroutine FORM is issued. FORM obtains an input record
from SYSIN and separates out the first suffix ending or the value EXCEPT.
When the value returned by FORM is not EXCEPT, the structure SUFFIXl is
set to the first suffix and its length, and another call for FORM is issued
to obtain the second suffix of the pair. The second suffix is then placed
in SUFFIX2 along with its length. When the initial call results in the
value EXCEPT, a second call is issued and a check is made for the value
LETTER. When LETTER is present, a third call to FORM is issued and the
letter returned is placed in the associated exception word table. When
the second call does not result in the return of the value LETTER the
value is considered an exception word and placed in the associated
exception word table.

When FORM returns the value FUNCTIONWORDS all suffixes have been
examined and are now ready for sorting. A branch is taken to SORTSUF, where
a comparison is made of the first and second suffix endings and, if neces-
sary, the values are interchanged so that the lowest value in collating
sequence is the first suffix.

SUFUN proceeds to sort the first suffixes, maintaining the proper
relationship with the second suffixes. Duplicate first suffixes are
then eliminated and a link established to all associated second suffixes.

Second suffixes are now sorted so that each group of second
suffixes associated with a single SUFFIX1l is arranged in alphabetical
order. This sort is followed by a similar sort for exception words.

After sorting is complete, SUFUN writes to the output data set, SUF,
an initial record containing counts of the number of first, and second

suffixes and exception words. This initial record is followed by a record

1 March 1968 53

for each first suffix in the SUFFIX1l table followed by records for each
second suffix contained in the SUFFIX2 table, and finally by a record for
each exception word. The suffixes and associated exception words are
then printed.
SUFUN next proceeds to process function words. Succeeding calls
are made to FORM; each call results in the return of one function word.
When END-OF-FILE on the input data set is reached, the function words
are sorted. An initial record is written to SUF after the last exception
word. This record contains the total number of function words processed.
A record for each function word follows this total record. Initial records
are used by the SUFFIX program to read records from the SUF data set.
Function words are printed at the same time they are written to the
SUF output data set. The program terminates after output of all function
words processed and the closing of the input and output data sets.
The program prints error messages when overflow of a structure occurs.
After overflow occurs the program terminates with an appropriate correction

procedure message.

3.3 SUFFIX Program

The SUFFIX program accepts output from the INDEX and SUFUN program.
Utilizing this output as input, the SUFFIX program eliminates function
words from INDEX output(the text), counts the number of occurrences of
the remaining content words, and determines common root forms by comparing
the endings of words, beginning at the point of deviation between the words.
The remaining portions of the words are considered possible suffixes. These
possible suffixes are used as entries into suffix tables. When a match

of word endings to suffixes is successful, the words are considered to have

1 March 1968 54

a common root form unless an exception word is present.

After initialization of count fields, the SUFFIX program opens input
data sets and reads into internal structure arrays all first and second
suffixes and function words output by SUFUN. The subroutine CONTENTPROC
is called, entering the first time at FIRSTWORD. This subroutine reads
text words which were output by INDEX and sorted using the 0S/360 sort
package and compares each record to the table of function words. If
the input record is a function word, it is ignored and a new record is
read. When the record is not a function word, it is considered a content
word. Additional input records are read, maintaining a frequency count of
the number of occurrences of the content word, until a non-match record
is found. The subroutine then returns to the main program returning
the content word and a total of its occurrences within the text. (Refer
to Figure 3.7 to 3.9.)

The main procedure compares the first three characters of the returned
content words with the previously returned content word. When a match
occurs, the content word is placed into the next position of the structure
ROOTCK. A call is then made to CONTENTPROC for another content word. The
structure ROOTCK contains only content words for which the first three
letters are identical. When a match does not occur, the program begins to
process the contents of ROOTCK. A check is made for a single content word
entry in ROOTCK and if present, it is assigned a unique match count,MATCNT,
value and written out to a data set. Output records are variable length and
written using the subroutine PUTOUT described in Section 3.1.

If more than one entry is present in ROOTCK, the content word at the
beginning of the structure (indexed by M) is compared with the word at the

end of the structure (indexed by N). A comparison is made for content words

1 March 1968 55

which do not have a match count, i.e., which have not been paired with
another word(s). If the content word (M) has a match count, then a search
is made for word (N) which has no match count. When both words (M) and (N)
have match counts, (N) is decreased until it reaches a word (N) without
a match count and an attempt is made to match it with word (M). If word (N)
equals word (M), and has no match count, then the match count of the word in-
dexed by (N) is set equal to the match count of (M). These words are considered
to have a common root and match counts of common roots are equal. The process
of decrementing (N) and comparison continues until (M) is equal to (N). At this
point, if (M) does not equal the total number of entries in ROOTCK, (M) is
incremented by one and (N) reset to the last entry. By this process, (M) pro-
ceeds forward through ROOTCK until reaching a content word which has no match
count, All content words in ROOTCK have been processed when (M) equals the
number of entries in ROOTCK. At this point, the content words in ROOTCK are
written to a data set using PUTOUT and the content words which caused the non-
equal condition in the first three characters is entered as the first element
of ROOTCK. The process then repeats with a call to CONTENTPROC for another
content word. The program terminates with an end of file condition on the
input data set containing indexed words.

The process of comparing succeeding words in ROOTCK (indexed by (M) and
(N)) for possible suffixes and common roots is accomplished by the subroutine
STEM.

When called, STEM first checks for a final apostrophe ('), single (s),
or apostrophe s('s) on the two content words. When present, these final end-
ings are removed and the two words again checked for equality. If equal, the
words should obviously be grouped as a match and return is made to the main

routine with the same-root identification made. If the words are not equal,

1 March 1968 56

a comparison of the two content words is made, character by character. When
the point of deviation is reached, the remaining portion of content word(M)
is placed in REMAINL and the remaining portion of content word (N) is placed
in REMAIN2. REMAIN1 and REMAIN2 contents are compared and switched, if
necessary, so that REMAIN] will contain the lowest value in collating
sequence., This is necessary because the tables containing suffixes have
been sorted so that the smaller of the suffix pair occurs in the SUFFIX1
table. A check is made to assure that the possible suffixes are less than
eight characters in length (the longest suffix perused by SUFUN) and return
is made to the main procedure if the remaining possible suffix is greater
than eight characters.

A binary search is made in the SUFFIX1 table using the contents of
REMAINL for the argument. 1If the suffix is found, an entry is made to the
SUFFIX2 table based on the starting address found in the field of LOCSUF2
associated with the first suffix. A binary search is made within the
associated second suffixes using the contents of REMAIN2 as an argument. If
a match is found in SUFFIX2, a table look up search is made of associated
entries in the exception word list. A zero in the field LOCEXC associated
with the matching SUFFIX2 entry indicates that there are no exception words,
thereby signalling that a legal suffix pair has been found. If there are
exceptions, the appropriate list of exception words is searched until a zero
is reached. After testing for a zero, a test is made for the LETTER exception.
A comparison is made using the last letter of content word M as an argument.
If the letters are the same, the LETTER rule applies, the suffix pair is
still legal, and a further search of the exception list is made. If the letters
are not equal, a further search of the exception list is made, looking for

another LETTER rule entry. Only if an exception is found, or if the LETTER

1 March 1968 57

rule exists but there is no match between letters, control will be returned
to the main program without a match indication. Refer to Section 2.3 for
further explanation of the letter rule. When all entries have been compared
using the content words as arguments and no match is found, then a legal

suffix pair has been found.

o

MODIFICATIO - 0s/360
FOR SORTING \Sesummd SORT
VARIABLE [UTILITY

FREE FORMAT
TEXT, BLANK

PUTOUT
SUBTROUTINE

INDEX
PROGRAM

SUFFIXES,
EXCEPTION and
WPRDS

INDEXED
d TEXT
WORDS +

LGTH RCDS

PUTOUT
SUBROUTINE

i SUFFIX \\¥
PROGRAM)

|

i

Figure 3.0 VIA SYSTEM: Information Flow

/ THESAUR
PROGRAM)
/

| W

59

Declare and
initiate all
Fields

OPEN:
SYSPRINT,
SYSIN

Test para
meter list
from JCL.

Init, Fld

Set initial

value for: PWA Set indexing counters which
SENT=1, are dependent on Processing
TOSE=1 Keyword.

Set end colu;L

indicator
'COLIM' = 68

CALL
'FORM'
Returns a
text word

PG2

Figure 3.1: INDEX Program: Main Routine

UHLAB
'SPOK'

60

Reset counters based on textual keywords in text.

Set variable
label = 'L7!

Set variable
label = 'L8'

Set variable
label ='L9'

Set variable
label = 'L10"

-

Set variable
label = 'L8'

L6

Set variable
label = 'L9’

Set variable
label = 'L7

L6

' $SPEAKER

Set variable
label = 'L8"

Set variable
label = 'L9’

Y

L2

Figure 3.1-2: INDEX Program: Main Routine

61

> OTHER = '.,' NUMC = 1

OTHER = AWORD

Convert to
character
format

CALL
'pUTOUT’

= 'PROS' Increment counters based

on special punctuation.

AWORD
s '$588"

PW

Figure 3.1-3: INDEX Program: Main Routine

CC:

CP:

CS:

PW:

TOVO=TOVO+1
VOLU=VOLU+1
CHAP=§

TOCH=TOCH+1
CHAP=CHAP+1
PARA=

!

TOPA=TOPA+1
PARA=PARA+L
SENT=§

TOSE=TOSE+1
SENT=SENT+1
WORD=0

WORD=WORD+1

62

IPRINT AWORD

Figure 3.1-4: INDEX Program: Main Routine

UHLAB
= 'PROS'

PRINT VOLU,
| CHAP, PARA

-

PRINT ACT,
SCENE

PRINT SERIES,
SESSION,
SPEAKER

L7:

VOLU = AWORD
Reset all
lower counte

18:

63

IMAGE

PRINT RECORD

Subroutine

(Return
number

)

coL = 73
Force end
of card

CHAP = AWORD
Reset all
lower counter

}

L9:

ARA = AWORD
Reset all
lower counter

!

L10:

Branch to variable label.

SENT = AWORD
Reset all
lower counter

v

”y

Figure 3.1-5: INDEX Program: Main Routine

 S—

OUTOFRCDS::

CLOSING:

ENDINDX:

64

Print TOWO

Print number
of input
rcds

Print summary data

Print total
sentences,

[paragraphs,
charact s
vo €s

KEint total
sentences, >
scenes, acts

CLOSE:
SYSPRINT,
SYSIN

CALL
'CLSEOUT'

END

Figure 3.1-6: INDEX Program: Main Routine

NUMC = 0
AWORD = 'B'

s 4

65

Text words and/or punctuation marks are blank (¥)
deliminated. COLIM is initialized at the value 72
for all types of processing except "OPLA'., For
'OPLA', COLIM is initialized at the value 68.

COL = COL+H

COL =1

= 'SPOK'

Character

= B!

WORD
CON'T ON

Character

Set word
continuation
switch on

Character

I@l

Set word
continuation
switch on

Set word
continuation
switch on

WORD = 1 SENT = SENT+1 Print card
Set switch TOSE = TOSE+1 VOLU = LINEA image
off Set switch
of £
Y
SENT = SENT1

Ef%facT

Figure 3.2: INDEX Program: Subroutine FORM

EXTRACT:

READ68:

66

Increment wor(
[length concate=

nate char to

jword

L

SENTENCE =
| LINE TOSE =
TOSE+l WORD

'NOPRT'

Print card
image

Figure 3.2-2: INDEX Program: Subroutine FORM

67

Set: UHLAB,
PRNTCTRL
STAGE DIRECT

SECOND: FRNTCTRIN_ Y | Set equal
Wiiddd *NOPRT'
N

Print error
message

L/

TERMINATE
PROGRAM

message

Print
[message

k’

Continue
with pro-
gram

Figure 3.3: TESTING PARAMETER LIST
Passed through JCL EXEC statement.

68

Entry via Entry via
CALL PUTOUT CALL CLSEOQUT
Establish Establish
trace reg. trace req.
Set entry Set entry
indicator indicator
switch switch

Figure 3.4: PUTOUT

operations

via PUTOUT

o housekeeping

ELOSE file

OPEN file

s

Establish
record
addressabiliti

J

Compute lgth
of fixed and
variable por-
tions of rcd.

!

Place lgth in
variable lgth
count field

Output red
to Data
Set

Binary format

L o

RETURN to
PL/I calling
program

Subroutine

69

Declare and
initialize
fields

\

OPEN: SYSIN
SYSPRIN
SUF

|

RW1:

@——— SET COL = 73

Get first suffix of suffix pailr,
may be value 'EXCEPT'

AWORD =
'EXCEPT'

FLOVERL:
|[Print overflo

Message 1

Increment
EXCPT(n) = _pinumber of
LENEXC(n) = 1 EXCPT words
counter 'NEXQ}

TERMINATH

Increment
number of
SUFFIX1l counfler
'NSUF1'

Figure 3.5: SUFUN Program: Main Routine

FLOVER2:
Print overfl
ssage 2

TERMINATH

SUF1(n)

AWORD

LENSUF1 (n)

NUMC

LWORD

AWORD

Get second suffix of suffix pair

SUFFIX2

WORK1

RWL

Figure 3.5-2: SUFUN Program: Main Routine

71

EXCEPTION:

LWORD = LOCEXC(n) =
'"EXCEPT NEXCP

REXCEPT:

Get exception word.

EXCPT(n) = LENEXC(n) =
' '
CALL 'FORM 1t l| AWORD)

Y

EXCPT(n) =
AWORD

LENEXC(n) =
NUMC

INCRE: Increment
counter
NEXCP

FLOVER3:
Print overflo
message 3

[ERMINATE

Figure 3.5-3: SUFUN Program: Main Routine

72

UF

LOCEXC(n+1)

NEXCP J
EXCP (n)=0
LENEXC(n)=1

SORTSUF:

|

I=1 I=I+]

N1:
I > NSUF

Transpose SUFFIX1l and SUFFIX2 if
SUFFIX1 > SUFFIX2.

Y

Interchange
SUFFIX1 and
SUFFIX2

I=1 =I+1

>NSUFX-1

Y N Sort first suffixes,

SUF1(I) > N
UFL (T+1

Y

SUF1(J)
< SUF1(J-1)

N IY |

Ihterchange
SUFFIX1(J)
and SUFFIX1(Jt1)

1

Figure 3.5-4: SUFUN Program: Main Routine

LON'E

Y
J1l =2

LOCSUF2 = 1

I=1 =I+1]
N3:
I>

NSUFX-1

Y N

Eliminate duplicate entries
from SUFFIX1.

N

LENSUF1(J1)

[LENSUFL (I+1)

SUF1(J1) =
SUF1(I=1)

:

LOCSUF2(J1)

I+1

J1 = J1+1 -

\
LOCSUF2(J1)

NSUFX+1

!

NSUF1 =
J1-1

ORT

Figure 3.5-5: SUFUN Program: Main Routine

SORT

I=1 N5:I=I+l

1>
NSUF1-1

LOCSUH2(1)/; _

LOCSUF2
(I+1)-2

OCSURNI)
< LOCSUF2
(I+1)-1

= =J+1

K=J+1/ \K=K-1

K >

LOCSUF2(I)
+1

o —

Interchange
SUF2(K) and
SUF2(K-1)

Figure 3.5-6: SUFUN Program: Main Routine

Sort second suffixes
within first
suffixes

75

J=J1 J=J+1{-.

Né6:

J>NEXCP

Sort exception word
list within first
and second suffix

relationship:
K=J+ =K-1]
J1 = J+2
K > Ji+l
Y ¥ =
Interchange
EXCEPT(K) an
EXCEPT (K-1)
N \

OUTPUT:

Figure 3.5-7: SUFUN Program: Main Routine

RF:

COL = 73

1 1
CALL "FORM Get function word

& .

Increment
counter
NFUN

FLOVERS : TERMINAT
NFUN Y |IPrint overfloy
> 209 essage 4

FUN(n) =
AWORD

‘ Figure 3.5-8: SUFUN Program: Main Routine

LENFUN =
NUMC

SORTFUN: L

1 I=T+]] o
I>
FUN-1

Sort function
words:

Interchange

FUNCTIONWD (J -—J
and

FUNCTIONWD (J41)

CLOSE: SYSIN

CS: |SYSPRINT, SUF

77

Enter via

CALL
'FORM'

NUMC = @
AWORD = 'B'
COL = COL+1

Get a Card

Y o @UN

RETURN

Increment
NUMC by one

i

AWORD = AWORI
// Card
column

Figure 3.6: SUFUN Program: SUBROUTINE FORM: Procedure
to distinguish words and/or punctuation using
blanks as delimiters.

Declare and
initiate
all Fields

!

OPEN:
SYSPRINT,
SUF

Get: NSUF
NSUFX

I NSUF1

Y N

Get:
SUFFIX1

SUFFIX2

I=1 I=1 [
+1
I NEXCP
Y N

Get:

EXCEPTWD
Record

Read input from
SUFUN program

First Suffixes

CLOSE:
SUF

Second Suffixes

)
ant

Exception words

Figure 3.7: SUFFIX Program: Main Routine

Function words

79

Get records which were output by INDEX program.
Return one Content Word with each CALL.

SWD = first
3 characterf
of WORKWD

First three characters of
Content Word equal to
previous Content Word?

Save Content
word in
array 'ROOTCH

Compare for only one
B occurrance of word.

Output Record

int tent Word
Print Record Frigt Cgnten ot

e —

Increment
MATCNT

Figure 3.7-2: SUFFIX Program: Main Routine

80

CON'
B
Matching pairs of words with common root.
=1 Q=+
1 >L +1
Y N
1
N=L N=N+1
N «<M+1
N

/ CALL 'STEM'

AME ROO

N

Check for common

root.

Y

MAT (N) =MAT (M)

MAT (M) =MATCNT
Increment

MATCNT

T(M)=0

Y

MAT (M) =MATCNT
Increment
MATCNT

bat

(L) =MATCNT
Increment

Y

MATCNT

Figure 3.7-3: SUFFIX Program: Main Routine

81

M=1 {=M

Convert

output
fields
to Char

Output Content Words to
Data Set

Print RCD
without
MATCNT

Print Content Words

Print RCD
with
MATCNT

lSTE;T
@ Terminate procedure

CLOSE Files

END

Figure 3.7-4: SUFFIX Program: Main Routine

82

Enter via
CALL

'CONTENTPRgC"

i

Content word
frequency
counter =

Eliminate Function words.
Get a Y unc:;;h\\‘_
Text ord (IA) =

word Text
R N
EQOF

ontent word

Function word

Increment
counter 5
IA

Count frequency of
Content Word
occurrance,

Increment
frequency
counter

Figure 3.8: SUFFIX Program: Subroutine CONTENTPROC

SAME_ROOT=1

83

Pass length of Content Word (M) and
length of Content Word (N).

Preset switch,

Decrement
length by
one

Decrement
length by
one

Decrement
length by

two
Y

Decrement
length by

ext
to last
= ls'

two

Find point of deviation
between word pair,

Remainder longer then longest
possible suffix.

84

|

REMAIN 1 and
REMAIN 2 =
remaining
porticns of word

REMAT ¥ Interchange
1 > REMAI |[REMAIN 1 and
2 REMAIN 2
N

Binary search
for
SUFFIX 1

DA

Binary search
for
SUFFIX 2

Possible
LETTER

Table look-up
for EXCFT
word match

N
RETURN
A

SET SAME
ROOT = 1

Figure 3.9-2: SUFFIX Program: Subroutine STEM

1 March 1968 85

III. Program Documentation, Ring Structure VIA

by
William Buttelmann

A, Introduction

This portion of the report provides detailed description of the pro-
grams and data set organization which constitute VIA.
B. Data Sets
Text:
1. Input text. The input text is a simple character stream, in the
format of standard printing conventions.

2. Formated text. The INDEX program produces a reformated text of

variable length records. Each record has the following format.]2

WORD FREQUENCY
LENGTH MATCNT COUNT WORD
4 4 4 1 - 58

Master Thesaurus:

The master thesaurus is actually composed of three data sets:
A vocabulary, which is an alphabetical list of each word type in
the thesaurus;
A thesaurus, which is a list of pairs of pointers, one representing
a word in the vocabulary and the other representing a semantic
category; the thesaurus is sorted on category pointer;
A directory, which is a list of categories occurring in the thesaurus
and of the initial position of each category. The directory is sort-

ed on category number.

12In all record format diagrams, the numbers below each field specify the length
of the field in storage positions (bytes) as represented in the IBM S/360.

1 March 1968 86

3. Vocabulary. The vocabulary is a random-access data set which con-
tains a record for each word in the thesaurus and for each word in

the text. The latter records are inserted at the beginning of a pro-
cessing run on a particular text by the PREP program which also

deletes these record types left by previous runs on a different text.
Thus, they are not permanent members of the master thesaurus. They will,
however, become permanent members of the microthessaurus for a specific
text. In addition, each record contains information necessary for
thesaurus searching and enough text information to eliminate the need

for further text searches. The text information is inserted by PREP.

Each record has the following format:

D F
DIRECTORY FREQUENCY
g KEY MATCNT SECTION POINTER COUNT k WORD
G
1 4 4 4 4 4 1 1-58

DUM -~ Signals dummy records i1n the vocabulary.
KEY - Search Key for each record used by the random-access input-output
system.
MATCNT - Developed and inserted by SUFFIX. It serves a dual purpose here:
1. To identify the root

2. To note that this word or a temporary entry with the same
MATCNT is in the text.

SECTION ~ Number of current section of text. Inserted by PREP from an
initial setup card called TEXTSECT card.
DIRECTORY POINTER ~ Index in the Directory of the first category entry

containing this word.

1 March 1968 87

FREQUENCY COUNT - Inserted by PREP, when ANALYSIS requests based
on count are present.

FLAG - Used to indicate that there are other words in the VOCABULARY
with this same MATCNT that are also in the text. The flag is
1l if this and otherswith the same MATCNT are in the text, 2
if others, but not this, are in the text. Otherwise the flag
is blank. In case 2, the MATCNT is retained in the current
record.

WORD - Up to 58 characters are allowed for the word.

4, Directory. The directory is a random—-access data set which provides
the linking between the vocabulary and the thesaurus. There is one re-

cord for each thesaurus category. Each record has the following format:

CATEGORY THESAURUS
NUMBER POINTER
8 4

CATEGORY NUMBER - The classification number of this category. Any
combination of symbols, 8 characters or less is
acceptable - such as the designations in Roget's
Thesaurug (e.g. 10la.3).

THESAURUS POINTER - Position of the first record of this category

in the Thesaurus. Records are ordered on
THESAURUS POINTER. There is one dummy record
at the end of the data set whose THESAURUS
POINTER is set to one position beyond the end

of the thesaurus data set and whose CATEGORY

1 March 1968 88

NUMBER is 99999999. This record is needed

so that the length of the last category in

the thesaurus can be computed.
5. Thesaurus. The actual thesaurus is a random access data set.
Each record represents an entry in the thesaurus - that is an entry

of one word in one category. The format is:

DIRECTORY VOCABULARY
POINTER POINTER
4 4

DIRECTORY POINTER - Index in the Directory of the next category con-

taining this word.

VOCABULARY POINTER - Index in the Vocabulary of the word for this
entry. For a given word, the directory pointers
thus provide the linking which 'chains" through
all the entries for that word. The pointer for
the final entry of each word is set to point to
the Directory entry for the first category con-
taining that word. Thus, each chain is cyclic:

a ring structure. The entire thesaurus, then, is

.
a structure of interconnected rings.*3

13Automatic Data Processing,Brooks, F. P., Jr., and Iverson, K. E., John

Wiley and Sons, 1963, Section 6.2.

b

1 March 1968

1.
2.
3.
4,
3.

89

Searching is done by stepping around each ring, and for each entry in

a ring, stepping around the ring linked with the first one by that

entry.

Because the rings are closed chains, each search eventually

returns to the starting point in the ring; by saving the starting

point, one knows when the search is complete.

The following simplified diagram may serve to illustrate the organiza-

tion and linking of the Vocabulary, Directory, and Thesaurus.

we have the following Thesaurus:

Category 100.1

100.2
501.1 Mind, memory
501.2 Mind, process
706.0

Process, program

Computer, memory, program
Computer, process, program

Suppose

Then the data sets would be (we have reordered the Vocabulary records and

elided unnecessary information for clarity):

VOCABULARY
WORD Dir.
ptr.

COMPUTER| 1

MEMORY 1

MIND 3

PROCESS 2

PROGRAM 1

7

—-

DIRECTORY
cat# | -
ptr.
1.{ 100.1 1 1.
—=#2.| 100.2 4 |-~ 2.
”~ ~
7/ 35011 7 N 3.
’ 4.0 501.2 9 = =4,
5.] 706.0 11 1\\\\ T~ =5,
U 6.l99999 | 13 [\ 6.
\ N\ 7
\ NN\ :
N\ N M N 8.
\\ \ \\\9.
~~ N Mo
T e— L D911,
12.

As an example, consider a search for the word PROCESS.

up in the Vocabulary.

occurs in the second category in the Directory.

THESAURUS
Dir. Voc.
ptr. ptr.

2 1

3 2
2 _] 5 |

1 1

4 4
_i_x_é_—W

1 2
43| |

3 3 I

5 14 |
2 T i |—

1 5

We first look it

Its Directory pointer indicates that it first

We go to the second

entry in the Directory and find there category 100.2 Its Thesaurus

1 March 1968 90

pointer indicates that this category begins at position 4 in the
Thesaurus. Since the next category begins at position 7, we know

that category 100.2 is (7-4) = 3 entries long. Indeed, the entry

for PROCESS is the entry "4-4" at position 5 in the Thesaurus,

which is the second entry in category 100.2., To find the other

entries for PROCESS, we proceed as follows: the Directory pointer at
the first PROCESS entry is 4, indicating that the next entry for

PROCESS is in the fourth category. We go to the Directory and find

that this is category 501.2, which begins at record 9 in the Thesaurus
and is 2 entries long. Indeed, there is an entry for PROCESS in record
10 in the Thesaurus. The Directory Pointer there points to the fifth
category, which, according to the Directory is number 706.0, begins

at entry 11 in the Thesaurus and is 2 entries long. Entry 11 is the
one for PROCESS, and its Directory pointer indicates the second category,
which was the first category in our ring. Thus, we have returned to our

starting point, and the search around the ring is complete.

One may ask why the Directory pointers do not point directly to the

next entry in the Thesaurus, rather than back to the Directory. The
answer is that the category numbers are needed for printing and, more
important, for each category, we suspend the step to the next link in

the ring and initiate a ring search on every word in the category.

Thus, we need to scan each category from top to bottom.

6. Keys. This file is a list of words, each of which initiates a search
of the Thesaurus. In addition to the keying information, each key con-
tains the entire Vocabulary entry for the key word. This information

eliminates a later search of the Vocabulary. Each record has the

1 March 1968 91

following format:

F M
VOCAB entry less WORD K L 0 VOCAB REQUEST WORD
A D POINTER NUMBER
G E
22 1 1 4 4 1 - 58

KFLAG - An asterisk here denotes that this key has appeared in a pre-
vious section of text, but does not qualify as a key in the
current section. Otherwise, this field is blank.

MODE - The search-and-print mode indicated on the ANALYSIS request
card that generated this key is entered here. See the dis-
cussion of the THESAUR for the meaning of MODE.

VOCAB POINTER - Location of the Vocabulary record connected with this

key.

REQUEST NUMBER - Identifying number taken from the ANALYSIS request

card used to generate this key.
WORD - The key word.
C. Programs

This part of Section Two is separated into three parts, corresponding
to the three parts in the structure of VIA described on pp 19 ff. 1. Index;
2., Data Preparation; 3. Thesaurus Search and Construction.

1. Index. (See pages under Program Documentation)

2., Data Preparation.

This phase of the VIA system performs all the data preparations
necessary to execute the searching and printing functions done by THESAUR in
the third section. These include processing the TEXT and VOCABULARY files to
complete certain information in them; reading the file of ANALYSIS requests

submitted by the user, editing them for errors, interpreting them, and

1 March 1968 92

setting the proper codes to cue the analysis and displays requested; and
building or updating the file of KEYS which key the search-and-print
action of THESAUR, and which form the nucleus of the microthesaurus for the
given text.
The following steps give the logical sequence of events in this section.
The reader will note that many of the functions listed in the paragraph
above are performed somewhat in parallel, as the process proceeds. The result
is that only one sequential pass of the text and one of the VOCABULARY are
needed. Thereafter, the text is no longer needed and the VOCABULARY is
accessed directly only when new words are required.
This phase has four distinct sections:
a) TEXTSORT, a utility sort of the TEXT file.
b) PREP, a PL/1l program.
¢) KEYSORT, a utility sort of the KEYS file.
d) TUPDATE, a PL/l program.
a) TEXTSORT: This is a separate job step which sorts the TEXT file
in alphabetical order on the word field.
b) PREP: This is a PL/l program and is the major part of Section 2.
1. The first part of PREP, labelled REQUEST, is a self-contained
section of coding that reads the control cards and request cards that
establish parameters for the rest of the process. All cards are edited
and any with incorrect or inconsistent entries are rejected, and
diagnostic messages are printed. Correct cards are entered into a
table, REQUEST, for subsequent processing. By omitting the GO AHEAD
cards, described below, it is possible to rerun this section of PREP
before proceeding with the rest of VIA. Thus, the deck of requests

may be resubmitted with any rejected cards corrected. This allows one

1 March 1968 93

to batch his analyses, which will save considerable computer time. The
formats of the three input card types are described below. They have a
"free format'", in that each entry may begin in any column, and, except
for the identifying entry, which must come first, the entries (i.e.,
parameters) may be typed in any order. Where blanks occur, any num-
ber of blanks is allowed.

The input cards are:

TEXTSECT card, which identifies the section of text currently being
analyzed.

ANALYSIS card, which specifies the parameters for a complete
text analysis and thesaurus search and print.

GO AHEAD card, which provides a positive means of causing text pro-
cessing to begin after the ANALYSIS cards have been
read and edited.

A typical deck would be composed of one TEXTSECT card, several ANALYSIS
cards, and possibly a GO AHEAD card.

Since the parameters on these cards control all the functions of VIA,
an understanding of their meaning is essential to successful use of the
capabilities of this system. The following is a description of these
parameters and their use in the system:

TEXTSECT card — This card is mandatory and must be the first card.

The only entry required on it is

TEXTSECT = nj;
n is the number of the current section of text being
processed. It must be a positive integer. Optionally,
one may enter any set of characters in the remainder

of the card following the semicolon. These characters

1 March 1968 94

will be printed as a heading at the top of the
first page of output.

ANALYSIS request card - There may be up to twenty of these cards.

Each specifies one complete text analysis and
thesaurus printing. Its identifying entry is
ANALYSIS n;
This entry must be the first one in the card.
n is an arbitrary number identifying the
analysis and will be printed above each key
word, thus identifying all the output for
this analysis. The other entries are the
following parameters; they may appear in any
order, and each must be followed by a semi-
colon, as shown.
TYPE is the only parameter required on all cards.
The others vary. Different analysis types
require different parameters. Familiarity with
the various analysis types, described below,
should make the choice of parameters clear.
The type parameter:
TYPE = 'n';
The type parameter actually provides a means for
specifying how the key words for the analysis
are to be chosen: whether by word or by category
and whether by count or by fiat.

n specifies one of the following analysis types:

1 March 1968 95

TYPE '1l' - Frequency by category. Every category occur-—
ring in the text more than a specified number of
times is to be used to key a search. The number
of times, to be used for the threshold, should
be specified by a COUNT parameter in the same
card. The program will total the number of
textual occurrences of every word in each cate-
gory. ILf a word occurs in more than one category,
its total will be added to each. Every category
whose total number of occurrences, which is the
total of all occurrences of all words in the cate-
gory, is equal to or greater than the threshold,
will be used to key a search. This is accomplished
by generating a KEY entry for each word in the
category. This type of analysis is lengthy, but
enables the system to choose significant content
in the text, even though it is not identified by
the high frequency of any particular word, because
the significance is based on the high occurrence
of categories.

TYPE '2' - Frequency by root. Every word occurring in the
text more than a specified number of times is to
be used to key a search. The number of times to
be used as the threshold should be specified in
the COUNT parameter. The program will total the
number of occurrences of every MATCNT in the

text. If the total for a MATCNT is equal to or

1 March 1968

Type '3' -
TYPE '4' -
MODE 'a' -

96

greater than the threshold, every word in the
MATCNT will be used to key a search. This is

done by generating a KEY entry for each word in

the MATCNT. This type of analysis is somewhat
faster than type 2. The system chooses signifi-
cant content in the text based on the high fre-
quency of word roots.

Category. All words in a certain category are

used as search keys. The category must be
specified by a CAT parameter in the same card.

A KEY entry is made for each word in the category.
No count considerations are used. This type of
analysis is much faster than the previous types,
and is useful for searching for relatiomships to

a particular category, however obscure.

Word. A particular word must be specified in the
WORD parameter. It will be used to key a search.
This type of analysis is the fastest available, and
is useful for searching for relationships to a par-
ticular word, however obscure. The word need not
be in the text, but if not, must be in the thesaurus.
Thus, for example, this type of analysis, combined
with search mode D, may be used to find all words
in the text related to the parameter word.

The mode parameter:

a is the letter A, B, C, D, or E, and denotes omne
of the five search modes described in the descrip-

tion of THESAUR in Section C.

1 March 1968

97

COUNT = 'n' - n is the count threshold. It may be any real

number.

The word parameter:

WORD = 'word' - word is any word. If it is neither in the

master thesaurus nor in the text, no output
will appear.

The category parameter:

CAT = 'category' - category is the identifying label for

any category that appears in the thesaurus;
more specifically, it is any category that is

listed in the DIRECTORY data set.

GO AHEAD card - This card has the words "GO AHEAD" typed anywhere in

the card. Nothing else may be entered in it. A GO
AHEAD card is mandatory, following the last ANALYSTIS
card, if it is desired to continue with the rest of
the VIA processing after the ANALYSIS requests have
been processed. If no GO AHEAD card is present, the
program will cancel the rest of the job after reading

and diagnosing the ANALYSIS requests.

2. Sort the REQUEST table on TYPE. This is an internal shuttle sort done

by the coding labelled SORT_RQS.

3. The next small section of coding, labelled TYPESEARCH searches the

REQUEST table for type and analyses, and identifies their positions in

the table by saving their initial and final indices.

4. The next part of PREP, labelled UPDATE VOCAB, processes the TEXT and

VOCABULARY files together, sequentially. The first part of this coding

is the program SUFFIX, which is described in the earlier documentation

1 March 1968 98

of VIA. It has been modified here to read the Vocabulary data set in
parallel with the TEXT. SUFFIX identifies words with the same root and
enters a root-identifying number, MATCNT, in the field TMATCNT, if the
word is in a text record, and in VMATCNT, if the word is in a Vocabulary
record.

At the same time, temporary entries are made in the Vocabulary for
each word in the TEXT that is not already in the Vocabulary. These are
marked by setting their VFLAG to 3. If such a temporary entry is made,
the Vocabulary is then searched for other words with the same MATCNT as
the temporary word. The VFLAG of each of these is set to 1 if the word
for that entry also appears in the TEXT and to 2 if the word does not.

If there are no words in the Vocabulary with the same MATCNT, the warning
message THE TEXT WORD "word'" HAS NO RELATIONS IN THESAURUS will be printed.
This message informs the research user that the text word will not appear
in any printed output nor in any micro-thesaurus. He may wish to examine
the message list and make suitable additions to the thesaurus.

Another process executed while the text and vocabulary are read is
updating the text section entry (VSECT) in the Vocabulary. If the TEXT-
SECT number from the TEXTSECT card is 1, then this is the first section of
a new text being analyzed. In this case, all previous VSECT entries are
blanked out and all temporary vocabulary entries, marked by VFLAG = 3,
are erased when they are read. As each record is returned to the Vocabulary,
and as new temporary entries are made, if the word appears in the current
section of text, TEXTSECT is entered in VSECT. Thus, as progressive
sections of text are read, Vocabulary contains the section of text in
which each word first appeared, and information to show whether it appears

in the current section.

1 March 1968 99

The counting process is also done as the text is passed, and the
count for each word is entered in VCOUNT in the Vocabulary. Each time
the total of all words in a MATCNT group is computed, a scan of the type 2
requests is made. For each type 2 request whose threshold is met by the
MATCNT total, a KEY is generated for every word having that MATCNT.

5. The next section of coding, labelled BLDKEYS, reads the remainder

of the table of REQUESTS and builds the rest of the KEYS. If there are

any type 1 requests, the coding labelled TYPEl executes the following
process: the Directory is read sequentially, and each category in the
Thesaurus is examined. All words in the category are located and their
counts, from YCOUNT (the count field in the Vocabulary record) are summed.
For each category whose sum of counts is thus obtained, the type 1

requests are scanned. For each type 1 requesttvhose threshold is met by

the total of the VCOUNTs, a KEY is generated for every word in the category.

Type 2 requests have already been processed.

Each type 3 request causes the category specified in its CAT parameter
to be located in the Directory. Since the current program is written for
a general data set organization, a binary search is used to find the cate-
gory position in the Directory. This may actually prove quite slow for
some large size directories, and it may be advisable to replace the search
with a key transformation. On the other hand, if the number of requests
is kept small, any time saved would be negligible. Once the category is
located, all words in the category are sought through the Thesaurus and a
KEY entry is made for each word.

Type 4 requests cause a KEY to be entered for the word specified in the
word parameter.

After the REQUEST table has been processed, all the key words for

thesaurus searches have been found. These comprise the KEYS table, and it

1 March 1968 100

is now completely built.
6. The last section of PREP begins with the label KEYS_COMPLETE. All
that remains to do in PREP is to sort the KEYS table, first on ANALYSIS
(REQUEST) number, then on WORD. If the table is small enough to be
held in memory, it is sorted by the last section of coding in PREP,
and a user completion code is passed to the Operating System causing
the next job step to be skipped. Finally, the sorted KEYS are written
onto a temporary data set., If the KEYS table is too large for memory, a
portion of it has already been written on the temporary data set. 1In
this case, no sorting is done by PREP; the last of the KEYS are simply
written onto the data set.
c) KEYSORT: This is the third phase of the data preparation section of
VIA. It is an optional job step and will be executed by the computer's
Operating System only if the last part of PREP, the KEYS internal sort,
was not executed. This phase is a utility sort of the temporary data set
containing the KEYS.
d) UPDATE: This is a PL/1 program which produces the updated file of
KEYS used by THESAUR to cue thesaurus searches. When UPDATE begins proces-
sing, there are two data sets of KEYS: 1) the temporary data set just
produced by PREP, and 2) the data set of KEYS from analyses of previous
sections of text. This program produces an updated set of KEYS which is
the logical union of the two input data sets in the following manner:
The two data sets are compared sequentially. First, all the KFLAGS in
the old set are blanked out. If a KEY in the new set is not in the old
set, it is added to the old set, and a period (.) is put in its KFLAG.
Thus, all words appearing as key words for the first time will be pre-

ceded on the printout by a period (e.g. . KEY). If a KEY in the old

1 March 1968 101

set is not in the new, an asterisk (%) is put in its KFLAG. Thus all
words appearing as key words in previous sections, but not in this sec-
tion, will be preceded by an asterisk on the printed output (e.g. *KEY).
Thus augmented, the old KEYS data set constitutes the updated KEYS.

This is the data set passed to THESAUR. The data set of KEYS produced
by PREP is the nucleus of a microthesaurus for the current section of
text. The updated KEYS produced while processing the final section of

text is the nucleus of the microthesaurus for the entire text.

3. Thesaurus Search and Construction.

This section consists entirely of the PL/1 program THESAUR. The program
searches the thesaurus for word-relations and prints out the relationship
pattern in a tree format. It operates sequentially on the KEYS file. Each
key causes one complete search-and-print operation, and the KEY word serves as
the root of the relationship tree.

The tree to be printed may be pruned, depending on the MODE parameter of
the ANALYSIS request card. That mode is passed from PREP to THESAUR in KMODE
in the KEY. Two other areas — MATCNT and VFLAG - determine exactly which words
in the Vocabulary are in the text. (All words in the text are in the Vocabu-
lary.) They are used as follows: If MATCNT = O neither this word nor any root-
related words are in the text. If MATCNT # O one of two situations can occur:
If VFLAG = 1 then this word and others in the Vocabulary with the same MATCNT
are in the text; If VFLAG = 2 then others in the Vocabulary with the same
MATCNT are in the text, but this word is mot. In either case, the other words
were temporary additions made by PREP, and their VFLAG is set to 3.

One other piece of data may determine printing: If the KFLAG in a KEY
is *, this signals that the word has been a KEY in some previous section of

the text, but is not a KEY in the current section. It will therefore be used

1 March 1968 102

to key a search and will be printed, preceded by an asterisk, regardless of
the search mode. A final printing rule holds for all nodes: No node (word
or category) will appear more than once in a path of a tree. This eliminates
an obvious redundancy.

Three data areas of interest are the vectors PATH, WORDSP, and CATSP.

PATH is a vector of indices representing the current path the search-
and-print is working down. Because of the interlocking ring structure of the
Thesaurus (word ring-category ring-word ring-category ring, etc.) the lst
3rd, 5th, 7th, and 9th nodes will be word pointers and the 2nd, 4th, 6th,
8th and 10th will be category pointers. The chief purpose of PATH is to pro-
vide a means for enforcing the overall printing rule of eliding any node (and
the subtree. rooted at it) that has already appeared in the path.

WORDSP and CATSP are vectors of character strings. The strings are the
actual words and category numbers to be printed. These vectors are needed,
because, for some search-and-print nodes, the decision to print cannot be
made when the node is found. When a decision to print is made, these vectors
provide the necessary print information, and extra readings of the Vocabulary
and Directory are eliminated. These vectors are organized so as to make their
entries correspond with the entries in PATH. Thus, WORDSP(I) = VWORD(PATH(I))
and CATSP(I) = DCAT(PATH(I)). As a consequence, half of each of the -SP
vectors is unused. This is a small expense of memory to save the time that
would otherwise be needed to compute their indices; i.e., only one index serves
for all three vectors.

Other data items in the index are: CURCAT, the index in Directory of
the first category. This location marks the starting point of the ring search.
PRINTDX, the last position in PATH (and hence in WORDSP and CATSP) that has

been printed. LEVEL, the current level of recursion in the program. The

1 March 1968 103

algorithm is a main procedure with one recursive subprocedure, which functions
as follows:

Main Procedure:

1. Get the next KEY. Stop when the KEYS are exhausted.
2. Determine from KMATCNT, KFLAG, and KMODE if it should root a search.
If not, go to step 1.
3. Print a heading identifying the new search.
4. Determine from KMATCNT, KFLAG, and KMODE if this KEY should be printed
now or saved in WORDSP for possible later printing.
5. a. If the KEY is to be saved, put it in WORDSP, preceded by KFLAG, and
set PRINTNDX to O.
b. If the KEY is to be printed, print it preceded by its KFLAG, and
set PRININDX to 2.

6. Initialize PATH to zero and set PATH(1) = KWORD.

7. Set LEVEL=1, indicating the highest level of recursion.
8. Initialize parameters for the recursive subprocedure as follows:
PARM1 = KWORD
PARM2 = PARM3 = 1lst category in the ring of categories containing
this word.
9. Call the recursive subprocedure.

10. Upon return from the subprocedure,go to step 1.

Subprocedure (recursive):

This procedure steps through the ring of categories containing the word
passed to it, beginning at the category passed to it. For each category in
the ring, it steps through the ring of words in that category. For each word
in that ring it executes a call to itself, thus creating a new search at a
new sublevel.

1. See if a complete circuit of the ring of categories has been made. If

1 March 1968 104

80, go to step l4., If not, then we are at the next category in the ring.
See if this category is already in the PATH. If so, bypass it by

a. finding the next category in the ring,

b. going to step 1.

At this point, we know we have a new category. Put it in the next posi-
tion in the PATH.

Determine whether to print the category now or save it. The decision is
based on the disposition of the word passed to this subroutine from the
next higher level; this category is to be printed if and only if that
word was printed.

a. If the category is to be saved, put it in the next available position
in CATSP.

b. If the category is to be printed, print it.

(At this point, we begin to step around the ring of words in this category.

Steps 6 - 12 form a loop which does the iteration.)

6.

10.

Find the first/nmext word in the ring of words. If the ring has been
completely searched, go to step 13.

Determine whether or not this word is to be bypassed in the search. It
is if this is so indicated by KMODE and VMATCNT, or if the word is
already in the PATH. 1If it is to be bypassed, do so by going back to
step 6.

At this point, we know we have a new word. Put it in the next position
in the PATH.

Determine from VMATCNT and KMODE whether this word is to be printed now or
saved.

a. If the word is to be saved, put it in the next available position in

WORDSP.

1 March 1968 105

11.

12.

13.

14,

b. If the word is to be printed, print all the entries that have been
saved in WORDSP and CATSP, then print this word, and set PRINTNDX to
key printing all categories in the next level of recursion.
If we have more levels of recursion to go through, we do so here.
a. Increase LEVEL by 1.
b. Set parameters for the subprocedure call as follows:

PARM1 = current word

PARM2 = current category (marks the head of the ring of

categories to be searched on the next level.)

next category in the ring of categories to be
searched.

PARM3

c. Call this subprocedure.

Upon return from the subprocedure, or after bypassing step 11, go to
step 6, to continue the ring of words. This step closes the loop of
steps that search around a ring of words.

Here we have completed the circuit in a ring of words. Find the next
category in the ring of categories and go back to step 1. This step
closes the loop of steps that search around a ring of categories.
Here we terminate the subprocedure. Reduce LEVEL by 1. Remove the last

entry from the PATH. Return to the step following the calling step.

106

V4 y — atched
Function Suffix Pairs Text
Words & Exceptions
PREP
SUFUN
INDEX
SORT
on Request#,
SUFFIX Key Word

SORT UPDATE KEYS

alphabetically

Analysis

Sorted Updated
Text
KEYS
SUFFIX ¢
, THESAUR
Matched ‘////
Text <:-
s J
Stylistic “/ oo
Analyses \—-é“
E' g
I r X X X
- ay P

Ring-Structured VIA

Micro-

thesau-

rus

1 March 1968 107

IV. Professional Activities

of Project Personnel

Sally Y. Sedelow

Publications:

*

*

"Stylistic Analysis," Automated Language Processing: The State of the

Art, edited by Harold Borko, John Wiley and Soms, 1967. Co—author with

Walter A. Sedelow, Jr.

Stylistic Analysis, Third Annual Report, SDC Document TM 1908/300/00,

March 1, 1967.

Papers/Seminars/Addresses/ etc:

*

Speaker,'"Opportunities for Computer-Aided Research at UNC," Institute for
Research in the Social Sciences, Chapel Hill, February 1967.

Speaker, "Computer-Aided Analysis of Language,' Naval Reserve Unit, Chapel
Hill, February 1967.

Discussant, session of '"Measurement in the Humanities: Can the Computer
Help?'" American Education Research Association, New York, February 1967.
Chairman and Panelist, conference on "The Computer and Research in the
Humanities," University of North Carolina, March 1967.

Paper, ''Computer-Aided Stylistic Analysis, University of Colorado,
Boulder, July 1967.

Paper, "Four Faces of Language Analysis," American Documentation

Institute, New York, October 1967.

1 March 1968 108

* Paper, ''Categories and Procedures for Content Analysis in the Humanities,"
National Conference on Content Analysis, University of Pennsylvania, Nov-
ember 1967. With Walter A. Sedelow, Jr.

* Instructor, Study Institute on Computer-Aided Language Analysis in
Education, American Education Research Association, Chicago, February
1968.

Activities:
* Consultant, Thomas Y. Crowell Company, 1966 --

* Co-editor, Journal for Computer Studies in the Humanities and Verbal

Behavior, Mouton, The Hague, The Netherlands, 1966 --.
* Field Reader, U.S. Department of Health, Education and Welfare 1966 --.
* Member, Review panel, session on 'The Humanities and Social Sciences,"
Fall Joint Computer Conference, 1967.
* Chairman, Special Interest Committee on Language Analysis and Studies

in the Humanities, Association for Computing Machinery, 1968--.

Walter A. Sedelow, Jr.

Publications:

* "Stylistic Analysis," Automated Language Processing: The State of the Art,

edited by Harold Borko, John Wiely and Sons, 1967. Co-author with
Sally Y. Sedelow.
* "Computational Sociolinguistics," Research Previews, 14(2), 1967.

Papers/Seminars/Addresses/ etc.:

* Speaker, Institute for Research in the Social Sciences, Chapel Hill,

February 1967.

1 March 1968 109

* Speaker, session on 'Measurement in the Humanities: Can the Computer
Help?" American Education Research Association, New York, February 1967.

* Panelist, ''The Computer in Aid of the Scholar,'" Conference on "The
Computer and Research in the Humanities, University of North Carolina,
March 1967.

* "Society and the Librarian: A Prognosis,' North Carolina Library
Association Biennial Conference, General Session Address, Charlotte,
North Carolina, October 1967.

* "Categories and Procedures for Content Analysis in the Humanities,"
National Conference on Content Analysis, University of Pennsylvania,
November 1967. With Sally Y. Sedelow.

* "Knowledge Systems,'" presentation to the University Committee on Commun-
ications, University of Pennsylvania, January 1968.

* "The Interdisciplinary Structure of the Research," Study Institute on
Computer-aided Language Analysis in Education, American Educational
Research Association, Presession #7, February 1968.

* "The Implications of Computers for Knowledge,'" The 'Cutting Edge'
Symposia, (Danforth Foundation), University of North Carolina, Chapel

Hill, February 1968.

Activities:
* Consultant, Computer-Aided Linguistic Analysis Project (sponsored by
the U.S. Office of Naval Researclh), March 1967 --
* Consultant, Jacksonville (Illinois) State Hospital, February 1968 --
* Consultant, University Committee on Communications, University of
Pennsylvania, January 1968 --

* Consultant, Manuscript Evaluation, John Wiley & Sons, Inc., 1967 --

1 March 1968 110

* Consultant, Project Evaluation, Thomas Y. Crowell, Inc., 1966-67.
* Editorial Board, Social Forces, 1966 —-.

* Editorial Board, Computer Studies in the Humanities and Verbal

Behavior, 1966 --.

* Trustee, International Social Science Institute, 1966 --—.

* Administrative Board, Frank Porter Graham Child Development Research
Center, Chapel Hill, North Carolina, February 1968 --.

* Member, American Council of Learned Societies' Computer Applications

Committee, February 1968.

Walter L. Smith

Papers published:

* '"On the weak law of large numbers and the generalized elementary renewal

theorem," Pacific Journal of Mathematics, 22, pp. 171-188, 1967.

Papers written:

* "Remarks on renewal theory when the quality of renewals varies,"

Institute of Statistics Mimeo Series #548, Sept. 1967, Chapel Hill.

* "Necessary conditions for almost sure extinction of a branching process

with random environment," Institute of Statistics Mimeo Series #549,

September 1967, Chapel Hill.

* "Some results using general moment functions,'" Institute of Statistics

Mimeo Series #554, November 1967, Chapel Hill.

Papers presented:

* Paper #3 presented at the 36th Session of the International Institute

of Statistics, August - September, 1967, Sydney, Australia.

1 March 1968 111

Joan Nancy Bardez

* Master's Thesis, ''Linkage-Loader Design In Computer Operating Systems,'

University of North Carolina, Chapel Hill, 1968.

William G. Hickok

* "A Technique for Structuring a Formated File System Retrieval Request
from Areas Delineated on a WAC or ONC Utilizing the Gerber Inverse

Plotter," NAIRY 662, NARTU Andrews, for LANT INTELCEN, October 1967.

1 March 1968

112

APPENDIX
page
INDEX Program . . « + &« + = « = &« o « + &+ = 113
SUFUN Program . . . + « « &« « s + o« o« = &« = 121

SUFFIX Program . . « « « « o o « « =« = &+ = 129

3

INDEX:®

PROC (PARM) OPTIONS (MAIN) ;

/*
/%
Vi
/*
Vid

INDEX: PROC (PARM) OPTIONS(MAIN) ;

THE TNDEX PROGPAM INDEXES TEXTUAL WORDS AND/OR PUNCTUATION MARKS */
PUNCHED ON DATA PROCFSSING CARDS, WORDS AND/OR PUNCTUWATION MUST */

BF DELIMITFD BY BLANKS, THE PROGRAM INDEXES THE TEXT WORDS,

ETC. BY VOLUME NUMBER, CHAPTER NUMBER, PARAGRAPH NUMBER,
SENTENCE NUMBER, AND WORD NUMBER WITHIN SENTENCE.

*/
*/
*/

DECLAFF PARM CHAR (40) VARYING; /* DATA FROM JCL 'FXFC CARD #*/

DFCLARF CARDIMAGE (B0) CHAR (1) STATIC,
TEMP CHAR (10) INITIAL (' '),

UHLAB CHAR (4) INITIAL (' *'),/* TYPE OF PROCESSING
PRNTCTRL CHAR (5) INITIAL (' '), /* PRINT, NOPRT PARM */

STAGEDIRECT CHAR (15) INITIAL (' '),

TOVO FIXED (4) INITIAL (1), /* TOTAL VOLUMES
TOCH FIXED (4) INITIAL (1), /* TOTAL CHAPTERS
TOPA FIXED (6) INITIAL (1), /* TOTAL PARAGRAPHS
TOSE FIXED (6) INITIAL (0), /% TOTAL SENTENCES
TOWO FIXED (6) INITIAL (0), /* TOTAL WORDS

L LABFL (L7,18,L9,L10);

DFCLARF /* USED IN SUBROUTINF 'FORN°’,
SEQUENCE CHAR (8) INITIAL (* '),

LINE FIXED (4) TINITIAL (0),
LINEA FIXED (2) INITIAL (0),
COL FIXED (2) INITIAL (73),

COLIM FIXED (2) INITIAL (72), /* NUMBER OF COLUMNS

WRDCONT FIXED DEC (1) INITIAL (0),
LINECONT FIXED DEC (1) INITIAL (0):;

/*¥ TO BE PROCESSED

DECLARE /% USED IN QUTPUT RECORD.

CNST FIXED DFEC (2) INITIAL (18), /* LENGTH OF FIXED

PORTION OF RECORD

NUMC FIXED (2) INITIAL (9)
VOLU FIXED (2) INITIAL (1)
CHAP FIXED (3) INITIAL (1)
PARA FIXED (3) INITIAL (1)
SENT FIXED (S) INITIAL (0)
WORD FIXED (3) INITIAL (1)
OTHER CHAR (58) STATIC,

/% VOLUMF NUMBER

/* CHAPTER NUMBER
/* PARAGRAPH NOMBER
/* SENTENCE NUMBER
/% WORD NUMRFPR

LI TR S L R)

/* NUM OF CHAR IN WORD

AWORD CHAR (58) VARYING; /* LENGTH OF LONGEST WORD

/¥ TO BE PROCFSSED.

DPECLAPF FIELD CHAR (82) INITIAL (' ');

*/

*/
*/
x/
*/
*/

*/

*/
*/

*/
*/
*/
*/
*/
*/
*/

*/
*/

*{**#{****************%*****#*******#}********ﬂ*****i**********i*i*&*\

/*

/*
/*
Vi
/%

THF PROGPAM REQUIRES THAT THE TYPE OF DATA TO BF PROCESSED

BE

SPFCIFTED AS THE FIRST FOUR POSITIONS WITHIN THF 'PARM' PIFLD

OF THE JCL EXEC CAPD OR THE FIRST INPUT RECORD OF SYSIN.

THF TYPE PARAMETER IS NOT SPECIFIED THE PROGRAM TFRMINATES WITH

IF

*/
*/
*/
*/
*/

PAGE

113

in
12
13
16
15
1A
17

119

10

21

INDEYX:

PROC (PARM) OPTIONS (MAIN) ;

/¥
/*
/%
Vad
/*
/*
/%
/%
/*
/%
/*
/%
Vi
/%
/*
/*
/¥
/*
/%
/*
/*
/*
Vi
/*
/*
/*
Vid
/*
/%
/%
/*
/*
/%

/%

A MSG ON SYSPRINT TO THE USER.

PROCESSED TO BE PRINTED, THE TYPF PARAMETER ON JCL OR SYSIN
SHOULD BE FOLLOWED BY A COMMA (,) AND THE PARAMETER °PRINT' IN
IF A PRINTOUT IS NOT REQUIRED THE
PARAMETFR 'NOPRT® SHOULD BE SPECIFIED USING THE SAME FORMAT.
IF NO PRINT CONTROL PARAMETER IS SPECIFIED, THE DEFAULT IS

THE FORMAT ' XXXX,PRINT®.

* NOPRT?',

TO USE THE FIRST RECORD OF SYSIN TO INTRODUCE PARAMETERS,
THF JCL EXFC PARM FIELD MUST CONTAIN THE VALUE 'FRST'.
FXAMPLE USING JCL FOR PARM PASSING;
// FXEC PL1,PARM.GO='POET,PRINT®

IF A PLAY HAS STAGE DIRECTIONS THEY WILL BE IGNORED UNLESS

THE PARAMETER *STAGE DIRECTION?

IS:

IS SPECIFIED. PARM FIELD FORMAT

"XXXX,XXXXX,STAGE DIRECTION®

FXAMPLF USING FIRST RECORD OF SYSIN FOR PARAMETERS:
// EXEC PL1,PARM.GO='FRST*
PIRST CARD OF INPUT ON SYSIN WOULD THEN CONTAIN BEGINING IWN

COLUMN 1, POET,PRINT

THF FOLLOWING PL1 CODE TESTS THE VALUE PASSED THROUGH JCL

IN THE 'PARM' FIELD,

IF THE VALUE

'FRST® THE FIRST RECORD

OF THE INPUT FILE ON SYSIN CONTAINS THE PARAMETERS IN POSITIONS
1 THROUGH 10 AND THESE PARAMETERS ARE USED BY THF PROGRAM BY

CONTINUING THE PROGRAM AT LABEL

'PARM' FIELD IS SOMETHING OTHER THAN

BY SETTING °UHLAB' =

'PIRST'. IF THE VALUE IN THE

FRST® THAT VALUE IS USED

TO THE VALUE OF THE FIRST POUR POSITIONS

AND PRNTCTPL = THE VALUE OF POSITIONS 6-10 AND CONTINUING THE
PROGRAM AT LABEL °'SECOND'.

*

IF THE USER WISHES THE DATA BEING*/

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
/

VAR A 22 22 S R 222 222 222 s Rt s st 2t Rt il R s R R R it il il VY

FIRST:

OPEN FILE (SYSIN) INPOT, PILE(SYSPRINT) OUTPUT;
ON ENDFILE(SYSIN)

GO TO OUTOFCRDS;

IF PARM = 'FRST' THEN GO TO FIRST;

ELSE TEMP = PARNM;

THLAB = SUBSTR(TEMP,1,4);
PRNTCTRL = SUBSTR (TEMP,6,5);
IF UHLAB = *PLAY' | UHLAB

STAGFDIRECT
GO TO SECOND;

‘HAML® THEN

SUBSTR (TEMP, 12,15) ;

A(5) X(1),A(15) ,X(S4)) 3
SFCOND: IF PRNTCTRL = !

I¥ UHLAB = ¢

GET FILE (SYSIN) EDIT (UHLAB,PRNTCTRL,STAGEDIRECT) (A (8),X(1),

' THEN PRNICTRL = 'NOPRT'; /*DEFAULT*/

THEN DO;

/¥

DATA TYPE TO BE PROCESSED
/% MUST BE SPFCIFIED

*/
*/

PAGE

114

24
2%

A

27

2R
20

n
3?
3
34
25

e

P—_’

41
u?
ua
&3
=R
(e
Al

()
A7
AR
fQ
T4
709
an

a1

INDFX: PROC (PARM) OPTIONS (MAIN) ; PAGE
115

PUT FILE(SYSPRINT) EDIT (*TYPE OF DATA TO BE PROCESSED ',
'HAS NOT BEEN SPECIFIED. PROGRAM TERMINATED, ')
(PAGE,A(29) ,A (U6)) 3

GC TO CLOSING;

END;

PUT FILR®(SYSPRINT) EDIT ('TYPF OF DATA TO BE PROCESSFRD IS °,
UHLAB) (PAGE,A(32),A(4));

PUT FILE(SYSPRINT) EDIT (PRNTCTRL,' HAS BEEN SPFCIFIED AS °*,
*PRINT CONTROL.',' ') (SKIP,A(5) ,A(23),A(14),
SKIP(2) ,A(4));

IF UHL.AB = 'PLAY' & STAGEDIRECT = *STAGE DIRECTION®' THEN

PUT FILE(SYSPRINT) EDIT ('PROCESSING OP STAGE DIRECTIONS®,
' HAS BFEN SPECIFIED.') (SKIP,A,A);

/% UFLAB FQUAL TO *PROS', 'POET', °*PLAY', OR 'SPOK' WILL USF 'COL® */
/* INITTAL VALUF OF 73 AS SHOWN ON THE DECLARE STATEMENT FOR °'COL?. */

IF UHLAB = 'PPNS' THEN DO;

SENT = 1;
TOSE = 13
GO TO PWA; /% PRINT SECTION HEADINGS */
FEND;
IF "HLAB = 'PLAY' | UHLAR = °*SPOK' THEN GO TO PWA; /* PRINT

INITIAL SECTION AEADINGS, */

IF YHLAB = 'OPLA' THEN COLIM = 68;
L1: CALL FORM; /% SNUBROUTINE TO DISTINGUISH WORDNS */
/* RFSET CONNTFRS BASED ON KEYWORD WITHIN TEXT. */

IF UHLAB = 'PROS' THEN DO;

TF AWORD = *$VOLUME? THEN DO; L = L7; GO TO L6; END;
IF AWORD = *$CHAPTER? THEN DO; L = L8; GO TO L6; END:
IF AWORD = *'S$PARAGRAPH' THEN DO; L = L9; GO TO L6; END;
I¥ AWORD = '$SENTENCR' THEN DO; L = L10; GO TO L6; FEND:
GO TO L2;

FND;

TF DHLAB = *PLAY' | UHLAB = °*OPLA' THEN DO;
IF SUBSTR (AWORD,1,1) = ¢%xt g
STAGEDIRECT -= 'STAGE DIRECTION' THEN GO TO L1;

IF AWORD = ¢t S$ACT! THEN DO; L = L8; GO TO L6; END;
IF AWORD = *$SCENF!? THEN DO; L = 19; GO TO L6; END:
GO TO L2;

FEND;

IF UHTAB = 'SPOK' THEN DO

a1
AR
a2

9n

qa
100
in2
2
10na
105
10F

17

110

1nq
111

113
118

117

110
119
120
1272

INDEY:

PP

/*

/%
/%
Vid
/%

L

/*
/*
VA
/*
/%
Vi
/%
/%
/%
/%

/*
/%

/*
/%
Ve
Vi

OC (PARM) OPTIONS (MAIN) ;
TF AWORD = *$SERIES® THEN DO; L = L7; GO TO L6;
IF AWORD = 'S$SESSION! THEN DO; L = L8; GO TO Lé6;
IF AWORD = '$SPEAKER!? THEN DO; L = L9: GO TO L6;
GO TO L2; DEFAULT
FND

THE FOLLOWING TRANSPORMS PARAGRAPH, CHAPTER, AND VOLUME END
INDICATIONS TO A SINGLE PERIOD *.°',

2: OTHER = ¢ v /* CLEAR AREA */
TIF AWORD = ',.* | AWORD '83* | AWORD = '$$$%' THEN DO;
SUBSTR (OTHER, 1, 1) LI H
NUMC = 1
FND;
ELSF SOBSTR (OTHER, 1, NUMC) =AWORD;
TOWO = TOWO 4+ 13

OUTPUTTING RECORD; RECORD FORMAT IS:

POSITTONS 01-C4 VARIABLE LENGTH COUNT FIELD.

POSITIONS 05-06 LENGTH OF VARTABLE TEXT WORD.
POSITIONS 07-08 VOLUME NUMBER,

POSITIONS €9-11 CHAPTER NUMBER,

POSITTONS 12-14 PARAGRAPH NUMBER.

POSITIONS 15-19 SENTENCE NUMBER,

POSITIONS 20-22 WORD NUMBER WITHIN SENTENCE.

END:
END;
END;

PNSITICNS 23-89 TEXT WORD, VARYING IN LENGTH UP TO 58 CHAR. #/

PUT STRING(FIELD) EDIT (CNST,? ',NUMC,VOLU,CHAP,PARA,SENT,

WORD,OTHER) (F(2),A(4),F(2),F(2),F(3),F(3),F(5),F(3),
A (NUMC)) ;
CATL PUTOUT (FIELD);
DCB= (RFCPM=VB,LRFCL=80,BIKSIZE=3520)
DDNAME TO BF USED = OUTPNT

AT THIS POINT, UHLAB EQUAL TO °*PROS' WILL

*/
*/

*/

CAUSFE THF VARIOUS COUNTERS TO BF INCREMENTED UNDER THE FOLLOWING*/

*/

*/
*/
*/

*/

CONDTTIONS AND/CR THE PROGRAM TO BRANCH TO THE LABEL 'PW', ALL */
OTHER THLAB VALUFS RESULT IN A BRANCH TO PW,
IF UHLAB = '"PROS' THEN DO;
IF AWORD = ',' THEN GO TO CS; /% SENTENCE
IF AWORD = *?2' THEN GO TO CS; /% SENTENCF
IF AWORD = ®*!* THEN GO TO CS; /* SENTENCE
FNDg
IF UHLAB = 'PROS' | UHLAB = 'PLAY' | UHLAB = 'SPOK'
THFN DO;
IF AWORD = *,,* THEN GO TO CP; /% PARAGRAPH
IF AWORD = "§353¢ THEN GO TO CC; /* CHAPTER

*/

PAGE

116

124
12+

128
129
130
131
132
113
174
11=
174
117
118
129
140
141

141
144
115
1uf
1u7
148

150

151

153
15U

1e¢€
156
157
159
150

167

INDEY:

PROC (PARM)

NPTIONS (MATNY 3

JF AWORD = '3$33%' THEN GO TO CV; /* VOLUME x/
FND;

PW;

TOVO = TOVO41;
VOLUO = VOLU41;
CHAP = 03

TOCH = TOCP+41;
CHAP = CHAP+1;
PARA = (g

TOPA = TOPA41;
PARA = PARA41;
SENT = Q;

TOSE = TOSF41;
SENT = SENT41;
WORD = (3

WORD = WORD41;
IF PRNTCTRL = *NOPRT' THFN GO TO L1;

IF UHLAB = 'PRNOS' (| UHLAB = 'PLAY® | UHLAB = 'SPnK?

m

PWA:

HEN DO;

POT FILE(SYSPRINT) EDIT (AWORD,® ') (A(NUMC), RA(1)):

TF AWORD = ',.* | AWORD = *$3$$' | AWORD = '8%°*
THEN DO

JF PRNTCTPL = 'NOPRT' THEN GO TO L1

PUT FILE(SYSPRINT) EDIT (°'VOLU = *,9SERIES = ',VOLU,

' CHAP = ',%ACT = *',*'ACT = ', SESSION = ',CHAP,
' PARA = *',' SCENE = ',' SCENE = ',' SPEAKFR = ',

/*
/¥
/*
Vel
/¥

PARA,"

')

FORMATS SFCTION

HFADING BASED ON TYPE*/
OF PROCFSSING
SPFCIFIFD IN FIELD */

(SKIP (2) ,A ((OHLAB='PROS"') %7)
A((UHLAB="SPOK") *9)

*/ A((UHLAB='PROS')*9)
A((UHLAB='PLAY"') *6)
*/ A((UHLAB='HAML®) %6)

”mAmv.

A ((UHLAB='SPOK"') *12) ,F(3),

'UFLAB?', * / A{(UHLAB='PROS"') *9),

A((UHLAB='PLAY') *10),
A((UHLAB='HAML®) *10) ,
A((UHLAB='SPOK"') *12) ,F(3),
A(N)

GO TO L1; END;

FND:

GO TO L1;

L6: PUT FILE(SYSPRINT) FDIT
(SKIP(2),72 A (1)) ;

CALL FORM;
COL = 73;
GO TO Lg

L7: VOLU = AWORN;

POT SKIP;

({CARDIMAGE(I) PO I = 1 TO 72))

/* FORCE RFADING OF NEW RECORD */

PAGE

117

161
165
166
167
170
17
17?
174
17¢
176
177

17R

188
194

1R7
1R

19n
101

192
191

194
196

107
100
1090

200
201

2r?

INDEY: PROC (PARM) OPTIONS (MAIN)

CHAP = 1; PARAR = 13 SENT = 1;
GO TO PWA;
182 CHAP = AWORD;

PARA = 1 SENT = 1; WORD = 1;
GO TO PHA:
19: PARAR = AWORD;
SENT = 1: WORD = 1;
GO TO PWA;
L10¢ SENT = AWORD;:
WORD = 1;
GO TO PWA;

WORD = 1

OUTOFCRPS: PUT FILE(SYSPRINT) EDIT (°NUMBER OF WORDS °*,

' (CONTENT AND FUNCTION) = *',TOWO)

F(6));

IF UALAB = 'PROS' THFN DO;
PUT FILF(SYSPRINT) EDIT (*NUMBER OF
(SKIP,A(22) ,F(6)) 3

SENTENCES

= ',TOSE)

PUT FPILE(SYSPRINT) EDIT ('NUMBER OF PARAGRAPHS =?,TOPA)

(SKTP,A(22) ,F(6)) 3

PUT FILE(SYSPFINT) EDIT (*NUMBER OF
{(SKIP,A(24) ,F(4));

PUT FILE(SYSPRINT) EDIT ('NUMBER OF
(SKIP,A(26) ,F(2));

GO TO CLOSING:

END;

CHAPTERS

VOLUMFS =

T UHLAB = 'PLAY' | UHLAB = °*HAML' THEN DO;

PAT PILE(SYSPRINT) EDIT ('NUMBER OF
(SKIP,A (22) ,F(6));

PUT FILF(SYSPRINT) EDIT (*NUMBER OF
(SKIP,A (19) ,F(6));

PUT FILE(SYSPRINT) EDIT ('*NUMBER OF
(SKIP,A (17) ,F(4)) s

GO TO CLOSING:

END;

IF UHLAB = 'SPOK' THEN DO;

PUT FILF(SYSPRINT) EDIT (°*NUMBER OF
(SKIP,A (22) ,F(6))

PUT FILE(SYSPRINT) EDIT (*'NUMBER OF
(SKIP,A(21) ,F(6));

POT PILE(SYSPRINT) EDIT (°NUMBER OF
(SKIP,A (21) ,F(4)) s

PUT FILE(SYSPRINT) EDIT ('NUMBER OF
(SKIP,A (19) ,F(2))

GO TO CLOSING;

FND;

SENTENCES
SCENES =

ACTS = ',

SENTENCES
SPEAKFRS
SESSIONS

SERIES =

= ', TOCH)

(PAGE,A(16) ,A(25),

', TOVO)

= ',TOSE)
* ,TOPA)

TOCH)

= ',TOSE)

= 1,TOPA)

', TOCH)

*,TOVO)

PIUT FILE(SYSPRINT) EDIT (*NUMBER OF INPUT RECORDS =

TOSE) (SKIP,A(25),FP(6));

r

PAGE
118

201
2nu
ang

204/
207
2NR
20nq
210
212
21U
216
218
219
200
221
223
224
225
226
278
2290
23n
271
23?2
237
234

276

237
2130
241
2u?
2uu
us
2uf
2u7
249
250
252

257
254

INDEY: PROC (PARM) OPTIONS (MAIN) ; PAGE
119

CLOSTNG: CLOSE FILE(SYSIN), FILE(SYSPRINT);
CALL CLSEOUT; /* CLOSES IWNDX FILE. */
GO TO FNDINDX:

/% e ok ok ke ok ko ok ok Ak ok ek ok ok o Kk Ok ok ko ok ok ok ok ok ek ik ok eakok ok ok K kok ok EEEXEERRK KRR KR/

/% */
/* SUBROUTINE *FORM!? */
/% */
FORM: PROCEDURE;
NUMC = 0

AWORD = **;
BUUMP: COL = COL+1:
IF COL < COLIM THFN GO TO EXTRACT;
IF COL = COLIM THEN DO;
IF CARDIMAGE (COL)
IF CARDIMAGE (COL)
WRDCONT = 1;
GO TC BUMP;
END;
IF CARDIMAGE (COL)
LINECONT = 1
GO TO BOMP;
END s
IF CARDIMAGE (COL) *#' THEN DO; /* WORD AND */
WRDCONT = 1; /* SENTENCE CONT */
LINFCONT = 1;
GO TO BUMP;
END;
END;
COL = 13
TF UHLAB = 'OPLA' THEN GO TO READ68;

' ' THEN GO TO LSTCHAR;
'—* THEN DO; /* WORD CONTINUED */

'?' THEN DO; /% SENTENCE CONT */

PEAD: GET FILE(SYSIN) EDIT ((CARDIMAGE(I) DO I = 1 TO 72),
LINEA,SEQUENCE) (72 A(1),F(2),A(6));

Hﬁcmﬁymn.vome._:mﬁvmn.sza.H:mzvou
IF WBDPCONT = 0 THEN WORD = 1;
WRDCONT = 0;

IF LINECONT = 0 THFN DO:
SENT = SENT + 1;
TOSE = TOSE + 1:

END;
LINECONT = 0}

IF UHLAB = "MILT' THEN VOLU = LINEA;

TP PRNTCTRL = *NOPRT' THEN GO TO EXTRACT;

PUT FILE(SYSPRINT) EDIT ((CARDIMAGE(I) PO T = 1 TO 72),
voLu,*-*',SENT) (SKIP,COLUMN(10),72 RA(1),X(2),
F((UHLAB='MILT"') *2) ,A(UHLAB=*MILT®*),F(5))

GO TO EXTRACT:

FND;

TF UHLAB = 'SPOK' THEN SENT = SENT 4 1;

257
258
269
26N
261

?2R7

2R
2R5
266
27
2FR
2R9
271

272
2732
274
275

27/

277

INDEX:

PROC (PARM) OPTIONS (MAIN) PAGE
120

FXTRACT:
IF CARDIMAGE (COL) = * ' THEN GO TO LSTCHAR;
NUMC = NUMC+1;
AWNORD = AWORD {| CARDIMAGE(COL); /*CONCATENATION */
GO TO BUMP;

PEAD68:
GET FILF(SYSIN) EDIT ((CARDIMAGE(I) DO I = 1 TO 68),
LINE,SEQUENCE) (68 A(1),F(4),A(8));
IF SFNT -~= LINE THEN DOj
SENT = LINE;
TOSE TOSE 4+ 13
WORD 13
END;
IF PRNTCTRL = *NOPRT' THEN GO TO EXTRACT;
PUT FILE(SYSPRINT)} EDIT ((CARDIMAGE(I) DO I = 1 TO 68),
SENT,SEQUENCE) (SKLP,COLUMN(10) ,68 A(1),X(2),
F(5) ,X(2),A(8));
GO TO EXTRACT;

LSTCHAR:
IF NUMC = C THEN GO TO BUMP;
RETURN
END;
/* END OF SUBROUTINE 'FORM!® x/

JEEkkRRkREE kR R ARk kR k ek kkkk ko kk kR k ek Rk kR Rk kk ki k ok kkkkk ok kx /

PNDPINDX: END INDEX;

1 March 1968 121

SUFUN Program Listing

qr

SUFIN:

PROC OPTIONS (MAIN);

SUFUN: PROC OPTIONS(MAIM ;
/%
/%
/*¥ TFOLLOWFD RY FUNCTION WORDS.
/*

THE PUPPOSF OF THIS PROGRAM IS TO PRODUCE A DATA SET WHICH
CONTAINS LINKED PAIRS OF SUFFIXES AND THEIR POSSIPLE EXCEPTIONS

THE OUTPUT DATA SET WILL BE USED BY

THE PROGRAM *SUFFIX' TO LINK CONTENT WORDS BY ROOT FORM.

DFECLARF
CARDIMAGE (8C) CHAR (1)

DECLARFE
COL PIYED DEC (2),
J1 BINARY FIXED (15,0),
I BINARY FIXED (15,0);

DECLARE

/¥

/*

NSUF1 FIXED DEC (3) INITIAL (),
NSOFX FIXED DEC (3) INITIAL (0),
NFUN FIXED DEC (3) INITIAL ({0),
NEXCP FIXED DEC (4) INITIAL (1);

DECLARE
1 WORK1,
. 2 NUMC FIXED DEC (1),

2 10C FIXED DEC (4) INITIAL (0), /*PRESET

2 AWORD CHAR (18) VARYING;

DECLARE
1 WORK2,
2 TEMPLEN FIXED DEC (2),
2 LWORD CHAR (18) VARYING:

DFCLARF
1 SUFFPIX1 (5C00),
2 LENSUF1 FIX¥D DEC (1),
2 LOCSUF2 FIXED DEC (3),
2 SUF1 CHAR (8) VARYING;

DECLARFE
1 SOFFIX2 (500),
2 LENSUF2 FIXED DEC (1),
2 LOCEXC FTIXED DEC (&),
2 SUF2 CHAR (8) VARYING;

DECLARF
1 EXCEPTWD (1000),
2 LENFXC FIXED DEC (2),
2 FXCPT CHAR (18) VARYING;

DFCLART
1 FONCTIONWD (200),
2 LENFUN FIXED DEC (2),
2 TUN CHAR (18) VARYING;:

/¥
Vi
/%

/¥
Vid
Vi

/%
/%

/*
/%

CARD READ IN AREA

COLUMN POINTER

/¥ NUMBER OF SUFFIXS ONE

/* NUMBER OF SUFFIXS 2
/* NUMBER OF FUNCTION WDS

*/
*/
*x/
*/

*/

*/

*/

*/
*/

/¥ NUMBER OF EXCEPTIONS WDS*/

LENGTH OF WORD SUF1,
LOCATION OF SOUF2 LIST
SUFFIX ONE OF PAIR,

LENGTH OF WORD SOF2,
LOCATION OF EXCEPTION LIST
SUFFIX 2 OF SUFFIX PAIR

LENGTH OF EXCEPT WORD
EXCEPTION WORD,

LENGTH OF FUNCTION WORD
FUNCTION WORD

LOCEXC & LOCSUF2 */

*/
*/
*/

*/
*/
*/

*/
*/

*/
*/

PAGE
122

11

12

14
15
16
19
20
21
22
23
25
26
28
29
31
32
21
Y
35

13
37
38
19

un

uA
u3
uu
u5
ne
n7
uR
ugo

51
c9

su

or

SUFIN:

PROC OPTIONS (MAIN)

OPFN FILE(SYSIN) INPUT,
FILE(SYSPRINT) OUTPUT,
FTLE (SUF) OUTPUT;

ON FNDFILE(SYSIN) GO TO SORTFUN;

RWT: coL = 73 /* FORCE READING OF NEW INPUT RECOR
CALL FORM;
IF AWORD = P'EXCEPT' THEN GO TO EXCEPTION;

IF LWORD = *EXCEPT' THEN DO;
FXCPT (NEXCP) = *0°;
LENEXC(NEXCPY = 1;
NEXCP = NEXCP+1;
I¥ NEXCP > 1000 THEN GOTO FLOVER1; /* OVERFLO
FND3
IF AWORD = 'FUNCTIONWORDS®' THEN GO TO SORTSUP;
NSUFX = KNSUFX+1;

D

W HAS OCCURR

*/

*/

IF NSUFX > 500 THEN GO TO FLOVER2; /* OVERFLOW HAS OCCURRED */

SUFFIX1(NSUFX) = WORK1; /* PRESETS LOCSUF2 TO ZER
LWORD = AWORD;
CALL FORM;
SUFFIX2 (NSUFX)
GO TO PRW1;

WORK1; /* PRESETS LOCEXC TO ZERO

FXCEPTION:
IF LWORD = 'EXCEPT®* THEN GOTO REXCEPT;
LWORD = 'EXCEPT';
LOCFXC (NSOFXY) = NEXCP;

REXCFPT:

CALL FORNM;

IF AWORD = 'LETTER' THEN DO;
CALL FORMN;
FYCPT (NEXCP)=*'-"'{| | AWORD;
LENFXC (NEXCP)=2;
GO TO INCRE;
END:

EXCPT (NEXCP) = AWORD;

LENFXC (NEXCP) = NUMC;

TNCRF:
NEXCP = NEXCP+1;
IF NFYCP > 1000 THEN GO TO FLOVER3; /% OVERFLOW
GOT® RWT;

/* THE FOLLOWING CODE INTERCHANGES SUFFIXES OF A SUFFIX
THE LOWFR ORDEP SUFFIX IS PLACED IN *SUFFPIX1*,

SORTSUF:
LOCEYC (NSUFX41) = NEXCP;
FXCP™ (NEXCP) = N1t

0

HAS OCCURRED

PATR SO THAT

*/

*/

*/

*/

oou7
oous
0049
0050

0053
0054
0055
0056
0057
0058

0060
0061
0062

0066
0067

0071

0072
0073
0074
0075

0076
0077
c078
0079
0cso0
0081

0083
0084
0085
0087

0089

0093
0094

PAGE
123

56
57
R
X
a1
67
R7

AU
AS
IS
AR
0
70

71
72
71
T
75
76

77
78
79
qn
82
a3
/U
/g
AR

a7
ao

aa
on
OJ
93
15

SOFUN: PROC OPTIONS (MRIN);

LENEXC (NEXCP) = 1;
DO I = 1 TO NSUFX;
TP SUP1(I) <= SUF2(I) THEN GO TO N1;
WORK1 = SUFPIX1(I);
SUPFIX1(I) = SUFFIX2(I);
SUPFIX2(I) = WORK1;
N1: END;:

/¥ SORT SUFFIX1:

SORT SUPFIXS APPEARING IN SUF1 IN ASCENDING SEQUENCE MAINTAINING

THE RFLATTONSHIP WITH THE DIRECT OPPOSITE OF THE PAIR IR
SOFFIX2,

DO T = 1 TO NSUPX-1;
IF SUF1(I) > SUF1(I+1) THEN DO;
DO J = I4+1 TO 2 BY -1 WHILE (SUF1(J) < SUFP1(J-1)):
WORK1 = SUPFFIX1(J);
SUFFIX1(J) = SUFFIX1(J-1)
SUFFIX1(J-1) = WORK1:

WORK1 = SUFFIX2(J);

SUFFIX2(J) = SUFPIX2(J-1)

SOFFIX2 (J-1) = WORK1;
END; /% J %/

FND; /* SHAP */
END; /*¥ I & SORT */
/* ELIMINATE DUPLICATES IN SUF1. THE FIELD "LOCSUF2* WILL CONTAIN

A POTNTER TO THE FIRST SUFFIX IN SUF2 WHEN THERE ARE MULTIPLE

DUPLICATE ENTRIES IN SUF1,

J1 = 2;

LOCSUP2(1) = 13

DO T = 1 TO NSOFYX-1:

IF SUF1(I) = SUP1(I4+1) THEN GO TO N3;
LENSUFP1(J1) = LENSUF1(I+1);
SUP1(J1) = SUF1(I+1);
LOCSOF2{J1) = T41;
J1T = J141;

¥3: END;

LOCSUF2(J1) = NSUFX+1; /¥ TO TERMINATE LAST SUF2 */
NSOF1 = J1-1;

/* SORT SUFFIX 2:
SORT SUFFIXS IN SUFFIX2 WITHIN COMMON SUFFIX1. GROUP WILL BE
SORTFD ONLY WHERE A DUPLICATE OF A SUFFIX APPFARS IN SUFFIX1;

DO T = 1 TO NSOUF1-1;
IF LNCSUF2(I) = LOCSUF2(I4+1)-1 THEN GO TO N5;
DN J = LOCSUF2(I) TO LOCSUF2(I+1)-2;
IF SUF2(J) > SUF2 (J+1) THEN DO;
nn K = J+1 TO LOCSUF2{I)+1 BY -1

*/

*/

*/

0095

0100

0102
0103
0104

0110
0111
0112

0115
0116

0118
0119
0120
0121
0122
0123

0124
0125

0129
0130
0131
0132

PAGE
124

[/}

SUFINN: PROC OPTIONS(MBAIN) ; PAGE

125
WHILF (SUF2(K) < SUF2(K-1)); 0133
a4 WOPRK1 = SUFFIX2(K):;
a7 SUFFIX2 (K) = SUFFIX2(K-1);
aRr SUFFIX2 (K-1) = WORK1;
99 END; /% K */ 0137
100 END; /* SHAP ¥/ 0138
RN FND; /* J GROUP */ 0139
12 N5: FND; /% 1 & SORT */ 0140

/% SORT EXYCEPT LIST:
SORT EXCFPT WORDS MAINTAINING RELATIONSHIP TO SUF1 AND SUF2. */

103 J1 = 13 0143
1 N6: PO J = J1 TO NEXCP; 0144
105 IF FXCPT (J41) = '0' THEN DO; 0145
107 J1 = J42; 0146
1nA IF J1 >= NEXCP THEN GOTO OUTPUT: 0147
110 GO TO N6; 0148
111 FND; /* LIST */ 0149
112 TF FXCPT{(J) > EXCPT(J+1) THEN DO; 0150
114 DO K = J41 TO J141 BY -1 WHILE (EXCPT (K)<EXCPT(K-1)): 0151
118 WORK2 = EXCEPTWD (K) ;
11A EXCEPTWD (K) = EXCEPTWD (K-1) ;
117 EXCFPTWD (K—1) = WORK2;
118 END; /* K ¥/ 0154
119 END; /* SHAP */ 0155
12n END /*¥ J GROUP */ 0156
/% ONTPUT SUFTIX RECORDS. RECORDS ARE PADDED TO STANDARDIZE RECORD
LENGTH TO 20 BYTFES. */
121 OUTPUT: 0158
PT FILE(SUF) EDIT (NSUF1,NSUFX,NEXCP,' 9

{F(3),F(3),F{8),A(10))3
127 DO I = 1 TO NSUF1;
127 POT FILE(SUF) FDIT (SUFFIX1(I),! ")

(F(1) ,F(3) ,A(LENSUF1(I)) ,A (16-LENSUF1(I))) ;
124 FND; 0170
125 PO T = 1 TO NSUFX;
12F PUT FILE(SUF) EDIT (SUFFIX2(I),? ")

(F(1) ,F(4),A(LENSUF2(I)),A(15-LENSUF2(I))) :
127 FND; 0164
129 DO T = 1 TO NFXCP:
179 PNT FILE(SUF) EDIT (EXCEPTWD(T),®)

(F(2) ,A(LFNPYC(I)),A(18-LENEXC(I))) 3
L ENDS 0174

/* PRINT OUT SUFFTX AND EXCEPTION WORDS, */

131 HFAD1:

112

134

1135
117

11p
120

1u4n

141
140

1473
148
1u%

107
149
140
180
151

182
187
184
155
187
189
180

167

169

SUFUN: PPOC OPTIONS (MAIN); PAGE
126

POT FILE(SYSPRINT) EDIT ('SOUFFIX PAIRS AND ASSOCIATED EXCEPTION®,
‘ tOmum.-.z::mmw.~.zc:mmw.-.zczmmw.~.mxnmweHoz.-.maw1Hx 1,
'SUFFIX 2','WORDS',NSUF1,NSUFX,NEXCP) (PAGE,A,R, SKIP (2},
OOchzawwv-»~wam~NA_v-r-anv.>-xauv.>.msz->-xamv~»~N~av-r-
SKIP,X(2),F(3),X(7},F(3),X{7),F(4));

POT FILE(SYSPRINT) FDIT ("EXCEPTION? ,*INDEX',"INDEX', ' SUFFIX 1°,
'SUFFIX 2?,'WORDS®,'SUFFIX 2','EXCEPTION') (SKIP(2) ,COLUMN (21},
r-ﬂDﬁC:ZADN.-»-Oow:mzamwu->~mwa->-xAN..»-xacv->-OOchzAcav-

A X(2),R)
PUT FILE(SYSPRINT) SKIP(2);

PRTDATA:
DO I = 1 TO NSUF1:
ON ENDPAGE(SYSPRINT) BEGIN:

PUT FILE(SYSPRINT) EDIT (' EXCEPTION®, *INDEYX"','INDEX®,
'SUFFIX 1°,'SOUFFIX 2','HORDS*, *SUFPIX 2!, YEXCEPTION?')
qvwmm~noba=z.wdv-w.nowczzapmv->.now:=zamug-w-mxav-».wav.
R,X(4) ,A,COLUNMN(41) ,3,X(2) ,A) ;

POT FILE(SYSPRINT) SKIP(2):

END;

PUT FILE(SYSPRINT) EDIT (SUF1(I),LOCSUF2 (I))
(SKIP,A(LENSUF1(I)) ,COLUMN(43) ,F(3));

DO J = LOCSUF2(I) TO LOCSUF2(I41) - 1;
PUT FILE(SYSPRINT) EDIT (SUF2(J),LOCEXC(J))
awvaaov~nOH=:zA64v-waﬁmzmamwghvv-norcmzamwv-maavvu
IF LOCEXC (J) -~= 0 THEN DO:
DO K = LOCEXC(J) BY 1 WHILE (EXCPT(K) -= 0Ny
PUT FILE(SYSPRINT) EDIT (EXCPT(K)) (SXIP,COLUMN(21),
A (LENEXC(R))) ;
FND; /* DO LOOP K */
END; /* IF STATEMFNT */
PUT FILE (SYSPRINT) SKIP;
END; /% DO LOOP J */
FND; /* DO LOOP I */

/% BEGIN PRNCFSSING OF FINCTION WORDS. x/
RP: COL = 73; /% NEW CARD *x/ 0177
CALL FORM; 0178
NFUON = NFON41: 0179
IF NFUN > 200 THEN GO TO FLOVER4;
FIUN(NFUN) = AHORD: 0181
LENFUN (NFUN) = NUMC; 0182
GOTO RF; 0183
/% SOPT FINCTION WORDS IN ASCENDING SFOUENCE. */
SOPTFON:
DN I = 1 TO NFON-1: 0186

TF FUN(I) > PUN({I4+1) THEN DO; 0187

13
160
165
166
167
148
1F/a

170

171

17>

172

174
175

174
178

170
1an
191

130

121

144

100

196

17

129

SUFUN: PROC OPTIONS (MAIN): PAGE
127

DO J = TI+41 TO 2 BY -1 WHILE (FUN(J) < FUN(J-1}); 0188
WORK2 = FUNCTIONWD (J) :
FUNCTIONWD (J) = FOUNCTIONWD (J-1) ;
FONCTIONWD (J-1) = WORK?2;

END; /% J */ 0191
END3 /% SWHAP */ 0192
END: /% 1 & SORT */ 0193
/* OUTPUT FUNCTION RECORDS AND PRINT FUNCTION WORDS. */
HEAD2:
POT FILE(SYSPRINT) EDIT ('FUNCTION WORDS - NUMBER OF ',

'PUNCTION WORDS PROCESSED = ' ,NFUN) (PAGE,A,A,F{3));:
POT FILE(SYSPRINT) FDIT (*INDEX FUNCTION WORD') (SKIP(2) ,X(2),A)
PUT FILF (SYSPRINT) SKIP(2);

POT FILE(SUF) EDIT (NFUN,? Yy (F(3),A(1));
PRTDATA2:
DO I = 1 TO NFUN;
POT FILE(SUF) EDIT (FUNCTIONWD(I)," ")

(F(2) ,A(LRNPUN(I)) ,A (18—TENFUN(I)))
ON ENDPAGE (SYSPRINT) BEGIN;
PUT FILE(SYSPRINT) EDIT ('INDEX FUNCTION WORD')
(PAGE,X (2),A);
PUT FILF (SYSPRINT) SKIP(2):
END;
PUT FILE(SYSPRINT) EDIT (I, FUN(I)) (SKIP,X(3),F(3),X(4),
A(LENFUN(I))) ;
END;

GO TO CS;
/* OVFRFIL.OW FRROR MESSAGES */

FLOVFR1:
PUT FILE(SYSPRINT) EDIT ('*#* OVER FLOW HAS OCCURRED. MORE ',
'THAN 500 SUFFIX 1 ARE PRESENT. PROGRAM TERMINATED, ',
' TO CORRECT DFCREASE NUMBFR OF SUFFIX CARDS OR INCREASE ¢,
'STRUCTURE SIZE OF SUFFIX1 WITHIN PROGRAM AND BESUBMIT.')
(SKIP(3) ,A,A,SKIP,A,A):
GO TN CS;

FLOVFPR2:
POT FILE(SYSPRINT) EDIT ('***x OVERFLOW HAS OCCURRED. MORE?*,
' THAN 500 SOFFIX 2 ARF PRESENT. PROGRAM TERMINATED, *,
'TO CORRECT DFCREASF NUMBFR OF SUFFIX CARNS OF INCREASE 'Y
'STRUCTURE STZE OF SUFFIX2 WITHIN PROGRAM AND RESUBMIT. ")
(SKIP(3) ,A,A,SKIP,A,R);
GO T0 CS;

FLOVER3:

1R9

100

191
192

1013

194
19%
196
197
198
mnn
201
202
20y
205
Nk
207

210
M)D
21r
211
212
217
21u
718

217

SUFUN: PROC OPTIONS (MAIN); PAGE
128

PUT FILE(SYSPRINT) EDIT (**#%* OVER FLOW HAS OCCURRED. MORE ',
'THAN 1000 EXCEPT WORDS ENCOUNTERED. PROGRAM TERMINATED.®,
' TO CORRECT DFCREASF NUMBER OF EXCEPTION WORDS,?)
(SKIP(3),A,A,SKIP,R);

GO TO CS;

FLOVERUY:
PUT FILE (SYSPRINT) EDIT (*#*** OVER FLOW HAS OCCURRED. MORE:.',
' THAN 20C FUNCTION WORDS ENCOUNTERED. PROGRAM TERMINATED,?,
'TO CORRECT DECREASE NUMBER OF PUNCTION WORDS, ')
(SKIP(3) ,A,A, SKIP,A) ;

CS: CLOSE FILE(SYSPRINT) ; 0223
CLOS® FILE(SUF) ; 0201

GO0 TO ENDSOF;

*{*******************i******i**************Q*i***{***********%*******\
*****************#***i*l*******\

/% FORM IS A SUBROUTINE TO OBTAIN A SUFFIX OR OTHER WORD FROM A CARD
USING BLANKS AS WORD DELIMINATORS. IF THE FIRST SUFFIX IN A

SUFFTX PAIR IS A BLANK CARD COLOUMN 1 MUST BE A BLANK. */
FORM: PROCEDURE; 0030
NUMC = 0; 0031
AWORD = v°'; 0032
BOMP: COL = COL41; 0033
IF COL <= 72 THEN GO TO EXTRACT; 0034
GET FTIE (SYSIN) EDIT (CARDIMAGE) (80 A(1)); 0035
coL = 1; 0036
IFP CARDIMAGF (COL) = ' * THFN DO;
NUMC = 1; /%* NECESSARY FOR 1 BLANK CHAR OQUTPUT */
AWORD = v ¢,
RETUFN ;
END;
FXTRACT: 0038
TJF CARDIMAGE(COL) = ' ' THEN GO TO LSTCHR:
NITMC = NUMCH+1; oou1
AWORD = AWORD (| CARDIMAGE (COL) ; 0042
GO TO BUMP; 0043
LSTCHR: oouy
IF NOMC = 0 THEN GO TO BUMP: 004sS
RETURN;
FND FOPRM;

********&***#**#******************{**********************************\
%*****************i******\

FNDSUF: FND SUFUNg

1 March 1968 129

SUFFIX Program Listing

SOFFIX: PROC OPTITONS (MAIN) ; nooa

SUPFIX: PROC OPTIONS (MAIN):

/*¥ THF PURPOSE OF THIS PROGRAM IS TO PRODUCE A DATA SET WHICH CONTAINS
SINGLF OCCURRENCFS OF CONTENT WORDS LINKED BY ROOT FORM TO BE USED

BY THE PROGRAM *THESAUR', */
DECLARE
1 SUFFPIX1 (500),
2 LENSUF1 FIXED DEC (1), /% LENGTH OF SUF1 WORD */
2 LOCSUF2 FIXED DEC (3), /* LOCATION OF SECOND SOUFFIX */
2 SUF1 CHAR (8) VARYING; /% SUFFIX 1 OF SUFFIX PAIR */
DECLARE
1 SOFFIX2 (500),
2 LEWSUF2 FIXED DEC (1), /% LENGTH OF SUFFIX 2 */
2 LOCEXC FIXED DEC (4), /* LOCATION OF EXCEPT WORD */
2 SUP2 CHAR (8) VARYING: /% SUFFIX 2 OF SUFFIX PAIR */
DECLARE
1 EXCEPTWD (1000),
2 LENEXC FIXED DEC (2), /* LENGTH OF EXCEPT WORD */
2 EXCPT CHAR (18) VARYING; /* EXCEPTION WORD */
DECLARE
1 FUNCTIONWD (200),
2 LENFUN FIXED DEC (2), /* LENGTH OF FUNCTION WORD */
2 FUN CHAR (1R) VARYING: /* FUNCTION WORD */
DFCLARE
1 ROOTCK (1000),
2 T.FNWD FIXED DEC (2), /* LENGTH OF CONTENT WD */
2 MAT FIXED BINARY (15,0), /* MATCH COUNT */
2 OCCUR FIXED BINARY (15,0), /#* FREQUENCY OF OCCUR */
2 WD CHAR (58) VARYING: /*¥ CONTENT WORD */
DECLART
1 CONTFNTWD,
2 WORKLGTH FIXED DEC (2), /* WORK LENGTH */

2 WOPKMAT FIXFD BINARY (15,0) INITIAL (0), /* MATCH COUNT */
2 WOPRKFREQ FIXFD BINARY (15,0} INITIAL (0), /* FREQ OCCUR */

2 WOPFKWD CHAR (58) VARYING TINITIAL (' '); /* WORD *x/

DECLARE

NEXCP FIXED (4), /¥ NUMBER OF EXCEPTIONS */

NSUFX FIXED (3), /* NUMBER OF SUFPIXS */

NSUF1 FIXED (3}, /* NUMBER OF SUF1S */

NFUN PIXED (3): /* NUMBER OF FUNCTION WDS */
DECLARF

SWD CHAR (3), /* THREE CHARACTERS OF 64 */

SAME_ROOT FIXED DEC (1), /% BOOLEAN FONCTION FOR STEM */

MATCNT FIXED BINARY (15,0) INITIAL (1); /* DIFFERFNT ROOT CNT*/

0004

0016
0017
0018

PAGE

130

n

11

17

14

i=

1A
AJ
12
10

L)
21

27

23
2u

75

A

SUFFIX: PROC OPTIONS (MAIN) : 0004

DFCLARE
TEMP1 CHAR (80), /%¥ READ IN WORK AREA. x/
OUTAREA CHAR (80), /* OUTPUT WORK AREA. */
CNST FIXFD DEC (2) INITIAL (12); /* LFNGTH OP TNDYX INFO*/

DECLARF SEXT FILE SEQUENTIAL RECORD ;

DFCLARF /* USED IN PROCEDURE *CONTENTPROC® */

EOFSW FIXED DEC (1) INITIAL (0), /* END OF FILE SWITCH */

IR FTX®D BINARY (15,0) INITIAL (1) STATIC; /* COUNTER */

DFCLARE /* READ IN ARERS, REFERENCED ONLY WITHIN PROCEDURE *x/

/* "CONTENTPROC®. */

NUMC FIXED DEC (2), /% WORK LENGTH */

/* VOLU FIXED DEC (2), *//%¥ VOLUME NUMBFR */
/* CHAP FIXED DEC (3), *//% CHAPTER NUMRER */
/* PARR FIXED DEC (3), *//% PARAGRAPH NUMBFR */
/* SENT FIXED DEC (%), *//% SENTENCE NUMBER */
/* WORD FIXED DEC (3), *//* WORD NUMBER WITHIN SENTENCE */
READWD CHAR (58) VARYING: /¥ WORD , CAN BE UP TO 58 CHAR */

OPEN FILE(SUF) INPOT; /* INPUT FROM SUFUN */

PUT FITE(SYSPRINT) EDIT ('WORDS MATCHED BY ROOT', 'MATCH®,
'PREQUENCY', "COUNT®, 'WORD',,'OF OCCURRENCE') (PAGE,A,
SKIP(2),COLUMN(3),A,COLUMN (67) ,A,SKIP,COLUMN (3) ,A,
COLUMN (17) , A,COLUMN (65) , A) ;

/* READ IN SUFFIX1, SUPFIX2, EXCEPTION WORDS, AND FUNCTION WORD LISTS.
'TFMP1® DOES NOT CONTAIN USEFUL DATA FROM RECORDS AT THIS POINT.
USED ONLY FOR EXPEDIENCY IN 'GET' STATEMENTS WHICH FOLLOW, */

GFT FILE(SUF) EDIT (NSUF1,NSUFX,NEXCP,TEMP1)
(F(3),F(3),F(4),a(10));

DO I = 1 TO NSUF1;
GET FILE(SUF) FEDIT (SOFFIX1(I),TENP1)
-1~dv~mAdw->qusz1aaH..-yAdmlﬁmzmcmdAH-vv.
END;

PO I = 1 TO NSUFY;
GFT FILE(SUF) FDIT (SUFFIX2(1) ,TENP1)
aﬁadv.w.cv-»aﬁmzwcmwaHgv~>~dmlrmzmcmngvvg.
FND:

DO I = 1 TO NEXCP;
GFT FILE(SUF) EDIT (EXCEPTWD (I) ,TEMP1)
awawv->~ﬁm2ﬁanH.v~waqmlhﬂzmanH-vu
FND;

GET FILE(SUF) FDIT (NFUN,TEMP1) (F(3),a(17));

PAGE

131

27
29

29

3n

32

u
35

16
27
an
32
un

u?
4y
45
ur
u7

SUFFIX: PROC OPTIONS (MAIN) ; 0004

DO T = 1 TO NPIINg
GFT FILE(SUF) EDIT (FUNCTIONWD (I) ,TEMP1)
(F(2) ,A(LENFUN(I)) ,A(18-LENFUN(I))) s
END;

CLOSE PILE(SUF) ;

OPEN FILE(SEXT) INPUT; /* INPUT FROM INDEX PROGRAM.

/*¥ THE FOLLOWING CODE PROCESSFES CONTENT WORDS WITH THE FIRST THREE

CHARACTERS EQUAL. WHEN NOT EQUAL THE CODE WRITES QUT THE
CONTENT WORDS AFTER CHECKING FOR SAME ROOT.

/* RECORD FORMAT:
POSITIONS 01-02
POSITIONS 03-07
POSITIONS 08-~12

WORD LENGTH (LENWD1)
MATCH COONT (MATCNT)
FREQUENCE OF OCCURRANCE (FREQ)

POSITIONS 13-70 = WORD, VARYING IN LENGTH UP TO 58 CHARS

/% MINIMUM RECORD PHYCICAL LENGTH IN BLOCKED RECORD FORMAT WILL BE

21 BYTRS: 4 BYTES BLOCK COUNT,
4 BYTES LOGICAL RECORD COUNT
13 BYTES MINIMUM RECORD LENGTH

21 BYTES MINIMOUM PHYSICAL BECORD LEWGTH.

MUST USE: DCB=(RECFM=VB,LRECL=74,BLKSIZE=3556),
DDNAME = 'OUTPUT®

PAGE
132

*/

*/

BLOCK SIZE OF 3556 IS NOT REQUIRED AS LONG AS IT IS A MULTIPLE OF
74 PLUS 4, TO OBTAIN MINIMUM PHYSICAL RECORD LENGTHR OF 21, THE

KEYWORD RECFM MUST BE = VB.

CALL FIRSTWORD;
START: SWD = HWORKWD;

H.")u

GO TO OBTAIN2;

OBTAIN:
IF ENFSW >= 1 THEN DO;
EOFPSW = 2;
GO TO MATCHCK:
END;

CALL CONTENTPROC;

OBTAIN2: 1IF SUBSTR(WORKWD,1,3) = SWD THEN DO;
L=1L1L4+4+ 1;
POOTCK (L) = CONTENTWD;
GO TO OBTAIN;
ENDg

*/

i

49
on
51

52

53
£y
56
57

59

59

61
62
[
ar
67
AR
£Q
Tn

71
73
Ty
76
77
T0
o
£

R

au

A&
RA

PROC OPTIONS (MATN) : coou

MATCHCK: IF L = 1 THEN DO:

POT STRING(OUTAREA) EDIT (CNST,* ' ,LENWD (1) ,MATCNT,
OCCUR(1),HD (1)) (F(2),A(Y),F(2),F(5),F(5),A(LENWD(1)));
CALL PUTOUT (OUTAREA); /¥ PUT RECORD TO DATA SET */

PUT FILE(SYSPRINT) EDIT (MATCNT,WD(1) ,0CCOR{(1))
amxHu~ﬁ~w—-va~>~ﬁNanA4-~00haﬂzaqo'~mamvv“

MATCNT = MATCNT 4 1;

TF EOFSR = 2 THEN GO TO EOF;
GO TO START;

END;

/* STAPT M AT THE TOP AND GO TO THE BOTTOM *x/
/% START N AT THE BOTTOM AND GO TO M */
/% LOOKING FOR PAIRS OF WORDS THAT ARE OF THE SAME ROOT */

DO M =1T0 L-1;

DON=1LTOMN 4+ 1 BY -1;
CALL STEM (LENWD (M) ,WD(M) ,LEN&D(N),WD(N)):
IF SAME_ROOT = 1 THEN DO:

IF MAT(M) = 0 THEN DO;

MAT (M) = MATCNT:
MATCNT = MATCNT + 13
END;
MAT (N) = MAT (M) ;
END;
FND;

IF MAT(M) = 0 THEN DO;
MAT (M) = MATCNT;
MATCNT = MATCNT 4 1;
END;

END;

IF MAT(L) = 0 THEN DO;

MAT(L) = MATCNT;
MATCNT = MATCNT 4 1;
END;

DO M =1 TO L;

PUT STRING (OUTAREA) FDIT (CNST,® ', ROOTCK (M))
(F(2) ,A(4),F(2) ,F(5),P(5),A(LENWD(M)));
CALL PUTOUT (OUTARER) ; /% PUT RECORD TO DATA SET */

IF MAT (M) = MAT (M-1) THEN
PUT FILE (SYSPRINT) EDIT (WD (M) ,OCCUR (M)) (SKIP,COLUMN(11),
A(LENWD (™)) ,COLUMN (70) ,F (5)) ;

PAGE
133

0181
0182
0183

R
]7

8R

q9
91

92
a1
qu

95

9n
Q97
ag
Qo
100
109
103
104
1ng

REA
1
1na
100

110
112
114
118
114
117

119
1or

SUFFIX: PROC OPTIONS (MAIN) ; 0004

ELSF
PUT FILE(SYSPRINT) EDIT (MAT (M) ,WD(M),O0CCUR(M)) (SKIP,
F(8) ,X(2) ,A (LENWD (M)) ,COLUMN(70) ,F (5)):

FND ¢

IF POPSW = 2 THEN GO TO EOF;
GO TO START;

EOF: CLOSE FILE(SEXT):
CALL CLSEOUT; /* CLOSE DATA SFT */
GO TO SUFEND;

JEFkkkkkhkkkkk kg kkkk kR kR kkkakkk Rk kkkk kR Rk kkk R kkk ok kkk kkkkkkkkkkkkkk /
JRRERREKEKRERKERSRERAERRR KRR AR KRR KK KRR E KRR KR RRR KRR KSR L kKRR RR R KRR KKK KX /

/¥ BEGIN SUBROUTINES. */

JEREERERRRE AR R ERE KRR R R R R RE R R KR ER R R KR RRE R R AR RE KRR R R R LR)
CONTENTPROC: PROCEDURES

/* PROCEDORF COMPARES CONTENT WORDS TO FUNCTION WORDS ELIMINATING
CONTENT WORDS WHICH ARE FUNCTION WORDS AND COUNTING THE NUMBER
OF OCCURRANCES OF A CONTENT WORD. */

WORKFPRFQ = Q0; /* SET COUNTER TO 0 */
CCMPARET:
IP FUN({IA) = READWD THEN DO;
FIRSTWORD: ENTPRY;
ON ENDFILE (SEXT) GO TO RTHN;
RFAD FILE(SEXT) INTO (TENPT);
GET STRING(TEMP1) EDIT (NUMC,READWD) (F(2),X(16),A (NUMC));
GO TO COMPARE1;
FND;

FLSF DO;
WORKWD = READWD;
WORKLGTH = NUMC;
END;

IF IA <= NFUN THEN DO;
TP FUN(IA) <= READWD THEN DO;
IA = IA 4+ 13
GO TO COMPARE1;
END;
END;

/* DEFAULT IS FPUN(TA) > READWD */
COMPAFE?: I¥ READWD = WORKWD THEN DO;
WORKFREQ = WORKFREQ 4+ 1;

PAGE

134

121
123
124

125
124

127

12R
129

13

133
134
139
13A
137

118
14n
141
142

143
145
186
147

149

SUFFIX:

PPNC OPTIONS (MAIN) ;

onou

ON ENDFILE (SEXT) GO TO RTN;
READ FILE (SFXT) INTO (TEMP1):

GET STRING (TEMP1) EDIT (NUMC,READND)

A(NTIMC)) ¢
GO TO COMPARE2:
END;
RFTURN;

EOPSW = 1;
GO TO RTNA;

END CONTENTPROC;

(F(2) ,x(16),

**********i************************{%*************i*****l*********’l*\

STFM:

PROCEDURE (LMA,WDMA,LNA,WDNR) ;

LM PIXFD DEC (2),

LMA PIYED DEC (2),

LN FIXED DEC (2),

LNA FIXED DEC (2),

WDM CHAR (58) VARYING,
WDMA CHAR (58) VARYING,
WDN CHAR (58) VARYING,
WDNA CHAR (58) VARYING,
FEMAINT CHAP (B) VARYING,
REMAIN2 CHAR (8) VARYING,
LDIFF BINARY FIXED (15,0),
RDIF¥ BINARY FIXED (15,0},
TEMP CHAR (8);

SAMF_ROOT = 03

/*
Vid
/*
/%
Vad
/%
/¥
Vid
*
/*
/%
/¥
/%

DFCLARE /% FIFLDS USED ONLY WITHIN SUBROUTINE

LENGTH OF WORD WDM
PASSED LENGTH OF WDM
LENGTH OF WORD WDN
PASSED LENGTH OF WDN

WD (M)

PASSED WD (M)

WD (N)

PASSED WD (N)

POSSILBE SUFFIX 1
POSSIBLE SUFFIX 2
LENGTH OF POSSIBLE ROOT
LENGTH OF POSSIBLE ROOT 2
TEMPERORY WORK AREA

LM = LMA; /* LENGTH MOVED TO NEW FIELD SO THAT ORIGINAL
LN = LNA; /* LFNGTH NOT DISTURBED.

WDM = WDMA; /* WORDS MOVED TO NEW FIELD 50 THAT ORGINIAL NOT

WDN = WDNA; /* DISTURBED,

/% CHECK FOR ' , SINGLE 'S?Y, *'9§9,

TF SUBSTR(WDM,LM, 1) =tree
SUBSTR(WD¥,LM,1) = ¢ v
LM = LM - 1;

FND:

IP SUBSTR (WDN,LN,1) =vtes
SUBSTR (WDN,LN, 1) = ¢
LN = LN - 1;

FND;

IF SUBSTR(WDMN,LM,1) = 'S?

OR 'SS' ENDINGS.

THEN DO;

THEN DO;

THEN DO;

*/

*x/
*/

*/

PAGE

135

180
152
154
155
196
157
188
189
160

161
163
165
187
1FR
160
170
171
172
173

174
174
177
170
1an
181
1R?
193

1RY

1a8
1926
187
10
1an
191
192
194
108
10F
197

100
1aq
2nn
271
202
2rs
207

SUFFIX: PROC OPTTONS(MAIN); coon

IF SUBSTR (WDM,LM-1,1) *'S* THEN GO TO CKWDN;
IP SUBSTR(WDM,LM-1,1) sv9¢ THEN DO;
SURSTR(WDH,LM-1,2) = ¢ v
LM = LM - 23
GO TO CKWDN;
END;
SUBSTR (WDM,LN,1) = * ?
LM = LM - 13
END;

it

CKWDN: I¥ SUBSTP (WDN,LWN,1) = 'S* THEN DO;
IF SUBSTR(WDN,LN-1,1) = ¢S*' THEN GO TO CKSAME;
JF SUBSTR{WDN,LN-1,1})=0*¢* THEN DO;
SUBSTR (WDN,L¥-1,2) = ° ‘s
LN = LN - 23
GO TO CKSAME;
END;
STUBSTR (WDN,LN,1) = ¢ '3
LN = LN - 1:
FND;

CKSAMF: IP SUBSTR(WDM,1,LM) = SUBSTR(WDN,1,LN) THEN GO TO SAME;
DO IB = 4 TO LM4+1; /* FIND POINT OF DEVIATION */
IF SUBSTR (WDM,IB,1) -= SUBSTR({WDN,IB,1) THEN DO;
LDIFF = IB;

RDIFF = IB:
GO TO DEVIATF:
END;

END;

DEVIATE:

IF SUBSTR(WDM,LDIFF, 1)
LDIFF = LDIFF 4+ 1;
IF SUBSTR (WDN,RDIFF,1)
RDIFF = RDIFF + 1;

TF (LM-LDIPP) > B | (LN-RDIFF) > 8 THEN RETPRN;3

RPMAIN1 = SUBSTR(WDM,LDIFFP,LM-LDIFF+1);

REMAIN2 = SUBSTR(WDN,RDIFF,LN-RDIFF41);

IF RFPMAIN1 > REMAIN2 THEN DO;
TFMP = REMAIN1; /* SORT FOP COMPARE AGAINST SUF1 */
PFMAINT = REMAINZ;

SUBSTR(WDM,LDIFF~-1,1) THEN

L}

SUBSTR(WDN,RDIFF-1,1) THEN

R¥MAIN2 = TEMNP;
FND¢
/% DO BINARY SFARCH FOR SUFFIX 1 IN SUFFIX1 STRUCTURE ARRAY */
JC = 0

KC = NSUF1 + 1
PICK1: TIC = (JC + KC) / 23
IF RFMAINT1 = SUF1(IC) THEN GO TO CKSUF2;
IF IC = JC | IC = KRC THEN PFTURN;
IF RFMAINT1 > SUF1(IC) THFN DO
JC = IC;

0089
0090
0091
0092
0093

PAGE

136

2na
2ro
210
211

212
213
218
218
217
710
221
222
223
270
225

296
278
229
2131
2313
21358
271¢c
238

"N
200

201
2u?

2n7
210

2un

2n"

200

PRPOC OPTIONS (MATIN) ; 000y PAGE

137

GO ™0 PICK1;
END;

KC = IC;

GO TO PICK1;

/*¥ SUFFIX 1 PONND, BINARY SEARCH FOR SUFFIX 2 IN SUFFIX2 STRUCTURE x/

CFSUF2: JC LOCSUF2 (IC) :
LOCSUF2(IC 4+ 1)
PICK2: IC = (JC + KC) / 2;
IF PEMAIN2 = SUF2{IC) THEN GO TO CKEXCPT;
IP TC = KC | IC = JC THEN RFTUPRN;
TF RFMAIN2 > SUF2(IC) THEN DO;
JC = IC
GO TO PICK2;
END;
KC = ICg
GO TN PICK2;

=
(9]
i

/* SUFFIX 2 FOUND, DO TABLE LOOKUP FOR EXCEPTION WORD */

CKFXCPT: IF LOCEXC(IC)
JC = LOCEXC (IC)
IF LENFXC(JC) = 2 THEN GO TO LETTER_RULE;
PICK3: TF SUBSTR(WDM,1,LM) = EXCPT(JC) THEN RETURN;
IF SNUBSTR(WDN,1,LN) = EXCPT(JC) THEN RETURN;:
JC = JC 4+ 13
IF ®XCPT(JC) = '0' THFN GO TO SAME;
GO TN PICK3:

C THEN GO TO SAME;

.

SAMF: SAME_ROOT = 1;

PETURN;
LETTFR_PILF: /* CHFCK FOE COMMON LETTER *
TF SNUBSTR(FYCPT (JCY,2,1) = SUBSTR (WDH,LDLFF-1,1) THFN GO TO

PICK3;
JC = JC + 1
IF LWMFXC(JC) = 2 THEN GO TO LETITER_RULE;
RFTURN;
FND STFM;
JFFRR R kR R Rk kk ok kR ek kb kR kR Rk R kR Rk kR kR Rk Rk Rk Rk kR kR kR Rk kK /

/% SND OF SURROUTTNFS, */

/% kK Rk R R kKR R Rk R o R ROk R R Rk R R K R Rk R R KR K Rk R Rk kR R R S
AR L e L

SUFEND: END SNFFIYX;

Security Classification

DOCUMENT CONTROL DATA - R&D

(Security claseification of title, body of absiract and indexind annotation must be entered when the overall report le classilied)

. ORIGINATIN G ACTIVITY (Corporate suthor) 2a. REPORY SECURITY C LASSIFICATION

. . Unc sified
Department of Information Science las

25 GROUP

University of North Carolina, Chapel Hill, N. C.

3. REPORT TITLE

Automated Language Analysis, 1967 - 1968: Report on Research for the period
Match 1, 1967 - February 29, 1968.

4. DESCRIPTIVE NOTES (Type of report and inclusive datea)

S. AUTHOR(S) (Last name, firet name, Initial)

Sedelow, Sally Yeates

6. REPQRYT DAT 7a. TOTAL NO. OF PAGHS 75. NO. OF REPS
T haLe , 1968 137
8a. CONTRACT OR GRANT NO, 9e. ORIGINATOR'S AZPORY NUMBER(S)

NOOOl4 - 67 - A - 0321-0-0001
b PROJECTNO T gk No. NR 348-005

DESECENOfiiavat OTHER REPORT NO(S) (Any other numbers that may be assigned
Research, U. S. " Bl reporl

d. Navy

10. AVAILABILITY/LIMITATION NOTICES

Distribution of this document is unlimited

t1. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

13. ABSTRACT

This report describes current research associated with the automated
language analysis project. The focus of the research is upon the delinea-
tion of patterns formed in the linguistic coding of information; this de-
lineation is called stylistic analysis. The report describes research on
thesauri, especially research upon comparisons of possible input thesauri,
upon methods of enlarging input thesauri, and upon the possible use of in-
put thesauri for the resolution of semantic ambiguity. The report also
describes a new ring-structure version of the VIA program which produces
text-specific thesauri. Work on statistical approaches to the analysis of
strings is also described. The report contains extensive documentation for
the PL/1 implementations of the INDEX, SUFUN, and SUFFIX sections of the
VIA program,, as well as a description of the program.design for the ring-
structure version of VIA.

DD .59, 1473 os01-s07-6200 Unclassified

Security, Classification

Security Classification

18
KEY WORDS

LINK A LINK B LINK C

ROLE WY ROLE wT ROLE wT

Stylistic analysis
Automated language analysis
Thesaurus

Content Analysis

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address
of the contractor, subcontractor, grantee, Department of De-
fense activity or other organization (corporate author) issuing
the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the over-
all security classification of the report. Indicate whether
““Restricted Date’’ is included. Marking is to be in accord-
ance with appropriate security regulations.

2b. GROUP: Automatic downgrading i8 specified in DoD Di-
rective 5200. 10 and Armed Forces Industrial Manusl, Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author-
ized.

3. REPORT TITLE: Enter the complete report title in all
capital letters, Titles in all cases should be unclassified.
If @ meaningful title cannot be selected without classifice-
tion, show title classification in all capitals in parenthesis
immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, or final.
Give the inclusive dates when a specific reporting period is
covered.

S. AUTHOR(S): Enter the name(s) of author(s) as shown on
or in the report. Entet last name, first name, middle initial,
If military, show rank and branch of service. The name of
the principal avthor is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day,
month, year, or month, year. If more than one date appears
on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count
should follow normal pagination procedures, i.e., enter the
number of pages containing information

7b. NUMBER OF REFERENCES: Enter the total number of
references cited in the report.

Ba. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report was written

85, 8¢, & 8d. PROJECT NUMBER: Enter the appropriate
military department identification, such as project number,
subproject number, system bers, task ber, etc,

9a. ORIGINATOR'’S REPORT NUMBER(S): Enter the offi-
cial report number by which the document will be identified
and controlled by the originating activity. This number must
be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been
assigned any other report numbers (either by the originator

or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-
itations on further dissemination of the report, other than those

imposed by security clsssification, using standard statements
such as:

(1) ‘'Quaslified requesters may obtain copies of this
report from DDC."’

(2) ‘“Foreign announcement and dissemination of this
report by DDC is not authorized.’’

(3) *'U. S. Government agencies may obtain coples of
this report directly from DDC, Other qualified DDC
users shall request through

(4) ‘‘U. S. military agencies may obtain copies of this
report directly from DDC. Other qualified users
shall request through

(5) *‘All distribution of this report is controlled Qual-
ified DDC users shall request through :

If the report has been furnished to the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known

11, SUPPLEMENTARY NOTES: Use for additional explana-
tory notes.

12, SPONSORING MILITARY ACTIVITY: Enter the nnme of
the departmental project office or 1aboratory sponsoring (pay-
ing for) the research and development. Include address.

13. ABSTRACT: Enter an sbstract giving a brief and factual
summary of the document indicative of the report, even though
it may also appear elsewhere in the body of the technical re-
port. If additional space is required, u continuation sheet shall
be attached. .

It is highly desirable that the abstwact of classified reports
be unclassified. Each paragraph of the abstract shall end with
an indication of the military security classification of the in-
formation in the paragraph, represented as (TS). (S). (C), or (U).

There is no limitation on the length of the absteact. How-
ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningiul terms
or short phrases that characterize a report and may be ised as
index entries for cataloging the report. Key words must be
selected so that no security classification is required. Identi-
fiers, such as equipment model designation, trade name, military
project code name, geographic location, may be used as key
words but will be followed by an indication of technical con-
text. The assignment of links, roles, and weights is optional.

Security Classification

