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Abstract

This thesis focuses on state estimation problems of cyber-physical systems to over-

come the challenges brought by their features, e.g, resource limitations in sensor net-

works and model uncertainties due to the changes in interconnections of components.

To achieve smart allocation of the scarce resources of cyber-physical systems, two

event-based state estimation problems are formulated and solved for systems described

by hidden Markov models utilizing a new reference measure approach with the change

of probability measure. For a linear Gaussian system with an energy harvesting sensor,

the joint conditional probability distribution of the state and energy is obtained based

on the event-triggered information received at the remote estimator under the energy-

dependent measurement transmission policy.

The robust state estimation problems are investigated for linear Gaussian systems

with event-triggered scheduling and systems with unknown exogenous inputs utilizing

the risk-sensitive approach, where closed-form risk-sensitive state estimates are derived.

A fully distributed robust consensus-based filtering algorithm for systems measured by

a sensor network is proposed with stability analysis on the local estimators.

Based on the proposed results, state estimates that are optimal in a certain sense

can be calculated in a simple recursive way, which are potentially applicable to indus-

trial processes. The effectiveness of the proposed methods is validated by simulation

examples, showing performance improvements in certain scenarios in the sense of mean

estimation errors.
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Chapter 1

Introduction

In this chapter, we introduce the research scope of this thesis and provide the back-

ground information for the state estimation problem of cyber-physical systems (CPS).

We present a survey of the related investigations in the literature, which is then followed

by the summary of the contributions of this thesis.

1.1 Background

This section begins with a description of CPS and their applications. The main

scope of thesis belongs to the optimal state estimation of CPS. Several optimal filtering

methods are reviewed and event-triggered scheduling is introduced to deal with the

resource constraints in CPS.

1.1.1 Overview

Cyber-physical systems (CPS) represent a new generation of systems with integrated

computational and physical capabilities that can interact with humans, e.g., through

embedded computers, networked monitors and physical processes. The sensors, ac-

tuators, processors, and almost everything on the planet, can be inter-connected and

become parts of CPS, which makes the Internet of Things, using technologies like wire-

less sensor networks (WSN) [78], Zigbee [6], radio frequency identification [54], Wi-Fi

[37] and 4G [10]/5G [4]. Examples of CPS cover a wide range of applications, e.g.,

environmental monitoring [9], autonomous automobile systems [35], smart grids [44],

medical monitoring [36] and robotics systems [41]. In the past few decades, the Internet

transformed how humans interact and communicate with one another, revolutionized

how and where information is accessed, and even changed how people buy and sell prod-
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ucts. Similarly, CPS will transform how humans interact with and control the physical

world around us, by which enormous societal and economic benefits will be created [52].

In many applications of CPS, the sensors and estimators are separated and connected

by wired/wireless communication channels, which results in the increasing demand for

investigating remote state estimation problems. The main scope of this thesis belongs

to the optimal state estimation of CPS.

Due to the configuration of CPS, the systems usually operate under constrained

resources. For example, in WSN, the communication channel is commonly shared by

many sensors, which results in the limited communication bandwidth for a single sensor.

On the other hand, many sensor networks in applications are powered by batteries and

involve a large number of sensor nodes, which makes the maintenance and replacement

of sensors’ batteries time-consuming and expensive, especially when the networks are

located in hazardous environments. Thus, the problem of extending the lifetime of wire-

less sensors with limited available battery energy while maintaining their functionality

becomes an imperative issue. As a possible solution, event-triggered scheduling has

received considerable attention in the control community by transmitting data packets

only when the so-called event-triggering conditions are violated. Event-triggered state

estimation forms the first research topic of this thesis.

Another challenge in CPS is the performance degradation caused by model uncer-

tainties, which can result from system identification, nonlinear effects and changes in

the interconnections of components or external environment. This has motivated the

pursuit of robust filtering for CPS in the past decade. Inspired by the existing results

on the robustness of risk-sensitive filters in the literature, we solve a robust estima-

tion problem for CPS by utilizing the risk-sensitive filtering approach, which forms the

second line of inquiry of this thesis.

1.1.2 Optimal state estimation: H2, H∞ and risk-sensitive fil-

tering

Normally, state estimators are designed in an optimal sense with respect to certain

performance measures. For optimal state estimation, the most widely known estimator

is the H2 estimator (the Kalman filter [32]), which minimizes the quadratic criterion of

the estimation errors and operates by propagating the mean and covariance of the state

through time. The Kalman filter is established as a fundamental tool for analyzing

a broad class of estimation problems. Various books and papers have derived and

presented the filter equations, so we skip the detailed part. For linear systems, if the
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noises are uncorrelated zero-mean Gaussian, the Kalman filter is the optimal estimator

that minimizes the weighted two-norm of the expected value of the estimation error; if

the noises are uncorrelated and zero-mean, but not Gaussian, then the Kalman filter is

the best linear estimator that minimizes the two-norm criterion [66]. In other words,

nonlinear filters may give a smaller estimation error, but the Kalman filter is the best

linear filter for non-Gaussian noises. Even for colored or correlated noises, the optimal

estimator can be obtained by modifying the Kalman filter [66]. For nonlinear systems,

there are various formulations of nonlinear Kalman filters to give the approximate

solutions to the estimation problem, for example, the extended Kalman filter [29] and

the unscented Kalman filter [30].

The Kalman filter is an effective tool for scenarios that the process has a known

dynamics and that the noises have known statistical properties. Unfortunately, the ex-

act model and/or the noise descriptions are unknown or inaccurate in many industrial

applications. At this time, a robust filter which can tolerate such model uncertainty

is in need. The H∞ (also called minimax estimation) estimator is specifically designed

for robustness and makes no assumptions on the statistics of the process and mea-

surement noise. The H∞ estimator minimizes the H∞ norm of the transfer function

from the disturbances to the estimation errors [66]. We may interpret the H∞ norm

as the maximum energy gain from the noises to the estimation errors. Hence, the H∞

estimator minimizes the worst-case estimation error. However, closed-form solutions to

the optimal H∞ estimation are available only in some special cases and it is common

in the literature to settle for a suboptimal solution. In other words, instead of direct

minimization of the H∞ norm, one usually selects a performance bound and seeks an

estimation strategy that satisfies the threshold. In this way, the H∞ estimator gives

hard upper bounds on the estimation errors, no matter what the disturbances are (as

long as they are of finite energy). For detailed tutorials on the H∞ estimation, see [66].

Different from the aforementioned H2 (also called risk-neutral) filtering and the H∞

filtering, the risk-sensitive filtering [70] minimizes the expectation of the exponential of

the squared estimation error multiplied by a risk-sensitive parameter, which penalizes

all the higher order moments of the estimation error energy. Such filtering is more ro-

bust to system and noise uncertainties compared with the H2 filtering [7] and closely

related to the H∞ filtering in the limit of small noise [14]. The risk-sensitive parameter,

which can be tuned in the cost function, allows a trade-off between optimal filtering

for the nominal model and robustness to model uncertainty. The risk-sensitive filter

approaches the Kalman filter when the risk-sensitive parameter of the exponential cost

3



approaches zero. Furthermore, in the small noise limit, the risk-sensitive estimation

problem approaches a worst-case estimation problem in a deterministic noise scenario

given from a differential game. In this thesis, the risk-sensitive filtering approach is uti-

lized to solve the robust state estimation problems. For further results on risk-sensitive

filtering, see [14, 70] and references therein.

1.1.3 Event-triggered scheduling

Due to the increasing demand of maintaining system performance with limited com-

munication and energy resources, event-triggered sampling and signal processing have

received considerable attention in the control community. Event-triggered scheduling

limits the sensor communication to instances when the system needs attention. Differ-

ent from the classical time-triggered (periodical) scheduling, event-triggered scheduling

is reactive and performs the transmissions from the sensor to estimator only when, for

instance, the plant state deviates more than a certain threshold from a desired value. In

this way, even when the measurements are not sent to the estimator at some of the time

instants, the estimator is still able to infer some information about the unsent measure-

ments according to the fact that the event-triggering conditions are satisfied at these

time instants. Thus, an event-triggered scheduling scheme provides an attractive way

of handling communication and energy constraints: more measurement information is

available to the estimator, which potentially implies improved estimation performance.

Before continuing, we introduce how an event-triggered scheduling scheme is imple-

mented at the sensor side. Basically, each sensor is equipped with an event-triggered

data scheduler. At each time instant, the sensor samples the process and produces a

measurement, and the scheduler of the sensor decides the value of a logic variable γk, by

testing some event-triggering condition, where γk determines whether a data transmis-

sion is allowed or not. The event-trigger γk usually takes value in {0, 1}; only if γk = 1,

the sensor sends the measurement to the estimator. According to the nature of the

event-triggering conditions, they generally fall into two categories, deterministic event-

triggering conditions and stochastic event-triggering conditions. For each category,

there are four different types, namely, open-loop conditions, send-on-delta conditions,

innovation-based conditions and variance-based conditions. Generally speaking, each

deterministic event-triggering condition is a special case of another stochastic event-

triggering condition with specific parameterization. In this thesis, we focus on the

more general category, namely, stochastic event-triggering conditions.

The main scope of this thesis is the state estimation for CPS. The first problem
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when we include event-triggered scheduling in CPS is the design of the event-triggering

condition. Improved estimation performance can be achieved by properly designing the

event-triggering strategy if restrictions on average communication rates exist. As soon

as the scheduling strategy is chosen, the primary problem is estimator design. The

main challenge for the event-triggered estimator design is how to explore the informa-

tion that is implicitly provided by the event-triggering conditions. Due to the existence

of the event-triggering conditions, the obtained estimators do not have a simple recur-

sive form unless the event-triggered estimator design problem is carefully formulated.

Theoretically, the joint optimal design of the event-triggering strategy and estimator

could achieve even better estimation performance compared with the separate design.

However, the interaction between the scheduling strategy and estimator makes this

joint design problem very difficult to solve, which is out of the scope of this thesis.

Once the estimator is obtained, it is critical to evaluate the performance of the

estimator. Stability of the event-triggered estimator is a crucial property to be verified.

For some of the results, the stability property is very difficult to be analyzed. Another

important aspect in performance assessment is to verify that the exploitation of the

information contained in the event-triggering conditions during the non-event instants

indeed helps maintain the performance at much reduced communication rates. In other

words, it is necessary to verify that the performance of an event-triggered estimator

outperforms the performance of an estimator obtained under the same communication

rate but without exploiting the information provided by the event-triggering conditions.

Also, analysis of the average communication rate from the sensor to the estimator is an

important and nontrivial problem in performance evaluation.

1.2 Literature survey

In this section, we present a detailed literature survey on recent advances in event-

triggered state estimation and risk-sensitive filtering.

1.2.1 Event-triggered state estimation

To achieve smart allocation of scarce resources, event-triggering strategies (event-

triggering conditions) need to be carefully designed. In general, the optimal design

of event-triggering strategies is theoretically difficult to analyze and solve, which is

beyond the scope of this thesis. Instead of searching for optimal strategies, existing

investigations normally searched for a suboptimal strategy and the problem formula-
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tions generally fell into two categories: (1) solve a constrained optimization problem

[50, 51], e.g., to optimize estimation error covariance under the constraints on average

transmission rates; (2) solve an unconstrained optimization problem [45, 75], where

the objective function is the weighted sum of different terms, e.g., estimation error

covariance and communication cost.

In addition to the scheduling strategy design, another important issue is to find the

optimal estimate for a specified event-triggering scheme, which is the main focus of my

research work. The primary concern of event-triggered estimator design is how the in-

formation provided by the proposed event-triggering scheme can be properly exploited

to maintain/improve the estimation performance. A number of investigations have been

made on this topic and recent developments are introduced as follows. Sijs and Lazar

[63] developed a state estimator based on a general event sampling strategy, where an

asymptotically bound on the estimation error covariance matrix was obtained. Sijs et

al. [64] obtained an event-based state estimator by minimizing the maximum mean

squared error and treating the event-triggering conditions as non-stochastic uncertain-

ties. Trimpe [72] considered an estimation problem for linear systems with multiple

sensors, where each sensor ran a copy of the remote estimator and made the trigger-

ing decision based on this estimate; a further extension was made in [73] by removing

the ideal assumption of identical estimates on all sensors. Wu et al. [77] proposed an

event-based sensor data scheduler for linear Gaussian systems and a simple form of a

minimum mean squared error (MMSE) estimator was derived by adopting a Gaussian

approximation technique. Shi et al. [58] extended the work in [77] to linear Gaussian

systems with multiple sensors and considered general event-triggering schemes. Event-

triggered state estimators were designed by formulating constrained optimization prob-

lems in [59]. Lee et al. [38] considered a problem of event-based state estimation for

continuous-time nonlinear systems utilizing the Markov chain approximation method.

Stochastic event-triggering conditions parameterized by Gaussian kernels were proposed

in Han et al. [23] for linear Gaussian systems, and the exact MMSE estimates were

obtained in recursive and closed forms. In [84], an event-based state estimator for a

complex network was designed such that the MMSE was ultimately bounded. To study

the effect of a lossy channel on event-based estimation, the reference probability mea-

sure approach was utilized to exploit the event-triggered measurement information in

[60]. The scenario of event-based state estimation for systems with unknown exogenous

inputs was considered in [57].

The aforementioned investigations on event-triggered state estimation assume that
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accurate system models are known and disturbances have known statistical proper-

ties. However, model mismatch commonly exists in engineering applications, which

motivates the pursuit of robust event-triggered estimator design. Recently, a consid-

erable amount of research effort has been targeted on robust event-triggered filter de-

sign to guarantee a prescribed H∞ performance for the filtering error dynamics, e.g.,

[5, 16, 21, 26, 42, 82], where the design of the desiredH∞ filter gains is usually developed

in the form of linear matrix inequalities (LMI). For more results on the event-triggered

estimator design, see [62] and the references therein.

Aside from the developments in theoretical analysis, event-triggered scheduling and

the corresponding estimators have been successfully applied in a number of engineering

areas. Trimpe and D’Andrea [74] applied event-triggered estimators to the estimation

and control of a balancing cube with six rotating modules. Hirche and Buss [25] used

an event-triggered data reconstruction technique in haptic teleoperation to estimate

the measurement data, where the transmission of the data packet was controlled by

a deadband event-triggering condition. A distributed event-based estimation method

was introduced in [75] and was tested on a water tank system. Chen et al. [8] applied

some typical event-triggering conditions to a DC torque motor system and presented

experimental and comparative estimation study on event-triggered state estimation.

1.2.2 Risk-sensitive filtering

Since the pioneering work by Speyer et al. [70], which first proposed the exponential

form of the estimation criterion to be minimized, several results on risk-sensitive filtering

have been reported in the literature. For example, Dey and Moore addressed the

risk-sensitive filtering and smoothing problem for hidden Markov models with finite-

discrete states in [14] and for discrete-time nonlinear Gauss-Markov state-space models

in [13]. A risk-sensitive filtering problem was further investigated for continuous-time

nonlinear systems in [12]. In [7], Boel et al. gave a precise meaning to the robustness of

risk-sensitive filters for systems with model uncertainty by showing that risk-sensitive

estimators enjoyed an error bound which was the sum of two terms, the first of which

coincided with an upper bound on the error one would obtain if one knew exactly the

underlying probability model, while the second term was a measure of the distance

between the true and design probability models. A sequential filtering scheme for the

risk-sensitive state estimation of partially observed Markov chains was presented in [53].

Zhang et al. investigated steady-state risk-sensitive filtering, prediction and smoothing

problems for discrete-time singular systems in [80]. The authors in [49] derived a
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risk-sensitive multiple-model filtering algorithm for jump Markov linear systems. A

widely utilized method in the literature to obtain the risk-sensitive filter is the reference

measure approach, where the filtering problem is first solved under a reference measure

and then transformed back to the “real-world” measure. For those who are interested,

see [17] for details on the reference measure approach.

For risk-sensitive filters, the implementation issue can sometimes be a challenge

since closed-form expressions for such filters are available only for a very limited class

of models including finite state-space Markov chains and linear Gaussian models. Sadhu

et al. [56] presented a novel particle implementation of risk-sensitive filters for nonlinear,

non-Gaussian state-space models utilizing a probabilistic reinterpretation of the risk-

sensitive filter recursions.

For ergodic properties of the risk-sensitive filters, the asymptotic stability properties

of discrete-time risk-sensitive filters with non-Gaussian initial conditions were studied

in [11]. The authors in [39] proposed a contraction analysis of risk-sensitive Riccati

equations, where two conditions were needed to guarantee that the risk-sensitive Riccati

map was contractive, one for the risk-sensitive parameter and the other for the variance

of the initial state of the system.

1.3 Summary of the contributions

The results presented in this thesis target at remote state estimation problems for

CPS with resource limitations or model uncertainties, which results in different state

estimators that are optimal in a certain sense. To simplify the problem, we usually

consider one issue at a time, whereas Section 4.1 is the only part that consider both

issues. The major contributions of this thesis that distinguish it from other work are

summarized as follows.

In Chapter 2, we consider energy-based event-triggered state estimation problems. A

problem of energy-based event-triggered remote state estimation for systems described

by discrete finite-state hidden Markov models is investigated in Section 2.1. We consider

energy harvesting sensors, which absorb power from the environment or other resources

and convert it to electrical power. The event-triggering condition (ETC) considered

depends on the sensor energy level, which evolves according to a Markov process. The

reference measure approach is used to obtain the optimal estimates of the state based

on event-triggered measurement information available at the remote estimator. The

effectiveness of the proposed method is illustrated with simulation results for a linear
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Gaussian system quantized and parameterized into a hidden Markov model. In Section

2.2, a problem of event-based state estimation for hidden Markov models is investigated.

We consider the scenario that the transmission of the sensor measurement is decided by

a dynamic event-trigger, the state of which depends on both the sensor measurement

and the previous triggering state. An independent and identically distributed (i.i.d.)

Bernoulli process is utilized to model the effect of packet dropout. Using the refer-

ence probability measure approach, expressions for the unnormalized and normalized

conditional probability distributions of the states on the event-triggered measurement

information are derived, based on which optimal event-based state estimates can be

obtained. The effectiveness of the proposed results is illustrated through a numerical

example together with comparative simulations.

In Chapter 3, an event-triggered state estimation problem for a linear Gaussian sys-

tem with an energy harvesting sensor is investigated. A stochastic energy-dependent

event-triggering transmission protocol is proposed to balance the communication rate

and estimation performance according to the sensor’s battery energy. The joint condi-

tional probability distribution of the state and sensor’s energy level on the combined

set-valued and point-valued event-triggered measurements available to the remote esti-

mator is derived. Based on this distribution, the recursive MMSE estimates of the state

and sensor energy level are obtained. Also, the relationship between the average com-

munication rate and energy harvesting rate is discussed. Finally, a numerical example

is provided to evaluate the effectiveness of the proposed results.

In Chapter 4, a problem of risk-sensitive state estimation is considered. In Section

4.1, we investigate a robust event-triggered remote state estimation problem for linear

Gaussian systems with a stochastic event-triggering condition. The reference measure

approach is used to obtain a robust event-triggered estimate that minimizes the so-

called risk-sensitive criterion, which refers to the expectation of the exponential of the

sum of the squared estimation error. The closed-form expressions of the risk-sensitive

event-triggered posterior and prior estimates are presented, which are shown to evolve in

simple recursive Kalman-like structures. Moreover, two sufficient stability conditions

for the proposed estimators are given. Comparative simulation results demonstrate

the effectiveness of the proposed risk-sensitive event-triggered filter. In Section 4.2,

a robust state estimation problem for discrete-time systems with unknown exogenous

inputs is investigated utilizing a risk-sensitive filtering approach. By proposing a Radon-

Nikodym derivative, we introduce a reference measure under which the measurement

and system state become independent. Based on this independent property and by
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treating the unknown inputs as a process modeled by a non-informative prior, we derive

the reformulated risk-sensitive cost criterion under the reference measure and further

propose a recursive algorithm for the risk-sensitive state estimate, which is further

validated by a simulation example.

In Chapter 5, we investigate a distributed robust state estimation problem for linear

Gaussian systems measured by a sensor network, where the sensors can communicate

only with their neighbors and each sensor runs a local filter to estimate the state of the

process based on the measurements from its neighbors. We present a distributed risk-

sensitive filtering algorithm, where the high-gain dynamic consensus filter is utilized to

compute the fused measurement data and the fused covariance-inverse matrices, based

on which, the local filter is updated in a Riccati-based linear recursive form. For linear

time-invariant systems, the asymptotic stability of local estimators in the proposed

distributed filtering algorithm is guaranteed if the value of the risk-sensitive parameter

is chosen such that the centralized risk-sensitive filter is asymptotically stable. The

robustness of the proposed risk-sensitive filtering algorithm to system uncertainties is

verified by simulation results.
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Chapter 2

Event-triggered state estimation for

hidden Markov models

In this chapter, we investigate event-triggered state estimation problems utilizing

the reference measure approach, where the system considered is described by a discrete

finite-state hidden Markov model, which can represent the individual component states

of a dynamic system [2].

2.1 Energy-based event-triggered state estimation

for hidden Markov models∗

∗In this section, we consider systems equipped with an energy harvesting sensor,

where the sensor’s battery level dynamics can be modeled by a finite state Markov

chain. An energy-based event-triggered scheduling protocol is proposed and a novel

estimation method is developed to estimate the system state and sensor’s energy level

utilizing the reference measure approach.

2.1.1 Introduction

Existing investigations on event-based state estimation normally assume that the

sensors are powered by non-rechargeable batteries. With the recent development of

wireless electronic systems, energy harvesting technology provides a promising way to

reduce maintenance costs and to achieve longer lifetime of sensors by absorbing external

energy and converting it to electrical energy. Applications of energy harvesting sensors

have appeared in a number of engineering systems, e.g., satellite communications [18]

∗Parts of the results in this section appeared in Automatica, 79:256-264, 2017.
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and animal tracking [65]. In this section, we consider energy harvesting sensors and in-

vestigate a problem of remote state estimation based on the event-triggered information

provided by such sensors. The system considered is described by a discrete finite-state

hidden Markov model, applications of which are found in various areas of engineering

[19, 22, 24, 79, 83].

The main contributions of the work in this section are summarized in two folds.

First, an energy-based event-triggered transmission protocol is proposed, which consid-

ers the amount of energy available for measurement transmission in event-trigger and

estimator design. We consider an energy harvesting sensor with a rechargeable battery.

The dynamics of the sensor’s energy level is modeled by a discrete-time Markov chain,

which is a typical way of modeling an energy harvesting process in various application

scenarios, e.g., energy harvesting wireless sensing for environment monitoring [27], en-

ergy harvesting cognitive radio [71], and battery-powered wireless networks [20]. The

proposed energy-dependent event-triggering condition allows better utilization of the

sensor’s energy (for instance, when the battery energy level is relatively low, the sensor

will send the measurement only if the system has significant deviations or other prede-

fined important changes), so that the system can compromise estimation performance

with lower communication and energy costs.

Second, a state estimation method to approach the energy-dependent event-

triggered measurement information is proposed using the reference probability mea-

sure approach. Different from [60], the exact triggering condition is not known to the

estimator in this work as the energy level is not always transmitted, which adds to

the difficulty for state estimation. The main challenge is how to construct appropriate

reference measures so that simple recursive expressions of certain weighted state con-

ditional distributions can be obtained under the reference measures by exploiting the

information pattern induced by the proposed energy-based event-triggered transmission

protocol. By defining a first reference measure and a map from the “real-world” measure

to the reference measure, we derive a recursive form of the unnormalized conditional

probability distribution of the state under the reference measure, which depends on the

conditional distribution of the energy level. To estimate the energy level, we propose a

second level of the reference measure, under which the recursive form of the unnormal-

ized conditional distribution of the energy level under this measure is obtained. With

the help of these two reference measures, the estimates of the system states under the

“real-world” probability measure can be further derived.

Notation: Let N denote the set of nonnegative integers. Write N1:M := {1, 2, . . . ,M}
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Figure 2.1: Block diagram of the event-based remote estimation system.

and Z−M :N := {−M,−M + 1, . . . , N}. For a set M, let |M| be its cardinality. For

a probability measure P (P̂ or P̌), we use E (Ê or Ě, respectively) to represent the

expectation operator. We use [xi]i∈N1:n
to denote [xT

1 , . . . , x
T
n ]

T and use E[xi]i∈N1:n
to

denote
[

E[x1]
T, . . . ,E[xn]

T
]T

(the same for Ê and Ě). For a vector v = [vi]i∈N1:n
∈ R

n,

we denote ‖v‖1 as its 1-norm, which is defined as ‖v‖1 =
∑N

i=1 |vi|, where |vi| is the

absolute value of vi. Let x, y ∈ R
m, then 〈x, y〉 := xTy denotes the inner product

between x and y. 1{A} is the indicator function of set A.

2.1.2 Problem description

Firstly, we introduce a hidden Markov model on the probability space (Ω, F , P). The

hidden process considered is a finite-state, homogeneous, discrete-time Markov chain

X. Assume the initial state X0 is given. Suppose the cardinality of the state space of

Xk is N ; then the state space SX can be identified with SX = {e1, e2, . . . , eN}, where
ei is the unit vector in R

N with the ith element equal to 1. Let F0
k : = σ{X0, · · · , Xk},

and let FX
k be the complete filtration generated by F0

k . By the Markov property,

P(Xk+1 = ei|FX
k ) = P(Xk+1 = ei|Xk). Let A := [ai]i∈N1:N

, ai := [ai,j]
>
j∈N1:N

, where

ai,j := P(Xk+1 = ei|Xk = ej), such that
∑N

i=1 ai,j = 1. Then

E(Xk+1|FX
k ) = E(Xk+1|Xk) = AXk. (2.1)

Let Yk+1 be a sensor measurement process of Xk, which takes values in a finite-state

space SY . Let the cardinality of the state space SY of Y be M , then SY can be identified

with SY = {f1, f2, . . . , fM}, where fi is the unit vector in R
M with the ith element equal

to 1. Write C := [ci]i∈N1:M
, ci := [ci,j]

>
j∈N1:N

, where ci,j := P(Yk+1 = fi|Xk = ej), so that
∑M

i=1 ci,j = 1 and ci,j ≥ 0. Let FY
k be the completion of the σ-field on Ω generated by

Y0, Y1, . . . ,Yk. Since Yk+1 measures Xk, we have

E(Yk+1|FX
k ∪ FY

k ) = E(Yk+1|Xk) = CXk. (2.2)

We assume the measurement process is associated with an energy harvesting sensor, in

which a rechargeable battery is utilized to store the energy harvested; we model the
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battery level dynamics with a finite-state Markov chain, which can be efficiently utilized

to capture the energy-harvesting dynamics, particularly when the amount of energy

harvested by the sensor at each time instant can be modeled as an i.i.d. random variable

[20, 27, 71]. The energy level of the sensor at time instant k is denoted as Zk, which is

independent of Xk and Yk, taking value in a finite-state space SZ . Let the cardinality

of the state space SZ be L, then SZ can be identified with SZ = {h1, h2, . . . , hL}, where
hi is the unit vector in R

L with ith element equal to 1. Let FZ
k be the completion of

the σ-field on Ω generated by Z1, Z2, . . . ,Zk, where Z is independent of X and Y .

Let D := [di]i∈N1:L
, di := [di,j]

>
j∈N1:L

, where di,j := P(Zk+1 = hi|Zk = hj), such that
∑L

i=1 di,j = 1 and di,j ≥ 0. Now we have

E(Zk+1|FX
k ∪ FY

k ∪ FZ
k ) = E(Zk+1|Zk) = DZk. (2.3)

Now we introduce the remote estimation problem and the setup of the problem is

shown in Fig. 2.1, where the state of the hidden Markov model is estimated by a

remote estimator, based on the measurement information from the sensor through a

wired/wireless communication channel. In particular, we consider a scenario that the

sensor measures Yk at each time instant k and decides whether to send the measurements

to the remote estimator or not according to a stochastic energy-based event-triggering

condition (ETC), in which the probability of transmitting the measurements to the

estimator at time instant k depends on the realizations of both the observation Yk and

energy level Zk. Let γk be the decision variable taking values in Sγ = {α1, α2}, where
α1 = [1 0]> represents that the measurements will not be sent to the remote estimator,

and α2 = [0 1]> represents that the measurement Yk together with the energy level Zk

will be sent to the remote estimator. In this work, the energy-based ETC is stochastic

and identified by

P (γk = α1|Zk = hi, Yk = fj) = δij,

P (γk = α2|Zk = hi, Yk = fj) = 1− δij.

For notational brevity, we define a transformation matrix ∆i as

∆i =

[

δi1 . . . δiM
1− δi1 . . . 1− δiM

]

.

In this way, we have

E
(

γk
∣

∣FX
k ∪ FY

k ∪ FZ
k ∪ Fγ

k−1

)

=
∑L

i=1 ∆i〈Zk, hi〉Yk, (2.4)
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where Fγ
k−1 is the completion of the σ-field generated by γ1, . . . ,γk−1. The measurement

Yk and energy level Zk are received by the remote estimator at time instant k if and

only if γk = α2. For Zk = hi and Yk = fj, the ETC can be implemented by checking

whether the realization of a uniformly distributed random variable ζk on [0, 1] is greater

than δij or not. If ζk ≤ δij, γk = α1; otherwise γk = α2. When δij ∈ {0, 1}, the ETC

can be implemented by testing whether δij = 0 holds or not for Yk = fj and Zk = hi.

Denoting Ŷk = {γk, 〈γk, α2〉Yk, 〈γk, α2〉Zk} as the information received at the estimator

at time instant k, we use Ŷk to denote the completion of the σ-field generated by

{Ŷ1, Ŷ2, . . . , Ŷk}, which describes all the information available at the remote estimator

up to time instant k. In summary, our model now can be represented by (2.1)-(2.4).

Our main goal of this work is to obtain the conditional probability distribution of the

system state on partially observed measurements. We propose a measure transforma-

tion to a new probability space under which, the state and observations are independent

of each other. We derive the conditional probability distribution under the new prob-

ability measure, then transform it back to the one under the “real-world” measure by

normalization.

2.1.3 Estimate of the system state

2.1.3.1 Constructions of the first reference measure P̂

Consider a new reference measure P̂, under which we still have

Ê
(

Xk+1|FX
k

)

= Ê(Xk+1|Xk) = AXk, (2.5)

while Yk+1 are uniformly i.i.d. satisfying

P̂
(

Yk+1 = fi
∣

∣FX
k ∪ FY

k

)

= P̂ (Yk+1 = fi) = 1/M. (2.6)

According to equation (2.6), processes X and Y are independent under the first refer-

ence measure P̂, which is well used in the derivations of the conditional distributions

under P̂. We still assume

Ê
(

Zk+1 = hi

∣

∣FX
k ∪ FY

k ∪ FZ
k

)

= DZk, (2.7)

Ê
(

γk
∣

∣FX
k ∪ FY

k ∪ FZ
k ∪ Fγ

k−1

)

=
∑L

i=1 ∆i〈Zk, hi〉Yk. (2.8)

To link the new measure with the original “real-world” measure, we define a map from

P̂ to P:

dP

dP̂

∣

∣

∣

∣

Gk+1

= Λ̂k+1, (2.9)
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where Gk+1 is FX
k+1 ∪ FY

k+1 ∪ FZ
k+1 ∪ Fγ

k+1, and

Λ̂k+1 :=
k+1
∏

l=1

λ̂l, (2.10)

λ̂k+1 := M
∑M

i=1〈CXk, fi〉〈Yk+1, fi〉. (2.11)

Lemma 2.1. [17, Theorem 3.2, Chapter 2]. Suppose (Ω, F , P) is a probability space

and G ⊂ F is a sub-σ-field. Suppose P̂ is another probability measure absolutely con-

tinuous with respect to P and with Radon-Nikodym derivative dP

dP̂
= Λ̂. If φ is any P

integrable random variable, then

E(φ|G) =
{

Ê(Λ̂φ|G)

Ê(Λ̂|G)
, if Ê(Λ̂|G) > 0,

0, otherwise.
(2.12)

Since Ŷk is a sub-σ-field of Gk, the following result can be obtained.

Lemma 2.2. [17, Theorem 3.3, Chapter 2]. If φk is a G-adapted integrable sequence

of random variables, then

E(φk|Ŷk) =
Ê(Λ̂kφk|Ŷk)

Ê(Λ̂k|Ŷk)
.

The above lemma provides a way of mapping the probability distribution under

reference measure P̂ back to the “real-world” measure P. Based on Lemmas 2.1 and 2.2,

we investigate the properties of the map defined in (2.9)-(2.11) from the new reference

measure to the original probability measure, which is summarized in the following result.

Lemma 2.3. If the model in (2.5)-(2.8) is mapped from the probability measure P̂ to

the probability measure P via the Radon-Nikodym derivative in (2.9)-(2.11), then the

obtained model satisfies the properties under measure P as stated in (2.1)-(2.4).

Proof. From the definition of λ̂k+1,

Ê(λ̂k+1|Gk) =Ê(M
∑M

i=1〈CXk, fi〉〈Yk+1, fi〉|Gk)

=M
∑M

i=1〈CXk, fi〉Ê(〈Yk+1, fi〉|Gk)

=
∑M

i=1〈CXk, fi〉 = 1.
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By assumption, X and Y are mutually independent under the new probability measure

P̂. According to Lemma 2.1 and definition of Xk+1, we have

E(Xk+1|Gk) =
Ê(Λ̂k+1Xk+1

∣

∣Gk)

Ê(Λ̂k+1

∣

∣Gk)

=
Λ̂kÊ(λ̂k+1Xk+1

∣

∣Gk)

Λ̂kÊ(λ̂k+1

∣

∣Gk)

=Ê
[

M
∑M

i=1〈CXk, fi〉〈Yk+1, fi〉Xk+1

∣

∣Gk

]

=M
∑M

i=1〈CXk, fi〉 1
M
Ê(Xk+1|Gk)

=Ê(Xk+1|Gk) = AXk,

By repeated conditioning and FX
k ⊂ Gk,

E(Xk+1|FX
k ) = E(E(Xk+1|Gk)|FX

k ) = AXk.

Noticing that [〈Yk+1, fj〉]j∈N1:M
= Yk+1 and [〈CXk, fj〉]j∈N1:M

= CXk, we have

Ê(λ̂k+1Yk+1

∣

∣Gk)

=Ê
[

Yk+1M
∑M

i=1〈CXk, fi〉〈Yk+1, fi〉
∣

∣Gk

]

=
[

Ê
[

〈Yk+1, fj〉M
∑M

i=1〈CXk, fi〉〈Yk+1, fi〉
∣

∣Gk

]]

j∈N1:M

=
[

Ê
(

M〈Yk+1, fj〉〈CXk, fj〉
∣

∣Gk

)]

j∈N1:M
= CXk.

From Lemma 2.1 and the definition of Yk+1, we have

E(Yk+1|Gk) =Ê(λ̂k+1Yk+1

∣

∣Gk) = CXk.

By repeated conditioning and (FX
k ∪ FY

k ) ⊂ Gk,

E
(

Yk+1|FX
k ∪ FY

k

)

= E
(

E(Yk+1|Gk)|FX
k ∪ FY

k

)

= CXk.

By following a similar procedure as above, we obtain

E(Zk+1|FZ
k ) =AZk,

E(γk|FX
k ∪ FY

k ∪ FZ
k ∪ Fγ

k−1) =
∑L

i=1 ∆〈Zk, hi〉Yk.

The proof is completed.

From Lemma 2.3, we can see that the map in (2.9) builds a link from the reference

measure to the original “real-world” measure. By mapping the new model satisfying
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(2.5)-(2.8) under the new reference measure P̂ to the “real-world” probability measure,

the system model as stated in (2.1)-(2.4) under P can be obtained. As shown in (2.6), Yk

is independent of all other variables, which provides convenience during the derivation of

the optimal state estimator. The event-trigger γk and energy level Zk are not involved

in the map in (2.9), so that their properties are preserved under P̂. Next, we will

derive the probability distribution of the state conditioned on the information at the

remote estimator under P̂ using the properties described in (2.5)-(2.8); then map the

estimate back to P to obtain the conditional probability distribution of the state in the

“real-world” measure based on Lemma 2.2.

2.1.3.2 Recursive form of the state estimation

Define q̂rk := Ê[Λ̂k〈Xk, er〉|Ŷk] and p̂rk := E[〈Xk, er〉|Ŷk]. Respectively, write q̂k =

[q̂1k . . . q̂Nk ]T and p̂k = [p̂1k . . . p̂Nk ]
T. From Lemma 2.2, we have

p̂rk = q̂rk/‖q̂k‖1. (2.13)

With the conditional probability distribution of state p̂rk, we may use different kinds of

estimators, e.g., the MMSE estimator, the maximum a posteriori (MAP) estimator or

the mean absolute error (MAE) estimator. In order to obtain p̂k, we derive the recursive

form of q̂rk, which is presented in the following result.

Theorem 2.1. For the system described in (2.5)-(2.7) with event-triggering scheme in

(2.8), for k ∈ N and r ∈ N1:M , the unnormalized conditional probability distribution of

the state satisfies

q̂rk+1 = M
∑N

j=1 ar,j q̂
j
k

∑M

i=1 ci,jÊ
[

〈Yk+1, fi〉
∣

∣Ŷk+1

]

,

where Ê
[

〈Yk+1, fi〉|Ŷk+1

]

= 〈Yk+1, fi〉 if γk+1 = α2; and

Ê[〈Yk+1, fi〉|Ŷk+1] =

∑L

t1=1 δt1iP̂(Zk+1 = ht1 |Ŷk)
∑L

t=1 P̂(Zk+1 = ht|Ŷk)
∑M

s=1 δts
,

with P̂(Zk+1 = ht|Ŷk) =
∑L

j1=1 dt,j1Ê
(

〈Zk, hj1〉
∣

∣Ŷk

)

if γk+1 = α1.

Proof. By repeated conditioning, for r ∈ N1:N , we have

q̂rk+1 =Ê
[

Λ̂k+1〈Xk+1, er〉
∣

∣Ŷk+1

]

=M Ê
[

〈AXk, er〉Λ̂k

M
∑

i=1

〈CXk, fi〉〈Yk+1, fi〉
∣

∣Ŷk+1

]

.
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Recalling that 〈AXk, er〉 =
∑N

j=1 ar,j〈Xk, ej〉 and 〈CXk, fi〉 =
∑N

j0=1 ci,j〈Xk, ej0〉, we
have

q̂rk+1 =M Ê
[
∑N

j=1 ar,j〈Xk, ej〉Λ̂k

∑M

i=1

∑N

j0=1 ci,j0〈Xk, ej0〉〈Yk+1, fi〉|Ŷk+1

]

=M Ê
[

N
∑

j=1

ar,j〈Xk, ej〉Λ̂k

M
∑

i=1

ci,j〈Yk+1, fi〉|Ŷk+1

]

,

where we use the fact that 〈Xk, ej〉〈Xk, ej0〉 6= 0 only if j = j0. Since 〈Xk, ej〉Λ̂k is

independent of Ŷk+1, we have

q̂rk+1 =M
∑N

j=1 ar,jÊ
[

〈Xk, ej〉Λ̂k

∣

∣Ŷk

]
∑M

i=1 ci,jÊ
[

〈Yk+1, fi〉
∣

∣Ŷk+1

]

=M
∑N

j=1 ar,j q̂
j
k

∑M

i=1 ci,jÊ
[

〈Yk+1, fi〉
∣

∣Ŷk+1

]

.

Now our main focus is to obtain Ê
[

〈Yk+1, fi〉|Ŷk+1

]

and we consider two scenarios. 1) If

γk+1 = α2, the event is triggered and measurement is received, so the estimator knows

the exact values of Yk+1 and Zk+1. In this way, we have Ê
[

〈Yk+1, fi〉|Ŷk+1

]

= 〈Yk+1, fi〉.
2) If γk+1 = α1, the event is not triggered and the estimator does not know the exact

values of Yk+1 and Zk+1. The estimate becomes

Ê[〈Yk+1, fi〉|Ŷk+1] =P̂
(

Yk+1 = fi|Ŷk, γk+1 = α1

)

=
P̂
(

Yk+1 = fi, γk+1 = α1|Ŷk

)

P̂
(

γk+1 = α1|Ŷk

) .

Here we focus on the numerator part first. According to the Bayes’ theorem,

P̂
(

Yk+1 = fi, γk+1 = α1

∣

∣Ŷk

)

=P̂
(

γk+1 = α1|Yk+1 = fi, Ŷk

)

P̂(Yk+1 = fi
∣

∣Ŷk)

=
1

M

∑L

t=1 P̂
(

γk+1 = α1

∣

∣Zk+1 = ht, Yk+1 = fi, Ŷk

)

P̂
(

Zk+1 = ht

∣

∣Yk+1 = fi, Ŷk

)

=
1

M

∑L

t=1 δtiP̂
(

Zk+1 = ht

∣

∣Ŷk

)

,

where the last equality is due to that γk+1 is independent of Ŷk, and Zk+1 is independent

of Yk+1. Following a similar procedure as in evaluating the numerator, we have the

denominator as follows

P̂
(

γk+1 = α1

∣

∣Ŷk

)

=
1

M

L
∑

t=1

P̂
(

Zk+1 = ht

∣

∣Ŷk

)

M
∑

s=1

δts.

By repeated conditioning, we have

P̂
(

Zk+1 = ht

∣

∣Ŷk

)

=Ê
[

〈Zk+1, ht〉|Ŷk

]

=
∑L

j1=1 dt,j1Ê
[

〈Zk, hj1〉
∣

∣Ŷk

]

,

which completes the proof.
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From the theorem above, the unnormalized conditional probability distribution un-

der the first reference measure P̂ is given in a recursive form and can be transformed

back to the conditional probability distribution under P by equation (2.13). If we con-

sider the simple scenario: there is only one state Zk = h1 for battery energy at the

sensor and the probability of not transmitting P (γk+1 = α1|Yk+1 = fi) = 1 for i ∈ Ik+1

and P (γk+1 = α1|Yk+1 = fj) = 0 for j ∈ N1:M\Ik+1. In this scenario, the conditional

probability distribution of Xk+1 under P derived in our work is consistent with the re-

sult considering deterministic ETC under reliable communication channels (Theorem 4

in [60]), though the notation in [60] is slightly different from this investigation. The

theorem above demonstrates that the unnormalized distribution q̂k+1 of Xk conditioned

on the past hybrid measurement information Ŷk evolves recursively according to a map

based on q̂k. However, the estimate of the energy level is not obtained yet; for this

we propose a second level of the probability measure change to obtain the conditional

probability distribution of the energy level under the reference measure P̂, namely,

Ê
[

〈Zk, hj1〉
∣

∣Ŷk

]

j1∈N1:M
.

2.1.4 Estimate of the energy level

In order to acquire the estimate of Zk conditioned on the information available at

the remote estimator under P̂, we define a second reference measure P̌ and propose a

second map from P̌ to P̂. We may focus on Yk, Zk and γk, and do not need to consider

Xk in the second map since Zk is independent of Xk under P̂.

2.1.4.1 Construction of a second reference measure P̌

Consider a new measure, under which we have

P̌
(

Yk+1 = fi
∣

∣FY
k ∪ FZ

k ∪ Fγ
k

)

= 1/M, (2.14)

P̌
(

Zk+1 = hi

∣

∣FY
k ∪ FZ

k ∪ Fγ
k

)

= 1/L, (2.15)

P̌
(

γk = αi

∣

∣FY
k ∪ FZ

k ∪ Fγ
k−1

)

= 1/2. (2.16)

The above properties show that Yk, Zk and γk are i.i.d. and pairwise independent.

Denote FY
k ∪ FZ

k ∪ Fγ
k as Ǧk. Define a mapping from P̌ to P̂

dP̂

dP̌

∣

∣

∣

∣

Ǧk

= Λ̌k, (2.17)
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where

Λ̌k =
∏k

l=1 λ̌l, (2.18)

λ̌k =
[

2
∑2

j=1

∑L

i=1〈∆i〈Zk, hi〉Yk, αj〉〈γk, αj〉
]

·
[

L
∑L

r=1〈DZk−1, hr〉〈Zk, hr〉
]

. (2.19)

Based on the map in (2.17) and Lemma 2.1, the following result is obtained.

Lemma 2.4. If the model in (2.14)-(2.16) is mapped from P̌ to P̂ by the Radon-Nikodym

derivative in (2.17)-(2.19), then the obtained model satisfies the dynamics illustrated in

(2.6)-(2.8) under P̂.

Proof. This lemma can be proved by following similar procedure as in Lemma 2.3. The

detailed proof is omitted due to length limitation.

This result establishes a map from the second reference measure P̌ to the first

reference measure P̂, based on which, the estimation problem of the energy level under

the first reference measure P̂ can be solved by solving an unnormalized estimation

problem under the second reference measure P̌ and mapping the result back to P̂.

2.1.4.2 Recursive form of the energy level estimation

Next, we derive a recursive form of the conditional probability distribution of the

energy level under P̌. Define ǔs
k := Ě[Λ̌k〈Zk, hs〉

∣

∣Ŷk], and v̌sk := Ê[〈Zk, hs〉
∣

∣Ŷk]. Write

ǔk =
[

ǔ1
k . . . ǔL

k

]T
and v̌k =

[

v̌1k . . . v̌Lk
]T
, respectively. Recall that Ŷk ⊂ Ǧk. From

Lemma 2, we have

v̌sk = ǔs
k/‖ǔk‖1. (2.20)

Now we focus on the recursive form of unnormalized conditional probability distribution

of the energy level ǔk+1, which is summarized as follows.

Theorem 2.2. For the system described by (2.14)-(2.16), for k ∈ N and s ∈ N1:L, the

unnormalized conditional distribution of the energy level ǔs
k+1 satisfies

ǔs
k+1 = 2L〈Zk+1, hs〉〈∆sYk+1, α2〉

∑L

j2=1 ds,j2ǔ
j2
k ,

if γk+1 = α2; and if γk+1 = α1

ǔs
k+1 =

2

M

∑M

i=1〈∆sfi, α1〉
∑L

j2=1 ds,j2ǔ
j2
k .
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Proof. According to the definition of ǔk+1, we have

ǔs
k+1 =Ě

[

Λ̌k+1〈Zk+1, hs〉
∣

∣Ŷk+1

]

=Ě
[

Λ̌k

(

2
2
∑

j=1

L
∑

i=1

〈∆i〈Zk+1, hi〉Yk+1, αj〉〈γk+1, αj〉
)

·
(

L
∑L

r=1〈DZk, hr〉〈Zk+1, hr〉
)

〈Zk+1, hs〉
∣

∣Ŷk+1

]

.

If γk+1 = α2, Zk+1 and Yk+1 are received and measurable on Y̌k+1, then the case is

trivial and we have

ǔs
k+1 =2L〈Zk+1, hs〉

(

L
∑

i=1

〈

∆i〈Zk+1, hi〉Yk+1, α2

〉

)

·
(

L
∑

r=1

〈Zk+1, hr〉
L
∑

j2=1

dr,j2Ě
[

Λ̌k〈Zk, hj2〉
∣

∣ Ŷk+1

]

)

=2L〈Zk+1, hs〉〈∆sYk+1, α2〉
∑L

j2=1 ds,j2ǔ
j2
k ,

where we used the fact that Λ̌k〈Zk, hj2〉 is independent of Zk+1 and Yk+1 under P̌ to

simplify the result.

If γk+1 = α1, the event it not triggered and the estimator does not know exact values

of Zk+1 and Yk+1. In this case, by using Bayes’ rule, we have

ǔs
k+1 =Ě

[

Λ̌k

(

2
∑L

i=1〈∆i〈Zk+1, hi〉Yk+1, α1〉
)

·
(

L
∑L

r=1〈DZk, hr〉〈Zk+1, hr〉
)

〈Zk+1, hs〉
∣

∣Ŷk+1

]

=
∑L

s1=1 P̌
(

Zk+1 = hs1

∣

∣Ŷk, γk+1 = α1

)

Ě
[

Λ̌k

(

2
∑L

i=1〈∆i〈Zk+1, hi〉Yk+1, α1〉
)

·
(

L
∑L

r=1〈DZk, hr〉〈Zk+1, hr〉
)

〈Zk+1, hs〉
∣

∣Ŷk, Zk+1 = hs1

]

.

Recall that P̌(Zk+1 = hs1 |Ŷk, γk+1 = α1) = 1/L under P̌, then (2.21) becomes

ǔs
k+1 =2

∑L

s1=1 Ě
[

Λ̌k

(
∑L

i=1〈∆i〈hs1 , hi〉Yk+1, α1〉
)

·
(
∑L

r=1〈DZk, hr〉〈hs1 , hr〉
)

〈hs1 , hs〉
∣

∣Ŷk

]

=2Ě
[

Λ̌k〈∆sYk+1, α1〉〈DZk, hs〉
∣

∣Ŷk

]

.

Now, we consider all possible values for Yk+1,

ǔs
k+1 =

∑M

i=1 P̌
(

Yk+1 = fi
∣

∣Ŷk

)

2Ě
[

Λ̌k〈∆sYk+1, α1〉〈DZk, hs〉
∣

∣Ŷk, Yk+1 = fi
]

=
2

M

∑M

i=1〈∆sfi, α1〉
∑L

j2=1 ds,j2ǔ
j2
k ,

which proves the theorem.
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By introducing the second level of probability measure change, the unnormalized

conditional distribution of the energy level is derived in a recursive form, which evolves

according to a linear map under the second reference measure P̌. According to Theorem

2.2, the distribution of the energy level under the first reference measure P̂, namely,

Ê[〈Zk, hs〉|Ŷk], is obtained by mapping ǔk+1 back to P̂ via normalization in equation

(2.20).

Combining Theorem 2.1 and Theorem 2.2, the unnormalized probability distribu-

tions of the state and energy can be obtained. First, the result in Theorem 2.2 is

utilized to calculate the unnormalized conditional distribution of the energy level under

the second reference measure P̌, which evolves according to a linear map in a recursive

form. Next, the conditional distribution of the energy level under the first reference

measure P̂ is obtained by normalization. Then Ê[〈Zk, hs〉|Ŷk] is substituted into the

recursive form of unnormalized conditional probability distribution of the state under

the first reference measure P̂ as stated in Theorem 2.1 to obtain q̂k+1. Finally, the

probability distribution of the state conditioned on the combined information at the

remote estimator under the “real-world” probability measure is obtained by normal-

ization in equation (2.13), based on which the MMSE estimator can be derived. Once

we obtain the state estimate, the transformations and reference probability measures

are not needed in the implementation of the estimates since the reference measures are

only utilized as mathematical tools in the derivations.

2.1.5 Simulation results

In this section, the proposed results are applied to state estimation of linear Gaussian

systems and a numerical example is used to illustrate the effectiveness of the proposed

event-based state estimation algorithm. We consider a stable first-order linear Gaussian

system which is parameterized as

xk+1 = axk + wk, (2.21)

where wk is a Gaussian noise with covariance Qw, xk is the state with initial state x0,

which is zero-mean Gaussian with covariance P0. For the measurement process, we

assume

yk+1 = cxk + vk, (2.22)

where vk is a Gaussian noise with covariance Qv. We assume wk, vk and x0 are mutu-

ally independent. At steady state, xk becomes a stationary process with distribution
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µx(x) = exp(− x2

2Qx
)/
√
2πQx, where Qx = Qw/(1−a2). The utilization of digital control,

where an analog-to-digital converter (ADC) is used to convert the continuous physical

quantities to digital ones with finite digits, leads inevitably to quantization. ADC is

necessary when the controller is implemented in a computer, or a digital network is

used to transmit the measurement to the remote estimator.

In this example, we quantize the state and measurement of the scalar linear Gaus-

sian system into finite states and obtain a corresponding hidden Markov model using

the quantization approach introduced in [61]. The state xk is quantized into a to-

tal of N regions, which are denoted by {x1,x2, . . . ,xN}. By using a unit-vector pa-

rameterization technique, a finite-state process {Xk} taking values in {e1, e2, . . . , eN}
is used to represent the quantized state of system by associating each region xi

with ei, i.e, xk ∈ xi ⇐⇒ Xk = ei. The quantization regions xi are given by

xi := {x ∈ R | xi ≤ x ≤ x̄i}, where xi and x̄i are the upper and lower bounds of

xi. We consider a simple algorithm of choosing xi, where x1 = [−∞, x], xN = [x̄,∞],

and the other N − 2 quantization regions are uniformly distributed between [x, x̄]. For

i ∈ N2:N−1, we have xi = x̄i−1, x̄i = xi + (x̄− x)/(N − 2). Noticing that a and Qw are

time-invariant, the transition probability matrix in (2.1) can be calculated offline using

standard numerical integration techniques as

ai,j =P(Xk+1 = ei|Xk = ej)

=
1

∫

xj
µx(ξ)dξ

∫

xj

[

Q(
xi − ax√

Qw

)−Q(
x̄i − ax√

Qw

)

]

µx(x) dx. (2.23)

Following a similar quantization procedure, Yk is quantized into a total of M regions,

which are denoted by {y1,y2, . . . ,yM}, and {f1, f2, . . . , fM} is used to represent the

quantized measurement of system by associating yi with fi, i.e. yk ∈ yi ⇐⇒ Yk = fi,

with yi := {y ∈ R | y
i
≤ x ≤ ȳi}. For i ∈ N2:M−1, y1 = [−∞, y], yN = [ȳ,∞], and

y
i
= ȳi−1, ȳi = y

i
+(ȳ−y)/(M−2). Combining equation (2.22), we have the transition

probability as

ci,j =P(Yk+1 = ei|Xk = ej)

=
1

∫

xj
µx(ξ)dξ

∫

xj

[

Q(
y
i
− cx

√
Qv

)−Q(
ȳi − cx√

Qv

)

]

µx(x) dx. (2.24)

In the following, we use a numerical example to show the implementation of the esti-

mator. Take a = 0.9, c = 0.5, Qw = 0.3 and Qv = 0.3. For the quantization regions,

consider N = M = 128, which corresponds to a 7-bit ADC, with x = −8, x̄ = 8,

y = −5, and ȳ = 5. We calculate the transition probability matrices A and C of the
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hidden Markov model according to (2.23) and (2.24). We assume the energy harvested

at each time instant are i.i.d. random variables and the probability of harvesting 0,1

and 2 units of energy are 0.75, 0.2 and 0.05 correspondingly. At time instant k, the

sensor harvests energy from the environment first, then store the harvested energy into

the sensor’s battery; when charging is finished, the energy level is denoted as zk. After

that, the sensor determines if the measurements are transmitted to the estimator. We

assume 1 unit of battery’s energy is consumed if the transmission is performed. If the

battery is out of power, the sensor turns into sleeping mode with the data packet being

dropped. We assume the minimum and maximum energy storage of the sensor’s battery

are 0 and 15 units of energy; the initial value z0 is randomly chosen and known by the

estimator. Suppose the 16 energy levels are represented by {h1, ..., h16}, where Zk = h1

refers to the sleeping mode and Zk = hi refers to the scenario when i−1 units of energy

are stored in the battery. The sensor’s battery level can be modeled by a Markov chain

as described in (2.3), where the parameters in D can be obtained easily.

We define φ(τ, µ, σ) := exp
[

− (τ − µ)2/(2σ2)
]

for τ ∈ Z−n,n. We assume the sensor

will examine the energy-based event-triggered condition as described by equation (2.4)

to decide if measurements are transmitted or not, where δij’s are chosen as δ1j = 0 and

for i ≥ 2

δij =P (γk = α1|Zk = hi, Yk = fj)

=1{|j−θ|<20−i}φ(j, θ, 30), (2.25)

where θ is defined implicitly by Ỹk = fθ with Ỹk denoting the quantized value of the

previously transmitted measurement ỹ at time instant k. Theorem 2.1 and Theorem 2.2

are combined to obtain the conditional probability distribution of the state under the

“real-world” measure, based on which, the MMSE estimate of the state can be obtained.

γk = α2 and γk = α1 are presented as 1 and 0 correspondingly in figures for convenience.

The mean square error (MSE) of the estimates from the Kalman filter, the Kalman filter

with intermittent observations (KF with IO) in [67], and the proposed method using

the same communication sequence {γk} are 0.570, 0.757 and 0.629 correspondingly as

shown in Fig. 2.2, indicating that the estimation performance of the proposed method

is better than KF with IO, which does not exploit the information contained in the

stochastic triggering condition.

To further show the merits of the proposed energy-based ETC, we consider the

normal ETC for comparison; to do this, we take the event-triggering condition to be
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Figure 2.2: Performance comparison between three methods considering the energy-
based ETC.

independent of the energy level such that

P (γk = α1|Yk = fj, Zk 6= h1) = (
∑L

l=1 δlj)/L,

and P (γk = α1|Yk = fj, Zk = h1) = 0 (as no energy is available for transmission when

Zk = h1). Since this ETC does not depend on the energy level in general, the energy

level is not estimated for this case. All the other parameters of the system and realiza-

tions of xk, yk and the energy harvested at each time instant are exactly the same as

those in Fig. 2.2. The real state, the estimates from the Kalman filter, KF with IO and

the normal ETC are shown in Fig. 2.3. Although the normal ETC has a lightly higher

average transmission rate, the MSE of the proposed estimate with energy-based ETC

in Fig. 2.2 (0.629) is smaller than that with normal ETC in Fig. 2.3 (0.777), indicat-

ing that the energy-based ETC outperforms the normal ETC through proper energy

management.

Next, the comparison of the energy level distributions while considering the energy-

based ETC and normal ETC is shown in Fig. 2.4. Simulations are run for T = 50, 000

time instants under the two different ETCs with the other parameters remaining the
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Figure 2.3: Performance comparison between three methods considering the normal
ETC.

same. The average communication rates 1
N

∑N

k=1 1{γk=α2} are 0.30 in both scenarios.

Fig. 2.4 shows that for the scenario with energy-based ETC, the energy distribution

approximately follows a unimodal distribution centralized to the middle energy level

and the sensor is hardly in the sleeping mode; for the scenario with normal ETC,

the energy distribution is shifted to energy level 1, indicating that the utilization of

the energy-based ETC leads to smarter sensor energy management in reducing the

occurrence rate of the sensor’s sleeping mode.

Finally, we focus on the energy-based ETC; the tradeoff between the communication

rates and estimation performances under different energy levels1 is shown in Fig. 2.5

(T = 300, 000 time instants). The corresponding communication rate for one specific

energy level i is defined as 1
Ni

∑

Zk=hi
1{γk=α2}, where Ni is the total number of time

instants with energy level Zk = hi. When the energy level is relatively low, the com-

munication rate by the left vertical axis is small; meanwhile, the estimation error of the

proposed method shown by the right vertical axis is large, indicating that the estima-

1The cases when the energy level is equal to 0 and 15 are not considered, since these cases occur
by very small probabilities (see Fig. 2.4).
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Figure 2.4: Comparison of the energy distributions obtained by using different ETC
(MSE of the Kalman filter = 0.6379).
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Figure 2.5: Tradeoff between communication rates and estimation performances over
different energy levels.

tion performance is sacrificed to maintain low average communication rate when the

battery’s energy is in shortage.

2.1.6 Conclusion

In this section, an energy-based event-triggered state estimation problem for discrete

hidden Markov models is investigated. The stochastic ETC proposed is controlled by

the energy level of an energy harvesting sensor, which evolves according to a Markov

chain itself. We propose a map using the reference measure approach and derive the

recursive form of the unnormalized conditional probability distribution of the state

under the first reference measure P̂, which is based on the unnormalized conditional

28



distribution of the energy level under P̂. To calculate the unnormalized conditional

distribution of the energy level, a second reference measure is proposed. By introducing

these two reference measures, the conditional probability distribution of the state in

the “real-world” probability measure can be obtained, based on which, the MMSE

estimator can be derived. Finally, the results are applied to a quantized linear Gaussian

system and simulation results are given to demonstrate the effectiveness of the proposed

method. For future work, the extension of the developed results to the scenario of

event-triggered remote state estimation for discrete-state Markov models observed in

Gaussian noises will be investigated.

2.2 Dynamically event-triggered state estimation of

hidden Markov models through a lossy commu-

nication channel∗

∗In this section, we consider an estimation problem of hidden Markov models with

dynamic event-triggering conditions, where the state of the event-trigger depends not

only on the measurement of the sensor, but also on its own state at the previous time

instant. The event-triggered state estimator is developed by first deriving results under

a reference measure and then mapping them back to the “real-world” measure.

2.2.1 Introduction

In this section, a problem of event-based state estimation with dynamic event-

triggering conditions for hidden Markov models is investigated. In the existing investi-

gations, the event-triggering conditions considered were normally static and known to

the remote estimator, which limits the potential of utilizing event-triggered transmission

protocols in maintaining estimation performance at reduced communication cost. One

feasible way of overcoming this issue is to introduce dynamics in the event-triggering

condition so that an additional degree of freedom can be provided to the event-trigger

in deciding whether or not to send the measurements at each time instant. The conse-

quence, however, is that the corresponding event-triggering condition will not be exactly

known to the estimator; this adds to the difficulty to solve the event-based estimation

problem, and in particular, the situation will become even more complicated when

∗The results in Section 2.2 appreared in Proceedings of the IEEE 55th Conference on Decision and

Control, pp. 5122-5127, Las Vegas, USA, December 12-14, 2016.
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the effect of packet dropout is considered, which is normally inevitable when the mea-

surements are transmitted through a wired or wireless communication channel. Based

on these considerations, a remote estimation problem of this type is investigated in

this section for hidden Markov models, and the main contributions are summarized as

follows:

1. A dynamic event-triggering transmission protocol is proposed. The state of the

event-trigger depends not only on the measurement of the sensor, but also on its

own state at the previous time instant. The packet dropout effect is considered

and modeled by an i.i.d. Bernoulli process.

2. To solve the problem of remote estimation, a reference probability measure is

constructed, under which the sensor measurement process is i.i.d. uniformly dis-

tributed, and the state of the event-trigger is also i.i.d. uniformly distributed,

independent of its previous state and the sensor measurement. A map that links

the reference measure to the real-world measure is proposed.

3. Under the reference measure, the unnormalized conditional distribution of the

state on the event-triggered measurement information is shown to evolve recur-

sively according to a linear map. Based on this result, the expression for the

event-based state estimate under the real-world measure can be further devel-

oped.

Notation: Let N denote the set of nonnegative integers. Write N1:M := {1, 2, . . . ,M}
and Z−M :N := {−M,−M + 1, . . . , N}. For a set M, let |M| be its cardinality. For a

probability measure P (or P̂ and P̌), we use E (or Ê and Ě, respectively) to represent the

expectation operator. We use [xi]i∈N1:n
, to denote [xT

1 , . . . , x
T
n ]

T and use E[xi]i∈N1:n
to

denote
[

E[x1]
T, . . . ,E[xn]

T
]T

(the same for Ê and Ě). For a vector v = [vi]i∈N1:n
∈ R

n,

we denote ‖v‖1 as its 1-norm, which is defined as ‖v‖1 =
∑N

i=1 ‖vi‖, where ‖vi‖ is the

absolute value of vi. Let x, y ∈ R
m, then 〈x, y〉 := xTy denotes the inner product

between x and y.

2.2.2 Problem destription

Firstly, we introduce a hidden Markov model on the real-world probability measure

(Ω, F , P). The hidden process considered is a finite-state, homogeneous, discrete-

time Markov chain X. Assume the initial state X0 is given. Suppose the cardinality

of the state space of Xk is N , then the state space SX can be identified with SX =
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{e1, e2, . . . , eN}, where ei is the unit vector in R
N with the ith element equal to 1. Let F0

k

denote the σ-field on Ω generated by X0, X1, . . ., Xk, i.e., F0
k : = σ{X0, · · · , Xk}, and

let FX
k be the complete filtration generated by F0

k . Let A := [ai]i∈N1:N
, ai := [ai,j]

>
j∈N1:N

,

where ai,j := P(Xk+1 = ei|Xk = ej), such that
∑N

i=1 ai,j = 1. Then

E(Xk+1|FX
k ) = E(Xk+1|Xk) = AXk. (2.26)

Let Yk be a sensor measurement process of Xk, which takes values in a finite-state space

SY . Let the cardinality of the state space SY of Y be M , then SY can be identified with

SY = {f1, f2, . . . , fM}, where fi is the unit vector in R
M with the ith element equal to

1. Write C := [ci]i∈N1:M
, ci := [ci,j]

>
j∈N1:N

, where ci,j := P(Yk = fi|Xk = ej), so that
∑M

i=1 ci,j = 1 and ci,j ≥ 0. Therefore

E(Yk|Xk) = CXk.

Let FY
k be the completion of the σ-field on Ω generated by Y0, Y1, . . . ,Yk. As Yk

measures the state of the hidden process Xk, the distribution of Yk, as long as Xk is

given, does not depend on Y1:k−1. Thus the measurement model can be fully described

by

E(Yk|FX
k ∪ FY

k−1) = E(Yk|Xk) = CXk. (2.27)

In this work, we investigate remote state estimation of finite-state hidden Markov model

based on event-triggered measurements, where an event-trigger γk is used to decide

whether the measurement is sent or not at each time instant. Obviously the cardinality

of γk is 2, so the state space Sγ can be identified with

Sγ = {α1, α2},

where αi is the unit vector in R
2 with the ith element equal to 1. Specifically, if γk = α1,

an event is triggered and the measurement is sent to the remote estimator through a

wired/wireless channel; if γk = α2, the event is not triggered and no measurement is

transmitted. In this work, we consider a dynamic event-triggering condition, which

depends not only on the measurement at each time instant, but also on the previous

triggering state γk−1. The intuition of this event-triggering protocol is to allow the

decision of whether or not to transmit the measurement data at each time instant to

be made based on whether the data is transmitted at the previous instant, since the

sensor readings may not be significantly deviated for two consecutive time instants.

Mathematically, this scheduling strategy is described by

E(γk|FX
k ∪ FY

k ∪ Fγ
k−1) = D(Yk)γk−1,
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where Fγ
k−1 is the completion of the σ-field on Ω generated by γ0, γ1, . . . ,γk−1. There-

fore, the event-trigger γk is actually a two-state Markov chain with a dynamic trans-

formation matrix D(Yk) parameterized as

D(Yk) =
∑M

i=1 D
i〈Yk, fi〉,

to reflect the effect of the measurement Yk, where

Di := [diu]u∈N1:2
, diu = [diu,v]

>
v∈N1:2

,

with

diu,v := P(γk = αu|Yk = fi, γk−1 = αv),

so that
∑2

u=1 d
i
u,v = 1 and diu,v ≥ 0. Therefore, γk can be fully described by

E(γk|FX
k ∪ FY

k ∪ Fγ
k−1) =

∑M

i=1 D
i〈Yk, fi〉γk−1. (2.28)

On the other hand, since packet dropout is normally inevitable for a practical commu-

nication channel, it is also considered in this work. Following the standard procedure of

modeling packet dropout, we model the packet dropout process ζk as an i.i.d. Bernoulli

process under P satisfying

P(ζk = 1) = P(ζk = 1|FX
k ∪ FY

k ∪ Fγ
k ∪ F ζ

k−1) = λ,

P(ζk = 0) = P(ζk = 0|FX
k ∪ FY

k ∪ Fγ
k ∪ F ζ

k−1) = 1− λ,

where F ζ
k−1 is the completion of the σ-field on Ω generated by ζ0, ζ1, . . . ,ζk−1. If ζk = 1,

there is no packet loss at k; if ζk = 0, there is a packet loss at k. The model above

indicates that ζ is not related to X, Y and γ. Therefore,

E(ζk) = E(ζk|FX
k ∪ FY

k ∪ Fγ
k ∪ F ζ

k−1) = λ. (2.29)

The main goal of this work is to estimate the state Xk based on the event-triggered

measurement information up to time k available to the remote estimator. If the event

is triggered and there is no packet loss on the communication channel, measurement Yk

is received at the remote estimator; however, if no measurement is received, the cause

can be either that the no event is triggered or that the measurement is sent by the

sensor but dropped by the communication channel. Due to the packet dropout effect,

the event-triggering condition is no longer known to the remote estimator, which makes

the estimation problem even more complicated.
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2.2.3 Map from the reference measure to the “real-world”

measure

In this work, the reference probability approach is used to solve the considered re-

mote estimation problem. To simplify the structure of the event-triggered measurement

information, a reference measure is proposed in this subsection. The idea is to derive

the unnormalized conditional probability distribution of the state under the reference

measure, then map it back to the “real-world” measure.

Consider a reference measure P̄, under which the following relationships hold for

Xk, Yk, γk and ζk under the reference measure P̄,

Ē(Xk+1|FX
k ) = Ē(Xk+1|Xk) = AXk, (2.30)

P̄(Yk = fi|FX
k ∪ FY

k−1) = P̄(Yk = fi) = 1/M, (2.31)

Ē(γk = αj|FX
k ∪ FY

k ∪ Fγ
k−1) = P̄(γk = αj) = 1/2, (2.32)

Ē(ζk|FX
k ∪ FY

k ∪ Fγ
k ∪ F ζ

k−1) = Ē(ζk) = λ. (2.33)

Notice the probability distributions of Xk and ζk are reserved, while Yk and γk become

independent uniform distributed random variables under P̄. The relationships above

are important and will be exploited during the derivation of the conditional probability

distribution of the state under the reference measure P̄. Then we can map the results

derived under P̄ back to the “real-world” space P, which solves the original estimation

problem. Based on this idea, we propose the following Radon-Nikodym derivative

defined over Ḡk := FX
k ∪ FY

k ∪ Fγ
k ∪ F ζ

k :

dP

dP̄

∣

∣

∣

∣

Ḡk

= Λ̄k, (2.34)

with

Λ̄k :=
k
∏

l=1

λ̄l, λ̄k := λ̄k,1 · λ̄k,2,

λ̄k,1 := M
∑M

j1=1〈CXk, fj1〉〈Yk, fj1〉,
λ̄k,2 := 2

∑2
j2=1

〈
∑M

i=1 D
i〈Yk, fi〉γk−1, αj2

〉

〈γk, αj2〉.

For the Radon-Nikodym derivative defined above, we have the following result.

Theorem 2.3. If the model in (2.30)-(2.33) under the reference measure P̄ is mapped

to P via the Radon-Nikodym derivative in (2.34), then the obtained model under P

satisfies (2.26)-(2.29).
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Proof. The detailed proof is omitted due to length limitation. The proof sketch is given

in the following. Firstly, we need the value of Ē
[

λ̄k+1

∣

∣Ḡk

]

. According to the definition

of λ̄k+1 and equation (2.31), based on some calculations, we have

Ē
[

λ̄k+1

∣

∣Ḡk

]

= 1. (2.35)

Then we move on to prove the main result of Theorem 2.3. Let’s start with Xk. Accord-

ing to the definition of Xk+1, Theorem 3.2 in Chapter 2 of [17], and Λ̄k is measurable

on Ḡk, we obtain

E
[

Xk+1|Ḡk

]

=
Ē
[

Xk+1Λ̄k+1

∣

∣Ḡk

]

Ē
[

Λ̄k+1

∣

∣Ḡk

] = Ē
[

Xk+1λ̄k+1

∣

∣Ḡk

]

.

Using P̄(Yk+1 = fi) = 1/M and equation (2.30), based on some further calculations, we

have

E
[

Xk+1|Ḡk

]

= Ē
[

Xk+1λ̄k+1

∣

∣Ḡk

]

= Ē
[

Xk+1|Ḡk

]

= AXk.

By repeated conditioning and FX
k ⊂ Ḡk, we obtain

E
[

Xk+1

∣

∣FX
k

]

= E
[

E
[

Xk+1|Ḡk

]
∣

∣FX
k

]

= AXk.

Following a similar procedure as in evaluating E
[

Xk+1

∣

∣FX
k

]

, we have the following

relationships for Yk, γk and ζk under the “real-world” measure P,

E
[

Yk|FX
k ∪ FY

k−1

]

= CXk+1,

E
[

γk
∣

∣FX
k ∪ FY

k ∪ Fγ
k−1

]

=
∑M

i=1 D
i〈Yk, fi〉γk−1,

E
[

ζk|FX
k ∪ FY

k ∪ Fγ
k ∪ F ζ

k−1

]

= λ.

The proof is then completed.

To describe the information received at the remote estimator, we introduce an in-

strumental measurement process Ȳk taking values in {g1, g2, . . . , gN}, where gi is the

unit vector in R
M+1 with the ith element equal to 1. Define

Ȳk =

{

gi, if {Yk = fi} ∩ {γk = α1} ∩ {ζk = 1},
gM+1, if {γk = α2} ∪ {{γk = α1} ∩ {ζk = 0}},

where Yk = gi implies that the measurement is received by the remote estimator, and

Yk = gM+1 implies that the measurement is not received. Let F Ȳk

k be the completion of

the σ-field on Ω generated by Ȳ0, Ȳ1, . . . ,Ȳk. Notice Ȳk is measurable under Ḡk. Based on
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the above theorem, the problem of estimating state Xk given F Ȳ
k under P can be solved

by considering a state estimation problem under P̄ and mapping the results back to P.

In the next subsection, we derive the unnormalized conditional probability distribution

of the state under P̄, based on which the conditional probability distribution under P

can be obtained.

2.2.4 Recursive estimate of the state

Write q̄k = [q̄1k, . . . , q̄Nk ]T and p̄k = [p̄1k, . . . , p̄Nk ]
T, where

q̄rk = Ē
[

Λ̄k〈Xk, er〉
∣

∣F Ȳ
k

]

, (2.36)

p̄rk = E
[

〈Xk, er〉
∣

∣F Ȳ
k

]

, (2.37)

for r ∈ N1:N . In this way, we have

p̄rk = q̄rk/‖q̄k‖1. (2.38)

Note that p̄k denotes the conditional distribution of the state on the event-triggered

measurement information under P. In the following, we show that the unnormalized

conditional probability distribution q̄k evolves in a linear recursive form, which is the

main result of this work.

Theorem 2.4. For the event-triggered system described by (2.26)-(2.29), the unnor-

malized probability distribution q̄k of the state conditioned on the information available

at the remote estimator under P̄ satisfies the following linear recursive form:

q̄k+1 = diag(ōk+1)Aq̄k, (2.39)

where

ōk+1 := [ō1k+1 . . . ōNk+1]
T ∈ R

N , (2.40)

ōrk+1 := 2M
∑M

j1=1 cj1,r

·
{[

(

dj11,1(1− λ) + dj12,1
)

2M −Mλ
Ȳ M+1
k+1 + dj11,1Ȳ

j1
k+1

][

1− λ

2− λ
Ȳ M+1
k +

∑M

i2=1 Ȳ
i2
k

]

+

[

(

dj11,2(1− λ) + dj12,2
)

2M −Mλ
Ȳ M+1
k+1 + dj11,2Ȳ

j1
k+1

]

1

2− λ
Ȳ M+1
k

}

. (2.41)
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Proof. According to the definition of q̄rk+1, we have

q̄rk+1

=Ē
[

Λ̄k+1〈Xk+1, er〉
∣

∣F Ȳ
k+1

]

=Ē
[

Λ̄kλ̄k+1〈Xk+1, er〉
∣

∣F Ȳ
k+1

]

=Ē
[

Λ̄k〈Xk+1, er〉M
∑M

j1=1〈CXk+1, fj1〉〈Yk+1, fj1〉
· 2∑2

j2=1

〈
∑M

i=1 D
i〈Yk+1, fi〉γk, αj2

〉

〈γk+1, αj2〉
∣

∣F Ȳ
k+1

]

.

Recalling that 〈CXk+1, fj1〉 =
∑N

j3=1 cj1,j3〈Xk+1, ej3〉, we have

q̄rk+1 =2M Ē
[

Λ̄k〈Xk+1, er〉
∑M

j1=1

∑N

j3=1 cj1,j3〈Xk+1, ej3〉
· 〈Yk+1, fj1〉

∑2
j2=1

〈
∑M

i=1 D
i〈Yk+1, fi〉γk, αj2

〉

〈γk+1, αj2〉
∣

∣F Ȳ
k+1

]

, (2.42)

where the term in (2.42) equals to 0 if er 6= ej3 or fj1 6= fi, then we obtain

q̄rk+1 =2M Ē
[

Λ̄k〈Xk+1, er〉
∑M

j1=1 cj1,r〈Yk+1, fj1〉
∑2

j2=1

〈

Dj1γk, αj2

〉

〈γk+1, αj2〉
∣

∣F Ȳ
k+1

]

=2M Ē
[

Λ̄k〈Xk+1, er〉
∑M

j1=1 cj1,r〈Yk+1, fj1〉
·∑2

i0=1〈γk, αi0〉
∑2

j2=1 d
j1
j2,i0

〈γk+1, αj2〉
∣

∣F Ȳ
k+1

]

.

By repeated conditioning and F Ȳ
k+1 ⊂ {FX

k ∪ FY
k+1 ∪ Fγ

k+1 ∪ F ζ
k+1}, combining

Ē(Xk+1|FX
k ) = AXk,

〈AXk, er〉 =
∑N

v=1 arv〈Xk, ev〉, (2.43)

q̄rk+1 becomes

2M Ē
[
∑N

v=1 arv〈Xk, ev〉Λ̄k

∑M

j1=1 cj1,r
∑2

i0=1

∑2
j2=1

· dj1j2,i0〈γk, αi0〉〈γk+1, αj2〉〈Yk+1, fj1〉
∣

∣F Ȳ
k+1

]

,

=2M
∑N

v=1 arv q̄
v
k

∑M

j1=1 cj1,r
∑2

i0=1

∑2
j2=1 d

j1
j2,i0

· Ē
[

〈γk+1, αj2〉〈Yk+1, fj1〉
∣

∣Ȳk+1

]

Ē
[

〈γk, αi0〉
∣

∣Ȳk

]

, (2.44)

where equation (2.44) is due to that γk is only related with Ȳk; γk+1 and Yk+1 are only

related with Ȳk+1. Now the key issue of calculating q̄rk+1 is to obtain

∑2
i0=1

∑2
j2=1 d

j1
j2,i0

Ē
[

〈γk+1, αj2〉〈Yk+1, fj1〉
∣

∣Ȳk+1

]

Ē
[

〈γk, αi0〉
∣

∣Ȳk

]

. (2.45)

For the first step, we focus on

∑2
j2=1 d

j1
j2,i0

Ē
[

〈γk+1, αj2〉〈Yk+1, fj1〉
∣

∣Ȳk+1

]

=
∑2

j2=1 d
j1
j2,i0

P̄
[

Yk+1 = fj1 ∩ γk+1 = αj2

∣

∣Ȳk+1

]

. (2.46)
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1) For Ȳk+1 = gM+1, we have

∑2
j2=1 d

j1
j2,i0

P̄
[

Yk+1 = fj1 ∩ γk+1 = αj2

∣

∣Ȳk+1

]

.

=
2

∑

j2=1

dj1j2,i0
P̄
[

Yk+1 = fj1 ∩ γk+1 = αj2 ∩ Ȳk+1 = gM+1

]

P̄
[

Ȳk+1 = gM+1

] . (2.47)

According to Bayes’ rule, the numerator in (2.47) becomes

2
∑

j2=1

dj1j2,i0P̄
[

Yk+1 = fj1 ∩ γk+1 = αj2 ∩ Ȳk+1 = gM+1

]

=

[

dj11,i0(1− λ) + dj12,i0
]

2M
. (2.48)

According to (2.33), γk+1 is independent of ζk+1, and thus the denominator in (2.47)

satisfies

P̄
[

Ȳk+1 = gM+1

]

=P̄
[

{γk = α2} ∪ {{γk = α1} ∩ {ζk = 0}}
]

=1− P̄
[

γk = α1 ∩ ζk = 0
]

= 1− λ

2
. (2.49)

So we have
2

∑

j2=1

dj1j2,i0P̄
[

Yk+1 = fj1 ∩ γk+1 = αj2

∣

∣Ȳk+1

]

=

[

dj11,i0(1− λ) + dj12,i0
]

2M −Mλ
.

2) For Ȳk+1 = gj1 , we have

∑2
j2=1 d

j1
j2,i0

Ē
[

〈γk+1, αj2〉〈Yk+1, fj1〉
∣

∣Ȳk+1 = gj1
]

=dj11,i0 .

3) For Ȳk+1 = gv, (v 6= j1 and v 6= M + 1),

∑2
j2=1 d

j1
j2,i0

Ē
[

〈γk+1, αj2〉〈Yk+1, fj1〉
∣

∣Ȳk+1 = gv
]

= 0.

Combining the above results, we have

∑2
j2=1 d

j1
j2,i0

P̄
[

Yk+1 = fj1 ∩ γk+1 = αj2

∣

∣Ȳk+1

]

.

=

[

dj11,i0(1− λ) + dj12,i0
]

2M −Mλ
Ȳ M+1
k+1 + dj11,i0Ȳ

j1
k+1, (2.50)

where Ȳ M+1
k+1 = 〈Ȳk+1, gM+1〉 and Ȳ j1

k+1 = 〈Ȳk+1, gj1〉.
Next, we move on to calculate Ē

[

〈γk, αi0〉
∣

∣Ȳk

]

. Since the procedure is the same as

above, the results are directly provided:

Ē
[

〈γk, α1〉
∣

∣Ȳk

]

=
1− λ

2− λ
Ȳ M+1
k +

∑M

i2=1 Ȳ
i2
k , (2.51)

Ē
[

〈γk, α2〉
∣

∣Ȳk

]

=
1

2− λ
Ȳ M+1
k . (2.52)
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Now, combining (2.50), (2.51) and (2.52), equation (2.45) satisfies

∑2
i0=1

∑2
j2=1 d

j1
j2,i0

Ē
[

〈γk+1, αj2〉〈Yk+1, fj1〉
∣

∣Ȳk+1

]

Ē
[

〈γk, αi0〉
∣

∣Ȳk

]

.

=

[

(

dj11,1(1− λ) + dj12,1
)

2M −Mλ
Ȳ M+1
k+1 + dj11,1Ȳ

j1
k+1

]

[

1− λ

2− λ
Ȳ M+1
k +

∑M

i2=1 Ȳ
i2
k

]

+

[

(

dj11,2(1− λ) + dj12,2
)

2M −Mλ
Ȳ M+1
k+1 + dj11,2Ȳ

j1
k+1

]

1

2− λ
Ȳ M+1
k .

Finally, substituting (2.53) into (2.44) and according to the definition of ōrk+1, we obtain

q̄rk+1 = ōrk+1

∑N

v=1 arv q̄
v
k. (2.53)

In this way, by the definition of matrix A and ōk+1, we have

q̄k+1 = diag(ōk+1)Aq̄k, (2.54)

which completes the proof.

Remark 2.1. The theorem above indicates that when the measurement is not received

by the remote estimator, two scenarios need to be considered, including the scenario that

the event is not triggered and the scenario that the event-triggering condition is satisfied

but there is a packet loss in the communication channel. The conditional probability

distribution of the state can be easily used to obtain the MMSE estimate of the state.

On the other hand, an interesting special case to consider is that the parameters in

dynamic event-triggering condition are configured as diu,1 = diu,2 = dju,1 = dju,2 for all i, j

∈ N1:M , which means that if the measurement is not received, no “useful” information

about Yk can be inferred, as every fi in the measurement space has the same probability

of being transmitted. This corresponds to the case of ignoring the information contained

in the event-triggering condition, which is utilized for comparison in the numerical

example.

2.2.5 Numerical example

In this subsection, a hidden Markov model with a finite number of real-valued states

is considered to illustrate the effectiveness of the proposed method. Consider a scalar

real-valued process xk with N = 41 and state space x1, . . . , xN , where x1 = −5, xN = 5,

and xi+1−xi = 0.25. The transition matrix A is constructed as A = [a1, . . . , aN ], where

ai = [φ(τ, 0, 0.15, N)/
∑

l∈Z1−i:N−i
φ(l, 0, 0.15, N)]l∈Z1−i:N−i

, and

φ(τ, µ, σ, n) :=
1√
2πσ

exp

[

− [(τ − µ)/n]2

2σ2

]

,
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Figure 2.6: Estimation performance comparison for the system with i.i.d. packet
dropout process (λ = 0.8).

so that ‖ai‖1 = 1 holds. The measurement process yk is a scalar real-valued pro-

cess with M = 41 and state space y1, . . . , yM , where y1 = −2, yM = 2, and

yi+1 − yi = 0.1. The measurement matrix C is constructed as C = [c1, . . . , cM ], where

ci := [φ(τ, 0, 0.05,M)/
∑

l∈Z1−i:M−i
φ(l, 0, 0.05,M)]l∈Z1−i:M−i

. Recalling that

diu,v := P(γk = αu|Yk = fi, γk−1 = αv),

the values of diu,v’s at time instant k (which is written as di,ku,v below) depend on the pre-

viously received measurement and the state of previous event-trigger. The probability

of sending di,k1,v is determined by the following stochastic event-triggering condition

di,k1,v = 1− φ(i, Ỹ , σv,M)/φ(Ỹ , Ỹ , σv,M),

where Ỹ is the value of the previous received measurement at time instant k, and σv

is the variance parameter that controls the transmission frequency. To implement the

event-triggering process γk, we select a uniform random variable % defined on [0, 1],

whose realization determines the value of γ as follows:

γk =

{

1, if % <
∑M

i=1 D
i〈Yk, fi〉γk−1,

0, if % ≥ ∑M

i=1 D
i〈Yk, fi〉γk−1.
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Figure 2.7: Tradeoff between the communication rate and estimation performance (λ =
0.8).

Intuitively, if γk−1 = α2, we prefer to send the measurement at time instant k compared

with the case when γk−1 = α1, so the variance parameter σ1 should be larger than σ2.

We consider the scenario with unreliable communication channel and utilize i.i.d. packet

dropout model with packet dropout rate 1− λ = 20%.

The MMSE estimate of Xk is obtained from the conditional probability distribution

of the state obtained in Theorem 2.4. For notational brevity, the proposed event-

triggered estimate is termed as “e-MMSE estimate”, which is compared with the other

two estimators. One is the MMSE estimate obtained by ignoring information contained

in the dynamic event-triggering condition based on the parameterization of Di in Re-

mark 2.1, termed as “p-MMSE estimate”; the other one is the MMSE estimate obtained

using all past measurements, termed as “n-MMSE estimate”. For δ1 = 2δ2 = 0.25, the

performance comparison of the n-MMSE estimate, the proposed e-MMSE estimate and

the p-MMSE estimate obtained using the same sequence {γkζk} is shown in Fig. 2.6.

The average communication rate is 0.24 and the resulting estimation errors for p-MMSE,

n-MMSE and e-MMSE estimates are 1.3002, 0.3357, 0.9957, respectively. The tradeoff

between the average estimation error and the average communication rate obtained by

keeping δ1 = 2δ2 and using different δ1 is further shown in Fig. 2.7, indicating that

the exploration of the set-valued information contained in the dynamic event-triggering

condition helps improve the estimation performance in terms of the average commu-

nication rate. In Fig. 2.7, notice there is still a gap between the results of e-MMSE

estimate and n-MMSE estimate when communication rate is almost 0.8, which is caused
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Figure 2.8: Tradeoff between the communication rate and estimation performance.

by packet loss. The tradeoff between average estimation error and average communi-

cation rate for the cases λ = 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, and 1 are shown in Fig. 2.8,

where the black line is the tradeoff between average estimation error and packet dropout

rate without using event-triggering condition, namely, γk = α1 all the time. Fig. 2.8

shows that, when the average communication rate is close to 1 − λ, p-MMSE and e-

MMSE estimates become undistinguishable and converge to the result from without

using event-triggering condition on the black curve.

2.2.6 Conclusion

In this work, a problem of state estimation for hidden Markov models subject to

dynamically event-triggered measurements and packet dropouts has been considered

and solved. Utilizing the reference probability measure approach, closed-form expres-

sions for the unnormalized and normalized conditional distributions of the states on

the event-triggered measurement information are obtained, based on which the optimal

event-based state estimates can be calculated. For future work, the effect of the dy-

namic event-trigger and packet dropout process on the closed-loop risk-sensitive control

will be investigated.
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Chapter 3

Event-triggered state estimation

with an energy harvesting sensor∗

∗In this chapter, we investigate an event-triggered state estimation problem for a

linear Gaussian system with an energy harvesting sensor, where the system state is not

directly measurable but is observed through a linear measurement equation with some

Gaussian measurement noise.

3.1 Introdution

For energy harvesting sensors, although the energy is inexhaustible from a long-

term perspective as the sensor can absorb energy from the environment itself, energy

shortage still occurs occasionally due to the randomness of the energy harvested from

the environment or rapid energy consumption when the systems have significant de-

viations. To deal with this potential energy shortage, the sensor should adjust the

frequency/probability of measurement transmission based on both the importance of

the data and the amount of energy available, according to appropriately designed event-

triggering conditions. This alternative transmission policy, however, in turn adds to the

difficulty of solving the state estimation problem since the event-triggering condition is

no longer fixed and not known to the remote estimator anymore.

The main contributions of the work in this chapter are summarized as follows.

Firstly, we propose a stochastic energy-dependent event-triggered transmission proto-

col. The proposed event-triggering condition adds one degree of freedom by considering

the energy level of the sensor and helps trading estimation performance for low com-

∗Parts of the results in this chapter appeared in IEEE Transactions on Automatic Control,
62(9):4768-4775, 2017.
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munication rates when the sensor’s energy is not sufficient and vice versa, which is

different from the conditions that normally only depend on the measurement informa-

tion considered in the existing literature [62]. Secondly, we derive the joint conditional

probability distribution of the state and energy on the set-valued and point-valued com-

bined information at the estimator, based on which the recursive MMSE estimates of

the state and energy are obtained. Thirdly, the feature of the communication rate of

the proposed transmission protocol is presented by analyzing the relationship between

the average communication rate and the average energy harvesting rate. The analysis

indicates that these two average rates will match when the average energy harvesting

rate of the sensor is large enough but smaller than 1, regardless of the choice of the

other parameters, which is also verified by numerical examples.

For many event-triggered remote state estimation problems, the optimal estimates

normally bear a Kalman-like structure. The results in this chapter, however, do not

coincide with the existing results on state estimation problems using an energy har-

vesting sensor (e.g., [46]), since in this work the main results focus on how the Kalman

gain evolves under the considered energy-dependent transmission protocol and provide

the specific structure of the estimator by exploiting the event-triggered measurement

information, which contains coupled information of the system state and the energy

level. In addition, the considered sensor’s decision rule in this work is different from the

one obtained in [46]; due to the feature of the energy harvesting process considered in

this work, analytical results of the MMSE estimate of the energy level are also provided.

Notation: R denotes the set of real numbers. N denotes the set of nonnegative integers.

Let m,n ∈ N; Rm×n denotes the set of m by n real-valued matrices. For brevity, denote

R
m := R

m×1. For n ∈ N, let n! :=
∏n

t=1 t. 1{A} is the indicator function of a set A.

Let δ(x) denote the probability distribution of a random variable x which only takes a

single value x = 0.

3.2 Problem formulation

We consider a remote event-triggered estimation scheme in Fig. 3.1. Consider a

discrete-time linear time-invariant process driven by white noise:

xk+1 = Axk + wk, (3.1)

where xk ∈ R
n is the state, and wk ∈ R

n is zero-mean Gaussian with covariance Q > 0.

The initial value x0 is Gaussian with mean x̂−
0 = µ0, and covariance P−

0 . The state
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Figure 3.1: Block diagram of the event-based remote estimation system.

information is measured by an energy harvesting sensor, which communicates with the

state estimator through a wireless channel, and the output equation is

yk = Cxk + vk, (3.2)

where vk ∈ R
m is zero-mean Gaussian with covariance R > 0. In addition, x0, wk and

vk are uncorrelated with each other. Let ρk denote the amount of energy harvested at

time k, and we assume ρk is an i.i.d. Poisson process with parameter λ such that

Pr(ρk = t) =
λt exp(−λ)

t!
. (3.3)

This assumption is based on the fact that energy harvesting modules usually contain

small sub-modules harvesting energy independently, where the net energy harvested can

be modeled as a binomial process, which approaches to the Poisson process in the limit

when the number of sub-modules becomes large [15]; the Poisson energy harvesting

model is widely used in engineering applications, e.g., cellular mobile communication

networks [68], WSN [43] and traffic steering for green cellular networks [81]. Further-

more, we assume the energy harvesting sensor is equipped with a chargeable battery

with initial power z0. Denote the energy available to the sensor at time instant k as zk.

We assume zk satisfies

zk+1 = zk − 1{zk>0} · γy
k + ρk. (3.4)

Here γy
k is a binary-valued event-trigger indicating whether a sensor transmission of yk is

performed at time instant k, with γy
k = 0 meaning no transmission and γy

k = 1 otherwise;

We assume z0, x0, wk, vk and ρk are independent with each other. We assume when

zk > 0, the energy consumption is 1 for each measurement transmission from the sensor

to the remote estimator. Although sensors equipped with energy harvesting modules

allow more transmissions from the sensor to the estimator for better performance,
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non-chargeable backup batteries are still necessary for many application scenarios to

maintain low-rate transmission and guarantee basic estimation performance. In this

regard, we assume a backup battery is equipped to the system to allow necessary

transmissions when zk = 0. The capacity of the backup battery can be determined

from the worst-case scenario, namely when the energy harvested is always zero; in this

way, the necessary capacity of the backup battery equals to the length of the battery

maintenance period multiply the average communication rate under the worst case

(which can be estimated based on the results for communication rate analysis obtained

in [23]).

At each time instant k, the sensor produces a measurement yk and generates a ran-

dom variable ζk, which is uniformly distributed over [0, 1]. The scheduler of the sensor

tests an energy-dependent stochastic event-triggering condition and the observation yk

is transmitted if and only if γy
k = 1, namely,

γy
k =

{

0, if ζk ≤ βzexp
(

−y>Πy/2
)

,
1, if ζk > βzexp

(

−y>Πy/2
)

,

where 0 < β < 1 and Π > 0. In other words, we have

Pr(γy
k = 0|zk = z, yk = y) = βzexp

(

−y>Πy/2
)

. (3.5)

In equation (3.5), β is a control parameter which decides how the energy level influences

the event-triggering condition, e.g., if β is very close to 1, βz does not vary too much

when z takes different levels, indicating the influence of energy level on the event-

triggering condition is relatively weaker compared with the case when β is smaller. As

β < 1, when the energy storage of the sensor zk is large, the scheduler tends to send the

measurement more often and sacrifice communication rate for estimation performance

as the energy issue is not serious in this scenario. To provide the remote estimator some

partial information of the battery status, we assume the value of zk is transmitted to

the estimator only if γz
k = 1 and not transmitted if γz

k = 0, where γz
k is a transmission

decision variable. Define a sequence {ϑk} for k ≥ 0 such that

ϑk = γz
kzk + (1− γz

k)(ϑk−1 − γy
k−1), (3.6)

where ϑk denotes the lower bound of the possible energy level at k. We consider the

following transmission policy for zk:

γz
k =

{

1, if {ϑk−1 − γy
k−1 = 0} ∪ {zk = 0} ∪ {zk−1 = 0, zk > 0};

0, otherwise.
(3.7)
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At each time instant k, the sensor first updates γz
k according to equation (3.7), then

obtains ϑk according to equation (3.6). This policy acts like an alarm protocol, indicat-

ing that zk is transmitted to the estimator when its value or its lower bound estimate

ϑk−1 − γy
k−1 becomes 0, or when some energy is harvested to reactivate the sensor from

an out-of-power status; when zk is sent to the estimator, the value of ϑk is updated as

well. Since zk is scalar- and integer-valued (as opposed to the vector- and real-valued

sensor measurements yk) and the event γz
k = 1 is less likely to happen than γy

k = 1 in

many scenarios (e.g. Fig. 3.2), the total energy consumption caused by energy-level

transmission is much smaller than that used for measurement transmission, and thus we

assume the energy used in transmitting zk is negligible to simplify the analysis in this

work. In addition, the case that the energy consumption for zk is non-negligible can be

considered along a similar line of arguments for estimator design, as the consideration

of energy consumption for transmitting zk does not further complicate the information

pattern provided by the event-triggering conditions. To simplify the derivations and fo-

cus on the main event-based estimation problem, we consider the simpler case that the

energy consumption of transmitting zk can be ignored in this work. We assume γz
0 = 1.

Let I0 = {z0, γy
0 , γ

y
0y0} and for k ∈ N, Ik+1 = Ik ∪ {γy

k+1, γ
z
k+1, γ

y
k+1yk+1, γ

z
k+1zk+1},

which denotes the information available at the remote estimator. The goal is to esti-

mate xk and zk based on Ik. Specifically, the following two problems will be investigated

in this work:

1. What form will the MMSE event-based estimate for xk and zk have, given

the event-triggered measurement information under the energy-dependent event-

triggered transmission policy?

2. How will the energy harvesting process affect the average measurement transmis-

sion rate between the sensor and the estimator?

3.3 Main results

In this section, the event-based estimation problem is solved for the proposed energy-

dependent event-triggering condition. To do this, the joint probability distribution of

the state and energy level is derived, which is summarized in the following theorem.

Before continuing, we introduce three γ-dependent sequences {Lk}, {αi,k, i ∈ N1:Lk
}
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and {ηi,k, i ∈ N1:Lk
} for k ≥ 0 such that for γz

k = 0,

Lk+1 = Lk, (3.8)

αi,k+1 = β · (αi,k + λ), (3.9)

ηi,k+1 =
ηi,k exp[−(1−β)(αi,k+λ)]

∑Lk
j=1

ηj,k exp[−(1−β)(αj,k+λ)]
(3.10)

for γy
k+1 = 0, and

Lk+1 = 2Lk, (3.11)

αi,k+1 =

{

αi,k + λ, if 1 ≤ i ≤ Lk;
β(αi−Lk,k + λ), if Lk < i ≤ Lk+1,

(3.12)

ηi,k+1 =







ηi,k

1−
∑Lk

j=1
ηj,kβϑ exp[− 1

2
y>Πy−(1−β)(αj,k+λ)]

, if 1 ≤ i ≤ Lk;

−ηi−Lk,kβ
ϑk+1 exp[− 1

2
y>Πy−(1−β)(αi−Lk,k+λ)]

1−
∑Lk

j=1
ηj,kβ

ϑk+1 exp[− 1

2
y>Πy−(1−β)(αj,k+λ)]

, if Lk < i ≤ Lk+1

(3.13)

for γy
k+1 = 1, where y denotes the measurement received at k+ 1 for simplicity; finally,

for γz
k = 1,

Lk+1 = 1, α1,k+1 = βλ, η1,k+1 = 1, (3.14)

for γy
k+1 = 0, and Lk+1 = 2,

α1,k+1 = λ, α2,k+1 = βλ, (3.15)

η1,k+1 =
1

1−βϑ1 exp[− 1

2
y>Πy−(1−β)λ]

, (3.16)

η2,k+1 =
−βϑ1 exp[− 1

2
y>Πy−(1−β)λ]

1−βϑ1 exp[− 1

2
y>Πy−(1−β)λ]

, (3.17)

for γy
k+1 = 1. In addition, for k ≥ 0, denote {x̂k} and {Pk} as sequences that evolve

according to

Pk = P−
k − P−

k C>[R + (1− γy
k)Π

−1 + CP−
k C>]−1CP−

k , (3.18)

x̂k = Pk(P
−
k )−1x̂−

k + γy
kPkC

>R−1yk, (3.19)

P−
k+1 = APkA

> +Q, (3.20)

x̂−
k+1 = Ax̂k, (3.21)

where x̂−
0 and P−

0 are the mean and covariance of the initial value x0. Based on the

above definitions, we are ready to present our first result.
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Theorem 3.1. For the event-based state estimation problem in Fig. 3.1 with the energy-

dependent event-triggering scheme in (3.4)-(3.5), the joint probability distribution of zk

and xk (k ≥ 1) conditioned on the event-triggered measurement information Ik has the

form:

fzk,xk
(z, x|Ik) =

[

γz
k · δ(z − zk) + (1− γz

k)
∑Lk

i=1 ηi,k
α
z−ϑk
i,k

exp (−αi,k)

(z−ϑk)!

]

· 1

(2π)
n
2 det

1
2 Pk

exp
[

−(x− x̂k)
>P−1

k (x− x̂k)/2
]

, (3.22)

where the paramters Lk, αi,k, ηi,k, x̂k and Pk evolve in recursive forms according to

(3.8)-(3.21).

Proof of Theorem 3.1. To prove the result, we consider the general case first and the

basis when k = 1 can be proved by following a similar procedure as the general case,

which will be shown at the end of the proof. We assume at time instant k, the prob-

ability distribution function of zk = z, xk = x|Ik has the form in equation (3.22) and

then we prove this form holds for the joint probability distribution of zk+1 and xk+1

conditioned on Ik+1.

(a) Firstly, we consider the case γz
k = 0. According to equation (3.22), we have

fzk,xk
(z, x|Ik) =

∑Lk

i=1
ηi,k

α
z−ϑk
i,k

exp (−αi,k)

(z−ϑk)!(2π)
n
2 det

1
2 Pk

· exp
[

−(x− x̂k)
>P−1

k (x− x̂k)
/

2].

For time instant k + 1, if γz
k+1 = 0, we have

fzk+1,xk+1
(z, x|Ik)

=
∑z+γ

y
k

t=ϑk

∫

Rn

fzk+1,xk+1
(z, x|Ik, zk = t, xk = ξ)fzk,xk

(t, ξ|Ik)dξ.

Since Ik is determined by x0, z0, w0:k−1, v0:k and ρ0:k−1, we have

fzk+1,xk+1
(z, x|Ik, zk = t, xk = ξ)

=fwk
(x− Axk|xk = ξ) Pr(zk+1 = z|zk = t, γy

k)

= 1

(2π)
n
2 det

1
2 Q

exp
[

−(x− Aξ)>Q−1(x− Aξ)/2
]

λ
z−t+γ

y
k exp(−λ)

(z−t+γ
y
k
)!

.
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Therefore, for γz
k+1 = 0, we have

fzk+1,xk+1
(z, x|Ik)

=

z+γ
y
k

∑

t=ϑk

∫

Rn

1

(2π)
n
2 det

1
2 Q

exp
[

−1
2
(x− Aξ)>Q−1(x− Aξ)

]

· λ
z−t+γ

y
k exp(−λ)

(z − t+ γy
k)!

Lk
∑

i=1

ηi,k
αt−ϑk

i,k exp (−αi,k)

(t− ϑk)!(2π)
n
2 det

1

2 Pk

· exp
[

−1
2
(ξ − x̂k)

>P−1
k (ξ − x̂k)

]

dξ

∝
∑Lk

i=1

∑z+γ
y
k

t=ϑk

ηi,k
αt−ϑk

i,k λz−t+γ
y
k exp (−αi,k − λ)

(t− ϑk)!(z − t+ γy
k)!

·
∫

Rn

exp
[

−1
2
(x− Aξ)>Q−1(x− Aξ)

]

exp
[

−1
2
(ξ − x̂k)

>P−1
k (ξ − x̂k)

]

dξ (3.23)

∝
∑Lk

i=1
ηi,k

(αi,k + λ)z−ϑk+1 exp (−αi,k − λ)

(2π)
n
2 (z − ϑk+1)! det

1

2 (APkA> +Q)

· exp
[

−1
2
(x− Ax̂k)

>(APkA
> +Q)−1(x− Ax̂k)

]

, (3.24)

where Lemma 15 in [57] is used to derive equation (3.24) from (3.23). For Pr(γk+1 =

0|xk+1 = x, zk+1 = z, Ik), we have

Pr(γk+1 = 0|xk+1 = x, zk+1 = z, Ik)

=

∫

Rm

Pr(γk+1 = 0|yk+1 = y, xk+1 = x, zk+1 = z, Ik)fyk+1
(y|xk+1 = x, zk+1 = z, Ik)dy

=

∫

Rm

βz exp
(

−1
2
y>Πy

) 1

(2π)
m
2 det

1

2 R
exp

[

−1
2
(y − Cx)>R−1(y − Cx)

]

dy

=
βz

det
1

2 (ΠR + I)
exp

[

−1
2
x>C>(R +Π−1)−1Cx

]

.
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Based on the above calculations, for γz
k+1 = 0 and γy

k+1 = 0, we have

fzk+1,xk+1
(z, x|Ik+1)

∝Pr(γk+1 = 0|xk+1 = x, zk+1 = z, Ik)fzk+1,xk+1
(z, x|Ik)

∝ βz

det
1

2 (ΠR + I)
exp

[

−1
2
x>C>(R +Π−1)−1Cx

]

·
Lk
∑

i=1

ηi,k
(αi,k + λ)z−ϑk+1 exp (−αi,k − λ)

(2π)
n
2 (z − ϑk+1)! det

1

2 (APkA> +Q)

· exp
[

−1
2
(x− Ax̂k)

>(APkA
> +Q)−1(x− Ax̂k)

]

(3.25)

∝
Lk
∑

i=1

ηi,k
βz(αi,k + λ)z−ϑk+1 exp (−αi,k − λ)

(2π)
n
2 (z − ϑk+1)! det

1

2 Pk+1

· exp
[

−1
2
(x− x̂k+1)

>P−1
k+1(x− x̂k+1)

]

, (3.26)

where Lemma 15 in [57] is used to derive equation (3.26) from (3.25) and

Pk+1 =
[

(APkA
> +Q)−1 + C>(R +Π−1)−1C

]−1

=P−
k+1 − P−

k+1C
>[(R +Π−1) + CP−

k+1C
>]−1CP−

k+1,

x̂k+1 =
[

(APkA
> +Q)−1 + C>(R +Π−1)−1C)

]−1
(APkA

> +Q)−1Ax̂k

=Pk+1(P
−
k+1)

−1Ax̂k.

Based on some further calculations, it is easy to verify that for γz
k+1 = 0 and γy

k+1 = 0,

fzk+1,xk+1
(z, x|Ik+1)

=

Lk+1
∑

i=1

ηi,k+1

α
z−ϑk+1

i,k+1 exp (−αi,k+1)

(z − ϑk+1)!(2π)
n
2 det

1

2 Pk+1

exp
[

−1
2
(x− x̂k+1)

>P−1
k+1(x− x̂k+1)

]

,

where Lk+1 = Lk, αi,k+1 = β · (αi,k + λ) and

ηi,k+1 =
ηi,k exp [−(1− β)(αi,k + λ)]

∑Lk

j=1 ηj,k exp [−(1− β)(αj,k + λ)]
.

Now we move on to consider the case γz
k+1 = 0 and γy

k+1 = 1. To do this, we first

consider the term fzk+1,xk+1
(z, x|Ik, yk+1 = y). Based on the Bayes’ rule and equation
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(3.24), we have

fzk+1,xk+1
(z, x|Ik, yk+1 = y)

∝fyk+1
(y|zz+1 = z, xk+1 = x, Ik)fzk+1,xk+1

(z, x|Ik)

=
1

(2π)
m
2 det

1

2 R
exp

[

−1

2
(y − Cx)>R−1(y − Cx)

]

·
Lk
∑

i=1

ηi,k
(αi,k + λ)z−ϑk+1 exp (−αi,k − λ)

(2π)
n
2 (z − ϑk+1)! det

1

2 (APkA> +Q)

· exp
[

−1
2
(x− Ax̂k)

>(APkA
> +Q)−1(x− Ax̂k)

]

(3.27)

∝
Lk
∑

i=1

ηi,k
(αi,k + λ)z−ϑk+1 exp (−αi,k − λ)

(2π)
n
2 (z − ϑk+1)! det

1

2 Pk+1

· exp
[

−1
2
(x− x̂k+1)

>P−1
k+1(x− x̂k+1)

]

, (3.28)

where Lemma 15 in [57] is used from (3.27) to (3.28), and

P−
k+1 =APkA

> +Q,

Pk+1 =P−
k+1 − P−

k+1C
>(R + CP−

k+1C
>)−1CP−

k+1,

x̂−
k+1 =Ax̂k,

x̂k+1 =
[

(P−
k+1)

−1 + C>R−1C
]−1

[(P−
k+1)

−1x̂−
k+1 + C>R−1y]

=Pk+1(P
−
k+1)

−1x̂−
k+1 + Pk+1C

>R−1y.

Based on the above results, for γz
k+1 = 0 and γy

k+1 = 1, we have

fzk+1,xk+1
(z, x|Ik+1)

∝Pr(γk+1 = 1|xk+1 = x, zk+1 = z, yk+1 = y, Ik)

· fzk+1,xk+1
(z, x|Ik, yk+1 = y)

∝
[

1− βz exp
(

−1
2
y>Πy

)]
∑Lk

i=1 ηi,k
(αi,k+λ)z−ϑk+1 exp (−αi,k−λ)

(2π)
n
2 (z−ϑk+1)! det

1
2 Pk+1

· exp
[

−1
2
(x− x̂k+1)

>P−1
k+1(x− x̂k+1)

]

.

It is easy to verify that for γz
k+1 = 0 and γy

k+1 = 1,

fzk+1,xk+1
(z, x|Ik+1)

=
∑Lk+1

i=1 ηi,k+1
α
z−ϑk+1

i,k+1
exp (−αi,k+1)

(2π)
n
2 (z−ϑk+1)! det

1
2 Pk+1

exp
[

−1
2
(x− x̂k+1)

>P−1
k+1(x− x̂k+1)

]

,
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where Lk+1 = 2Lk,

αi,k+1 =

{

αi,k + λ, if 1 ≤ i ≤ Lk;
β(αi−Lk,k + λ), if Lk < i ≤ Lk+1;

ηi,k+1 =







ηi,k

1−
∑Lk

j=1
ηj,kβ

ϑk+1 exp[− 1

2
y>Πy−(1−β)(αj,k+λ)]

, if 1 ≤ i ≤ Lk;

−ηi−Lk,kβ
ϑk+1 exp[− 1

2
y>Πy−(1−β)(αi−Lk,k+λ)]

1−
∑Lk

j=1
ηj,kβ

ϑk+1 exp[− 1

2
y>Πy−(1−β)(αj,k+λ)]

, if Lk < i ≤ Lk+1.

For time instant k + 1, if γz
k+1 = 1, the exact value of the energy level at time k + 1 is

known by the estimator, thus, it is straightforward to obtain

fzk+1,xk+1
(z, x|Ik+1) (3.29)

= δ(z−zk+1)

(2π)
n
2 det

1
2 Pk+1

exp
[

−1
2
(x− x̂k+1)

>P−1
k+1(x− x̂k+1)

]

,

where x̂k+1 and Pk+1 follow equations (3.18)-(3.21).

(b) Secondly, we consider the case γz
k = 1. According to equation (3.22), we have

fzk,xk
(z, x|Ik)

= δ(z−zk)

(2π)
n
2 det

1
2 Pk

exp
[

−1
2
(x− x̂k)

>P−1
k (x− x̂k)

]

.

For time instant k+1, if γz
k+1 = 0, following a similar argument as in part (a), we have

fzk+1,xk+1
(z, x|Ik)

=fzk+1
(z|zk, γy

k)fxk+1
(x|Ik)

= λ
z−ϑk+1 exp(−λ)

(z−ϑk+1)!(2π)
n
2 det

1
2 P−

k+1

exp
[

−1
2
(x− x̂−

k+1)
>(P−

k+1)
−1(x− x̂−

k+1)
]

,

where ϑk+1 = ϑk − γy
k , ϑk = zk, P

−
k+1 = APkA

> + Q, and x̂−
k+1 = Ax̂k. Based on the

above results, we have for γy
k+1 = 0,

fzk+1,xk+1
(z, x|Ik+1)

= (βλ)z−ϑk+1 exp(−βλ)

(z−ϑk+1)!(2π)
n
2 det

1
2 Pk+1

exp
[

−1
2
(x− x̂k+1)

>P−1
k+1(x− x̂k+1)

]

;

for γy
k+1 = 1,

fzk+1,xk+1
(z, x|Ik+1)

=
[

1− βz exp
(

−1
2
y>Πy

)]

λ
z−ϑk+1 exp(−λ)

(z−ϑk+1)!(2π)
n
2 det

1
2 Pk+1

· exp
[

−1
2
(x− x̂k+1)

>P−1
k+1(x− x̂k+1)

] /{

1− βϑk+1 exp
[

−1
2
y>Πy − (1− β)λ

]}

.
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Therefore we have for γz
k+1 = 0,

fzk+1,xk+1
(z, x|Ik+1)

=
∑Lk+1

i=1 ηi,k+1
α
z−ϑk+1

i,k+1
exp (−αi,k+1)

(z−ϑk+1)!(2π)
n
2 det

1
2 Pk+1

exp
[

−1
2
(x− x̂k+1)

>P−1
k+1(x− x̂k+1)

]

,

where for γy
k+1 = 0, we have

Lk+1 = 1, η1,k+1 = 1, α1,k+1 = βλ;

for γy
k+1 = 1, we have Lk+1 = 2,

α1,k+1 = λ, α2,k+1 = βλ,

η1,k+1 =
1

1−β
ϑk+1 exp[− 1

2
y>Πy−(1−β)λ]

,

η2,k+1 =
−β

ϑk+1 exp[− 1

2
y>Πy−(1−β)λ]

1−β
ϑk+1 exp[− 1

2
y>Πy−(1−β)λ]

.

For time instant k + 1, if γz
k+1 = 1, it is straightforward to obtain the joint proba-

bility distribution of zk+1 and xk+1 as described in (3.29), where x̂k+1 and Pk+1 follow

equations (3.18)-(3.21). Recall that we assume γz
0 = 1. For k = 1, following a similar

argument as that for the general case in (b), we obtain fz1,x1
(z, x|I1), which satisfies

equation (3.22). It is not difficult to obtain that x̂−
1 = Ax̂0, P

−
1 = AP0A

> +Q, and the

other parameters follow (3.14)-(3.19). This completes the proof.

Remark 3.1. Since a Poisson energy harvesting process is considered, it is natural to

expect that the distribution of zk may follow an exponential form. The issue, however,

is that due to the energy-based transmission protocol, the event-triggered information

{γy
k , γ

y
kyk} provides not only information about xk, but also information about zk; we

need to investigate how the conditional probability distribution of zk evolves when

γy
k = 0 and how it is related to yk if γy

k = 1, which are shown in equations (3.8)-

(3.17). According to equations (3.8)-(3.13), for γz
k = 0, the theorem indicates that

Lk+1 = Lk if γy
k = 0, where αi,k+1 and ηi,k+1 can be calculated following equations

(3.9)-(3.10), and that Lk = 2Lk if γy
k = 1, where αi,k+1 and ηi,k+1 evolve according to

piecewise functions, depending on the index i as shown in equations (3.12)-(3.13). The

parameters are updated at time instant k + 1 according to equations (3.14)-(3.17) for

γz
k = 1, which can be seen as the re-initialization of the scaled exponential distribution.

In Theorem 3.1, the joint probability distribution of the state and energy level

derived is in a recursive form, based on which, the marginal probability distributions
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of the state and energy level can be obtained by integration, then it is straightforward

to derive the MMSE estimates of the state and energy level, which are summarized in

Theorem 3.2.

Theorem 3.2. For the event-based state estimation problem in Fig. 3.1 with the energy-

dependent event-triggering scheme in (3.4)-(3.5) and k ≥ 1, the probability distribution

fxk
(x|Ik) is N (x̂k, Pk), where x̂k and Pk evolve according to equations (3.18)-(3.21).

The MMSE estimate of the state x̄k satisfies

x̄k = x̂k. (3.30)

The MMSE estimate z̄k of the sensor energy level satisfies

z̄k = γz
kzk + (1− γz

k)(ϑk +
∑Lk

i=1 ηi,kαi,k). (3.31)

Remark 3.2. Notice that in equation (3.31), the estimate of zk is recursive and depends

on
∑Lk

i=1 ηi,kαi,k if γz
k = 0, where Lk+1 = 2Lk if γy

k = 1, which indicates that the

computational complexity of the estimate of zk will increase exponentially with respect

to the number of instants when γy
k = 1. One solution to this issue is to transmit the

energy level zk to the remote estimator when the computational complexity reaches a

specific limit, i.e., we have γz
k = 1 if γz

kr
= 1, γz

t = 0 for t = Nkr:k−1 and
∑k−1

t=kr
γy
t ≥ T ,

where T is a predefined nonnegative constant. We note that this sensor transmission

of zk only affects the implementation of the estimator, but does not affect the event-

triggering process {γy
k}.

3.4 Relationship between the communication rate

and energy harvesting rate

In this section, we analyze the relationship between the communication rate and

energy harvesting rate for systems with our proposed transmission protocol. We focus

on the analysis of the average measurement transmission rate, since the transmission of

yk is the main cause of sensor energy consumption and more likely to happen compared

with the transmission of zk, which will also be shown in the numerical example. Define

the average communication rate as γ := lim supN→∞
1
N

∑N

k=1 γ
y
k . To allow asymptotic

analysis, we assume the system in (3.1) is stable.

Specifically, if limN→∞
1
N

∑N

k=1(γ
y
k − ρk) < −ε holds with a sufficiently large proba-

bility for some small and positive ε, we have from equation (3.4) that limk→∞ zk → ∞
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w.p. 1− ζ for some sufficiently small ζ > 0. Recall that lim
k→∞

1
N

∑N

k=1 ρk = λ due to the

nature of Poisson process. From the definition of γy
k , this further implies

lim
k→∞

Pr(γy
k = 0) = lim

k→∞

∫

Rm

∞
∑

z=0

Pr(γy
k = 0|zk = z, yk = y)f(yk = y|zk = z) Pr(zk = z)dy

= lim
k→∞

∫

Rm

∞
∑

z=0

βz exp
(

−1
2
y>Πy

)

f(yk = y|zk = z) Pr(zk = z)dy

≈ lim
k→∞

lim
z→∞

∫

Rm

βz exp
(

−1
2
y>Πy

)

f(yk = y|zk = z)dy = 0, (3.32)

where (3.32) is due to that ζ is close to 0, the probability of lim
k→∞

zk → ∞ is 1−ζ and the

summation of probabilities for zk taking all the other values equals ζ. In other words,

we have lim supN→∞
1
N

∑N

k=1 γ
y
k ≈ 1. Notice that we assume limN→∞

1
N

∑N

k=1(γ
y
k−ρk) <

−ε holds with a sufficiently large probability for some small ε, which requires 1−λ < −ε,

or λ > 1 + ε.

On the other hand, if limN→∞
1
N

∑N

k=1(γ
y
k − ρk) > ε with a sufficiently large proba-

bility for some small ε > 0, limk→∞ zk → 0 holds w.p. 1− ζ for some sufficiently small

ζ > 0. In this way, we have

lim
k→∞

Pr(γy
k = 0) = lim

k→∞

∫

Rm

∑∞

z=0
βz exp

(

−1
2
y>Πy

)

f(yk = y|zk = z) Pr(zk = z)dy

≈
∫

Rm

exp
(

−1
2
y>Πy

)

f(yk = y|zk = z)dy. (3.33)

Noticing that when limk→∞ zk → 0 holds w.p. 1−ζ for some sufficiently small ζ > 0,

limk→∞ zk behaves approximately like a deterministic variable such that f(yk = y|zk =
z) ≈ f(yk = y). Since the system in (3.1) is stable, yk becomes a stationary Gaussian

process as k → ∞, thus when limN→∞
1
N

∑N

k=1(γ
y
k − ρk) < ε with a sufficiently large

probability, limk→∞ Pr(γy
k = 0) will approximately stay at a constant level, which can

be obtained according to Theorem 3 in [23]. Combining the above discussions, another

interesting observation is that when limk→∞ Pr(γy
k = 0) is neither 0 nor as described

in (3.33), we would infer that the event limN→∞
1
N
|∑N

k=1(γ
y
k − ρk)| > ε would hold for

a small probability, which means that limN→∞
1
N

∑N

k=1 γ
y
k ≈ limN→∞

1
N

∑N

k=1 ρk = λ.

Therefore, the average communication rate will match the energy harvesting rate when

λ is large enough but smaller than 1. The discussions here will be further illustrated

and verified in the next section.
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3.5 Simulation example

The effectiveness of the proposed method is shown by a numerical example in this

section. We consider a stable second-order system, which can be described by equations

(3.1) and (3.2) with parameters A = [0.7 0.1; 0.2 0.8] and C = [0.5 0.1; 0.1 0.4]. The

process noise wk and measurement noise vk are zero-mean Gaussians with covariances

Q = [0.8 0; 0 0.8] and R = [0.3 0; 0 0.3].

The initial value x0 of the state is Gaussian distributed with mean x̂−
0 = µ0 = [0 0]>

and covariance P0 = [0.2 0; 0 0.2]. The state is measured by an energy harvesting sensor

satisfying equation (3.4), with initial energy z0 = 15, and ρk follows the Poisson process

described in equation (3.3) with λ = 0.55, which corresponds to the average harvested

energy. The measurement will be transmitted to the remote estimator whenever the

energy-dependent event-triggering condition in (3.5) is satisfied, where we choose β =

0.96 and

Π0 =

[

0.5 0.1
0.2 0.6

]

.

The sensor transmits the exact energy level to the estimator whenever the condition

in (3.7) or the specific criterion discussed in Remark 4 is satisfied. We assume T = 15

indicating that the maximum value of Lk is 215 = 32768. The performance comparison

of the proposed event-triggered estimator obtained for N = 200 runs, the estimates of

the Kalman filter and the Kalman filter with intermittent observations (KF with IO) [67]

obtained using the same communication sequence is shown in Fig. 3.2. The resultant

average estimation errors for the Kalman filter, the proposed estimator and the KF

with IO are 1.3779, 1.6892 and 1.969, respectively, where we observe that the proposed

method outperforms the KF with IO, although not as good as the Kalman filter. When

γz
k = 1, the altitude of γz

k = 1 is shown as 0.5 for the purpose of easy distinction between

γz
k and γy

k in Fig. 3.2. The average transmission rate of measurements
∑N

k=1 γ
y
k = 0.575

is more than 9 times larger than the average transmission rate of the energy level
∑N

k=1 γ
z
k = 0.06.

Next, we numerically evaluate the tradeoff between the communication rates and the

estimation performances for different energy levels. We run the system for 800, 000 time

instants and keep all parameters the same. The corresponding communication rate for

one specific energy level i is defined as 1
Ni

∑

zk=i γ
y
k , where Ni is the total number of time

instants with energy level zk = i. The average estimation errors and communication

rates for different energy levels are evaluated and compared in Fig. 3.3, where the blue
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Figure 3.2: Simulation results of the second-order system.

line shows the variation of the communication rate by the left vertical axis. The other

lines in Fig. 3.3 are the estimation errors by the right vertical axis. Fig. 3.3 indicates

that the estimation performance is sacrificed to maintain low average communication

rate when limited energy is available.

Finally, we numerically evaluate the relationship between the average communica-

tion rate γ and average energy harvesting rate λ. Recall that the average communica-

tion rate is defined as γ = limN→∞
1
N

∑N

k=1 γ
y
k , where we choose runtime N = 80, 000.

The average communication rate is shown in Fig. 3.4 when λ varies from 0 to 1.2 for

Π = 0.2Π0, 0.4Π0, 0.6Π0, 0.8Π0, 1.0Π0, where the other parameters remain the same.

We observe that when λ → 0, the average communication rates in Fig. 3.4 are approxi-

mately equal to the results calculated according to Equation (28) of Theorem 3 in [23],

which are 0.1090, 0.1929, 0.2601, 0.3154 and 0.3620, respectively. When λ > 1, the

average communication rates γ reach 1. Finally, an interesting phenomenon observed
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Figure 3.3: Average communication rates and estimation performance with respect to
different energy levels.

is that when λ is relatively large (approximately 0.55 in Fig. 3.4) but less than 1, the

average communication rates coincide for all choices of Π and becomes approximately

equal to λ, which is consistent with our analysis in Section 3.4.

3.6 Conclusion

In this chapter, a remote state estimation problem for a linear Gaussian system

with an energy harvesting sensor and an energy-dependent event-triggered scheduling

strategy is investigated. The joint conditional probability distribution of the state and

energy based on the information received at the remote estimator is derived. It is proved

that the estimate of the state evolves in a recursive form. The analysis in Section 3.4

shows that the average communication rate will match the energy harvesting rate if λ

is large enough but less than 1 due to the proposed event-triggering condition. Finally,

the performance improvement of the proposed estimator compared with the KF with

IO is illustrated and the features of the average communication rate analyzed in Section

3.4 are verified by numerical simulations.
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Figure 3.4: Relationship between the average communication rate and the energy har-
vesting rate.
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Chapter 4

Optimal risk-sensitive state

estimation

In this chapter, we consider the risk-sensitive filtering problem, which is an optimal

state estimation problem in a certain sense. The risk-sensitive approach counteracts

against disturbances and model-plant mismatches by considering an exponential-form

cost function, which penalizes all the higher order moments of the estimation error

energy. Thus, the risk-sensitive filter is more robust compared with the MMSE filter

due to the efforts made at the design stage.

4.1 Robust event-triggered state estimation: A

risk-sensitive approach∗

∗In this section, we investigate the robust event-triggered state estimation problem

utilizing the risk-sensitive filtering approach.

4.1.1 Introduction

It is well known in the control community that the optimal MMSE filter [66] and the

robust risk-sensitive filter [70] for time-triggered linear Gaussian systems evolve in sim-

ilar recursive Kalman-like forms parameterized by Riccati equations. Recently, it was

shown that the optimal MMSE filter of linear Gaussian systems with event-triggered

scheduling followed a Kalman-like structure [23, 59, 77], which motivates us to inves-

tigate if this structural similarity of the filters for time-triggered and event-triggered

scenarios holds for risk-sensitive state estimation. We consider linear Gaussian systems

∗Parts of the results in this section were submitted to Automatica, 2018.
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with stochastic event-triggering conditions. The robust event-triggered estimation prob-

lem is formulated by minimizing the risk-sensitive error criterion, which refers to the

expectation of the exponential of the sum of the squared estimation error, thus penal-

izing all the higher order moments of the estimation error energy. The index of the

exponential is weighted by a risk-sensitive parameter, which introduces one degree of

freedom in system design to allow the desired tradeoff between optimal filtering for the

nominal model case and robustness to worst-case noise and model uncertainty.

The main contributions of this work are summarized in two folds. First, we obtain

the risk-sensitive event-triggered estimator using the reference measure approach. We

propose a reference measure, under which, the measurements are i.i.d., also independent

of the state process, then the reference measure is linked to the “real-world” measure

via the Radon-Nikodym derivative. To obtain the state estimates, we reformulate the

risk-sensitive cost criterion under the reference measure, then introduce the so-called

information states and derive their recursive forms under the reference measure, which

is parameterized by an event-trigger dependent time-varying Riccati equation. Based on

these results, the closed-form expressions of the prior and posterior risk-sensitive event-

triggered estimates are derived, which are shown to evolve in recursive Kalman-like

forms. However, the obtained risk-sensitive prior and posterior estimates do not have

a simple relationship, which is different from the Kalman filter and the MMSE event-

triggered estimator. In addition, it is shown that the open-loop MMSE event-triggered

estimators proposed in [23] can be recovered from the risk-sensitive event-triggered

estimators as a special case when the risk-sensitive parameter tends to zero.

Second, we present the sufficient stability conditions for the proposed risk-sensitive

event-triggered estimators. We show that, for each time instant, if one can verify

that the solution to the time-varying Riccati equation remains bounded and satisfies

predefined inequalities, the proposed prior and posterior estimators are exponentially

stable. Moreover, based on the contraction analysis of the time-triggered risk-sensitive

filters in [39], we obtain the second sufficient stability condition, according to which,

the range of the risk-sensitive parameter and covariance of the initial state for which

the proposed risk-sensitive event-triggered estimators are stable can be estimated in

advance. Numerical examples are included to verify the effectiveness of the stability

conditions. Comparative simulation results show that the proposed estimators indeed

achieve robustness to system uncertainty compared with the optimal MMSE event-

triggered estimator.
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Notation: R denotes the set of real numbers. N denotes the set of nonnegative integers.

Let m,n ∈ N; Rm×n denotes the set of m by n real-valued matrices. For brevity, denote

R
m := R

m×1. For z, ξ ∈ R
m, zi is the ith element of z and the event {ξ ≤ z} =

{ξi ≤ zi, i = 1, . . . ,m}. For a probability measure P (P̄), we use E (Ē) to represent the

expectation operator. 1{A} is the indicator function of set A. In is the n× n identity

matrix. λ1(P ) and λ2(P ) are the largest eigenvalue and second largest eigenvalue of

matrix P , respectively.

4.1.2 Problem formulation

First, we introduce a remote event-triggered estimation scheme. We consider a

discrete-time linear time-invariant process driven by white noise on the probability

space (Ω,F ,P):

xk+1 = Axk + wk, (4.1)

where xk ∈ R
n is the state, and wk ∈ R

n is the process noise, which is zero-mean

Gaussian with covariance σw > 0. The probability distribution of wk is described by

Φw(·). The initial value x0 of the state is Gaussian with mean µ0, and covariance

P0. The probability distribution function of the initial state x0 is denoted as π0(·).
Let F0

k : = σ{x0, · · · , xk}, and let Fx
k be the complete filtration generated by F0

k . The

state information is measured by a sensor, which communicates with the state estimator

through a network, and the output equation is

yk = Cxk + vk, (4.2)

where vk ∈ R
m is zero-mean Gaussian with covariance σv > 0. The probability distri-

bution of vk is described by Φv(·). In addition, x0, wk and vk are uncorrelated with

each other. Assume the pair (C,A) is observable. Let Fy
k be the completion of the

σ-field on Ω generated by y0, y1, . . ., yk. At each time instant k, the sensor produces

a measurement yk and the scheduler of the sensor tests a stochastic event-triggering

condition

Pr(γk = 0|yk = y) = δ(y) = exp
(

− 1

2
y>Πy

)

, (4.3)

where Π > 0 and γk is a binary-valued event-trigger indicating whether a sensor trans-

mission of yk is performed or not at time instant k, with γk = 0 representing no

transmission performed and γk = 1 otherwise. Let Fγ
k be the completion of the σ-field

generated by γ1, . . . ,γk. Let I0 = {γ0, γ0y0} and for k ∈ N, Ik+1 = Ik∪{γk+1, γk+1yk+1},
which denotes the information available at the remote estimator.
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Existing results on optimal event-triggered state estimation commonly minimize the

MSE cost function, or equivalently,

x̂MSE
k|k =arg min

ξ∈Rn
E
[

1
2

k−1
∑

t=0

(xt − x̂MSE
t|t )TQt(xt − x̂MSE

t|t ) + 1
2
(xk − ξ)TQk(xk − ξ)

∣

∣Ik

]

.

One risk-sensitive generalization of this problem is to find the risk-sensitive event-

triggered posterior estimate x̂k|k based on Ik such that

x̂k|k := arg min
ξ∈Rn

Jk(ξ), (4.4)

where the risk-sensitive cost function is defined as

Jk(ξ) = E [exp[θΨ0,k(ξ)]|Ik] ,

where θ > 0 is the risk-sensitive parameter and Ψ0,k(ξ) is defined as

Ψ0,k(ξ) = Ψ̂0,k−1 +
1

2
(xk − ξ)TQk(xk − ξ).

where Qk is a symmetric, positive-definite weighting matrix for k ≥ 1 and

Ψ̂0,k−1 =
1

2

k−1
∑

t=0

(xt − x̂t|t)
TQt(xt − x̂t|t).

The main difference between the risk-sensitive approach and the MMSE approach lies

in the cost function to be minimized. The risk-sensitive approach counteracts against

disturbances and model-plant mismatches by considering an exponential form in the

cost function, which penalizes all the higher order moments of the estimation error

energy. Thus, the risk-sensitive filter is more robust due to the efforts made at the design

stage; the robust property of a risk-sensitive filter was illustrated in [7]. Motivated

by the existing results on the robustness of the risk-sensitive filter in the literature,

we solve the event-triggered robust estimation problem by utilizing the risk-sensitive

filtering approach. For the MMSE estimator, it is well known that the following two

optimization tasks are equivalent,

x̂MSE
k|k =arg min

ξ∈Rn
E
[

1
2

k−1
∑

t=0

(xt − x̂MSE
t|t )TQt(xt − x̂MSE

t|t ) + 1
2
(xk − ξ)TQk(xk − ξ)

∣

∣Ik

]

=arg min
ξ∈Rn

E[1
2
(xk − ξ)TQk(xk − ξ)|Ik],

which results from the linearity property of the expectation operator. However, due to

the exponential form of the risk-sensitive cost criteria, this equivalence does not hold
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for the risk-sensitive estimator; it has been proved that the estimator that minimizes

the exponential of a quadratic sum of the estimation errors is not equivalent to the

estimator that minimizes the exponential of the current squared estimation error in

the pioneering work [70] on risk-sensitive state estimation. Thus, one needs to solve

the optimization problem in (4.4) in order to obtain the risk-sensitive event-triggered

posterior state estimate.

Similar to the posterior estimator defined in (4.4), the risk-sensitive event-triggered

prior estimate x̂k|k−1 based on Ik−1 is defined as

x̂k|k−1 := arg min
ξ∈Rn

J−
k (ξ), (4.5)

where the prior risk-sensitive cost function is defined as

J−
k (ξ) = E

[

exp[θΨ−
0,k(ξ)]|Ik−1

]

,

with

Ψ−
0,k(ξ) =Ψ̂−

0,k−1 +
1

2
(xk − ξ)TQk(xk − ξ),

Ψ̂−
0,k−1 =

1

2

k−1
∑

t=0

(xt − x̂t|t−1)
TQt(xt − x̂t|t−1).

One main goal of this work is to obtain the risk-sensitive event-triggered posterior and

prior estimates of the system state based on partially observed measurements at the

remote estimator. However, due to the exponential form of its cost criteria, the risk-

sensitive event-triggered estimators cannot be derived by using a similar method as that

for the MMSE estimator, where one usually first derives the conditional probability dis-

tribution of the state on the information available at the estimator, based on which, the

MMSE estimator can be obtained. In the following subsection, we propose a reference

probability measure under which, the state and observations are independent with each

other and introduce a map to link the “real-world” measure to the reference measure.

Then, we derive the recursive form of the information state of an augmented plant

where the state includes the actual state of the system and part of the risk-sensitive

cost under the reference measure conditioned on the information available at the re-

mote estimator. Based on these results, the recursive form of the posterior and prior

estimates are obtained respectively.

4.1.3 The reference measure

To solve this event-triggered risk-sensitive estimation problem, we use the reference

measure approach. We now propose a new probability measure P̄ (also called the ref-
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erence measure) on (Ω,F). We recall that the “real-world” measure P is defined on

(Ω,F). The “real-world” measure P and the reference measure P̄ are defined under the

same sample space Ω and set of events F . Under the reference measure P̄, the variables

satisfy the following relationships:

xk+1 = Axk + wk, (4.6)

where wk ∈ R
n is i.i.d. and wk ∼ N(0, σw). The measurement yk is an i.i.d. variable

under the reference measure P̄ and yk ∼ N(0, σv), which simplifies the estimation

problem under the reference measure. We assume the following relationship under P̄

vk = yk − Cxk. (4.7)

Under P̄, the measurement is sent to the remote estimator according to the following

stochastic event- triggering condition

P̄(γk = 0|yk = y) = δ(y) = exp
(

− 1
2
y>Πy

)

. (4.8)

For a random variable f defined on the probability space (Ω,F , P̄), we further define

Ē(f) =
∫

fdP̄, which is the expected value of f under the reference measure. In

addition, we define

P̄[A|B] =
P̄[A ∩ B]

P̄[B]
,

which is the conditional probability under the reference measure P̄. To link the reference

measure with the original “real-world” measure, we define a map from P̄ to P:

dP

dP̄

∣

∣

∣

∣

Gk

= Λ̄k, (4.9)

where Gk is Fx
k ∪ Fy

k ∪ Fγ
k , and the Radon-Nikodym derivative is defined as

Λ̄k =
k
∏

l=0

λ̄l, λ̄k =
Φv(yk − Cxk)

Φv(yk)
. (4.10)

The conditional Bayes theorem (Theorem 3.3 in Chapter 2 of [17]) provides a way of

mapping the probability distribution under reference measure P̄ back to the “real-world”

measure P. Based on the conditional Bayes theorem, we investigate the properties of

the map defined in (4.9)-(4.10) from the reference measure to the original probability

measure, which is summarized in the following result.
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Lemma 4.1. If the model in (4.6)-(4.8) is mapped from the reference measure P̄ back

to the “real-world” measure P via the Radon-Nikodym derivative in (4.9)-(4.10), then

the obtained model satisfies the properties under measure P as stated in (4.1)-(4.3).

Proof. According to the definition of λ̄k and equation (4.6), we have

Ē
[

λ̄k+1|Gk

]

= Ē

[

Φv(yk+1 − C(Axk + wk))

Φv(yk+1)

∣

∣

∣

∣

Gk

]

.

Since under the reference measure P̄, yk+1 and xk are independent and yk+1 is i.i.d.

with probability distribution N(0, σv), we have

Ē
[

λ̄k+1|Gk

]

=
∫

Rn

∫

Rm

Φv(yk+1−C(Axk+wk))

Φv(yk+1)
Φv(yk+1)Φw(wk)dyk+1dwk

=
∫

Rn

∫

Rm Φv(yk+1 − C(Axk + wk))

d(yk+1 − C(Axk + wk)) · Φw(wk)dwk

=1.

Following a similar procedure, we have

Ē
[

λ̄k+1|Fx
k+1 ∪ Fy

k ∪ Fγ
k

]

= 1.

According to the conditional Bayes theorem, we have

P[xk+1 − Axk ≤ z|Gk]

=
Ē
[

Λ̄k+11{xk+1 − Axk ≤ z}|Gk

]

Ē
[

Λ̄k+1|Gk

]

=
Λ̄kĒ

[

λ̄k+11{xk+1 − Axk ≤ z}|Gk

]

Λ̄kĒ
[

λ̄k+1|Gk

]

=Ē
[

λ̄k+11{xk+1 − Axk ≤ z}|Gk

]

,

where we use the fact that Ē
[

λ̄k+1|Gk

]

= 1. According to (4.6) and the fact that

wk ∈ R
n is i.i.d. and wk ∼ N(0, σw) under the reference measure P̄, we further have

P[xk+1 − Axk ≤ z|Gk]

=Ē
[Φv [yk+1−C(Axk+wk)]

Φv(yk+1)
1{wk ≤ z}

∣

∣Gk

]

=
∫

Rn

∫

Rm

Φv [yk+1−C(Axk+wk)]

Φv(yk+1)
1{wk ≤ z}Φv(yk+1)Φw(wk) dyk+1 dwk

=
∫ z1

−∞
· · ·

∫ zn

−∞
Φw(wk) dwk,
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which recovers the relationship described in equation (4.1) under the “real-world” mea-

sure P. Similarly, for the measurement process, according to the conditional Bayes

theorem and (4.50), we have

P[yk − Cxk ≤ z|Fx
k ∪ Fy

k−1 ∪ Fγ
k−1]

=Ē
[

Φv(yk−Cxk)
Φv(yk)

1{yk − Cxk ≤ z}
∣

∣Fx
k ∪ Fy

k−1 ∪ Fγ
k−1

]

=
∫

Rm Φv(yk − Cxk)1{yk − Cxk ≤ z} d(yk − Cxk)

=
∫ z1

−∞
· · ·

∫ zn

−∞
Φv(vk) dvk,

which recovers the relationship described in equation (4.2) under the “real-world” mea-

sure P. For the event-trigger γk, we have

P(γk = 1|Fx
k ∪ Fy

k−1 ∪ Fγ
k−1, yk = y)

=
Ē(Λ̄kγk|Fx

k ∪ Fy
k−1 ∪ Fγ

k−1, yk = y)

Ē(Λ̄k|Fx
k ∪ Fy

k−1 ∪ Fγ
k−1, yk = y)

=Ē(γk|Fx
k ∪ Fy

k−1 ∪ Fγ
k−1, yk = y)

=1− δ(y).

By repeated conditioning and {yk = y} ⊂ {Fx
k ∪ Fy

k−1 ∪ Fγ
k−1, yk = y},

P(γk = 1|yk = y)

=E[γk|yk = y]

=E[E[γk|Fx
k ∪ Fy

k−1 ∪ Fγ
k−1, yk = y]|yk = y]

=1− δ(y),

which recovers the event-triggered condition described in equation (4.3) and completes

the proof.

4.1.4 Risk-sensitive event-triggered state estimates

In this subsection, we reformulate the estimation problem under the reference mea-

sure P̄ and introduce the so-called information states. Then we derive the risk-sensitive

state estimates in terms of this information states, based on which, we obtain the

recursive form of the event-triggered risk-sensitive state estimates.

4.1.4.1 The information states

As stated in Section 4.1.2, our goal is to find the posterior estimate x̂k|k and prior

estimate x̂k|k−1 such that the corresponding risk-sensitive cost functions are minimized.
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According to the definition of Jk(ξ), the cost criterion can be reformulated under the

reference measure P̄ as

Jk(ξ) =E [exp[θΨ0,k(ξ)]|Ik] =
Ē
[

Λ̄k exp[θΨ0,k(ξ)]|Ik

]

Ē
[

Λ̄k|Ik

] ,

where we use Lemma 4.1 and the fact Ik is a sub-σ-field of Gk in the last equality. Since

Ē
[

Λ̄k|Ik

]

is independent of ξ, the problem becomes to determine

x̂k|k ∈ arg min
ξ∈Rn

Ē
[

Λ̄k exp[θΨ0,k(ξ)]|Ik

]

. (4.11)

Following a similar argument as above, we have

x̂k|k−1 ∈ arg min
ξ∈Rn

Ē
[

Λ̄k exp[θΨ
−
0,k(ξ)]|Ik−1

]

. (4.12)

Definition 4.1 (Information States). The information states αk(x) and α−
k (x) are

defined as the unnormalized density functions such that

αk(x)dx =Ē[Λ̄k−1 exp{θΨ̂0,k−1}1(xk ∈ dx)|Ik−1],

α−
k (x)dx =Ē[Λ̄k−1 exp{θΨ̂−

0,k−1}1(xk ∈ dx)|Ik−1].

Note that αk(x)dx can be considered as the information state of an augmented plant

where the state includes the actual state of the system and part of the risk-sensitive

cost [34]; so does α−
k (x)dx. The term αk(x)dx is an infinitesmall displacement scaled

by the unnormalized density αk(x). Suppose f : Rn → R is any Borel test function

defined on the space (Ω,F , P̄). Based on the definition of αk(x) and α−
k (x), we have

Ē[f(xk)Λ̄k−1 exp{θΨ̂0,k−1}|Ik−1] =
∫

Rn f(x)αk(x)dx,

Ē[f(xk)Λ̄k−1 exp{θΨ̂−
0,k−1}|Ik−1] =

∫

Rn f(x)α
−
k (x)dx.

To solve the risk-sensitive state estimation problem, it is beneficial in the literature to

first derive the unnormalized conditional density functions (the information states in

Definition 4.1); with the obtained iterative forms of the information states, the closed-

from expressions of the risk-sensitive state estimates can be further derived, e.g., [28],

[17], [14] and [7]. Before continuing, we introduce the technique of completing the

square for vectors as follows:

Lemma 4.2. [55] Suppose G is a symmetric invertible matrix. The following equation

exists for the quadratic form of vector V :

d+ 2E>V + V >GV = (V − r)>M(V − r) + s,

where M = G, r = −G−1E and s = d− E>G−1E.
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Based on the above results, the recursive closed-form expressions of the information

states are presented as follows.

Lemma 4.3. For k ≥ 0, the information states αk(x) and α−
k (x) are unnormalized

Gaussian densities given by

αk(x) = Zk exp
[

−1
2
(x− ηk)

>Σ−1
k (x− ηk)

]

, (4.13)

α−
k (x) = Z−

k exp
[

−1
2
(x− η−k )

>Σ−1
k (x− η−k )

]

, (4.14)

where Σk, η
−
k and ηk evolve according to the following recursions:

Rk =[Σ−1
k − θQk + C>(σv + (1− γk)Π

−1)−1C + A>σ−1
w A]−1, (4.15)

Σk+1 =A[Σ−1
k − θQk + C>(σv + (1− γk)Π

−1)−1C]−1A> + σw, (4.16)

ηk+1 =Σk+1σ
−1
w ARk(Σ

−1
k ηk + γkC

>σ−1
v yk − θQ>

k x̂k|k), (4.17)

η−k+1 =Σk+1σ
−1
w ARk(Σ

−1
k η−k + γkC

>σ−1
v yk − θQ>

k x̂k|k−1), (4.18)

where Σ0 = P0, η
−
0 = µ0, η0 = µ0 and Z−

k and Zk are constants and are independent of

x.

Proof. We give detailed proofs for αk(x), then α−
k (x) can be obtained by following

similar arguments. To prove Lemma 4.3, we utilize the mathematical induction. We

consider the general case first and the basis when k = 1 can be proved by following a

similar procedure as the general case, which will be shown at the end of the proof. We

assume at time instant k, αk(x) has the form in equation (4.13) and then we prove this

form holds for αk+1(x). Suppose f : Rn → R is any Borel test function. According to

the definition of Λ̄k and Ψ̂0,k, we have

Ē[f(xk+1)Λ̄k exp(θΨ̂0,k)|Ik]

=Ē
[

f(Axk + wk)
Φv(yk−Cxk)

Φv(yk)
Λ̄k−1 exp(θΨ̂0,k−1) exp

[

θ
2
(xk − x̂k|k)

>Qk(xk − x̂k|k)
] ∣

∣Ik

]

.

(4.19)

(a) We consider the case γk = 0 that the event is not triggered and the measurement

is not received by the remote estimator at time instant k. Since yk is an i.i.d. variable

under the reference measure P̄, we have

Ē[1(yk ∈ dy)|Ik] = Ē[1(yk ∈ dy)|γk, γkyk].

For γk = 0, we have

Ē[1(yk ∈ dy)|γk = 0] = Φv(y)δ(y)dy∫
Rm

Φv(y)δ(y)dy
= 1

c1
Φv(y)δ(y)dy, (4.20)
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where we notice that
∫

Rm Φv(y)δ(y)dy is a constant, independent of y, thus denoted as

c1. For γk = 0, since xk, x̂k|k and Λ̄k−1 are independent of yk and γk, we substitute the

above equation into (4.19) and obtain

Ē[f(xk+1)Λ̄k exp(θΨ̂0,k)|Ik]

= 1
c1

∫

Rn

∫

Rn

∫

Rm f(Az + w)Φv(q − Cz)δ(q)dq Φw(w)

· dw exp
[

θ
2
(z − x̂k|k)

>Qk(z − x̂k|k)
]

αk(z)dz

= 1
c1

∫

Rn f(x)
∫

Rn

∫

Rm αk(z)Φw(x− Az)Φv(q − Cz)δ(q)

· exp
[

θ
2
(z − x̂k|k)

>Qk(z − x̂k|k)
]

dqdzdx, (4.21)

where we let x = Az+w to obtain (4.21). According to the definition of αk+1, we have

Ē[f(xk+1)Λ̄k exp(θΨ̂0,k)|Ik] =
∫

Rn f(x)αk+1(x)dx.

Combining (4.21) and the last equality, we obtain the recursive form of αk+1(x) for

γk = 0,

αk+1(x) =
1
c1

∫

Rn

∫

Rm Φw(x− Az)αk(z)Φv(q − Cz)δ(q)

· exp
[

θ
2
(z − x̂k|k)

>Qk(z − x̂k|k)
]

dqdz.

We recall that Φw and Φv follow Gaussian distributions. Substituting (4.3) into the

above equation, we obtain

αk+1(x)

∝
∫

Rn

∫

Rm exp
[

−1
2
(q − Cz)>σ−1

v (q − Cz)− 1
2
q>Πq

]

· dq exp
[

− 1
2
(x− Az)>σ−1

w (x− Az)− 1
2
(z − ηk)

>Σ−1
k (z − ηk)

+ θ
2
(z − x̂k|k)

>Qk(z − x̂k|k)
]

dz. (4.22)

According to Lemma 4.2, we have

∫

Rm exp
[

−1
2
(q − Cz)>σ−1

v (q − Cz)− 1
2
q>Πq

]

dq

=
∫

Rm exp
[

−1
2
(q − r1)

>(σ−1
v +Π)(q − r1)− 1

2
s1
]

dq

∝
∫

Rm exp
[

−1
2
s1
]

,

with r1 = (σ−1
v +Π)−1σ−1

v Cz and s1 = z>C>(σv+Π−1)−1Cz, where the matrix inversion

lemma ([31], A.1(vii)) is used to obtain s1. Substituting the above result into (4.22),
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we have

αk+1(x)

∝
∫

Rn exp
[

− 1
2
z>C>(σv +Π−1)−1Cz

− 1
2
(x− Az)>σ−1

w (x− Az)− 1
2
(z − ηk)

>Σ−1
k (z − ηk)

+ θ
2
(z − x̂k|k)

>Qk(z − x̂k|k)
]

dz

∝
∫

Rn exp
{

− 1
2

[

(z − r2)
>M2(z − r2) + s2

] }

dz.

The exact values of r2 and M2 are not necessary to be known since the integral of a

Gaussian density equals to 1 no matter what values the mean and variance terms are.

According to Lemma 4.2, s2 is a function of x as follows:

s2 =x>σ−1
w x+ η>k Σ

−1
k ηk − θx̂>

k Qkx̂k − 2[η>Σ−1
k − θx̂>

k Qk]RkA
>σ−1

w x

− x>σ−1
w ARkA

>σ−1
w x

=(x− ηk+1)
>Σk+1(x− ηk+1) + s3, (4.23)

with Rk =
[

A>σ−1
w A+Σ−1

k − θQk +C>(σv +Π−1)−1C
]−1

, where Lemma 4.2 is used to

obtain (4.23), s3 is a constant independent of x and

Σk+1 =A[Σ−1
k − θQk + C>(σv +Π−1)−1C]−1A> + σw,

ηk+1 =Σk+1σ
−1
w ARk(Σ

−1
k ηk − θQ>

k x̂k|k)

for γk = 0. Based on the above results, we have

αk+1(x) ∝ exp
[

−1
2
(x− ηk+1)

>Σk+1(x− ηk+1)− 1
2
s3
]

.

Thus, for γk = 0, we have

αk+1(x) =Zk+1 exp
[

−1
2
(x− ηk+1)

>Σk+1(x− ηk+1)
]

,

where Zk+1 is a constant independent of x.

(b) Next, we consider the scenario γk = 1, which indicates that the measurement yk is

received by the remote estimator. Following a similar argument as that in part (a) of

this proof, for γk = 1, we obtain

αk+1(x) =Zk+1 exp
[

−1
2
(x− ηk+1)

>Σk+1(x− ηk+1)
]

,

where Zk is a constant independent of x and

Rk =[Σ−1
k − θQk + C>σ−1

v C + A>σ−1
w A]−1,

Σk+1 =A[Σ−1
k − θQk + C>σ−1

v C]−1A> + σw,

ηk+1 =Σk+1σ
−1
w ARk(Σ

−1
k ηk + C>σ−1

v yk − θQ>
k x̂k|k).
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For the basis k = 1, according to (4.13), we have

Ē[f(x1)Λ̄0 exp(θΨ̂0,0)|I0]

=Ē
[

f(Ax0 + w0)
Φv(y0−Cx0)

Φv(y0)
· exp

{

θ
2
(x0 − x̂0|0)

TQ0(x0 − x̂0|0)
} ∣

∣I0

]

=
∫

Rn f(x)α1(x)dx.

Recall that the initial value x0 of the state is Gaussian with mean x̂0|−1 = µ0, and

covariance P0. By following a similar argument as that for the general case, we have

α1(x) =Z1 exp
[

−1
2
(x− η1)

>Σ1(x− η1)
]

,

where Σ1 and η1 follow (4.15)-(4.18) with Σ0 = P0 and η0 = µ0; Z1 is a constant

independent of x.

For α−
k (x), the results can be obtained similarly and the detailed proof is omitted

due to length limitation. This completes the proof.

The above lemma proves that the information states αk(x) and α−
k (x) are unnor-

malized Gaussian densities, where Σk represents the variance of the Gaussian densities.

For the classical Kalman filter, the cost function to be minimized is the mean square

error cost function, leading to a nice property that the Kalman filter not only obtains

the posterior state estimate x̂KF
k|k , but also calculates the posterior error covariance ma-

trix Pk|k at each time instant, which can measure the estimated accuracy of the state

estimate x̂KF
k|k . However, due to the exponential-form cost function, this nice property

does not hold for the risk-sensitive state estimator. To the authors’ best knowledge, Σk

cannot be expressed as any covariance matrix related to the estimation error.

4.1.4.2 The risk-sensitive event-triggered state estimate

Based on the obtained results of the information states, we derive the risk-sensitive

event-triggered posterior and prior estimtators.

Lemma 4.4. For the event-triggered risk-sensitive problem with the event-triggering

scheme in (4.3), if Σ−1
k − θQk ≥ 0 for k ≥ 1, we have the following results:

(a) the posterior estimate of the state x̂k|k satisfies

x̂k|k = [Σ−1
k + C>(Π−1 + σv)

−1C]−1Σ−1
k ηk (4.24)

for γk = 0 and

x̂k|k = ηk + (Σ−1
k + C>σ−1

v C)−1C>σ−1
v (yk − Cηk) (4.25)
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for γk = 1, where the recursion of ηk is described by (4.15)-(4.17);

(b) the prior estimate of the state x̂k|k−1 satisfies

x̂k|k−1 = η−k , (4.26)

where the recursion of η−k is described by (4.18).

Proof. (a) In this part, we focus on the posterior estimate x̂k|k and present the detailed

proof. First, we recall that

x̂k|k ∈ arg min
ξ∈Rn

Ē
[

Λ̄k exp[θΨ0,k(ξ)]|Ik

]

.

According to the definition of Λ̄k, we have

Ē
[

Λ̄k exp[θΨ0,k(ξ)]|Ik

]

=Ē
[

Φv(yk−Cxk)
Φv(yk)

Λ̄k−1 exp
{

θ
2
(xk − ξ)>Qk(xk − ξ)

}

· exp(θΨ̂0,k−1)
∣

∣Ik

]

.

1) First, we consider the scenario γk = 0. According to (4.20) and the definition of

αk(x), we have

Ē
[

Λ̄k exp[θΨ0,k(ξ)]|Ik

]

= 1
c1

∫

Rn

∫

Rm δ(q)Φv(q − Cx) · exp
{

θ
2
(x− ξ)>Qk(x− ξ)

}

αk(x)dqdx

∝
∫

Rn

∫

Rm exp
[

−1
2
q>Πq − 1

2
(q − cz)>σ−1

v (q − cz)
]

dq

exp
[

1
2
θ(x− ξ)>Qk(x− ξ)− 1

2
(x− ηk)

>Σ−1
k (x− ηk)

]

dx. (4.27)

Using Lemma 4.2, we have

∫

Rm exp
[

−1
2
q>Πq − 1

2
(q − cz)>σ−1

v (q − cz)
]

dq

∝ exp
[

− 1
2
x>C>σ−1

v Cx+ 1
2
(xCσ−1

v )>(Π + σ−1
v )−1σ−1

v Cx
]

.

Substituting the above results into (4.27), we have

Ē
[

Λ̄k exp[θΨ0,k(ξ)]|Ik

]

∝
∫

Rn exp
[

− 1
2
x>C>σ−1

v Cx+ 1
2
(xCσ−1

v )>(Π + σ−1
v )−1σ−1

v Cx

+ θ
2
(x− ξ)>Qk(x− ξ)− 1

2
(x− ηk)

>Σ−1
k (x− ηk)

]

dx

∝
∫

Rn exp
[

− 1
2

{

(x− r4)
>M4(x− r4) + s4

}]

dx,

where we use Lemma 4.2, s4 is independent of x and

M4 =(Σ−1
k − θQk + C>(Π−1 + σv)

−1C),

s4 =η>k Σ
−1
k ηk − θξ>Qkξ − (θξ>Qk − η>k Σ

−1
k )M−1

4 (θξ>Qk − η>k Σ
−1
k )>.
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We assume the risk-sensitive parameter θ is chosen to satisfy Σ−1
k − θQk + C>(Π−1 +

σv)
−1C > 0. Based on some further calculations, it is easy to verify that for γk = 0,

Ē
[

Λ̄k exp[θΨ0,k(ξ)]|Ik

]

∝ exp
[

−1
2
s4
]

∝ exp
[

1
2

{

(ξ − r5)
>M5(ξ − r5) + s5

}]

,

where s5 is independent of ξ and

M5 =[(θQk)
−1 − (Σ−1

k + C>(Π−1 + σv)
−1C)−1]−1,

r5 =[Σ−1
k + C>(Π−1 + σv)

−1C]−1Σ−1
k ηk.

Thus, if Σ−1
k − θQk > 0, which definitely can guarantee M5 > 0, for γk = 0, the

risk-sensitive event-triggered posterior estimate is

x̂k|k = [Σ−1
k + C>(Π−1 + σv)

−1C]−1Σ−1
k ηk.

2) For the scenario γk = 1, the measurement yk is received by the remote estimator and

we have

Ē
[

Λ̄k exp[θΨ0,k(ξ)]|Ik

]

=
∫

Rn

Φv(yk−Cx)
Φv(yk)

exp
{

θ
2
(x− ξ)>Qk(x− ξ)

}

αk(x)dx

∝
∫

Rn exp
[

− 1
2
(x− ηk)

>Σ1(x− ηk)− 1
2
(yk − Cx)>σ−1

v (yk − Cx)

+ θ
2
(x− ξ)>Qk(x− ξ)

]

dx

∝
∫

Rn exp
[

−1
2
{(x− r6)

>M6(x− r6) + s6}
]

dx,

with M6 = Σ−1
k − θQk + C>σ−1

v C and

s6 =η>k Σ
−1
k ηk + ykσ

−1
v yk − θξ>Qkξ

− (ξ>θQk − η>k Σ
−1
k − y>k σ

−1
v C)M−1

6 (ξ>θQk − η>k Σ
−1
k − y>k σ

−1
v C)>.

Using Lemma 4.2 and following similar arguments as in the first part of the proof, we

have that for γk = 1

Ē
[

Λ̄k exp[θΨ0,k(ξ)]|Ik

]

∝ exp
[

1
2
(ξ − r7)

>M7(ξ − r7) + s7
]

,

where M7 = [(θQk)
−1 − (Σ−1

k + C>σ−1
v C)−1]−1 and

r7 = ηk + (Σ−1
k + C>σ−1

v C)−1C>σ−1
v (yk − Cηk).
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Therefore, if Σ−1
k − θQk > 0, which definitely can guarantee M7 > 0, for γk = 1, the

risk-sensitive event-triggered posterior estimate is

x̂k|k = ηk + (Σ−1
k + C>σ−1

v C)−1C>σ−1
v (yk − Cηk).

(b) Next, we consider the prior estimate, where the problem is to determine

x̂k|k−1 ∈ arg min
ξ∈Rn

Ē
[

Λ̄k exp[θΨ
−
0,k(ξ)]|Ik−1

]

.

Due to the definition of Λ̄k and that fact that yk is an i.i.d. variable under the reference

measure P̄, we have

Ē
[

Λ̄k exp[θΨ
−
0,k(ξ)]|Ik−1

]

=Ē
[

Φv(yk−Cxk)
Φv(yk)

Λ̄k−1 exp
{

θ
2
(xk − ξ)>Qk(xk − ξ)

}

· exp(θΨ̂−
0,k−1)|Ik−1

]

=
∫

Rn

∫

Rm Φv(q)
Φv(q−Cx)

Φv(q)
exp

{

θ
2
(x− ξ)>Qk(x− ξ)

}

· α−
k (x)dqdx. (4.28)

By substituting the expression of α−
k as described in (4.14) into (4.28), we have

Ē
[

Λ̄k exp[θΨ
−
0,k(ξ)]|Ik−1

]

∝
∫

Rn

∫

Rm exp
[

− 1
2
(q − Cx)>σ−1

v (q − Cx)
]

dq

· exp
[

θ
2
(x− ξ)>Qk(x− ξ)− 1

2
(x− η−k )

>Σ−1
k (x− η−k )

]

dx

∝
∫

Rn exp
[

− 1
2

{

(x− r8)
>M8(x− r8) + s8

}]

dx,

where M8 = (Σ−1
k − θQk) and

s8 =η−>
k Σ−1

k η−k − θξ>Qkξ − (θξ>Qk − η−>
k Σ−1

k )(Σ−1
k − θQk)

−1(θξ>Qk − η−>
k Σ−1

k )>,

where the risk-sensitive parameter θ needs to be chosen to satisfy Σ−1
k −θQk ≥ 0. Using

the matrix inversion lemma, we have

[θQk + θQk(Σ
−1
k − θQk)

−1θQ>
k ] = [(θQk)

−1 − Σk]
−1.

Since Ē
[

Λ̄k exp[θΨ
−
0,k(ξ)]|Ik−1

]

is a function of ξ, we have

Ē
[

Λ̄k exp[θΨ
−
0,k(ξ)]|Ik−1

]

∝ exp
[

−1
2
s8
]

∝ exp
[

1
2

{

(ξ − r9)
>[(θQk)

−1 − Σk]
−1(ξ − r9) + s9

}]

,

where we use Lemma 4.2 and s9 is independent of ξ. By some math manipulations, we

have

r9 =[(θQk)
−1 − Σk][η

−>
k Σ−1

k (Σ−1
k − θQk)

−1θQ>
k ]

>

=[(θQk)
−1 − Σk]θQk[Σk + Σk((θQk)

−1 − Σk)
−1Σk]Σ

−1
k η−k = η−k .
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Thus, if (θQk)
−1−Σk > 0 for k ≥ 1, the risk-sensitive prior estimate of the state x̂k|k−1

satisfies

x̂k|k−1 = η−k ,

which completes the proof.

The above lemma gives the risk-sensitive event-triggered estimates, which depend on

the mean and variance of the density of the information states. Combining (4.17), (4.18)

and the above results, we obtain the recursive forms of risk-sensitive state estimates,

which are summarized as follows.

Theorem 4.1. For the event-triggered risk-sensitive problem with the event-triggering

scheme in (4.3), if Σ−1
k − θQk ≥ 0 for k ≥ 1, the risk-sensitive state estimates obey the

following recursive form:

(a) The posterior estimate x̂k|k defined in (4.4) satisfies

x̂k|k = (In −KkC)ηk + γkKkyk, (4.29)

where

ηk+1 =Ax̂k|k, (4.30)

Kk =ΣkC
>(CΣkC

> + σv + (1− γk)Π
−1)−1 (4.31)

and Σk evolves according to the following time-varying Riccati equation

Σk+1 =A[Σ−1
k − θQk + C>(σv + (1− γk)Π

−1)−1C]−1A> + σw. (4.32)

(b) The prior estimate x̂k|k−1 defined in (4.5) satisfies

x̂k+1|k =Ax̂k|k−1 +K−
k (γkyk − Cx̂k|k−1), (4.33)

where

K−
k =A[Σ−1

k − θQk + C>(σv + (1− γk)Π
−1)−1C]−1C>(σv + (1− γk)Π

−1)−1. (4.34)

Proof. (a) We first focus on the proof for the posterior estimate. For γk = 0, based on

(4.17) and (4.24), it is trivial to obtain that

ηk+1 =Σk+1σ
−1
w ARk+1(Σ

−1
k + C>(σv +Π−1)−1C − θQ>

k )x̂k|k.
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According to the definition of Rk+1 and using the matrix inversion lemma, we can verify

that

ηk+1 = Ax̂k|k.

Based on some further calculations, for γk = 0, we have

x̂k|k = (In −KkC)ηk,

with Kk = ΣkC
>(CΣkC

> + σv +Π−1)−1.

For γk = 1, combining (4.17) and (4.25), we have

ηk = (In + ΣkC
>σ−1

v C)x̂k|k − ΣkC
>σ−1

v yk.

Substituting the above result and (4.15) into (4.17), we can easily obtain that

ηk+1 =Σk+1σ
−1
w ARk+1(Σ

−1
k + C>σ−1

v C − θQ>
k )x̂k|k

=Ax̂k|k.

Accordingly, for γk = 1, the posterior estimate follows

x̂k|k = (In −KkC)ηk +Kkyk,

where Kk = ΣkC
>(CΣkC

> + σv)
−1. Thus, the posterior estimate follows (4.29).

(b) Next, we consider the prior estimate. According to (4.18) and (4.26), we sub-

stitute in Σk+1 and Rk, then have

η−k+1 =Σk+1σ
−1
w ARk(Σ

−1
k η−k + γkC

>σ−1
v yk − θQ>

k η
−
k )

=A[Σ−1
k − θQk + C>(σv + (1− γk)Π

−1)−1C]−1[(Σ−1
k − θQk)η

−
k + γkC

>σ−1
v yk].

For notational simplicity, we denote Ok = [Σ−1
k − θQk + C>(σv + (1− γk)Π

−1)−1C]−1.

Using the matrix inversion lemma, we have

Ok =[Σ−1
k − θQk + C>(σv + (1− γk)Π

−1)−1C]−1

=(Σ−1
k − θQk)

−1 − (Σ−1
k − θQk)

−1C>

· [σv + (1− γk)Π
−1 + C(Σ−1

k − θQk)
−1C>]−1C(Σ−1

k − θQk)
−1.

Based on some further calculations, we have

AOk(Σ
−1
k − θQk)η

−
k

=Aη−k − AOkC
>(σv + (1− γk)Π

−1)−1Cη−k .
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Then we have

η−k+1 =Aη−k − AOkC
>(σv + (1− γk)Π

−1)−1Cη−k

+ AOkC
>(σv + (1− γk)Π

−1)−1γkyk

=Aη−k +Kk(γkyk − Cη−k ).

Recall that x̂k|k−1 = η−k as stated in Theorem 4.4. This completes the proof.

Remark 4.1. The above theorem presents the close-form expressions of the event-

triggered estimators, which are parameterized by the time-varying Riccati equation in

(4.32). Based on (4.31), (4.32) and (4.34), we can easily show that the gains Kk and

K−
k of the risk-sensitive event-triggered filter, which is supposed to be more robust

to system uncertainties, are larger compared with those of the MMSE estimator with

stochastic event-triggering conditions in [23] since the term θQk increases the observer

gains. This is consistent with the results obtained from high-gain observers [1], which

are shown to have the ability to reject modeling disturbance.

Next, we compare the risk-sensitive filter proposed in Theorem 4.1 with the well-

known Kalman filter, for which the following relationship holds between the prior state

estimate x̂KF
k|k−1 and the posterior estimate x̂KF

k|k :

x̂KF
k|k−1 =Ax̂KF

k−1|k−1,

x̂KF
k|k =x̂KF

k|k−1 +KKF
k (yk − Cx̂KF

k|k−1),

where KKF
k is the Kalman gain. The prior estimate x̂KF

k|k−1 can be easily obtained

based on the posterior estimate x̂KF
k−1|k−1 at time instant k − 1, then the posterior

estimate x̂KF
k|k can be calculated based on the prior estimate x̂KF

k|k−1, which indicates

a simple relationship between the prior and posterior estimates of the Kalman filter.

Similar relationship holds for the prior and posterior estimates of the event-triggered

MMSE estimator in [23] as well. According to Theorem 6, for the risk-sensitive state

estimator, the posterior estimate x̂k|k evolves according to equations (4.29)-(4.32) and

the prior estimate x̂k|k−1 evolves according to equations (4.33)-(4.34), thus the simple

relationship between the Kalman estimates x̂KF
k|k−1 and x̂KF

k|k does not hold for the risk-

sensitive estimates x̂k|k−1 and x̂k|k in this work.

As a special case, when the risk-sensitive parameter tends to zero, our proposed risk-

sensitive estimators recover the open-loop MMSE event-triggered estimators proposed

in [23], which sacrifice the robustness to uncertainties for optimal filtering under the

nominal case. For the proposed risk-sensitive estimators, users can achieve desired
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tradeoff between the optimality and robustness by tuning the risk-sensitive parameter.

The risk-sensitive estimators are more robust as the risk-sensitive parameter becomes

relatively larger.

4.1.5 Sufficient stability conditions

In this subsection, we study the stability issue of the event-triggered risk-sensitive

posterior and prior estimators proposed in Theorem 4.1 and give the range of values of

the risk-sensitive parameter and covariance of the initial state for which Σk is bounded

and the proposed estimators are exponentially stable. We assume the weighting matrix

Qk = Q > 0, then there exists Q = F>F with F ∈ R
n×n and F > 0. For the variance

of the process noise, we have σw = BB> with B ∈ R
n×n and B > 0.

Before we show the main stability results for the risk-sensitive event-triggered es-

timators, we present a lemma for one special case that no transmission is performed

(γk = 0) for all k ≥ 0. In this ideal case, the time-varying Riccati equation proposed in

(4.32) becomes

Σ̃k+1 =A[Σ̃−1
k − θQ+ C>(σv +Π−1)−1C]−1A> + σw, (4.35)

which is an algebraic Riccati equation at steady state. The steady-state characterization

of Σ̃k, in which k → ∞, can be found by iterating the dynamic equation repeatedly

until it converges; in other words, the steady state Σ̃ is characterized by removing the

time subscripts from the dynamic equation (4.35), thus resulting in an algebraic Riccati

equation. Since (σv + Π−1)−1 > 0, there exists (σv + Π−1)−1 = D>D with D ∈ R
m×m

and D > 0. Next, we introduce parameters that will be used in the following lemma.

For N ≥ n, HN is the Nm×Nn block Toeplitz matrix defined by

HN =















0 H1 H2 · · · HN−1

0 0 H1 · · · HN−2
...

...
...

. . .
...

0 0 0 · · · H1

0 0 0 · · · 0















,

where

Ht =

{

CAt−1B, t ≥ 1,
0, otherwise.

The N -step observability matrices of the pair (C,A) and (F,A) are denoted as

ON =
[

(CAN−1)> · · · (CA)> C>
]>

,

OR
N =

[

(FAN−1)> · · · (FA)> F>
]>

.
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For N ≥ n, LN is the N block Toeplitz matrix taking the form

LN =















0 L1 L2 · · · LN−1

0 0 L1 · · · LN−2
...

...
...

. . .
...

0 0 0 · · · L1

0 0 0 · · · 0















,

where

Lt =

{

FAt−1B, t ≥ 1,
0, otherwise.

We define the Nm×Nm diagonal matrix

Ξ = diag[σv +Π−1, . . . , σv +Π−1]

The risk-sensitive Gramian Ωθ
N is defined as

Ωθ
N = O>

N [Ξ +HNH>
N ]

−1ON + J>
N (S

θ
N)

−1JN , (4.36)

where

JN ,OR
N − LNH>

N(Ξ +HNH>
N)

−1ON ,

Sθ
N ,− θ−1INn + LN(INn +H>

NHN)
−1LN

>.

Let τN < θN be the first value of θ for which Ωθ
N becomes singular, where

θN =
1

λ1(LN(INn +H>
NHN)−1)L>

N)
. (4.37)

Next, we choose a free matrix G to ensure that the matrix (A−GDC) is stable and

r , max
0≤i≤n

|λi(A−GDC)|.

For 1 < ρ < 1/r, we define

βρ ,
ρ2 − 1

ρ2λ1(FΣρF>)
, (4.38)

where

Σρ = ρ2(A−GDC)kΣρ((A−GDC))> +Q+GG>. (4.39)

Then, we present the following convergence lemma for the Riccati equation in (4.35).
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Lemma 4.5. For the system described in (4.1) and (4.2), we consider the scenario

that γk = 0 for all k > 0 (none of the sensor’s measurements is transmitted to the

remote estimator) and obtain the Riccati equation in (4.35). With θN defined in (4.37),

τN < θN is the first value of θ for which Ωθ
N in (4.36) becomes singular. If 0 ≤ θ < τN

and θ ≤ βρ with N ≥ n and βρ defined in (4.38), the algebraic Riccati map as defined in

(4.35) has a unique positive definite fixed point Σ̃ such that Σ̃−1−θQ ≥ 0. Furthermore,

if the initial condition Σ̃0 of the Riccati equation (4.35) satisfies 0 < Σ̃0 ≤ Σρ with Σρ

given in (4.39), the entire trajectory of the Riccati map satisfies 0 < Σ̃k ≤ Σρ and

Σ̃−1
k − θQ > 0 for all k > 0, and tends to Σ̃.

Proof. This lemma is obtained by applying Theorem 5.3 in [39], which relies on a block

implementation of risk-sensitive filters. Some modifications are made to the results in

[39] since the variance of the measurement noise in our formulation is not the identity

matrix considered in [39].

The above lemma provides the ranges of the risk-sensitive parameter θ and the

variance Σ̃0 of the initial state, for which the Riccati map in (4.35) is convergent. The

results presented in Lemma 4.5 relies on the contraction analysis of the risk-sensitive

filters [39], which requires only the observability of the system. Thus Lemma 4.5 still

holds even if the system matrix A is unstable.

Lemma 4.6. For the Riccati equation in (4.35), if the covariance of the initial state

P0 = Σ̃0 and the risk-sensitive parameter are chosen within the range proposed in

Lemma 4.5, which implies that Σ̃k in (4.35) satisfies 0 < Σ̃k ≤ Σρ and Σ̃−1
k − θQ > 0

for all k ≥ 0, the following inequalities hold for the solution of the risk-sensitive Riccati

equation (4.32)

Σk ≤ Σρ, Σ−1
k − θQ > 0.

Proof. We prove this lemma by induction. We first assume that Σk−1 ≤ Σ̃k−1, then

prove that Σk ≤ Σ̃k. Since 0 < Σ̃−1
k−1 − θQ and Σk−1 ≤ Σ̃k−1, we have 0 ≤ Σ̃−1

k−1 − θQ ≤
Σ−1

k−1 − θQ. Recalling that the transmission decision variable γk can be either 0 or 1,

we have

0 < Σ̃−1
k−1 − θQ+ C>(σv +Π−1)−1C ≤

Σ−1
k−1 − θQ+ C>(σv + (1− γk)Π

−1)−1C.
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Furthermore, we have

σw + A[Σ−1
k−1 − θQ+ C>(σv + (1− γk)Π

−1)−1C]−1A>

≤ σw + A[Σ̃−1
k−1 − θQ+ C>(σv +Π−1)−1C]−1A>,

which is Σk ≤ Σ̃k. Since Σ̃k ≤ Σρ, we have Σk ≤ Σρ. For the basis, since Σ0 = P0 = Σ̃0

satisfies Σ0 ≤ Σ̃0. This completes the proof.

Lemma 4.7 ([3], Theorem 4.3). Suppose that [F̂k, Ĝk] is uniformly stabilizable and that

F̂k and Ĝk are bounded. If there is a bounded nonnegative definite matrix sequence P̂k

satisfying

P̂k+1 = F̂kP̂kF̂
>
k + ĜkĜ

>
k ,

for k ≥ 0. Then zk+1 = F̂kzk is exponentially stable.

Lemma 4.8 ([76], Theorem 3.1). An exponentially stable linear dynamic system

pk+1 = D̂kpk+ Ĥkuk is bounded-input, bounded-output (BIBO) stable if Ĥk is uniformly

bounded.

Based on above results, we are now ready to present the stability results on the

posterior and prior estimators with the time-varying Riccati equation in (4.32).

Theorem 4.2. For the system described in (4.1) and (4.2) with the event-triggering

condition in (4.3), the event-triggered risk-sensitive posterior estimator in (4.29) and

prior estimator in (4.33) are exponentially stable if either one of the following conditions

holds:

(a) there exists a sequence of solution Σk to the Riccati map (4.32) satisfying Σk > 0

and Σ−1
k − θQ > 0 for all k > 0;

(b) the first condition to be satisfied is that 0 ≤ θ < τN and θ ≤ βρ, where τN and βρ

can be calculated according to Lemma 4.5; the second condition is that the covariance

of the initial state P0 satisfies 0 < P0 ≤ Σρ.

Proof. We prove the stability of the risk-sensitive estimators using the Lyapunov ap-

proach for linear time-varying systems introduced in Lemma 4.7 .

First, we prove (a) of the above theorem. For the posterior estimator in (4.29), we

have

ηk+1 = Ax̂k|k =A(In −KkC)ηk + γkAKkyk. (4.40)
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For notational simplicity, we define Γk = (Σ−1
k + C>(σv + (1− γk)Π

−1)−1C)−1. By the

matrix inversion lemma, the Riccati equation in (4.32) can be equivalently written as

Σk+1 =A[Γk + Γk((θQ)−1 − Γk)
−1Γk]A

> + σw.

Based on some further calculations, we have

AΓkA
> =A(In −KkC)Σk(In −KkC)>A> + AKk(σv + (1− γk)Π

−1)K>
k A

>.

Then we obtain

Σk+1 = A(In −KkC)Σk(In −KkC)>A> +Nk, (4.41)

where

Nk = AKk(σv + (1− γk)Π
−1)K>

k A
> + AΓk((θQ)−1 − Γk)

−1ΓkA
> + σw.

Since Σ−1
k − θQ > 0, it is easy to verify (θQ)−1 − Γk > 0, which indicates Nk > 0 and

Nk = GkG
>
k . Applying Lemma 4.7 to (4.41), we obtain that ηk+1 = A(In −KkC)ηk +

γkAKkyk is exponentially stable. Since (In−KkC) is uniformly bounded from above, we

apply Lemma 4.8 on the prior estimator in (4.29) and conclude that the risk-sensitive

posterior estimator is exponentially stable.

From (4.33), the prior estimator follows

x̂k+1|k =(A−K−
k C)x̂k|k−1 + γkK

−
k yk.

According to the definition of K−
k and by some matrix manipulations, we have

A[Σ−1
k − θQ+ C>(σv + (1− γk)Π

−1)−1C]−1A>

=(A−K−
k C)[Σ−1

k − θQ]−1(A−K−
k C)> +K−

k (σv + (1− γk)Π
−1)−1K−>

k

Substituting the above results into the risk-sensitive Riccati equation in (4.32), we have

Σk+1

=A[Σ−1
k − θQ+ C>(σv + (1− γk)Π

−1)−1C]−1A> + σw

=(A−K−
k C)(Σ−1

k − θQ)−1(A−K−
k C)> +Mk,

where Mk = K−
k (σv+(1−γk)Π

−1)−1K−>
k +σw. By adding (Σ−1

k+1− θQ)−1 to both sides

of the above equation and moving Σk+1 to the right side, we have

(Σ−1
k+1 − θQ)−1

=(A−K−
k C)(Σ−1

k − θQ)−1(A−K−
k C)> +Mk + (Σ−1

k+1 − θQ)−1 − Σk+1. (4.42)
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Since Σ−1
k+1 > Σ−1

k+1 − θQ > 0, we have (Σ−1
k+1 − θQ)−1 − Σk+1 > 0. Also, due to that

K−
k (σv + (1− γk)Π

−1)−1K−>
k ≥ 0 and σw > 0, we have

Mk + (Σ−1
k+1 − θQ)−1 − Σk+1 > 0,

indicating that Mk + (Σ−1
k+1 − θQ)−1 − Σk+1 = G−

k G
−>
k , where G−

k ∈ R
n×n and G−

k has

full column rank. Furthermore, [A−K−
k C,G

−
k ] is stabilizable. Since Σk ≤ Σρ, we have

(Σ−1
k − θQ)−1 ≤ (Σ−1

ρ − θQ)−1, indicating that (Σ−1
k − θQ)−1 is bounded. Similarly,

we can prove that (A − K−
k C) and Mk + (Σ−1

k+1 − θQ)−1 − Σk+1 are bounded. Thus,

combining (4.42) and using Lemma 4.7, the risk-senstive event-triggered prior estimator

in (4.33) is exponentially stable.

For part (b) of the above theorem, based on Lemmas 4.5 and 4.6, we can easily

prove the boundedness of Σk and Σ−1
k − θQ > 0 for all k > 0 within the range of

values of θ and P0 given in the second condition of the above theorem. Then, based

on the obtained results in part (a) of the above theorem, we conclude that the risk-

senstive event-triggered posterior estimator in (4.29) and prior estimator in (4.33) are

exponentially stable, which completes the proof.

Remark 4.2. The sufficient stability condition proposed in part (a) of Theorem 4.2

can be extended to the case when the weighting matrix Qk is time-variant. The ranges

of the risk-sensitive parameter and covariance of the initial state can be estimated in a

prior based on part (b) of Theorem 4.2, which is easy to be examined and provides a rea-

sonable choice of the risk-sensitive parameter for users, though is relatively conservative

compared with part (a) of Theorem 4.2.

4.1.6 Simulation examples

In this subsection, we show the effectiveness and robustness of the proposed risk-

sensitive event-triggered (RSET) prior estimator by simulation examples. The simu-

lation results for the RSET posterior estimator are similar to that of the RSET prior

estimator and are omitted. We consider a second-order system which is described by

xk+1 = (A+∆A)xk + wk,

where the nominal model A = [0.99 0.01; 0 0.99] with ∆A = [0 ς; 0 0] representing the

model uncertainty and ς = −0.05. The measurement process is described by (4.2) with

C = [1 − 1]. The process noise wk and measurement noise vk are zero-mean Gaussians

with covariances σw = [0.5 0; 0 0.5] and σv = 0.3. The initial value x0 of the state is
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Figure 4.1: Performance comparison between the proposed RSET prior estimator and
the MMSE ET prior estimator for ς = −0.05.

Gaussian distributed with mean x̂−
0 = µ0 = [0 0]> and covariance P0 = [0.5 0; 0 0.5].

Sensor measurements will be transmitted to the remote estimator whenever the event-

triggering condition in (4.3) is satisfied, where we choose Π = 0.005. Also, there exists

(σv + Π−1)−1 = D>D where D = 14.1527. The risk-sensitive estimator is obtained

according to (4.5), and we choose the weighting parameter to be constant, namely,

Qk = Q = [1 0; 0 1].

First, we show the robustness of the proposed estimator to system uncertainty.

We choose the same risk-sensitive parameter θ = 0.0001 and verify that part (a) of

Theorem 4.2 is satisfied for finite horizon T = 1000. The performance comparison of

the RSET estimator obtained from time instant 500 to 1000 and the original MMSE

event-triggered (ET) prior estimator in [23] obtained using the same communication

sequence is shown in Fig. 4.1, where both the estimators are obtained based on the

nominal model xk+1 = Axk + wk. The results in Fig. 4.1 start from time instant 500

since it takes some time for the model uncertainty to be fully reflected in the system

dynamics. The vertical axis of Fig. 4.1 represents the value of the first element of the

system state, denoted as x1
k. The resultant MSE for the proposed RSET estimator and

the MMSE ET estimator are 14.98 and 24.02, respectively, indicating that the proposed

RSET estimator outperforms the MMSE ET estimator when uncertainty exists and

∆A = [0 − 0.05; 0 0].

To evaluate the estimation performance of the proposed RSET estimator properly,
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Figure 4.2: Performance comparison between the proposed REST prior estimator and
the MMSE ET prior estimator for the scenario with no parameter uncertainty.

we consider the scenario without model uncertainty, namely, ∆A = [0 0; 0 0], where

the other parameters remain exactly the same as in Fig. 4.1. We choose the same risk-

sensitive parameter θ = 0.0001 and verify that part (a) of Theorem 4.2 is satisfied

for finite horizon T = 1000. The performance comparison of the RSET estimator

obtained from time instant 500 to 1000 and the original MMSE event-triggered (ET)

prior estimator in [23] obtained using the same communication sequence is shown in

Fig. 4.2. The estimates of the proposed RSET estimator and the MMSE ET estimator

almost coincide in Fig. 4.2 and the resultant MSEs for the two methods are very close –

one cannot tell a difference in accuracy to the second decimal place. This phenomenon

results from the specific system considered in this example and the relatively small risk-

sensitive parameter. We can conclude that for the scenario without system uncertainty,

the performance of the proposed RSET estimator is acceptable compared with the

MMSE ET estimator.

To further show the merits of the proposed method, the variation of the MSEs for

the RSET estimator and the MMSE ET estimator as the uncertainty parameter ς in

∆A ranges in value from −0.2 to 0.15, where θ = 0.00008 and the other parameters

remain the same, is shown in Fig. 4.3. Each point in Fig. 4.3 is obtained for finite

horizon T = 150000, within which period, the condition in part (a) of Theorem 4.2 is

verified to be satisfied. We notice that for the case that the uncertainty parameter ς
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Figure 4.3: MSE comparison between the RSET and MMSE ET prior estimators with
respect to system uncertainty.

tends to zero, the MMSE ET estimator and RSET estimator have similar estimation

performance, sometimes the MMSE ET estimator even achieves a lower value of MSE;

while for a larger absolute value of ς (larger system uncertainty), the RSET estimator

outperforms the MMSE ET estimator. This indicates that the proposed estimator has

good estimation performance under nominal scenarios, and acceptable estimation per-

formance that degrades less rapidly than the MMSE ET estimator under non-nominal

scenarios, so we conclude that the proposed estimator is more robust to system uncer-

tainty compared with the MMSE ET estimator. In addition, we notice that Fig. 4.3

is not centered exactly around 0. The explanation of this phenomenon is that as the

uncertainty parameter ς in ∆A ranges in value from −0.2 to 0.15, the system matrix

(A+∆A) varies accordingly whereas the nominal model A utilized by the RSET esti-

mator and the MMSE ET estimator does not change. In other words, the true models

of the system are different when ς takes different values, therefore only the estimation

errors of the two estimators for a certain ς are comparable, not the estimation errors

for different ς. The specific system model and parameters considered will determine

the center of the figure and at what value of ς the smallest estimation error will be

achieved.

Next, the tradeoff between communication rates and estimation performances for the

RSET prior estimator and MMSE ET prior estimator under different event-triggering

conditions is shown in Fig. 4.4, where θ = 0.00005, ς = −0.04, the value of Π in

(4.3) ranges from 0.0002 to 0.362 and the other parameters remain the same as that in

Fig. 4.1. The system runs for finite horizon T = 160000 for each point on the figure
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Figure 4.4: Tradeoff between communication rates and estimation performances for the
proposed RSET and the MMSE ET prior estimators under different event-triggering
conditions.

with the stability condition in part (a) of Theorem 4.2 verified to be satisfied. The

average communication rate is defined as 1
T

∑T

k=1 1{γk=1}. We notice that in Fig. 4.4,

the proposed RSET estimator always outperforms the MMSE ET estimator no matter

what the event-triggering conditions are. In addition, Fig. 4.4 shows that when the

communication rate is close to 0, the MSEs for both estimators are large and tend to

converge since no information is received at the remote estimator if the communication

rate is 0. When the communication rate is close to 1, the MMSE ET estimator simplifies

to the Kalman filter and the RSET estimator simplifies to the time-triggered risk-

sensitive filter, which outperforms the Kalman filter under non-nominal scenario. This

results in the gap between the RSET estimator and the MMSE ET estimator at the

right end of Fig. 4.4.

Finally, the prior range of the risk-sensitive parameter which guarantees the pro-

posed estimators to be stable is obtained based on part (b) of Theorem 4.2. We choose

ς = −0.05, Π = 0.005 and other parameters as same as that in Fig. 4.1. First, we

choose N = 3 and obtain θN = 0.7674 from (4.37). Then, we obtain τN = 1.6890×10−7,

which satisfies τN < θN and is the smallest value of θ for which Ωθ
N in (4.36) is sin-

gular. Next, to evaluate βρ, we observe that the matrix G = [1415; 1387] can assign

all the eigenvalues of the matrix A − GDC to zero, which is likely to yield a satis-

factory upper bound βρ. In this case, we select ρ = 1.5, the solution of (4.39) is

Σ3 = [6.3540× 106 6.2709× 106; 6.2709× 106 6.1889× 106], where the initial covariance

P0 satisfies P0 < Σ3. From (4.38), we obtain β1.5 = 4.4292× 10−8. Next, we verify that

Σk is bounded and Σ−1
k − θQ > 0 for all k > 0 with θ = 4.42 × 10−8, which is chosen
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based on part (b) of Theorem 4.2. The cumulative normalized histograms of the eigen-

values of Σk and Σ−1
k − θQ with β1.5 = 4.42× 10−8 for runtime T = 1000000 are shown

in Fig. 4.5, where a cumulative normalized histogram is a mapping that first counts the

cumulative number of observations that is smaller than or equal to a specific value, then

normalizes the counted value by the total number of observations. In Fig. 4.5, for the

eigenvalues λ1(Σk) and λ2(Σk), we observe that the normalized cumulative values are

zero for λ1(Σk) ≤ 0 and λ2(Σk) ≤ 0, indicating that the eigenvalues of Σk are positive;

thus Σk > 0 for 0 < k ≤ 1000000. Similarly, from the two subfigures at the bottom

of Fig. 4.5, we have Σ−1
k − θQk > 0 for 0 < k ≤ 1000000. Based on Theorem 4.2, we

conclude that the proposed RSET prior estimator remains stable; so does the RSET

posterior estimator.
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Figure 4.5: Cumulative normalized histograms of the eigenvalues of Riccati solution Σk

and Σ−1
k − θQ for finite horizon T = 1000000 with θ = 4.42× 10−8.

4.1.7 Conclusion

In this section, a robust event-triggered state estimation problem with a stochastic

event-triggering condition for linear Gaussian systems is investigated by minimizing

a risk-sensitive cost function. Using the reference measure approach, we obtain the

closed-form expressions of the risk-sensitive event-triggered prior and posterior state

estimates, which evolve in recursive Kalman-like forms. It is shown that the open-loop

MMSE event-triggered estimators proposed in [23] are recovered from the proposed
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RSTE estimators as a special case when the risk-sensitive parameter tends to zero.

Furthermore, we investigate the stability issue of the proposed state estimator and pro-

pose sufficient stability conditions, under which, the range of values of the risk-sensitive

parameter and covariance of the initial state for which the proposed estimators are sta-

ble can be estimated in advance. Finally, comparative simulation results show that the

proposed RSET estimator has good estimation performance under nominal scenarios,

and acceptable estimation performance that degrades less rapidly than the MMSE ET

estimator under non-nominal scenarios, indicating that the proposed estimator is more

robust to system uncertainty compared with the MMSE ET estimator. Future work

includes risk-sensitive event-triggered estimation for systems with multiple sensors and

unreliable communication channels.

4.2 Robust state estimator design for systems with

unknown exogenous inputs: A risk-sensitive

approach∗

∗In this section, a robust state estimation problem for stochastic discrete-time sys-

tems with exogenous unknown inputs is formulated by minimizing the risk-sensitive

error criterion. The risk-sensitive state estimator is obtained by utilizing the reference

measure approach.

4.2.1 Introduction

The unknown exogenous inputs can represent the impact of failure of actuators or

plant components, connecting external inputs, as well as unknown and unpredictable

cyber attacks in CPSs. Recently, an interesting investigation by Li [40] showed that

by treating the unknown inputs as a process with non-informative prior, the Bayesian

inference approach was successfully applied to derive the optimal MMSE estimate for

systems with partially observed inputs, which was proved to reduce to those obtained

by the unified minimum variance (UMV) approaches for the unknown input case. Be-

sides, similar non-informative prior for unknown inputs was considered in [57], where an

event-based MMSE estimator for linear-time varying systems with unknown inputs was

obtained in a recursive form. The risk-sensitive filtering also formulates the problem

∗Parts of the results in this section appeared in Proceedings of the 14th IEEE International Con-
ference on Control and Automation, pp. 136-141, Anchorage, Alaska, USA, June 12-15, 2018.
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from a Bayesian perspective and is closely related to the MMSE estimator, which mo-

tivates us to investigate the risk-sensitive estimation problem while considering similar

non-informative prior in [40] for the unknown inputs.

Different from the MMSE estimator, the risk-sensitive estimate cannot be simply

obtained by minimizing the probability distribution of the state conditioned on the

measured information up to current time instant due to the exponential form of the

criterion. To overcome this difficulty, the reference measure approach is utilized to

decouple the measurement and system state under the reference measure, so that the

derivations of the reformulated cost criterion under the reference measure is simplified

due to the favorable independence between the measurement and state.

The main contributions of the work are summarized as follows: (1) By proposing

a Radon-Nikodym derivative, we propose a reference measure under which the

measurement and system state become independent and the measurement process

itself is i.i.d.; (2) we define a so-called information state under the reference measure,

then derive its closed-form expression, which evolves in a recursive form with a Riccati

equation; (3) with the help of the obtained information state, we obtain a recursive

algorithm for the risk-sensitive estimate of the system state and the theoretical results

are further validated by simulation results.

Notation: R denotes the set of real numbers. N denotes the set of nonnegative integers.

Let m,n ∈ N; Rm×n denotes the set of m by n real-valued matrices. For brevity, denote

R
m := R

m×1. For z, ξ ∈ R
m, zi is the ith element of z and the event {ξ ≤ z} =

{ξi ≤ zi, i = 1, . . . ,m}. For a probability measure P (P̄), we use E (Ē) to represent the

expectation operator and use f(·)(f̄(·)) to represent the probability density function of

a random variable. 1{A} is the indicator function of set A. In is the n × n identity

matrix.

4.2.2 Problem formulation

In this work, we consider a discrete-time linear time-invariant (LTI) system with

unknown exogenous inputs:

xk+1 = Axk +Gdk + wk, (4.43)

where xk ∈ R
n is the state, wk is a zero-mean Gaussian noise with covariance σ > 0,

and dk ∈ R
p is the unknown input. The probability distribution of wk is described by

Φw(·). The initial value x0 of the state is Gaussian with mean µ0 and covariance P0. The
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probability distribution function of the initial state x0 is denoted as π0(·). Let Fx
k be

the completion of the σ-field on Ω generated by x0, x1, . . ., xk. We assume rank G = p,

which implies p < n and the number of states is larger than that of disturbances. This

assumption is intuitive since if there are more disturbances than the states, it will be

unlikely to give a reasonable estimate based on the measurement information provided.

The state information is measured by a sensor and the output equation is

yk = Cxk + vk, (4.44)

where vk ∈ R
m is a zero-mean Gaussian noise with covariance ϕ > 0. The probability

distribution of vk is described by Φv(·). We assume that x0, wk, vk and dk are indepen-

dent of each other and the pair (C,A) is observable. Let Fy
k be the completion of the

σ-field on Ω generated by y0, y1, . . ., yk. Let Ik = {y0, y1, · · · , yk} denote the available

measurement information to the remote estimator up to time instant k. The optimal

state estimation problem for systems with unknown exogenous inputs was investigated

in the sense of MMSE in [40]. In this section, we consider the risk-sensitive general-

ization of the MMSE estimation problem. Our objective is to find the risk-sensitive

estimate x̂k of xk governed by an unknown input term dk, given the measurement

information Ik such that

x̂k := arg min
ξ∈Rn

Jk(ξ), (4.45)

where the risk-sensitive cost function is defined as

Jk(ξ) = E [exp[θΨ0,k(ξ)]|Ik] , (4.46)

where θ > 0 is the risk-sensitive parameter and Ψ0,k(ξ) is defined as

Ψ0,k(ξ) = Ψ̂0,k−1 +
1

2
(xk − ξ)>Qk(xk − ξ), (4.47)

with symmetric weighting matrix Qk > 0 and

Ψ̂0,k−1 =
1

2

k−1
∑

t=0

(xt − x̂t)
>Qt(xt − x̂t).

The consideration of exponential-form cost function penalizes all the higher order mo-

ments of the estimation error energy, so that the risk-sensitive estimator is more robust

to system uncertainties compared with the MMSE estimator. In this work, we inves-

tigate the state estimation problem utilizing a Bayesian inference approach. As no
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information is available for the unknown input dk by the remote estimator, we model

it with a non-informative prior distribution (improper distribution), i.e.,

f(dk|Ik) ∝ 1. (4.48)

Let Fd
k be the completion of the σ-field on Ω generated by d0, d1, . . ., dk. The intuition

of this model is that all possible values of the unknown input dk are equally likely to

occur since the estimator has no clue of the value of dk. In addition, the optimal MMSE

estimate for systems with partially observed inputs [40], which is obtained by utilizing

the Bayesian inference approach and treating the unknown input as a process with

non-informative prior, was shown to reduce to those obtained by the UMV approach

[33]. This result justifies the rationale of modeling the unknown input dk with the non-

informative prior. For further discussion on the property of improper prior distribution,

see Remark 1 of [57].

One main difference between the MMSE and risk-sensitive estimators is that the

MMSE estimator can be obtained based on the conditional probability distribution

of the current state on the information available at the estimator, thus avoiding the

complicated derivations of the mean of the summed squared estimation error from time

instant 0 to k; whereas similar simplification does not work for the risk-sensitive case

due to its exponential form of the cost function. Motivated by this, the reference

measure approach is utilized to simplify the estimation problem and makes it possible

for us to derive the recursive algorithm of calculating the risk-sensitive state estimate.

4.2.3 Reference measure approach

To obtain the risk-sensitive estimate of the state xk governed by an unknown input

dk, we utilize the Bayesian inference approach and the reference measure approach.

Firstly, we propose a reference measure P̄ under which the variables satisfy the following

relationships:

xk+1 = Axk +Gdk + wk, (4.49)

where wk ∈ R
n is i.i.d. and wk ∼ N(0, σ). The measurement yk is an i.i.d. variable

under the reference measure P̄ and yk ∼ N(0, ϕ). The reason of proposing a reference

measure is that the independency of the measurement yk under the reference measure

P̄ will help us simplify the derivations of the risk-sensitive cost function under the

reference measure. We assume the following relationship under P̄

vk = yk − Cxk. (4.50)
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We assume the unknown input follows a non-informative prior distribution under the

reference measure, i.e.,

f̄(dk|Ik) ∝ 1. (4.51)

To link the reference measure with the original “real-world” measure, we define a map

from P̄ to P:

dP

dP̄

∣

∣

∣

∣

Gk

= Λ̄k, (4.52)

where Gk is Fx
k ∪ Fy

k ∪ Fd
k , and the Radon-Nikodym derivative is defined as

Λ̄k =
k
∏

l=0

λ̄l, λ̄k =
Φv(yk − Cxk)

Φv(yk)
. (4.53)

Based on the conditional Bayes theorem (Theorem 3.3 in Chapter 2 of [17]), the prob-

ability distribution under the reference measure P̄ can be mapped back to the “real-

world” measure P. The properties of the map defined in (4.52)-(4.53) from the reference

measure to the original probability measure are summarized in the following result.

Lemma 4.9. If the model in (4.49)-(4.51) is mapped from the reference measure P̄ back

to the “real-world” measure P via the Radon-Nikodym derivative in (4.52)-(4.53), then

the obtained model satisfies the properties under measure P as stated in (4.43), (4.44)

and (4.48).

Proof. According to the definition of λk+1 and equation (4.49), we have

Ē
[

λ̄k+1|Gk

]

=Ē

[

Φv(yk+1 − C(Axk +Gdk + wk))

Φv(yk+1)

∣

∣

∣

∣

Gk

]

.

Since under the reference measure P̄, yk+1 and xk, dk are independent and yk+1 is i.i.d.

with probability distribution N(0, ϕ), we have

Ē
[

λ̄k+1|Gk

]

=
∫

Rn

∫

Rm

Φv(yk+1−C(Axk+Gdk+wk))

Φv(yk+1)
Φv(yk+1)Φw(wk)dyk+1dwk

=
∫

Rn

∫

Rm Φv(yk+1 − C(Axk +Gdk + wk))

· d(yk+1 − C(Axk +Gdk + wk))Φw(wk)dwk

=1.
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Following a similar procedure, we have

Ē
[

λ̄k|Fx
k ∪ Fy

k−1 ∪ Fd
k−1

]

= 1.

According to the conditional Bayes theorem, we have

P[xk+1 − Axk −Gdk ≤ z|Gk]

=
Λ̄kĒ

[

λ̄k+11{xk+1 − Axk −Gdk ≤ z}|Gk

]

Λ̄kĒ
[

λ̄k+1|Gk

]

=Ē
[

λ̄k+11{xk+1 − Axk −Gdk ≤ z}|Gk

]

,

where we use the fact that Ē
[

λ̄k+1|Gk

]

= 1. According to (4.49) and the fact that

wk ∈ R
n is i.i.d. and wk ∼ N(0, σ) under the reference measure P̄, we further have

P[xk+1 − Axk −Gdk ≤ z|Gk]

=Ē
[Φv [yk+1−C(Axk+Gdk+wk)]

Φv(yk+1)
1{wk ≤ z}

∣

∣Gk

]

=
∫

Rn

∫

Rm

Φv [yk+1−C(Axk+Gdk+wk)]

Φv(yk+1)
1{wk ≤ z}

· Φv(yk+1)Φw(wk) dyk+1 dwk

=
∫ z1

−∞
· · ·

∫ zn

−∞
Φw(wk) dwk,

which recovers the relationship described in (4.43) under the “real-world” measure P.

Furthermore, for the measurement process, according to the conditional Bayes theorem

and (4.50), we have

P[yk − Cxk ≤ z|Fx
k ∪ Fy

k−1 ∪ Fy
k−1]

=Ē
[Φv(yk−Cxk)

Φv(yk)
1{yk − Cxk ≤ z}

∣

∣Fx
k ∪ Fy

k−1 ∪ Fy
k−1

]

=
∫

Rm Φv(yk − Cxk)1{yk − Cxk ≤ z} d(yk − Cxk)

=
∫ z1

−∞
· · ·

∫ zn

−∞
Φv(vk) dvk.

According to repeated conditioning, we have

P[yk − Cxk ≤ z|Fx
k ]

=P[P[yk − Cxk ≤ z|Fx
k ∪ Fy

k−1 ∪ Fy
k−1]|Fx

k ]

=
∫ z1

−∞
· · ·

∫ zn

−∞
Φv(vk) dvk,

which recovers the measurement process described in (4.44) under P. Following similar

arguments as above, we can prove that the model in (4.48) can be obtained by mapping

the relationship under P̄ in (4.51) back to the “real-world” measure P through the

Radon-Nikodym derivative in (4.52) and (4.53), which completes the proof.
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Based on the conditional Bayes theorem (Theorem 3.3 in Chapter 2 of [17]) and

the fact that Ik is a sub-σ-field of Gk, the risk-sensitive cost function in (4.46) can be

reformulated as

Jk(ξ) =E [exp[θΨ0,k(ξ)]|Ik]

=
Ē[Λ̄k exp[θΨ0,k(ξ)]|Ik]

Ē[Λ̄k|Ik]
. (4.54)

Noticing that the denominator in (4.54) is independent of ξ, we have

x̂k = arg min
ξ∈Rn

Jk(ξ) = arg min
ξ∈Rn

Ē[Λ̄k exp[θΨ0,k(ξ)]|Ik], (4.55)

which indicates that the problem of minimizing the risk-sensitive cost function Jk(ξ)

under the “real-world” measure P is equivalent to that of minimizing the reformulated

cost function Ē[Λ̄k exp[θΦ0,k(ξ)]|Ik] under the reference measure P̄. The independence

of the measurement process yk under P̄ can be utilized to further simplify the mini-

mization problem under P̄.

4.2.4 Augmented variable and information state

Let G⊥ denote a matrix such that [G G⊥] ∈ R
n×n, rank[G G⊥] = n and G>G⊥ = 0.

In this section, we define a new augmented variable through a linear transformation

zk := Txk, (4.56)

with T := [G G⊥]−1. By substituting (4.43) into the above equation, we obtain

zk = T (Axk−1 +Gdk−1 + wk−1)

= Ãk−1zk−1 +Ddk−1 + w̃k−1, (4.57)

where Ã = TAT−1, D = TG = [Ip 0]>, w̃k−1 = Twk−1 and w̃k is a Gaussian noise with

zero mean and covariance σ̃ = TσT>. The probability distribution of w̃k is described

by Φw̃(·). Since T is an invertible square matrix, the weighting matrix Qk in (4.47) can

be written as

Qk = T>RkT, (4.58)

with Rk = (T>)−1QkT
−1. By substituting (4.56) and (4.58) into (4.47) and reformu-

lating Ψ0,k(ξ), we have

Ψ0,k(ξ) = Γ0,k(µ) = Γ̂0,k−1 +
1
2
(zk − µ)>Rk(zk − µ),
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where

Γ̂0,k−1 =
1
2

∑k−1
t=0 (zt − ẑt)

>Rt(zt − ẑt)

with ẑk := T x̂k and µ := Tξ. To solve the problem in (4.55), we may first work on

ẑk = arg min
µ∈Rn

Ē[Λ̄k exp[θΓ0,k(µ)]|Ik], (4.59)

and then obtain the state estimate through x̂k = T−1ẑk.

Definition 4.2 (Information State). The information state αk(z) is defined as the

unnormalized density function such that

αk(z)dz =Ē[Λ̄k−1 exp{θΓ̂0,k−1}1(zk ∈ dz)|Ik−1]. (4.60)

The physical meaning of αk(z)dz is the information state of an augmented plant

where the state includes the augmented variable zk and part of the risk-sensitive cost in

(4.59) under the reference measure P̄. Before continuing, we introduce some notations.

Write

D̄ = [0 In−p]
> ∈ R

n×(n−p)

and

σ̄ = D̄(D̄>σ̃D̄)−1D̄>.

The following result provides the recursive form of the information state αk(z) for k ≥ 1.

Lemma 4.10. The information state αk(z) is unnormalized Gaussian density given by

αk(z) = ρk exp
[

−1
2
(z>Σkz − 2ζ>k z)

]

, (4.61)

where ρk is a constant which is independent of z; Σk and ζk evolve according to the

following form:

Σk+1 =σ̄ − σ̄Ã[Ã>σ̄Ã− θRk + Σk + ϕ̃]−1Ã>σ̄>, (4.62)

ζ>k+1 =(ζ>k − θẑ>k Rk + y>k ϕ
−1CT−1)

· [Ã>σ̄Ã− θRk + Σk + ϕ̃]−1Ã>σ̄>, (4.63)

ϕ̃ =(T−1)>C>ϕ−1CT−1. (4.64)

with initial conditions Σ0 = (TP0T
>)−1 and ζ>0 = (Tµ0)

>(TP0T
>)−1.
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Proof. To prove this lemma, we start with the general case, then the case of k = 0 can

be easily obtained, which will be shown at the end of the proof. We first assume that

the information state at time instant k follows the form in (4.61) and prove this form

holds for k+1. Suppose f : Rn → R is any Borel test function. Based on the definition

of Λ̄k and Γ̂0,k, we have

Ē[f(zk+1)Λ̄k exp(θΓ̂0,k)|Ik]

=Ē
[

f(Ãxk +Ddk + w̃k)
Φv(yk−CT−1zk)

Φv(yk)
Λ̄k−1 exp(θΓ̂0,k−1)

· exp
[

θ
2
(zk − ẑk)

>Rk(zk − ẑk)
] ∣

∣Ik

]

.

According to the definiton of the information state αk(z), we have

Ē[f(zk+1)Λ̄k exp(θΓ̂0,k)|Ik]

=
∫

Rn

∫

Rn

∫

Rp f(Ãx+Ddk + w̃k)Φw̃(w)f(d|yk) dd dw

· Φv(yk−CT−1x)
Φv(yk)

exp
[

θ
2
(x− ẑk)

>Rk(x− ẑk)
]

αk(x) dx.

Let z = Ãx+Ddk + w̃k and the above equation becomes

Ē[f(zk+1)Λ̄k exp(θΓ̂0,k)|Ik]

=
∫

Rn

∫

Rn

∫

Rp f(z)Φw̃(z − Ãx−Dd)f(d|yk) dd αk(x)

· exp
[

θ
2
(x− ẑk)

>Rk(x− ẑk)
] Φv(yk−CT−1x)

Φv(yk)
dx dz.

Based on the definition of the information state, we have

Ē[f(zk+1)Λ̄k exp(θΓ̂0,k)|Ik] =

∫

Rn

f(z)αk+1(z) dz.

Combining the above results, we obtain

αk+1(z)

=
∫

Rn

∫

Rp Φw̃(z − Ãx−Dd)f(d|yk) dd αk(x)

· exp
[

θ
2
(x− ẑk)

>Rk(x− ẑk)
]

Φv(yk−CT−1x)
Φv(yk)

dx

∝
∫

Rn

∫

Rp exp[−1
2
(z − Ãx−Dd)>σ̃−1(z − Ãx−Dd)] dd

· exp
[

θ
2
(x− ẑk)

>Rk(x− ẑk)
]

Φv(yk − CT−1x)αk(x)dx,

where (4.51) is used in the last equation. We denote z̃ = z − Ãx and have

z̃ =

[

D>

D̄>

]

z̃ =

[

z̃1
z̃2

]

,
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where D̄ = [0 In−p]
>. By basic manipulations, we have

∫

Rp exp
[

− 1
2
(z − Ãx−Dd)>σ̃−1(z − Ãx−Dd)

]

dd

=

∫

Rp

exp

[

−1

2

[

d− z̃1
−z̃2

]> [

D>σ̃D D>σ̃D̄
D̄>σ̃D D̄>σ̃D̄

] [

d− z̃1
−z̃2

]

]

dd

∝ exp
[

− 1
2
(z − Ãx)>σ̄(z − Ãx)

]

,

where σ̄ = D̄(D̄>σ̃D̄)−1D̄> and the properties of the marginal distribution of a mul-

tivariate Gaussian random variable are used. Combining the above results and (4.61),

we have

αk+1(z)

∝
∫

Rn exp
[

− 1
2
(z − Ãx)>D̄(D̄>σ̃−1D̄)−1D̄>(z − Ãx)

]

· exp
[

θ
2
(x− ẑk)

>Rk(x− ẑk)
]

exp
[

−1
2
(y − CT−1x)>ϕ−1(y − CT−1x)

]

· exp
[

−1
2
(z>Σkz − 2ζ>k z)

]

dx.

Based on the properties of Gaussian distributions and completing square technique for

vectors, we have

αk+1(z) ∝ exp
[

−1
2
(z>Σk+1z − 2ζ>k+1z)

]

,

where Σk+1 and ζ>k+1 follow equations (4.62)-(4.64). For the case when k = 0, we can

easily obtain that

α0(z) ∝ exp
[

− 1
2
(z − Tµ0)

>(TP0T
>)−1(z − Tµ0)

]

.

Thus, the initial conditions of the information state follows (4.61) with Σ0 = (TP0T
>)−1

and ζ>0 = (Tµ0)
>(TP0T

>)−1, which completes the proof.

Based on the above results of the information state, we derive the risk-sensitive

estimate ẑk.

Lemma 4.11. For k ≥ 1, if Σk − θRk + ϕ̃ > 0, the risk-sensitive estimate of the

augmented state ẑk satisfies

ẑk = (ϕ̃+ Σk)
−1[(T−1)>C>(ϕ−1)>yk + ζk]. (4.65)
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Proof. According to (4.59), we need to calculate Ē[Λ̄k exp[θΓ0,k(µ)]|Ik]. Combining the

definition of Λ̄k and the above results on the information state αk, we have

Ē[Λ̄k exp[θΓ0,k(µ)]|Ik]

=
∫

Rn

Φv(yk−CT−1z)
Φv(yk)

αk(z) exp
[

θ
2
(zk − µ)>Rk(zk − µ)

]

dz

∝
∫

Rn exp
[

− 1
2
(y − CT−1z)>ϕ−1(y − CT−1z)

− 1
2
(z>Σkz − 2ζ>k z) +

θ
2
(zk − µ)>Rk(zk − µ)

]

dz.

Using the properties of Gaussian distributions and completing square technique for

vectors, we obtain

Ē[Λ̄k exp[θΓ0,k(µ)]|Ik] ∝ exp[(µ− µ′)>M(µ− µ′)],

where M = Σk − θRk + ϕ̃ is independent of µ and

µ′ = (ϕ̃+ Σk)
−1[(T−1

k−1)
>C>(ϕ−1)>yk + ζk].

According to the definition of ẑk in (4.59), if M > 0, the minimum of

Ē[Λ̄k exp[θΓ0,k(µ)]|Ik] is achieved when µ = µ′, thus, the risk-sensitive estimate of

the augmented state follows (4.65), which completes the proof.

4.2.5 Recursive risk-sensitive state estimate

Combining Lemmas 4.10 and 4.11, we have the following results on the recursive

form of the risk-sensitive state estimate x̂k.

Theorem 4.3. For the linear systems with unknown exogenous inputs in (4.43) and

(4.44), if Σk − θRk + ϕ̃ > 0, for k ≥ 1, the risk-sensitive estimate of the system state

x̂k evolves according to the following recursive form:

x̂k+1

=T−1(ϕ̃−1 + Σk)
−1
[

(T−1)>C>(ϕ−1)>yk+1

+ σ̄Ã(Ã>σ̄Ã− θRk + Σk + ϕ̃)−1(−θRk + Σk + ϕ̃)T x̂k

]

, (4.66)

where x̂0 = T−1(ϕ̃ + Σz)
−1[(T−1)>C>(ϕ−1)>yk + ((TP0T

>)−1)>Tµ0] and Σk follows

(4.62).
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Proof. From (4.65), we have

ζk = (ϕ̃+ Σk)ẑk − (T−1)>C>(ϕ−1)>yk. (4.67)

Substituting (4.67) into (4.63), we obtain

ζk+1 =σ̄Ã[Ã>σ̄Ã− θRk + Σk + ϕ̃]−1

· (Σk − θRk + ϕ̃)ẑk. (4.68)

We combine (4.68), the risk-sensitive estimate ẑk+1 in (4.65) and the linear transforma-

tion x̂k = T−1ẑk, then it follows that the risk-sensitive estimate x̂k+1 evolves according

to (4.66). For the initial condition of k = 0, by substituting ζ0 in Lemma 4.10 into

(4.65) and due to that x̂k = T−1ẑk, we obtain x̂0 = T−1(ϕ̃+Σz)
−1[(T−1)>C>(ϕ−1)>yk+

((TP0T
>)−1)>Tµ0].

In Theorem 4.3, a sufficient condition Σk−θRk+ϕ̃ > 0 is employed to guarantee that

the reformulated risk-senstive cost function Ē[Λ̄k exp[θΓ0,k(µ)]|Ik] is non-degenerate, so

that we can obtain the risk-sensitive estimate of the state.

4.2.6 Numerical example

To demonstrate the analytical results, we present a simulation example in this

subsection. We consider a stable LTI process with unknown inputs in (4.43) with

nominal model A = [0.5887 0.3251; 0.5028 0.3245], ∆A = [0 0; δ 0] representing the

model uncertainty. The process noise wk is a zero-mean Gaussian noise with covariance

σ = [1.1778 0; 0 1.1778]. For this case, the unknown signal dk utilized is chosen to have

the form shown in Fig. 4.6 with G = [0.5722 0.0090]>. We consider the measurement

process in (4.44) with C = [0.5666 − 0.9671;−0.2248 − 0.7100] and noise covariance

ϕ = [2.0605 0; 0 2.0605]. For the risk-sensitive estimation problem in (4.45), we choose

the weighting matrix Qk = [1 0; 0 1] and the risk-sensitive parameter θ = 0.0819. The

performance comparison between the estimates from the Kalman filter (KF), MMSE

estimator for systems with unknown inputs and the proposed risk-sensitive (RS) esti-

mator for δ = −0.3 are shown in Fig. 4.6. The vertical axis of Fig. 4.6 represents the

first element of the system state, denoted as x1
k. The resultant MSE for the KF, MMSE

estimator and RS estimator are 56.04, 18.62 and 6.80, respectively, indicating that the

proposed RS estimator outperforms the MMSE estimator when system parameter un-

certainty exists. Though the MMSE estimator serves as the best estimator in the mean
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Figure 4.6: Performance comparison between the KF, MMSE estimator for systems
with unknown inputs and proposed RS estimator.

square error sense under the nominal model case, the merits of the proposed RS estima-

tor will unfold in the scenario with system parameter uncertainties. The risk-sensitive

parameter can be tuned by the user to balance the tradeoff between the estimator

optimality under the nominal case and the robustness to the system uncertainty. A

larger risk-sensitive parameter can result in a relatively degraded but still acceptable

performance under the nominal case; while this larger choice of parameter can lead to

noticeable performance improvement for the scenario with system uncertainty.

4.2.7 Conclusion

In this work, the risk-sensitive state estimation problem for discrete-time LTI sys-

tems with unknown exogenous inputs is investigated by treating the unknown input as

a process modeled by a non-informative prior. We propose a reference measure under

which the system state and measurement become independent and then derive a re-

cursive form of an information state under the reference measure, based on which, we

propose a recursive algorithm for the risk-sensitive state estimate. Simulation exam-

ples are included to show the effectiveness of the proposed method, where comparative
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estimation results of the proposed RS estimator and the MMSE estimator for systems

with unknown inputs indicate that the former outperforms the latter under the scenario

subject to system parameter uncertainties. In the current estimation framework, the

measurement transmission protocol is in a time-triggered fashion; one extension is to

take the event-triggered scheduling into consideration. Besides, the stability analysis

of the RS estimator is another interesting direction to be explored in our future work.
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Chapter 5

Distributed robust state estimation

for sensor networks:

A risk-sensitive approach∗

∗

5.1 Introduction

In this chapter, we investigate the robust distributed state estimation problem uti-

lizing the risk-sensitive filtering approach. The motivation stems from that for wire-

less sensor networks, the sensors involved in the networks are usually intelligent nodes

with limited computation capability and constrained power supply. For large-scale sen-

sor networks, sensors typically exchange information only with their neighbors due to

their limited power and communication bandwidth. Even if the all-to-all links can be

achieved, the capability of local filter would not afford the heavy computational burden

if the information from the entire network is utilized. As a result, distributed state

estimation problem of a dynamical system which is measured by a sensor network is of

vital importance.

In this work, we consider the risk-sensitive filter, which counteracts the uncertainty

by minimizing a cost criterion in exponential form. We aim to develop a distributed

risk-sensitive filtering algorithm for a linear Gaussian system that is measured by

a sensor network, where the nodes can communicate only with their neighbors and

each node runs a local filter to estimate the state based on the measurements from

its neighbors. Based on the fact that risk-sensitive filters for linear Gaussian systems

evolve in a recursive Kalman-like forms [70], we obtain a decentralized risk-sensitive

∗Parts of the results in this section were submitted to the 57th IEEE Conference on Decision and
Control, Miami Beach, FL, USA, December 17-19, 2018.
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filter, which involves the two average terms of the dynamics from the entire sensor

network. By utilizing the consensus filter proposed in [69] to achieve data fusion, we

propose a distributed risk-sensitive filtering algorithm, where the local filter at each

sensor updates its state estimate in a Riccati-based linear recursive form. We analyze

the asymptotic properties of the proposed distributed risk-sensitive filter for LTI

systems. The effectiveness of the proposed distributed risk-sensitive filtering algorithm

is illustrated by simulation examples.

Notation: R denotes the set of real numbers. N denotes the set of nonnegative in-

tegers. Let m,n ∈ N; R
m×n denotes the set of m by n real-valued matrices. For

brevity, denote R
m := R

m×1. Let N denote the set of nonnegative integers. Write

N1:M := {1, 2, . . . ,M}. In is the n × n identity matrix. 0n×m is the n × m zero ma-

trix. col(C1, C2, . . . , CN) denotes [C
>
1 C>

2 . . . C>
N ]

>. diag(A1, A2, . . . , A3) stands for a

block-diagonal matrix.

5.2 Problem formulation

In this chapter, we consider a discrete-time linear process driven by white noise:

x(k + 1) = A(k)x(k) + B(k)w(k), (5.1)

where x(k) ∈ R
n is the state, w(k) is a zero-mean Gaussian noise with covariance

Q(k) > 0. The initial value x(0) of the state is Gaussian with mean µ0 and covariance

P0. The state information is measured by a sensor network consisting of N nodes.

The interaction topology among the nodes is represented by a graph G = (V,E) where

V = {1, 2, . . . , N} is the set of nodes and E ⊂ V × V is the set of links. We assume

the graph G is undirected and connected (there is a path between every pair of nodes).

For i ∈ V , the output equation of the ith sensor is

yi(k) = Ci(k)x(k) + vi(k), (5.2)

where vi(k) ∈ R
m is a zero-mean Gaussian noise with covariance Ri(k) > 0. We assume

that x(0), w(k) and vi(k) for i ∈ V are independent of each other. The output matrix

Ci’s can be different across the sensor network. Let y(k) = col(y1(k), y2(k), . . . , yN(k)) ∈
R

mN be the collective sensor measurement of the sensor network at time instant k.

Defining an output matrix C(k) = col(C1(k), C2(k), ..., CN(k)), we have the sensing

model of the entire sensor network:

y(k) = C(k)x(k) + v(k), (5.3)
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where v(k) = col(v1(k), v2(k), . . . , vN(k)) ∈ R
mN is the collective measurement noise

with covariance R(k) = diag(R1(k), R2(k), . . . , RN(k)). We assume that the pair

(A(k), C(k)) is observable, namely, the system is collectively observable by the entire

sensor network. Let Ik = {y(0),y(1), · · · ,y(k)} denote all the available measurement

information up to time instant k.

In this chapter, we consider the risk-sensitive generalization of the MMSE estima-

tion problem. The centralized risk-sensitive estimate x̂k of xk given the measurement

information Ik is defined as

x̂(k) := arg min
ξ∈Rn

E [exp[θΨ0,k(ξ)]|Ik] , (5.4)

where θ > 0 is the risk-sensitive parameter and Ψ0,k(ξ) is defined as

Ψ0,k(ξ) = Ψ̂0,k−1 +
1
2
[x(k)− ξ]>π(k)[x(k)− ξ], (5.5)

with symmetric weighting matrix π(k) > 0 and

Ψ̂0,k−1 =
1
2

k−1
∑

t=0

[x(t)− x̂(t)]>π(t)[x(t)− x̂(t)].

The consideration of an exponential-form cost function penalizes all the higher order

moments of the estimation error energy, so that the risk-sensitive estimator enjoys

robustness characteristics, the precise meaning of which is interpreted in [7]. The

centralized risk-sensitive state estimation problem in (5.4) for linear Gaussian systems

was solved in [13] utilizing the reference measure approach, where the obtained risk-

sensitive filter evolves according to the following recursive form:

M(k)−1 =P (k)−1 + C(k)>R(k)−1C(k), (5.6)

K(k) =M(k)C(k)>R(k)−1, (5.7)

x̂(k) =x̄(k) +K(k)[y(k)− C(k)x̄(k)], (5.8)

P (k + 1) =A(k)[M(k)−1 − θπ(k)]−1A(k)> +B(k)Q(k)B(k)>, (5.9)

x̄(k + 1) =A(k)x̂(k), (5.10)

with P (0) = P0 and x̄(0) = µ0 if M(k)−1 − θπ(k) > 0 for k ≥ 0. The risk-sensitive

filter in (5.6)-(5.10) is a centralized filter since the risk-sensitive estimate x̂k in (5.8) is

obtained by minimizing the average of exponential criterion in (5.4) given the output

matrix C(k), the covariance R(k) and information Ik from the entire network. The

centralized risk-sensitive filter is linear and in a Kalman-like form, with the difference
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in the Riccati equation in (5.9), which is similar to the one obtained in [66] for discrete-

time H∞ filtering. In this work, we answer the following question: how to design a fully

distributed risk-sensitive filter for systems that are measured by a sensor network, such

that the asymptotic performance of the local estimators can be guaranteed in a certain

sense.

5.3 Distributed risk-sensitive filter

Before continuing, we define two network-wide aggregate quantities: the fused

inverse-covariance matrices:

S(k) = 1
N
C(k)>R(k)−1C(k)

= 1
N

∑M

i=1 Ci(k)
>Ri(k)

−1Ci(k), (5.11)

and the fused sensor data:

d(k) = 1
N
C(k)>R(k)−1y(k) (5.12)

= 1
N

∑N

i=1 Ci(k)
>Ri(k)

−1yi(k). (5.13)

Now we are at the position to present the following decentralized risk-sensitive filter for

the sensor network.

Proposition 5.1. Consider the discrete-time linear Gaussian process in (5.1) measured

by a sensor network with N nodes, where the sensing model is described in (5.2). Sup-

pose node i ∈ N1:N in the sensor network calculates its local risk-sensitive state estimate

using the following update equations if Mi(k)
−1 − θ

N
π(k) > 0 for k ≥ 0

Mi(k)
−1 =Pi(k)

−1 + S(k), (5.14)

x̂i(k) =x̄i(k) +Mi(k)[d(k)− S(k)x̄i(k)], (5.15)

Pi(k + 1) =A(k)[Mi(k)
−1 − θ

N
π(k)]−1A(k)> +B(k)Qi(k)B(k)>, (5.16)

x̄i(k + 1) =A(k)x̂i(k), (5.17)

where θ > 0, Qi(k) = NQ(k), Pi(0) = NP (0) and x̄i(0) = µ0. The local risk-sensitive

estimate obtained by each sensor is the same as the centralized risk-sensitive estimate

in (5.4), namely, x̂i(k) = x̂(k) for any i ∈ N1:N .

Proof. For the centralized risk-sensitive estimator, substituting (5.6) into (5.9), we have

P (k + 1)

=A(k)[P (k)−1 + C(k)>R(k)−1C(k)− θπ(k)]−1A(k)> +B(k)Q(k)B(k)>. (5.18)
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Substituting (5.7) and (5.10) into (5.8), we have

x̂(k) =A(k − 1)x̂(k − 1) +M(k)C(k)>R(k)−1[y(k)− C(k)A(k − 1)x̂(k − 1)]. (5.19)

We prove the above proposition by mathematical induction. For each sensor node i,

we substitute (5.14) into (5.16) and combine Qi(k) = NQ(k) and the definition of Sk

in (5.11), then we have

Pi(k + 1)

=A(k)[Pi(k)
−1 + 1

N
C(k)>R(k)−1C(k)− θ

N
π(k)]−1A(k)> +B(k)NQ(k)B(k)>. (5.20)

Based on the results in (5.18) and (5.20), if Pi(k) = NP (k), we have Pi(k + 1) =

NP (k + 1). By mathematical induction, since the basis Pi(0) = NP (0), we have

Pi(k) = NP (k) for k ≥ 0, thus Mi(k) = NM(k). Combining (5.15), (5.17) and

Mi(k) = NM(k), we obtain

x̂i(k)

=x̄i(k) +Mi(k)[d(k)− S(k)x̄i(k)]

=A(k − 1)x̂i(k − 1) +M(k)C(k)>R(k)−1[y(k)− C(k)A(k − 1)x̂i(k − 1)], (5.21)

where the definitions of d(k) and S(k) are used in the last equation. Since x̄i(0) = x̄(0),

we have x̂i(0) = x̂(0). By mathematical induction, combining (5.19), (5.21) and the

basis x̂i(0) = x̂(0), we have x̂i(k) = x̂(k) for any i ∈ N1:N , which completes the

proof.

The above proposition presents a decentralized risk-sensitive filter, where each sensor

calculates S(k) and d(k). In other words, each sensor is required to have access to the

measurement information of the entire sensor network, resulting in the communication

complexity of O(n2). To further develop a distributed risk-sensitive filter, we consider

the scenario that each node only communicates information with its neighbors in the

network. Let Ni = {j : (i, j) ∈ E} be the set of neighbors of node i on graph G. Similar

to the micro-Kalman filter iterations proposed in [47], the results in Proposition 5.1

would hold regardless what data fusion method is used to obtain the fused terms S(k)

and d(k). Compared with the decentralized Kalman filter algorithm, the decentralized

risk-sensitive filter has different local Riccati update equations and will reduce to the

decentralized Kalman filter if the risk-sensitive parameter θ = 0. In addition, the two

decentralized filters share the same attempt to obtain the fused terms S(k) and d(k),
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which motivates us to utilize the data fusion methods considered in the distributed

Kalman filtering.

To develop a distributed risk-sensitive filtering algorithm, we utilize the dynamic

consensus data fusion filter proposed in [69] to perform the averaging task and approx-

imately compute S(k) and d(k) in Proposition 5.1. For any sensor node i ∈ N1:N , the

dynamics of the continuous-time high-gain version of the consensus filter is given by

q̇i = β
∑

j∈Ni
(qj − qi) + β

∑

j∈Ni
(uj − ui),

pi = qi + ui,

where the gain β ∼ O(1/λ2) and λ2 is the second-smallest eigenvalue of the Laplacian

matrix L of the graph G, which denotes the algebraic connectivity of G. If the topology

of the graph G is sparse, the gain β would be relatively large. ui is the input of the

consensus filter of node i, qi is the state of the consensus filter of node i and pi is

its output. It is proved in [69] that for a connected graph G, the dynamic average

consensus of the input ui(t) can be aymptotically reached, namely, pi(t) asymptotically

converges to 1
M

∑

i∈N1:M
ui(t) as t → ∞. By discretization, we obtain the discrete-time

version of the above consensus filter in the following form

qi(k) =qi(k − 1) + εβ
∑

j∈Ni
[qj(k − 1)− qi(k − 1)] + εβ

∑

j∈Ni
[uj(k)− ui(k)], (5.22)

pi(k) =qi(k) + ui(k), (5.23)

where ε is the step-size. By utilizing the discrete-time version of the consensus filter

in (5.22) and (5.23) to compute S(k) and d(k), we obtain the distributed risk-sensitive

filtering algorithm in Algorithm 1.
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Algorithm 1 Distributed risk-sensitive filtering algorithm for node i with consensus-
based data fusion
1: Initialization: qi(−1) = 0n×1, Xi(−1) = 0n×n and Pi(0) = NP0, x̄i(0) = µ0.
2: For time instant k ≥ 0, the following steps are implemented at node i ∈ V .
3: Calculate the local data

ui(k) = Ci(k)
>Ri(k)

−1yi(k), Ui(k) = Ci(k)
>Ri(k)

−1Ci(k).

4: Node i sends the data packet (ui(k), qi(k−1), Ui(k), Xi(k−1)) to its neighbors and
receives data (uj(k), qj(k − 1), Uj(k), Xj(k − 1)) for j ∈ Ni from its neighbors.

5: Update the consensus filter for the fused measurement data:

qi(k) =qi(k − 1) + εβ
∑

j∈Ni
[(qj(k − 1)− qi(k − 1)) + (uj(k)− ui(k))],

di(k) =qi(k) + ui(k).

6: Update the consensus filter for the fused inverse-covariance:

Xi(k) =Xi(k − 1) + εβ
∑

j∈Ni
[(Xj(k − 1)−Xi(k − 1)) + (Uj(k)− Ui(k))], (5.24)

Si(k) =Xi(k) + Ui(k). (5.25)

7: Estimate the state using the local risk-sensitive filter

Mi(k) =(Pi(k)
−1 + Si(k))

−1, (5.26)

x̂i(k) =x̄i(k) +Mi(k)[di(k)− Si(k)x̄i(k)]. (5.27)

8: Update the local risk-sensitive filter

Pi(k + 1) =A(k)[Mi(k)
−1 − θ

N
π(k)]−1A(k)> +B(k)NQi(k)B(k)>, (5.28)

x̄i(k + 1) =A(k)x̂i(k). (5.29)

For node i ∈ V , the consensus filters are initialized with qi(−1) = 0n×1, Xi(−1) =

0n×n and the local risk-sensitive filter is initialized with Pi(0) = NP0 and x̄i(0) = µ0.

At each time instant k, node i sends the data packet (ui(k), qi(k− 1), Ui(k), Xi(k− 1))

to its neighbors and receives data (uj(k), qj(k − 1), Uj(k), Xj(k − 1)) for j ∈ Ni from

its neighbors, implying that the communicational complexity is scalable for large-scale

sensor networks. For node i, at time instant k, the inputs of the consensus filter for the

fused measurement data are ui(k) and (uj(k), qj(k − 1)) for j ∈ Ni and the inputs of

the consensus filter for the fused inverse-covariance are Ui(k) and (Uj(k), Xj(k−1)) for

j ∈ Ni. The outputs di(k) and Si(k) of the consensus filters at node i are approximations

of d(k) and S(k), which are utilized by the local risk-sensitive filter to calculate the state
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estimate. In Algorithm 1, ε is the step-size of discretization and we refer to Section

II.C in [48] for hints on the right choice of the step-size. The proposed distributed

risk-sensitive filtering is a generalization of the distributed consensus-based Kalman

filtering algorithm (Algorithm 1 in [47]), where the difference lies in the update of

Pi(k) at the local filter; the former reduces to the latter if the risk-sensitive parameter

θ = 0. Different from the existing results on robust distributed state estimation which

are typically formulated as H∞ filtering problems and involve LMIs in the local filter

design, the local risk-sensitive filter of the proposed distributed algorithm is updated

in a Riccati-based linear recursive form.

Next, we analyze the asymptotic properties of the local estimators in the proposed

distributed risk-sensitive filtering algorithm. To simplify the analysis, we focus on the

LTI case where π(k) = π, A(k) = A, Q(k) = Q, B(k) = B, Ci(k) = Ci and Ri(k) = Ri

for i ∈ V . For this case, we present the stability results on the distributed risk-sensitive

filter proposed in Algorithm 1.

Theorem 5.1. For the LTI system described in (5.1), which is measured by a sensor

network with sensing model in (5.2), each local filter of the distributed risk-sensitive filter

proposed in Algorithm 1 is stable as k → ∞ if we choose a risk-sensitive parameter θ

such that the centralized risk-sensitive filter is stable as k → ∞.

Proof. For the centralized filter, substituting (5.8) into (5.10), we have

x̄(k + 1) =A[x̄(k) +K(k)(y(k)− Cx̄(k))]

=[A− AK(k)C]x̄(k) + AK(k)y(k)

=[A− AM(k)C>R−1C]x̄(k) + AK(k)y(k). (5.30)

Since the system is time-invariant, we have S(k) = S = 1
N
C>

i R
−1
i Ci. Next, we focus on

the distributed risk-sensitive filter. According to Algorithm 1, for each node i ∈ V , the

consensus filter for the fused inverse-covariance evolves according to (5.24) and (5.25).

Due to the fact that the system is time-invariant, we have Ui(k) = Ui = C>
i R

−1
i Ci, thus

Si(k) = Xi(k) + Ui. Combining (5.24) and Si(k) = Xi(k) + Ui, we have

Si(k) = Si(k − 1) + εβ
∑

j∈Ni
[(Sj(k − 1)− Si(k − 1))],

where the initial states Si(−1) = Xi(−1) + Ui = C>
i R

−1
i Ci since Xi(−1) = 0n×n for

i ∈ V . According to Theorem 2 of [48], the static average consensus of the initial states

Si(−1) can be asymptotically reached, implying that the output Si(k) of the consensus
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filter tracks 1
N

∑N

i=1 Si(−1) = 1
N

∑N

i=1 C
>
i R

−1
i Ci with zero steady-state error, namely,

lim
k→∞

Si(k) =
1
N

∑N

i=1 C
>
i R

−1
i Ci (5.31)

for i ∈ V . Combining (5.26) and (5.28), we have the Riccati equation of local filter

Pi(k + 1) =A[Pi(k)
−1 + Si(k)− θ

N
π]−1A> +BNQB>. (5.32)

Based on (5.31), (5.32) and the Riccati equation of the centralized filter in (5.18), we can

easily obtain lim
k→∞

Pi(k) = NP (k), thus lim
k→∞

Mi(k) = NM(k) for the local risk-sensitive

filter at node i. Substituting (5.27) into (5.29), we have

x̄i(k + 1) =A[x̄i(k) +Mi(k)[di(k)− Si(k)x̄i(k)]]

=[A− AMi(k)Si(k)]x̄i(k) + AMi(k)di(k).

Based on the facts that lim
k→∞

Mi(k) = NM(k) and lim
k→∞

Si(k) =
1
N

∑N

i=1 C
>
i R

−1
i Ci, we

have as k → ∞,

x̄i(k + 1)

=[A− AM(k)
∑N

i=1 C
>
i R

−1
i Ci]x̄i(k) + ANM(k)di(k)

=[A− AM(k)C>R−1C]x̄i(k) + ANM(k)di(k). (5.33)

From (5.30) and (5.33), we notice the fact that for i ∈ V , the centralized risk-sensitive

filter and the local risk-sensitive filters share the same term [A − AM(k)C>R−1C] as

k → ∞. Therefore, we conclude that each local filter of the distributed risk-sensitive

filter proposed in Algorithm 1 is stable as k → ∞ if we choose a risk-sensitive parameter

θ such that the centralized risk-sensitive filter is stable as k → ∞. This completes the

proof.

Remark 5.1. The above theorem presents the stability results of the proposed dis-

tributed risk-sensitive filter for the LTI case. According to the results in [39], the

centralized risk-sensitive filter in (5.6)-(5.10) is proved to be asymptotically stable if

M(k)−1− θπ(k) > 0 for all k > 0. See [39] for the range of values of the risk-sensitivity

parameter θ and the initial error covariance P0 to ensure that M(k)−1 − θπ(k) > 0 for

all k > 0.

The risk-sensitive parameter θ adds one dimension of freedom in the estimator

design, thus allows the user to achieve a desired balance between the optimality of the

filter under the nominal model scenario and the robustness to the system uncertainty,

which will be further illustrated by position tracking examples in Section 5.4.
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5.4 Simulation examples

In this section, we show the robustness of the proposed filtering algorithm to system

uncertainty. The proposed distributed risk-sensitive filtering algorithm is applied to the

target tracking of an object in R
2 considered in [47]. The dynamics of the moving target

is given by

ẋ(t) = (A0 +∆A)x(t) + B0w(t), (5.34)

with known nominal model

A0 = 2

[

0 −1
1 0

]

,

B0 = I2,

and unknown model uncertainty

∆A = 2

[

0 ς
0 0

]

.

The noise w is a zero-mean Gaussian with covariance Q = 25I2. The nominal model

(A0, B0) of the process describes a target that moves on noisy circular trajectories. The

local filters at sensors only know the nominal model (A0, B0) of the process, but not

the true model (A0+∆A,B0). By ZOH discretization, we obtain the true discrete-time

model of this moving target

x(k + 1) = Ax(k) + Bw(k),

with sampling period ε = 0.015 (≈ 70 Hz) and parameters

A = I2 + ε(A0 +∆A) +
ε2

2
(A0 +∆A)2 +

ε3

6
(A0 +∆A)3,

B = εB0.

The parameters of the discrete-time nominal process model (AN , BN) can be obtained

by following a similar discretization procedure on the nominal continuous-time model

(A0, B0). The first element and second element of the state x(k) represent the values

of the moving point along x-axis and y-axis correspondingly in a Cartesian coordinate

system. The initial conditions are

µ0 = [15,−10], P0 = 10I2.
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Figure 5.1: Sensor network G1 with 12 nodes and 18 edges.

To make it easier to distinguish the estimates of different nodes in figures, we first

consider a small sensor network in Fig. 5.1, which has N1 = 12 nodes and 18 edges and

its topology G1 = (V1, E1) is undirected with V1 = {1, 2, . . . , N1} and E1 ⊂ V1 × V1.

Each sensor can only exchange messages with its neighbors. We randomly choose half

of the nodes to sense along the horizontal axis (x-axis) and the other half sense along

the vertical axis (y-axis), e.g., the measurement model of sensor i ∈ V1 can be described

by

yi(k) = Cix(k) + vi(k), (5.35)

where either Ci = Cx = [1 0] or Ci = Cy = [0 1] and vi(k) is a zero-mean Gaussian

noise with Ri = c2v
√
i and cv = 30. The sensor network knows the nominal model

of the system, based on which, distributed filtering algorithms would be utilized to

estimate the position of the target. We consider the scenario with model uncertainty

ς = −0.15, where the true trajectory of the target is in a noisy elliptical motion. We

set the gain β = 7, π(k) = I2, the risk-sensitive parameter θ = 0.002 and it is verified

that Mi(k)
−1 − θ

N1
π(k) > 0 for k ≥ 0 and i ∈ V1. For ς = −0.15, the comparison of

the state estimates of all nodes obtained by the proposed distributed risk-sensitive (dis-

tributed RS) filtering algorithm and the distributed Kalman filtering (distributed KF)

algorithm with high-pass consensus filtering of the sensed data in [47] is demonstrated

in Fig. 5.2. It is shown in Fig. 5.2 that the distributed risk-sensitive filter (marked

as green squares) achieves better tracking of the target’s true position at time t = εk

(marked as a blue star) compared with the distributd Kalman filter (marked as red cir-

cles) when the model uncertainty exists and ς = −0.15. To further show the merits of
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Figure 5.2: Comparison between the state estimates of all nodes in sensor network G1

for ς = −0.15.

the proposed method, the variation of the resultant root mean square errors (RMSEs)

of all nodes for the distributed risk-sensitive filter and the distributed Kalman filter as

the uncertainty parameter ς in ∆A ranges in value from −0.25 to 0.25, where the other

parameters remain the same is shown in Fig. 5.3. Each point in Fig. 5.3 is obtained by

averaging 30 random runs for the first 15 seconds, during which period, the condition

Mi(k)
−1 − θ

N1
π(k) > 0 for k ≥ 0 and i ∈ V1 is verified to hold. From Fig. 5.3, we

notice that for the case that the uncertainty parameter ς tends to zero, the distributed

Kalman filter achieves a slightly lower value of RMSE compared with the distributed

risk-sensitive filter since the Kalman filter is proved to be the optimal estimtor with

minimum mean square estimation error for linear Gaussian systems under the nominal

scenario; while for larger absolute value of ς (larger system uncertainty), the distributed

risk-sensitive filter outperforms the distributed Kalman filter. This indicates that the

proposed distributed risk-sensitive filter has good estimation performance under nom-

inal scenarios and acceptable estimation performance that degrades less rapidly than

the distributed Kalman filter under non-nominal scenarios; so we conclude that the

proposed filter is more robust to system uncertainty compared with the distributed

Kalman filter.

Next, we consider a larger-size sensor network in Fig. 5.4, which is randomly gen-

erated with N2 = 50 nodes and 250 edges, whose topology G2 = (V2, E2) is undirected

and connected with V2 = {1, 2, . . . , N2} and E ⊂ V2 × V2. The sensing model of G2
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Figure 5.3: RMSE comparison of the proposed ditributed risk-sensitive filter and the
distributed Kalman filter with respect to system uncertainty for network G1.

is similar as G1, e.g., the measurement model of sensor i ∈ V2 is described in (5.35)

with Ri = c2v
√
i and cv = 30. We set β = 7, π(k) = I2, θ = 0.002 and verify that

Mi(k)
−1− θ

N2
π(k) > 0 for k ≥ 0 and i ∈ V2. For ς = −0.15, the estimation performance

comparison of the two distributed filtering algorithm is shown in Fig. 5.5, where the

curve is obtained by averaging 10 random runs of each algorithm. The RMSEs for the

distributed risk-sensitive filter and the distributed Kalman filter from 0 to 15 seconds

are 4.9374 and 5.5924, respectively, indicating that the proposed filter outperforms the

distributed Kalman filter when ς = −0.15. It is shown in Fig. 5.5 that the estimation

performance of the two filters are close for the first 3 seconds since the model mismatches

of the system matrix is not yet fully reflected in the system dynamics; for t > 3, the

proposed distributed risk-sensitive filter always outperforms the distributed Kalman

filter though the two filters both have relatively large RMSEs due to the existence of

system parameter uncertainty.

5.5 Conclusion

In this chapter, we develop a distributed risk-sensitive filtering algorithm for linear

Gaussian systems measured by a sensor network. The consensus filters are utilized

to obtain the average of the sensor data and the inverse-covariance matrices, based

on which, the filter at each sensor node obtains its local state estimate. The stabil-

ity analysis of the proposed distributed risk-sensitive filter for LTI systems is included.

Simulation results of tracking a moving target in R
2 show that the proposed distributed
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Figure 5.5: Comparison of RMSEs of the proposed distributed risk-sensitive filter and
the distributed Kalman filter for sensor network G2 with ς = −0.15.

risk-sensitive filter has good estimation performance under nominal scenarios, and ac-

ceptable estimation performance that degrades less rapidly than the distributed Kalman

filter under non-nominal scenarios, implying better robustness of the proposed filter to

system uncertainty than that of the distributed Kalman filter. The consensus data

fusion algorithm considered in this chapter is an approximate algorithm, which is just

one option for the data fusion task. In the upcoming research, we will focus on finding

the upper bound of the estimation errors of the proposed distributed filtering algorithm

and explore various consensus-based data fusion methods to achieve better estimation

performance.
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Chapter 6

Conclusions and future work

This chapter concludes the thesis. A summary of the main findings is presented in

Section 6.1, while Section 6.2 contains suggestions for future research.

6.1 Conclusions

This thesis investigates optimal state estimation problems for CPS mainly from two

perspectives: the first aims at maintaining system performance with limited resources;

the second targets at robust state estimation for systems with model uncertainties.

Estimators are derived by minimizing a certain cost criterion, either the MSE cost or

the exponential form cost. The obtained results are mostly in recursive forms, which are

easy to implement and asymptotic properties of some proposed estimators are analyzed.

The outcomes of the studies in this thesis are summarized as follows:

1. The MMSE estimator for hidden Markov models with energy harvesting sensors

equipped with stochastic energy-based event-schedulers is derived, where the sim-

ulation examples show that the utilization of the energy-based event-triggering

condition leads to smarter sensor energy management in reducing the occurrence

rate of the sensor’s sleeping mode. In addition, the structure of the state estima-

tor for hidden Markov models with dynamic event-triggers is given for unreliable

communication channels.

2. An event-triggered MMSE state estimator is proposed for a linear Gaussian sys-

tem with an energy harvesting sensor, where a stochastic energy-dependent event-

triggering transmission protocol is proposed to balance the communication rate

and estimation performance according to the sensor’s battery energy. Also, the
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relationship between the average communication rate and energy harvesting rate

is discussed.

3. Closed-form expressions of the risk-sensitive event-triggered posterior and prior

estimates for linear Gaussian systems with a stochastic event-triggering condition

are presented, which are shown to evolve in recursive Kalman-like structures.

Two sufficient stability conditions for the proposed risk-sensitive event-triggered

estimators are given. Moreover, by treating the unknown inputs as a process

modeled by a non-informative prior, we obtain the closed-form expression of the

risk-sensitive state estimate for discrete-time systems with unknown exogenous

inputs.

4. A distributed robust state estimation algorithm is proposed for a linear Gaussian

system measured by a sensor network, where the high-gain dynamic consensus

filter is utilized to compute the fused data. It is shown that the local filter at

each sensor is updated in a Riccati-based linear recursive form. Furthermore,

the asymptotic stability of local estimators for linear time-invariant systems are

discussed.

The effectiveness of the proposed methods is validated by simulation examples.

6.2 Future work

The results achieved so far in this thesis are of importance for improving the estima-

tion performance by exploiting the information contained in event-triggering conditions

and counteracting against system uncertainties. However, there remain many problems

to be studied in the general area of optimal state estimation of CPS. The following

promising directions deserve efforts for future work.

6.2.1 Event-triggered state estimation for linear Gaussian sys-

tems with a lossy communication channel

The effect of packet dropout is considered in the event-triggered state estimation

for hidden Markov models in Section 2.2, but not for linear Gaussian systems. The

existence of packet dropout would ruin the Gaussianity of the conditional probability

distribution of the state, which makes it challenging to derive the closed-form expression

of the optimal event-triggered state estimate. The reference measure approach may be
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utilized to solve this problem and the main difficulty lies in the construction of a map

from the “real-world” to a new probability measure and the derivation of the conditional

probability density function of the state under the new probability measure.

6.2.2 Risk-sensitive event-triggered estimation for systems

with multiple sensors

As the developments of applications on sensor networks, it is of vital importance

to extend the results in Chapter 4 to systems with multiple sensors, where each sensor

has its own event-triggering condition. The main goal is to obtain the optimal fusion

algorithm of hybrid event-triggered measurement information and the structure of the

risk-sensitive event-triggered state estimator.

6.2.3 Estimation performance analysis of the distributed risk-

sensitive filtering algorithm

For the proposed distributed risk-sensitive filtering algorithm in Chapter 5, one

future research direction is to analyze its asymptotic properties, e.g., find the upper

bound of the estimation errors of local filters in the proposed distributed algorithm.

Also, we may explore various consensus-based data fusion methods to achieve better

estimation performance.

6.2.4 Risk-sensitive control of systems with event-triggered

scheduling

The risk-sensitive approach is utilized to solve the robust event-triggered state esti-

mation problems in this thesis. We may further consider the risk-sensitive closed-loop

control of systems with event-triggered scheduling, where the control input is trans-

mitted to the actuator through a communication channel only if a predefined event-

triggering condition is violated. Utilizing the reference measure approach, we target

at obtaining the event-triggered risk-sensitive control law, which minimizes the cost

criterion in an exponential form.
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