
Multiple-Choice Question Answering Over
Semi-Structured Tables

by

Weite Ni

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c© Weite Ni, 2019

Abstract

Question answering (QA) is the task of automatically finding answers to nat-

ural language questions. A QA system requires access to some form of knowl-

edge in order to find the answers. Most QA tasks use raw text corpora or

structured knowledge bases as knowledge. However, raw text corpora, al-

though easy to get in large quantities, are hard to reason with by machines.

Structured knowledge bases are easy to reason with, but require manual effort

to normalize. We view semi-structured tables as a compromise between raw

text corpora and structured knowledge bases. Semi-structured tables require

less manual effort to build comparing with structured knowledge bases, and

their structured properties make it easy for automated reasoning.

In this thesis, we build a QA system that can answer multiple-choice ques-

tions based on semi-structured tables. We tackle the task in two steps: table

retrieval and answer selection. To retrieve the most relevant table to the ques-

tions, we build a feature-based model that can effectively take the candidate

choices into account. To find the best answer based on the retrieved table,

we first measure the relevance between the question and rows in the table,

then extract the best answer from the most relevant rows. Evaluation on the

TabMCQ benchmark shows that our system achieves a huge improvement over

the previous state-of-the-art system.

ii

We are all in the gutter, but some of us are looking at the stars.

– Oscar Wilde.

iii

Acknowledgements

First and foremost, I would like to sincerely thank my supervisor Denilson

Barbosa for his advice and support. When I felt lost in my research, he would

point out possible directions I could go. When I felt depressed, he would cheer

me up. I would not be able to finish this thesis without his patience and

support. I’m also very grateful to my examining committee members, Abram

Hindle and Nilanjan Ray, for their valuable advice.

I would also like to thank my girl friend Ruijing Han for her support and

love during the past four years. She is always there when I need her. My

thanks also go to all my friends, who have made my life in Edmonton colorful.

Last but not least, I would like to thank my parents, who help me and

encourage me throughout my life.

iv

Contents

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 4
1.3 Overview . 4
1.4 Thesis Statement and Contributions 5
1.5 Organization of the Thesis . 6

2 Related Work 7
2.1 Evaluation Metrics . 7
2.2 Table Retrieval . 8

2.2.1 Ad Hoc Table Retrieval 9
2.2.2 Table Retrieval for Question Answering 9

2.3 Answer Selection . 11
2.3.1 Answer Selection . 11
2.3.2 Multiple-Choice Reading Comprehension 12

3 Table Retrieval 14
3.1 Task Definition . 14
3.2 Feature-based Model . 15

3.2.1 Query Features . 16
3.2.2 Table Features . 16
3.2.3 Query-Table Features 16
3.2.4 Table scoring . 21
3.2.5 Training . 21

3.3 Neural Network Model . 21
3.3.1 Input Representation 22
3.3.2 Query Representation 23
3.3.3 Table Representation 23
3.3.4 Table Scoring . 24
3.3.5 Training . 24

3.4 Summary . 24

4 Answer Selection 25
4.1 Task Definition . 26
4.2 Pattern Extraction . 26

4.2.1 Column Selection . 27
4.2.2 Pattern Extraction . 28

4.3 Pattern Scoring . 28
4.3.1 Input Representation 29
4.3.2 Query Representation 29
4.3.3 Pattern Representation 30
4.3.4 Pattern Scoring . 30
4.3.5 Training . 31

v

4.4 Answer Selection . 31
4.5 Summary . 32

5 Experiments 34
5.1 Dataset . 34
5.2 Table Retrieval Experiments 35

5.2.1 Experiment Setup . 35
5.2.2 Performance Comparison 36
5.2.3 Ablation Study of Feature-based Model 37
5.2.4 Error Analysis . 38

5.3 Answer Selection Experiments 39
5.3.1 Experiment Setup . 39
5.3.2 Performance Comparison 41
5.3.3 Influence of Table Retrieval 42
5.3.4 Influence of Column Selection 43
5.3.5 Ablation Study . 43
5.3.6 Influence of θ . 44
5.3.7 Error Analysis . 45

5.4 Summary . 47

6 Conclusions and Future Work 49
6.1 Conclusions . 49
6.2 Future Work . 50

References 53

Appendix A Neural Networks 57
A.1 Feed-forward Neural Network 57
A.2 Convolutional Neural Network 58
A.3 Recurrent Neural Network . 58

vi

List of Tables

1.1 Different types of questions 1

3.1 Features of our table retrieval model 17

5.1 Statistics of TabMCQ dataset 35
5.2 Hyperparameters in table retrieval 36
5.3 MAP@k for BM25 and our models 37
5.4 Ablation study of novel features 38
5.5 Hyperparameters for answer selection model 41
5.6 Accuracy of answer selection models 42
5.7 Accuracy of answer selection given different tables 42
5.8 Accuracy of answer selection with and without column selection 43
5.9 Ablation study of additional features 43

vii

List of Figures

1.1 An example from an IR-based QA dataset 2
1.2 An example from a knowledge-based QA dataset 2
1.3 A multiple-choice question over a semi-structured table 3
1.4 Overview of our system . 5

3.1 An example of query-table pair 15
3.2 Structure of feature-based table retrieval model 16
3.3 The architecture of neural table retrieval model 22
3.4 An example of joint representation of table headers and table

body . 23

4.1 An example of answer selection 25
4.2 Illustration of pattern extraction 27
4.3 Structure of the pattern scoring model 29

5.1 An example from TabMCQ 35
5.2 An example of wrong prediction of feature-based model 39
5.3 An example of wrong prediction of neural model 40
5.4 Accuracy with different θ . 44
5.5 Error caused by wrong column selection 46
5.6 Error caused by insufficient knowledge 46
5.7 Error caused by θ . 47
5.8 Error caused by faults in the dataset 47

A.1 A feed-forward neural network 57

viii

Chapter 1

Introduction

1.1 Background

Question answering (QA) is the task of automatically finding answers to nat-

ural language questions. It has a long history dating back to the 1960s [5].

Researchers from many different fields, including information retrieval (IR)

and natural language processing (NLP), have shown considerable interests in

this area. Question answering systems have a variety of real-life applications,

like search engines and chatbots, and other conversational agents.

There are many types of questions, He et al. [6] divided them into the types

described in Table 1.1. Factoid questions are answered with simple facts, like

an entity, a description or simply yes/no. Usually, a factoid question can be

answered with short text and has a definite answer. Opinion questions ask

about subjective opinions. Such questions do not have definite answers, and

it’s difficult to assess the quality of answers.

Factoid Opinion
Entity What is the capital of

Canada?
Top 10 movies of 2018

Descrip-
tion

Why is the sky blue? How good is Toyota Carola?

YesNo Was Abraham Lincoln
American?

Does playing go improve
intelligence?

Table 1.1: Different types of questions.

Most question answering systems focus on factoid questions, especially

those can be answered with entities. Jurafsky and Martin [12] divided the

1

Figure 1.1: An example from an IR-based QA dataset. The sentence in grey
is the sentence that has the answer to the question.

Figure 1.2: An example from a knowledge-based QA dataset. There’s no need
to predict FROM clause because it’s assumed that the relevant table is given.

systems for answering factoid questions into two categories: information-

retrieval or IR-based and knowledge-based.

IR-based QA relies on textual information like documents, and the answer

is typically a text span in a specific document [23]. Given a question, the

system first needs to find the relevant documents or passages, and then uses

reading comprehension techniques to extract the answer from the text. Figure

1.1 shows an example from a popular IR-based QA dataset, SQuAD [20].

Knowledge-based QA focuses on semantic parsing, i.e., translating a nat-

ural language question into a machine-readable form. Then the machine-

readable form is used to query a structured database to get the answer. Fig-

ure 1.2 shows an example from WikiSQL dataset [42], which aims at mapping

questions to SQL queries [3].

In this thesis, we focus on IR-based question answering, and the questions

are answered with entities. A complete IR-based QA system usually consists

of three stages: question processing, document retrieval and ranking, and an-

2

Figure 1.3: A multiple-choice question over a semi-structured table.

swer extraction [12]. The question processing stage is done before sending the

question to the IR system. Query formulation and answer type detection are

commonly used processing techniques. Document retrieval aims at retrieving

documents that are relevant to the question. The final stage, answer extrac-

tion, is to extract the answer from the relevant documents.

Although the frameworks of different IR-based QA systems are similar, it

is difficult to build a system that works for every question answering task.

The textual information the system relies on could be documents, web, or

tables, and the strategies to deal with them are different. Also, sometimes

the question is based on only one document, sometimes it requires inference

from several documents. In this thesis, we focus on a specific case: multiple-

choice (MC) question answering over semi-structured tables. Figure 1.3 gives

an example. Each row of a semi-structured table is a sentence stating a fact.

And the tables are not normalized. Some cells may contain multiple parts like

“Sublimating; Sublimation”, some cells can be blank. And some columns may

not have a name.

3

1.2 Motivation

We are motivated by the special properties of semi-structured tables. Raw

text corpora, like the passage in Figure 1.1, contain no structure, and are

hard to reason with by machines. But they are easy to get in large quantities.

Structured knowledge, like the structured table in Figure 1.2, on the other

hand, although easy to reason with, require manual effort to normalize. Semi-

structured tables, like the table in Figure 1.3, can be viewed as “a compromise

in the trade-off between degree of structure and ubiquity” [9]. So we would

like to use semi-structured tables as source knowledge for our QA system.

Following the general framework of IR-based QA system, to solve the prob-

lem of multiple-choice question answering over semi-structured tables, the sys-

tem should contain three stages: question processing, table retrieval, and

answer selection. We notice that table retrieval is usually omitted in QA

datasets with tables as knowledge, like WikiSQL [42] and WikiTableQues-

tions [15]. It’s assumed that the relevant table is given, which is not always

the case when it comes to real-life applications. So another motivation is that

we want to explore different ways to do table retrieval.

1.3 Overview

The state-of-the-art method on the task is proposed by Wang et al. [31]. They

tackle this task with two steps: table retrieval and answer selection. In the

first step, they use a neural model to rank the tables according to relevance

to the question, and retrieve several most relevant tables. In the second step,

they first compute a relevance score for every cell in the tables, and then match

the candidate choices with the most relevant cells to find the correct answer.

In this thesis, we build our QA system based on Wang et al.’s method. Figure

1.4 shows the overview of our QA system.

In both table retrieval and answer selection, Wang et al. only use the

distributed representations of words, and focus on semantic similarity. How-

ever, models based on distributed representations of words are not sensitive to

4

Figure 1.4: Overview of our system.

numbers and proper nouns. And dealing with numbers and proper nouns is

very important for factoid question answering [26]. So we also consider lexical

similarity in our system.

1.4 Thesis Statement and Contributions

In this thesis, we focus on answering two questions. For table retrieval, can a

feature-based model that focuses on lexical similarity perform comparably well

with a neural model? For answer selection, can we improve the performance

of the neural model by taking lexical similarity into account?

There are three major contributions in this work:

First, we design a feature-based model to do table retrieval, and propose

two novel features. Wang et al.’s table retrieval model is a neural model based

on semantic representations of words. However, because of the difficulty in

semantically representing the cells in the table, their model doesn’t take the

table cells into account. And they also fail to use the candidate choices as

additional information to do table retrieval. Our model, mainly based on

lexical similarity, is more flexible, and can efficiently utilize the candidate

choices and table cells.

Second, in the stage of answer selection, we augment their method by

filtering out irrelevant cells. In order to find the correct answer, Wang et

al. score every cell in the table. However, not all cells are relevant to the

5

candidate choices. For example, a question about the table in Figure 1.3 is

“How to turn a solid into liquid?”, and the candidate choices are “A. adding

heat; B. removing heat”, the cells in the first column are totally irrelevant,

and it’s not necessary to score those cells. So we use a simple string matching

method to filter out irrelevant cells and reduce noise.

Third, we improve their cell-scoring method by adding lexical features.

Wang et al. score the cells based on semantic representations of words, and

we believe that the combination of lexical and semantic matching will be better

than semantic alone.

Evaluation on the TabMCQ [10] benchmark shows that our modifications

improve the accuracy of Wang et al.’s model from 79.0% to 91.9%, which is

a 16.3% relative increase. The third modification, adding lexical features to

cell-scoring method, results in the most significant absolute improvement of

6.9%.

1.5 Organization of the Thesis

Chapter 2 provides an overview of related work. In Chapter 3, we describe our

feature-based table retrieval model, and Wang et al.’s semantic-based model.

In Chapter 4, we present our answer selection method. In Chapter 5, we

evaluate our models and present the results. We conclude the thesis and

propose works for future research in Chapter 6.

6

Chapter 2

Related Work

As mentioned before, a complete IR-based QA system should contain three

stages. However, in our case, since we have candidate choices, question pro-

cessing techniques like answer type detection are unnecessary. So we focus on

the latter two stages, table retrieval and answer selection. We first introduce

several evaluation metrics in Section 2.1, and then review important works

related to these two stages in the Section 2.2 and Section 2.3. There are not

many works on multiple-choice question answering over semi-structured tables,

so we consider it as a special case of multiple-choice question answering and

review relative works in Section 2.3. Unless specified differently, we measure

improvement with absolute improvement.

2.1 Evaluation Metrics

Table retrieval is a ranking problem, and the following IR metrics are com-

monly used to evaluate the performance of models.

Precision. Precision is the percentage of the retrieved tables that are

relevant.

P (Q) =
relevant tables that are retrieved

retrieved tables
(2.1)

where Q is a question.

Mean average precision@k (MAP@k). In order to define MAP@k,

we need to define precision at position k (P@k) first.

P@k(Q) =
relevant tables in top k positions

k
(2.2)

7

Average Precision@k (AP@k) is defined as:

AP@k(Q) =

∑k
n=1 P@n(Q) ∗ ln

relevant tables
(2.3)

where ln is 1 if the table at position n is relevant, and 0 otherwise. Then

MAP@k is the average of AP@k over all questions:

MAP@k =

∑|Q|
Q=1AP@k(Q)

|Q|
(2.4)

where |Q| is the number of questions.

MAP@k is one of the most popular metrics in ranking tasks, and the choice

of k depends on the task. If the number of tables to be ranked is small, or the

task is very easy, people usually pay attention to the first few tables, and will

choose small k like 1, 2 or 3. If the task is difficult, or the scale of the task is

huge, people tend to use large k. If k is as large as the total number of tables,

we can drop k and just denote it as MAP.

For answer selection, we can also evaluate the models with IR metrics

like MAP@k. Another popular choice is accuracy, which is the percentage of

correctly answered questions.

Accuracy =
correctly answered questions

questions
(2.5)

Note, accuracy can be computed only when there’s one correct result. And

in this case, MAP@1 is equal to accuracy. But if there are more than one

correct results, it’s not appropriate to use accuracy to measure the performance

of models.

2.2 Table Retrieval

Table retrieval is the task of retrieving tables whose cells are relevant to a

question. In this section, we first review a special case of table retrieval, ad

hoc table retrieval, where the question is a keyword or a phrase. Then we

review existing works on table retrieval for natural language questions.

8

2.2.1 Ad Hoc Table Retrieval

Traditional ad hoc table retrieval methods are usually based on hand-engineered

features, and focus on lexical similarity. Cafarella et al. [2] make one of the

first efforts to tackle the task. They mainly compare two approaches. The

first approach is to search the keyword in a search engine and extract tables

from the top-ranked pages. The second approach is to train a linear regression

model to estimate the similarities between the keyword and tables. They use a

set of features to train the model, such as number of rows in the table, number

of keywords occurrence in the header, etc. The results show that the trained

estimator performs much better than the search-engine-based method. Pimp-

likar and Sarawagi [18] focus on keyword queries that describe the columns of

tables, and frame the task and column mapping. They design a set of features

to match the keywords against the header, content and context of the table

to search for relevant columns. Then the tables with relevant columns are

considered as relevant tables.

Recently, people have noticed that understanding the semantic of tables

will help in ad hoc table retrieval. Zhang and Balog [41] design two ways to

represent the semantic of keywords and tables: (1) bag-of-concepts : they use

two discrete vectors to indicate the occurrence of entities and entity types,

which are extracted with DBpedia; (2)embeddings : they map each word to a

pretrained word embedding, and each entity to a pretrained graph embedding,

and represent the keywords/tables as the average of word embeddings. Then

they compute the cosine similarity between the representations of keywords

and tables. And they add their semantic features to lexical features used in

previous works, and get better performance than lexical features alone.

2.2.2 Table Retrieval for Question Answering

In order to retrieve tables for questions, understanding the semantic of both

the question and the table is important. For example, “What is Thanksgiving”

and “When is Thanksgiving” both ask about Thanksgiving, but the first asks

about the definition or probably the history of Thanksgiving, and the second

9

just asks about the date, and the answers to them could be in different tables.

But an ad hoc table retrieval model may not be able to notice this difference.

Sun et al. [36] tackle the task with two steps. First, they retrieve a small

set of candidate tables from a large collection of tables. In order to do this

efficiently, they represent each question as bag-of-words, and represent each

table as bag-of-words consists of its caption and headers. Then they compute

the similarity score between question and table using BM25 [22]. Second, they

build two models to rank the small set of tables: (1) feature-based model : they

design word level features that capture word overlap, phrase level features that

capture n-gram similarity, and sentence level features that capture semantic

similarity between the question and header, content and caption of the table;

(2) neural model : they use neural networks to compute the similarity between

the question and the table caption, table headers, table content separately,

based on semantic representations. More specifically, the question and caption

of the table are encoded with a bi-directional gated recurrent units (BiGRU),

and the headers and content of the table are represented with weighted average

of word embeddings. Their results show that both feature-based model and

neural model perform well, and the combination of both is even better.

Wang et al. [31] focus on ranking a small set of tables. Departing from

previous methods, in their work, each row of a table is a complete sentence,

and some of the columns do not have a name and only contain “link words”

like “is”. They concatenate the “link words” with the headers, making the

headers also a meaningful sentence. For example, in the table in Figure 1.3,

the headers concatenated with the link words will be “PHASE CHANGE —

causes a — INITIAL PHASE — to change into a — FINAL PHASE — by

— HEAT TRANSFER”. Then they use neural networks like long short-term

memory (LSTM) to convert the question, the caption of the table, and the

headers of the table into dense vectors. They apply a fully-connected layer

to integrate the vectors of table caption and headers to represent the table.

Then they compute the cosine similarity between the representations of the

question and the table.

10

2.3 Answer Selection

Answer selection is the task of identifying which of the candidate choices is

the best answer. Here we review two related question answering tasks, answer

selection and multiple-choice reading comprehension.

2.3.1 Answer Selection

Answer selection itself is actually an NLP task [14]. In this thesis, we need to

select the correct answer from three or four choices based on some textual in-

formation, but in a more general sense, answer selection is the task of selecting

the best answer from hundreds or even thousands of candidate choices with

no context to refer to. In this case, the answer selection task is a sentence

pairing problem [14].

The earliest works on sentence pairing rely on word overlap [11]. However,

such approaches only learn the lexical part of sentences, and don’t perform

very well. So people start to utilize syntax information. Wang et al. [33]

build a model that can match the dependency trees of sentence pairs. Later,

Wang and Manning [32] proposed a CRF-based probabilistic model that mod-

els the alignment of sentence pairs as tree-edit operations on dependency trees.

Heilman and Smith [7] use greedy search method to search for minimal edit

sequences between dependency trees of sentence pairs, and extract 33 features

from the edit sequences. Then they train a logistic regression classifier on the

features. They get a 1.4% absolute increase of MAP over Wang and Manning’s

model on TRECQA dataset [33]. Yao et al. [37] further improve Heilman and

Smith’s approach by using dynamic programming to search for edit sequences.

The MAP of their model is 2.8% higher than Heilman and Smith’s.

Neural answer selection. Recently, many neural models have been pro-

posed for this task. A typical neural answer selection model usually has two

parts: a neural encoder that maps the sentences into dense vectors, and an

interaction layer that measures the similarity (relevance) between the vec-

tors [30]. Yu et al. [39] build two models to map the sentences into dense

11

vectors: (1) unigram model : they use the average of word embeddings of all

the words as the representation of a sentence; (2) bigram model : they use CNN

to encode the sentence to capture bigram features. Their interaction layer is

a fully-connected network. Their results show that the bigram model consis-

tently outperforms the unigram model. That’s because bag-of-words model is

not aware of word order, which is important for sentence understanding. As

both models are not able to capture string matching features, the authors add

features that capture word co-occurrence, which improves the MAP by around

15%. And their method outperforms the non-neural method proposed by Yao

et al. by 8%.

Tan et al. [28] propose QA-LSTM model for answer selection. They use

a shared BiLSTM to encode the question and the answer, and then use a

pooling layer to generate representations of the question and answer based

on the hidden state vectors of the BiLSTM. Their interaction layer is simply

cosine similarity. They further improve the model by adding an attention

model to the answer encoder: before the pooling layer, the hidden state vector

at each time step is multiplied by a weight, which is determined by the question

representation. Their results show that the MAP of the system improves by

about 2% with the attention model. Santos et al. [25] extend Tan et al.’s work

by applying attention model to both question and answer encoder, and get

around 4% improvement on accuracy. Instead of computing attention scores

for only one sentence, Wang et al. [35] compute an attention score for every

state vector of the two sentences. And their results show that computing the

attention scores for both sentences results in 3% higher accuracy.

2.3.2 Multiple-Choice Reading Comprehension

In multiple-choice reading comprehension tasks, we need to choose the correct

answer from a few, typically 4, choices based on a given document. This is

similar to the answer selection task, but instead of mapping the question to an

answer, we need to map the question and the answer to the document. Here

we review several strategies to tackle this three-way matching problem.

The earliest work on multiple-choice reading comprehension by Richardson

12

et al. [21] takes the intuitive way: they concatenate the question and the answer

into a sentence, and match the sentence against the document. However, the

concatenation of question and answer may not form a meaningful sentence.

So, Sachan et al. [24] use a rule-based method to rewrite each question-choice

pair into a meaningful statement.

Yin et al. [38] compare three strategies to tackle the task: (1) compute

two document representations based on the question and one choice respec-

tively, and then compare the two document representations; (2) compute the

document representation based on the question, and compare it with the repre-

sentations of choices; (3) same as Sachan et al. [24], they rephrase the question

and one answer into a statement, and compare its representation with that of

the document. Their results show that the third strategy works better than

the other two by a margin ranging from 0.2% to 8.8%, depending on the ex-

periment setting. However, there is yet no consensus on which strategy is the

best. Lai et al. [13] and Zhu et al. [43] follow the second strategy, and Wang

et al. [34] follow the first approach.

Multiple-choice question answering over tables. Multiple-choice ques-

tion answering over tables is a task that hasn’t received much attention.

Jauhar [8] develops two models for multiple-choice question answering over

tables. In his feature-based model, he design table-level, row-level, column-

level and cell-level features to score question-answer pairs based on the tables.

In his neural model, he maps each question to a row, the candidate choices to

a column, and the intersection of the column and row to the answer. Wang et

al. [31] use a neural model to compute the relevance score of every cell in the

tables. Then the correct answer is extracted from the most relevant cells. The

accuracy of Wang et al.’s method is 23.8% higher (relatively) than Jauhar’s

on TabMCQ dataset, and is the state-of-the-art method.

13

Chapter 3

Table Retrieval

In this chapter, we study the table retrieval task. Following previous works [2],

[18], [31], [36], [41], we tackle the task by scoring each table based on the

question, and the table with the highest score is predicted as the relevant

table.

Section 3.1 gives a formal definition of the table retrieval task. In Section

3.2, we present our feature-based model that focuses on lexical similarity. In

Section 3.3, we introduce a neural model based on Wang et al.’s [31] work that

focuses on semantic similarity.

3.1 Task Definition

We first introduce the notation needed to formulate the task. From this point

on, we will use the terms question and query to mean the same thing: a

natural language question. Let Q = [q1, q2, ..., ql] be a natural language query

consisting of a list of tokens, where qi is a token. Typically, a token can be

a word, a number or punctuation. Let T = {T1, T2..., TN} be a collection of

tables, where Ti is a table. A table T consists of three fields: (1) caption

Tc, which is a brief description of the table; (2) headers Th, which is a list

consisting of the names of columns; (3) body Tb, which is a list of table cells.

Figure 3.1 gives an example of a query and a table, and illustrates different

fields of a table. We can also divide the table collection T into three parts by

the three fields: T = {Tc, Th, Tb}. We use Tf to represent a field of the table

collection (f ∈ {c, h, b}).

14

Figure 3.1: An example of query-table pair.

The task of table retrieval is to automatically retrieve the most relevant

table from a collection of tables. The input is a natural language query Q

and a collection of tables T , and the output is a table T from T that is most

relevant to Q.

3.2 Feature-based Model

We design a feature-based model that learns to assign high score to the relevant

table and low scores to irrelevant tables. The model takes a query Q and a

table T as input, and extracts a feature vector from the query-table pair.

Then the feature vector is fed into a fully-connected neural network to get a

relevance score. The structure of the model is shown in Figure 3.2. Feature-

based methods have been successfully used in table retrieval [2], [18], [36],

[41].

Like Zhang and Balog [41], we divide our features into three categories: (1)

query features; (2) table features; (3) query-table features. Table 3.1 summa-

rizes the features we use. We adopt some features commonly used in document

retrieval and table retrieval [19], [41], and design two novel features. We de-

scribe the details of the features we choose in the following sections.

15

Figure 3.2: The structure of our feature-based model. Black circles represent
query features, the grey circle represents table feature, and white circles rep-
resent query-table features. Details of the three kinds of features are given in
Table 3.1.

3.2.1 Query Features

Query features are features that depend only on the query, and remain the

same given different tables. We use one query feature, QLEN.

QLEN. QLEN is the number of tokens in the query.

3.2.2 Table Features

Table features are features that depend only on the table, and remain the same

given any query. Many table features used in previous works are based on the

webpage where the table is extracted, which are not available in our case. We

only use one table feature, #COL.

#COL. #COL is the number of columns in the table.

3.2.3 Query-Table Features

Query-table features reflect the relationship between the query and table, and

are dependent on both the query Q and the table T . We use five query-table

features: inverse document frequency (IDF), term frequency(TF),

BM25, FUZZY and longest common substring (LCS) ratio. To the

16

Query features
QLEN Number of tokens in the query
Table feature
#COL Number of columns in the table
Query-table features
IDF Sum, max and mean of query IDF scores in each field
TF Sum, max and mean of query TF scores in each field
BM25 BM25 scores in each field
FUZZY Sum, max and mean of query FUZZY scores in each field
LCS ratio Normalized lengths of LCS of query and each field

Table 3.1: Features of our model. LCS stands for longest common substring.
Novel features are marked with bold font.

best of our knowledge, FUZZY and LCS ratio are novel features that haven’t

been used in previous table retrieval methods.

1. IDF. IDF is a commonly used technique in information retrieval. The

IDF score of a token q is the logarithmically scaled inverse fraction of

the tables that contain q. We denote the number of tables that contain

q as n(q), and the total number of tables in T as N. IDF score of q is

then computed as:

IDF (q) = log
N

n(q)
(3.1)

IDF measures how much information a word provides. If a word occurs

only in a small number of tables, it’s likely to be more informative than

frequent words like “the”, and its IDF score will be high.

Instead of treating the table collection T as a whole, Zhang and Ba-

log [41] compute the IDF scores of tokens with respect to the three fields

of T . Thus, a token q has three IDF scores: IDFc(q), IDFh(q) and

IDFb(q), each computed in the three fields of table. The IDF score in

field f is computed as:

IDFf (q) = log
N

nf (q)
(3.2)

where N is the number of tables, and nf (q) is the number of tables that

contains q in field f . After computing the IDF scores for every token

17

q ∈ Q ∩ Tf , we use the sum, max and mean of IDF scores in each field

as features. Algorithm 1 shows the process of generating IDF features.

Algorithm 1: Generate IDF features

Data: A query Q, A table T
Result: An IDF feature vector vIDF

1 vIDF ← emptylist;
2 for each field f ∈ {c, h, b} do
3 vf ← emptylist;
4 for each token qi ∈ Q ∩ Tf do
5 Compute IDFf (qi) according to Equation 3.2;
6 Add IDFf (qi) to vf ;

7 end
8 Add [sum(vf), max(vf), mean(vf)] to vIDF ;

9 end
10 return vIDF

2. TF. The simplest form of term frequency is the count of the token in

the table. We denote the count of token q in table T as fq,T . However,

raw count of the token favors long tables. So people often use the total

count of tokens in T to normalize fq,T . Term frequency of token q in

table T is computed as:

tf(q, T) =
fq,T∑

q′∈T fq′,T
(3.3)

Term frequency reflects the relevance between a term and a table. If

tf(q, T) is high, it’s likely that q is relevant to T . We compute TF

features in the same way as we compute IDF features. After computing

the TF scores for every token in query Q in each field of table T , we use

the sum, max and mean of the TF scores as features.

3. BM25. BM25 [22] is a ranking function commonly used in information

retrieval. Different from IDF and TF, BM25 can score a query-table

pair but not just a token-table pair. Given a table T , the BM25 score of

query Q = {q1, q2, ..., ql} is:

BM25(Q, T) =
l∑

i=1

weight(qi) · relevance(qi, T) (3.4)

18

weight(qi) = log
N − n(qi) + 0.5

n(qi) + 0.5
(3.5)

relevance(qi, T) =
fqi,T · (k + 1)

fqi,T + k · (1− b+ b · |T |
avgl

)
(3.6)

where fqi,T is the count of token qi in table T , N is the total number

of tables, n(qi) is the number of tables that contain qi, |T | is the length

(number of tokens) of table T , and avgl is the average length of tables

in T . k and b are hyperparameters to be tuned.

BM25 can be viewed as a weighted sum of relevance scores between

tokens in the query and the table. Equation 3.5 measures the importance

of token qi, and Equation 3.6 measures the relevance between qi and table

T . BM25 score will be high if Q and T share rare words. We compute

BM25 scores of Q with respect to the three fields of the tables.

4. FUZZY. Typos are common in queries and tables, and can be vital to

relate a table to a query. If the query contains “protin”, it’s likely that

tables contain “protein” are relevant to the query. However, token level

features like IDF, TF and BM25 are based on exact match, and cannot

make use of such information. So we design a novel feature FUZZY,

which can catch character level information and fuzzily match tokens.

We use the following equation to compute the character level similarity

of two tokens qi and qj:

sim(qi, qj) = 1− Ldist(qi, qj)

|qi|+ |qj|
(3.7)

where Ldist(qi, qj) is Levenshtein distance between qi and qj, and |qi| is

the length (number of characters) of qi. Levenshtein distance is widely

used to measure the similarity between strings. It is the minimum num-

ber of single-character edits (insertions, deletions or substitutions) that

is required to convert a string into another. The time complexity to

compute Levenshtein distance is O(|qi| ∗ |qj|). Intuitively, the smaller

the Levenshtein distance is, the more similar the two strings are. Since

Levenshtein distance tends to be larger for longer strings, we normalize

it with the lengths of strings.

19

In order to score table T given token q, we just search for the token that

is most similar to q.

FUZZY (q, T) = max
ti∈T

sim(q, ti) (3.8)

Since we aim at utilizing information in possible typos, we only com-

pute FUZZY scores for tokens that are not in the vocabulary of tables.

Algorithm 2 shows the process of generating FUZZY features.

Algorithm 2: Generate FUZZY features

Data: A query Q, a table T , the table vocabulary vocab
Result: A FUZZY feature vector vFUZZY

1 vunk ← emptylist;
2 for each token qi ∈ Q do
3 if qi not in vocab then
4 Add qi to vunk;
5 end

6 end
7 if vunk is not empty then
8 vFUZZY ← emptylist;
9 for each field f ∈ {c, h, b} do

10 vf ← emptylist;
11 for each token vi ∈ vunk do
12 Compute FUZZY (vi, Tf) according to Equation 3.8;
13 Add FUZZY (vi, Tf) to vf ;

14 end
15 Add [sum(vf), max(vf), mean(vf)] to vFUZZY ;

16 end

17 else
18 vFUZZY = [0, 0, 0, 0, 0, 0, 0, 0, 0]
19 end
20 return vFUZZY

5. LCS ratio. The features described above all treat the query Q and

table T as bags of tokens and are not sensitive to word order. We design

a new feature “LCS ratio” to capture word order information. Longest

common substring is the longest string that is a substring of two strings.

The longer the LCS of Q and T is, the more likely that they are relevant.

Because LCS favors long queries, we normalize it with the length of the

20

query. LCS ratio is computed as:

LCSratio(Q, T) =
|LCS(Q, T)|

|Q|
(3.9)

where |LCS(Q, T)| is the length (number of characters) of LCS of Q and

T , and |Q| is the length of Q. We compute LCS ratio with respect to

the three fields of tables individually.

3.2.4 Table scoring

After getting all the features, we concatenate the features into a vector v ∈ Rd,

and feed the feature vector v into a fully-connected neural network with one

hidden layer. The relevance score is computed as:

score(Q, T) = sigmoid(V >tanh(Wv + b1) + b2) (3.10)

where W ∈ Rd′×d is a trainable matrix, V ∈ Rd′ is a trainable vector, b1 and

b2 are bias units, d′ is the size of the hidden layer.

3.2.5 Training

The ground truth score for related query-table pair is 1. Besides, for each

query, we randomly select 2 unrelated tables, and set the ground truth score

to 0. We use binary cross entropy as loss function. The model is trained with

Adadelta [40] optimizer.

3.3 Neural Network Model

Neural network haven’t been widely used in table retrieval tasks. One possible

reason is that it’s difficult to convert the table, especially the table body into

a meaningful vector representation. We follow the methodology of Wang et

al. [31], and convert the caption, headers and part of the body into a vector

to represent the table. After converting the query and table into vectors,

we measure the relevance between the query and the table based on cosine

similarity. The architecture of the neural model is given in Figure 3.3.

21

Figure 3.3: The architecture of neural model.

3.3.1 Input Representation

The input to the model is a query Q = {q1, q2, ..., ql} and a table T =

{Tc, Th, Tb}. Tc is typically a meaningful phrase or sentence consists of several

tokens {tc1 , tc2 , ..., tcm}. Some columns do not have a header, like the second

column of the table in Figure 3.1. Those columns contain “link words” that

can complete a sentence, like “is located in”. We concatenate the headers and

link words into a word sequence Tt = {tt1 , tt2 , ..., ttn} to represent the headers

and body of the table. Figure 3.4 illustrates an example of converting the

table headers and body to Tt. So a table is represented with T = {Tc, Tt}.

We represent each token with a dense vector. Given a word embedding

matrix W emb ∈ Rdw×|V |, we can map a token wi to a column vector wd
i ∈ Rdw ,

where dw is the dimension of word embedding, and |V | is the size of vocabulary.

To capture the information of part-of-speech (POS) tags, we concatenate POS

embeddings to the word embedding. We map every POS tag to a vector of

size dp. So the final representation of token wi is wE
i = [wd

i ⊕wp
i], where wp

i

is the POS embedding for token wi, and ⊕ denotes concatenation operation.

22

Figure 3.4: An example of joint representation of table headers and table body.

3.3.2 Query Representation

We denote the representation of the query Q as EQ = [wE
q1
,wE

q2
, ...,wE

ql
], where

EQ ∈ R(dw+dp)×l. To convert EQ into a vector that contains semantic informa-

tion, we apply a standard LSTM to EQ from left to right, and the final output

hQ ∈ Rdl is considered as the LSTM representation of Q, where dl is the state

size of the LSTM.

hQ = LSTM(EQ) (3.11)

3.3.3 Table Representation

We denote the representation of Tc and Tt as ETc ∈ R(dw+dp)×m and ETt ∈

R(dw+dp)×n respectively, both consist of the vector representations of the tokens

in them. We first convert ETc and ETt into a vector of size dl using a standard

LSTM:

hTc = LSTM(ETc) (3.12)

hTt = LSTM(ETt) (3.13)

Then we use a transformation matrix to transform hTc and hTt into the

vector representation of the whole table:

hT = W [hTc ⊕ hTt] + b (3.14)

where W ∈ Rdl×2dl is the trainable transformation matrix, and b is a bias

vector.

23

3.3.4 Table Scoring

The cosine similarity between hQ and hT is computed as:

cos(Q, T) =
hQ · hT
|hQ||hT |

(3.15)

where |hQ| denotes the magnitude of vector hQ.

Then we apply sigmoid function to cos(Q, T) to get the relevance score of

Q and T :

rel(Q, T) = sigmoid(k · cos(Q, T) + b) (3.16)

where k is a parameter to be learned during training, b is a bias unit.

3.3.5 Training

As in feature-based model, the ground truth score for related query-table pair

is 1. Besides, for each query, we randomly select 2 unrelated tables, and set

the ground truth score to 0. We use binary cross entropy as loss function. The

model is trained with Adadelta [40] optimizer.

3.4 Summary

In this chapter, we introduce a feature-based model and a neural network

model to tackle the task of table retrieval. The feature-based model mainly

focuses on lexical similarity. Previous works often use features that captures

only exact match of tokens, but we add two novel features that can capture

character level information and word order information. Neural model is less

explored in this task, and we follow the methodology of Wang et al. [31]. We

jointly represent the headers and body of the table with “link words” and

headers, and encode the query and table into vectors with LSTM to capture

the semantic information. And the relevance score is computed based on the

vector representations of query and table.

24

Chapter 4

Answer Selection

After retrieving the relevant table for a query, we need to select the best answer

among the choices. Jauhar [8] tackles the problem in three steps: (1) map the

query to a row r; (2) map the candidate choices to a column c; (3) map the

cell T (r, c) to a choice. However, this method doesn’t work very well because

of the first step. Let’s look at the example in Figure 4.1. It is very difficult to

map the query “Which country is in the Northern Hemisphere?” to a certain

row even by human, because the rows like “Japan | is located in the | northern

hemisphere” and “China | is located in the | northern hemisphere” are equally

relevant to the query. If we map the query to “Japan | is located in the |

northern hemisphere”, we will not be able to correctly select the answer based

on it.

Figure 4.1: An example of answer selection.

25

Instead of mapping the query Q to a row r, Wang et al. [31] directly score

each query-cell pair. And in order to make sure that the cells in the same

context get the same score, like “Japan” and “China” in the above example,

they replace the cell to be scored with a special token < SPACE >. Then

the row “< SPACE > | is located in the | northern hemisphere” is called a

“pattern”. Then they score the query-cell pair by comparing the query with

the pattern.

We tackle the task in three steps: pattern extraction, pattern scoring and

answer selection. Our approach is similar to Wang et al.’s, but with three

major improvements. First, instead of scoring each cell in the table, we only

score cells in a certain column. Second, we augment the neural model with

additional features. Third, we develop the answer selection algorithm which is

essential to the system but is not explicitly described in Wang et al.’s paper.

Section 4.1 gives the definition of answer selection task. Then we introduce

our method to tackle the task in Section 4.2, Section 4.3 and Section 4.4.

4.1 Task Definition

We use Q = [q1, q2, ..., ql] to denote a query, C = {C1, C2, ..., Cn} to denote

the candidate choices for the query, where Ci is a choice consisting of several

tokens. We denote a table T only with the cells in the body, T = {T (j, k)|j ∈

[1, dTr], k ∈ [1, dTc]}, where T (j, k) is the cell at row j and column k, dTr and dTc

are the number of rows and the number of columns of table T respectively.

Given a query Q with several candidate choices C = {C1, C2, ..., Cn}, the

task of answer selection is to select the best answer C from C based on a table

T .

4.2 Pattern Extraction

As mentioned before, Wang et al. use neural networks to score each query-cell

pair. However, we can filter out some irrelevant cells quickly before send-

ing them to the neural networks. Usually, candidate choices describe similar

things. For example, the candidate choices for the query “Which country is in

26

Figure 4.2: Illustration of pattern extraction. The table on the left is the
original table, and the column in grey is the relevant column. The table on
the right illustrates the extracted patterns and the corresponding answer sets.

the Northern Hemisphere?” are likely to be countries, and they only relate to

a single column. Thus, we can map the candidate choices to a single column,

and only score the cells in that column. And to avoid repeatedly scoring the

cells in the same pattern, we extract patterns after removing the cells, and

score the query-pattern pair instead of query-cell pair. Figure 4.2 gives an

example of pattern extraction.

4.2.1 Column Selection

We select the relevant column by string matching. Here we use Jaccard n-gram

to measure string similarity. The Jaccard similarity between two sets A and

B is the size of the intersection of A and B divided by the size of the union of

A and B:

JS(A,B) =
|A ∩B|
|A ∪B|

(4.1)

To compute the Jaccard n-gram similarity between strings si and sj, we

first turn them into sets of n-grams. An n-gram of a string is a contiguous

substring of n characters from it. For example, “gre” and “rea” are 3-grams

of “great”. Then we compute the Jaccard similarity using Equation 4.1.

For each column, we first compute its relevance score with one choice. To

do so, we go through the cells in the column and compute the Jaccard n-gram

similarity of each cell-choice pair, and use the highest score as the score of the

column-choice pair. We compute its relevance score with each choice, and use

the sum of the scores to measure the relevance of the column. And the column

with the highest score is selected as the relevant column. Algorithm 3 shows

27

the process of column selection.

Algorithm 3: Column selection

Data: A table T , candidate choice set C
Result: The most relevant column c

1 c← None;
2 maxscore← −1;
3 for each column k ∈ T do
4 rel(k)← 0;
5 for each candidate choice C ∈ C do
6 score← 0;
7 for each cell T (j, k) ∈ T (·, k) do
8 Compute JS(C, T (j, k)) according to Equation 4.1;
9 score← max(score, JS(C, T (j, k)));

10 end
11 rel(k)← rel(k) + score;

12 end
13 if rel(k) > maxscore then
14 maxscore← rel(k);
15 c← k;

16 end

17 end
18 return c

4.2.2 Pattern Extraction

After finding the most relevant column, we just remove the cells in that column,

and merge the cells in the same pattern into an answer set. In this way, we

can make sure that the cells in the same context are in the same answer set,

like “Japan” and “China” in Figure 4.2.

4.3 Pattern Scoring

We use a neural model to compute the similarity score between the query and

the patterns. We first apply a soft attention layer to make the model focus on

useful information of the patterns. Then we use bidirectional LSTM (BiLSTM)

to encode the query and the pattern separately into dense vectors. Then we

feed the concatenation of the encodings of the query and the pattern, together

28

Figure 4.3: Structure of the pattern scoring model.

with additional features to a fully-connected network to get the similarity

score. The structure of the model is given in Figure 4.3.

4.3.1 Input Representation

The input to the model is a query Q = {q1, q2, ..., ql} and a pattern P =

{p1, p2, ..., pm}, each consists of a sequence of tokens. We represent each token

with a dense vector. Given a word embedding matrix W ∈ Rdw×|V |, we can

map a token wi to a column vector wi ∈ Rdw , where dw is the dimension of

word embedding, and |V | is the size of vocabulary.

4.3.2 Query Representation

We first represent query Q with a matrix consisting of the vector represen-

tations of the tokens, which is denoted as EQ = [wE
q1
,wE

q2
, ...,wE

ql
], where

29

EQ ∈ Rdw×l. To convert EQ into a vector that contains semantic information,

we apply BiLSTM to EQ, and the final states of two directions of BiLSTM are

concatenated into a vector hQ as the representation of Q:

hQ = BiLSTM(EQ) (4.2)

where hQ ∈ R2dl , and dl is the state size of LSTM.

4.3.3 Pattern Representation

To help the model to focus on important parts, we apply a soft attention layer

like Wang et al.. We first compute a similarity matrix SQ,P = {cos(wqi ,wpj)|i ∈

[1, l], j ∈ [1,m]}, where cos(wqi ,wpj) is the cosine similarity between the vec-

tor representations of qi and pj:

cos(wqi ,wpj) =
wqi ·wpj

|wqi ||wpj |
(4.3)

where |w| is the magnitude of vector w. Then we feed SQ,P to a convolution

layer followed by a max-pooling layer. And we apply a tanh layer to the output

of pooling layer to get the attention weight vector a ∈ Rm:

a = tanh(pool(conv(Sq,p))) (4.4)

The attention weight for token pi is ai. And to represent token pi, we

multiply its vector representation wpi with ai. We can represent the pattern

P with a matrix EP = [a1wp1 , a2wp2 , ..., amwpm], where EP ∈ Rdw×m.

Like in query representation, we also use a BiLSTM to convert EP into a

vector hP ∈ R2dl :

hP = BiLSTM(EP) (4.5)

4.3.4 Pattern Scoring

hQ and hP capture the semantic information of query Q and pattern P . Wang

et al. [31] then feed [hQ ⊕ hP] to a fully-connected network with one hidden

layer to get the similarity score of Q and P . Inspired by previous works on

text matching [26], [29], we add more features to augment the model.

30

As noted by Yu et al. [39], models based on distributed representation of

words are not sensitive to numbers and proper nouns. So we add a feature

vector Xfeat that captures lexical similarity between Q and P . Xfeat contains

two features: count of same tokens in Q and P , count of same non-stop words

in Q and P .

We also compute the bilinear similarity between hQ and hP :

sim(Q,P) = h>QMhP (4.6)

where M ∈ R2dl×2dl is the similarity matrix, which is learned during training.

Then the input to the fully-connected network is Xjoin = [hQ ⊕ hP ⊕

sim(Q,P)⊕Xfeat]. And the final score is computed as:

score(Q,P) = sigmoid(V >tanh(WXjoin + b1) + b2) (4.7)

where W ∈ Rd′×(4dl+3) is a trainable matrix and V ∈ Rd′ is a trainable vector,

d′ is the size of the hidden layer, b1 and b2 are bias units.

4.3.5 Training

The ground truth score for related query-pattern pair is set to 1. Besides, for

each query, we randomly select 2 unrelated patterns, and set the ground truth

score to 0. We use binary cross entropy as loss function. The model is trained

with Adadelta [40] optimizer.

4.4 Answer Selection

After scoring each pattern, we need to select the best answer from the candi-

date choices C.

We first order all answer sets by the scores of corresponding patterns, and

then match the cells in the first answer set with the candidate choices. Exact

match of cell-choice doesn’t work well because the same term may be expressed

in different ways in the choices and the cells, like “monkey” and “monkeys”.

So we use FUZZY similarity (defined in Equation 3.7) to match the cell-choice

pairs. If we cannot find a satisfying cell-choice pair in the first answer set,

31

we move to the next, until we find a satisfying cell-choice pair. In order to

measure if the cell-choice pair is satisfying, we set a threshold θ, and if the

FUZZY similarity of the cell-choice pair is greater than θ, we decide that the

correct answer is found. θ is a hyperparameter that needs to be tuned.

However, if our column selection is wrong, or θ is too high, it’s possible

that we can never find a satisfying cell-choice pair. In this case, we will just

select the correct answer based on the first answer set, and the choice that

matches best with one of the cells is predicted as the answer. The procedure

of answer selection is given in Algorithm 4.

4.5 Summary

In this chapter, we introduced our answer selection model. We improve the

previous work in several aspects. First, we filter out irrelevant cells by column

selection. Second, we add additional features to the neural model to capture

lexical similarity. Third, we develop an effective answer selection algorithm.

32

Algorithm 4: Answer selection

Data: Candidate choice set C, ordered answer sets A, threshold θ
Result: The answer Correct

1 Correct← None;
2 for each answer set A ∈ A do
3 maxscore← −1;
4 bestchoice← None;
5 for each candidate choice C ∈ C do
6 Compute FUZZY (C,A) according to Equation 3.8;
7 if FUZZY (C,A) > maxscore then
8 maxscore← FUZZY (C,A);
9 bestchoice← C;

10 end

11 end
12 if maxscore > θ then
13 Correct← bestchoice;
14 Terminate for loop;

15 end

16 end
17 if Correct is None then
18 A← first answer set in A;
19 maxscore← −1;
20 for each candidate choice C ∈ C do
21 Compute FUZZY (C,A) according to Equation 3.8;
22 if FUZZY (C,A) > maxscore then
23 maxscore← FUZZY (C,A);
24 Correct← C;

25 end

26 end

27 end
28 return Correct

33

Chapter 5

Experiments

In this chapter, we report on experiments to evaluate the performance of our

models. Section 5.1 introduces the dataset we use. We evaluate and analyze

our table retrieval models in Section 5.2, and then evaluate and analyze our

answer selection model in Section 5.3.

5.1 Dataset

We evaluate the proposed models on a publicly available dataset, TabMCQ 1.

TabMCQ is a manually annotated multiple-choice question answering dataset.

It contains 9092 4th grade science exam queries, each with three or four can-

didate choices (mostly four). The dataset has 63 tables, and each query is

related to one table. The tables come from AI2’s Aristo Tablestore. In the

dataset, each example contains the following information:

1. QUERY: the actual text of the query.

2. CANDIDATE CHOICES: the different choices for the query.

3. CORRECT CHOICE: the correct answer to the query.

4. RELEVANT TABLE: the table needed to answer this query.

5. RELEVANT ROW: the row in the RELEVANT TABLE needed to an-

swer the query.

1http://ai2-website.s3.amazonaws.com/data/TabMCQ_v_1.0.zip

34

http://ai2-website.s3.amazonaws.com/data/TabMCQ_v_1.0.zip

Figure 5.1: An example from TabMCQ.

6. RELEVANT COL: the column in the RELEVANT ROW of the RELE-

VANT TABLE containing the answer to the query.

Figure 5.1 shows an MCQ and its corresponding table from the dataset.

Table 5.1 shows statistics of the dataset.

Number of tables 63
Number of queries 9092
Queries per table 144.3
Avg number of rows 61.5
Max number of rows 1217
Min number of rows 2
Avg number of cols 4.3
Max number of cols 9
Min number of cols 2

Table 5.1: Statistics of TabMCQ dataset.

5.2 Table Retrieval Experiments

5.2.1 Experiment Setup

When preprocessing the dataset, we first remove all punctuation, and then use

the tokenizer from NLTK [1] to split the queries and tables into lists of tokens.

All letters are set to lower case. To calculate the LCS ratio features (defined

in Section 3.2.3), we concatenate the tokens in queries and tables into strings.

In the neural model, the vector representations of words are initialized

with GloVe word embedding by Pennington et al. [16], while the POS tag

35

embeddings are randomly initialized. Both word embeddings and POS tag

embeddings are fine-tuned during training.

Baseline: We use BM25 as baseline. The explanation of BM25 can be

found in Section 3.2.3. To compute the BM25 score of a table given a query,

we treat the whole table (caption, headers and body) and the query as lists of

words, and then compute the score of the table using the BM25 function.

Evaluation Metrics: Following previous works [31], [36], we use Mean

Average Precision@k (MAP@k) to evaluate our model. MAP@k is defined in

Section 2.1.

Hyperparameters: We use 10% of queries in training set as validation

set to tune hyperparameters for the feature-based model and neural model.

We first set the hyperparameters to default value or commonly used value,

and then search for the optimal hyperparameters one by one. In the neural

model, we apply a dropout layer to both input and output of every LSTM

layer. The hyperparameters are given in Table 5.2.

Hyperparameters for feature-based model
k in BM25 1.3
b in BM25 0.75
size of hidden layer 32
Hyperparameters for neural model
state size of LSTM 64
dropout 0.2
POS tag embedding dimension 16

Table 5.2: Hyperparameters for feature-based and neural models.

To reduce the noise introduced by randomly generating query-table pairs

for training, we set the random seed to 0. We run the models using the tuned

hyperparameters for 5 times and report the average MAP@k.

5.2.2 Performance Comparison

Previous works on table retrieval only compares queries with tables. However,

in TabMCQ, candidate choices can offer additional information for table re-

trieval. We can concatenate the candidate choices to queries to utilize this

information. We report the results with 95% confidence intervals under both

36

settings (with/without candidate choices) in Table 5.3. And it’s also possible

to ensemble the feature-based model and the neural model. To do so, for each

query, we first normalize the scores of tables, and sum up the scores given by

the two models as the final scores.

Model MAP@1 MAP@2 MAP@3
BM25 89.2% 91.3% 92.0%
Feature 95.4%± 0.3% 96.5%± 0.1% 96.8%± 0.1%
Neural 95.1%± 0.6% 96.5%± 0.4% 96.8%± 0.3%
Feature + Neural 97.3%± 0.2% 98.2%± 0.1% 98.4%± 0.1

BM25 w/cc 95.9% 97.0% 97.2%
Feature w/cc 99.7%± 0.1% 99.8%± 0.0% 99.8%± 0.0%
Neural w/cc 96.5%± 0.2% 97.7%± 0.2% 98.0%± 0.2%
Feature + Neural w/cc 99.8%± 0.0% 99.9%± 0.0% 99.9%± 0.0%

Table 5.3: MAP@k for BM25 and our models. w/cc stands for “with candidate
choices”. Highest scores under each setting are marked with bold font.

From the result, we can see that when we do not use candidate choices,

the feature-based model performs comparably well with the neural model,

and they both outperform the BM25 baseline. This shows the effectiveness

of using lexical similarity. However, both BM25 and the feature-based model

perform much better if we use candidate choices, but the improvement of

the neural model is not very large. As a result, the neural model can only

perform comparably with the BM25 baseline. The reason could be that the

candidate choices are typically keywords that can be found in the body of the

table, but the neural model cannot effectively utilize the table body. So the

neural model doesn’t benefit much from the additional information provided

by the candidate choices. The ensemble model is better than feature-based

or neural model alone in both settings, which implies the complementation

between them.

5.2.3 Ablation Study of Feature-based Model

To evaluate the contribution of our novel features, FUZZY and LCS ratio, we

do ablation study, by removing one novel feature from the model. The results

are shown in Table 5.4.

37

Model MAP@1 MAP@2 MAP@3
Full model 95.4%± 0.3% 96.5%± 0.1% 96.8%± 0.1%
-FUZZY 94.7%± 0.3% 96.1%± 0.2% 96.3%± 0.2
-LCS ratio 94.6%± 0.4% 96.0%± 0.3% 96.3%± 0.2%

Full model w/cc 99.7%± 0.1% 99.8%± 0.0% 99.8%± 0.0%
-FUZZY w/ cc 99.3%± 0.2% 99.7%± 0.1% 99.7%± 0.1%
-LCS ratio w/cc 99.6%± 0.1% 99.8%± 0.0% 99.8%± 0.0%

Table 5.4: Ablation study of novel features.

From the results, we can see that FUZZY can bring significant improvement

under both settings. FUZZY meets our expectation and can find typos like

“kilgrams”, and correctly relate the typos to tables that contain the correct

forms. What’s more, we find that FUZZY can even reveal some semantic

information. For example, it can relate words from the same lexeme, like

“magnetism” and “magnetic”.

LCS ratio works well for the case without candidate choices and signif-

icantly improve the performance of the model. This shows the importance

of considering word order. However, LCS ratio helps as much for the case

with candidate choices. This makes sense. Because the way we use candidate

choices is simply concatenating them to queries, and it’s likely that the candi-

date choices cannot form a meaningful sentence together with the query, and

the length of LCS will remain the same with or without the candidate choices.

And LCS ratio will be much lower if the candidate choices are long, which

makes LCS ratio more relevant to the length of candidate choices but not with

the similarity between the query and the table.

5.2.4 Error Analysis

Feature-based model tends to make mistakes when the vocabulary of two ta-

bles are similar. Figure 5.2 gives an example of such case. The predicted table

and the ground truth table both contain words like “winter solstic”, “Decem-

ber”, “northern hemisphere”, so the feature-based model is not able to make

prediction correctly even with the help of candidate choices. However, the

neural model is able to learn the semantic of queries and tables. Since the

38

Figure 5.2: An example of wrong prediction of feature-based model.

question asks about winter solstice, which is an orbital event, and the theme

of the first table is season, the neural model can figure out that it’s not the

relevant table.

The neural model, on the other hand, suffers from inability to utilize lexical

information especially when the query is short. Figure 5.3 gives an example

of such case. The question asks about a property of a material, and both

the ground truth and predicted tables describe properties of materials, so the

neural model makes a wrong prediction. But the feature-based model can

notice the word “substance”, and thus it is able to predict the table correctly.

5.3 Answer Selection Experiments

5.3.1 Experiment Setup

The candidate tables are retrieved using the ensemble model with candidate

choices. We use the top 1 table returned for each query as the knowledge for

answer selection.

39

Figure 5.3: An example of wrong prediction of neural model.

When preprocessing the dataset, we first remove all punctuation, and then

use the tokenizer from NLTK [1] to split the queries and tables into lists of

tokens. All letters are set to lower case.

The vector representations of words are initialized with GloVe word em-

bedding by Pennington et al. [16], and are fine-tuned during training.

Baselines: To show the effectiveness of our model, we compare our model

with several baselines: (1) bag of words : We treat the query, rows in the

table, and candidate choices as bags of words. And we compare the query

and a choice with each row. The choice that results in the most word overlap

is chosen as the correct answer; (2) LCS : We treat the query, rows in the

table, and candidate choices as strings. For each row in the table, we find the

LCS of the row and the query, and the LCS of the row and one candidate

choice, and the sum of the lengths of the two LCSs is the relevance between

the row and the choice. The choice that results in the highest score with a

row is considered as the correct answer; (3) TabNN : TabNN is a neural model

40

proposed by Jauhar [8]. It consists of three parts: query-row mapping, choices-

column mapping, cell-answer mapping. In query-row, Jauhar uses LSTM as

encoder to encode the query and row into dense vectors, and the concatenation

of the vector representations is fed into a fully-connected network to get the

relevance score. The other two parts have the same structure; (4) Wang et al.:

Wang et al.’s model is the state-of-the-art model on this task. Bag of words

and LCS use the same knowledge as our model (top 1 table given by the table

retrieval model), while TabNN doesn’t do table retrieval, and Wang et al.’s

uses the top 3 tables given by their own table retrieval model.

Evaluation Metric: The models are evaluated with accuracy. Accuracy

is defined in Section 2.1.

Hyperparameters: We use 10% of queries in training set as validation

set to tune hyperparameters. We first set the hyperparameters to default value

or commonly used value, and then search for the optimal hyperparameters one

by one. We apply a dropout layer to both input and output of every LSTM

layer. Besides the hyperparameters for the neural network, we also need to

tune the threshold θ for the answer selection algorithm to determine if a choice

is good enough. The hyperparameters are given in Table 5.5.

number of filters for CNN 5
kernel size for CNN 2
state size for LSTM 64
dropout 0.2
size of hidden layer 32
θ 0.5

Table 5.5: Hyperparameters for our model.

To reduce the noise introduced by randomly generating query-table pairs

for training, we set the random seed to 0. We run the models using the tuned

hyperparameters for 5 times and report the average accuracy.

5.3.2 Performance Comparison

From the results, we find that our model outperform every baseline, and

achieves 12.9% higher accuracy than previous state-of-the-art. This is be-

41

Model Accuracy
TabNN [8] 56.8%
Wang et al. [31] 79.0%
Bag of words 63.8%
LCS 71.3%
Ours 91.9%± 0.3%

Table 5.6: Accuracy of answer selection models. The results of TabNN and
Wang et al. are from their original papers.

cause we optimize their method in several ways. We will discuss the influence

of our modifications in the following sections.

We also find that TabNN is even worse than the bag-of-words and LCS

baselines. The reason could be the poor methodology. TabNN doesn’t make

the effort to retrieve relevant tables before selecting the answer, and it tries to

map the query to a certain row, which is error-prone.

5.3.3 Influence of Table Retrieval

Wang et al. use the top 3 tables retrieved to achieve high recall in table

retrieval, but we only use the top 1 table. Here we test our answer selection

model with different tables as knowledge to demonstrate the influence of table

retrieval. We compare the following settings: (1) the ground truth table; (2)

top 1 table generated by our table retrieval model; (3) top 2 tables generated

by our table retrieval model. We don’t use top 3 tables like Wang et al. because

the relevant table always rank top 2 in our table retrieval model. The results

are shown in Table 5.7.

Setting Accuracy
Ground truth table 91.9%
Top 1 table 91.9%
Top 2 tables 90.9%

Table 5.7: Accuracy of answer selection given different tables.

From the results, we can see that using ground truth table and using top

1 table achieve the same accuracy. This shows the effectiveness of our table

retrieval model. When using the top 2 tables, the recall of table retrieval is

42

higher, but the accuracy decreases by 1%. This is because an extra table will

result in more noise, and makes it harder for the pattern scoring model to

correctly rank the patterns. Wang et al. use 3 tables as knowledge for a query,

which could be one reason that their result is worse than ours.

5.3.4 Influence of Column Selection

Wang et al. score every cell in the table, while our model only scores the

cells in a certain column. We conduct experiments using our answer selection

model to see if column selection can improve the accuracy.

Setting Accuracy
w/o column selection 90.9%
w/ column selection 91.9%

Table 5.8: Accuracy of answer selection with and without column selection.
w/o stands for without, w/ stands for with.

As is shown in Table 5.8, doing column selection increases the accuracy

by 1%. We already know that table retrieval helps to filter our irrelevant

tables and results in higher accuracy. So it makes sense that column selection

can also improve accuracy. Although selecting a wrong column may result in

wrong answer selection, the system benefits more from filtering out irrelevant

cells.

5.3.5 Ablation Study

To evaluate the contribution of the extra features that we add to the pattern

scoring model, we do ablation study, by removing one feature from the model.

The results are shown in Table 5.9.

Model Accuracy
Full model 91.9%± 0.3%
-Xfeat 85.0%± 0.9%
-Bilinear similarity 91.2%± 0.4%

Table 5.9: Ablation study of additional features.

The result shows that bilinear similarity results in about 0.7% higher ac-

curacy. The lexical features results in 6.9% higher accuracy, which shows the

43

Figure 5.4: Accuracy with different θ.

importance of learning both lexical and semantic similarity. The improvement

seems to unreasonably big, but actually the additional lexical features can of-

ten result in such big improvement in answer selection task. Yu et al. [39],

Severyn and Moschitti [26], Tay et al. [29] all witness big absolute improve-

ments ranging from 6% to 15%.

5.3.6 Influence of θ

We conduct experiments of answer selection using different θ to show the

importance of it. Figure 5.4 shows the accuracy-θ curve.

From the curve, we can find that a proper θ can improve the accuracy

by up to 6.6% comparing with improper θ. θ reflects to what extent do we

believe the pattern scoring model. A lower θ makes the algorithm rely more

on the pattern scoring model, because it’s easy to find a cell-choice pair that

matches not very well in the highest ranked answer sets. A higher θ, makes

the algorithm rely less on the pattern scoring model, because a well matched

cell-choice pair is not easy to be found.

Setting θ to 0 means that the correct answer is selected just based on the

first answer set. And the result is good, which indicates the accuracy of our

pattern scoring model. The answer selection algorithm achieves the highest

44

accuracy when θ is 0.5. This indicates that our strategy is successful, and θ

can help figure out if the pattern scoring model makes a mistake. If θ is too

high, the accuracy will go down. The reason is that in this case, the pattern

scoring model becomes less important, and the algorithm will often decide the

correct answer based on low-rank answer sets.

It’s interesting that the accuracy is the same when we set θ to 0 or 1. One

possible reason is that, if a perfect-matched cell-choice pair is not found in the

first answer set, then there’s no perfect-matched cell-choice pair at all. When

θ is 1, the algorithm cannot find a satisfying choice-cell pair in any answer set,

so it will just select the best match in the first answer set.

5.3.7 Error Analysis

There are several reasons that the model can select an incorrect answer.

First, there could be errors during column selection. Doing column selec-

tion results in higher accuracy, but it can result in wrong prediction, especially

when the candidate choices are not extracted from the same column. Figure

5.5 shows an example of such case. “water” appears in column 0, while “heat”

appears in column 4, and our column selection method wrongly selects column

0 as the relevant column, and choice B is chosen as the correct answer. This

kind of error can be reduced by better column selection method. Our method

only considers the candidate choices and the body of the table. If we take the

query and the headers into account, the accuracy of column selection could be

higher.

Second, some of the queries require additional knowledge. Figure 5.6 shows

an example of such case. The correct answer is “USA”, but in the table, “USA”

is expressed as “the United States of America”. Our model does not have the

knowledge to relate “USA” to “the United States of America”, and thus makes

the wrong prediction. We can use techniques like entity linking to help solve

this problem.

Third, some errors are caused by θ. 0.5 is the best choice for θ in our exper-

iments, but 0.5 doesn’t fit every case. In Figure 5.7, the query is very simple,

but our answer selection model fails to select “Niue” because the FUZZY

45

Figure 5.5: Error caused by wrong column selection. The choice marked with
red is the correct answer, and the choice marked with blue is the predicted
answer. It’s the same for Figure 5.6-5.8.

Figure 5.6: Error caused by insufficient knowledge.

score of “Niue” and “Niue (New Zealand)” is only 0.36, which is lower than

the threshold. So the second answer set is used to select the answer, and the

prediction is wrong.

Fourth, the pattern scoring model may fail to rank patterns correctly. This

could be alleviated by training the model on a larger dataset

Fifth, there are some faults in the dataset. Sometimes more than 1 choices

are correct, but only one of them is marked as correct answer. And sometimes

the query itself is incorrect. In Figure 5.8, the question should be “On average,

what weighs 28500 kilograms?”. Missing an “8” leads to wrong prediction.

46

Figure 5.7: Error caused by θ.

Figure 5.8: Error caused by faults in the dataset.

5.4 Summary

In this chapter, we evaluate our models on a publicly available dataset, TabMCQ.

And our QA system achieves 12.9% higher accuracy than previous state-of-

the-art.

The ablation study of feature-based table retrieval model shows the effec-

tiveness of our novel features. And the ensemble of feature-based and neural

model performs the best. Experiments on answer selection shows that our

table retrieval model works pretty well, and using the tables retrieved by the

model results in the same accuracy as using the ground truth tables.

In the experiments on answer selection, we find that the biggest improve-

ment comes from the lexical features we add to the pattern scoring model,

47

which confirms that the combination of lexical and semantic matching will be

better than semantic matching alone. Experiments also show that all of our

modifications on Wang et al.’s model improve the accuracy.

48

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we explore the task of multiple-choice question answering over

semi-structured tables. We tackle the task by two steps: table retrieval and

answer selection. We evaluate our model on the TabMCQ dataset, and the

results show that our model achieves the state-of-the-art performance.

To retrieve relevant tables, we build a feature-based model that focuses on

lexical similarity. If we retrieve the relevant table only with the query, Wang

et al.’s neural model performs as good as ours. However, our model can ef-

fectively utilize the additional information provided by the candidate choices.

As a result, if we take candidate choices into account, our feature-based model

outperforms Wang et al.’s neural model by more than 2% (improvements re-

ported in this chapter are absolute improvement). And the combination of the

feature-based model and neural model results in even better performance. The

improvement is around 2% when we do not use candidate choices, and 0.1%

when we use candidate choices. Besides, our two novel features, FUZZY and

LCS ratio, are shown to be effective. They can bring an absolute improvement

up to 0.8%.

To select the correct answer from the candidate choices, we improve Wang

et al.’s method in several aspects. First, we do column selection to filter

out irrelevant cells in the table. Second, to more accurately score patterns,

we add lexical features and bilinear similarity of the representations of query

and pattern to the pattern scoring model. Third, we develop an effective

49

answer selection algorithm. Experimental results show that our modifications

are effective. Doing column selection improves the accuracy by 1%. The

additional lexical features and bilinear similarity result in an improvement of

6.9% and 0.7% respectively.

Our system is also robust to minor changes in the tables. If some new

rows are added to the tables, we do not need to re-train everything. For table

retrieval models, the features in the feature-based model are extracted in an

unsupervised way, and the fully-connected network that computes the score is

not influenced by the body of the tables; the neural model only use the “link

words” in the table body, so it’s not influenced by the table body too. The

pattern scoring model in answer selection is only guaranteed to be trained on

rows that are relevant to training queries, so adding more rows to the tables

won’t require re-training. But if the changes are massive, and many tables are

added to the dataset, we need to re-train or at least fine-tune the system on

the new dataset to ensure good performance.

To conclude, we answer the two questions we proposed in the thesis state-

ment. For table retrieval, a feature-based model that focuses on lexical simi-

larity can perform comparably well with a neural model. And if we take the

candidate choices into account, the feature-based model can perform even bet-

ter than a neural model. For answer selection, taking lexical similarity into

account can result in huge improvement.

6.2 Future Work

There are still much to be done in future research.

We only use fixed word embedding to represent words, and basic LSTM and

BiLSTM to encode sentences in the neural table retrieval model and pattern

scoring model. We can try more advanced word embeddings (e.g., ELMo [17])

and sentence encoders (e.g., DiSAN [27] and BERT [4]) to improve the per-

formances of the models.

In the neural table retrieval model, we only encode the table caption, table

headers and a small part of the table body. We can also try to encode the whole

50

table body. One possible way is to encode each row of the table separately in

to a vector, and then use another neural network (like LSTM) to encode the

vector representations of each row to get the representation for the table body.

In the answer selection model, we first compare the query to the rows of

the relevant table to get relevant cells, and then match the candidate choices

with the relevant cells. We can try to rephrase the query and one candidate

choice into a statement first, and then directly match the statement with rows

in the table.

Another important issue is only 63 domain-specific tables are involved in

our experiments. If we want to build a more general table retrieval method, we

need to study a larger table collection. And we can even build our own dataset.

We can search the web for raw text corpora, and extract similar sentences by

pattern matching to build the semi-structured tables. For example, we can

extract sentences in the pattern “xx(someone) is the president of xxx(some

country)” to build a table about presidents. However, writing queries related

to the tables requires manual effort.

Our system consists of two parts, table retrieval and answer selection, and

the two parts are trained separately. We can also try to build an end-to-end

model. But this will require more training data, and we need to carefully

design the loss function so that the whole system can be properly optimized.

And it will also be harder to do preprocessing like column selection in an

end-to-end model.

We can also explore question answering without candidate choices. Our

system is actually capable of doing this. But our simple column selection

method will not work without candidate choices. One way to do column

selection in this scenario is to compare the query with the headers of the

body. Or we can just skip the column selection and score every cell like Wang

et al. And because we do not have candidate choices to refer to, we have to

trust our pattern scoring model, and just use the every cell in the first answer

set as the answer for the question.

Besides, our QA system is not equipped with inference ability, and cannot

relate entities expressed in different ways. We can try to augment our system

51

so that it can answer queries that require inference from several tables or

documents.

In this thesis, we focus on IR-based QA. We can also try to build a

knowledge-based QA system to solve the task. We can also explore other

QA tasks, like SQuAD [20], WikiSQL [42], etc.

52

References

[1] S. Bird, “NLTK: the natural language toolkit,” in ACL, The Association
for Computer Linguistics, 2006. 35, 40

[2] M. J. Cafarella, A. Y. Halevy, D. Z. Wang, E. Wu, and Y. Zhang,
“Webtables: Exploring the power of tables on the web,” PVLDB, vol. 1,
no. 1, pp. 538–549, 2008. 9, 14, 15

[3] C. J. Date and H. Darwen, A Guide to SQL Standard, 4th Edition.
Addison-Wesley, 1997. 2

[4] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” CoRR,
vol. abs/1810.04805, 2018. 50

[5] B. F. Green Jr, A. K. Wolf, C. Chomsky, and K. Laughery, “Baseball:
An automatic question-answerer,” in Papers presented at the May 9-11,
1961, western joint IRE-AIEE-ACM computer conference, ACM, 1961,
pp. 219–224. 1

[6] W. He, K. Liu, J. Liu, Y. Lyu, S. Zhao, X. Xiao, Y. Liu, Y. Wang,
H. Wu, Q. She, X. Liu, T. Wu, and H. Wang, “Dureader: A chinese
machine reading comprehension dataset from real-world applications,”
in QA@ACL, Association for Computational Linguistics, 2018, pp. 37–
46. 1

[7] M. Heilman and N. A. Smith, “Tree edit models for recognizing textual
entailments, paraphrases, and answers to questions,” in HLT-NAACL,
The Association for Computational Linguistics, 2010, pp. 1011–1019. 11

[8] S. K. Jauhar, “A relation-centric view of semantic representation learn-
ing,” PhD thesis, Carnegie Mellon University, 2017. 13, 25, 41, 42

[9] S. K. Jauhar, P. D. Turney, and E. H. Hovy, “Tables as semi-structured
knowledge for question answering,” in ACL (1), The Association for
Computer Linguistics, 2016. 4

[10] ——, “Tabmcq: A dataset of general knowledge tables and multiple-
choice questions,” CoRR, vol. abs/1602.03960, 2016. 6

[11] V. Jijkoun, M. de Rijke, et al., “Recognizing textual entailment using
lexical similarity,” in Proceedings of the PASCAL Challenges Workshop
on Recognising Textual Entailment, Citeseer, 2005, pp. 73–76. 11

53

[12] D. Jurafsky and J. H. Martin, “Speech and language processing,” 1, 3

[13] G. Lai, Q. Xie, H. Liu, Y. Yang, and E. H. Hovy, “RACE: large-scale
reading comprehension dataset from examinations,” in EMNLP, Asso-
ciation for Computational Linguistics, 2017, pp. 785–794. 13

[14] T. M. Lai, T. Bui, and S. Li, “A review on deep learning techniques
applied to answer selection,” in COLING, Association for Computational
Linguistics, 2018, pp. 2132–2144. 11

[15] P. Pasupat and P. Liang, “Compositional semantic parsing on semi-
structured tables,” in ACL (1), The Association for Computer Linguis-
tics, 2015, pp. 1470–1480. 4

[16] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in EMNLP, ACL, 2014, pp. 1532–1543. 35, 40

[17] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer, “Deep contextualized word representations,” in NAACL-
HLT, Association for Computational Linguistics, 2018, pp. 2227–2237.

50

[18] R. Pimplikar and S. Sarawagi, “Answering table queries on the web using
column keywords,” PVLDB, vol. 5, no. 10, pp. 908–919, 2012. 9, 14, 15

[19] T. Qin, T. Liu, J. Xu, and H. Li, “LETOR: a benchmark collection for
research on learning to rank for information retrieval,” Inf. Retr., vol. 13,
no. 4, pp. 346–374, 2010. 15

[20] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100, 000+
questions for machine comprehension of text,” in EMNLP, The Associ-
ation for Computational Linguistics, 2016, pp. 2383–2392. 2, 52

[21] M. Richardson, C. J. C. Burges, and E. Renshaw, “Mctest: A chal-
lenge dataset for the open-domain machine comprehension of text,” in
EMNLP, ACL, 2013, pp. 193–203. 13

[22] S. E. Robertson, S. Walker, S. Jones, M. Hancock-Beaulieu, and M. Gat-
ford, “Okapi at TREC-3,” in TREC, vol. Special Publication 500-225,
National Institute of Standards and Technology (NIST), 1994, pp. 109–
126. 10, 18

[23] S. Ruder, Nlp progress-question answering, https://nlpprogress.com/
english/question_answering.html. 2

[24] M. Sachan, K. A. Dubey, E. P. Xing, and M. Richardson, “Learning
answer-entailing structures for machine comprehension,” in ACL (1),
The Association for Computer Linguistics, 2015, pp. 239–249. 13

[25] C. N. dos Santos, M. Tan, B. Xiang, and B. Zhou, “Attentive pooling
networks,” CoRR, vol. abs/1602.03609, 2016. 12

[26] A. Severyn and A. Moschitti, “Learning to rank short text pairs with
convolutional deep neural networks,” in SIGIR, ACM, 2015, pp. 373–
382. 5, 30, 44

54

https://nlpprogress.com/english/question_answering.html
https://nlpprogress.com/english/question_answering.html

[27] T. Shen, T. Zhou, G. Long, J. Jiang, S. Pan, and C. Zhang, “Disan: Di-
rectional self-attention network for rnn/cnn-free language understand-
ing,” in AAAI, AAAI Press, 2018, pp. 5446–5455. 50

[28] M. Tan, B. Xiang, and B. Zhou, “Lstm-based deep learning models for
non-factoid answer selection,” CoRR, vol. abs/1511.04108, 2015. 12

[29] Y. Tay, M. C. Phan, A. T. Luu, and S. C. Hui, “Learning to rank ques-
tion answer pairs with holographic dual LSTM architecture,” in SIGIR,
ACM, 2017, pp. 695–704. 30, 44

[30] Y. Tay, L. A. Tuan, and S. C. Hui, “Hyperbolic representation learning
for fast and efficient neural question answering,” in WSDM, ACM, 2018,
pp. 583–591. 11

[31] H. Wang, X. Zhang, S. Ma, X. Sun, H. Wang, and M. Wang, “A neural
question answering model based on semi-structured tables,” in COLING,
Association for Computational Linguistics, 2018, pp. 1941–1951. 4, 10, 13, 14, 21, 24, 26, 30, 36, 42

[32] M. Wang and C. D. Manning, “Probabilistic tree-edit models with struc-
tured latent variables for textual entailment and question answering,” in
COLING, Tsinghua University Press, 2010, pp. 1164–1172. 11

[33] M. Wang, N. A. Smith, and T. Mitamura, “What is the jeopardy model?
a quasi-synchronous grammar for QA,” in EMNLP-CoNLL, ACL, 2007,
pp. 22–32. 11

[34] S. Wang, M. Yu, J. Jiang, and S. Chang, “A co-matching model for
multi-choice reading comprehension,” in ACL (2), Association for Com-
putational Linguistics, 2018, pp. 746–751. 13

[35] Z. Wang, W. Hamza, and R. Florian, “Bilateral multi-perspective match-
ing for natural language sentences,” in IJCAI, ijcai.org, 2017, pp. 4144–
4150. 12

[36] Z. Yan, D. Tang, N. Duan, J. Bao, Y. Lv, M. Zhou, and Z. Li, “Content-
based table retrieval for web queries,” CoRR, vol. abs/1706.02427, 2017.

10, 14, 15, 36

[37] X. Yao, B. V. Durme, C. Callison-Burch, and P. Clark, “Answer extrac-
tion as sequence tagging with tree edit distance,” in HLT-NAACL, The
Association for Computational Linguistics, 2013, pp. 858–867. 11

[38] W. Yin, S. Ebert, and H. Schütze, “Attention-based convolutional neural
network for machine comprehension,” CoRR, vol. abs/1602.04341, 2016. 13

[39] L. Yu, K. M. Hermann, P. Blunsom, and S. Pulman, “Deep learning for
answer sentence selection,” CoRR, vol. abs/1412.1632, 2014. 11, 31, 44

[40] M. D. Zeiler, “ADADELTA: an adaptive learning rate method,” CoRR,
vol. abs/1212.5701, 2012. 21, 24, 31

[41] S. Zhang and K. Balog, “Ad hoc table retrieval using semantic similar-
ity,” in WWW, ACM, 2018, pp. 1553–1562. 9, 14, 15, 17

55

[42] V. Zhong, C. Xiong, and R. Socher, “Seq2sql: Generating structured
queries from natural language using reinforcement learning,” CoRR,
vol. abs/1709.00103, 2017. 2, 4, 52

[43] H. Zhu, F. Wei, B. Qin, and T. Liu, “Hierarchical attention flow for
multiple-choice reading comprehension,” in AAAI, AAAI Press, 2018,
pp. 6077–6085. 13

56

Appendix A

Neural Networks

A.1 Feed-forward Neural Network

A neural network has many simple units called neurons. A feed-forward neural

network is a neural network where the connections between the neurons do not

form a cycle. Figure A.1 shows a neural network.

Figure A.1: A feed-forward neural network.

A feed-forward neural network has three types of layers: input layer, hid-

den layer and output layer. Each layer consists of several neurons. And the

incoming arrow denotes the input to the neuron, and outgoing arrow denotes

the output of the neuron. If every neuron in a layer is connected to every

neurons in the next layer, then this layer is called a fully-connected layer.

If we denote the input as x, and the output as y, then the feed-forward

neural network can be described as a mapping function y = f(x). A fully-

57

connected layer performs a vector-matrix multiplication: h = Wx, where W

is a transformation matrix. Then people usually apply a non-linear function

to h. The non-linear function is also known as activation function. Commonly

used activation functions include tanh, relu and sigmoid. The computation is

executed layer by layer until the output layer.

A.2 Convolutional Neural Network

Convolutional Neural Network (CNN) is actually a special case of feed-forward

neural network. The idea of CNN is to reduce the connections between the

input layer and hidden layer. In a fully-connected network, a neuron is con-

nected to every neuron in adjacent layers. But in CNN, each neuron in hidden

layer only processes a subset of the input.

In natural language processing, the input to a CNN is usually a sequence X

with m words. And the i-th word xi can be represented with a d-dimensional

vector xi. Let ci = [xi−n+1⊕xi−n+2...⊕xi], where⊕ denotes concatenation, and

n is the filter size of the CNN. The convolution layer does the following trans-

formation to generate the representation for the n-gram xi−n+1, xi−n+2, ..., xi:

pi = tanh(Wci + b) (A.1)

where pi ∈ Rd′ , and W ∈ Rd′×nd is the convolution matrix, and bias b ∈ Rd′ .

Then the representation of input sequence X ∈ Rd′ is generated by maxpooling

over all n-gram representations:

Xj = max(p1,j,p2,j, ...)(j = 1, ..., d′) (A.2)

A.3 Recurrent Neural Network

In feed-forward network, the output of each layer will always be passed to next

layer. But in recurrent neural network (RNN), the output of a layer can be

fed back to the layer itself as input. RNN is suitable to deal with sequences,

and can map a sequence of any size into a fixed-size vector.

58

Long Short-Term Memory (LSTM) is a prevailing RNN type. It models

the word sequence X as follows:

ft = sigmoid(Wfxt + Ufht−1 + bf) (A.3)

it = sigmoid(Wixt + Uiht−1 + bi) (A.4)

ot = sigmoid(Woxt + Uoht−1 + bo) (A.5)

pt = ft ◦ pt−1 + it ◦ tanh(Wcxt + Ucht−1 + bc) (A.6)

ht = ot ◦ tanh(pt) (A.7)

where ◦ denotes element-wise product, xt ∈ Rd is the vector representation for

word xt, ft ∈ Rh is the forget gate, it ∈ Rh is the input gate, ot ∈ Rh is the

output gate, ht ∈ Rh is the hidden state vector, pt ∈ Rh is the cell state vector

that can memorize the history of the input sequence, W ∈ Rh×d, U ∈ Rh×h are

weight matrices, and b ∈ Rh is bias vector. People often use the final hidden

state hT to represent the input sequence.

59

	Introduction
	Background
	Motivation
	Overview
	Thesis Statement and Contributions
	Organization of the Thesis

	Related Work
	Evaluation Metrics
	Table Retrieval
	Ad Hoc Table Retrieval
	Table Retrieval for Question Answering

	Answer Selection
	Answer Selection
	Multiple-Choice Reading Comprehension

	Table Retrieval
	Task Definition
	Feature-based Model
	Query Features
	Table Features
	Query-Table Features
	Table scoring
	Training

	Neural Network Model
	Input Representation
	Query Representation
	Table Representation
	Table Scoring
	Training

	Summary

	Answer Selection
	Task Definition
	Pattern Extraction
	Column Selection
	Pattern Extraction

	Pattern Scoring
	Input Representation
	Query Representation
	Pattern Representation
	Pattern Scoring
	Training

	Answer Selection
	Summary

	Experiments
	Dataset
	Table Retrieval Experiments
	Experiment Setup
	Performance Comparison
	Ablation Study of Feature-based Model
	Error Analysis

	Answer Selection Experiments
	Experiment Setup
	Performance Comparison
	Influence of Table Retrieval
	Influence of Column Selection
	Ablation Study
	Influence of
	Error Analysis

	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	References
	Appendix Neural Networks
	Feed-forward Neural Network
	Convolutional Neural Network
	Recurrent Neural Network

