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As far as the laws o f mathematics refer to reality, they are not certain; 
and as far as they are certain, they do not refer to reality

Albert Einstein
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Chapter 1

Introduction

There are multiple rock types in virtually all mineral deposits. For example, a 
porphyry intrusive within some host rock. There may also be multiple rock types 
within the porphyry that are dominated by different styles of mineralisation. The 
contact between rock types is often gradational and not abrupt. In fact, the contact or 
boundary is often a zone where there are influences from the adjacent rock types and 
from the zone itself. Fractures or other geomechanical or geochemical changes at the 
boundary can cause enrichment. The size o f these boundary zones can be significant. 
They can be tens of meters, which has an impact on mining and mineral resources 
appraisal.

Classical geostatistical modeling assumes that there is no change in the average 
grade and variability over the domain. Therefore it is often assume that the contacts 
between rock types are abrupt and data is separated into the different rock types. 
Another approach is to divide data into three zones, one within each rock type and 
separate boundary zone as a third. The latest usually has too few data and a more 
complex behavior that could include trends, correlation across the boundary among 
others features.

This thesis is concerned with techniques to more reasonably model the grades in and 
near boundary zones between rock types. A number o f techniques and statistical 
models will be developed for this purpose.

Background

Mineral resource and ore reserve estimation requires a critical decision regarding the 
geological domains that will be used for the grade modeling, as well as the type of 
boundaries between these domains. The statistical characteristics of the domains can

1
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have a significant impact on the final mineral inventory. The most common 
geostatistical techniques, such as kriging and sequential simulation, are based on 
strong assumptions of stationarity of the estimation domains. In particular, they are 
based on a second order stationary hypothesis, that is, the mean, variance and 
covariance remain constant across the entire domain; they do not depend on the 
location o f the support points but only on the distance between them. Therefore, 
geological domains should be chosen as statistically homogeneous zones, which are 
geologically significant and coherent, but with enough data to allow reliable 
inference o f the required statistics.

Wherever possible, geology should be used to define appropriate estimation 
domains. Some deposits will have a very simple geometry and mineralisation 
pattern, making the choice o f estimation domains straightforward from geological 
units. In other cases the mineralisation of interest is not entirely defined by a 
single geological unit or may transgress their boundaries. In these deposits, it is 
common to find an important structural or lithological influence on grade 
distribution and multiple events of mineralisation. In these cases, a combination 
o f different geological attributes may reflect an estimation domain. When it is not 
possible to identify and isolate the geological controls o f grade distribution, the 
estimation domains can be defined purely by grade boundaries; however, this 
method is considerably more risky in that under or overestimation o f grade and 
tonnage can result.

Once certain geological or grade boundaries are selected to represent an 
estimation boundary, the choice should be validated statistically. Differences in 
the mean, variance and covariance between domains are common. Complex 
features on a probability plot or a high coefficient o f variation may indicate that 
the chosen domain still has mixed populations. Indicator variograms can be used 
to test for consistency in anisotropy and grade continuity o f different grade 
ranges within a proposed domain.

Following the definition o f the estimation domains, an analysis on how grades 
change across the boundaries between domains should be done. This validates the 
proposed units and determines the nature of their boundaries. Domain boundaries 
are often referred to as either ‘hard’ or ‘soft’. Hard boundaries are found when an 
abrupt change in average grade or variability occurs at the contact between two 
domains, such as coal seams or sedimentary zinc deposits. In deposits where the 
disseminated mineralisation has a gradational nature, such as some porphyry 
copper deposits, and grades change transitionally across a boundary, the contact 
is referred to as a soft boundary (Figure 1.1). Other examples are nickel, 
chromium and platinum orthomagmatic deposits that often show an increasing 
grade profile towards the bottom of a layer due to magmatic segregation.

2
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Hydrothermal deposits with successive injections of circulating fluids produce 
concentric fracturing and trends in the mineralisation.

Grade profile drill hole A1

4590
Leach

4540 -

Secondary
4490 -

4440 -

4390

0.5

% Cu

Grade profile drill hole A2

4590
Leach

4540 -

£
Secondary

SO
'S9J
ju
3

4490 -

‘Primary4440 -

4390

0 3 41 2 5

% Cu

Figure 1.1: Grade profile o f  two drill holes in a porphyry copper deposit in Northern Chile, 
showing an example o f  soft boundaries (left) between mineralisation units as well as an example 
o f hard boundaries (right). Notice how the mean and variance change across the boundaries.

Correct representation o f soft boundaries should ensure the reproduction o f the 
correlation of the grades across the boundary and ensure reproduction of non- 
stationary variations o f the mean, variance and covariance in the zone o f 
influence o f each rock type. Improved modelling of boundaries would benefit 
long and medium term mine planning by reducing the percentage o f misclassified 
blocks, obtaining more accurate tonnage, average grade and metal content 
estimates. The estimation o f dilution for underground and open pit deposits 
would also be improved. When blast hole data is available, the improvement may 
not be as significant since the estimates rely on the conditioning data and less on 
the technique use to perform the estimation.

3
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Soft boundaries are found in several types o f deposits due to the transitional 
nature of the geological mechanisms involved in the formation o f a deposit. 
There is often some degree o f overlap between geological grade controls. 
Nevertheless conventional grade estimation usually treats the boundaries between 
geological units as hard boundaries. This is primarily due to the limitations o f 
current estimation and simulation procedures.

Estimation with hard boundaries is straightforward since only the samples within 
the domain are used. Soft boundaries allow grades from multiple domains to be 
used in the estimation o f each domain. Common practice is to share samples 
within a given zone o f influence o f one domain over the other. Samples from 
different domains are treated as equal to those within the domain; that is, the 
same mean, variance and covariance model from the samples within the domain 
are assumed. This generally has the effect o f changing the representative statistics 
o f the domain o f interest. This corruption of the final grades, especially in the 
transition zones, often dissuades practitioners from using soft boundaries.

Proposed Methodology

This work presents two different methodologies for grade estimation in the 
presence o f soft boundaries. The first methodology is applicable when the 
correlation o f the variable o f interest between two adjacent rock types remains 
constant within both units and is due to an underlying common factor. One 
example could be the supergene zone in a porphyry copper deposit (Figure 1.2); 
supergene enrichment o f these systems begin as the portions above the water 
table are oxidized, transported in solution and precipitated below the ground 
water table by replacement o f pre-existing iron sulfides. The mean and variance 
in the supergene zone is likely to be higher than the primary zone immediately 
below, but the spatial correlation structure will remain an underlying common 
factor because of the original mineralisation.

In this first case o f a global soft boundary, it is propose to use a conventional 
linear model of coregionalization (LMC) to simulate grades using data from 
adjacent domains. Although the LMC is traditionally used to characterize the 
spatial variability of multiple properties or metal grades in one domain, we will 
show that it can be applied to model the spatial variability of one property across 
the boundary between multiple domains (Figure 1.3). A full model o f 
coregionalization allows us to capture the spatial correlation o f grades across the 
boundaries through a legitimate spatial model that can later be used to cokrige or 
cosimulate grades using data from adjacent domains. This approach guarantees

4
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the correct reproduction o f representative statistics of each geological domain and 
improves the resource estimation by reducing the uncertainty in transitional zones 
near boundaries.

Figure 1.2: Schematic cross-section illustrating porphyry copper mineralisation. The supergene 
zone develops below the water table as fluids percolate from the oxide zone and downward along 
faults.

A global stationary soft boundary is often not very realistic. In general soft 
boundaries are characterized by a non-stationary behavior o f the variable of 
interest near the contact between units; that is, the mean, variance or covariance 
are not constant within a zone o f influence of one rock type into the other and 
their values depend on the location relative to the boundary (Figure 1.4). There 
could be an increase or decrease in the mean or variance towards the boundary. 
Figure 1.5 shows the difference between a global stationary soft boundary and a 
local non-stationary one. Both domains have a common underlying isotropic 
covariance model with a range of 100 meters. There may be an increased 
frequency o f fractures towards the boundary between geological domains (Figure 
1.6). Faults or brittle zones are examples o f this transition. The fractures may be 
mineralized so the average metal grade will increase closer to the boundary. 
Alternatively, fractures near the surface of the deposit may be leached by 
meteoric fluids, which may translate to a decrease in the average grade. The 
increase in the presence of factures will often lead to an increase or decrease in 
the variance closer to the boundary.

5
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Figure 1.3: Conventional application o f a local model o f coregionalization (A): model spatial 
variability o f  multiple properties, represented by random variables Z* and Zp, in one domain. The 
proposed application (B): model the spatial variability o f  a single property across a boundary 
between two geological domains.

Figure 1.4: Local non-stationary soft boundary between rock type 1 and 2. The mean and 
variance are functions o f  the locations relative to the boundary within a zone o f  influence o f  one 
rock type into the other.

6
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Figure 1.5: Difference between a global soft boundary (A) and a local non-stationary boundary 
(B). Both domains have a common underlying spatial isotropic structure o f  100 meters range.

For local non-stationary soft boundaries it is propose a new technique that 
accounts for stationary variables within domains and additional non-stationary 
components near boundaries. The technique involves the following: (i)
identification o f the rock type and boundary zones based on geological modeling 
and timing o f the different events, (ii) optimization o f the non-stationary
components o f mean and variance in the boundary zone given the stationary
statistical parameters o f each domain and the data in the boundary region, (iii) 
decomposition o f the covariance model into stationary and non-stationary
components o f a linear model o f coregionalization and optimization o f the latest, 
and (iv) estimation of grades using a non-stationary form o f simple cokriging. 
This technique provides an appealing alternative to capture grade variability for 
deposits where complex contacts between different rock types exist. The 
methodology is developed in the context of mining geostatistics, but it is widely 
applicable in many different settings.

7
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B a m t-
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Figure 1.6: Schematic cross-section o f  a structural boundary between two porphyries. The 
frequency o f fractures increases toward the boundary defined by the fault. Fractures produce a 
local increase in the mean grade and variability at the boundary.

Thesis Outline

Chapter 2 discusses the application o f a conventional linear model o f 
coregionalization to estimate and simulate grades using data from multiple 
domains. The theoretical background, some small illustrative examples and a full 
application and comparison with current alternatives are included.

Chapter 3 presents concepts and theoretical background o f the proposed 
technique for estimation in the presence of local non-stationary soft boundaries.

Chapter 4 presents the implementation of the programs involved in the 
optimization o f the non-stationary mean, variance and covariance parameters for 
cokriging. The structure of these programs is illustrated with a simple 1-D 
example. A large 3-D example demonstrates the practical application o f this 
technique in Chapter 5.

Finally, discussion on the results o f the proposed methodologies, as well as future 
work and conclusions are presented in Chapter 6.

8
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Chapter 2

Global Linear Model of 
Coregionalization

As mentioned previously, most geological mechanisms are transitional in nature; 
therefore, some degree of overlap between geological units can be expected. This 
translates to correlation of the variable of interest across the geological 
boundaries.

In this chapter we review how a linear model o f coregionalization can be used to 
model the grade distribution using data from different domains. The theoretical 
background is illustrated with examples and sensitivity analysis. This proposed 
methodology is applied to a synthetic deposit and compared to the conventional 
approach o f modeling using hard boundaries.

This methodology assumes that the variable is stationary in each domain. A 
global spatial relationship is used for the grades in different domains. Local non- 
stationary behavior at the boundary is discussed in the next chapter.

Theoretical Background

The linear model of coregionalization (LMC) provides a method to model the 
cross covariance o f two or more variables. The LMC model is legitimate; that is, 
the variance o f any possible linear combination of these variables is always non
negative. Given a set of K  second order stationary random variables, 
[Zk, k = \ , . . . ,K ) , the LMC provides a means to model the cross covariance

functions, CovZtZ (h), k= l,...,K ,p = l,...,K .

9
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Usually Zk and Zp represent different properties measured at the same location, 
for example, gold and copper grades. We consider that each random variable Zk, 
k = \, . . .J (  corresponds to the variable o f interest in each of the K  geological 
domains or rock types. The model could also be used for multiple grades within 
multiple rock types.

A linear model of coregionalization assumes that each variable Zk is a linear 
combination o f n unknown second order stationary independent random variables 
Yi with mean tw, and variance a?, with i= l,...n . These n random variables are 
independent, that is, their cross covariances are zero: CovYy (h) = 0,Vh and i *  j .

Each Zk variable is assumed to be a linear sum o f the independent factors:

(2 .1)

The coefficients a*,- can be positive, negative or zero. 

The mean o f the tfh stationary variable Z* is:

n

The variance can be derived as follows,

r \

V
/

J
\

V
1 = 1 ;=1 j= \

J* J

But E\YtY since T, is independent o f Yj. Then,

10
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+ i t  v ,a y,} • - i « v
/ = !  i ~ \  j t - i  / = 1

M  j * i

i —\ i = 1

=i>,v

The covariance of Zk at a vectorial distance h, can also be calculated as an 
expression o f the coefficients an and the covariances of Y, for i-1 , ...n:

CovZi (h) = J^aJC ov^  (h)
/=l

Similar to the derivation o f the variance, the cross-covariance o f Zk and Zp, \fk^p, 
with k,p=l, ...,K  can also be derived as a linear combination o f Yj covariances and 
coefficients for Zk, and apj  for Zp, i,j= l, ...«,

covZil_ ( h) = + hj j  ~ - £ | i  % rA “ + h)

f
E v / R ( « )  ■!'(« + h)} + E E o „ 0tf£ { l'(n )  ■ y /u  + h)}

- '=1 >=1 )* i
r

+h)}
i = l  j * i

But since Y, is independent of Yj there is no cross spatial correlation between 
F,(u) and ^(u+h), that is, £ { l » - F y(u + h)} - £ { ^ (u )} • e {Yj{u + h)}, V /* j  . 
Then,

i=  1 7 = 1

n
= E afc ^ Cov^ h)i=i

i i
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If  the random variables Yt, i= l, ...,n are grouped by those that have the same 
direct covariance, that is, CYj (fa) = CT (h ), while the cross terms remain zero due

to independence assumption for the Y random function (Journel and Huijbregts, 
1978; Goovaerts, 1997), Equation 2.1 can be rewritten as,

7 =  1 1 =  0

where L+ 1 is the number o f groups with different direct covariances and «/ is the 
number of random variables with the same covariance in group /.

The cross covariance of Z* and Zp, can also be rewritten as,

i= l 7=0

ni
where the term, = b'^ corresponds to the sill contribution o f the Ith

7=1

covariance structure, C‘(h).

In summary, a model will be a linear model o f coregionalization if all direct and 
cross-covariances are derived as the linear combinations of / direct covariances 
CYi (h ) , that is,

CovZtZp(h ) - X ^ C 7(h) with b\p =blpk, l  = 1
1=0

The coefficient matrix ^b'^ J must be positive definite. Since this matrix is

symmetric, it will be positive definite, if  all determinant and sub-determinants, as 
well as the diagonal terms are non negative (Journel and Huijbregts, 1978).

For a two variable example and replacing the covariances Covz<z (h) and 

CovY (h) by the corresponding semi-variograms, the linear model of 
coregionalization takes the following form:

12
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w > > = i X ' r '(h)
7=0

i.-r 'C *)
7=0

J ' z . z . W 'S ^ - r 'd i )
1=0

where T '(h), 1=1, ...,L are the nested structures made up of legitimate variogram 
models and the coefficients b follow the following constrains to ensure a positive 
definite model:

bL>  o
b'pp> 0 1 = 0, ...,L

b L - K ^ b l - b ^

A linear model of coregionalization, with Z* and Zp representing the distribution 
o f the variable o f interest in rock type k  and rock type p, respectively, is a 
legitimate spatial correlation model that yields the correct statistics at unsampled 
locations near the boundary where samples from both domains are used for the 
estimation or simulation. The calculated LMC spatial model can be used in 
cokriging or cosimulation to model locations near geological boundaries using 
samples from adjacent domains. This is a more consistent alternative to the 
estimation of domains with soft boundaries than assuming the grades are 
independent or from the same domain.

Illustration of Theory

To illustrate how a linear model o f coregionalization can be used to characterize 
the spatial variability o f multiple rock types, consider a 2D example with two 
domains. The corresponding random variables Z/ and were constructed as a 
linear combination o f three underlying non-standard normal random variables:

Z, =Vf t 5- f j  + V a5 -7 2+0.0-F3

Z2 = V a ?  • Yl + 0.0 • t 2 + V os • 73

where,

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Yi ~ N(0.5,0.5) with yY (h) = 0.05 + 0.45 • Sphfhmiix=200J h)A max=200 
Amin=200

Y2 ~ N (2 .0 ,1.0) with yY (h) = 0A + 0.9-Sphfhm^ 50J h )A max=50 
Amin =300

Y3 ~ N (l.0,0.5) with n  (h) = 0.05 + 0.45 • Exp( h M 00J h)A max=400 
Amin=100

The random variables F; were obtained by unconditional Gaussian simulation for 
a grid of 1000 by 2000 meters. The simulated values were transformed to a non
standard normal distribution with the corresponding mean and variance values. 
Ten realizations were simulated.

The covariance o f Zj and Z2 , obtained from the simulated values, were checked 
against the analytically derived models:

CovZ[ (h) = 0.5 • Covj, (h) + 0.5 • CovY (h)

= 0.75 -  0.075 -  0.225 • -  0.45 • Sph „max=50,(h)
Amin=200 j I Amin =300

CovZz (h) = 0.5 ■ Gov,, (h) + 0.5 • CovY} (h)

= 0.5 -  0.05 -  0.225 • Sphfhm̂ 200]( h) -  0.225 • ^ praax=400,(h)
Amin =200 J ^Amin=100

The covariances from the realizations match the analytical models, as it must.

The cross covariance between Z; and Z2 was calculated and checked against its 
analytical model,

CovZi Zi (h) = 0.5CovYi (h)

= 0.25 -  0.025 -  0.225 ■ S p h , lmJ h )  (2-2)
ivAmin=200 J

three different spatial arrangement of Z/ and Z2 were considered: (1) collocated 
(just as a check), (2) the two domains adjacent to each other (Figure 2.1 A), and 
(3) the two domains merged (Figure 2 .IB) using a categorical binary model 
obtained via a Boolean simulation program, e l l i p s i m ,  that generate a 2D map 
of ellipsoids o f variable size and anisotropies for a given target proportion 
(Deutsch and Joumel, 1998).

14
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Figure 2.1: Example o f  two domains and the corresponding categorical models.

As a check o f our derivations we compare the cross-covariance between Zi and Z 2 

when both variables are collocated with the analytical derived model. As shown 
in Figure 2.2, the average variogram over all realizations is very close to the 
analytical model (Equation 2.2). The ergodic fluctuations associated with the 
different realization are relatively small.

In the case where the two domains are side by side, the covariances correspond to 
the analytical model fairly well (Figure 2.3A), although configurations where the 
boundary is parallel to the major anisotropy of one o f the domains (Z2 in this 
case), showed a systematically lower covariance at shorter lag distances than the 
analytical model (Equation 2.2), and the dispersion o f the ergodic fluctuations is 
greater at lag distances near zero. Inference o f the nugget effect o f the cross 
covariance is more uncertain in geometrical configurations similar to this one. 
However, the nugget effect between the grades at each side o f the boundary is not 
needed for estimation or simulation because data is not collocated nor do we 
estimate collocated grid blocks.

15
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.40 Cross Covariance Z1_Z2 Collocated X-dinection

■30Z
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T .10.;

•00J

-.20 J
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D istance (m)

Figure 2.2: Cross-covariance reproduction o f  the simulated random variables Z; and Z2, assuming 
both variables are collocated. The dots are the average taken over all realizations; individual 
realizations are in dashed lines; and the thin red solid line corresponds to the analytical model. 
The analytical model is very close to the average over all realizations, which makes it difficult to 
differentiate the dots from the solid line.

A B
Cross Covariance Z1-Z2 slde-by-side X-dlrectlon Cross Covariance Z1-Z2 Ellipsim(5Q% Z1) X-direction

AOS -40J

.3o_:

T T

\ v  .. / "  ^

.00.1

-.20 .
0. 200 . BOO. 000. 1000. 200 . 1000

Distance (m)

Figure 2.3: (A) Cross-covariance between Z; and Z2 combined side by side. (B) Cross-covariance 
between Z; and Z2 combined using e l l i p s i m  categorical model as a boundary model with a 
target proportion o f  Z7 o f 50%. The dots are the average taken over all realizations; individual 
realizations are in dashed lines; and the thin solid line corresponds to the analytical model.

For the second scheme, using a circular shape with radius of 150 meters and three 
target proportions of 25, 50 and 75%, the cross covariance between the 
experimental points derived from the average over all realizations compares well 
with the analytical model (Figure 2.3B) (Equation 2.2). The fluctuations at short 
lag distances are small. This confirms our expectation that when more contact 
surfaces between domains are available and are more irregularly oriented; the 
determination o f the nugget effect should have less uncertainty, compared to the

16
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case where a single contact surface exists between the two domains. A 
completely straight or planar boundary gives the least possible surface area to the 
boundary. This leads to the smallest possible transition zone between rock types 
and the fewest possible pairs for variogram calculation. This was also confirmed 
by a poorer reproduction at shorter lag distances, with lower covariances than the 
analytical model, when the target proportion o f the domain Z\ was lower than 
10%. In addition, when the proportion o f one domain decreases, the dispersion of 
the ergodic fluctuations increases (Figure 2.4).

Cross Covariance Z1-Z3 Eliipsim(5% 21) X-direction Cross Covariance 21-22 E1lipsim(10% 21) X-direction

.102 VVl % \

7

Distance (m) D istance (m)

Cross Covariance Z1-Z2 Eiiipsim(20% 21) X-direction

1

-  v

Cross Covariance 21-22 Eilipsim(50% 21) X-direction

.002

■v̂ V

200.0. 400. 600. 1000

Distance (m) Distance (m)

Figure 2.4: Cross-covariance between Z; and Z2 combined using e l l i p s i m  categorical model as 
a boundary model, for target proportion o f  Z; o f 5, 10, 20 and 50%. Note that as the target 
proportion o f  one o f  the domains decreases the experimental derived from the average over all 
showed a systematically lower covariance at shorter lag distances than the dashed analytical 
model. The dots are the average taken over all realizations; individual realizations are in dashed 
lines; and the thin solid line corresponds to the analytical model.
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Cross Covariance Z1-Z2 EUipsim (radius 25m) X-dir. Covariance Z1-Z2 EUipsim (radius 50m) X-dir.

ẑ -vK X / !  \

400. 800.

Distance (m)

400. 600.

Distance fm)

Cross Covariance Z1-Z2 EUipsim (radius 100m) X-dir. Cross Covariance Z1-Z2 EUipsim (radius 200m) X-dir.

a/ X X /'^.v> '//X '

-V'"X.

Figure 2.5: Cross-covariance between Z; and Z2 combined using e l l i p s i m  categorical model as 
a boundary model for different radii: 25, 50, 100 and 200 m. The dots are the average taken over 
all realizations; individual realizations are in dashed lines; and the thin solid line corresponds to 
the analytical model.

To determine the influence o f the size o f the domain, six different radii were 
checked (25, 50, 100, 150, 200 and 300 meters) using a target proportion o f 50%. 
For every radii, the average cross-covariance between Z/ and Z? is very close to 
the analytical model and no significant differences were found (Figure 2.5).

Using the same synthetic examples, the impact o f different drill hole data spacing 
was examined. Overall, the reproduction o f the cross covariance analytical model 
is as good as when all simulated values were used, although a wider range o f 
fluctuation between realizations is observed. I f  the data spacing is larger than the 
range o f the cross-covariance, the calculation o f a cross-covariance will be 
meaningless.

18
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2D Example

A real categorical geological model (Figure 2.6) was used to forecast the results 
for geometries of a real deposit. The grades, assumed to be percentage of copper, 
within the five rock types, Z/ to Z$ were constructed as a linear combination of 
four underlying non-standard normal random variables,

Y; ~ N(Q.01,0.5) with yYl (h ) = 0.05 + 0.45 ■ S p ^ raax=100Th)
^/im in=100 J

Y2 ~N(2.0,1.0) with /y,(h) = 0.1 + 0.9 ■ Sph,hmm=400̂ (h)
^ Amin =50 j

Y3 ~N(0.2,0.75) with ^ ( h )  = 0.05+ 0.70-Exp,Amax=50s(h)
ivAmin=30oJ

Y4 ~N(0.75,1.5) with ^ ( h )  = 0.3 + 1.2-Expr, max̂ ( h )
Amin=250

where Y2 and Y4 have a 55° anisotropy. The coefficients that multiplied the 
underlying variables in the summation that originates Zj to Z$ are:

z, z2 Z4 Z5
Y, V(F5 0.0 0.0 Vol Vo j
y2 0.0 Vo/7 Vo2 0.0 0.0
y3 Voj Voj 0.0 0.0 Vo.25
y4 0.0 0.0 Va8 Va8 Vo.05

The variables Z/ up to Zj were merged together using the categorical rock type 
model (Figure 2.7).

19
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Figure 2.6: Categorical rock type model. The arrows indicate the directions in which the cross
covariance between domains was calculated.
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Figure 2.7: A realization o f the merged grades Zt up to Z5 using the categorical rock type model 
o f Figure 2.6.
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The cross covariance was calculated for each pair o f Z, and Zj, i^j, in the 
directions sketch in Figure 2.6 and compared with the corresponding analytical 
model:

c ° \  , Z ,  (h) = 0.29 -  0.019 -  0.271 • Exp,
(/nm n= 300 j

CovZi A (h; = 0.561 -  0.047 -  0.266 • S p h ,^ m](h) -  0.248 • Exp,,m̂  .(h)
i^/imin=100 j  ^/jm in=300 j

C o v ^  (fa) = 0.374 -  0.037 -  0.337 • S p h , m] ( h)
^ /?min=50 J

C°vz2,z5 (h / -  0.206 -  0 .0 1 4 -0 .1 9 2 -Exp( hmm=5Q](h)
i^/im in=300j

CovZ3 (h ) = 1 .2 -  0.24 -  0.96 ■ Exp,hma=m, (h)
i^/imin=250 J

CovZ} Zs (fa) = 0.3 -  0.06 -  0.24 • Exp,ĥ m , (fa)
l^/imin=250 j

Covz4 ,zs ( h J  = 0-487 -  °-079 -  0-168 • Sph,hmamm,Qk) -  0.24 ■ Exp,hmax=m,(h)
\v/jm in=10o J  [^ m in = 2 5 o j

The experimental cross covariance obtained from the average overall realizations 
compares very well with the analytical models (Figure 2.8), except for the pairs 
Z 3 / Z 4  and Z 4 I Z 5 ,  that have a side by side arrangement that shows lower 
covariances at shorter lag distances.
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Figure 2.8: Cross-covariance reproduction o f the simulated pairs Z, and Z} for i r f ,  combined by 
the categorical rock type model. The experimental points correspond to the average over ten 
realizations, and the thin solid line corresponds to the analytical model.
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Application

A synthetic example was created in order to use a full LMC cosimulation and 
compare it with the results obtained from simulating two adjacent rock types 
independently. The LMC model was obtained by calculating the cross 
variograms between values o f the different domains and the direct variograms 
within each rock type.

Using a similar methodology, the linear combination o f three underlying standard 
normal random variables were used to populate a synthetic geological model; this 
will be considered as the ‘true’ image (Figure 2.9) for comparison:

Z, =V O 5-lj+V (X 5-72+0.0-73

z 2 = V oa ■ Yx+0.0 ■ 72 + • 73

with,

7/ ~ N(0,1) with ^  (h) = 0.1 + 0.9 • Sph,hmm=2Q0](h)
2 0 0  J

Y2 ~ N(0,1) with yh (h) = 0.1 + 0.9 ■ Sph,himx=50J h)
! ^ m i n = 3 ( K ) J

75~ N (0 ,l)w ith  ^ ( h )  = 0.1 + 0 . 9 - ^  ^ . ( h )
l ^ / i m i n = l G 0  J

Later the random variables Z/ and Z2  were transform to lognormal distributions to 
resemble a more realistic distribution of grades assumed to be copper,%:

Zi ~ lognormal (m= l ,o = l)

Z2 ~ lognormal (m=2,o=2)

The 2D reference image (2000 by 1000 meters, with a 10 meter grid spacing in 
both directions) was sampled at a spacing of 70 meters in the X-direction and 10 
meters in the Y-direction yielding a total of 2800 samples.
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..2  

 [.0
Figure 2.9: Reference or ‘true’ image. Z/ is represented by RT] (left), Z2 by RT 2 

(right).

Variography

Variograms were calculated from the normal scores transform values from each 
rock type, RTj and RT 2 . Cross variograms can not be calculated if  the variables 
are not collocated, which is the case here since we are trying to characterize the 
spatial variability across the boundary between RTj and RT 2 . An alternative 
(Wawruch et. al. 2003) is to (1) calculate the cross covariance between the 
variables, (2) extrapolate the experimental points at lags near to zero to obtain the 
structured cross covariance (BZ|_Z, ) (Figure 2.10), (3) determine the relative
nugget effects for Zj and Z2, and (4) calculate the sill o f the cross variogram 
between Z } and Z2 as:

C°VZ, _z (0) -  -

B% -z,

1-
Cov°z Cov\ 

—  +  —

- 2z, a

Note the superscript 0 (i = 0) is used to represent the variance contribution due to the

nugget effect. Then Cov‘ is the relative nugget effect for Zz.

In this example, the relative nugget effects obtained from the direct variograms of 
each rock type were both 0.1, the structured cross covariance was chosen at 0.4, 
so the sill o f the cross variogram is 0.44. With this value the experimental points
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from the cross covariance can be inverted to obtain the cross variogram between 
Zj and Z?. Most cokriging and cosimulation programs require the LMC to be 
defined with variogram models, which requires the nugget effect and the sill of 
the cross variogram, nevertheless since there are no collocated data nor do we 
estimate collocated grid blocks, the nugget effect between the grade at each side 
o f the boundary is not needed in any calculations.

Cross Variogram calculated 
sill: Cov7!jr jO)0 . 3 0 0

«=  Structured Cross- 
~  \  covariance: 87J_z:0 . 2 0 0

o.ioo

o.ooo

4 0 0 . 0 5 0 0 . 0 6 0 0 . 00 . 0 100.0 2 0 0 . 0 3 0 0 . 0

Distance (m)

Figure 2.10: Sketch with the structured cross covariance and calculated sill o f a cross variogram 
given an experimental cross covariance between two non-collocated variables.

The direct and cross variograms o f Z/ and Z2  were modeled using a linear model 
o f coregionalization (Table 2.1 and Figure 2.11) obtained by a semi-automatic 
variogram fitting program (Larrondo et. al., 2003). Since independent simulations 
o f Z/ and Z2 were also performed, the direct variograms o f each variable were 
modeled independently (Table 2.2 and Figure 2.12).
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Variable Structure Type Sill
Contribution

Range
Hmax

Range
Hmin

Z1

Nugget Effect 0.100
Spherical 0.102 125.0 83.0
Exponential 0.600 125.0 290.0
Spherical 0.198 433.0 290.0

Z2

Nugget Effect 0.100
Spherical 0.524 125.0 83.0
Exponential 0.005 125.0 290.0
Spherical 0.371 433.0 290.0

Z1-Z2

Nugget Effect 0.100
Spherical 0.231 125.0 83.0
Exponential 0.053 125.0 290.0
Spherical 0.056 433.0 290.0

Table 2.1: LMC model for Zj and Z2.

Variable Structure Type Sill
Contribution

Range
Hmax

Range
Hmin

Z1

Nugget Effect 0.10
Exponential 0.35 51.0 241.0
Spherical 0.46 175.0 241.0
Exponential 0.09 2010.0 2340.0

Z2

Nugget Effect 0.10
Spherical 0.36 288.0 91.8
Exponential 0.37 288.0 192.0
Exponential 0.17 288.0 244.0

Table 2.2: Variogram models for Z; and Z2, obtained considering the two variables 
independently.
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Figure 2.11: Direct and cross variograms and LMC model for Z/ and Z2.
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Figure 2.12: Variogram model for Z} and Z2, obtained independently.

Simulation

The cosimulation was performed using the full LMC cokriging option o f the 
u l t i m a t e  s g s im  program (Deutsch and Zanon, 2002) and the parameters in 
Table 2.3; in this case each rock type was simulated using the samples o f the 
other rock type, as a secondary variable. For the comparative case, sequential 
Gaussian simulation (Table 2.4) was used to simulate each rock type 
independently as the contact between RTi and RT 2 was treated as a hard 
boundary. Although for RTi the independent variogram model shows a zonal 
anisotropy in the minor direction, the sill contribution associated with this is only 
0.09 so the search radius was chosen at 300 meters.

N um ber o f  Nodes 
Search Radius
Number o f  Realizations

24, maximum o f  6  per octant 
450 x  450 x 10 m 
10

Table 2.3: Parameters used for cosimulation o f Z7 and Z2.
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Num ber o f  Nodes 
Search Radius
Number o f  Realizations

24, maximum o f  6  per octant
300 x 300 x  10 m
10

Table 2.4: Parameters used for independent simulations o f Z/ and Z2.

Validation

The reproduction of the direct variograms for both the cosimulation and 
independent simulation was fairly good (Figure 2.13). Although the reproduction 
o f the cross variogram was poor compared with the analytical model, the first 100 
meters (total range) in the X-direction showed a similar amount o f correlation 
(Figure 2.14). The case where the contact between RTi and R T 2 was assumed to 
be a hard boundary, resulted in almost no correlation for lags less than the range 
o f the cross variogram, and is significantly lower than the correlation o f the 
conditional data across the boundary. This correlation is a remnant correlation 
from data, not from modeling. While for a soft boundary assumption, the 
correlation o f the average over all realizations is closer to the correlation shown 
by the ‘truth’ reference.

The validation o f the parameters and variogram models used for independent 
simulation and cosimulation was done estimating a location where the value was 
removed from the dataset. This is done iteratively for all samples, but removing 
the entire drill hole. The estimation was done using the program k t3 d  in a cross 
validation mode for independent simulations, and a modified version of c o k b 3 d  
program for cosimulation. Both programs return the estimated values for each 
sample location, the estimation variance and the error (true minus the estimate). 
With these results we can check the reproduction o f the values, the distribution o f 
the errors and whether the distributions o f uncertainty are accurate and precise. 
Accuracy is achieved when the fraction o f true values that fall in a probability 
interval o f width p  exceeds p  for all p  in [0,1] (Deutsch 2002). Precision is how 
close the fraction o f true values is equal to p  for all p  in [0,1], These properties 
are reflected in an accuracy plot (Figure 2.15) by the closeness o f the points to 
the 45° line, if  the points fall on the line, the distribution representing the model 
is accurate and precise, if  the points fall above the line the distribution is accurate 
but not precise, if  they fall below the model is neither accurate nor precise.
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Figure 2.13: Direct variograms reproduction for Zs and Z2, cosimulated (right) and independently 
simulated (left). The dots represent the average o f simulated values over ten realizations and the 
solid line is the analytical model derived from the theoretical expression.
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Figure 2.14: Cross covariance reproduction for Z; and Z2, cosimulated (right) and independently 
simulated (left). In a soft boundary scheme (right) the correlation between the simulated values is 
very close to the ‘truth’ reference. In the hard boundary assumption, the correlation at short lag 
distances is significantly lower. The dots represent the average o f  simulated values over ten 
realizations and the solid line is the analytical model derived from the theoretical expression.
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Cross validation o f the model obtained by independently simulating Z/ and Z2 

showed that the model is accurate and precise. The cosimulated model is also 
accurate, and equally precise for RTi, while for RT 2 is slightly less precise than 
the model obtained from independent simulations (Figure 2.15). This is not 
surprising since the fitted LMC model for this rock type did not fit the data as 
well as for RTj. This is a common disadvantage when using a linear model of 
coregionalization. The cosimulated model did, however, show less smoothing 
(Figure 2.16), which translates to less conditional bias in the estimation.

Although both models are similarly accurate and precise the overall uncertainty, 
defined as the average kriging variance of all samples (Deutsch 2002), is 
significantly lower for the cosimulated model (0.3 for both Z; and Zi) than for the 
independently simulated model (0.62 for Z/ and 0.91 for Zi).

A c c u r a c y  P h i  N S  Z I1

Number plotted 38

.80  _

.0 0 .

Width oi Local Dists

1 00  A c c u ra c y  P h i  C o k r ig in g  M S  Z I

Num bar plotted

•65
i—

1
Z

00 .

Width of Local Dists

A c c u r a c y  P h i  N S  Z 2t.

N um ber plotted 38

.8 0 .

Width of Local Dists

A c c u r a c y  P h t  C o kr ig in g  N S  2 21

N umber plotted

Width of Local Dists

Figure 2.15: Accuracy plot for Z7and Z2, estimate independently (left) versus cosimulated (right). 
Cross validation show that the models from independent simulation or cosimulation o f  Z t are 
accurate and precise. For Z2 the parameters used for cosimulation results a slightly less precise 
model than in the case o f  independent simulation.
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Figure 2.16: Cross validation o f data values in RTj and RT2, estimate independently (left) versus 
cosimulated (right). The cokriging cross validation shows far less conditional bias and a much 
higher correlation than the estimation o f each rock type independently, especially for RT2.

The distribution o f errors (true-estimated) should be symmetric and centered at 
zero, as occurs for both schemes, but the standard deviation o f the errors for 
cokriged estimates is significantly lower than independently kriged values, as 
shown in Figure 2.17.

The cumulative distribution o f back transformed simulated values shows very 
good reproduction o f the data histograms, for both schemes. The target mean and 
variance are well reproduced for both cosimulation and independent simulations 
(Figure 2.18).
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Figure 2.17: Error (true-estimated) distribution for Z} and Z2, estimate independently (left) versus 
cosimulated (right). The cosimulation scheme shows significantly lower standard deviation o f the 
errors, in both rock types, than independent simulation.
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Figure 2.18: Global mean and variance reproduction for Z, and Z2; cosimulation (right side) and 
independent simulation (left side). The dots represent the target values obtained from the 
conditioning data.
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Comparison at the boundary

In order to compare the performance o f the two methods, we need to focus on the 
results near the boundary where we can expect to have greater differences.

One comparison was done using the expected value (E-type value) in original 
units at each location compared to the ‘true’ value in the reference map. The 
expected value is the average o f the simulated realizations at each location. The 
block values obtained from cosimulation show systematically higher correlation 
coefficients with the true values. As expected, the difference between the two 
methods becomes smaller beyond the range o f correlation of the cross variogram 
(Figure 2.19).

Correlation vs Distance to Boundary

0.79

0.77
S
tg  0.75

■8 °-73
0.71

>.67

0.65

Distance from Boundary (meters)

Indep vs True Cosimvs True

Figure 2.19: Correlation coefficient between E-type estimates o f cosimulated and independently 
simulated models, and the “true” values considering blocks within a given distance from the 
boundary between Z; and Z2. The higher correlation coefficient with the true values shown by the 
blocks estimated by cosimulation indicate this model better represents the underlying correlation 
that exists between Z j and Z2.

The variance of the blocks from each realization within a given distance from the 
boundary was also compared. The average o f the variance over all the realizations 
showed lower variance for the block values obtained using cosimulation (Figure 
2.20). This variance is also closer to the average variance calculated from the 
same group o f blocks in the ‘true’ reference map.

The methodology proposed in this section has the advantage o f improved 
resource estimation by reducing the uncertainty in transitional zones near 
boundaries and reproducing the correlation o f the conditioning data across a soft
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boundary. It also shows a decrease of smoothing in the estimates if kriging is the 
tool to obtain the resources.

Variance

4.5

2.5

) 70 100

Distance from Boundary (meters)
120 150 170 200

Var Indep  Var Cosim - Var Reference

Figure 2.20: Average variance calculated from blocks within a given distance from the boundary 
between Z t and Z2. The average variance obtained from cosimulation is lower than the variance 
obtained from independent simulations. The difference between the two methods decreases as we 
consider blocks further away from the boundary, where the influence o f  the data from the 
adjacent rock type in the cosimulation decreases. The average variance from cosimulated blocks 
is closer to the variance o f the same blocks in the ‘true’ reference map, than the average variance 
obtained from independent simulations.
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Chapter 3

Local Non-stationary Model of 
Coregionalization

The global LMC described in the previous chapter assumes that the grades are 
stationary within each domain and any cross correlation is also stationary and 
extends across the entire domain. This chapter will describe a new methodology 
to account for non-stationary components of the mean, variance and covariance 
near the boundaries. It will be show that non-stationary features in the vicinity o f 
a boundary can be parameterized into a local model o f coregionalization. With a 
legitimate spatial model, estimation o f grades can be performed using a form o f 
non-stationary cokriging.

Theoretical Background

For the case of a geological model with K  rock types or domains, there are a 
maximum of K ( K - 1) / 2 boundary zones to be defined. These regions may be 
characterized by a non-stationary behavior o f the variable o f interest. The zones 
o f influence o f one region into an adjacent one are not necessarily symmetric on 
each side of the boundary and there may be cases of truly hard boundaries where 
there are no special features at the boundary. When more than two rock types 
converge at a boundary, two or more rock types may influence the boundary zone 
in the adjacent domain. In this case, precedence or ordering rules should 
determine the dominant boundary zone. Only one non-stationary factor will be 
considered dominant at each location.

The extent o f the boundary zones and a set o f precedence rules are required to 
partition a geological model into stationary and non-stationary regions. Each of 
these concepts will be described below.
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The continuous random function Z(u) that represents the distribution o f the 
property o f interest, e.g. metal content, over the area o f study, can be decomposed 
into K  stationary random variables Z\ k -1 , ...,K  and a maximum of K ( K - 1)12 
non-stationary boundary variables Z*p(u), with k,p=l, ...K  and Zkp(n )= Z pk(n). 
Then, at all locations, Z(u) can be explained by the sum o f a stationary 
component from the collocated rock type and perhaps a single non-stationary 
boundary variable, that is,

Z(u) = Zk + Zkp( u) where u e rock type k  (3.1)

and p  is a surrounding rock type that shares a boundary with rock type k (RTk).

M axim um  Distance o f  In fluence

The maximum distance of influence orthogonal to the boundary o f rock type k  
into rock type p  is denoted dmaxkp. A boundary zone is defined by two distances: 
dmaxkp and dmaxpk, since there is no requirement that the regions at each side o f 
the boundary are symmetric, that is, dmaxkp* dmaxPk. Figure 3.1 shows a 
schematic illustration o f this.

The modeler using all geological information available and its expertise should 
establish these distances. Creating an average value profile against distance to 
boundary could be helpful in identifying the zones of influence between domains. 
An automatic optimization algorithm is unlikely to work given that the stationary 
portion of the mean and variance, as well as the non-stationary factors that affect 
these statistics, are also unknown.

All maximum distances can be arranged in a non-symmetric square K  by K  
matrix:

-1  dmaxl2 ••• dmaxXK
dmax2x ' •. :

■ ’ ■ dmaxK_ j K
dmaxKl dmaxK K _ 1 -1

The maximum distance of influence of a rock type to itself is meaningless and 
any default value could be assigned (-1 in the sketch above).
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RT,

dm ax,
dmax.

Figure 3.1: Maximum distances o f  influence for the boundary zone between rock type k  (RTk) 
and rock type p  (RTp).

A rock type is assigned at all locations within the geological model. Where the 
distance to the boundary is lower than the maximum distance o f influence o f the 
adjacent rock, a boundary zone rock type is also assigned. We will denote the 
region corresponding to the zone o f influence o f rock type p  into rock type k  
(Figure 3.2) as the boundary zone BZpk and it is defined as all locations u,- in rock 
type k, such that < dmaxpk, where dpk(u )is  the shortest distance to k-p
boundary. Equivalently, the region on the other side of the boundary between 
rock type k  and p , is denoted as the boundary zone BZkp.

BZ

RT,

Figure 3.2: Boundary zone BZpk and BZkp corresponding to the area o f  influence o f  rock type p  
into rock type k and vice versa.
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Precedence Rules

A set o f precedence rules is needed to identify the predominant non-stationary 
factor at a boundary where more than two rock types converge. In Figure 3.3, a 
three rock type spatial arrangement is shown where precedence rules are used to 
establish the precedent rock types in the region A and B: in region A o f RTk, RTP 
is precedent over RTq, while in region B o f RTP, R Tq is precedent over RTk.

Although the behavior o f a property near such a boundary, could be explained by 
the overlapping of different geological controls, the task o f identifying the 
individuals effects of each rock type and their interactions can be quite difficult. 
Geological properties are not usually additive and therefore the response o f a 
combination o f different rock types is complex.

RT,

RT

RT,

Figure 3.3: Three rock type example where a predefined precedence rule is used to determine the 
precedent rock type over two possibilities. In the region A o f  RTk, RTP is precedent over RTq, 
while in region B o f  RTP, RTq is precedent over RTk.

The precedence rules should be built by the modeler using all geological 
information available. The relative timing o f intrusion, deposition or 
mineralisation events, geochemistry response of the protolith to an alteration or 
mineralisation process could be used to resolve timing and important variables. If 
the geological data do not provide sufficient information to establish a geological 
order of events, a neutral arrangement can be chosen. In this case, the precedent 
rock type p  at a location u will be the one to which the distance to the boundary is
the m inim u m  over all surrounding rock types, that is, min u)} with p= l,...,K -  

1  and u belongs to BZpk.
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For the same example illustrated in Figure 3.3, the result of a neutral arrangement 
is shown in Figure 3.4.

RT,

RT,

Zk+ z.
Zr+Z\

nT

RT,

Figure 3.4: Three-rock type example where a neutral arrangement is chosen to define the shape 
o f the zones o f  influence where two boundaries converge.

Statistical Parameters

The continuous random function, Z(u) that represents the variable o f interest over 
the study area, can be decomposed into stationary and non-stationary random 
variables by the rock type model, as shown in Equation 3.1. By definition, the 
non-stationary variable will take values only for locations within a distance to the 
boundary: dPk(u) < dmaxpk. A one dimensional example o f how the random 
variable is decomposed into stationary and non-stationary components is 
presented in Figure 3.5.
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Figure 3.5: Decomposition of the random function Z(u) in two stationary variables Z* and Zp, 
with constant mean and variance, and a non-stationary boundary variable Z^(u), with a mean and 
variance that are functions o f the distance to the boundary.
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Mean

The m ean function of the continuous random function Z(u) for a specific rock 
type k  w ill be the mean of the stationary variable Z* plus the mean o f any 
corresponding non-stationary variable Z^(u):

E { Z (n i)} = E {Z k} + E {Z hp(u,)} = mk + mip(ul) where u,. e RTk (3.2)

where p  is the adjacent rock type that shares a boundary with rock type k.

The stationary component o f the mean (mk) is independent of location and is a 
constant value. The non-stationary component of the mean (>%,) is a function of 
the distance to the boundary, dPk(u) and takes values different than zero for 
locations within the boundary zone BZpk:

The non-stationary mean could be, for example, approximated by a linear 
function as we have chosen for the implementation presented later (see Chapter 
4). There may be cases where a different approximation could be better. The 
methodology presented here could easily be adapted.

Rewriting Equation 3.2, the mean o f rock type k  in the presence of P  non- 
stationary boundaries is:

Similarly, the variance of Z(u) for rock type k  will be the sum of the stationary 
variance due to Z* and the independent non-stationary variance due to Ztp(u) for 
the p  adjacent rock type to rock type k, that is,

0 , i f d pk(u,)> dm axpk

/ ( ^ ( u ,  )) , otherwise
where u, e RTk

mk , if  </M(u;.) > dmaxpk
mk + f ( d pk (u,.)) , otherwise

where u ; e RTk (3.3)

Variance

E  (Z(u,.)-£{Z(u,.)}) U c r^  + fXj/Oi,.) where u,.eRTk (3.4)
2
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Since Z* and Z^(u) are independent random variables, the cross terms o f the 
squared product are zero;

E ^(Z{ni)-E {Z {m i)})2]j = E ^ ( Z k{ui) + Z ^ { u S ) - (m k + m ^{n.Sf\

= £{(Z*(ii/) + Z ^ u ,.))2 -  2(ZJi.(ui) + Z^(u,.)) ■ (m, + m ^u,.)) + (mk + m ^u ,))"

= £ {Z t (u,)2} + 2£{Z,(U;) • Z^u,.)} + E [Z kp{ni)2} -  m,2 -  2m, ■ mAp(u;) -  m ^u,.)2 

= £ { Z ,(i.i)2} + 2£{Z ,(U;)}-i?{Z^(U;.)} + £{Z,p(Ui)2} -m ,2 -2 m ,-m ,p(iii) - m Ap(Ui)2 

= E {Z i (ni)2} -  mk + £{Z Ap(U,.)2} -  mkp (uf)2

As with the mean, the stationary component o f the variance (cr*2) is independent 
o f location and is a constant value. The non-stationary component o f the variance 
( (Tkp2) is a function o f the distance to the boundary. Beyond the maximum 
distance o f influence it is equal to zero. Within the boundary zone BZpt  it is 
defined as:

o \ 0 , if  d ok (u,) > dmax,
a kp (dnk(ui)) = \ ^  • where u, e RTk¥  [g (^M(u;)) , otherwise

g(W/*(u,)) was chosen as a linear function in the following examples and 
implementation.

A summarized expression for the variance o f a random function Z(u) in a rock 
type k  with P  non-stationary boundaries is:

(/ , , X2) ay 2 , i f  d  , (u;)> dmaxnl,
* { ( Z ( . , ) - * { Z ( . , ) } ) } - 1  J+ )} >otherwise where u, e  RTk

Covariance

As with the mean and variance, the covariance structure between two rock types 
that share a local non-stationary boundary consists of: a stationary and a non- 
stationary component.
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Covz { u ;, v,.) = £{(Z(u,.) -  m(u;))-(Z(v,)-m (v,.))} = Covsz ( h) + C o v f  (u,., v,)

where h=u; -  v,.

Since Z* and Z^(u) are independent random variables, the cross terms are zero, 
therefore the covariance of Z(u) is the sum of the stationary and non-stationary 
components. The combination of these components corresponds to a local linear 
model of coregionalization. In some respects this model is one o f regionalization 
and not coregionalization; however it does involve different variables (grades in 
different rock types), therefore, the terms coregionalization is used.

The stationary component o f the covariance can be calculated and modeled from 
data pairs within the same internal stationary portion o f a rock type, that is u, and 
V; belong to rock type k, and do not belong to any BZpk.

The inference of the covariance structure will be possible provided a reasonable 
number o f pairs exist within the stationary and non-stationary regions.

To obtain the non-stationary component o f the covariance model we will assume 
that the shape, anisotropies and relative nugget effect o f the correlation for the 
non-stationary variable Zkp(u) k,p= l,...,K  are stationary and that they can be 
specified by the modeler. But due to the non-stationary nature o f variable Z(u) at 
the boundary zone, this stationary spatial model shape has to by scaled at each 
point by a non-stationary mean and variance. The relative standardized variogram 
model for the boundary zone, BZPk, corresponding to the stationary shape is:

1 E
Z (u;) -  + mk)

2"

2 (°V ( u ,)+ <*■*) ( ^ ( v ^  + t r j

The stationary component o f the mean, in the previous expression can be either 
mu, or mp depending whether u, or v, belongs to rock type k  or rock type p. The 
same occurs for the stationary component o f the variance.

Expanding the squared difference we obtained that:

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 rkp{ ^ i ^ i) = E

Z(u,:)2 -  2Z(u,) • m (u;.) + m(u,.)2

-2

o-(u.)

AZ(u,.) • Z(v;) -  Z(vf) • w(u,-) -Z (u ,) • m(v,) + m(u,) • o t ( v . )  A 

o-(u;.)-o-(v,.)

+
Z(vf)2 -  2Z(v,) • m(v-) + ffl(v,.)2 

o-(v;)2

To simplify the notation the mean and variance of U/and v,- has been replaced by:

m (uj) ^ m kp(ui) + mk i f  u; e RTk or m(ui) = mkp(ui) + mp i f  u. e RTp
o-(u;) = ^ (u ,.)  + a k i f  u, e RTk or o-(u;) = ^ (u ,.)  + a p i f  u, e RTp

and

m (y,) = » ^ (v ,:) + mk i f  v,. e RTk or ra(v.) = ^ (v ,. )  + mp i f  v; e RTp 
o’(v i) = % (v ,) + o-, i f  v; e RTk or <r(v,) = tr^ v ,) + i f  v ;. e RTp

Since £{Z(u,.)2] =cr(u,.)2+ m(u.) and 2?{Z(u,.)} = /w(u,.) , we can simplify the 
previous expression as follows,

- r  ( n  r l  < x ( u ,) 2 +  m ( u ; ) 2 -  2  • w (U ,.)2 +  m ( l l , . ) 22r*(«,.v,) - ---------------^

£{Z(u,)-Z(T,)}-gi(v,)-m (u,)-m (ll|)-m (v,) + m(tt,)-gi(v,)
<t (U;.) • <7(vf)

g-(v,.)2 + w(vf)2 -  2 + m j y f  + m(v,.)2
<r(v;)2

A£{Z(u,.) • Z(v,-)} -  m(v,) ■ o t(u ,.)a 

<j(u;)-cr(v ,.)

+

=  2 - 2

iv K ,v ,.)  = i -
C o v f ^ v , . )  
<7(11,.) • cr(v,:)

From this it is clear that the covariance must be scaled by the non-stationary 
standard deviations o f the u, and v, locations. These standard deviations are a 
function o f the distance to the boundary. Reordering the terms, we can obtain an 
expression for the non-stationary covariance model component:
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C o vf (u„v(.) = E{Z(nt) • Z(v,)} -  (w^(v;) + mk) ■ ( m ^ u() + mt) 

= 0 -  Z*,(u„ v/)) • (a*„(«,) + • (o* (v,) + ff*)

Since the shape, anisotropies and nugget effect o f the relative standardize 
variogram are inputs from the modeler, the only parameter that must be 
established for the non-stationary covariance model is the range. A more general 
formalism could be considered in the future.

Depending whether both u* and v,-, only one of them or neither o f them, fall at the 
boundary zone BZpk, the covariance structure of Z(u) will be sum of the 
stationary and non-stationary components or only the stationary component 
(Figure 3.6)

Covlih) , i f  u, e  RTk,g BZpkand v; e  RTk,g BZpk
Covsz ( h) , i f  u, e  RTk,g B Z pkand  v(. e RTk,e  BZpk

C ov |(h )+ 0 ^ ( 1 1 , .^ . ) , i f  u, g RTk,e BZpkand v,. e R T k,e  BZpk

C o v f(u „v ,) , i f  u, e  RTk,e  BZpkand  v,. eR T p,e  BZkp
0 , i f  u, eR T k,c  B L pkand  v; e RTp,e  B Z^
0 , i f  u, e  RTk,g BZpkand  v,: e RTp,g B Z^

(3.5)

If  the head and tail of the pair are in different rock types, the stationary 
component of the covariance structure is zero, since there is no correlation 
between the stationary variables Z* and Zp across the boundary.

Optimization o f  the Statistical Parameters

The mean, variance and covariance are crucial for estimation and simulation. We 
must fit the distribution o f the random variable Z(u) at the boundary zone 
knowing the stationary rock type, precedence rules and maximum distances of 
influence.

Although we know that the non-stationary behavior is a function o f the distance 
o f the sample to the boundary, there are several possible analytical expressions 
that fit the distribution of the non-stationary random variable. For the purpose of 
showing the proposed methodology we will consider that the non-stationary
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component o f mean and variance follow a linear function (Figure 3.7) of the 
distance to the boundary (dpk). In this scenario, the optimization o f the parameter 
nikp and <%,2 will be equivalent to optimizing estimates o f the intercepts at 
distance zero from the boundary: akP and bkp.

Figure 3.6: Two-rock type example showing how the stationary and non-stationary components 
of the covariance model are add together for different configurations.

Mean Optimization

The mean mkp is optimized given that mk is known from the experimental average 
o f data within rock type k, outside any boundary zone. Using Equation 3.2, the 
objective function to be minimized is written:

° n ,  =  Z Z Z [ z ( u i )  “  0 ” * +  " V ( U / ) ) T
k - 1 p = I i=l

where z(u,-) is the outcome value at every location u ,eB Z Pk, mk is the 
experimental average (Equation 3.7) and m ^(u;) is the non-stationary mean at 
location u, derived from Equation 3.8. Nkp is the total number o f data in BZPk- 
The experimental mean o f rock type k  is calculated as:

= - J - f / h < u ,)  ■ z*(u,) Vu(. e RTk,e BZ^ ; \ /p  (3.7)
^  k  i = 1

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where Nk is all data within the internal stationary portion and w(u,j are the 
declustering weights associated to the location u,.

Although the mean o f rock type k  should include all samples in this geological 
unit, the samples in any boundary zone are excluded since their non-stationary 
component is yet to be determined.

In Equation 3.7, Nk denotes the number o f data within the internal stationary 
portion o f rock type k, that is, outside any boundary zone with any adjacent rock 
type p.

m ,{  u ;) =

(dmaxkp- d kp{ u,.))

dmaxkm

(dmaxpk - d pk(u.))

dmax

*kP

pk

0

for 0 < ^ ( u ;) < dmaxtkp

for 0 < < dmaxpk (3.8)

for dkp{u,) > dmaxkp and dpk(\u(.) > dmaxpk

From Equation 3.8 it is clear that the optimization o f m^,, amounts to the 
optimization o f akP, given dmaxkp and dmaxp\, then the optimization of the mean 
can be achieved by iteratively modifying akp Vk,p, in a random fashion while 
accepting all changes in akp that reduce objective function. This is a simplified 
version o f the simulated annealing formalism, where only favorable perturbations 
are accepted. For our implementation, we will assume that akp=  apk, but this 
hypothesis can easily be changed if  a discontinuity at the boundary is clear.

dmax, dmaxt dmax. dmaxr

RTp

dpk( u)

Figure 3.7: Mean and variance o f the random variable Zkp (u), modeled by a linear function o f  the 
distance to the boundary.
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Variance Optimization

Since the variance is a statistic o f second order that depends on the mean, once 
the optimum o f mkp is found, we can proceed to optimize akp assuming the ak , 
k -1 , ...,K  values are known from the experimental variance of data within the 
internal stationary portion o f rock type k.

From Equation 3.4 the optimum akp2, will be the one that minimizes the following 
objective function:

°o  <3-9>
k=\ p =1 /=1

where r(ut-) is the residual value at every location u ,eB Z Pk, that is, 
r(u i) = z(u i) - ( m k + mkp(uiy). d k is the experimental variance (Equation 3.10),

and a)cp2(Ui) is the non-stationary variance at location u, derived from Equation 
3.11. NkP is total number of data in BZpk. The experimental variance of rock type 
k  is calculated as:

&k2 = ^ i > ( u , . ) ^ ( u , . ) 2 Vu; e  RTk BZkp;Vp (3.10)
■'*1 i= l

where Nk is all data within the internal stationary portion and w(u,) are the 
declustering weights associated to the location u,.

As with the mean, the optimization of cr^2 is the same as the optimization o f buP, 
given dmaxkp and dmaxpk. We assume that bkp= bpk.

(d m a x ^ -d ^ j  u.))

dmax,
■ \  for 0 < d kp(ui)< dm axlkp

kp

(dmaxpk- d pk( u,))

dmaxpk

' K  for 0 < ^ ( u , . )  < dmaxpk

for ^ (u , .)  > dmaxkp and ^ .(u ,.)  > dmaxpk

(3.11)
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Covariance Optimization

Establishing the covariance model o f a boundary zone is equivalent to optimizing 
the range o f the relative standardized variogram that represents the stationary 
shape that is scaled by the standard deviations o f the paired samples (Figure 3.8). 
This assumption provides some advantages over a full optimization algorithm to 
find the non-stationary covariance structure. Simplicity and fewer artifacts are the 
main advantages.

RTp

u
Figure 3.8: The non-stationary covariance of Z^(u) is defined by its non-stationary 
mean and variance and the shape of the correlation, which for the same mean and 
variance can be different as represented by the outcomes profile. The range of 
correlation is higher in the right.

To find the optimum range, we need to minimize the following objective 
function:

°Cov =  Z [ ^ ( z (u i)’z (v / ) ) ~  C m® (* (u i)»z (v / ) ) T
1 = 1

where C denotes the experimental covariance o f the pair located at u, and v,-, 
which is just the multiplication o f the two residual values:

C(z(u,),z(v,.)) = r(u i)-K v ;)

and C m o d  the modeled boundary covariance, which is the sum o f the stationary 
and non-stationary component.

The squared difference between the experimental and modeled covariance is 
evaluated for randomly changed range that is iteratively modified until this 
difference is minimized. Since the anisotropies are fixed during the optimization
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process, the ratios between the major and minor horizontal ranges and the major 
and vertical ranges are known. Consequently, we only need to find the total 
range.

More parameters could be optimized in the same fashion, although we do not 
recommend a full optimization without many data, since this could lead to 
artifacts.

Estimation in presence o f  local non-stationary boundaries

Once the mean, variance and covariance model have been determined both for the 
stationary and non-stationary regions o f a geological model, estimation can 
proceed. It is propose a non-stationary form o f simple cokriging. The basic linear 
regression estimator o f kriging is:

z * (u) -  m(u) = J X ( U) ' [Z(UJ  -  m(u«)] (3-12)
a~ 1

where z*(u) is the estimate at unsampled location u, m(u) is the mean value at 
location u, Xa(u) is the weight assigned to datum z(ua), n are the closest data to 
the location u being estimated, and m(ua) are the n mean values at the data 
locations. In this case, the expected values for the mean at the location being 
estimated and at each data location, will be calculated from Equation 3.3, that is, 
if  any of the closest data or the location being estimated is within the zone of 
influence o f a boundary, its mean will include a non-stationary component that 
will be calculated from a function of the distance to the boundary.

To find the optimal weights 2a(u), a = l,. . . ,«  the following matrix system (the 
kriging equations) must be solved:

n
X ^/?(u) • Cov(ua,Up) =Cov(u,uJ with a , f t  = l,...,w
p=i

where 2a(u), a=l,.., n are the simple kriging weights, Cov(ua, u^), a,fi=l,.., n 
correspond to the data-to-data covariances, and Cov(u, u a), a - l , . . ,  n are the data- 
to-estimate covariances, which in matrix notation is equivalent to:
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Gov(UpUj) • • C ov(u ,,uJ 4 (11) CovOtt,^)

_Cov(uB,Uj) • • Cov(u„,uJ_ .  4 » . _Cov(u,u„)_

The kriging weights are obtained by solving this system o f linear equations. This 
system has a solution and is unique if  the covariance model Covzih) is a 
legitimate model, that is, was fit with a positive definite function, and data are not 
collocated.

For a geological model with local non-stationary boundaries, the data covariance 
matrix and the vector o f data-to-estimate covariances are obtained by combining 
the stationary and non-stationary covariance model components as in Equation
3.5. The stationary covariance model is obtained from fitting the experimental 
variogram calculated with the data within the stationary regions within each rock 
type, while the non-stationary covariance component is calculated from Equation
3.6, using the correlation spatial model obtained from the optimization process 
describe in the previous section. The methodology and calculations are shown in 
more detail in an example in the next section.

Simple kriging estimator is unbiased and provides the minimum estimation 
variance estimate,

cr£2(u) = cr2( u ) - ^ 4 ( u )  -Cov(u,ua) (3.14)
a = l

where r/(u ) is the variance, which in our case has a stationary and a non- 
stationary component. Kriging also accounts for redundancy between the data and 
closeness of the data to where we are estimating. Spatial continuity is provided 
by the variogram model. The greatest disadvantage o f kriging is that the estimates 
are smooth and the joint variability o f the kriged estimates is incorrect.

The amount of missing variability is the kriging variance (Equation 3.14). 
Sequential Gaussian simulation overcomes this problem by adding back this 
missing variability, as it adds a random residual to the estimate, drawn from a 
normal distribution with zero mean and variance equal to the kriging variance. In 
the case described in this thesis, the estimation variance has also a non-stationary 
component that makes the implementation o f sequential Gaussian simulation in 
the presence of local non-stationary boundaries delicate. This implementation is 
part o f the proposed future work.
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Chapter 4

Implementation Details

RT model and boundaries

The first step is the correct labeling o f every location with the corresponding rock 
type and relevant closest precedent boundary zone and its distance to the 
boundary. To help with this task a small program coded in FORTRAN called 
boundm od  was created.

The input data is a grid-type file of the geological model with the same format as 
the one used in GSL1B (Deutsch and Joumel, 1998), the number o f rock types 
available in the model, the matrix with all maximum distances o f influence 
between rock types, and the set o f precedence rules. The output file is a grid file 
with 3 variables: the rock type (from input), the boundary zone identified by the 
rock type code of the precedent influencing rock type at that location or a default 
value if is beyond any maximum distance o f influence (internal stationary 
regions), and the distance to the boundary (measured from the center of the node) 
with the precedent rock type.

In summary, the program loops over all nodes o f the geological model grid, and 
checks within a search window if  different rock types exist within the 
surrounding nodes. The cell may be assigned with a neighbor rock type if  a 
boundary zone is defined for the two codes and the precedence rules are met. A 
more detailed structure o f the program is shown in the flow chart o f Figure 4.1.

The parameter file to run this program (Figure 4.2) has 4 major parts. The first 
one consists o f four lines: the name o f the file of the geological model, the 
variable number that contain the rock type codes at each node, the grid definition 
and the number o f different rock types. In order for this and the following 
programs to work properly, the rock types codes must be successive integers, 
starting at 1. The grid definition is given by the number of nodes, coordinate of
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the origin (located at the center of the cell) and size o f the cell for each axis: X, 
and Z.

no

yesno

yes
no

W rite output file

Calculate distance between the two 
nodes

Check if the boundary and distance 
variables o f the center node are -1 and
99,999

Check if  the previously assigned rock 
type to the boundary variable has 
precedence over the rock type code of 
the window node

Assign to the boundary variable of the 
center node the rock type code of the 
window node and to the distance 
variable the calculated distance between 
the center node and the window node

» For each node (window node) within the corresponding search window define by the rock type 
code of the center code : check if the rock type is different from the center node

Loop over all nodes of rock type model:

Find the maximum of all maximum distances of influence of rock type i over all others

Establish the search window of rock type i as: 1 plus the integer of the previous maximum divided 
by the cell size of the grid model in every direction

Initialize the boundary and distance variables with -1 and 99,999 respectively

Setup window search:

Grid Definition/Rock type Model 

Number and codes of rock types 

Matrix with maximum distances of influence 

Number and precedence rules

Read input data & parameters:

Figure 4.1: Flow chart o f  the program boundm od.
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The second part corresponds to the matrix o f maximum distances o f influence and 
it will have as many lines as different rock types in the model. Each line 
corresponds to the maximum distance of influence of that rock type over all 
others. For example in, the parameter file shown in Figure 4.2, the maximum 
distance of influence o f rock type 2 into rock type 1, is 10 meters, i.e., 
dmax2 i - 10. The maximum distance o f influence o f RT 2 with itself is denoted by, 
-1.0, a default number. I f  two rock types are not in contact with each other or a 
‘hard’ boundary between them is assumed, the maximum distance o f influence is 
set to zero, as in dmax23=0.0.

The third part o f the parameter file corresponds to specification o f the precedence 
rules: the number of them and the rules expressed as pairs o f rock type codes. The 
order of the pairs is from oldest to youngest, or from less to more precedent, and 
is given by: “rock type code -  boundary code”. In the program, at each grid node, 
the array with all precedence rules is checked in order, for both pairs: the 
assigned boundary code in a previous iteration and the rock type code plus the 
possible boundary value obtained from the window node in the current iteration. 
I f  the pair is found within the list of pairs, the correlative number o f the rule is 
assigned to the pair. At the beginning o f this check, both pairs are assigned with a 
correlative number o f zero. The boundary code obtained from the window node 
overwrites a previous value o f the boundary variable only if  the rule number 
assigned to this pair is greater than the rule number o f the previously assigned 
pair. In the parameter file shown in the example, the pair 2-4, rule number 4, is 
precedent over all previous pairs in the list: 3-1, 4-1 and 1-4. Leaving the number 
o f precedence rules to zero is equivalent to choosing a neutral arrangement where 
the precedent rock type is chosen as the one with the minimum distance to a 
boundary.

Finally the last line and part o f the parameter file corresponds to the name that 
will be given to the output file o f the program.

Parameters for BOUKDMOD

START OF PARAMETERS:
. . x'd.ata/'rtmodel out -input file with rock type model
1 -column with RT value
1 0 0 C .5 1 . 0 -nx,xmn.xsiz
1 0 0 C.5 1 . 0 -ny,ymn,ysiz
1 0 . 0 1 . 0 -ns, zmn.zsiz
3 -number of rock types (correlative starting at 1 )
- 1 . 0 58.0 2 0 . 0 -maximum distance of influence of RT 1 into RT 3
1 0 . 0 - 1 . 0 50 . 0 -maximum distance of influence of RT 2 into RT i
2 0 . 0 30.0 - 1 . 0 -maximum distance of influence of RT 3 into RT 3
2 -number of precendence rules
1 3 -pair RTi,RTj, with the oldest precedence
3 1 -pair RTi.ETj, with the youngest precedence
output.out -output file

Figure 4.2: Parameter file for boundm od program.
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The following example illustrates the results o f this program for a synthetic rock 
type model. The input rock type model has 4 rock types with a spatial 
configuration as shown in Figure 4.3, which reflects two sedimentary or volcanic 
strata cut by a reverse fault. The maximum distances o f influence, are given in 
the parameter file o f Figure 4.2, and reflect a broader influence across the fault 
than across the horizontal contact between the two strata, with small differences 
between the upper and lower strata and the footwall and hanging walls o f the 
fault.

For an exercise with 4 precedence rules (Figure 4.4), where the boundary zones 
generated by fault are precedent over the ones generate by the horizontal contact 
between layers, the program outputs for boundary zones and distance to boundary 
are shown in Figure 4.5. If a neutral arrangement is chosen, which is equivalent 
to set the number o f precedence rules to zero, the boundary zone and distance to 
the boundary are assigned based on the closest boundary code an its distance to 
the node (Figure 4.6).

RT Model
1000.0

0.0 2000.0
X

Figure 4.3: Example o f  a geological model with 4 rock types and maximum distances o f  
influence define for each boundary. The influence o f  the fault has a larger extent compared to the 
influence o f  the stratigraphic contact.
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1000.0

>

2-4 is precedent over 2-1

2-1

1-2 7*4-1 is precedent over 4-31-4 is precedent over /

3-1 is precedent over 3-4

'1-3.
3-1

0.0 2000.0

Figure 4.4: Set o f four precedence rules: 3-1, 4-1, 1-4 and 2-4, for the example o f  Figure 4.3. 
With these precedence rules in the hatched regions the boundary zones defined by the fault are 
predominant over the boundary zones defined by the horizontal contact between stratigraphic 
layers.

Boundary Zone Distance to Bounds

2000.00

Figure 4.5: Output o f the boundm od program for the example o f  Figure 4.3, considering a set o f  
4 precedence rules. The left map corresponds to the categorical variable boundary zone, a default 
code (NO BOUNDARY) is given to locations beyond the corresponding maximum distance o f  
influence. The right map corresponds to the distances to the boundary.

Boundary Zone

> I

Distance to Boundar3

.100.0 

00.0 

0.0 

.0 
j 60 0

iso om
40.0

30.0

20.0

If10'0
B .0.0

Figure 4.6: Output o f  the boundm od program for the example o f  Figure 4.3, considering a 
neutral arrangement. The left map corresponds to the categorical variable boundary zone. The 
right map corresponds to the distances to the boundary.
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M ean optim ization

In order to estimate unsampled locations in a geological model, the mean need to 
be calculated, variance and covariance model from the available data that 
involves the optimization of the stationary and non-stationary components. In this 
section, we will review the implementation of the mean calculation and 
optimization in a FORTRAN code program called o p t_ m e a n .

Given a data set where every sample is tagged with the rock type, boundary zone 
and distance to the boundary, this program calculates the stationary component of 
the mean for each rock type code and the optimum intercept a^fov  each pair: rock 
type -  boundary zone. The parameter <%, as shown in the previous chapter is the 
intercept at a distance from the boundary o f zero. Since a linear fitting for the 
non-stationary mean has been chosen for the implementation o f this 
methodology, the optimization o f is equivalent to the optimization o f the non- 
stationary mean (Equation 3.8). More complex mean surfaces could be 
considered by revising the code.

For this, the program first calculates the stationary means for each rock type, 
calculating the weighted average (if declustering weights are available) over all 
samples that are within the internal stationary portion, that is, outside any o f the 
boundary zones within the rock type. Then, a boundary zone and parameter akp is 
chosen randomly and perturbed within 20% o f its original value. Using the 
modified value o f <%, the objective function corresponding to the sum o f the 
squared differences between the sample value and the mean for all samples is 
evaluated. The stationary mean of the rock type where the sample belongs plus 
the non-stationary component, calculated from the distance o f the sample to the 
boundary and the parameter <%, (Equation 3.8) are checked. If  the objective 
function decreases the proposed change to auP is accepted; if  not, the original 
value o f the parameter from the previous iteration is restored. A flow chart 
with the program structure is shown in Figure 4.7.

The parameter file (Figure 4.8) contains the name of the file with the samples 
tagged with rock type, boundary zone and distance to the boundary; the column 
number o f the variable, rock type, boundary zone, distance to the boundary and 
declustering weights; trimming limits to exclude samples, either not assayed or 
from the upper or lower tails o f the distribution. The number o f rock types is also 
required together with the matrix of maximum distances o f influence as described 
for boundm od  program. The program requires that the user enter the number of 
iterations. A name for the output file is also required.
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decrease increaseChange o f  a, 
accepted

Change o f  akp 
r e j e c t e d ,  the 
parameter is 
restored to its 
original value

Evaluate the objective function

Write output file

Modify parameter akp by a random 
amount, saving the original value into a 
different variable

Loop over a given number of 
iterations:

Randomly pick a rock type pair k-p

For each rock type: calculate the overall samples average for which the boundary zone variable is 
undefined, that is, samples that are not within the zone of influence o f  any adjacent rock types.

Calculate Stationary Means:

Data file: samples tagged with rock type, boundary zone and distance to boundary 

Number o f  rock types

Matrix with maximum distances o f  influence

Read input data & parameters:

Initialize values:
Initialize all a ^  parameters to zero

Calculate initial value o f  the objective function: squared difference between value and mean at the 
sample location, and sum it over all samples. The mean for each sample value is calculated as the 
stationary mean o f the rock type where the sample belongs, plus the non stationary mean 
calculated from the distance o f  the sample to a boundary and the parameter ak

Figure 4.7: Flow chart o f the program o p t_ m ea n .
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Parameters for OPT MEAN

START OF PARAMETERS: 
../data/data.dat
1 1  3 4 5

-file with data
—columns for war,R T ,Boundary RT,Distance,vt 
-trimming’ limits 
-number of rock types
-maximum distance of influence of RT 1 into RT j
-maximum distance of influence of RT 2 into RT j
-maximum distance of influence of RT 3 into RT j
-number of iterations 
-output f ile

- 1 . 0
3

1 .Ce 2 1

-1.0 50.0
1 0 . 0  - 1 . 0  
20.0 30.0
1 0 0 0 00

2 0 . 0  
5 0  . 0 
- l . t

output.out

Figure 4.8: Parameter file for o p t_ m e a n  program.

Variance optimization

The variance optimization is performed similarly to the mean, by a FORTRAN 
code program called o p t _ v a r .  The program uses the analytical expression for 
the non-stationary means for the different boundary zones and the corresponding 
stationary means to find the stationary variances and the optimum intercept bkP 
that define the linear expression o f the non-stationary variance for each boundary 
zone.

The inputs are the same as for the o p t_ m e a n  program (Figure 4.9); a data file 
with the samples tagged with their corresponding rock type, boundary zone and 
distance to the boundary, the number of rock types and the corresponding matrix 
o f maximum distances of influence, plus the output file from the optimization of 
the means with the stationary means and the intercepts for the non-stationary 
means.

The residual for each sample is the data value minus the mean. I f  the sample does 
not belong to a boundary zone, then the mean is just the stationary mean for the 
corresponding rock type. In the case where the sample belongs to a boundary 
zone, the mean will be the stationary mean plus the non-stationary component 
calculated from Equation 3.8 using the corresponding intercept obtained from the 
o p t_ m e a n  program. After all residuals are calculated, the stationary variance is 
calculated for each rock type using all relevant samples and declustering weights 
if  available. I f  there are no data for this calculation in one rock type a default 
value (-999) is assigned.

The optimization procedure (Figure 4.10) has the same structure as the mean 
optimization program, that is, a boundary zone and parameter bup are randomly 
perturbed within an arbitrarily chosen 20% of its previous value. The objective 
function (Equation 3.9) is then reevaluated, if its value decreases the proposed 
change is accepted; if  not, the original value o f the parameter bkp is restored. The
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optimization of the non-stationary variance is done through the optimization of 
bkp (Equation 3.11).

The parameter file (Figure 4.9) has the same entries described in the previous 
section for the o p t_ m e a n  program, plus the entry for the output file o f this 
program with the stationary means and intercepts for each rock type and 
boundary zones.

Parameters for OFT_YAR

START OF PARAMETERS: 
../da ta/data.dat 
1 2 3 4 5
- 1 . 0  1 .0s 2 1
3
. . /da ta/mean.dat

31 2 -1. 0 
1 0 . 0  
20.0 30.
1 0 0 0 0 0  
output.out

SO .0 
- 1 . 0

2 0 . 0 
50. 0 
- 1 . 0

-file with, data
—columns tor vax,RT,Boundary RT.Distance.wt 
-trimming limits 
-number of rod. types
-file with means by RT and Boundary RT
-columns for RT,Boundary RT,stationary mean, intercept
-Masinum distance of influence of RT 1 into RT j
-maximum distance of influence of RT 2 into RT j
-maximum distance of influence of RT 3 into RT j
-number of iterations
—output file

Figure 4.9: Parameter file for o p t _ v a r  program.

Covariance optimization

The covariance optimization corresponds to finds the optimum range o f the 
pseudo stationary model that best fits the experimental spatial correlation o f all 
pairs within a boundary zone. One minus the relative variogram model scaled by 
the standard deviation o f the head and tail values corresponds to the non- 
stationary covariance. The FORTRAN program that finds the optimum range is 
called o p t_ c o v .

The inputs for this optimization are: (1) a data set tagged with the rock type, 
boundary zone and distance to the boundary, (2) the stationary components of 
mean and variance for each rock type plus the intercepts that define the non- 
stationary components o f this statistics for each boundary zone, (3) the number of 
rock types and matrix o f maximum distances o f influences, (4) the direct 
variogram models o f the stationary portions of each rock type, and (5) a proposed 
model (shape, relative nugget effect and anisotropies) for the cross variograms 
given by the user based on the residuals spatial correlation at the boundary. The 
anisotropy is specified and fixed through the ratio between the initial ranges input 
by the modeler. A parameter file is shown in Figure 4.11 as an example.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



decrease increaseChange o f  bt 
accepted

Evaluate the objective function
Change o f  b ^  
rejected, the
param eter is 
restored to its 
original value

Write output file

Modify parameter b ^  by a random 
amount, saving the original value into a 
different variable

Loop over a given number of 
iterations:

Randomly pick a rock type pair k-p

Calculate Stationary Variances:
For each rock type, using samples which are not within the zone o f  influence o f  any adjacent rock 
types.

Calculate Residuals:
Subtract the mean from the sample value.The mean is calculated as the stationary mean of the rock 
type where the sample belongs, plus the non stationary mean calculated from the distance o f the 
sample to a boundary given the intercept

Initialize values:
Initialize all b ^  parameters to zero

Calculate initial value o f  the objective function: sum over all samples o f the squared difference 
between the residual and the variance . The variance for each sample value is calculated as the 
stationary variance o f  the rock type where the sample belongs, plus the non stationary variance 
calculated from the distance o f  the sample to a boundary given bt

Read input data & parameters:
Data file: samples tagged with rock type, boundary zone and distance to boundary 

Number o f  rock types

Matrix with maximum distances o f  influence

File with stationary means and non-stationary mean intercept a.

Figure 4.10: Flow chart o f  the program o p t _ v a r .
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The program loops over all possible boundary zones. For each boundary zone, all 
pairs are found and the experimental covariance is calculated as the 
multiplication o f the head and tail residual values. This experimental covariance 
is compared against the stationary plus non-stationary covariances derived from 
the direct variograms models and the proposed cross variogram model to be 
optimized. To determine the covariance value from a model given a distance, the 
subroutine o f GSLIB c o v a 3  was used.

Since the modeler fixes the shape, nugget effect and anisotropies, the 
optimization of the non-stationary covariance model is done through the 
optimization of the range. The range is iteratively perturbed until the objective 
function corresponding to the sum over all pair squared differences between the 
experimental and modeled covariance of each pair, is minimized. The structure of 
the program is shown in the flow chart o f Figure 4.12.

The o p t_ c o v  output file gives the optimum range for each cross variogram 
corresponding to the boundary zone defined by a pair o f rock type k  and 
boundary rock type p.

Parameters for OPT COV

START OF PARAMETERS: 
../data/data.dat 
1 2 3 4 5 6 7
- 1 . 0  1 .0e 2 1
1 0 0 0 0 0  
output.out 
3
../data/mean.dat 
1 2  3 4
..^data/var.dat 
1 2  3 4
-1.0 50.0 20.0
10.0 -1.0 50.0

30.0 -1.02 0 . 01
1 01 0

2
3 . 1 
0,3

0 . 0  
60 .

0 . 0  
60 . 0

0 . 0  
60 . 0

0 . 0
60.0

0.0 
60. 0

0,0
60.0

0 . 0  
60. 0

0 . 0  
60. 0

0,0
60.0

—file with data
—columns for X,Y,Z,var,RT,Boundary RT,Distance
-trimming limits
-number of iterations
-output f ile
-number of rock types
-file with means by RT and Boundary RT 
—columns for RT.Boundary RT,stationary mean,intercept 
—file with variances by RT and Boundary RT 
—columns for RT,Boundary RT,stationary variance.intercept
—maximum distance of influence of RT 1 into RT j
—maximum distance of influence of RT 2 into RT j
-maximum distance of influence of RT 3 into RT j
-semivariogram for “RTi" and "RTj"
- nst, nugget effect
- it,cc,angl,ang2 ,ang3
- a_hmaK, a_hiain. a_vert 
-semivari ogr&m for "RTi" and "RTj"
- nst, nugget e£ f ect
- it,cc,angl,ang2 ,ang3
- a_hmax, a__hmin, a_vert
—semivariogram for "RTi" and “RTj"
- nst, nugget ef f ect
-  i t , c c , a n ,g l , a n g 2 ,a n .g 3
- a_hmas. a_hmin, a_vert

Figure 4.11: Parameter file for o p t _ c o v  program.
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decrease increaseChange in the 
range a c c e p te d

Change in the 
range re je c te d ,  
the parameter is 
restored to its 
original value

W rite output file

Evaluate the objective function for the new non- 
stationary cross variogram model

Loop over all pairs in a boundary zone:
• For each boundary zone, loop over all samples to find pairs within an specific 

boundary zone_________________________________________________________

Loop over all possible boundary zones:
Sequentially loop over all possible boundary zones in the geological model

Loop over a given num ber of 
iterations:

Pick a structure randomly

Modify the range of the cross variogram between rock 
type k  and rock type p  by a random amount, saving 
the original value into a different variable

Set up the rotation/anisotropy matrices:
Using the s e t r o t  routine o f GSLIB and the given angles and anisotropies o f the direct and 
propose cross variogram (only the range is optimized)

Calculate initial value of objective function:
Sum over all pairs of the squared difference between the experimental and 
modeled covariance . The modeled covariance is the sum of the stationary 
component plus the non-stationary component from the proposed cross 
variogram multiplied by the standard deviation of head and tail values

For each pair:
Calculate the standard deviation of head and tail

Calculate the experimental covariance of the pair as the multiplication o f the 
head and tail residual values

If  head and tail of the pair are in the same rock type: calculate the stationary 
component for the distance between head and tail of pair from the direct 
variogram model using subroutine cova3  o f GSLIB

Read input data & parameters:
?d with rock type, boundary zone and distance to boundary 

Number of rock types

Matrix with maximum distances o f influence 

File with stationary means and non-stationary mean intercept akp 

File with stationary variances and non-stationary variance intercept bLp 

Direct variograms and the proposed cross variograms to be optimize

Data file:

Figure 4.12: Flow chart o f  the program o p t_ c o v .
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N on-stationary cokriging w ithin boundaries

Finally, the program to perform a non-stationary version of simple cokriging in 
the presence o f soft boundaries is the FORTRAN coded program k t3 d _ b o u n d . 
This program allows to estimate unsampled locations in a geological model 
where non-stationary boundary zones have been identified, by using a covariance 
model that takes into account both the stationary and non-stationary components 
o f the conditioning data. It also considers that the mean and variance have non- 
stationary components at locations within the boundary zones.

The inputs to this program include a data file and rock type model tagged by the 
corresponding rock type, boundary zone and distance to the boundary o f each 
location, the statistical optimized models for the mean, variance and covariance 
and the kriging parameters. The output is a GSLIB grid-type file with the 
estimates and kriging variances for all locations within the grid definition o f the 
model.

The program (Figure 4.13) is a modified version o f the GSLIB program k t3 d  
(Deutsch and Joumel, 1998) that performs simple kriging and/or cross validation 
using samples from the geological domain o f the location to estimate and from 
adjacent domains. The data-to-data covariance matrix and the data-to-estimate 
covariance vector (Equation 3.13) are filled according to the spatial configuration 
of the samples and location being estimated in relation with their location outside 
or inside a boundary zone and their distances to the boundary (Equation 3.5). The 
calculated covariance between samples or with the location being estimated 
includes the non-stationary covariance component corresponding to the optimized 
model. A detailed scheme o f how the covariance matrices and vectors are filled in 
this type o f kriging is presented in Figure 4.14. Once the kriging system is 
solved, using the k t s o l  routine o f GSLIB, the mean: stationary plus non- 
stationary component, of each sample and the location to be estimated are 
calculated in order to compute the solution as in Equation 3.12. To calculate the 
kriging variance (Equation 3.14), the block covariance is calculated for each 
location to be estimated, as the stationary covariance o f the corresponding rock 
type plus the non-stationary covariance if  the block is within a boundary zone.
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Write output file

• U sing the k t s o l  routine o f  GSLIB

Solve the kriging system:

Fill in the kriging matrix:
• Calculate the modeled covariance according to the rock type and boundary zone 

o f  the head and tail o f  the pair (see detail aside)________________________________

Find the nearest samples:
U sing the s e a r c h s u p r  routine o f  GSLIB find the closest samples to the 
location to estimate

Fill in the right hand side (RHS) of the kriging system:
• Calculate the modeled covariance according to the rock type and boundary zone 

o f the sample and the location to be estimate__________________________________

Calculate Block Covariance:
■ The non-stationary component is non-zero only if  the block to estimate is in 

boundary zone

Loop over all blocks in the grid:
• Specify the grid node to estimate or sample location ( if  in cross validation mode)

Compute the solution:
For this: the mean (stationary plus non-stationary com ponent) o f  each sample 
and the location to be estimate are calculated based on the distance to  the 
boundary and the mean intercept akp

• Using the s e t r o t  routine o f  GSLIB and the given 
search ellipsoid

Set up the rotation/anisotropy matrices for variograms and search:
and anisotropies o f  variogram s and

Set up super block search:
Using the s e t s u p r  and p i c k s u p  routines o f  GSLIB a 3D “super block model” is obtained as 
well as the data samples indexed by this super blocks in order to m ake the search for surrounding 
samples to an estimate location quicker

Read input data & parameters:
Data file: samples tagged with rock type, boundary zone and distance to boundary 

Geological model: rock type, boundary zone and distance to  boundary specified fo r all locations 

N um ber o f  rock types

File with stationary m eans and non-stationary mean intercept akp 

File with stationary variances and non-stationary variance intercept bkp 

Direct variograms and optimized cross variograms

Kriging parameters: m inimum and maximum num ber o f  samples, num ber o f  samples per octant, 
search radius, search angles and block discretization

Figure 4.13: Flow chart o f  the program k t3 d _ b o u n d .
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If the head and tail are in the
same rock type:

If the head and tail are in 
different rock types:

Both samples in the same 
boundary zone:

The non-stationary covariance only

Each sample in a different 
boundary zone:

• The stationary covariance only

All other cases:
The covariance is zero

Both or only one outside a 
boundary zone:

• The stationary covariance only

Both samples in the same 
boundary zone:

• The stationary and non-stationary 
covariances

Fill in the kriging matrix:
• Calculate the m odeled covariance according to the rock type and boundary zone o f the head and 

tail o f  the pair (see detail aside)

Calculate the covariance for the different configurations:
According to whether the head and tail belongs to the same rock type and/or boundary zone

Calculate the standard deviations:
• O f  head and tail, for the non-stationary covariance, using the distance to the boundary and

intercept b ^

Figure 4.14: Flow chart for the filling o f the kriging matrix in k t3 d _ b o u n d  program, the right 
hand side o f  the kriging system is filled in a similar way.
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The parameter file (Figure 4.15) is divided into four blocks to organize the input 
o f data and parameters. The first block is for data and rock type model input, the 
second block is to define the grid to be estimated. In the third block, the output 
files o f the mean and variance optimization are specified, the direct variograms of 
each rock type and the cross variograms between rock types, also the matrix of 
maximum distances o f influences can be entered following the same procedure 
explained for boundm od  program. The fourth block is for the kriging 
parameters; the program can be run in an estimation or cross validation mode. 
The ellipsoid search parameters, the minimum, maximum of samples and 
maximum number per octant are specified in this block too.

Parameters for KT3D_BOUND 

START OF PARAMETERS;

START OF DATA INPUT:
../data/data.dat 
0 1 2 3 4 5 6 7  
-1.Qe21 1.0e21 
../data/rtmodel.out 
1 2  3
3

-file with data
-columns for DH,X,Y, Z,var,RT,Boundary RT,Distance 
-trimming limits
-input file with rock type model 
-column with RT,Boundary RT,Distance 
-number of rock types

START OF GRID DEFINITION;
100 0.5 1.0 -nx.xmn.xsiz
100 0.5 1.0 -ny.ymn.ysiz
1 0 5 1.0 -nz,zmn,zsiz

START OF STATISTICAL MODELS: 
../data/mean.dat 
1 2  3 4
../data/var.dat
1 2 3 4
-1 . 0 50..0 20.0
10 .0 -1..0 50.0
20 .0 30,.0 -1.0
1 1
1 0.1
1 0.9 0.0 0.0 0.0

60.0 60.0 60.0
1 2
1 0.1
1 0.4 0.0 0.0 0.0

60.0 60.0 60.0
2 2
1 0.1
1 0.9 0.0 0.0 0.0

60.0 60.0 60.0

-file with means by RT and Boundary RT
-columns for RT,Boundary RT,stationary mean,intercept
-file with variances by RT and Boundary RT
-columns for RT,Boundary RT,stationary variance.intercept
-maximum distance of influence of RT 1 into RT j
-maximum distance of influence of RT 2 into RT j
-maximum distance of influence of RT 3 into RT j
-semivariogram for "RTi" and "RTj"
- nst, nugget effect
- it,cc,angl,ang2, ang3 

a_hmax, a_hmin, a_vert
-semivariogram for "RTi" and "RTj"
- nst, nugget effect
- it,cc.angl,ang2,ang3 

a_hmax, a_hmin, a_vert
-semivariogram for "RTi" and "RTj"
- nst, nugget effect
- it,cc,angl,ang2, ang3 

a_hmax, a_hmin, a_vert

START OF KRIGING PARAMETERS: 0
xvk.dat
0 1 2 3 4 5 6 7
3
kt3d.dbg 
kt3d.out
4 8 0
2 0 . 0  2 0 . 0  2 0 . 0  0.0 0.0 0.0

-option: 0=grid, l=cross, 2=jackknife 
-file with jackknife data
-columns for DH,X,Y.2,var,RT.Boundary RT,Distance
-debugging level: 0,1,2,3
-file for debugging output
-file for kriged output
-min, max data for kriging
-max per octant (0-> not used)
-maximum search radii 
-angles for search ellipsoid

Figure 4.15: Parameter file for k t3 d _ b o u n d  program.
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1-D Example

To illustrate the concepts from Chapter 3 and the programs described above. A 
small 1-D synthetic example will be used. Three independent unconditional 
simulations, with different variogram models were used to build the variable 
Z(u), that will represent the metal grade across a boundary between two rock 
types. The variogram models were:

S G S l~ K h )  = 1.0 - ^ =15)(h)

SG S2 ~  y (h ) = 1.0 • S/?/^=30)(h)

SG S3 ~  y (h ) = 1.0 • 5p/i(/!=10)(h)

The first two consisted o f 100 grid points spaced at 1 meter; the third consists of 
40 grid points at the same spacing. The small size o f the simulated area made the 
target statistics (m=0 and o2= l) difficult to reproduce exactly; one hundred 
realizations were generated and one realization was chosen with a mean and 
variance close to the target.

SGS1 and SGS2 were transformed to a non-standard normal distribution to 
reflect different average grade and variability across a boundary.

SGS1 ~ N(2.0,1.0)
SGS2 ~ N(0.5,0.25)

The third simulation was transformed to a non-standard normal distribution but 
with mean and variance as functions o f distance to the boundary. The mean was 
assumed to follow a linear function like the one described in Equation 3.8, with a 
symmetric maximum distance o f influence o f 20 meters and an intercept a j 2- 2 . 0  

while the variance follows a linear function as well, with the same maximum 
distance o f influence and an intercept bn~l.O  (Figure 4.16), that is,

m(u,) = - ^ —- -- - -- • 2 where 0.5 < u, < 19.5
' 20

, ( 2 0 - J(u .))
er (u ) =   where0.5 < u ; <19.5

20

The transformed boundary values were calculated as follows:

Z(u,.) = cr(u;)-F (u ,) + m(uj.)
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where F(u,.) is the original simulated value in normal scores. This third variable 
will be the non-stationary component of the final random variable.

dmax ,,-dm ax, ,=2 0

RTjRT,

u

dmax dmax, 20

RT, RTj

Figure 4.16: Linear functions for the mean and variance used to transform the normal score 
values o f  SGS3.

The final random variable was obtained by joining the two first simulations to 
obtain a 1-D array o f 200 points and adding the third simulation to the values 
from locations 80.5 up to 119.5 (Figure 4.17 and 4.18).

_________________ SC SI_______________

+ _______________ SGS2_____________

SGS3 ------------- -- ------------

Z(U) |  | | {   —)
0 80 100 120 200 (m)

Figure 4.17: Scheme o f how the three unconditional simulations are added to obtain Z(u).
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Variable profile from RTj to RT:

7.0
BoundaryRT, RT,

6.0

5.0 Z(u)
4.0

3.0

2.0

SGS,
0.0

.~i ,  "3 ,  "5 -  I  ,  ~  . ~ -*3  ,r> _"3 , T  T  - O  ,  "  “  -*5 ,  ~  , 0  “  _ n ,  +  ,  *) .  *TT.*J / “  O  ,  “  r “
V XV o?' ^  -£• £ ’ &  <$' <£• to*5* # •  f r

- 2 .0

Data Location

Figure 4.18: Dataset for 1-D example. Random variable profile o f metal content against location 
along the X-coordinate. The colored lines correspond to the underlying variables used to generate 
this synthetic example.

The first step in this methodology is to infer all stationary and non-stationary 
statistical parameters for each rock type and boundary zone. To find the 
stationary and non-stationary component o f the mean the program o p t_ m e a n , 
was used.

The stationary mean of rock type 1, calculated with the values from location 0.5 
to 79.5, is 1.75, which is lower than the mean o f the full SGS1 (2.0), because the 
eighty first values are relatively lower than the 20 values closest to the boundary 
that are not considered in the calculation o f the stationary mean. This particular 
distribution of values is due to ergodic fluctuations in the simulation. The 
stationary mean o f rock type 2 is 0.51.

For this example, after 100,000 iterations, the optimum intercept value 0 2 1  is 
3.22, therefore the mean of Z(u) is,

1.75 + 

0.51 +

1.75

(20- ^ 0 0 )
20

(2 0 -r /(u .) )
20

0.51

where 0.5 < u, < 79.5

• 3.22 where 80.5 < u, < 99.5

• 3.22 where 100.5 < u, < 199.5

where 120.5 < u, < 199.5

(4.1)

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The intercept is slightly higher than the original value o f 2.0, used to create this 
synthetic data, but this is due again to the influence o f systematically higher 
values in RTi near the boundary. The discontinuity in the optimum mean profile 
across the two rock types, after the boundary (Figure 4.19) is a consequence o f 
the difference between the stationary means o f RT] and R T 2 .

The output file of o p t_ m e a n  is shown in Figure 4.20, this file gives the 
stationary means o f rock types 1 and 2 and the intercept o f the linear function that 
represents the non-stationary mean at the boundary zone.

Optimized Mean for Z(u)

7.0

'^Boundary
6.0

5.0

4.0

2.0

0.0

-2.0

Data Location

Figure 4.19: Optimized mean obtained for dataset o f 1-D example.

To find the stationary and non-stationary component o f the variance the program 
o p t _ v a r  was used. This program uses the output file o f o p t_ m e a n  as an 
input. The objective function in this case is the squared difference between the 
stationary plus the non-stationary variance and the residuals squared. The 
residuals are obtained using the already optimized expression for the mean 
(Equation 4.1). The stationary component o f variance for rock type 1 is 0.71 and 
0.33 for rock type 2. The optimum intercept value of bn, in this example is 
attained at 0.50, thus the total variance o f Z(u) (Figure 4.21) is,
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0.71 where 0.5 < u, < 79.5

where 100.5 < u, <199.5

where 80.5 < u, < 99.5

20
0.33 where 120.5 < u, < 199.5

The optimized intercept is slightly different to the one used to created this 
synthetic dataset, due to statistical fluctuations from the mean and variance near 
the boundary zone. The output file o f o p t _ v a r  is shown in Figure 4.22.

Optimized Means 
4 

RT
Boundary_RT
Sta t i onaxy_Mean
HonS t ationary_Iatercept

1 2 1.7491 3.2245
2 1 0.51318 3.2245

Figure 4.20: Output file o f o p t_ m ea n  program for the 1-D example.

Optimized Variance forZ(u)

7.0 - -■§■■

0.0

RTj

- 2 .0

Data Location

Figure 4.21: Optimized variance obtained for 1-D example.
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Optimised Variances 
4 

RT
Bouadai'7_RT
Stat ionar5'_J7ar iance
HonStat i onary_Intercept

1 2 0 .7 0 5 6 9  0 . 4 9 7 5 5
2 1 0.33372 0.49755

Figure 4.22: Output file o f  o p t _ v a r  program for the 1-D example.

For the estimation we also need the covariance models for both for the stationary 
and the non-stationary regions in the model. For the stationary regions o f RTi 
and RT 2 , we will assume that the variogram models are the ones used to generate 
the underlying unconditional simulations. The FORTRAN code called o p t_ c o v  
is used to find the optimum range o f the non-stationary covariance structure that 
fits the experimental covariance (Figure 4.23) calculated for each pair within the 
40 meter zone o f influence o f the boundary. As explained previously, the modeler 
must specify the shape and nugget effect of the relative variogram model for the 
non-stationary zone, while the range is optimized. In this case a spherical 
isotropic model with a nugget effect o f 0.0 was adopted. The optimum range 
obtained is 6.37 (Figure 4.24), acceptably similar to the range used to build this 
synthetic dataset given the natural variations we have seen for mean and variance.

Optimum Non-stationary Covariance

-0 .5 -

Distance (m)

Avg TeoCov Avg OptCov-  Avg ExpCov

Figure 4.23: Experimental covariance from pairs within the boundary zone (black dash line), 
optimum non-stationary covariance obtained from o p t _ c o v  (red solid line) and original 
covariance o f the non-stationary component, SGS3, used to build the synthetic dataset Z(u) (blue 
solid line).
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Optimized Ranges 
3 

RT
Btmnda.ry_.RT 
Opt inram_Range

1 2 6.369907

Figure 4.24: Output file o f  o p t _ c o v  program for the 1-D example.

The optimization convergence in this example o f the mean and variance occur 
before 250 iterations, while for the covariance, convergence is achieved with less 
than 50 iterations as shown in Figure 4.25.

Optimization convergence

"d «  150

-- 920

0 -I-------- 1-1---------1-1---------1-1-------- 1-1--------1-1-------- 1-1-------- 1-1-------- 1-1-------- 1-1-----h
1 101 201 301 401 501 601 701 801 901

Iteration

-M ean  ■ ■Variance 1 -C ovariance

Figure 4.25: Optimization convergence o f  mean, variance and covariance parameters.

Estimation in the presence o f soft boundaries is done using k t3 d _ b o u n d  using 
the mean, variance and covariance previously obtained from optimization. First 
we will show how estimation is performed with 8  surrounding data (Figure 4.26) 
at a single location, and then we will review the results of estimation considering 
a conditioning dataset o f one out of four grid nodes from the reference.
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5.0 -

4.0 -

3.0 •

2.0  ■

1.0  -

RT!

0.0  ■

Data configuration for Estimation at location (*)

4

1 4

dmaxn

I Boundary BZ^

> o * U
dmax 12

r t 2

20 40 60 80 100 120 140 160

X-coordinate

♦  Data O Est

180 200

Figure 4.26: Data configuration for the estimation o f an unknown location with the 1-D example.

The data covariance matrix in terms o f the stationary and non-stationary 
component, for the example configuration is:

C « v (0 ) |

Cm%
C » 4  +Cov5S C < 4  + C av?s  C o v (0 ) l  +C ov(0)5S Z \  Z i2 Z] Z  n  Z ] ’Z n

0.0 0.0 Cov™Z12 C o v (0 ) | -fC ovfO )?®

0.0 0.0 C o v fz12 C ovf + C o 4 !sZ2 Z]2 C o v (0 )! + O ) v ( 0 ) ^

0.0 0.0 Cov™Zl2 Cm  | +Cov?!Sz2 z12 C ovf +C ovSS Z2 Z]2 COv ( 0 ) |2 + C o v ( 0 ) ^ 2

0.0 0.0 0.0 C ovf +Cov?!SZ2 Z]2 C ovf +Cov5 SZ2 Z|2 C ovf + C o v fs  z2 Z]2 C » v (0 ) |

0.0 0.0 0.0 Cm>|  + C o v fSz2 z12
r, % NS Cov-  +C ov- Z2 Z]2 Cov | + C o v fS z2 Z12 Covfz2

Similarly, the data-to-estimate covariance vector in this case is:
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Completing the data covariance matrix and the data-to-estimate covariance 
vector, calculating the stationary and non-stationary component as shown before, 
the resultant kriging system is:

1.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 '
*1

h
" 0.0

0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 2.149 0.382 0.227 0.0 0.0 0.0 h 0.0
0.0 0.0 0.382 1.027 0.842 0.141 0.044 0.014 h 0.108
0.0 0.0 0.227 0.842 1.003 0.152 0.052 0.019 H 0.119
0.0 0.0 0.0 0.141 0.152 0.805 0.130 0.078 0.422
0.0 0.0 0.0 0.044 0.052 0.130 0.25 0.188 6

h

h .

0.164
0.0 0.0 0.0 0.014 0.019 0.078 0.188 0.25 0.108

Given that the data covariance matrix is invertible, and calculating the mean at 
each data location and the mean at the estimate location, as the stationary plus the 
non-stationary mean, the estimated value is 1.15. The “true” value at this point 
was 0.89.

The reproduction o f the reference values using a conditioning dataset of one out 
o f four grid nodes is fairly good as shown in Figure 4.27 and 4.28. The only 
problem arises at the edges o f the boundary zone, where unusual kriging weights 
occur leading to discrepancies between the estimate and reference. These weights 
originate because the covariance o f the estimate to data is higher than the 
covariance o f the data to itself due to a non-stationary component in the first one, 
but not for the data-to-data covariance; in this case the estimate is inside the 
boundary zone, while the sample is outside. For example, the kriging system for 
the block at 80.5 meters is,
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0.748 0.610 0.276 0.276 0.056 0.056 0.0 " ^  =-0.171 (f*447)
0.748 1.793 0.276 0.765 0.056 0.276 0.0 0.056 0.967
0.610 0.276 1.0 0.056 0.610 0.0 0.276 0.0 ^  =-0.575 0.566
0.276 0.765 0.056 1.892 0.0 0.783 0.0 0.276 A4 =-0.020 0.351
0.276 0.056 0.610 0.0 1.0 0.0 0.610 0.0 2j=-0.017 0.208
0.056 0.276 0.0 0.783 0.0 1.992 0.0 0.802 k ,  =0.028 0.097
0.056 0.0 0.276 0.0 0.610 0.0 1.0 0.0 o 0.026

22=0.086
0.0 0.056 0.0 0.276 0.0 0.802 0.0 2.091 0.0

2g =-0.003

In this case the kriging weight for the closest data sample is unusually high, 
although the mismatch between the estimate and the reference is not large. There 
are other examples for which the differences are more dramatic (see application 
below).

Reference v ersu s  Estimate profile

Distance (m)

- Reference — Kriging Estimate

Figure 4.27: Grade reproduction profile along the X-coordinate. Reference values versus kriging 
estimates.
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1-D Example

Kriging estimate

Figure 4.28: Scatter plot reference values versus kriging estimates, for the 1-D example.

For a larger grid, 2000 meters instead o f 200, the reproduction o f the reference 
improves (Figure 4.29) as the ergodic fluctuations have less influence in the 
underlying unconditional simulations use to build the reference and more samples 
are available to find the stationary and non-stationary components o f mean, 
variance and covariance.

1-D Example (2000 nodes)

Estimate

Figure 4.29: Reference values versus kriging estimates considering 2000 nodes instead o f  200.
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Chapter 5

Application

In this Chapter the application and the steps involved in the non-stationary 
cokriging in the presence of soft boundaries for a real deposit, will review. The 3- 
D example was built using the geological model of a porphyry copper deposit 
from Northern Chile (Figure 5.1), but grades were simulated.

Data generation

An unconditional simulation was generated and transformed to a non-standard 
normal distribution for each rock type.

N(3.0,1.2) with (h ) = ° - 2  + °-8 ' S M w = 2oo
h r a i n = 2 0 0  

v e r t = 1 0 0

Y} ~ N(1.0,1.35) with Yyz (h) = 0.1 + 0.9 • Sph,kmax=m,
A m i n = 4 0 0  

vert-100 y

yV~ N(1.5,0.5) With yYi (h) = 0.1 + 0.9 • Sph^hmm=500̂
h m i n = 5 0 0  

v e r / = 1 0 0

Fj ~ N(0.25,0.05) with yY (h) = 0.2 + 0.8 • Sph h max=250^ 
k  min = 250 

vert=100 j

(h)

(h)

(h)

(h)

All variograms are rotated in 90° azimuth and dip of 35° following the principal 
anisotropy in the deposit. Rock type 1 corresponds to a leached zone, rock type 2 
to a zone of secondary enrichment, rock type 3 and 4 to units of primary 
mineralisation corresponding to two intrusive events, and rock type 5 to a
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peripheral primary mineralisation. The values o f rock type 1 were set to a default 
value (-9) since this unit is o f no economical interest.

Rock type Model Level 30
2000.OOf

Rock type Model Section 100

East <m)

Figure 5.1: Categorical rock type model o f a porphyry copper deposit in Northern Chile.

Non-stationary cokriging requires a rock type model with the boundary zone and 
distance to boundary assigned to each block. The boundm od  program requires 
the matrix o f maximum distance of influence and a set o f precedence rules as 
input parameters. Considering the geology o f the deposit the matrix o f maximum 
distance o f influence (in meters) between rock types was chosen as follows:

- 1 0 0 0 0

0 - 1 30 30 30
0 0 - 1 1 2 0 60
0 0 90 - 1 90
0 0 30 30 - 1

The boundary zones defined by the contact between the primary mineralisation 
units was assumed to be more extended than the ones defined by the secondary 
mineralisation, since they correspond to a wide fault zone. Also the maximum 
distance o f influence o f zero o f rock type 3 to 5 into rock type 2 reflects that the 
secondary mineralisation grades into the primary mineralisation but not the 
opposite.

The set o f precedence rules also reflects the timing o f the mineralisation; the 
influence o f rock type 2  is the youngest:
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4 -5
3 -4
4 -3

5 -2  
4 -2  
3 -2

primary mineralization

secondary mineralization

For the same section and level shown in Figure 5.1 the boundary zones and 
distance to boundary are shown in Figure 5.2.

An additional unconditional simulation was generated to build the non-stationary 
zones around the boundaries:

Fd~N (0,l) with Yy (h) = 0.1+ 0.9- Sph h max=400 

/zmin=400 

vert=50

,00

The variogram of this variable is also rotated in 90° azimuth and dip o f 35c

Ye was transformed to a non-stationary variable (Figure 5.3) using the following 
expression:

* 7 0 0  =
(d m a x ^ -d (  u,.))

dmax, ■ K
kP

1/2
(,dmaxk -  J ( u ;))

dmax.
-■a.kp

■kp

where the distance to the boundary as well as the boundary zone were obtained 
from the rock type model described above. For each boundary zone, a mean and 
variance intercept were chosen trying to reproduce the real trends in the deposit:

Boundary Zone (RT-BRT) Intercept Intercept htp
3-2 5.0 2.0
4-2 5.0 2.0
5-2 5.0 2.0
3-4 (and 4-3) 3.0 1.0
3-5 (and 5-3) 0.5 0.5
4-5 (and 5-4) 1.0 1.0
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Outside the boundary zone this variable was set to zero, that way, it can be added 
to the grid file with the simulated values Y2 to Ys to obtain the reference (Figure 
5.4).

Boundary Zone Level 30

NOBOUND

Dist to Boundary Level 30

Diet to Boundary Section 100

1540.00

Figure 5.2: Boundary zone (top) and distance to boundary (bottom) maps for the same section 
and level o f  the rock type model o f  Figure 5.1. The default code (NO BOUND) is given to 
locations beyond the corresponding maximum distance o f  influence. Distances beyond the 
maximum distance o f  influence are set to the default value 9999, in red.
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Non-stationary Y6 LeveiSO

Non-stationary Y6 Section 100
915.000

m

1540.00.0 1540.00 -0

L3.6

East {rn)

Figure 5.3: Transformed variable ^ (u ), blocks outside a boundary zone were set to zero.

Reference Level30

T

Reference Section 100

East (m)

I
1 . 1.8

East(m) 1 5 4 0 .0 0

Figure 5.4: Section and Level maps o f  the reference distribution. Values from rock type 1 were 
assigned a default value o f - 9  since this unit is o f  no economic interest.
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Since variables 7? to Y5 were transformed to non-standard normal distributions 
some negative values occurred. All negative grades (4.3%) were set to zero. 
Finally the reference grid file was sampled on a 100x100x1 grid to obtain the 
conditioning data for kriging.

Estimation

Prior to kriging, we need the optimum mean, variance and covariance range for 
the non-stationary boundaries from the conditioning data. The o p t_ m e a n  output 
(Figure 5.5) shows that the stationary means o f each rock type and the a 
intercepts are well reproduce for each boundary zone compared with the 
reference (Table 5.1). The b intercepts corresponding to the non-stationary 
variance are acceptably well reproduced for all boundaries (Table 5.1); Figure 5.6 
shows the output o f o p t _ v a r  program. As already seen in the 1-D example the 
differences with target parameters increase for the non-stationary variance 
intercepts and then for the covariance range, since at each optimization step the 
parameter becomes more sensitive to statistical fluctuations in the previously 
optimized parameters.

O p t i m i z e d  M eans 
4 

RT
Boun.dary_RT
Stat ionary_Mean
tfcmSt at i Dnary_ Intercept

1 2 - 9 . 0 0 0 0 0 . 0 0 0 0
1 3 - 9 . 0 0 0 0 0 . 0 0 0 0
1 4 - 9 . 0 0 0 0 0 . 0 0 0 0
1 5 - 9 . 0 0 0 0 0 . 0 0 0 0
2 1 3 . 1 1 8 0 0 . 0 0 0 0
2 3 3 . 1 1 8 0 5 . 0 8 8 3
2 4 3 . 1 1 8 0 5 . 7 4 2 9
2 5 3 . 1 1 8 0 4 . 9 2 2 8
3 1 0 . 9 1 9 1 4 0 . 0 0 0 0
3 2 0 . 9 1 9 1 4 5 . 0 8 8 3
3 4 0 . 9 1 9 1 4 2 . 9 4 3 1
3 s 0 . 9 1 9 1 4 0 . 6 0 0 5 7
4 1 1 . 6 6 3 7 0 . 0 0 0 0
4 2 1 . 6 6 3 7 5 . 7 4 2 9
4 3 1 . 6 6 3 7 2 . 9 4 3 1
4 s 1 . 6 6 3 7 1 . 1 1 5 3
5 1 0 . 2 7 2 9 0 0 . 0 0 0 0
5 2 0 . 2 7 2 9 0 4 . 9 2 2 8
5 3 0 . 2 7 2 9 0 0 . 6 0 0 5 7
5 4 0 . 2 7 2 9 0 1 . 1 1 5 3

Figure 5.5: Output file o f  o p t_ m ea n  program.

In order to find the optimum range o f the non-stationary component for each 
boundary zone, we need: the variogram models o f the stationary portions o f each
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rock type and the shape and nugget effect o f the relative standardized variogram. 
The relative standardized variogram corresponds to the stationary shape that will 
be scaled by the non-stationary standard deviation at each location.

Optimized Variances 
4 

RT
Baund.ary_RT
S tatien ary_V ariance
NonStat icmary_Intercept

1 2 0 .0000 0 0000
1 3 0 .0000 0 .0000
1 4 0 0000 0 0000
1 5 0 .0000 0 .0000
2 1 0 99811 0 0000
2 3 0.99811 3 .0120
2 4 0 .99811 2 .3082
2 5 0 99811 2 .5425
3 1 0 .2 71 25 0 .0000
3 2 0 .27125 3 0120
3 4 0 .27125 0 .87515
3 5 0 27125 0 .18306
4 1 0 .52029 0 0000
4 2 0 .5 20 29 2 3062
4 3 0 .52029 0 .87515
4 5 0 .5 20 29 0 .56958
5 1 0 43380E-01 0 0000
5 2 0 43380E-01 2 5425
5 3 0 43380E-01 0 .18306
5 4 0 . 43380E-01 0 .56958

Figure 5.6: Output file o f o p t _ v a r  program.

Boundary Zone 
(RT-BRT)

Reference 
Intercept akp

Optimum 
Intercept akp

Reference 
Intercept bkp

Optimum 
Intercept bkp

3-2 5.0 5.09 2.0 3.01
4-2 5.0 5.74 2.0 2.31
5-2 5.0 4.92 2.0 2.54
3-4 (and 4-3) 3.0 2.94 1.0 0.88
3-5 (and 5-3) 0.5 0.60 0.5 0.18
4-5 (and 5-4) 1.0 1.12 1.0 0.57

Table 5.1: Comparison between the reference and optimum intercepts akp and bkp.

The samples that belong to the stationary portion o f each rock type were selected 
to calculate and model the variograms in the three principal directions. The 
stationary variance o f each rock type was set as the sill. The models are close to 
the original variograms used in the unconditional simulations except for the 
minimum horizontal range o f rock type 4 that was calculated quite high (Table
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Rock type Structure
Type

Sill
Contribution

Range
Hmax Range Hmin Range Vert

2
Nugget Effect 0.2503

Spherical 0.7477 250.0 250.0 119.0

3 Nugget Effect 0.0300
Spherical 0.2400 531.0 373.0 200.0

4 Nugget Effect 0.0476
Spherical 0.4724 498.0 627.0 152.0

5
Nugget Effect 0.0092

Spherical 0.0308 267.0 248.0 136.0

Table 5.2: Variogram models for the stationary regions o f  rock type 2 to 5.

The shape, anisotropies and nugget effect o f the relative standardized variogram 
o f the non-stationary boundaries were chosen as the same as the variogram used 
to generate the Yt> variable. Normally the modeler will have to pick these values 
based on the geology o f the deposit. If  that were the case here, the parameters 
would be similar to the chosen ones, the non-stationary zone is strongly 
controlled by the fault system that coincides with the major anisotropy, most of 
the spatial correlation is explained by spherical models, only the nugget effect is 
difficult to assess.

The optimization o f the covariance ranges gives reasonable results (Figure 5.7) 
for all boundary zones except for the boundary between rock type 2  and rock type 
4, which seems a little too high. This result is likely due to the influence o f the 
minimum horizontal range of rock type 4.

Optimized Ranges
3

RT
Boundary_RT
Optimu*_Range

2 3 3 2 8 . 9 5 7 8 5 5
2 4 6 6 0 . 0 2 3 4 3 8
2 5 4 6 5 . 3 5 9 0 7 0
3 4 4 2 5 . 0 1 9 5 9 2
3 5 3 3 5 . 1 5 1 3 0 6
4 5 5 7 6 . 7 7 3 8 0 4

Figure 5.7: Output file o f o p t _ c o v  program.

In this example the optimization convergence of the mean and variance occurs 
around 2800 iterations. This is more than the 1-D example o f the previous chapter 
(Figure 5.8), but consistent with the larger number o f data. The covariance range 
convergence occurs around 30 iterations for all boundary zones (Figure 5.9). 
Considering the number of pairs involved in each calculation this is surprisingly 
similar to the convergence time o f the same parameter in the 1-D example.
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The kriging parameters used for the estimation include: a minimum and 
maximum of 4 samples, no octant search and an isotropic search radius o f 650 
meters.

Optimization convergence

25000

20000 - -

15000 - -

>  fa  10000 ~

5000 -

1001 2001 3001 4001 5001 6001 7001 8001 9001

Iteration

Figure 5.8: Optimization convergence o f mean and variance in terms o f  the objective function 
value.

In the first run o f k t3 d _ b o u n d  a significant number o f estimates were 
unusually high or low due to unusual kriging weights. These blocks were 
concentrated at the edges o f the boundary zones. They represent a non-physical 
covariance model that must be reviewed as part o f the future work. Two 
modifications to the kriging system were made to make the kriging matrix stable 
for the purpose o f this application. A modification is required when the 
covariance o f the estimate to data is higher than the covariance o f the data to 
itself. This occurs because the estimate is inside a boundary zone and therefore 
has a non-stationary component that is added to the stationary covariance model, 
while the data is outside. To fix this, the diagonal term corresponding to the 
covariance o f the sample to itself was set to 1 . 1  multiplied by the corresponding 
element in the estimate-to-data vector o f the kriging system. When the estimation 
variance is calculated to be negative, all the diagonal terms o f the data-to-data 
matrix were replaced by the maximum value o f all elements in the kriging 
system. Additional to the modifications to the program a relatively small 
maximum number o f samples were used to estimate a block. The origin o f these 
non-physical results needs to be reviewed in the future. These relatively rare
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problems in kriging will become more important for the implementation o f this 
technique in simulation where the correct estimate and estimation variance are 
essential for the reproduction of the conditioning data and its variability.

Covariance Optimization Convergence

700

600

S  500

® 400

300

200

Ite ra tion

R T2-B R T 4 RT2-BRT5 RT3-BRT4 ——  RT3-BRT5 RT4-BRT5RT2-BRT3

Figure 5.9: Covariance optimization convergence in terms o f  the range for the 6 boundary zones.

The correlation between the estimates and the reference or ‘true’ value is around 
0.8 for each boundary zone (Figure 5.10). The stationary portions o f rock type 2 
and 5 show more conditional bias than rock types 3 and 4; the correlation 
between the estimate and reference ranges from 0.52 up to 0.8 (Figure 5.11). The 
mean of the reference in the stationary portions o f each rock type is reproduced 
almost exactly by the kriging estimation (Table 5.3). The variance o f the estimate 
is lower than the reference, as expected since kriging has a smoothing effect. The 
non-stationary behavior o f the mean is also very well reproduced by the proposed 
non-stationary cokriging as shown in Figure 5.12. Although the variance o f the 
estimates in the boundary zone is lower than the reference, the increasing trend 
toward the boundary is well reproduced (Figure 5.13).

Validation o f the model and parameters was done running k t3 d _ b o u n d  in the 
cross validation mode removing the entire drill hole to which the sample belongs. 
In this mode, the correlation between the estimate and the true value is 0.93. The 
results show that the resultant model is accurate and precise (Figure 5.14), the
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distribution o f the error (estimate minus true) is symmetric and centered in zero 
and has a relatively small standard deviation.

The proposed methodology can be compared with ordinary kriging assuming a 
traditional soft boundary approach. All data will be combined for a single 
variogram model and kriging. The proposed methodology significantly 
outperforms this traditional ordinary kriging approach see Figure 5.15. The 
correlation coefficient for the proposed methodology is 0.9 versus 0.74 for 
ordinary kriging, which translates into a 48% improvement in how data is used.

Rock type 
(stationary region)

Reference Kriging
Mean Variance Mean Variance

2 3.13 1.03 3.14 0.56
3 0.92 0.52 0.91 0.39
4 1.66 0.71 1.66 0.57
5 0.28 0.21 0.27 0.14

Table 5.3: Comparison o f the mean and variance o f  the each rock type (stationary regions) 
between the reference training image and the kriging results.
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Figure 5.10: Scatter plot o f  the reference versus the estimate for each boundary zone.
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Figure 5.11: Scatter plot o f  the reference versus the estimate within the stationary portions o f  
each rock type.
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Figure 5.12: Mean at the non-stationary boundary zone. A 5 meters interval o f  the distance to the 
boundary was chosen to calculate the mean o f the estimate value o f  all grid nodes.
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Figure 5.13: Variance at the non-stationary boundary zone. A 5 meters interval o f  the distance to 
the boundary was chosen to calculate the variance o f  the estimate value o f all grid nodes.
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Figure 5.14: Cross validation results. Scatter plot o f the estimate versus the true; the correlation 
is 0.92. The accuracy plot shows that the model is accurate and precise for the chosen 
parameters. The error (true-estimated) distribution is symmetric and centered in zero and with a 
relatively low standard deviation.
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Figure 5.15: Cross validation results comparison at the boundary zone. The proposed 
methodology (A) has a correlation coefficient o f 0.90 versus 0.74 for traditional ordinary kriging 
approach (B).
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Chapter 6

Conclusions and Future Work

Conclusions

The geological mechanisms involved in the formation o f a deposit are in most 
cases transitional in nature, which yields contacts between domains that are 
diffuse or gradational. These soft boundaries are widespread in different types of 
deposits and their correct reproduction by geostatistical methods has a great 
impact on mine plan design, expected dilution and final mineral resources. The 
areas close to contacts are usually areas o f higher uncertainty.

The estimation o f a domain with a soft boundary implies that samples from either 
side of the boundary should be used in the estimation. A common practice is to 
include samples or previously estimated nodes from outside the domain within a 
certain distance. Whether kriging or simulation is used, the assumption that the 
samples or nodes outside the domain follow the same distribution and spatial 
model as the samples inside is often incorrect and leads to the corruption o f the 
statistical parameters near the boundary.

One option explored in this work is the use of cokriging or cosimulation with a 
linear model o f coregionalization (LMC) to capture the spatial correlation o f the 
variable across a boundary between domains. In particular, the cross variogram of 
the variable o f interest across a boundary cannot be calculated directly since the 
data sets are non-collocated. The alternative is to calculate the cross covariance. 
The extra time associated with fitting a linear model o f coregionalization can be 
easily overcome by using semi-automatic fitting programs. This model allows the 
correlation o f the grades across the boundaries to be captured through a 
legitimate spatial model of coregionalization, which can then be used to cokrige 
or cosimulate grades using data from adjacent rock types. This approach 
guarantees the correct reproduction o f representative statistics o f the individual 
geological units used for resource estimation.
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This option has the advantage o f improved resource estimation by reducing 
uncertainty in transitional zones near the boundaries. It reproduces data 
correlation across the boundary and has less smoothing o f the estimates if  kriging 
is the tool to obtain the resources.

The previous methodology, assumes that the variable is stationary in each 
domain, and therefore can be used to model a global correlation across a 
boundary. However, nature provides us with several examples where the behavior 
o f our variable of interest is no longer stationary as it gets closer to a boundary. 
This work introduces a new technique for the estimation in the presence o f local 
non-stationary soft boundaries.

This new technique corresponds to a non-stationary form o f cokriging in the 
presence of geological boundaries. To apply this methodology the user must 
distinguish between stationary regions within each rock type and boundary zones 
where the statistical parameters such as the mean, variance or covariance are no 
longer constant. The non-stationary components o f the mean and variance are 
optimized assuming a linear relationship with the distance to the boundary. This 
work has considered that the mean and variance increase towards the boundary. A 
decreasing mean near a boundary could be handled by a negative non-stationary 
mean, but this could lead to negative grade estimates. Decreasing variance near a 
boundary cannot be handled with this formalism. The non-stationary variance 
must be positive. A decreasing mean plus the proportional effect could decrease 
the variance, but it is a limitation o f the presented methodology.

The correlation spatial model is also decomposed into stationary and non- 
stationary components of a linear model o f coregionalization. The stationary 
component corresponds to the variograms o f data within the stationary regions o f 
each rock type. The non-stationary component corresponds to a relative 
standardized variogram scaled by the non-stationary standard deviation. The 
shape is given by the user and the range is optimized. All the optimization 
algorithms are a simplified version o f the simulated annealing formalism, where 
only perturbations that minimize the objective function are accepted. With the 
stationary mean o f each rock type plus its non-stationary linear model for each 
boundary zone and the linear model o f coregionalization the estimation of 
unsampled locations is performed using a non-stationary form of simple 
cokriging. The data-to-data and the data-to-estimate covariances are calculated as 
the sum of the stationary and non-stationary components o f the spatial model 
according to the location of the samples and estimate and whether or not they 
belong to a boundary zone. This new technique provides an appealing alternative 
to model the grade distribution in the presence of local non-stationary soft 
boundaries.
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A set o f FORTRAN programs were implemented for each o f the steps described 
above and tested in some small examples as well as a large 3D application.

The estimates reproduce the non-stationary behavior of the mean o f a reference 
distribution at the boundary zone. Cross validation results show that the result 
works much better than assuming a hard boundary. The exceptions are some 
blocks at the edges of the boundary zones where non-physical results are obtained 
due to unusual kriging weights. They seem to originate from the linear model of 
coregionalization; this must be explored in further detail.

The two methodologies presented in this work are theoretically robust. They can 
be easily applied in industry to improve resource estimation and simulation.

Future Work

An important task is to find the specific origin o f non-physical covariance 
matrices that are the source o f unusual kriging weights. There seems to be a 
discontinuity in the stationary and non-stationary components of the covariance 
model at the edges. When, for example, the location to be estimated is within a 
boundary zone and yet some samples used to estimate are outside the boundary 
zone. The covariance between the estimate and the sample turns out to be higher 
than the covariance o f the sample to itself. Nevertheless, these are not the only 
configurations that lead to unusual estimates or negative kriging variances.

Another aspect that could be explored is the change in the correlation and/or 
anisotropy between adjacent domains within the boundary zone. This could be 
due to the occurrence of a secondary set o f mineralized fractures at an angle to 
the principal mineralisation anisotropy.

The next step is the implementation of simulation in the presence o f local non- 
stationary soft boundaries. It will be essential to have the correct kriging 
variance, which is the amount o f missing variability that is added back to the 
estimate. The kriging variance has an additional non-stationary component, which 
has to be investigated in great detail to ensure the correct reproduction o f the total 
variance at each location and the joint variability.

Other possible applications are indicator kriging and multivariate statistics. In the 
first, one can imagine soft boundaries between some or all categories or the 
estimation o f different grade cutoffs in the presence o f soft boundaries between 
geological domains; in both cases the challenge is to properly combine multiple
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variograms in the corresponding linear model of coregionalization. A similar 
challenge would have to be addressed in the implementation o f cokriging or 
cosimulation for multiple variables in the presence of a geological model with 
soft boundaries. In this case, the linear model o f coregionalization should account 
for correlation between different variables as well as the spatial correlation o f this 
set o f variables across different rock types and the corresponding boundary zones.
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