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Measurements of the superfluid density and heat capacity in porous aerogel glasses that are completely
filled with liquid helium are presented as examples of critical behavior in the presence of a dilute corre-
lated impurity. Longstanding doubts about the existence of critical behavior in *He-filled porous media,
brought about by the failure of all previous searches for a singularity in anything other than the
superfluid density, are put to rest by the observation of a sharp heat-capacity singularity that is coin-
cident with the superfluid transition. With the notable exception of the superfluid transition in pure heli-
um itself, the superfluid transitions in “He-filled aerogel are among the sharpest phase transitions ever
seen. However, the critical exponents for the superfluid density and heat capacity are both markedly
different from the corresponding exponents in pure helium. We conclude that the correlated disorder in-
troduced by the aerogel glass drives this system away from the three-dimensional XY universality class

to which pure helium belongs.

I. INTRODUCTION

The most stringent experimental tests of the theories of
critical phenomena have always come from studies of the
superfluid phase transition in liquid *He because this
transition is, by at least two to three orders of magnitude,
the sharpest phase transition ever seen.! This work
reached its apogee in the remarkable agreement between
the critical exponent measurements of Ahlers and co-
workers? and the renormalization group (RG) theories of
Wilson and others.>* However, outstanding issues
remain. One of them is the effect of the disorder that is
introduced by sample inhomogeneities and its connection
to the rounding that is observed in any real phase transi-
tion.’ Seminal considerations of disorder by Harris and
others®’ concluded that, in the absence of long-range
correlations, rounding would not appear. However, a
new set of critical exponents would appear in the impure
system if the specific heat exponent of the pure system
was positive. Experiments on randomly diluted Ising an-
tiferromagnets® have generally supported the Harris pre-
dictions, under the somewhat less stringent criteria man-
dated by the lack of a magnetic system with a phase tran-
sition that is as sharp as the one seen in superfluid heli-
um. Although there is a general belief that rounding has
something to do with long-range correlated disorder, rel-
atively little work has been done to delineate those condi-
tions under which correlated disorder might lead to a
rounded as opposed to a sharp phase transition. In the
latter case, one would also like to know what the critical
exponents might be. Weinrib and Halperin® have ad-
dressed this issue theoretically, but recent experiments on
helium in porous media'®!! have uncovered many inade-
quacies in our understanding of such systems.

This paper is a review of our experiments on the criti-
cal behavior of both the superfluid density and the heat
capacity in two different *He-filled aerogels.'> In all
cases, the aerogel pores were completely filled with liquid
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helium. The thin film situation will not be discussed in
this paper. We will begin with a quick review of the
theoretical notation used in the study of critical phenom-
ena at the superfluid phase transition and a summary of
the existing theories of disorder in critical phenomena.
The focus of the work on helium in porous media has
evolved significantly over the years and so we will discuss
the experimental background from a historical perspec-
tive.

A. Theoretical background

1. Critical phenomena at the A transition

Good general introductions to scaling, universality,
and the renormalization group theory of critical phenom-
ena can be found in the review articles by Fisher and by
Kadanoff.* On the experimental side, the reviews by
Ahlers? serve as a good introduction to the superfluid
phase transition.

Existing theories of critical phenomena are generally
restricted to statements about the asymptotic behavior
very close to the phase transition, which is at 7,=2.172
K for superfluid “He. The independent variable of choice
is the reduced temperature,

t=T/T.—1, (1)

and the quality of an experiment, or implicitly, the quali-
ty of the particular sample that is measured, is judged by
how close to the transition one is able to take meaningful
data. In other words, what is the smallest measured |¢|
on a logarithmic scale? Very close to the transition, in
the limit ¢ —0, the superfluid density p () and the heat
capacity C (t) approach the asymptotic power laws

ps(t)~p, |t for 1 <0 )

and
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—1—4—|t|_"‘ for t >0
a

C(t)~ ’
4 [t|~® for t <O
a

+ analytic background .

(3)

The parameters { and a are called the critical exponents,
whereas the parameters Psy A, and A’ are called the crit-

ical amplitudes. Critical exponents are universal in that
they depend only on the dimensionality d of the system
and the number of components # in the order parameter.
In particular, superfluid *He belongs to the universality
class d =3 and n =2, called the three-dimensional XY
model. The best number for § is based on the second-
sound measurements of Greywall and Ahlers.'>!* The
best number for a is based on the heat-capacity measure-
ments of Ahlers'>!* and, more recently, Lipa and Chui.!

£=0.6717+0.0004 , 4)
ps,=0.351 g/cm®, (5)
a=—0.013+0.003 , (6)
A=6.108 J/K mole , (7)
A’'=5.771 J/K mole . (8)

Since § is so close to %, the superfluid density is often said
to follow a 2 power law. Similarly, since a is so close to
zero, the heat capacity is often said to have a logarithmic
singularity. The best theoretical estimates for the critical
exponents are based on the Borel-resummation technique
of Le Guillou and Zinn-Justin.!® They predict
£=0.672£0.002 and a=—0.016£0.006, both in good
agreement with the experimental data.

Universality exists because, close to the transition, the
physics is dominated by the large-scale fluctuations of the
order parameter, not by the small-scale structure of the
system under study. These fluctuations occur on all
length scales up to the correlation length £(t), which
diverges as t —0 with another power law,

Eolt|™ for t>0

§(1)~ Ele|™Y for <0 . ©

Strictly speaking, for isotropic systems with two or more
components in the order parameter, standard definitions
of the correlation length yield infinity at all temperatures
less than T,, and the quantity that is generally identified
as £ in these situations is the phase coherence length.'”!®
This length scale can be derived from considerations of
the helicity modulus (the free energy associated with a
twisting of the phase of the order parameter), which leads
to the relation

kyTm?
ﬁZ

1/(d—2)

&)= (10)

ps(t)

Using the published data for p;, we compute £,=0.344
nm.
In general, critical exponents within the same univer-
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sality class obey a variety of scaling relations. The
superfluid density and correlation length exponents are
related through {=(d —2)v. The appearance of the
dimensionality d in this relation is symptomatic of the
fact that Ayperscaling had to be assumed at some point in
the derivation. Hyperscaling relations are those that con-
nect thermodynamic quantities with the critical point
fluctuations. A good example is the relation between the
heat-capacity and correlation length exponents,
dv=2—a. Most useful for us is the relation that con-
nects the superfluid density exponent with the heat-
capacity exponent,

dé=(d—2)2—a) . (11)

There are also universal relations between the critical am-
plitudes. Hyperuniversality,’® which used to be called
two-scale-factor universality, connects the heat capacity
per unit volume to the superfluid mass density via a di-
mensionless universal number X. It is equivalent to as-
serting that the singular part of the free energy inside a
hypercube with linear dimensions equal to the correlation
length is a temperature-independent universal numbeér.
This dimensionless number, which is 0.62 in the case of
superfluid helium, is defined as

d/(d—2)

(12)

Phase transitions in real systems are rounded,’ mean-
ing that power-law behavior is never observed at the
smallest values of . For magnetic phase transitions in
solid systems, defects and impurities limit the sharpness
of the phase transition to 10~ at best, 10~ 3 more typical-
ly. At liquid-vapor critical points, the fluid compressibili-
ty diverges and, therefore, all experiments done under the
earth’s gravitation field have had problems with concen-
tration gradients. Transitions as sharp as 10™* to 107°
have been observed, but only by stirring the fluid and/or
somehow correcting for the concentration gradients. The
most precise tests of the RG theory of critical phenome-
na have come from studies of superfluid “He. Transitions
as sharp as 10~8 have been observed by Lipa and Chui,’
as the pressure dependence of the A point is so weak that,
under the earth’s gravitation field, the transition tempera-
ture gradient is only 1.194 uK/cm.

2. Disorder effects in critical phenomena

This discussion will be couched in the language of
magnetic phase transitions. The applicability of studies
on magnetic systems to superfluid helium is due to the ex-
istence of universality in critical phenomena. A recent
review of disorder in critical phenomena was published
by Grinstein.?°

Our objective was to study the effect of disorder intro-
duced by the addition of a quenched impurity, aerogel
glass, to an otherwise ideal system, liquid *He. In con-
trast, *He dissolved in liquid “He is said to be an annealed
impurity because the impurity atoms are not fixed in
space. Quenched impurities in magnetic systems fall into
one of two categories. In the first case, called random ex-
change disorder, nonmagnetic impurities in the sample
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lead to spatial inhomogeneities in the locally averaged
strength of the magnetic interaction. Since the transition
temperature depends on the strength of these averaged
interactions, random exchange disorder is often modeled
as a distribution of locally defined transition tempera-
tures, T,.(r). The second category, which is not the sub-
ject of this paper, is called spin-glass disorder. It corre-
sponds to the case in which the sign of the magnetic in-
teraction, not just the magnitude, is made to vary from
point to point.

Much of the RG theoretical infrastructure in critical
phenomena was developed for ideal systems, macroscopi-
cally homogeneous and infinite in extent. The first exact-
ly solved model of a disordered phase transition was the
two-dimensional (2D) disordered Ising model of McCoy
and Wu.?! In this model, the perfectly ordered rectangu-
lar lattice was preserved and all horizontal interactions
were the same. The vertical interactions were indepen-
dent of column but varied randomly from row to row.
McCoy and Wu’s solution was very striking because all of
the critical point singularities were smeared out. At that
time, a disordered system was often modeled as a weight-
ed average of an ensemble of independent and sharp
phase transitions with a distribution of T,’s. This ap-
proach also gave smeared transitions. Coupled with the
observation of smearing in all real phase transitions, these
ideas led many people to associate smearing with disorder
or inhomogeneity.

The relation between disorder and rounding, however,
is more subtle. This first became apparent when Harris®
showed that disorder does not necessarily lead to round-
ing. He considered only homogeneously disordered sys-
tems, ones in which the local impurity concentration is
uniform across the sample when averaged over a
sufficiently large volume. Therefore fluctuations in the
local T,, defined over independent volume elements of
size £% would be expected to go to zero as £— .
Adopting a self-consistent approach, he argued that such
a system would be stable against the smearing effects of
disorder if the fluctuations in the local T, decayed to zero
faster than |T— Tc| as §— . The fluctuations in the lo-
cal impurity concentration were assumed to follow a
Poisson distribution, so that the local T, fluctuations
scaled as 8T, /T,~& 9/2. This stability criterion, now
named after Harris, was written in terms of the critical
exponents for the pure undiluted system:

2= d Ve = Qpy <0 . (13)
Pure systems that satisfied this criterion would, after im-
purity dilution, undergo sharp phase transitions with the
same critical exponents as the undiluted system. Harris
suggested that a,,,.>0 would lead to smearing, but sub-
sequent RG calculations’ revealed that a sharp phase
transition with a new set of critical exponents would re-
sult instead. A very important feature of these new ex-
ponents was that @;m,... Was strictly negative. So, the
new exponents were stable against further applications of
the Harris argument. This prediction has generally been
confirmed by experiments on randomly diluted 3D Ising
antiferromagnets,® where the pure system exponent
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Qpure=0.11 is positive.

To reconcile the Harris result with the observation of
rounding in all real systems, one has to consider correlat-
ed disorder. This results from impurities that are not
homogeneously distributed on any experimentally achiev-
able length scale. Certainly, the model of McCoy and
Wu had correlated disorder. An explicit RG calculation
was developed by Weinrib and Halperin.® They con-
sidered a particular distribution of local T, whose spatial
correlations decayed to zero with a power law,

(T.(0)T.(r))~r—°, (14)

as r—oo. When the correlations decayed fast enough,
a >d, the Harris criterion for short-range or uncorrelated
disorder was recovered. In the case of long-range corre-
lated disorder, a <d, an extended Harris stability cri-
terion was derived,

2—avy,,.<0. (15)
A new set of critical exponents was predicted for those
situations in which this extended Harris criterion was
violated. Weinrib and Halperin argued that the correla-
tion length exponent for these impure systems would

satisfy a simple relation,
Vimpure:2/a > (16)

which they believed to be exact. The salient observation
was that, for a <2, the superfluid density exponent of
{=v>1 could be interpreted as a smeared transition.
Thus, at least in principle, this theory quantified the oft-
used statement ‘“‘macroscopic inhomogeneities lead to
smearing.”

There is, however, one situation admitted by Weinrib
and Halperin’s theory that was never observed. In 3D,
there is a narrow range of decay exponents, 2 <a <3, for
which sharp phase transitions with new critical ex-
ponents are expected. To be truly convincing, any
demonstration of this effect has to be done on a system
that is stable against the type of disorder considered by
the Harris argument. Superfluid helium is a candidate
for the pure system because its heat-capacity exponent is
negative, albeit, only slightly so. Aerogel glass is interest-
ing in this regard because it is known to have long-range
correlations.?>?* As it turned out, none of the existing
theories is able to describe our *He-filled aerogels. We
will discuss why in our final section.

B. Experimental background

The earliest experiments on *He-filled porous media
were conceived as part of an effort to study finite-size
confinement effects. These experiments showed a con-
tinuous depression of the superfluid transition tempera-
ture T, with decreasing pore size.”* The theoretical ex-
planation given for this effect was the healing length con-
cept of Ginzburg, Pitaevskii, and Mamaladze.”®> One as-
sumed that the superfluid density was zero at the bound-
ary and that it grew back to its bulk value over a healing
length /(T) given phenomenologically by

T)=1,(1—T/T,) ", 17)
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with [, typically of order 0.4 nm. The macroscopic
superfluid density would appear to go to zero when /(T)
became comparable to the pore size D, leading to a
depression in the superfluid transition temperature of the
form

(1=T./T,)~(D/l,) "%, (18)

give or take a geometry-dependent dimensionless scale
factor. It was essential in this theory that /(T) continued
to diverge at T,, even though the apparent superfluid
density went to zero at T,. In other words, the healing
length picture presumed that there was not a real phase
transition at T,. Although these ideas have now been su-
perseded by the renormalization group picture, we note
that modern RG theories of finite-size confinement, such
as the work of Huhn and Dohm,?® do in fact assume Dir-
ichlet boundary conditions that are vaguely reminiscent
of the healing length picture.

The inadequacies of the healing length picture were
first demonstrated by measurements of the superfluid
density in *He-filled Vycor. Reppy and co-workers?’
found that these data obeyed the 2 power law that was
expected from universality arguments for any 3D body of
superfluid helium. They proposed that there really was a
phase transition at T, with a divergent correlation length
inversely proportional to the superfluid density. Once
this correlation length grew much larger than the pore
size, the critical behavior would be governed only by the
long-range 3D connectivity of the porous structure. This
structure might alter the scale of the measured parame-
ters, but it would not change the essential nature of the
phase transition, meaning that 3D interconnected porous
media were really not very good systems in which to
study purely finite-size effects. Had the Vycor data not
existed, these arguments would have been dismissed as
circular because the existence of a divergent correlation
length had to be assumed in order to prove its relevance
close to T,. However, these data were consistent with
the correlation length arguments and, in time, even
moderately thin films of “He confined to the surface of
Vycor glass were shown to obey the 2 power law.

Many questions and doubts were raised by this inter-
pretation. The first was that superfluid power laws in
“He-filled Vycor were limited to only one and a half de-
cades of reduced temperature, with a pronounced round-
ing starting at 10”25, This put a limit on how accurately
the exponent, {=0.67+0.03, could be determined as the
transition temperature had to be chosen to give the best
possible power-law fit. Furthermore, subsequent at-
tempts®®%° to observe the heat-capacity singularity that
was supposed to be associated with this phase transition
all met with failure. As we show in Fig. 1, the heat capa-
city had only a broad maximum at a temperature some-
what larger than T,, which was qualitatively consistent
with finite-size expectations. Although there were
theoretical arguments based on hyperuniversality that
predicted that the critical point fluctuation contribution
to the heat-capacity singularity would be too small to be
measured in the Vycor system, the arguments were
suspect because they had to assume that there was a real
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FIG. 1. To emphasize the lack of a coincident heat-capacity
singularity in *He-filled Vycor, we plot the superfluid density
data (O) of Chan et al. (Ref. 10) alongside the heat-capacity
data (O) of Finotello et al. (Ref. 29). The scatter in the heat-
capacity data is 0.1% and the maximum in the heat capacity
occurs at 2.1 K, off the scale of this plot.

phase transition at T,.

In 1987, we obtained a new type of porous medium, a
densified xerogel glass.’® Torsional oscillator measure-
ments by Chan et al.!® revealed a superfluid density
power law that was clearly not %, as shown in Fig. 2.
This suggested that the results obtained earlier for *He-
filled Vycor were not universal and it weakened the case
for a full three-dimensional phase transition at 7,. We
thus chose to address the finite-size issue directly by
selecting a porous medium with a wide distribution of
pore sizes, one for which simple finite-size considerations
would predict a severely broadened transition. The
selected medium was aerogel glass, which, although simi-
lar to xerogel in some aspects of its production, was espe-
cially noted for its lack of a well-defined pore size. The
aerogel superfluid density measurements of Chan et al.'°
also did not show a % power law, but they did uncover
the sharpest phase transitions that had ever been seen in
any *He-filled porous media. These power laws extended
down to 107*3 in reduced temperature, well over an or-

0
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logio (0s/p)
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|
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FIG. 2. The superfluid density power laws for ‘He-filled
Vycor (O) and “He-filled xerogel (1) have exponents & equal to
0.6710.03 and 0.9010.02, respectively, based on the torsional
oscillator measurements of Chan et al. (Ref. 10).
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der of magnitude improvement on the Vycor and xerogel
results, and in complete disagreement with simple finite-
size considerations.

To understand the differences in the superfluid proper-
ties, we looked into the differences in the physical struc-
ture of our various porous media. Aerogels are noted for
their exceedingly high porosities or, in a related sense,
their extremely low densities. Our first samples had a
porosity of 93.9%, so that, once filled with helium, the
“He-filled aerogel system was like a large body of liquid in
the midst of a 6.1% volume impurity. In contrast, the
Vycor and xerogel samples had porosities of 30% and
60%, respectively. The small T, shifts that we observed,
4.0-5.7 mK for the first set of aerogels, were less than
3X107? of the pure system transition temperature,
which meant that we were in a dilute regime. For com-
parison, the Vycor and xerogel samples induced T, shifts
of 220 and 84 mK, respectively. Most important of all,
aerogel glass is known from both theory and experiment
to be exceptionally nonuniform, with highly ramified
structures extending over a wide range of length
scales.’>?* Vycor, in contrast, does not have such long-
range correlated structures. Armed with our knowledge
of disorder effects in critical phenomena, we attributed
these new exponents to the long-range correlated disorder
that we knew to be present, even though we could not ac-
tually derive the exponents from the scattering data.

In any case, there was still one major piece of missing
evidence. Although Finotello, Gillis, Wong, and Chan®
did observe singularities in the heat capacity of thin “He
films adsorbed on the surface of Vycor and xerogel, their
singularities disappeared when the pores were completely
filled with liquid helium. The existence of this heat-
capacity singularity is particularly significant because, to-
gether with the lack of a latent heat, it is almost the
defining characteristic of a continuous phase transition.
One notable exception is the Kosterlitz-Thouless transi-
tion for two-dimensional “He films,*' for which the heat
capacity has only an essential singularity, with finite
derivatives to all orders in 7. Significantly, our heat-
capacity experiments on “He-filled aerogel revealed the
presence of a sharp singularity in the heat capacity that is
coincident with the superfluid transition. This cusplike
singularity is different from the logarithmiclike singulari-
ty that is seen in bulk helium, but it is consistent with our
observation that the superfluid density critical behavior is
not bulklike.
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II. AEROGELS

A recent and comprehensive source of information on
aerogels is the proceedings book edited by Fricke.!? At a
more elementary level, there is also an article by Fricke
in the May 1988 issue of Scientific American.

A. Manufacture and handling of aerogels

All of our original experiments were conducted on an
old block of aerogel donated to us by DESY, but
manufactured by Airglass.®> Our more recent experi-
ments were done on a fresh block of aerogel purchased
directly from Airglass. These aerogels were prepared in
the traditional manner first developed by Nicolaon and
Teichner:3

Si(OCH,),+4H,0—>Si(OH), +4CH,0H , (19)
nSi(OH),—[Si0,], +2nH,0 . (20)

In the first step, tetramethoxysilane (TMOS) is decom-
posed into Si(OH), and methanol. Si(OH), is not stable
and it polymerizes very readily into colloidal aggregates
of Si0,, releasing water in the process, as indicated by the
second equation. The result is a silica mesh immersed in
methanol. Its density can be reduced by dilution with
methanol. The reaction rate is usually accelerated by
adding ammonia to increase the pH. Removal of the
methanol solvent is done through a supercritical drying
process, which prevents the formation of the liquid-vapor
interface whose surface tension would otherwise crush
the delicate silica gel structure.

Our aerogel samples were machined into cylinders, to a
0.025-mm tolerance, using an abrasive cutter. In our ear-
liest runs, samples A—E, the cylinders were compressed
into the sample holder using a taper. In our later runs,
samples F and G, the cylinders were glued in place and
no compression was used. The special epoxy that made
this possible is called BIPAX Tra-Bond BA-2151.>* As
shown in Table I, the compressed samples exhibited a
significant variation in T,, even though they were cut
from the same block of aerogel. The shift in the
superfluid transition temperature, relative to the A point,
scaled monotonically with the degree of compression. In
contrast, the 7T,.’s for our two glued samples agreed to
within the accuracy of our thermometers. We have
opened up some of our cells after a liquid-helium experi-
ment, examined the aerogel visually, and found it to be

TABLE 1. For each run, we have listed the aerogel source and density, the sample diameter and
height (after compression), the volume compression, the T, shift, and the type of data taken.

p d h av/v T,—T,

Sample Source (g/cm®) (inch) (inch) (%) (mK) Data
A DESY 0.133 0.250 <0.250 >5.4 5.66 Ps
B DESY 0.133 0.257 0.265 8.0 5.23 Ps
C DESY 0.133 0.366 0.117 7.1 4.50 C
D DESY 0.133 0.740 0.102 1.1 4.00 C
E DESY 0.133 0.252 0.265 3.4 4.34 both
F Airglass 0.200 0.222 0.204 glued 7.01 Ps
G Airglass 0.200 0.740 0.102 glued 7.10 C
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intact. Evidently, the surface tension of liquid *He is not
large enough to destroy the delicate aerogel structure.

B. Characterization on many length scales

Our DESY aerogel had a density of 0.133%0.009
g/cm3. The porosity deduced from a filling experiment
on sample B was 93.7%, which is comparable to the
93.99% figure that we computed by assuming a density of
2.19 g/cm3 for amorphous silica.® According to Air-
glass, the aerogel sample that we purchased directly from
them had an optical index of refraction n=1.042. We
computed the density p by using the empirical relation of
Poelz and Riethmiiller*® and Henning and Svensson,’’

- n—1
P=70.210+0.002)

This gave us a density of 0.200 g/cm® for the Airglass
aerogel, from which we deduced that the porosity was
90.9%.

Schuck and Dietrich®® have performed a series of nitro-
gen adsorption-desorption isotherms on three samples of
aerogel, from Airglass, with densities of 0.105, 0.145, and
0.275 g/cm3. The specific surface areas were 625, 840,
and 665 m?/g, respectively. They did not explain why
the surface areas were not monotonically related to the
densities. The pore size distribution extended from the
nm to the um range, with mesopores of diameters up to

g/cm’ . (21)
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60 nm taking 13%, 25%, and 57%, respectively, of the
total pore volume. Macropores larger than 60 nm
comprised the majority of the pore volume, especially in
the least dense aerogels. Exposure to ambient humidity
did not change the macroscopic appearance of the aero-
gel, nor did it change the specific area by more than 5%,
but it did collapse some of the larger mesopores and leave
in its place a more narrow mesopore distribution centered
around 15 nm. The DESY aerogel samples given to us
were available partly because they were known to have
been exposed to a damp environment while at DESY. In
contrast, the Airglass samples were purchased fresh and
kept in a dessicator at all times. To emphasize the total
lack of a well-defined pore size, we have reproduced in
Fig. 3 the aerogel TEM image of Tewari, Hunt, Lieber,
and Lofftus.*

The sol-gel process involved in the formation of silica
alcogel is one of a large class of kinetic aggregation pro-
cesses that have been the subject of intense study in re-
cent years.** Computer simulations have indicated that
these processes tend to form clusters with highly
ramified, statistically scale-invariant, fractal structures.*!
The fractal dimension D, depends on the details of the
aggregation process. At one extreme, diffusion-limited
aggregation (DLA) models* give D,=2.51£0.06,%
while at another extreme, reaction-limited cluster-cluster
aggregation (CCA) models* give D,=1.98 +0.04. Ex-

FIG. 3. This transmission electron micro-
graph of a carbon-coated flake of base-
catalyzed aerogel was produced by Tewari,
Hunt, Lieber, and Lofftus (Ref. 39). The pore
space is shown in white and the scale bar at the
bottom corresponds to a length of 100 nm.
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perimental evidence for the existence of fractals in real
aerogels has been somewhat qualified. Small-angle neu-
tron scattering measurements by Vacher, Woignier,
Pelous, and Courtens?? on a series of neutrally reacted
aerogels with densities from 0.095 to 0.356 g/cm® showed
mutually self-similar fractal regimes spanning up to two
decades in length, all with a fractal dimension of
D, =2.40%0.03, and with the most extended power laws
in the least dense samples. More recent light scattering
data by Ferri, Frisken, and Cannell*® on a variety of un-
dried silica hydrogels, although mostly consistent with
the data of Vacher et al., indicated that the fractal di-
mensions could vary from 2.4 down to 2.1, depending on
the gelation conditions, but nevertheless within the
bounds imposed by the idealized models of DLA and
CCA. Vacher et al. also found that the scattering inten-
sities for their base-catalyzed aerogels could not be de-
scribed by a single fractal exponent, in agreement with
the previous x-ray scattering measurements by Schaefer
and Keefer?® on base-catalyzed aerogels obtained from
Airglass. This is important because both of our aerogels
were base-catalyzed.

C. Comparison with porous Vycor glass

For the purpose of this comparison, we need only point
out that the pore structure in Vycor is noticeably more
uniform than that in aerogel. This is immediately ap-
parent in the transmission electron micrograph of Levitz,
Ehret, Sinha, and Drake,*’ which is reproduced in Fig. 4.
The underlying reason for this difference rests in the fun-
damentally different process that is used to make Vycor.
Vycor is manufactured from a melt of borosilicate glass
which is rapidly cooled below its demixing temperature,
forcing it to spinodally decompose into a SiO,-rich phase
and a B,O;-rich phase. The latter phase is leached out
with a suitable acid, leaving a porous SiO,-rich glass that
we call Vycor. In fact, this porous glass is just a precur-
sor product in the production of a dense SiO,-rich glass
that Corning sells under the brand name Vycor. Unlike

FIG. 4. This digitally enhanced transmission electron micro-
graph of a thin 35-nm slice of resin-filled Vycor was produced
by Levitz, Ehret, Sinha, and Drake (Ref. 47). The pore space is
shown in white and the horizontal scale is 800 nm.
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the aerogel structure, which is built up by a kinetic aggre-
gation mechanism, the Vycor structure is formed all at
once throughout the melt as it separates into little glo-
bules of SiO,-rich and B,0O;-rich phases. This is why the
pore space tends to be much more uniform, with struc-
ture only on the length scale of the pores, as indicated by
the peak in the neutron scattering data of Wiltzius, Bates,
Dierker, and Wignall,48 and in agreement with the
theories of spinodal decomposition by Cahn.*’

III. OSCILLATORS

The principles of a torsional oscillator are outlined in a
chapter from the low-temperature techniques book edited
by Richardson and Smith.® This section will be limited
to those details that are specific to the low-frequency os-
cillators that we have used to do our critical point mea-
surements.

A. Low-frequency design and operation

All torsional oscillators are susceptible to sound reso-
nance problems. For a cylindrical sample of radius r and
height 4, these resonances occur when the oscillator fre-
quency f and the sound velocity c satisfy the relation®!

2 271122
amn
+
r

) (22)
where n,=0,1,2,3,... and «,,, are the roots of the
Bessel function equation [dJ,, (7a)/da]=0. If h=2r, as
is usually the case in our cells, the sound modes appear in
the order mnz =001,100,101,200,002, . .. with
2hf /c=1,1.172,1.541,1.944,2, ..., respectively, as
¢ —0. The characteristic length for coupling to an oscil-
lator substrate is determined by the viscous penetration
depth 8=V27/pw, where 7 is the normal fluid viscosity,
p is the normal fluid density, and w is the oscillator fre-
quency. Near the A point, § is 5 um at 200 Hz. Pore
sizes are generally much less than 8, so in a conventional
porous medium this would mean that only the superfluid
is free to move and the relevant sound mode is fourth
sound.” For a highly compressible porous medium like
aerogel, however, the normal fluid can also move, in tan-
dem with the glassy backbone, and the relevant excitation
is the second-sound-like mode discussed by McKenna,
Slawecki, and Maynard.>?

The crucial observation is that there are an infinite
number of temperatures at which this resonance condi-
tion is satisfied because, as T— T, , the sound velocity
goes to zero. This is a problem because the best tracking
circuits invariably use a phase-sensitive detection scheme
to lock onto the oscillator. Sound resonances distort the
oscillator phase and introduce S-shaped wiggles in the
period output as a function of temperature. We never did
get rid of this problem, strictly speaking, but we were
able to make the oscillator frequency so low and the sam-
ple cell so small that the sound resonances occurred too
close to T, to affect our critical point measurements. In
particular, we chose to operate our aerogel oscillators in
the 150-300 Hz range. Although our BeCu torsion rods
were only 0.53 mm in diameter, they were still not thin

f:

4 n,
2 h
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enough to achieve the desired frequencies. The sample
cell holders had to be made more massive to compensate,
but because our oscillators had a very high signal-to-noise
ratio to begin with, the resultant loss in sensitivity was
not important. Typical sample cell sizes were about 6 or
7 mm in both diameter and height. More precise dimen-
sions are given in Table I. The overall cell layout is de-
picted in Fig. 5.

The oscillators were usually driven by one of our
homemade “‘torsional oscillator automatic drive systems”
(TOADS boxes). A block diagram of this circuit is de-
picted in Fig. 6. Occasionally, we also used a PAR 124
lock-in amplifier in the feedback circuit devised by Agno-
let, McQueeney, and Reppy.** All of our BeCu oscilla-
tors were nonlinear,>”> meaning that the resonant frequen-
cies were a weak function of the oscillator amplitude.
Typical values of (8f/f)/(8A4/A) were 4X107°. Since
the total cell dissipation changed by about a factor of 1.4
as we swept through the transition, we tried to operate
our oscillators in a constant amplitude mode, whenever
possible, by using our data acquisition system to adjust
the drive level every 15 sec. As it turned out, the critical
exponents were quite resilient to changes in the operating
condition. For example, with sample E in the simultane-
ous p, and C measurement, we used the TOADS box in a
constant amplitude configuration. Afterwards, we
warmed up, removed the thermal isolation superleak, and
repeated the p, measurement using the PAR 124 lock-in
in a constant drive configuration. The empty cell oscilla-
tor was about four times more lossy the second time
around, due to a bit of silver paint that we accidentally
deposited on the torsion rod, but the filled cell period sta-
bility was not affected. Even more important, no discer-
nible change in the superfluid density exponent was ob-
served. We summarize our drive conditions in Table II.

Capacitive electrodes, biased at 180 V dc, were used
both to drive and to detect the oscillator motion. These

vibrational
isolator's
torsion rod

21mil BeCu
torsion sod

transverse
aerogel pill

vibrational
isolator's
extra mass

25 mm

FIG. 5. This is an exploded cross-sectional view of our low-
frequency torsional oscillator. The sample head was made of
aluminum, but the torsion rod and vibration isolator were made
of BeCu. The vibration isolator structure was also designed to
serve as a protector for the delicate torsion rod. Two “ears” on
the sample head formed one-half of our capacitive drive and
detect system. Complementary electrodes (not depicted here)
were attached to the vibration isolator structure.

electrodes have a known side effect.”® They change the
torsional spring constant by
2

, (23)

r

AK=—CV} 4

where C is the electrode capacitance, V is the dc bias
voltage, r is the radial distance from the electrode to the
torsion rod, and d is the capacitor gap. Notice that the
sign of this spring constant effect does not depend on the
electrode orientation. This effect is particularly severe in
a low-frequency oscillator because the torsion rod is very
compliant. Our torsion rods had spring constants of
7.2X 1072 N m, versus a total contribution of 8.1X1073
N m from the two-electrode drive and detect system. In
order to get a period stability of better than 1 part in 108,
the drift in the dc bias voltage has to be less than 10 ppm.
Conventional batteries are not this stable and so we regu-
lated our bias voltage by using a simple op-amp circuit to
add a correction voltage to the battery output. Over a
three to four day test period, we found that our 180 V dc
regulated batteries were stable to within the =1 mV reso-
lution of our voltmeter.

amplitude frequency
output output
4
A
Q filter pha.s.e-
(optional) sensitive
detector
¢
I preamp
low-pass
filter
detect
TORSIONAL y
OSCILLATOR -
| integrator |
drive y
sine-wave vo:talgle-d
generator °°“,r° ©
I T AN\ oscillator oo
phase- drive-
shift level
control control

FIG. 6. This is a block diagram of one of our torsional oscil-
lator automatic drive systems or TOADS boxes. The feedback
circuit formed by the phase-sensitive detector, low-pass filter,
integrator, and voltage-controlled oscillator is a phase-locked
loop that tracks the frequency of the torsional oscillator. It is
used as a part of the larger feedback circuit that drives the tor-
sional oscillator. The phase of the sine-wave generator must be
adjusted to compensate for the shifts due to the torsional oscil-
lator, the capacitive electrodes (whose dc bias circuitry is not
depicted here), and the preamp. A third feedback loop, imple-
mented in software by our data acquisition system, adjusts the
magnitude of the drive signal in order to maintain a constant
amplitude for the oscillator motion.
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TABLE II. The oscillator parameters listed here are the frequency and amplitude at the superfluid
transition, and the hydrodynamic y factors at the gross, macroscopic, and microscopic levels.

P f 4
Sample (g/cm’®) (Hz) (107 rad) X XM Xm
A 0.133 153.5 51 not available not available not available
B 0.133 203.8 76 0.334 0.207 0.161
E 0.133 141.9 238 0.329 0.212 0.149
F 0.200 293.8 543 0.163 0.0 0.163

B. Large-scale hydrodynamic corrections

Ideally, the superfluid mass is decoupled from the tor-
sional oscillator because its viscosity is identically zero.
In any real porous medium, however, the flow path is al-
ways tortuous and even a zero viscosity superfluid will
impart some resistance, called inertial drag, to the motion
of the porous substrate. Following Mehl and Zimmer-
man,’® we have defined the x factor as the fraction of the
superfluid mass that is effectively coupled to the porous
substrate. Y is zero in the ideal case. A deeper under-
standing of these effects is important because, ultimately,
they determine the magnitude of the heat-capacity singu-
larity.

For incompressible superfluid flow, we can write the
velocity as the vector gradient of a scalar potential ¢,
namely, v, =V¢. If the oscillator is rotating at a constant
angular velocity o, then linearity implies that we can
write the scalar potential as ¢(r)=wB(r), where B(r) is
some function of the porous structure. Since the flow is
inviscid, velocity transients cannot decay with time and,
therefore, there can be no such transients. The flow field
must respond instantaneously to any change in w(t),
meaning that we can write

¢(r,t)=w(t)B(r) . (24)

This result makes it easy for us to calculate the effective
moment of inertia from the ratio of the time derivative of
the angular momentum to the angular acceleration. The
x factor is then defined as the ratio of this effective mo-
ment of inertia to the solid body moment of inertia of the
helium inside the porous medium:

x [[ricn)d’r= [[txXVB(D)ld’r, (25)
where C(r) is defined to be 1 when r is in the pore space
and O when r is in the glass. Notice that by defining y in
these terms, we have averaged out any small-scale inho-
mogeneities in the porous structure.

Superfluid mass in *He-filled porous media can be mea-
sured by torsional oscillator or fourth-sound experiments.
J

_ 1

bi_ 1 b b
a 1+(b/a)? a

2
X, + 744£5( 5)
T

The symmetry relation x,(b/a)=x,(a/b) was used to
ensure that b /a was always a small number in the series
expansion. After a suitable integration, we got x.(d /h),
the y factor for a cylinder of diameter d and height A, ro-
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These two techniques are complementary, and this is
reflected in a relation between the ) factor and the acous-
tic index of refraction n. The underlying reason for this
relation’s existence is that both problems require a solu-
tion of Laplace’s equation with the same boundary condi-
tions. However, the relation can be more easily derived
through an energy argument. Suppose we rotate the sam-
ple at o, cool through the superfluid transition, and then
stop rotating the sample. A persistent current will be set
up. How should we account for the tortuosity of the
porous medium in our expression for the kinetic energy
of the superfluid? We can put a correction factor into
our definition of either the moment of inertia or the angu-
lar velocity. In the first case, the effective moment of in-
ertia is (1—x)I, where I is the solid body moment of iner-
tia of the helium inside the porous medium. Alternative-
ly, since waves propagating through a refractive medium
transport energy at the group velocity, we can replace
with (w/n). Equating these two equivalent expressions
for the kinetic energy, we find that

n?=(1—y)"1, (26)

in agreement with the more detailed calculations of
Yanof and Reppy, as well as Bergman, Halperin, and
Hohenberg.”’

Interpretations for samples B and E were further com-
plicated by the fact that the axis of the aerogel cylinder
was oriented perpendicular to the torsion rod. We did
this to improve the oscillator stability because we found
that, in a conventional colinear configuration, unglued
aerogel cylinders grasped by their circumference would
slip. Flipping the cylinder over by 90° ensured that it
would be pushed back and forth instead. The transverse
orientation introduced a Y factor of its own, which we
had to compute numerically, starting with Fetter’s>® solu-
tion for the x factor of a rectangle with sides @ and b, ro-
tation axis perpendicular to and centered on the rectan-
gle. This x,(b/a) was written in the form of a rapidly
convergent series, for which the first three terms inside
the summation ensured at least six digits of accuracy:

3
- 1

= (2n+1)*{exp[(2n +1)ma /b ]+ 1}

b 27
a

™M

77.5

[

tation axis perpendicular to the cylinder axis and cen-
tered along its length. The idea was to add up the mo-
ments of inertia for infinitesimal rectangular slabs, each
weighted by x,, and then normalize by the moment of in-
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ertia for the entire cylinder, giving
Zfo(d/m{l—‘zb(z)[l+b(z)2]})(,(b(z))dz
7(d /2h {5+ Hd /2h)?)

4a
h

c >

(28)

where b(z)=2V'(d /2h }*—2z?%. Notice that x, and x, de-
pend only on the aspect ratios b /a and d /h. They are in-
variant against isotropic changes of scale because, in a
zero viscosity fluid, there is no characteristic length.

The gross x factor was obtained from a combination of
oscillator periods for the empty and filled cell, denoted as
P, and P,. A simple three-step procedure was used to
compute, in order, the background-corrected period AP,
the superfluid period shift AP, and the gross y factor:

AP(T)=P/(T)—P,(T), (29)
AP,(T)=AP(T;)—AP(T) , (30)
(1—x)=AP,(0)/AP(T,) . (31)

The gross y factor was subsequently decomposed into a
macroscopic term X, due to the transverse mounted
cylinder, and a microscopic term Y,, due to the tortuosity
of the porous medium:

(I=x)=(1—xy N1—x,,) . (32)

There is no way to decouple the evaluation of a y factor
from the assumption of a unity value for the zero-
temperature superfluid fraction, short of explicitly calcu-
lating the y factor itself. In the case of *He dissolved in
“He, the superfluid fraction is definitely not unity at zero
temperature.”® Since our assumption breaks down in the
annealed impurity case, we can think of no compelling
reason why it should hold in the quenched impurity case.
However, in analogy with the microscopic theory of
Feynman,’® which treats the motion of a 3He atom
through the “He background as a microscopic hydro-
dynamic problem not unlike a ) factor calculation, one
might argue that y factors are just another way to ex-
press the same physics that might otherwise be represent-
ed by a nonunity value of the zero-temperature superfluid
fraction. We shall assume this to be so without further
argument and summarize our calculations in Table II.

In the final section, we will argue that the fluctuation
contribution to the heat-capacity singularity is governed
by a quantity that we call the coarse-grain averaged
superfluid density g, which is the superfluid density aver-
aged over the entire sample volume. For now, we merely
define it in terms of the measured numbers. We start
with the oscillator’s mass sensitivity dm /dP, given by

dm _ _ pV (33)

U=Xu)"4p = apP(T,)

where p is the density of liquid helium and V is the open
pore volume in the sample cell. The coarse-grain aver-
aged superfluid mass is defined as m,=(dm /dP)AP;.
The coarse-grain average volume is taken to be V=V /P,
where 7 is the porosity of the aerogel. This might seem
unusual at first, but it is not, because, in the impurity in-

terpretation that we have adopted, the sample volume
must include both the helium and the aerogel. These
definitions can be reduced to one simple equation:

(D =[(1—x,,)Plp,(T) . (34)

Everything conspires to make p; smaller than p,. Packed
powder experiments® indicate that y factors tend to in-
crease when the porosities decrease. So, highly porous
media such as aerogel tend to have g, that are not much
different in magnitude from bulk helium, whereas less
porous media such as Vycor have g, that are significantly
smaller.

IV. CALORIMETRY

In adiabatic calorimetry, the quality of the thermal iso-
lation is at least as important as the quality of the ther-
mometry. Thermal isolation is a particularly difficult
problem when there is superfluid helium inside the fill
line. For our low-resolution experiments, samples C and
E, we packed 10—-80 nm jeweler’s rouge into the fill line
in order to make a superleak plug through which normal
fluid counterflow was forbidden, and hence through
which no superfluid heat transport would occur. The
thermal isolation provided by the superleak plug was not
ideal,®! so resistance thermometry sufficed for these runs.
For samples D and G, a low-temperature valve was used
instead. This solved our thermal isolation problem, and
it made worthwhile the installation of a high-resolution
superconducting quantum interference device (SQUID)-
based magnetic thermometer. The resultant setup was
able to measure heat capacity to 100 ppm using tempera-
ture steps of only 30 pK, and it is the subject of the
remainder of this section.

A. SQUID-based magnetic thermometer

The high-resolution magnetic thermometer that we
used was originally developed by Lipa and co-workers.
The temperature-dependent quantity measured was the
magnetization of a sample of copper ammonium bromide
(CAB) salt, Cu(NH,),Br,-2H,0, that was subjected to the
extremely stable magnetic field inside a superconducting
niobium tube. CAB is a 3D Heisenberg ferromagnetic in-
sulator®® with an ordering temperature of 1.8 K. The salt
crystals were mounted inside a § inch length of a 4-40
tapped hole, using an Allen head screw to crush and
compress them into this 0.016-cm® sample volume.
Threaded walls improve thermal contact by doubling the
surface area shared by the salt and the copper cell body.
Judging from our raw T'(¢) data, the thermal relaxation
time between the sample and thermometer was around 30
sec.

Figure 7 depicts the complete magnetometer system.
Temperature-induced changes in the magnetization of the
CAB salt were coupled to a rf SQUID by a superconduct-
ing dc flux transformer. All of the important SQUID
electronics, as well as the SQUID itself, was purchased
from BTL.%* The homemade rf probe was a more or less
exact imitation of BTD’s triax and tuning circuit, adjusted
to accommodate our special spatial constraints. Al-
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FIG. 7. This is a block diagram for our SQUID magnetome-
ter. It was not possible to fully shield the superconducting dc
flux transformer from rf noise, so a 2.7-Q) shunt resistor was
placed across the 2-uH input coil to create a low-pass filter.
The LC tuning network at the bottom of the triax was adjusted
by trial and error to suit the 19-MHz circuitry on the rf head.
All of the SQUID circuitry (the Model-300 rf head, the Model-
30 flux-locked loop, and the Model-DFC digital flux counter)
was purchased from BTL.

though the flux-locked loop (FLL) was extremely sensi-
tive to small changes in the magnetization, its analog out-
put was inherently incapable of the dynamic range that
we needed. This problem was solved by limiting the FLL
output to £1¢, and than counting ¢,’s to compensate, us-
ing the digital flux counter (DFC). The flux counter out-
put was a nine-digit number for which the first five digits
represented the ¢, count and the last four digits
represented the fractional ¢, signal coming out of the
FLL circuit. When the FLL was set to its slow mode,
with a 10-Hz output filter, we got a rms flux resolution of
2X 107 3¢, at a maximum slew rate of about 500 ¢,/sec.
Since we had to maintain a continuous record of the
flux count, we were constantly on the lookout for any-
thing that might disturb our flux counting system. We
found that routine transfers of liquid helium into the bath
would sometimes upset the flux count by tens of ¢,. The
flux jumps occurred when the transfer stick was first in-
serted into the Dewar. The telltale signature was a sharp
lurch in the ¢(¢) chart trace that was not accompanied by
a corresponding change in the cell’s resistance thermome-
ter. To be safe, we always backed up after a transfer and
retook a few of the data points that were measured just
before the transfer. Later on, we examined the overlap-
ping heat-capacity data from before and after the transfer
to determine if a flux jump occurred and, if so, how
much. We then shifted our T(¢) calibration by some in-
tegral number of ¢,’s in order to get the data to merge.
In most cases, this allowed us to correct the flux jump
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down to the final ¢,. At the end of the run on sample D,
in order to see how well we kept track of things, we
backed up and retook seven additional heat-capacity data
points, evenly spaced over the critical region, with no in-
tervening transfer. All of these retakes came within
30-70 ppm of the original data.

The temperature dependence of the magnetization was
a function of the size of the trapped field. At tempera-
tures well above the CAB ordering transition, we found
that the magnetization scaled more or less linearly with
the applied field, in accordance with expectations based
on assumptions of a simple Curie-Weiss susceptibility.
Nearer the ordering transition, and in accordance with
expectations based on theories of critical phenomena,
larger applied fields smeared out the magnetization sig-
nal. The ordering transition also contributed a small
singularity to the heat-capacity background. Just as with
the magnetization signal, this singularity was smeared
out as the applied field was increased. All of these field
dependencies are depicted in Fig. 8. ¢(T) was calibrated
against a carbon glass resistor that was mounted on the
cell. Absolute accuracy was about + mK, which was
sufficient because critical exponents are, to first order, in-
variant against smooth distortions of the temperature
scale. Critical exponents are also insensitive to small
drifts in the thermometry, so we did only a simple test to
verify that the A point, as determined through repeated
heat-capacity measurements, was stable to at least a uK
over a day or two.
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FIG. 8. Increasing the applied field smears out the CAB or-
dering transition. This effect is seen in both the magnetization ¢
and the heat-capacity background Cey,,,. The vertical shift in
the two heat capacities is a result of our having switched to a
more massive valve assembly between runs.
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We usually trapped a field of 375 G inside our niobium
tube, which gave us a sensitivity of 0.74 ¢,/uK near T).
This resulted in a rms temperature resolution of just un-
der 3 nK, from 2.2 K down to at least 1.4 K. The
thermal fluctuation limit is 87 /T =(2ky /Cy,)'/?, which
worked out to 0.8 nK for our quantity of CAB salt.

B. High-resolution heat capacity

Figure 9 depicts the complete high-resolution aerogel
heat-capacity cell. In spite of the fact that there was a lot
more metal than helium in this design, the heat capacity
due to the helium inside the aerogel, near the superfluid
transition, was 50 times larger than the background heat
capacity. The capacitive liquid level sensor above the
aerogel was used to verify that we always had a liquid-
vapor interface, even as the volume of the liquid inside
the cell changed with temperature, ensuring that our ex-
periment always operated at saturated vapor pressure.

Spatial constraints dictated that we had to use a hy-
draulic mechanism to actuate the valve, as opposed to a
mechanical one. Since we were using “*He as our hydraul-
ic fluid, we had to design the valve so that the actuator
line could be pumped out without undoing the seal, or
else the helium inside the actuator line would have given
us a thermal short. Our idea was to make an indium O-
ring joint in situ, at low temperatures, and with such high
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FIG. 9. This is an exploded cross-sectional view of our high-
resolution heat-capacity cell, which was suspended from the
stage by three hollow Vespel rods and then enclosed by a radia-
tion shield that was thermally anchored to the stage. The valve
assembly was made of unannealed BeCu, but everything else

was made of oxygen-free high-conductivity (OFHC) copper.

actuator forces that the indium would cold weld. After
numerous failures, we decided that since it was the sur-
face normal force that caused the indium to flow and
make a seal, blunt stems would work better. Our most
reliable valves used a 60° stem and a 120° seat. Both
pieces were machined from brass and then coated with a
thick 0.1-0.3 mm layer of indium. The stem was
mechanically coupled, but not physically attached, to the
bellows actuator. Thus it would be pushed into the seat
when the bellows were pressurized, but it would not be
pulled back out when the bellows were evacuated. Since
the indium joint was not very strong, the stem popped off
benignly when the cell was warmed up at the end of the
run. With our £-in.-diam bellows, we found that at least
400 psi of pressure, equivalent to an actuator force of 120
1b, was needed to make the valve seal. We never tried to
reuse any of our stems or seats because they were both
visibly deformed after just one operation.

Once the valve was pumped out, we were left with a
cell that had a very large heat capacity and was extreme-
ly well isolated from the rest of the cryostat. For sample
D, the thermal isolation time between the stage and the
cell was 3.0 days near the heat-capacity maximum at the
superfluid transition, which corresponded to a thermal
conduction of 4.3 uW/K between the stage and the cell.
This was the same thermal conduction that we measured
before the cell was filled, and we interpreted this agree-
ment as proof that our valve was working. For most of
the first week after an initial cool down, there was a slow
time-dependent heat leak into the cell. We suspect that
this was due to the aerogel glass and/or our various
epoxy joints. Glassy materials like these are known to be
a source of such time-dependent heat leaks.®® Since this
virtual heat leak could be tens of nW, we were not able to
take reliable data until it decayed away. Therefore our
slow startup procedures (three to four days to pump out
the valve, another two to cool the cell down) were not a
hindrance.

Current flowing through the 407-Q noninductive cell
heater was monitored using a stable (4 ppm/K) room-
temperature series resistor. Our data acquisition system
maintained its own estimate of the most recently mea-
sured heat capacity in order to compute just how much
energy was needed to either step to the next data point or
to take a heat-capacity measurement. In the latter case,
the heater powers were usually chosen to make the pulse
width 1 min long. Somewhat longer pulses, up to 5 min,
were used for the biggest temperature steps when our
heater output saturated. Typical heater powers ranged
from 35 nW, when taking 2-uK steps near T, up to 8
uW, when taking 1-mK steps far below T,. The tempera-
ture steps were chosen to be no bigger than the distance
to the next data point, and always less than 1 mK, to en-
sure that the critical point singularity would not be
smeared out.

Each pulse measurement generated a separate file con-
taining a curve of temperature versus time (sampled
every 10 sec), a curve of heater current versus time (sam-
pled every 2 sec, filed only during the pulse), and a few
other associated numbers such as the pulse width and the
pulse location. A sample pulse and fit deviation is shown
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in Fig. 10. Our fitting function, 7'(¢), varied with the size
of the temperature step. In most cases, for step sizes be-
tween 20 and 200 uK, we fitted to a common linear back-
ground drift on both sides of the pulse, plus an exponen-
tial decay contribution after the pulse. Assuming that
the heater pulse started at ¢; and ended at ¢,, we fitted to

T(t)=T,+8Tt+{T,exp[—(t—t,) /7] fort>1t,} .
(35)

The fit was restricted to data with ¢t <t, or t >, + ¢t c.;»
where ¢, .,. =180 sec was needed because the tempera-
ture decay would not achieve steady state until some time
after the heater was shut off. We could have fitted to an
exponential decay on both sides of the pulse, with a fixed
baseline defined by the stage temperature, but 87; was
usually too small, less than 0.1 nK/sec, to justify this ex-
tra complication. To compensate for the heater power
lost through conduction across the weak thermal link be-
tween the stage and the cell, it sufficed to evaluate the
temperature rise at the midpoint between ¢, and ¢,. This
approximation is correct insofar as the temperature rise
during the heater pulse is linear in time, or equivalently,
if the rate of heat conduction between the stage and the
cell is small compared to the heater power. For the
smallest step sizes, our nonlinear least-squares algorithm
often crashed with 7=0 or o. So we simply fitted 7(z)
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with two straight lines. At the other extreme, for the
largest step sizes, Eq. (35) was not able to fit the data
above ¢, because T was temperature dependent. To avoid
the obvious recursion problem, we took advantage of the
fact that 7 was huge on the time scale of our pulse mea-
surement. Hence the exponential decay in T(¢) was
linear to the first two digits and we could approximate 7
as a weakly linear function of time. This took care of the
fit deviations that would have otherwise appeared on the
fifth digit of the temperature rise.

V. RESULTS

The most direct criterion for a dilute impurity is that
the depression in the transition temperature that it in-
duces must be small compared to the pure system T..
Table I confirms that aerogels satisfy this criterion be-
cause the observed shifts are not more than 4X 1073 of
the pure system T,. Although aerogels have only a tiny
effect on the transition temperature, we shall see that

they have a very dramatic effect on the critical exponents.

A. Superfluid density power-law behavior

Figure 11 depicts the superfluid density, normalized to
one at zero temperature, for our two representative aero-
gels. The difference in curvature between these data and
the bulk helium line demonstrates that these data are not
bulklike. Detailed magnifications shown in Figs. 12 and
13 indicate that even our worst samples had transitions
that were sharp to at least 10~ in reduced temperature.
Starting at about 200 uK below T, and ending more or
less at T, there was a pronounced dip in the dissipation
data. In samples E and F, there were also an accompany-
ing kink in the oscillator period. We doubt that this
feature was due to a sound resonance problem because
our estimates indicate that such resonances should not
have occurred this far out from 7,.. Furthermore, sound
resonances usually lead to a series of sharp wiggles in the
dissipation, not one steady drop. A single steady drop is
consistent with a critical velocity effect, but we did not
test this hypothesis out.

A number of unexpected effects were seen above the
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10. This is a 1-mK pulse measurement from the

sample-D run. Bad points like the one seen near 2000 sec oc-
casionally appear during a flux count and reset operation when
the ;-Hz sampling circuit in the DFC happens to catch the
low-pass filtered FLL output in midflight. They are easily ig-
nored by our fit routines.
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FIG. 11. Normalized superfluid density data for sample E
(0.133 g/cm?® DESY aerogel) and sample F (0.200 g/cm® Air-
glass aerogel) are plotted alongside a solid line representing the
superfluid fraction in bulk helium (Ref. 13).
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FIG. 12. The oscillator period shift (O) and dissipation ()
for sample E are plotted on a linear scale to emphasize the
variety of things that can happen near T, as well as between T
and T,. The wiggles in the dissipation between T, and T, are
due to sound resonances in the percolating network of large
voids.

aerogel transition. We found that the dissipation contin-
ued to increase after T, and did not stop until T'y. There
was also a residual amount of superfluid mass decoupling
between T, and T, as if there were large voids within the
aerogel itself, some fraction of which must have formed a
percolating network because isolated pockets of
superfluid cannot decouple from an oscillator. This is ad-
mittedly a simplistic interpretation because both transi-
tions, aerogel and bulk, occur within the same body of
liquid helium. We are essentially assuming that there is a
big gap in the pore size distribution, between those pores
responsible for the aerogel transition and the voids that
we have postulated. Recent experiments by Ma and
Chan® support our hypothesis that this residual mass
decoupling is an artifact because no such feature is seen
when the aerogel is grown in situ. Although the singular-

FIG. 13. The oscillator period shift (O ) and dissipation ()
for sample F are plotted on a linear scale to emphasize the
variety of things that can happen near T, as well as between T,
and T,. Notice how the bottom of the dissipation drop seems
to coincide with T, in this figure as well as Fig. 12.

ity in the void signal was located far enough from 7, that
it did not affect our power-law fits, we nevertheless sub-
tracted it off. The void contribution was determined by a
fit to just the end points at T, and T, because the oscilla-
tor signal in the intermediate region was too highly dis-
torted by sound resonances to allow a full curve fit.
These fit results are listed in Table III. Extrapolated
back to zero temperature, the void signal was typically
2% of the total superfluid signal.

The most important adjustable parameter in a power-
law fit is the transition temperature 7.. We used two
different algorithms to pick the optimal 7,. In both
cases, we started by declaring a range of reduced temper-
atures for the power-law fit, and then selecting out for
further analysis only those points that fell within this
range. In our first algorithm, we used a brute force non-

TABLE III. The background-corrected period at T, was used as a baseline from which the
superfluid period shifts were computed. The void contribution was fitted using just the end points at T,
and T, then subtracted off. The remaining period shift was attributed to the aerogel transition at T,.
For comparison, both superfluid components have been extrapolated back to zero temperature.

P AP(T)) AP, erogel(0) AP; ,i45(0)
Sample (g/cm?) (usec) (usec) (usec)
A 0.133 not available 6.5410 0.2140
B 0.133 9.5519 6.3573 0.1618
E 0.133 13.9498 9.3548 0.1283
F 0.200 3.6182 3.0281 0.0576
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linear least-squares (NLS) fit on the functional form

ps(T)=p, (1—T/T, Y+p, , (36)

where p. compensated for the slight error, less than 1
part in 10% in the superfluid density baseline that we es-
tablished by eye. The weight function w(7) must be set
to the inverse square of the expected deviations and/or
noise. Based on an analogy with the bulk helium fits,!3
we assumed that higher-order corrections to scaling
would take the form |7|5(1+5|t]9), with the confluent ex-
ponent 6=0.5. So our weight function became

w(T)=[(1—=T /T, )04y 171, (37

where w, was used to account for the noise in the data
closest to 7T,. If this noise first became visible at a re-
duced temperature of ¢, where visible was taken to mean
about 1% scatter, then we set w,=1¢3510%,

The NLS fit algorithmi gave an overly optimistic esti-
mate for the exponent uncertainty, and we preferred in-
stead the numbers given by our second algorithm. First,
the p. determined by the NLS fit was accepted without
question. Then a series of power-law fits was performed
over a range of T,. For each trial T,, we derived a
power-law fit from a linear regression on the log-log
transformed p, versus 7 data. The rms fractional devia-
tion from each such power-law fit was then computed
and plotted as a function of the resultant exponent &, as
shown in Fig. 14. The raw exponent uncertainty was
defined as the half-width at which these fit deviations
were twice their minimum. This number was still too op-
timistic, as it did not account for changes in the exponent
due to changes in the declared range of the power-law fit.
The uncertainties listed in Table IV should probably be
multiplied by V2 to take this into account. The optimal
exponent derived from this algorithm always fell well
within one error bar of the exponent derived from the
original NLS fit. Incidentally, we did try this algorithm
using absolute rather than fractional fit deviations, but
we found that the resultant exponents were five times
more sensitive to changes in the pre-selected range of the
power-law fit.

Our first detailed superfluid density power-law fits were
obtained for sample B. The saturated vapor pressure
measurement is shown in Fig. 15. After taking these
data, we pressurized the cell to 353 torr and made anoth-
er measurement. Because the cell pressure was only pas-
sively regulated, using a 300-cm> room-temperature bal-
last volume, these data had a lot more scatter than usual.
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FIG. 14. For example B, the rms fractional fit deviations (O )
are plotted as a function of the resultant exponent {. The raw
exponent uncertainty is defined as the half-width at which the fit
deviations are twice their minimum value. For comparison, the
trial T, (O) are also plotted.

Both transition temperatures, T, and T, were shifted by
—3.90 mK, giving a slope of —119 atm/K for the A line
in *He-filled aerogel. For comparison, the bulk A line has
a slope of —118.4 atm/K. As expected from universality
arguments, the critical exponent was not significantly al-
tered.

The simultaneous p; and C measurement was done on
sample E. Since we were also set up to do a superfluid
density exponent measurement, we did so, twice. The
first run was done with the superleak isolator in place.
The second was done after we warmed up, removed the
superleak isolator, and then cooled down again. The p;
data listed in our tables for sample E come from this
second run. No observable change in the critical ex-
ponent occurred as a result of thermal cycling, which
means that aerogel is not significantly damaged by the
surface tension of liquid “He.

The p, data for sample F are representative of the
newer aerogels that we purchased directly from Airglass.
Figure 16 shows that these data had a slight 0.4% sys-
tematic deviation from perfect power-law behavior. Be-
cause there was also an unusual undulation in the dissipa-
tion data over the same temperature range, we do not
know if this tiny deviation was an experimental artifact.
Notwithstanding this very small deviation, this critical
exponent is essentially identical to the one seen in the
DESY aerogels. It is interesting that two aerogel samples
with such different porosities can give the same p; ex-

TABLE IV. From our power-law analysis of the superfluid densities, we have derived for each sam-
ple the critical temperature, the coarse-grain averaged critical amplitude, the critical exponent (plus or
minus the raw exponent uncertainty), and the correlation lengths and reduced temperatures spanned

over the power-law regime.

P T, ,550 Exponent & range t range
Sample  (g/cm?) (K) (g/cm?) ¢ (nm) (log o)
A 0.133 2.166 344 not available 0.820+0.127 not available below —2.0
B 0.133 2.166773 0.418 0.817+0.006 12.4 to 304 —3.7 to —2.0
E 0.133 2.167 663 0.403 0.802+0.005 12.0 to 334 —3.8 to —2.0
F 0.200 2.164 991 0.374 0.811+0.004 7.70 to 989 —4.3 to —1.7
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FIG. 15. This is the superfluid density power law for sample
B, at saturated vapor pressure. For comparison, our aerogel
data (O) are plotted alongside the bulk data ((0) of Greywall
and Ahlers (Ref. 13). The critical exponent for sample B is
£=0.817+0.006, as summarized in Table IV.

ponent, but two samples do not establish universality.

Mulders, Mehrotra, Goldner, and Ahlers®’ have done
an extensive series of superfluid density measurements on
the three different Airglass aerogels that we purchased.
A heat pulse propagation technique was used and data
were taken under a range of pressures from saturated va-
por pressure (SVP) up to 29 bars. One of their three sam-
ples was cut from the same block of aerogel as our sample
F and, in this case, their p; measurements agreed with
ours. They also saw the same residual superfluid mass
decoupling between T, and T, that we saw. However,
they found that higher-order corrections to scaling were
needed to make all of the data below T, especially those
taken at higher pressures, collapse onto a single curve
with one ‘“universal” exponent. Their correction terms
allowed them to fit their data over a wider range of re-
duced temperatures, ¢ <10~! for them, as opposed to
t <1072 for us. Most of the analysis was focused on just
one of the three samples, the lightest one, and for that
sample they obtained a pressure-independent exponent of
£=0.755+0.003.

B. Critical behavior in the heat capacity

On the gross temperature scale depicted in Fig. 17, the
heat capacity of “He-filled aerogel looks much like the
heat capacity of bulk helium. Well above T,, on a per
mole basis, this heat capacity is essentially equal to that
of bulk helium. Because this agreement was so good in
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FIG. 16. This is the superfluid density power law for sample
F, at saturated vapor pressure. For comparison, our aerogel
data (O) are plotted alongside the bulk data (O) of Greywall
and Ahlers (Ref. 13). The critical exponent for sample F is
£=0.81110.004, as summarized in Table IV.

sample C, where we knew very well how much helium we
had put inside the cell, we assumed it to be exact in sam-
ples D and G, and used this assumption to fine tune our
initial assessment of the helium dosage. Corrections of
1% or 2% were needed to account for uncertainties in
the volume of the level sensor assembly. At temperatures
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FIG. 17. The normalized heat capacity (O) for sample C is
shown here on a gross temperature scale to emphasize its simi-
larity with the bulk singularity, which is shown as a solid line
(Refs. 1, 15, 69, and 70). The error bars on the ratio of these
two heat capacities (OJ) are mostly due to uncertainties in the
published data for the bulk heat capacity far from T, .
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well below T,, the ratio of aerogel to bulk heat capacity
was clearly not one. The behavior at these two tempera-
ture extremes is understandable. Outside the critical re-
gion, heat capacities are determined by the characteris-
tics of the low-energy excitations. Below T, excitations
associated with the flow of superfluid helium are modified
by the tortuosity of the porous structure. Above T,
there is of course no superflow. As the temperature de-
creased to zero, we found that the heat-capacity ratio
stayed more or less constant until about 1.5 K, at which
point it started to rise again. This is very reminiscent of
the velocity of second sound in bulk helium, where a
similar type of behavior was seen and attributed to a
phonon-roton crossover.

To see what is happening closer to the critical regions
at T, and T, consider Figs. 18 and 19. The main obser-
vation is that there are two singularities, a cusplike one
associated with the superfluid transition in aerogel, and a
logarithmiclike one due to the presence of bulk liquid in
the fill lines and elsewhere. By ‘“‘elsewhere,” we mean the
network of void spaces that was already postulated on the
basis of the superfluid density data. An alternative ex-
planation has been given by Machta,®® but it does not
predict the correct shape for the heat-capacity singulari-
ties. Moreover, this void signature is not present in re-
cent heat-capacity data taken on aerogel samples grown
in situ.%® The amount of rounding seen at the cusplike
singularity was sample dependent, but, for a given block
of aerogel, the reduced temperature at which this round-
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ing first became evident was more or less independent of
the type of measurement being made, as we can see by
comparing Figs. 18 and 19 with Figs. 12 and 13. Sample
G was somewhat unusual in that the transition seemed to
be rounded on only the high-temperature side of 7,. We
are of course assuming that T, is located at the sharp
cusp, not at a point somewhere between that cusp and the
inflection point approximately 200 4K higher in tempera-
ture.

Our claim that the cusplike singularity in the heat
capacity is coincident with the superfluid transition is
based on more than just an approximate agreement be-
tween the transition temperatures from the C and p, mea-
surements. Although this agreement was quite good for
the Airglass aerogels, it was not so good for the DESY
aerogels. Here, the T, shifts varied from 4.0 to 5.7 mK,
even though all of the samples were cut from the same
block of aerogel. We suspect now that much of this vari-
ation was due to the differing amounts of compression
that were used to mount the samples. To resolve this
question, we modified one of our torsional oscillators to
allow for a simultaneous measurement of the heat capaci-
ty. We hung the oscillator from a superleak-plugged
capillary, wrapped a heater around the sample head, at-
tached a resistance thermometer to the vibration isolator,
and then cooled down. Even though there was a lot of
metal in the vibration isolator structure, the total heat
capacity of the filled cell was still about 22 times larger
than the heat capacity of the empty cell. The cell ther-
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FIG. 18. This is the heat capacity for sample D, normalized
by the number of moles of “He inside the cell, with no bulk
correction. The bottom plot shows just how sharp the cusplike
singularity really is, and it should be compared against Fig. 12.
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FIG. 19. This is the heat capacity for sample G, normalized
by the number of moles of “He inside the cell, with no bulk
correction. The bottom plot shows just how sharp the cusplike
singularity really is, and it should be compared against Fig. 13.
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mometer in this experiment was not very sensitive, so the
heat-capacity measurements had to be done with an in-
terleaved set of 0.44-mK temperature steps. Within the
limited resolution of these large step sizes, Fig. 20 shows
that the superfluid density and heat-capacity singularities
are indeed coincident.

To figure out how much bulk liquid we had in our cell,
we subtracted off the bulk singularity!!>%%7 by adjusting
the scale factor until the data were as smooth as possible
through 7',. The inferior technology used on sample C
made the bulk signature look more like a jump discon-
tinuity than a logarithmic singularity. Significantly
better bulk subtractions were done on samples D and G.
Since the final few data points within 15 uK of T, were
rather noisy, smeared out by temperature averaging
effects, and possibly distorted by the gravitational round-
ing due to the 6—7 mm column of liquid in the level sen-
sor, the optimization was performed on a subset that ex-
cluded these questionable data points. A demonstration
plot is given in Fig. 21. The bulk-subtracted data are re-
normalized to account for the amount of “He responsible
for the aerogel transition. The void fractions deduced
from this procedure are listed in Table V. They are
significantly larger than the void fractions deduced from
the torsional oscillator data because calorimeters are sen-
sitive to each and every void, not just the percolating net-
work that is detected by a torsional oscillator.

For a generic superfluid density exponent of
£=0.81%+0.01, hyperscaling predicts that the heat-
capacity exponent should be a=2—d&/(d—2)

= —0.4310.03. Although this was clearly not an ade-
quate description of our heat-capacity data, we decided
to force a fit to a continuous cusp singularity with the
hyperscaling exponent in order to see just how bad the
situation was. Only sample D will be discussed in this re-
gard as our fitting algorithms would not even converge
for sample G. The resultant fit is shown in Fig. 22. The
analytic background was taken to be a constant C_,,,
which was adjusted along with T, in order to obtain the
optimal fit. Insofar as the critical behavior at a given ¢ is
a reflection of the structure of the aerogel impurity at the
correlation length &(z), we expect the power law to be
symmetric with respect to £(¢), not with respect to ¢.
Since from hyperuniversality we know that £(z) scales as
[£2C(1)]71/3, the asymmetry in C(t) with respect to the
two sides of T, ought to be, and is, reflected in an asym-
metry in the range of the power-law fits. The systematic

3875
0.60 T : . 0.39
. 0™
m o Lot :
045F , L °© o 40.36
é ® [] o X
o o N
df ° a- 3
j 0.30 | ° ° 41033
o ° o "ﬂ
l{ °o n""g." (|)
go1s | %o {030 ©
o °oq>
°.°
0.00 | L t Dyeeueeoo0s 0.27
2.156  2.160  2.164  2.168  2.172
T (Kelvin)

FIG. 20. The superfluid density (O ) and heat capacity (1)
were measured simultaneously in sample E, using interleaved
0.44-mK temperature steps. Within the resolution implied by
these step sizes, the superfluid density and heat-capacity singu-
larities appear coincident.

deviations from this power law were about 2%, nowhere
near as good as with our superfluid density power laws,
and nothing could be done to make the power-law fit
work near the final 4 mK below T,.

For the region closest to the transition below T, we
found that a linear-t fit worked as well as anything else
for both samples D and G, as we demonstrate in Fig. 23.
Our fitting algorithm allowed both C_,, and T, to vary.
In sample D, we found that the optimal T, for the
linear-t fit was identical to the 7, required by the
hyperscaling-enforced fit, even though the optimal C_,,
was clearly very different. The systematic deviations
were serious, 2% for reduced temperatures below 1027
in sample D, and as much as 10% for reduced tempera-
tures below 10723 in sample G. However, recent data by
Larson, Mulders, and Ahlers’! on the isobaric thermal
expansion coefficient, which can be related to the specific
heat through thermodynamic arguments, confirm that
this nearly linear-¢ behavior is real.

C. Questions of interpretation

These data demonstrate that the sharpness of the
superfluid phase transition in a *He-filled porous medium
does not have to have anything to do with the narrowness
of the pore size distribution. In general, our Airglass
samples had much sharper transitions than our DESY

TABLE V. For our heat-capacity experiments, the total helium dosage is taken to be n,=n,+n,,
where n, is the amount inside the aerogel and n, is the amount inside the fill lines and level sensor. In
subtracting off the logarithmic singularity, we arrive at a number n, for the total amount of bulklike
liquid inside our cell. The existence of large voids within the aerogel itself was postulated because we
found that n, > n, in all cases. We have listed the bulk percentages in two ways, as a fraction n, /n, of
all the *He inside the cell, and as a fraction (n, —n,)/n, of just the *He inside the aerogel.

P n, ng n,/n, (np—ns)/ng
Sample (g/cm?) (moles) (moles) (%) (%)
C 0.133 not applicable 0.006 92 not applicable ~16.5
D 0.133 0.026 25 0.024 65 16.84 11.43
G 0.200 0.024 80 0.023 86 10.19 6.65
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FIG. 21. The heat capacity for sample D is shown before (O1)
and after (O) the subtraction of a 16.84% bulk heat-capacity
contribution. Depicted in the inset is a blowup of the un-
corrected data near T,.

samples. This suggests that the DESY samples were
more inhomogeneous, and we can think of two ways that
this could have come about. First, these samples were
known to have been exposed to ambient humidity before
they were given to us, and what this exposure did to the
sample homogeneity we do not know. Second, they were
compression mounted, and even a little bit of friction
along the sample cell walls could have led to a rather
uneven compression.
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FIG. 22. This is the hyperscaling-enforced fit to the bulk-
corrected heat-capacity data of sample D. The fit was to a con-
tinuous cusp singularity with a temperature-independent back-
ground, C,,,, =44.73 J/K mole, and with the same exponent on
both sides of T,. Below the transition, we got a singular contri-
bution of 69.85(¢|%* for |¢| from 107! to 10727, as opposed to
283.5/¢|%*? for |¢| from 1073 to 10~ * above the transition. For
clarity, the data closest to 7, are deleted in the log;y-log;o plot
inset.
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FIG. 23. Nearly linear-t behavior was observed in the heat
capacity just below T,. These fits were done to the bulk-
corrected data of samples D and G, with C,,, =41.84 and 38.46
J/K mole, respectively. The quality of the power-law fit was not
significantly improved by allowing for an exponent different
from one.

As a first step, we want to know if the critical ex-
ponents can be computed from what little we know about
the structure of the aerogel backbone. Weinrib and
Halperin’s theory makes a specific prediction, but we are
not certain that it is applicable. Within the framework of
the magnetic phase transitions that they envisioned, it is
obvious that the local T,’s should scale with the local im-
purity concentration because impurities weaken the
strength of the locally averaged magnetic interaction. It
is not at all obvious to us that the same connection can be
made for *“He-filled porous media, but suppose for the
moment that it can. Scattering experiments on a variety
of aerogels??*® suggest that the backbone structure might
be describable by fractal exponents ranging from 2.1 up
to 2.4, so the most naive application of this theory pre-
dicts Gimpure=2/(d —D;)=3.3 to 2.2, which clearly
differs from the measured values. The disagreement may
be moot for a number of reasons. First, the correlation
lengths that are deduced from our superfluid density
power-law fits, as listed in Table IV, extend out to much
longer length scales than the cluster sizes that are deter-
mined from the scattering data. For aerogels with densi-
ties of 0.133 and 0.200 g/cm?, the fractal regimes broke
down at 21.1 and 10.6 nm, respectively, but our
superfluid density power laws extended out to 304 and
989 nm (samples B and F). Moreover, our aerogels were
base-catalyzed and probably not describable by a single
fractal exponent. Weinrib and Halperin’s theory also as-
sumed a Gaussian distribution of local 7,. The half-
width of this Gaussian must be less than T, — T, because
impurities can only depress the local T, never increase it.
However, the observed critical behavior was clearly being
affected at temperatures well beyond the half-width of
this Gaussian on the low-temperature side of T, which
suggests that an asymmetric local T, distribution may be
more appropriate.’?

Another school of thought asserts that we are not yet
close enough to the critical point to observe the true criti-
cal exponents. Indeed, Weinrib and Halperin’s theory is
expected to be applicable only at reduced temperatures
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that are much smaller than the reduced T, shift. The
more serious problem in this regard arises from the fact

that superfluid “He is only marginally stable against dis-:

order of the Harris type because o, is only slightly neg-
ative. Even in the case of short-range or uncorrelated
disorder, there can be slow transients in the critical
behavior, leading to effective exponents that are quite
different from the true critical exponents. In the theory
of Narayan and Fisher,”? the correction terms can be ad-
justed to give an effective superfluid density exponent of
0.836 to 0.791 over reduced temperatures of 1072 to
10™*. This may not seem like such a bad fit at first, but
the corresponding prediction for the effective heat-
capacity exponent is —0.180 to —O0.135, in serious
disagreement with our data. We acknowledge that one of
our most striking observations, the failure of hyperscal-
ing, is consistent with the supposition that we are not yet
in the asymptotic regime. However, none of our data
show even the slightest inclination toward bulklike
behavior as t—0. For the heat capacity below T, the
critical behavior seems to be veering farther and farther
away from bulklike behavior. To suggest that we need to
get even closer to T, than we already have, in order to
observe the ‘“real” critical behavior, is as much a
reflection of the limits of the existing theory as a critique
of the aerogel system. Ultimately, the marginality issue
may have to be settled by doing a similar set of experi-
ments on a system in which a,,,. is more strongly nega-
tive, such as a 3D Heisenberg ferromagnet.

There is another reason why hyperscaling might not
work. Superfluid density and heat-capacity measure-
ments do not probe exactly the same body of liquid.”*
Torsional oscillators probe only the percolating body of
liquid within a viscous penetration depth of the aerogel
substrate, which is an idealized subset of the complete
system. In contrast, adiabatic calorimeters probe all of
the liquid. The net result is that heat capacities may be
more sensitive to nonidealities such as the aerogel cluster
size. When we compute the reduced temperatures at
which the correlation lengths become comparable to the
cluster sizes extracted from the scattering data,
5.1X 1073 and 1.34X 1072 for our representative 0.133
and 0.200 g/cm?® aerogels, we find that they are in the
same general vicinity as the break in the heat-capacity
data where the linear-# behavior begins. The superfluid
density may not be affected by this cluster size limit be-
cause the dynamics of the oscillator experiment select out
a larger percolating body of liquid. We note that there
has been some recent work on the issue of connectivity in
aerogel.”

In spite of our failure to understand the critical ex-
ponents, we believe that we have a qualitative explana-
tion for why “He-filled aerogel has an observable heat-
capacity singularity, while *He-filled Vycor does not.
The argument depends on a coarse-grain averaged inter-
pretation of hyperuniversality. We will offer two ex-
planations. Renormalization group calculations account
for spatial fluctuations of the order parameter on all
length scales up to the correlation length, but they pro-
duce a spatially independent result in the end. This is be-
cause, implicit in the theory, there is an assumption of
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macroscopic homogeneity on length scales much larger
than the attainable correlation lengths. This can happen
only if we treat the porous glass as an effective medium
and coarse-grain average all of the thermodynamic quan-
tities that go into the theory. Alternatively, recall that
hyperuniversality is derived by considering the singular
part of the free energy inside a correlation volume. The
correlation length is derived by considering the free ener-
gy due to a twist in the phase of the order parameter,
where the order parameter itself is definable only over a
correlation volume. So the index of refraction correction,
1—X,, =n 2, that appears in Eq. (34) is just a reflection
of the fact that energies defined over length scales as
large as the divergent correlation length are transported
at the group velocity. The porosity correction is needed
because, in an impurity interpretation, the ‘“‘sample”
volume includes both the helium and the aerogel.

To predict the size of the heat-capacity singularity
from the critical amplitude Ps, for that system, we must

first locate another system in the same universality class
for which both p; and C have previously been measured.
Vycor is an easy case because it is bulklike. Coarse-grain
averaging brings Ps, down to 0.010 g/cm?, versus 0.351

g/cm? for bulk helium. Hyperuniversality, given by Eq.
(12), thus predicts a heat-capacity singularity for “He-
filled Vycor that is only 0.04% of the background at a re-
duced temperature of 10725, much too small to have
been seen in any of the previous experiments. We note
that in the case of thin films adsorbed on the surface of
Vycor, coarse-grain averaging arguments have successful-
ly predicted the size of the observed heat capacity singu-
larity.?® Strictly speaking, in order to predict the size of
the heat-capacity singularity in *He-filled aerogel, we
must first have prior knowledge of some other member of
this new universality class (we are taking for granted that
such a class exists). No such knowledge exists, but if we
assume that the dimensionless universal constant X is al-
ways of order unity, then we can see why the heat-
capacity singularity in “He-filled aerogel is observable—
Ps, is not very different from that seen in bulk helium.
Specifically, it was 0.418 and 0.374 g/cm® for samples B
and F. We note that the hyperscaling-enforced fit to
sample D gave X =1.9, which is rather close to unity.

If we take the agreement between the measured
superfluid density exponents to mean that our two
representative aerogels are in the same universality class,
then we can predict that the heat-capacity singularity per
unit volume in sample D should be 1.25-1.40 times
bigger than that in sample G. In practice, the failure of
hyperscaling means that X is no longer temperature in-
dependent and consequently, as we show in Fig. 24, nei-
ther is the heat-capacity ratio. What is curious, however,
is that there is a small range of reduced temperatures, at
1072 below T, where this heat-capacity ratio flattens out
at the predicted value. One might be tempted to believe
that the scaling theory is correct after all, and that it
breaks down only because the p; and C measurements no
longer probe the same body of liquid once the correlation
length exceeds the aerogel cluster size. However, this ar-
gument is not self-consistent because the particular
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FIG. 24. Hyperuniversality predicts that the singular part of
the heat capacity per unit volume should be 1.25-1.40 times
larger in sample D than in sample G. We define the singular
component as Cg,(¢)=C, —C(2), where C(t) is the bulk-
corrected heat capacity and C,, is the peak height obtained
from a fit to the linear-¢ region (which is not equivalent to the
peak height given by the hyperscaling-enforced fit).

choice of C_,, that was used here does not yield the
hyperscaling exponent over any appreciable range of re-
duced temperatures, let alone the region of interest near
1072 below T..

Although our *He-filled aerogels have not shown much
variation in their critical behavior, other groups working
with other aerogel samples have found slightly different
results. If there is a trend, it is that the least dense aero-
gels have the smallest T, shifts and the smallest p, ex-
ponents, £=0.77 in the case of a 98% porous aerogel re-
cently studied by Ma and Chan.®® For one particularly
dense 85% porous aerogel,’®® the p, exponent was 0.95
and no singularity was found in the heat capacity. In fact,
the heat capacity had a broad maximum at a temperature
somewhat higher than the superfluid transition, exactly
as had been seen in the older Vycor and xerogel samples.
Pessimists might be inclined to dismiss these kinds of ex-
periments as being too specific to the particular aerogel
under study, with different answers arising for each and
every sample. To some extent, this is true. What we
have learned so far suggests that particular attention will
have to be paid to the many different length scales that
are involved: the correlation length for fluctuations of
the order parameter, the range of length scales character-
izing the aerogel glass, and the viscous penetration depth
in our oscillator experiments. This makes the problem
more difficult, but not necessarily insurmountable. Simi-
lar issues arise in the study of electron transport in
mesoscopic scale conductors’’ and universal behavior in
the amplitude of the aperiodic conductance fluctuations
has already been discovered. It might therefore be in-
teresting to see if any aspect of this new critical behavior
that we observe in the “He-filled aerogel system is invari-
ant against changes in the sample under study. Failing
that, one might at least like to know how the critical
behavior is related to some measurable characterization
of the disordered structure. This is the direction in
which we hope the research will ultimately progress.
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D. Possible dynamical effects

We present evidence here for the existence of a coin-
cident thermal conductivity singularity at the superfluid
transition. Some of the raw 7'(¢) data from the heat-
capacity experiment on sample D are shown in Fig. 25.
In the bulk helium experiments, Ahlers!® observed that
his T'(¢) exhibited a noticeable overshoot as soon as the
cell temperature crossed over T,. Above T, the heat
pulse was not able to diffuse through the liquid quickly
enough to prevent the thermometer from overheating.
We saw this same effect at T, in our cell. However, we
also saw a similar but much less dramatic effect at T,.
The 2-uK temperature steps we took near T, used heater
powers of 34 nW. For this demonstration, we used large
100-uK steps near T, with heater powers of 1.6 uW. To
maintain the same vertical scale as the T, plot, we shifted
the data so that only the points taken after the heater was
turned off appear on this plot. The numbers printed atop
each curve specify T— T, at the end of the heater pulse.
In spite of the fact that we were putting in a lot more en-
ergy at a much higher rate, the overshoot did not appear
until we were 1 mK above T,,. This meant that there was
still a lot of thermal conduction in our sample at L mK
above T,, well beyond even the inflection point in the
heat capacity.

Something is giving us a large thermal conduction
above T,. What is the underlying mechanism? Critical
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FIG. 25. Overshoot signals in the raw T'(¢) data from sample
D are suggestive of a singularity in the thermal conductivity, as
described in the text. The numbers above each of the four
curves in the top figure indicate the value of T— T, just after
the heater was turned off, showing clearly that the tiny
overshoot at T, is not associated with the C(T) inflection point
emphasized in the inset.
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point fluctuations are one possibility, but first we must
eliminate the more straightforward case of a counterflow
mechanism. We know that the superfluid can flow
through the aerogel, but the normal fluid is supposed to
be viscously locked to the porous substrate. Normal fluid
counterflow is still possible, however, through cracks
along the sample edges. This gives us a conduction
mechanism that shuts off above T, if we ignore the
counterflow contained entirely within the cracks, and it is
inconsistent with our 7'(¢) data. Direct measurements of
the thermal conductivity may therefore prove very in-
teresting.
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FIG. 3. This transmission electron micro-
graph of a carbon-coated flake of base-
catalyzed aerogel was produced by Tewari,
Hunt, Lieber, and Lofftus (Ref. 39). The pore
space is shown in white and the scale bar at the
bottom corresponds to a length of 100 nm.



