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ABSTRACT

A new general method of calculating the high resolution
NMR spectra of all molecules with twofold frame symmetry
has been developed. Full use is made of all of the
symmetry factoring of the Hamiltonian matrix resulting
from the twofold frame symmetry, and from any magnetic

equivalence.

Explicit formulas have been derived to allow the
direct calculation, from spin quantum numbers, of all
of the Hamiltonian matrix elements. The formulas are
valid for molecules with or without magnetically equivalent
groups of nuclei, including the important class of molecules
containing symmetrically equivalent pairs of magnetically
equivalent groups. For molecules without frame symmetry,
the formulas reduce to those of the Composite Particle
method. They are suitable both for hand calculations
on small molecules and for computer calculations on

large molecules.

A systematic three stage approach to the factoring
of the Hamiltonian matrix has been described, in which
this symmetry factoring, molecular total spin factoring,
and species total spin factoring are applied in succession.
It has been shown that tﬁis approach to factoring simplifies
the derivation of transition selection rules, and leads

directly to a description of the structure of an NMR



iv
spectrum in terms of subspectra.

A computer program, NUMAR, has been written to
allow the application of the full three stage factoring
scheme to the spectra of molecules too large for hand
calcﬁlations. In addition to the usual energy level
and transition lists, the program provides all of the
quantum numbers necessary to define the structure of
the calculated spectrum in terms of subspectra. The
efficient design of the program permits calculations
on many large symmetric molecules whose spectra previously
could be calculated only by approximate methods, if at

all.

The new factoring procedure has been applied in
the analysis of the NMR spectra of several molecules
with twofold frame symmetry, including the perfluoro-
2-butenes, the 2,5-dimethyl-3-hexenes, and [(FSC)ZP]ZNH'
In each case, initial NMR parameters obtained from a
partial or approximate analysis were refined with the
aid of exact spectra calculated with the NUMAR computer
program. The use of all of the factoring appropriate
to each molecule simplified all the analyses; in the
case of the 2,5-dimethyl-3-hexenes, it permitted accurate
calculations on spin systems too large for previous

computer programs.
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CHAPTER 1 INTRODUCTION

1.1. High Resolution NMR Spectra

In a Nuclear Magnetic Resonance experiment, a
sample containing magnetic nuclei is placed in a strong,
uniform polarizing magnetic field and a weak radiofrequency
magnetic field is applied. For particular frequencies
of the radiofrequency field, resonant absorption of energy
occurs; the intensity of absorption as a function of
frequency is the NMR spectrum of the sample. This Thesis
is restricted to High Resolution NMR, where the sample
is a mobile, isotropic fluid, and there are no strong
couplings to paramagnetic or quadrupolar species. The
spectrum then normally consists of sharp lines with a

natural linewidth of 1 Hz. or 1ess.*

Most High Resolution NMR spectra are obtained
from nuclei of spin I = %, Because nuclei of spin I = 0

(such as !2C and !'®0) have no magnetic moments, they

¥ For general information on the nature of Nuclear Magnetic

Resonance, see Pople, Schneider, and Bernstein (PSB)l.

For a more mathematical treatment of the theoretical
aspects of NMR, with proofs of many useful theorems,

sece Corio2 especially Chapters 5 and 2. The notation
used in this Thesis, an extension of Corio's, is described
in Appendix A.



do not interact with magnetic fields, and have no NMR
spectra. Nuclei of spin I > % are normally coupled by
their electric quadrupole moments to fluctuations in the
local electric field gradients, resulting from molecular
motions. As a result, the lifetimes of their spin states
are short, and their NMR spectra have linewidths orders
of magnitude too great to be considered high resolution.
When a nucleus of spin % is strongly coupled to a quadrupolar
nucleus such as !*N, its lines may also be broadened

(see PSBl). More often, nuclei of spin greater than %
may be treated as non-magnetic, because they have no

observable effect on the spectra of the spin % nuclei.

Nuclei with electric quadrupole moments are not
excluded completely from this Thesis, because they may
yield High Resolution NMR spectra when they are in
environments of high symmetry. However, the main emphasis

is on nuclei of spin %.

The parameters of chemical interest which determine
the High Resolution NMR spectrum of a molecule are one
chemical shift vy for each magnetic nucleus and one
coupling constant Jij connecting each pair of nuclei.

For n nuclei there are thus a total of n(n+l)/2 parameters.
The chemical shifts vary lineariy with the strength of
the polarizing magnetic field, but the coupling constants

are independent of field strength.

There is no practical general method of calculating



the parameters directly from the observed spectrum. Instead,
one must calculate the spectrum that corresponds to a set of
trial parameters, and compare it with the observed one.
If the observed and calculated spectra agree, the trial

parameters are probably correct.+

In principle, the calculation of a High Resolution

NMR spectrum is quite easy. The Hamiltonian* has the
simple form
Ho= Ivil, () +i§jJijici)-icj). (1.1)

A suitable basis set consists of products of spin functions

for the individual nuclei, of the form

2 IIi’mi>' . (1.2a)

¥ It is always possible to invert the signs of all of

the coupling constants simultaneously without in any way
affecting the appearance of the calculated spectrum (see
Corioz, p. 167); often the spectrum is also insensitive
to the relative signs of many of the coupling constants.
One method of determining the relative signs of coupling
constants is described in §3.3.2. The absolute signs

of some coupling constants have been determined from
spectra of partially oriented molecules in anisotropic
media.>

¥ Throughout this Thesis only nuclear spin Hamiltonians
are used. The nuclear spin operators such as 1 and lz are
dimensionless. See Appendix A for definitions of all
operators, eigenvalues, and basis kets.



Since each nucleus has 2I+1 m-values ranging from +I

to -I, there are

I (21,+1) (1.2b)
1

basis functions in the set.

A matrix representation of the Hamiltonian (1.1)
in the basis (1.2a) is constructed; its dimension is
given by (1.2b). When the Hamiltonian matrix has been
diagonalized, differences between its eigenvalues give
the transition frequencies. The corresponding relative
intensities are given by the absolute squares of the

matrix elements of the transition operator+

X = Z_I_X(i). (1.3)
1

The matrix elements of X are most easily calculated in

the simple product basis (1.2). The matrix elements

of X in the basis in which H is diagonal can be obtained
from them using the wunitary  transformation that relates

the bases. The total spectral intensity that is

¥ This equation is an approximation which introduces

an error far smaller than the usual uncertainty in

experimental intensities. See Corio2 p. 164,



obtained using (1.3) is2
5 1 1i1(21i+1) }{ §11[11+1) ) (1.4a)

which for n nuclei of spin % reduces to the simple form

n2? 1 (1.4b)

The method of calculation described above is valid
for all spin systems, but practical only for small ones.
For example, each of the perfluoro-2-butenes (§5.1) has
eight nuclei of spin %. The 256x256 Hamiltonian matrix
has 32896 distinct matrix elements (many of which are,
in fact, zero). There could be as many as 11440 transitioms.
If thousands of distinct transitions were visible in
the experimental spectrum, there would be little hope
of recognizing patterns helpful in estimating the parameters.
Trial and error calculations, with thirty-six independent
parameters, would also be unlikely to yield a correct
solution, even if reasonable values for some of the
parameters could be estimated from previous work with

related compounds.

The observed spectrum of each of the perfluoro-2-
butenes contains only about 100 distinct lines of significant
intensity, largely as a result of the high symmetry of

the molecules.

For each isomer, the six -CF3 fluorines have omne



chemical shift, and the two =C-F fluorines have a second
chemical shift. Each spectrum consists of two multiplets,

one centred on each chemical shift. The relative chemical
shifts can be varied by using a variety of polarizing

field strengths. For typical field strengths (over 10 kgauss),
the two multiplets are far enough apart that the appearance

of each multiplet is independent of the relative chemical
shifts. Thus none of the eight chemical shift parameters

need be determined in order to calculate the pattern

of lines in the multiplets.+

The symmetry of the molecule also reduces the
number of independent coupling constant parameters from
28 to four (FSC-C=C-CF

F-C=C-F, F-C(=)-CF F-C=C-CF3).

3? 3?
Thus only four parameters, rather than 36, need be found
in order to completely analyze the spectrum. Quite generally,
the complexity of an NMR spectrum is more closely related

to the number of independent parameters than to the

number of nuclei.

The major goal of this Thesis is to outline a
method of calculating NMR spectra, such that the same
factors that simplify the observed spectrum also simplify

the calculation.

T As each multiplet is symmetrical about its chemical
shift, the two chemical shifts can in fact be obtained
by inspection.



1.2. Factoring the Hamiltonian Matrix

The NMR spectra of the perfluoro-2-butenes, and
other molecules, are simplified by two molecular properties:
symmetry, and large chemical shift separations. As a
result of these molecular properties, certain symmetry
operators and spin operators commute with the Hamiltonian.
This in turn leads to the simplified method of calculation

that is the goal of this Thesis.

I1f two operators commute, there exists a set of
vectors which are simultaneous eigenvectors of both operators.
This implies that if a basis for the Hamiltonian has been
constructed out of eigenfunctions of any operator O which
commutes with the Hamiltonian, there can be no off-diagonal
matrix elements of the Hamiltonian between basis functions
belonging to different eigenvalues of O. The complete
Hamiltonian matrix, before diagonalization, can be reduced
to block diagonal form, with each block corresponding
to a different eigenvalue of 0. If there is an additional
operator that commutes with both H and 0, these blocks
(submatrices) can themselves be factored into blocks
along the main diagonal, and so on. Each block is labelled
by a unique set of eigenvalues of the operators that

commute with H.

In an NMR calculation, this factoring process can
be viewed as taking place in three stages, each stage

being associated with a different kind of operator that



commutes with H and with the other such operators.

The first stage, which is discussed in Chapter 2,
is associated with symmetry operators. Because the symmetry
operators commute with the transition operator X, as
well as with H, every transition must connect states in
the same symmetry submatrix. Thus each symmetry submatrix

of H can be treated as a separate calculation.

The remaining two stages of factoring, which are
associated with two kinds of total spin operator, are
discussed in Chapter 3. With a suitable choice of basis,
they can be applied as readily to each symmetry submatrix
as to the complete Hamiltonian matrix of a molecule without

symmetry.

The practical result of the factoring is that
a single large, difficult calculation, involving the
complete Hamiltonian matrix, is replaced by a series
of smaller, easier calculations, involving the submatrix
blocks along the main diagonal. In the example already
used, the perfluoro-2-butenes, no block larger than 4x4
need be diagonalized after all three stages of factoring
have been applied. The total number of Hamiltonian matrix
elements to be evaluated is 32896 without factoring, and

168 with full use of all three stages of factoring.



CHAPTER 2. " SYMMETRY FACTORING

This Chapter presents a new method of calculating
the NMR spectra cf all molecules with twofold symmetry.
The spin Hamiltonian used is valid for all combinations
of magnetic equivalence and twofold symmetry, including
symmetrically equivalent pairs of magnetically equivalent
groups. Expressions for all Hamiltonian matrix elements
and transition intensities are given in a form suitable

for computer calculations.

2.1, The NMR Symmetry Group

The symmetry properties of the NMR Hamiltonian

were first used to simplify calculation of the NMR spectra

~

of small, rigid molecules, such as l,l-difluoroethylené;

The symmetry of these molecules can be adequately represented
by a conventional point group (C2 for 1,1-difluoroethylene),
but there is usually no suitable point group for nonrigid
molecuies such as those with free rotation about a skeletal

single bond.

Longuet-Higginss has developed a more general
approach to symmetry to describe the infrared spectra
of nonrigid molecules, and Woodman® has shown that it

can readily be adapted to NMR. Woodman's NMR Symmetry
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Group (NMRSG) contains all permutations, of isotopically
identical magnetic nuclei, that do not alter chemical
shifts or coupling constants. The symmetry (or lack of
symmetry) of non-magnetic nuclei is relevant only to

the extent that it affects the environment of the magnetic

nuclei.

The correct NMRSG for a nonrigid molecule cannot
always be predicted from the structural formula. Many
chemical shifts and coupling constants vary with the
conformation of the molecule. If the molecule changes
conformation rapidly,+ the chemical shifts and coupling
constants for the observed spéctrum will be population-
weighted averages over the values for the individual
conformations. As a result, the NMRSG will often contain
symmetry elements that are not present in any single
molecular conformation. When the populations of the
different conformations are not known, the NMRSG can
be determined only by comparing the observed spectrum

with trial spectra calculated for various possible symmetries.

T A nonrigid molecule's conformation is changing rapidly if
its spectrum shows no effects that depend on the average
lifetime of the conformations. In the other extreme, a
conformation whose lifetime is much longer than the lifetime
of a nuclear spin state is in effect a rigid molecule with
its own spectrum. Conformation lifetimes between these
extremes are beyond the scope of this thesis; see, for

example, PSBl, Chapter 10.



11

The symmetry operations of the NMRSG can be separated

into two subgroups, either or both of which may include
only the identity. The first of these subgroups includes
only permutations within fully equivalent groups+ of
nuclei. The nuclei in a fully equivalent group must
have:

‘i) equal chemical shifts,

ii) equal coupling constants to any nucleus outside

the group,

iii) equal coupling constants within the group.
When these three conditions are satisfied, the Hamiltonian
is invariant to any permutation of the fully equivalent
nuclei. The subgroup of the NMRSG that describes the
local symmetry of fully equivalent groups of nuclei can
then be written as the direct product of symmetric7
permutation groups, Pn'

The first two conditions for full equivalence

are the necessary and sufficient conditions for the
conservation of the square of the total spin* of the
group of nuclei. Every fully equivalent group is thus,
8,9

by definition, a magnetically equivalent group. It

T The word 'group' is used throughout this thesis both for

collections of nuclei and for groups (in the mathematical
sense) of symmetry operations. It should be obvious from
the context which meaning applies.

¥ See §2.2 and Appendix A.
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can be shown (see Corio2 p. 175) that coupling constants
within a magnetically equivalent group have no effect

on transition frequencies or intensities. It will there-
fore be assumed throughout this thesis that all coupling
constants within a magnetically equivalent group are
effectively zero, and no distinction will be made between
a magnetically equivalent group and a fully equivalent
group of nuclei. The NMRSG, in this thesis, is the

same as Woodman's Effective NMR Symmetry Group.7

The second ('frame'7) subgroup of the NMRSG
permutes entire magnetically equivalent groups of nuclei.
Magnetically equivalent groups interchanged by frame
symmetry operations form a symmetrically equivalent set.
Symmetrically equivalent sets of single nuclei are
included in this definition, since a single nucleus can
be considered a magnetically equivalent group of one.

For example, in the perfluoro-2-butenes the single element
of frame symmetry interchanges the two CF; groups and
simultaneously interchanges the two olefinic fluorines.

The frame subgroup is normally isomorphic with one of

the geometrical point groups (Cz, Cs’ or Ci.in the example).
This makes it convenient to borrow the notation of an
appropriate geometrical point group, but it should not

be assumed that any likely conformation has the geometry
appropriate to the point group used. All that can be

said is that the average values of the chemical shifts



and coupling constants make the Hamiltonian invariant

to particular permutations of nuclei.

Although the NMRSG of a molecule can usually best
be described in terms of permutations, other approaches
may lead to simpler calculations. For example, it is
perfectly valid to classify the’§pin functions of a
magnetically equivalent group according to the irreducible
répresentations of the appropriate symmetric permutation
group Pn. Since the character tables of all symmetric
permutation groups useful in NMR are readily available,10
in principle there is no difficulty in constructing a
basis with the proper symmetry. However, in order to
calculate Hamiltonian matrix elements and transition
intensities, it is necessary to expand each basis functioﬁ
in terms of the original basis (1.2). For the larger
magnetically equivalent groups this would involve a vast
amount of unnecessary calculation. The composite particle
method, described in §2.2, provides identical results
without requiring any explicit expansion of the symmetrized

basis.

13
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2.2 Magnetic’EquivalenceT

In the composite particle approach to magnetic8
equivalence, a total spin operator E.is defined for each

magnetically equivalent group:

o) = I 1. (2.1)
iinr
Any single nuclei are considered to be magnetically equivalent
groups of one, with E_E 1, The spin Hamiltonian (1.1)

is rewritten in terms of these total spin operators:

Ho= Do E () + rgerS'f’_(r):f_(s)- (2.2)
The conditions for magnetic equivalence are the necessary
and sufficient conditions for F? to commute with H and

with the transition operator X of Eq. (1.3). As a result,

it can be shown2 that the terms involving coupling constants
within magnetically equivalent groups, which have been
omitted from the Hamiltonian (2.2), can have no effect

on the high-resolution NMR spectrum.

Comparing (1.1) and (2.2), it is apparent that

a magnetically equivalent group, when in a state with

T This section presents only a brief summary of the useful
results of the composite particle method. For a more
detailed account with proofs, see §5.4 of Corioz.
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spin F, can be treated as a composite particle of spin
I = F. A magnetically equivalent group of n nuclei of
spin I takes on all non-negative F values in the sequence

F = nl, nI-1, ni-2, ....

To take advantage of the commutation properties
of the F? operators, the basis for the system should
be constructed from their eigenfunctions. A simple product

form similar to (1.2) is suitable:

2 |Fr,mr>. (2.3)
When these basis functions are correlated with the
unsymmetrized basis functions (1.2), it is apparent that

for each group all F values except the highest are degenerate,
with degeneracy gg. "An index s = 1,2,...,gp can be
introduced; the basis vectors satisfy the orthogonality

relationships2

<Fj.my38; [Fyomyssg> = 8p p 8y 5 85 o (2.4)
iY5 ™"y ®i%;

The indices i and j are used here for a magnetically

equivalent group in two basis functions.

Since F? for each magnetically equivalent group
commutes with the Hamiltonian (2.2), the Hamiltonian
matrix can be reduced to block-diagonal form with each

block (submatrix) labelled by a unique set of F and s values.



16

Because F? also commutes with the transition operator X,

every transition must connect energy levels in the same

block.

The Hamiltonian (2.2) is written in terms of f,and F,
operators only; thus blocks whose basis‘functions have
identical F and m values, but different s values, must yield
identical Hamiltonian matrix elements. Similarly, the
transitions in these blocks must be identical. The spectrum
corresponding to each unique set of F values need be
calculated only once, and its intensities multiplied by the
statistical weight @gF. (the index i running over magnetically
equivalent groups),1 ' which can be calculated without
reference to the original |I,m> basis (see Corio2 p. 120).

These partial spectra for all sets of F values are then

superimposed to give the complete spectrum of the spin system.

The same total spin properties of a magnetically
equivalent group that provide useful factoring of the
Hamiltonian matrix also lead to the new form (2.2) for
the Hamiltonian. Matrix elements for an entire magnetically
equivalent group can be found as easily as those of a
single nucleus. In contrast, the permutation symmetry
of the same magnetically equivalent group does not lead
to a usefully simplified Hamiltonian. Instead, the original
Hamiltonian (1.1) must be used to evaluate the complicated

expressions for matrix elements in the symmetrized basis.



As the two approaches yield identical factoring,+

the composite particle method will be used throughout
the remainder of this thesis. A particular set of F
values for all magnetically equivalent groups will be
treated as defining a unique block (submafrix) of the
Hamiltonian, with the implicit assumption that an

appropriate statistical weight must be applied to all

of its transition intensities.

C. W. Haigh has proposed (private communication)
an excellent notation for symmetric spin systems, which

is used throughout this Thesis.

As usual,1 letters close together in the alphabet
(A,B,...) are used for magnetically equivalent groups
with similar chemical shifts, and other letters far from
them in the alphabet (W,X,...) are used for groups widely
separated in chemical shift from the A,B,... groups.

The number of nuclei in each magnetically equivalent group

T For magnetically equivalent groups of nuclei of spin 1/2,

there is a one-to-one correspondence between total spin and
irreducible representation in Pn' But for groups of

three or more nuclei of spin I > %, blocks of basis functions
degenerate with respect to F may belong to different
irreducible representations of Pn' This yields no extra
factoring, and is in any event unimportant; such groups

are seldom significantly coupled to the other magnetic

nuclei in the molecule. See Diehl, Harris, and Jones,

p.34, and their references.

17



is indicated by a subscript. ‘Thus the spin % nuclei

in monochloroethane form an AZXS spin system.

An n-fold element of frame symmetry is indicated
by [...]n enclosing the notation for a typical member
of each symmetrically equivalent set. Thus 1,3,5-trifluoro-
benzene is an [AX]3 spin system, and either of the perfluoro-
2-butenes 1is an [AX3]2 spin system., Groups invariant
to the symmetry operation are placed outside the brackets.

Thus p-fluorotoluene could be described as AS[KL]ZX'

The extensioh of the notation to molecules with
more than one element of frame symmetry involves the
use of more than one set of brackets. It will not be
described here, because such molecules are outside the

scope of this Thesis.

18



2.3, Twofold Frame Symmetry

2.3.1. The Spin Hamiltonian

The composite particle method has greatly simplified
calculations involving magnetically equivalent groups,8 but
only conventional group theory has previously been used to
deal with frame symmetry. It is shown below that for mole-
cules with twofold frame symmetry it is useful to apply .
two general principles of the'composite particle method:
the basis is constructed from eigenfunctions of group
total spin operators, and the Hamiltonian is written in
terms of spin operators that embody all the symmetry of

the spin system.

When there is twofold frame symmetry, the Hamiltonian

(2.2) can be rearranged as follows.

Ho= IviE, (1) ingijEcirEcj')

+ 11 95 @) - Ee)E@) -E()]
1p
" 1 vplE()E, (0] + Top-E@)E(®) (2.5)

+ ] 3 E@) E@Er) E@)
P<q

+ J I E@ EaEen F@l.
P<q
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In (2.5), magnetically equivalent groups which are transformed
into themselves by the frame symmetry (invariant groups)
are labelled i,j,.... All other groups must appear in
pairs, labelled p,q,..., such that the frame symmetry
element interchanges the primed and unprimed members

of each pair. The two distinct coupling constants (usually
cis and trans) connecting pairs p and q are written Jpq

and Jqp‘ The coupling constants connecting the two members
of a pair to any invariant group must be equal or the
symmetry is destroyed. As a result it is pointless to

use frame symmetry unless there are at least two pairs

in addition to any invariant groups. A single pair,

as in 1,3-dichloro-benzene, meets the conditions for
magnetic equivalence and is better treated by the usual

composite particle method.

The actual nature of the twofold symmetry operation
ijs irrelevant as long as the Hamiltonian can be written
in the symmetrical form (2.5). In practice the NMR symmetry
is usually the result of a plane or twofold axis of symmetry
in the molecﬁle, taking the conformation as an average
over an NMR time scale. For convenience, the notation
of the group C2 will be used below, but this should not

be considered a restriction to molecules with that symmetry.

A total spin operator 3 is defined for each

symmetrically equivalent pair of groups

Rep) = E) B, (2.6)



and a new basis is constructed which diagonalizes A?
and &z for each pair.+ In terms of the basis (2.3),

the new basis for each pair may be written
|A,M> = ¥ (F,F”,k,M-|F,F",A,M) |F,x>|F" ,M-k>. (2.7a)
K

The Clebsch-Gordan coefficients‘{r (and the [A,M>) exist

only for values of A satisfying the triangle inequalities
|F-F7| € A € F+F~ (2.7b)

The basis for the entire spin system then consists of
a product of magnetic equivalence functions for all
invariant groups and pair total spin functions for all

symmetrically equivalent pairs of groups

I |F;,m;> « T |A
1 p

»M_>. .
pMp (2.8)

The symmetry properties of this basis are discussed in

§2.3.3.

T It should be emphasized that, by definition, none of the

A? (p) commute with the Hamiltonian. If A?* for any pair of
groups does commute with H, all the nuclei in the pair of
groups form a single magnetically equivalent group.2

¥ 12

The notation of Condon and Shortley~“ is used for the
Clebsch-Gordan coefficients (F,F”,k,M-c|F,F",A,M).

21
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One can now rewrite the Hamiltonian (2.5) using the symmetric

spin operators E(p) and the complementary antisymmetric

operators
Bp) = E(@ - E®7,
obtaining
Ho= IvE () ingijE(i)-E(j)
) gJipEﬁi)-E(p)
RTINS Ip-E)E(@D)

+ %) (Jpq+Jqp)7§(p)'7_{_(q)

* ngq(Jpq-Jqp)E(p)-Ecq).

The transition operator is now written

(2.9)

(2.10)

(2.11)
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2.3.2. Matrix Elements in the Symmetrized Basis

Many of the matrix elements appearing in (2.10)
are easy to evaluate. F, and A, can contribute only
to diagonal matrix elements, since the basis is constructed
from their eigenfunctions. ﬁ'i’, which commutes with

both A% and A,, also contributes only diagonal matrix

elements. The first formula 1232 of Condon and Shortley12
becomes, in the present notation,
<AM|E-F |A,M> = 5[A(A+1)-F(F+1)-F"(E"+1)]. (2.12)

The remaining terms in (2.10) can contribute to
either diagonal or off-diagonal matrix elements. Their
dot-product form permits the separate evaluation of the
two halves of each product. Each half is a matrix element
such as <A,M|§JA’,M’>, whose vector character is shown
in the following equations by the use of the Cartesian

. + > >
unit vectors 1,j,k.

The matrix elements of E for the invariant groups
are well known.’ Those of E and E for the pairs can be
found from the equations for matrix elements of E‘and E’
in an |A,M> basis, given in pages 56-73 of Condon and
Shortley.l2 The matrix elements of 3 in the |A,M> basis
are, of course, similar to those of E in the |F,m> basis.
Since A commutes with A2, AA=0 for all its nonzero matrix

elements:
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<A M|K|AM> = MK

(2.13)

<A M|K|A,Me1> = [(ARM) (AxM+1)]17% 243,
2

/

The commutation rules for E with respect to E_follow the

common pattern

[A,,B,] =0 [Ac>By) = iB, [Ay,gx] = -iB,
[é.y’gy] = 0 [éy’E'Z] = "LE_X [éz’_]iy] = -LBX
[AZ’EZ] =0 [éz’gx] = LEV [Ax’gz] = _LEY'

As a result,

<A,M|B|A£AA,M:AM> = 0 unless AA=0,1;AM=0,1.  (2.14)

Nonzero matrix elements of E allowed by (2.14) are

<AM|B[A-1,M> = §(F,F",A)[A2-M?]% &

<A,M|B|A-1,M21>

n

§CF,F,A) [ (ATM) (AsM-1)1% 1243
2 (2.15)

+

<A M|B[A,ME1> = g (F,E",A) [ (ATM) (AM+1)]% 3243
7

<A,M|B|A,M> = g(F,F",A)M Kk,



where
§E,Fo,A) = | LAZZ(EED)?I[(R+E7+1)2-A%] %
A2 (4A%-1)
(2.16)
g(F,F*,A) = F(F+1) - F’(F‘+1)'
A(A+1)

Note that when F=F”, g(F,F”,A) vanishes, giving the stronger
condition AA=x1 for nonzero matrix elements of E. The
expression for §(F,F”,A) then reduces to the simpler form

%

§(F,F°,A) = | (2F+1)2-A? (2.17)

4A%-1

As an aid to hand calculations, the squares of the factors
in (2.16) are given in Table 2-1 for all combinations
of F, F”, and A that occur for pairs of groups with spin

up to 3/2.

25
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TABLE 2-1

26

of Factors1L §(F,F",A) and g(F,F~",A)

of <A,M|B|A”,M">

F 12 A A =2 A” = A =0
3/2 3/2 3 1/5 0 0
2 0 4/5 0
1 4/5 0 5
3/2 1/2 2 1/4 1/4 —
1 1/4 9/4 -
1 1 2 0 1/3 0
1 1/3 -0 8/3
1 0 1 - 1 -
1/2 1/2 1 - 0 1

1.

See equations (2.15) and (2.16).

Primas on A and M

are ussd only to distinguish between bra and ket values.
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2.3.3. Symmetry Properties of the |A,M> Basis

When the molecular twofold symmetry operator C2
is applied to the basis (2.8), the basis function (2.7)

for each symmetrically equivalent pair becomes

_(_D_ZIA,M> = Y(F,F”,k,M-k|F,F’*,A,M) |F" ,M-k>|F,x> (2.18)
K

The resulting basis function clearly belongs to a submatrix
of the Hamiltonian related to the original submatrix by the
interchange of all primed and unprimed groups. There are
two possible cases: when for every pair F=F”“, the new and
old basis functions are the same; otherwise, C, relates

basis functions in different submatrices.

Thus when F#F” for at least one pair, the product
functions (2.8) are not eigenfunctions of gz, and the
magnetic equivalence submatrix cannot be further factored
on symmetry. However, from the symmetry of (2.5) it is
obvious that the two submatrices related by C, are
degenerate. Energy levels and transition intensities need
be found for only one member of each such pair of

submatrices, giving it double the usual statistical weight.

When for all pairs F=F”, the redundant prime in (2.18)
can be dropped. Substituting m=M-« and reversing the order

of summation, one obtains from (2.18)

QzlA:M> = Y(F,F,M-m,m|F,F,A,M)|F,m>|F,M-m> (2.19)
m



Interchanging the two F values, along with the corresponding
m values, at most changes the sign of a Clebsch-Gordan

coefficient.+ Thus (2.19) becomes

C,lA,M> = 7 (-1)2F-A(F,F,n,M-n|F,F,A,M) | F,n>|E,M-n>
m
(2.20)

i

-1y 2F A A

For each pair, |A,M> belongs to one of the irreducible
representations of CZ‘ The staté of highest spin belongs
to the A representation, and those of lower spin are
alternately B and A. The complete product function (2.8)
will have B symmetry if an odd number of the individual pair
functions have B symmetry; otherwise it will have A
symmetry. The invariant groups, which always have A symmetry,

. cannot affect the symmetry of the product function.

Every submatrix in which all F=F” may now be
separated into two submatrices containing the symmetric (A)
and antisymmetric (B) basis functions respectively. Because
C, commutes with both the Hamiltonian and the transition
operétor, these submatrices are completely independent of
one another, just as they are independent
of all magnetic equivalence submatrices with different F

values.

t . . .. j . +§.-J . ..
(Gyi,mmp|34327 M) = ("1)31 J2 (JzJﬂ“zmllJleJ M). See

Condon and Shortley12 p. 78.
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2.3.4. Transitions

Transition intensities are calculated from the
matrix elements of the transition operator X (see Eq. 2.11).
Transitions involving invariant groups have intensities

proportional to
| <F,m|F |F,m-1> |2, (2.21a)

and those involving symmetrically equivalent pairs have

intensities proportional to
| <A,M|A |A,M-1> |2, (2.21b)

A1l F2? commute with X, giving the selection rule
AF=0. Similarly, for those magnetic equivalence submatrices
in which all F=F”, there is the additional selection rule
that the symmetry must not change. Both of these selection
rules are taken care of implicitly by treating each
submatrix as an independent calculation. It must be
remembered that all transition intensities for any submatrix
are multiplied by the appropriate statistical weight to

account for any degeneracy.

Since all A? commute with X, there is the additional
selection rule within each submatrix that AA=0 for every

symmetrically equivalent pair.

29



2.3.5. Discussion

The form of the symmetrized Hamiltonian, Eq. (2.10),
was chosen to show its derivation clearly, and as a result
it appears unnecessarily complicated. It can be simplified
by redefining some of its terms. The definition of the
total spin operator E can be extended to include E for
all invariant groups, just as E includes i_for all single
nuclei. Sums over i,j... now include both invariant
groups and symmetrically equivalent pairs; sums restric-
ted to the pairs now use the indices Z,m,.... In each
case a symmetrically equivalént pair is considered to
be a single entity, represented by a single index; primed
indices such as £7,m” are used only where the two halves
of the pair must be distinguished. The two coupling

constants J__ and Jqp are combined to give the symmetrized

pq
couplings
= 1
Jom = %Upq * Jgp
(2.22)
Ing = %Upq ~ Jgqp)-

With these changes, the symmetrized Hamiltonian (2.10) can

be replaced by

30



Ho= ] vA (i) + % 3y, E(R)E(L)
1

+ § J55R0)-R0) (2.23)

i<j

+ 53,80 Em);

£<m

the basis (2.8) reduces to

mo| A M, (2.24)
i

and (2.2la) is no longer needed. It must be remembered

that the two F values for each symmetrically equivalent

pair are essential to the definition of the basis, and

appear in the equations for many of the matrix elements.

Equation (2.23) shows more clearly the distinction
between a symmetrically equiValent pair and an invariant
group. All matrix elements of z for a pair are identical
to those that would be found for an invariant group
consisting of all the nuclei in the pair. The coupling
constant sz that appears in E.matrix elements connecting
two pairs is just the average of the near and far couplings.
But since the difference coupling sz is not zero, matrix
elements of E can mix basis functions where a pair has
different A values. This in turn allows the coupling
JLL’ within the pair to affect the appearance of the

spectrum.

31



32

Frame symmetry does not factor all of the magnetic
equivalence submatrices when there are symmetrically
equivalent pairs of magneticaily equivalent groups. However
the largest submatrix, the one in which every group has
its maximum F value, can always be separated into symmetric
and antisymmetric parts. In these and all other symmetry-
factored submatrices, F = F” for every pair. As a result,
E contributes to off-diagonal matrix elements (AA = =*1)
only, and the simpler equation (2.17) can always be used
to calculate them. If (2.23) is used for the submatrices
which are not factored by symmetry, the full equations
(2.15) and (2.16) must be used for at least some E matrix
elements. No factoring is lost here if the unsymmetrized
Hamiltonian (2.5) is used, but the advantage of simpler
equations for the Hamiltonian matrix elements may be

outweighed by the need to treat each pair as two groups.

The usefulness of the symmetrized Hamiltonian
and basis derived in this Chapter, is significantly
increased by its suitability for computer calculations.
Two characteristics of the method are particularly
important in this respect. First, the simple product
form of the basis (2.24) is valid for molecules of
arbitrary size. Second, because the two halves of each
dot-product Hamiltonian matrix element in (2.23) are
evaluated separately, the calculation of each such matrix

element depends only on the characteristics of the two



CHAPTER 3. | FULL FACTORING

3.1. The Hamiltonian Matrix

The NMR Symmetry Group provides only the first
stage of factoring the spin Hamiltonian. To permit easy
reference to each stage, a simple sﬁbscript ndtation13
is used in the remainder of this Thesis. The complete
spin Hamiltonian matrix, prior to any factoring, is referred
to as the Hamiltonian matrixl. Symmetry factoring yields
matrices,, which are factored by the z component of total

spin, M, into matricess. When there are large chemical

shift separations, each matrix3 is X factored into matrices4.

If a particular form of factoring does not apply, some
of these terms become synonymous. For example, if there
is no symmetry factoring, the single matrixz includes

the entire matrixl.

It is convenient to extend this notation to include
other quantities associated with the Hamiltonian matrix.
Thus basis functions, eigenvalues, eigenvectors, and
transitions are also referred to as belonging to particular

matricesz, matricess, and matrices4.

Only one kind of factoring always applies: every
matrix2 is factored into matricess, each labelled by a
different eigenvalue M of the z component of molecular

total spin. There are ZMmax+1 matrices, in each matrix,,
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with M = Mmax’ Mmax_l’ cees 'Mmax; Mmax is usually equal
to the sum of the F values of all magnetically equivalent
groups in the matrixz. (When there is twofold frame

symmetry, M

max in an antisymmetric matrix2 is one less

than Mmax in the symmetric matrix, with the same set

of F values.)

The size of each matrix3 is determined by the
number of possible basis functions with that M value.
When all groups have F = %, with each basis function
one of the 2" possible combinations of o and B, these
sizes go as the appropriate binomial coefficients. In
general it can only be said that the matrices3 with
M = iMmax are smallest, and those with M nearest zero
are largest, within each matrixz.

The third stage, X factoring, derives its name
from the usual convention1 for describing nuclear spin
systems. Nuclei forming a set with similar chemical
shifts are labelled A,B,...; those in a second set are
labelled X,Y,... if all of the coupling constants JAX
connecting them to the first set are much smaller than
the corresponding chemical shift separations A,y. The
concept can be generalized to-allow any number of sets
of nuclei, each of which meets these conditions with
respect to every other set. Each such set of nuclei in

a molecule is referred to here as a species.

The basic assumption of X factoring is that éZ(S),
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the z component of total spin for each species, commutes
with the Hamiltonian. Each corresponding eigenvalue,
Mg, is then a good quantum number. This approximation

is valid only when all terms containing the first and

higher powers of JAX/AAX can legitimately be dropped

in a perturbation calculation (seeAC6ri02 Chapter 7).

1f the various species are in fact different isotropic
species such as !°F and 31p_ the chemical shift separation

is many MHz at normal field strengths, compared with
coupling constants of at most a few KHz. The X approximation
is then essentially exact. Within proton spectra, coupling
consténts are usually small enough to allow X factoring

when B,y is only a few hundred Hz; for other nuclei,
particularly '°F, the wide range of chemical shifts makes

X factoring even more COmMMON.

When all the MS values are good quantum numbers,
basis functions that differ in any Mg value cannot mix.
An X factored matrix3 reduces to a series of matrices,,
each of which is characterized by a unique set of Mg
values whose sum is M for that matrixs. Fig. 3-1 shows
the resulting factoring of a matrix2 from an [AX3]2 spin
system (the antisymmetric matrix, with Fy = Fp. = %,
FX = Fy. = 3/2). The two Mg values for each matrix,
and the M value for each matrix3 are given beside the
matrices to which they belong. The matrix3 boundaries
show the amoﬁnt of factoring that would be available

if the two chemical shifts were too close together to
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FIG. 3-1. FULL FACTORING.
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permit X factoring (i.e. for an [ABS]Z spin system).

The matrix sizes in Fig. 3-1 illustrate several
typical points about X factoring. A large matrix3 is
generally factored into more matrices4 than is a small
matrixs, but this does not prevent an increase in matrix4
size as the matrix3 size increases. Because some of
the matrices4 are quite small, the largest one in each
matrix3 may have a dimension only slightly smaller than
the matrixs. There is however a considerable saving
in calculation. In the example, the three matrices4
in the matrixg with M = 0. have sizes 1x1, 4x4, 1x1; there
are, therefore, no more than 18 nonzero matrix elements

compared with 36 for that matrixg without X factoring.

The basis functions in a matrix2 can be paired,
associating each one with its complement in which the
signs of all the group M values are reversed. Since
these basis functions have complementary M and Mg values,
the pattern of matrix3 and matrix4 sizes is symmetrical
about M = 0. In hand calculations, once the Hamiltonian
matrix elements for each matrix4 have been found, those
for the complementary matrix4 can be obtained much more
quickly. Every term will be jdentical in magnitude to
the corresponding term in the complementary matrix4,

but some terms will have the opposite sign.

The most extreme X factoring occurs for a molecule

-

in which no two magnetically equivalent groups have closely



spaced chemical shifts. Since each maghetically equivalent
group is then a member of a different species, every

group M is also an MS‘ No two basis fun;tions share

the same set of F values and the same set of MS values,

so the Hamiltonian matrix can have no off-diagonal elements.
The result is a simple spectrum of the type given in

§5.2 of PSBl. Much of the popularity of NMR as an analytical
tool results from the fact that the magnitude of every
coupling constant can be taken directly from the separation

of experimental lines when a spectrum meets these first

order conditions.2

The spectrum of a molecule with frame symmetry
is less easily analyzed, even when there is only one
distinct chemical shift per species. The two or more
magnetically equivalent groups in a symmetfically
equivalent set have identical chemical shifts, and are
therefore of the same species. Thus even the simplest
of all spin systems with frame symmetry, [AX]Z, never

yields a true first order spectrum.

One additional type of factoring, which has been
applied by Harrisl? to some [AXn]2 spin systems, should
be mentioned briefly. In strongly X factored spin systems,
it may be possible to separate all the basis functions
of a matrix4 into groups, such that every off-diagonal
matrix element between basis functions in different groups

is some multiple of one coupling constant. If that coupling
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constant is zero, each of the groups of basis functions
becomes a separate matrixs. In hand calculations this
extra factoring can yield additional easily solved 1x1

and 2x2 matrices. In computer calculations it is best
ignored for two reasons: the matrices4 that can be further
factored are usually quite small, and there is no simple

rule for sorting the basis functions into matricess.

Zero coupling constants produce additional factoring
only if they appear in off-diagonal matrix elements.
The basis that allows this may be different from the one
that would nofmally be used when all coupling constants
are nonzero. In the twofold frame symmetry basis of
Chapter 2, both J,,- and JXX’ appear only in diagonal
matrix elements, and cannot affect the degree of factoring.
There are 3x3 and 4x4 matrices4 to diagonalize in an
[AXS]Z system, and larger ones for larger [AXn]2 systems.
However if a simple magnetic equivalence basis is used
for any [AXn]2 system with JXX’ = 0, there is no matrixS
larger than 2x2. When JXX’ is nonzero but small, as
in some molecules discussed in §5.3, Harris's14 algebraic
solution for Jyy. = 0 can still be applied to obtain

a first approximation to the correct parameters.
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3.2 Transitions

It was pointed out in Chapter 2 that the symmetry
factoring of the.Hamiltonian matrix is exactly matched
by transition selection rules: each matrix2 is a separate
entity whose spectrum can be calculated without reference
to the other matricesz. Within each matrixz, the factoring
by M and Mg into matrices3 and matrices4 is also reflected
in selection rules. These differ from the symmetry
selection rules chiefly in that transitions occur not
within a single matrix3 or matrix4, but rather between
certain matrices, in adjacent matricess. It is shown
" below that these selection rules can be derived quite

simply from the nature of the factoring described in §3.1.

The frequency of a transition is easily obtained
from the algebraic difference in energy of the pair of
states the transition connects. The corresponding intensity
is obtained from the absolute square of the matrix element
of X (see Eq. (2.21) ) between these two states. This
matrix element is best found indirectly. First, the
readily calculated matrix elements of X in the original
basis (2.3) are obtained. Each desired matrix element
is then calculated from this initial representation of
X using the wunitary transformation that diagonalizes

the Hamiltonian.

The transition selection rules in the basis representation
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are straightforward. There can be a nonzero matrix element
" of X between a pair of basis functions only if?
i) AF = 0 for all magnetically equivalent groups

ii) AA

i

0 for all symmetrically equivalent pairs
iii) AMi = +1 for some one (invariant) group oOr
(s&mmetrically equivalent) pair
iv) AMj = 0 for all other groups and pairs.

Since, in the basis representation, the Hamiltonian matrix
consists of matrix4 blocks along the main diagonal, the
unitary transformation that diagcializes it can mix

basis functions only within a matrix4. Thus these selection

rules operate at the matrix4 1evel after the transformation.

Basis functions that meet the first two conditions
must be in the same matrixz. To meet the remaining two
conditions, they must be in different matrices,: if
AM = *1 for group i, but not for any other group in the
same species as group i, then the MS values for that species
differ by *1. The fourth condition requires that AMg = 0
for every species other than the one containing group
i. After transformation to the representation in which
the Hamiltonian matrix is diagonal, it may no longer
be possible to label any particular transition as belonging
to group i, but all of the transitions connecting the
pair of matrices, must still belong to the species whose

Ms changes.

Matrices4 that meet these conditions (AMS = +]
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for one species, AMg = 0 for all other species) are found
in matrices3 whose M values differ by 1. If X factoring
is not used, Mg for the only species is identical to

M, and an argument similar to the one above leads to

the usual selection rule1 AM = ¥1, Transitions can then
conne.t any pair of energy levels in adjacent matricess.
Thus the additional selection rules introduced by the

X approximation are a natural consequence of the additional

factoring of the Hamiltonian matrix.

It was pointed out in §3.1 that X factoring is
an apprqximate method in which all terms in JAX/AAx are
assumed to be negligibly small. As in any perturbation
method, eigenvectors are affected more than eigenvalues
when the neglected terms begin to become important. In
an NMR calculation, the eigenvectors are used only to
transform the matrix elements of X (see Eq. (2.21) )
to the representation in which the Hamiltonian is diagonal.
Thus if a calculation is carried out using X factoring
that is not quite justified by the chemical shifts and
coupling constants, the intensities of the calculated
lines may be somewhat distorted, but the frequencies
will be very close to the true values. As a result,
if the observed and calculated spectra are compared chiefly
with respect to frequency, X factoring can be used to
save time with little sacrifice in accuracy. A good example

of the use of such borderline X factoring is given in
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§5;2, in the analysis of the spectra of the 2,5-dimethyl-

3-hexenes.

If the X-approximation is valid for a molecule,
the transitions of each species are grouped together,
far from the transitions of any other species. 1In
calculations it is usually convenient to follow experimental
practice, and give all chemical shifts for a species
as displacements from a reference frequency in that species'
region of the spectrum. Usually the reference for a
calculation will be the same one used experimentally,
but it is sometimes easier to use one of the chemical

shifts in the molecule instead.

The chemical shift contribution to the Hamiltonian
(2.23) can then be written in terms of the species reference
frequencies Vg and displacements U} of each chemical

shift from Vg of its species:

Xvig_z(i) = EVSA_Z(S) + X\Tiéz(i). (3.1)
i S i

The first sum on the right of (3.1), which contributes

equally to every diagonal element of a matrix4, contains

all of the information about the actual separation between

species. The selection rules described below allow

transitions of species S only between matrices4 where

this sum differs by #vg; thus each species' spectrum is

unaffected by the Vg values of the other species. Usually



all v. values are set to zero, and 5& values are used

S
for the chemical shifts. All calculated transition
frequencies of a species are then displacements from

Vg rather than absolute transition frequencies.
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3.3. The Structure of the Spectrum

3.3.1. Subspectra

Together with symmetry factoring, X factoring
‘breaks up the complete spectrum into smaller and more
manageable groups of transitions. A particular matrix2
yields a set of transitions that can be calculated without
reference to the other matricesz. When there is X factoring,
these transitions can be separated according to species.
Any single species' transitions can be further separated
into sets each characterized by a particular set of MS
values for all other species. The factoring thus imposes
a structure on the spectrum, making certain lines (not
necessarily close together in frequency) members of natural

groupings.

Each such natural grouping of lines, characterized
by a particular set of quantum numbers, will be referred

to as a subspectrum.11

Though most references to subspectra
will be to smaller groupings of lines, all of the lines
belonging to a particular matrix2 could also be called a
subspectrum within this definition. The structure of

the complete spectrum in terms of subspectra is independent

of the chemical shifts and coupling constants, as long

as the conditions for factoring are preserved.



47

Because a subspectrum is defined by a set of constant
quantum numbers, its patterﬁ of lines may be strongly
affected by only a few of the chemical shifts and coupling
constants. Often the functional relationship between these
parameters and the line positions is simple enough to be
directly useful in the analysis of complicated spectra.

11 are based

Many of the methods of Subspectral Analysis
on similarities between particular subspectra and the

complete spectra of well knowa simple spin systems;

Fig. 3-2 shows the pattern of allowed transitions
in the symmetric matrix, with all F = % £from an [AX3]2
system. This matrixz, whose statistical weight is four,
is identical in structure to the symmetric matrix2 of
an [AX]2 spin system. The expressions for transition
frequencies and intensities in an [AX]2 spin system,
given on p. 141 of PSBl, are equally valid here. If
the transitions of this subspectrum can be recognized
in either the species A spectrum or the species X spectrum
of the [AX3]2 4;stem, 511 of the coupling constant combinations

except |JAA,—JXX,|>can be calculated.

The species A transitions of thié same matrix2
are shown again in fig. 3-3(a), separated into subspectra.
The simplest subspectra correspond to the extreme values
for MX; this is generally true in larger systems as well,
partly because there are fewer basis functions with extreme
' MS values than with MS values near zero. In this case,

the lines with MX = ¢1 form a strong, readily recognized



SPECIES A TRANSITIONS

[AX3l, SYMMETRIC MATRIX,, ALL F=1/2, WEIGHT 4.

FIG. 3-2. ALLOWED TRANSITIONS.
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doublet. The remaining four lines, whose total intensity
is half that of the strong doublet, form the MX =0

subspectrum.

Within a particular species, the matrices4, as
well as the transitions, can be labelled as belonging
to subspectra. This is true not only for this simple
example, but for any X factored calculation. A
transition of species A is allowed only if the Mg values
of all other species are constant. Thus all transitions
into or out of a matrix4 are, by definition, members

of the same subspectrum.

Because, in this matrixz, species A and species X
have the same number of groups, with the same F values,
the species X subspectra in Fig. 3-3(b) follow a pattern
identical to that of the species A subspectra just
described. However, matrices4 belonging to the same
species A subspectrum never belong to the same species X
subspectrum. This result can be generalized to any number
of species. AMA = *]1 between matrices, connected by
species A transitions. Thus these matrices4 cannot belong

to the same subspectrum for any other species.
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3.3.2. Connected Transitions

The algebraic relationship between the transition
 frequencies of a particular subspectrum, and unknown
chemical shifts and coupling constants, is useful only

if those transitions can be recognized in the experimental
spectrum. Thus subspectral analysis can be applied only
when the structure of the observed spectrum has already
been determined. Often this requires special experimental
techniques, such as the low power double resonance~methods15
described below.

15 16

In a spin tickling “or INDOR™ “experiment, a reasonably
isolated transition (referred to below as transition

T) is chosen. It is irradiated continuously while a

second radiofrequency is swept slowly through the remainder
of the spectrum. The resulting double resonance spectrum
indicates which other transitions, in the region swept,

share an energy level with T. All of these transitions

(including T) form a set of connected transitions.15

Transitions can be connected in either of the two
ways illustrated in Fig. 3-4. If the energy level common
to the two transitions lies between the other two energy
levels, as in Fig. 3-4(a), the transitions are said to
be connected progressively; otherwise, as shown in Fig.
3-4(b), they are connected regressively.15 With careful

adjustment of experimental conditions, an INDOR spectrum



(a) PROGRESSIVE

(b) REGRESSIVE

FIG. 3-4. CONNECTED TRANSITION TYPES
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can show clearly whether a particular transition is connected
progressively or regressively to T; see §5.1 for examples.
Tickling experiments can also give this information in

15
some cases.

Thus a double resonance spectrum can allow assignment
of the relative positions of all of the energy levels
belonging to transitions in the connected set. Further
double resonance spectra, in which other transitions
in the set are irradiated can extend the collection of

energy levels and transitions whose structure is known.

The two approaches to the structure of a spectrum,
in terms of subspectra, or in terms of sets of connected
transitions, are complementary. Subspectral analysis 11
leads directly to values for unknown chemical shifts
and coupling constants, but it requires a knowledge of
the structure of the spectrum that often can be obtained
only from double resonance ekperiments. The pattern
of connected transitions, in addition to allowing assignment
to subspectra, often provides direct confirmation of
the signs of coupling constants in the many cases where
these signs do not affect the appearance of an ordinary

single-resonance spectrum.

It is seldom possible to work out the entire structure
of a complicated spectrum from double resonance experiments.
If other transitions T”, T””, etc. are coincident in

frequency with T, every transition connected to any of
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T, T°, 77, ... will appear, in the double resonance

spectrum, to belong to a single connected set. Any

additional double resonance spectra intended to resolve

the problem may be equally ambiguous. One can, however,
use whatever partial structure has already been determined,
to assign transitions to subspectra. One then calculates

a trial spectrum from parameters obtained by subspectral
analysis. If the double resonance results were correctly
interpreted, the experimental partial structure will fit
into the calculated complete structure. The calculated
structure will also,suggesf useful transitions T for

additional unambiguous double resonance experiments.

The relationship between subspectra and sets of
connected transitions is discussed again in §4.1 in
connection with the design of a computer program for
spectral calculations. The analysis of the spectrum
of cis-perfluoro-2-butene, in §5.1, illustrates the use
of INDOR to determine part of the structure of a complicated

spectrum.
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CHAPTER 4. " COMPUTER CALCULATION OF SPECTRA

4.1. Objectives for a Computer Program

The usual goal in analyzing a high resolution
NMR spectrum is to obtain all of the chemical shifts
and coupling constants. Computer programs, generally
based on either LAOCOON!7 or NMREN/NMRITlS, have become
an essential aid to the analysis of complicated spectra.
Some of the limitations of existing programs can be avoided
if a new program's design ié derived from its intended
uses, which vary according to the type of spectrum being

analyzed.

The spectra of many molecules without frame symmetry
contain several nearly first order multiplets well separated
from each other. Spacings in these multiplets give
reasonable approximations to the magnitudes of most or all
of the coupling constants. The centre of gravity of each
first order multiplet gives an approximate chemical
shift. Frequently, particularly in proton spectra, there
remain some chemical shifts close enough together that
only rough estimates of their values can be obtained
by inspection. To get more accurate values for these
chemical shifts, and any remaining coupling constants,

a series of trial spectra are calculated for various

reasonable values of the parameters.
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The essence of this type of analysis is obtaining
a visual match to the observed spectrum. A good plotting
routine is essential; other characteristics of the program
become important only if they 1limit the size of problem
that can be handled. When there are highly complex over-
lapping multiplets, a plot that simulates experiméntal
lineshapes is necessary. Otherwise, a simple stick (bar)

plot is adequate.

Visual métching of the observed and calculated
spectra does not guarantee that the correct parameters
have been found. A seemingly straightforward multiplet
structure may be a deceptively simple limiting case of

19 Even when the

a more complicated type of spectrum.
spectrum is as simple as it appears to be, a first order
analysis does not reveal the relative signs of coupling
constants. These uncertainties can be resolved only by
comparing the structure, as well as the appearance, of
the observed and calculated spectra. This places
heavier demands on a computer program than does trial-
and-error visual matching. Thus the program features
discussed below in connection with the analysis of

complicated spectra are also useful in the full analysis

of simple spectra.

Molecules whose NMR spectral parameters cannot
be obtained by inspection fall into three classes. The

first class includes the many common small spin systems,
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such as AmBn and [AX]Z, for which there are algebraic

1,2 The second

solutions, tables of examples, or both.
class includes those larger spin systems whose spectra
are simplified by some combination of symmetry and

X factoring. Their complicated complete spectra contain
simpler subspectra11 similar in form to the spectra of

class 1 molecules; from these subspectra, the chemical

shifts and coupling constants are calculated.

The third class, large molecules lacking both
symmetry and X factoring, is of little concern here as
it seldom yields spectra that can be analyzed. The
positions of the strong lines do not correspond to chemical
shifts, and the spacings (few of which are repeated)
bear no simple relationship to the coupling constants.
Double resonance experiments (see §3.3) may be of little
value, as even the sharper lines are very often super-

positions of several transitionms.

~Molecules in the second class, whose spectra can
be analyzed, but only with difficulty, are the ones which
most require a carefully designed computer program.
Usually the most difficult stage in the analysis is the
assignment of the observed lines to the various subspectra.
Since the simpler subspectra usually originate in matrices2

with high statistical weight, some of their lines may
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be intense enough to stand out clearly. Others will

remain hidden among the lines belonging to other subspectra.
The first step in the assignment is often the calculation
of trial spectra for reasonable starting values of the
parameters. If a trial spectrum bears any resemblance to
the real spectrum, it will show which prominent lines in

the real spectrum belong to useful subspectra.

To be useful in such subspectral analysis, a program
must print enough information to allow the convenient
tracing of calculated subspectra in two directions.
Starting from a transition, one needs the quantum numbers
that define its subspectrum; starting from a set of
quantum numbers, one needs all of the transitions belonging
to that subspectrum. The second requirement cannot be
conveniently met by an ordinary transition table arranged
by frequency, so the program must provide a second table

arranged by subspectra.

The weaker transitions in the simple subspectra
usually cannot be found without using double resonance
methods, as described in §3.3. If one of the strong lines
already assigned is sufficiently isolated from other
lines, it should be chosen as the irradiated transition.
INDOR can be used to particular advantage, as it reveals
the frequencies of connected transitions even when they
are weak components of strong, unresolved multiplets

(see §5.1).



To aid the planning of double resonance experiments,
and the interpretation of tﬁe results, a computer program
must show the structure of the calculated spectrum in
terms of sets of connected transitions. This can best
be done by printing lists showing what transitions are
connected to selected transitions chosen by the user.

A table giving the transitions connected to every transition

in the spectrum would be too large for convenient use.

It has been implicitly assumed above that the
structure of the calculated spectrum is the same as that
of the observed one. In a sense this is always true
if correct parameters have been used in the calculation,
but unless the program uses all of the factoring appropriate
to each spin system, the structure of the calculated
spectrum is not apparent to the user of the program.
Since a program that ignores valid factoring does not
have available all of the quantum numbers that define
the observed subspectra, it provides little aid in a

detailed analysis of the spectrum.

A computer program should be designed for the
convenience of the user, even if this requires more work
on the part of the programmer. The input data should
be arranged logically, using a minimum number of different
data card formats. Errors in the data should produce
clear messages rather than a cryptic failure of the program.

There should be a wide variety of output options to allow

59
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for the different types of analysis described above.

Observed and calculated spectra are more readily
compared if the chemical shifts of each species can be
giveﬁ as displacements from the same reference frequency
used experimentally. Each species' spectrum must then
be given separately, to avoid confusion between numerically
similar frequencies belonging to different species. This
has the further advantage that each species' calculated
spectrum is readily limited to a particular region of

interest, or suppressed entirely.

Finally, a program should be capable of making
calculations on large spin systems, and should be
efficient enough to make such calculations economically

feasible.
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4.2. The Computer

The design of any computer program must take into
account the limitations of generally available computer
hardware. The most serious limitation is that a computer's
fast main memory, in which all calculations take place,
is small compared with the data storage requirements
of an NMR program for large spin systems. Large calculations
can be made only if, throughout the program, anything
not relevant to the current step of the calculation is
moved out into slower auxilliary storage. Most computers
allow program instructions as well as data to be moved

in and out of fast memory as needed.

An efficient NMR program thus consists of a series
of steps, one of which is active in main memory at a
time. Each step processes a string of data blocks, typically
of matrix4 size, in assembly-line fashion. The natural
set of steps, which closely parallels the stages of a

hand calculation, is given in §4.3.1.

There are two main kinds of auxilliary storage.
Nearly all computers are equipped with sequential auxilliary
storage, usually magnetic tape. In order to reach a
particular piece of data, a sequential storage device
must normally start at the beginqing and read through
all of the preceding data. Thus data items can be retrieved,

conveniently, only in the same order in which they were
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stored.

Direct access auxilliary storage, such as magnetic
disk, has become increasingly common. Data items can
be retrieved in any order, but at the price of increased
overhead time spent keeping track of where each piece
of data has been stored. The overhead is reduced if
a direct access device is divided (logically, not physically)
into a number of regions. Any region can be chosen at
random, but within a region only sequential access is
allowed. This gives the programmer, in effect, dozens

of fast sequential storage devices.

An NMR program with full factoring is sufficiently
large and complicated that it is most often run on a
large computer in the same general category as the
IBM 360/67 at the University of Alberta. It is frequently
more economical, with such a computer, to design a program
to use a minimum of computing time, even if it then requires
more main memory space. However, it is also desirable
for an NMR program to be suitable for use with a small,
fast computer of the kind now frequently part of an NMR
spectrometer installation. The program described in
§4.3 can be adapted to either kind of computer, but requires
direct access auxilliary storage if it is to run efficiently

on a small computer.
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4.3. Some Aspects of Program Design

4,3.1. Introduction

The NUMAR+ computer program, whose listing is
given in Appendix B, has been designed to meet most of
the requirements of §4.1. The present section provides
a critical discussion of the methods of calculation used

in NUMAR, and describes some alternative methods.

The basic structure of NUMAR is determined chiefly
by the use of all possible factoring, to the matrix4
level, throughout the program. This makes the program
more complicated, but saves both main memory space and
calculation time. The design has also been influenced
by a decision to use only sequential auxilliary storage,

making the program suitable for a wide variety of computers.

Although they may be combined in various ways,
essentially the same set of program steps appears in all
programs that calculate NMR spectra. Arranged in the
order in which they appear in NUMAR, they are:

Read and print the input data

Construct the basis functions

Generate the Hamiltonian matrix

Diagonalize the Hamiltonian matrix

Calculate the transition frequencies and intensities

ew e A o A

Order the transitions by frequency

¥ University of Alberta NMR
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g Print the transition list
h Plot the spectrum (bar plot)
i Plot the spectrum (full lineshape simulation)

In the overall flow-chart for NUMAR, Fig. 4-1,
the blocks are labelled according to this list, as well
.as by the names of the FORTRAN subroutines (see Appendix B).
The use of full factoring has made most of these steps
large enough to remain separate, but step ¢ has been

combined with d, and § with g.

The step whose data storage requirements limit
problem size is TRANS. It must deal with a pair of matrices,,
compared with one matrix4 for HAMIL. BASIS deals only
with vectors of quantum numbers, rather than matrices,
so its data storage requirements increase much more slowly
with problem size. SPOUT also deals with vectors (of
transition frequencies, etc.); its storage requirements
increase only linearly with the number of transitionms,
but the number of transitions increases rapidly with
problem size. For very large, highly factored, spin
systems such as the 2,5-dimethyl-3-hexenes (§5.2), a
"species' transition list may require much more storage
than that used for the matrices in TRANS. However this
need not limit problem size; the transition list can be
broken up into frequency regions before sorting without

a drastic loss of efficiency.

Fig. 4-1 also shows an additional step, labelled

ADJUST, for the iterative adjustment of chemical shifts



It is not part of the current NUMAR program, but could
be added with few changes in the other steps. Possible

designs for ADJUST are discussed in Appendix E.
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4.3.2. Basis Functions

The choice of basis for an NMR program determines
the degree of factoring of the Hamiltonian matrix, and
consequently the kinds and sizes of spin systems that
the program can handle. The 'basis functions' generated
in the BASIS step of the NUMAR program are sets of quantum
numbers that represent product functions of the form
given by (2.24). 1In order to provide all three stages
of factoring outlined in Chapter 3, these basis functions
are grouped by symmetry into matrices,, and within each

matrix2 by M and MS into matrices3 and matrices4 respectively.

To fully define a basis function of the form given
by (2.24), one must have the total spins F of all of
the magnetically equivalent groups, in addition to the
A and M values of all invariant groups and symmetrically
equivalent pairs. For each group or pair each of these
quantum numbers can take on any of a range of allowed
values, in steps of 1. Each quantum number's range of
allowed values is determined by the current value of
another quantum number. This natural hierarchy of quantum
numbers leads fo a very straightforward procedure for

generating all of the product functions.

A1l possible sets of valid F values for the
magnetically equivalent groups are generated. For each

magnetically equivalent group of n nuclei of spin I,
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the range of valid F values is given by

F=F

max’ Fmaxnl’ eevsy ¥ or 03 F = nl. (4.1)

For each of the sets of F values all possible combinations
of A values for the invariant groups and symmetrically

equivalent pairs are generated, subject to the constraints
F+F* 2 A 2 |F-F7| (4.2a)
for each pair, and
A=ZF (4.2b)

for each invariant group. For each of the sets of A
vaiues, all possible combinations of M values are generated,

subject to the constraints
AZ M2 -A (4.3)

for each pair or invariant group.

It is convenient to generate the basis functions
for one matrix2 at a time. All of the basis functions
generated for a particular set of F values belong to
one magnetic equivalence submatrix. If the molecule

has no frame symmetry, or if F # F” for any pair, they
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are the basis functions for one matrixz.

When the molecule has twofold frame symmetry and
F = F* for all pairs, the magnetic equivalence submatrix
is factored into symmetric and antisymmetric matricesz.
The basis functions generated according to (4.3) for a
particular set of A values have a symmetry given by the

product over all pairs

I (_1)2F(£)-A(£) (4.4)

When basis functions in a symmetricmatrix2 are being
generated, the antisymmetric sets of A values generated
according to (4.2) are skipped; when the basis functions

in the corresponding antisymmetric matrixz are being
generated, the seté of A values just used for the symmetric

niatrix2 are skipped.

Successive basis functions produced by this generating
procedure seldom belong to the same matrix4 or even the
same matrixs. They must therefore be sorted by M into
matrices3 and, within each matrix3, by all of the MS
values into matrices4. To aid this sorting proceduye,
M and MS values as well as A and M values are included

as part of each basis function.

In the program, each of these spin quantum numbers
is represented by an integer equal to twice its true

value. Memory space is saved by 'packing' the integer



representations of the MS values of each basis function
into a single integer, and those of the A values into
another (see Appendix C). Because each possible set

of Mg values within a matrix2 has a unique packed represen-
tation, one need only check whether the packed MS values

are equal in order to determine whether two basis functions

belong to the same matrix4.

This allows grouping of the basis functions by
matrices3 and matrices4 using a simple single-stage sorting
routine. The basis functions are ordered by decreasing
M value or, when M values are equai, by decreasing packed

MS value.

The sorted basis functions for the matrix2 are
then placed in auxilliary storage. For each matrixz,
the F values and the statistical weight are stored; for
each matrixs, the M value; for gach matrix4, the packed
Ms value. The quantum numbers stored for each basis
function within a matrix4 are the packed A value, and
the M values of all groups and pairs. These quantum
numbers, for all matricesz, are sufficient to define

all following steps in the calculation.

The procedure used in the currént NUMAR program
differs in one major respect from the one just described.
To simplify the calculation of some Hamiltonian matrix
elements in those matrices2 where F = F” for all pairs

(see HAMIL, §4.3.3), NUMAR reverts to a simple magnetic
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equivalence basis in the other matrices, where frame

symmetry provides no additional factoring.

In all input to NUMAR each pair is treated as
a single entity. This representation is then expanded
internally (see Fig. 4-2) to give two magnetically equivalent
groups in place of each pair. When F # F” for any pair,
these two groups are treated in the same way as any other
magnetically equivalent groups. When F = F” for all
pairs, the first of the two groups (for each pair) is
given the characferistics of the pair, and the second
is given spin F = 0 in order to effectively remove it

from thé calculation.

The dual numbering system makes NUMAR considerably
more difficult to understand and creates complications
in HAMIL nearly as great as those it eliminates. The
simpler approach descéibed first, which always treats
a pair as a single entity, is recommended for future

programs.
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4.3.3. The Hamiltonian Matrix

The overall design of this step in the calculation
is straightforward. The basis functions for one matrix4
are brought into main memory, the matrix elements are
calculated, the matrix is diagonalized, and the eigenvalues
and eigenvectors are placed in auxilliary storage. When
there is frame symmetry, some details of the calculation
vary according to the procedure chosen for handling those
matrices, that cannot be factored by frame symmetry.

The recommended procedure is described first, followed
by a brief summary of the ways in which the NUMAR procedure

differs from it.

All Hamiltonian matrix elements are calculated
using the Hamiltonian (2.23), which requires that the
symmetrized combinations of coupling constants given by
(2;22) be used in place of the actual coupling constants
connecting symmetrically equivalent pairs. It is assumed
that a coupling constant matrix containing these symmetrized
coupling constants has been created in the input step.

In this matrix, the only nonzero elements below the main
diagonal are the difference couplings sz between pairs,
and the only nonzero elements on the main diagonal are

the couplings J££’ between the two magnetically equivalent
groups in a.pair. Each symmetrically equivalent pair

is treated, at all times, as a single entity; the size
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of the coupling constant matrix is given by the number

of pairs plus the number of invariant groups.

Before any matrix elements are calculated in each
matrixz, its F values are brought into main memory. Two
vectors are needed, the second containing only the F~
values for the symmetrically equivalent pairs. Most
matrix elements are calculated using only the A and M
values of the individual basis functions (A = F only
for invariant groups), but F and F” are used directly
in calculating the matrix elements of E-E’ and E

for the symmetrically equivalent pairs (see §2.3.2).

Rather than waste time evaluating E}fﬁ, and the
expressions for §(F,F”,A) and g (F,E”,A) (see Eq. 2.16)
every time they appear in a matrix element, one can calculate
them, for each pair, at the beginning of each matrix2
and store the values for use when needed. The values
of §(F,F”,A) and g(F,F",A) are stored in matrices,
jindexed by pair and by A value; the values of E}Ef are
stored in a vector indexed by pair. The rows, in the
§ and g matrices, corresponding to invariant groups can

be set to zero, since they will never be used.

Basis functions for a matrix4 are brought into
main memory; each basis function consists of integers
representing the M values of all pairs and invariant
groups, and a single integer containing the corresponding

A values in packed form. The Hamiltonian matrix elements



H.lj are then calculated, one row at a time.

The first step in calculating the matrix elements
of row i is the unpacking of the A values of basis function
i. The diagonal matrix element Hii is then calculated;
each diagonal element is a sum of terms contributed by

all parts of (2.23).

Since the Hamiltonian matrix is real and hermitian
(i.e. symmetric), one need calculate only those off-diagonal
matrix elements Hij that lie above the main diagonal.
Only the last two sums in (2.23) can provide off-diagonal
matrix elements. If the packed A values for basis functions
i and j are identical, any nonzero off-diagonal element

is a member of the E sum; otherwise it is from the E sum.

When the packed Ay and Aj values are not identical,
the A values for basis function j must be unpacked. Hij
is zero unless the conditions (2.14) are met for two pairs,
for example, pairs p and q. Combining these conditions

with others inherent in the factoring into matricesZ

and matrices,, one requires for a nonzero matrix element
J B -B :
b @) E@)

i) AAp = +1; AAq = 1, Fl;
ii) AMp, AMq = 0; or AMp = +1, AM_ = *1.
iii) all other AA, AM = 0.

( In every case, AA or AM is between basis functions 1
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and j.) If basis functions i and j meet these conditions,
the matrix element Hij is calculated using (2.15) and

the stored values of § (F,F7,A).

When the packed A valﬁes are equal, there is no
need to unpack the A values of basis function j. If
conditions on AM similar to those above are satisfied,

a matrix element Hij = Jpqg(p)-gﬁq) is calculated using
(2.13). Note that all nonzero off-diagonal matrix elements
involving invariant groups (including those where p is

an invariant group, and q 1is a pair) belong to the E

sum, not to the E_sum, of (2.23).

When the matrix elements in all rows of a matrix4
have been calculated, the matrix is diagonalized. The
diagonalization routine used in NUMAR, based on a new
variant of Householder's méthod,20 is particularly efficient
in its use of memory space, very fast, and very accurate.
It has already been pointed out that at least two matrices4
must be present in main memory during the transition
calculation. Thus the use of double precision arithmetic
in the diagonalization does not increase the total amount
of data storage used by the program. It has the advantage
that the single precision eigenvalues and eigenvectors
placed in auxilliary storage contain no rounding errors

from the diagonalization.

The pfocedure used in the HAMIL subroutine of

NUMAR for generating Hamiltonian matrix elements is generally
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similar to the one just described. All of the differences
are the direct result of a decision to use the frame symmetry
basis (2.24) only in those matrices, factored by frame

symmetry.

In the symmetry factored matricesz, a matrix of
symmetrized coupling constants, similar to the one described
above, is needed. However, in the other matricesz, the
coupling constants must be festored to a non-symmetrized
form. In HAMIL, before any matrix elements of a matrix2
are calculated, its coupling constant matrix is generated
from a simple matrix of coupling constants created by
the input routine. The generating process is complicated
by NUMAR's expanded internal representation of a pair
as two magnetically equivalent groups, which increases
the size of the coupling constant matrix to the number
of invariant groups plus twice the number of pairs. The
relationships among the three forms of the coupling constant

matrix are illustrated in Fig. 4-3.

In NUMAR, there is no need to generate values of
g(F,F”,A), since they would all be zero in those matrices2
for which all F = F°, and symmetry factoring is used.

It is also unnecessary to generate {§(F,F”,A) for each

pair at the beginning of those matrices2 in which it

is used. A single matrix of values of {(F,F",A), indexed
by F (F°) and A, is used for all groups in those matrices2

where it is needed. The values are calculated at the
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beginning of the program using (2.17).

Because g(F,F”,A) is zero, no provision is made
in NUMAR for terms from the E sum of (2.23) in diagomnal
matrix elements Hii‘ Otherwise, the actual process of
generating the Hamiltonian matrix elements is as described
above. In the matrices2 that are symmetry factored, the
second position assigned to each symmetrically equivalent
pair must be ignored. Because each such position has
been set to M = A = F = 0, this requires no special action.
Also, no special procedure is needed for matrices2 that
are not symmetry factored. Since each group always has
A = F, all the basis functions in each matrix2 have identical
packed A values. Thus the procedures for generating
matrix elements from the E sum of (2.23) are never uséd,
and the calculation reduces to the usual magnetic equivalence

form.18



4.3.4, Transitions

Transition calculations in NUMAR include essentially
the same steps used in other programs.”’18 However,
X factoring creates some complications in the use of
auxilliary storage devices. Three approaches are discussed
below: one requiring direct-access storage, one for
small computers without direct-access storage, and the

one used in NUMAR.

Mathematically, the transition calculation is
straightforward. The matrix elements of the transition
operator X of Eq. (2.21) are calculated in the basis
representation,‘using the selection rules discussed in
§3.2. The X matrix is then transformed to the represen-
tation in which the Hamiltonian matrix is diagonal, using
the eigenvector matrix U obtained previously in the
diagonalization step. Since U is real and unitary, its
transpose U is equal to its inverse U-l. The unweighted
intensity Iij of th¢ transition connecting energy levels

i and j is given by the square of the transformed matrix

element:

15 = L@ x 0,517 (4.5)

1)

This intensity must be multiplied by the statistical.

weight Wi. appropriate to the matrix2 containing energy

J
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levels i and j. The corresponding frequency vij is simply

the algebraic difference in energy of the two eigenvalues:
v.. = E. - BE. ~ (4.6)

The NUMAR program follows the usual convention1 of calculating

the emission (AM = -1) spectrum.

The nonzero elements of the X matrix are in blocks
that do not fall along the main diagonal, but rather
connect basis functions in matrices4 that obey the selection
rules in §3.2. Because the zimatrix is symmetric, only
the blocks above the main diagonal need be considered.
The transformation matrix U is block-diagonal, with each
block corresponding to a Hamiltonian matrix4. Thus the

transformation of a rectangular block X

of X, connectin
pq A, g

matrices4 p and q, can be written:

~

U, X0 Ug (4.7)

Note that although zpq is normally rectangular, as much
memory space must be allotted to it as to the U matrices,

because either matrix4 p or matrix4 q may be the larger.

This series of matrix multiplications is the critical
step in limiting the size of problem that can be handled
by an NMR program. Part of the available data storage

space is used to hold a variety of small items such as
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the eigenvalues of the two matrices, p and q. Even using

a minimum-storage method of matrix multiplication, the
transformation of qu requires space for one other matrix
of equal size. Thus the program can handle only those

spin systems whose largest matrix4 occupies less than

half of the data storage space available for the transition

calculation.

A transition calculation without X factoring is
straightforward. For each matrixz, the eigenvalues and
eigenvectors of the matrices3 with M = Mmax and M = Mmax'l
are brought into main memory, and the transitions from
Mmax to~Mmax—1 are calculated, as described above. The
eigenvalues and eigenvectors for M = Mmax are no 1oﬁger
needed, so their region of main memory is reused for the
eigenvalues and eigenvectors of the matrix3 with M = Mmax-z.
The transitions from Mmax'l to Mmax—z are then calculated.
The procedure is repeated, with eigenvalues and eigenvectors
of each matrix3 serving first as the 'lower' then the
tupper' set. Each set is brought in from auxilliéry
storage only once, in the same order of decreasing M
in which the matrices3 were created and diagonalized in

the previous step.

Referring to Fig. 3-3(a), one can see that in
an X factored transition calculation, a procedure similar
to the one just described can be used to calculate each

complete species A subspectrum in turn. As each matrix4
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belongs to only one species A subspectrum, the only compli-
cation introduced is the need to bring the eigenvalues
and eigenvectors into main storage in order of decreasing

MA’ for each subspectrum in turn.

If only species A transitions are of interest,
one can generate and diagonalize the Hamiltonian matrices4
in the order needed for the transition calculation, and
retrieve them from sequential auxilliary storage without
difficulty. ‘However, a completely different order of
matrices4 is required for calculations on each additional
species (for example, see Fig. 3-3(b) ). Three solutions

to this problem are given below.

When direct access auxilliary storage is available,
one can generate and diagonalize the Hamiltonian matrices4
in any convenient order, then retrieve them in the order
required for transition calculations on each species.
Tables are kept showing the locations in auxilliary storage
of the basis functions, eigenvalues, and eigenvectors
that correspond to each set of Mg values. These tables
can themselves be placed in auxilliary storage, so that
main memory space need be reserved only for the entries

for one matrixz.

The majority of the data area in main memory is
used for two regions each the size of the largest matrix4
that the program can handle; they are referred to below

as regions one and two.



Basis functions for the current pair of matrices4,
p and q, are brought into region one, and used to construct
the matrix qu (see Eq. (4.7) ) in region two. The
eigenvalues of the two matrices4 are also brought into
main memory. The eigenvector matrix Up is then brought
into region one, and the matrix product P = ﬁpgpq is
formed as follows. The first column of qu is used to
calculate the first column of P, which is stored as a
vector. This P vector is next copied into the first
column of gpq, and then is treated as the second column
of P. At the end of the matrix multiplication, qu has
been completely replaced by P. The second eigenvector

matrix Uq is then brought into auxilliary storage, and

used to calculate PUq.

When each element of PUq has been calculated, it
is squared and multiplied by the statistical weight W
to give a transition intensity; The frequency is calculated
from the difference between the corresponding eigenvalues,
and placed in auxilliary storage along with the .intensity,
subspectral quantum numbers, and an origin number to
indicate which energy levels the transition connects.
It is convenient to edit the 1list of calculated transitions,
placing in auxilliary storage enly those whose intensity
exceeds a minimum value specified as an input parametef.

Frequency limits may also be imposed.

84



A procedure similar to the one just described
can be used to calculate any one species' transitions
when only sequential auxilliary storage is available.
The basis functions, eigenvalues, and eigenvectors are
placed in auxilliary storage in the same order in which
they are needed in the transition calculation. (If a
matrix4 participates as both 'lower' and 'upper' in the
transition calculation, its eigenvectors are placed in
auxilliary storage twice in succession.) When all
transitions of one species have been calculated, the

entire program is repeated for each additional species.

The third method of calculation, used iﬂ NUMAR,
is the fastest of the three, as it calculates the eigen-
values and eigenvectors of each matrix4 only once, and
brings them back into main memory only once. It does
not require direct access auxilliary storage, but it
does require far more main memory space than either of

the first two methods.

The basis functions, eigenvalues and eigenvectors
of all of the matrices, in an adjacent pair of matrices3

are brought into main memory. . A pair of matrices4, p and q,

connected by transitions of the first species, is selected,

and the matrix qu is constructed. One row of the product

matrix P = ﬁpgpq is calculated, and stored as a vector.

This row of P is used immediately to calculate, one at

a time, the elements of the corresponding row of the
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product PUq. These are used, as above, to calculate
transition intensities, and the transitions of significant
intensity are placed in auxilliary storage. The next
row of P is then calculated (and stored in the same vector

used for the first row), and so on.

All transitions of all species are calculated for
this pair of matrices, before moving on to the next pair.
Because the eigenvectors etc. of each matrix4 are used
again for each additional species, their storage space
cannot be reused for another purpose. -Thus space must
be available for all of the eigenvectors, eigenvalues,
and basis functions of two ﬁatricess, and for the matrix
qu. This is far more storage than is needed for the
first two methods, but less than would be needed without
X factoring. Taking the matrices3 with M = 1 and M = 0
of Fig. 3-1 as an examplé, one would need 72 storage
locations for the two 6x6 gigenvector matrices Up and
Uq if there were no X factoring. The eigenvectors for
the six matrices4 in these matrices3 require only 32

storage locations. In addition, the matrix qu is the

size of a matrix4 rather than a matrixs.

In the first two methods, all transitions of one
species are calculated before any transitions of the
next species. Within a species, all transitions of one
subspectrum ére calculated before any transitions of the

next subspectrum. Thus one can readily print the transitions
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by species and by subspectrum in the output step. In
the third method, the transitions must be sorted in a
later step for this purpose. However, the third method
is better suited to grouping together transitions of

all species connected to a common transition.

0f the three methods of transition calculation
discussed, the first clearly offers the best compromise
between speed and efficient use of main memory, and should
be used for those computers that have the necessary direct
access storage. The second method should be used only
when limitations of computer hardware make both of the

other two impossible.
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4.3.5, Input and Output

The input data cards’ for NUMAR are designed to
place logically related data items on the same card,
and to minimize the number of different kinds of data
card required. Where possible, the most important items
are placed at the beginning of a card, and reasonable
default values are provided if the remainder of the card
is left blank. If an error is found in the data, the
program prints a message and skips to the data for the next
molecule. Chiefly because of the error checking, the

input step is large enough to be kept separate.

The NUMAR output, much of which is optional, is
printed throughout the program. The INPUT step (Fig.‘4-2)
prints chemical shifts, coupling constants, etc. on which
the calculation is based. BASIS prints the total transition
intensity, and the maximum possible number of transitioms,
for each species. HAMIL prints the energy levels, including
in the table all of the quantum numbers necessary to
define each matrixz, matrix3, and matrix4. TRANS prints
a Key, to show which energy levels are connected by each
trangition. SPOUT prints a transition list for each

species, including all of the subspectral quantum numbers

T The format of the data cards is fully described in
"~ Appendix D.



for each transition. Transitions are ordered by transition
number in the Key and by frequency in the SPOUT list;
both number and frequency appear in both lists to simplify

cross reference.

This output does not fully meet the requirements
of §4.1, as there is no provision for printing transitions
by subspectra or by connected sets. However, it is quite
easy to find all of the transitions in a subspéctrum.
One first finds in the Energy Level table the matrices4
with the correct set of quantum numbers, then finds in
the Key the transitions connecting those matrices4. All
transitions connecting a particular pair of matrices4
appear in sequence. In contrast, transitions connected
to a particular transition T are not in sequence; one
must search a region of the Key, in both directions from
T, for transitions of any species whose upper or lower
energy level is the same as either of the energy levels

connected by T.

In NUMAR, the transitions of all species are placed
in a single sequential auxilliary storage unit as they
are generated. In SPOUT, this entire list must be searched
once for each species whose transitions are to be printed.
If enough auxilliary storage units are available, it
is more efficient to use a different storage unit for

each species' transitions.
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The number of transitions that can be sorted in
SPOUT for each species is limited by the amount of main
memory space available. Some large molecules (such as
the 2,5-dimethyl-3-hexenes, §5.2) have many thousands
of transitions of significant intensity within a single
species. One can edit the transition 1list in TRANS,
keeping only the transitions within a limited frequency
range. This is an excellent solution when only a limited
frequency range is of interest; it is inefficient when
it requires repeat calculations to obtain the remainder
of the spectrum. It would be better to calculate all
the transitions of interest, separating them into frequency

ranges in TRANS if necessary.

A bar plot, produced on the computer's output
printer, may be more useful in preliminary calculations
than either a transition 1list or a full lineshape plot,
because it providesvboth frequencies and intensities
for all the well-resolved lines in a convenient form.

A useful feature of the NUMAR routine, BPLOT, is the
option of plotting the entire spectrum of a species.
with any large regions of blank baseline automatically

omitted.

A'plot that simulates experimental lineshapes is
better when one is attempting to fit a region of overlapping
multiplets. The CPLOT routine in NUMAR provides a variety
of lineshapes and scaling options to allow simulation

of a variety of experimental conditions.
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CHAPTER 5. " NMR SPECTRA OF SOME SYMMETRIC MOLECULES

This Chapter presents analyses of the NMR spectra

of a number of molecules containing symmetrically equivalent
pairs of magnetically equivalent groups of nuclei. The

full analysis of the spectra of the perfluoro-2-butenes
(§5.1) illustrates most of the techniques of spectral
analysis described in §3.3 and §4.1. The 2,5-dimethyl-
3-hexenes (§5.2) and the trifluoromethyl phosphorus compounds
(§5.3) are typical molecules of current interest whose
spectra are not readily calculated except by using the

NUMAR computer program (Appendix B). - \
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5.1 The Perfluoro-2-butenes

5.1.1 Introduction

Fluorine coupling‘conétahts have remained a subject
of interest for some years. A variety of evidence has
been found?l for a '*through-space' coupling mechanisn,
said to be responsible for large coupling constants between
19F nuclei in close proximity spatially, but separated
by many bonds. More recently, liquid crystal work?? has
shown that some !°F-!°F indirect coupling constants are

highly anisotropic.

Cis-perfluoro-2-butene was chosen as a small molecule
of high symmetry, one of whose coupling constants might
have a through-space contribution. Its spectrum (in
an isotropic medium) was fully analyzed with the aid
of the INDOR double-resonance technique. The spectrum
of Ezggg-perfluoro;z-butene, for which no through-space

effects were anticipated, was also analyzed.
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5.1.2. Experimental

A mixture of cis-and trans-perfluoro-2-butenes
(Pierce Chemical Co., Rockford, Ill.) was introduced into
a vacuum system and degassed by the freeze-pump-thaw
method until the residual pressure at liquid nitrogen

temperature was less than two microns.

Several attempts to separate the mixture by gas
chromatography failed. Each column listed in Table 5-1
was used, at various temperatures from 25° C. to the
maximum listed in the table, with helium carrier gas at
flow rates from 30 to 300 ml./min. A Gow-Mac TR2-B thermal
conductivity detector was used throughout. Under some
conditions, small peaks indicative of trace impurities
could be seen in the chromatogram, but the major components
always gave a single, large peak.

Separation of these isomers has been reported.23

However, column 3, used under conditions essentially the

same as those of Bright.and Matula,23b

gave no better
results than had been obtained with columns 1 and 2.

Bright and Matula did, however, condition their column

with 'three 250 torr samples of COFZ' before using it.

No attempt was made to learn more details of this procedure,

in order to repeat it, since the NMR spectra of both

isomers could be obtained from the mixture.

All NMR spectra were obtained from a sample consisting
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of 0.30 ml. of the perfluoro-2-butene mixture and 0.15 ml.

of CFC1 both previously degassed, sealed into a 5 mm.

3’
0.D. medium wall NMR tube. Liquid volumes were measured
at room temperature, in a calibrated tube on the vacuum

rack, before distillation into the NMR tube.

19F spectra used in the analysis were obtained
at 14.092 kgauss (56.4 MHz.) on a Varian HA60I spectrometer,
at 21.138 kgauss (84.7 MHz.) on a Bruker HFX-90 spectrometer,
and at 23.487 kgauss (94.1 MHz.) on a Varian HA-100-12
spectrometer. !°F INDOR spectra were obtained on the
HA-60I and HFX-90 spectrometers. Modifications to the

Varian spectrometers are described in Appendix E.

A1l spectra were obtained at ambient probe temper-
atures (300°-350° K) at a scale of 1.0 Hz/cm and a sweep
rate of 0.02 Hz./sec. or slower. The spectra were calibrated

as described in Appendix F.

Each observed multiplet is symmetrical about its
chemical shift. Thus the mean of the frequencies of
each pair of equivalent peaks on opposite sides of a
multiplet is the centre frequency of the multiplet.
(Because of the finite sweep rate, this value is slightly
different from the true chemical shift.) For each multiplet,
the RMS deviation of these values (from their mean) was
less than 0.04 Hz., the larger deviations coming from
the weaker peaks. This value can be taken as a reasonable

estimate of the error in the observed frequencies.
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5.1.3. Assignment”and'AﬁalysiS'of‘SpeCtra

A preliminary spectrum of the mixture sample revealed

- four multiplets centred at -160.7, -143.5, -69.8, and

-67.4 ppm from CFC13,+ with relative intensities approximately
3:2:9:6. These intensities immediately suggested the
assignment =C-F (isomer A), =C-F(B), =C-CF3(A), =C-CF3(B),
respectively, for the four multiplets. Comparison of

the chemical shifts with those .of the 2-chloroheptafluoro-
2-butenes 24 supported this assignment, and allowed tentative
identification of isomer A as trans- and B as cis-perfluoro-
2-butene. The coupling constants subsequently obtained

from a full analysis of the spectra are consistent with

this assignment of the multiplets.

No strong line in any multiplet is more than 40 Hz.
from‘the chemical shift. At 14.1 kgauss, the two most
closely spaced multiplets (those at -69.8 and -67.4 ppm.)
are more than 135 Hz. apart; at the higher field strengths,
the spacing is correspondingly greater. Thus the use .
of a sample containing both isomers does not interfere

with the analysis.

f.A positive chemical shift indicates a resonance fréquency
higher than that of the reference, at fixed magnetic

field strength. A negative chemical shift indicates

a resonance field strength higher than that of the reference,
at fixed frequency. Spectra are presented with chemical
shift decreasing algebraically from left to right, unless
otherwise noted.



97

A few small impurity peaks were noted in a preliminary
survey spectrum. One doublet of separation 3.95 Hz. |
is only 0.195 ppm. to high field of the gig;CFs chemical
shift. It is weak (about 1% of the intensity of the
cis-isomer), and does not interfere with the analysis
because the lines it obscures at 14.1 kgauss are visible
at 21.1 kgauss, and vice versa. The other impurity peaks,
which are equally small, are far from any of the four

multiplets of interest.

For each multiplet, spectra obtained at 14.1, 21.1,
and 23.5 kgauss can be superimposed. This lack of effects
dependent on relative chemical shift indicates that
the =C-F and =C-CF; resonances are far enough apart, even

at 14.1 kgauss, to be treated as separate species.

X factoring has therefore been used throughout
the analysis below, with =C-F labelled species 1 and

=C-CF. labelled species 2. A common criterion for the

3
use of X factoring in a calculation is that the absolute
value of the ratio J/A (see §3.1) between species be less

than 0.1.2

The largest |J/A| ratio in these molecules, in
the worst case, (at 14.1 kgauss) is 0.002 for the cis-

isomer, and 0.004 for the trans-isomer.

The structural formulae of the two isomers suggested
that each should have twofold frame symmetry. Since
the three fluorines of a CF3 group are normally magnetically

equivalent, both isomers were assumed to be [AX3]2 spin
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systems. Because each observed multiplet is symmetrical
about its chemical shift, each chemical shift was chosen
.as the zero of frequency for its species. This left

only the four possible coupling constants to be determined

in the analysis of each spectrum.

These four coupling constants are labelled
in.a manner consistent with the input to the NUMAR computer
program. (see Appendix D). For each isomer, the coupling
cbnstant between the two symmetrically.equivalent olefinic
fluorines is labelled Jll’ and that between the two
CF3 groups JZZ' The three bond coupling constant F-C(=)-CF3
is le, and the four bond coupling constant F-C=C-CF3

is J21° It is convenient to use the combinations1

=~
L}
(]

+J

=
1
<

11 "22 127721

(5.1)

M=J,.-J N

117922 J

+J

[}

12 "21°

The [AX3]2 spin system has a submatrix of statistical
weight 4, with all composite particle spins F = %. Its
subspectra are identical to those of the [AX]2 spin
system, for which an algebraic solution is available
(PSBl; §6-7). The magnetic equivalence submatrix is
factored by frame symmetry into symmetric and antisymmetric
ﬁatricesz, of dimensions 10 and 6 respectively. The
symmetric matrix2 has been discussed in §3.3; the antisymmetric

matrix2 has three matricess, all 2x2, with M = 1, 0, -1.
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With X factoring, the matrices; with M = +1 are further
factored to 1x1 matrices4, and the matrix3 with M = 0

contains a single 2x2 matrix4.

The subspectra belonging to these two matricesz
are identical in the species A spectrum and the species
X spectrum. The most prominent feature is a doublet
of separation N which originates in the symmetric matrixz.
In the species A spectrum this doublet may not stand
out among the lines from other subspectra. In the species
X spectrum it is part of a doublet of separation N that
contains half of the total species X intensity. This
doublet, which includes all the lines from subspectra
with MA = 1, is characteristic of the species X spectrum

of all [AXn]2 spin systems.25

No coupling constant combinations other than N
are available by inspection. However, analysis of the
spectrum of the trans-isomer was made simple by the
availability of literature values for coupling constants
in a wide variety of related spin systems. A least-squares

correlation of substituent effects on Jp_ ._._p gave an

estimate?® |J;1] = 139.4 Hz. From the spectrum of trans-
2-chloroheptafluoro-2-butene24 |Jzzl = 1.3 Hz., and

|J12| = 5,45 Hz. From various phenyl substituted perfluoro-
alkenes?’ |J,,| = 1.5 Hz., [J;,| = 7 to 10 Hz., and

|J21| = 23 to 28 Hz. Probable absolute signs are’®

J1170 J1270 Jo1t-
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Trial spectra were calculated using values from
the above ranges, consistent with the experimental coupling
constant sum [N| = 12.80 Hz. A few trial calculations
with the NUMAR computer program (Appendix B) yielded a
good visual match to the observed spectra with parameters

J

11 -140 Hz., J22 = +1.5 Hz., le = -9,2 Hz., and

J21 +21.9Hz. No good match to the observed spectrum

could be obtained if Jll and J,, were given the same
sign. |

These values were used as initial parameters for
an iterative calculation with the LAME+ computer program.
The final parameters in Table 5-2 give an RMS deviation
of less than 0.05 Hz. between observed and calculated
frequencies. Spectra calculated from these parameters,
and the corresponding observed spectra, are shown in

Fig. 5-1. The outer lines of the CF3 region are omitted,

as no satisfactory experimental spectrum is available.

An INDOR experiment which confirmed the relative
signs of the coupling constants is described in connection

with the analysis of the cis-compound.

+_The LAME computer program (LAOCOON with Magnetic Equivalence)

was supplied by its author, C. W. Haigh of the University
of Swansea, and modified by G. W. Stockton for use on

the IBM 360/67 computer at the University of Alberta.

It is similar to UEAITR.17b
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Literature values for the probable coupling constants
in cis-perfluoro-2-butene were less useful than they had
been for the trans-isomer. Two of the coupling constants,
Ji, and J,., were predicted with reasonable confidence
to be in the ranges -7 to -13 Hz. and +8 to +12 Hz.,
respectively.24’27'29 The absolute value of J22 was

24

predicted to be 11-13 Hz., but no literature value

for the sign was available. Values for JF_C=C_F(cis)

in trifluorovinyl compounds range from 24 to 65 Hz.,

with most in the range 30-40 Hz.30

26

However, the table
of additive substituent effects which predicted the
value of trans-J;, to within 0.5 Hz, gave 3.2 Hz. for
cis~J11. The sign of JF_C=C_F(cis) is positive in most

compounds,28 but negative in cis-l,Z-difluoroethylene.ZG’31

An attempt was made to visually match the observed
spectrum using trial-and-error calculations with the
NUMAR computer program. The magnitude and sign of le
and J21 were fairly well known from the ranges given
above, and the absolute value of their sum N was known
(by inspection) to be 1.5 Hz. The magnitude of Jz2 was
also well approximated; its sign was arbitrarily assumed

1.

to be positive. However, the wide range of possible

T The signs of J11 relative to JZZ and of le relative

to J21 affect the appearance of the spectrum, but the
signs of J11 and J22 relative to le and J21 do not.25
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J11 values suggested that many trial calculations might
be needed. It soon became apparent that most of the
strong lines in the calculated spectra resulted from

the accidenta; coincidence of unrelated transitions.
Small changes in the coupling constants produced large
changes in the appearance of the spectra, as various
combinations of lines came into coincidence or separated.

throughout each multiplet. The trial-and-error approach

was abandoned.

The only lines in the observed spectrum that could
be assigned. were those belonging to the doublets of
spacing N = 1.5 Hz. The intense doublet in the CFq
multiplet was known to consist of the superposition of
many lines from various matrices,, but the corresponding
doublet in the =C-F multiplet seemed likely to contain
only.the lines originating in the symmetric matrix2 with

all spins F = %.

The low-field (frequency +0.75 Hz. from the =C-F
chemical shift) member of this doublet was chosen as the
transition T (see §3.3) to be irradiated in a double
resonance experiment. It can be seen in Figs. 3-3 and
5-2 that there are four species X transitions conneéted
to one or other of the two coincident species A transitions
being irradiated. Two of these transitions are members
of the species X doublet with spacing N, and the others

are lines from the MA = 0 subspectrum. Assuming that
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the irradiated transitions T are those with frequency

+%N, the frequencies of the two MA=0 transitions are1

+4K £ (K2+L2) % (5.2)

The INDOR double resonance technique16

was chosen,
because of the high probability that the connected transitions
would be members of unresolved multiplets. INDOR spectra
with a poor signal to noise ratio were obtained using

a modified Varian HA-601 spectrometer (see §5.1.2).
Comparison of a number of repeat spectra indicated that

the two MA‘= 0 transitions connected to T had frequencies

of approximately +3.4 and -22.2 Hz., relative to the

-CF3 chemical shift.

These values were substituted in (5.2) to obtain

the solution K = #18.8 Hz., L = #17.4 Hz. From L and

-‘-

N, J21 and le were calculated to be 8.0 and ¥9.5 Hz.

A new series of trial spectra was then calculated, varying

the one undetermined parameter, M = Jll-JZZ‘ With J 8.2

11

Hz. and J22 = +10.5 Hz., the calculated spectrum closely
resembled the observed spectrum. Other values of J11
from -25 to +50 Hz. were used with appropriate values

of Jzz; none of these combinations gave a calculated

¥ One cannot determine from the spectrum which of these

values corresponds to Jq,, and which to Jaq-
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spectrum similar to the observed spectrum.

The INDOR results also provided the remaining
relative signs of the coupling constants. Of the two
INDOR lines given by (5.2), fhe one for which K and (K2+L2)’/2
have the same sign is farther from the CF3 chemical
shift. If this sign were the same as the sign of N,
the line would be on the low field side of the chemical
shift (i.e. +22.2 Hz.). Since it is found at -22.2 Hz.
from the CF3 chemical shift, when observing at +0.78 Hz.
from the =C-F chemicai shift,-K and N have opposite signs.
The signs given'above for the four coupling constants

are consistent with this result.

The INDOR experiment was later repeated using a
Bruker HFX-90 spectrometer. The resulting spectrum is
shown in Fig. 5-2. The INDOR frequencies were individually
measured under steady state conditions, and had the values
-22.10, -0.85, +0.75, +3.47 Hz. from the —CF3 chemical
shift. These frequencies agree quite well with those
measured in the sing;e-resohance spectra, and confirm
the original INDOR results. Curiously, the positive
peak at -0.85 Hz., which was used to optimize the INDOR
conditions, shows the largest discrepancy (about 0.08 Hz.)

from the results of the single-resonance spectra.

The approximate parameters above, with the upper
set of signs, were used as initial values for an iterative

calculation with the LAME computer program. The RMS
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deviation of observed and calculated transitions was
less than 0.09 Hz. for the parameters given in Table 5-2.
Observed spectra, and spectra calculated from these parameters,

are shown in Fig. 5-3.

An INDOR ekperiment was also performed (using
the Bruker HFX-90) for the trans-isomer. As with the
cis-isomer, the low field member of the N doublet in
the =C-F region was observed while a second radiofrequency
was swept through the -CF3 region of the spectrum. The
outermost peak, expected to be 140.23 Hz. from the chemical
shift, was too weak to observe. The three central peaks,
shown in Fig. 5-2, were as predicted by the previous
analysis of the single-resonance spectrum. The inner
peak of the pair given by (5.2) is to low field of the
chemical shift; by the argument used above, this confirmed

that XK and N have opposite signs for the trans-isomer.
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5.1.4. Discussion

It was hoped that it would be possible to obtain
the absolute signs, as well as the magnitudes, of all
of the coupling constants in cis-perfluoro-2-butene.
This has not been possible, because there is insufficient
evidence to allow definite assignment of the two =C-F

to -CF3 coupling constants *#8.0 and ¥9.6 Hz.

The magnitude of each of these values is within
the range expected for either the three bond JF—C(=)—CF
24,27,29

or the four bond JF-C=C-CF3’ It is known that
the three bond coupling constant le is negative, and

28

3

the four bond coupling constant J21 is positive. If

J = -9,6 Hz., both J11 and JZZ are positive; if J = -8.0

12 12

Hz., both J1 and Jzé are negative,

1
Evidence from some 2-substituted heptafluoro-2-

24,27

butenes is conflicting. In each cis-isomer, JP-C(=)—CF3

is smaller in magnitude than Jg-c=c-cp,- On this basis,

3

Jy, = -8.0 Hz. However, in these same studies, JF-C(=)-CF

3
in each cis-isomer is at least as large (in magnitude)

as the corresponding coupling constant in the trans-isomer.
Since in trans-perfluoro-2-butene this coupling constant

is -9.1 Hz., one is led to the assignment le = -9,6 Hz.
These results can be reconciled in any of three
ways:

i) The coupling constants in the perfluoro-2-
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butenes follow a different pattern from those in the
heptafluoro-z—butenes.24’27
ii) The cis-and trans-isomers were incorrectly
jdentified either in this study or in the previous ones.
iii) The two CF3 resonances were incorrectly assigned
in either the cis-or trans-isomer, in both of the previous
studies.24’27

24,27

The first possibility is quite likely the correct one,

but is unimportant because it provides no useful information.
The second can be ruled out immediately by the excellent
agreement between J,, and J,, values for the trans-isomers
in this study and the previous ones. The third possibility
demands careful scrutiny, because, if it is correct,

it leads to a clear assignment le = -9,.6 Hz.

There is a variety of evidence24 to show that
in the Eﬁgggfisomers JF-C=C-CF3 is near 25 Hz. Thu§ .
any misassignment must be in the cis-isomer. Andreades
bases his assignment on chemical shift evidence which
he does not give. Tiers24 finds chemical shifts of -64.8
and -68.4 ppm. from CFCl3 for C(l)F3 and C(4)F3 respectively
in trans-2-chloroheptafluoro-2-butene. He therefore
assumes that the chemical shifté -62.2 and -56.3 ppm.
in the cis-isomer belong to C(1)F3 and C(4)F3 respectively.

This assignment appears to be entirely reasonable.

The small amount of literature evidence available

tends to support positive signs for J11 and JZZ‘ Additive

26

substituent effects” predict J11 = +3,2 Hz. To the
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extent that J22 includes a through-space contribution,

it may be expected to be positive.32

The weight of evidence seems to support the assignment
given in Table 5-2. However, further studies to clarify
the situation are indicated. It would be particularly
interesting to study cis-perfluoro-2-butene in a liquid
crystal medium, in order to determine the principle
components of the J tensors, as well as the signs of the
isofropic J values. The spectrum would be very complicated,
but with the aid of the parameters obtained here for

an isotropic medium, a full analysis might be possible.
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5.2, The 2,5-Dimethyl-3-Hexenes

Full analysis of the spectra of cis-and trans-
2,5-dimethyl-3-hexene was undertaken in cooperation with
L. W. Kaslander and Dr. F.H.A. Rummens of the University
of Saskatchewan, Regina, Saskatchewan. The chemical
shifts and coupling constants, particularly of the methine
protons, were of interest as part of a continuing study

of conformations and NMR parameters of olefins.33

Cis-and trans-2,5,-dimethyl-3-hexene (Aldrich
Chemical Co.) were degassed and sealed into 5 mm. 0.D.
thin wall NMﬁ tubes, with 5% tetramethylsilane (TMS)
added as an internal reference. The infrared spectrum
(Beckman IR-8) of the cis-isomer had a band at 960 cm.'l,
indicating that a small amount of the trans-isomer was
presenf; no impurities were noted in the infrared spectrum
of the trans-isomer. The methyl region of the NMR spectrum
of each isomer showed weak peaks corresponding to the
intense methyl doublet of the other isomer. The amount

of the other isomer present, about 2% in each case, was

small enough not to interfere with the analysis,

Proton NMR spectra were obtained at 100.0 MHz.
(23.487 kgauss) with a Varian HA-100-15 spectrometer
in frequency sweep mode, locked to internal tetramethylsilane
(TMS). A frequency synthesizer was used to obtain a
more stable lock frequency (see Appendix E). The spectra

were calibrated as described in Appendix F, yielding
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line positions estimated to be accurate to +0.02 Hz.
in the methine regions. It was noted that, for both
isomers, when a peak was scanned first from the right

and then from the left the two traces coincided.

The NMR spectrum of each isomer can be divided
into three regions, approximately 5, 2.5, and 1 ppm.
to low field of TMS, corresponding to olefinic, methine,

and methyl protons respectively. As a first approximation,

each kind of proton was treated as a separate species,
and the two methyl groups of each isopropyl group were
assumed to be a single magnetically equivalent group of
six nuclei. With these assumptions, each isomer could

be described as an [AKX6]2 spin system.

Iﬁ the discussion below, the olefinic, methine,
and methyl groups are labelled 1, 2, and 3 respectively.
The coupling constant between the two olefinic protons
is thus Jll' There are two coupling coﬁstants connecting,
for example, the olefinic and methine protons. These
are labelled le and J21, with le (indices in increasing
order) indicating the same-side (close range) coupling,

and J21 the long-range coupling.

The general features of the spectra are similar
for the two isomers. Each methyl region consists of
an intense doublet with separation about 6.6 Hz., linewidth
about 1 Hz., and no significant fine structure. Each
olefinic region has four strong central lines and two

weak outer lines, all with about 0.7 Hz. linewidth. Aside
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from a small intensity bias to high field, each olefinic
spectrum is nearly symmetrical about its chemical shift.

The methine regions are very complicated.

These features indicate that the methyl and olefinic
protons both couple strongly to the methine protons,
but weakly to each other. Each methyl (region 3) spectrum
can be treated as the X region of a KX6 spin systen,
with a doublet splitting équal to JKX' The olefinic
(region 1) spectrum is similar to the A region of an
[AK]2 spin system with JKK‘ small. In each case, the
fine structure resulting from small coupling constants
is unresolved. ' .

When regions 1 and 3 were analyzed on this basis,

1

using the [AX]2 expressions of PSB™, the approximate

parameters obtained were:

cis trans

_Jll 10.87 15.41
le, J21 9.49, -1.04 6.77, -1.33
J13 6.62 6.68

These values were used as the initial parameters for
trial-and-error calculations on region 2 (methine) with

the NUMAR computer pfogram.

‘The overlapping multiplets of the observed methine
spectra created some difficulties in comparing observed

and calculated spectra. Preliminary calculations showed
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over two thousand transitions in the methine region.
The peak positions in the observed spectrum had been
measured very accurately but could not be assumed to
be the same as the transition frequencies because of

the influence of other nearby transitions.

For this reason, Calcomp plots that simulated the

experimental lineshape were used throughout the analysis.

It was found that a Lorentzian lineshape, with linewidth

0.14 Hz. for the cis-isomer and 0.32 Hz. for the trans-
jsomer, provided the best match between observed and calculated
spectra. The plotter was found to be accurate enough

that measurement of peak positions in the plots to +0.01 cm.

was justified.

Spectra calculated using the [AKX6]2 approximation
gave a poor fit for the central part of each methine
spectrum, but a reasonably good fit for the outer parts.
The sign and épproximate magnitude of J22 were determined,
for both isomers, at this stage. [ABX6]2 spectra were
calculated, but were not used because they were not significantly
different from [AKX6]2 spectra calculated using the same

parameters.

The final parameter adjustments were made treating
the spin system as [AXY6]2 (i.e. olefin protons as one
species, and methine and methyl together a second species).
The previously determined parameters were changed very

little. Peak positions in the methine regions, calculated



117

from the final parameters in Table 5-3, nearly all agree
with the observed peaks to within experimental error

(¢0.02 Hz.), and no deviation is greater than 0.1 Hz.

Figures 5-4 and 5-5 show the observed methine spectra

for the two isomers, and spectra calculated in the [AXY6]2
and [AKX6]2 approximations using the parameters of Table 5-3.
Calculated spectra of the methyl and olefin regions (not

shown) also agree well with the observed spectra.

The appearance of each spectral region is insensitive
to small changes in the relative chemical shifts. Thus
when the coupling ccnstants had been determined, the
chemical shift for each region was obtained very easily
from the constant difference between observed and calculated
transition frequencies. The methine chemical shifts
are estimated to be accurate to *0.02 Hz. (0.0002 pPpm.).
The broader observed lines in the olefinic and methyl
regions did not allow such accurate determinations; the
chemical shift errors are estimated to be *0.05 Hz. (0.005

ppm.) and #0.1 Hz. (0.0001 ppm.) respectively.

The spectra of the methine regions were surprisingly
sensitive to both sign and magnitude of all of the coupling
constants, including J13. It is unlikely that the magnitude
of any of the coupling constants is in error by more
than $0.05 Hz., and the excellent fit of the observed
and calculated spectra suggests that most are accurate

‘to +0.03 Hz. The small coupling constants (|J]<0.1 Hz.)



118
TABLE 5-3

NMR PARAMETERS OF THE 2,5-DIMETHYL-3-HEXENES

cis trans
Chemical Shifts
(ppm. from TMS)
=CH (1) 5.022 5.303
=C-CH  (2) 2.600 2.2005
-(CH3)2 (3) 0.932 0.950
Coupling Constants+
(Hz.)
J11 10.80 15.40
Jips Ip1 9.47, -1.02 6.80, -1.30
J22 0.40 0.60
S 0.20, 0.0 -1.08, 0.0
JZS’ J32 6.62, 0.0 6.72, 0.02

T In pairs such as le and J21, J21 is the long range

coupling comnstant.



1T

280 270 260 250 240

,MJUL)\L mbm .

119

FIG, 5-4, OBSERVED AND CALCULATED SPECTRA,



120

(HAC),CH H
N,
C=C

e

240 230 220 210 200

FIG, 5-5. OBSERVED AMD CALCULATED SPECTRA.



121

were varied in smaller steps; fheir values are probably
accurate to #0.02 Hz. The six bond coupling constant
J, in the trans-isomer was varied from -0.1 to +0.1;
the best agreement between observed and calculated
intensities was obtained‘for J32 = +0,02. This value
is so near zero that it may merely be compensating for

higher order effects ignored in the [AXYG]2 calculation.

It is obvious that, for all practiéél purposes,
the [AXY6]2 approximation adequately describes both of
these spin systems. The few residual differences between
observed and calculated spectra may equally likely be
the result of small errors in the coupling constants
or of the assumption that the olefin protons can be treated
as a separate species. There is no evidence to suggest
that the six methyl protons of each isopropyl group are

not magnetically equivalent.

One puzzling minor observation should be noted.
The linewidth needed to adequately match the spectrum
of the trans-isomer is more than twice that needed for
the cis-isomer. Higher-temperature spectra, which have
not yet been fully analyzed, show noticeably sharper
lines for the trans-isomer above 45°C. There is not.
sufficient evidence to indicate with any certainty the
cause of the broadening, but it could perhaps be the
result of high viscosity in the neat liquid at ambient

temperatures.



5.3. Trifluoromethyl Phosphorus Compounds

The NMR spectra of a series of symmetric compounds
containing -P(CF3)2 were analyzed as [AX6]2 spin systems,
in cooperation with Drs. A. Pinkerton and R. G. Cavell
of this University. The analysis for‘(FSC)ZP-NH—P—(CFS)Z,
a typical member of the series, is presented briefly
here as a further illustration of the ease with which
the spectra of large, highly symmetrical spin systems
can be calculated using the meth&ds described in earlier

Chapters of this Thesis.

The [(CFS)ZP]ZNH was prepared and purified by
A. Pinkerton, using the usual procedure.34 A sample
was dissolved in CCl4 with added CFClg as.an internal
reference and sealed in a 5 mm. 0.D. NMR sample tube.
19F spectra were obtained using a Varian HA-100-12
spectrometer operating at 94.1 MHz. t23.487 kgauss).
A frequency synthesizer wa§ used to allow large offsets
from the CFClq lock (see Appendix E). 3P spectra were

not obtained.

Linewidths were somewhat greater than in the other
compounds studied. This may have been the result of
coupling either to '*N, or to the NH proton. Since it
produced no resolvable fine structure, the NH proton was

jgnored in the calculation.

The phosphorus and fluorine nuclei of this compound

122
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’

are labelled species 1 and species 2, and the three-bond
and four-bond P-F coupling constants are labelled le

and J21 respectively. One coupling constant combination,

N = J;,

the separation of the intense doublet that dominates

Iy, = 91.2 Hz., 'is available by inspection from
the !°F spectrum (Fig. 5-6). The !°F chemical shift
is 3623 Hz. to high field of CFCl3 (-38.51 ppm.)

. Initial values of J;; and L = J;,-J,, were obtained,
with the assumption J22 = 0, using the procedure of Harris.14
The separation of the innermost line outside the N doublet
from the most intense line inside the N doublet on the
same side gave JA = 228.0 Hz. This value was then
substituted in Harris' equation [5], which gives the
separation of the innermost pair of lines as (L2+J112)%+[J11|.
From the result, L = 82.2 Hz., and the known value of N,

J and J21 were given as 86.7 and 4.5 Hz. respectively.

12
These values were used as starting parameters for

trial-and-error calculations with the NUMAR computer

program. The best visual match between observed and

calculated spectra was obtained for (in Hz.)

314 228.0
J150 I 86.9, 4.3
Jss 0.7

All of these coupling constants have estimated errors

of #0.1 Hz. The spectrum calculated using these values
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is shown in Fig. 5-6. Observed spectra are shown above
the corresponding calculated spectra with the central
lines and the outermost lines in an expanded scale.
Frequency scales below the calculated spectra are in

Hz. with an arbitrary zero.

The signs of J11 and J22 are the same, and the
signs of le and J,q are the same; the signs of J11 and

J,, relative to Jq, and J,q do not affect the appearance

22
of the spectrum.25 The positive signs given are consistent
with literature values,35 but should be confirmed by a

double resonance experiment.

Other compounds whose NMR spectra have been analyzed
in a similar way include [(CFs)ZP(=S)]2O, [(CFS)ZP]ZO’
[(CF3)2P]ZS, and [(CFS)ZP(=S)S—]2. In most cases the
spectra could have been calculated by perturbation methods,2
but exact calculations with NUMAR program were much faster
(ten seconds computer tiﬁe, typically, on an IBM 360/67
computer), and provided plots that allowed a more accurate

comparison of observed and calculated spectra.
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CHAPTER 6 ‘ CONCLUSIONS

A new approach to the calculation of the NMR spectra
of molecules with twofold frame symmetry has been developed.
A total spin operator g is defined for each symmetrically

equivalent pair of magnetically equivalent groups

X (pair £) = F (&) + E (&), (6.1a)
and for each invariant magnetically equivalent group

R (grouwp i) = F (i). - (6.1b)
For each pair, an antisymmetric operator E is also defined:

B (pair £) = F (&) - ¥ (&9). ~(6.2)

Th? two distinct coupling constants Jnear and Jfar’
connecting the magnetically equivalent groups of pair £
to those of pair m, are replaced by the symmetric and

antisymmetric combinations

RN

Jem = % Upear * Jfgr)'
(6.3)
Ime = % Unear = Jfar)

J
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The nuclear spin Hamiltonian for the molecule is then

written
H= D viA (1) + 1.3, B -EERD)
1

+ § 93K -EG) | (6.4)

i<j

+ 73 ,B()-Bm),

£<m

In (6.4), sums over i, j, ... include both invariant
groups and pairs, while sums over £, m, ... include only

the pairs.

A suitable basis for this Hamiltonian is constructed
from eigenfunctions of A? and éz for all the invariant

groups and pairs:
m | A, M, >, (6.5)

When F # F° for any of the symmetrically equivalent pgirs,
these product functions are not eigenfunctibns of the
molecular twofold symmetry operator C,. When F = F~

for all pairs, the symmetry of each product function

is given by

c, 1 1ag,Hp> = (OO a5 n,. (6.6)
1 1 .

2
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The basis functions belonging to the symmetric (A) repre-
sentation of 92 form one matrixz, and those belonging

to the antisymmetric (B) representation form another,
Thus this basis yields all of the symmetry factoring

that results from twofold frame symmetry as well as

magnetic equivalence.

Explicit expressions have been derived for all
of the matrix elements of the Hamiltonian (6.4) in the
basis (6.5). Although these expressions can be used
for hand calculations, their chief advanfage is their
suitability for use in a general computer program. Unlike
previous expressions for molecules with frame symmefry,1’2’6
they are valid for molecules of arbitrary size, with
either no frame symmetry, or twofold frame symmetry.
(For molecules without frame symmetry, (6.4) and (6.5)

reduce to the corresponding equations of the Composite

Particle method. %

This symmetry factoring has been combined with
factoring by the z components of molecular total spin M,
and species total spins MS’ to provide a systematic, three
stage approach to the factoring of the Hamiltonian matrix.
It has been shown that this approach to factoring leads
in a particularly straightforward fashion to the selection
rules governing transitions between Hamiltonian matrices4
and to a description of each species' spectrum in terms

of subspectra connecting separate series of matrices4.



NUMAR, a flexible and efficient computer program,
has been written to allow the use of all three stages
of factoring for calculations on large spin systems.
The user has the option of making quick initial calculations
assuming a high degree of symmetry and X factoring, followed
by more accurate calculations eliminating any factoring
that has proved unjustified. Quantum numbers are printed
with the energy levels and the traﬂsitions to simplify
the identification of subspectra. Two plotting routines
are included in the program. The one provides bar plots
on the computer's printer for immediate use in the early
stages of analysis. The other provides a variety of
lineshape and scaling options to allow accurate comparison

of the fine details of observed and calculated spectra.

The new factoring procedure has been applied in
the analysis of the NMR spectra of a number of molecules
with twofold frame symmetry. Preliminary parameters
for the perfluoro-2-butenes were obtained from the literature,
and from INDORl6spectra. Preliminary parameters for the
2,5-dimethyl-3-hexenes were obtained from approximate.
analyses of their methyl and olefin regions. Preliminary
parameters for [(F3C)2P]2NH were obtained from Harris'16

equations.14

In each case, the preliminary parameters

were refined by a series of trial and error calculations
with the NUMAR computer program; the resulting final
parameters gave calculated spectra that matched the observed

spectra within experimental error.
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The approach to NMR symmetry factoring developed
in this Thesis is the most general presently available
for calculations on large spin systems. It suggests
several opportunities for future research, particularly
the development of a similar procedure for molecules
with sz or D2 frame symmetry, and the extension of the
equations and computer program to include partially

oriented molecules in liquid crystal media.
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APPENDIX A.

SYMBOLS AND NOTATION.

Spin Systems

A,B,...

X,Y,...

Ay oF X

(...1,

Nuclei with similar chemical shifts;

. one species,.

Nuclei widely separated in chemical
shift from A,B,...; another species.

Magnetically equivalent group of n
nuclei.

Indicates an n-fold element of frame
symmetry. The notation for a typical
member of each set of nuclei (or

of magnetically equivalent groups),
related by the symmetry element,

is enclosed in the brackets.

For example, p-fluorotoluene, at 24 kgauss, can be treated
as an A3[KL]2X spin system with three species. In the
other commonly used notation, it would be called

A3KK LL°X.

Chemical Shifts and Coupling Constants

Absolute Chemical Shift, in Hz.,
of magnetically equivalent group,
or pair, i.

Absolute Chemical Shift, in Hz.,
of the reference for species S.



<|

mi

Operators

Chemical Shift i, in Hz., relative
to vg of the species containing group
or pair i.

Coupling Constant, in Hz., between
magnetically equivalent groups or
pairs.

The short range and long range coupling
constants connecting pairs p and q.

The coupling constant between the
two magnetically equivalent groups
of pair &.

Symmetrized coupling constants:
= 1
tn = % Upq * Jgp)

Ime = % Upq = Jgp)

All spin operators used in this Thesis are

dimensionless.

ez A L
1}

I Iw

i in group

R

1=
"

Operator
Vector
Spin operator for a single nucleus.

Total Spin operator for a magnetically
equivalent group of nuclei.

Total spin operator for a symmetrically
equivalent pair of magnetically
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equivalent groups of nuclei. Identical
to E for invariant groups.

A(S) = ] A, (i) Species S total spin operator (z
i in S
component,
E = E - E‘ Antisymmetric operator, complementary

to E, for each symmetrically equivalent
pair of magnetically equivalent groups.
Not defined for invariant groups.

| =

Hamiltonian operator.
X = Z lx(i) Molecular transition operator.

1 Transition intensities are proportional
to the absolute squares of its matrix
elements.,

Eigenvalues

The corresponding operator is given to the right
of each eigenvalue.

A(A+1) A?

E H

F(F+1) F2

I(I+1) 12

m Iz or Ez
M A,

MS Az(s)

M = ZMS Molecular total spin (z component)
S



Basis Functions

In kets of the form |F,m> the first eigenvalue
always corresponds to the squared total spin operator
E?, and the second to the corresponding z component

operator Ez:

F2 |F,m> = B(F+1) |F,m>

E, |F ,m> m |F,m>

The |I,m> and |A,M> kets also follow this convention.
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APPENDIX B. THE NUMAR PROGRAM (FORTRAN LISTING).

NUMAR is written in FORTRAN IV at the level of
the IBM FORTRAN G and FORTRAN H compilers. It has been
tested on the IBM 360/67 computer at the University of

Alberta under the 0S/360 and MTS operating systems.

The routines TIME and CREPLY, used in INPUT and
BPLOT, are specific to the MTS operating system. They
may be omitted or replaced without significant effect

on the remainder of the program.

Double-precision (REAL%8) arithmetic is used in
HAMIL to reduce rounding errors, and half-precision
(INTEGER#2) integers are used for some quantum numbers
to save memory space. Neither of these choices is essential

to the operation of the program.

NUMAR is designed for efficient operation as an
overlay (or chained) program. - The small main program,
both Common blocks, and the FORTRAN library form the
base segment. The single overlay region is used in turn
for each subroutine called by the main program (and any
subroutines it calls). NUMAR as presently dimensioned
can execute in a storage region of less than 100K bytes

(25000 words).

See also Appendix D, Instructions for NUMAR.
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APPENDIX C COMPUTER REPRESENTATIONS OF SPIN QUANTUM NUMBERS

Since spin quantum numbers are multiples of 0.5,
it seems reasonable to represent them in a computer by
floating point numbers.+ Unfortunately, different sequences
of floating point arithmetic operations that should yield
the same result often do not because of rounding errors.
Logic based on floating point quantum numbers is thus
unreliable. A suitable internal representation for a
spin quantum nﬁmber is an integer equal to twice the
true value. All equations for matrix elements must be

modified accordingly.

Memory space can be saved by 'packing' a set of
related quantum numbers, such as the A values of all
groups. Each group's A value is multiplied by the corres-
ponding element of a vector of multipliers derived from
the maximum A values for the molecule; the sum is a unique

integer representing the entire set.

Each multiplier, starting from the right, is the

T Non-integral numbers are normally represented in a computer
by the product of a fractional part and an exponent,

together known as a floating point number. The principle

is the same as that of standard scientific notation, but

base 2 rather than base 10 is normally used. Many numbers
that are exact in scientific notation become endless
fractions in floating point, causing unexpected rounding
- eTTOTS.



product:

(maximum A value next right, +1) x (multiplier next right)
For example, the maximum A values of an A[BX6]2 spin
system are % 1 6, or, in internal representation, 1 2 12.
This spin system's multiplier vector is 39 13 1, and the
set of A values % 0 5 is packed as 49. To unpack, one
reverses the packing process: 49339 = 1, remainder 10;

10%13 = 0, * o 8 0

Unpacking is much more complicated if negative
numbers are included in the set being unpacked. If M-
(or MS) values are packed, they should first be made
hon-negative by adding to each a number equal to the
largest possible absolute value of M (or MS) for that
group or species., In an AZBZXS system, the limits for
MS values of the two species are #2 and *3/2; in internal
form, +4 and *3. Before packing, +4 and +3 respectively
are added to the MS values, giving ranges of 0 to 8,
and 0 to 6. Thus the packed representation of MS values

of 2 and -% is 58.

Packing is particularly advantageous when the
packed representation of a set of quantum numbers can
be used directly, without unpacking. As is pointed out
in §4.3, basis functions can be sorted into matrices4
by their packed MS values, and packed A and MS values
can be used direétly to determine transition selection

rules. Since there is no direct use for packed group M

Values, they are best left unpacked.



APPENDIX D. INSTRUCTIONS FOR NUMAR+

_ NUMAR is a new program for the calculation of’
NMR spectra from chemical shifts and coupling constants.
It makes full use of the factoring that results from
magnetic equivalence, twofold symmetry, and large chemical

shift differences.

SOME DEFINITIONS

SPECIES or ISOTOPIC SPECIES:

Usually this is just what it seems. Protons in
a molecule are one species, !°F nuclei another, and so
on. Nuclei of the same isotopic species but far apart
in chemical shift may also be entered as different species.
For this "X-approximation" to be valid, all coupling
constants between nuclei in different species must be

much smaller than the chemical shift separations.

CASE:
The set of data cards necessary for calculations
on a molecule is a CASE. Each computer run may include

calculations on any number of cases.

t University of Alberta Nuclear Magnetic Resonance.



TYPE:

The cards making up a CASE may be grouped into
several TYPES such as chemical shift cards, coupling
constant cards, etc. Each TYPE has its own layout of

columns for punching.

GROUP:
In these instructions a GROUP always refers to
the collection of nuclei described by a single TYPE 4

card. A GROUP may consist of:

a single nucleus of spin % up to 9/2.

a magnetically equivalent group of up to 9 nuclei
of spin %.

a chemically equivalent pair of either of the
above.

The groups are numbered (for coupling constants etc.)

sequentially from the first group of the first isotopic
species to the last group of the last isotopic species.
A chemically equivalent pair entered on one card counts

as one group not two.

(There is just one time that you count two for
a chemically equivalent pair. When adding up groups to
see if the molecule will fit within the program limit
of nine groups, each pair counts as two groups. This
is the result of an internal requirement in the program

and does not affect the numbering of the groups.)



ITEM:

An ITEM is the piece of data punched in any single
region of a data card. For example, one data ITEM on
a TYPE 4 card is the chemical shift, which is punched

in card columns 10-19 (inclusive).

ORDER OF TYPES
A typical case includes up to six different TYPES
of card:

1) One TITLE card.
2) One or more COUPLING CONSTANT cards.

For each species a set consisting of:

3) One ISOTOPIC SPECIES card.

4) One CHEMICAL SHIFT card for each group of nuclei
in this isotopic species.

5) Zero or more PLOT cards for this species.

WHEN THERE ARE SEVERAL ISOTOPIC SPECIES the order of types

is:
1,2,(3,4,[51), [3,4,[5]11, ....

Square brackets are used to show that some types, or

sequences of types, will not appear in every CASE.

FORMAT OF DATA CARDS
In the detailed description of each TYPE only
the main items on each card are included. For less common

options see the separate sections at the end.

A format code letter and a card column range are

D-3
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given for each data item. Integer (I) values must be
numbers with no decimal point, and must be punched as

far right as possible in their column range. Floating
point (F) numbers must have a decimal point. For both

I and F, a blank and a punched zero are treated identically.

Alphabetic (A) data may include any normal keypunch character.
Sometimes examples are included in parentheses.

In laying out the cards an attempt was made to
have similar kinds of data appear in similar placed for
each TYPE.

- the letter L in column 1 of a card always indicates
the last member of a group of cards of the same type.

- every integer (I) number ends in column 2 or 4.

- every floating point (F) number occupies either
10 columns beginning in column 10, 20, etc. or 5 columns
beginning in column 20, 25, 30, 35, etc.

- every title begins in column 8.

DEFAULT VALUES

A default value is assigned to many data items
if nothing is punched in the card columns. For example,
if column 2 of a TYPE 3 card is left blank, it is assumed

that the isotopic species has spin %.

When the item is one of a pair of frequencies
that define a frequency range, the default value is assigned

only if both of the frequencdies that define the range

ane equdl.’ This will be the case if both are left blank:

S



or 0.0 is punched for both. Equal positive or negative

frequencies have a special meaning for some frequency

ranges, as described on the following pages. Note that

a frequency range of blank to 100.0 is treated as 0.0

to 100.0 and does not give a default value for the left

hand 1imit.

NORMAL INPUT FOR NMR PROGRAM NUMAR

The most important items are indicated by - in the margin.

TYPE 1: TITLE
-+ Al Must always be an asterisk *.
A2 Normally blank. Nonblank only if this
case is one of a series with Short Form
Input (see p.D-9)
A3 Normally blank. Master Output Control
(see p.D12).
A 8-79 Anything that you want for a title.
TYPE 2: COUPLING CONSTANTS
> Al The letter L if this is the 1last coupling
constant card for this case; otherwise blank.
> I2 The first group number.
> I4 The second group number (normally larger).

(1 2) For the other (trans) coupling
between two chemically equivalent pairs,
reverse the order (2 1). Repeat the number
(2 2) for the coupling between the two
members of a pair.



TYPE 2:

F 10-19

Continued

The coupling constant in Hz.

TYPE 3:

A 8-19
F 20-24

F 25-29

F 30-34

F 40-49

F 50-59

ISOTOPIC SPECIES

The letter L if this is the last isotopic
species for this case; otherwise blank.

An integer equal to twice the nuclear
spin of this species. The default (if
left blank) is 1, meaning spin %.

Normally blank. Species Transition Table
Control (see p. D-12).

Blank if no plots are to be made for this
species. If any nonblank character is
punched, one or more TYPE 5 cards (one
per plot region) must follow the TYPE 4
cards for this species.

A name for this species.

Lower intensity limit for keeping transitiomns
calculated for this species. Default

(if left blank) is 1/10000 of species

total intensity. A negative value cancels
all transition calculations for this species.

Spectrometer frequency in MHz. (Used
only to calculate ppm values for printing).
Default 60.0 MHz.

Grouping width. If a condensed frequency
table has been selected for this species,
this determines its resolution. In all
transition tables a blank line is inserted
at intervals of 100 times the grouping
width. Default 0.05 Hz.

Upper frequency limit for this species’
transitions.

Similar lower 1limit. Frequencies outside
the range are not stored at all, so are
missing from plots as well as tables.
Default (if columns 30-49 are blank):

no frequency limits for the species. Do
not confuse this option with the plot
frequency range on a TYPE 5 card, which
affects only that plot.



TYPE 4: CHEMICAL SHIFTS

Al The letter L if this is the last chemical
shift for this species; otherwise blank.
A 2-3 Normally blank. If this card is for a

‘chemically equivalent pair of groups,
the characters 2%,

I4 The number of nuclei in the magnetically
equivalent group. (A chemically equivalent
pair of methyl groups would be entered
as 2*3 in columns 2-4).

F 10-19 The chemical shift in Hz. from the species
reference.

TYPE 5: PLOTS

Al The letter L if this is the last plot
card for this species; otherwise blank.

I2 Plot type. Blank or zero gives a line
printer bar plot. Other values give Calcomp
plots with different lineshape functions:

1, Gaussian; 2, Lorentzian; 3,4,5,6,7
modified Lorentzian with increasing fourth
power contribution. For most Calcomp
plots use 3.

I 4 Ordinarily ignored by program. For plot
cards in Short Form Input (p.D-9), the
species.

A 8-19 A title for this plot region.
F 20-29 The left frequency limit for this plot region.

F 30-39 The right 1limit. If the two limits are
equal, all transitions of this species
are included. Equal positive limits give
a plot in increasing frequency order;
equal negative (or zero) limits give
decreasing order. In the bar plot, any
large regions of blank baseline are skipped.

F 40-44 Horizontal Scale. For bar plots, the
width (Hz.) of each bar (default 0.5).
For Calcomp plots: if positive, Hz/cm.;
if negative, the absolute value is the
plot width in cm.; default 20 cm. plot
width.
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TYPE 5: Continued

F 45-49 Vertical Scale. For all plots, the default
is full scale for the most intense line,
and any positive value is used to multiply
this scale. If the scale is negative,
its absolute value is the scale factor
in symbols (bar plot) or cm. (Calcomp
plot) per intensity unit.

F 50-54 Left partial width at half height (Calcomp
pPlot only).

F 55-59 Right partial width. Their sum is the
line halfwidth. (Default 0.15 + 0.15 = 0.30).

SAMPLE DATA

The first thirty columns of a typical set of data
for 1,1-difluoroethylene are shown. 1In this example
the remaining coluﬁns'(31-80) of all the cards would be
blank. To the right of the vertical lines are card TYPE
numbers and comments, none of which would appear on actual
data cards.

® 1,1-DIFLUOROETHYLENE 1 Title
11 4.8 2 JHH
12 0.7 2 JHF cis
21 33.9 2 JHF trans
L2 2 36.4 2 JFF
* PROTON 3 TIsotopic Species 1
(no plot, condensed
table)
L2%*] 0.0 4 Chemical Shift of
group 1
L P FLUORINE 3 Isotopic Species 2
(plots)
L2*] 0.0 4 Chemical Shift of
. group 2
L COMPLETE 5 Plot region 1
(using defaults)



SHORT FORM INPUT

Frequently several cases in a run are calculations
on the same molecule with changes in chemical shifts,
coupling constants, etc. The first case of each such
series is exactly the same as it would be for a single
separate calculation. For the others, a special short
form of input is available in which only changes from

the immediately preceding case are given.

Each case for which short form input is used
begins with a TYPE 1 card that has a nonblank character
in column 2. This is followed by one or more modified
TYPE 2 cards. There are three kinds, labelled 2A, 2B,
and 2C below; they may be intermixed in any order. Only
the last TYPE 2 card, whether it is 2A, 2B, or 2C, has
L in column 1. There are no TYPE 3 or TYPE 4 cards,

but there can be modified TYPE 5 cards.

TYPE 2A. COUPLING CONSTANTS. Identical to a normal
type 2 card.

TYPE 2B. CHEMICAL SHIFTS. Column 2: the group or pair
numbenr, in the séme numbering scheme used for coupling
constants. Column 4 must be blank. Columns 10-19:

the chemical shift.

TYPE 2C. SPECIES DATA. Column 2 must be blank. Column 4:
the species number. Columns 3 and 20-59: the same

as the corresponding columns of a TYPE 3 card.

In each case with short form input, any coupling
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constant or chemical shift for which no new value is
given remains as it was in the immediately preceding
case. The default for an item left blank on a type 2C
card is whatever value was in effect innthe immediately
preceding case, whether or not that value was itself

a default.

Ordinarily all plot regions previously specified
remain in effect for a case with sﬂort form input.
Particularly when default frequenéy ranges have been
used on the type 5 cards this is likely to be satisfactory.
To set new plot ranges, use the letter P as the nonblank
character in column 2 of the TYPE 1 card. ALL previous
pLot nanges anre then cancelled, and at Least one TYPE 5
card must follow the Zype 2 cands 0§ Zhe case. The number
of the species to which the region belongs must be placed
in column 4 of each of these type 5 cards. (If column 4
is left blank, the region belongs to the nonexistent
species 0. A single species 0 card can be supplied when
the intention is to cancel all plots for this case.)

The new plot regions replace the previous ones as the
default plot regions for following cases with short form

‘input.

The sample short form data cards below could be
used immediately after the cards on P. D-8 to cause two
more calculations on 1,1-difluoroethylene. Fluorine

transition calculations are cancelled, and the output
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is reduced to a condensed proton transition table (see

Controlling Output).

- *px 1,1-DIFLUOROETHYLENE, CONTINUED.
12 0.8
2 1 33.7
L 2 -1.0
L
¥ % 1,1-DIFLUOROETHYLENE, STILL AGAIN.
L1 2 0.7

CONTROLLING OUTPUT

The printed output of NUMAR consists of a series
of tables, most of which can be omitted if desired. The

default is to print all tables:

INPUT DATA. Group sizes, chemical shifts, coupling constants,

etc. This table is always printed.

SPECIES TRANSITION LIMITS. These few lines that follow
the input data are not printed for cases with short form

input.

ENERGY LEVELS. Includes quantum numbers useful in tracing

subspectra. Optional.

KEY. Gives all transitions that appear in the following
transition tables, arranged by transition number in groups.

Shows which energy levels a transition connects. Optional.

TRANSITIONS. Each species has its own optional transition
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table. A full transition table includes the line number,
frequency, intensity, and subspectral quantum numbers

of all transitions of the species. In a condensed transition
table, each series of transitions whose successive frequencies
are separated by less than the Grouping Width (TYPE 3

card) is combined; only the intensity-weighted mean frequencies

and the corresponding total intensities are printed.

The Master Output Control (TYPE 1 card) indicates
which of the optional tables are to be printed. If it
is blank, all tables are printed, including full transition
tables for all species. Some nonblank characters, listed
below, have special meanings; all others cancel the Energy
Level and Key tables, and give condensed transition tables.

The special control characters are:

E: Energy Level table, no Key; condensed transition

tables.

K: Key, no Energy Level table; condensed transition

tables.

F: Full transition tables; no Energy Level table or

Key.

X: No Energy Level, Key, or transition tables. Used

when only plots are of interest.

If the Species Transition Table Control (TYPE 3
card) is left blank, that species' transition table output
is controlled by the Master Output Control as described

above. If any nonblank character is punched it overrides
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the Master Output Control for that species only. A Species
Transition Table Control has no effect on the Energy
Level or Key tables, but otherwise different characters

have the same meaning as above.

These Output Controls affect tables, but do not

affect plots.

In cases with Short Form Input, the new Master
Output Controi on the TYPE 1 card overrides any Species
Transition Table Control characters from the preceding
cases. To override the Master Output Control, include
a TYPE 2C card with a suitable nonblank character in

column 3.

' One can completely eliminate a species, or restrict
its output to a limited frequency range; see columns 20-25
and 40-59 of the TYPE 3 card. These options affect plots
as well as tables. If 3 species' transitions have been
completely eliminated, any plot regions specified for

it are ignored by_the program.
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HINTS

Since there is a Separate transition table for
each species, one has considerable freedom in entering
chemical shifts. For example, when all the nuclei of
a spec1es have the same chemical Shlft, symmetries in
the transition pattern can be made more obvious by using

0.0 as the shift.

Transition frequency calculations are made to
seven significant figures. Ordinarily this lets you
use the actual ShlftS from the species reference with
accuracy of better than 0.01 Hz. However when all the
shifts of a species are several kHz. to one side of the
reference (as in many fluorine spectra) it is a good idea
to add a constant to all the shifts of the species, reducing
their absolute values. This amounts to a change of reference

frequency.

Be especially careful about plot cards. There
must be a nonblank symbol punched in column 5> of the
TYPE 3 card if there are any plot (TYPE 5) cards for

that species. Conversely, if column 5 of a TYPE 3 card

is blank there must not be any plot cards for that species.

Some current limits: 9 groups, 9 plot cards,
6 species. There are several internal limits that depend
on the number and size of groups. If you exceed one,
greater use of the X- approximation (species factorlng)

may help. Maximum use of available factoring also saves
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considerable computer time.

Occasionally it is necessary to use the species
frequency limits, and perhaps raise the minimum intensity.
A very large molecule may excede the limit of 2500 transitions
per species, making it impossible to sort them all. One
must recalculate the spectrum with a small enough frequency

range that under 2500 transitions are included.

The remaining transitions of interest are- then
calculated in the immediately following case or cases,
using new frequency limits specified on TYPE 2C cards
(see Short Form Input). The program saves considerable
computer timé by going straight to the tramsition calculations
when it finds a case with Short Form Input and no changes

in chemical shifts or coupling constants.

If fairly weak lines are of interest, one must
be careful to specify a sufficiently low Minimum Intensity
Limit on the Type 3 card. The default value may give
a calculated spectrum in which some weak lines are missing,
and others (which are superpositions of many weak transitions,
some below the 1limit) have less than their correct relative

intensity.
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APPENDIX E. ITERATIVE ADJUSTMENT OF NMR PARAMETERS

Several methods of obtaining chemical shifts and
coupling constants have been discussed above, particularly
in §3.3 and §4.1, None of them yields exact values for
the parameters. Thié is obvious when, for example,
borderline X factoring is used deliberately to obtain
approximate values. It is also true when parameters
are obtained from the algebraic solution for a simple
subspectrum, since the experimental frequencies used
in the calculation are not known exactly. The influence
of experimental error can be greatly reduced if the observed
frequencies of other lines, in addition to the few that
belong to simple subspectra, can be used to help determine

the values of the NMR parameters.

Various least squares methodsl7’18 have been developed
in an attempt to obtain the best available parameter
estimates. Each method uses a computer program, and
involves a similar series of steps. The program calculates
a spectrum from a set of starting parameters previously
‘obtained. The analyst then matches up lines in this spectrum
with their observed counterparts, so that whenever possible
an observed frequency is assigned to each calculated
transition. The program then adjusts the approximate
chemical shifts and coupling constants to minimize the

sum of the squares of the differences between observed



and calculated frequencies.

As the relationship between the NMR parameters
and the transition frequencies is not linear, the corrected
parameters are themselves onlymapprokimations to the
true least squares parameters. However, if the original
assignment was correct, they will normally be closer to
the least squares values than were the starting values.
Thus after several repetitions of the adjustment step
one obtains a set of parameters that represents the best
available estimate of the ekperimental parameters consistent
with the assignment made.

A useful byproduct of the iteration procedure

17,18 is an estimate

in all of the common iterative programs
of the probable error in each NMR parameter, derived-
from the residual differences between the observed and

calculated spectra.

All of the programs mentioned above lead to similar
values for the least squares parameter estimates, but
they make use of two fundamentally different approaches

to the calculation.

In the approach18 based on the NMREN/NMRIT programs
of Swalen and Reilly,18a attention is focussed on the
pattern of energy levels of the spin system. Each observed
transition that is correctly assigned provides information
about the relative positions of two energy levels; collectively,

all of the observed transitions assigned to a matrix2



must provide information about the positions of all of

the energy levels of the matrixz. In the NMREN step,

this information is used to prbvide a linear least squares
solution for all of the 'observed' energy levels, Eobs’

with each matrix2 treated separately.

In the NMRIT step, an approximate Hamiltonian

matrix Happrox is calculated (using the same starting

parameters used previously when assigning the observed

transitions to the energy level diagram) and diagohalized.

-1

U H U =E (E.1)

approx calc

The transformation matrix U that relates the basis and

diagonal representations of Happrox is used to generate

from Eob the diagonal matrix elements Hii of an improved

s
Hamiltonian matrix.

_ -1
Hig = (U Egps U

i (E.2)

)i
These diagonal matrix elements are used in a least squares
solution for a new set of NMR parameters. An ingenious
feature of this second least squares step is that no

explicit matrix inversion is required, because the normal

18a

equations are diagonal. The new parameters are used

to calculate a new Happrox’ and so on. NMRIT is repeated
until additional iterations fail to reduce the residual

errors in the Hii values.
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The NMREN/NMRIT approach is not well suited to
calculations with full factoring. In the NMREN step,
chains of transitions ektending throughout a matrix2
are needed to establish the relative positions of the
energy levels. As a result, the least squares solution
for Eobs of each matrix2 requires the inversion of a
large coefficient matrix equal in size to the matrixz.
Even if sufficient main storage is available for NMREN,
other difficulties remain. Only the didgonal matrix
elements are used in NMRIT to calculate new parameter
estimates. If the frame symmetry basis (2.24) is used,
the symmetrized coupling constants sz of Eq. (2.22)

do not appear in the diagonal matrix elements, so will

not be adjusted.

The NMREN/NMRIT method of calculation also leads
to considerable difficulty in calculating meaningful
error estimates for the final barameters. Ferguson and
Marquardt18b use a more elegant procedure than Swalen
and Reilly,18a but both calculate only the contribution
of the errors in Eobs to the errors in the parameters.
They ignore the additional errors from the residual
differences between Hii obtained from (E.2), and the
diagonal matrix elements of Happrox obtained with the
final parameters. 1In principle, this error contribution
could be included, but there is no obvious way to estimate
the errors introduced by the deliberate exclusion of

off-diagonal matrix elements from NMRIT.
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All of these difficulties are avoided in the LAOCOON
approach introduced by Castellano and Bothner-By,17a which
focusses attention directly on the relationship between
transition frequencies and parameters, In the trial
spectrum used for the assignment step, each calculated
transition is accompanied by a single origin number which
unambiguously designates the energy levels connected
by the transition. However, when the analyst assigns
an observed transition frequency to an origin number,
he need not know which energy levels the transition connects.
There is no need to include sufficient transitions to
produce a fully connécted energy level diagram, because

there is no step analogous to NMREN.

In the iterative step of LAOCOON, 17a 3 matrix
of partial derivatives, avj/api, of the transition
frequencies v, with respect to the NMR parameters 9]
(chemical shifts and coupling constants), is calculated.
These partial derivatives are obtained from the differences
between appropriate eigenvalues of an approximate Hamiltonian
'Happrox (see Eq. (E.1) ).

The partial derivatives of the eigenvalues have been

shown17a

U-l

to be identical to the diagonal elements of

(3H /api)U. Thus partial derivatives of both

approx



the diagonal and off—diagqnal elements Qf Happrox are
calculated in the basis representation, and transformed

using the eigenvectors.

These partial derivatives are used to calculate
corrections Ap to all of the parameters p being adjusted

Z (Svj/api)Api = (VopsV (E.4)

i calc)j

The least squares solution to these equations gives the
corrections to the parameters for use in calculating

Happrox for the next iteration.

The LAOCOON method has been adapted for calculations

using magnetic equivalénce,17b

and is quite suitable for
a program, such as NUMAR, that uses full factoring.+

The transformation of the partial derivatives from the
basis representation is readily done one matrix4 at a

time, and the matrix of coefficients which must be inverted

to obtain the Ap values is only as large as the number

of parameters.

Because the LAOCOON least squares solution involves
the entire Hamiltonian, and relates parameters to transitions
directly, it produces far more reliable estimates of the

errors in the parameters than does NMREN/NMRIT.

T C.W. Haigh (private communication) has adapted the
LAOCOON method of iteration to a program LACX, which
uses X factoring and limited twofold frame symmetry.
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An iterative parameter adjustment step following
the LAOCOON approach to jteration could be added to the
| NUMAR program with a minimum of difficulty. Most of the
data required to calculate the parameter corrections
(basis functions, eigenvalues, and eigenvectors) is already
placed in auxilliary storage by the present program;
observed transition frequencies, in order of line number,
could readily be placed in auxilliary storage in the

INPUT step.

One could therefore add the parameter adjustment
step as a completely independent subroutine (ADJUST in
Fig. 4-1) with negligible changes in existing subroutines.
ADJUST would require main memory‘space for a matrix of
coefficients as well as for eigenvector matrices for
a transformation similar to that in TRANS. It would
therefore become the step 1imiting problem size for an
jterative calculation; one could, if necessary, allow

larger matrices4 for non-iterative calculations.
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APPENDIX F. MODIFICATIONS TO VARIAN SPECTROMETERS;

INDOR METHODS.

A Varian HA-60I spectrometer has been modified
to permit INDOR spectroscopy 16a_nd to make large lock
offsets more convenient. Varian HA-100-12 and HA-100-15
spectrometers have been slightly modified to permit more
convenient use of large lock offsets. A1l modifications
are in the V4354 Internal Reference Stabilized NMR
Controllers, which provide audio frequency magnetic field
modulation, and detect signals at the modulation frequencies.
They are, therefore, effective for all radiofrequencies

at which the spectrometers operate.

Figure F-1(a) shows a partial circuit diagram
of the V4354 controller before modification. The Manual
Oscillator can be set by hand to any frequency in the
range 1500—3500 Hz., and the Sweep Oscillator, whose
frequency 1is linked to recorder position, can sweep any
of several frequency ranges all beginning at 2500 Hz.,
the widest extending to 3500 Hz. Sidebands of the basic
radiofrequency (eg. 56.4 MHz. for !°F) are obtained by
modulating the magnetic field at the audiofrequencies
produced by these two oscillators. In Frequency Sweep
mode, the Manual Oscillator sideband corresponds to the
resonance frequency of the reference compound, and the

Sweep Oscillator sideband is swept through the frequency
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region whose spectrum is of interest.

An audiofrequency phase shifter was inserted in
the reference phase path of the spectrum phase detector,
in both the HA-100-12 and HA-100-15 spectrometers. To
offset the signal loss from the phase shifter the gain
of the phase detector was increased. Otherwise, no wiring
changes were made. When large lock offsets were used,
the radiofrequency phase was adjusted for maximum lock
signal, and the audiofrequency phase was adjusted to

give an absorption mode spectrum.

For the spectra at 94.1 and 100.0 MHz. (Chapter 5),
the internal manual oscillator of each spectrometer was
disabled by the removal of its Oscillator Amplifier circuit
card. The output of a Hewlett-Packard 5100B/5110B frequency
synthesizer was fed in through the Man. Osc. Out jack

(Fig. F-1(a) ) to provide stable lock frequencies up to
16 kHz.

The more thoroughly modified circuit of Fig. F-1(b),
used in the HA-60I, allows a wider variety of operating
modes. An external oscillator for large lock offsets
is simply connected to Man. Oéc. In; the phase shifter
(as described above) allows correct adjustment of both
lock and observing phases. For normal operation, essentially
as in Fig. F-1(a), Man. Osc.‘Out is connected to Man.

Osc. In, and Sweep Osc. Out to Sweep Osc. In. The third

modulation input simplifies low power double resonance
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experiments.ls The use of the modified Spectrometer for

INDOR® 35 describeq below,

For the 56.4 MHz. INDOR Spectra of §5.1, the frequency
Synthesizer was set to 10640.00 Hz. With the internal
Sweep oscillator connected to Sweep Osc, In, a conventional
Spectrum of the =C-F region was obtained. The recorder
was adjusted to bring the 1ow field member of the central
doublet into resonance, and the Sweep oscillator frequency
was measured using g Hewlett-Packard 5245L counter in
period average mode. The internal Manual Oscillator
was then adjusted to this same frequency (about 25490 Hz.),
and connected to Sweep Osc. In, It was discovered that
the Manual Oscillator had 3 short term stability of 0,02 Hz.
(measured at § second intervals) and would typically
drift only about 0,05 Hz. in 1000 seconds. The modulation
level for the observing channel was set to produce slight

Saturation,

The INDOR sweep frequency V, Was obtained by
connecting a Data Royal F230B voltage controlled oscillator
to the Double Resonance In jack. The oscillator was
swept from 6800 to 6900 Hz. (i.e. through the -CF3

resonances) in about 1000 seconds by its internal ramp



generator, while the Varian recorder was swept across

the chart Paper on its 1000 second Sweep time setting.

For !'H homonuclear INDOR experiments no external
INDOR sweep Oscillator is needed. With a suitabile choice
of lock frequency, the INDOR sweep range can be made
to coincide with the Sweep range of the internal sweep
oscillator. After initial setup similar to that above,
Sweep Osc. Out is connected to Double Resonance In and
Man. Osc. Out to Sweep Osc. In for the actual INDOR

spectrum,
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APPENDIX G CALIBRATION OF SPECTRA

A basically similar procedure was followed in the
calibration of all NMR spectra used in §5.1 and §5.2.
At a number of calibration points across each spectrum,
pen position was read to #0.01 cm. from the chart paper
grid, and sweep frequency was read to #0.01 Hz. using
a Hewlett-Packard 52451 counter in period average mode.
These position/frequency pairs were used as input to a
computer program which obtained a least-squares quadratic
equation for frequency as a function of chart position.
The frequencies of the Spectral lines were then obtained

from their chart positions, using the calibration equation.

Higher order polynomials were tried for some spectra,
but in every case the estimated errors in the cubic and
higher coefficients were much larger than the coefficients
themselves. Fewer than five calibration points were
available for some spectra; in these cases, a linear

calibration equation was used.

For the !°F single resonance spectra of §5,1,
the calibration points were obtained by stopping the
sweep between peaks while the spectrum was being recorded.
The RMS deviation of the calibration points from the

least squares curve was typically 0.05 Hz.

For the '®F INDOR spectra at 56.4 MHz., the sweep

could not be stopped during frequency measurements,



During that time when a frequency measurement was being
taken, the recorder pen was lifted from the paper to mark
the iocation. The resulting calibration was estimated

to be accurate to #0.1 Hz. Because of the poor signal

to noise ratio in the INDOR spectré, the positions of

the INDOR peaks were estimated to be accurate only to
+0.15 cm. (%¥0.3 Hz.); averages from several INDOR spectra
were used to identify corresponding single resonance

peaks whose frequencies were better known.

The methine proton spectra of the 2,5-dimethyl-
3-hexenes were obtained without interrupting the sweep.
A number of strong, well resolved peaks were then chosen
as calibration points. Their frequencies were determined
individually to 0.01 Hz., with the recorder stationary
at the position of maximum pen deflection. Special care
was taken to avoid saturation. At least two determinations,
in which the peak was approached from opposite sides,
were averaged for each calibration peak. This procedure
nearly eliminated systematic errors resulting from the
finite sweep rate in the original spectrum. The RMS
deviation of calibration peaks from the least squares

curve was typically +0.03 Hz.

In the methyl and olefin regions of these molecules
the frequency of every strong line was obtained directly,
following the same procedure used for the methine calibration

peaks.



