
 

Abstract—Accurate estimation of dynamic states is the key to 
monitoring power system operating conditions and controlling 
transient stability. However, the inevitable non-Gaussian noise 
and randomly occurring denial-of-service (DoS) attacks may 
deteriorate the performance of standard filters seriously. To deal 
with these issues, a novel resilient cubature Kalman filter based 
on the Cauchy kernel maximum correntropy optimal criterion 
approach (termed CKMC-CKF) is developed, in which the 
Cauchy kernel function is utilized to describe the distance 
between vectors. Specifically, the errors of state and 
measurement in the cost function are unified by a statistical 
linearization technique, and the optimal estimated state is 
acquired by the fixed-point iteration method. Due to the salient 
thick-tailed feature and the insensitivity to the kernel bandwidth 
of Cauchy kernel function, the proposed CKMC-CKF can 
effectively mitigate the adverse effect of non-Gaussian noise and 
DoS attacks with a better numerical stability. Finally, the efficacy 
of the proposed method is demonstrated on the standard IEEE 
39-bus system under various abnormal conditions. Compared 
with standard cubature Kalman filter (CKF) and maximum 
correntropy criterion CKF (MCC-CKF), the proposed algorithm 
reveals better estimation accuracy and stronger resilience. 

Index Terms—Dynamic state estimation, power system, 
resilience, maximum correntropy, non-Gaussian noise, DoS 
attacks. 

I. INTRODUCTION 

ith the widespread development of phasor measurement 
units (PMUs), dynamic state estimation (DSE) 

technology has been used to track hidden state variables of 
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power system [1]-[3], such as node voltage amplitude, voltage 
phase angle, transient electromotive force of generators, etc. 
Indeed, synchronous generators are used to regulate 
generation interruption and load shedding with the change of 
power load [4], and the dynamic states of generators are used 
to enhance the stability of small signals. In fact, non-Gaussian 
heavy-tailed noise and network attacks (such as DoS) that 
occur at any time in the power system can seriously interfere 
with the dynamic state estimation of synchronous generators 
[5]. Therefore, in order to improve the anti-interference ability 
of synchronous generators under these abnormal conditions, it 
is of critical importance to develop some robust dynamic state 
estimation strategies for the stability of power systems. 

For DSE, several methods based on the classical Kalman 
filter (KF) theory have been developed in the past several 
decades, such as extended KF (EKF) [6], unscented KF (UKF) 
[7], cubature KF (CKF) [8] and their extended versions [9]-
[10], which aim to accurately track the internal state variables 
of synchronous generators. In view of the biased estimation 
that may be caused by the uncertain non-Gaussian process, an 
abridged Gaussian sum extended Kalman filter method was 
proposed in [11]. Considering the truncation error of EKF 
caused by the linearization approximation, several derivative-
free DSE methodologies were designed. For example, by 
utilizing the square root UKF and the weighting factor acting 
on the measurement, [12] proposed a modified method to 
improve the numerical stability and robustness against 
measurement outliers. In [13], an adaptive UKF was 
introduced to simultaneously monitor the control input and 
status information of the integrated motor-transmission. By 
modeling the probability and distribution of attacks, an 
adaptive CKF based on variational Bayes was developed in 
[14], which can be utilized to estimate the states of randomly 
occurring injection attacks. There is no doubt that these 
previous research works have greatly enhanced the monitoring 
level of power system. However, it is worth pointing out that 
most of these previous approaches are developed utilizing 
objective functions with Gaussian noise distribution 
assumption. That is to say, these methods can only work well 
when the system and measurement noise strictly obey the 
Gaussian distribution. Therefore, the estimation performance 
of the approaches may deteriorate significantly in the presence 
of measurement outliers, such as the non-Gaussian noise and 
DoS attacks. 
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In order to mitigate the adverse effects of outliers in the 
measurement function, such as non-Gaussian noise, load 
fluctuation [15] and cyber-attack [16]-[17], etc., several robust 
DSE strategies have been developed recently. For example, to 
diminish the estimation error caused by the malicious cyber-
attacks, an estimation strategy based on distributed 
compressive sensing was constructed in [18]. Moreover, as a 
local similarity function of information theory learning (ITL), 
correntropy has excellent characteristics in dealing with non-
Gaussian noise hypothesis because it contains the higher-order 
moments of probability density function. Among them, DSE 
algorithm based on maximum correntropy loss criterion is 
fused into classical EKF [19], UKF [20], which greatly 
enhances the robustness of standard Kalman filter against non-
Gaussian noise. However, the optimal kernel bandwidth (KB) 
based on the maximum correntropy of Gaussian kernel is 
usually difficult to obtain in the real application, which needs 
a large number of experiments and debugging [20]. Thus, the 
practicability of the method maybe inevitably degraded. More 
importantly, the singular matrix issue appears in the Cholesky 
decomposition of Gaussian kernel function operation is also 
an urgent problem to be taken into account [21], which will 
seriously damage the calculation accuracy of DSE. 

To deal with the aforementioned issues and improve the 
robustness of traditional DSEs against non-Gaussian noise and 
DoS attacks, based on the Cauchy kernel maximum 
correntropy optimal criterion, a novel resilient cubature 
Kalman filter is developed in the paper. The detailed 
contributions of this paper are threefold: 
 Based on the Cauchy kernel maximum correntropy 

(CKMC), the developed CKMC-CKF method is 
insensitive to the kernel bandwidth, which can avoid 
extensive tests on the selection of optimal kernel 
bandwidth and improve efficiency. 

 By utilizing the Cauchy kernel with two weighted local 
similarity functions to update the error and noise 
covariance, this greatly solves the problem of estimation 
accuracy degradation caused by non-Gaussian noise in 
the DSE process. 

 By deducing a linear regression model with measurement 
loss probability, the robustness of the CKMC-CKF 
approach against DoS network attacks on measured data 
is effectively improved. 

The remainder of this paper is organized as follows. Section 
II constructs the dynamic model of power system, the DoS 
attacks model, and then the maximum correntropy of Cauchy 
kernel theory are briefly introduced. Section III derives the 
resilient cubature Kalman filter based on the Cauchy kernel 
maximum correntropy optimal criterion. Section IV shows the 
numerical experimental results on the standard IEEE test 
system under various conditions. Finally, conclusions are 
drawn in Section V. 

II. PROBLEM FORMULATION AND 
PRELIMINARIES 

A. Dynamic Model of Power System 
To track the dynamic states of power system, the power 

system model consisting of two nonlinear functions between 

state variables and measurements needs to be established, 
which can be expressed by  
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where    and  h   represents the state propagation function 
and state measurement function, respectively; kx  and kz  
denote the state variable and observation vector, respectively; 

ku  means the control input vector; 1kw   and kv  are 
respectively illustrate the system noise and measurement noise; 
the subscript k indicates the time scale. 

In order to accurately track the status information of 
synchronous generator, the fourth-order model of a 
synchronous generator is adopted in this paper, which is closer 
to the actual operating mode of a generator than the traditional 
second-order generator model [23]. The state function of a 
generator can be established as follows [18] 
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where  ,  , qe  and de  indicate the power angle, electrical 
angular velocity, transient electromotive force on q-axis and d-
axis of a synchronous generator, respectively; 0  represents 
the initial value of  ; DK  indicates the damping factor; jT , 

mT  and eT  are respectively denote the inertia constant, 
mechanical and electromagnetic power; fdE  means the 
excitation voltage of stator; dx , dx , qx  and qx  are 
respectively symbolize the synchronous and transient 
reactance of generator’s d-axis and q-axis; 0dT  , 0qT  , di  and qi  
indicate the d and q axis time constants and stator currents, 
respectively. 

In this study, by contrast with equation (1.a), the state 
variable is set as ' '[ , , , ]kx      T

dqe e , and the control input 

vector is [ , , , ]ku     T
m f R IdT E i i . To improve the state 

estimation accuracy, the measurement with a higher 
redundancy is utilized, which is set as [ , , , ]k  z     R

T
Ie e ; 

where Re  and Ie  are given by 

   sin( ) cos( )       R d d q q d de e i x e i x ,         (6) 

   sin( ) cos( )       I q d d d q qe e i x e i x ,          (7) 

In addition, in order to facilitate the solution, di  and qi  in 
the above formulas need to be further expressed as functions 
of state variables and input variables, which are given by 

sin( ) cos( )Id Ri i i   ,                    (8) 
sin( ) cos( )q RIi i i   .                    (9) 
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B. Model of DoS Attacks 
With the gradual application of power grid intelligence, the 

actual power data is often subject to cyber-attack [24]-[26], 
especially for the frequent DoS attacks, which will inevitably 
lead to the loss of the measurement taken from the PMU. 
Obviously, the DoS attacks can result in erroneous estimation 
result.  

To depict the mechanics of DoS attacks, a series of data sets 
   1,2,...,ku  k= m  are adopted to model the loss of 
measurement data caused by DoS attacks, which are described 
by Bernoulli distribution and expressed as follows 

1
0k

   
u 

 


,                                     (10) 

var( 1) ( 0) ( 1)
(1 )

k k ku u u
                 =

s sP P
 

    

 
.           (11) 

where   is the probability of measurement loss, 0 1  . 
When 1ku  , it means there was no DoS attacks on the 
measurement data; otherwise, when 0ku  , it indicates that 
the measurement data has been subjected to DoS attacks, and 
the measurements are incomplete. 

Therefore, the real measurement information collected by 
PMU under DoS attacks can be modeled by 

' 1,2,...,Z Z k k ku    k= m .                    (12) 

C. Cauchy Kernel Maximum Correntropy 
As a measure of statistical similarity, the correntropy can be 

defined by two random variables X  and Y  as follows [27]: 

  ,( , ) ( , ) ( , ) ( , )  f  dxdyx yV X Y E X Y x y x y     (13) 

where ( )E  means the expectation operator, ( )   is the 
Mercer kernel of the correntropy, and the kernel bandwidth is 
 . , ( , )x y x yf  represents the joint probability density function 
(PDF) between x  and y . Due to the inaccessibility of 

, ( , )x y x yf  and the limitation of sample, (13) can be 
approximately estimated by 
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i
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In the information theoretic learning (ITL), the Gaussian 
kernel is often regarded as a kernel function of correntropy. In 
this paper, a Cauchy kernel is utilized as the kernel function of 
correntropy, which is insensitive to the kernel bandwidth 
compared to the Gaussian kernel [28]. The Cauchy kernel 
function is defined as follows 

2

1( )
1 / 




C e
e

,                          (15) 

where  e x y , ( ) C  denotes a Cauchy kernel of the 
correntropy,    symbolizes the kernel bandwidth ( 0  ). 

By maximizing (14) and combining with (15), a cost 
function based on the Cauchy-kernel-based maximum 
correntropy (named CKMC) can be expressed by: 

( , )
N

1

1 J
NCKMC k k

i
C x y



  .                  (16) 

III. DERIVATION OF THE PROPOSED CKMC-CKF 
METHOD 

In this section, the resilient cubature Kalman filter based on 
Cauchy kernel maximum correntropy criterion (named 
CKMC-CKF) is derived in detail. The proposed CKMC-CKF 
method is mainly containing the three consecutive parts: (1) 
time update; (2) measurement update; (3) derivation of linear 
regression model. 
A. Time Update 

(1) Initialization: when 0k= , the initial mean and 
covariance matrix of the state variables  ( 1,2,..., )i= niX  can 
be obtained by 

  0 0 0X E X∣ ,                               (17) 

   T
0 0 0 00 00 0P E X X X X     
∣ ∣∣

.             (18) 

(2) State Prediction: when 0k  , by utilizing the state 
mean value and covariance matrix at time instant 1k  , a 
priori estimate of the state variable and its covariance can be 
obtained. 

In the first place, based on the spherical-radial cubature rule, 
a set of cubature points can be generated by 

T
1 1 1 1 1 1k k k k k kP S S     ∣ ∣ ∣ ,                      (19) 
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1 11 1 1 1 , for = 1, ,2 i n∣∣ ∣ k- k-ii,k- k- k- k-X =S ξ + X ,     (20) 

where 1 1k kS  ∣  can be achieved by Cholesky decomposition of 

1 1k kP  ∣ ;   1,2,..., 2 )(i i n  is defined as 
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where n n
ie    represents the identity matrix. 

After the cubature point , 1 1i k kX  ∣  is propagated through the 

state function    , (20) can be transformed into  
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By utilizing the cubature points *
, 1i k kX ∣ , the prediction of 

state variables and covariance matrix can be calculated by 

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where 1kQ  represents the process noise covariance matrix at 
the time instant 1k  .  

B. Measurement Update  

Likewise, based on the state prediction above, a set of 
equal-weight cubature points , 1i k kX ∣  is generated by 

T
1 1 1k k k k k kP S S  ∣ ∣ ∣

,                            (25) 


11 1 , for 1, , 2i n ∣∣ ∣ k k-ii,k k- k k- XX =S ξ +  .   (26) 

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2023.3268445

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 28,2023 at 16:22:23 UTC from IEEE Xplore.  Restrictions apply. 

READ O
NLY



 

After being propagated by the measured function  h  , the 
cubature points are deformed as 

 , 1 , 1,ku m
ki k k i k kZ h X X  

∣ ∣
.                     (27) 

Note that the measured packet loss coefficient ku  is 
considered here, which is different from the traditional CKF 
procedure. 

Subsequently, the mean values  1k kZ ∣  and cross-covariance 
, 1xz k kP ∣  for measurements can be further developed by 
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n
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C. Derivation of Linear Regression Model 
To facilitate matrix solution, a measurement slope matrix is 

defined as 1
1 , 1( )T

kk k xz k kH P P
  ∣ ∣ , by linear approximation 

to the measurement function  h  , then (1.b) under DoS 
attacks can be further transformed into 

 '
-1 1( )k k k kk k kkZ HZ X X v ∣ ∣ .                (30) 

Note that the packet loss factor ku  is taken into account in 
'
kZ  here. By combining (1.a) and (30), a linear regression 

model for kX  is further evolved as follows 
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where k  represents the error vector with respect to the states 
and measurements as 
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where , 1p k kB ∣  and ,r kB  are the Cholesky decomposition 
factors of 1k kP ∣  and kR , respectively. 

Based on equation (16), the optimal cost function of the 
CKF algorithm based on the CKMC criterion can be refined as 

CKMC
1 1
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where n  and m  respectively represent the dimensions of 
states and measurements. Simultaneously, the difference ,x ie  
and ,z ie  are given by 

-1
-1, , -1( )k kx i kp k ke B X X ∣∣ ,                 (35) 
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In order to solve the optimal state, by taking the partial 
derivative of (34) and let CKMC 0/ kJ X  , which is 
calculated by 
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(37) 
Eq. (37) can be further simplified as  
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where 
    2 2

,1 ,, ,x x x nU e e  diag C C ,              (39) 
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,1 ,, ,z z mzU e e  diag C C ,               (40) 

Next, let 
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Then, Eq. (38) is further transformed into the form as 
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(

                   

) ( )

     (

k k k k k k k kk k k

k k

T T
k

T
kk

k

k

P R H X P R H X

R Z Z

H H

H

 
  







 



∣ ∣ ∣

∣

. (44) 

Note that  -1 1
1( )k k k

T
kkP RH H


 ∣  is positive definite here. 

Further, (44) is evolved as 
 '

1 -1( )k k kk kkkX X ZK Z  ∣ ∣ .                   (45) 

where the gain matrix kK  can be derived as 

  

  

-1 1 1-1
1

-1
1 1

( )

      = ( )

T

k

T
k k k

T T
k k

k k k kk

k k kk k

K H H

H H

P R H R

P H P R

 


 

 



∣

∣ ∣

.              (46) 

Therefore, the posterior error covariance k kP∣  with respect 
to the state variables kX  is obtained as 

 T
1 , 1k k k kk k zz k kP P K P K  ∣∣ ∣ .                   (47) 

Remark 1: To enhance the robustness of DSE method 
against non-Gaussian noise or DoS attacks, some modified 
methods have been developed. However, it’s worth pointing 
out that most of the existing methods are based on the 
maximum correntropy criterion that utilizes the Gaussian 
kernel [19]. These approaches have the following obvious 
shortcomings. On the one hand, it is difficult to select the 
optimal KB, which needs to be obtained through multiple 
experiments. On the other hand, the singular matrix problem 
often occurs when the Gaussian kernel function is calculated 
by Cholesky decomposition [21]. Therefore, these methods 
based on maximum correntropy of the Gaussian kernel can not 
satisfy the requirement of dynamic state estimation in the 
rapidity and reliability. 
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Remark 2: Compared with the DSE methods based on the 
Gaussian kernel in [19], [21], the proposed resilient CKMC-
CKF approach that utilize the Cauchy kernel maximum 
correntropy with weighted local similarities is not only able to 
effectively avoid the singularity of Cholesky decomposition, 
but also insensitive to the KB. Therefore, the CKMC-CKF 
method can achieve a stronger robustness and restrain the 
influence of outliers on the accuracy of state estimation 
effectively. 

Finally, to find the optimal states in (44), an iterative 
algorithm can be utilized to deal with the nonlinearity of states 

kX  in (44), the detailed steps are summarized in TABLE I. 
TABLE I 

PROCEDURE OF THE CKMC-CKF  
Algorithm 1  

Step 1: Set k=0,  0 0∣X ,  0 0∣P , -1kQ , kR  
Step 2: Calculate  1k kX ∣  and 1k kP ∣  by Eq. (23)-(24) 
Step 3: Calculate  1k kZ ∣  and , 1xz k kP ∣  by Eq. (28)-(29) 

Step 4: Set 1 j ,  (0)
-1k k k kX X∣ ∣

 

Step 5: Update  ( )j
k kX ∣

 and ( )j
k kP∣  by Eq. (43)-(45) 

  ( -1) ( -1) ( -1)( -1) -1
1 1= ( )

j j jj T T
k k k k kk k k kK P H H P H R  ∣ ∣

 

  ( ) ( -1) '
1 -1( )

j j
k k k k k kk kX X K Z Z  ∣ ∣ ∣  

 ( -1)( ) ( -1) ( -1)
1 , 1( )

jj j j T
k k k kk k zz k kP P K P K  ∣∣ ∣

 

where, calculate  ( -1)
1

j
k kP ∣  and  ( -1)j

kR  by Eq. (34) and 
Eq. (37) 




( -1) ( 1) 1
1 , 1 , 1

( -1) ( 1) -1
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  
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with  
    
    

( ) 2 ( ) 2 ( )
, ,

( ) 2 ( ) 2 ( )
, ,

, ,

, ,
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x x x n

j j j
z z z m

U e e

U e e

 

 

  


  


 

 

diag C C

diag C C

 

Step 6: Set 1 j j  

Until    
 



( ) ( -1)

( -1)

-
j j

k k k k

j
k k

X X

X


∣ ∣

∣

 holds, set   ( )j
k k k kX X∣ ∣ , 

( )j
k k k kP P∣ ∣  

End 
Step 7: 1k k  , go back to Step 2. 

IV. NUMERICAL RESULTS 
In this section, the IEEE standard system with ten-generator 

thirty-nine buses [30] is utilized to mimic the response of the 
real power system, which is sampled by the PMU device. To 
be specific, the sampling frequency of measurement is 50. Due 
to the randomness of the noise distribution, the Monte-Carlo 
(MC) sampling method is used to mimic the statistical 
information of the random noise distribution, and 200MCN   is 

set here, which is implemented in the simulation experiments 
of each subsequent example. At 0.5 t s , a large system 
disturbance to the three-phase ground fault occurs on the bus 
16-21, which is removed at 0.7 t s . Assume that the state 
variable  0 0∣X  is initialized to the steady state operating values 
and the initial error covariance  5

0 0 10P ∣ . In addition, the 
noise covariance matrix (i.e., kQ  and kR ) for the process and 
measurement is set to 510  and 610 , respectively. Taking the 
synchronous generator G2 as an example randomly, the 
cubature Kalman filtering (CKF) and maximum correntropy 
criterion cubature Kalman filtering (MCC-CKF) [22] are also 
exploited to compare with the proposed approach, which aims 
to highlight the effectiveness of the proposed CKMC-CKF 
algorithm. In addition, all test environments are based on Intel 
Core TM i5 2.30-GHz CPU with 16-GB memory computer. 

Based on the MC sampling, two types of error values are 
utilized to assess the estimation performance of different DSE 
algorithms [30], which are defined as follows  


1 1

1 1( )
MC SN N

i iSMC

MAE k
N N

i,ki,kX - X
 

   ,            (48) 

 2
,,

1 1

1 - /
TMC

T

N N

x
MC

O N
N

i ki k
i k

X X
 

   .            (49) 

where ( )MAE k  is the mean absolute error, xO  represents the 
overall performance error; i,kX  and  i,kX are respectively 
denoting the true states and estimated states at the time instant 
k. MCN , SN  and TN  are the total number of MC trials, state 
variables and simulation steps, respectively. Based on 
literature [23] and [30], the permitted range of the two error 
indicators should be less than 0.25 and 0.5 respectively. 
A.  Different Kernel Bandwidth Tests 

As stated in [19], different kernel bandwidths (KB) in 
correntropy have decisive significance for the accuracy of 
state estimation. To be specific, a KB that is too large may not 
be able to suppress outliers, while a KB that is too small may 
also lead to slow convergence, both of which prove that the 
choice of kernel bandwidths needs to be careful for the 
robustness of DSE. TABLE II presents the error performance 
metrics of the proposed CKMC-CKF algorithm under 
different kernel bandwidths. 

TABLE II 
ERROR PERFORMANCE METRICS OF CKMC-CKF 

WITH DIFFERENT KERNEL BANDWIDTH 

Kernel bandwidth ( ) ( )MAE k  xO  

20   1.43×10-3 1.98×10-3 

30   1.41×10-3 1.94×10-3 
50   1.40×10-3 1.94×10-3 
80   1.41×10-3 1.95×10-3 

100   1.40×10-3 1.95×10-3 

It can be found from the results that the estimation errors of 
CKMC-CKF method with different KBs are not much 
different. This is because the correntropy loss criterion based 
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on the Cauchy kernel is not sensitive to the selection of kernel 
bandwidths, which can avoid numerous experiments for 
acquiring the appropriate value of KB. Thus, the generality of 
the proposed algorithm can be improved. For ease of 
description, the KB of CKMC-CKF is set as 50  , which is 
used in subsequent tests. 
B. Unknown Gaussian Noise Test 

Due to the variability of operating conditions, the statistical 
characteristics of noise (i.e., kQ  and kR ) will vary over time 
in the actual power system [30]. In other words, the actual 
noise is unknown. To verify the performance of the proposed 
method in this case, the covariance of process noise and 
measurement noise is set as 3 1 1diag[10 ,10,10 ,10 ]kQ    , 

5 5 3 5diag[10 ,10 ,10 ,10 ]kR     , respectively. Meanwhile, the 
KB of MCC-CKF is set to 10. 

In this scenario, the standard CKF, the MCC-CKF method, 
and the developed CKMC-CKF approach are implemented for 
comparison. The state estimation results of different filtering 
methodologies are depicted in Fig. 1, where p.u. represents the 
standard unit value. It can be seen that the CKF has the largest 
estimation error for the state variable tracking of the 
synchronous generator, especially the state '

de . Followed by 
the MCC-CKF, which is somewhat resistant to uncertain 
Gaussian noise. However, MCC-CKF is also limited due to its 
reliance on KB. Compared with CKF and MCC-CKF methods, 

 

(a) 

 

(b) 

 

(c) 

e d / 
p.

u.

 

(d) 

 

(e) 
Fig. 1  Estimation performance of the CKF, the MCC-CKF 
and the CKMC-CKF with unknown Gaussian noise. (a) state 
 , (b) state  , (c) state '

qe , (d) state '
de , (e) MAE results. 

the developed CKMC-CKF can achieve the fastest tracking 
speed for real states on account of its insensitivity to different 
kernel bandwidths, therefore, the CKMC-CKF can outperform 
the standard CKF and MCC-CKF method. 

In addition, the estimation error metrics of all the discussed 
approaches for different state variables are presented in the 
Table III, which clearly conclude that the filtering 
performance of CKF is the worst because its two estimation 
error indicators ( ( )MAE k  and xO ) are the largest, followed 
by MCC-CKF, and that of CKMC-CKF is the smallest. These 
results further confirm the efficiency of the developed CKMC-
CKF method in this occasion. 

TABLE III 
ESTIMATION ERROR METRICS OF DIFFERENT 
METHODS WITH UNKNOWN GAUSSIAN NOISE 

States 
CKF MCC-CKF CKMC-CKF 

xO  ( )MAE k  xO  ( )MAE k  xO  ( )MAE k  
  0.0054 0.0029 0.0019 0.0009 0.0002 0.0001 

  0.0401 0.0209 0.0011 0.0006 0.0001 0.0003 
'
qe  0.0028 0.0019 0.0024 0.0015 0.0019 0.0014 
'
de  0.0079 0.0044 0.0032 0.0017 0.0004 0.0004 

C.  Non-Gaussian Noise Test 
For the actual power system, the distribution of system 

noise and measurement noise may not obey the Gaussian 
strictly [10]. To verify the effectiveness of the developed 
approach in this condition, the measurement noise is assumed 
as a Gaussian mixture, which is defined and generated by 

   2 2
1 2) 0 0~ (1 , ,kr N v N v   ,              (50) 
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where  20, iN v  represents the Gaussian distribution with a zero 
mean and a covariance of 2 ( 1,2)iv i  ;   represents the 
coefficient of mixture. 

Fig. 2 shows the estimate results of several discussed filter 
algorithms when 0.9  . It can be seen from Fig. 2, we can 
find that the estimation accuracy of CKF based on Gaussian 
noise assumption is reduced seriously. Compared with 
traditional CKF, the MCC-CKF method based on Gaussian 
kernel can achieve a better tracking speed, however, in view 
of the limitation that it can only deal with certain types of non-
Gaussian noise, and the singularity may occur in the Cholesky 
decomposition process of the matrixes, there is still a large 
estimation error. Furthermore, as predicted by the theoretical 
analysis, the developed CKMC-CKF approach owns the best 
estimation accuracy, this is because that it is utilizing the 
Cauchy kernel with two kinds of weighted local similarity. 
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Fig. 2  Estimation performance of the CKF, the MCC-CKF 
and the CKMC-CKF with non-Gaussian noise. (a) state  , (b) 
state  , (c) state '

qe , (d) state '
de , (e) MAE results. 

In addition, to further illustrate the effectiveness of the 
proposed method against non-Gaussian noise, various mixing 
degrees that presented in TABLE IV-VI are utilized. Among 
them, the measurement covariance is taken as 4

1 10v  , 
6

2 10v  , respectively. It can be found that the error index of 
CKF is the largest, followed by MCC-CKF and CKMC-CKF. 
That is to say, the developed CKMC-CKF can achieve the best 
performance. These results further demonstrate the robustness 
and efficacy of CKMC-CKF against non-Gaussian noise. 

TABLE IV 
ERROR METRICS OF DIFFERENT METHODS WITH 

MIXING DEGREES 0.98   

States 
CKF MCC-CKF CKMC-CKF 

xO  ( )MAE k  xO  ( )MAE k  xO  ( )MAE k  
  0.0088 0.0048 0.0022 0.0012 0.0011 0.0004 
  0.0663 0.0350 0.0014 0.0008 0.0009 0.0003 

'
qe  0.0041 0.0025 0.0026 0.0017 0.0023 0.0015 
'
de  0.0118 0.0067 0.0038 0.0022 0.0022 0.0009 

TABLE V 
ERROR METRICS OF DIFFERENT METHODS WITH 

MIXING DEGREES 0.95   

States 
CKF MCC-CKF CKMC-CKF 

xO  ( )MAE k  xO  ( )MAE k  xO  ( )MAE k  
  0.0087 0.0046 0.0019 0.0010 0.0003 0.0002 
  0.0664 0.0351 0.0002 0.0001 0.0002 0.0001 

'
qe  0.0039 0.0023 0.0025 0.0016 0.0019 0.0014 
'
de  0.0117 0.0064 0.0034 0.0018 0.0005 0.0004 

TABLE VI 
ERROR METRICS OF DIFFERENT METHODS WITH 

MIXING DEGREES 0.9   

States 
CKF MCC-CKF CKMC-CKF 

xO  ( )MAE k  xO  ( )MAE k  xO  ( )MAE k  
  0.0087 0.0047 0.0021 0.0011 0.0009 0.0003 

  0.0663 0.0351 0.0014 0.0008 0.0009 0.0004 
'
qe  0.0039 0.0024 0.0025 0.0017 0.0022 0.0015 
'
de  0.0116 0.0065 0.0036 0.0021 0.0019 0.0008 
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D.  DoS Attacks Test 
The actual power system is usually subject to a denial of 

service (DoS) attacks, which seriously harms the estimation 
accuracy of DSE [21]. Therefore, to test the resilient of 
CKMC-CKF, the scenario where the measurements with DoS 
attacks is taken into account. In order to fully verify the 
effectiveness of the proposed method under DoS attacks, 
different packet loss probabilities of measurements in Table 
VII which caused by the DoS attacks are investigated. Due to 
the page limited, only the state estimation results of power 
angle and electrical angular velocity of the synchronous 
generator 2 are presented, which is embodied in Figs. 3-6. 

TABLE VII 
PROBABILITY OF PACKET LOSS UNDER DOS 

ATTACKS 
Packet loss scenarios loss probability (  ) 

Scenario A 0.02   
Scenario B 0.05   
Scenario C 0.1   
Scenario D 0.2   

As we can see from the Figs. 3-6, the traditional CKF 
performs badly because as a standard Gaussian filter method, 
it is not able to deal with the outliers caused by DoS attacks. 
Furthermore, considering its limited inhibition effect on 
abnormal measurement in the process of measurement loss, 
the MCC-CKF method is also powerless against incomplete 
measurement information that caused by the DoS attacks. In 
contrast, the proposed CKMC-CKF always outperforms the 
other discussed methods, because the Cauchy kernel can 
effectively reduce the weight of outliers and maintain non-
singularity during matrix factorization. These estimation 
results demonstrated the resilient of CKMC-CKF against DoS 
attacks. 
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Fig. 3  Estimation performance of the CKF, the MCC-CKF 
and the CKMC-CKF under scenario A: (a) state variable  , 
(b) state variable  . 
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Fig. 4  Estimation performance of the CKF, the MCC-CKF 
and the CKMC-CKF under scenario B: (a) state variable  , (b) 
state variable  . 
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Fig. 5  Estimation performance of the CKF, the MCC-CKF 
and the CKMC-CKF under scenario C: (a) state variable  , (b) 
state variable  . 
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(b) 
Fig. 6  Estimation performance of the CKF, the MCC-CKF 
and the CKMC-CKF under scenario D: (a) state variable  . 
(b) state variable  . 

E. Observation Outliers Test 

In view of the imperfect measurement synchronization, the 
saturation of the measurement current transformers, etc., the 
observation signals collected by the PMU may cause sudden 
changes [31].  

In order to further verify the robustness of various filters, it 
is assumed that there is a 20% deviation error for the real and 
reactive powers of G2 when the fault occurs during 6.0s - 6.2s. 
The tracking effect of different filters is shown in Figure 7, 
and it can be seen from it that the CKF estimation results 
rapidly deviate from the true value due to its lack of 
robustness against observation mutations. Simultaneously, the 
MCC-CKF method also has a large deviation and cannot 
suppress the outliers in the observation. In contrast, the 
CKMC-CKF can minimize the weight of anomaly 
measurements by using two locally similar functions, so its 
estimation accuracy is the highest. 

 
(a) 

 

(b) 

 
(c) 

 
(d) 

Fig. 7  Estimation performance of the CKF, the MCC-CKF 
and the CKMC-CKF with observation outliers. (a) state  , (b) 
state  , (c) state '

qe , (d) state '
de . 

F. Execution Time Test 

In order to verify the possibility of real-time online 
application of the developed method, the computational 
efficiency of all the discussed approaches under the cases of 
subsections B, C ( 0.9  ), D (with 0.01  ) and E are 
investigated in detail. To be specific, the total execution time 
of the standard CKF, MCC-CKF and the proposed CKMC-
CKF method under different scenarios is shown in Fig. 8. As 
we can see from the Fig. 8, the standard CKF takes the least 
calculation time, followed by MCC-CKF and CKMC-CKF. 
That is to say, the proposed CKMC-CKF takes a bit more 
computational effort than the conventional methods. This is 
because the calculation of correntropy gain increased the 
complexity. Nonetheless, it still meets the sampling (20ms, 50 
samples/sec) requirements of the PMU. 

 

Fig. 8  Total execution time of different DSE methods for 
cases B-E 
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V. CONCLUSION 
In this paper, a novel resilient approach termed CKMC-

CKF was developed for power system dynamic state 
estimation against the inevitable non-Gaussian noise and 
randomly occurring denial-of-service (DoS) attacks. In which, 
both the statistical linearization strategy and fixed-point 
iterative approach were introduced to acquire the optimal 
estimation. Moreover, the Cauchy kernel maximum 
correntropy, which was utilized to describe the distance 
between vectors, enhanced the state estimation performance of 
the DSE method. Extensive simulation experiments carried 
out on the standard IEEE 39-bus system under various 
abnormal conditions demonstrated and confirmed that the 
proposed method can achieve the best estimation performance 
and robustness compared with the traditional CKF and MCC-
CKF. 
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