University of Alberta

A LIGHTWEIGHT COORDINATION APPROACHFOR
RESOURCECENTRIC COLLABORATIONS

by

Morteza Ghandehari

A thesis submitted to the Faculty of Graduate Studies anddreb
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

(©Morteza Ghandehari
Spring 2013
Edmonton, Alberta

Permission is hereby granted to the University of Alberfararies to reproduce single copies of this thesis

and to lend or sell such copies for private, scholarly orrgdie research purposes only. Where the thesis is

converted to, or otherwise made available in digital forime, niversity of Alberta will advise potential users
of the thesis of these terms.

The author reserves all other publication and other rightssociation with the copyright in the thesis, and
except as herein before provided, neither the thesis nosanstantial portion thereof may be printed or
otherwise reproduced in any material form whatever withbatauthor’s prior written permission.

To my family
For their unconditional support

Abstract

A very common form of collaborative work involves people kioig on shared resources, such as,
for example, co-producing a project report, including iedittext, cross-referencing citations and
validating the budget or reviewing and authorizing differaspects of a loan application. All these
types of collaborative work share a few key properties. Timyally involve a variety of interactive
tools. The various process steps are not precisely ordeuetiave some logical inter-dependencies
among them. Although some steps may be automated, the prieésiven primarily through
interactive tools by people, who need to notify each othémally, these processes usually take a
long time to complete.

Web-based collaboration is the norm nowadays. Collabar&iiitors, such as wikis for exam-
ple, coordinate people working on documents, but are nejtbeerful enough to support coordi-
nation more complex than notifications, nor amenable taynatiion with other tools. On the other
end of the spectrum, classic business-process manageysésins are powerful enough to cover
complex coordination requirements, but are too complittdaise and too regimented in the types
of coordination they support. As information is becomingraasingly available and shared through
REST APIs, there is a need for enabling web-based collabematstems to support resource-centric
collaborations.

To meet the need for flexibly coordinating people, intexactools, and automated services,
we have developed a coordination approach and a support@ngetvork. Our solution consists
of (a) a language and tool support for specifying collabbeeahctivities and the resources they
manipulate, (b) an engine for enacting them at run time, ahd (systematic methodology for
integrating the engine with the various interactive systemd services involved. Our framework
balances expressiveness and simplicity and its usefuh@ssbeen demonstrated in two real-world

projects.

Acknowledgements

I would like to give her my sincere thanks my supervisor, Bsgbr Eleni Stroulia, for her invaluable
guidance, support and constructive feedbacks. | wouldttkexpress my utmost gratitude to her
because not only she is an absolutely wonderful supervisioalbo her personality is and always
will be an inspiration for my life.

I would also like to thank my colleagues in GRAND and CWRC pot§ who helped me a lot
in this thesis.

Finally, | extend my special thanks to Parisa Delfani whagepsrt and encouragement was

always with me.

Table of Contents

[ITntroducfionl 1
[2__Related WorK 7
[3__The Collaboration-Specification Language 14
3.1 Two lllustrative Examplés e 16
%n 23
1S . e e 23

% 26

S e e e e e e 29
[4__The Software Framework 43
4.1 The CollaborationEngihe e 43

A2 TREeABI o 45
4.3 Instances Datab@se 47
Z eEn el . . 48
4 5 49
A6 The COMPIBr o o o e e e e e e 49
[47 Tnteractiods @ . . e 52
53
M e e 53
%ﬂ&m 53

Lo e 55
%ﬂbe 56
e Adapter e 56
5.6 External Services e 57
5.7 Interactions e e 57
6 Case Studids 60

List of Tables

I% % I He dgrammar o

| CO|

configuration speci

fications oo
icatlonso

List of Figures

List of Listings

I%’% %Eg Speci]_‘.Eg §g%g!g' lggg”%gg ollalpora. 19
e specification of the updated sample project repesiutboring collaboration . 21
uration specification for the GRAND prdject 66

ton 67

Chapter 1

Introduction

Today we are witnessing an abundance of technologies, et support the development of
web-based applications, in general, and web-based sewvieated systems, in particular. In the
service-oriented paradigm, processes are typically stggthrough service orchestration; the vari-
ous steps of the process are delegated to invoked serviceseavice orchestration is employed for
coordinating the operations. Traditionally, the stepsmpmemented by WSDL/SOAP web-services
operations, and the process model is specified using WS-BREhe de-facto standard language
for web-service orchestration; furthermore, the processfican be published as a new service,
implemented on a WS-BPEL engine.

More recently, the REST (Representational State Tranf@8f)architectural style has emerged
as an alternative approach for development of web-baseéeisgsand there are three reasons for this

phenomenon.

1. First, the REST approach is conceptually and syntatticiinple; it relies on the HTTP
protocol, with XML (or JSON) as the exchange format for thglpad data, and a simple syn-
tactic style for formulating HTTP requests as traversathefXML schemas of the underlying

resources.

2. This simplicity makes the related learning curve smoptkiace developers can easily mi-
grate from standard web-based development to exposingystems as resources accessed
through REST APIs.

3. The increased availability of interesting informatiomdasimple development tools (some
based on the demonstrational-programming paradigm) ¢itéEST APIs has spurred the

interest of web users to develop information mash-ups.

Given the conceptual simplicity of the REST style, many smrproviders are now publishing
their services as REST services, instead of, or in addiipWASDL/SOAP web-services. For exam-
ple, Google stopped supporting its SOAP Search API, aftatrivduced its REST Search APRI [4].

At the same time, governments, following the “open data” ement, are making rich information

repositories publicly available. As a result, the numbenédrmation resources accessible through
REST APIs is increasing and so does the number of web-bataddtive tools for using and ma-
nipulating these resources. The question then becomeshmotdinate the activities supported by
these various tools.

In this work, we focus on resource-centric collaborationkflows. The ternresource-centric
collaborationrefers to a type of human-intensive workflows, in which a grad people work
together on shared information resources. The informaticavailable to the collaborators in a
resource-centric environment and can have various typds &8l XML data, text files, or biblio-
graphic references. The objective of the collaborativiviigts to develop and manage the various
resources by taking turns editing them, annotating therh mitta-data, and evaluating their degree
of progress and completion. Examples of this type of collatiee work include co-authoring a
scholarly publication, producing a project report, andingthnnotating an original text with meta-
data.

Let us consider a simple project-report coauthoring coltabon, where a group of students
work together to produce a report on their team project. Anteaember may develop the first
version of the report and provide it as a resource on the wdten©ther team members may
take turns editing the report, with the turn-taking ordeingead-hoc or possibly depending on the
members’ roles in the team. Each team member, when she iswitinéner turn, indicates the
availability of the resource to the team, possibly througheaplicit notification mechanism. At
some point, a team member, who has been designated to fgdgutgrect and assess the quality of
the report, may decide that the report is no longer a “draft’tias been “completed” and submit
the report to their supervisor for approval. The supervisoeives the report and evaluates it. If the
supervisor approves it, the resource is “published”; atiee, the report is sent back to the team,
possibly with specific comments to be addressed, for fugding.

In general, resource-centric collaborations are asymaius collaborative activities [19] which
mainly involve accessing and manipulating shared infolwnatesources. Various operations of
the collaborations are performed by different users oredsfit resources at different time using
different tools. In order to coordinate the operations, s@upporting processes are also engaged
including informing users about the operations and statussmurces, providing the users with the
capability to make decision in a collaborative manner, king automated operations on resources
as necessary, and enforcing the dependencies among resauatoperations.

Resource-centric collaborations, of which the above ptajeport coauthoring story is an in-

stance, share several common properties.

e They involve many “people” activities. While various editors and tools are involved in
the overall activity, the collaborative activity is initeed and driven mostly by the people
participating. In the above mentioned example, it is thpoesibility of each team member (a)

to receive the URL of the resource and start editing, whey e notified by the system, and

(b) to decide when to release the resource to the rest ofdine t€ontrast this with automated
workflows where the various steps are performed by autoaibtiovoked software services

that explicitly signal their completion with their returagameters.

e Their steps are loosely ordered Resource-centric collaborations are semi-structured. |
other words, the control over the various tasks is non-detestic, and in many cases, a
particular task can be performed any time. In our examptapabh the report may consist
of specific sections, the order in which these sections ateces unlikely to be fixed; any
section can be edited any time and it is only important tHahal sections are written before
the report can be considered “completed”. In contrast, ioraated workflows, although there
may be alternative control-flow paths, each one is annotatesh explicit condition on when

it is taken.

e They have simple structure The process models of resource-centric collaborationallys
do not have complex control elements, computation, or datssformations. They usually
involve the evaluation of conditions (e.g. to assess whietlparticular person may access the
resource), simple service calls (e.g. to notify the persordved), and value assignment (e.g.
to manage the transition of the resource through phasespritnast, web-service orchestra-
tions must support the mapping of complex parameters tlreegvices, the maintenance
of global variables, and the evaluation of complex contmlcures. Therefore, languages
such as BPEL[43] are too complex and a simpler language woilchore appropriate for

specifying them.

e They have undemanding performance requirementsFinally, resource-centric collabora-
tions do not usually have complex or strict performance ireguents. For example, auto-
mated workflows may indicate upper limits in the responsetoha service (and upon its
expiry the middleware may invoke a fall-back alternativie).contrast, resource-centric col-
laborations may need to conform to deadlines for the ovematipletion of the coordinated

task, but it is unlikely that any of the individual activisiénvolved is time-critical.

Current solutions in support of resource-centric collalion (Figurd 1.11) include tools such as
collaborative real-time editors. These tools usually pievsome basic coordination supports like
sending natifications or controlling access. They are ikedtinexpensive and light-weight. They
also provide the flexibility in specification and ad-hoc nfmdition required by semi-structured
nature of resource-centric collaborations. However, aeynot powerful enough to support cus-
tomized or more complex coordination requirements, suah@storing deadlines, or ordering of
steps, and they cannot be easily integrated with other fdals On the other extreme in the coor-
dination spectrum, classic business process managenstaisy e.g. BPEL systems, are powerful
and capable of supporting various coordination forms. Herethey are costly and complex to

operate and maintain. In fact, these systems are too heaightvbased on the requirements of

Classic
BPMSs

WEFMSs Cost

Coordination/Flexibility

Figure 1.1: Comparison of different solutions for suppugtiesource-centric collaborations

resource-centric collaborations. Another solution is évadop a workflow management system
from scratch. While a custom-made system can be tailoredrdicg to the requirements of the

project, developing a comprehensive workflow managemestésyis far from trivial and substan-

tially increases the effort required for developing thdalobrative system.

Given the relative abundance of resource-centric colktiha activities, the problem of devel-
oping a systematic method and a tool framework for suppgpreéaisource-centric collaborations by
integrating the interactive tools that manipulate theseuweces is compelling. In other words, the
problem is to add the coordination support to a multi-usedtiaiool resource-processing environ-
ment on the web. In this thesis, we describe exactly suchlabmrhting system that we have devel-
oped for supporting resource-centric collaborationscWiproperly balances the required flexibility
and coordination.

The main contributions of our work include:

e We introduce an approach for coordinating people, toolsjses, and resources in a service-
oriented resource-centric environment. The approachlesdhe collaboration of users on
shared resources, with the goal of creating and maintaithiege resources. This approach
utilizes many principles of REST style on different levalgls as uniform interface and state-
less communication. It orchestrates a number of REST ssvicorder to publish collabo-
rations as new REST services. More importantly, the appritaelf is designed according
to the philosophy and properties of REST style since sintpliiexibility, ease-of-use, and

agility were the main design goals.

e We designed a language for specifying collaborations. dgJgirs language, the collaboration

specifications define the required coordination among geapbls, services, and resources.

As opposed to web-service orchestration languages thaXlelie-based, we employed a
scripting paradigm for our collaboration language; we dtsed to make the language in-

tuitive enough so that it can be used by non-technical users.

e We developed a comprehensive software framework for stipgaesource-centric collabo-
ration, composed of (a) a collaboration editor for writimg tcollaboration specifications in
the above language; (b) a compiler for translating the boliation specifications into exe-
cutable collaborations; (c) an engine for executing théabaolkations at run time; and (d) a set
of tools for managing the service and integrating it withdlistems that the collaborators may
use to manipulate their resources. The system is powerfuiginto support the coordination
required by resource-centric collaborations; at the same, tit is light-weight enough to be

used in resource-centric environment such as web-bastsihsys

e We designed a methodology for integrating the collabonagigstem within an ecosystem of
other systems and tools. It is in fact an approach which ainfacilitating the integration
process. We also provide two case studies which demonstuateollaboration system in
action. These case studies are evidences of applicabildyrocollaboration system in real-

world projects and usefulness of our integration model.

The remaining of thesis is organized as follows:

Chapter 2 (Related Work) describes the background for this thesis and the relatel. e
start by explaining some of the fundamental concepts useddgt this thesis. Then, we explore the
research areas relevant to the problem tackled in this vikarkthermore, some related work focused
on the similar problems is introduced and compared to oukwor

Chapter 3 (Collaboration Language)defines the collaboration language we designed for spec-
ifying collaborations to be supported by our collaborasgatem. We first describe the basics of the
collaboration language including the motivation behingigeing a new collaboration language, the
paradigm of the collaboration language, and its elementsrder to familiarize with our collabo-
ration language, a sample collaboration specificationt&vriin the language is demonstrated early
in this chapter. In addition, we provide the complete spediifon of the language consists of the
lexical elements, the syntax, and the semantics of the Egeyu

Chapter 4 (System Architecture)describes the architecture of the collaboration system. In
this chapter, the components of the collaboration systerdstlze dependencies among them are
described in details. For each component, we outline tha reaponsibilities of the componentand
explain its structure and behaviors. In addition, somewotthy details about the implementation
of the components are also mentioned through the chaptellygiwe explain how the components
interact in order to execute collaborations.

Chapter 5 (Integration Model) describes our suggested model for integrating the col&lmor

system with other systems. In this chapter, we describe dhgponents of this model, i.e. the

components which should be developed for enabling the liatiegn of the collaboration system
with other systems, and their interactions.

Chapter 6 (Case Studiespresents two projects, as case studies, in which our colidiba
system has been employed as case studies. Case studiesarenabweb-based system projects,
named GRAND and CWRC. For each case study, we first explorsytstem to which we want
to add the collaboration support using our system. Then,de@taour integration model accord-
ing to that particular project. Finally, we describe how thegration process has been done. In
the GRAND case study, we also provide a sample GRAND colkimr and its corresponding
collaboration specification written in our collaboratiamguage.

Chapter 7 (Conclusion)starts with a summary of the thesis. Then, we discuss abisuvtirk

and its contributions. Finally, we suggest some possikileréuwvork based on this thesis.

Chapter 2

Related Work

This thesis focuses on providing support for the coordamedif people, tools, and services in order to
enable interaction-intensive collaboration of peoplelwered web-accessible resources. According
to this description, our work relates to two major areas @fware engineering: business process
management[30, 46] and computer-supported cooperatike[@6]. Furthermore, as our approach
is designed specifically for integrating tools accessileigh REST APIs, it relies on concepts and
practices from the service-orientated software-engingeesearch area [33,122].

A workflow, usually considered equivalent to a business @secis a sequence of related ac-
tivities that produces a result with observable value fositeiss actors [44]. Businesses define
and follow their own set of workflows in order to achieve theiganizational goals. AVorkflow
Management System (WFMS)a system mainly used for supporting workflows in organmizest
According to the Workflow Management Coalitidn [27], “a wlldew management system is a sys-
tem that completely defines, manages and executes workflowsgh the execution of software
whose order of execution is driven by a computer representaf workflow logic”. Instead of
focusing on individual activities, WFMSs focus on the waffatent activities are related to each
other, in order to structure workflows. A WFMS consists of twwain components: the specification
module and the execution module [21]. The specification reoelnables the specification of work-
flows, known asvorkflow schemasand the execution module is responsible for actual enadtme
of workflows throughworkflow instances|In fact, workflow schemas represent the structure and
behavior of workflows; and workflow instances are the instaraf workflow schemas at run-time.
As we mentioned in the Introduction, resource-centricatmiation is a type of human-intensive
workflows; therefore, the resource-centric collaboratiare a subset of workflows and the work-
flow concepts are also relevant to the collaborations. Tginout this thesis, the term “collaboration
specification” is in fact mapped to the concept of workflowesola and the term “collaboration
instance” is equivalent for the concept of workflow instance

One of the key properties of resource-centric collabonatis the flexibility required in model-
ing and modifying the rules of the collaborative activiti&orkflow flexibility is one of the major

research topics in workflow management and has been studietbie than a decade [26]. There is

substantial research on various aspects of workflow fléwitslich as ad-hoc modification, flexible
modeling, semi-structured workflows, and workflow adaptatBurkhart and Loos [15], Schonen-
berget. al[38], and Carlsert. al[17] have surveyed different approaches for enhancing fhawk
flexibility and evaluated the support of workflow flexibility a selection of workflow management
systems. These approaches address the flexibility reqeiresof many types of workflows, but they
do not provide a specific and comprehensive solution fornesecentric collaborations as they do
not intend to. However, many parts of this work were inspligdhe researches on workflow flexi-
bility.

The artifact-centric approach [29] to business-procesdeiing shares some similarities with
our envisioned resource-centric collaborations. Thigag@gh focuses on the business data and the
named artifacts that are manipulated and augmented durendifé-cycles of the business work-
flows. Artifact-centric workflows are centered around thefasts [32]. There are various studies
on artifact-centric workflowse.g.[32,[14[24], but all of them share the idea of managing artsfa
that capture business goals, and developing services wiéctipulate artifacts according to busi-
ness rules. Resource-centric collaboration can be camesidetifact-centric, since the coordination
is gathered around central artifacts which are resourcessiources-centric collaborations. How-
ever, the artifact-centric approaches are concerned hatligtructuring” of the artifacts, while our
approach is agnostic of the internal structure of the rammjrwhich may be the concern of spe-
cific interactive tools. Instead, our approach sees a resag a whole which can be accessed and
manipulated through a REST interface. In addition, artifsntric workflows require pre-defined
structural models of artifacts, while such a model can ngtrbgided for resource-centric collabora-
tions as the structures of documents may not be well definlegrefore, artifact-centric approaches
do not provide the flexibility required by resource-centdlaborations.

Another field which is closely related to our resource-dentollaboration approach is web-
service orchestration. Web-service orchestration rafethe process of creating composite web-
services by combining and coordinating a set of simpler s@tvices|[35]. Orchestration typically
delivers executable services that can interact with itlesind external web services at the message
level. The orchestration engines are used for publishimgpasite services and executing them at
run-time. TheBusiness Process Execution Languagiso known as BPEL, BPEL4AWS or WS-
BPEL, is the most popular web-service orchestration laggudn fact, BPEL is emerging as the
de-facto standard language for specifying inter and intsartess processes via web-service$ [16]. It
was originated from Microsoft's XLANG and IBM’s Web-Seréid-low Language (WSFL). It was
first submitted to OASIS consortium for standardizationd®yesal software technology corporations
including Microsoft, IBM, and SAP. BPEL is a XML-based larage used for defining the control
logic required to coordinate web-services participatimg ivorkflow [35]. It is defined on the basis
of several other web-service XML-based specifications; regrtbem, the Web-Service Definition

Language (WSDL) is the most influential one and is used focrilging web-services. A BPEL

process specification mainly contains the following eletse(il) declaration of the web-services
to be orchestrated, (2) description of the control flow amaef-service invocations, (3) declara-
tion of the variables used to maintain the state of a proaess,(4) declaration of the data flow
[45]. BPEL employs various concepts and constructs foripsieg and programming languages
including scope, assignment, sequential execution, ¢iondi branching, and repetitive activities.
In addition, BPEL supports both synchronous and asynchusstyle of communication. It also

provides some advanced mechanisms such as exceptiondgnimpensation, event handling,
message correlation, and parallel processing [20]. Inntegears, many proprietary and open-
source BPEL engines have been developed to support fulljuéaiele BPEL definitions such as
Oracle BPEL Process Manager [8] and IBM WebSphere Processrd€].

BPEL is a powerful language capable of supporting variogpesyof business processes in
service-oriented paradigm. However, there are some istms employing BPEL for supporting
resource-centric collaboration in web-base environmigigesthe requirements of resource-centric
collaborations are not inline with the design goals of BPHELfact, BPEL was formed as the re-
sult of joint work by some heavyweights in software indiestrin order to merge the best practices
in service orchestration and develop a standard servideesti@tion language. Therefore, quality
of service and completeness of the language were among timed@sign goals. As a result, the
language is particularly suitable for enterprise settiagd B2B interactions; however, the com-
plexity and overhead of the language is in contrast with tleilfility and simplicity required by
resource-centric collaborationis [18]. In addition, althh BPEL is well-suited for automated busi-
ness processes, it has fundamental weaknesses in suggantiman-driven workflows since it does
not have any native support for user interactions requimedsource-centric collaborations. [31].

Human-driven workflows are business processes that inpaeple. On the other hand, there are
automated business processes which do not require humiggigagion during the execution [42].
Automated processes are usually predictable, relatitaticsand independent of human interven-
tion. The data used in automated processes tends to be weliused, so it can be manipulated by
applications and web-services. Human-driven workflows o@ytain both human participants and
automated activities. These workflows are more dynamic axibfe. The data used in these work-
flow are usually less-structured and human readable. Bedidenan-driven workflows usually have
reactive and event-driven nature. In recent years, sonuwisios have been proposed which aim at
enhancing BPEL in supporting human-driven workflows [28PE 4People is the most prominent
one among these solutions. BPEL4People introduces a éxtefios BPEL to address human inter-
actions as a first-class citizen. In fact, BPEL4People essaBPEL to integrate role-based human
activities in orchestrations. First, IBM and SAP publistzedthite paper, named BPEL4People, in
which the importance of human-driven workflows is emphakemed the requirements of enabling
BPEL to support this type of workflows are identified [31]. $hvhite paper describes scenarios

that involve human interactions and cannot be specified BREL, and motivates and outlines ap-

propriate extensions to BPEL to address these scenarioplePactivities, human tasks, and people
links are the most important elements introduced in theevpiéper.People activityis a new type
of activity which integrates human interaction within a peeshuman tasldefines the actions that
a human participant must perform; apdople linkis used to associate people activities to human
participants. In addition, BPEL4People introduced carets for working with user information
such as roles, users, and groups of users. Later on, a graqverfal heavyweight software cor-
porations published two specifications|[12] 11], namely Mi8nan Task and WS-BPEL Extension
for People. These two specifications use the ideas outlm#tkiwhite paper and together provide
a concrete realization for them. The extensions are dedigna way that they are layers over the
traditional BPEL web-service stack and enhance basic BRELices to support human workflows.

Since REST service5 [23] emerged as alternatives for weliess, it has become important to
support REST services in orchestration languages such Bk.BR addition, as REST services are
simpler and more flexible than web-services, incorporaRE$ST services in BPEL process will
cause improvement in flexibility and simplicity of the wh@&®EL process; therefore, it would be
more aligned with the requirements of resource-centritaborations. As a solution to introduce
REST style in BPEL, Pautasso [34] has proposed an extermi®HEL, named “BPEL for REST”,
which aims at enabling BPEL to support the native compasitibREST services in addition to
WSDL-based web-services. This extension is mainly comgpho$éwo parts: (1) enabling BPEL
to directly invoke REST services; (2) publishing the stat¢he process as a resource which can
be accessed through REST service. For invoking REST set\imer new types of activities were
introduced, namely “GET”, “POST”, “PUT", and “DELETE". A is apparent from their names,
these activities are used to invoke the corresponding HT €thaads on the given resources indi-
cated by their URIs. For publishing processes as REST svibe “resource” container element
was introduced. This element creates and publishes a mstathe clients. The element may
contain a set of request handlers. Every request handlex tyge which is one of the four defined
types: “onGet”, “onPost”, “onPut”, and “onDelete”. A recgiéhandler is executed whenever the
corresponding HTTP method is called on the enclosing elémen

The extensions for enabling BPEL to have native supportdiondn interactions and REST ser-
vices have made BPEL more suitable for supporting resoceoagric collaborations. Still, BPEL
cannot be considered as a genuine solution for supportsmuree-centric collaboration as the
design philosophy of BPEL is not inline with the flexibilityhd simplicity required by resource-
centric collaborations. In fact, BPEL is overly complichi@nd verbose for these types of inter-
actions. Furthermore, BPEL follows an activity-based psscmodel which is better suitable for
automated activity, while resource-centric collabonasiare more event-driven nature; essentially,
user-interaction events within one tool may signal notifaes to other users who may use yet other
tools to continue the collaboration. In our approach, wébaeately opted for simplicity and flex-

ibility instead of completeness and quality of service. rEfigre, we believe that our approach is

10

more appropriate for supporting resource-centric coliations.

Mash-up is a data-driven approach for service composl(fidh Mash-up is used for developing
new web applications combining a number of distributed ueses providing data, business logic,
and user-interface [86]. Mash-up is mainly intended to bedusy less-technical end-users; as a
result, simplicity and ease-of-use are important issuedesigning mash-up systems. Mash-up
systems take the responsibility of creating the userfaterfor the composed service; in fact, the
integration of various resources is done in user-interfagel. Typically, the mash-up systems
provide graphical or scripting environments to end-usersléfining the mash-up, e.g. Yahoo Pipes
[10].

Similar to mash-up, our approach proposes a service cotiggosiodel which emphasizes on
simplicity and ease-of-use. However, there are some fuedgahdifferences. First, mash-up is
data-driven and focuses on data aggregation; while, ouoaph is process-oriented and focuses
on behavioral aggregation. Second, mash-up targets esrdmed-application development; while,
our approach is used for workflow-aware orchestration ot afsgpplications and services. Finally,
mash-up approaches are typically involved in creating-ugerfaces for the composed services;
while, our approach does not engage in this matter.

Finally, we should mention that there are two groups of papérich are focused on the very
similar problems to ours. In fact, they aim to address thélero of supporting collaborative work-
flows in service-oriented paradigm.

Bite [37,[18]is a process-oriented composition languaga/eb. Bite is in fact a simplified
workflow language designed according to REST architecuniaktiples. It aims to enable main-
stream web-applications (in general, resource-centtic@mments) to benefit from service compo-
sition. In order to develop workflows, Bite combines varioasources including REST services,
simple human interactions such as email exchange, colifibarservices provided by online collab-
oration systems, and back-end services such as local jactidus; then, it exposes the developed
workflows as REST services. In Bite, workflows are publishelive resources. The creation of and
interaction with workflows is done through HTTP methods, GET, POST, PUT, and DELETE.
More specifically, Bite employs ATOM protocol for managingmkflows and workflow instances.
Bite uses a lightweight process model, in the form of a flapgrd-or simplicity, it does not support
scopes, compensation, or transactional support. The nwdemposed of activities which define
units of work and links which defines dependencies amongigeti. The Bite language elements
mainly consist of basic HTTP communication primitives feceiving and replying to HTTP re-
quests; utility activities for waiting, calling local coder terminating the flow; and controls, such
as loops. Bite originally supports only a basic set of attitypes and provides two extension
mechanisms: (a) the activity extension, which enables ibefinew activity types in a first-class
manner, and (b) the script extension, which allows exenwdfcripts written in any of the supports

scripting languages. Bite adopts many concepts form segpanguages such as dynamic data

11

types or “convention over configuration”. For integratingnan interaction, Bite supports emails
and browser-based interactions from the workflows. It gatesremails and HTML replies using
a rendering mechanism and provides them to human partisipémthis way, human participants
get informed and also can perform actions (by clicking okdior submitting the forms embedded
into email and HTML replies). The authors of these paperaathat the proposed language works
properly for both data-driven workflow and collaborativeriftows. In addition, the authors of the
Bite language propose a run-time architecture for exegtitia workflows specified in the language.

Bite is one of the pioneers in the field of process-orientedise composition for web. It also
can be considered as genuine system for supporting colibemorkflows as it addresses some
of the main requirements of these workflows such as web-huntegration, light-weight process
model, and flexible configuration. In fact, Bite's approamhiard supporting collaborative workflow
was a guideline for us in designing of our system. Howeverirnee to go beyond it and design a
system which better suits the requirements of resourceicaollaborations. Bite is practically a
simplified version of BPEL adopted for web environment; assalt, a sequential activity-based pro-
cess model which is not appropriate for modeling semi-stined workflows with loosely-ordered
steps. While Bite is more powerful in some aspects, we fatoseease-of-use of our language by
employing a scripting-style paradigm. In addition, ourdaage supports Roles and Relations as
first-class language elements; as a result, our languagklweunore natural for specifying col-
laborations which involve context-data manipulation. tRearmore, we provided a more complete
solution including an integration model and a completeatmwiration management system.

Schuster et. al[[47, 40, 39] focused on satisfying the fléigitknd coordination requirements
of “creative document collaboration”. They define creatieument collaboration as a type of
collaborative workflows, which involve ad-hoc human intgi@n and unexpected changes in order
to develop evolving documents. This definition is similaoto definition of resource-centric col-
laboration. For supporting creative document collaborej the authors propose a service-oriented
approach, which consists of a collaboration model and stfugture architecture. The collaboration
model defines the various coordination requirements anahfrestructure architecture is responsi-
ble for enacting the coordination. As the first step of the aliod) process, a document is modeled
as a hierarchy of document pieces, the contributions, wihidiver the pieces and the services that
implement the contributions. This hierarchy can be refinest ime. These services are invoked
either manually by a human coordinator, or automaticallyalgoordination engine. The coordi-
nation engine follows rules defined for the collaboratiomd accordingly invokes services. Rules
are defined in the forms of event patterns and correspondiigna. These rules can be used for
defining temporal dependencies such as prerequisiteaelatideadline, automating service call,
and detecting potential inconsistency.

Many of the requirements identified in this work are similarthhe requirements of resource-

centric collaborations. In addition, the proposed appndac supporting the collaborations is ap-

12

propriate for web-based systems. They also employed RE&Ifst designing their infrastructure
architecture. In spite of all these similarities, there faredamental differences between this work
and ours. One of the main differences is that their approsdbdused only on documents with
compound internal structures, while our approach is caecainore generally, to support any kind
of resources. Consequently, their approach is specifit@iylved with modeling and managing
the structures of documents, while we do not engage in thestere and see resources as atomic
objects which can be modified through REST interfaces. Mmogortantly, we believe that our co-
ordination approach is more powerful than the rule-basedatiatroduced in these papers. The set
of events by which the rules can be defined are limited. Intadithe employed event processing
language is not particularly appropriate for defining therdination requirements; therefore, it can
be difficult or event impossible to define more complex cawation requirements. Furthermore,
our language is more intuitive to be used by non-techniaalsud-inally, our supporting system and

integration model are more complete than the infrastrecinchitecture proposed by the authors.

13

Chapter 3

The Collaboration-Specification
Language

The first step in supporting collaborations is modeling théntollaboration model, a.k.a. collab-
oration specification, must define the elementary tasksttigatollaborators may perform and the
control structures through which these tasks will be cowtdid.

We studied various approaches and languages for modelimgflaiws. As we discussed in
the “Related Work” section, there are numerous powerfulkflow languages, which are not very
appropriate for modeling resource-centric collaboratiolm particular, most of the workflow lan-
guages are designed for structured workflows and assume@ardieistic control over the process
steps; therefore, they do not meet the flexibility requirehud resource-centric collaborations. On
the other hand, there are some workflow languages whichaentéxibility, but they do not pro-
vide sufficient coordination for these collaborations. histthesis, we designed a new language,
for modeling resource-centric collaborations. Our “codieation language” (as we will refer to it
throughout this thesis) balances the required flexibilitst aoordination support.

The language is based on the event-driven paradigm, sisogin@e-centric collaborations are
human-driven and, as a result, the core coordination mésmaimvolves “reacting” to people’s
actions. Therefore, a collaboration specification is cosepoof ECA (Event-Condition-Action)
rules. Inthese ECA rules, “events” are messages genenmateddrnal components (i.e., the systems
used by the collaborating team members to perform theiisjaskother collaboration instances;
“conditions” are logical expressions regarding the stditdhe collaboration instances or incoming
events; and “actions” define behavior as the response toetted event, under some conditions.
The model of our collaboration languages is illustratedigure[3.1.

The language supports the following main constructs.

e Typesare data elements used for storing values in collaboratigtances. They may be asso-
ciated with methods for accessing and manipulating thdéireg The basic types supported in
our language arBoolean Integer, String, andTime. We also defined a special type named

Userin order to provide a first-level support for working with tata of the people involved.

14

Boolean

sub-collaboration
Integer

¢

Type
Collaboration [fields Vi 7

0..n 0..n Strings

Time

User

varigbles

| Srate-based‘ | Rule-hased ‘ Users

enfries

Handlers X Statement
actions

«ordered» 0.n

4[:”1‘ Event Handler| ‘ Time Handler ‘
=

P
-

- Control
Function (Compound)

(Simple)

State
Transition

Service Terminate

Invocation

Role & Exception
Relation
Expression

‘ Event Assignment

Trigger

‘ If H While H Foreach |

Figure 3.1: The model of our collaborating language

In addition, we included two collection types in the lange#strings andUsers

¢ Functionsare system-level methods used for managing collaboraitistences and facilitat-
ing interactions. The supported functions includethodsfor invoking web servicessvent
triggering, and publishing a@rror . Using these functions, a collaboration instance can com-

municate with other collaboration instances and exteroponents.

e Control structures are used for defining the control flow of the collaboratiorktadased
on events and conditions. The language supports the threeotaonstructs of structured
programmingsequenceselection andrepetition. Sequencing is achieved through ordered
execution of statements. Selection is supportedflbise statement and Repetition can be

performed usingVhile andForeachstatements.

In our language, we designed two styles for specifying baltations: state-based style and rule-
based style. Each collaboration should be writen in oneeddlsytles. In the state-based style, one
has to identify the states through which the collaboratimtance passes during its life-cycle and
group the ECA rules based on the states to which they belonthid style, ECA rules enable the
transition of the collaboration instance from one statenwtlaer. In the rule-based style, there is no
explicit concept of state or state transition; thus, a hdsed collaboration specification is roughly
a set of ECA rules. Although these two styles support difieneeans for arranging ECA rules, the

expressive power of the two styles are equivalent, and afg@ion written in one style can be

15

transformed into the other. However, there is a signific#fargnce in their applications. The state-
based style best fits the collaborations which require miovetsired models as this style demands
complete state-based behaviors of the collaborations. h@rother hand, the rule-based style is
more natural for semi-structured collaborations as thie sthows more flexibility in specifying the
collaborations. Finally, it should be mentioned that ors&tes;n can have collaboration specifications
written in both of the styles, and the collaborations caariatt with each other no matter in which
styles they are written.

In addition to collaboration specifications, a configunagpecification should be provided to the
system. In this configuration specification, the elemengsi fisr interacting with the collaborations
are defined. These elements include event definitions, gfieedi service calls, and methods for
manipulating roles and relations. In a system, the conftgurapecification is shared among all
collaborations.

In the remainder of this chapter we provide more details aiboucollaboration language. We
first present some simple examples pointing out the appligadf our collaboration language and
its capabilities in declaring collaborations. Having a pigture of how the language benefits us in
collaboration definition, we then provide lexical, syniaeind semantic details of our collaboration
programming language. Accordingly, after reading thispteathe user of the system should be

able to define her target collaborations in a format that deustandable by the system.

3.1 Two lllustrative Examples

In this section, we present some examples of collaborativegsses, specified in our language.
Our goal is to show how a collaboration can be described insgatem, and how the proposed
collaboration language is capable of covering differepetyof collaborations, i.e., state-based and
rule-based. To achieve that, we use the project report tteeing collaboration described previ-
ously in Chaptelll. The statechart diagram of this collaimmas depicted in Figure3.2.

According to the diagram, the collaboration is initiallytime Drafting state, in which students
collaboratively edit and update the report. Upon submissibthe report, the state changes to
Pending where the participants wait until the supervisor of thggrbdecides about the quality and
completion of the report. If the report is accepted, theadmiration proceeds to tiublishedstate,
which is the final state. Otherwise, the collaboration gaektioDrafting, so that the students may
continue working on it.

In order to specify this collaboration example, we first needrite the configuration specifica-
tion for the participating interactive systems. As we meméid before, we need to define the events,
roles, relations and services for interacting with theatwdiration. In particular, events are incoming
channels for the collaboration by which external composisehd messages to collaborations; while
roles, relations, and custom services are the means by \ligcbollaboration responds to events

or receives additional information. A sample configuratspecification for this system is shown

16

[

o

11

15

17

1

©

Pending

Published

Figure 3.2: The statechart diagram of the sample projectrtep-authoring collaboration

below.

s|Event Edit ();

3| Rel ati on Supervi se(User supervisor, String projectlD :"...url...", "...url..."
Rel ati on Menmber (User user, String projectiD :"...url...", "...url...";

/1 Service Definitions

String POST Lock (String reportiD) : "...url...";

String POST Unlock (String reportiD : "...url...";

String POST Enmmil (Users receivers, String content) : "...url..."

String POST Publish (String reportID) : "...url...";

/1 Event Definitions
Event Create (String projectID, String reportlD);

Event Submit ();
Event Accept ();
Event Reject();

/! Role Definitions
Rol e Student (uid) : "...url..." , "...url...";
Rol e Professor (uid) : "...url..." , "...url...";

/1 Relation Definitions

Listing 3.1: The configuration specification for the sampigjgct report co-authoring collaboration

According to the configuration specification, there are fivengs defined in the system. The
Create event instantiates a project report co-authoritighmration. The Create event has two
parameters: projectlD, which identifies the project for ethihe collaboration is instantiated; and
reportID, which identifies the report on which the team wofKse other four events cause the state
transition as indicated in the statechart diagram of thiabotation.

Roles characterize the roles of the users in the contexieatdHaborative activity, i.e., Student
and Professor in this case. In addition, there are two oglatilefined in the configuration: Supervise
and Member. The Supervise relation is used to check if a ssbeisupervisor of the project, and
the Member relation is used to check if a user is a member optbgct. We also defined four
services in the system: (a) the Lock method is used for fngeaireport, so that nobody can edit
it any more; (b) the Unlock method is used for canceling teatfof the invocation of the Lock

service; (c) Email is responsible for sending emails to sisend (d) Publish is used to finalize the

17

report and make it public. The details regarding declanadicthese elements will be provided later
in this section.
Based on this configuration specification, we can now definecollaboration specifications.

The specification for our sample project report co-authgpciollaboration is provided below.

Col | aborati on St at eBased ReportingCol | aboration {

10
12

14

34
36

38

42

44

}

/1 Field Declarations
String projectlD;
String reportlD
Users team

User supervisor;

/1 Entry Specifications

Entry Create {
projectlD = e.projectlD
reportI D = e.reportl D
team = Find (? Menber projectlD);
supervisor = Find (? Supervise projeclD;
To(Draft);

}

/] State Specifications
State Draft {
@dit [Student]{
If(! (team Contains e.Sender)) {
Exception ("Permni ssion Denied.");

}

}
@ubnit [Student]{
If(! (team Contains e.Sender)) {
Exception ("Perm ssion Denied.");
}
Lock(reportID);
Emai | (supervi sor, "Submtted");
To(Pendi ng);
}
}
State Pending {
@\ccept [Prof essor] {
If(e.Sender != supervisor) {
Exception ("Perm ssion Denied.");

Publ i sh(reportID);
To(Publ i shed);
}
@Rej ect[Prof essor] {
I f(e.Sender != supervisor) {
Exception ("Perm ssion Denied.");
}
UnLock(reportiD);
Emai | (team "Rejected");
To(Draft);
}

Fi nal State Publi shed;

Listing 3.2: The specification of the sample project reporaaithoring collaboration

In this collaboration specification, we declare four fields $toring persistent data needed in
the collaboration. The fields projectID and reportID keepyhlue of the parameters with the same
names in Create event. The fields team and supervisor resggcteclare the identifiers of the

students who work in the project and the professor who adtessupervisor. As the values for these

18

N

10

14

s

fields are not initially provided and they are not also passethe parameters of events directly, we
need to identify these values. In the entry of the collabonaive identify the team members using
the Member relation, and identify the supervisor using timgl Fnethod and the Supervise relation
defined in the configuration. Afterward, the field team camga list of all students participating in
that specific project, and the field supervisor contains théegsor supervising that project.

Once instantiated, the collaboration goes to Draft statehich we defined two event handlers.
The Edit event handler does not perform any action but cheblksher the person who triggered the
Edit event is a student and a member of the team; if not, it ¢h# Exception method to register an
unauthorized event trigger. The Submit event-handlerdufitaon to performing the authorization
check, changes the state into Pending, informs the supema®ut the state change, and locks the
report.

In the Pending state, we also have two event handlers, blatedeto supervisor actions. If
supervisor rejects the report by triggering the Reject gvine collaboration returns to the Draft
state, the team is notified by email, and the report is unldétefurther editing. On the other hand,
if the supervisor triggers the Accept event, the collaborathanges its state to Published and it
calls the Publish method which finalizes the report.

Let us now consider a slightly more complex version of thgqaoreport co-authoring collabo-
ration. In this version, after the submission of a projeporg, a set of checks should be performed
to ensure that the report is ready for the final review by thgestisor. These checks include text
check, figures check, and references check. There is ndispeacution order among these checks
and the order in which the checks are performed does not mitte only important that all these
checks are performed before the report is sent to the sigoensince these checks are relevant to
various types of documents and collaborations, we chosaptement them as a separate collab-
oration named DocumentCheck collaboration. Now, any bolation can use this collaboration
as a sub-collaboration by referencing to it. Since the oodethecks to be performed in Docu-
mentCheck collaboration does not matter, we implementisdcthilaboration using the rule-based

style. The specification of DocumentCheck collaboratigoresented in the following.

Col | abor ati on Rul eBased Docunent CheckCol | aboration {
/1 Field Declarations
Bool ean Text Checked;
Bool ean Fi gur eChecked;
Bool ean Ref er enceChecked;

/1 Entry Specifications
Entry Start {
Text Checked = Fal se;
Fi gur eChecked = Fal se;
Ref er enceChecked = Fal se;

}

/1 Event-handl er Specifications
@rext Check {
Text Checked = True;
I f (Text Checked And Fi gureChecked And ReferenceChecked) {
Tri gger (Checked());

19

36

38

40

42

Text Checked = Fal se;
Fi gur eChecked = Fal se;
Ref er enceChecked = Fal se;
}
}
@i gur eCheck {
Fi gur eChecked = True;
I f (Text Checked And Fi gureChecked And ReferenceChecked) {
Tri gger (Checked());
Text Checked = Fal se;
Fi gur eChecked = Fal se;
Ref er enceChecked = Fal se;

}

}
@Rref er enceCheck {
Ref er enceChecked = True;
I f (Text Checked And Fi gureChecked And ReferenceChecked) {
Tri gger (Checked());
Text Checked = Fal se;
Fi gur eChecked = Fal se;
Ref er enceChecked = Fal se;

Listing 3.3: The specification of the sample document chetlalooration

The DocumentCheck collaboration has three fields, TextkdhcFigureChecked and Refer-
enceChecked, each of them indicates whether a particubakdias been performed on the docu-
ment or not. The collaboration is initiated when it receithes Start event from the parent collabo-
ration; then, the collaboration initializes all the fieldsRalse. Upon completion of a check on the
document, an event indicating the type of check is sent teadhaboration and the value of the cor-
responding field is set to True. When all fields are evaluai€ltue, signifying that all the checks
have been done, the collaboration triggers Checked evénfioian the parent about the completion
of the collaboration.

In order to employ the DocumentCheck collaboration, in owwmaple of the project report co-
authoring collaboration, we first need to add the definitibtihe events used in the DocumentCheck
collaboration in the configuration specification. Therefasenew events, namely Start, TextCheck,
FigureCheck, ReferenceCheck, and Checked. Since theadditthese events to the configuration
specification is straightforward and we described it befaedo not provide the new configuration
specification here. Then, we should modify the project reporauthoring collaboration specifica-
tion in such a way that it can interact with the DocumentChedlaboration.

Figure[3.B demonstrates the statechart of the new Rep@uitaporation. The most significant
modification of the collaboration is the addition of a newtestaamed Checking, to the specifica-
tion. The collaboration enters the Checking state uponuhengssion of the report, and stays in this
state while waiting for all checks to be done, TextCheckuFegheck, and ReferenceCheck. Then
it enters the Pending state and continues its routine asréviopis version of the ReportingCollab-
oration.

The specification of the new ReportingCollaboration is jed in Figurd 3.13. In order to em-

20

N

10

14

Checked

Accept

Published

Figure 3.3: The statechart diagram of the updated sampjegbreport co-authoring collaboration

phasize the modifications and also make the specificatiom iwlear, we did not include the lines
which are not changed since the earlier version of the cottgtion, but instead we placed “..." to in-
dicate it. In the ReportingCollaboration, the fields werémodified; however, a sub-collaboration,
named checkWf, is declared which refers to an instance dbtementCheckCollaboration spec-
ified before. Actually, the interaction of the Reportingl@bbration and DocumentCheckCollabo-
ration is done through this declared sub-collaboratiorthtnEntry of the ReportingCollaboration,
a Start event is triggered on checkWf which results in ititia of this subcollaboration. As it was
explained before, a new state should be added to the spéofficid the ReportingCollaboration,
named Checking. The collaboration enters Checking stab@ itp submission and stays in this
state while waiting for completion of all checks in checkWif. addition, the collaboration listens
to TextCheck, FigureCheck, and ReferenceCheck eventsisgadsithem to checkWf as long as the

Checking state is active.

Col | aborati on StateBased ReportringCollaboration ({
/1 Fields

/1 Sub-col | aborations
Docunent CheckCol | abor ati on checkW ;

/1 Entry Specifications
Entry Create {

;:héckW.Trigger(Start());
To(Draft);

/1 State Specifications
State Draft {

@dit [Student]{

}

@ubmit [Student]{

To(Checki ng) ;

21

}
}
St ate Checking {
@ext Check{
checkW . Trigger(e);

}
@i gur eCheck{

checkW . Trigger(e);

}
@ Ref er enceCheck {
checkW . Trigger(e);

}
@ w . Checked {
To(Pendi ng);

}
State Pending {

}
Fi nal State Publi shed;

}

Listing 3.4: The specification of the updated sample prajggort co-authoring collaboration

Now that we have explained the two styles for writing colledimn specification, i.e., the state-
based and the rule-based style, and have provided cormdisggeexamples, let us explain why both
of these styles are required, or rather, why each one of tkemotiappropriate for writing all the
collaboration specifications. We used the state-based fiylspecifying the ReportingCollabora-
tion and the rule-based style for specifying the DocumeatREollaboration; this choice argues for
our belief that each of these styles is more suitable forigpeg the corresponding collaboration.
The state-based style is more suitable than the rule-b&gedar the ReportingCollaboration, be-
cause there is a logical dependency among the steps of thbawltion; this logical dependency is
captured by the corresponding states and their sequertdatywe chosen the rule-based style, the
states would have to be “simulated” using variables, whiohld require a lot of variable evaluation
and checking and would result in a much harder to write an@rstdnd specification. On the other
hand, the rule-based style is more natural for specifyimgRibcumentCheckCollaboration, since
the three checks can be performed in any arbitrary order.elhad chosen to write the source-
checking collaboration in the state-based style, we woaledmeeded to define nine different states
to represent the possible combinations of the order in wtiielchecks might be completed. Each
of the states would have a couple of event-handlers but dhetvent-handlers would almost do
the same actions.

Clearly, these two styles for writing collaboration spexifions have different usage scenarios
and they actually complement each other. In our system, dlaboration editor supports both
styles, so users can select which style they want to employifiting each collaboration specifica-

tion based on the properties of the collaboration.

22

3.2 Language Specification

In order to declare a collaboration in our proposed language needs to know how the structure
of the collaboration model should be, and how these elenwmtscommunicate with each other
to provide the intended behavior. Therefore, the collatimndanguage should specify what words
and symbols (lexical elements) are allowed in the langulge,these words can be arranged into
statements (syntactic rules), and what rules and contrstiould be considered regarding each of
these statements while coding the collaboration modelds¢imrules). In this section, we provide
a complete specification of our language. For this purposéntwoduce the lexical elements of the
language, provide the grammatical rules of the languagtsaymtax, and describe the semantics

rules of the language which also includes its constraintiefining a collaboration.

3.2.1 Lexical Elements

Lexical elements are the smallest building blocks of a lagg and are known as characters or
groupings of characters that may appear in a sourceTo&ens are the smallest meaningful ele-
ments of a program. Therefore, any program written in thgetalanguage, i.e. any collaboration
specified in our collaboration language, is actually seea ssquence of tokens. A token can be
a keyword, identifier, literal, punctuator or an operatod ahould be separated from other tokens
with white spaces or comments.

Keywords are language specific words that have special meanings larigeage. Keywords
are words reserved by the language for special use, and epa#dments in the program can have
the same word as the keywords, for instance one cannot nanethmanas “Collaboration” since
this is a keyword of the language and can only be used as theo$ta collaboration declaration.
Keywords are case-sensitive, as the language is case\seresitd each indicates a specific meaning
in the program. Table3.1 shows the list of all keywords defimeour collaboration language.

Identifiers are the words selected as the names of elements that areddefittee program.

In other words, whenever an element, such as a collaboratidmcollaboration, state, event, role,
relation, field or variable, is being defined, it should be pdwith an identifier. Syntactically, in
our collaboration language, an identifier is a case-s&gsitbrd that starts with an underscore or a
letter and can be followed by any number of letters, undeescand digits. Note that the identifiers,
i.e. the names selected for the program elements, shouliertbe same as any of the keywords.

Literals are constant values that occur in a program as values anaotcharchanged. In our
collaboration language the literals are Integer, StrindjBoolean values that can be used in expres-
sions and statements, e.g., while assigning a value to ablariEvery literal has a data type, which
is either Integer, String or Boolean in our language. Angetditeral is either O or a sequence of
digits 0 to 9 which cannot start by 0; a string literal is thawctter “(double quote), followed by any
sequence of characters followed by the character ” ; a Badigaals can be true or false. There is

no literal defined in the collaboration language for typesd;i Strings, User, and Users.

23

Keyword

Meaning

Collaboration

Indicates the start of a collaboration declaration.

Entry Indicates the start of an entry point for a collaboration.
State Indicates the start of a state declaration.
Event Indicates the start of an event declaration in the configamaipecification.
Role Indicates the start of a roll declaration in the configuragpecification.
Relation Indicates the start of a relation declaration in the con&igan specification.
Integer Indicates the start of an integer variable declaration.
Boolean Indicates the start of a Boolean variable declaration.
String Indicates the start of a String variable declaration.
Strings Indicates the start of a Strings variable declaration.
Time Indicates the start of a Time variable declaration.
User Indicates the start of a User variable declaration.
Users Indicates the start of a Users variable declaration.
If Indicates the start of a conditional control statement.
Else Resumes a conditional statement with an opposite logidaéva
While Indicates the start of a While loop statement.
Foreach Indicates the start of a Foreach statement that iteratesadisg.
in Separates the iterator and the list in a Foreach statement.
On Indicates a time event handler activating on a specific time.
All A predefined method to return all the users of a specific role.
Is A predefined method to check whether a user has a role or not.
Find A predefined method to find the entities which matches a query.
e Indicates the start of an event parameter access.
Sender A predefined parameter for events related to the sender evitra.
null Indicates a null value.
True Indicates the true value as a Boolean literal.
False Indicates the true value as a Boolean literal.
Trigger A predefined method used for triggering an event.
To A predefined method used for indicating a state change.
POST A predefined method used for calling a service.
GET A predefined method used for calling a service.
Exception | A predefined method used for indicating the occurrence okaamion.
And Binary logical operator& &, a.k.a. AND.
Or Binary logical operatory, a.k.a. OR.
Final Indicates that the following State is a final state.
Terminate | A predefined method used for deactivating a rule-basedbmmitdion.
WfCreator | Refers to the user who created the collaboration instance.
Wifld Refers to the identifier of the collaboration instance.
Contains | A predefined method to check whether a value exists in a ¢ateor not.
StateBased | Indicates that the collaboration is programmed in the dtated style.
RuleBased | Indicates that the collaboration is programmed in the hased style.

Table 3.1: The keywords of our collaboration language

24

Symbol | Meaning

@ Indicates an event handler activating at occurrence of eifspevent.
{} Groups a set of lines of code.
() Groups a set of different syntactical elements.

[] Indicates a role in an entry declaration.
/xx*/ | Indicates a comment.
// Indicate a single-line comment.
“r Indicates a string literal.
Indicates the end of a line.
Indicates the required URL(s) in role, relation and sendeelarations presented i
the following.
Separates method parameters in service declarationsasepbRLs in role and re
lation declaration, and separates expressions in an espndst.
. Accesses the parameters of a construct.

? Indicates the target side of a relation in the query of a fintt&Belation expression

= Assigns the right-hand side value to the left-hand sideatéei
+ — x / | Binary Arithmetic operators for numerical expressions.

* Identifies that the parameter of an event is mandatory.

+ An operator for concatenating two String variables, addingtring (or User) to g
collection of Strings (or Users) and appending two coltatsiof Strings (or Users).
> < Binary comparators that mean larger than and less thanatsgg.
== Binary comparator that means Is equal to.
= Binary comparator that means Is not equal to.

! Unary logical operator NOT.

=]

Table 3.2: The operators and punctuators of our collabmrddinguage

Punctuatorsare characters or symbols that form the statements andssipns in the program,
and therefore have specific syntactic and semantic megriftggsexample, a semicolon “;” is a
punctuator that shows the end of a line in our collaboratimgliage. Table 3.2 shows the list of
punctuators that may occur in a program written in our laggua

Operators are tokens employed to perform a manipulation on differexta dypes in the pro-
gram. Operators can be either symbols (e.g. ==, !=,) thatrafact punctuators, or reserved words
(e.g. Contains, Is, And, Or) that are keywords. Howevectesimperators need operands to manipu-
late and calculate a result, we put them in a separate groiop@hs to emphasize on their syntactic

and semantic meaning. In our collaboration language opesraain be one of the followings:
e Logical operators, including And, Or, !

e Arithmetic operators, including +, -, *, /

String operators, including +

Collection operators, including +, -, Contains

Relational operators, including, <, ==, I=

Other operators, including Is

25

Other than meaningful tokens, the language supports whéees and comments that have no
meaning except for separating the tokens. Compiler ignthrese meaningless units during the
preprocessing since they add no logic to the progr&hite spaces e.g., space, new line, and
tabulator, do not have any meaning but are used to sepaedtekibns from each other, and possibly
to make the code more readabléommentscan occur in source file in order to add explanations
about the program; however, during preprocessing, the denmeplaces comments by a single
space character. Syntactically, comment is the stringlé@s(s asterisk), followed by any sequence
of characters (including new lines), followed by the strivignd can occur anywhere the language
allows white spaces. Hence we cannot have nested comnteestdre, further */ within a comment
are ignored and the comment ends at the first occurrence lof addition, for single-line comments

string // (slash, slash) can be placed in front of a line, sditie is treated as a piece of comments.

3.2.2 Syntax

The syntax of a programming language includes the set of mtiicating how the lexical elements
should be combined together and make declarations andh&ats, so that the resulted program be
correctly structured. Accordingly, the syntactic speaifien of a language is actually the grammat-
ical rules designed for the domain specific language.

Since we have different structures for programming coltabons and their configuration rules,
the grammar of our collaboration language consists of tvpausge grammars: (1) a grammar for
writing Collaboration Specifications, (2) a grammar for tung the Configuration Specification.
However, these two grammars are closely connected to ehehad elements defined in a configu-
ration specification are used in related collaboration ifigations.

In this section the grammar of our collaboration languagelieen presented in BNF (Backus-

Naur Form). In presenting this grammar we used the notatidmsh are explained as follows:

e — means the left-hand side can be replaced by the right haadsid

Non-terminals are printed in bold typewriter font. elxpression

Terminals are shown inside

, €.9. “Collaboration”.

The identifiers are written in bold and Italic typewriter fpe.g.CollaborationName.

e X ? means zero or one occurrence of X.

X * means zero, one or more occurrences of X.

| indicates alternatives.
e () groups multiple syntactical elements.

The grammar for writing collaboration specifications isyided in Tabld 3.B.

26

CollaborationSpecification

CollaborationStyle
FieldDeclaration

Type

Sub-CollaborationDeclaration
EntryDeclaration
State-basedLogic

Rule-basedLogic
StateDeclaration

EventHandler
TimeHandler
Block
Statement

EmptyStatement
ExpressionStatement
VariableDeclaration

IfStatement
WhileStatement
ForeachStatement
AssignmentStatement

EventTrigger

StateChange
TerminateCollaboration
Exception
RoleList
ExpressionList
Expression

LI

LI

LI

ooy P

“Collaboration” CollaborationStyle CollaborationName
FieldDeclaration*

SubCollaborationDeclaration*

EntryDeclaration*

(State-basedLogid Rule-basedLogic) “}”
“StateBased] “RuleBased”

Type FieldName ;"

“Boolean”

| “Integer”

| “String”

| “Strings”

| “Time”

| “User”

| “Users”

CollaborationName | nstanceName";”

“Entry” EventName (“[" RoleList “]")? Block
StateDeclaratiort

(EventHandler | TimeHandler)*

“Final” “State” StateName";”

“State” StateName “{” (EventHandler | TimeHan-
dler)* }”

“@" EventName (“[" RoleList “]")? Block

“On” FieldName Block

“{" Statement “ }"

EmptyStatement

| ExpressionStatement

| IfStatement

| WhileStatement

| ForeachStatement

| VariableDeclaration

| Assignment

| EventTrigger

| StateChange

| TerminateCollaboration

| Exception

Expressiort;”

Type VariableName";”

“If"“(" Expressiort)” Block (“Else” Block)?

“While” “(" Expressiorf)” Block

“Foreach” “(” VariableName “in” Expressior)” Block
(FieldName| VariableName) “=" Expression®;”
“Trigger” “(" (InstanceName “.")? EventName“(" Expres-
sionList?)" “)” "

“To” “(" StateName*)” ;"

“Terminate” “;"

“Exception” “(" Expression“)” *;”

RoleName (“,” RoleName)*

Expression(“,” Expression*
Literal

| ReferenceExpression
| LogicalExpression

| RelationalExpression

27

| CollectionExpression

| ArithmaticExpression

| StringExpression

| Role&RelationExpression
| Servicelnvokation

| “(" Expression*)”

Literal — <INTEGER_LITERAL>
| <STRING_LITERAL>
| <BOOLEAN_LITERAL>
| “null”
ReferenceExpression — FieldName
| VariableName
| “e.” ParameterName
| “e.Sender”
| “WiCreator”
| “Wifld”
LogicalExpression — Expression("And” | “Or") Expression
| “I” Expression
RelationalExpression — Expression(“<” | “>" | “==" | “I=") Expression
| ReferenceExpressioriContains” Expression
CollectionExpression — ReferenceExpressiorf“‘+” | “-") Expression
ArithmeticExpression — Expression(“+” | “-" | “*" | “/") Expression
StringExpression — Expresion“+” Expression
Role&RelationExpression — ReferenceExpressiorils” RoleName
| “All” RoleName
| ReferenceExpressionRelationName ReferenceExpres-
sion
| “Find” “(" “?” RelationName ReferenceExpressiorf)”
| “Find” “(" ReferenceExpressiorRelationName “?” “)”
Servicelnvocation — ServiceName*“(” ExpressionList? “)”
CollaborationName — <IDENTIFIER>
FildName — <IDENTIFIER>
InstanceName — <IDENTIFIER>
EventName — <IDENTIFIER>
RoleName — <IDENTIFIER>
StateName — <IDENTIFIER>
VariableName — <IDENTIFIER>
ServiceName — <IDENTIFIER>
ParameterName — <IDENTIFIER>
Table 3.3: The grammar of collaboration specifications

The grammar for writing configuration specification is prese in Tablé 3 4.

ConfigurationSpecification
ConfigurationMember

EventDeclaration
RoleDeclaration

RelationDeclaration

—
—

(ConfigurationMember)*

EventDeclaration

| RoleDeclaration

| RelationDeclaration

| ServiceDeclaration

“Event” EventName “(" EventParameterList?)" “;”

“Role” RoleName “(" ParameterName “)” “” URL “
URL *”

“Relation” RelationName“(” Parameter",” Parameter*)”
H:H URL H'” URL H;H

28

ServiceDeclaration — Type (“POST” | “GET") ServiceName “(" ParameterList?
a9 URL %
ParameterList — Parameter(“,” Parameter)*
EventParameterList — EventParameter(“,” EventParametef*
EventParameter — Parameter (“*")?
Parameter — Type ParameterName
Type — “Boolean”
| “Integer”
| “String”
| “Strings”
| “Time”
| “User”
| “Users”
URL — <STRING_LITERAL>
EventName — <IDENTIFIER>
RoleName — <IDENTIFIER>
ParameterName — <IDENTIFIER>
ServiceName — <IDENTIFIER>

Table 3.4: The grammar of configuration specifications

3.2.3 Semantics

Semantics of a language include all the rules and consdraimt program written in the target lan-
guage should follow, unless the program is notimplemenbegkctly. For instance, while assigning
a value to a variable in an Assignment Statement the typeeofieirthand side and the right-hand
side of the assignment should be the same; therefore yowtassign the value True to a variable
of type Integer.

Most of the semantic rules applied in our collaboration laamge, specifically the ones about
type consistencies in statements and expressions, ara&rtteeas the ones used in Java programming
language. However, there are some domain specific rulesdiagahe declaration of collaborations
and the configuration specification and their inner elem@nts roles, users, fields and variables).
In this section we describe each of these domain specificegltnand provide the language semantic
rules for using each of them. Violating any of these rules pr@ram written in our collaboration
language will result to a compilation error indicating tiia¢ program (either the collaboration or

the configuration specification) is not modeled correctly.

Collaboration Specification

Description:

Collaboration Specification defines a collaboration as apteta unit. It is the highest level
element of the collaboration language and encompassestaedd logic pieces of a collabo-
ration. A Collaboration Specification is composed of a laggction in addition to some fields,
sub-collaborations, and entries. The logic section can figeew in either rule-based style or

state-based style.

29

Rules:
e Collaborations must have distinct names in a system.

e The members of a collaboration specification should be glatea pre-defined order: field

declaration, sub-collaboration declaration, entry detian, and logic.

e The Collaboration Style must match the style in which thedagction is written. In other
words, if a collaboration specification is labeled as “Satsed”, the logic section should be
written in state-based style; and if the collaboration ffjfation is labeled as “RuleBased”,

the logic section should be written in rule-based style.

Field Declaration
Description:

Fields act as the data elements of a collaboration. Eveyifel data placeholder to which you
can assign value; then, you can access the value wheneserdeded. The values of the fields

are kept as persistent data. A field declaration is compdsatlype and a name.
Rules:

e The fields of a collaboration must have distinct names.

Sub-Collaboration Declaration
Description:

Sub-Collaboration Declaration enables creation of irc#arof other collaborations. A Sub-
Collaboration Declaration is composed of the name of a bolation and a name for the in-

stance.
Rules:
e The sub-collaborations of a collaboration must have distiames.
e The Collaboration Name must point to a specified collaborsti the system.

e A collaboration cannot declare a sub-collaboration ofyifget In other words, recursive initi-

ation of sub-collaborations is not permitted.

Entry Declaration
Description:

Entry is a special type of event-handlers used for instintjghe enclosing collaboration. It
is also responsible for initializing the fields and sub-gbtrations of the corresponding collab-

oration instance. An Entry Declaration is mainly composéthe identifier of an event type,

30

some roles, and a block of code. Receiving an event of theftypehich the entry is waiting,
the entry first checks whether the sender holds any of the intiicated for the entry; if yes,
the entry executes the following block of code; otherwibe, éntry throws an exception. The
execution of every collaboration instance always startedmcution of one of its entries; and

when the instance is created, no entry can be executed oinsterice afterward.
Rules:

e The Event Name must point to a defined event in the configuratio

e The Role List must point to some defined roles in the configomat

e There cannot be two entries in a collaboration with same EMames. In other words, no

event should result in execution of more than one entry oflatworation.

e There cannot be any pair of entry and event-handler in almadégion with same Event Names.
In other words, no event should result in execution of moam tbne entry or event-handler of

a collaboration.
e There must exactly one State Change in the Block of an EntojeDation.
State Declaration
Description:

In state-based collaboration specifications, which isle&bas “StateBased”, States denote the
significant phases through which collaborations passelein life cycles. At any given point,

a state-based collaboration instance is in one of its st@tedate specifies the behavior of the
collaboration when the collaboration is in that particidtate. States are also responsible for
indicating their next states, unless they are labeled asatFi When a collaboration reaches
a Final State, it gets deactivated and no longer listens émtev Every State Declaration is
composed of a State Name and a logic section that is defineda@kation of Event-Handlers

and Time-Handlers.
Rules:
e The States of a collaboration must have distinct names.
e State declaration can only be used in state-based collirusa

o If the State is labeled as “Final”, it must have no logic satti

31

Event-Handler
Description:

An Event-Handler involves some activates which are peréarmhen a specific event is sent to
the corresponding collaboration instance. An Event-Handlmainly composed of the name of
an event defined in the Configuration Specification, a listotds as the only roles allowed to
trigger the event, and a block of code. When the scope to vthiekvent-Handler belongs gets
activated, the Event-Handler starts waiting for the spetiévent type. The targeted event may
be received from the parent collaboration or sub-collatimna. Receiving an event of the type
for which the entry is waiting, the Event-Handler first cheethether the sender holds any of
the roles indicated for the Event-Handler; if yes, the Exdandler executes the following block
of code; otherwise, the entry throws an exception. Whendtbpeto which the Event-Handler

belongs gets deactivated, the event-handler also gettivigad.
Rules:

e Before an Event-Handler can get activated, the collabamatistance to which the Instance

Name refers should be initiated, i.e. one of its entries khbe invoked.
e The Event Name must point to a defined event in the configuratio
e The Role List must point to some defined roles in the configomat

e There cannot be two Event-Handlers in the same scope witle §arant Names. In other

words, no event should result in execution of more than oreErMandler of the same scope.

e There cannot be any pair of entry and event-handler in almadégion with same Event Names.
In other words, no event should result in execution of moam tbne entry or event-handler of

a collaboration.

Time-Handler
Description:

A Time-Handler involves some activates which are perfornvbdn a specific point of time is
reached. Time-handlers are similar to Event-Handlersyblike Event-Handlers that listen for
events, they wait for a specific amount of time. A Time-Handemainly composed of the
name of a Time field and a block of code. When the scope to whighine-handler belongs
gets activated, the time-handler reads the value of thedtell time field; when the time is
reached, the time-handler executes the following blockoafec When the scope to which the

time-handler belongs gets deactivated, the time-hantfiergets deactivated.

Rules:

32

e The Field Name must point to a field of type Time declared inRiteéd Declaration section.

e At any time, there should not be multiple active time-hargligaiting for the same point of

time.

Variable Declaration
Description:

Variables are used for keeping temporary data in a scopeyka€éable is a data placeholder to
which you can assign value; then, you can access the valueewéeit is needed. A variable is
accessible form its scope and all the descendant scopesoAss a scope gets deactivated, all
of the variables defined in the scope lose their values. Aab#rideclaration is composed of a

type and a name.
Rules:

e The name of a variable should be distinct among all the veriahmes declared in or acces-

sible from the scope in which the variable is defined.

If Statement
Description:

If Statement is the main conditional structure of the call@tion language. An If Statement
is mainly composed of a condition and a block of code. Whenlfti8tatement is executed,
it evaluates the specified condition; if the condition iss$ed, the If Statement executes its
following block of code. In addition to the main block of cqdmrery If Statement can have
another block of code which is executed when the conditi@véduated to false, i.e. the block

of code programmed in the block following “Else” keyword.
Rules:
e The expression used as the condition in an If Statement ratistra value of Boolean type.

e The expression used as the condition in an If Statement doeildither a reference to a

Boolean field or a logical expression of some fields.

While Statement
Description:

While Statement is one of the loop structures of the collation language. It can be seen as
a repeating If Statement. A While Statement is mainly coradasf a condition and a block of
code. When the While Statement is executed, it evaluatespingfied condition; if the condition
is satisfied, the While statement executed its followingcklof code; this process repeats and

the block of code gets executed as long as the conditionigiedt

33

Rules:

e The expression used as the condition in a While Statement retusn a value of Boolean
type.

e The expression used as the condition in a While Statemend d@ueither a reference to a

Boolean field or a logical expression of some fields.

Foreach Statement

Description:

Foreach Statement is one of the loop structures of the aoldion language. It can be used
for traversing items in a collection. As Users and Stringstae only collection types in the
collaboration language, the Foreach Statement can onlgé@ an instances of these types. A
Foreach Statement is mainly composed of a variable namelextion, and a block of code.
When the Foreach Statement is executed, it iterates ovéeths of the specified collection. In
each iteration, the Foreach Statement declares a varialrig the provided name, assigns the
current item of the collection to the variable, and execitgefollowing block of code accord-
ingly. If the type of the collection is Users, the type of ttegiable will be User; and if the type
of the collection is Strings, the type of the variable will B&ing.

Rules:

e The Variable Name used in the Foreach Statement should tiectismong all the Variable

Names declared in or accessible within the Foreach Statemen

e The expression used after “in” keyword in the Foreach Statémmust return a value of Users

type or Strings type.
Assignment Statement
Description:

Assignment Statements are used for assigning values tablasi and fields. An Assignment
Statement is mainly composed of a variable or a field followgdhe = punctuator and an
expression with the same type as left-hand side variableldt #When the Assignment Statement

is executed, the expression is evaluated and its valueignaskto the variable or field.
Rules:
e The Field Name must point to a field declared in the Field Datian.
e The Variable Name must point to a variable accessible frarsttope to which the Assign-

ment Statement belongs.

34

e Any assignment to a variable cannot be performed unlesaiiade Declaration has already

been executed.

e The expression used in the Assignment Statement must r@ttatue of the same type as the

field (or variable) to which the Field Name refers.

Event Trigger
Description:

Event Trigger enables sending events to other collabarsitidt is responsible for creating an
instance of the specified event type and triggering it on tremt collaboration or one of the
sub-collaborations. An Event Trigger statement is maimgposed of the name of an event
and a list of expressions. It also may include the name of &kt sub-collaboration. When
the Event Trigger statement is executed, the Event Triggeates an instance of the specified
event and sets the event’s parameters according to the €skpnelist. If the name of a sub-
collaboration is indicated, the event is sent to that sutaloration; otherwise, the event is sent

to the parent collaboration according to the hierarchy dihboration instances.
Rules:

e The Instance Name must point to a collaboration instanckadstin the Sub-Collaboration

Declaration section.
e The Event Name must point to a defined event in the configuratio

e The number of expressions in the Expression List must beaime ss the number of param-

eters of the specified event.

e Each expression in the Expression List must have the samenrgfpe as its corresponding

parameter of the event.

State Change
Description:

State Change enables state-transition in state-basedbondltions. It is responsible for changing
the state of the collaboration to the specified state. Intmadio state-transition, execution
of a State Change statement will result in deactivation bfhe handlers (i.e. Event-Handler,

Time-Handler) defined in the old state and activation oftedl handlers defined in the new state.
Rules:
e The State Name must point to a defined state in the collaborati

e State Change can only be used in state-based collaborations

35

e State Change can only be used as the last statement of ani/tEaedler or Time-Handlers.

e State Change cannot be used in Final States.

Terminate Collaboration

Description:

Terminate Collaboration is used for indicating the conipletf a rule-based collaboration. In
rule-based collaborations, executing a Terminate Cotaimn statement has the same impact as
reaching a Final state in state-based collaborations. VehErminate Collaboration statement

is executes, the collaboration gets deactivated and n@taegcts to events.

Rules:
e Terminate Collaboration can only be used in rule-basedbohations.

e Terminate Collaboration can only be used as the last statieofiany Event-Handler, or Time-
Handlers.

Exception

Description:

Exception is a type of statement used for indicating that>aegtion has happened in a col-
laboration. It is mainly composed of only an expression Whicovides a description about the
exception. When an Exception statement is executed, thefirn evaluates the expression
and publishes the value. The published values by excepiim#ogged and can be used for
analyzing collaborations and debugging the system. Akeceting an Exception statement, the
collaboration does not keep on executing the next statenbut terminates the execution and

stops waiting for events.
Rules:
e The expression provided for any Exception must return aevafistring type.

Reference Expression

Description:

Reference Expression is used for accessing the value ofda fiatiable, or event parameter.
Fields and variables can be referred by their names; howieverder to refer event parameters,
the prefix “e.” should be added before their names; for exaragdrojectID for the event Create
defined in the example presented in Sedfioh 3.1 refers torthjedD parameter defined for the
Create event. Furthermore, every collaboration instaaseo generic read-only fields: Wfld

and WfCrator. Wfld is a field of type String which contains identifier of the collaboration

36

instance, and WfCreator is a field of type User which refetthéouser who created the collab-
oration instance. These fields are initiated when the cottion instance is created. Similarly,
every event has a generic parameter named Sender. The Serdparameter of type User

which refers to the user who created the event.
Rules:

e Reference Expressions to parameters of events can be adyiugvent-Handlers and En-

tries.
e The Parameter Name must point to a parameter of the corrdsmpevent.
e The Field Name must point to a field declared in the collabhonat

e The Variable Name must point to a variable declared in orsaibte from the place where the

Reference Expression is used.
Logical Expression
Description:

Logical Expression is used for working with Boolean valuéapplies a logical operator on one
or two Boolean operands. The return type of Logical Expogssis also Boolean. The logical

operators allowed in our language are And, Or, and !.
Rules:
e For And and Or operators, the return types of both operands$ beuBoolean.
e For ! operator, the return type of the operand must be Boolean
Relational Expression
Description:

Relational Expression is used for checking a relation betwsvo values by using relational
operators. The return type of Relational Expressions id&0 The relational operators gre
<, ==, I=, and Contains. Contains operator checks whetheli@ction contains an item or not.
In addition, it should be noted that == and != operators can Ak used on collections; in such

case, they check whether two collections contain the sat gems or not.
Rules:

e For > and < operators, the type of both the left-hand side and the tigimtd side operands

must be Integer.

37

e For == and != operators, the type of both the left-hand sidkthe right-hand side operands

must be the same.

e For Contains operator, the type of the left-hand side opknamst be either Users or Strings.
If it is of type Users, the type of the right-hand side operangst be User; otherwise, the type
of the right-hand side operand must be String.

Arithmetic Expression
Description:

Arithmetic Expression is used for working with Integer vedu It applies an arithmetic oper-
ator on two Integer operands. The return type of Arithmetiprigssions is also Integer. The

arithmetic operators are +, -, *, /.
Rules:

e For all the operators, the types of both the left-hand sidithae right-hand side operands

must be Integer.

String Expression
Description:

String Expression is used for working with String valuesapplies a String operator on two
String operands. The return type of String Expressionssis 8tring. The only String operator

is + which concatenates two Strings and builds a new one.
Rules:

e For the + operator, the types of both the left-hand side aadigit-hand side operands must

be String.
Collection Expression
Description:

Collection Expression is used for working with collectiphs. Strings and Users. The return
type of Collection Expression is either Strings or Userseaheling on the types of the operands.
The collection operators are + and -. The + operator is useddocsome values to a collection.
The - operator is used for remove some values from a collectioshould be mentioned that
adding to or removing form a collection will result in creatiof a new collection and the original

collection will be unchanged.

Rules:

38

e For both operators, the type of the left-hand side operarst buStrings or Users. If the type
of the left-hand is Strings, the type of the right-hand mist e String or Strings; otherwise,

the return type of the right-hand side must be User or Users.
Role&Relation Expression

Description:

Role&Relation Expression enables using the roles andisekdefined in the provided con-
figuration specification. There are five types of Role&RelatExpressions. The first type is
composed of a value of User type and the name of a role cortheitte “Is” operator; it checks
whether the provided user has the specified role or not uemfjrist URL specified in the Role
Declaration; for example the expression e.Sender Is Stiinrns true if the role of the Sender
of the triggered event is Student and return false otherwike second type is composed of “All”
operator in addition to the name of a role; it returns a Usalgescontaining all the users who
have the specified role not using the second URL specifieceiRRtiie Declaration; for example
the expression All Students return a Users collection gpediple having the role Student. The
third type is composed of two Reference Expressions coadeadth the name of a relation, and
it checks whether the specified relation is held between theigled Reference Expressions or
not; for example the expression userX Supervise projedixms true if userX is the supervisor
of projectX and return false otherwise. The fourth and fifibets are Find Expressions composed
of “Find” operator, the ? punctuator, the name of a relataong a Reference Expression. Both
of these expressions return all the values which hold theifspe relation with the provided
Reference Expression. The fourth type, in which ? punctuatplaced before the name of the
relation, returns the values which satisfy the relatiorhadeft-hand side value; for example the
expression Find(? supervise projeclD) returns a Usersdiin of all users that supervise the
project with the identifier of projeclD. The fifth type, in wdhi the ? punctuator is placed after the
name of the relation, return the value which satisfy thetiafeaas the right-hand side value; for
example the expression Find(userX supervise ?) returnsrgStollection of all projects that
are being supervised by userX. In order to output the retalumes, Role&Relation Expressions
employ Role Declarations and Relation Declarations. Feighrpose, every Role&Relation Ex-
pression makes a service call, i.e. sends a GET/HTTP requeisy the relevant URL provided
by the corresponding Role Declaration or Relation Dedlanathen, it outputs the response as

the return value.

Rules:
e The return type of the Reference Expressions used in Is typemast be User.
e The Role Name must point to a defined role in the Configuratfmcication.

e The Relation Name must point to a defined relation in the Canditipn Specification.

39

e The type of the first parameter of the Reference Expressied isfore a Relation Name must

be the same as the type of the first parameter of the correspRdlation Declaration.

e The return type of the Reference Expression used after dieldame must be the same as

the type of the second parameter of the corresponding BelBtclaration.

Service Invocation
Description:

Service Invocation enables using the services declaredeirCbnfiguration Specification. A
Service Invocation expression is mainly composed of theenafra declared service and a list
of parameters. When a Service Invocation expression isusa@cit invokes the corresponding
service with the provided parameters; then, it returns aevaf the type indicated in the Service

Declaration as the return type.
Rules:
e The Service Name must point to a defined service in the corafiigur specification.

e The number of expressions in the Expression List must bedheesas the number of the

parameters of the service to which the Service Name points.

e Each expression in the Expression List must have the samenrgfpe as its corresponding

parameter of the service to which the Service Name points.

Configuration Specification
Description:

Configuration Specification defines all elements that aréed#o interact with collaborations.
In particular, events are incoming channels for the collation by which external components
send messages to collaborations; while roles, relatiotssarvices are the means by which the
collaboration responds to events or receives additiorfiainmation. Accordingly, a Configura-
tion Specification consists of Event Declarations, Rolel@®&tions, Relation Declarations, and

Service Declarations.
Rules:
¢ In the system, exactly one Configuration Specification sthbelprovided.

e At least, one Event Declaration must be defined in Configoma8pecification; otherwise,

there is no way to interact with collaborations.

40

Event Declaration
Description:

Event Declaration is used for defining the events of the bollation system. In fact, events
should be declared in the configuration specification in orl®e used in Event-Handlers and
Entry Declarations of the Collaboration Specifications. FBwent Declaration is mainly com-

posed of a name for the event and a list of parameters. Thef ltrameters indicates the data
elements of the event. Each parameter in the list of parametay have a * punctuator which

identifies that the valuation of this parameter is manda#drgvent creation time. Therefore,
if any of the mandatory parameters is “null” when the everitiggered, the system throws an

exception indicating that.
Rules:

e Events must have distinct Event Names.

Role Declaration
Description:

Role Declaration is used for defining the roles of users irsffgtem. In fact, every role used in
the collaboration specification should be first declarethindonfiguration specification. A Role

Declaration is mainly composed of a name for a role, a listarbmeter Declarations, and two
URLs. The first URL points to the REST service which checkstiwbea user has the role or not.
To achieve that, a Parameter Name is also needed in theseali@and checking whether a user
has a role, this name will refer to a specific user while cgltime service within a collaboration.

The second URL points to the REST service which returns alliders who have that role. The
URLs and parameter are used by Role&Relation Expressioostfut the intended results, i.e.

a Boolean value indicating a user has the role, or a list afsuséh that specific role.
Rules:

¢ Roles must have distinct Role Names.

e The Parameter of a Role Declaration must be of type User.
Relation Declaration
Description:

Relation Declaration is used for defining the relations leetventities in the system. In fact,
every relation used in the collaboration specification &hbe first declared in the configuration
specification. A Relation declaration is mainly composethefname for a relation, two parame-
ters, and two URLS. The first URL points to the REST servicecllthecks whether the relation

41

is held between two entities, and the second URL points t&REBST service which returns all
the entities which satisfy the relation when the other grisitprovided. The first parameter
identifies the type and name of the left-hand side entity efréhation; similarly, the second pa-
rameter identifies the type and the name of the right-haredesidity of the relation. The URLs
and parameters are used by Role&Relation Expressions tiderthe intended return value. In
fact, the two URLs determine the address of the REST servanabthe parameters define the

name of the parameters of service calls and also return tfijesle&Relation Expressions.
Rules:

¢ Relations must have distinct Relation Names.

e The two parameters of each Relation Declaration must hdferelit Parameter Names.

e The type of each parameter of a Relation Declaration cantberebtring or User.
Service Declaration
Description:

Service Declarations refer to REST services on the netwiinkse services are required by the
collaborations in order to complete their tasks. In facérgwservice used by Service Invocations
in the Collaboration Specifications should be first declamatie configuration specification. A
Service Declaration is mainly composed of a return type, &Pifhethod type, a name for the
service, a list of parameters, and a URL. The URL points taREST service we want to use;
the list of parameters defines the parameters of the RESicearalls; the HTTP method type
indicates that the service call should use either GET/HTTP@ST/HTTP method; and the

return types specifies the return type of the Service Invoeatvhich use this service.
Rules:

e Services must have distinct Service Names.

e The Parameters of a Service Declaration must be of type User.

e The two parameters of Service Declaration must have diffdfarameter Names.
URL
Description:

URL is a value of type String which should refer to a servicatanetwork.
Rules:

e URLSs should be valid according to the standard URL format.

42

Chapter 4

The Software Framework

Having developed a language for specifying collaboratitims task becomes to develop a corre-
sponding software system to support the specification aadterent of resource-centric collab-
orative activities. In fact, we are aiming to build a commssive toolset to be integrated with
multi-user, multi-tool resource-processing environrms@émbrder to enable them to support resource-
centric collaborations. In other words, we want to buildinei a resource-processing environment
nor any tools to be used directly by end-users, but a beliiaestenes supporting system which
leverages the capacities of any resource-processingoameént to be more than just an editing tool
but a process-aware environment which coordinates usiaboohtions.

The system consists of a set of software tools to specifyboliations and to manage their in-
stances at run time, including the interaction of theseabaltation instances with the users’ activities
in the context of other external systems. The main compaen&indur collaboration-management

system and their interactions are shown in Fiduré 4.1 andeseribed in detail below.

4.1 The Collaboration Engine

The collaboration engine is the fundamental componentettilaboration system, which enacts

the collaborations at run-time. The collaboration enggneesponsible for:
¢ Instantiating collaboration instances, according to jates specifications;
e Delivering events to the relevant collaboration instances
e Triggering events on collaboration instances;
e Facilitating the execution of collaboration instances] an
e Managing collaboration instances through their life-eycl

The collaboration engine must support all the construclisel in the collaboration language,
i.e., it should be able to check logical conditions, vakdaser access, invoke web-services, receive

events and forward them to the relevant instances and managelues of the various instances.

43

System API

Compiler —

Control
Panel

Instances
Database
Figure 4.1: The architecture of the collaboration system

Once the configuration and collaboration specificationswitéen using the collaboration editor
(see Section415) and compiled (see Secfioh 4.6) into exeleutollaboration specifications, they are
deployed in the collaboration engine to be executed. Whertigine receives an event requesting
a collaboration instantiation, the engine creates an nestaf the collaboration according to the
corresponding collaboration specifications; then, theérenglaces the newly created collaboration
instance in the pool of active collaboration instances &eetion 4.B). The engine continuously
listens for incoming events, whether from external systenisom active collaborations. Receiving
an event, the engine triggers it on the corresponding ooiion instance which results in the
execution of the relevant event-handlers of the instanfcénere is an event-handler defined in the
collaboration for the incoming event type, and if the asated conditions are satisfied, the engine
executes the enclosed actions, which may involve statsitiam, sending a notification, or any other
method call.

The collaboration engine is composed of four main compaent

e The Skeletondefines the structures of the language elements and thnslamong them.
The skeleton is in the form of a class library containing theteactions of the language el-
ements. These abstractions specify the attributes andnsigilities of the elements. For
example, the AbstractData, which is the abstraction of thta @élements of the collabora-
tion instances, declares the generic fields of collabamatistances, e.g., ID and creator, and
defines the “serialization” and “deserialization” of datathe responsibilities of every col-
laboration data element. The compiler (Secfior 4.6) fodldinese abstractions and creates
executable specifications to implement them. The structfitee skeleton including the ab-

stractions and their relationships is depicted in Figue 4.

e TheContainer is the placeholder for the collaboration instances dufiregrtexecution. The

container manages the poll of running collaboration ingtarnand directs the events to the

44

Attrili i:::achara AbstractCollaboration AbstractEvent
-ID Attributes Attributes

- Name - CurrentState ——————>3{-Name

- Creator Responsiblities - Sender

- Created Time - AcceptEvent() - Time

- Last Modified Time - IsActive()

- DeserializeData()

Responsilibities
- SerializeData()

AbstractState
Atrubutes
- Name
Responsibilites
- IsFinal()

i

AbstractEventHandler WimsException

Responsibilies F———-=> Attributes
- HandleEvent() Trace

Figure 4.2: The structure of the engine skeleton

relevant collaboration instances. Upon receiving an eweetcontainer retrieves the corre-
sponding collaboration instance and places it the polh thiee container pass the event and

the collaboration instance to the processor in order t@aieithe execution process.

TheProcessorexecutes events on collaboration instances. It providebdisic execution ca-

pabilities of the collaboration engine. The processor sufghecking conditions, manipulat-
ing fields, invoking web-services, throwing exceptionstémtiating collaboration instances,
and all the other execution requirements. In fact, the mameimplements the behaviors
specified in the collaboration language. Therefore, it & résponsibility of the processor
to execute collaboration instances according to theiriipations and result in the expected

outcomes.

Finally, the Stubs implement the roles, relations, and services defined in tméiguration

specification. In fact, the stubs are local methods whiclifaie invocation of web-services.
As opposed to other pieces of the engine which do not reqdapting to the context system,
the stubs are configured according to the provided configurapecification in the system.

This configuration is done automatically by the collabanaystem.

The collaboration engine has been implemented as a dynaghigaoject in Java. It is deployed

as a web-service in Apache Tomcat web server.

4.2 The API

Interactions between the collaboration engine and themaitesystems used by the people involved

in the collaboration activity are possible through the sgstAPI. Using the system API, external

45

components send events to the collaboration system, whelsubsequently directed the corre-
sponding collaboration instances in the engine. It is a wBbwhich facilitates integration of the
collaboration system in the projects based on servicexmikarchitecture. The API is developed
according to REST architectural style in which the commatiins are stateless and done through
HTTP methods, i.e. GET and POST.

The system API exposes collaboration instances as webrasour herefore, every collabora-
tion is accessible through HTTP method calls using its URRI4Jof collaboration instances have
the following form: “[Base Address]/[Type ID]/[Instanc®]’ where [Base Address] is the web
address of the root of the collaboration system, [Type IDthis identifier of the type of the col-
laboration instance, and [Instance ID] is the identifiertaf particular collaboration instance. For
example, “[Base Address]/Publishing/1” is the URI of antamee of the publishing collaboration
whose identifier is wfl.

Events are sent to collaboration instances using POST mhethits. Events are also treated
as web resources with the following URI form: “[Collabomatilnstance URI]/[Event ID]” where
[Collaboration Instance URI] is the URL of a collaboratimstance as described above and [Event
ID] is the identifier of a type of the event. By invoking POST thned on a URI in the above
mentioned form, an event of that type is triggered on theesponding collaboration instance. For
example, when a POST method is called on “[Base Addresdj&Pirg/1/Submit”, a Submit event
is sent to the specified instance of the publishing collaiymra Besides, the parameters of POST
method calls are used for assigning value to the fields ofedesvents. For this purpose, the method
calls should carry parameters whose names match the narttess @fents’ fields; then, the values
of the fields will be set to the values of those parameters.

In addition, the system API provides the capability to gébimation about collaboration in-
stances using GET method calls. This information includesgeneric or collaboration-specific
data of a collaboration instance such as the state of thatottion or the value of a field. This ca-
pability is particularly useful for automated componentsai require accessing some collaboration
data in their execution processes. Similar to events, guiege of collaboration data is accessible
as a web resource through GET method calls. The URI of theseirees are in the following form:
“[Collaboration Instance URI]/[Data Element]” where [@aboration Instance URI] is the URL of
a collaboration instance and [Data Element] is the name @ita element in the collaboration in-
stance. For example, invoking GET method on “[Base AddfBs#]ishing/1/State” returns the state
of the specified instance of the publishing collaboration.

The REST API is automatically configured by the collabomatiystem according to the pro-
vided configuration and collaboration specifications. Wesources are defined based on these
specifications such that [Type ID], [Event ID], and [Datarknt] respectively point the name of a
specified collaboration, the name of an employed event ireatdvandler or entry of the collabora-

tion, and the name of a generic or collaboration-specifiéd &&the collaboration. Upon updating

46

a specification or adding a new one, the system re-confighieesPI to handle the modifications.

4.3 Instances Database

The instances database is responsible for managing ani@iagcbollaboration instances. The in-
stances database maintains the active collaboratiomiresand also archives completed/terminated
ones. This component is composed of a database managersgm and an access layer on top of
it.

The database management system stores the collaboragtandées. We employed MySQL as
the database in our system. It is possible to replace MySQ@h aviy arbitrary relational database
management system, but this task requires some minor metibfis.

Every collaboration instance is stored as a record in thebdae. Each record maintains a set of
generic data about the collaboration instance includimgcbllaboration identifier used to uniquely
identify the collaboration instance, the user who creabedcbllaboration instance, the instance’s
creation date, the instance’s last modified date, the typgbetollaboration instance, the current
state of the collaboration instance. In addition, eachntt@as some collaboration-specific data
based on the type of the collaboration instance. This cotktipn specific data is actually the most
recent values of collaboration instance’s data elemestsfiélds and sub-collaborations.

For performance reasons, we store the active and complefiebaration instances in separated
tables which have exactly the same schema. In the longethamumber of active collaboration
instances would be relatively small compared to archivethimces; therefore, keeping the active
ones in a dedicated table results in faster database apesaind also ensures that the response time
does not suffer over time as the number of archived instagroeegs.

The access layer integrates the database with the collddroemgine. It transforms collabora-
tion instances to records in the database and vice versaefidgiae uses the access layer to store
and retrieve collaboration instances in/from the datab&sstore a collaboration instance, the layer
extracts out the generic data and serializes the collabarapecific data from the collaboration in-
stance, then combines them into a record in the databasestfieve a collaboration instance, the
layer selects the corresponding record from the activeetaht builds the collaboration instance
accordingly which involves deserialization of the colledtion-specific data.

In addition, the access layer provides a collaborationicgamechanism for enhancing the per-
formance. The collaboration cache helps to decrease thbenofhdatabase operations by maintain-
ing a dynamic set of collaboration instances. The goal istde the collaboration instances which
are the most probable ones to be retrieved next. To achiévgdlal, the caching mechanism as-
sumes that a new event is more likely to be related to a rgcaotiessed collaboration instance than
a random one. Therefore, the cache is basically a datastewhich maintains the most recently
accessed collaboration instances. The size of the cacHeeczonfigured at the engine-deployment

time. When the collaboration engine asks the access layex particular collaboration instance,

47

the access layer first checks the cache to see if it contadsristance. If the instance is found in
the cache, the access layer simply returns the instancewtidngaging the database; otherwise,
a normal retrieval process is performed, which involvestfety the record from the database and
transforming it to the collaboration instance. In the lattase, the newly retrieved collaboration
instance replaces the member of the cache with the oldesstémp; while in the former case, only

the timestamp of the collaboration instance will be updated

4.4 The Engine Control Panel

The Control Panel was developed to support the administrati the collaboration system. Itis a
web-based application used mainly by the administratotie@tystem. Using this component, the

administrators can perform the following tasks.

e Starting, stopping and checking the status of the collatmrangine.

e Getting various pieces of information regarding collaorainstances, such as the list of
active collaboration instances of a particular collaboratype, the state of a collaboration

instance, and the values of any generic or collaborati@tifp data element.

¢ Reviewing the logs of the system such as the incoming evegishe outgoing service calls
log, and the system exceptions logs. These logs consiseafdbcriptions of the incidents in

addition to their timestamps and the points in the code wtieréncident was detected.

e Deploying the compiled configuration and collaboratiorcsfieations in the engine. After us-
ing the editor and the compiler to compile collaborationcéfiEations, system administrators
upload the specifications to the control panel; then, thérobpanel deploys the compiled
specifications in the collaboration engine and makes ityéadnstantiation. In addition, the
control panel is used when system administrators what tace specification with a new

one.

e Manually modifying the data elements of collaborationamgte. This feature is mainly used
for handling exceptional cases or correcting the valuesatd dlements of collaboration in-
stances. For example, a system error may result in damagdhe tiata of a collaboration
instance; therefore, it is required to correct the data dteoto put the collaboration instance
back to action. For this purpose, a system administratatsl@nd modifies the values of
the data elements. Using this feature should be avoided ab amipossible, except when
it is highly required, since even tiny mistakes in the manuatlifications may corrupt the

collaboration data or put the collaboration instances stalvle states.

48

45 The Editor

The editor is used for creating and modifying collaborasipecifications. In fact, it is a customized
textual editor configured according to the grammar of oulataration language. The editor facili-
tates specifying collaborations by providing text proaegs

In order to provide a user friendly interface for collabayatdescription, we employed Xtext
[Q], a framework for building textual editors. Xtext is anerpsource language development frame-
work that supports the creation of textual domain specifigleges. Using Xtext we developed an
Eclipse-based environment for collaboration developméith offers editing experience similar to
Java IDEs. Accordingly, we provide the Xtext framework witle grammar of our Collaboration
language; based on the grammar, Xtext generates a parsegdla the textual collaborations and
builds the Abstract Syntax Tree (AST) meta-models of th&abolkrations.

Our Eclipse-based collaboration editor provides syntdaratg, code completion, code folding,
a configurable outline view and static error checking fordhesn collaboration model. All these
basic syntactic model processing is possible based on flreedgrammar of the collaboration. The
syntax highlighting and outline view features are resuttedctly from the AST of the model and
the proposed grammar rules, and the code completion featnies based on what the generated
parser expect to see next in the model.

Note that all these properties are customizable and candgrgnmed to include further fa-
cilitating features such as rename refactoring and hoBssides, It should be mentioned that the
editor only performs some static error checking using threesponding AST representation of the
collaboration model, and the advanced model validity chmecéind other model processing are done

in the compiling and translating phase.

4.6 The Compiler

Since the collaboration model represented in our collaimrdanguage is not understandable by
the rest of our Java based framework, the first obvious stiep $ specification is to transform
it to its Java representation. To achieve that, we neededpitar to go through the collaboration
model, check its validity with respect to the syntactic amchantic rules, and translate it to the target
language. The separation of the basic syntactical parsittigei editor and the advance semantic
processing and translating in the compiler component helfiscus on the user friendliness of the
editors on the one hand, and implement more sophisticatgcldm the other hand.

All elements of the compiler, from lexical analyzer to targede generator are implemented
outside the Xtext framework. Although the Xtext framewosed for building the collaboration
development editor could also provide basic lexical andastic processing, we built our own
parser and analyzer as part of the compiler. In order to leaadiss reference linking and also

provide semantic processing of the model we needed to havAST model of the collaboration

49

| AST Nodes
sym.class (*.java) Semantic
Analyzer
Collaboratoin /’R (“java) Executable I
Specification Lexical Collaboration
Parser Translator
—>| Analyzer « :
(*class) (*.class) (*.java)
Configuration -cass
Specificatoin 7‘ \
-___/___
Java Compiler
Lexical : '
Analyzer sym.java Parser AST Nodes
. . X
(* java) (*.java) (*.java)
T Semantic
JLex cup Analyzer
| | (*.java)
JLex spec CUP spec Translator
(*.lex) (*.cup) (*.java)
I 4 I 4

Figure 4.3: The structure of the collaboration compiler

description. We did not make use of the AST created by Xtaxtesit was built based on the
left recursion free grammar and had a complicated strucfline AST created by Xtext had more
nodes than necessary and its structure was not easilydtabld to the target model. Consequently,
we build our own compiler with all fundamental componenteePprovided implementation might
not be the most efficient translator, it could transform tbkadoration model to the target code in
exactly the way we needed. Figlrel4.3 illustrates the hégltistructure of our compiler.

The input of the compiler is one configuration specificatide, fand one or more collabora-
tion specifications; the output of the compiler is the cquoegling collaboration implementations
in Java format. Whenever the configuration specificatiorhanged, all the collaboration specifi-
cations should be recompiled with respect to the updatefigroation. Besides, if a collaboration
specification is changed only that single collaboration #redones using it (either inheriting that
collaboration or including its instances) should be recibedp

The components of the compiler include:

A scanner, a.k.a.lexical analyzerbreaks a textual input stream of characters into meaningful
tokens of the language (such as keywords, numbers, andagggoibols). Since writing lexical
analyzers manually can be a tedious process, softwarelavtsbeen developed to ease this task.
JLex, as one of these tools, takes a specially-formattedfggsion of the target tokens and a series
of rules for breaking the input stream into tokens, and eeatlava source file for the corresponding
lexical analyzer. Lexical analyzer is the one that decidbiwtokens(characters and words) has
been presented in the textual model, and which ones shouldtbmed to the parser for further

syntactic analyzing, and which ones should be ignoredcemments. Therefore, the rules included

50

in the lexical specification (.lex) describes the actioniéxer should perform in case on recognizing
each of the tokens; for example in case of seeing an strimgdtavith “//" the whole line of the
syntax should be considered as a comment and no token sheuéurned to the parser, whereas
whenever “;” is recognized SEMI-COLON token should be read to parser which could indicate
the end of a line.

A parser, a.k.a.syntactic analyzer, is responsible for analyzing the textual model, made of a
sequence of tokens, to determine if it is correctly strieduvased on the given grammar. In order
to generate the parser for our compiler, we employed the lJased Constructor of Useful Parsers
(CUP). CUP is capable of generating a LALR parser from thengnar specification of the collab-
oration language. The grammar specification can also iedle action the parser should perform
in case of seeing each production, e.g. returning the quureing AST node while realizing a
language element. Therefore, the AST of the collaboratmatification can be built at the same
time the parsing occurs. To achieve that, the needed ASTsmslteuld be defined separately, in
Java, and the corresponding package should be included sp#zification file (.cup). Running the
CUP generator on JVM with respect to the specification, tlstesy will produce two Java source
files containing parts of the generated parsgm.javaandparser.java The sym class contains the
constant declarations for terminal symbols and can be ugddebscanner to refer to symbols (e.qg.
while returning sym.SEMI-COLON for “;"), and the parser skaimplements the LALR parser and
is capable of extracting the AST of a collaboration spedificafor further model processing as
semantic analyzing and translation to the target code .

A semantic analyzeiis responsible for adding semantic information to the ASd launlding the
symbol table respectively. All type and semantic validifyecks should be done in this phase, e.qg.
all the mandatory event parameters (indicated by “*” whigdining the event) of the event should be
not null while triggering the event. Therefore, this compotmakes sure that the specification has
been developed correctly, and it is can be translated to aimgfal executable collaboration. Since
semantic analyzer needs the parse tree, this phase lgdimiédws the parsing phase, and precedes
the code generation phase for translation. The semantlgzamaf our collaboration compiler is
also implemented in Java.

A translator, a.k.a. code generator goes through the AST and the symbol table created in
the previous phases, understands the logic of the modetansforms it into a Java representation
of the collaboration which is understandable by the reshefdollaboration engine. Translating
the collaboration specified in our collaboration languagé most crucial phase of our compiling
procedure. Since the output language of our compiler is l leigel programming language (Java)
not a low level machine language, the translation does mofue resource and storage decisions,
e.g. assigning registers to variables. However, it needxpdore the logic of the collaboration
specification, implement event handling procedures farinbllaboration communications, facili-

tating service calls within a collaboration, managing ttagestransitions of a collaboration instance,

51

L HTTP Request’ 3. Retrieve
{POST call) System Collaboration
yAPl 2. Trigger Event Instances
5. HTTP Response - __ 4.Store Database
Collaboration

Figure 4.4: The communication diagram of the run-time congos

and etc. Each of these aspects needs considering details tata@ each of the corresponding el-
ements (collaboration instances, events, states, anjdweiit be used further in the collaboration
engine. Details about how transformation from the origowlaboration model (based on its AST

and symbol table) to the target Java files, have been presiendgpendixXA.

4.7 Interactions

As we introduced the six components of the collaboratiotesygseach of them takes a role in the
management of collaborations. However, their levels ofagegnent are different. Collaboration
engine, system API, and instance database are run-timearents which are actively involved
in the execution of the collaboration instances. They alledanto action when a new event is
arrived. The collaboration editor and compiler are desapistwhich are used for specifying new
collaborations or modifying current ones. The design t@sésnot engaged in handling of events
and execution of collaborations; therefore, they are usssl frequently than run-time components.
Finally, control panel is a managerial tool used for adntiaits/e tasks. The frequency of its usage
depends on the collaborations and the amount of the adnaitiv& tasks that should be performed.
A communication diagram illustrating the interactionstoé run-time components in the course of
executing a collaboration instance is provided Fiduré 4.4.

According to this figure, the interaction is initiated whenexternal component sends a HTTP
request, in the form of a POST call, to the system API. Rengithe request, the API creates an
event accordingly and directs in to the collaboration eagiithe engine acts upon the event by
retrieving the corresponding collaboration instance fitbien database and executing the event on
the instance. The execution may involve various actionfop®ed by the engine such as changing
the state of the collaboration instance or calling othevises. Finally, the engine stores the col-
laboration instance back in the database and the systemeh@sdack a response to the initiator

indication the completion of the execution.

52

Chapter 5

The Integration Model

One of our main goals in the design the collaboration systas tive generality of its applications
and its ability to support a variety of resource-centridalmbration projects. In fact, the collaboration
system should be integratable to any arbitrary ecosysteiwots, in order to add the coordination
support required for their collaborative activities. Fgample, if we have a collaborative real-time
editor which provides a collaboration environment butsfalhort in supporting the coordination
requirements, we can integrate the collaboration systemmtive editor to enhance the editor with
the coordination capabilities of the collaboration systéfa facilitate the integration process, we
have developed a methodology for integrating the collaimaystem within an ecosystem of other
systems and tools as depicted in Fiduré 5.1.
In this section we discuss at a high level the model (and ps)ad integrating our collaboration

system with an existing set of tools that the collaboratsesta manipulate and share their resources.

5.1 The Collaboration System

The term “collaboration system” stands for the softwarentavork described in Chaptel 4. The
main responsibility of the system is to coordinate the usmsllaboration at run-time, using the

collaboration engine, according to given collaboratioscfications. The collaboration system gen-
erally refers to all of the components of our collaboratigsism as depicted in Figure #.1. However,
the collaboration engine is at the center of focus here astité main component involved in the

execution of collaboration instances.

5.2 The Base System

The base system includes the set of tools that the users uselfaborating on resources. It is
actually the target component for which we want to providerdmation supports by our collabo-
ration system. Base systems support resource manipuaimhcollaborations among users. Each

base system has its own architecture which can be signifyagifferent from another base system.

53

External

®’D Services

o
Base System |€&— g Notification and Action| Collaboration
(%]
8 System
TEvent
3 Adapter
Logs Database
! 0
| Change Message N

Figure 5.1: Our suggested model for integrating the colation system with other tools

However, they usually share variants of the following camponents (a base system probably has

other components also but they are irrelevant to our system)

e Editors and Toolsare responsible for manipulating resources. They are usectlgt or indi-
rectly by users to work on resources. Editors and toolsawriesources from the repository
and provide them to the users; then, users use their fdicititand capabilities to collaborate
on resources, and finally, store back the resources in thesitepy. In addition to resource
manipulation, the editors and tools enable the interadigtween collaborators, for example
using a notification mechanism. In our context, we assumiethigaeditors have user inter-
faces, and in fact, provide an editing environment for usetsle tools are in the form of
services which are invoked by editors or other tools. Ortx¢editors and spell checkers are

the example of editors and tools respectively.

e Repositoriesare responsible for housing resources. They provide anfact (typically a
REST API) for Editors and Tools to access and update ressuraepository can be im-
plemented using a conventional database management systdnas MySQL, a document

management system such as Fedora, or any other softwagensyapable of maintaining and
publishing resources.

In the model, there are a variety of editors and tools workiit a repository. For simplicity,

we assumed that there is only one central repository; hawiean be any other form of system

54

for housing resources such as a distributed repositoryt lmubut of scope of our model and has no
impact on it. In addition, we do not discuss how to develop setsystem but we assume that one
already exists and our task is to integrate it with our cdlaltion system. In other words, we want
to orchestrate a base system, composed of a repository agtdateols, using the collaboration

system.

5.3 The Base API

The Base API mediates the interaction between the basersygste the collaboration system. This
API is actually an integrated interface into different ets of the base system. The collaboration
system employs the base API to communicate with the basersystr call any editors or tools.
Examples of when the base API is used by the collaboratiotesyinclude: the collaboration
system needs to update one resource; or the collaborastansyvants to automatically run a service
on a resource as one step of a collaboration specificatioe. bese API is composed of a set of
methods implemented as REST API. Calling each method eesultalls to the editors, tools, or

repository of the base system. The methods on the base ARleceaitegorized in two groups.

e Access Methodsre used by the collaboration system to get information fimnbase system.
The information can be regarding various elements of the bgstem, such as the state of a
particular resource or the profile of a particular user oftihee system. This information is
usually used in conditional elements of the collaboratjpectfications. For example, assume
that the execution of an action in a collaboration dependbestate of a particular resource;
therefore, the engine needs to get the state of the resauocder to decide whether the action
should be performed or not. This information can be accelsgemhe of the access methods
of the base API.

e Management Methodsare used by the collaboration system to update some inf@mat
trigger some actions in the base system. As opposed to agwtbeds, which are “safe”
methods that only retrieve information and have no sidectffehe management methods are
used to change the state of the resources in the base sydtese &ffects can be in the forms
of changing the content of a resource, updating the profikewsder, sending notification to a

user by an editor, etc.

The base system may have an already-available API which eamséd as the base API by
the collaboration system. However, in many cases the badersydoes not have such an API, or
the API does not contain all the functionalities requiredtoy collaboration system, or it does not
support the communication protocol expected by the cotktimn engine. In this case, we need to
implement such an API as a part of the integration proces® sk of methods required for the
API depends on capabilities of the base system and the funadiies expected by the collaboration

engine in order to execute collaboration instances.

55

5.4 Logs Database

As we employ an event-driven approach for modeling and implgting collaborative activities,
the collaboration engine needs to know about the eventsottalr in the base system. In fact,
these events are the triggers that will likely result in ex@mn of some actions according to the
collaboration specifications, in the collaboration engife our context, the events denote all the
actions performed in the base system, e.g., creation orfioatitbn of a resource, changes on the
profiles of users, or invocation of a tool. Therefore, we neeatechanism to inform the collaboration
engine about them. The Log database is the component widiitefi@s this communication.

The logs database maintains the logs of actions of intandkti base system. The log database
is composed of a data repository software system, typieatbpnventional database management
system for housing the action logs and an interface for rexgigy the logs. The base system is
responsible for populating this database with action ltdteefore, whenever an activity of interest
is performed, the base system should generate and placerttesmonding logs into the database
through its interface.

In addition, the logs database is responsible for inforntivegcollaboration engine about the
performed actions in the system. For this purpose, the latgbdse employs a publish-subscribe
mechanism in which the components, which are willing to gébrimed about the actions logs,
register themselves with the logs database; whenever a agéwnas logged, the logs database
informs all the registered components about the action. tMata repository software systems
have in-built or complimentary mechanisms for propagativeggchanges messages, e.g. triggers in
MySQL,; therefore, the logs database can employ this meshmafar publishing action logs.

A side benefit of the logs database is that the logs kept imitbeaused as the indicators of the
history of the base system. Therefore, in the case of an, ¢n@administrator of the base system
can use the logs to identify the sources of the errors. Intiaxdithe logs can be used for statistical
analysis on the actions performed in the system; for exarmplecognize the usage patterns of the

system.

5.5 The Adapter

The change messages generated by the logs database doafafiotmation required by the collab-
oration engine in order to execute collaboration instanétsvever, the REST API of the collab-
oration system may not directly understand the change messi expects the information in the
form of events communicated to the engine though HTTP methtis. The events should conform
to the specific formats defined by the collaboration system.

The Adapter is responsible for transforming the actions iogp events understandable by the
collaboration engine. Effectively, this is a middlewar#ieen the base system and the collaboration

system. The adapter registers itself with the logs datadnagéstens to the change messages publish

56

by the logs database. Whenever a change message is retieévadapter creates an event based on
the action log and sends it to the collaboration engine.

Basically, the adapter is composed of (a) a parser to tokeh&incoming change messages, (b)
a converter to create events in the format expected by thieenand (c) a transmitter to send the
events to the collaboration engine. Based on the publismaghanism used in the logs database
and the format of the change messages, the adapter shoulddifieh and configured to enable
the transformation, specifically the parser and the coavenidules of the adapter. It is more
straightforward to implement the adapter as a web-serbigeit can be implement in other ways

too, e.g., as a script.

5.6 External Services

External services are used to extend the capabilities ofdhaboration engine. External services
can be called during the collaboration-instance executising the service call function provided
in the collaboration language. Therefore, if some more derywrocessing during the collaboration
execution is required, which cannot be supported by thaboliation language, it can be imple-
mented as a web service using any scripting or programmimguige, and then be invoked by
the engine. In addition, using external services is the meisim for reusing already-available web

services.

5.7 Interactions

A typical scenario of interactions among the componentauofeodel is described below and de-
picted in Figurd 5]2. In this scenario we assumed that thénerig provided with configuration
and collaboration specifications, and the components aéyheem are configured according to the

integration model illustrated in Figure.1.

1. Using an editor, a user of the system requests to accessetlsiesource. We assume that the
resource is already-created and placed in the repositatyedbase system and the editor is

one of the editors and tools of the base system.

2. The editor retrieves the resource from the repositorheftase system and presents it to the

user.

3. The user works on the resource. At the end of the sessierysir requests to update the

resource.

4. The editor updates the resource in the repository. Intiatdithe editor adds action logs on

the logs database according to the performed actions bystre u

57

ser Editor Doc Repository Logs Database Adapter Engine Ext Services Base API

Retrive

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Store :
|
|

Add action logs

Publish logs

|______________________________

Send event

]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Service Call I
|
|

Service Call

Update

[

Figure 5.2: A sample scenario of the interactions among corapts of the integration model

5. Upon addition of new action logs, the logs database puishange messages regarding the

action logs.

6. The adapter receives the change messages; conseqiiendgites the corresponding events

and sends them to the collaboration engine.

7. The collaboration engine reacts to the events by triggdtie events on the related collabora-

tion instances which result in execution of some event-ladThe execution may involve:

¢ internal changes in the state and data of some collaboriastances,
e calls to some external services, and

e calls to the base API.

8. Calls to the base API result in invocation of some servicethe base system such as update

of the shared resource.

While designing the integration model, our primary objeesiwere ease of integration and low
coupling between the collaboration system and the basermy#ccordingly, the base system is not

aware of the collaboration system. The base system onlytlegactivities and requests, and it is

58

the collaboration system which listens to the logs with lodlthe adapter and acts upon. Therefore,
it is possible to change or replace the collaboration systempletely without any need to modify
the base system. In addition, the adapter makes the int@gyesdsy since we can change the base
system without any need to modify the engine; but we only neeabdify the adapter. Similarly, the
collaboration system is only coupled to the base API; tleegfas long as the API is not changed, it
is not important how each method of the APl is implemented thva internal structure of the base
system changes, e.g. a tool is replaced or a new editor isladde

We believe that our integration model works for the majoatyresource-centric collaboration
projects. Although this model is not the only way that thdatmbration system can be employed and
integrated with a base system (and one can conceive of dsrifiitween the integration methodol-
ogy and the base system’s restrictions to information a}dés method and corresponding tools
guide the process of integrating our collaboration systeth @xisting interactive systems to coor-

dinate the activities of their users.

59

Chapter 6

Case Studies

In the previous chapters, we discusses our collaboratigpuiage and the corresponding framework.
In this chapter, we describe two resource-centric collation projects in which our collaboration
system has been employed. These cases demonstrate oboratien system in action and are
evidences of applicability of our collaboration systemealrworld projects. For both of the projects,

we employed and customized our integration model.

6.1 The GRAND Project

The GRAND (Graphics Animation and New Media) Network of Gestof Excellence [5] is a mul-
tidisciplinary research network exploring the applicatend advancement of graphics, animation
and new media in Canada. The GRAND forum is a web-based aypipin; designed to collect
information about the people in the GRAND community, theiations, and their products and ac-
tivities. Besides, the forum supports delivery of inforioatwithin the GRAND networks. The
GRAND forum has been implemented based on Mediawiki [7] framork which is a web-base wiki
software application used for building various wikis sushvdikipedia. According to the web site,
“the purpose of the GRAND forum is to provide a central refaygifor up to date information about
(a) the GRAND community and activities, and (b) the eventiatrest to the GRAND community.
In addition, the GRAND forum provides the means to collea disseminate content as necessary
for the collaborative and reporting activities of the netiycand analysis tools through which to
examine the evolution of the network community.”

The main entities of the GRAND network and their relatiores@gpicted in the entity-relationship
diagram depicted in Figute 8.1. In this diagram, many of thtails are omitted as our intention was
just to show a high-level picture of the network. Accordimgtihe diagram, there are many re-
searchers defined in network who are in fact the users of theNERforum. Every researcher in
the GRAND network has a role, one of Manager, CNI, PNI, and HiQiere is a Supervise relation
among some of the researchers; more specifically, evergneser with role HQP is associated with

supervisors who are either CNIs or PNIs. Many projects ase defined in the network. Every

60

Researcher 0.n @ 1.n Project
ID ID

7 Name Name
University - Themes

Activity Artifact
Type Type
Title Title
Description Description

Figure 6.1: The entity-relationship diagram of the GRAN Dwaark

project is associated with several researchers, who anaéinebers of the project, and one or two
researchers who are the leader and co-leader of the prajeatidition, artifacts and activities are
among other important entities of the GRAND network. Evatifact or activity is associated with
(potentially several) researcher(s) and project(s).

As well as presenting the information about GRAND netwahlk, forum provides the users with
the capabilities of updating the network information, sashfor example, adding a new researcher,
or deleting an artifact. In addition, the forum has an inlmbtification dashboard for every user
in which the recent updates relevant to the user are posteagsxmple, when the administrator
modifies the role of a user, a notification will be added to tbéfication dashboard of the user
informing the role change.

In the GRAND forum, it is possible to modify the underlyinddnmation resources using the
provided HTML forms; however, this does not support the esilexibility and the dynamics
in performing the tasks. In fact, many of the GRAND collaklimas require interactions among
various researchers; since the forum was not designed posLthese interactions, the researchers
have to perform the interaction though other channels ratizan the forum. For example, when a
new researcher requests to join a set of projects, the managee system and the leaders of the
projects should consent; then, the addition can be done.ekenthere is not possible to support
this collaboration completely in the forum as there is no wagsk the questions and act according
to the responses.

Therefore, there is a need for further development in the 8BAorum in order to support

more complex and interactive collaborations. While Medkavas the infrastructure of the forum,

61

O
&’{3

GRAND Forum E
(Base System) £ GRAND
S Notification and Action| 4 1aboration
o]
L
Forum DB =) System
(Resources and E
Logs) o T
L) Event
|
| Adapter
|
|
! 0
| Change Message]

Figure 6.2: The realized integration model for GRAND projec

supports addition of new features through extensionsgitires too much effort to implement all of
the GRAND collaborations as extensions. In addition, datations are typically subject to contin-
uous changes; therefore, hard-coding the collaboratigicdanto Mediawiki extensions makes the
change process extremely difficult.

We first started by exploring the GRAND collaborations in GRAND forum and identifying
their requirements. We came up with a set of basic collatmrafor managing the users and their
relationships such as collaborations for creating newsuaed changing role or projects of the
users. After analyzing these collaborations, we found bat they share most of their properties
and requirements with resource-centric collaborations ekkample, the GRAND collaborations are
semi-structured and their activities are mostly driven bynlan participants. Therefore, we decided
that our collaboration system can fit appropriately in theABIR forum and provide the support
for implementing the required collaborations. In order topdoy the collaboration system in the
GRAND forum, we tried to realize the integration model foe t6RAND forum. The resulted
integration model is depicted in Figure 6.2.

According to this figure, the GRAND forum is actually the bagstem to which we add col-
laboration support. In this context, the front-end of theABI® forum acts as the editors and tools
of the integration model. More specifically the HTML formskas the editors of the base system
and the services provided by the Mediawiki framework candresitlered the tools. The GRAND
forum has an underlying database management system irgegrvah Mediawiki. It is a MySQL

database which acts as the document repository of our métie.database maintains all the data

62

of the GRAND forum. The users of the forum can use the providetis and pages of the forum
to access and manipulate the data kept in the database.

The MySQL database of the GRAND forum also serves as the laggdse of the integration
model. To realize the logs database using this MySQL datgbes created a special table, named
Event table, in this MySQL database. The Event table is usedtbring the actions performed
in the front-end of the forum. In fact, the records of the Buable are the logs of the performed
actions. Every record in this table has several fields inolyidhe type of the action log, the creator
of the action log, the creation timestamp, the identifieradévant collaboration instance, and some
additional data specific to the type of the action log. Thetrend of the forum is responsible for
populating this table; therefore, we modified the front-efithe GRAND forum so that when a
user performs a collaboration-related action, typicallipraits a form, the front-end generates the
corresponding action logs. For example, when an authotigedfills out and submits the form for
creation of a new user account, the forum creates a new dotjaontaining the data of the request
and adds it to the Event table.

For publishing the actions logs, we employed the triggertraatsm of the MySQL database.
Therefore, whenever a new record is added to the Event tdtd@alefined trigger gets executed,;
consequently, the action log is serialized as a JSON messabgent to the adapter. We developed
the adapter of the integration model a web-service using 3avvlet technology. The adapter was
configured based on the format of the JSON messages cordisgdn action logs. Receiving a
JSON message, the adapter parses the message and createsthdor the collaboration system
accordingly. Then, the adapter sends the event to the RESfARe collaboration system. In
practice, the adapter is responsible for transformingpadiigs form JSON messages created by
the forum into URL-encoded events understandable by tHalmmiation engine. The collaboration
engine reacts to these events by executing the relevaabooétion instances.

Mediawiki, as the underlying framework of the GRAND foruracfiitates the implementation
of a REST API on the forum. It creates the skeleton of the ABlIEnovides a mechanism for adding
methods to it. Using this mechanism, we developed the RESToAfRe GRAND forum which in
fact is the realization of the Base API of the integration elodThis API contains methods for
accessing and updating entities and the relations of tharfpexamples of these methods include
methods for getting the information of a researcher, angatinew project, and adding a membership
relation between a researcher and a project.

During the execution of GRAND collaborations, there areaibns where some information
should be provided to a user or a group of users; for examgienva particular collaboration is
completed, all the interested users should be informedtab&imilarly, there are situations where
data should be obtained from a user or a group of users; fanghea the supervisor of a HQP
should provide her decision on approving or rejecting thaegation request of the user before the

collaboration can be completed. Therefore, we needed aanesh in the collaboration system

63

which enables providing information to and asking questimom users.

The GRAND forum already had a notification mechanism. Evesrwf the forum has a ded-
icated notification Inbox which can be access through damsttbof the forum. Every notification
has a number of fields including the sender, the subject,@bergbtion, and the creation time of the
notification. This notification mechanism had been maingdufor providing information to users.
In order to enable the collaborations to use this mechanissmadded a method on the REST API
of the forum by which the collaboration engine can send ratifbns to users.

Although the notification mechanism enables the collalimmangine to provide information to
users, the forum did not provide the collaboration engirté wie capability to dynamically receive
data from users. To solve this problem, we decided to extemddtification mechanism of the fo-
rum. To that end, we developed special types of notificatiamsh ask recipients for data, typically
providing some options to the users to choose from. The lgg&is ConfirmationNotification,
which asks a yes-or-no question from a user. We added metimotdle REST API of the forum so
that the collaboration engine can create and send notditatf these types to users. Special notifi-
cations are also displayed in the notification Inboxes ofside addition to the fields of the regular
notifications, special notifications have additional elatagtypically input fields and buttons, de-
pending on the specific type of the notification. Using thediiteonal elements, users can respond
to the questions. When a user responds to a special notficédir example, selecting “yes” or “no”
on a ConfirmationNoatification, an action log is added to theriivable. The added action log con-
tains information about the related question, the type®fésponse, and the type-specific details of
the response. In fact, responding to a special notificatifirresult in executing of an event on the
corresponding collaboration instance. The usage of egehdf/special notifications is not limited
only to one specific type of collaboration, but it can be usgdity collaboration that requires to get
the same set of data from user. For example, any yes-or-ratigne&an be asked from a user using
the ConfirmationNotification type. However, if other kindsquestions are needed which can not
be supported by already-developed special notificaticas,types of special notification should be
implemented in the GRAND forum and added to the REST API ofdinem.

After developing all the required pieces and completingniegration our collaboration system
with the GRAND forum, we worked on implementing a set of GRANBIIaborations. For this
purpose, we first started by documenting the collaboratiand then specifying them using our
collaboration language. As an example, we present one ahtheement collaborations, named
CNI/PNI User Account Creation collaboration, in the folimg. The collaboration is responsible
for creating a CNI or PNI user account for a new user. The dasmn of this collaboration is

provided below.

64

CNI/PNI User Account Creation
e Description: This collaboration is used to create a CNI or PNI user actfmura new use
e Initiator : Any manager or CNI/PNI

e Main Flow:

user account for a new user. He provides the new user infamiatluding the nam

new user.
2. If the initiator of the collaboration is not a manager then

(&) Managers get notified that a CNI/PNI user account creatidlaboration is in
stantiated and needs their approval.

(b) A manager accepts the creation of a CNI/PNI user accantihé new user wit
the provided information.

3. A CNI/PNI user account is created for the new user.

4. The new user, managers, and the initiator get notified tabelcreation of the ne
CNI/PNI user account.

5. For each proposed project provided for the user

(a) If the leader is not the initiator of the collaboratioetth

i. The leader of the project gets notified that a new user ip@sed as
CNI/PNI for their project.

ii. The leader accepts the new user.
(b) The user is added as a CNI/PNI to the project.
(c) The user, managers, the initiator, and the leader ofthjeqt get notified.

6. The collaboration gets terminated.
e Alternative Flow 1:

1. The alternative flow begins after the step 2.a if a managgrasts the termination
the collaboration.
2. The initiator and admins get notified about it.

3. The collaboration gets terminated and no account willrbated.

e Alternative Flow 2:

user.
2. The user, managers, the initiator, and the leader of thiegirget notified about it.
3. Continue the loop from the step 5.

1. The collaboration is instantiated when an initiator resjs for creation of a CNI/PNI

and the email address of the user. In addition, the initisiould specify whether the
new user will be a CNI/PNI. The initiator also provides thewssed projects for the

[

h

of

1. The alternative flow begins after the step 5.a.i if the ézatbes not accept the new

In summary, the collaboration is initiated whenever an atiled user requests creation of

new user account, indicating its role as CNI or PNI. The atdf also associates the new user wi

the proposed projects should decided on accepting or irgjettte addition of the new user to thei

65

a
th

one (or more) project(s). First, a manager should decideppno&ing or denying the request; if

the manager approves the request, the new user accounatsdreThen, the project leaders of

r

N

1C

14

s

2C

22

24

projects; if a project leader accepts the addition, the nesv is added to the corresponding project.
In order to implement the described collaboration in outesys we first prepared a configura-
tion specification and provided it to the system. The conéan specification reflects the structure
of the GRAND resources, the API of the GRAND forum, and théadmrations to be implemented.
The specification is provided in Listiig 6.1. In the presdngpecification, we only included the
parts which are relevant to our collaboration example, Aedémaining parts are omitted for sim-

plification purpose.

/1 Role Definitions

;| Rel ation Leads(User user, String pid) : "http://.../?action=api. isLeader", "http

/1 Event Definitions

Event Initiate (String usernamex, String real namex, String enmil=*, String rolex,
Strings pidsx);

Event Approve ();

Event Deny ();

Event Accept (String pidx);

Event Reject(String pidx);

Role CNI (user) : "http://.../?action=api. isCNl" , http://.../?action=api.getCN s
Role PNI (user) : "http://.../?action=api. isPNI" , http://.../?action=api.getPNs
Rol e l’\/anager (user) : "http://.../?action=api. isManager" , http://.../?action=api

. get Managers";

/1 Relation Definitions

2/ /...[l?action=api.getLeader";

/1 Service Definitions

User POST Creat User(String wpNane, String wpReal Name, String wpUser Type, String
WpEmail) : "http://.../?action=api.addUser Account";

String POST AddProj ect Menber (String nanme, String project) : "“http://.../?action=
api . addProj ect Menber";

String POST SendNotification(User receiver, String title, String nessage)
http://.../?action=api.addGenericNotification";

String POST AskQuestion(User receiver, String title, String message, String
wf _instance, String accept, String reject) : "http://.../?action=api.
addConfirnmNotification";

Listing 6.1: The configuration specification for the GRANDjact

According to Listind 6.11, five events are defined: Initiatemis used for instantiation a collab-
oration of this type, approve and deny are used by managedeéiding on creation of a new user
account, and accept and reject are used by project leadetledaling on the addition of the new
user to their projects. While there are many roles in the GRAMtwork, here we only included
three roles, i.e. CNI, PNI, and Manager. Similarly, the Lesglation is the only presented relation.
Finally, services for creating a user, adding a user to a&ptpgend a notification to a user and asking
a question from a user are also defined in the configuratiarifsgaion.

The specification of the CNI/PNI User Account Creation dodieation written in our collabora-
tion language is provided in Listiig .2. We used the stageld style for writing the specification

since the steps of the collaboration are ordered, and threvimtof the collaboration highly depends

66

10

12

14

16

22

30

44

50

on its state. The collaboration specification has four wiststates: Waiting, Pending, Terminated,
and Completed. The Waiting state represents the situatiovhich the collaboration waits un-

til @ manager decides on either approving or denying theagtgof a hew user account creation.
Similarly, the collaboration stays in Pending state umtieceivers the decisions of all the relevant
project leaders on either approving or rejecting the aglditif the new user to their projects. Both

the Terminated state and Completed states are Final; howtbeeCompleted state represents the
situation where the collaboration is finished and a new usssunt was successfully created, while

the Terminated state represents the situation where a randagied the request.

Col | aborati on StateBased N UserCreation {
/1 Field Declarations
String usernane;
String real nane;
Users enmil;
String role;
Strings pids;
String replies; // this field contains the ids of the projects which are
accepted or rejected
String user;

/1 Entry Specifications

Entry Initiate [CNl, PNI, Manager]{
usernane = e.usernang;

real nane = e.real nang;

emai | e.emil;

role e.role;

pi ds = e.pids;

If (role!="CNI" And role != "PNl"){

Exception ("The role should be either CNl or PNI");

Foreach(pid in pids){
If (WCreator Leads pid){
replies = replies + pid;
}
}
If (WCreator Is Admin){
user = CreatUser(usernane, real name, role, emil);

SendNotification(WCreator, "Ni User Creation Collaboration", "...");
Foreach (mg in (Al Mnager)){

SendNotification(mg, "Ni User Creation Collaboration', "...");
}

Foreach (pid in replies){
AddPr oj ect Menber (user nane, project);
}
Bool ean conpl et ed;
conpl eted = True;
Foreach (pid in pids) {
If (! (replies Contains pid)) {
conpl eted = Fal se;
Users | eaders = Find (? Leads pid);
Foreach (1l eader in |eaders){
AskQuestion(l eader, "Ni User Creation Collaboration", "...", WId,
Accept "+ pid, "Reject" + pid);
}

}

}
I f(conpl eted){
To(Conpl et ed) ;
} Else {
To(Pendi ng);
}

67

60

64

66

68

70

80

86

88

90

92

94

96

100

102

106

108

110

114

116

}

El se {
Foreach (nmmg in (Al Manager)) {
AskQuestion(mmg, "N User Creation Collaboration", "...", WId,
", "Deny");
}
To(Wai ting);

}

/] State Specifications
State Waiting {
@\pprove [Adm n]{
user = CreatUser(usernane, real name, role, email);
SendNotification(WCreator, "N User Creation Collaboration",
Foreach (mg in (Al Mnager)){
SendNotification(mg, "N User Creation Collaboration', "...");
}
Foreach (pid in replies){
AddPr oj ect Menber (user nane, project);
}
Bool ean conpl et ed;
conpl eted = True;
Foreach (pid in pids) {
If (! (replies Contains pid)) {
conpl eted = Fal se;
Users | eaders = Find (? Leads pid);
Foreach (1l eader in |eaders){
AskQuestion(l eader, "N User Creation Collaboration",
Accept"+ pid, "Reject" + pid);
}
}

}
| f(conpl eted){

To(Conpl et ed) ;
} Else {
To(Pendi ng) ;
}
}
@eny [Adm n]{
SendNotification(WCreator, "Ni User Creation Coll aboration",
Foreach (mg in (Al Mnager)){
SendNotification(mg, "Ni User Creation Collaboration', "...");
}
To(Term nated);
}

}
State Pending {

@\ccept[CNI, PNIT {

If(!'(e.Sender Leads pid){

Exception ("The sender should be the | eader of the project.");
}
AddPr oj ect Menber (user, pid);
replies = replies + e.pid;
SendNotification(WCreator, "Ni User Creation Coll aboration",
SendNotification(e. Sender, "N User Creation Coll aboration",
SendNotification(user, "N User Creation Collaboration", "...");
Foreach (mg in (Al Mnager)){

SendNotification(mg, "Ni User Creation Collaboration', "...");
}
Bool ean conpl et ed;
conpl eted = True;
Foreach (pid in pids) {

If (! (replies Contains pid)) {

conpl eted = Fal se;

}
}
I f(conpl eted){

68

" Approve

118 To(Conpl et ed) ;
} Else {
120 To(Pendi ng) ;
}
122 }
@Reject[CNI, PNIT {
124 If(!'(e.Sender Leads pid)){
Exception ("The sender should be the | eader of the project.");
126 }
replies = replies + e.pid;
128 SendNotification(WCreator, "Ni User Creation Collaboration", "...");
SendNotification(e.Sender, "N User Creation Collaboration", "...");
130 SendNotification(user, "Ni User Creation Collaboration", "...");
Foreach (mg in (Al Mnager)){
132 SendNotification(mg, "N User Creation Collaboration', "...");
}
134 Bool ean conpl et ed;
conpl eted = True;
136 Foreach (pid in pid) {
If (! (replies Contains pid)) {
138 conpl eted = Fal se;
}
140 }
| f (conpl et ed){
142 To(Conpl et ed) ;
} Else {
144 To(Pendi ng) ;
146 }
}
148
Final State Term nated;
150
Fi nal State Conpl eted;
152 }

Listing 6.2: The specification for a sample GRAND collabarat

6.2 The CWRC Project

The Canadian Writing Research Collaboratory (CWRC) [2]jps@ect which aims to create an in-
frastructure for literary research in and about Canadarigel-scale, cross-disciplinary collaborative
models. For achieving this goal, CWRC is developing a weketaservice-oriented system. The

CWRC system consists of two mains components.

e The CWRC repository houses digitized and digital-born materials, and keepswameta-

data about these digital materials, such as annotationsrand references.

e A set of Toolsenvisioned to enable collaborative literary studies, lmwjating capabilities for

online writing, editing, annotating, analyzing, knowledgining, and visualization.

In the CWRC system, the CWRC repository is the central corapbto which all the tools are
integrated. All the documents are kept in the repositoryciii$ shared among the CWRC tools.
The tools interact to the repository in order to retrieve atmte the documents. The CWRC tools

constitute the front-end of the system which are used bsalijeresearchers.

69

The CWRC repository is based on the Fedbia [3] repositoryoFeeis a general-purpose, open-
source digital object repository system. The main fundlity of Fedora is its ability to store
digital objects and metadata about the objects. A digit@ahbs mainly composed of a number of
data-streams which are the actual place-holders for theeatat meta-data. Every document in the
CWRC system is a stored as a digital object in the repositorfact, a data-stream is dedicated for
storing the content of the document which can have variousdts such as text, image, video, or a
combination of other formats; and several other data-stsesre used for keeping different types of
meta-data about the document.

As the CWRC system aims to deliver a collaborative workinatfpfm, it needs to support
more than just the basic viewing and editing capabilities/jgted by the tools integrated with the
repository. In fact, there are many collaborations relewathe context of literary research, such
co-authoring an article or peer-reviewing a scholarly mation. These collaborations typically
require collaboration of some researchers in order to predie final result. The CWRC system
wants to support these types of collaborations; howeverctimbination of the repository and tools
cannot provide the required support by themselves. Thergiere is a need for a component which
enables and coordinates the collaborations among resgaiiolthe CWRC system.

In order to add the required collaboration supports to theRQ/8ystem, we started by exploring
the user stories of the CWRC system. The list of user storibigh had been previously complied
by the CWRC team, included the information about the job fiems of various users and the in-
teractions among them. We found out that most of the CWRGibotkations are formed around
centered documents. In fact, the CWRC collaborations aresed on managing different types of
documents through their life-cycles. In addition, the CW&dBaborations are composed of loosely-
ordered steps which require simple types of coordinatioavihy all these properties, the CWRC
collaborations can be considered as genuine cases of datwewric collaborations. Therefore,
we concluded that our collaboration system can approjyiptevide the required support for the
CWRC collaborations; consequently, we decided to emplaycollaboration system in the CWRC
system.

In order to integrate the collaboration system with the CW4¥8tem, we started by preparing
the integration model according the components of the CWJREem and our generic integration
model. The resulted integration model is depicted in Fifge

According to this figure, the CWRC repository is the baseesysio which we want to add the
collaboration support. In the CWRC system, the CWRC reposiacts as the repository of the
integration model and the CWRC tools work as the editors aold bf the model. The CWRC tools
consist of a group of in-house developed editors and toats) as CWRC Writer by which the users
can edit and annotate scholarly texts. The set of CWRC tagelsat closed, but new tools may be
developed and added to the system. The users of the systeloyetimp provided tools to work on
CWRC documents.

70

O
83’3

Base System

CWRC
Editors and |
Tools <«
o
* <L | Notification and Action CWRC
g Collaboration
-— % System
CWRC
Repository
(Docs and Logs) — Event
|
| Adapter
|
! 0
| Change Message
' -

Figure 6.3: The realized integration model for the CWRC @cbj

The log database of the integration model is also implentaumnseng the CWRC repository. We
allocated a data-stream of every digital object to collabon-related metadata. This data stream,
which is named workflow metadata data-stream, maintaingoide of actions performed on the
corresponding document. In fact, the content of a documedtthe action logs related to the
document are kept next to each others in two data-strearhe ebtresponding digital object placed
in the CWRC repository. The action logs, also known as collation metadata stamps in CWRC
system, contain information about the actions which usave performed on document using tools,
for example adding a new section to a document or corredtiagtammatical errors.

The information needed for creation of an action log is piedi either automatically by the
CWRC tool or manually by the user. Itis preferred that CWRQId@reate action logs; however,
there are situations where the tools cannot exactly knowt Weausers have done; therefore, it
becomes necessary that the users provide the requiredhiation. For handling both cases, an API
and a user-interface for creation of new action logs wereld@ed. If a tool has all the required
information, it automatically creates the action log usihg API; otherwise, the user-interface is
displayed and asks the user to provide the required infoomat

Every action log, also known as workflow metadata stamp in @/\ggstem, is composed of
several attributes including the ID of the user who perfairtiee action, the 1D of the tool which

created the log, the time and date of creation of the actigntle type of the performed action,

71

a status indicating the completion level of the action, amthes additional information about the
action. The actions logs are stored as XML documents intdfiaor metadata streams. In addition
to collaboration-related purposes, the stored actionddgslocument provide valuable information
about the history of the document.

Fedora, as the underlying implementation of the CWRC répsiprovides a messaging mech-
anism based on Apache ActiveMQ [1], an open-source messaderb The Fedora messaging
mechanism enables sending change messages to interedted ywhenever digital objects in Fe-
dora repository are modified. Every change message cortkemsew value of the modified digital
object in addition to some additional information about thedification, such as the modification
date. For publishing action logs, we first tried to employ Heelora messaging mechanism. How-
ever, this messaging mechanism did not provide us the flayibvie required. For example, we were
interested to get the most recent action log added to a mddifikaboration metadata data-streams,
but the messaging mechanism could only send the whole dooftédre data-stream. Therefore, we
had to find another way by which the adapter gets notified atheutreation of new action logs in
the CWRC repository. To solve this problem, we decided tdémgnt the messaging ourselves, so
some modifications were made to the action logs creation A$& result, whenever the action logs
creation API is called, besides adding an action log to threesponding collaboration meta-data
stream, it also informs the adapter about the action logtlye

The adapter was configured according to the XML schema degifym storing action logs in the
CWRC repository. Receiving a message containing an aagpmIXML format, the adapter parses
the message and creates the events for the collaboratimmsgscordingly; then, the adapter sends
the event to the REST API of the collaboration system. In fizacthe adapter is responsible for
transforming action logs from XML format as they are stonedhie CWRC repository into URL-
encoded events understandable by the collaboration enfireecollaboration engine reacts to these
events by executing the relevant collaboration instances.

During the execution of CWRC collaborations, there areasituns where some information
should be provided to a user or a group of users; for examplesearcher should get informed
whenever a document is assigned to her. Similarly, theresitwations where some data should
be obtained from a user or a group of users; for example, anrestiould provide her decision
on approving or rejecting a submitted article. Therefdne, CZWRC system needed a mechanism
which enables providing information to and asking questiisom users. Therefore, we developed
a notification management component for the CWRC system.

The notification management component mainly consists eftab@dse responsible for housing
notification, an API by which notifications can be added todhtabase, and a front-end responsible
for displaying the notifications to users. Every naotificatie composed of several fields including
the creator, the recipient, the subject, the descriptlmcbrresponding document, and the creation

time of the notification. In addition, every natification chave a number of response options.

72

The options specify the possible responses that the useprcarde to the naotification. In fact,
by adding response options to notification, questions caasked from users and their answers
can be obtained. For example, if a collaboration requirgainimg the decision of an editor about
a submitted article, a notification in regards of this maidegent to the editor; besides the general
information about the question, two response options aréged to the user, i.e. Accept option and
Reject option. For collecting the responses to a notificagach response option of the natification
includes a URL; the URL points the service which is invokedewhhe corresponding response
option is selected be the user.

The notification front-end was integrated into the mainrusterface of the CWRC system.
Therefore, when a user logs-in into the CWRC system, théications are displayed to the user. For
the notification which requires an answer from the user, ghi®os are also displayed to the user next
to the notification; upon clicking on one of the responseaphuttons, the service corresponding
to the selected option will be invoked.

Having all these pieces developed and integrated, we speaffew sample CWRC collabo-
rations and deployed them on the CWRC collaboration endméhis way, we could examine the
integration of the CWRC collaboration system with the CWRGI$ and repository. However, the
CWRC system is under development and some services redwjrdte collaboration system are
still missing. Specifically, an API into CWRC system throughich collaborations can perform
actions of the system is not developed for the collaboratij@mtem yet. In fact, the only actions that
the collaborations can perform at this point are sendindications to users. When such an APl is

completed, fully functional CWRC collaborations can becified and put into operation.

73

Chapter 7

Conclusion

In this work, we studied a prevalent type of collaborativerkyanamely resource-centric collab-
orations, in which a group people collaborate in order toettgy (i.e., create and update) shared
resources. We identified the characteristic propertiessdurce-centric collaborations, with semi-
structured process model and human-driven progress asdbesmnificant among them. We re-
viewed the classic systems aimed at managing workflows altetbooative work, and argued that
these systems are not appropriate for supporting this tygeltaborations as they are either too
rigid or not powerful enough. Therefore, there is a need fdutins to support resource-centric
collaborations, which adequately balance coordinaticth Wexibility. In addition, since the vari-
ous activities of resource-centric collaborations arécigity supported by web-based systems, these
solutions should also consider the integration requirdamefweb-based systems.

As a solution, we introduced a service-oriented approachupporting resource-centric collab-
oration. Our approach aims at coordinating people, toold,sgrvices in service-oriented resource-

centric environments. Our solution includes
e alanguage for specifying resource-centric collaboration
¢ a workflow engine for enacting and managing collaboratiamsratime, and

e a systematic methdology for integrating our engine witheotinteractive systems used by

users to manipulate resources.

Our system satisfies the requirements of resource-cemltaborations and can be integrated with
any ecosystem of systems and tools in order to add the supitbe collaborations to them. In the
chapters of this thesis, we provided a complete specificatiour collaboration language including
its syntax and semantics, explained the architecture otollmboration system, and described of
our integration model. Finally, we provided two case stadie the applications of our system in
collaborative projects.

The two case studies should be seen as the evidence of dyilitiaaf our approach and system

in real-world projects. The CWRC project is mainly focusedneanaging CWRC documents; the

74

documents are, in fact, the resources around which thebooliéion are defined. The documents
are manipulated using the REST interfaces provided by th&CWepository. The documents are
developed or modified by the resource-centric collabonadiefined in CWRC. In fact, each type of
collaborations facilitates and manages the collaboraifgpeople on a specific type of document
through its life-cycles. GRAND is a network of researchard the GRAND Forum is responsi-
ble for managing the information about the participatingeachers, their products, their projects,
and the relationships among them; this information is aib&sand modifiable through REST ser-
vices, implemented by the GRAND Forum. The resource modelseoCWRC platform and the
GRAND Forum are different as are their architectures. TheRDAsystem is composed of a set
of tools integrated to a central Fedora document repositainjle the GRAND Forum is built on
Mediawiki and a dedicated MySQL database management sygithough the CWRC platform
and the GRAND Forum are different in many aspects, our cotialion approach and system was
employed similarly in both cases using our integration nhodegeneral, we believe that our system
can be integrated with any ecosystem of tools and propefdpats the required resource-centric
collaborations, assuming that the ecosystem providesahmonents assumed by our integration
model.

Our collaboration framework was developed according toREST architectural style. Par-
ticularly, the collaboration system realizes resouraetioe collaborations by mainly orchestrating
REST services; then, the system publishes the resulteabooltions as REST services too. There-
fore, our collaboration system can be seen as a system whidiless REST service composition in
a process-oriented manner. Furthermore, the REST prexipére used as guidelines in the design
of our resource-centric collaboration approach; spegisiimplicity and flexibility were among the
main design goals of our approach. The system is originaietbped to support resource-centric
collaborations; however, the range of its application cawlder than only this type of collaborative
workflows. In fact, our approach and system would be appatgto be support any types of work-
flows which conforms to the properties of REST architectsit@k in resource-centric environments
such as the World Wide Web. For example, our work can also ée fos enabling end-user service
mash-ups.

In the design of our language, we deliberately did not inelsdme features which can be typi-
cally found in web-service orchestration languages su@Pds_. For example, we ignored excep-
tion handling and transactional support. In fact, we trieilentify the essential language features
and only provide native support for them. We made this degisiccording to the properties and
requirements of resource-centric collaborations; sprdifi simplicity was more important than ex-
pressiveness of the collaboration language. In additesgurce-centric collaborations have simple
structure and do not usually have any complex processingint@mmon situations, where more
complex processing is required, it can be addressed by atedggthe processing to external ser-

vices. In this way, the capabilities of the language do nffeswhile the core of the language stays

75

lightweight. we should also mention that we do not claim @nguage natively supports all of the
common requirements. Actually, we designed the languagedan sample resource-centric col-
laborations we explored and the conceptualization of thlaloorations we developed. For example,
manipulating JSON data is often required when working wilESH services, so adding the native

support for working with JSON data can be considered as arowement to our language.

7.1 Future Work

There are some other improvements that can be applied oougaaispects of the collaboration
framework, specially the usability of the system. Curngntiollaborations are specified in our
collaboration language which has a scripting-style texmraguage. The users need to write the
collaboration specification using our Eclipse-based boltation editor. We greatly tried to design
our language such that it can be used by less technical usexddition, we embedded some facili-
tation and assistance for authoring collaboration spetifins in the collaboration editor. However,
it still makes a notable difference whether the person whesgonsible for specifying the collab-
orative process is familiar with the scripting paradigm ot.nTherefore, a graphical approach for
writing collaborations would make the collaboration sfieation process much easier to learn and
use. Consequently, developing a graphical notation focigpreg collaborations and a graphical
collaboration editor which supports the graphical notatimuld be an important future extension
to the system. It should be considered that the graphicatiootshould be developed on top of the
textual collaboration specification language; in otherdgor valid graphical specification should
be translatable to a valid textual specification (to be geec valid graphical specification may be
translatable to many valid textual specifications, butfthem must have exactly the same executing
logic). Accordingly, the graphical editor is responsilbe franslating the graphical specifications to
textual specifications which can be then compiled by thesthdollaboration specification compiler
into executable specifications.

During our work on CWRC and GRAND projects, we discovered ttalaborative projects
usually have many similar collaborations such as creatirgpart or publishing an artifact. In fact,
the variants of some popular collaborations can be founthiost all of the collaborative systems.
In addition, many collaborations in a project or acrossasiprojects share some common collabo-
ration fragments such as accept/reject fragment for sigmgvdecision making or voting fragment
for distributed decision making. We believe that identifiza and classification of resource-centric
collaboration patterns and templates (which can respagtbe achieved by generalization of com-
mon fragments and collaborations) will significantly camite to this field. As the next step, the
collaboration languages and the workflow editors of colfabive systems can provide the support
for these patterns, such as suggesting the patterns dteted their implementations.

Resource-centric collaborations typically have somesstamich require asking questions from

users and collecting the responses. The responses artyusgl in the control elements in order

76

to coordinates the operations of the collaborations. I, fags is the main way by which the
collaborations can interact with human participants. Oh#h@ most common scenarios involves
collecting the decision of a user on one particular situmtior example, asking a supervisor to either
accept or reject a project-report. These types of opemt@most exist in all of the CWRC and
GRAND collaborations we studied and/or developed; and irega, they are of the main constructs
of resource-centric collaborations. For both CWRC and GRAMbjects, we developed natification
mechanisms presented as notification dashboards through thie questions are sent to the users,
and the responses are collected and informed to the coliibniengine. For each project, based on
the requirements of the project and its collaborations, eféxdd and implemented some questions.
We implemented the questions such that they are not speaifjcto one particular collaboration
but could be used in any collaborations of the project. H@xdvis possible to go beyond that and
generalize the common questions to be reusable by diffezeatirce-centric collaboration projects.
Yes-no question is probably the simplest and most commoa tfpgquestions which is used in
almost every resource-centric collaboration project.rétaee other types of questions which appear
in similar forms in different projects. Therefore, it is uable to identify these common types of
guestions, more generally common types of user interagtaomd extends the collaboration language

and system to support these questions/user interactiditstadass citizens.

77

Bibliography

[1] Apache activemq, November 2012. http://activemq.apaurg/.
[2] Canadian writing research collaboratory (cwrc), Nowem2012. http://cwrc.cal.
[3] Fedora commons repository, June 2012. http://fedoraraons.org/.

[4] Google code blog, November 2012. http://google-coddates.blogspot.ca/2009/03/
introducing-labs-for-google-code.html.

[5] Grand nce, November 2012. http://grand-nce.ca/.

[6] Ibm websphere process server, November 2012. httpuww
01.ibm.com/software/integration/wps/.

[7] Mediawiki, November 2012. http://www.mediawiki.owgiki/MediaWiki.

[8] Oracle bpel process manager, November 2012. http:/hevasle.com/technetwork/middleware/
bpel/overview!/.

[9] Xtext framework, June 2012. http://www.eclipse.ortgXt/.
[10] Yahoo pipes, November 2012. http://pipes.yahoo.pipes/.

[11] A. Agrawal, M. Amend, M. Das, M. Ford, C. Keller, M. Kloppann, D. Konig, F. Leymann,
R. Muller, G. Pfau, K. Ploesser, R. Rangaswamy, A. Rickay2dnRowley, P. Schmidt,
I. Trickovic, A. Yiu, and M. Zeller. Web services human tasiks¢humantask), version 1.0.
2007.

[12] A. Agrawal, M. Amend, M. Das, M. Ford, C. Keller, M. Kloppann, D. Konig, F. Leymann,
R. Muller, G. Pfau, K. Ploesser, R. Rangaswamy, A. Rickay2dnRowley, P. Schmidt,
I. Trickovic, A. Yiu, and M. Zeller. Ws-bpel extension for pele (bpel4people), version 1.0.
2007.

[13] Djamal Benslimane, Schahram Dustdar, and Amit Sheghvi€es mashups: The new genera-
tion of web applicationslEEE Internet Computingl2(5):13-15, September 2008.

[14] Kamal Bhattacharya, Cagdas Gerede, Richard Hull, Ramgand Jianwen Su. Towards for-
mal analysis of artifact-centric business process motteRroceedings of the 5th international
conference on Business process managenii1’07, pages 288-304, Berlin, Heidelberg,
2007. Springer-Verlag.

[15] Thomas Burkhart and Peter Loos. Flexible businessga®es - evaluation of current ap-
proaches. IfProceedings of Multikonferenz Wirtschaftsinformatik @2010.

[16] Jorge Cardoso.Semantic Web Services: Theory, Tools and Applicatiol@® Publishing,
Hershey, PA, USA, 2007.

[17] Steinar Carlsen, John Krogstie, and Odd Ivar Lindlgeehaluating flexible workflow systems.
In Proceedings of the 30th Hawaii International ConferenceSgstem Sciences: Information
Systems Track-Collaboration Systems and Technology féRI HICSS '97, pages 230—,
Washington, DC, USA, 1997. IEEE Computer Society.

[18] Francisco Curbera, Matthew Duftler, Rania Khalaf, &aliglas Lovell. Bite: Workflow com-
position for the web. IfProceedings of the 5th international conference on Ser@idented
ComputingICSOC '07, pages 94-106, Berlin, Heidelberg, 2007. Sgnifderlag.

78

[19] A. Dix, J. Finlay, G. Abowd, and R. BealeHuman-Computer InteractionPrentice Hall.,
1998.

[20] Schahram Dustdar and Wolfgang Schreiner. A survey dm segvices compositiorinterna-
tional Journal of Web and Grid Servicel1):1-30, August 2005.

[21] Clarence Ellis, Karim Keddara, and Grzegorz Rozenb&ygnamic change within workflow
systems. IflProceedings of conference on Organizational computinggaysCOCS '95, pages
10-21, New York, NY, USA, 1995. ACM.

[22] Thomas Erl.Service-Oriented Architecture: Concepts, Technologg, @esign Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2005.

[23] Roy Thomas FieldingArchitectural Styles and the Design of Network-based So&wrchi-
tectures Doctoral dissertation, University of California, Irvin2000.

[24] Christian Fritz, Richard Hull, and Jianwen Su. Autoioabnstruction of simple artifact-based
business processes. Pnoceedings of the 12th International Conference on DasabBheory
ICDT '09, pages 225-238, New York, NY, USA, 2009. ACM.

[25] J. Grudin. Computer-supported cooperative work: ¢tisnd focusComputey 27(5):19-26,
1994.

[26] Petra Heinl, Stefan Horn, Stefan Jablonski, Jens NEelrjn Stein, and Michael Teschke.
A comprehensive approach to flexibility in workflow managetgy/stems.SIGSOFT Softw.
Eng. Notes24(2):79-88, March 1999.

[27] David Hollingsworth. The Workflow Reference ModeMWorkflow Management Coalition,
Hampshire, 1995.

[28] Ta'id Holmes, Martin Vasko, and Schahram Dustdar. ‘dighExtending bpel engines with
bpeldpeople. IProceedings of the 16th Euromicro Conference on Parallédtributed and
Network-Based Processing (PDP 2008DP '08, pages 547-555, Washington, DC, USA,
2008. IEEE Computer Society.

[29] Richard Hull. Artifact-centric business process misd@&rief survey of research results and
challenges. IiProceedings of the OTM 2008 Confederated Internationaf@emces, CooplS,
DOA, GADA, IS, and ODBASE 2008. Part Il on On the Move to Megfnirinternet Systems
OTM '08, pages 1152-1163, Berlin, Heidelberg, 2008. Spirerlag.

[30] S. Jablonski and C. Bussler. Workflow management: ningaloncepts, architecture and
implementation. 1996.

[31] M. Kloppmann, D. Koenig, F. Leymann, G. Pfau, A. Rickayz C. Von Riegen, P. Schmidt,
and I. Trickovic. Ws-bpel extension for people (bpel4pedpP005.

[32] A. Nigam and N. S. Caswell. Business artifacts: An ajgtoto operational specification.
IBM Syst. J.42(3):428-445, July 2003.

[33] M.P. Papazoglou. Service-oriented computing: Cots;egharacteristics and directions. In
Web Information Systems Engineering, 2003. WISE 2003 eBdings of the Fourth Interna-
tional Conference orpages 3-12. IEEE, 2003.

[34] Cesare Pautasso. Composing restful services withrgopé International Conference on
Software Composition 200%olume 5634, page 142?159, Zurich, Switzerland, July 2009
Springer.

[35] Chris Peltz. Web services orchestration and chorgigraComputer 36(10):46-52, October
2003.

[36] Stefan Pietschmann, Vincent Tietz, Jan Reimann, Ganidiebing, Michel Pohle, and Klaus
Meissner. A metamodel for context-aware component-basethap applications. IRroceed-
ings of the 12th International Conference on Informatiotegration and Web-based Applica-
tions & ServicesiWAS '10, pages 413—-420, New York, NY, USA, 2010. ACM.

[37] Florian Rosenberg, Francisco Curbera, Matthew J.|[Byfind Rania Khalaf. Composing rest-
ful services and collaborative workflows: A lightweight apach.|EEE Internet Computing
12(5):24-31, 2008.

79

[38] Helen Schonenberg, Ronny Mans, Nick Russell, NataMydyar, and Wil M. P. van der Aalst.
Process flexibility: A survey of contemporary approaches.Jdn L. G. Dietz, Antonia Al-
bani, and Joseph Barijis, editoiG|AQ! / EOMAS volume 10 ofLecture Notes in Business
Information Processingpages 16—30. Springer, 2008.

[39] Nelly Schuster, Raffael Stein, Christian Zirpins, aBéfan Tai. A service mashup tool for
open document collaboration. Rroceedings of the 8th International Conference on Service
Oriented Computingpages 713-714, 2010.

[40] Nelly Schuster, Christian Zirpins, and Ulrich ScholtdHow to balance flexibility and coordi-
nation? service-oriented model and architecture for d@nirbased collaboration on the web.
In SOCA pages 1-9, 2011.

[41] Nelly Schuster, Christian Zirpins, Stefan Tai, Stewadti®, and Nils Heuer. A service-oriented
approach to document-centric situational collaboratimtesses. IfProceedings of the 2009
18th IEEE International Workshops on Enabling Technolsgiefrastructures for Collabora-
tive EnterprisesWETICE '09, pages 221-226, Washington, DC, USA, 2009. |E®mputer
Society.

[42] Wei Shi, Jian Wu, Shaolin Zhou, Ling Zhang, Yuyu Yin, aBdaohui Wu. Facilitating the
flexible modeling of human-driven workflow in bpel. Rroceedings of the 22nd International
Conference on Advanced Information Networking and Appboa - WorkshopsAINAW '08,
pages 1615-1624, Washington, DC, USA, 2008. IEEE Compuieesy.

[43] OASIS Web Services Business Process Execution LarggW§BPEL) TC. Business process
execution language for web services (bpel) version 2.07200

[44] Technical Architecture TeanebXMLGlossary2001.

[45] J. Thomas, F. Paci, E. Bertino, and P. Eugster. Usestas#l access control overweb services.
In Web Services, 2007. ICWS 2007. IEEE International Conéerem pages 60-69. IEEE,
2007.

[46] Wil van der Aalst and Kees van He®lorkflow Management: Models, Methods, and Systems
MIT Press, Cambridge, MA, USA, 2004.

[47] Erik Wittern, Nelly Schuster, J6rn Kuhlenkamp, andf&teTai. Participatory service design

through composed and coordinated service feature modeRrokteedings of the 10th Inter-
national Conference on Service Oriented Computpages 158-172, 2012.

80

Appendix A

Translation to Java

The specifications written in our collaboration languagerast understandable by the engine as the
way they are. Our collaboration language is designed to g tegorogram for the users, whereas
the engine only understands some specific structured Jaggaons that include logic about the
collaborations and their interactions. Therefore, the fitvious step in providing the engine with
the understandable version of collaboration and configarapecifications is to transform them
into their Java representations. In this chapter, we ptasan the specifications written in our
collaboration language can be translated to target strettiava programs and packages.

We organized our translation procedure into two sectioasstation of a configuration specifi-
cation, and translation of collaboration specification. €ach specification, we explore the elements
defined in each of the specifications and explain how thedam¢ions and logic’s can be translated
to a Java program that is understandable by the collabaratigine. For each element, we provide
the list of rules that are followed by our translator and jde\an example of its translation from its
specification in our collaboration language to the targed jmogram. Since the Type element has
been used in translation of both specifications, we preddmgaletails about translation Type before

everything else.

A.1 Types

Each Type defined in our collaboration language should Insfoamed to a data type understandable
by our collaboration engine. These data types have beerimgrited as individual java classes in
the engine package, and the translator only employs theheitarget Java collaboration program.
For example, wherever there is a field or variable of type lrseur collaboration or configuration
specification in our collaboration language, the transkatmsforms it to UserType, which is defined
for the engine. The data types defined for Boolean, Integere TString, Strings, User and Users
in our collaboration language are respectively BoolearTyptegerType, TimeType, StringType,

StringsType, UserType and UsersType in collaborationrengackage.

81

.

11

15

19

21

A.2 Configuration Specification

While transforming the configuration specification a newajanoject needs to be created, including
classes for configuration elements. The project, named QmationProject, includes a Java class
for each event declared in the original specification, alsidgva class containing the translated
Roles as its methods, a single Java class containing theldtad Relations as its methods, a single
Java class containing the translated Services as its methBdch of the elements defined in a
configuration specification, including Event, Role, R@atand Service, needs to be transformed to
classes or methods in the target format. In the remainddri®fsection we explore each of these

elements and explain how each of them should be translated.

A.2.1 Event Declaration

For each Event declared in the Configuration Specificatinmpdividual Java class should be built
in the ConfigurationProject. All event classes are subeke$ AbstractEvent.

The created class will be named according to the Event Naxnef the Event Name is “Update”
the class would be named as UpdateEvent. The parameters eféits in the Event Declaration
will be transformed as the fields of the class. The class hamsatmictor receiving a parameter
referring to the sender of the event, and a parameter for eftte fields with the same name and
translated Type. Moreover, for each parameter in the Eventdbation, i.e. each field of the event
class, a getter method should be defined in the class. Béwmde,tall event classes should include
a method called “visit” that is needed for handling the evaamd implementing the visitor pattern.
The signature and the body of this method is the same for afitsy

For example, the Event Declaration

Event Update (String nane*, |nteger nunber);

will be translated to the event class that is presented ifiofl@ving.

public class Updat eEvent extends AbstractEvent {
private static final String eventNane = "Update";
private StringType nane;
private |nteger Type nunber;

publ i c Event Update (User Type sender, StringType nane, |ntegerType nunber) throws
W nmsExcepti on{
super (event Nane, sender);
i f (nanme==nul |) {
t hrow new W nsException("...Excepti onMessage...");
}
t hi s. name= nane;
t hi s. nunmber = nunber;

}

public StringType get Name() {
return name;

}

public I ntegerType get Nunmber() {
return nunber;

}

82

25

27

@verride
public State visit(EventHandl er eventHandl er) throws W nmsException{
return ((Coll aborationEvent Handl er) event Handl er) . handl eEvent (t hi s);
}
}

A.2.2 Service Declaration

For each Service declared in the Configuration Specificaionethod should be created and added
to the Services class in the ConfigurationProject. ConfiganBroject includes a class, named
Services, containing all methods for the defined servic#isarConfiguration Specification.

The created method should be a public static method thatnedaaccording to the Service
Name, e.g. if the Service Name is “AddMember” the method wdid named as AddMemberSer-
vice. The return type of the method should be the translated bf the return Type of the Service.
The parameters of the method should be the translated foath thfe parameters presented in the
Service Declaration, with the same names and transformpésyand also in the same order. At
the beginning of the method, a Set of Parameters should b&edrand for each parameter defined
for the method, an element should be added to the Set, usmgalues for the element: (1) the a
string literal with value of the name of the parameter, afjdh{@ result of calling toString() method
on that parameter. After adding all parameters to the Pamret, the RestClient should call the
service using either POST or GET using the a string literaluiding the exact URL presented in
the Service Declaration, and the created Set of Paraméidle Service Declaration uses POST
then the RestClient also uses POST, and it uses GET if it isifggedin the corresponding Service
Declaration. Then if the response of the client is as destredmethod returns a new instance of
the translated return Type of the service with using theyemicluded in the response. If the status
of the response is not as desired, the method should throwcapton.

For example, the Service Declaration

1| String POST AddMenber (User user, String project) : "...url..."

.

will be translated to the method that is presented in thefoig.

public static TypeString AddMenber Servi ce (User Type user, StringType project)

throws W nsExcepti on{

Set <Par anet er > par ans= new HashSet <Par anet er>();

par ans. add(new Par anmet er ("user", user.toString()));

par ans. add(new Paraneter("project ", project.toString()));

Response response = RestClient. POST("...url...", parans);

i f(response.getStatus() < 200 || response.get Status()>299)
t hrow new W nsException("...Excepti onMessage...");

return new StringType (response.getEntity());

A.2.3 Role Declaration

For each Role declared in the Configuration Specificatioohethods should be created and added

to the Roles class in the ConfigurationProject. Configun&tioject includes a class, named Roles,

83

containing all methods for the defined roles in the ConfigareSpecification.

The first method should be a public static method that is naasetis” followed by the Role
Name followed by “Role”, e.g. if the Role Name is “Managerétmethod would be named as
IsManagerRole. The return type of the method should be Bodlgpe since the method returns
True if the inputted user has the role and returns Falsewtber The method has an input parameter
of type UserType named the same as the Parameter Name. A¢girening of the method, a Set
of Parameters should be created and for the only input paearnethe method added to the Set,
using two values for the element: (1) the a string literahwitlue of the name of the parameter, and
(2) the result of calling toString() method on that parameiéen, the RestClient should call the
service using POST and a string literal including the firstL_UiResented in the Role Declaration,
and the created Set of Parameters. If the response of thn islias desired, the method returns a
new BooleanType using the entity included in the responithel status of the response is not as
desired, the method should throw an exception.

The second method should be a public static method that idas “All” followed by the
Role Name followed by “Role”, e.g. if the Role Name is “Mandgike method would be named
as AllManagerRole. The return type of the method should bersIype since the method returns a
collection including all users having that Role. The metdods not have any input parameters. At
the beginning of the method, a Set of Parameters should b&edrbut no elements should be added
to that since the method does not have any inputs. Then, tt€Rent should call the service using
GET and a string literal including the second URL presemete Role Declaration, and the created
Set of Parameters. If the response of the client is as desirednethod returns a new UsersType
using the entity included in the response. If the status efésponse is not as desired, the method
should throw an exception.

For example the Role Declaration:

1| Rol e Manager (user) : "...urld...", "...url2...";

.

will be translated to the the methods that are presenteckifottowing.

public static Bool eanType | sManager Rol e (User Type user) throws W nsExcepti on{
Set <Par anet er > par ans= new HashSet <Par anet er>();
par ans. add(new Paraneter ("user", user.toString()));

Response response = RestClient. GET("...url1...", parans);
i f(response.getStatus() < 200 || response.get Status()>299)
t hrow new W nsException("...Excepti onMessage...");

return new Bool eanType (response.getEntity());

}

public static TypeUsers Al |l ManagerRole () throws W nsExcepti on{
Set <Par anet er > par ans= new HashSet <Par anet er>();

Response response = RestClient. GET("...url2...", parans);
i f(response. getStatus() < 200 || response. get Status()>299)
t hrow new W nsException("...Excepti onMessage...");

return new UsersType (response.getEntity());

}

84

A.2.4 Relation Declaration

For each Relation declared in the Configuration Specifinatloree methods should be created and
added to the Relations class in the ConfigurationProjectnfi@arationProject includes a class,
named Relations, containing all methods for the definediogisiin the Configuration Specification.

The first method should be a public static method that is naaméts” followed by the Relation
Name followed by “Relation”, e.g. if the Relation Name is ‘dds” the method would be named as
IsLeadsRelation. The return type of the method should bdeBodype since the method returns
True if the relation is held between the inputted parametedseturns False otherwise. The method
has two input parameters which are in the translated forntseopresented parameters in the Rela-
tion Declaration. Each parameter should be named the saitseecasresponding Parameter Name,
and its type is the translated form of the presented Typeh®parameter. At the beginning of the
method, a Set of Parameters should be created and for thanpalyparameter of the method added
to the Set, using two values for the element: (1) the a stitegal with value of the name of the
parameter, and (2) the result of calling toString() methondhat parameter. Then, the RestClient
should call the service using GET and a string literal inglgdhe first URL presented in the Re-
lation Declaration, and the created Set of ParameterseIfdhponse of the client is as desired, the
method returns a new BooleanType using the entity includetie response. If the status of the
response is not as desired, the method should throw an éxcept

The second method should be a public static method that ieda® “FindX” followed by the
Relation Name followed by “Relation”, e.g. if the Role Nane“Leads” the method would be
named as FindXLeadsRelation. The return type of the methodld be the translated collection
type of the first parameter defined in the Relation Declanasmce the method returns a collection
including all left-hand side elements, such that the retats held between those elements and the
inputted parameter. For example, if the type of the first peter is String, the return type of the
method would be StringsType. The method has one input paeartieat is the translated forms
of second parameter presented in the Relation Declarafibthe beginning of the method, a Set
of Parameters should be created and the only parameter ofdtfed should be added to the Set.
Then, the RestClient should call the service using GET amdregditeral including the second URL
presented in the Relation Declaration, and the createdf®eirameters. If the response of the client
is as desired, the method returns a new object of translatettion type of the second parameter,
using the entity included in the response. If the status @fésponse is not as desired, the method
should throw an exception.

The third method should be a public static method that is mhase“Find” followed by the
Relation Name followed by “XRelation”, e.g. if the Role Nanse‘Leads” the method would be
named as FindLeadsXRelation. The return type of the methodld be the translated collection
type of the second parameter defined in the Relation Dearatince the method returns a col-

lection including all right-hand side elements, such that telation is held between the inputted

85

[

19

21

N
o

parameter and those elements. For example, if the type sEitwnd parameter is String, the return
type of the method would be StringsType. The method has qn parameter that is the translated
forms of first parameter presented in the Relation DeclamatiAt the beginning of the method, a
Set of Parameters should be created and the only parametes ofethod should be added to the
Set. Then, the RestClient should call the service using Gillasstring literal including the second
URL presented in the Relation Declaration, and the creagtdBSParameters. If the response of
the client is as desired, the method returns a new objecton$lated collection type of the second
parameter, using the entity included in the response. I§this of the response is not as desired,
the method should throw an exception.

For example Relation Declaration:

Rel ati on Leads(User user, String pid) : "...urll...", "...url2...";

will be translated to the methods that are presented in tl@ving.

public static Bool eanType |sLeadsRel ati on (User Type user, StringType pid) throws
W nsExcepti on{
Set <Par anet er > par ans= new HashSet <Par anet er>();
par ans. add(new Par anmeter ("user", user.toString()));
par ans. add(new Paraneter ("pid", pid.toString()));

Response response = RestClient. GET("...url1...", parans);
i f(response.getStatus() < 200 || response.get Status()>299)
t hrow new W nsException("...Excepti onMessage...");

return new Bool eanType (response.getEntity());

}

public static UserType Fi ndXLeadsRel ation (StringType pid) throws WnsException{
Set <Par anet er > par ans= new HashSet <Par anet er>();
par ans. add(new Paraneter ("pid", pid.toString()));

Response response = RestClient. GET("...url2...", parans);
i f(response. getStatus() < 200 || response.get Status()>299)
t hrow new W nsException("...Excepti onMessage...");

return new User Type (response.getEntity());

}

public static StringType Fi ndLeadsXRel ati on (User Type user) throws W nsExcepti on{
Set <Par anet er > par ans= new HashSet <Par anet er>();
par ans. add(new Paraneter ("user", user.toString()));

Response response = RestClient. GET("...url2...", parans);
i f(response. getStatus() < 200 || response. get Status()>299)
t hrow new W nsException("...Excepti onMessage...");

return new StringType (response.getEntity());

A.3 Collaboration Specification

While transforming a collaboration specification, a newkaae is created, including classes for
collaboration elements and logic. The package should beedafter the Collaboration Name, e.g.
if the Collaboration Name is “Reporting” the name of the esponding project would be Report-
ingCollaborationPackage. The package includes Javaeslassduding the logic and elements of the
collaboration, each of them translated into a specific farlaese classes consist of (1) the “Data”

class including all data elements of the collaborationhsag its fields and sub-collaborations; (2)

86

[

[

one class for each state defined in a state-based collatrosqtécification; (3) the “Collaboration”
class including the main executable method of the collamrand all construction procedures (i.e.
constructor methods) that are obtained from Entry Dedtamat

In the remainder of this section we explore each of the coliation specification elements and
explain how they should be transformed into their Java fonm lbe organized in the mentioned

classes.

A.3.1 Sub-Collaboration Declaration & Field Declaration

All Sub-Collaborations and Fields declared in the Collaiion Specification, will be translated as
fields of CollaborationData class in the correspondingatmiration project. Therefore, the Collab-
orationData class should be created as a subclass of Atiitacand should include the translated
forms of all collaboration fields and sub-collaborations dheir corresponding getter and setter
methods. Moreover, they should be two methods, namedigerehd deserialize, that will be used
for storing and retrieving collaboration instances tafirtnstances Database. The body of these
methods should also be implemented based on the declardd &irtl sub-collaborations in the
Collaboration Specification.

For each Field Declaration in the collaboration, there sthbe a private field created for Col-
laborationData, with the exact same name but the transfated of its original Type. For each
Sub-Collaboration Declaration in the collaboration, thehould be a private field created for Col-
laborationData, with the exact same name and type Stringe&ah of these declared fields in Col-
laborationData the appropriate getter and setter methomidd be added to the CollaborationData
class. The method serialize is a public method with the netype of String. In this method, we
first define an ArrayList of String, and then for each Field &utb-Collaboration declared we add
its String representation to the list. Then the method sheetlurn the result of serializing the list.
The method deserialize is a public void method which reckame input parameter of type String.
In this method, we first evaluate the deserialized Arraybistll parameters, and then for each Field
and Sub-Collaboration declared we update the value of tiregmonding field in CollaborationData
according to the elements of the deserialized arrayList.

For example the Sub-Collaboration and Field Declarations

3| Docunent CheckCol | aborati on wf;

String nane;
I nt eger nunber;

will be translated in a data class that is presented in theviolg.

public class CollaborationData extends AbstractData {
private StringType nane;
private |nteger Type nunber;
Private String wf;

public StringType get Nanme() {
return name;

87

11

19

25

31

41

N

[

}

public void set Name(StringType nane) {
this. name = nane;

}

public I ntegerType get Nunber() {
return nunber;

public void set Nunber (I nteger Type nunber) {
t hi s. nunber = nunber;

}

public String getW() {
return wf;

}

public void setW(String wf) {
this.wf = wf;
}

@verride
public String serialize() {
Arrayli st<String> parans= new ArraylLi st<String>();
par ans. add(nane. ToString());
par ans. add(nunber. ToString());
par ans. add(wf) ;
return Serializer.serialize(parans);

}
@verride

public void deserialize(String data) {
ArraylLi st<String> parans = Serializer.deserialize(data);
name = new StringType(parans .get(0));
nunber = new I nteger Type(parans .get(1));
wf = paranms .get(2);
}
}

A.3.2 State Declaration

For each state declared in the Collaboration Specificatiomdividual Java class should be built in
the corresponding collaboration project. All state clasa® subclasses of AbstractState class. The
created class will be named according to the State Nameif éhg. State Name is “Draft” the class
would be named as DraftState. The state class has two fieldisgsthe name of the state and also a
Boolean showing if the state is a Final State or not. The bddgaoh State Declaration may include
a list of Event-Handlers and Time-Handlers. Therefore cireesponding state class has an inner
class containing all translated forms of Event-HandlesEntk-Handlers defined for that state, i.e.
one method for each handler is included in the inner class.

For example the State Declaration:

State Draft {
...event-handlers & tine-handlers...

}

will be translated to the state class that is presented ifolf@ving.

public class DraftState extends AbstractState {

public static final String stateNane = "Draft";
public static final boolean isFinal = false;

cl ass Event Handl er extends Col | aborati onEvent Handl er {

88

N

[

...transl ated event-handlers & time-handlers ...

}

public DraftState() {

super (name, isFinal);

set Event Handl er (new Event Handl er());
}

public DraftState(Data data) {
this();
set Dat a(dat a) ;

}

A.3.3 Entry Declaration

For each Entry Declaration declared in the body of a Statenatouctor should be created in Col-
laboration class of the CollaborationPackage. The inprarpater of the created constructor is the
translated Name of the corresponding Event, which is defiméte ConfigurationProject.

At the beginning of the created constructor, for each of thke®listed in the Entry Declaration
we check if the sender of the event has that Role or not, i.ealling the translated Is method of each
of roles on the event sender, e.g. Roles.IsStudnetRota{des). If the event sender does not have
any of the listed Roles, the method throws an exception;ratise it performs the translated Block
of code presented in the body of the Entry Declaration. Nua¢ the State Change presented in the
Block of Entry Declaration should be translated to a methaibto set the state of the collaboration.

For example, the Entry Declaration

Entry Initiate [Student, Manager] {
... Body. ..
}

will be translated to

public AbstractState entry(InitiateEvent event) throws WnsException {

if (!'Roles.|sStudnetRol e(e. Sender).toBool ean() || !Rol es.|sManager Rol e(e. Sender
) . toBool ean())
t hrow new W mavException("...Excepti onMessage...");

... Transl at edBody. . .
}

A.3.4 Event Handler

For each Event Handler declared in the body of a State, a methould be created in the Event
Handler inner-class of the corresponding state class. fidaed method should be an event handler
of which return type is AbstractState. The method will be pdnas handleEvent and the type
of its input parameter is the translated Name of the cormadipg Event, which is defined in the
ConfigurationProject.

At the beginning of the method, for each of the Roles listethinEvent Handler we check if

the sender of the event has that Role or not, i.e. by calliagrémslated Is method of each of roles

89

[

[

[

on the event sender, e.g. Roles.IsStudnetRole(e.Serifigre event sender does not have any of
the listed Roles, the method throws an exception; othentvsaforms the translated Block of code
presented in the body of the Event Handler.

For example, the Event Handler

31}

@ubmt [Student, Manager] {
... Body. ..

will be translated to

F

public Abstract State handl eEvent (Subnmit Event event) throws W nsException {
if (!'Roles.|sStudnetRol e(e. Sender).toBool ean() || !Rol es.|sManager Rol e(e. Sender
) . t oBool ean())
t hrow new W mavException("...Excepti onMessage...");
... Transl at edBody. . .

A.3.5 Time Handler

For each Time Handler declared in the body of a State, a methodld be created in the Time
Handler inner-class of the corresponding state class. fidaead method should be an event handler
of which return type is AbstractState. The method will be rdms handleEvent and the type of
its input parameter is TimeEvent which is defined in the ¢tation engine. The method should
contain the translated Block of code presented in the bodyeoTime Handler.

Moreover, for each Time Handler declared in the body of aeStatine of code should be added
to the constructor of the corresponding state.

For example, the Time Handler

31}

On tineField {
... Body. ..

The method to be added to Time Handler inner-class of thesponding state is

3|}

public Abstract State handl eEvent (Ti neEvent event) throws WnsException {
... Transl at edBody. . .

and the line of code included in the constructor of the cwesling state will be

Ti meEvent Manager. get | nst ance() . addEvent (get Data().getW1d, getData().getTinmeField
)

A.3.6 Block

Any Block presented in the collaboration specification $tidae transformed to a block of java
statements. All lines of code in the Block should be tramslab the targeted language and this
translation should be performed in order of the occurreticescommands in the Block. Each
line should be translated based on what type of commandéittser an assignment statement, If

Statement, Variable Declaration and etc.; therefore, pipeapriate translation steps should be taken.

90

Variable Declaration

A variable declared in a collaboration specification shdéddranslated into a variable in the target
Java program. The name of the translated variable will beséimee as the Variable Name, but its
type should be the translated form of its original Type.

For example, the Variable Declaration

1| Users usersVar; ‘

will be translated to

1| User sType usersVar; ‘

Assignment Statement

Any Assignment Statement presented in the collaboratiegifipation should be transformed to a
Java assignment statement. The translated form of AssiginBiatement should be the translated
form of the left-hand side Expression followed by charattérfollowed by the translated form the

right-hand side Expression. Variable Assignment Statemen

iluser1Vvar = user2Var ‘

will be translated to

1| user 1Var =user 2Var ‘

If Statement

Any If Statement presented in the collaboration specificathould be transformed to a java if-
statement. The condition of the translated if-statementishbe the translated form of the original
Expression provided as the Condition of the If Statementergfore, the translated form of If
Statement should be “if (" followed by the translated formitsfconditional Expression followed
by)", followed by the translated form of its Block of codef the If Statement includes an Else
part, the translated if-statement should be followed bge&followed by the translated form of its
following Block.

For example, the If Statement

If (booleanVar) {
...Bodyl. ..
5|}

El se {
...Body2. ..
}

.

will be translated to

if (bool eanVar) {
... Trasnl at edBody1. . .

N

slel se {
... Trasnl at edBody?2. . .
6 }

91

N

[

[

While Statement

Any While Statement presented in the collaboration spetifia should be transformed to a java
while-statement. The condition of the translated whiktesnent should be the translated form of
the original Expression provided as the Condition of the /Btatement. Therefore, the translated
form of While Statement should be “while (” followed by themslated form of its conditional
Expression followed by “)”, followed by the translated foohits Block of code. For example, the

While Statement

Wi | e(bool eanVar) {
... Body. ..
}

will be translated to

3|}

whi | e(bool eanVar) {
... Transl at edBody. . .

Foreach Statement

Any Foreach Statement presented in the collaboration fspegton should be transformed to a java
for-statement. The translation of Foreach is performedming to the type of the targeted col-
lection to iterate. Since the allowed types of collectiom®ur collaboration language are Users
and Strings, the type of the Variable Name defined in Foreaatei®ent should be either User or
String; it should be User if the type of targeted collectistUsers, and String if the type of targeted
collection is Strings. Accordingly, our translated foatstment should iterate over a list of UserType
or StringType elements, which is provided as an Expressiahe original program. Therefore,
the translated form of Foreach Statement should be “for [{ofeed by the translated form of the
type of the elements (either StringType or UserType) in éngdted element and the exact Variable
Name presented in the Foreach Statement, the charactehé:'translated form of the presented
Expression as the targeted collection followed by “.gét)iand the character “)”, all followed by

the translated form of its Block of code. For example, thesBoh Statement

31}

Foreach(userVar in usersVar) {
... Body. ..

will be translated to

3|}

for(UserType userVar : usersVar.getList()) {
... Transl at edBody. . .

Service Invocation

For any Service Invocation occurred in the collaboratioecsiiration the translated method of the

corresponding should be called in the Java program. Sihtraaslated service methods are resided

92

in the Services class of ConfigurationProject, the methddvoauld be “Services.” Followed by the
name of the translated corresponding method. The parasmeteded for this method call would be
the translated form of the Expression List presented iniSefwnvocation.

For example, the Service Invocation

1

AddMenber (user Var, naneVar) ‘

will be translated to

1| Servi ces. AddMenber Servi ce (userVar, naneVar) ‘

Note that Any Expression List presented in the collaboresjpecification should be transformed
to a list of translated expressions. The elements of thafimamed expressions list should be sepa-
rated by the character “,” and should be presented in the satie® as the original expressions have

occurred in the specification.

Exception

Any Exception presented in the collaboration specificasioould be transformed to a Java throw ex-
ception statement, throwing an instance of WfmsExceptiitin te intended error-message. There-
fore, The translated form of the Exception would be “thrown&fmsException(” followed by the
translated form of the Expression presented as the erresage, followed by character “)”.

For example, the Exception

1| Excepti on(messageVar) ; ‘

will be translated to

1|t hrow new W nsExcepti on(nessageVar) ; ‘

State Change

State Change should be translated to its target Java stattbamed on where it has occurred. Any
State Change presented in a Event-Handler (or Time-Hgrstieuld be transformed to a Java state-
ment that returns an instance of a state class created fatealsised collaboration. The type of the
state object to be instantiated and returned should beahslated form of the State Name presented
in State Change. On the other hand, any State Change présemate Entry Declaration should be
transformed to a Java method call to set the state of a séastedizollaboration, i.e. setState method.
The name of the state to be set as the current State of théatzon should be obtained State
Name presented in State Change.

For example, the State Change

1| To(Draft);

in a Event-Handler (or Time-Handler) and in a will be tratstbto

93

[

1

1

[

1

.

return new DraftState(getData()); /1 if the State Change bel ongs to a Event-
Handl er (or Ti me-Handl er)

Set State(getData()); /1 if the State Change belongs to an Entry
Decl arati on

Terminate

Any Terminate command presented in the collaboration fipation should be transformed to a
Java statement that return an instance of the TerminageSthich is a state class created for a

rule-based collaboration. Therefore, the command

‘ Term nat e; ‘

presented in the collaboration specification will be tratesd to

return new TerninateState(getData()); ‘

EventTrigger

Any Event Trigger presented in the collaboration specificashould be transformed to a Java
method call for triggering the event. If the event shouldriggered for one of the sub-collaborations
the translation would be “Engine.getinstance().triggetiData().”, followed by the getter method of
the corresponding sub-collaboration, character “,” folial by an instance of the targeted Event and

the translated forms of its parameters, and character 9 ekample, the Event Trigger

wf. Tri gger (Start (nameVar, nunberVar))

will be translated to

Engi ne. getl nstance().trigger(getData().getW (), new StartEvent(nanmeVar, nunberVar)
)i

If the event should be triggered for the parent collaboratiee employ the getParent() method

instead of the getter method. For example, the Event Trigger

Trigger(Start(nanmeVar, nunberVar)) ‘

will be translated to

Engi ne. getl nstance().trigger(getData().getParent(), new StartEvent(naneVar,
nunber Var)) ;

A.3.7 Expression

Any Expression presented in the collaboration specificasioould be transformed to a block of
java statements. Depending on the type of the expressiothandperations used in it, different
translating steps should be applied. Note that translatimuld be performed in an order that the
precedence of the operations is hold. Accordingly, for amypound expression, i.e. an expression

including more than one operator, the expressions withitjtesh priority is translated first, and then

94

its results should be used as part of the other expressionsxemple, in translation of a*(b+c), first
(b+c) should be translated and then its result should be aséte right-hand side expression of the
multiply expression. Consequently, we follow a bottom-ppmach in translating the compound

expressions

Role&Relation Expression

For any Role&Relation Expression occurred in the collabonespecification the translated method
of the corresponding Role or Relation should be called inJdn& program. Any Role&Relation

Expression can be one of the five following types for whicHeddnt translation steps should be

applied.

o If the Expression is checking if a User has a specific Roletrdaeslation would be calling
the Is method of the Role on that specific User. Accordingg, translated form would be
“Roles.” followed by the translated Is method nhame of thesRahd the name of the translated

form of the User value should be passed as the parameter moati®d.

For example, the Expression

1 userVar |s Manager ‘

will be translated to

1| Rol es. | sManager Rol e(user Var) ‘

o If the Expression is looking for all Users that have a spedfate, the translation would
be calling the All method of the Role. Accordingly, the trkated form would be “Roles.”

followed by the translated All method name of the Role.

For example, the Expression

Al'l Manager ‘

1

will be translated to

1

Rol es. Al | Manager Rol e() ‘

o Ifthe Expressionis checking if a Relation is held betweemalues, the translation would be
calling the Is method of the Relation. Accordingly, the siated form would be “Relations.”
followed by the translated Is method name of the Relatiod,tha translated form of the two

parameters should be passed to the method.

For example, the Expression

1| userVar Leads project Var

will be translated to

95

.

1| Rel ati ons. | sLeadsRel ati on(user Var,

proj ect Var)

¢ Ifthe Expression is looking for all left-hand side elemeuita Relation with a right-hand side
value, the translation would be calling the first Find metbbthe Relation. Accordingly, the
translated form would be “Relations.” followed by the trited first Find method name of

the Relation, and the translated form of the input paranstteuld be passed to the method.

For example, the Expression

1

Find (? Leads projectVar)

will be translated to

1

Rel ati os. Fi ndXLeadsRel ati on(proj ect Var)

¢ Ifthe Expression is looking for all right-hand side elenteata Relation with a left-hand side
value, the translation would be calling the second Find wetf the Relation. Accordingly,
the translated form would be “Relations.” followed by thartslated second Find method
name of the Relation, and the translated form of the inpuapater should be passed to the

method.

For example, the Expression

1

Find (userVar Leads ?)

will be translated to

1

Rel ati os. Fi ndLeadsXRel ati on(User Var)

Arithmetic Expression

Each Arithmetic Expression in our collaboration languageutd be translated into a method call.
Since Arithmetic Expressions are designed to manipulatgérs, the callee methods belong to
class IntegerType, which is defined in the collaborationmagintegerType includes methods add,
subtract, multiply and divide to implement the arithmetpecators +, -, *, / respectively. Each of
these methods receives two input arguments as the operéatius arithmetic operation. There-
fore, for translating Arithmetic Expressions we write ‘#gerType.” followed by the name of the
translated method for the presented operator, and thenavidprit with the translated form of the

operands (i.e. the two expressions) as its input arguments.

For example, the Arithmetic Expressions

Nunber 1Var
Nunmber 1Var

3| Nunber 1Var

Nunmber 1Var

~ % 1 4

Nunber 2Var
Nunmber 2Var
Nunber 2Var
Nunmber 2Var

will be respectively translated to

96

N

N

N

I nt eger Type. add(Nunber 1Var , Nunber 2Var)

I nt eger Type. subtract (Nunber 1Var , Number 2Var)
I nt eger Type. mul ti pl y(Nunber 1Var , Number 2Var)
I nt eger Type. devi de(Nunber 1Var , Nunber 2Var)

Collection Expression

Each Collection Expression in our collaboration languatmuid be translated into a method call.
Since Collection Expressions are designed to manipulategStand Users, the callee methods
belong to class StringsType or UsersType, which are defiméke collaboration engine, depend-
ing what the types of the operands are. StringsType and Ogezsnclude methods addAll and
removeAll to implement the collection operators + and - eetpely. Each of these methods re-
ceives two input arguments as the operands of the arithropécation. Therefore, for translating
Collection Expressions manipulating Strings we write it8sType.” followed by the name of the
translated method for the presented operator, and thenavidprit with the translated form of the
operands (i.e. the two expressions) as its input argumeat<ollection Expressions manipulating
Users the translation would be the same except that theeaakthod belongs to UsersType.

For example, the Collection Expressions

userslVar + usersilVar
userslVar - userslVar

will be respectively translated to

User sType. addAl | (userslVar , users2Var)
User sType. renmoveAl | (userslVar , users2Var)

Logical Expression

Each Logical Expression in our collaboration language khbe translated into a method call.
Since Logical Expressions are designed to manipulatedstrithe callee methods belong to class
BooleanType, which is defined in the collaboration engineolBanType includes methods and, or,
and not, to implement the logical operators And, Or, ! retipely. The first two methods receive
two input arguments as the operands of the logical operatibareas the third one only needs one
operand. Therefore, for translating Logical Expressiorsmite “BooleanType.” followed by the
name of the translated method for the presented operatbthan we provide it with the translated
form of the operand(s) (i.e. the expression(s)) as its iapgtiment(s).

For example, the Logical Expressions

Bool eanlVar And Bool ean2Var
Bool eanlVar O Bool ean2Var
! Bool eanlVar

will be respectively translated to

3| Bool eanType. not (Bool eanlVar)

Bool eanType. and(Bool eanlVar, Bool ean2Var)
Bool eanType. or (Bool eanlVar, Bool ean2Var)

97

1

1

[

[

String Expression

Each String Expression in our collaboration language shbaltranslated into a method call. Since
String Expressions are designed to manipulate Integez;atlee methods belong to class String-
Type, defined in the collaboration engine. StringType ideki method concat to implement the
string operator +. This method receives two input argumasthe operands of the string operation.
Therefore, for translating String Expressions we writerit®fType.” followed by the name of the
translated method, i.e. “concat”, and then we provide ihwhi translated form of the operands (i.e.
the two expressions) as its input argument(s).

For example, the String Expression

StringlVar + String2Var ‘

will be respectively translated to

Bool eanType. concat (StringlVar, String2Var) ‘

Reference Expression

Each Reference Expression in our collaboration language!dlbe translated into a method call or
a variable reference. If the Reference Expression is a Nalde in the collaboration specification,
it should be translated to “getData().” Followed by the gethethod defined for the corresponding
field. If the Reference Expression is a Variable Name in tHiloration specification, it can be
used the way it is as a reference to the corresponding Varidbthe Reference Expression is a
reference to a parameter of the event, it should be transtatéevent.” Followed by the getter
method defined for the corresponding parameter of the event.

For example, the Reference Expressions

3| e. Sender

Nunber Fi el d
User Var

will be respectively translated to

s| event. get Sender ()

get Dat a() . get Nunmber Fi el d()
User Var

Literal

Any Literal presented in the collaboration specificatioawl be translated to a Java instance of the
translated Type of the Literals. A Literal of type Integeirjiy, or Boolean should be translated to
an instance of IntegerType, StringType, or BooleanTypé trie same value as the Literal. In other
words, an object of type IntegerType, StringType, or Boolgge should be “new”ed while passing

the value of the Literal to the constructor of the correspogdlass. The Literal “null” can be used

98

in the Java program the way it is and instantiating any objeetaning that the translation of the
“null” Literal is “null”.

For example, the Literals

3| True

1
"Hel | 0"

nul |

will be respectively translated to

s/ nul |

new | nt eger Type(1)
2lnew StringType("Hello")
new Bool eanType(true)

99

	Introduction
	Related Work
	The Collaboration-Specification Language
	Two Illustrative Examples
	Language Specification
	Lexical Elements
	Syntax
	Semantics

	The Software Framework
	The Collaboration Engine
	The API
	Instances Database
	The Engine Control Panel
	The Editor
	The Compiler
	Interactions

	The Integration Model
	The Collaboration System
	The Base System
	The Base API
	Logs Database
	The Adapter
	External Services
	Interactions

	Case Studies
	The GRAND Project
	The CWRC Project

	Conclusion
	Future Work

	Bibliography
	Translation to Java
	Types
	Configuration Specification
	Event Declaration
	Service Declaration
	Role Declaration
	Relation Declaration

	Collaboration Specification
	Sub-Collaboration Declaration & Field Declaration
	State Declaration
	Entry Declaration
	Event Handler
	Time Handler
	Block
	Expression

